Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
 
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
 
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
 
 
 
 
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
 
 
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 
 
 
 
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 
 
 
 
 
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 228	}
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234	}
 
 
 
 
 
 
 
 
 
 
 235
 236	down_read(&mm->mmap_sem);
 
 
 
 
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 387		}
 388skip_argv_envp:
 389		;
 390	}
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 422	else
 423		seq_putc(m, '0');
 424
 
 
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 
 
 474		}
 
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 604	unsigned long flags;
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 
 
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 714{
 715	if (pid->hide_pid < hide_pid_min)
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 751
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 755};
 756
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 816
 817	file->private_data = mm;
 818	return 0;
 819}
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 827
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 839
 840	if (!mm)
 841		return 0;
 842
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
1216	char buffer[PROC_NUMBUF];
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
 
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
1715{
1716	struct inode *inode = d_inode(dentry);
 
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
 
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
 
 
 
 
 
 
 
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
 
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
 
 
1852			}
1853		}
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1863}
1864
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1873		return -EINVAL;
1874
 
 
 
1875	return 0;
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
 
 
 
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
 
 
 
 
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
 
 
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2015	if (!inode)
2016		return -ENOENT;
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
2026
2027	return 0;
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
2039	result = -ENOENT;
2040	task = get_proc_task(dir);
2041	if (!task)
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
 
 
 
 
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
 
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
 
 
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
 
 
 
 
 
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
 
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
2153	}
2154	up_read(&mm->mmap_sem);
 
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
 
 
 
 
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
 
2173	return ret;
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
2262{
2263	struct timers_private *tp;
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
 
 
2301			count = -EPERM;
2302			goto out;
2303		}
 
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
 
2338			err = -EPERM;
2339			goto out;
2340		}
 
 
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
2359}
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
 
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
 
2420			break;
 
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
2437
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
2452	}
2453out:
2454	put_task_struct(task);
2455	return 0;
2456}
2457
2458#ifdef CONFIG_SECURITY
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
 
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
2526};
2527
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
 
 
 
 
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
 
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
2723
2724	seq = file->private_data;
2725	seq->private = ns;
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
 
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
 
 
 
 
 
 
 
 
 
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
 
 
 
 
 
 
 
 
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
 
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
3087	struct pid_namespace *ns;
 
3088
3089	tgid = name_to_int(&dentry->d_name);
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
3176	iter.task = NULL;
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
 
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
 
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
 
 
 
 
 
 
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
 
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3356
3357	if (!inode)
3358		goto out;
 
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
3381	struct pid_namespace *ns;
 
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
3491	struct task_struct *task;
3492	struct pid_namespace *ns;
3493	int tid;
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
 
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/proc/base.c
   4 *
   5 *  Copyright (C) 1991, 1992 Linus Torvalds
   6 *
   7 *  proc base directory handling functions
   8 *
   9 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
  10 *  Instead of using magical inumbers to determine the kind of object
  11 *  we allocate and fill in-core inodes upon lookup. They don't even
  12 *  go into icache. We cache the reference to task_struct upon lookup too.
  13 *  Eventually it should become a filesystem in its own. We don't use the
  14 *  rest of procfs anymore.
  15 *
  16 *
  17 *  Changelog:
  18 *  17-Jan-2005
  19 *  Allan Bezerra
  20 *  Bruna Moreira <bruna.moreira@indt.org.br>
  21 *  Edjard Mota <edjard.mota@indt.org.br>
  22 *  Ilias Biris <ilias.biris@indt.org.br>
  23 *  Mauricio Lin <mauricio.lin@indt.org.br>
  24 *
  25 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  26 *
  27 *  A new process specific entry (smaps) included in /proc. It shows the
  28 *  size of rss for each memory area. The maps entry lacks information
  29 *  about physical memory size (rss) for each mapped file, i.e.,
  30 *  rss information for executables and library files.
  31 *  This additional information is useful for any tools that need to know
  32 *  about physical memory consumption for a process specific library.
  33 *
  34 *  Changelog:
  35 *  21-Feb-2005
  36 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  37 *  Pud inclusion in the page table walking.
  38 *
  39 *  ChangeLog:
  40 *  10-Mar-2005
  41 *  10LE Instituto Nokia de Tecnologia - INdT:
  42 *  A better way to walks through the page table as suggested by Hugh Dickins.
  43 *
  44 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  45 *  Smaps information related to shared, private, clean and dirty pages.
  46 *
  47 *  Paul Mundt <paul.mundt@nokia.com>:
  48 *  Overall revision about smaps.
  49 */
  50
  51#include <linux/uaccess.h>
  52
  53#include <linux/errno.h>
  54#include <linux/time.h>
  55#include <linux/proc_fs.h>
  56#include <linux/stat.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/init.h>
  59#include <linux/capability.h>
  60#include <linux/file.h>
  61#include <linux/fdtable.h>
  62#include <linux/generic-radix-tree.h>
  63#include <linux/string.h>
  64#include <linux/seq_file.h>
  65#include <linux/namei.h>
  66#include <linux/mnt_namespace.h>
  67#include <linux/mm.h>
  68#include <linux/swap.h>
  69#include <linux/rcupdate.h>
  70#include <linux/kallsyms.h>
  71#include <linux/stacktrace.h>
  72#include <linux/resource.h>
  73#include <linux/module.h>
  74#include <linux/mount.h>
  75#include <linux/security.h>
  76#include <linux/ptrace.h>
  77#include <linux/tracehook.h>
  78#include <linux/printk.h>
  79#include <linux/cache.h>
  80#include <linux/cgroup.h>
  81#include <linux/cpuset.h>
  82#include <linux/audit.h>
  83#include <linux/poll.h>
  84#include <linux/nsproxy.h>
  85#include <linux/oom.h>
  86#include <linux/elf.h>
  87#include <linux/pid_namespace.h>
  88#include <linux/user_namespace.h>
  89#include <linux/fs_struct.h>
  90#include <linux/slab.h>
  91#include <linux/sched/autogroup.h>
  92#include <linux/sched/mm.h>
  93#include <linux/sched/coredump.h>
  94#include <linux/sched/debug.h>
  95#include <linux/sched/stat.h>
  96#include <linux/posix-timers.h>
 
 
 
  97#include <trace/events/oom.h>
  98#include "internal.h"
  99#include "fd.h"
 100
 101#include "../../lib/kstrtox.h"
 102
 103/* NOTE:
 104 *	Implementing inode permission operations in /proc is almost
 105 *	certainly an error.  Permission checks need to happen during
 106 *	each system call not at open time.  The reason is that most of
 107 *	what we wish to check for permissions in /proc varies at runtime.
 108 *
 109 *	The classic example of a problem is opening file descriptors
 110 *	in /proc for a task before it execs a suid executable.
 111 */
 112
 113static u8 nlink_tid __ro_after_init;
 114static u8 nlink_tgid __ro_after_init;
 115
 116struct pid_entry {
 117	const char *name;
 118	unsigned int len;
 119	umode_t mode;
 120	const struct inode_operations *iop;
 121	const struct file_operations *fop;
 122	union proc_op op;
 123};
 124
 125#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 126	.name = (NAME),					\
 127	.len  = sizeof(NAME) - 1,			\
 128	.mode = MODE,					\
 129	.iop  = IOP,					\
 130	.fop  = FOP,					\
 131	.op   = OP,					\
 132}
 133
 134#define DIR(NAME, MODE, iops, fops)	\
 135	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 136#define LNK(NAME, get_link)					\
 137	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 138		&proc_pid_link_inode_operations, NULL,		\
 139		{ .proc_get_link = get_link } )
 140#define REG(NAME, MODE, fops)				\
 141	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 142#define ONE(NAME, MODE, show)				\
 143	NOD(NAME, (S_IFREG|(MODE)),			\
 144		NULL, &proc_single_file_operations,	\
 145		{ .proc_show = show } )
 146#define ATTR(LSM, NAME, MODE)				\
 147	NOD(NAME, (S_IFREG|(MODE)),			\
 148		NULL, &proc_pid_attr_operations,	\
 149		{ .lsm = LSM })
 150
 151/*
 152 * Count the number of hardlinks for the pid_entry table, excluding the .
 153 * and .. links.
 154 */
 155static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 156	unsigned int n)
 157{
 158	unsigned int i;
 159	unsigned int count;
 160
 161	count = 2;
 162	for (i = 0; i < n; ++i) {
 163		if (S_ISDIR(entries[i].mode))
 164			++count;
 165	}
 166
 167	return count;
 168}
 169
 170static int get_task_root(struct task_struct *task, struct path *root)
 171{
 172	int result = -ENOENT;
 173
 174	task_lock(task);
 175	if (task->fs) {
 176		get_fs_root(task->fs, root);
 177		result = 0;
 178	}
 179	task_unlock(task);
 180	return result;
 181}
 182
 183static int proc_cwd_link(struct dentry *dentry, struct path *path)
 184{
 185	struct task_struct *task = get_proc_task(d_inode(dentry));
 186	int result = -ENOENT;
 187
 188	if (task) {
 189		task_lock(task);
 190		if (task->fs) {
 191			get_fs_pwd(task->fs, path);
 192			result = 0;
 193		}
 194		task_unlock(task);
 195		put_task_struct(task);
 196	}
 197	return result;
 198}
 199
 200static int proc_root_link(struct dentry *dentry, struct path *path)
 201{
 202	struct task_struct *task = get_proc_task(d_inode(dentry));
 203	int result = -ENOENT;
 204
 205	if (task) {
 206		result = get_task_root(task, path);
 207		put_task_struct(task);
 208	}
 209	return result;
 210}
 211
 212/*
 213 * If the user used setproctitle(), we just get the string from
 214 * user space at arg_start, and limit it to a maximum of one page.
 215 */
 216static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf,
 217				size_t count, unsigned long pos,
 218				unsigned long arg_start)
 219{
 
 
 220	char *page;
 221	int ret, got;
 
 
 
 
 
 
 
 222
 223	if (pos >= PAGE_SIZE)
 
 
 
 
 
 224		return 0;
 
 
 
 
 
 225
 226	page = (char *)__get_free_page(GFP_KERNEL);
 227	if (!page)
 228		return -ENOMEM;
 229
 230	ret = 0;
 231	got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON);
 232	if (got > 0) {
 233		int len = strnlen(page, got);
 234
 235		/* Include the NUL character if it was found */
 236		if (len < got)
 237			len++;
 238
 239		if (len > pos) {
 240			len -= pos;
 241			if (len > count)
 242				len = count;
 243			len -= copy_to_user(buf, page+pos, len);
 244			if (!len)
 245				len = -EFAULT;
 246			ret = len;
 247		}
 248	}
 249	free_page((unsigned long)page);
 250	return ret;
 251}
 252
 253static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf,
 254			      size_t count, loff_t *ppos)
 255{
 256	unsigned long arg_start, arg_end, env_start, env_end;
 257	unsigned long pos, len;
 258	char *page, c;
 259
 260	/* Check if process spawned far enough to have cmdline. */
 261	if (!mm->env_end)
 262		return 0;
 263
 264	spin_lock(&mm->arg_lock);
 265	arg_start = mm->arg_start;
 266	arg_end = mm->arg_end;
 267	env_start = mm->env_start;
 268	env_end = mm->env_end;
 269	spin_unlock(&mm->arg_lock);
 270
 271	if (arg_start >= arg_end)
 272		return 0;
 
 
 
 273
 
 
 
 
 
 274	/*
 275	 * We allow setproctitle() to overwrite the argument
 276	 * strings, and overflow past the original end. But
 277	 * only when it overflows into the environment area.
 278	 */
 279	if (env_start != arg_end || env_end < env_start)
 280		env_start = env_end = arg_end;
 281	len = env_end - arg_start;
 282
 283	/* We're not going to care if "*ppos" has high bits set */
 284	pos = *ppos;
 285	if (pos >= len)
 286		return 0;
 287	if (count > len - pos)
 288		count = len - pos;
 289	if (!count)
 290		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 291
 292	/*
 293	 * Magical special case: if the argv[] end byte is not
 294	 * zero, the user has overwritten it with setproctitle(3).
 295	 *
 296	 * Possible future enhancement: do this only once when
 297	 * pos is 0, and set a flag in the 'struct file'.
 298	 */
 299	if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c)
 300		return get_mm_proctitle(mm, buf, count, pos, arg_start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 301
 302	/*
 303	 * For the non-setproctitle() case we limit things strictly
 304	 * to the [arg_start, arg_end[ range.
 305	 */
 306	pos += arg_start;
 307	if (pos < arg_start || pos >= arg_end)
 308		return 0;
 309	if (count > arg_end - pos)
 310		count = arg_end - pos;
 
 311
 312	page = (char *)__get_free_page(GFP_KERNEL);
 313	if (!page)
 314		return -ENOMEM;
 
 315
 316	len = 0;
 317	while (count) {
 318		int got;
 319		size_t size = min_t(size_t, PAGE_SIZE, count);
 
 320
 321		got = access_remote_vm(mm, pos, page, size, FOLL_ANON);
 322		if (got <= 0)
 323			break;
 324		got -= copy_to_user(buf, page, got);
 325		if (unlikely(!got)) {
 326			if (!len)
 327				len = -EFAULT;
 328			break;
 
 
 
 
 
 
 329		}
 330		pos += got;
 331		buf += got;
 332		len += got;
 333		count -= got;
 334	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	free_page((unsigned long)page);
 337	return len;
 338}
 
 339
 340static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf,
 341				size_t count, loff_t *pos)
 342{
 343	struct mm_struct *mm;
 344	ssize_t ret;
 345
 346	mm = get_task_mm(tsk);
 347	if (!mm)
 348		return 0;
 
 
 
 349
 350	ret = get_mm_cmdline(mm, buf, count, pos);
 
