Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <linux/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
  76#include <linux/printk.h>
  77#include <linux/cgroup.h>
  78#include <linux/cpuset.h>
  79#include <linux/audit.h>
  80#include <linux/poll.h>
  81#include <linux/nsproxy.h>
  82#include <linux/oom.h>
  83#include <linux/elf.h>
  84#include <linux/pid_namespace.h>
  85#include <linux/user_namespace.h>
  86#include <linux/fs_struct.h>
  87#include <linux/slab.h>
  88#include <linux/flex_array.h>
  89#include <linux/posix-timers.h>
  90#ifdef CONFIG_HARDWALL
  91#include <asm/hardwall.h>
  92#endif
  93#include <trace/events/oom.h>
  94#include "internal.h"
  95#include "fd.h"
  96
  97/* NOTE:
  98 *	Implementing inode permission operations in /proc is almost
  99 *	certainly an error.  Permission checks need to happen during
 100 *	each system call not at open time.  The reason is that most of
 101 *	what we wish to check for permissions in /proc varies at runtime.
 102 *
 103 *	The classic example of a problem is opening file descriptors
 104 *	in /proc for a task before it execs a suid executable.
 105 */
 106
 107static u8 nlink_tid;
 108static u8 nlink_tgid;
 109
 110struct pid_entry {
 111	const char *name;
 112	unsigned int len;
 113	umode_t mode;
 114	const struct inode_operations *iop;
 115	const struct file_operations *fop;
 116	union proc_op op;
 117};
 118
 119#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 120	.name = (NAME),					\
 121	.len  = sizeof(NAME) - 1,			\
 122	.mode = MODE,					\
 123	.iop  = IOP,					\
 124	.fop  = FOP,					\
 125	.op   = OP,					\
 126}
 127
 128#define DIR(NAME, MODE, iops, fops)	\
 129	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 130#define LNK(NAME, get_link)					\
 131	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 132		&proc_pid_link_inode_operations, NULL,		\
 133		{ .proc_get_link = get_link } )
 134#define REG(NAME, MODE, fops)				\
 135	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 
 
 
 
 136#define ONE(NAME, MODE, show)				\
 137	NOD(NAME, (S_IFREG|(MODE)), 			\
 138		NULL, &proc_single_file_operations,	\
 139		{ .proc_show = show } )
 140
 
 
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int __init pid_entry_nlink(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 2;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(d_inode(dentry));
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(d_inode(dentry));
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf,
 203				     size_t _count, loff_t *pos)
 204{
 205	struct task_struct *tsk;
 206	struct mm_struct *mm;
 207	char *page;
 208	unsigned long count = _count;
 209	unsigned long arg_start, arg_end, env_start, env_end;
 210	unsigned long len1, len2, len;
 211	unsigned long p;
 212	char c;
 213	ssize_t rv;
 214
 215	BUG_ON(*pos < 0);
 216
 217	tsk = get_proc_task(file_inode(file));
 218	if (!tsk)
 219		return -ESRCH;
 220	mm = get_task_mm(tsk);
 221	put_task_struct(tsk);
 222	if (!mm)
 223		return 0;
 224	/* Check if process spawned far enough to have cmdline. */
 225	if (!mm->env_end) {
 226		rv = 0;
 227		goto out_mmput;
 228	}
 229
 230	page = (char *)__get_free_page(GFP_TEMPORARY);
 231	if (!page) {
 232		rv = -ENOMEM;
 233		goto out_mmput;
 234	}
 235
 236	down_read(&mm->mmap_sem);
 237	arg_start = mm->arg_start;
 238	arg_end = mm->arg_end;
 239	env_start = mm->env_start;
 240	env_end = mm->env_end;
 241	up_read(&mm->mmap_sem);
 242
 243	BUG_ON(arg_start > arg_end);
 244	BUG_ON(env_start > env_end);
 245
 246	len1 = arg_end - arg_start;
 247	len2 = env_end - env_start;
 248
 249	/* Empty ARGV. */
 250	if (len1 == 0) {
 251		rv = 0;
 252		goto out_free_page;
 253	}
 254	/*
 255	 * Inherently racy -- command line shares address space
 256	 * with code and data.
 257	 */
 258	rv = access_remote_vm(mm, arg_end - 1, &c, 1, 0);
 259	if (rv <= 0)
 260		goto out_free_page;
 261
 262	rv = 0;
 263
 264	if (c == '\0') {
 265		/* Command line (set of strings) occupies whole ARGV. */
 266		if (len1 <= *pos)
 267			goto out_free_page;
 268
 269		p = arg_start + *pos;
 270		len = len1 - *pos;
 271		while (count > 0 && len > 0) {
 272			unsigned int _count;
 273			int nr_read;
 274
 275			_count = min3(count, len, PAGE_SIZE);
 276			nr_read = access_remote_vm(mm, p, page, _count, 0);
 277			if (nr_read < 0)
 278				rv = nr_read;
 279			if (nr_read <= 0)
 280				goto out_free_page;
 281
 282			if (copy_to_user(buf, page, nr_read)) {
 283				rv = -EFAULT;
 284				goto out_free_page;
 285			}
 286
 287			p	+= nr_read;
 288			len	-= nr_read;
 289			buf	+= nr_read;
 290			count	-= nr_read;
 291			rv	+= nr_read;
 292		}
 293	} else {
 294		/*
 295		 * Command line (1 string) occupies ARGV and maybe
 296		 * extends into ENVP.
 297		 */
 298		if (len1 + len2 <= *pos)
 299			goto skip_argv_envp;
 300		if (len1 <= *pos)
 301			goto skip_argv;
 302
 303		p = arg_start + *pos;
 304		len = len1 - *pos;
 305		while (count > 0 && len > 0) {
 306			unsigned int _count, l;
 307			int nr_read;
 308			bool final;
 309
 310			_count = min3(count, len, PAGE_SIZE);
 311			nr_read = access_remote_vm(mm, p, page, _count, 0);
 312			if (nr_read < 0)
 313				rv = nr_read;
 314			if (nr_read <= 0)
 315				goto out_free_page;
 316
 317			/*
 318			 * Command line can be shorter than whole ARGV
 319			 * even if last "marker" byte says it is not.
 320			 */
 321			final = false;
 322			l = strnlen(page, nr_read);
 323			if (l < nr_read) {
 324				nr_read = l;
 325				final = true;
 326			}
 327
 328			if (copy_to_user(buf, page, nr_read)) {
 329				rv = -EFAULT;
 330				goto out_free_page;
 331			}
 332
 333			p	+= nr_read;
 334			len	-= nr_read;
 335			buf	+= nr_read;
 336			count	-= nr_read;
 337			rv	+= nr_read;
 338
 339			if (final)
 340				goto out_free_page;
 341		}
 342skip_argv:
 343		/*
 344		 * Command line (1 string) occupies ARGV and
 345		 * extends into ENVP.
 346		 */
 347		if (len1 <= *pos) {
 348			p = env_start + *pos - len1;
 349			len = len1 + len2 - *pos;
 
 
 350		} else {
 351			p = env_start;
 352			len = len2;
 353		}
 354		while (count > 0 && len > 0) {
 355			unsigned int _count, l;
 356			int nr_read;
 357			bool final;
 358
 359			_count = min3(count, len, PAGE_SIZE);
 360			nr_read = access_remote_vm(mm, p, page, _count, 0);
 361			if (nr_read < 0)
 362				rv = nr_read;
 363			if (nr_read <= 0)
 364				goto out_free_page;
 365
 366			/* Find EOS. */
 367			final = false;
 368			l = strnlen(page, nr_read);
 369			if (l < nr_read) {
 370				nr_read = l;
 371				final = true;
 372			}
 373
 374			if (copy_to_user(buf, page, nr_read)) {
 375				rv = -EFAULT;
 376				goto out_free_page;
 377			}
 378
 379			p	+= nr_read;
 380			len	-= nr_read;
 381			buf	+= nr_read;
 382			count	-= nr_read;
 383			rv	+= nr_read;
 384
 385			if (final)
 386				goto out_free_page;
 387		}
 388skip_argv_envp:
 389		;
 390	}
 391
 392out_free_page:
 393	free_page((unsigned long)page);
 394out_mmput:
 395	mmput(mm);
 396	if (rv > 0)
 397		*pos += rv;
 398	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 399}
 400
 401static const struct file_operations proc_pid_cmdline_ops = {
 402	.read	= proc_pid_cmdline_read,
 403	.llseek	= generic_file_llseek,
 404};
 405
 406#ifdef CONFIG_KALLSYMS
 407/*
 408 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 409 * Returns the resolved symbol.  If that fails, simply return the address.
 410 */
 411static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns,
 412			  struct pid *pid, struct task_struct *task)
 413{
 414	unsigned long wchan;
 415	char symname[KSYM_NAME_LEN];
 416
 417	wchan = get_wchan(task);
 418
 419	if (wchan && ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)
 420			&& !lookup_symbol_name(wchan, symname))
 421		seq_printf(m, "%s", symname);
 
 
 422	else
 423		seq_putc(m, '0');
 424
 425	return 0;
 426}
 427#endif /* CONFIG_KALLSYMS */
 428
 429static int lock_trace(struct task_struct *task)
 430{
 431	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 432	if (err)
 433		return err;
 434	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) {
 435		mutex_unlock(&task->signal->cred_guard_mutex);
 436		return -EPERM;
 437	}
 438	return 0;
 439}
 440
 441static void unlock_trace(struct task_struct *task)
 442{
 443	mutex_unlock(&task->signal->cred_guard_mutex);
 444}
 445
 446#ifdef CONFIG_STACKTRACE
 447
 448#define MAX_STACK_TRACE_DEPTH	64
 449
 450static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 451			  struct pid *pid, struct task_struct *task)
 452{
 453	struct stack_trace trace;
 454	unsigned long *entries;
 455	int err;
 456	int i;
 457
 458	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 459	if (!entries)
 460		return -ENOMEM;
 461
 462	trace.nr_entries	= 0;
 463	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 464	trace.entries		= entries;
 465	trace.skip		= 0;
 466
 467	err = lock_trace(task);
 468	if (!err) {
 469		save_stack_trace_tsk(task, &trace);
 470
 471		for (i = 0; i < trace.nr_entries; i++) {
 472			seq_printf(m, "[<%pK>] %pB\n",
 473				   (void *)entries[i], (void *)entries[i]);
 474		}
 475		unlock_trace(task);
 476	}
 477	kfree(entries);
 478
 479	return err;
 480}
 481#endif
 482
 483#ifdef CONFIG_SCHED_INFO
 484/*
 485 * Provides /proc/PID/schedstat
 486 */
 487static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns,
 488			      struct pid *pid, struct task_struct *task)
 489{
 490	if (unlikely(!sched_info_on()))
 491		seq_printf(m, "0 0 0\n");
 492	else
 493		seq_printf(m, "%llu %llu %lu\n",
 494		   (unsigned long long)task->se.sum_exec_runtime,
 495		   (unsigned long long)task->sched_info.run_delay,
 496		   task->sched_info.pcount);
 497
 498	return 0;
 499}
 500#endif
 501
 502#ifdef CONFIG_LATENCYTOP
 503static int lstats_show_proc(struct seq_file *m, void *v)
 504{
 505	int i;
 506	struct inode *inode = m->private;
 507	struct task_struct *task = get_proc_task(inode);
 508
 509	if (!task)
 510		return -ESRCH;
 511	seq_puts(m, "Latency Top version : v0.1\n");
 512	for (i = 0; i < 32; i++) {
 513		struct latency_record *lr = &task->latency_record[i];
 514		if (lr->backtrace[0]) {
 515			int q;
 516			seq_printf(m, "%i %li %li",
 517				   lr->count, lr->time, lr->max);
 518			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 519				unsigned long bt = lr->backtrace[q];
 520				if (!bt)
 521					break;
 522				if (bt == ULONG_MAX)
 523					break;
 524				seq_printf(m, " %ps", (void *)bt);
 525			}
 526			seq_putc(m, '\n');
 527		}
 528
 529	}
 530	put_task_struct(task);
 531	return 0;
 532}
 533
 534static int lstats_open(struct inode *inode, struct file *file)
 535{
 536	return single_open(file, lstats_show_proc, inode);
 537}
 538
 539static ssize_t lstats_write(struct file *file, const char __user *buf,
 540			    size_t count, loff_t *offs)
 541{
 542	struct task_struct *task = get_proc_task(file_inode(file));
 543
 544	if (!task)
 545		return -ESRCH;
 546	clear_all_latency_tracing(task);
 547	put_task_struct(task);
 548
 549	return count;
 550}
 551
 552static const struct file_operations proc_lstats_operations = {
 553	.open		= lstats_open,
 554	.read		= seq_read,
 555	.write		= lstats_write,
 556	.llseek		= seq_lseek,
 557	.release	= single_release,
 558};
 559
 560#endif
 561
 562static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns,
 563			  struct pid *pid, struct task_struct *task)
 564{
 565	unsigned long totalpages = totalram_pages + total_swap_pages;
 566	unsigned long points = 0;
 567
 568	points = oom_badness(task, NULL, NULL, totalpages) *
 569					1000 / totalpages;
 570	seq_printf(m, "%lu\n", points);
 571
 572	return 0;
 
 573}
 574
 575struct limit_names {
 576	const char *name;
 577	const char *unit;
 578};
 579
 580static const struct limit_names lnames[RLIM_NLIMITS] = {
 581	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 582	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 583	[RLIMIT_DATA] = {"Max data size", "bytes"},
 584	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 585	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 586	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 587	[RLIMIT_NPROC] = {"Max processes", "processes"},
 588	[RLIMIT_NOFILE] = {"Max open files", "files"},
 589	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 590	[RLIMIT_AS] = {"Max address space", "bytes"},
 591	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 592	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 593	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 594	[RLIMIT_NICE] = {"Max nice priority", NULL},
 595	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 596	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 597};
 598
 599/* Display limits for a process */
 600static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns,
 601			   struct pid *pid, struct task_struct *task)
 602{
 603	unsigned int i;
 
 604	unsigned long flags;
 
 605
 606	struct rlimit rlim[RLIM_NLIMITS];
 607
 608	if (!lock_task_sighand(task, &flags))
 609		return 0;
 610	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 611	unlock_task_sighand(task, &flags);
 612
 613	/*
 614	 * print the file header
 615	 */
 616       seq_printf(m, "%-25s %-20s %-20s %-10s\n",
 617		  "Limit", "Soft Limit", "Hard Limit", "Units");
 618
 619	for (i = 0; i < RLIM_NLIMITS; i++) {
 620		if (rlim[i].rlim_cur == RLIM_INFINITY)
 621			seq_printf(m, "%-25s %-20s ",
 622				   lnames[i].name, "unlimited");
 623		else
 624			seq_printf(m, "%-25s %-20lu ",
 625				   lnames[i].name, rlim[i].rlim_cur);
 626
 627		if (rlim[i].rlim_max == RLIM_INFINITY)
 628			seq_printf(m, "%-20s ", "unlimited");
 629		else
 630			seq_printf(m, "%-20lu ", rlim[i].rlim_max);
 
 631
 632		if (lnames[i].unit)
 633			seq_printf(m, "%-10s\n", lnames[i].unit);
 
 634		else
 635			seq_putc(m, '\n');
 636	}
 637
 638	return 0;
 639}
 640
 641#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 642static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns,
 643			    struct pid *pid, struct task_struct *task)
 644{
 645	long nr;
 646	unsigned long args[6], sp, pc;
 647	int res;
 648
 649	res = lock_trace(task);
 650	if (res)
 651		return res;
 652
 653	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 654		seq_puts(m, "running\n");
 655	else if (nr < 0)
 656		seq_printf(m, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 657	else
 658		seq_printf(m,
 659		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 660		       nr,
 661		       args[0], args[1], args[2], args[3], args[4], args[5],
 662		       sp, pc);
 663	unlock_trace(task);
 664
 665	return 0;
 666}
 667#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 668
 669/************************************************************************/
 670/*                       Here the fs part begins                        */
 671/************************************************************************/
 672
 673/* permission checks */
 674static int proc_fd_access_allowed(struct inode *inode)
 675{
 676	struct task_struct *task;
 677	int allowed = 0;
 678	/* Allow access to a task's file descriptors if it is us or we
 679	 * may use ptrace attach to the process and find out that
 680	 * information.
 681	 */
 682	task = get_proc_task(inode);
 683	if (task) {
 684		allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 685		put_task_struct(task);
 686	}
 687	return allowed;
 688}
 689
 690int proc_setattr(struct dentry *dentry, struct iattr *attr)
 691{
 692	int error;
 693	struct inode *inode = d_inode(dentry);
 694
 695	if (attr->ia_valid & ATTR_MODE)
 696		return -EPERM;
 697
 698	error = setattr_prepare(dentry, attr);
 699	if (error)
 700		return error;
 701
 
 
 
 
 
 
 
