Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 228	}
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 234	}
 235
 236	down_read(&mm->mmap_sem);
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 387		}
 388skip_argv_envp:
 389		;
 
 
 
 
 
 
 
 
 
 390	}
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 
 
 422	else
 423		seq_putc(m, '0');
 424
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 474		}
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 
 604	unsigned long flags;
 
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 714{
 715	if (pid->hide_pid < hide_pid_min)
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 751
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 755};
 756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 816
 
 
 
 
 
 
 
 817	file->private_data = mm;
 
 818	return 0;
 819}
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 827
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 839
 840	if (!mm)
 841		return 0;
 842
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
 
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
 
 
 
1050	put_task_struct(task);
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
 
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
 
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
 
1216	char buffer[PROC_NUMBUF];
 
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
 
 
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
 
 
 
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
 
 
 
 
 
 
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
 
 
 
 
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
 
 
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
 
 
 
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
 
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
 
 
 
 
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
 
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1715{
1716	struct inode *inode = d_inode(dentry);
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
 
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
 
 
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
1852			}
1853		}
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1863}
1864
 
 
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1873		return -EINVAL;
1874
1875	return 0;
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
 
 
 
 
 
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
 
 
 
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
2015	if (!inode)
2016		return -ENOENT;
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
 
 
 
 
 
 
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
2026
2027	return 0;
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
 
 
 
 
2039	result = -ENOENT;
2040	task = get_proc_task(dir);
2041	if (!task)
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
 
 
 
 
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
2153	}
2154	up_read(&mm->mmap_sem);
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
2173	return ret;
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
2262{
2263	struct timers_private *tp;
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
2301			count = -EPERM;
2302			goto out;
2303		}
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
2338			err = -EPERM;
2339			goto out;
2340		}
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
2359}
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
 
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
2420			break;
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
2437
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
2452	}
2453out:
2454	put_task_struct(task);
2455	return 0;
2456}
2457
2458#ifdef CONFIG_SECURITY
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
 
 
 
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
2526};
2527
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
 
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
 
 
 
 
 
 
 
 
 
 
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
 
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
2723
2724	seq = file->private_data;
2725	seq->private = ns;
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
 
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
 
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
 
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
 
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
3087	struct pid_namespace *ns;
3088
3089	tgid = name_to_int(&dentry->d_name);
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
 
 
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
3176	iter.task = NULL;
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3356
3357	if (!inode)
3358		goto out;
 
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
3381	struct pid_namespace *ns;
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
3491	struct task_struct *task;
3492	struct pid_namespace *ns;
3493	int tid;
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}
v3.15
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 
 
 
 107struct pid_entry {
 108	char *name;
 109	int len;
 110	umode_t mode;
 111	const struct inode_operations *iop;
 112	const struct file_operations *fop;
 113	union proc_op op;
 114};
 115
 116#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 117	.name = (NAME),					\
 118	.len  = sizeof(NAME) - 1,			\
 119	.mode = MODE,					\
 120	.iop  = IOP,					\
 121	.fop  = FOP,					\
 122	.op   = OP,					\
 123}
 124
 125#define DIR(NAME, MODE, iops, fops)	\
 126	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 127#define LNK(NAME, get_link)					\
 128	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 129		&proc_pid_link_inode_operations, NULL,		\
 130		{ .proc_get_link = get_link } )
 131#define REG(NAME, MODE, fops)				\
 132	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 133#define INF(NAME, MODE, read)				\
 134	NOD(NAME, (S_IFREG|(MODE)), 			\
 135		NULL, &proc_info_file_operations,	\
 136		{ .proc_read = read } )
 137#define ONE(NAME, MODE, show)				\
 138	NOD(NAME, (S_IFREG|(MODE)), 			\
 139		NULL, &proc_single_file_operations,	\
 140		{ .proc_show = show } )
 141
 142/*
 143 * Count the number of hardlinks for the pid_entry table, excluding the .
 144 * and .. links.
 145 */
 146static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 147	unsigned int n)
 148{
 149	unsigned int i;
 150	unsigned int count;
 151
 152	count = 0;
 153	for (i = 0; i < n; ++i) {
 154		if (S_ISDIR(entries[i].mode))
 155			++count;
 156	}
 157
 158	return count;
 159}
 160
 161static int get_task_root(struct task_struct *task, struct path *root)
 162{
 163	int result = -ENOENT;
 164
 165	task_lock(task);
 166	if (task->fs) {
 167		get_fs_root(task->fs, root);
 168		result = 0;
 169	}
 170	task_unlock(task);
 171	return result;
 172}
 173
 174static int proc_cwd_link(struct dentry *dentry, struct path *path)
 175{
 176	struct task_struct *task = get_proc_task(dentry->d_inode);
 177	int result = -ENOENT;
 178
 179	if (task) {
 180		task_lock(task);
 181		if (task->fs) {
 182			get_fs_pwd(task->fs, path);
 183			result = 0;
 184		}
 185		task_unlock(task);
 186		put_task_struct(task);
 187	}
 188	return result;
 189}
 190
 191static int proc_root_link(struct dentry *dentry, struct path *path)
 192{
 193	struct task_struct *task = get_proc_task(dentry->d_inode);
 194	int result = -ENOENT;
 195
 196	if (task) {
 197		result = get_task_root(task, path);
 198		put_task_struct(task);
 199	}
 200	return result;
 201}
 202
 203static int proc_pid_cmdline(struct task_struct *task, char *buffer)
 
 204{
 205	return get_cmdline(task, buffer, PAGE_SIZE);
 206}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207
 208static int proc_pid_auxv(struct task_struct *task, char *buffer)
 209{
 210	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 211	int res = PTR_ERR(mm);
 212	if (mm && !IS_ERR(mm)) {
 213		unsigned int nwords = 0;
 214		do {
 215			nwords += 2;
 216		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 217		res = nwords * sizeof(mm->saved_auxv[0]);
 218		if (res > PAGE_SIZE)
 219			res = PAGE_SIZE;
 220		memcpy(buffer, mm->saved_auxv, res);
 221		mmput(mm);
 222	}
 223	return res;
 
 
 
 
 
 
 
 224}
 225
 
 
 
 
 226
 227#ifdef CONFIG_KALLSYMS
 228/*
 229 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 230 * Returns the resolved symbol.  If that fails, simply return the address.
 231 */
 232static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 233{
 234	unsigned long wchan;
 235	char symname[KSYM_NAME_LEN];
 236
 237	wchan = get_wchan(task);
 238
 239	if (lookup_symbol_name(wchan, symname) < 0)
 240		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 241			return 0;
 242		else
 243			return sprintf(buffer, "%lu", wchan);
 244	else
 245		return sprintf(buffer, "%s", symname);
 
 
 246}
 247#endif /* CONFIG_KALLSYMS */
 248
 249static int lock_trace(struct task_struct *task)
 250{
 251	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 252	if (err)
 253		return err;
 254	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 255		mutex_unlock(&task->signal->cred_guard_mutex);
 256		return -EPERM;
 257	}
 258	return 0;
 259}
 260
 261static void unlock_trace(struct task_struct *task)
 262{
 263	mutex_unlock(&task->signal->cred_guard_mutex);
 264}
 265
 266#ifdef CONFIG_STACKTRACE
 267
 268#define MAX_STACK_TRACE_DEPTH	64
 269
 270static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 271			  struct pid *pid, struct task_struct *task)
 272{
 273	struct stack_trace trace;
 274	unsigned long *entries;
 275	int err;
 276	int i;
 277
 278	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 279	if (!entries)
 280		return -ENOMEM;
 281
 282	trace.nr_entries	= 0;
 283	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 284	trace.entries		= entries;
 285	trace.skip		= 0;
 286
 287	err = lock_trace(task);
 288	if (!err) {
 289		save_stack_trace_tsk(task, &trace);
 290
 291		for (i = 0; i < trace.nr_entries; i++) {
 292			seq_printf(m, "[<%pK>] %pS\n",
 293				   (void *)entries[i], (void *)entries[i]);
 294		}
 295		unlock_trace(task);
 296	}
 297	kfree(entries);
 298
 299	return err;
 300}
 301#endif
 302
 303#ifdef CONFIG_SCHEDSTATS
 304/*
 305 * Provides /proc/PID/schedstat
 306 */
 307static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 308{
 309	return sprintf(buffer, "%llu %llu %lu\n",
 310			(unsigned long long)task->se.sum_exec_runtime,
 311			(unsigned long long)task->sched_info.run_delay,
 312			task->sched_info.pcount);
 
 
 
 
 
 313}
 314#endif
 315
 316#ifdef CONFIG_LATENCYTOP
 317static int lstats_show_proc(struct seq_file *m, void *v)
 318{
 319	int i;
 320	struct inode *inode = m->private;
 321	struct task_struct *task = get_proc_task(inode);
 322
 323	if (!task)
 324		return -ESRCH;
 325	seq_puts(m, "Latency Top version : v0.1\n");
 326	for (i = 0; i < 32; i++) {
 327		struct latency_record *lr = &task->latency_record[i];
 328		if (lr->backtrace[0]) {
 329			int q;
 330			seq_printf(m, "%i %li %li",
 331				   lr->count, lr->time, lr->max);
 332			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 333				unsigned long bt = lr->backtrace[q];
 334				if (!bt)
 335					break;
 336				if (bt == ULONG_MAX)
 337					break;
 338				seq_printf(m, " %ps", (void *)bt);
 339			}
 340			seq_putc(m, '\n');
 341		}
 342
 343	}
 344	put_task_struct(task);
 345	return 0;
 346}
 347
 348static int lstats_open(struct inode *inode, struct file *file)
 349{
 350	return single_open(file, lstats_show_proc, inode);
 351}
 352
 353static ssize_t lstats_write(struct file *file, const char __user *buf,
 354			    size_t count, loff_t *offs)
 355{
 356	struct task_struct *task = get_proc_task(file_inode(file));
 357
 358	if (!task)
 359		return -ESRCH;
 360	clear_all_latency_tracing(task);
 361	put_task_struct(task);
 362
 363	return count;
 364}
 365
 366static const struct file_operations proc_lstats_operations = {
 367	.open		= lstats_open,
 368	.read		= seq_read,
 369	.write		= lstats_write,
 370	.llseek		= seq_lseek,
 371	.release	= single_release,
 372};
 373
 374#endif
 375
 376#ifdef CONFIG_CGROUPS
 377static int cgroup_open(struct inode *inode, struct file *file)
 378{
 379	struct pid *pid = PROC_I(inode)->pid;
 380	return single_open(file, proc_cgroup_show, pid);
 381}
 382
 383static const struct file_operations proc_cgroup_operations = {
 384	.open		= cgroup_open,
 385	.read		= seq_read,
 386	.llseek		= seq_lseek,
 387	.release	= single_release,
 388};
 389#endif
 390
 391#ifdef CONFIG_PROC_PID_CPUSET
 392
 393static int cpuset_open(struct inode *inode, struct file *file)
 394{
 395	struct pid *pid = PROC_I(inode)->pid;
 396	return single_open(file, proc_cpuset_show, pid);
 397}
 398
 399static const struct file_operations proc_cpuset_operations = {
 400	.open		= cpuset_open,
 401	.read		= seq_read,
 402	.llseek		= seq_lseek,
 403	.release	= single_release,
 404};
 405#endif
 406
 407static int proc_oom_score(struct task_struct *task, char *buffer)
 408{
 409	unsigned long totalpages = totalram_pages + total_swap_pages;
 410	unsigned long points = 0;
 411
 412	read_lock(&tasklist_lock);
 413	if (pid_alive(task))
 414		points = oom_badness(task, NULL, NULL, totalpages) *
 415						1000 / totalpages;
 416	read_unlock(&tasklist_lock);
 417	return sprintf(buffer, "%lu\n", points);
 418}
 419
 420struct limit_names {
 421	char *name;
 422	char *unit;
 423};
 424
 425static const struct limit_names lnames[RLIM_NLIMITS] = {
 426	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 427	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 428	[RLIMIT_DATA] = {"Max data size", "bytes"},
 429	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 430	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 431	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 432	[RLIMIT_NPROC] = {"Max processes", "processes"},
 433	[RLIMIT_NOFILE] = {"Max open files", "files"},
 434	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 435	[RLIMIT_AS] = {"Max address space", "bytes"},
 436	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 437	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 438	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 439	[RLIMIT_NICE] = {"Max nice priority", NULL},
 440	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 441	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 442};
 443
 444/* Display limits for a process */
 445static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 446{
 447	unsigned int i;
 448	int count = 0;
 449	unsigned long flags;
 450	char *bufptr = buffer;
 451
 452	struct rlimit rlim[RLIM_NLIMITS];
 453
 454	if (!lock_task_sighand(task, &flags))
 455		return 0;
 456	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 457	unlock_task_sighand(task, &flags);
 458
 459	/*
 460	 * print the file header
 461	 */
 462	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 463			"Limit", "Soft Limit", "Hard Limit", "Units");
 464
 465	for (i = 0; i < RLIM_NLIMITS; i++) {
 466		if (rlim[i].rlim_cur == RLIM_INFINITY)
 467			count += sprintf(&bufptr[count], "%-25s %-20s ",
 468					 lnames[i].name, "unlimited");
 469		else
 470			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 471					 lnames[i].name, rlim[i].rlim_cur);
 472
 473		if (rlim[i].rlim_max == RLIM_INFINITY)
 474			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 475		else
 476			count += sprintf(&bufptr[count], "%-20lu ",
 477					 rlim[i].rlim_max);
 478
 479		if (lnames[i].unit)
 480			count += sprintf(&bufptr[count], "%-10s\n",
 481					 lnames[i].unit);
 482		else
 483			count += sprintf(&bufptr[count], "\n");
 484	}
 485
 486	return count;
 487}
 488
 489#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 490static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 491{
 492	long nr;
 493	unsigned long args[6], sp, pc;
 494	int res = lock_trace(task);
 