 
 351	mmput(mm);
 352	return ret;
 353}
 354
 355static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 356				     size_t count, loff_t *pos)
 357{
 358	struct task_struct *tsk;
 359	ssize_t ret;
 360
 361	BUG_ON(*pos < 0);
 362
 363	tsk = get_proc_task(file_inode(file));
 364	if (!tsk)
 365		return -ESRCH;
 366	ret = get_task_cmdline(tsk, buf, count, pos);
 367	put_task_struct(tsk);
 368	if (ret > 0)
 369		*pos += ret;
 370	return ret;
 371}
 372
 373static const struct file_operations proc_pid_cmdline_ops = {
 374	.read	= proc_pid_cmdline_read,
 375	.llseek	= generic_file_llseek,
 376};
 377
 378#ifdef CONFIG_KALLSYMS
 379/*
 380 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 381 * Returns the resolved symbol.  If that fails, simply return the address.
 382 */
 383static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 384			  struct pid *pid, struct task_struct *task)
 385{
 386	unsigned long wchan;
 387	char symname[KSYM_NAME_LEN];
 388
 389	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
 390		goto print0;
 391
 392	wchan = get_wchan(task);
 393	if (wchan && !lookup_symbol_name(wchan, symname)) {
 394		seq_puts(m, symname);
 395		return 0;
 396	}
 397
 398print0:
 399	seq_putc(m, '0');
 400	return 0;
 401}
 402#endif /* CONFIG_KALLSYMS */
 403
 404static int lock_trace(struct task_struct *task)
 405{
 406	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 407	if (err)
 408		return err;
 409	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 410		mutex_unlock(&task->signal->cred_guard_mutex);
 411		return -EPERM;
 412	}
 413	return 0;
 414}
 415
 416static void unlock_trace(struct task_struct *task)
 417{
 418	mutex_unlock(&task->signal->cred_guard_mutex);
 419}
 420
 421#ifdef CONFIG_STACKTRACE
 422
 423#define MAX_STACK_TRACE_DEPTH	64
 424
 425static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 426			  struct pid *pid, struct task_struct *task)
 427{
 
 428	unsigned long *entries;
 429	int err;
 
 430
 431	/*
 432	 * The ability to racily run the kernel stack unwinder on a running task
 433	 * and then observe the unwinder output is scary; while it is useful for
 434	 * debugging kernel issues, it can also allow an attacker to leak kernel
 435	 * stack contents.
 436	 * Doing this in a manner that is at least safe from races would require
 437	 * some work to ensure that the remote task can not be scheduled; and
 438	 * even then, this would still expose the unwinder as local attack
 439	 * surface.
 440	 * Therefore, this interface is restricted to root.
 441	 */
 442	if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
 443		return -EACCES;
 444
 445	entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries),
 446				GFP_KERNEL);
 447	if (!entries)
 448		return -ENOMEM;
 449
 
 
 
 
 
 450	err = lock_trace(task);
 451	if (!err) {
 452		unsigned int i, nr_entries;
 453
 454		nr_entries = stack_trace_save_tsk(task, entries,
 455						  MAX_STACK_TRACE_DEPTH, 0);
 456
 457		for (i = 0; i < nr_entries; i++) {
 458			seq_printf(m, "[<0>] %pB\n", (void *)entries[i]);
 459		}
 460
 461		unlock_trace(task);
 462	}
 463	kfree(entries);
 464
 465	return err;
 466}
 467#endif
 468
 469#ifdef CONFIG_SCHED_INFO
 470/*
 471 * Provides /proc/PID/schedstat
 472 */
 473static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 474			      struct pid *pid, struct task_struct *task)
 475{
 476	if (unlikely(!sched_info_on()))
 477		seq_puts(m, "0 0 0\n");
 478	else
 479		seq_printf(m, "%llu %llu %lu\n",
 480		   (unsigned long long)task->se.sum_exec_runtime,
 481		   (unsigned long long)task->sched_info.run_delay,
 482		   task->sched_info.pcount);
 483
 484	return 0;
 485}
 486#endif
 487
 488#ifdef CONFIG_LATENCYTOP
 489static int lstats_show_proc(struct seq_file *m, void *v)
 490{
 491	int i;
 492	struct inode *inode = m->private;
 493	struct task_struct *task = get_proc_task(inode);
 494
 495	if (!task)
 496		return -ESRCH;
 497	seq_puts(m, "Latency Top version : v0.1\n");
 498	for (i = 0; i < LT_SAVECOUNT; i++) {
 499		struct latency_record *lr = &task->latency_record[i];
 500		if (lr->backtrace[0]) {
 501			int q;
 502			seq_printf(m, "%i %li %li",
 503				   lr->count, lr->time, lr->max);
 504			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 505				unsigned long bt = lr->backtrace[q];
 506
 507				if (!bt)
 508					break;
 
 
 509				seq_printf(m, " %ps", (void *)bt);
 510			}
 511			seq_putc(m, '\n');
 512		}
 513
 514	}
 515	put_task_struct(task);
 516	return 0;
 517}
 518
 519static int lstats_open(struct inode *inode, struct file *file)
 520{
 521	return single_open(file, lstats_show_proc, inode);
 522}
 523
 524static ssize_t lstats_write(struct file *file, const char __user *buf,
 525			    size_t count, loff_t *offs)
 526{
 527	struct task_struct *task = get_proc_task(file_inode(file));
 528
 529	if (!task)
 530		return -ESRCH;
 531	clear_tsk_latency_tracing(task);
 532	put_task_struct(task);
 533
 534	return count;
 535}
 536
 537static const struct file_operations proc_lstats_operations = {
 538	.open		= lstats_open,
 539	.read		= seq_read,
 540	.write		= lstats_write,
 541	.llseek		= seq_lseek,
 542	.release	= single_release,
 543};
 544
 545#endif
 546
 547static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 548			  struct pid *pid, struct task_struct *task)
 549{
 550	unsigned long totalpages = totalram_pages() + total_swap_pages;
 551	unsigned long points = 0;
 552
 553	points = oom_badness(task, totalpages) * 1000 / totalpages;
 
 554	seq_printf(m, "%lu\n", points);
 555
 556	return 0;
 557}
 558
 559struct limit_names {
 560	const char *name;
 561	const char *unit;
 562};
 563
 564static const struct limit_names lnames[RLIM_NLIMITS] = {
 565	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 566	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 567	[RLIMIT_DATA] = {"Max data size", "bytes"},
 568	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 569	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 570	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 571	[RLIMIT_NPROC] = {"Max processes", "processes"},
 572	[RLIMIT_NOFILE] = {"Max open files", "files"},
 573	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 574	[RLIMIT_AS] = {"Max address space", "bytes"},
 575	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 576	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 577	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 578	[RLIMIT_NICE] = {"Max nice priority", NULL},
 579	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 580	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 581};
 582
 583/* Display limits for a process */
 584static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 585			   struct pid *pid, struct task_struct *task)
 586{
 587	unsigned int i;
 588	unsigned long flags;
 589
 590	struct rlimit rlim[RLIM_NLIMITS];
 591
 592	if (!lock_task_sighand(task, &flags))
 593		return 0;
 594	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 595	unlock_task_sighand(task, &flags);
 596
 597	/*
 598	 * print the file header
 599	 */
 600	seq_puts(m, "Limit                     "
 601		"Soft Limit           "
 602		"Hard Limit           "
 603		"Units     \n");
 604
 605	for (i = 0; i < RLIM_NLIMITS; i++) {
 606		if (rlim[i].rlim_cur == RLIM_INFINITY)
 607			seq_printf(m, "%-25s %-20s ",
 608				   lnames[i].name, "unlimited");
 609		else
 610			seq_printf(m, "%-25s %-20lu ",
 611				   lnames[i].name, rlim[i].rlim_cur);
 612
 613		if (rlim[i].rlim_max == RLIM_INFINITY)
 614			seq_printf(m, "%-20s ", "unlimited");
 615		else
 616			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 617
 618		if (lnames[i].unit)
 619			seq_printf(m, "%-10s\n", lnames[i].unit);
 620		else
 621			seq_putc(m, '\n');
 622	}
 623
 624	return 0;
 625}
 626
 627#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 628static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 629			    struct pid *pid, struct task_struct *task)
 630{
 631	struct syscall_info info;
 632	u64 *args = &info.data.args[0];
 633	int res;
 634
 635	res = lock_trace(task);
 636	if (res)
 637		return res;
 638
 639	if (task_current_syscall(task, &info))
 640		seq_puts(m, "running\n");
 641	else if (info.data.nr < 0)
 642		seq_printf(m, "%d 0x%llx 0x%llx\n",
 643			   info.data.nr, info.sp, info.data.instruction_pointer);
 644	else
 645		seq_printf(m,
 646		       "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n",
 647		       info.data.nr,
 648		       args[0], args[1], args[2], args[3], args[4], args[5],
 649		       info.sp, info.data.instruction_pointer);
 650	unlock_trace(task);
 651
 652	return 0;
 653}
 654#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 655
 656/************************************************************************/
 657/*                       Here the fs part begins                        */
 658/************************************************************************/
 659
 660/* permission checks */
 661static int proc_fd_access_allowed(struct inode *inode)
 662{
 663	struct task_struct *task;
 664	int allowed = 0;
 665	/* Allow access to a task's file descriptors if it is us or we
 666	 * may use ptrace attach to the process and find out that
 667	 * information.
 668	 */
 669	task = get_proc_task(inode);
 670	if (task) {
 671		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 672		put_task_struct(task);
 673	}
 674	return allowed;
 675}
 676
 677int proc_setattr(struct dentry *dentry, struct iattr *attr)
 678{
 679	int error;
 680	struct inode *inode = d_inode(dentry);
 681
 682	if (attr->ia_valid & ATTR_MODE)
 683		return -EPERM;
 684
 685	error = setattr_prepare(dentry, attr);
 686	if (error)
 687		return error;
 688
 689	setattr_copy(inode, attr);
 690	mark_inode_dirty(inode);
 691	return 0;
 692}
 693
 694/*
 695 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 696 * or euid/egid (for hide_pid_min=2)?
 697 */
 698static bool has_pid_permissions(struct pid_namespace *pid,
 699				 struct task_struct *task,
 700				 int hide_pid_min)
 701{
 702	if (pid->hide_pid < hide_pid_min)
 703		return true;
 704	if (in_group_p(pid->pid_gid))
 705		return true;
 706	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 707}
 708
 709
 710static int proc_pid_permission(struct inode *inode, int mask)
 711{
 712	struct pid_namespace *pid = proc_pid_ns(inode);
 713	struct task_struct *task;
 714	bool has_perms;
 715
 716	task = get_proc_task(inode);
 717	if (!task)
 718		return -ESRCH;
 719	has_perms = has_pid_permissions(pid, task, HIDEPID_NO_ACCESS);
 720	put_task_struct(task);
 721
 722	if (!has_perms) {
 723		if (pid->hide_pid == HIDEPID_INVISIBLE) {
 724			/*
 725			 * Let's make getdents(), stat(), and open()
 726			 * consistent with each other.  If a process
 727			 * may not stat() a file, it shouldn't be seen
 728			 * in procfs at all.
 729			 */
 730			return -ENOENT;
 731		}
 732
 733		return -EPERM;
 734	}
 735	return generic_permission(inode, mask);
 736}
 737
 738
 739
 740static const struct inode_operations proc_def_inode_operations = {
 741	.setattr	= proc_setattr,
 742};
 743
 744static int proc_single_show(struct seq_file *m, void *v)
 745{
 746	struct inode *inode = m->private;
 747	struct pid_namespace *ns = proc_pid_ns(inode);
 748	struct pid *pid = proc_pid(inode);
 749	struct task_struct *task;
 750	int ret;
 751
 
 
 752	task = get_pid_task(pid, PIDTYPE_PID);
 753	if (!task)
 754		return -ESRCH;
 755
 756	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 757
 758	put_task_struct(task);
 759	return ret;
 760}
 761
 762static int proc_single_open(struct inode *inode, struct file *filp)
 763{
 764	return single_open(filp, proc_single_show, inode);
 765}
 766
 767static const struct file_operations proc_single_file_operations = {
 768	.open		= proc_single_open,
 769	.read		= seq_read,
 770	.llseek		= seq_lseek,
 771	.release	= single_release,
 772};
 773
 774
 775struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 776{
 777	struct task_struct *task = get_proc_task(inode);
 778	struct mm_struct *mm = ERR_PTR(-ESRCH);
 779
 780	if (task) {
 781		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 782		put_task_struct(task);
 783
 784		if (!IS_ERR_OR_NULL(mm)) {
 785			/* ensure this mm_struct can't be freed */
 786			mmgrab(mm);
 787			/* but do not pin its memory */
 788			mmput(mm);
 789		}
 790	}
 791
 792	return mm;
 793}
 794
 795static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 796{
 797	struct mm_struct *mm = proc_mem_open(inode, mode);
 798
 799	if (IS_ERR(mm))
 800		return PTR_ERR(mm);
 801
 802	file->private_data = mm;
 803	return 0;
 804}
 805
 806static int mem_open(struct inode *inode, struct file *file)
 807{
 808	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 809
 810	/* OK to pass negative loff_t, we can catch out-of-range */
 811	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 812
 813	return ret;
 814}
 815
 816static ssize_t mem_rw(struct file *file, char __user *buf,
 817			size_t count, loff_t *ppos, int write)
 818{
 819	struct mm_struct *mm = file->private_data;
 820	unsigned long addr = *ppos;
 821	ssize_t copied;
 822	char *page;
 823	unsigned int flags;
 824
 825	if (!mm)
 826		return 0;
 827
 828	page = (char *)__get_free_page(GFP_KERNEL);
 829	if (!page)
 830		return -ENOMEM;
 831
 832	copied = 0;
 833	if (!mmget_not_zero(mm))
 834		goto free;
 835
 836	flags = FOLL_FORCE | (write ? FOLL_WRITE : 0);
 
 
 