 702	setattr_copy(inode, attr);
 703	mark_inode_dirty(inode);
 704	return 0;
 705}
 706
 707/*
 708 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 709 * or euid/egid (for hide_pid_min=2)?
 710 */
 711static bool has_pid_permissions(struct pid_namespace *pid,
 712				 struct task_struct *task,
 713				 int hide_pid_min)
 714{
 715	if (pid->hide_pid < hide_pid_min)
 716		return true;
 717	if (in_group_p(pid->pid_gid))
 718		return true;
 719	return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS);
 720}
 721
 722
 723static int proc_pid_permission(struct inode *inode, int mask)
 724{
 725	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 726	struct task_struct *task;
 727	bool has_perms;
 728
 729	task = get_proc_task(inode);
 730	if (!task)
 731		return -ESRCH;
 732	has_perms = has_pid_permissions(pid, task, 1);
 733	put_task_struct(task);
 734
 735	if (!has_perms) {
 736		if (pid->hide_pid == 2) {
 737			/*
 738			 * Let's make getdents(), stat(), and open()
 739			 * consistent with each other.  If a process
 740			 * may not stat() a file, it shouldn't be seen
 741			 * in procfs at all.
 742			 */
 743			return -ENOENT;
 744		}
 745
 746		return -EPERM;
 747	}
 748	return generic_permission(inode, mask);
 749}
 750
 751
 752
 753static const struct inode_operations proc_def_inode_operations = {
 754	.setattr	= proc_setattr,
 755};
 756
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757static int proc_single_show(struct seq_file *m, void *v)
 758{
 759	struct inode *inode = m->private;
 760	struct pid_namespace *ns;
 761	struct pid *pid;
 762	struct task_struct *task;
 763	int ret;
 764
 765	ns = inode->i_sb->s_fs_info;
 766	pid = proc_pid(inode);
 767	task = get_pid_task(pid, PIDTYPE_PID);
 768	if (!task)
 769		return -ESRCH;
 770
 771	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 772
 773	put_task_struct(task);
 774	return ret;
 775}
 776
 777static int proc_single_open(struct inode *inode, struct file *filp)
 778{
 779	return single_open(filp, proc_single_show, inode);
 780}
 781
 782static const struct file_operations proc_single_file_operations = {
 783	.open		= proc_single_open,
 784	.read		= seq_read,
 785	.llseek		= seq_lseek,
 786	.release	= single_release,
 787};
 788
 789
 790struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode)
 791{
 792	struct task_struct *task = get_proc_task(inode);
 793	struct mm_struct *mm = ERR_PTR(-ESRCH);
 794
 795	if (task) {
 796		mm = mm_access(task, mode | PTRACE_MODE_FSCREDS);
 797		put_task_struct(task);
 798
 799		if (!IS_ERR_OR_NULL(mm)) {
 800			/* ensure this mm_struct can't be freed */
 801			atomic_inc(&mm->mm_count);
 802			/* but do not pin its memory */
 803			mmput(mm);
 804		}
 805	}
 806
 807	return mm;
 808}
 809
 810static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 811{
 812	struct mm_struct *mm = proc_mem_open(inode, mode);
 813
 814	if (IS_ERR(mm))
 815		return PTR_ERR(mm);
 816
 
 
 
 
 
 
 
 
 
 817	file->private_data = mm;
 
 818	return 0;
 819}
 820
 821static int mem_open(struct inode *inode, struct file *file)
 822{
 823	int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH);
 824
 825	/* OK to pass negative loff_t, we can catch out-of-range */
 826	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 827
 828	return ret;
 829}
 830
 831static ssize_t mem_rw(struct file *file, char __user *buf,
 832			size_t count, loff_t *ppos, int write)
 833{
 834	struct mm_struct *mm = file->private_data;
 835	unsigned long addr = *ppos;
 836	ssize_t copied;
 837	char *page;
 838	unsigned int flags;
 839
 840	if (!mm)
 841		return 0;
 842
 843	page = (char *)__get_free_page(GFP_TEMPORARY);
 844	if (!page)
 845		return -ENOMEM;
 846
 847	copied = 0;
 848	if (!atomic_inc_not_zero(&mm->mm_users))
 849		goto free;
 850
 851	/* Maybe we should limit FOLL_FORCE to actual ptrace users? */
 852	flags = FOLL_FORCE;
 853	if (write)
 854		flags |= FOLL_WRITE;
 855
 856	while (count > 0) {
 857		int this_len = min_t(int, count, PAGE_SIZE);
 858
 859		if (write && copy_from_user(page, buf, this_len)) {
 860			copied = -EFAULT;
 861			break;
 862		}
 863
 864		this_len = access_remote_vm(mm, addr, page, this_len, flags);
 865		if (!this_len) {
 866			if (!copied)
 867				copied = -EIO;
 868			break;
 869		}
 870
 871		if (!write && copy_to_user(buf, page, this_len)) {
 872			copied = -EFAULT;
 873			break;
 874		}
 875
 876		buf += this_len;
 877		addr += this_len;
 878		copied += this_len;
 879		count -= this_len;
 880	}
 881	*ppos = addr;
 882
 883	mmput(mm);
 884free:
 885	free_page((unsigned long) page);
 886	return copied;
 887}
 888
 889static ssize_t mem_read(struct file *file, char __user *buf,
 890			size_t count, loff_t *ppos)
 891{
 892	return mem_rw(file, buf, count, ppos, 0);
 893}
 894
 895static ssize_t mem_write(struct file *file, const char __user *buf,
 896			 size_t count, loff_t *ppos)
 897{
 898	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 899}
 900
 901loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 902{
 903	switch (orig) {
 904	case 0:
 905		file->f_pos = offset;
 906		break;
 907	case 1:
 908		file->f_pos += offset;
 909		break;
 910	default:
 911		return -EINVAL;
 912	}
 913	force_successful_syscall_return();
 914	return file->f_pos;
 915}
 916
 917static int mem_release(struct inode *inode, struct file *file)
 918{
 919	struct mm_struct *mm = file->private_data;
 920	if (mm)
 921		mmdrop(mm);
 922	return 0;
 923}
 924
 925static const struct file_operations proc_mem_operations = {
 926	.llseek		= mem_lseek,
 927	.read		= mem_read,
 928	.write		= mem_write,
 929	.open		= mem_open,
 930	.release	= mem_release,
 931};
 932
 933static int environ_open(struct inode *inode, struct file *file)
 934{
 935	return __mem_open(inode, file, PTRACE_MODE_READ);
 936}
 937
 938static ssize_t environ_read(struct file *file, char __user *buf,
 939			size_t count, loff_t *ppos)
 940{
 941	char *page;
 942	unsigned long src = *ppos;
 943	int ret = 0;
 944	struct mm_struct *mm = file->private_data;
 945	unsigned long env_start, env_end;
 946
 947	/* Ensure the process spawned far enough to have an environment. */
 948	if (!mm || !mm->env_end)
 949		return 0;
 950
 951	page = (char *)__get_free_page(GFP_TEMPORARY);
 952	if (!page)
 953		return -ENOMEM;
 954
 955	ret = 0;
 956	if (!atomic_inc_not_zero(&mm->mm_users))
 957		goto free;
 958
 959	down_read(&mm->mmap_sem);
 960	env_start = mm->env_start;
 961	env_end = mm->env_end;
 962	up_read(&mm->mmap_sem);
 963
 964	while (count > 0) {
 965		size_t this_len, max_len;
 966		int retval;
 967
 968		if (src >= (env_end - env_start))
 969			break;
 970
 971		this_len = env_end - (env_start + src);
 
 972
 973		max_len = min_t(size_t, PAGE_SIZE, count);
 974		this_len = min(max_len, this_len);
 975
 976		retval = access_remote_vm(mm, (env_start + src), page, this_len, 0);
 
 977
 978		if (retval <= 0) {
 979			ret = retval;
 980			break;
 981		}
 982
 983		if (copy_to_user(buf, page, retval)) {
 984			ret = -EFAULT;
 985			break;
 986		}
 987
 988		ret += retval;
 989		src += retval;
 990		buf += retval;
 991		count -= retval;
 992	}
 993	*ppos = src;
 994	mmput(mm);
 995
 996free:
 997	free_page((unsigned long) page);
 998	return ret;
 999}
1000
1001static const struct file_operations proc_environ_operations = {
1002	.open		= environ_open,
1003	.read		= environ_read,
1004	.llseek		= generic_file_llseek,
1005	.release	= mem_release,
1006};
1007
1008static int auxv_open(struct inode *inode, struct file *file)
 
1009{
1010	return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS);
1011}
1012
1013static ssize_t auxv_read(struct file *file, char __user *buf,
1014			size_t count, loff_t *ppos)
1015{
1016	struct mm_struct *mm = file->private_data;
1017	unsigned int nwords = 0;
1018
1019	if (!mm)
1020		return 0;
1021	do {
1022		nwords += 2;
1023	} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
1024	return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv,
1025				       nwords * sizeof(mm->saved_auxv[0]));
1026}
1027
1028static const struct file_operations proc_auxv_operations = {
1029	.open		= auxv_open,
1030	.read		= auxv_read,
1031	.llseek		= generic_file_llseek,
1032	.release	= mem_release,
1033};
1034
1035static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count,
1036			    loff_t *ppos)
1037{
1038	struct task_struct *task = get_proc_task(file_inode(file));
1039	char buffer[PROC_NUMBUF];
1040	int oom_adj = OOM_ADJUST_MIN;
1041	size_t len;
 
 
1042
1043	if (!task)
1044		return -ESRCH;
1045	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX)
1046		oom_adj = OOM_ADJUST_MAX;
1047	else
1048		oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) /
1049			  OOM_SCORE_ADJ_MAX;
1050	put_task_struct(task);
1051	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj);
1052	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1053}
1054
1055static int __set_oom_adj(struct file *file, int oom_adj, bool legacy)
1056{
1057	static DEFINE_MUTEX(oom_adj_mutex);
1058	struct mm_struct *mm = NULL;
1059	struct task_struct *task;
1060	int err = 0;
1061
1062	task = get_proc_task(file_inode(file));
1063	if (!task)
1064		return -ESRCH;
1065
1066	mutex_lock(&oom_adj_mutex);
1067	if (legacy) {
1068		if (oom_adj < task->signal->oom_score_adj &&
1069				!capable(CAP_SYS_RESOURCE)) {
1070			err = -EACCES;
1071			goto err_unlock;
1072		}
1073		/*
1074		 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use
1075		 * /proc/pid/oom_score_adj instead.
1076		 */
1077		pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
1078			  current->comm, task_pid_nr(current), task_pid_nr(task),
1079			  task_pid_nr(task));
1080	} else {
1081		if ((short)oom_adj < task->signal->oom_score_adj_min &&
1082				!capable(CAP_SYS_RESOURCE)) {
1083			err = -EACCES;
1084			goto err_unlock;
1085		}
1086	}
1087
1088	/*
1089	 * Make sure we will check other processes sharing the mm if this is
1090	 * not vfrok which wants its own oom_score_adj.
1091	 * pin the mm so it doesn't go away and get reused after task_unlock
1092	 */
1093	if (!task->vfork_done) {
1094		struct task_struct *p = find_lock_task_mm(task);
1095
1096		if (p) {
1097			if (atomic_read(&p->mm->mm_users) > 1) {
1098				mm = p->mm;
1099				atomic_inc(&mm->mm_count);
1100			}
1101			task_unlock(p);
1102		}
1103	}
1104
1105	task->signal->oom_score_adj = oom_adj;
1106	if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1107		task->signal->oom_score_adj_min = (short)oom_adj;
1108	trace_oom_score_adj_update(task);
1109
1110	if (mm) {
1111		struct task_struct *p;
1112
1113		rcu_read_lock();
1114		for_each_process(p) {
1115			if (same_thread_group(task, p))
1116				continue;
1117
1118			/* do not touch kernel threads or the global init */
1119			if (p->flags & PF_KTHREAD || is_global_init(p))
1120				continue;
1121
1122			task_lock(p);
1123			if (!p->vfork_done && process_shares_mm(p, mm)) {
1124				pr_info("updating oom_score_adj for %d (%s) from %d to %d because it shares mm with %d (%s). Report if this is unexpected.\n",
1125						task_pid_nr(p), p->comm,
1126						p->signal->oom_score_adj, oom_adj,
1127						task_pid_nr(task), task->comm);
1128				p->signal->oom_score_adj = oom_adj;
1129				if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE))
1130					p->signal->oom_score_adj_min = (short)oom_adj;
1131			}
1132			task_unlock(p);
1133		}
1134		rcu_read_unlock();
1135		mmdrop(mm);
1136	}
1137err_unlock:
1138	mutex_unlock(&oom_adj_mutex);
1139	put_task_struct(task);
1140	return err;
1141}
1142
1143/*
1144 * /proc/pid/oom_adj exists solely for backwards compatibility with previous
1145 * kernels.  The effective policy is defined by oom_score_adj, which has a
1146 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly.
1147 * Values written to oom_adj are simply mapped linearly to oom_score_adj.
1148 * Processes that become oom disabled via oom_adj will still be oom disabled
1149 * with this implementation.
1150 *
1151 * oom_adj cannot be removed since existing userspace binaries use it.
1152 */
1153static ssize_t oom_adj_write(struct file *file, const char __user *buf,
1154			     size_t count, loff_t *ppos)
1155{
 
1156	char buffer[PROC_NUMBUF];
1157	int oom_adj;
 
1158	int err;
1159
1160	memset(buffer, 0, sizeof(buffer));
1161	if (count > sizeof(buffer) - 1)
1162		count = sizeof(buffer) - 1;
1163	if (copy_from_user(buffer, buf, count)) {
1164		err = -EFAULT;
1165		goto out;
1166	}
1167
1168	err = kstrtoint(strstrip(buffer), 0, &oom_adj);
1169	if (err)
1170		goto out;
1171	if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) &&
1172	     oom_adj != OOM_DISABLE) {
1173		err = -EINVAL;
1174		goto out;
1175	}
1176
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1177	/*
1178	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
1179	 * value is always attainable.
1180	 */
1181	if (oom_adj == OOM_ADJUST_MAX)
1182		oom_adj = OOM_SCORE_ADJ_MAX;
1183	else
1184		oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE;
1185
1186	err = __set_oom_adj(file, oom_adj, true);
 
 
 
 
 
1187out:
1188	return err < 0 ? err : count;
1189}
1190
1191static const struct file_operations proc_oom_adj_operations = {
1192	.read		= oom_adj_read,
1193	.write		= oom_adj_write,
1194	.llseek		= generic_file_llseek,
1195};
1196
1197static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
1198					size_t count, loff_t *ppos)
1199{
1200	struct task_struct *task = get_proc_task(file_inode(file));
1201	char buffer[PROC_NUMBUF];
1202	short oom_score_adj = OOM_SCORE_ADJ_MIN;
 
1203	size_t len;
1204
1205	if (!task)
1206		return -ESRCH;
1207	oom_score_adj = task->signal->oom_score_adj;
 
 
 
1208	put_task_struct(task);
1209	len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj);
1210	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1211}
1212
1213static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
1214					size_t count, loff_t *ppos)
1215{
 
1216	char buffer[PROC_NUMBUF];
 
1217	int oom_score_adj;
1218	int err;
1219
1220	memset(buffer, 0, sizeof(buffer));
1221	if (count > sizeof(buffer) - 1)
1222		count = sizeof(buffer) - 1;
1223	if (copy_from_user(buffer, buf, count)) {
1224		err = -EFAULT;
1225		goto out;
1226	}
1227
1228	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1229	if (err)
1230		goto out;
1231	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1232			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1233		err = -EINVAL;
1234		goto out;
1235	}
1236
1237	err = __set_oom_adj(file, oom_score_adj, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238out:
1239	return err < 0 ? err : count;
1240}
1241
1242static const struct file_operations proc_oom_score_adj_operations = {
1243	.read		= oom_score_adj_read,
1244	.write		= oom_score_adj_write,
1245	.llseek		= default_llseek,
1246};
1247
1248#ifdef CONFIG_AUDITSYSCALL
1249#define TMPBUFLEN 11
1250static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1251				  size_t count, loff_t *ppos)
1252{
1253	struct inode * inode = file_inode(file);
1254	struct task_struct *task = get_proc_task(inode);
1255	ssize_t length;
1256	char tmpbuf[TMPBUFLEN];
1257
1258	if (!task)
1259		return -ESRCH;
1260	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1261			   from_kuid(file->f_cred->user_ns,
1262				     audit_get_loginuid(task)));
1263	put_task_struct(task);
1264	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1265}
1266
1267static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1268				   size_t count, loff_t *ppos)
1269{
1270	struct inode * inode = file_inode(file);
 
 
1271	uid_t loginuid;
1272	kuid_t kloginuid;
1273	int rv;
1274
1275	rcu_read_lock();
1276	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1277		rcu_read_unlock();
1278		return -EPERM;
1279	}
1280	rcu_read_unlock();
1281
 