 
 495	if (res)
 496		return res;
 497
 498	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 499		res = sprintf(buffer, "running\n");
 500	else if (nr < 0)
 501		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 502	else
 503		res = sprintf(buffer,
 504		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 505		       nr,
 506		       args[0], args[1], args[2], args[3], args[4], args[5],
 507		       sp, pc);
 508	unlock_trace(task);
 509	return res;
 
 510}
 511#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 512
 513/************************************************************************/
 514/*                       Here the fs part begins                        */
 515/************************************************************************/
 516
 517/* permission checks */
 518static int proc_fd_access_allowed(struct inode *inode)
 519{
 520	struct task_struct *task;
 521	int allowed = 0;
 522	/* Allow access to a task's file descriptors if it is us or we
 523	 * may use ptrace attach to the process and find out that
 524	 * information.
 525	 */
 526	task = get_proc_task(inode);
 527	if (task) {
 528		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 529		put_task_struct(task);
 530	}
 531	return allowed;
 532}
 533
 534int proc_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int error;
 537	struct inode *inode = dentry->d_inode;
 538
 539	if (attr->ia_valid & ATTR_MODE)
 540		return -EPERM;
 541
 542	error = inode_change_ok(inode, attr);
 543	if (error)
 544		return error;
 545
 546	setattr_copy(inode, attr);
 547	mark_inode_dirty(inode);
 548	return 0;
 549}
 550
 551/*
 552 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 553 * or euid/egid (for hide_pid_min=2)?
 554 */
 555static bool has_pid_permissions(struct pid_namespace *pid,
 556				 struct task_struct *task,
 557				 int hide_pid_min)
 558{
 559	if (pid->hide_pid < hide_pid_min)
 560		return true;
 561	if (in_group_p(pid->pid_gid))
 562		return true;
 563	return ptrace_may_access(task, PTRACE_MODE_READ);
 564}
 565
 566
 567static int proc_pid_permission(struct inode *inode, int mask)
 568{
 569	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 570	struct task_struct *task;
 571	bool has_perms;
 572
 573	task = get_proc_task(inode);
 574	if (!task)
 575		return -ESRCH;
 576	has_perms = has_pid_permissions(pid, task, 1);
 577	put_task_struct(task);
 578
 579	if (!has_perms) {
 580		if (pid->hide_pid == 2) {
 581			/*
 582			 * Let's make getdents(), stat(), and open()
 583			 * consistent with each other.  If a process
 584			 * may not stat() a file, it shouldn't be seen
 585			 * in procfs at all.
 586			 */
 587			return -ENOENT;
 588		}
 589
 590		return -EPERM;
 591	}
 592	return generic_permission(inode, mask);
 593}
 594
 595
 596
 597static const struct inode_operations proc_def_inode_operations = {
 598	.setattr	= proc_setattr,
 599};
 600
 601#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 602
 603static ssize_t proc_info_read(struct file * file, char __user * buf,
 604			  size_t count, loff_t *ppos)
 605{
 606	struct inode * inode = file_inode(file);
 607	unsigned long page;
 608	ssize_t length;
 609	struct task_struct *task = get_proc_task(inode);
 610
 611	length = -ESRCH;
 612	if (!task)
 613		goto out_no_task;
 614
 615	if (count > PROC_BLOCK_SIZE)
 616		count = PROC_BLOCK_SIZE;
 617
 618	length = -ENOMEM;
 619	if (!(page = __get_free_page(GFP_TEMPORARY)))
 620		goto out;
 621
 622	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 623
 624	if (length >= 0)
 625		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 626	free_page(page);
 627out:
 628	put_task_struct(task);
 629out_no_task:
 630	return length;
 631}
 632
 633static const struct file_operations proc_info_file_operations = {
 634	.read		= proc_info_read,
 635	.llseek		= generic_file_llseek,
 636};
 637
 638static int proc_single_show(struct seq_file *m, void *v)
 639{
 640	struct inode *inode = m->private;
 641	struct pid_namespace *ns;
 642	struct pid *pid;
 643	struct task_struct *task;
 644	int ret;
 645
 646	ns = inode->i_sb->s_fs_info;
 647	pid = proc_pid(inode);
 648	task = get_pid_task(pid, PIDTYPE_PID);
 649	if (!task)
 650		return -ESRCH;
 651
 652	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 653
 654	put_task_struct(task);
 655	return ret;
 656}
 657
 658static int proc_single_open(struct inode *inode, struct file *filp)
 659{
 660	return single_open(filp, proc_single_show, inode);
 661}
 662
 663static const struct file_operations proc_single_file_operations = {
 664	.open		= proc_single_open,
 665	.read		= seq_read,
 666	.llseek		= seq_lseek,
 667	.release	= single_release,
 668};
 669
 670static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 
 671{
 672	struct task_struct *task = get_proc_task(file_inode(file));
 673	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 674
 675	if (!task)
 676		return -ESRCH;
 677
 678	mm = mm_access(task, mode);
 679	put_task_struct(task);
 
 680
 681	if (IS_ERR(mm))
 682		return PTR_ERR(mm);
 683
 684	if (mm) {
 685		/* ensure this mm_struct can't be freed */
 686		atomic_inc(&mm->mm_count);
 687		/* but do not pin its memory */
 688		mmput(mm);
 689	}
 690
 691	file->private_data = mm;
 692
 693	return 0;
 694}
 695
 696static int mem_open(struct inode *inode, struct file *file)
 697{
 698	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 699
 700	/* OK to pass negative loff_t, we can catch out-of-range */
 701	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 702
 703	return ret;
 704}
 705
 706static ssize_t mem_rw(struct file *file, char __user *buf,
 707			size_t count, loff_t *ppos, int write)
 708{
 709	struct mm_struct *mm = file->private_data;
 710	unsigned long addr = *ppos;
 711	ssize_t copied;
 712	char *page;
 
 713
 714	if (!mm)
 715		return 0;
 716
 717	page = (char *)__get_free_page(GFP_TEMPORARY);
 718	if (!page)
 719		return -ENOMEM;
 720
 721	copied = 0;
 722	if (!atomic_inc_not_zero(&mm->mm_users))
 723		goto free;
 724
 
 
 
 
 
 725	while (count > 0) {
 726		int this_len = min_t(int, count, PAGE_SIZE);
 727
 728		if (write && copy_from_user(page, buf, this_len)) {
 729			copied = -EFAULT;
 730			break;
 731		}
 732
 733		this_len = access_remote_vm(mm, addr, page, this_len, write);
 734		if (!this_len) {
 735			if (!copied)
 736				copied = -EIO;
 737			break;
 738		}
 739
 740		if (!write && copy_to_user(buf, page, this_len)) {
 741			copied = -EFAULT;
 742			break;
 743		}
 744
 745		buf += this_len;
 746		addr += this_len;
 747		copied += this_len;
 748		count -= this_len;
 749	}
 750	*ppos = addr;
 751
 752	mmput(mm);
 753free:
 754	free_page((unsigned long) page);
 755	return copied;
 756}
 757
 758static ssize_t mem_read(struct file *file, char __user *buf,
 759			size_t count, loff_t *ppos)
 760{
 761	return mem_rw(file, buf, count, ppos, 0);
 762}
 763
 764static ssize_t mem_write(struct file *file, const char __user *buf,
 765			 size_t count, loff_t *ppos)
 766{
 767	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 768}
 769
 770loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 771{
 772	switch (orig) {
 773	case 0:
 774		file->f_pos = offset;
 775		break;
 776	case 1:
 777		file->f_pos += offset;
 778		break;
 779	default:
 780		return -EINVAL;
 781	}
 782	force_successful_syscall_return();
 783	return file->f_pos;
 784}
 785
 786static int mem_release(struct inode *inode, struct file *file)
 787{
 788	struct mm_struct *mm = file->private_data;
 789	if (mm)
 790		mmdrop(mm);
 791	return 0;
 792}
 793
 794static const struct file_operations proc_mem_operations = {
 795	.llseek		= mem_lseek,
 796	.read		= mem_read,
 797	.write		= mem_write,
 798	.open		= mem_open,
 799	.release	= mem_release,
 800};
 801
 802static int environ_open(struct inode *inode, struct file *file)
 803{
 804	return __mem_open(inode, file, PTRACE_MODE_READ);
 805}
 806
 807static ssize_t environ_read(struct file *file, char __user *buf,
 808			size_t count, loff_t *ppos)
 809{
 810	char *page;
 811	unsigned long src = *ppos;
 812	int ret = 0;
 813	struct mm_struct *mm = file->private_data;
 
 814
 815	if (!mm)
 
 816		return 0;
 817
 818	page = (char *)__get_free_page(GFP_TEMPORARY);
 819	if (!page)
 820		return -ENOMEM;
 821
 822	ret = 0;
 823	if (!atomic_inc_not_zero(&mm->mm_users))
 824		goto free;
 
 
 
 
 