 837
 838	while (count > 0) {
 839		int this_len = min_t(int, count, PAGE_SIZE);
 840
 841		if (write && copy_from_user(page, buf, this_len)) {
 842			copied = -EFAULT;
 843			break;
 844		}
 845
 846		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 847		if (!this_len) {
 848			if (!copied)
 849				copied = -EIO;
 850			break;
 851		}
 852
 853		if (!write && copy_to_user(buf, page, this_len)) {
 854			copied = -EFAULT;
 855			break;
 856		}
 857
 858		buf += this_len;
 859		addr += this_len;
 860		copied += this_len;
 861		count -= this_len;
 862	}
 863	*ppos = addr;
 864
 865	mmput(mm);
 866free:
 867	free_page((unsigned long) page);
 868	return copied;
 869}
 870
 871static ssize_t mem_read(struct file *file, char __user *buf,
 872			size_t count, loff_t *ppos)
 873{
 874	return mem_rw(file, buf, count, ppos, 0);
 875}
 876
 877static ssize_t mem_write(struct file *file, const char __user *buf,
 878			 size_t count, loff_t *ppos)
 879{
 880	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 881}
 882
 883loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 884{
 885	switch (orig) {
 886	case 0:
 887		file->f_pos = offset;
 888		break;
 889	case 1:
 890		file->f_pos += offset;
 891		break;
 892	default:
 893		return -EINVAL;
 894	}
 895	force_successful_syscall_return();
 896	return file->f_pos;
 897}
 898
 899static int mem_release(struct inode *inode, struct file *file)
 900{
 901	struct mm_struct *mm = file->private_data;
 902	if (mm)
 903		mmdrop(mm);
 904	return 0;
 905}
 906
 907static const struct file_operations proc_mem_operations = {
 908	.llseek		= mem_lseek,
 909	.read		= mem_read,
 910	.write		= mem_write,
 911	.open		= mem_open,
 912	.release	= mem_release,
 913};
 914
 915static int environ_open(struct inode *inode, struct file *file)
 916{
 917	return __mem_open(inode, file, PTRACE_MODE_READ);
 918}
 919
 920static ssize_t environ_read(struct file *file, char __user *buf,
 921			size_t count, loff_t *ppos)
 922{
 923	char *page;
 924	unsigned long src = *ppos;
 925	int ret = 0;
 926	struct mm_struct *mm = file->private_data;
 927	unsigned long env_start, env_end;
 928
 929	/* Ensure the process spawned far enough to have an environment. */
 930	if (!mm || !mm->env_end)
 931		return 0;
 932
 933	page = (char *)__get_free_page(GFP_KERNEL);
 934	if (!page)
 935		return -ENOMEM;
 936
 937	ret = 0;
 938	if (!mmget_not_zero(mm))
 939		goto free;
 940
 941	spin_lock(&mm->arg_lock);
 942	env_start = mm->env_start;
 943	env_end = mm->env_end;
 944	spin_unlock(&mm->arg_lock);
 945
 946	while (count > 0) {
 947		size_t this_len, max_len;
 948		int retval;
 949
 950		if (src >= (env_end - env_start))
 951			break;
 952
 953		this_len = env_end - (env_start + src);
 954
 955		max_len = min_t(size_t, PAGE_SIZE, count);
 956		this_len = min(max_len, this_len);
 957
 958		retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON);
 959
 960		if (retval <= 0) {
 961			ret = retval;
 962			break;
 963		}
 964
 965		if (copy_to_user(buf, page, retval)) {
 966			ret = -EFAULT;
 967			break;
 968		}
 969
 970		ret += retval;
 971		src += retval;
 972		buf += retval;
 973		count -= retval;
 974	}
 975	*ppos = src;
 976	mmput(mm);
 977
 978free:
 979	free_page((unsigned long) page);
 980	return ret;
 981}
 982
 983static const struct file_operations proc_environ_operations = {
 984	.open		= environ_open,
 985	.read		= environ_read,
 986	.llseek		= generic_file_llseek,
 987	.release	= mem_release,
 988};
 989
 990static int auxv_open(struct inode *inode, struct file *file)
 991{
 992	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
 993}
 994
 995static ssize_t auxv_read(struct file *file, char __user *buf,
 996			size_t count, loff_t *ppos)
 997{
 998	struct mm_struct *mm = file->private_data;
 999	unsigned int nwords = 0;
1000
1001	if (!mm)
1002		return 0;
1003	do {
1004		nwords += 2;
1005	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1006	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1007				       nwords * sizeof(mm->saved_auxv[0]));
1008}
1009
1010static const struct file_operations proc_auxv_operations = {
1011	.open		= auxv_open,
1012	.read		= auxv_read,
1013	.llseek		= generic_file_llseek,
1014	.release	= mem_release,
1015};
1016
1017static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1018			    loff_t *ppos)
1019{
1020	struct task_struct *task = get_proc_task(file_inode(file));
1021	char buffer[PROC_NUMBUF];
1022	int oom_adj = OOM_ADJUST_MIN;
1023	size_t len;
1024
1025	if (!task)
1026		return -ESRCH;
1027	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1028		oom_adj = OOM_ADJUST_MAX;
1029	else
1030		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1031			  OOM_SCORE_ADJ_MAX;
1032	put_task_struct(task);
1033	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1034	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1035}
1036
1037static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1038{
1039	static DEFINE_MUTEX(oom_adj_mutex);
1040	struct mm_struct *mm = NULL;
1041	struct task_struct *task;
1042	int err = 0;
1043
1044	task = get_proc_task(file_inode(file));
1045	if (!task)
1046		return -ESRCH;
1047
1048	mutex_lock(&oom_adj_mutex);
1049	if (legacy) {
1050		if (oom_adj < task->signal->oom_score_adj &&
1051				!capable(CAP_SYS_RESOURCE)) {
1052			err = -EACCES;
1053			goto err_unlock;
1054		}
1055		/*
1056		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1057		 * /proc/pid/oom_score_adj instead.
1058		 */
1059		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1060			  current->comm, task_pid_nr(current), task_pid_nr(task),
1061			  task_pid_nr(task));
1062	} else {
1063		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1064				!capable(CAP_SYS_RESOURCE)) {
1065			err = -EACCES;
1066			goto err_unlock;
1067		}
1068	}
1069
1070	/*
1071	 * Make sure we will check other processes sharing the mm if this is
1072	 * not vfrok which wants its own oom_score_adj.
1073	 * pin the mm so it doesn't go away and get reused after task_unlock
1074	 */
1075	if (!task->vfork_done) {
1076		struct task_struct *p = find_lock_task_mm(task);
1077
1078		if (p) {
1079			if (atomic_read(&p->mm->mm_users) > 1) {
1080				mm = p->mm;
1081				mmgrab(mm);
1082			}
1083			task_unlock(p);
1084		}
1085	}
1086
1087	task->signal->oom_score_adj = oom_adj;
1088	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1089		task->signal->oom_score_adj_min = (short)oom_adj;
1090	trace_oom_score_adj_update(task);
1091
1092	if (mm) {
1093		struct task_struct *p;
1094
1095		rcu_read_lock();
1096		for_each_process(p) {
1097			if (same_thread_group(task, p))
1098				continue;
1099
1100			/* do not touch kernel threads or the global init */
1101			if (p->flags & PF_KTHREAD || is_global_init(p))
1102				continue;
1103
1104			task_lock(p);
1105			if (!p->vfork_done && process_shares_mm(p, mm)) {
 
 
 
 
1106				p->signal->oom_score_adj = oom_adj;
1107				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1108					p->signal->oom_score_adj_min = (short)oom_adj;
1109			}
1110			task_unlock(p);
1111		}
1112		rcu_read_unlock();
1113		mmdrop(mm);
1114	}
1115err_unlock:
1116	mutex_unlock(&oom_adj_mutex);
1117	put_task_struct(task);
1118	return err;
1119}
1120
1121/*
1122 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1123 * kernels.  The effective policy is defined by oom_score_adj, which has a
1124 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1125 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1126 * Processes that become oom disabled via oom_adj will still be oom disabled
1127 * with this implementation.
1128 *
1129 * oom_adj cannot be removed since existing userspace binaries use it.
1130 */
1131static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1132			     size_t count, loff_t *ppos)
1133{
1134	char buffer[PROC_NUMBUF];
1135	int oom_adj;
1136	int err;
1137
1138	memset(buffer, 0, sizeof(buffer));
1139	if (count > sizeof(buffer) - 1)
1140		count = sizeof(buffer) - 1;
1141	if (copy_from_user(buffer, buf, count)) {
1142		err = -EFAULT;
1143		goto out;
1144	}
1145
1146	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1147	if (err)
1148		goto out;
1149	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1150	     oom_adj != OOM_DISABLE) {
1151		err = -EINVAL;
1152		goto out;
1153	}
1154
1155	/*
1156	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1157	 * value is always attainable.
1158	 */
1159	if (oom_adj == OOM_ADJUST_MAX)
1160		oom_adj = OOM_SCORE_ADJ_MAX;
1161	else
1162		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1163
1164	err = __set_oom_adj(file, oom_adj, true);
1165out:
1166	return err < 0 ? err : count;
1167}
1168
1169static const struct file_operations proc_oom_adj_operations = {
1170	.read		= oom_adj_read,
1171	.write		= oom_adj_write,
1172	.llseek		= generic_file_llseek,
1173};
1174
1175static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1176					size_t count, loff_t *ppos)
1177{
1178	struct task_struct *task = get_proc_task(file_inode(file));
1179	char buffer[PROC_NUMBUF];
1180	short oom_score_adj = OOM_SCORE_ADJ_MIN;
1181	size_t len;
1182
1183	if (!task)
1184		return -ESRCH;
1185	oom_score_adj = task->signal->oom_score_adj;
1186	put_task_struct(task);
1187	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1188	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1189}
1190
1191static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1192					size_t count, loff_t *ppos)
1193{
1194	char buffer[PROC_NUMBUF];
1195	int oom_score_adj;
1196	int err;
1197
1198	memset(buffer, 0, sizeof(buffer));
1199	if (count > sizeof(buffer) - 1)
1200		count = sizeof(buffer) - 1;
1201	if (copy_from_user(buffer, buf, count)) {
1202		err = -EFAULT;
1203		goto out;
1204	}
1205
1206	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1207	if (err)
1208		goto out;
1209	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1210			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1211		err = -EINVAL;
1212		goto out;
1213	}
1214
1215	err = __set_oom_adj(file, oom_score_adj, false);
1216out:
1217	return err < 0 ? err : count;
1218}
1219
1220static const struct file_operations proc_oom_score_adj_operations = {
1221	.read		= oom_score_adj_read,
1222	.write		= oom_score_adj_write,
1223	.llseek		= default_llseek,
1224};
1225
1226#ifdef CONFIG_AUDIT
1227#define TMPBUFLEN 11
1228static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1229				  size_t count, loff_t *ppos)
1230{
1231	struct inode * inode = file_inode(file);
1232	struct task_struct *task = get_proc_task(inode);
1233	ssize_t length;
1234	char tmpbuf[TMPBUFLEN];
1235
1236	if (!task)
1237		return -ESRCH;
1238	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1239			   from_kuid(file->f_cred->user_ns,
1240				     audit_get_loginuid(task)));
1241	put_task_struct(task);
1242	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1243}
1244
1245static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1246				   size_t count, loff_t *ppos)
1247{
1248	struct inode * inode = file_inode(file);
1249	uid_t loginuid;
1250	kuid_t kloginuid;
1251	int rv;
1252
1253	rcu_read_lock();
1254	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1255		rcu_read_unlock();
1256		return -EPERM;
1257	}
1258	rcu_read_unlock();
1259
1260	if (*ppos != 0) {
1261		/* No partial writes. */
1262		return -EINVAL;
1263	}
1264
1265	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1266	if (rv < 0)
1267		return rv;
1268
1269	/* is userspace tring to explicitly UNSET the loginuid? */
1270	if (loginuid == AUDIT_UID_UNSET) {
1271		kloginuid = INVALID_UID;
1272	} else {
1273		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1274		if (!uid_valid(kloginuid))
1275			return -EINVAL;
1276	}
1277
1278	rv = audit_set_loginuid(kloginuid);
1279	if (rv < 0)
1280		return rv;
1281	return count;
1282}
1283
1284static const struct file_operations proc_loginuid_operations = {
1285	.read		= proc_loginuid_read,
1286	.write		= proc_loginuid_write,
1287	.llseek		= generic_file_llseek,
1288};
1289
1290static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1291				  size_t count, loff_t *ppos)
1292{
1293	struct inode * inode = file_inode(file);
1294	struct task_struct *task = get_proc_task(inode);
1295	ssize_t length;
1296	char tmpbuf[TMPBUFLEN];
1297
1298	if (!task)
1299		return -ESRCH;
1300	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1301				audit_get_sessionid(task));
1302	put_task_struct(task);
1303	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1304}
1305
1306static const struct file_operations proc_sessionid_operations = {
1307	.read		= proc_sessionid_read,
1308	.llseek		= generic_file_llseek,
1309};
1310#endif
1311
1312#ifdef CONFIG_FAULT_INJECTION
1313static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1314				      size_t count, loff_t *ppos)
1315{
1316	struct task_struct *task = get_proc_task(file_inode(file));
1317	char buffer[PROC_NUMBUF];
1318	size_t len;
1319	int make_it_fail;
1320
1321	if (!task)
1322		return -ESRCH;
1323	make_it_fail = task->make_it_fail;
1324	put_task_struct(task);
1325
1326	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1327
1328	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1329}
1330
1331static ssize_t proc_fault_inject_write(struct file * file,
1332			const char __user * buf, size_t count, loff_t *ppos)
1333{
1334	struct task_struct *task;
1335	char buffer[PROC_NUMBUF];
1336	int make_it_fail;
1337	int rv;
1338
1339	if (!capable(CAP_SYS_RESOURCE))
1340		return -EPERM;
1341	memset(buffer, 0, sizeof(buffer));
1342	if (count > sizeof(buffer) - 1)
1343		count = sizeof(buffer) - 1;
1344	if (copy_from_user(buffer, buf, count))
1345		return -EFAULT;
1346	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1347	if (rv < 0)
1348		return rv;
1349	if (make_it_fail < 0 || make_it_fail > 1)
1350		return -EINVAL;
1351
1352	task = get_proc_task(file_inode(file));
1353	if (!task)
1354		return -ESRCH;
1355	task->make_it_fail = make_it_fail;
1356	put_task_struct(task);
1357
1358	return count;
1359}
1360
1361static const struct file_operations proc_fault_inject_operations = {
1362	.read		= proc_fault_inject_read,
1363	.write		= proc_fault_inject_write,
1364	.llseek		= generic_file_llseek,
1365};
1366
1367static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf,
1368				   size_t count, loff_t *ppos)
1369{
1370	struct task_struct *task;
1371	int err;
1372	unsigned int n;
1373
1374	err = kstrtouint_from_user(buf, count, 0, &n);
1375	if (err)
1376		return err;
1377
1378	task = get_proc_task(file_inode(file));
1379	if (!task)
1380		return -ESRCH;
1381	task->fail_nth = n;
1382	put_task_struct(task);
1383
1384	return count;
1385}
1386
1387static ssize_t proc_fail_nth_read(struct file *file, char __user *buf,
1388				  size_t count, loff_t *ppos)
1389{
1390	struct task_struct *task;
1391	char numbuf[PROC_NUMBUF];
1392	ssize_t len;
1393
1394	task = get_proc_task(file_inode(file));
1395	if (!task)
1396		return -ESRCH;
1397	len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth);
1398	put_task_struct(task);
1399	return simple_read_from_buffer(buf, count, ppos, numbuf, len);
1400}
1401
1402static const struct file_operations proc_fail_nth_operations = {
1403	.read		= proc_fail_nth_read,
1404	.write		= proc_fail_nth_write,
1405};
1406#endif
1407
1408
1409#ifdef CONFIG_SCHED_DEBUG
1410/*
1411 * Print out various scheduling related per-task fields:
1412 */
1413static int sched_show(struct seq_file *m, void *v)
1414{
1415	struct inode *inode = m->private;
1416	struct pid_namespace *ns = proc_pid_ns(inode);
1417	struct task_struct *p;
1418
1419	p = get_proc_task(inode);
1420	if (!p)
1421		return -ESRCH;
1422	proc_sched_show_task(p, ns, m);
1423
1424	put_task_struct(p);
1425
1426	return 0;
1427}
1428
1429static ssize_t
1430sched_write(struct file *file, const char __user *buf,
1431	    size_t count, loff_t *offset)
1432{
1433	struct inode *inode = file_inode(file);
1434	struct task_struct *p;
1435
1436	p = get_proc_task(inode);
1437	if (!p)
1438		return -ESRCH;
1439	proc_sched_set_task(p);
1440
1441	put_task_struct(p);
1442
1443	return count;
1444}
1445
1446static int sched_open(struct inode *inode, struct file *filp)
1447{
1448	return single_open(filp, sched_show, inode);
1449}
1450
1451static const struct file_operations proc_pid_sched_operations = {
1452	.open		= sched_open,
1453	.read		= seq_read,
1454	.write		= sched_write,
1455	.llseek		= seq_lseek,
1456	.release	= single_release,
1457};
1458
1459#endif
1460
1461#ifdef CONFIG_SCHED_AUTOGROUP
1462/*
1463 * Print out autogroup related information:
1464 */
1465static int sched_autogroup_show(struct seq_file *m, void *v)
1466{
1467	struct inode *inode = m->private;
1468	struct task_struct *p;
1469
1470	p = get_proc_task(inode);
1471	if (!p)
1472		return -ESRCH;
1473	proc_sched_autogroup_show_task(p, m);
1474
1475	put_task_struct(p);
1476
1477	return 0;
1478}
1479
1480static ssize_t
1481sched_autogroup_write(struct file *file, const char __user *buf,
1482	    size_t count, loff_t *offset)
1483{
1484	struct inode *inode = file_inode(file);
1485	struct task_struct *p;
1486	char buffer[PROC_NUMBUF];
1487	int nice;
1488	int err;
1489
1490	memset(buffer, 0, sizeof(buffer));
1491	if (count > sizeof(buffer) - 1)
1492		count = sizeof(buffer) - 1;
1493	if (copy_from_user(buffer, buf, count))
1494		return -EFAULT;
1495
1496	err = kstrtoint(strstrip(buffer), 0, &nice);
1497	if (err < 0)
1498		return err;
1499
1500	p = get_proc_task(inode);
1501	if (!p)
1502		return -ESRCH;
1503
1504	err = proc_sched_autogroup_set_nice(p, nice);
1505	if (err)
1506		count = err;
1507
1508	put_task_struct(p);
1509
1510	return count;
1511}
1512
1513static int sched_autogroup_open(struct inode *inode, struct file *filp)
1514{
1515	int ret;
1516
1517	ret = single_open(filp, sched_autogroup_show, NULL);
1518	if (!ret) {
1519		struct seq_file *m = filp->private_data;
1520
1521		m->private = inode;
1522	}
1523	return ret;
1524}
1525
1526static const struct file_operations proc_pid_sched_autogroup_operations = {
1527	.open		= sched_autogroup_open,
1528	.read		= seq_read,
1529	.write		= sched_autogroup_write,
1530	.llseek		= seq_lseek,
1531	.release	= single_release,
1532};
1533
1534#endif /* CONFIG_SCHED_AUTOGROUP */
1535
1536static ssize_t comm_write(struct file *file, const char __user *buf,
1537				size_t count, loff_t *offset)
1538{
1539	struct inode *inode = file_inode(file);
1540	struct task_struct *p;
1541	char buffer[TASK_COMM_LEN];
1542	const size_t maxlen = sizeof(buffer) - 1;
1543
1544	memset(buffer, 0, sizeof(buffer));
1545	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1546		return -EFAULT;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	if (same_thread_group(current, p))
1553		set_task_comm(p, buffer);
1554	else
1555		count = -EINVAL;
1556
1557	put_task_struct(p);
1558
1559	return count;
1560}
1561
1562static int comm_show(struct seq_file *m, void *v)
1563{
1564	struct inode *inode = m->private;
1565	struct task_struct *p;
1566
1567	p = get_proc_task(inode);
1568	if (!p)
1569		return -ESRCH;
1570
1571	proc_task_name(m, p, false);
1572	seq_putc(m, '\n');
 