 
 
1282	if (*ppos != 0) {
1283		/* No partial writes. */
1284		return -EINVAL;
1285	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1286
1287	rv = kstrtou32_from_user(buf, count, 10, &loginuid);
1288	if (rv < 0)
1289		return rv;
1290
1291	/* is userspace tring to explicitly UNSET the loginuid? */
1292	if (loginuid == AUDIT_UID_UNSET) {
1293		kloginuid = INVALID_UID;
1294	} else {
1295		kloginuid = make_kuid(file->f_cred->user_ns, loginuid);
1296		if (!uid_valid(kloginuid))
1297			return -EINVAL;
1298	}
1299
1300	rv = audit_set_loginuid(kloginuid);
1301	if (rv < 0)
1302		return rv;
1303	return count;
1304}
1305
1306static const struct file_operations proc_loginuid_operations = {
1307	.read		= proc_loginuid_read,
1308	.write		= proc_loginuid_write,
1309	.llseek		= generic_file_llseek,
1310};
1311
1312static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1313				  size_t count, loff_t *ppos)
1314{
1315	struct inode * inode = file_inode(file);
1316	struct task_struct *task = get_proc_task(inode);
1317	ssize_t length;
1318	char tmpbuf[TMPBUFLEN];
1319
1320	if (!task)
1321		return -ESRCH;
1322	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1323				audit_get_sessionid(task));
1324	put_task_struct(task);
1325	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1326}
1327
1328static const struct file_operations proc_sessionid_operations = {
1329	.read		= proc_sessionid_read,
1330	.llseek		= generic_file_llseek,
1331};
1332#endif
1333
1334#ifdef CONFIG_FAULT_INJECTION
1335static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1336				      size_t count, loff_t *ppos)
1337{
1338	struct task_struct *task = get_proc_task(file_inode(file));
1339	char buffer[PROC_NUMBUF];
1340	size_t len;
1341	int make_it_fail;
1342
1343	if (!task)
1344		return -ESRCH;
1345	make_it_fail = task->make_it_fail;
1346	put_task_struct(task);
1347
1348	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1349
1350	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1351}
1352
1353static ssize_t proc_fault_inject_write(struct file * file,
1354			const char __user * buf, size_t count, loff_t *ppos)
1355{
1356	struct task_struct *task;
1357	char buffer[PROC_NUMBUF];
1358	int make_it_fail;
1359	int rv;
1360
1361	if (!capable(CAP_SYS_RESOURCE))
1362		return -EPERM;
1363	memset(buffer, 0, sizeof(buffer));
1364	if (count > sizeof(buffer) - 1)
1365		count = sizeof(buffer) - 1;
1366	if (copy_from_user(buffer, buf, count))
1367		return -EFAULT;
1368	rv = kstrtoint(strstrip(buffer), 0, &make_it_fail);
1369	if (rv < 0)
1370		return rv;
1371	if (make_it_fail < 0 || make_it_fail > 1)
1372		return -EINVAL;
1373
1374	task = get_proc_task(file_inode(file));
1375	if (!task)
1376		return -ESRCH;
1377	task->make_it_fail = make_it_fail;
1378	put_task_struct(task);
1379
1380	return count;
1381}
1382
1383static const struct file_operations proc_fault_inject_operations = {
1384	.read		= proc_fault_inject_read,
1385	.write		= proc_fault_inject_write,
1386	.llseek		= generic_file_llseek,
1387};
1388#endif
1389
1390
1391#ifdef CONFIG_SCHED_DEBUG
1392/*
1393 * Print out various scheduling related per-task fields:
1394 */
1395static int sched_show(struct seq_file *m, void *v)
1396{
1397	struct inode *inode = m->private;
1398	struct task_struct *p;
1399
1400	p = get_proc_task(inode);
1401	if (!p)
1402		return -ESRCH;
1403	proc_sched_show_task(p, m);
1404
1405	put_task_struct(p);
1406
1407	return 0;
1408}
1409
1410static ssize_t
1411sched_write(struct file *file, const char __user *buf,
1412	    size_t count, loff_t *offset)
1413{
1414	struct inode *inode = file_inode(file);
1415	struct task_struct *p;
1416
1417	p = get_proc_task(inode);
1418	if (!p)
1419		return -ESRCH;
1420	proc_sched_set_task(p);
1421
1422	put_task_struct(p);
1423
1424	return count;
1425}
1426
1427static int sched_open(struct inode *inode, struct file *filp)
1428{
1429	return single_open(filp, sched_show, inode);
1430}
1431
1432static const struct file_operations proc_pid_sched_operations = {
1433	.open		= sched_open,
1434	.read		= seq_read,
1435	.write		= sched_write,
1436	.llseek		= seq_lseek,
1437	.release	= single_release,
1438};
1439
1440#endif
1441
1442#ifdef CONFIG_SCHED_AUTOGROUP
1443/*
1444 * Print out autogroup related information:
1445 */
1446static int sched_autogroup_show(struct seq_file *m, void *v)
1447{
1448	struct inode *inode = m->private;
1449	struct task_struct *p;
1450
1451	p = get_proc_task(inode);
1452	if (!p)
1453		return -ESRCH;
1454	proc_sched_autogroup_show_task(p, m);
1455
1456	put_task_struct(p);
1457
1458	return 0;
1459}
1460
1461static ssize_t
1462sched_autogroup_write(struct file *file, const char __user *buf,
1463	    size_t count, loff_t *offset)
1464{
1465	struct inode *inode = file_inode(file);
1466	struct task_struct *p;
1467	char buffer[PROC_NUMBUF];
1468	int nice;
1469	int err;
1470
1471	memset(buffer, 0, sizeof(buffer));
1472	if (count > sizeof(buffer) - 1)
1473		count = sizeof(buffer) - 1;
1474	if (copy_from_user(buffer, buf, count))
1475		return -EFAULT;
1476
1477	err = kstrtoint(strstrip(buffer), 0, &nice);
1478	if (err < 0)
1479		return err;
1480
1481	p = get_proc_task(inode);
1482	if (!p)
1483		return -ESRCH;
1484
1485	err = proc_sched_autogroup_set_nice(p, nice);
1486	if (err)
1487		count = err;
1488
1489	put_task_struct(p);
1490
1491	return count;
1492}
1493
1494static int sched_autogroup_open(struct inode *inode, struct file *filp)
1495{
1496	int ret;
1497
1498	ret = single_open(filp, sched_autogroup_show, NULL);
1499	if (!ret) {
1500		struct seq_file *m = filp->private_data;
1501
1502		m->private = inode;
1503	}
1504	return ret;
1505}
1506
1507static const struct file_operations proc_pid_sched_autogroup_operations = {
1508	.open		= sched_autogroup_open,
1509	.read		= seq_read,
1510	.write		= sched_autogroup_write,
1511	.llseek		= seq_lseek,
1512	.release	= single_release,
1513};
1514
1515#endif /* CONFIG_SCHED_AUTOGROUP */
1516
1517static ssize_t comm_write(struct file *file, const char __user *buf,
1518				size_t count, loff_t *offset)
1519{
1520	struct inode *inode = file_inode(file);
1521	struct task_struct *p;
1522	char buffer[TASK_COMM_LEN];
1523	const size_t maxlen = sizeof(buffer) - 1;
1524
1525	memset(buffer, 0, sizeof(buffer));
1526	if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count))
 
 
1527		return -EFAULT;
1528
1529	p = get_proc_task(inode);
1530	if (!p)
1531		return -ESRCH;
1532
1533	if (same_thread_group(current, p))
1534		set_task_comm(p, buffer);
1535	else
1536		count = -EINVAL;
1537
1538	put_task_struct(p);
1539
1540	return count;
1541}
1542
1543static int comm_show(struct seq_file *m, void *v)
1544{
1545	struct inode *inode = m->private;
1546	struct task_struct *p;
1547
1548	p = get_proc_task(inode);
1549	if (!p)
1550		return -ESRCH;
1551
1552	task_lock(p);
1553	seq_printf(m, "%s\n", p->comm);
1554	task_unlock(p);
1555
1556	put_task_struct(p);
1557
1558	return 0;
1559}
1560
1561static int comm_open(struct inode *inode, struct file *filp)
1562{
1563	return single_open(filp, comm_show, inode);
1564}
1565
1566static const struct file_operations proc_pid_set_comm_operations = {
1567	.open		= comm_open,
1568	.read		= seq_read,
1569	.write		= comm_write,
1570	.llseek		= seq_lseek,
1571	.release	= single_release,
1572};
1573
1574static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1575{
1576	struct task_struct *task;
 
1577	struct file *exe_file;
1578
1579	task = get_proc_task(d_inode(dentry));
1580	if (!task)
1581		return -ENOENT;
1582	exe_file = get_task_exe_file(task);
1583	put_task_struct(task);
 
 
 
 
1584	if (exe_file) {
1585		*exe_path = exe_file->f_path;
1586		path_get(&exe_file->f_path);
1587		fput(exe_file);
1588		return 0;
1589	} else
1590		return -ENOENT;
1591}
1592
1593static const char *proc_pid_get_link(struct dentry *dentry,
1594				     struct inode *inode,
1595				     struct delayed_call *done)
1596{
1597	struct path path;
1598	int error = -EACCES;
1599
1600	if (!dentry)
1601		return ERR_PTR(-ECHILD);
1602
1603	/* Are we allowed to snoop on the tasks file descriptors? */
1604	if (!proc_fd_access_allowed(inode))
1605		goto out;
1606
1607	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1608	if (error)
1609		goto out;
1610
1611	nd_jump_link(&path);
1612	return NULL;
1613out:
1614	return ERR_PTR(error);
1615}
1616
1617static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1618{
1619	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1620	char *pathname;
1621	int len;
1622
1623	if (!tmp)
1624		return -ENOMEM;
1625
1626	pathname = d_path(path, tmp, PAGE_SIZE);
1627	len = PTR_ERR(pathname);
1628	if (IS_ERR(pathname))
1629		goto out;
1630	len = tmp + PAGE_SIZE - 1 - pathname;
1631
1632	if (len > buflen)
1633		len = buflen;
1634	if (copy_to_user(buffer, pathname, len))
1635		len = -EFAULT;
1636 out:
1637	free_page((unsigned long)tmp);
1638	return len;
1639}
1640
1641static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1642{
1643	int error = -EACCES;
1644	struct inode *inode = d_inode(dentry);
1645	struct path path;
1646
1647	/* Are we allowed to snoop on the tasks file descriptors? */
1648	if (!proc_fd_access_allowed(inode))
1649		goto out;
1650
1651	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1652	if (error)
1653		goto out;
1654
1655	error = do_proc_readlink(&path, buffer, buflen);
1656	path_put(&path);
1657out:
1658	return error;
1659}
1660
1661const struct inode_operations proc_pid_link_inode_operations = {
1662	.readlink	= proc_pid_readlink,
1663	.get_link	= proc_pid_get_link,
1664	.setattr	= proc_setattr,
1665};
1666
1667
1668/* building an inode */
1669
1670struct inode *proc_pid_make_inode(struct super_block * sb,
1671				  struct task_struct *task, umode_t mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1672{
1673	struct inode * inode;
1674	struct proc_inode *ei;
1675	const struct cred *cred;
1676
1677	/* We need a new inode */
1678
1679	inode = new_inode(sb);
1680	if (!inode)
1681		goto out;
1682
1683	/* Common stuff */
1684	ei = PROC_I(inode);
1685	inode->i_mode = mode;
1686	inode->i_ino = get_next_ino();
1687	inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode);
1688	inode->i_op = &proc_def_inode_operations;
1689
1690	/*
1691	 * grab the reference to task.
1692	 */
1693	ei->pid = get_task_pid(task, PIDTYPE_PID);
1694	if (!ei->pid)
1695		goto out_unlock;
1696
1697	if (task_dumpable(task)) {
1698		rcu_read_lock();
1699		cred = __task_cred(task);
1700		inode->i_uid = cred->euid;
1701		inode->i_gid = cred->egid;
1702		rcu_read_unlock();
1703	}
1704	security_task_to_inode(task, inode);
1705
1706out:
1707	return inode;
1708
1709out_unlock:
1710	iput(inode);
1711	return NULL;
1712}
1713
1714int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1715{
1716	struct inode *inode = d_inode(dentry);
1717	struct task_struct *task;
1718	const struct cred *cred;
1719	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1720
1721	generic_fillattr(inode, stat);
1722
1723	rcu_read_lock();
1724	stat->uid = GLOBAL_ROOT_UID;
1725	stat->gid = GLOBAL_ROOT_GID;
1726	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1727	if (task) {
1728		if (!has_pid_permissions(pid, task, 2)) {
1729			rcu_read_unlock();
1730			/*
1731			 * This doesn't prevent learning whether PID exists,
1732			 * it only makes getattr() consistent with readdir().
1733			 */
1734			return -ENOENT;
1735		}
1736		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1737		    task_dumpable(task)) {
1738			cred = __task_cred(task);
1739			stat->uid = cred->euid;
1740			stat->gid = cred->egid;
1741		}
1742	}
1743	rcu_read_unlock();
1744	return 0;
1745}
1746
1747/* dentry stuff */
1748
1749/*
1750 *	Exceptional case: normally we are not allowed to unhash a busy
1751 * directory. In this case, however, we can do it - no aliasing problems
1752 * due to the way we treat inodes.
1753 *
1754 * Rewrite the inode's ownerships here because the owning task may have
1755 * performed a setuid(), etc.
1756 *
1757 * Before the /proc/pid/status file was created the only way to read
1758 * the effective uid of a /process was to stat /proc/pid.  Reading
1759 * /proc/pid/status is slow enough that procps and other packages
1760 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1761 * made this apply to all per process world readable and executable
1762 * directories.
1763 */
1764int pid_revalidate(struct dentry *dentry, unsigned int flags)
1765{
1766	struct inode *inode;
1767	struct task_struct *task;
1768	const struct cred *cred;
1769
1770	if (flags & LOOKUP_RCU)
1771		return -ECHILD;
1772
1773	inode = d_inode(dentry);
1774	task = get_proc_task(inode);
1775
1776	if (task) {
1777		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1778		    task_dumpable(task)) {
1779			rcu_read_lock();
1780			cred = __task_cred(task);
1781			inode->i_uid = cred->euid;
1782			inode->i_gid = cred->egid;
1783			rcu_read_unlock();
1784		} else {
1785			inode->i_uid = GLOBAL_ROOT_UID;
1786			inode->i_gid = GLOBAL_ROOT_GID;
1787		}
1788		inode->i_mode &= ~(S_ISUID | S_ISGID);
1789		security_task_to_inode(task, inode);
1790		put_task_struct(task);
1791		return 1;
1792	}
 
1793	return 0;
1794}
1795
1796static inline bool proc_inode_is_dead(struct inode *inode)
1797{
1798	return !proc_pid(inode)->tasks[PIDTYPE_PID].first;
1799}
1800
1801int pid_delete_dentry(const struct dentry *dentry)
1802{
1803	/* Is the task we represent dead?
1804	 * If so, then don't put the dentry on the lru list,
1805	 * kill it immediately.
1806	 */
1807	return proc_inode_is_dead(d_inode(dentry));
1808}
1809
1810const struct dentry_operations pid_dentry_operations =
1811{
1812	.d_revalidate	= pid_revalidate,
1813	.d_delete	= pid_delete_dentry,
1814};
1815
1816/* Lookups */
1817
1818/*
1819 * Fill a directory entry.
1820 *
1821 * If possible create the dcache entry and derive our inode number and
1822 * file type from dcache entry.
1823 *
1824 * Since all of the proc inode numbers are dynamically generated, the inode
1825 * numbers do not exist until the inode is cache.  This means creating the
1826 * the dcache entry in readdir is necessary to keep the inode numbers
1827 * reported by readdir in sync with the inode numbers reported
1828 * by stat.
1829 */
1830bool proc_fill_cache(struct file *file, struct dir_context *ctx,
1831	const char *name, int len,
1832	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1833{
1834	struct dentry *child, *dir = file->f_path.dentry;
1835	struct qstr qname = QSTR_INIT(name, len);
1836	struct inode *inode;
1837	unsigned type;
1838	ino_t ino;
 
 
 
 
 
1839
1840	child = d_hash_and_lookup(dir, &qname);
1841	if (!child) {
1842		DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1843		child = d_alloc_parallel(dir, &qname, &wq);
1844		if (IS_ERR(child))
1845			goto end_instantiate;
1846		if (d_in_lookup(child)) {
1847			int err = instantiate(d_inode(dir), child, task, ptr);
1848			d_lookup_done(child);
1849			if (err < 0) {
1850				dput(child);
1851				goto end_instantiate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1852			}
 
 
 
 
 
 
 
 
 