 
 825	while (count > 0) {
 826		size_t this_len, max_len;
 827		int retval;
 828
 829		if (src >= (mm->env_end - mm->env_start))
 830			break;
 831
 832		this_len = mm->env_end - (mm->env_start + src);
 833
 834		max_len = min_t(size_t, PAGE_SIZE, count);
 835		this_len = min(max_len, this_len);
 836
 837		retval = access_remote_vm(mm, (mm->env_start + src),
 838			page, this_len, 0);
 839
 840		if (retval <= 0) {
 841			ret = retval;
 842			break;
 843		}
 844
 845		if (copy_to_user(buf, page, retval)) {
 846			ret = -EFAULT;
 847			break;
 848		}
 849
 850		ret += retval;
 851		src += retval;
 852		buf += retval;
 853		count -= retval;
 854	}
 855	*ppos = src;
 856	mmput(mm);
 857
 858free:
 859	free_page((unsigned long) page);
 860	return ret;
 861}
 862
 863static const struct file_operations proc_environ_operations = {
 864	.open		= environ_open,
 865	.read		= environ_read,
 866	.llseek		= generic_file_llseek,
 867	.release	= mem_release,
 868};
 869
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 870static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
 871			    loff_t *ppos)
 872{
 873	struct task_struct *task = get_proc_task(file_inode(file));
 874	char buffer[PROC_NUMBUF];
 875	int oom_adj = OOM_ADJUST_MIN;
 876	size_t len;
 877	unsigned long flags;
 878
 879	if (!task)
 880		return -ESRCH;
 881	if (lock_task_sighand(task, &flags)) {
 882		if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
 883			oom_adj = OOM_ADJUST_MAX;
 884		else
 885			oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
 886				  OOM_SCORE_ADJ_MAX;
 887		unlock_task_sighand(task, &flags);
 888	}
 889	put_task_struct(task);
 890	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
 891	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 892}
 893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894static ssize_t oom_adj_write(struct file *file, const char __user *buf,
 895			     size_t count, loff_t *ppos)
 896{
 897	struct task_struct *task;
 898	char buffer[PROC_NUMBUF];
 899	int oom_adj;
 900	unsigned long flags;
 901	int err;
 902
 903	memset(buffer, 0, sizeof(buffer));
 904	if (count > sizeof(buffer) - 1)
 905		count = sizeof(buffer) - 1;
 906	if (copy_from_user(buffer, buf, count)) {
 907		err = -EFAULT;
 908		goto out;
 909	}
 910
 911	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
 912	if (err)
 913		goto out;
 914	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
 915	     oom_adj != OOM_DISABLE) {
 916		err = -EINVAL;
 917		goto out;
 918	}
 919
 920	task = get_proc_task(file_inode(file));
 921	if (!task) {
 922		err = -ESRCH;
 923		goto out;
 924	}
 925
 926	task_lock(task);
 927	if (!task->mm) {
 928		err = -EINVAL;
 929		goto err_task_lock;
 930	}
 931
 932	if (!lock_task_sighand(task, &flags)) {
 933		err = -ESRCH;
 934		goto err_task_lock;
 935	}
 936
 937	/*
 938	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
 939	 * value is always attainable.
 940	 */
 941	if (oom_adj == OOM_ADJUST_MAX)
 942		oom_adj = OOM_SCORE_ADJ_MAX;
 943	else
 944		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
 945
 946	if (oom_adj < task->signal->oom_score_adj &&
 947	    !capable(CAP_SYS_RESOURCE)) {
 948		err = -EACCES;
 949		goto err_sighand;
 950	}
 951
 952	/*
 953	 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
 954	 * /proc/pid/oom_score_adj instead.
 955	 */
 956	pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
 957		  current->comm, task_pid_nr(current), task_pid_nr(task),
 958		  task_pid_nr(task));
 959
 960	task->signal->oom_score_adj = oom_adj;
 961	trace_oom_score_adj_update(task);
 962err_sighand:
 963	unlock_task_sighand(task, &flags);
 964err_task_lock:
 965	task_unlock(task);
 966	put_task_struct(task);
 967out:
 968	return err < 0 ? err : count;
 969}
 970
 971static const struct file_operations proc_oom_adj_operations = {
 972	.read		= oom_adj_read,
 973	.write		= oom_adj_write,
 974	.llseek		= generic_file_llseek,
 975};
 976
 977static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
 978					size_t count, loff_t *ppos)
 979{
 980	struct task_struct *task = get_proc_task(file_inode(file));
 981	char buffer[PROC_NUMBUF];
 982	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 983	unsigned long flags;
 984	size_t len;
 985
 986	if (!task)
 987		return -ESRCH;
 988	if (lock_task_sighand(task, &flags)) {
 989		oom_score_adj = task->signal->oom_score_adj;
 990		unlock_task_sighand(task, &flags);
 991	}
 992	put_task_struct(task);
 993	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
 994	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 995}
 996
 997static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
 998					size_t count, loff_t *ppos)
 999{
1000	struct task_struct *task;
1001	char buffer[PROC_NUMBUF];
1002	unsigned long flags;
1003	int oom_score_adj;
1004	int err;
1005
1006	memset(buffer, 0, sizeof(buffer));
1007	if (count > sizeof(buffer) - 1)
1008		count = sizeof(buffer) - 1;
1009	if (copy_from_user(buffer, buf, count)) {
1010		err = -EFAULT;
1011		goto out;
1012	}
1013
1014	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1015	if (err)
1016		goto out;
1017	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1018			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1019		err = -EINVAL;
1020		goto out;
1021	}
1022
1023	task = get_proc_task(file_inode(file));
1024	if (!task) {
1025		err = -ESRCH;
1026		goto out;
1027	}
1028
1029	task_lock(task);
1030	if (!task->mm) {
1031		err = -EINVAL;
1032		goto err_task_lock;
1033	}
1034
1035	if (!lock_task_sighand(task, &flags)) {
1036		err = -ESRCH;
1037		goto err_task_lock;
1038	}
1039
1040	if ((short)oom_score_adj < task->signal->oom_score_adj_min &&
1041			!capable(CAP_SYS_RESOURCE)) {
1042		err = -EACCES;
1043		goto err_sighand;
1044	}
1045
1046	task->signal->oom_score_adj = (short)oom_score_adj;
1047	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1048		task->signal->oom_score_adj_min = (short)oom_score_adj;
1049	trace_oom_score_adj_update(task);
1050
1051err_sighand:
1052	unlock_task_sighand(task, &flags);
1053err_task_lock:
1054	task_unlock(task);
1055	put_task_struct(task);
1056out:
1057	return err < 0 ? err : count;
1058}
1059
1060static const struct file_operations proc_oom_score_adj_operations = {
1061	.read		= oom_score_adj_read,
1062	.write		= oom_score_adj_write,
1063	.llseek		= default_llseek,
1064};
1065
1066#ifdef CONFIG_AUDITSYSCALL
1067#define TMPBUFLEN 21
1068static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1069				  size_t count, loff_t *ppos)
1070{
1071	struct inode * inode = file_inode(file);
1072	struct task_struct *task = get_proc_task(inode);
1073	ssize_t length;
1074	char tmpbuf[TMPBUFLEN];
1075
1076	if (!task)
1077		return -ESRCH;
1078	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1079			   from_kuid(file->f_cred->user_ns,
1080				     audit_get_loginuid(task)));
1081	put_task_struct(task);
1082	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1083}
1084
1085static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1086				   size_t count, loff_t *ppos)
1087{
1088	struct inode * inode = file_inode(file);
1089	char *page, *tmp;
1090	ssize_t length;
1091	uid_t loginuid;
1092	kuid_t kloginuid;
 
1093
1094	rcu_read_lock();
1095	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1096		rcu_read_unlock();
1097		return -EPERM;
1098	}
1099	rcu_read_unlock();
1100
1101	if (count >= PAGE_SIZE)
1102		count = PAGE_SIZE - 1;
1103
1104	if (*ppos != 0) {
1105		/* No partial writes. */
1106		return -EINVAL;
1107	}
1108	page = (char*)__get_free_page(GFP_TEMPORARY);
1109	if (!page)
1110		return -ENOMEM;
1111	length = -EFAULT;
1112	if (copy_from_user(page, buf, count))
1113		goto out_free_page;
1114
1115	page[count] = '\0';
1116	loginuid = simple_strtoul(page, &tmp, 10);
1117	if (tmp == page) {
1118		length = -EINVAL;
1119		goto out_free_page;
1120
1121	}
1122
1123	/* is userspace tring to explicitly UNSET the loginuid? */
1124	if (loginuid == AUDIT_UID_UNSET) {
1125		kloginuid = INVALID_UID;
1126	} else {
1127		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1128		if (!uid_valid(kloginuid)) {
1129			length = -EINVAL;
1130			goto out_free_page;
1131		}
1132	}
1133
1134	length = audit_set_loginuid(kloginuid);
1135	if (likely(length == 0))
1136		length = count;
1137
1138out_free_page:
1139	free_page((unsigned long) page);
1140	return length;
1141}
1142
1143static const struct file_operations proc_loginuid_operations = {
1144	.read		= proc_loginuid_read,
1145	.write		= proc_loginuid_write,
1146	.llseek		= generic_file_llseek,
1147};
1148
1149static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1150				  size_t count, loff_t *ppos)
1151{
1152	struct inode * inode = file_inode(file);
1153	struct task_struct *task = get_proc_task(inode);
1154	ssize_t length;
1155	char tmpbuf[TMPBUFLEN];
1156
1157	if (!task)
1158		return -ESRCH;
1159	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1160				audit_get_sessionid(task));
1161	put_task_struct(task);
1162	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1163}
1164
1165static const struct file_operations proc_sessionid_operations = {
1166	.read		= proc_sessionid_read,
1167	.llseek		= generic_file_llseek,
1168};
1169#endif
1170
1171#ifdef CONFIG_FAULT_INJECTION
1172static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1173				      size_t count, loff_t *ppos)
1174{
1175	struct task_struct *task = get_proc_task(file_inode(file));
1176	char buffer[PROC_NUMBUF];
1177	size_t len;
1178	int make_it_fail;
1179
1180	if (!task)
1181		return -ESRCH;
1182	make_it_fail = task->make_it_fail;
1183	put_task_struct(task);
1184
1185	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1186
1187	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1188}
1189
1190static ssize_t proc_fault_inject_write(struct file * file,
1191			const char __user * buf, size_t count, loff_t *ppos)
1192{
1193	struct task_struct *task;
1194	char buffer[PROC_NUMBUF], *end;
1195	int make_it_fail;
 