1573
1574	put_task_struct(p);
1575
1576	return 0;
1577}
1578
1579static int comm_open(struct inode *inode, struct file *filp)
1580{
1581	return single_open(filp, comm_show, inode);
1582}
1583
1584static const struct file_operations proc_pid_set_comm_operations = {
1585	.open		= comm_open,
1586	.read		= seq_read,
1587	.write		= comm_write,
1588	.llseek		= seq_lseek,
1589	.release	= single_release,
1590};
1591
1592static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1593{
1594	struct task_struct *task;
1595	struct file *exe_file;
1596
1597	task = get_proc_task(d_inode(dentry));
1598	if (!task)
1599		return -ENOENT;
1600	exe_file = get_task_exe_file(task);
1601	put_task_struct(task);
1602	if (exe_file) {
1603		*exe_path = exe_file->f_path;
1604		path_get(&exe_file->f_path);
1605		fput(exe_file);
1606		return 0;
1607	} else
1608		return -ENOENT;
1609}
1610
1611static const char *proc_pid_get_link(struct dentry *dentry,
1612				     struct inode *inode,
1613				     struct delayed_call *done)
1614{
1615	struct path path;
1616	int error = -EACCES;
1617
1618	if (!dentry)
1619		return ERR_PTR(-ECHILD);
1620
1621	/* Are we allowed to snoop on the tasks file descriptors? */
1622	if (!proc_fd_access_allowed(inode))
1623		goto out;
1624
1625	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1626	if (error)
1627		goto out;
1628
1629	nd_jump_link(&path);
1630	return NULL;
1631out:
1632	return ERR_PTR(error);
1633}
1634
1635static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1636{
1637	char *tmp = (char *)__get_free_page(GFP_KERNEL);
1638	char *pathname;
1639	int len;
1640
1641	if (!tmp)
1642		return -ENOMEM;
1643
1644	pathname = d_path(path, tmp, PAGE_SIZE);
1645	len = PTR_ERR(pathname);
1646	if (IS_ERR(pathname))
1647		goto out;
1648	len = tmp + PAGE_SIZE - 1 - pathname;
1649
1650	if (len > buflen)
1651		len = buflen;
1652	if (copy_to_user(buffer, pathname, len))
1653		len = -EFAULT;
1654 out:
1655	free_page((unsigned long)tmp);
1656	return len;
1657}
1658
1659static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1660{
1661	int error = -EACCES;
1662	struct inode *inode = d_inode(dentry);
1663	struct path path;
1664
1665	/* Are we allowed to snoop on the tasks file descriptors? */
1666	if (!proc_fd_access_allowed(inode))
1667		goto out;
1668
1669	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1670	if (error)
1671		goto out;
1672
1673	error = do_proc_readlink(&path, buffer, buflen);
1674	path_put(&path);
1675out:
1676	return error;
1677}
1678
1679const struct inode_operations proc_pid_link_inode_operations = {
1680	.readlink	= proc_pid_readlink,
1681	.get_link	= proc_pid_get_link,
1682	.setattr	= proc_setattr,
1683};
1684
1685
1686/* building an inode */
1687
1688void task_dump_owner(struct task_struct *task, umode_t mode,
1689		     kuid_t *ruid, kgid_t *rgid)
1690{
1691	/* Depending on the state of dumpable compute who should own a
1692	 * proc file for a task.
1693	 */
1694	const struct cred *cred;
1695	kuid_t uid;
1696	kgid_t gid;
1697
1698	if (unlikely(task->flags & PF_KTHREAD)) {
1699		*ruid = GLOBAL_ROOT_UID;
1700		*rgid = GLOBAL_ROOT_GID;
1701		return;
1702	}
1703
1704	/* Default to the tasks effective ownership */
1705	rcu_read_lock();
1706	cred = __task_cred(task);
1707	uid = cred->euid;
1708	gid = cred->egid;
1709	rcu_read_unlock();
1710
1711	/*
1712	 * Before the /proc/pid/status file was created the only way to read
1713	 * the effective uid of a /process was to stat /proc/pid.  Reading
1714	 * /proc/pid/status is slow enough that procps and other packages
1715	 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1716	 * made this apply to all per process world readable and executable
1717	 * directories.
1718	 */
1719	if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) {
1720		struct mm_struct *mm;
1721		task_lock(task);
1722		mm = task->mm;
1723		/* Make non-dumpable tasks owned by some root */
1724		if (mm) {
1725			if (get_dumpable(mm) != SUID_DUMP_USER) {
1726				struct user_namespace *user_ns = mm->user_ns;
1727
1728				uid = make_kuid(user_ns, 0);
1729				if (!uid_valid(uid))
1730					uid = GLOBAL_ROOT_UID;
1731
1732				gid = make_kgid(user_ns, 0);
1733				if (!gid_valid(gid))
1734					gid = GLOBAL_ROOT_GID;
1735			}
1736		} else {
1737			uid = GLOBAL_ROOT_UID;
1738			gid = GLOBAL_ROOT_GID;
1739		}
1740		task_unlock(task);
1741	}
1742	*ruid = uid;
1743	*rgid = gid;
1744}
1745
1746struct inode *proc_pid_make_inode(struct super_block * sb,
1747				  struct task_struct *task, umode_t mode)
1748{
1749	struct inode * inode;
1750	struct proc_inode *ei;
 
1751
1752	/* We need a new inode */
1753
1754	inode = new_inode(sb);
1755	if (!inode)
1756		goto out;
1757
1758	/* Common stuff */
1759	ei = PROC_I(inode);
1760	inode->i_mode = mode;
1761	inode->i_ino = get_next_ino();
1762	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1763	inode->i_op = &proc_def_inode_operations;
1764
1765	/*
1766	 * grab the reference to task.
1767	 */
1768	ei->pid = get_task_pid(task, PIDTYPE_PID);
1769	if (!ei->pid)
1770		goto out_unlock;
1771
1772	task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
 
 
 
 
 
 
1773	security_task_to_inode(task, inode);
1774
1775out:
1776	return inode;
1777
1778out_unlock:
1779	iput(inode);
1780	return NULL;
1781}
1782
1783int pid_getattr(const struct path *path, struct kstat *stat,
1784		u32 request_mask, unsigned int query_flags)
1785{
1786	struct inode *inode = d_inode(path->dentry);
1787	struct pid_namespace *pid = proc_pid_ns(inode);
1788	struct task_struct *task;
 
 
1789
1790	generic_fillattr(inode, stat);
1791
 
1792	stat->uid = GLOBAL_ROOT_UID;
1793	stat->gid = GLOBAL_ROOT_GID;
1794	rcu_read_lock();
1795	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1796	if (task) {
1797		if (!has_pid_permissions(pid, task, HIDEPID_INVISIBLE)) {
1798			rcu_read_unlock();
1799			/*
1800			 * This doesn't prevent learning whether PID exists,
1801			 * it only makes getattr() consistent with readdir().
1802			 */
1803			return -ENOENT;
1804		}
1805		task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid);
 
 
 
 
 
1806	}
1807	rcu_read_unlock();
1808	return 0;
1809}
1810
1811/* dentry stuff */
1812
1813/*
1814 * Set <pid>/... inode ownership (can change due to setuid(), etc.)
1815 */
1816void pid_update_inode(struct task_struct *task, struct inode *inode)
1817{
1818	task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid);
1819
1820	inode->i_mode &= ~(S_ISUID | S_ISGID);
1821	security_task_to_inode(task, inode);
1822}
1823
1824/*
1825 * Rewrite the inode's ownerships here because the owning task may have
1826 * performed a setuid(), etc.
1827 *
 
 
 
 
 
 
1828 */
1829static int pid_revalidate(struct dentry *dentry, unsigned int flags)
1830{
1831	struct inode *inode;
1832	struct task_struct *task;
 
1833
1834	if (flags & LOOKUP_RCU)
1835		return -ECHILD;
1836
1837	inode = d_inode(dentry);
1838	task = get_proc_task(inode);
1839
1840	if (task) {
1841		pid_update_inode(task, inode);
 
 
 
 
 
 
 
 
 
 
 