1853		}
 
 
1854	}
1855	inode = d_inode(child);
1856	ino = inode->i_ino;
1857	type = inode->i_mode >> 12;
1858	dput(child);
1859	return dir_emit(ctx, name, len, ino, type);
1860
1861end_instantiate:
1862	return dir_emit(ctx, name, len, 1, DT_UNKNOWN);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1863}
1864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865/*
1866 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1867 * which represent vma start and end addresses.
1868 */
1869static int dname_to_vma_addr(struct dentry *dentry,
1870			     unsigned long *start, unsigned long *end)
1871{
1872	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
1873		return -EINVAL;
1874
1875	return 0;
1876}
1877
1878static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags)
1879{
1880	unsigned long vm_start, vm_end;
1881	bool exact_vma_exists = false;
1882	struct mm_struct *mm = NULL;
1883	struct task_struct *task;
1884	const struct cred *cred;
1885	struct inode *inode;
1886	int status = 0;
1887
1888	if (flags & LOOKUP_RCU)
1889		return -ECHILD;
1890
1891	inode = d_inode(dentry);
 
 
 
 
 
1892	task = get_proc_task(inode);
1893	if (!task)
1894		goto out_notask;
1895
1896	mm = mm_access(task, PTRACE_MODE_READ_FSCREDS);
1897	if (IS_ERR_OR_NULL(mm))
1898		goto out;
1899
1900	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
1901		down_read(&mm->mmap_sem);
1902		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
1903		up_read(&mm->mmap_sem);
1904	}
1905
1906	mmput(mm);
1907
1908	if (exact_vma_exists) {
1909		if (task_dumpable(task)) {
1910			rcu_read_lock();
1911			cred = __task_cred(task);
1912			inode->i_uid = cred->euid;
1913			inode->i_gid = cred->egid;
1914			rcu_read_unlock();
1915		} else {
1916			inode->i_uid = GLOBAL_ROOT_UID;
1917			inode->i_gid = GLOBAL_ROOT_GID;
1918		}
1919		security_task_to_inode(task, inode);
1920		status = 1;
1921	}
1922
1923out:
1924	put_task_struct(task);
1925
1926out_notask:
 
 
 
1927	return status;
1928}
1929
1930static const struct dentry_operations tid_map_files_dentry_operations = {
1931	.d_revalidate	= map_files_d_revalidate,
1932	.d_delete	= pid_delete_dentry,
1933};
1934
1935static int map_files_get_link(struct dentry *dentry, struct path *path)
1936{
1937	unsigned long vm_start, vm_end;
1938	struct vm_area_struct *vma;
1939	struct task_struct *task;
1940	struct mm_struct *mm;
1941	int rc;
1942
1943	rc = -ENOENT;
1944	task = get_proc_task(d_inode(dentry));
1945	if (!task)
1946		goto out;
1947
1948	mm = get_task_mm(task);
1949	put_task_struct(task);
1950	if (!mm)
1951		goto out;
1952
1953	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
1954	if (rc)
1955		goto out_mmput;
1956
1957	rc = -ENOENT;
1958	down_read(&mm->mmap_sem);
1959	vma = find_exact_vma(mm, vm_start, vm_end);
1960	if (vma && vma->vm_file) {
1961		*path = vma->vm_file->f_path;
1962		path_get(path);
1963		rc = 0;
1964	}
1965	up_read(&mm->mmap_sem);
1966
1967out_mmput:
1968	mmput(mm);
1969out:
1970	return rc;
1971}
1972
1973struct map_files_info {
1974	fmode_t		mode;
1975	unsigned int	len;
1976	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
1977};
1978
1979/*
1980 * Only allow CAP_SYS_ADMIN to follow the links, due to concerns about how the
1981 * symlinks may be used to bypass permissions on ancestor directories in the
1982 * path to the file in question.
1983 */
1984static const char *
1985proc_map_files_get_link(struct dentry *dentry,
1986			struct inode *inode,
1987		        struct delayed_call *done)
1988{
1989	if (!capable(CAP_SYS_ADMIN))
1990		return ERR_PTR(-EPERM);
1991
1992	return proc_pid_get_link(dentry, inode, done);
1993}
1994
1995/*
1996 * Identical to proc_pid_link_inode_operations except for get_link()
1997 */
1998static const struct inode_operations proc_map_files_link_inode_operations = {
1999	.readlink	= proc_pid_readlink,
2000	.get_link	= proc_map_files_get_link,
2001	.setattr	= proc_setattr,
2002};
2003
2004static int
2005proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2006			   struct task_struct *task, const void *ptr)
2007{
2008	fmode_t mode = (fmode_t)(unsigned long)ptr;
2009	struct proc_inode *ei;
2010	struct inode *inode;
2011
2012	inode = proc_pid_make_inode(dir->i_sb, task, S_IFLNK |
2013				    ((mode & FMODE_READ ) ? S_IRUSR : 0) |
2014				    ((mode & FMODE_WRITE) ? S_IWUSR : 0));
 
2015	if (!inode)
2016		return -ENOENT;
2017
2018	ei = PROC_I(inode);
2019	ei->op.proc_get_link = map_files_get_link;
2020
2021	inode->i_op = &proc_map_files_link_inode_operations;
2022	inode->i_size = 64;
 
 
 
 
 
 
2023
2024	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2025	d_add(dentry, inode);
2026
2027	return 0;
2028}
2029
2030static struct dentry *proc_map_files_lookup(struct inode *dir,
2031		struct dentry *dentry, unsigned int flags)
2032{
2033	unsigned long vm_start, vm_end;
2034	struct vm_area_struct *vma;
2035	struct task_struct *task;
2036	int result;
2037	struct mm_struct *mm;
2038
2039	result = -ENOENT;
 
 
 
 
2040	task = get_proc_task(dir);
2041	if (!task)
2042		goto out;
2043
2044	result = -EACCES;
2045	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2046		goto out_put_task;
2047
2048	result = -ENOENT;
2049	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2050		goto out_put_task;
2051
2052	mm = get_task_mm(task);
2053	if (!mm)
2054		goto out_put_task;
2055
2056	down_read(&mm->mmap_sem);
2057	vma = find_exact_vma(mm, vm_start, vm_end);
2058	if (!vma)
2059		goto out_no_vma;
2060
2061	if (vma->vm_file)
2062		result = proc_map_files_instantiate(dir, dentry, task,
2063				(void *)(unsigned long)vma->vm_file->f_mode);
2064
2065out_no_vma:
2066	up_read(&mm->mmap_sem);
2067	mmput(mm);
2068out_put_task:
2069	put_task_struct(task);
2070out:
2071	return ERR_PTR(result);
2072}
2073
2074static const struct inode_operations proc_map_files_inode_operations = {
2075	.lookup		= proc_map_files_lookup,
2076	.permission	= proc_fd_permission,
2077	.setattr	= proc_setattr,
2078};
2079
2080static int
2081proc_map_files_readdir(struct file *file, struct dir_context *ctx)
2082{
 
 
2083	struct vm_area_struct *vma;
2084	struct task_struct *task;
2085	struct mm_struct *mm;
2086	unsigned long nr_files, pos, i;
2087	struct flex_array *fa = NULL;
2088	struct map_files_info info;
2089	struct map_files_info *p;
2090	int ret;
2091
 
 
 
 
2092	ret = -ENOENT;
2093	task = get_proc_task(file_inode(file));
2094	if (!task)
2095		goto out;
2096
2097	ret = -EACCES;
2098	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS))
2099		goto out_put_task;
2100
2101	ret = 0;
2102	if (!dir_emit_dots(file, ctx))
2103		goto out_put_task;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2104
2105	mm = get_task_mm(task);
2106	if (!mm)
2107		goto out_put_task;
2108	down_read(&mm->mmap_sem);
2109
2110	nr_files = 0;
2111
2112	/*
2113	 * We need two passes here:
2114	 *
2115	 *  1) Collect vmas of mapped files with mmap_sem taken
2116	 *  2) Release mmap_sem and instantiate entries
2117	 *
2118	 * otherwise we get lockdep complained, since filldir()
2119	 * routine might require mmap_sem taken in might_fault().
2120	 */
2121
2122	for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2123		if (vma->vm_file && ++pos > ctx->pos)
2124			nr_files++;
2125	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2126
2127	if (nr_files) {
2128		fa = flex_array_alloc(sizeof(info), nr_files,
2129					GFP_KERNEL);
2130		if (!fa || flex_array_prealloc(fa, 0, nr_files,
2131						GFP_KERNEL)) {
2132			ret = -ENOMEM;
2133			if (fa)
2134				flex_array_free(fa);
2135			up_read(&mm->mmap_sem);
2136			mmput(mm);
2137			goto out_put_task;
2138		}
2139		for (i = 0, vma = mm->mmap, pos = 2; vma;
2140				vma = vma->vm_next) {
2141			if (!vma->vm_file)
2142				continue;
2143			if (++pos <= ctx->pos)
2144				continue;
2145
2146			info.mode = vma->vm_file->f_mode;
2147			info.len = snprintf(info.name,
2148					sizeof(info.name), "%lx-%lx",
2149					vma->vm_start, vma->vm_end);
2150			if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2151				BUG();
2152		}
 
 
 
2153	}
2154	up_read(&mm->mmap_sem);
2155
2156	for (i = 0; i < nr_files; i++) {
2157		p = flex_array_get(fa, i);
2158		if (!proc_fill_cache(file, ctx,
2159				      p->name, p->len,
2160				      proc_map_files_instantiate,
2161				      task,
2162				      (void *)(unsigned long)p->mode))
2163			break;
2164		ctx->pos++;
2165	}
2166	if (fa)
2167		flex_array_free(fa);
2168	mmput(mm);
2169
2170out_put_task:
2171	put_task_struct(task);
2172out:
2173	return ret;
2174}
2175
2176static const struct file_operations proc_map_files_operations = {
2177	.read		= generic_read_dir,
2178	.iterate_shared	= proc_map_files_readdir,
2179	.llseek		= generic_file_llseek,
2180};
2181
2182#ifdef CONFIG_CHECKPOINT_RESTORE
2183struct timers_private {
2184	struct pid *pid;
2185	struct task_struct *task;
2186	struct sighand_struct *sighand;
2187	struct pid_namespace *ns;
2188	unsigned long flags;
2189};
2190
2191static void *timers_start(struct seq_file *m, loff_t *pos)
2192{
2193	struct timers_private *tp = m->private;
2194
2195	tp->task = get_pid_task(tp->pid, PIDTYPE_PID);
2196	if (!tp->task)
2197		return ERR_PTR(-ESRCH);
2198
2199	tp->sighand = lock_task_sighand(tp->task, &tp->flags);
2200	if (!tp->sighand)
2201		return ERR_PTR(-ESRCH);
2202
2203	return seq_list_start(&tp->task->signal->posix_timers, *pos);
2204}
2205
2206static void *timers_next(struct seq_file *m, void *v, loff_t *pos)
2207{
2208	struct timers_private *tp = m->private;
2209	return seq_list_next(v, &tp->task->signal->posix_timers, pos);
2210}
2211
2212static void timers_stop(struct seq_file *m, void *v)
2213{
2214	struct timers_private *tp = m->private;
2215
2216	if (tp->sighand) {
2217		unlock_task_sighand(tp->task, &tp->flags);
2218		tp->sighand = NULL;
2219	}
2220
2221	if (tp->task) {
2222		put_task_struct(tp->task);
2223		tp->task = NULL;
2224	}
2225}
2226
2227static int show_timer(struct seq_file *m, void *v)
2228{
2229	struct k_itimer *timer;
2230	struct timers_private *tp = m->private;
2231	int notify;
2232	static const char * const nstr[] = {
2233		[SIGEV_SIGNAL] = "signal",
2234		[SIGEV_NONE] = "none",
2235		[SIGEV_THREAD] = "thread",
2236	};
2237
2238	timer = list_entry((struct list_head *)v, struct k_itimer, list);
2239	notify = timer->it_sigev_notify;
2240
2241	seq_printf(m, "ID: %d\n", timer->it_id);
2242	seq_printf(m, "signal: %d/%p\n",
2243		   timer->sigq->info.si_signo,
2244		   timer->sigq->info.si_value.sival_ptr);
2245	seq_printf(m, "notify: %s/%s.%d\n",
2246		   nstr[notify & ~SIGEV_THREAD_ID],
2247		   (notify & SIGEV_THREAD_ID) ? "tid" : "pid",
2248		   pid_nr_ns(timer->it_pid, tp->ns));
2249	seq_printf(m, "ClockID: %d\n", timer->it_clock);
2250
2251	return 0;
2252}
2253
2254static const struct seq_operations proc_timers_seq_ops = {
2255	.start	= timers_start,
2256	.next	= timers_next,
2257	.stop	= timers_stop,
2258	.show	= show_timer,
 
 
2259};
2260
2261static int proc_timers_open(struct inode *inode, struct file *file)
 
2262{
2263	struct timers_private *tp;
 
 
 
2264
2265	tp = __seq_open_private(file, &proc_timers_seq_ops,
2266			sizeof(struct timers_private));
2267	if (!tp)
2268		return -ENOMEM;
 
 
 
 
 
 
 
 
2269
2270	tp->pid = proc_pid(inode);
2271	tp->ns = inode->i_sb->s_fs_info;
2272	return 0;
2273}
2274
2275static const struct file_operations proc_timers_operations = {
2276	.open		= proc_timers_open,
2277	.read		= seq_read,
2278	.llseek		= seq_lseek,
2279	.release	= seq_release_private,
2280};
2281#endif
2282
2283static ssize_t timerslack_ns_write(struct file *file, const char __user *buf,
2284					size_t count, loff_t *offset)
2285{
2286	struct inode *inode = file_inode(file);
2287	struct task_struct *p;
2288	u64 slack_ns;
2289	int err;
2290
2291	err = kstrtoull_from_user(buf, count, 10, &slack_ns);
2292	if (err < 0)
2293		return err;
2294
2295	p = get_proc_task(inode);
2296	if (!p)
2297		return -ESRCH;
2298
2299	if (p != current) {
2300		if (!capable(CAP_SYS_NICE)) {
2301			count = -EPERM;
2302			goto out;
2303		}
2304
2305		err = security_task_setscheduler(p);
2306		if (err) {
2307			count = err;
2308			goto out;
2309		}
2310	}
2311
2312	task_lock(p);
2313	if (slack_ns == 0)
2314		p->timer_slack_ns = p->default_timer_slack_ns;
2315	else
2316		p->timer_slack_ns = slack_ns;
2317	task_unlock(p);
2318
2319out:
2320	put_task_struct(p);
2321
2322	return count;
2323}
2324
2325static int timerslack_ns_show(struct seq_file *m, void *v)
2326{
2327	struct inode *inode = m->private;
2328	struct task_struct *p;
2329	int err = 0;
2330
2331	p = get_proc_task(inode);
2332	if (!p)
2333		return -ESRCH;
2334
2335	if (p != current) {
2336
2337		if (!capable(CAP_SYS_NICE)) {
2338			err = -EPERM;
2339			goto out;
2340		}
2341		err = security_task_getscheduler(p);
2342		if (err)
2343			goto out;
2344	}
2345
2346	task_lock(p);
2347	seq_printf(m, "%llu\n", p->timer_slack_ns);
2348	task_unlock(p);
2349
2350out:
2351	put_task_struct(p);
2352
2353	return err;
2354}
2355
2356static int timerslack_ns_open(struct inode *inode, struct file *filp)
2357{
2358	return single_open(filp, timerslack_ns_show, inode);
2359}
 
2360
2361static const struct file_operations proc_pid_set_timerslack_ns_operations = {
2362	.open		= timerslack_ns_open,
2363	.read		= seq_read,
2364	.write		= timerslack_ns_write,
2365	.llseek		= seq_lseek,
2366	.release	= single_release,
2367};
2368
2369static int proc_pident_instantiate(struct inode *dir,
 
2370	struct dentry *dentry, struct task_struct *task, const void *ptr)
2371{
2372	const struct pid_entry *p = ptr;
2373	struct inode *inode;
2374	struct proc_inode *ei;
 
2375
2376	inode = proc_pid_make_inode(dir->i_sb, task, p->mode);
2377	if (!inode)
2378		goto out;
2379
2380	ei = PROC_I(inode);
 
2381	if (S_ISDIR(inode->i_mode))
2382		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2383	if (p->iop)
2384		inode->i_op = p->iop;
2385	if (p->fop)
2386		inode->i_fop = p->fop;
2387	ei->op = p->op;
2388	d_set_d_op(dentry, &pid_dentry_operations);
2389	d_add(dentry, inode);
2390	/* Close the race of the process dying before we return the dentry */
2391	if (pid_revalidate(dentry, 0))
2392		return 0;
2393out:
2394	return -ENOENT;
2395}
2396
2397static struct dentry *proc_pident_lookup(struct inode *dir, 
2398					 struct dentry *dentry,
2399					 const struct pid_entry *ents,
2400					 unsigned int nents)
2401{
2402	int error;
2403	struct task_struct *task = get_proc_task(dir);
2404	const struct pid_entry *p, *last;
2405
2406	error = -ENOENT;
2407
2408	if (!task)
2409		goto out_no_task;
2410
2411	/*
2412	 * Yes, it does not scale. And it should not. Don't add
2413	 * new entries into /proc/<tgid>/ without very good reasons.
2414	 */
2415	last = &ents[nents];
2416	for (p = ents; p < last; p++) {
2417		if (p->len != dentry->d_name.len)
2418			continue;
2419		if (!memcmp(dentry->d_name.name, p->name, p->len))
2420			break;
2421	}
2422	if (p >= last)
2423		goto out;
2424
2425	error = proc_pident_instantiate(dir, dentry, task, p);
2426out:
2427	put_task_struct(task);
2428out_no_task:
2429	return ERR_PTR(error);
 