1196
1197	if (!capable(CAP_SYS_RESOURCE))
1198		return -EPERM;
1199	memset(buffer, 0, sizeof(buffer));
1200	if (count > sizeof(buffer) - 1)
1201		count = sizeof(buffer) - 1;
1202	if (copy_from_user(buffer, buf, count))
1203		return -EFAULT;
1204	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1205	if (*end)
1206		return -EINVAL;
1207	if (make_it_fail < 0 || make_it_fail > 1)
1208		return -EINVAL;
1209
1210	task = get_proc_task(file_inode(file));
1211	if (!task)
1212		return -ESRCH;
1213	task->make_it_fail = make_it_fail;
1214	put_task_struct(task);
1215
1216	return count;
1217}
1218
1219static const struct file_operations proc_fault_inject_operations = {
1220	.read		= proc_fault_inject_read,
1221	.write		= proc_fault_inject_write,
1222	.llseek		= generic_file_llseek,
1223};
1224#endif
1225
1226
1227#ifdef CONFIG_SCHED_DEBUG
1228/*
1229 * Print out various scheduling related per-task fields:
1230 */
1231static int sched_show(struct seq_file *m, void *v)
1232{
1233	struct inode *inode = m->private;
1234	struct task_struct *p;
1235
1236	p = get_proc_task(inode);
1237	if (!p)
1238		return -ESRCH;
1239	proc_sched_show_task(p, m);
1240
1241	put_task_struct(p);
1242
1243	return 0;
1244}
1245
1246static ssize_t
1247sched_write(struct file *file, const char __user *buf,
1248	    size_t count, loff_t *offset)
1249{
1250	struct inode *inode = file_inode(file);
1251	struct task_struct *p;
1252
1253	p = get_proc_task(inode);
1254	if (!p)
1255		return -ESRCH;
1256	proc_sched_set_task(p);
1257
1258	put_task_struct(p);
1259
1260	return count;
1261}
1262
1263static int sched_open(struct inode *inode, struct file *filp)
1264{
1265	return single_open(filp, sched_show, inode);
1266}
1267
1268static const struct file_operations proc_pid_sched_operations = {
1269	.open		= sched_open,
1270	.read		= seq_read,
1271	.write		= sched_write,
1272	.llseek		= seq_lseek,
1273	.release	= single_release,
1274};
1275
1276#endif
1277
1278#ifdef CONFIG_SCHED_AUTOGROUP
1279/*
1280 * Print out autogroup related information:
1281 */
1282static int sched_autogroup_show(struct seq_file *m, void *v)
1283{
1284	struct inode *inode = m->private;
1285	struct task_struct *p;
1286
1287	p = get_proc_task(inode);
1288	if (!p)
1289		return -ESRCH;
1290	proc_sched_autogroup_show_task(p, m);
1291
1292	put_task_struct(p);
1293
1294	return 0;
1295}
1296
1297static ssize_t
1298sched_autogroup_write(struct file *file, const char __user *buf,
1299	    size_t count, loff_t *offset)
1300{
1301	struct inode *inode = file_inode(file);
1302	struct task_struct *p;
1303	char buffer[PROC_NUMBUF];
1304	int nice;
1305	int err;
1306
1307	memset(buffer, 0, sizeof(buffer));
1308	if (count > sizeof(buffer) - 1)
1309		count = sizeof(buffer) - 1;
1310	if (copy_from_user(buffer, buf, count))
1311		return -EFAULT;
1312
1313	err = kstrtoint(strstrip(buffer), 0, &nice);
1314	if (err < 0)
1315		return err;
1316
1317	p = get_proc_task(inode);
1318	if (!p)
1319		return -ESRCH;
1320
1321	err = proc_sched_autogroup_set_nice(p, nice);
1322	if (err)
1323		count = err;
1324
1325	put_task_struct(p);
1326
1327	return count;
1328}
1329
1330static int sched_autogroup_open(struct inode *inode, struct file *filp)
1331{
1332	int ret;
1333
1334	ret = single_open(filp, sched_autogroup_show, NULL);
1335	if (!ret) {
1336		struct seq_file *m = filp->private_data;
1337
1338		m->private = inode;
1339	}
1340	return ret;
1341}
1342
1343static const struct file_operations proc_pid_sched_autogroup_operations = {
1344	.open		= sched_autogroup_open,
1345	.read		= seq_read,
1346	.write		= sched_autogroup_write,
1347	.llseek		= seq_lseek,
1348	.release	= single_release,
1349};
1350
1351#endif /* CONFIG_SCHED_AUTOGROUP */
1352
1353static ssize_t comm_write(struct file *file, const char __user *buf,
1354				size_t count, loff_t *offset)
1355{
1356	struct inode *inode = file_inode(file);
1357	struct task_struct *p;
1358	char buffer[TASK_COMM_LEN];
1359	const size_t maxlen = sizeof(buffer) - 1;
1360
1361	memset(buffer, 0, sizeof(buffer));
1362	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
1363		return -EFAULT;
1364
1365	p = get_proc_task(inode);
1366	if (!p)
1367		return -ESRCH;
1368
1369	if (same_thread_group(current, p))
1370		set_task_comm(p, buffer);
1371	else
1372		count = -EINVAL;
1373
1374	put_task_struct(p);
1375
1376	return count;
1377}
1378
1379static int comm_show(struct seq_file *m, void *v)
1380{
1381	struct inode *inode = m->private;
1382	struct task_struct *p;
1383
1384	p = get_proc_task(inode);
1385	if (!p)
1386		return -ESRCH;
1387
1388	task_lock(p);
1389	seq_printf(m, "%s\n", p->comm);
1390	task_unlock(p);
1391
1392	put_task_struct(p);
1393
1394	return 0;
1395}
1396
1397static int comm_open(struct inode *inode, struct file *filp)
1398{
1399	return single_open(filp, comm_show, inode);
1400}
1401
1402static const struct file_operations proc_pid_set_comm_operations = {
1403	.open		= comm_open,
1404	.read		= seq_read,
1405	.write		= comm_write,
1406	.llseek		= seq_lseek,
1407	.release	= single_release,
1408};
1409
1410static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1411{
1412	struct task_struct *task;
1413	struct mm_struct *mm;
1414	struct file *exe_file;
1415
1416	task = get_proc_task(dentry->d_inode);
1417	if (!task)
1418		return -ENOENT;
1419	mm = get_task_mm(task);
1420	put_task_struct(task);
1421	if (!mm)
1422		return -ENOENT;
1423	exe_file = get_mm_exe_file(mm);
1424	mmput(mm);
1425	if (exe_file) {
1426		*exe_path = exe_file->f_path;
1427		path_get(&exe_file->f_path);
1428		fput(exe_file);
1429		return 0;
1430	} else
1431		return -ENOENT;
1432}
1433
1434static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1435{
1436	struct inode *inode = dentry->d_inode;
1437	struct path path;
1438	int error = -EACCES;
1439
 
 
 
1440	/* Are we allowed to snoop on the tasks file descriptors? */
1441	if (!proc_fd_access_allowed(inode))
1442		goto out;
1443
1444	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1445	if (error)
1446		goto out;
1447
1448	nd_jump_link(nd, &path);
1449	return NULL;
1450out:
1451	return ERR_PTR(error);
1452}
1453
1454static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1455{
1456	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1457	char *pathname;
1458	int len;
1459
1460	if (!tmp)
1461		return -ENOMEM;
1462
1463	pathname = d_path(path, tmp, PAGE_SIZE);
1464	len = PTR_ERR(pathname);
1465	if (IS_ERR(pathname))
1466		goto out;
1467	len = tmp + PAGE_SIZE - 1 - pathname;
1468
1469	if (len > buflen)
1470		len = buflen;
1471	if (copy_to_user(buffer, pathname, len))
1472		len = -EFAULT;
1473 out:
1474	free_page((unsigned long)tmp);
1475	return len;
1476}
1477
1478static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1479{
1480	int error = -EACCES;
1481	struct inode *inode = dentry->d_inode;
1482	struct path path;
1483
1484	/* Are we allowed to snoop on the tasks file descriptors? */
1485	if (!proc_fd_access_allowed(inode))
1486		goto out;
1487
1488	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1489	if (error)
1490		goto out;
1491
1492	error = do_proc_readlink(&path, buffer, buflen);
1493	path_put(&path);
1494out:
1495	return error;
1496}
1497
1498const struct inode_operations proc_pid_link_inode_operations = {
1499	.readlink	= proc_pid_readlink,
1500	.follow_link	= proc_pid_follow_link,
1501	.setattr	= proc_setattr,
1502};
1503
1504
1505/* building an inode */
1506
1507struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
 
1508{
1509	struct inode * inode;
1510	struct proc_inode *ei;
1511	const struct cred *cred;
1512
1513	/* We need a new inode */
1514
1515	inode = new_inode(sb);
1516	if (!inode)
1517		goto out;
1518
1519	/* Common stuff */
1520	ei = PROC_I(inode);
 
1521	inode->i_ino = get_next_ino();
1522	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1523	inode->i_op = &proc_def_inode_operations;
1524
1525	/*
1526	 * grab the reference to task.
1527	 */
1528	ei->pid = get_task_pid(task, PIDTYPE_PID);
1529	if (!ei->pid)
1530		goto out_unlock;
1531
1532	if (task_dumpable(task)) {
1533		rcu_read_lock();
1534		cred = __task_cred(task);
1535		inode->i_uid = cred->euid;
1536		inode->i_gid = cred->egid;
1537		rcu_read_unlock();
1538	}
1539	security_task_to_inode(task, inode);
1540
1541out:
1542	return inode;
1543
1544out_unlock:
1545	iput(inode);
1546	return NULL;
1547}
1548
1549int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1550{
1551	struct inode *inode = dentry->d_inode;
1552	struct task_struct *task;
1553	const struct cred *cred;
1554	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1555
1556	generic_fillattr(inode, stat);
1557
1558	rcu_read_lock();
1559	stat->uid = GLOBAL_ROOT_UID;
1560	stat->gid = GLOBAL_ROOT_GID;
1561	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1562	if (task) {
1563		if (!has_pid_permissions(pid, task, 2)) {
1564			rcu_read_unlock();
1565			/*
1566			 * This doesn't prevent learning whether PID exists,
1567			 * it only makes getattr() consistent with readdir().
1568			 */
1569			return -ENOENT;
1570		}
1571		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1572		    task_dumpable(task)) {
1573			cred = __task_cred(task);
1574			stat->uid = cred->euid;
1575			stat->gid = cred->egid;
1576		}
1577	}
1578	rcu_read_unlock();
1579	return 0;
1580}
1581
1582/* dentry stuff */
1583
1584/*
1585 *	Exceptional case: normally we are not allowed to unhash a busy
1586 * directory. In this case, however, we can do it - no aliasing problems
1587 * due to the way we treat inodes.
1588 *
1589 * Rewrite the inode's ownerships here because the owning task may have
1590 * performed a setuid(), etc.
1591 *
1592 * Before the /proc/pid/status file was created the only way to read
1593 * the effective uid of a /process was to stat /proc/pid.  Reading
1594 * /proc/pid/status is slow enough that procps and other packages
1595 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1596 * made this apply to all per process world readable and executable
1597 * directories.
1598 */
1599int pid_revalidate(struct dentry *dentry, unsigned int flags)
1600{
1601	struct inode *inode;
1602	struct task_struct *task;
1603	const struct cred *cred;
1604
1605	if (flags & LOOKUP_RCU)
1606		return -ECHILD;
1607
1608	inode = dentry->d_inode;
1609	task = get_proc_task(inode);
1610
1611	if (task) {
1612		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1613		    task_dumpable(task)) {
1614			rcu_read_lock();
1615			cred = __task_cred(task);
1616			inode->i_uid = cred->euid;
1617			inode->i_gid = cred->egid;
1618			rcu_read_unlock();
1619		} else {
1620			inode->i_uid = GLOBAL_ROOT_UID;
1621			inode->i_gid = GLOBAL_ROOT_GID;
1622		}
1623		inode->i_mode &= ~(S_ISUID | S_ISGID);
1624		security_task_to_inode(task, inode);
1625		put_task_struct(task);
1626		return 1;
1627	}
1628	d_drop(dentry);
1629	return 0;
1630}
1631
1632static inline bool proc_inode_is_dead(struct inode *inode)
1633{
1634	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1635}
1636
1637int pid_delete_dentry(const struct dentry *dentry)
1638{
1639	/* Is the task we represent dead?
1640	 * If so, then don't put the dentry on the lru list,
1641	 * kill it immediately.
1642	 */
1643	return proc_inode_is_dead(dentry->d_inode);
1644}
1645
1646const struct dentry_operations pid_dentry_operations =
1647{
1648	.d_revalidate	= pid_revalidate,
1649	.d_delete	= pid_delete_dentry,
1650};
1651
1652/* Lookups */
1653
1654/*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache.  This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1667	const char *name, int len,
1668	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669{
1670	struct dentry *child, *dir = file->f_path.dentry;
1671	struct qstr qname = QSTR_INIT(name, len);
1672	struct inode *inode;
1673	unsigned type;
1674	ino_t ino;
1675
1676	child = d_hash_and_lookup(dir, &qname);
1677	if (!child) {
1678		child = d_alloc(dir, &qname);
1679		if (!child)
1680			goto end_instantiate;
1681		if (instantiate(dir->d_inode, child, task, ptr) < 0) {
1682			dput(child);
1683			goto end_instantiate;
 