 
1842		put_task_struct(task);
1843		return 1;
1844	}
1845	return 0;
1846}
1847
1848static inline bool proc_inode_is_dead(struct inode *inode)
1849{
1850	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1851}
1852
1853int pid_delete_dentry(const struct dentry *dentry)
1854{
1855	/* Is the task we represent dead?
1856	 * If so, then don't put the dentry on the lru list,
1857	 * kill it immediately.
1858	 */
1859	return proc_inode_is_dead(d_inode(dentry));
1860}
1861
1862const struct dentry_operations pid_dentry_operations =
1863{
1864	.d_revalidate	= pid_revalidate,
1865	.d_delete	= pid_delete_dentry,
1866};
1867
1868/* Lookups */
1869
1870/*
1871 * Fill a directory entry.
1872 *
1873 * If possible create the dcache entry and derive our inode number and
1874 * file type from dcache entry.
1875 *
1876 * Since all of the proc inode numbers are dynamically generated, the inode
1877 * numbers do not exist until the inode is cache.  This means creating the
1878 * the dcache entry in readdir is necessary to keep the inode numbers
1879 * reported by readdir in sync with the inode numbers reported
1880 * by stat.
1881 */
1882bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1883	const char *name, unsigned int len,
1884	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1885{
1886	struct dentry *child, *dir = file->f_path.dentry;
1887	struct qstr qname = QSTR_INIT(name, len);
1888	struct inode *inode;
1889	unsigned type = DT_UNKNOWN;
1890	ino_t ino = 1;
1891
1892	child = d_hash_and_lookup(dir, &qname);
1893	if (!child) {
1894		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1895		child = d_alloc_parallel(dir, &qname, &wq);
1896		if (IS_ERR(child))
1897			goto end_instantiate;
1898		if (d_in_lookup(child)) {
1899			struct dentry *res;
1900			res = instantiate(child, task, ptr);
1901			d_lookup_done(child);
1902			if (unlikely(res)) {
1903				dput(child);
1904				child = res;
1905				if (IS_ERR(child))
1906					goto end_instantiate;
1907			}
1908		}
1909	}
1910	inode = d_inode(child);
1911	ino = inode->i_ino;
1912	type = inode->i_mode >> 12;
1913	dput(child);
 
 
1914end_instantiate:
1915	return dir_emit(ctx, name, len, ino, type);
1916}
1917
1918/*
1919 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1920 * which represent vma start and end addresses.
1921 */
1922static int dname_to_vma_addr(struct dentry *dentry,
1923			     unsigned long *start, unsigned long *end)
1924{
1925	const char *str = dentry->d_name.name;
1926	unsigned long long sval, eval;
1927	unsigned int len;
1928
1929	if (str[0] == '0' && str[1] != '-')
1930		return -EINVAL;
1931	len = _parse_integer(str, 16, &sval);
1932	if (len & KSTRTOX_OVERFLOW)
1933		return -EINVAL;
1934	if (sval != (unsigned long)sval)
1935		return -EINVAL;
1936	str += len;
1937
1938	if (*str != '-')
1939		return -EINVAL;
1940	str++;
1941
1942	if (str[0] == '0' && str[1])
1943		return -EINVAL;
1944	len = _parse_integer(str, 16, &eval);
1945	if (len & KSTRTOX_OVERFLOW)
1946		return -EINVAL;
1947	if (eval != (unsigned long)eval)
1948		return -EINVAL;
1949	str += len;
1950
1951	if (*str != '\0')
1952		return -EINVAL;
1953
1954	*start = sval;
1955	*end = eval;
1956
1957	return 0;
1958}
1959
1960static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1961{
1962	unsigned long vm_start, vm_end;
1963	bool exact_vma_exists = false;
1964	struct mm_struct *mm = NULL;
1965	struct task_struct *task;
 
1966	struct inode *inode;
1967	int status = 0;
1968
1969	if (flags & LOOKUP_RCU)
1970		return -ECHILD;
1971
1972	inode = d_inode(dentry);
1973	task = get_proc_task(inode);
1974	if (!task)
1975		goto out_notask;
1976
1977	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1978	if (IS_ERR_OR_NULL(mm))
1979		goto out;
1980
1981	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1982		status = down_read_killable(&mm->mmap_sem);
1983		if (!status) {
1984			exact_vma_exists = !!find_exact_vma(mm, vm_start,
1985							    vm_end);
1986			up_read(&mm->mmap_sem);
1987		}
1988	}
1989
1990	mmput(mm);
1991
1992	if (exact_vma_exists) {
1993		task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid);
1994
 
 
 
 
 
 
 
 
1995		security_task_to_inode(task, inode);
1996		status = 1;
1997	}
1998
1999out:
2000	put_task_struct(task);
2001
2002out_notask:
2003	return status;
2004}
2005
2006static const struct dentry_operations tid_map_files_dentry_operations = {
2007	.d_revalidate	= map_files_d_revalidate,
2008	.d_delete	= pid_delete_dentry,
2009};
2010
2011static int map_files_get_link(struct dentry *dentry, struct path *path)
2012{
2013	unsigned long vm_start, vm_end;
2014	struct vm_area_struct *vma;
2015	struct task_struct *task;
2016	struct mm_struct *mm;
2017	int rc;
2018
2019	rc = -ENOENT;
2020	task = get_proc_task(d_inode(dentry));
2021	if (!task)
2022		goto out;
2023
2024	mm = get_task_mm(task);
2025	put_task_struct(task);
2026	if (!mm)
2027		goto out;
2028
2029	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2030	if (rc)
2031		goto out_mmput;
2032
2033	rc = down_read_killable(&mm->mmap_sem);
2034	if (rc)
2035		goto out_mmput;
2036
2037	rc = -ENOENT;
 
2038	vma = find_exact_vma(mm, vm_start, vm_end);
2039	if (vma && vma->vm_file) {
2040		*path = vma->vm_file->f_path;
2041		path_get(path);
2042		rc = 0;
2043	}
2044	up_read(&mm->mmap_sem);
2045
2046out_mmput:
2047	mmput(mm);
2048out:
2049	return rc;
2050}
2051
2052struct map_files_info {
2053	unsigned long	start;
2054	unsigned long	end;
2055	fmode_t		mode;
 
 
2056};
2057
2058/*
2059 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
2060 * symlinks may be used to bypass permissions on ancestor directories in the
2061 * path to the file in question.
2062 */
2063static const char *
2064proc_map_files_get_link(struct dentry *dentry,
2065			struct inode *inode,
2066		        struct delayed_call *done)
2067{
2068	if (!capable(CAP_SYS_ADMIN))
2069		return ERR_PTR(-EPERM);
2070
2071	return proc_pid_get_link(dentry, inode, done);
2072}
2073
2074/*
2075 * Identical to proc_pid_link_inode_operations except for get_link()
2076 */
2077static const struct inode_operations proc_map_files_link_inode_operations = {
2078	.readlink	= proc_pid_readlink,
2079	.get_link	= proc_map_files_get_link,
2080	.setattr	= proc_setattr,
2081};
2082
2083static struct dentry *
2084proc_map_files_instantiate(struct dentry *dentry,
2085			   struct task_struct *task, const void *ptr)
2086{
2087	fmode_t mode = (fmode_t)(unsigned long)ptr;
2088	struct proc_inode *ei;
2089	struct inode *inode;
2090
2091	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK |
2092				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2093				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2094	if (!inode)
2095		return ERR_PTR(-ENOENT);
2096
2097	ei = PROC_I(inode);
2098	ei->op.proc_get_link = map_files_get_link;
2099
2100	inode->i_op = &proc_map_files_link_inode_operations;
2101	inode->i_size = 64;
2102
2103	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2104	return d_splice_alias(inode, dentry);
 
 
2105}
2106
2107static struct dentry *proc_map_files_lookup(struct inode *dir,
2108		struct dentry *dentry, unsigned int flags)
2109{
2110	unsigned long vm_start, vm_end;
2111	struct vm_area_struct *vma;
2112	struct task_struct *task;
2113	struct dentry *result;
2114	struct mm_struct *mm;
2115
2116	result = ERR_PTR(-ENOENT);
2117	task = get_proc_task(dir);
2118	if (!task)
2119		goto out;
2120
2121	result = ERR_PTR(-EACCES);
2122	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2123		goto out_put_task;
2124
2125	result = ERR_PTR(-ENOENT);
2126	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2127		goto out_put_task;
2128
2129	mm = get_task_mm(task);
2130	if (!mm)
2131		goto out_put_task;
2132
2133	result = ERR_PTR(-EINTR);
2134	if (down_read_killable(&mm->mmap_sem))
2135		goto out_put_mm;
2136
2137	result = ERR_PTR(-ENOENT);
2138	vma = find_exact_vma(mm, vm_start, vm_end);
2139	if (!vma)
2140		goto out_no_vma;
2141
2142	if (vma->vm_file)
2143		result = proc_map_files_instantiate(dentry, task,
2144				(void *)(unsigned long)vma->vm_file->f_mode);
2145
2146out_no_vma:
2147	up_read(&mm->mmap_sem);
2148out_put_mm:
2149	mmput(mm);
2150out_put_task:
2151	put_task_struct(task);
2152out:
2153	return result;
2154}
2155
2156static const struct inode_operations proc_map_files_inode_operations = {
2157	.lookup		= proc_map_files_lookup,
2158	.permission	= proc_fd_permission,
2159	.setattr	= proc_setattr,
2160};
2161
2162static int
2163proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2164{
2165	struct vm_area_struct *vma;
2166	struct task_struct *task;
2167	struct mm_struct *mm;
2168	unsigned long nr_files, pos, i;
2169	GENRADIX(struct map_files_info) fa;
 
2170	struct map_files_info *p;
2171	int ret;
2172
2173	genradix_init(&fa);
2174
2175	ret = -ENOENT;
2176	task = get_proc_task(file_inode(file));
2177	if (!task)
2178		goto out;
2179
2180	ret = -EACCES;
2181	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2182		goto out_put_task;
2183
2184	ret = 0;
2185	if (!dir_emit_dots(file, ctx))
2186		goto out_put_task;
2187
2188	mm = get_task_mm(task);
2189	if (!mm)
2190		goto out_put_task;
2191
2192	ret = down_read_killable(&mm->mmap_sem);
2193	if (ret) {
2194		mmput(mm);
2195		goto out_put_task;
2196	}
2197
2198	nr_files = 0;
2199
2200	/*
2201	 * We need two passes here:
2202	 *
2203	 *  1) Collect vmas of mapped files with mmap_sem taken
2204	 *  2) Release mmap_sem and instantiate entries
2205	 *
2206	 * otherwise we get lockdep complained, since filldir()
2207	 * routine might require mmap_sem taken in might_fault().
2208	 */
2209
2210	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2211		if (!vma->vm_file)
2212			continue;
2213		if (++pos <= ctx->pos)
2214			continue;
2215
2216		p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL);
2217		if (!p) {
 
 
 
2218			ret = -ENOMEM;
 
 
2219			up_read(&mm->mmap_sem);
2220			mmput(mm);
2221			goto out_put_task;
2222		}
 
 
 
 
 
 
2223
2224		p->start = vma->vm_start;
2225		p->end = vma->vm_end;
2226		p->mode = vma->vm_file->f_mode;
 
 
 
 
2227	}
2228	up_read(&mm->mmap_sem);
2229	mmput(mm);
2230
2231	for (i = 0; i < nr_files; i++) {
2232		char buf[4 * sizeof(long) + 2];	/* max: %lx-%lx\0 */
2233		unsigned int len;
2234
2235		p = genradix_ptr(&fa, i);
2236		len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end);
2237		if (!proc_fill_cache(file, ctx,
2238				      buf, len,
2239				      proc_map_files_instantiate,
2240				      task,
2241				      (void *)(unsigned long)p->mode))
2242			break;
2243		ctx->pos++;
2244	}
 
 
 