 
 
 
 
 
 
2430}
2431
2432static int proc_pident_readdir(struct file *file, struct dir_context *ctx,
 
2433		const struct pid_entry *ents, unsigned int nents)
2434{
2435	struct task_struct *task = get_proc_task(file_inode(file));
2436	const struct pid_entry *p;
 
 
 
 
 
2437
 
2438	if (!task)
2439		return -ENOENT;
2440
2441	if (!dir_emit_dots(file, ctx))
2442		goto out;
2443
2444	if (ctx->pos >= nents + 2)
2445		goto out;
2446
2447	for (p = ents + (ctx->pos - 2); p < ents + nents; p++) {
2448		if (!proc_fill_cache(file, ctx, p->name, p->len,
2449				proc_pident_instantiate, task, p))
2450			break;
2451		ctx->pos++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2452	}
 
 
2453out:
2454	put_task_struct(task);
2455	return 0;
 
2456}
2457
2458#ifdef CONFIG_SECURITY
2459static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2460				  size_t count, loff_t *ppos)
2461{
2462	struct inode * inode = file_inode(file);
2463	char *p = NULL;
2464	ssize_t length;
2465	struct task_struct *task = get_proc_task(inode);
2466
2467	if (!task)
2468		return -ESRCH;
2469
2470	length = security_getprocattr(task,
2471				      (char*)file->f_path.dentry->d_name.name,
2472				      &p);
2473	put_task_struct(task);
2474	if (length > 0)
2475		length = simple_read_from_buffer(buf, count, ppos, p, length);
2476	kfree(p);
2477	return length;
2478}
2479
2480static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2481				   size_t count, loff_t *ppos)
2482{
2483	struct inode * inode = file_inode(file);
2484	void *page;
2485	ssize_t length;
2486	struct task_struct *task = get_proc_task(inode);
2487
2488	length = -ESRCH;
2489	if (!task)
2490		goto out_no_task;
2491	if (count > PAGE_SIZE)
2492		count = PAGE_SIZE;
2493
2494	/* No partial writes. */
2495	length = -EINVAL;
2496	if (*ppos != 0)
2497		goto out;
2498
2499	page = memdup_user(buf, count);
2500	if (IS_ERR(page)) {
2501		length = PTR_ERR(page);
2502		goto out;
2503	}
 
 
 
2504
2505	/* Guard against adverse ptrace interaction */
2506	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2507	if (length < 0)
2508		goto out_free;
2509
2510	length = security_setprocattr(task,
2511				      (char*)file->f_path.dentry->d_name.name,
2512				      page, count);
2513	mutex_unlock(&task->signal->cred_guard_mutex);
2514out_free:
2515	kfree(page);
2516out:
2517	put_task_struct(task);
2518out_no_task:
2519	return length;
2520}
2521
2522static const struct file_operations proc_pid_attr_operations = {
2523	.read		= proc_pid_attr_read,
2524	.write		= proc_pid_attr_write,
2525	.llseek		= generic_file_llseek,
2526};
2527
2528static const struct pid_entry attr_dir_stuff[] = {
2529	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2530	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2531	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2532	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2533	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2534	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2535};
2536
2537static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx)
 
2538{
2539	return proc_pident_readdir(file, ctx, 
2540				   attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2541}
2542
2543static const struct file_operations proc_attr_dir_operations = {
2544	.read		= generic_read_dir,
2545	.iterate_shared	= proc_attr_dir_readdir,
2546	.llseek		= generic_file_llseek,
2547};
2548
2549static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2550				struct dentry *dentry, unsigned int flags)
2551{
2552	return proc_pident_lookup(dir, dentry,
2553				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2554}
2555
2556static const struct inode_operations proc_attr_dir_inode_operations = {
2557	.lookup		= proc_attr_dir_lookup,
2558	.getattr	= pid_getattr,
2559	.setattr	= proc_setattr,
2560};
2561
2562#endif
2563
2564#ifdef CONFIG_ELF_CORE
2565static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2566					 size_t count, loff_t *ppos)
2567{
2568	struct task_struct *task = get_proc_task(file_inode(file));
2569	struct mm_struct *mm;
2570	char buffer[PROC_NUMBUF];
2571	size_t len;
2572	int ret;
2573
2574	if (!task)
2575		return -ESRCH;
2576
2577	ret = 0;
2578	mm = get_task_mm(task);
2579	if (mm) {
2580		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2581			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2582				MMF_DUMP_FILTER_SHIFT));
2583		mmput(mm);
2584		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2585	}
2586
2587	put_task_struct(task);
2588
2589	return ret;
2590}
2591
2592static ssize_t proc_coredump_filter_write(struct file *file,
2593					  const char __user *buf,
2594					  size_t count,
2595					  loff_t *ppos)
2596{
2597	struct task_struct *task;
2598	struct mm_struct *mm;
 
2599	unsigned int val;
2600	int ret;
2601	int i;
2602	unsigned long mask;
2603
2604	ret = kstrtouint_from_user(buf, count, 0, &val);
2605	if (ret < 0)
2606		return ret;
 
 
 
 
 
 
 
 
 
 
2607
2608	ret = -ESRCH;
2609	task = get_proc_task(file_inode(file));
2610	if (!task)
2611		goto out_no_task;
2612
 
2613	mm = get_task_mm(task);
2614	if (!mm)
2615		goto out_no_mm;
2616	ret = 0;
2617
2618	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2619		if (val & mask)
2620			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2621		else
2622			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2623	}
2624
2625	mmput(mm);
2626 out_no_mm:
2627	put_task_struct(task);
2628 out_no_task:
2629	if (ret < 0)
2630		return ret;
2631	return count;
2632}
2633
2634static const struct file_operations proc_coredump_filter_operations = {
2635	.read		= proc_coredump_filter_read,
2636	.write		= proc_coredump_filter_write,
2637	.llseek		= generic_file_llseek,
2638};
2639#endif
2640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2641#ifdef CONFIG_TASK_IO_ACCOUNTING
2642static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole)
2643{
2644	struct task_io_accounting acct = task->ioac;
2645	unsigned long flags;
2646	int result;
2647
2648	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2649	if (result)
2650		return result;
2651
2652	if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) {
2653		result = -EACCES;
2654		goto out_unlock;
2655	}
2656
2657	if (whole && lock_task_sighand(task, &flags)) {
2658		struct task_struct *t = task;
2659
2660		task_io_accounting_add(&acct, &task->signal->ioac);
2661		while_each_thread(task, t)
2662			task_io_accounting_add(&acct, &t->ioac);
2663
2664		unlock_task_sighand(task, &flags);
2665	}
2666	seq_printf(m,
2667		   "rchar: %llu\n"
2668		   "wchar: %llu\n"
2669		   "syscr: %llu\n"
2670		   "syscw: %llu\n"
2671		   "read_bytes: %llu\n"
2672		   "write_bytes: %llu\n"
2673		   "cancelled_write_bytes: %llu\n",
2674		   (unsigned long long)acct.rchar,
2675		   (unsigned long long)acct.wchar,
2676		   (unsigned long long)acct.syscr,
2677		   (unsigned long long)acct.syscw,
2678		   (unsigned long long)acct.read_bytes,
2679		   (unsigned long long)acct.write_bytes,
2680		   (unsigned long long)acct.cancelled_write_bytes);
2681	result = 0;
2682
2683out_unlock:
2684	mutex_unlock(&task->signal->cred_guard_mutex);
2685	return result;
2686}
2687
2688static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2689				  struct pid *pid, struct task_struct *task)
2690{
2691	return do_io_accounting(task, m, 0);
2692}
2693
2694static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns,
2695				   struct pid *pid, struct task_struct *task)
2696{
2697	return do_io_accounting(task, m, 1);
2698}
2699#endif /* CONFIG_TASK_IO_ACCOUNTING */
2700
2701#ifdef CONFIG_USER_NS
2702static int proc_id_map_open(struct inode *inode, struct file *file,
2703	const struct seq_operations *seq_ops)
2704{
2705	struct user_namespace *ns = NULL;
2706	struct task_struct *task;
2707	struct seq_file *seq;
2708	int ret = -EINVAL;
2709
2710	task = get_proc_task(inode);
2711	if (task) {
2712		rcu_read_lock();
2713		ns = get_user_ns(task_cred_xxx(task, user_ns));
2714		rcu_read_unlock();
2715		put_task_struct(task);
2716	}
2717	if (!ns)
2718		goto err;
2719
2720	ret = seq_open(file, seq_ops);
2721	if (ret)
2722		goto err_put_ns;
2723
2724	seq = file->private_data;
2725	seq->private = ns;
2726
2727	return 0;
2728err_put_ns:
2729	put_user_ns(ns);
2730err:
2731	return ret;
2732}
2733
2734static int proc_id_map_release(struct inode *inode, struct file *file)
2735{
2736	struct seq_file *seq = file->private_data;
2737	struct user_namespace *ns = seq->private;
2738	put_user_ns(ns);
2739	return seq_release(inode, file);
2740}
2741
2742static int proc_uid_map_open(struct inode *inode, struct file *file)
2743{
2744	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2745}
2746
2747static int proc_gid_map_open(struct inode *inode, struct file *file)
2748{
2749	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2750}
2751
2752static int proc_projid_map_open(struct inode *inode, struct file *file)
2753{
2754	return proc_id_map_open(inode, file, &proc_projid_seq_operations);
2755}
2756
2757static const struct file_operations proc_uid_map_operations = {
2758	.open		= proc_uid_map_open,
2759	.write		= proc_uid_map_write,
2760	.read		= seq_read,
2761	.llseek		= seq_lseek,
2762	.release	= proc_id_map_release,
2763};
2764
2765static const struct file_operations proc_gid_map_operations = {
2766	.open		= proc_gid_map_open,
2767	.write		= proc_gid_map_write,
2768	.read		= seq_read,
2769	.llseek		= seq_lseek,
2770	.release	= proc_id_map_release,
2771};
2772
2773static const struct file_operations proc_projid_map_operations = {
2774	.open		= proc_projid_map_open,
2775	.write		= proc_projid_map_write,
2776	.read		= seq_read,
2777	.llseek		= seq_lseek,
2778	.release	= proc_id_map_release,
2779};
2780
2781static int proc_setgroups_open(struct inode *inode, struct file *file)
2782{
2783	struct user_namespace *ns = NULL;
2784	struct task_struct *task;
2785	int ret;
2786
2787	ret = -ESRCH;
2788	task = get_proc_task(inode);
2789	if (task) {
2790		rcu_read_lock();
2791		ns = get_user_ns(task_cred_xxx(task, user_ns));
2792		rcu_read_unlock();
2793		put_task_struct(task);
2794	}
2795	if (!ns)
2796		goto err;
2797
2798	if (file->f_mode & FMODE_WRITE) {
2799		ret = -EACCES;
2800		if (!ns_capable(ns, CAP_SYS_ADMIN))
2801			goto err_put_ns;
2802	}
2803
2804	ret = single_open(file, &proc_setgroups_show, ns);
2805	if (ret)
2806		goto err_put_ns;
2807
2808	return 0;
2809err_put_ns:
2810	put_user_ns(ns);
2811err:
2812	return ret;
2813}
2814
2815static int proc_setgroups_release(struct inode *inode, struct file *file)
2816{
2817	struct seq_file *seq = file->private_data;
2818	struct user_namespace *ns = seq->private;
2819	int ret = single_release(inode, file);
2820	put_user_ns(ns);
2821	return ret;
2822}
2823
2824static const struct file_operations proc_setgroups_operations = {
2825	.open		= proc_setgroups_open,
2826	.write		= proc_setgroups_write,
2827	.read		= seq_read,
2828	.llseek		= seq_lseek,
2829	.release	= proc_setgroups_release,
2830};
2831#endif /* CONFIG_USER_NS */
2832
2833static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2834				struct pid *pid, struct task_struct *task)
2835{
2836	int err = lock_trace(task);
2837	if (!err) {
2838		seq_printf(m, "%08x\n", task->personality);
2839		unlock_trace(task);
2840	}
2841	return err;
2842}
2843
2844/*
2845 * Thread groups
2846 */
2847static const struct file_operations proc_task_operations;
2848static const struct inode_operations proc_task_inode_operations;
2849
2850static const struct pid_entry tgid_base_stuff[] = {
2851	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
2852	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
 
2853	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
 
2854	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
2855	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
2856#ifdef CONFIG_NET
2857	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
2858#endif
2859	REG("environ",    S_IRUSR, proc_environ_operations),
2860	REG("auxv",       S_IRUSR, proc_auxv_operations),
2861	ONE("status",     S_IRUGO, proc_pid_status),
2862	ONE("personality", S_IRUSR, proc_pid_personality),
2863	ONE("limits",	  S_IRUGO, proc_pid_limits),
2864#ifdef CONFIG_SCHED_DEBUG
2865	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
2866#endif
2867#ifdef CONFIG_SCHED_AUTOGROUP
2868	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
2869#endif
2870	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
2871#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
2872	ONE("syscall",    S_IRUSR, proc_pid_syscall),
2873#endif
2874	REG("cmdline",    S_IRUGO, proc_pid_cmdline_ops),
2875	ONE("stat",       S_IRUGO, proc_tgid_stat),
2876	ONE("statm",      S_IRUGO, proc_pid_statm),
2877	REG("maps",       S_IRUGO, proc_pid_maps_operations),
2878#ifdef CONFIG_NUMA
2879	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
2880#endif
2881	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
2882	LNK("cwd",        proc_cwd_link),
2883	LNK("root",       proc_root_link),
2884	LNK("exe",        proc_exe_link),
2885	REG("mounts",     S_IRUGO, proc_mounts_operations),
2886	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
2887	REG("mountstats", S_IRUSR, proc_mountstats_operations),
2888#ifdef CONFIG_PROC_PAGE_MONITOR
2889	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
2890	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
2891	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
2892#endif
2893#ifdef CONFIG_SECURITY
2894	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
2895#endif
2896#ifdef CONFIG_KALLSYMS
2897	ONE("wchan",      S_IRUGO, proc_pid_wchan),
2898#endif
2899#ifdef CONFIG_STACKTRACE
2900	ONE("stack",      S_IRUSR, proc_pid_stack),
2901#endif
2902#ifdef CONFIG_SCHED_INFO
2903	ONE("schedstat",  S_IRUGO, proc_pid_schedstat),
2904#endif
2905#ifdef CONFIG_LATENCYTOP
2906	REG("latency",  S_IRUGO, proc_lstats_operations),
2907#endif
2908#ifdef CONFIG_PROC_PID_CPUSET
2909	ONE("cpuset",     S_IRUGO, proc_cpuset_show),
2910#endif
2911#ifdef CONFIG_CGROUPS
2912	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
2913#endif
2914	ONE("oom_score",  S_IRUGO, proc_oom_score),
2915	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adj_operations),
2916	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
2917#ifdef CONFIG_AUDITSYSCALL
2918	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
2919	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
2920#endif
2921#ifdef CONFIG_FAULT_INJECTION
2922	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
2923#endif
2924#ifdef CONFIG_ELF_CORE
2925	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
2926#endif
2927#ifdef CONFIG_TASK_IO_ACCOUNTING
2928	ONE("io",	S_IRUSR, proc_tgid_io_accounting),
2929#endif
2930#ifdef CONFIG_HARDWALL
2931	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
2932#endif
2933#ifdef CONFIG_USER_NS
2934	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
2935	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
2936	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
2937	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
2938#endif
2939#ifdef CONFIG_CHECKPOINT_RESTORE
2940	REG("timers",	  S_IRUGO, proc_timers_operations),
2941#endif
2942	REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations),
2943};
2944
2945static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx)
 