 
 
 
 
 
 
1684		}
1685	}
1686	inode = child->d_inode;
1687	ino = inode->i_ino;
1688	type = inode->i_mode >> 12;
1689	dput(child);
1690	return dir_emit(ctx, name, len, ino, type);
1691
1692end_instantiate:
1693	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
1694}
1695
1696#ifdef CONFIG_CHECKPOINT_RESTORE
1697
1698/*
1699 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1700 * which represent vma start and end addresses.
1701 */
1702static int dname_to_vma_addr(struct dentry *dentry,
1703			     unsigned long *start, unsigned long *end)
1704{
1705	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1706		return -EINVAL;
1707
1708	return 0;
1709}
1710
1711static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1712{
1713	unsigned long vm_start, vm_end;
1714	bool exact_vma_exists = false;
1715	struct mm_struct *mm = NULL;
1716	struct task_struct *task;
1717	const struct cred *cred;
1718	struct inode *inode;
1719	int status = 0;
1720
1721	if (flags & LOOKUP_RCU)
1722		return -ECHILD;
1723
1724	if (!capable(CAP_SYS_ADMIN)) {
1725		status = -EPERM;
1726		goto out_notask;
1727	}
1728
1729	inode = dentry->d_inode;
1730	task = get_proc_task(inode);
1731	if (!task)
1732		goto out_notask;
1733
1734	mm = mm_access(task, PTRACE_MODE_READ);
1735	if (IS_ERR_OR_NULL(mm))
1736		goto out;
1737
1738	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1739		down_read(&mm->mmap_sem);
1740		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1741		up_read(&mm->mmap_sem);
1742	}
1743
1744	mmput(mm);
1745
1746	if (exact_vma_exists) {
1747		if (task_dumpable(task)) {
1748			rcu_read_lock();
1749			cred = __task_cred(task);
1750			inode->i_uid = cred->euid;
1751			inode->i_gid = cred->egid;
1752			rcu_read_unlock();
1753		} else {
1754			inode->i_uid = GLOBAL_ROOT_UID;
1755			inode->i_gid = GLOBAL_ROOT_GID;
1756		}
1757		security_task_to_inode(task, inode);
1758		status = 1;
1759	}
1760
1761out:
1762	put_task_struct(task);
1763
1764out_notask:
1765	if (status <= 0)
1766		d_drop(dentry);
1767
1768	return status;
1769}
1770
1771static const struct dentry_operations tid_map_files_dentry_operations = {
1772	.d_revalidate	= map_files_d_revalidate,
1773	.d_delete	= pid_delete_dentry,
1774};
1775
1776static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
1777{
1778	unsigned long vm_start, vm_end;
1779	struct vm_area_struct *vma;
1780	struct task_struct *task;
1781	struct mm_struct *mm;
1782	int rc;
1783
1784	rc = -ENOENT;
1785	task = get_proc_task(dentry->d_inode);
1786	if (!task)
1787		goto out;
1788
1789	mm = get_task_mm(task);
1790	put_task_struct(task);
1791	if (!mm)
1792		goto out;
1793
1794	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1795	if (rc)
1796		goto out_mmput;
1797
1798	rc = -ENOENT;
1799	down_read(&mm->mmap_sem);
1800	vma = find_exact_vma(mm, vm_start, vm_end);
1801	if (vma && vma->vm_file) {
1802		*path = vma->vm_file->f_path;
1803		path_get(path);
1804		rc = 0;
1805	}
1806	up_read(&mm->mmap_sem);
1807
1808out_mmput:
1809	mmput(mm);
1810out:
1811	return rc;
1812}
1813
1814struct map_files_info {
1815	fmode_t		mode;
1816	unsigned long	len;
1817	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1818};
1819
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1820static int
1821proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
1822			   struct task_struct *task, const void *ptr)
1823{
1824	fmode_t mode = (fmode_t)(unsigned long)ptr;
1825	struct proc_inode *ei;
1826	struct inode *inode;
1827
1828	inode = proc_pid_make_inode(dir->i_sb, task);
 
 
1829	if (!inode)
1830		return -ENOENT;
1831
1832	ei = PROC_I(inode);
1833	ei->op.proc_get_link = proc_map_files_get_link;
1834
1835	inode->i_op = &proc_pid_link_inode_operations;
1836	inode->i_size = 64;
1837	inode->i_mode = S_IFLNK;
1838
1839	if (mode & FMODE_READ)
1840		inode->i_mode |= S_IRUSR;
1841	if (mode & FMODE_WRITE)
1842		inode->i_mode |= S_IWUSR;
1843
1844	d_set_d_op(dentry, &tid_map_files_dentry_operations);
1845	d_add(dentry, inode);
1846
1847	return 0;
1848}
1849
1850static struct dentry *proc_map_files_lookup(struct inode *dir,
1851		struct dentry *dentry, unsigned int flags)
1852{
1853	unsigned long vm_start, vm_end;
1854	struct vm_area_struct *vma;
1855	struct task_struct *task;
1856	int result;
1857	struct mm_struct *mm;
1858
1859	result = -EPERM;
1860	if (!capable(CAP_SYS_ADMIN))
1861		goto out;
1862
1863	result = -ENOENT;
1864	task = get_proc_task(dir);
1865	if (!task)
1866		goto out;
1867
1868	result = -EACCES;
1869	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1870		goto out_put_task;
1871
1872	result = -ENOENT;
1873	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
1874		goto out_put_task;
1875
1876	mm = get_task_mm(task);
1877	if (!mm)
1878		goto out_put_task;
1879
1880	down_read(&mm->mmap_sem);
1881	vma = find_exact_vma(mm, vm_start, vm_end);
1882	if (!vma)
1883		goto out_no_vma;
1884
1885	if (vma->vm_file)
1886		result = proc_map_files_instantiate(dir, dentry, task,
1887				(void *)(unsigned long)vma->vm_file->f_mode);
1888
1889out_no_vma:
1890	up_read(&mm->mmap_sem);
1891	mmput(mm);
1892out_put_task:
1893	put_task_struct(task);
1894out:
1895	return ERR_PTR(result);
1896}
1897
1898static const struct inode_operations proc_map_files_inode_operations = {
1899	.lookup		= proc_map_files_lookup,
1900	.permission	= proc_fd_permission,
1901	.setattr	= proc_setattr,
1902};
1903
1904static int
1905proc_map_files_readdir(struct file *file, struct dir_context *ctx)
1906{
1907	struct vm_area_struct *vma;
1908	struct task_struct *task;
1909	struct mm_struct *mm;
1910	unsigned long nr_files, pos, i;
1911	struct flex_array *fa = NULL;
1912	struct map_files_info info;
1913	struct map_files_info *p;
1914	int ret;
1915
1916	ret = -EPERM;
1917	if (!capable(CAP_SYS_ADMIN))
1918		goto out;
1919
1920	ret = -ENOENT;
1921	task = get_proc_task(file_inode(file));
1922	if (!task)
1923		goto out;
1924
1925	ret = -EACCES;
1926	if (!ptrace_may_access(task, PTRACE_MODE_READ))
1927		goto out_put_task;
1928
1929	ret = 0;
1930	if (!dir_emit_dots(file, ctx))
1931		goto out_put_task;
1932
1933	mm = get_task_mm(task);
1934	if (!mm)
1935		goto out_put_task;
1936	down_read(&mm->mmap_sem);
1937
1938	nr_files = 0;
1939
1940	/*
1941	 * We need two passes here:
1942	 *
1943	 *  1) Collect vmas of mapped files with mmap_sem taken
1944	 *  2) Release mmap_sem and instantiate entries
1945	 *
1946	 * otherwise we get lockdep complained, since filldir()
1947	 * routine might require mmap_sem taken in might_fault().
1948	 */
1949
1950	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
1951		if (vma->vm_file && ++pos > ctx->pos)
1952			nr_files++;
1953	}
1954
1955	if (nr_files) {
1956		fa = flex_array_alloc(sizeof(info), nr_files,
1957					GFP_KERNEL);
1958		if (!fa || flex_array_prealloc(fa, 0, nr_files,
1959						GFP_KERNEL)) {
1960			ret = -ENOMEM;
1961			if (fa)
1962				flex_array_free(fa);
1963			up_read(&mm->mmap_sem);
1964			mmput(mm);
1965			goto out_put_task;
1966		}
1967		for (i = 0, vma = mm->mmap, pos = 2; vma;
1968				vma = vma->vm_next) {
1969			if (!vma->vm_file)
1970				continue;
1971			if (++pos <= ctx->pos)
1972				continue;
1973
1974			info.mode = vma->vm_file->f_mode;
1975			info.len = snprintf(info.name,
1976					sizeof(info.name), "%lx-%lx",
1977					vma->vm_start, vma->vm_end);
1978			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
1979				BUG();
1980		}
1981	}
1982	up_read(&mm->mmap_sem);
1983
1984	for (i = 0; i < nr_files; i++) {
1985		p = flex_array_get(fa, i);
1986		if (!proc_fill_cache(file, ctx,
1987				      p->name, p->len,
1988				      proc_map_files_instantiate,
1989				      task,
1990				      (void *)(unsigned long)p->mode))
1991			break;
1992		ctx->pos++;
1993	}
1994	if (fa)
1995		flex_array_free(fa);
1996	mmput(mm);
1997
1998out_put_task:
1999	put_task_struct(task);
2000out:
2001	return ret;
2002}
2003
2004static const struct file_operations proc_map_files_operations = {
2005	.read		= generic_read_dir,
2006	.iterate	= proc_map_files_readdir,
2007	.llseek		= default_llseek,
2008};
2009
 
2010struct timers_private {
2011	struct pid *pid;
2012	struct task_struct *task;
2013	struct sighand_struct *sighand;
2014	struct pid_namespace *ns;
2015	unsigned long flags;
2016};
2017
2018static void *timers_start(struct seq_file *m, loff_t *pos)
2019{
2020	struct timers_private *tp = m->private;
2021
2022	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2023	if (!tp->task)
2024		return ERR_PTR(-ESRCH);
2025
2026	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2027	if (!tp->sighand)
2028		return ERR_PTR(-ESRCH);
2029
2030	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2031}
2032
2033static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2034{
2035	struct timers_private *tp = m->private;
2036	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2037}
2038
2039static void timers_stop(struct seq_file *m, void *v)
2040{
2041	struct timers_private *tp = m->private;
2042
2043	if (tp->sighand) {
2044		unlock_task_sighand(tp->task, &tp->flags);
2045		tp->sighand = NULL;
2046	}
2047
2048	if (tp->task) {
2049		put_task_struct(tp->task);
2050		tp->task = NULL;
2051	}
2052}
2053
2054static int show_timer(struct seq_file *m, void *v)
2055{
2056	struct k_itimer *timer;
2057	struct timers_private *tp = m->private;
2058	int notify;
2059	static char *nstr[] = {
2060		[SIGEV_SIGNAL] = "signal",
2061		[SIGEV_NONE] = "none",
2062		[SIGEV_THREAD] = "thread",
2063	};
2064
2065	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2066	notify = timer->it_sigev_notify;
2067
2068	seq_printf(m, "ID: %d\n", timer->it_id);
2069	seq_printf(m, "signal: %d/%p\n", timer->sigq->info.si_signo,
2070			timer->sigq->info.si_value.sival_ptr);
 