2245
2246out_put_task:
2247	put_task_struct(task);
2248out:
2249	genradix_free(&fa);
2250	return ret;
2251}
2252
2253static const struct file_operations proc_map_files_operations = {
2254	.read		= generic_read_dir,
2255	.iterate_shared	= proc_map_files_readdir,
2256	.llseek		= generic_file_llseek,
2257};
2258
2259#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
2260struct timers_private {
2261	struct pid *pid;
2262	struct task_struct *task;
2263	struct sighand_struct *sighand;
2264	struct pid_namespace *ns;
2265	unsigned long flags;
2266};
2267
2268static void *timers_start(struct seq_file *m, loff_t *pos)
2269{
2270	struct timers_private *tp = m->private;
2271
2272	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2273	if (!tp->task)
2274		return ERR_PTR(-ESRCH);
2275
2276	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2277	if (!tp->sighand)
2278		return ERR_PTR(-ESRCH);
2279
2280	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2281}
2282
2283static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2284{
2285	struct timers_private *tp = m->private;
2286	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2287}
2288
2289static void timers_stop(struct seq_file *m, void *v)
2290{
2291	struct timers_private *tp = m->private;
2292
2293	if (tp->sighand) {
2294		unlock_task_sighand(tp->task, &tp->flags);
2295		tp->sighand = NULL;
2296	}
2297
2298	if (tp->task) {
2299		put_task_struct(tp->task);
2300		tp->task = NULL;
2301	}
2302}
2303
2304static int show_timer(struct seq_file *m, void *v)
2305{
2306	struct k_itimer *timer;
2307	struct timers_private *tp = m->private;
2308	int notify;
2309	static const char * const nstr[] = {
2310		[SIGEV_SIGNAL] = "signal",
2311		[SIGEV_NONE] = "none",
2312		[SIGEV_THREAD] = "thread",
2313	};
2314
2315	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2316	notify = timer->it_sigev_notify;
2317
2318	seq_printf(m, "ID: %d\n", timer->it_id);
2319	seq_printf(m, "signal: %d/%px\n",
2320		   timer->sigq->info.si_signo,
2321		   timer->sigq->info.si_value.sival_ptr);
2322	seq_printf(m, "notify: %s/%s.%d\n",
2323		   nstr[notify & ~SIGEV_THREAD_ID],
2324		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2325		   pid_nr_ns(timer->it_pid, tp->ns));
2326	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2327
2328	return 0;
2329}
2330
2331static const struct seq_operations proc_timers_seq_ops = {
2332	.start	= timers_start,
2333	.next	= timers_next,
2334	.stop	= timers_stop,
2335	.show	= show_timer,
2336};
2337
2338static int proc_timers_open(struct inode *inode, struct file *file)
2339{
2340	struct timers_private *tp;
2341
2342	tp = __seq_open_private(file, &proc_timers_seq_ops,
2343			sizeof(struct timers_private));
2344	if (!tp)
2345		return -ENOMEM;
2346
2347	tp->pid = proc_pid(inode);
2348	tp->ns = proc_pid_ns(inode);
2349	return 0;
2350}
2351
2352static const struct file_operations proc_timers_operations = {
2353	.open		= proc_timers_open,
2354	.read		= seq_read,
2355	.llseek		= seq_lseek,
2356	.release	= seq_release_private,
2357};
2358#endif
2359
2360static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2361					size_t count, loff_t *offset)
2362{
2363	struct inode *inode = file_inode(file);
2364	struct task_struct *p;
2365	u64 slack_ns;
2366	int err;
2367
2368	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2369	if (err < 0)
2370		return err;
2371
2372	p = get_proc_task(inode);
2373	if (!p)
2374		return -ESRCH;
2375
2376	if (p != current) {
2377		rcu_read_lock();
2378		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2379			rcu_read_unlock();
2380			count = -EPERM;
2381			goto out;
2382		}
2383		rcu_read_unlock();
2384
2385		err = security_task_setscheduler(p);
2386		if (err) {
2387			count = err;
2388			goto out;
2389		}
2390	}
2391
2392	task_lock(p);
2393	if (slack_ns == 0)
2394		p->timer_slack_ns = p->default_timer_slack_ns;
2395	else
2396		p->timer_slack_ns = slack_ns;
2397	task_unlock(p);
2398
2399out:
2400	put_task_struct(p);
2401
2402	return count;
2403}
2404
2405static int timerslack_ns_show(struct seq_file *m, void *v)
2406{
2407	struct inode *inode = m->private;
2408	struct task_struct *p;
2409	int err = 0;
2410
2411	p = get_proc_task(inode);
2412	if (!p)
2413		return -ESRCH;
2414
2415	if (p != current) {
2416		rcu_read_lock();
2417		if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
2418			rcu_read_unlock();
2419			err = -EPERM;
2420			goto out;
2421		}
2422		rcu_read_unlock();
2423
2424		err = security_task_getscheduler(p);
2425		if (err)
2426			goto out;
2427	}
2428
2429	task_lock(p);
2430	seq_printf(m, "%llu\n", p->timer_slack_ns);
2431	task_unlock(p);
2432
2433out:
2434	put_task_struct(p);
2435
2436	return err;
2437}
2438
2439static int timerslack_ns_open(struct inode *inode, struct file *filp)
2440{
2441	return single_open(filp, timerslack_ns_show, inode);
2442}
2443
2444static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2445	.open		= timerslack_ns_open,
2446	.read		= seq_read,
2447	.write		= timerslack_ns_write,
2448	.llseek		= seq_lseek,
2449	.release	= single_release,
2450};
2451
2452static struct dentry *proc_pident_instantiate(struct dentry *dentry,
2453	struct task_struct *task, const void *ptr)
2454{
2455	const struct pid_entry *p = ptr;
2456	struct inode *inode;
2457	struct proc_inode *ei;
2458
2459	inode = proc_pid_make_inode(dentry->d_sb, task, p->mode);
2460	if (!inode)
2461		return ERR_PTR(-ENOENT);
2462
2463	ei = PROC_I(inode);
2464	if (S_ISDIR(inode->i_mode))
2465		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2466	if (p->iop)
2467		inode->i_op = p->iop;
2468	if (p->fop)
2469		inode->i_fop = p->fop;
2470	ei->op = p->op;
2471	pid_update_inode(task, inode);
2472	d_set_d_op(dentry, &pid_dentry_operations);
2473	return d_splice_alias(inode, dentry);
 
 
 
 
 
2474}
2475
2476static struct dentry *proc_pident_lookup(struct inode *dir, 
2477					 struct dentry *dentry,
2478					 const struct pid_entry *p,
2479					 const struct pid_entry *end)
2480{
 
2481	struct task_struct *task = get_proc_task(dir);
2482	struct dentry *res = ERR_PTR(-ENOENT);
 
 
2483
2484	if (!task)
2485		goto out_no_task;
2486
2487	/*
2488	 * Yes, it does not scale. And it should not. Don't add
2489	 * new entries into /proc/<tgid>/ without very good reasons.
2490	 */
2491	for (; p < end; p++) {
 
2492		if (p->len != dentry->d_name.len)
2493			continue;
2494		if (!memcmp(dentry->d_name.name, p->name, p->len)) {
2495			res = proc_pident_instantiate(dentry, task, p);
2496			break;
2497		}
2498	}
 
 
 
 
 
2499	put_task_struct(task);
2500out_no_task:
2501	return res;
2502}
2503
2504static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2505		const struct pid_entry *ents, unsigned int nents)
2506{
2507	struct task_struct *task = get_proc_task(file_inode(file));
2508	const struct pid_entry *p;
2509
2510	if (!task)
2511		return -ENOENT;
2512
2513	if (!dir_emit_dots(file, ctx))
2514		goto out;
2515
2516	if (ctx->pos >= nents + 2)
2517		goto out;
2518
2519	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2520		if (!proc_fill_cache(file, ctx, p->name, p->len,
2521				proc_pident_instantiate, task, p))
2522			break;
2523		ctx->pos++;
2524	}
2525out:
2526	put_task_struct(task);
2527	return 0;
2528}
2529
2530#ifdef CONFIG_SECURITY
2531static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2532				  size_t count, loff_t *ppos)
2533{
2534	struct inode * inode = file_inode(file);
2535	char *p = NULL;
2536	ssize_t length;
2537	struct task_struct *task = get_proc_task(inode);
2538
2539	if (!task)
2540		return -ESRCH;
2541
2542	length = security_getprocattr(task, PROC_I(inode)->op.lsm,
2543				      (char*)file->f_path.dentry->d_name.name,
2544				      &p);
2545	put_task_struct(task);
2546	if (length > 0)
2547		length = simple_read_from_buffer(buf, count, ppos, p, length);
2548	kfree(p);
2549	return length;
2550}
2551
2552static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2553				   size_t count, loff_t *ppos)
2554{
2555	struct inode * inode = file_inode(file);
2556	struct task_struct *task;
2557	void *page;
2558	int rv;
2559
2560	rcu_read_lock();
2561	task = pid_task(proc_pid(inode), PIDTYPE_PID);
2562	if (!task) {
2563		rcu_read_unlock();
2564		return -ESRCH;
2565	}
2566	/* A task may only write its own attributes. */
2567	if (current != task) {
2568		rcu_read_unlock();
2569		return -EACCES;
2570	}
2571	/* Prevent changes to overridden credentials. */
2572	if (current_cred() != current_real_cred()) {
2573		rcu_read_unlock();
2574		return -EBUSY;
2575	}
2576	rcu_read_unlock();
2577
 
 
 
2578	if (count > PAGE_SIZE)
2579		count = PAGE_SIZE;
2580
2581	/* No partial writes. */
 
2582	if (*ppos != 0)
2583		return -EINVAL;
2584
2585	page = memdup_user(buf, count);
2586	if (IS_ERR(page)) {
2587		rv = PTR_ERR(page);
2588		goto out;
2589	}
2590
2591	/* Guard against adverse ptrace interaction */
2592	rv = mutex_lock_interruptible(&current->signal->cred_guard_mutex);
2593	if (rv < 0)
2594		goto out_free;
2595
2596	rv = security_setprocattr(PROC_I(inode)->op.lsm,
2597				  file->f_path.dentry->d_name.name, page,
2598				  count);
2599	mutex_unlock(&current->signal->cred_guard_mutex);
2600out_free:
2601	kfree(page);
2602out:
2603	return rv;
 