2946{
2947	return proc_pident_readdir(file, ctx,
2948				   tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2949}
2950
2951static const struct file_operations proc_tgid_base_operations = {
2952	.read		= generic_read_dir,
2953	.iterate_shared	= proc_tgid_base_readdir,
2954	.llseek		= generic_file_llseek,
2955};
2956
2957static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
2958{
2959	return proc_pident_lookup(dir, dentry,
2960				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
2961}
2962
2963static const struct inode_operations proc_tgid_base_inode_operations = {
2964	.lookup		= proc_tgid_base_lookup,
2965	.getattr	= pid_getattr,
2966	.setattr	= proc_setattr,
2967	.permission	= proc_pid_permission,
2968};
2969
2970static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
2971{
2972	struct dentry *dentry, *leader, *dir;
2973	char buf[PROC_NUMBUF];
2974	struct qstr name;
2975
2976	name.name = buf;
2977	name.len = snprintf(buf, sizeof(buf), "%d", pid);
2978	/* no ->d_hash() rejects on procfs */
2979	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
2980	if (dentry) {
2981		d_invalidate(dentry);
 
2982		dput(dentry);
2983	}
2984
2985	if (pid == tgid)
2986		return;
2987
2988	name.name = buf;
2989	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
2990	leader = d_hash_and_lookup(mnt->mnt_root, &name);
2991	if (!leader)
2992		goto out;
2993
2994	name.name = "task";
2995	name.len = strlen(name.name);
2996	dir = d_hash_and_lookup(leader, &name);
2997	if (!dir)
2998		goto out_put_leader;
2999
3000	name.name = buf;
3001	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3002	dentry = d_hash_and_lookup(dir, &name);
3003	if (dentry) {
3004		d_invalidate(dentry);
 
3005		dput(dentry);
3006	}
3007
3008	dput(dir);
3009out_put_leader:
3010	dput(leader);
3011out:
3012	return;
3013}
3014
3015/**
3016 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3017 * @task: task that should be flushed.
3018 *
3019 * When flushing dentries from proc, one needs to flush them from global
3020 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3021 * in. This call is supposed to do all of this job.
3022 *
3023 * Looks in the dcache for
3024 * /proc/@pid
3025 * /proc/@tgid/task/@pid
3026 * if either directory is present flushes it and all of it'ts children
3027 * from the dcache.
3028 *
3029 * It is safe and reasonable to cache /proc entries for a task until
3030 * that task exits.  After that they just clog up the dcache with
3031 * useless entries, possibly causing useful dcache entries to be
3032 * flushed instead.  This routine is proved to flush those useless
3033 * dcache entries at process exit time.
3034 *
3035 * NOTE: This routine is just an optimization so it does not guarantee
3036 *       that no dcache entries will exist at process exit time it
3037 *       just makes it very unlikely that any will persist.
3038 */
3039
3040void proc_flush_task(struct task_struct *task)
3041{
3042	int i;
3043	struct pid *pid, *tgid;
3044	struct upid *upid;
3045
3046	pid = task_pid(task);
3047	tgid = task_tgid(task);
3048
3049	for (i = 0; i <= pid->level; i++) {
3050		upid = &pid->numbers[i];
3051		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3052					tgid->numbers[i].nr);
3053	}
 
 
 
 
3054}
3055
3056static int proc_pid_instantiate(struct inode *dir,
3057				   struct dentry * dentry,
3058				   struct task_struct *task, const void *ptr)
3059{
 
3060	struct inode *inode;
3061
3062	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3063	if (!inode)
3064		goto out;
3065
 
3066	inode->i_op = &proc_tgid_base_inode_operations;
3067	inode->i_fop = &proc_tgid_base_operations;
3068	inode->i_flags|=S_IMMUTABLE;
3069
3070	set_nlink(inode, nlink_tgid);
 
3071
3072	d_set_d_op(dentry, &pid_dentry_operations);
3073
3074	d_add(dentry, inode);
3075	/* Close the race of the process dying before we return the dentry */
3076	if (pid_revalidate(dentry, 0))
3077		return 0;
3078out:
3079	return -ENOENT;
3080}
3081
3082struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3083{
3084	int result = -ENOENT;
3085	struct task_struct *task;
3086	unsigned tgid;
3087	struct pid_namespace *ns;
3088
3089	tgid = name_to_int(&dentry->d_name);
 
 
 
 
3090	if (tgid == ~0U)
3091		goto out;
3092
3093	ns = dentry->d_sb->s_fs_info;
3094	rcu_read_lock();
3095	task = find_task_by_pid_ns(tgid, ns);
3096	if (task)
3097		get_task_struct(task);
3098	rcu_read_unlock();
3099	if (!task)
3100		goto out;
3101
3102	result = proc_pid_instantiate(dir, dentry, task, NULL);
3103	put_task_struct(task);
3104out:
3105	return ERR_PTR(result);
3106}
3107
3108/*
3109 * Find the first task with tgid >= tgid
3110 *
3111 */
3112struct tgid_iter {
3113	unsigned int tgid;
3114	struct task_struct *task;
3115};
3116static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3117{
3118	struct pid *pid;
3119
3120	if (iter.task)
3121		put_task_struct(iter.task);
3122	rcu_read_lock();
3123retry:
3124	iter.task = NULL;
3125	pid = find_ge_pid(iter.tgid, ns);
3126	if (pid) {
3127		iter.tgid = pid_nr_ns(pid, ns);
3128		iter.task = pid_task(pid, PIDTYPE_PID);
3129		/* What we to know is if the pid we have find is the
3130		 * pid of a thread_group_leader.  Testing for task
3131		 * being a thread_group_leader is the obvious thing
3132		 * todo but there is a window when it fails, due to
3133		 * the pid transfer logic in de_thread.
3134		 *
3135		 * So we perform the straight forward test of seeing
3136		 * if the pid we have found is the pid of a thread
3137		 * group leader, and don't worry if the task we have
3138		 * found doesn't happen to be a thread group leader.
3139		 * As we don't care in the case of readdir.
3140		 */
3141		if (!iter.task || !has_group_leader_pid(iter.task)) {
3142			iter.tgid += 1;
3143			goto retry;
3144		}
3145		get_task_struct(iter.task);
3146	}
3147	rcu_read_unlock();
3148	return iter;
3149}
3150
3151#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3152
3153/* for the /proc/ directory itself, after non-process stuff has been done */
3154int proc_pid_readdir(struct file *file, struct dir_context *ctx)
3155{
 
 
3156	struct tgid_iter iter;
3157	struct pid_namespace *ns = file_inode(file)->i_sb->s_fs_info;
3158	loff_t pos = ctx->pos;
3159
3160	if (pos >= PID_MAX_LIMIT + TGID_OFFSET)
3161		return 0;
 
3162
3163	if (pos == TGID_OFFSET - 2) {
3164		struct inode *inode = d_inode(ns->proc_self);
3165		if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK))
3166			return 0;
3167		ctx->pos = pos = pos + 1;
3168	}
3169	if (pos == TGID_OFFSET - 1) {
3170		struct inode *inode = d_inode(ns->proc_thread_self);
3171		if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK))
3172			return 0;
3173		ctx->pos = pos = pos + 1;
3174	}
3175	iter.tgid = pos - TGID_OFFSET;
 
3176	iter.task = NULL;
 
3177	for (iter = next_tgid(ns, iter);
3178	     iter.task;
3179	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3180		char name[PROC_NUMBUF];
3181		int len;
3182
3183		cond_resched();
3184		if (!has_pid_permissions(ns, iter.task, 2))
3185			continue;
3186
3187		len = snprintf(name, sizeof(name), "%d", iter.tgid);
3188		ctx->pos = iter.tgid + TGID_OFFSET;
3189		if (!proc_fill_cache(file, ctx, name, len,
3190				     proc_pid_instantiate, iter.task, NULL)) {
3191			put_task_struct(iter.task);
3192			return 0;
3193		}
3194	}
3195	ctx->pos = PID_MAX_LIMIT + TGID_OFFSET;
 
 
 
3196	return 0;
3197}
3198
3199/*
3200 * proc_tid_comm_permission is a special permission function exclusively
3201 * used for the node /proc/<pid>/task/<tid>/comm.
3202 * It bypasses generic permission checks in the case where a task of the same
3203 * task group attempts to access the node.
3204 * The rationale behind this is that glibc and bionic access this node for
3205 * cross thread naming (pthread_set/getname_np(!self)). However, if
3206 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0,
3207 * which locks out the cross thread naming implementation.
3208 * This function makes sure that the node is always accessible for members of
3209 * same thread group.
3210 */
3211static int proc_tid_comm_permission(struct inode *inode, int mask)
3212{
3213	bool is_same_tgroup;
3214	struct task_struct *task;
3215
3216	task = get_proc_task(inode);
3217	if (!task)
3218		return -ESRCH;
3219	is_same_tgroup = same_thread_group(current, task);
3220	put_task_struct(task);
3221
3222	if (likely(is_same_tgroup && !(mask & MAY_EXEC))) {
3223		/* This file (/proc/<pid>/task/<tid>/comm) can always be
3224		 * read or written by the members of the corresponding
3225		 * thread group.
3226		 */
3227		return 0;
3228	}
3229
3230	return generic_permission(inode, mask);
3231}
3232
3233static const struct inode_operations proc_tid_comm_inode_operations = {
3234		.permission = proc_tid_comm_permission,
3235};
3236
3237/*
3238 * Tasks
3239 */
3240static const struct pid_entry tid_base_stuff[] = {
3241	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3242	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3243	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3244#ifdef CONFIG_NET
3245	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3246#endif
3247	REG("environ",   S_IRUSR, proc_environ_operations),
3248	REG("auxv",      S_IRUSR, proc_auxv_operations),
3249	ONE("status",    S_IRUGO, proc_pid_status),
3250	ONE("personality", S_IRUSR, proc_pid_personality),
3251	ONE("limits",	 S_IRUGO, proc_pid_limits),
3252#ifdef CONFIG_SCHED_DEBUG
3253	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3254#endif
3255	NOD("comm",      S_IFREG|S_IRUGO|S_IWUSR,
3256			 &proc_tid_comm_inode_operations,
3257			 &proc_pid_set_comm_operations, {}),
3258#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3259	ONE("syscall",   S_IRUSR, proc_pid_syscall),
3260#endif
3261	REG("cmdline",   S_IRUGO, proc_pid_cmdline_ops),
3262	ONE("stat",      S_IRUGO, proc_tid_stat),
3263	ONE("statm",     S_IRUGO, proc_pid_statm),
3264	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3265#ifdef CONFIG_PROC_CHILDREN
3266	REG("children",  S_IRUGO, proc_tid_children_operations),
3267#endif
3268#ifdef CONFIG_NUMA
3269	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3270#endif
3271	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3272	LNK("cwd",       proc_cwd_link),
3273	LNK("root",      proc_root_link),
3274	LNK("exe",       proc_exe_link),
3275	REG("mounts",    S_IRUGO, proc_mounts_operations),
3276	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3277#ifdef CONFIG_PROC_PAGE_MONITOR
3278	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3279	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3280	REG("pagemap",    S_IRUSR, proc_pagemap_operations),
3281#endif
3282#ifdef CONFIG_SECURITY
3283	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3284#endif
3285#ifdef CONFIG_KALLSYMS
3286	ONE("wchan",     S_IRUGO, proc_pid_wchan),
3287#endif
3288#ifdef CONFIG_STACKTRACE
3289	ONE("stack",      S_IRUSR, proc_pid_stack),
3290#endif
3291#ifdef CONFIG_SCHED_INFO
3292	ONE("schedstat", S_IRUGO, proc_pid_schedstat),
3293#endif
3294#ifdef CONFIG_LATENCYTOP
3295	REG("latency",  S_IRUGO, proc_lstats_operations),
3296#endif
3297#ifdef CONFIG_PROC_PID_CPUSET
3298	ONE("cpuset",    S_IRUGO, proc_cpuset_show),
3299#endif
3300#ifdef CONFIG_CGROUPS
3301	ONE("cgroup",  S_IRUGO, proc_cgroup_show),
3302#endif
3303	ONE("oom_score", S_IRUGO, proc_oom_score),
3304	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adj_operations),
3305	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3306#ifdef CONFIG_AUDITSYSCALL
3307	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3308	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3309#endif
3310#ifdef CONFIG_FAULT_INJECTION
3311	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3312#endif
3313#ifdef CONFIG_TASK_IO_ACCOUNTING
3314	ONE("io",	S_IRUSR, proc_tid_io_accounting),
3315#endif
3316#ifdef CONFIG_HARDWALL
3317	ONE("hardwall",   S_IRUGO, proc_pid_hardwall),
3318#endif
3319#ifdef CONFIG_USER_NS
3320	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3321	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
3322	REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations),
3323	REG("setgroups",  S_IRUGO|S_IWUSR, proc_setgroups_operations),
3324#endif
3325};
3326
3327static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx)
 
3328{
3329	return proc_pident_readdir(file, ctx,
3330				   tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3331}
3332
3333static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
3334{
3335	return proc_pident_lookup(dir, dentry,
3336				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3337}
3338
3339static const struct file_operations proc_tid_base_operations = {
3340	.read		= generic_read_dir,
3341	.iterate_shared	= proc_tid_base_readdir,
3342	.llseek		= generic_file_llseek,
3343};
3344
3345static const struct inode_operations proc_tid_base_inode_operations = {
3346	.lookup		= proc_tid_base_lookup,
3347	.getattr	= pid_getattr,
3348	.setattr	= proc_setattr,
3349};
3350
3351static int proc_task_instantiate(struct inode *dir,
3352	struct dentry *dentry, struct task_struct *task, const void *ptr)
3353{
 
3354	struct inode *inode;
3355	inode = proc_pid_make_inode(dir->i_sb, task, S_IFDIR | S_IRUGO | S_IXUGO);
3356
3357	if (!inode)
3358		goto out;
 
3359	inode->i_op = &proc_tid_base_inode_operations;
3360	inode->i_fop = &proc_tid_base_operations;
3361	inode->i_flags|=S_IMMUTABLE;
3362
3363	set_nlink(inode, nlink_tid);
 
3364
3365	d_set_d_op(dentry, &pid_dentry_operations);
3366
3367	d_add(dentry, inode);
3368	/* Close the race of the process dying before we return the dentry */
3369	if (pid_revalidate(dentry, 0))
3370		return 0;
3371out:
3372	return -ENOENT;
3373}
3374
3375static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
3376{
3377	int result = -ENOENT;
3378	struct task_struct *task;
3379	struct task_struct *leader = get_proc_task(dir);
3380	unsigned tid;
3381	struct pid_namespace *ns;
3382
3383	if (!leader)
3384		goto out_no_task;
3385
3386	tid = name_to_int(&dentry->d_name);
3387	if (tid == ~0U)
3388		goto out;
3389
3390	ns = dentry->d_sb->s_fs_info;
3391	rcu_read_lock();
3392	task = find_task_by_pid_ns(tid, ns);
3393	if (task)
3394		get_task_struct(task);
3395	rcu_read_unlock();
3396	if (!task)
3397		goto out;
3398	if (!same_thread_group(leader, task))
3399		goto out_drop_task;
3400
3401	result = proc_task_instantiate(dir, dentry, task, NULL);
3402out_drop_task:
3403	put_task_struct(task);
3404out:
3405	put_task_struct(leader);
3406out_no_task:
3407	return ERR_PTR(result);
3408}
3409
3410/*
3411 * Find the first tid of a thread group to return to user space.
3412 *
3413 * Usually this is just the thread group leader, but if the users
3414 * buffer was too small or there was a seek into the middle of the
3415 * directory we have more work todo.
3416 *
3417 * In the case of a short read we start with find_task_by_pid.
3418 *
3419 * In the case of a seek we start with the leader and walk nr
3420 * threads past it.
3421 */
3422static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos,
3423					struct pid_namespace *ns)
3424{
3425	struct task_struct *pos, *task;
3426	unsigned long nr = f_pos;
3427
3428	if (nr != f_pos)	/* 32bit overflow? */
3429		return NULL;
3430
3431	rcu_read_lock();
3432	task = pid_task(pid, PIDTYPE_PID);
3433	if (!task)
3434		goto fail;
3435
3436	/* Attempt to start with the tid of a thread */
3437	if (tid && nr) {
3438		pos = find_task_by_pid_ns(tid, ns);
3439		if (pos && same_thread_group(pos, task))
3440			goto found;
3441	}
3442
3443	/* If nr exceeds the number of threads there is nothing todo */
3444	if (nr >= get_nr_threads(task))
3445		goto fail;
 
3446
3447	/* If we haven't found our starting place yet start
3448	 * with the leader and walk nr threads forward.
3449	 */
3450	pos = task = task->group_leader;
3451	do {
3452		if (!nr--)
3453			goto found;
3454	} while_each_thread(task, pos);
3455fail:
3456	pos = NULL;
3457	goto out;
3458found:
3459	get_task_struct(pos);
3460out:
3461	rcu_read_unlock();
3462	return pos;
3463}
3464
3465/*
3466 * Find the next thread in the thread list.
3467 * Return NULL if there is an error or no next thread.
3468 *
3469 * The reference to the input task_struct is released.
3470 */
3471static struct task_struct *next_tid(struct task_struct *start)
3472{
3473	struct task_struct *pos = NULL;
3474	rcu_read_lock();
3475	if (pid_alive(start)) {
3476		pos = next_thread(start);
3477		if (thread_group_leader(pos))
3478			pos = NULL;
3479		else
3480			get_task_struct(pos);
3481	}
3482	rcu_read_unlock();
3483	put_task_struct(start);
3484	return pos;
3485}
3486
 