2071	seq_printf(m, "notify: %s/%s.%d\n",
2072		nstr[notify & ~SIGEV_THREAD_ID],
2073		(notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2074		pid_nr_ns(timer->it_pid, tp->ns));
2075	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2076
2077	return 0;
2078}
2079
2080static const struct seq_operations proc_timers_seq_ops = {
2081	.start	= timers_start,
2082	.next	= timers_next,
2083	.stop	= timers_stop,
2084	.show	= show_timer,
2085};
2086
2087static int proc_timers_open(struct inode *inode, struct file *file)
2088{
2089	struct timers_private *tp;
2090
2091	tp = __seq_open_private(file, &proc_timers_seq_ops,
2092			sizeof(struct timers_private));
2093	if (!tp)
2094		return -ENOMEM;
2095
2096	tp->pid = proc_pid(inode);
2097	tp->ns = inode->i_sb->s_fs_info;
2098	return 0;
2099}
2100
2101static const struct file_operations proc_timers_operations = {
2102	.open		= proc_timers_open,
2103	.read		= seq_read,
2104	.llseek		= seq_lseek,
2105	.release	= seq_release_private,
2106};
2107#endif /* CONFIG_CHECKPOINT_RESTORE */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2108
2109static int proc_pident_instantiate(struct inode *dir,
2110	struct dentry *dentry, struct task_struct *task, const void *ptr)
2111{
2112	const struct pid_entry *p = ptr;
2113	struct inode *inode;
2114	struct proc_inode *ei;
2115
2116	inode = proc_pid_make_inode(dir->i_sb, task);
2117	if (!inode)
2118		goto out;
2119
2120	ei = PROC_I(inode);
2121	inode->i_mode = p->mode;
2122	if (S_ISDIR(inode->i_mode))
2123		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2124	if (p->iop)
2125		inode->i_op = p->iop;
2126	if (p->fop)
2127		inode->i_fop = p->fop;
2128	ei->op = p->op;
2129	d_set_d_op(dentry, &pid_dentry_operations);
2130	d_add(dentry, inode);
2131	/* Close the race of the process dying before we return the dentry */
2132	if (pid_revalidate(dentry, 0))
2133		return 0;
2134out:
2135	return -ENOENT;
2136}
2137
2138static struct dentry *proc_pident_lookup(struct inode *dir, 
2139					 struct dentry *dentry,
2140					 const struct pid_entry *ents,
2141					 unsigned int nents)
2142{
2143	int error;
2144	struct task_struct *task = get_proc_task(dir);
2145	const struct pid_entry *p, *last;
2146
2147	error = -ENOENT;
2148
2149	if (!task)
2150		goto out_no_task;
2151
2152	/*
2153	 * Yes, it does not scale. And it should not. Don't add
2154	 * new entries into /proc/<tgid>/ without very good reasons.
2155	 */
2156	last = &ents[nents - 1];
2157	for (p = ents; p <= last; p++) {
2158		if (p->len != dentry->d_name.len)
2159			continue;
2160		if (!memcmp(dentry->d_name.name, p->name, p->len))
2161			break;
2162	}
2163	if (p > last)
2164		goto out;
2165
2166	error = proc_pident_instantiate(dir, dentry, task, p);
2167out:
2168	put_task_struct(task);
2169out_no_task:
2170	return ERR_PTR(error);
2171}
2172
2173static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
2174		const struct pid_entry *ents, unsigned int nents)
2175{
2176	struct task_struct *task = get_proc_task(file_inode(file));
2177	const struct pid_entry *p;
2178
2179	if (!task)
2180		return -ENOENT;
2181
2182	if (!dir_emit_dots(file, ctx))
2183		goto out;
2184
2185	if (ctx->pos >= nents + 2)
2186		goto out;
2187
2188	for (p = ents + (ctx->pos - 2); p <= ents + nents - 1; p++) {
2189		if (!proc_fill_cache(file, ctx, p->name, p->len,
2190				proc_pident_instantiate, task, p))
2191			break;
2192		ctx->pos++;
2193	}
2194out:
2195	put_task_struct(task);
2196	return 0;
2197}
2198
2199#ifdef CONFIG_SECURITY
2200static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2201				  size_t count, loff_t *ppos)
2202{
2203	struct inode * inode = file_inode(file);
2204	char *p = NULL;
2205	ssize_t length;
2206	struct task_struct *task = get_proc_task(inode);
2207
2208	if (!task)
2209		return -ESRCH;
2210
2211	length = security_getprocattr(task,
2212				      (char*)file->f_path.dentry->d_name.name,
2213				      &p);
2214	put_task_struct(task);
2215	if (length > 0)
2216		length = simple_read_from_buffer(buf, count, ppos, p, length);
2217	kfree(p);
2218	return length;
2219}
2220
2221static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2222				   size_t count, loff_t *ppos)
2223{
2224	struct inode * inode = file_inode(file);
2225	char *page;
2226	ssize_t length;
2227	struct task_struct *task = get_proc_task(inode);
2228
2229	length = -ESRCH;
2230	if (!task)
2231		goto out_no_task;
2232	if (count > PAGE_SIZE)
2233		count = PAGE_SIZE;
2234
2235	/* No partial writes. */
2236	length = -EINVAL;
2237	if (*ppos != 0)
2238		goto out;
2239
2240	length = -ENOMEM;
2241	page = (char*)__get_free_page(GFP_TEMPORARY);
2242	if (!page)
2243		goto out;
2244
2245	length = -EFAULT;
2246	if (copy_from_user(page, buf, count))
2247		goto out_free;
2248
2249	/* Guard against adverse ptrace interaction */
2250	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2251	if (length < 0)
2252		goto out_free;
2253
2254	length = security_setprocattr(task,
2255				      (char*)file->f_path.dentry->d_name.name,
2256				      (void*)page, count);
2257	mutex_unlock(&task->signal->cred_guard_mutex);
2258out_free:
2259	free_page((unsigned long) page);
2260out:
2261	put_task_struct(task);
2262out_no_task:
2263	return length;
2264}
2265
2266static const struct file_operations proc_pid_attr_operations = {
2267	.read		= proc_pid_attr_read,
2268	.write		= proc_pid_attr_write,
2269	.llseek		= generic_file_llseek,
2270};
2271
2272static const struct pid_entry attr_dir_stuff[] = {
2273	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2274	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2275	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2276	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2277	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2278	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2279};
2280
2281static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
2282{
2283	return proc_pident_readdir(file, ctx, 
2284				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2285}
2286
2287static const struct file_operations proc_attr_dir_operations = {
2288	.read		= generic_read_dir,
2289	.iterate	= proc_attr_dir_readdir,
2290	.llseek		= default_llseek,
2291};
2292
2293static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2294				struct dentry *dentry, unsigned int flags)
2295{
2296	return proc_pident_lookup(dir, dentry,
2297				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2298}
2299
2300static const struct inode_operations proc_attr_dir_inode_operations = {
2301	.lookup		= proc_attr_dir_lookup,
2302	.getattr	= pid_getattr,
2303	.setattr	= proc_setattr,
2304};
2305
2306#endif
2307
2308#ifdef CONFIG_ELF_CORE
2309static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2310					 size_t count, loff_t *ppos)
2311{
2312	struct task_struct *task = get_proc_task(file_inode(file));
2313	struct mm_struct *mm;
2314	char buffer[PROC_NUMBUF];
2315	size_t len;
2316	int ret;
2317
2318	if (!task)
2319		return -ESRCH;
2320
2321	ret = 0;
2322	mm = get_task_mm(task);
2323	if (mm) {
2324		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2325			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2326				MMF_DUMP_FILTER_SHIFT));
2327		mmput(mm);
2328		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2329	}
2330
2331	put_task_struct(task);
2332
2333	return ret;
2334}
2335
2336static ssize_t proc_coredump_filter_write(struct file *file,
2337					  const char __user *buf,
2338					  size_t count,
2339					  loff_t *ppos)
2340{
2341	struct task_struct *task;
2342	struct mm_struct *mm;
2343	char buffer[PROC_NUMBUF], *end;
2344	unsigned int val;
2345	int ret;
2346	int i;
2347	unsigned long mask;
2348
2349	ret = -EFAULT;
2350	memset(buffer, 0, sizeof(buffer));
2351	if (count > sizeof(buffer) - 1)
2352		count = sizeof(buffer) - 1;
2353	if (copy_from_user(buffer, buf, count))
2354		goto out_no_task;
2355
2356	ret = -EINVAL;
2357	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2358	if (*end == '\n')
2359		end++;
2360	if (end - buffer == 0)
2361		goto out_no_task;
2362
2363	ret = -ESRCH;
2364	task = get_proc_task(file_inode(file));
2365	if (!task)
2366		goto out_no_task;
2367
2368	ret = end - buffer;
2369	mm = get_task_mm(task);
2370	if (!mm)
2371		goto out_no_mm;
 
2372
2373	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2374		if (val & mask)
2375			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2376		else
2377			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2378	}
2379
2380	mmput(mm);
2381 out_no_mm:
2382	put_task_struct(task);
2383 out_no_task:
2384	return ret;
 
 
2385}
2386
2387static const struct file_operations proc_coredump_filter_operations = {
2388	.read		= proc_coredump_filter_read,
2389	.write		= proc_coredump_filter_write,
2390	.llseek		= generic_file_llseek,
2391};
2392#endif
2393
2394#ifdef CONFIG_TASK_IO_ACCOUNTING
2395static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2396{
2397	struct task_io_accounting acct = task->ioac;
2398	unsigned long flags;
2399	int result;
2400
2401	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2402	if (result)
2403		return result;
2404
2405	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2406		result = -EACCES;
2407		goto out_unlock;
2408	}
2409
2410	if (whole && lock_task_sighand(task, &flags)) {
2411		struct task_struct *t = task;
2412
2413		task_io_accounting_add(&acct, &task->signal->ioac);
2414		while_each_thread(task, t)
2415			task_io_accounting_add(&acct, &t->ioac);
2416
2417		unlock_task_sighand(task, &flags);
2418	}
2419	result = sprintf(buffer,
2420			"rchar: %llu\n"
2421			"wchar: %llu\n"
2422			"syscr: %llu\n"
2423			"syscw: %llu\n"
2424			"read_bytes: %llu\n"
2425			"write_bytes: %llu\n"
2426			"cancelled_write_bytes: %llu\n",
2427			(unsigned long long)acct.rchar,
2428			(unsigned long long)acct.wchar,
2429			(unsigned long long)acct.syscr,
2430			(unsigned long long)acct.syscw,
2431			(unsigned long long)acct.read_bytes,
2432			(unsigned long long)acct.write_bytes,
2433			(unsigned long long)acct.cancelled_write_bytes);
 
 
2434out_unlock:
2435	mutex_unlock(&task->signal->cred_guard_mutex);
2436	return result;
2437}
2438
2439static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
 
2440{
2441	return do_io_accounting(task, buffer, 0);
2442}
2443
2444static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
 