 
2604}
2605
2606static const struct file_operations proc_pid_attr_operations = {
2607	.read		= proc_pid_attr_read,
2608	.write		= proc_pid_attr_write,
2609	.llseek		= generic_file_llseek,
2610};
2611
2612#define LSM_DIR_OPS(LSM) \
2613static int proc_##LSM##_attr_dir_iterate(struct file *filp, \
2614			     struct dir_context *ctx) \
2615{ \
2616	return proc_pident_readdir(filp, ctx, \
2617				   LSM##_attr_dir_stuff, \
2618				   ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2619} \
2620\
2621static const struct file_operations proc_##LSM##_attr_dir_ops = { \
2622	.read		= generic_read_dir, \
2623	.iterate	= proc_##LSM##_attr_dir_iterate, \
2624	.llseek		= default_llseek, \
2625}; \
2626\
2627static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \
2628				struct dentry *dentry, unsigned int flags) \
2629{ \
2630	return proc_pident_lookup(dir, dentry, \
2631				  LSM##_attr_dir_stuff, \
2632				  LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \
2633} \
2634\
2635static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \
2636	.lookup		= proc_##LSM##_attr_dir_lookup, \
2637	.getattr	= pid_getattr, \
2638	.setattr	= proc_setattr, \
2639}
2640
2641#ifdef CONFIG_SECURITY_SMACK
2642static const struct pid_entry smack_attr_dir_stuff[] = {
2643	ATTR("smack", "current",	0666),
2644};
2645LSM_DIR_OPS(smack);
2646#endif
2647
2648static const struct pid_entry attr_dir_stuff[] = {
2649	ATTR(NULL, "current",		0666),
2650	ATTR(NULL, "prev",		0444),
2651	ATTR(NULL, "exec",		0666),
2652	ATTR(NULL, "fscreate",		0666),
2653	ATTR(NULL, "keycreate",		0666),
2654	ATTR(NULL, "sockcreate",	0666),
2655#ifdef CONFIG_SECURITY_SMACK
2656	DIR("smack",			0555,
2657	    proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops),
2658#endif
2659};
2660
2661static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2662{
2663	return proc_pident_readdir(file, ctx, 
2664				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2665}
2666
2667static const struct file_operations proc_attr_dir_operations = {
2668	.read		= generic_read_dir,
2669	.iterate_shared	= proc_attr_dir_readdir,
2670	.llseek		= generic_file_llseek,
2671};
2672
2673static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2674				struct dentry *dentry, unsigned int flags)
2675{
2676	return proc_pident_lookup(dir, dentry,
2677				  attr_dir_stuff,
2678				  attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff));
2679}
2680
2681static const struct inode_operations proc_attr_dir_inode_operations = {
2682	.lookup		= proc_attr_dir_lookup,
2683	.getattr	= pid_getattr,
2684	.setattr	= proc_setattr,
2685};
2686
2687#endif
2688
2689#ifdef CONFIG_ELF_CORE
2690static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2691					 size_t count, loff_t *ppos)
2692{
2693	struct task_struct *task = get_proc_task(file_inode(file));
2694	struct mm_struct *mm;
2695	char buffer[PROC_NUMBUF];
2696	size_t len;
2697	int ret;
2698
2699	if (!task)
2700		return -ESRCH;
2701
2702	ret = 0;
2703	mm = get_task_mm(task);
2704	if (mm) {
2705		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2706			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2707				MMF_DUMP_FILTER_SHIFT));
2708		mmput(mm);
2709		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2710	}
2711
2712	put_task_struct(task);
2713
2714	return ret;
2715}
2716
2717static ssize_t proc_coredump_filter_write(struct file *file,
2718					  const char __user *buf,
2719					  size_t count,
2720					  loff_t *ppos)
2721{
2722	struct task_struct *task;
2723	struct mm_struct *mm;
2724	unsigned int val;
2725	int ret;
2726	int i;
2727	unsigned long mask;
2728
2729	ret = kstrtouint_from_user(buf, count, 0, &val);
2730	if (ret < 0)
2731		return ret;
2732
2733	ret = -ESRCH;
2734	task = get_proc_task(file_inode(file));
2735	if (!task)
2736		goto out_no_task;
2737
2738	mm = get_task_mm(task);
2739	if (!mm)
2740		goto out_no_mm;
2741	ret = 0;
2742
2743	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2744		if (val & mask)
2745			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2746		else
2747			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2748	}
2749
2750	mmput(mm);
2751 out_no_mm:
2752	put_task_struct(task);
2753 out_no_task:
2754	if (ret < 0)
2755		return ret;
2756	return count;
2757}
2758
2759static const struct file_operations proc_coredump_filter_operations = {
2760	.read		= proc_coredump_filter_read,
2761	.write		= proc_coredump_filter_write,
2762	.llseek		= generic_file_llseek,
2763};
2764#endif
2765
2766#ifdef CONFIG_TASK_IO_ACCOUNTING
2767static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2768{
2769	struct task_io_accounting acct = task->ioac;
2770	unsigned long flags;
2771	int result;
2772
2773	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2774	if (result)
2775		return result;
2776
2777	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2778		result = -EACCES;
2779		goto out_unlock;
2780	}
2781
2782	if (whole && lock_task_sighand(task, &flags)) {
2783		struct task_struct *t = task;
2784
2785		task_io_accounting_add(&acct, &task->signal->ioac);
2786		while_each_thread(task, t)
2787			task_io_accounting_add(&acct, &t->ioac);
2788
2789		unlock_task_sighand(task, &flags);
2790	}
2791	seq_printf(m,
2792		   "rchar: %llu\n"
2793		   "wchar: %llu\n"
2794		   "syscr: %llu\n"
2795		   "syscw: %llu\n"
2796		   "read_bytes: %llu\n"
2797		   "write_bytes: %llu\n"
2798		   "cancelled_write_bytes: %llu\n",
2799		   (unsigned long long)acct.rchar,
2800		   (unsigned long long)acct.wchar,
2801		   (unsigned long long)acct.syscr,
2802		   (unsigned long long)acct.syscw,
2803		   (unsigned long long)acct.read_bytes,
2804		   (unsigned long long)acct.write_bytes,
2805		   (unsigned long long)acct.cancelled_write_bytes);
2806	result = 0;
2807
2808out_unlock:
2809	mutex_unlock(&task->signal->cred_guard_mutex);
2810	return result;
2811}
2812
2813static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2814				  struct pid *pid, struct task_struct *task)
2815{
2816	return do_io_accounting(task, m, 0);
2817}
2818
2819static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2820				   struct pid *pid, struct task_struct *task)
2821{
2822	return do_io_accounting(task, m, 1);
2823}
2824#endif /* CONFIG_TASK_IO_ACCOUNTING */
2825
2826#ifdef CONFIG_USER_NS
2827static int proc_id_map_open(struct inode *inode, struct file *file,
2828	const struct seq_operations *seq_ops)
2829{
2830	struct user_namespace *ns = NULL;
2831	struct task_struct *task;
2832	struct seq_file *seq;
2833	int ret = -EINVAL;
2834
2835	task = get_proc_task(inode);
2836	if (task) {
2837		rcu_read_lock();
2838		ns = get_user_ns(task_cred_xxx(task, user_ns));
2839		rcu_read_unlock();
2840		put_task_struct(task);
2841	}
2842	if (!ns)
2843		goto err;
2844
2845	ret = seq_open(file, seq_ops);
2846	if (ret)
2847		goto err_put_ns;
2848
2849	seq = file->private_data;
2850	seq->private = ns;
2851
2852	return 0;
2853err_put_ns:
2854	put_user_ns(ns);
2855err:
2856	return ret;
2857}
2858
2859static int proc_id_map_release(struct inode *inode, struct file *file)
2860{
2861	struct seq_file *seq = file->private_data;
2862	struct user_namespace *ns = seq->private;
2863	put_user_ns(ns);
2864	return seq_release(inode, file);
2865}
2866
2867static int proc_uid_map_open(struct inode *inode, struct file *file)
2868{
2869	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2870}
2871
2872static int proc_gid_map_open(struct inode *inode, struct file *file)
2873{
2874	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2875}
2876
2877static int proc_projid_map_open(struct inode *inode, struct file *file)
2878{
2879	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2880}
2881
2882static const struct file_operations proc_uid_map_operations = {
2883	.open		= proc_uid_map_open,
2884	.write		= proc_uid_map_write,
2885	.read		= seq_read,
2886	.llseek		= seq_lseek,
2887	.release	= proc_id_map_release,
2888};
2889
2890static const struct file_operations proc_gid_map_operations = {
2891	.open		= proc_gid_map_open,
2892	.write		= proc_gid_map_write,
2893	.read		= seq_read,
2894	.llseek		= seq_lseek,
2895	.release	= proc_id_map_release,
2896};
2897
2898static const struct file_operations proc_projid_map_operations = {
2899	.open		= proc_projid_map_open,
2900	.write		= proc_projid_map_write,
2901	.read		= seq_read,
2902	.llseek		= seq_lseek,
2903	.release	= proc_id_map_release,
2904};
2905
2906static int proc_setgroups_open(struct inode *inode, struct file *file)
2907{
2908	struct user_namespace *ns = NULL;
2909	struct task_struct *task;
2910	int ret;
2911
2912	ret = -ESRCH;
2913	task = get_proc_task(inode);
2914	if (task) {
2915		rcu_read_lock();
2916		ns = get_user_ns(task_cred_xxx(task, user_ns));
2917		rcu_read_unlock();
2918		put_task_struct(task);
2919	}
2920	if (!ns)
2921		goto err;
2922
2923	if (file->f_mode & FMODE_WRITE) {
2924		ret = -EACCES;
2925		if (!ns_capable(ns, CAP_SYS_ADMIN))
2926			goto err_put_ns;
2927	}
2928
2929	ret = single_open(file, &proc_setgroups_show, ns);
2930	if (ret)
2931		goto err_put_ns;
2932
2933	return 0;
2934err_put_ns:
2935	put_user_ns(ns);
2936err:
2937	return ret;
2938}
2939
2940static int proc_setgroups_release(struct inode *inode, struct file *file)
2941{
2942	struct seq_file *seq = file->private_data;
2943	struct user_namespace *ns = seq->private;
2944	int ret = single_release(inode, file);
2945	put_user_ns(ns);
2946	return ret;
2947}
2948
2949static const struct file_operations proc_setgroups_operations = {
2950	.open		= proc_setgroups_open,
2951	.write		= proc_setgroups_write,
2952	.read		= seq_read,
2953	.llseek		= seq_lseek,
2954	.release	= proc_setgroups_release,
2955};
2956#endif /* CONFIG_USER_NS */
2957
2958static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2959				struct pid *pid, struct task_struct *task)
2960{
2961	int err = lock_trace(task);
2962	if (!err) {
2963		seq_printf(m, "%08x\n", task->personality);
2964		unlock_trace(task);
2965	}
2966	return err;
2967}
2968
2969#ifdef CONFIG_LIVEPATCH
2970static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns,
2971				struct pid *pid, struct task_struct *task)
2972{
2973	seq_printf(m, "%d\n", task->patch_state);
2974	return 0;
2975}
2976#endif /* CONFIG_LIVEPATCH */
2977
2978#ifdef CONFIG_STACKLEAK_METRICS
2979static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns,
2980				struct pid *pid, struct task_struct *task)
2981{
2982	unsigned long prev_depth = THREAD_SIZE -
2983				(task->prev_lowest_stack & (THREAD_SIZE - 1));
2984	unsigned long depth = THREAD_SIZE -
2985				(task->lowest_stack & (THREAD_SIZE - 1));
2986
2987	seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n",
2988							prev_depth, depth);
2989	return 0;
2990}
2991#endif /* CONFIG_STACKLEAK_METRICS */
2992
2993/*
2994 * Thread groups
2995 */
2996static const struct file_operations proc_task_operations;
2997static const struct inode_operations proc_task_inode_operations;
2998
2999static const struct pid_entry tgid_base_stuff[] = {
3000	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3001	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3002	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3003	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3004	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3005#ifdef CONFIG_NET
3006	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3007#endif
3008	REG("environ",    S_IRUSR, proc_environ_operations),
3009	REG("auxv",       S_IRUSR, proc_auxv_operations),
3010	ONE("status",     S_IRUGO, proc_pid_status),
3011	ONE("personality", S_IRUSR, proc_pid_personality),
3012	ONE("limits",	  S_IRUGO, proc_pid_limits),
3013#ifdef CONFIG_SCHED_DEBUG
3014	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3015#endif
3016#ifdef CONFIG_SCHED_AUTOGROUP
3017	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3018#endif
3019	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3020#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3021	ONE("syscall",    S_IRUSR, proc_pid_syscall),
3022#endif
3023	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
3024	ONE("stat",       S_IRUGO, proc_tgid_stat),
3025	ONE("statm",      S_IRUGO, proc_pid_statm),
3026	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3027#ifdef CONFIG_NUMA
3028	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3029#endif
3030	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3031	LNK("cwd",        proc_cwd_link),
3032	LNK("root",       proc_root_link),
3033	LNK("exe",        proc_exe_link),
3034	REG("mounts",     S_IRUGO, proc_mounts_operations),
3035	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3036	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3037#ifdef CONFIG_PROC_PAGE_MONITOR
3038	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3039	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3040	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3041	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3042#endif
3043#ifdef CONFIG_SECURITY
3044	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3045#endif
3046#ifdef CONFIG_KALLSYMS
3047	ONE("wchan",      S_IRUGO, proc_pid_wchan),
3048#endif
3049#ifdef CONFIG_STACKTRACE
3050	ONE("stack",      S_IRUSR, proc_pid_stack),
3051#endif
3052#ifdef CONFIG_SCHED_INFO
3053	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
3054#endif
3055#ifdef CONFIG_LATENCYTOP
3056	REG("latency",  S_IRUGO, proc_lstats_operations),
3057#endif
3058#ifdef CONFIG_PROC_PID_CPUSET
3059	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
3060#endif
3061#ifdef CONFIG_CGROUPS
3062	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3063#endif
3064	ONE("oom_score",  S_IRUGO, proc_oom_score),
3065	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3066	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3067#ifdef CONFIG_AUDIT
3068	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3069	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3070#endif
3071#ifdef CONFIG_FAULT_INJECTION
3072	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3073	REG("fail-nth", 0644, proc_fail_nth_operations),
3074#endif
3075#ifdef CONFIG_ELF_CORE
3076	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3077#endif
3078#ifdef CONFIG_TASK_IO_ACCOUNTING
3079	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
3080#endif
 
 
 
3081#ifdef CONFIG_USER_NS
3082	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3083	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3084	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3085	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3086#endif
3087#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS)
3088	REG("timers",	  S_IRUGO, proc_timers_operations),
3089#endif
3090	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
3091#ifdef CONFIG_LIVEPATCH
3092	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3093#endif
3094#ifdef CONFIG_STACKLEAK_METRICS
3095	ONE("stack_depth", S_IRUGO, proc_stack_depth),
3096#endif
3097#ifdef CONFIG_PROC_PID_ARCH_STATUS
3098	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3099#endif
3100};
3101
3102static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
3103{
3104	return proc_pident_readdir(file, ctx,
3105				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3106}
3107
3108static const struct file_operations proc_tgid_base_operations = {
3109	.read		= generic_read_dir,
3110	.iterate_shared	= proc_tgid_base_readdir,
3111	.llseek		= generic_file_llseek,
3112};
3113
3114struct pid *tgid_pidfd_to_pid(const struct file *file)
3115{
3116	if (file->f_op != &proc_tgid_base_operations)
3117		return ERR_PTR(-EBADF);
3118
3119	return proc_pid(file_inode(file));
3120}
3121
3122static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3123{
3124	return proc_pident_lookup(dir, dentry,
3125				  tgid_base_stuff,
3126				  tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff));
3127}
3128
3129static const struct inode_operations proc_tgid_base_inode_operations = {
3130	.lookup		= proc_tgid_base_lookup,
3131	.getattr	= pid_getattr,
3132	.setattr	= proc_setattr,
3133	.permission	= proc_pid_permission,
3134};
3135
3136static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3137{
3138	struct dentry *dentry, *leader, *dir;
3139	char buf[10 + 1];
3140	struct qstr name;
3141
3142	name.name = buf;
3143	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3144	/* no ->d_hash() rejects on procfs */
3145	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3146	if (dentry) {
3147		d_invalidate(dentry);
3148		dput(dentry);
3149	}
3150
3151	if (pid == tgid)
3152		return;
3153
3154	name.name = buf;
3155	name.len = snprintf(buf, sizeof(buf), "%u", tgid);
3156	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3157	if (!leader)
3158		goto out;
3159
3160	name.name = "task";
3161	name.len = strlen(name.name);
3162	dir = d_hash_and_lookup(leader, &name);
3163	if (!dir)
3164		goto out_put_leader;
3165
3166	name.name = buf;
3167	name.len = snprintf(buf, sizeof(buf), "%u", pid);
3168	dentry = d_hash_and_lookup(dir, &name);
3169	if (dentry) {
3170		d_invalidate(dentry);
3171		dput(dentry);
3172	}
3173
3174	dput(dir);
3175out_put_leader:
3176	dput(leader);
3177out:
3178	return;
3179}
3180
3181/**
3182 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3183 * @task: task that should be flushed.
3184 *
3185 * When flushing dentries from proc, one needs to flush them from global
3186 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3187 * in. This call is supposed to do all of this job.
3188 *
3189 * Looks in the dcache for
3190 * /proc/@pid
3191 * /proc/@tgid/task/@pid
3192 * if either directory is present flushes it and all of it'ts children
3193 * from the dcache.
3194 *
3195 * It is safe and reasonable to cache /proc entries for a task until
3196 * that task exits.  After that they just clog up the dcache with
3197 * useless entries, possibly causing useful dcache entries to be
3198 * flushed instead.  This routine is proved to flush those useless
3199 * dcache entries at process exit time.
3200 *
3201 * NOTE: This routine is just an optimization so it does not guarantee
3202 *       that no dcache entries will exist at process exit time it
3203 *       just makes it very unlikely that any will persist.
3204 */
3205
3206void proc_flush_task(struct task_struct *task)
3207{
3208	int i;
3209	struct pid *pid, *tgid;
3210	struct upid *upid;
3211
3212	pid = task_pid(task);
3213	tgid = task_tgid(task);
3214
3215	for (i = 0; i <= pid->level; i++) {
3216		upid = &pid->numbers[i];
3217		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3218					tgid->numbers[i].nr);
3219	}
3220}
3221
3222static struct dentry *proc_pid_instantiate(struct dentry * dentry,
 
3223				   struct task_struct *task, const void *ptr)
3224{
3225	struct inode *inode;
3226
3227	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3228	if (!inode)
3229		return ERR_PTR(-ENOENT);
3230
3231	inode->i_op = &proc_tgid_base_inode_operations;
3232	inode->i_fop = &proc_tgid_base_operations;
3233	inode->i_flags|=S_IMMUTABLE;
3234
3235	set_nlink(inode, nlink_tgid);
3236	pid_update_inode(task, inode);
3237
3238	d_set_d_op(dentry, &pid_dentry_operations);
3239	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3240}
3241
3242struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags)
3243{
 