 
 
 
 
 
 
 
 
3487/* for the /proc/TGID/task/ directories */
3488static int proc_task_readdir(struct file *file, struct dir_context *ctx)
3489{
3490	struct inode *inode = file_inode(file);
 
 
3491	struct task_struct *task;
3492	struct pid_namespace *ns;
 
3493	int tid;
 
3494
3495	if (proc_inode_is_dead(inode))
3496		return -ENOENT;
 
 
 
 
 
 
 
 
 
 
 
3497
3498	if (!dir_emit_dots(file, ctx))
3499		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
3500
3501	/* f_version caches the tgid value that the last readdir call couldn't
3502	 * return. lseek aka telldir automagically resets f_version to 0.
3503	 */
3504	ns = inode->i_sb->s_fs_info;
3505	tid = (int)file->f_version;
3506	file->f_version = 0;
3507	for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns);
3508	     task;
3509	     task = next_tid(task), ctx->pos++) {
3510		char name[PROC_NUMBUF];
3511		int len;
3512		tid = task_pid_nr_ns(task, ns);
3513		len = snprintf(name, sizeof(name), "%d", tid);
3514		if (!proc_fill_cache(file, ctx, name, len,
3515				proc_task_instantiate, task, NULL)) {
3516			/* returning this tgid failed, save it as the first
3517			 * pid for the next readir call */
3518			file->f_version = (u64)tid;
3519			put_task_struct(task);
3520			break;
3521		}
3522	}
3523
3524	return 0;
 
 
3525}
3526
3527static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3528{
3529	struct inode *inode = d_inode(dentry);
3530	struct task_struct *p = get_proc_task(inode);
3531	generic_fillattr(inode, stat);
3532
3533	if (p) {
3534		stat->nlink += get_nr_threads(p);
3535		put_task_struct(p);
3536	}
3537
3538	return 0;
3539}
3540
3541static const struct inode_operations proc_task_inode_operations = {
3542	.lookup		= proc_task_lookup,
3543	.getattr	= proc_task_getattr,
3544	.setattr	= proc_setattr,
3545	.permission	= proc_pid_permission,
3546};
3547
3548static const struct file_operations proc_task_operations = {
3549	.read		= generic_read_dir,
3550	.iterate_shared	= proc_task_readdir,
3551	.llseek		= generic_file_llseek,
3552};
3553
3554void __init set_proc_pid_nlink(void)
3555{
3556	nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3557	nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3558}
v3.5.6
   1/*
   2 *  linux/fs/proc/base.c
   3 *
   4 *  Copyright (C) 1991, 1992 Linus Torvalds
   5 *
   6 *  proc base directory handling functions
   7 *
   8 *  1999, Al Viro. Rewritten. Now it covers the whole per-process part.
   9 *  Instead of using magical inumbers to determine the kind of object
  10 *  we allocate and fill in-core inodes upon lookup. They don't even
  11 *  go into icache. We cache the reference to task_struct upon lookup too.
  12 *  Eventually it should become a filesystem in its own. We don't use the
  13 *  rest of procfs anymore.
  14 *
  15 *
  16 *  Changelog:
  17 *  17-Jan-2005
  18 *  Allan Bezerra
  19 *  Bruna Moreira <bruna.moreira@indt.org.br>
  20 *  Edjard Mota <edjard.mota@indt.org.br>
  21 *  Ilias Biris <ilias.biris@indt.org.br>
  22 *  Mauricio Lin <mauricio.lin@indt.org.br>
  23 *
  24 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  25 *
  26 *  A new process specific entry (smaps) included in /proc. It shows the
  27 *  size of rss for each memory area. The maps entry lacks information
  28 *  about physical memory size (rss) for each mapped file, i.e.,
  29 *  rss information for executables and library files.
  30 *  This additional information is useful for any tools that need to know
  31 *  about physical memory consumption for a process specific library.
  32 *
  33 *  Changelog:
  34 *  21-Feb-2005
  35 *  Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT
  36 *  Pud inclusion in the page table walking.
  37 *
  38 *  ChangeLog:
  39 *  10-Mar-2005
  40 *  10LE Instituto Nokia de Tecnologia - INdT:
  41 *  A better way to walks through the page table as suggested by Hugh Dickins.
  42 *
  43 *  Simo Piiroinen <simo.piiroinen@nokia.com>:
  44 *  Smaps information related to shared, private, clean and dirty pages.
  45 *
  46 *  Paul Mundt <paul.mundt@nokia.com>:
  47 *  Overall revision about smaps.
  48 */
  49
  50#include <asm/uaccess.h>
  51
  52#include <linux/errno.h>
  53#include <linux/time.h>
  54#include <linux/proc_fs.h>
  55#include <linux/stat.h>
  56#include <linux/task_io_accounting_ops.h>
  57#include <linux/init.h>
  58#include <linux/capability.h>
  59#include <linux/file.h>
  60#include <linux/fdtable.h>
  61#include <linux/string.h>
  62#include <linux/seq_file.h>
  63#include <linux/namei.h>
  64#include <linux/mnt_namespace.h>
  65#include <linux/mm.h>
  66#include <linux/swap.h>
  67#include <linux/rcupdate.h>
  68#include <linux/kallsyms.h>
  69#include <linux/stacktrace.h>
  70#include <linux/resource.h>
  71#include <linux/module.h>
  72#include <linux/mount.h>
  73#include <linux/security.h>
  74#include <linux/ptrace.h>
  75#include <linux/tracehook.h>
 
  76#include <linux/cgroup.h>
  77#include <linux/cpuset.h>
  78#include <linux/audit.h>
  79#include <linux/poll.h>
  80#include <linux/nsproxy.h>
  81#include <linux/oom.h>
  82#include <linux/elf.h>
  83#include <linux/pid_namespace.h>
  84#include <linux/user_namespace.h>
  85#include <linux/fs_struct.h>
  86#include <linux/slab.h>
  87#include <linux/flex_array.h>
 
  88#ifdef CONFIG_HARDWALL
  89#include <asm/hardwall.h>
  90#endif
  91#include <trace/events/oom.h>
  92#include "internal.h"
 
  93
  94/* NOTE:
  95 *	Implementing inode permission operations in /proc is almost
  96 *	certainly an error.  Permission checks need to happen during
  97 *	each system call not at open time.  The reason is that most of
  98 *	what we wish to check for permissions in /proc varies at runtime.
  99 *
 100 *	The classic example of a problem is opening file descriptors
 101 *	in /proc for a task before it execs a suid executable.
 102 */
 103
 
 
 
 104struct pid_entry {
 105	char *name;
 106	int len;
 107	umode_t mode;
 108	const struct inode_operations *iop;
 109	const struct file_operations *fop;
 110	union proc_op op;
 111};
 112
 113#define NOD(NAME, MODE, IOP, FOP, OP) {			\
 114	.name = (NAME),					\
 115	.len  = sizeof(NAME) - 1,			\
 116	.mode = MODE,					\
 117	.iop  = IOP,					\
 118	.fop  = FOP,					\
 119	.op   = OP,					\
 120}
 121
 122#define DIR(NAME, MODE, iops, fops)	\
 123	NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} )
 124#define LNK(NAME, get_link)					\
 125	NOD(NAME, (S_IFLNK|S_IRWXUGO),				\
 126		&proc_pid_link_inode_operations, NULL,		\
 127		{ .proc_get_link = get_link } )
 128#define REG(NAME, MODE, fops)				\
 129	NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {})
 130#define INF(NAME, MODE, read)				\
 131	NOD(NAME, (S_IFREG|(MODE)), 			\
 132		NULL, &proc_info_file_operations,	\
 133		{ .proc_read = read } )
 134#define ONE(NAME, MODE, show)				\
 135	NOD(NAME, (S_IFREG|(MODE)), 			\
 136		NULL, &proc_single_file_operations,	\
 137		{ .proc_show = show } )
 138
 139static int proc_fd_permission(struct inode *inode, int mask);
 140
 141/*
 142 * Count the number of hardlinks for the pid_entry table, excluding the .
 143 * and .. links.
 144 */
 145static unsigned int pid_entry_count_dirs(const struct pid_entry *entries,
 146	unsigned int n)
 147{
 148	unsigned int i;
 149	unsigned int count;
 150
 151	count = 0;
 152	for (i = 0; i < n; ++i) {
 153		if (S_ISDIR(entries[i].mode))
 154			++count;
 155	}
 156
 157	return count;
 158}
 159
 160static int get_task_root(struct task_struct *task, struct path *root)
 161{
 162	int result = -ENOENT;
 163
 164	task_lock(task);
 165	if (task->fs) {
 166		get_fs_root(task->fs, root);
 167		result = 0;
 168	}
 169	task_unlock(task);
 170	return result;
 171}
 172
 173static int proc_cwd_link(struct dentry *dentry, struct path *path)
 174{
 175	struct task_struct *task = get_proc_task(dentry->d_inode);
 176	int result = -ENOENT;
 177
 178	if (task) {
 179		task_lock(task);
 180		if (task->fs) {
 181			get_fs_pwd(task->fs, path);
 182			result = 0;
 183		}
 184		task_unlock(task);
 185		put_task_struct(task);
 186	}
 187	return result;
 188}
 189
 190static int proc_root_link(struct dentry *dentry, struct path *path)
 191{
 192	struct task_struct *task = get_proc_task(dentry->d_inode);
 193	int result = -ENOENT;
 194
 195	if (task) {
 196		result = get_task_root(task, path);
 197		put_task_struct(task);
 198	}
 199	return result;
 200}
 201
 202static int proc_pid_cmdline(struct task_struct *task, char * buffer)
 
 203{
 204	int res = 0;
 205	unsigned int len;
 206	struct mm_struct *mm = get_task_mm(task);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207	if (!mm)
 208		goto out;
 209	if (!mm->arg_end)
 210		goto out_mm;	/* Shh! No looking before we're done */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 211
 212 	len = mm->arg_end - mm->arg_start;
 213 
 214	if (len > PAGE_SIZE)
 215		len = PAGE_SIZE;
 216 
 217	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
 218
 219	// If the nul at the end of args has been overwritten, then
 220	// assume application is using setproctitle(3).
 221	if (res > 0 && buffer[res-1] != '\0' && len < PAGE_SIZE) {
 222		len = strnlen(buffer, res);
 223		if (len < res) {
 224		    res = len;
 225		} else {
 226			len = mm->env_end - mm->env_start;
 227			if (len > PAGE_SIZE - res)
 228				len = PAGE_SIZE - res;
 229			res += access_process_vm(task, mm->env_start, buffer+res, len, 0);
 230			res = strnlen(buffer, res);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231		}
 
 
 232	}
 233out_mm:
 
 
 
 234	mmput(mm);
 235out:
 236	return res;
 237}
 238
 239static int proc_pid_auxv(struct task_struct *task, char *buffer)
 240{
 241	struct mm_struct *mm = mm_access(task, PTRACE_MODE_READ);
 242	int res = PTR_ERR(mm);
 243	if (mm && !IS_ERR(mm)) {
 244		unsigned int nwords = 0;
 245		do {
 246			nwords += 2;
 247		} while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */
 248		res = nwords * sizeof(mm->saved_auxv[0]);
 249		if (res > PAGE_SIZE)
 250			res = PAGE_SIZE;
 251		memcpy(buffer, mm->saved_auxv, res);
 252		mmput(mm);
 253	}
 254	return res;
 255}
 256
 
 
 
 
 257
 258#ifdef CONFIG_KALLSYMS
 259/*
 260 * Provides a wchan file via kallsyms in a proper one-value-per-file format.
 261 * Returns the resolved symbol.  If that fails, simply return the address.
 262 */
 263static int proc_pid_wchan(struct task_struct *task, char *buffer)
 
 264{
 265	unsigned long wchan;
 266	char symname[KSYM_NAME_LEN];
 267
 268	wchan = get_wchan(task);
 269
 270	if (lookup_symbol_name(wchan, symname) < 0)
 271		if (!ptrace_may_access(task, PTRACE_MODE_READ))
 272			return 0;
 273		else
 274			return sprintf(buffer, "%lu", wchan);
 275	else
 276		return sprintf(buffer, "%s", symname);
 
 
 277}
 278#endif /* CONFIG_KALLSYMS */
 279
 280static int lock_trace(struct task_struct *task)
 281{
 282	int err = mutex_lock_killable(&task->signal->cred_guard_mutex);
 283	if (err)
 284		return err;
 285	if (!ptrace_may_access(task, PTRACE_MODE_ATTACH)) {
 286		mutex_unlock(&task->signal->cred_guard_mutex);
 287		return -EPERM;
 288	}
 289	return 0;
 290}
 291
 292static void unlock_trace(struct task_struct *task)
 293{
 294	mutex_unlock(&task->signal->cred_guard_mutex);
 295}
 296
 297#ifdef CONFIG_STACKTRACE
 298
 299#define MAX_STACK_TRACE_DEPTH	64
 300
 301static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns,
 302			  struct pid *pid, struct task_struct *task)
 303{
 304	struct stack_trace trace;
 305	unsigned long *entries;
 306	int err;
 307	int i;
 308
 309	entries = kmalloc(MAX_STACK_TRACE_DEPTH * sizeof(*entries), GFP_KERNEL);
 310	if (!entries)
 311		return -ENOMEM;
 312
 313	trace.nr_entries	= 0;
 314	trace.max_entries	= MAX_STACK_TRACE_DEPTH;
 315	trace.entries		= entries;
 316	trace.skip		= 0;
 317
 318	err = lock_trace(task);
 319	if (!err) {
 320		save_stack_trace_tsk(task, &trace);
 321
 322		for (i = 0; i < trace.nr_entries; i++) {
 323			seq_printf(m, "[<%pK>] %pS\n",
 324				   (void *)entries[i], (void *)entries[i]);
 325		}
 326		unlock_trace(task);
 327	}
 328	kfree(entries);
 329
 330	return err;
 331}
 332#endif
 333
 334#ifdef CONFIG_SCHEDSTATS
 335/*
 336 * Provides /proc/PID/schedstat
 337 */
 338static int proc_pid_schedstat(struct task_struct *task, char *buffer)
 
 339{
 340	return sprintf(buffer, "%llu %llu %lu\n",
 341			(unsigned long long)task->se.sum_exec_runtime,
 342			(unsigned long long)task->sched_info.run_delay,
 343			task->sched_info.pcount);
 
 
 
 
 
 344}
 345#endif
 346
 347#ifdef CONFIG_LATENCYTOP
 348static int lstats_show_proc(struct seq_file *m, void *v)
 349{
 350	int i;
 351	struct inode *inode = m->private;
 352	struct task_struct *task = get_proc_task(inode);
 353
 354	if (!task)
 355		return -ESRCH;
 356	seq_puts(m, "Latency Top version : v0.1\n");
 357	for (i = 0; i < 32; i++) {
 358		struct latency_record *lr = &task->latency_record[i];
 359		if (lr->backtrace[0]) {
 360			int q;
 361			seq_printf(m, "%i %li %li",
 362				   lr->count, lr->time, lr->max);
 363			for (q = 0; q < LT_BACKTRACEDEPTH; q++) {
 364				unsigned long bt = lr->backtrace[q];
 365				if (!bt)
 366					break;
 367				if (bt == ULONG_MAX)
 368					break;
 369				seq_printf(m, " %ps", (void *)bt);
 370			}
 371			seq_putc(m, '\n');
 372		}
 373
 374	}
 375	put_task_struct(task);
 376	return 0;
 377}
 378
 379static int lstats_open(struct inode *inode, struct file *file)
 380{
 381	return single_open(file, lstats_show_proc, inode);
 382}
 383
 384static ssize_t lstats_write(struct file *file, const char __user *buf,
 385			    size_t count, loff_t *offs)
 386{
 387	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
 388
 389	if (!task)
 390		return -ESRCH;
 391	clear_all_latency_tracing(task);
 392	put_task_struct(task);
 393
 394	return count;
 395}
 396
 397static const struct file_operations proc_lstats_operations = {
 398	.open		= lstats_open,
 399	.read		= seq_read,
 400	.write		= lstats_write,
 401	.llseek		= seq_lseek,
 402	.release	= single_release,
 403};
 404
 405#endif
 406
 407static int proc_oom_score(struct task_struct *task, char *buffer)
 