2445{
2446	return do_io_accounting(task, buffer, 1);
2447}
2448#endif /* CONFIG_TASK_IO_ACCOUNTING */
2449
2450#ifdef CONFIG_USER_NS
2451static int proc_id_map_open(struct inode *inode, struct file *file,
2452	struct seq_operations *seq_ops)
2453{
2454	struct user_namespace *ns = NULL;
2455	struct task_struct *task;
2456	struct seq_file *seq;
2457	int ret = -EINVAL;
2458
2459	task = get_proc_task(inode);
2460	if (task) {
2461		rcu_read_lock();
2462		ns = get_user_ns(task_cred_xxx(task, user_ns));
2463		rcu_read_unlock();
2464		put_task_struct(task);
2465	}
2466	if (!ns)
2467		goto err;
2468
2469	ret = seq_open(file, seq_ops);
2470	if (ret)
2471		goto err_put_ns;
2472
2473	seq = file->private_data;
2474	seq->private = ns;
2475
2476	return 0;
2477err_put_ns:
2478	put_user_ns(ns);
2479err:
2480	return ret;
2481}
2482
2483static int proc_id_map_release(struct inode *inode, struct file *file)
2484{
2485	struct seq_file *seq = file->private_data;
2486	struct user_namespace *ns = seq->private;
2487	put_user_ns(ns);
2488	return seq_release(inode, file);
2489}
2490
2491static int proc_uid_map_open(struct inode *inode, struct file *file)
2492{
2493	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2494}
2495
2496static int proc_gid_map_open(struct inode *inode, struct file *file)
2497{
2498	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2499}
2500
2501static int proc_projid_map_open(struct inode *inode, struct file *file)
2502{
2503	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2504}
2505
2506static const struct file_operations proc_uid_map_operations = {
2507	.open		= proc_uid_map_open,
2508	.write		= proc_uid_map_write,
2509	.read		= seq_read,
2510	.llseek		= seq_lseek,
2511	.release	= proc_id_map_release,
2512};
2513
2514static const struct file_operations proc_gid_map_operations = {
2515	.open		= proc_gid_map_open,
2516	.write		= proc_gid_map_write,
2517	.read		= seq_read,
2518	.llseek		= seq_lseek,
2519	.release	= proc_id_map_release,
2520};
2521
2522static const struct file_operations proc_projid_map_operations = {
2523	.open		= proc_projid_map_open,
2524	.write		= proc_projid_map_write,
2525	.read		= seq_read,
2526	.llseek		= seq_lseek,
2527	.release	= proc_id_map_release,
2528};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2529#endif /* CONFIG_USER_NS */
2530
2531static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2532				struct pid *pid, struct task_struct *task)
2533{
2534	int err = lock_trace(task);
2535	if (!err) {
2536		seq_printf(m, "%08x\n", task->personality);
2537		unlock_trace(task);
2538	}
2539	return err;
2540}
2541
2542/*
2543 * Thread groups
2544 */
2545static const struct file_operations proc_task_operations;
2546static const struct inode_operations proc_task_inode_operations;
2547
2548static const struct pid_entry tgid_base_stuff[] = {
2549	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2550	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2551#ifdef CONFIG_CHECKPOINT_RESTORE
2552	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
2553#endif
2554	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2555	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2556#ifdef CONFIG_NET
2557	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2558#endif
2559	REG("environ",    S_IRUSR, proc_environ_operations),
2560	INF("auxv",       S_IRUSR, proc_pid_auxv),
2561	ONE("status",     S_IRUGO, proc_pid_status),
2562	ONE("personality", S_IRUSR, proc_pid_personality),
2563	INF("limits",	  S_IRUGO, proc_pid_limits),
2564#ifdef CONFIG_SCHED_DEBUG
2565	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2566#endif
2567#ifdef CONFIG_SCHED_AUTOGROUP
2568	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2569#endif
2570	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2571#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2572	INF("syscall",    S_IRUSR, proc_pid_syscall),
2573#endif
2574	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
2575	ONE("stat",       S_IRUGO, proc_tgid_stat),
2576	ONE("statm",      S_IRUGO, proc_pid_statm),
2577	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2578#ifdef CONFIG_NUMA
2579	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2580#endif
2581	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2582	LNK("cwd",        proc_cwd_link),
2583	LNK("root",       proc_root_link),
2584	LNK("exe",        proc_exe_link),
2585	REG("mounts",     S_IRUGO, proc_mounts_operations),
2586	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2587	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2588#ifdef CONFIG_PROC_PAGE_MONITOR
2589	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2590	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2591	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2592#endif
2593#ifdef CONFIG_SECURITY
2594	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2595#endif
2596#ifdef CONFIG_KALLSYMS
2597	INF("wchan",      S_IRUGO, proc_pid_wchan),
2598#endif
2599#ifdef CONFIG_STACKTRACE
2600	ONE("stack",      S_IRUSR, proc_pid_stack),
2601#endif
2602#ifdef CONFIG_SCHEDSTATS
2603	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
2604#endif
2605#ifdef CONFIG_LATENCYTOP
2606	REG("latency",  S_IRUGO, proc_lstats_operations),
2607#endif
2608#ifdef CONFIG_PROC_PID_CPUSET
2609	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
2610#endif
2611#ifdef CONFIG_CGROUPS
2612	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2613#endif
2614	INF("oom_score",  S_IRUGO, proc_oom_score),
2615	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2616	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2617#ifdef CONFIG_AUDITSYSCALL
2618	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2619	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2620#endif
2621#ifdef CONFIG_FAULT_INJECTION
2622	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2623#endif
2624#ifdef CONFIG_ELF_CORE
2625	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2626#endif
2627#ifdef CONFIG_TASK_IO_ACCOUNTING
2628	INF("io",	S_IRUSR, proc_tgid_io_accounting),
2629#endif
2630#ifdef CONFIG_HARDWALL
2631	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2632#endif
2633#ifdef CONFIG_USER_NS
2634	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2635	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2636	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
 
2637#endif
2638#ifdef CONFIG_CHECKPOINT_RESTORE
2639	REG("timers",	  S_IRUGO, proc_timers_operations),
2640#endif
 
2641};
2642
2643static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
2644{
2645	return proc_pident_readdir(file, ctx,
2646				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2647}
2648
2649static const struct file_operations proc_tgid_base_operations = {
2650	.read		= generic_read_dir,
2651	.iterate	= proc_tgid_base_readdir,
2652	.llseek		= default_llseek,
2653};
2654
2655static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2656{
2657	return proc_pident_lookup(dir, dentry,
2658				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2659}
2660
2661static const struct inode_operations proc_tgid_base_inode_operations = {
2662	.lookup		= proc_tgid_base_lookup,
2663	.getattr	= pid_getattr,
2664	.setattr	= proc_setattr,
2665	.permission	= proc_pid_permission,
2666};
2667
2668static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2669{
2670	struct dentry *dentry, *leader, *dir;
2671	char buf[PROC_NUMBUF];
2672	struct qstr name;
2673
2674	name.name = buf;
2675	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2676	/* no ->d_hash() rejects on procfs */
2677	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2678	if (dentry) {
2679		shrink_dcache_parent(dentry);
2680		d_drop(dentry);
2681		dput(dentry);
2682	}
2683
 
 
 
2684	name.name = buf;
2685	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2686	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2687	if (!leader)
2688		goto out;
2689
2690	name.name = "task";
2691	name.len = strlen(name.name);
2692	dir = d_hash_and_lookup(leader, &name);
2693	if (!dir)
2694		goto out_put_leader;
2695
2696	name.name = buf;
2697	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2698	dentry = d_hash_and_lookup(dir, &name);
2699	if (dentry) {
2700		shrink_dcache_parent(dentry);
2701		d_drop(dentry);
2702		dput(dentry);
2703	}
2704
2705	dput(dir);
2706out_put_leader:
2707	dput(leader);
2708out:
2709	return;
2710}
2711
2712/**
2713 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
2714 * @task: task that should be flushed.
2715 *
2716 * When flushing dentries from proc, one needs to flush them from global
2717 * proc (proc_mnt) and from all the namespaces' procs this task was seen
2718 * in. This call is supposed to do all of this job.
2719 *
2720 * Looks in the dcache for
2721 * /proc/@pid
2722 * /proc/@tgid/task/@pid
2723 * if either directory is present flushes it and all of it'ts children
2724 * from the dcache.
2725 *
2726 * It is safe and reasonable to cache /proc entries for a task until
2727 * that task exits.  After that they just clog up the dcache with
2728 * useless entries, possibly causing useful dcache entries to be
2729 * flushed instead.  This routine is proved to flush those useless
2730 * dcache entries at process exit time.
2731 *
2732 * NOTE: This routine is just an optimization so it does not guarantee
2733 *       that no dcache entries will exist at process exit time it
2734 *       just makes it very unlikely that any will persist.
2735 */
2736
2737void proc_flush_task(struct task_struct *task)
2738{
2739	int i;
2740	struct pid *pid, *tgid;
2741	struct upid *upid;
2742
2743	pid = task_pid(task);
2744	tgid = task_tgid(task);
2745
2746	for (i = 0; i <= pid->level; i++) {
2747		upid = &pid->numbers[i];
2748		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
2749					tgid->numbers[i].nr);
2750	}
2751}
2752
2753static int proc_pid_instantiate(struct inode *dir,
2754				   struct dentry * dentry,
2755				   struct task_struct *task, const void *ptr)
2756{
2757	struct inode *inode;
2758
2759	inode = proc_pid_make_inode(dir->i_sb, task);
2760	if (!inode)
2761		goto out;
2762
2763	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
2764	inode->i_op = &proc_tgid_base_inode_operations;
2765	inode->i_fop = &proc_tgid_base_operations;
2766	inode->i_flags|=S_IMMUTABLE;
2767
2768	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
2769						  ARRAY_SIZE(tgid_base_stuff)));
2770
2771	d_set_d_op(dentry, &pid_dentry_operations);
2772
2773	d_add(dentry, inode);
2774	/* Close the race of the process dying before we return the dentry */
2775	if (pid_revalidate(dentry, 0))
2776		return 0;
2777out:
2778	return -ENOENT;
2779}
2780
2781struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
2782{
2783	int result = 0;
2784	struct task_struct *task;
2785	unsigned tgid;
2786	struct pid_namespace *ns;
2787
2788	tgid = name_to_int(dentry);
2789	if (tgid == ~0U)
2790		goto out;
2791
2792	ns = dentry->d_sb->s_fs_info;
2793	rcu_read_lock();
2794	task = find_task_by_pid_ns(tgid, ns);
2795	if (task)
2796		get_task_struct(task);
2797	rcu_read_unlock();
2798	if (!task)
2799		goto out;
2800
2801	result = proc_pid_instantiate(dir, dentry, task, NULL);
2802	put_task_struct(task);
2803out:
2804	return ERR_PTR(result);
2805}
2806
2807/*
2808 * Find the first task with tgid >= tgid
2809 *
2810 */
2811struct tgid_iter {
2812	unsigned int tgid;
2813	struct task_struct *task;
2814};
2815static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
2816{
2817	struct pid *pid;
2818
2819	if (iter.task)
2820		put_task_struct(iter.task);
2821	rcu_read_lock();
2822retry:
2823	iter.task = NULL;
2824	pid = find_ge_pid(iter.tgid, ns);
2825	if (pid) {
2826		iter.tgid = pid_nr_ns(pid, ns);
2827		iter.task = pid_task(pid, PIDTYPE_PID);
2828		/* What we to know is if the pid we have find is the
2829		 * pid of a thread_group_leader.  Testing for task
2830		 * being a thread_group_leader is the obvious thing
2831		 * todo but there is a window when it fails, due to
2832		 * the pid transfer logic in de_thread.
2833		 *
2834		 * So we perform the straight forward test of seeing
2835		 * if the pid we have found is the pid of a thread
2836		 * group leader, and don't worry if the task we have
2837		 * found doesn't happen to be a thread group leader.
2838		 * As we don't care in the case of readdir.
2839		 */
2840		if (!iter.task || !has_group_leader_pid(iter.task)) {
2841			iter.tgid += 1;
2842			goto retry;
2843		}
2844		get_task_struct(iter.task);
2845	}
2846	rcu_read_unlock();
2847	return iter;
2848}
2849
2850#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 1)
2851
2852/* for the /proc/ directory itself, after non-process stuff has been done */
2853int proc_pid_readdir(struct file *file, struct dir_context *ctx)
2854{
2855	struct tgid_iter iter;
2856	struct pid_namespace *ns = file->f_dentry->d_sb->s_fs_info;
2857	loff_t pos = ctx->pos;
2858
2859	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
2860		return 0;
2861
 