3244	struct task_struct *task;
3245	unsigned tgid;
3246	struct pid_namespace *ns;
3247	struct dentry *result = ERR_PTR(-ENOENT);
3248
3249	tgid = name_to_int(&dentry->d_name);
3250	if (tgid == ~0U)
3251		goto out;
3252
3253	ns = dentry->d_sb->s_fs_info;
3254	rcu_read_lock();
3255	task = find_task_by_pid_ns(tgid, ns);
3256	if (task)
3257		get_task_struct(task);
3258	rcu_read_unlock();
3259	if (!task)
3260		goto out;
3261
3262	result = proc_pid_instantiate(dentry, task, NULL);
3263	put_task_struct(task);
3264out:
3265	return result;
3266}
3267
3268/*
3269 * Find the first task with tgid >= tgid
3270 *
3271 */
3272struct tgid_iter {
3273	unsigned int tgid;
3274	struct task_struct *task;
3275};
3276static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3277{
3278	struct pid *pid;
3279
3280	if (iter.task)
3281		put_task_struct(iter.task);
3282	rcu_read_lock();
3283retry:
3284	iter.task = NULL;
3285	pid = find_ge_pid(iter.tgid, ns);
3286	if (pid) {
3287		iter.tgid = pid_nr_ns(pid, ns);
3288		iter.task = pid_task(pid, PIDTYPE_PID);
3289		/* What we to know is if the pid we have find is the
3290		 * pid of a thread_group_leader.  Testing for task
3291		 * being a thread_group_leader is the obvious thing
3292		 * todo but there is a window when it fails, due to
3293		 * the pid transfer logic in de_thread.
3294		 *
3295		 * So we perform the straight forward test of seeing
3296		 * if the pid we have found is the pid of a thread
3297		 * group leader, and don't worry if the task we have
3298		 * found doesn't happen to be a thread group leader.
3299		 * As we don't care in the case of readdir.
3300		 */
3301		if (!iter.task || !has_group_leader_pid(iter.task)) {
3302			iter.tgid += 1;
3303			goto retry;
3304		}
3305		get_task_struct(iter.task);
3306	}
3307	rcu_read_unlock();
3308	return iter;
3309}
3310
3311#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3312
3313/* for the /proc/ directory itself, after non-process stuff has been done */
3314int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3315{
3316	struct tgid_iter iter;
3317	struct pid_namespace *ns = proc_pid_ns(file_inode(file));
3318	loff_t pos = ctx->pos;
3319
3320	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3321		return 0;
3322
3323	if (pos == TGID_OFFSET - 2) {
3324		struct inode *inode = d_inode(ns->proc_self);
3325		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3326			return 0;
3327		ctx->pos = pos = pos + 1;
3328	}
3329	if (pos == TGID_OFFSET - 1) {
3330		struct inode *inode = d_inode(ns->proc_thread_self);
3331		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3332			return 0;
3333		ctx->pos = pos = pos + 1;
3334	}
3335	iter.tgid = pos - TGID_OFFSET;
3336	iter.task = NULL;
3337	for (iter = next_tgid(ns, iter);
3338	     iter.task;
3339	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3340		char name[10 + 1];
3341		unsigned int len;
3342
3343		cond_resched();
3344		if (!has_pid_permissions(ns, iter.task, HIDEPID_INVISIBLE))
3345			continue;
3346
3347		len = snprintf(name, sizeof(name), "%u", iter.tgid);
3348		ctx->pos = iter.tgid + TGID_OFFSET;
3349		if (!proc_fill_cache(file, ctx, name, len,
3350				     proc_pid_instantiate, iter.task, NULL)) {
3351			put_task_struct(iter.task);
3352			return 0;
3353		}
3354	}
3355	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3356	return 0;
3357}
3358
3359/*
3360 * proc_tid_comm_permission is a special permission function exclusively
3361 * used for the node /proc/<pid>/task/<tid>/comm.
3362 * It bypasses generic permission checks in the case where a task of the same
3363 * task group attempts to access the node.
3364 * The rationale behind this is that glibc and bionic access this node for
3365 * cross thread naming (pthread_set/getname_np(!self)). However, if
3366 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3367 * which locks out the cross thread naming implementation.
3368 * This function makes sure that the node is always accessible for members of
3369 * same thread group.
3370 */
3371static int proc_tid_comm_permission(struct inode *inode, int mask)
3372{
3373	bool is_same_tgroup;
3374	struct task_struct *task;
3375
3376	task = get_proc_task(inode);
3377	if (!task)
3378		return -ESRCH;
3379	is_same_tgroup = same_thread_group(current, task);
3380	put_task_struct(task);
3381
3382	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3383		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3384		 * read or written by the members of the corresponding
3385		 * thread group.
3386		 */
3387		return 0;
3388	}
3389
3390	return generic_permission(inode, mask);
3391}
3392
3393static const struct inode_operations proc_tid_comm_inode_operations = {
3394		.permission = proc_tid_comm_permission,
3395};
3396
3397/*
3398 * Tasks
3399 */
3400static const struct pid_entry tid_base_stuff[] = {
3401	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3402	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3403	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3404#ifdef CONFIG_NET
3405	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3406#endif
3407	REG("environ",   S_IRUSR, proc_environ_operations),
3408	REG("auxv",      S_IRUSR, proc_auxv_operations),
3409	ONE("status",    S_IRUGO, proc_pid_status),
3410	ONE("personality", S_IRUSR, proc_pid_personality),
3411	ONE("limits",	 S_IRUGO, proc_pid_limits),
3412#ifdef CONFIG_SCHED_DEBUG
3413	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3414#endif
3415	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3416			 &proc_tid_comm_inode_operations,
3417			 &proc_pid_set_comm_operations, {}),
3418#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3419	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3420#endif
3421	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3422	ONE("stat",      S_IRUGO, proc_tid_stat),
3423	ONE("statm",     S_IRUGO, proc_pid_statm),
3424	REG("maps",      S_IRUGO, proc_pid_maps_operations),
3425#ifdef CONFIG_PROC_CHILDREN
3426	REG("children",  S_IRUGO, proc_tid_children_operations),
3427#endif
3428#ifdef CONFIG_NUMA
3429	REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations),
3430#endif
3431	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3432	LNK("cwd",       proc_cwd_link),
3433	LNK("root",      proc_root_link),
3434	LNK("exe",       proc_exe_link),
3435	REG("mounts",    S_IRUGO, proc_mounts_operations),
3436	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3437#ifdef CONFIG_PROC_PAGE_MONITOR
3438	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3439	REG("smaps",     S_IRUGO, proc_pid_smaps_operations),
3440	REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations),
3441	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3442#endif
3443#ifdef CONFIG_SECURITY
3444	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3445#endif
3446#ifdef CONFIG_KALLSYMS
3447	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3448#endif
3449#ifdef CONFIG_STACKTRACE
3450	ONE("stack",      S_IRUSR, proc_pid_stack),
3451#endif
3452#ifdef CONFIG_SCHED_INFO
3453	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3454#endif
3455#ifdef CONFIG_LATENCYTOP
3456	REG("latency",  S_IRUGO, proc_lstats_operations),
3457#endif
3458#ifdef CONFIG_PROC_PID_CPUSET
3459	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3460#endif
3461#ifdef CONFIG_CGROUPS
3462	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3463#endif
3464	ONE("oom_score", S_IRUGO, proc_oom_score),
3465	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3466	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3467#ifdef CONFIG_AUDIT
3468	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3469	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3470#endif
3471#ifdef CONFIG_FAULT_INJECTION
3472	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3473	REG("fail-nth", 0644, proc_fail_nth_operations),
3474#endif
3475#ifdef CONFIG_TASK_IO_ACCOUNTING
3476	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3477#endif
 
 
 
3478#ifdef CONFIG_USER_NS
3479	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3480	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3481	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3482	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3483#endif
3484#ifdef CONFIG_LIVEPATCH
3485	ONE("patch_state",  S_IRUSR, proc_pid_patch_state),
3486#endif
3487#ifdef CONFIG_PROC_PID_ARCH_STATUS
3488	ONE("arch_status", S_IRUGO, proc_pid_arch_status),
3489#endif
3490};
3491
3492static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3493{
3494	return proc_pident_readdir(file, ctx,
3495				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3496}
3497
3498static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3499{
3500	return proc_pident_lookup(dir, dentry,
3501				  tid_base_stuff,
3502				  tid_base_stuff + ARRAY_SIZE(tid_base_stuff));
3503}
3504
3505static const struct file_operations proc_tid_base_operations = {
3506	.read		= generic_read_dir,
3507	.iterate_shared	= proc_tid_base_readdir,
3508	.llseek		= generic_file_llseek,
3509};
3510
3511static const struct inode_operations proc_tid_base_inode_operations = {
3512	.lookup		= proc_tid_base_lookup,
3513	.getattr	= pid_getattr,
3514	.setattr	= proc_setattr,
3515};
3516
3517static struct dentry *proc_task_instantiate(struct dentry *dentry,
3518	struct task_struct *task, const void *ptr)
3519{
3520	struct inode *inode;
3521	inode = proc_pid_make_inode(dentry->d_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
 
3522	if (!inode)
3523		return ERR_PTR(-ENOENT);
3524
3525	inode->i_op = &proc_tid_base_inode_operations;
3526	inode->i_fop = &proc_tid_base_operations;
3527	inode->i_flags |= S_IMMUTABLE;
3528
3529	set_nlink(inode, nlink_tid);
3530	pid_update_inode(task, inode);
3531
3532	d_set_d_op(dentry, &pid_dentry_operations);
3533	return d_splice_alias(inode, dentry);
 
 
 
 
 
 
3534}
3535
3536static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3537{
 
3538	struct task_struct *task;
3539	struct task_struct *leader = get_proc_task(dir);
3540	unsigned tid;
3541	struct pid_namespace *ns;
3542	struct dentry *result = ERR_PTR(-ENOENT);
3543
3544	if (!leader)
3545		goto out_no_task;
3546
3547	tid = name_to_int(&dentry->d_name);
3548	if (tid == ~0U)
3549		goto out;
3550
3551	ns = dentry->d_sb->s_fs_info;
3552	rcu_read_lock();
3553	task = find_task_by_pid_ns(tid, ns);
3554	if (task)
3555		get_task_struct(task);
3556	rcu_read_unlock();
3557	if (!task)
3558		goto out;
3559	if (!same_thread_group(leader, task))
3560		goto out_drop_task;
3561
3562	result = proc_task_instantiate(dentry, task, NULL);
3563out_drop_task:
3564	put_task_struct(task);
3565out:
3566	put_task_struct(leader);
3567out_no_task:
3568	return result;
3569}
3570
3571/*
3572 * Find the first tid of a thread group to return to user space.
3573 *
3574 * Usually this is just the thread group leader, but if the users
3575 * buffer was too small or there was a seek into the middle of the
3576 * directory we have more work todo.
3577 *
3578 * In the case of a short read we start with find_task_by_pid.
3579 *
3580 * In the case of a seek we start with the leader and walk nr
3581 * threads past it.
3582 */
3583static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3584					struct pid_namespace *ns)
3585{
3586	struct task_struct *pos, *task;
3587	unsigned long nr = f_pos;
3588
3589	if (nr != f_pos)	/* 32bit overflow? */
3590		return NULL;
3591
3592	rcu_read_lock();
3593	task = pid_task(pid, PIDTYPE_PID);
3594	if (!task)
3595		goto fail;
3596
3597	/* Attempt to start with the tid of a thread */
3598	if (tid && nr) {
3599		pos = find_task_by_pid_ns(tid, ns);
3600		if (pos && same_thread_group(pos, task))
3601			goto found;
3602	}
3603
3604	/* If nr exceeds the number of threads there is nothing todo */
3605	if (nr >= get_nr_threads(task))
3606		goto fail;
3607
3608	/* If we haven't found our starting place yet start
3609	 * with the leader and walk nr threads forward.
3610	 */
3611	pos = task = task->group_leader;
3612	do {
3613		if (!nr--)
3614			goto found;
3615	} while_each_thread(task, pos);
3616fail:
3617	pos = NULL;
3618	goto out;
3619found:
3620	get_task_struct(pos);
3621out:
3622	rcu_read_unlock();
3623	return pos;
3624}
3625
3626/*
3627 * Find the next thread in the thread list.
3628 * Return NULL if there is an error or no next thread.
3629 *
3630 * The reference to the input task_struct is released.
3631 */
3632static struct task_struct *next_tid(struct task_struct *start)
3633{
3634	struct task_struct *pos = NULL;
3635	rcu_read_lock();
3636	if (pid_alive(start)) {
3637		pos = next_thread(start);
3638		if (thread_group_leader(pos))
3639			pos = NULL;
3640		else
3641			get_task_struct(pos);
3642	}
3643	rcu_read_unlock();
3644	put_task_struct(start);
3645	return pos;
3646}
3647
3648/* for the /proc/TGID/task/ directories */
3649static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3650{
3651	struct inode *inode = file_inode(file);
3652	struct task_struct *task;
3653	struct pid_namespace *ns;
3654	int tid;
3655
3656	if (proc_inode_is_dead(inode))
3657		return -ENOENT;
3658
3659	if (!dir_emit_dots(file, ctx))
3660		return 0;
3661
3662	/* f_version caches the tgid value that the last readdir call couldn't
3663	 * return. lseek aka telldir automagically resets f_version to 0.
3664	 */
3665	ns = proc_pid_ns(inode);
3666	tid = (int)file->f_version;
3667	file->f_version = 0;
3668	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3669	     task;
3670	     task = next_tid(task), ctx->pos++) {
3671		char name[10 + 1];
3672		unsigned int len;
3673		tid = task_pid_nr_ns(task, ns);
3674		len = snprintf(name, sizeof(name), "%u", tid);
3675		if (!proc_fill_cache(file, ctx, name, len,
3676				proc_task_instantiate, task, NULL)) {
3677			/* returning this tgid failed, save it as the first
3678			 * pid for the next readir call */
3679			file->f_version = (u64)tid;
3680			put_task_struct(task);
3681			break;
3682		}
3683	}
3684
3685	return 0;
3686}
3687
3688static int proc_task_getattr(const struct path *path, struct kstat *stat,
3689			     u32 request_mask, unsigned int query_flags)
3690{
3691	struct inode *inode = d_inode(path->dentry);
3692	struct task_struct *p = get_proc_task(inode);
3693	generic_fillattr(inode, stat);
3694
3695	if (p) {
3696		stat->nlink += get_nr_threads(p);
3697		put_task_struct(p);
3698	}
3699
3700	return 0;
3701}
3702
3703static const struct inode_operations proc_task_inode_operations = {
3704	.lookup		= proc_task_lookup,
3705	.getattr	= proc_task_getattr,
3706	.setattr	= proc_setattr,
3707	.permission	= proc_pid_permission,
3708};
3709
3710static const struct file_operations proc_task_operations = {
3711	.read		= generic_read_dir,
3712	.iterate_shared	= proc_task_readdir,
3713	.llseek		= generic_file_llseek,
3714};
3715
3716void __init set_proc_pid_nlink(void)
3717{
3718	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3719	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3720}