 
 
 
 
 
2862	if (pos == TGID_OFFSET - 1) {
2863		struct inode *inode = ns->proc_self->d_inode;
2864		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
2865			return 0;
2866		iter.tgid = 0;
2867	} else {
2868		iter.tgid = pos - TGID_OFFSET;
2869	}
 
2870	iter.task = NULL;
2871	for (iter = next_tgid(ns, iter);
2872	     iter.task;
2873	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
2874		char name[PROC_NUMBUF];
2875		int len;
 
 
2876		if (!has_pid_permissions(ns, iter.task, 2))
2877			continue;
2878
2879		len = snprintf(name, sizeof(name), "%d", iter.tgid);
2880		ctx->pos = iter.tgid + TGID_OFFSET;
2881		if (!proc_fill_cache(file, ctx, name, len,
2882				     proc_pid_instantiate, iter.task, NULL)) {
2883			put_task_struct(iter.task);
2884			return 0;
2885		}
2886	}
2887	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
2888	return 0;
2889}
2890
2891/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2892 * Tasks
2893 */
2894static const struct pid_entry tid_base_stuff[] = {
2895	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
2896	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2897	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
2898	REG("environ",   S_IRUSR, proc_environ_operations),
2899	INF("auxv",      S_IRUSR, proc_pid_auxv),
2900	ONE("status",    S_IRUGO, proc_pid_status),
2901	ONE("personality", S_IRUSR, proc_pid_personality),
2902	INF("limits",	 S_IRUGO, proc_pid_limits),
2903#ifdef CONFIG_SCHED_DEBUG
2904	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2905#endif
2906	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
2907#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2908	INF("syscall",   S_IRUSR, proc_pid_syscall),
2909#endif
2910	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
2911	ONE("stat",      S_IRUGO, proc_tid_stat),
2912	ONE("statm",     S_IRUGO, proc_pid_statm),
2913	REG("maps",      S_IRUGO, proc_tid_maps_operations),
2914#ifdef CONFIG_CHECKPOINT_RESTORE
2915	REG("children",  S_IRUGO, proc_tid_children_operations),
2916#endif
2917#ifdef CONFIG_NUMA
2918	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
2919#endif
2920	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
2921	LNK("cwd",       proc_cwd_link),
2922	LNK("root",      proc_root_link),
2923	LNK("exe",       proc_exe_link),
2924	REG("mounts",    S_IRUGO, proc_mounts_operations),
2925	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2926#ifdef CONFIG_PROC_PAGE_MONITOR
2927	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2928	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
2929	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2930#endif
2931#ifdef CONFIG_SECURITY
2932	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2933#endif
2934#ifdef CONFIG_KALLSYMS
2935	INF("wchan",     S_IRUGO, proc_pid_wchan),
2936#endif
2937#ifdef CONFIG_STACKTRACE
2938	ONE("stack",      S_IRUSR, proc_pid_stack),
2939#endif
2940#ifdef CONFIG_SCHEDSTATS
2941	INF("schedstat", S_IRUGO, proc_pid_schedstat),
2942#endif
2943#ifdef CONFIG_LATENCYTOP
2944	REG("latency",  S_IRUGO, proc_lstats_operations),
2945#endif
2946#ifdef CONFIG_PROC_PID_CPUSET
2947	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
2948#endif
2949#ifdef CONFIG_CGROUPS
2950	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
2951#endif
2952	INF("oom_score", S_IRUGO, proc_oom_score),
2953	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2954	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2955#ifdef CONFIG_AUDITSYSCALL
2956	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
2957	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2958#endif
2959#ifdef CONFIG_FAULT_INJECTION
2960	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2961#endif
2962#ifdef CONFIG_TASK_IO_ACCOUNTING
2963	INF("io",	S_IRUSR, proc_tid_io_accounting),
2964#endif
2965#ifdef CONFIG_HARDWALL
2966	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
2967#endif
2968#ifdef CONFIG_USER_NS
2969	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2970	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2971	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
 
2972#endif
2973};
2974
2975static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
2976{
2977	return proc_pident_readdir(file, ctx,
2978				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2979}
2980
2981static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2982{
2983	return proc_pident_lookup(dir, dentry,
2984				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
2985}
2986
2987static const struct file_operations proc_tid_base_operations = {
2988	.read		= generic_read_dir,
2989	.iterate	= proc_tid_base_readdir,
2990	.llseek		= default_llseek,
2991};
2992
2993static const struct inode_operations proc_tid_base_inode_operations = {
2994	.lookup		= proc_tid_base_lookup,
2995	.getattr	= pid_getattr,
2996	.setattr	= proc_setattr,
2997};
2998
2999static int proc_task_instantiate(struct inode *dir,
3000	struct dentry *dentry, struct task_struct *task, const void *ptr)
3001{
3002	struct inode *inode;
3003	inode = proc_pid_make_inode(dir->i_sb, task);
3004
3005	if (!inode)
3006		goto out;
3007	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3008	inode->i_op = &proc_tid_base_inode_operations;
3009	inode->i_fop = &proc_tid_base_operations;
3010	inode->i_flags|=S_IMMUTABLE;
3011
3012	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3013						  ARRAY_SIZE(tid_base_stuff)));
3014
3015	d_set_d_op(dentry, &pid_dentry_operations);
3016
3017	d_add(dentry, inode);
3018	/* Close the race of the process dying before we return the dentry */
3019	if (pid_revalidate(dentry, 0))
3020		return 0;
3021out:
3022	return -ENOENT;
3023}
3024
3025static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3026{
3027	int result = -ENOENT;
3028	struct task_struct *task;
3029	struct task_struct *leader = get_proc_task(dir);
3030	unsigned tid;
3031	struct pid_namespace *ns;
3032
3033	if (!leader)
3034		goto out_no_task;
3035
3036	tid = name_to_int(dentry);
3037	if (tid == ~0U)
3038		goto out;
3039
3040	ns = dentry->d_sb->s_fs_info;
3041	rcu_read_lock();
3042	task = find_task_by_pid_ns(tid, ns);
3043	if (task)
3044		get_task_struct(task);
3045	rcu_read_unlock();
3046	if (!task)
3047		goto out;
3048	if (!same_thread_group(leader, task))
3049		goto out_drop_task;
3050
3051	result = proc_task_instantiate(dir, dentry, task, NULL);
3052out_drop_task:
3053	put_task_struct(task);
3054out:
3055	put_task_struct(leader);
3056out_no_task:
3057	return ERR_PTR(result);
3058}
3059
3060/*
3061 * Find the first tid of a thread group to return to user space.
3062 *
3063 * Usually this is just the thread group leader, but if the users
3064 * buffer was too small or there was a seek into the middle of the
3065 * directory we have more work todo.
3066 *
3067 * In the case of a short read we start with find_task_by_pid.
3068 *
3069 * In the case of a seek we start with the leader and walk nr
3070 * threads past it.
3071 */
3072static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3073					struct pid_namespace *ns)
3074{
3075	struct task_struct *pos, *task;
3076	unsigned long nr = f_pos;
3077
3078	if (nr != f_pos)	/* 32bit overflow? */
3079		return NULL;
3080
3081	rcu_read_lock();
3082	task = pid_task(pid, PIDTYPE_PID);
3083	if (!task)
3084		goto fail;
3085
3086	/* Attempt to start with the tid of a thread */
3087	if (tid && nr) {
3088		pos = find_task_by_pid_ns(tid, ns);
3089		if (pos && same_thread_group(pos, task))
3090			goto found;
3091	}
3092
3093	/* If nr exceeds the number of threads there is nothing todo */
3094	if (nr >= get_nr_threads(task))
3095		goto fail;
3096
3097	/* If we haven't found our starting place yet start
3098	 * with the leader and walk nr threads forward.
3099	 */
3100	pos = task = task->group_leader;
3101	do {
3102		if (!nr--)
3103			goto found;
3104	} while_each_thread(task, pos);
3105fail:
3106	pos = NULL;
3107	goto out;
3108found:
3109	get_task_struct(pos);
3110out:
3111	rcu_read_unlock();
3112	return pos;
3113}
3114
3115/*
3116 * Find the next thread in the thread list.
3117 * Return NULL if there is an error or no next thread.
3118 *
3119 * The reference to the input task_struct is released.
3120 */
3121static struct task_struct *next_tid(struct task_struct *start)
3122{
3123	struct task_struct *pos = NULL;
3124	rcu_read_lock();
3125	if (pid_alive(start)) {
3126		pos = next_thread(start);
3127		if (thread_group_leader(pos))
3128			pos = NULL;
3129		else
3130			get_task_struct(pos);
3131	}
3132	rcu_read_unlock();
3133	put_task_struct(start);
3134	return pos;
3135}
3136
3137/* for the /proc/TGID/task/ directories */
3138static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3139{
3140	struct inode *inode = file_inode(file);
3141	struct task_struct *task;
3142	struct pid_namespace *ns;
3143	int tid;
3144
3145	if (proc_inode_is_dead(inode))
3146		return -ENOENT;
3147
3148	if (!dir_emit_dots(file, ctx))
3149		return 0;
3150
3151	/* f_version caches the tgid value that the last readdir call couldn't
3152	 * return. lseek aka telldir automagically resets f_version to 0.
3153	 */
3154	ns = file->f_dentry->d_sb->s_fs_info;
3155	tid = (int)file->f_version;
3156	file->f_version = 0;
3157	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3158	     task;
3159	     task = next_tid(task), ctx->pos++) {
3160		char name[PROC_NUMBUF];
3161		int len;
3162		tid = task_pid_nr_ns(task, ns);
3163		len = snprintf(name, sizeof(name), "%d", tid);
3164		if (!proc_fill_cache(file, ctx, name, len,
3165				proc_task_instantiate, task, NULL)) {
3166			/* returning this tgid failed, save it as the first
3167			 * pid for the next readir call */
3168			file->f_version = (u64)tid;
3169			put_task_struct(task);
3170			break;
3171		}
3172	}
3173
3174	return 0;
3175}
3176
3177static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3178{
3179	struct inode *inode = dentry->d_inode;
3180	struct task_struct *p = get_proc_task(inode);
3181	generic_fillattr(inode, stat);
3182
3183	if (p) {
3184		stat->nlink += get_nr_threads(p);
3185		put_task_struct(p);
3186	}
3187
3188	return 0;
3189}
3190
3191static const struct inode_operations proc_task_inode_operations = {
3192	.lookup		= proc_task_lookup,
3193	.getattr	= proc_task_getattr,
3194	.setattr	= proc_setattr,
3195	.permission	= proc_pid_permission,
3196};
3197
3198static const struct file_operations proc_task_operations = {
3199	.read		= generic_read_dir,
3200	.iterate	= proc_task_readdir,
3201	.llseek		= default_llseek,
3202};