 408{
 409	unsigned long totalpages = totalram_pages + total_swap_pages;
 410	unsigned long points = 0;
 411
 412	read_lock(&tasklist_lock);
 413	if (pid_alive(task))
 414		points = oom_badness(task, NULL, NULL, totalpages) *
 415						1000 / totalpages;
 416	read_unlock(&tasklist_lock);
 417	return sprintf(buffer, "%lu\n", points);
 418}
 419
 420struct limit_names {
 421	char *name;
 422	char *unit;
 423};
 424
 425static const struct limit_names lnames[RLIM_NLIMITS] = {
 426	[RLIMIT_CPU] = {"Max cpu time", "seconds"},
 427	[RLIMIT_FSIZE] = {"Max file size", "bytes"},
 428	[RLIMIT_DATA] = {"Max data size", "bytes"},
 429	[RLIMIT_STACK] = {"Max stack size", "bytes"},
 430	[RLIMIT_CORE] = {"Max core file size", "bytes"},
 431	[RLIMIT_RSS] = {"Max resident set", "bytes"},
 432	[RLIMIT_NPROC] = {"Max processes", "processes"},
 433	[RLIMIT_NOFILE] = {"Max open files", "files"},
 434	[RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"},
 435	[RLIMIT_AS] = {"Max address space", "bytes"},
 436	[RLIMIT_LOCKS] = {"Max file locks", "locks"},
 437	[RLIMIT_SIGPENDING] = {"Max pending signals", "signals"},
 438	[RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"},
 439	[RLIMIT_NICE] = {"Max nice priority", NULL},
 440	[RLIMIT_RTPRIO] = {"Max realtime priority", NULL},
 441	[RLIMIT_RTTIME] = {"Max realtime timeout", "us"},
 442};
 443
 444/* Display limits for a process */
 445static int proc_pid_limits(struct task_struct *task, char *buffer)
 
 446{
 447	unsigned int i;
 448	int count = 0;
 449	unsigned long flags;
 450	char *bufptr = buffer;
 451
 452	struct rlimit rlim[RLIM_NLIMITS];
 453
 454	if (!lock_task_sighand(task, &flags))
 455		return 0;
 456	memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS);
 457	unlock_task_sighand(task, &flags);
 458
 459	/*
 460	 * print the file header
 461	 */
 462	count += sprintf(&bufptr[count], "%-25s %-20s %-20s %-10s\n",
 463			"Limit", "Soft Limit", "Hard Limit", "Units");
 464
 465	for (i = 0; i < RLIM_NLIMITS; i++) {
 466		if (rlim[i].rlim_cur == RLIM_INFINITY)
 467			count += sprintf(&bufptr[count], "%-25s %-20s ",
 468					 lnames[i].name, "unlimited");
 469		else
 470			count += sprintf(&bufptr[count], "%-25s %-20lu ",
 471					 lnames[i].name, rlim[i].rlim_cur);
 472
 473		if (rlim[i].rlim_max == RLIM_INFINITY)
 474			count += sprintf(&bufptr[count], "%-20s ", "unlimited");
 475		else
 476			count += sprintf(&bufptr[count], "%-20lu ",
 477					 rlim[i].rlim_max);
 478
 479		if (lnames[i].unit)
 480			count += sprintf(&bufptr[count], "%-10s\n",
 481					 lnames[i].unit);
 482		else
 483			count += sprintf(&bufptr[count], "\n");
 484	}
 485
 486	return count;
 487}
 488
 489#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
 490static int proc_pid_syscall(struct task_struct *task, char *buffer)
 
 491{
 492	long nr;
 493	unsigned long args[6], sp, pc;
 494	int res = lock_trace(task);
 
 
 495	if (res)
 496		return res;
 497
 498	if (task_current_syscall(task, &nr, args, 6, &sp, &pc))
 499		res = sprintf(buffer, "running\n");
 500	else if (nr < 0)
 501		res = sprintf(buffer, "%ld 0x%lx 0x%lx\n", nr, sp, pc);
 502	else
 503		res = sprintf(buffer,
 504		       "%ld 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx 0x%lx\n",
 505		       nr,
 506		       args[0], args[1], args[2], args[3], args[4], args[5],
 507		       sp, pc);
 508	unlock_trace(task);
 509	return res;
 
 510}
 511#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */
 512
 513/************************************************************************/
 514/*                       Here the fs part begins                        */
 515/************************************************************************/
 516
 517/* permission checks */
 518static int proc_fd_access_allowed(struct inode *inode)
 519{
 520	struct task_struct *task;
 521	int allowed = 0;
 522	/* Allow access to a task's file descriptors if it is us or we
 523	 * may use ptrace attach to the process and find out that
 524	 * information.
 525	 */
 526	task = get_proc_task(inode);
 527	if (task) {
 528		allowed = ptrace_may_access(task, PTRACE_MODE_READ);
 529		put_task_struct(task);
 530	}
 531	return allowed;
 532}
 533
 534int proc_setattr(struct dentry *dentry, struct iattr *attr)
 535{
 536	int error;
 537	struct inode *inode = dentry->d_inode;
 538
 539	if (attr->ia_valid & ATTR_MODE)
 540		return -EPERM;
 541
 542	error = inode_change_ok(inode, attr);
 543	if (error)
 544		return error;
 545
 546	if ((attr->ia_valid & ATTR_SIZE) &&
 547	    attr->ia_size != i_size_read(inode)) {
 548		error = vmtruncate(inode, attr->ia_size);
 549		if (error)
 550			return error;
 551	}
 552
 553	setattr_copy(inode, attr);
 554	mark_inode_dirty(inode);
 555	return 0;
 556}
 557
 558/*
 559 * May current process learn task's sched/cmdline info (for hide_pid_min=1)
 560 * or euid/egid (for hide_pid_min=2)?
 561 */
 562static bool has_pid_permissions(struct pid_namespace *pid,
 563				 struct task_struct *task,
 564				 int hide_pid_min)
 565{
 566	if (pid->hide_pid < hide_pid_min)
 567		return true;
 568	if (in_group_p(pid->pid_gid))
 569		return true;
 570	return ptrace_may_access(task, PTRACE_MODE_READ);
 571}
 572
 573
 574static int proc_pid_permission(struct inode *inode, int mask)
 575{
 576	struct pid_namespace *pid = inode->i_sb->s_fs_info;
 577	struct task_struct *task;
 578	bool has_perms;
 579
 580	task = get_proc_task(inode);
 581	if (!task)
 582		return -ESRCH;
 583	has_perms = has_pid_permissions(pid, task, 1);
 584	put_task_struct(task);
 585
 586	if (!has_perms) {
 587		if (pid->hide_pid == 2) {
 588			/*
 589			 * Let's make getdents(), stat(), and open()
 590			 * consistent with each other.  If a process
 591			 * may not stat() a file, it shouldn't be seen
 592			 * in procfs at all.
 593			 */
 594			return -ENOENT;
 595		}
 596
 597		return -EPERM;
 598	}
 599	return generic_permission(inode, mask);
 600}
 601
 602
 603
 604static const struct inode_operations proc_def_inode_operations = {
 605	.setattr	= proc_setattr,
 606};
 607
 608#define PROC_BLOCK_SIZE	(3*1024)		/* 4K page size but our output routines use some slack for overruns */
 609
 610static ssize_t proc_info_read(struct file * file, char __user * buf,
 611			  size_t count, loff_t *ppos)
 612{
 613	struct inode * inode = file->f_path.dentry->d_inode;
 614	unsigned long page;
 615	ssize_t length;
 616	struct task_struct *task = get_proc_task(inode);
 617
 618	length = -ESRCH;
 619	if (!task)
 620		goto out_no_task;
 621
 622	if (count > PROC_BLOCK_SIZE)
 623		count = PROC_BLOCK_SIZE;
 624
 625	length = -ENOMEM;
 626	if (!(page = __get_free_page(GFP_TEMPORARY)))
 627		goto out;
 628
 629	length = PROC_I(inode)->op.proc_read(task, (char*)page);
 630
 631	if (length >= 0)
 632		length = simple_read_from_buffer(buf, count, ppos, (char *)page, length);
 633	free_page(page);
 634out:
 635	put_task_struct(task);
 636out_no_task:
 637	return length;
 638}
 639
 640static const struct file_operations proc_info_file_operations = {
 641	.read		= proc_info_read,
 642	.llseek		= generic_file_llseek,
 643};
 644
 645static int proc_single_show(struct seq_file *m, void *v)
 646{
 647	struct inode *inode = m->private;
 648	struct pid_namespace *ns;
 649	struct pid *pid;
 650	struct task_struct *task;
 651	int ret;
 652
 653	ns = inode->i_sb->s_fs_info;
 654	pid = proc_pid(inode);
 655	task = get_pid_task(pid, PIDTYPE_PID);
 656	if (!task)
 657		return -ESRCH;
 658
 659	ret = PROC_I(inode)->op.proc_show(m, ns, pid, task);
 660
 661	put_task_struct(task);
 662	return ret;
 663}
 664
 665static int proc_single_open(struct inode *inode, struct file *filp)
 666{
 667	return single_open(filp, proc_single_show, inode);
 668}
 669
 670static const struct file_operations proc_single_file_operations = {
 671	.open		= proc_single_open,
 672	.read		= seq_read,
 673	.llseek		= seq_lseek,
 674	.release	= single_release,
 675};
 676
 677static int __mem_open(struct inode *inode, struct file *file, unsigned int mode)
 
 678{
 679	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 680	struct mm_struct *mm;
 
 
 
 
 
 
 
 
 
 
 
 
 681
 682	if (!task)
 683		return -ESRCH;
 684
 685	mm = mm_access(task, mode);
 686	put_task_struct(task);
 
 687
 688	if (IS_ERR(mm))
 689		return PTR_ERR(mm);
 690
 691	if (mm) {
 692		/* ensure this mm_struct can't be freed */
 693		atomic_inc(&mm->mm_count);
 694		/* but do not pin its memory */
 695		mmput(mm);
 696	}
 697
 698	/* OK to pass negative loff_t, we can catch out-of-range */
 699	file->f_mode |= FMODE_UNSIGNED_OFFSET;
 700	file->private_data = mm;
 701
 702	return 0;
 703}
 704
 705static int mem_open(struct inode *inode, struct file *file)
 706{
 707	return __mem_open(inode, file, PTRACE_MODE_ATTACH);
 
 
 
 
 
 708}
 709
 710static ssize_t mem_rw(struct file *file, char __user *buf,
 711			size_t count, loff_t *ppos, int write)
 712{
 713	struct mm_struct *mm = file->private_data;
 714	unsigned long addr = *ppos;
 715	ssize_t copied;
 716	char *page;
 
 717
 718	if (!mm)
 719		return 0;
 720
 721	page = (char *)__get_free_page(GFP_TEMPORARY);
 722	if (!page)
 723		return -ENOMEM;
 724
 725	copied = 0;
 726	if (!atomic_inc_not_zero(&mm->mm_users))
 727		goto free;
 728
 
 
 
 
 
 729	while (count > 0) {
 730		int this_len = min_t(int, count, PAGE_SIZE);
 731
 732		if (write && copy_from_user(page, buf, this_len)) {
 733			copied = -EFAULT;
 734			break;
 735		}
 736
 737		this_len = access_remote_vm(mm, addr, page, this_len, write);
 738		if (!this_len) {
 739			if (!copied)
 740				copied = -EIO;
 741			break;
 742		}
 743
 744		if (!write && copy_to_user(buf, page, this_len)) {
 745			copied = -EFAULT;
 746			break;
 747		}
 748
 749		buf += this_len;
 750		addr += this_len;
 751		copied += this_len;
 752		count -= this_len;
 753	}
 754	*ppos = addr;
 755
 756	mmput(mm);
 757free:
 758	free_page((unsigned long) page);
 759	return copied;
 760}
 761
 762static ssize_t mem_read(struct file *file, char __user *buf,
 763			size_t count, loff_t *ppos)
 764{
 765	return mem_rw(file, buf, count, ppos, 0);
 766}
 767
 768static ssize_t mem_write(struct file *file, const char __user *buf,
 769			 size_t count, loff_t *ppos)
 770{
 771	return mem_rw(file, (char __user*)buf, count, ppos, 1);
 772}
 773
 774loff_t mem_lseek(struct file *file, loff_t offset, int orig)
 775{
 776	switch (orig) {
 777	case 0:
 778		file->f_pos = offset;
 779		break;
 780	case 1:
 781		file->f_pos += offset;
 782		break;
 783	default:
 784		return -EINVAL;
 785	}
 786	force_successful_syscall_return();
 787	return file->f_pos;
 788}
 789
 790static int mem_release(struct inode *inode, struct file *file)
 791{
 792	struct mm_struct *mm = file->private_data;
 793	if (mm)
 794		mmdrop(mm);
 795	return 0;
 796}
 797
 798static const struct file_operations proc_mem_operations = {
 799	.llseek		= mem_lseek,
 800	.read		= mem_read,
 801	.write		= mem_write,
 802	.open		= mem_open,
 803	.release	= mem_release,
 804};
 805
 806static int environ_open(struct inode *inode, struct file *file)
 807{
 808	return __mem_open(inode, file, PTRACE_MODE_READ);
 809}
 810
 811static ssize_t environ_read(struct file *file, char __user *buf,
 812			size_t count, loff_t *ppos)
 813{
 814	char *page;
 815	unsigned long src = *ppos;
 816	int ret = 0;
 817	struct mm_struct *mm = file->private_data;
 
 818
 819	if (!mm)
 
 820		return 0;
 821
 822	page = (char *)__get_free_page(GFP_TEMPORARY);
 823	if (!page)
 824		return -ENOMEM;
 825
 826	ret = 0;
 827	if (!atomic_inc_not_zero(&mm->mm_users))
 828		goto free;
 
 
 
 
 
 
 829	while (count > 0) {
 830		int this_len, retval, max_len;
 
 831
 832		this_len = mm->env_end - (mm->env_start + src);
 
 833
 834		if (this_len <= 0)
 835			break;
 836
 837		max_len = (count > PAGE_SIZE) ? PAGE_SIZE : count;
 838		this_len = (this_len > max_len) ? max_len : this_len;
 839
 840		retval = access_remote_vm(mm, (mm->env_start + src),
 841			page, this_len, 0);
 842
 843		if (retval <= 0) {
 844			ret = retval;
 845			break;
 846		}
 847
 848		if (copy_to_user(buf, page, retval)) {
 849			ret = -EFAULT;
 850			break;
 851		}
 852
 853		ret += retval;
 854		src += retval;
 855		buf += retval;
 856		count -= retval;
 857	}
 858	*ppos = src;
 859	mmput(mm);
 860
 861free:
 862	free_page((unsigned long) page);
 863	return ret;
 864}
 865
 866static const struct file_operations proc_environ_operations = {
 867	.open		= environ_open,
 868	.read		= environ_read,
 869	.llseek		= generic_file_llseek,
 870	.release	= mem_release,
 871};
 872
 873static ssize_t oom_adjust_read(struct file *file, char __user *buf,
 874				size_t count, loff_t *ppos)
 875{
 876	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877	char buffer[PROC_NUMBUF];
 
 878	size_t len;
 879	int oom_adjust = OOM_DISABLE;
 880	unsigned long flags;
 881
 882	if (!task)
 883		return -ESRCH;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885	if (lock_task_sighand(task, &flags)) {
 886		oom_adjust = task->signal->oom_adj;
 887		unlock_task_sighand(task, &flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 888	}
 889
 890	put_task_struct(task);
 
 
 
 891
 892	len = snprintf(buffer, sizeof(buffer), "%i\n", oom_adjust);
 
 893
 894	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 895}
 896
 897static ssize_t oom_adjust_write(struct file *file, const char __user *buf,
 898				size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 899{
 900	struct task_struct *task;
 901	char buffer[PROC_NUMBUF];
 902	int oom_adjust;
 903	unsigned long flags;
 904	int err;
 905
 906	memset(buffer, 0, sizeof(buffer));
 907	if (count > sizeof(buffer) - 1)
 908		count = sizeof(buffer) - 1;
 909	if (copy_from_user(buffer, buf, count)) {
 910		err = -EFAULT;
 911		goto out;
 912	}
 913
 914	err = kstrtoint(strstrip(buffer), 0, &oom_adjust);
 915	if (err)
 916		goto out;
 917	if ((oom_adjust < OOM_ADJUST_MIN || oom_adjust > OOM_ADJUST_MAX) &&
 918	     oom_adjust != OOM_DISABLE) {
 919		err = -EINVAL;
 920		goto out;
 921	}
 922
 923	task = get_proc_task(file->f_path.dentry->d_inode);
 924	if (!task) {
 925		err = -ESRCH;
 926		goto out;
 927	}
 928
 929	task_lock(task);
 930	if (!task->mm) {
 931		err = -EINVAL;
 932		goto err_task_lock;
 933	}
 934
 935	if (!lock_task_sighand(task, &flags)) {
 936		err = -ESRCH;
 937		goto err_task_lock;
 938	}
 939
 940	if (oom_adjust < task->signal->oom_adj && !capable(CAP_SYS_RESOURCE)) {
 941		err = -EACCES;
 942		goto err_sighand;
 943	}
 944
 945	/*
 946	 * Warn that /proc/pid/oom_adj is deprecated, see
 947	 * Documentation/feature-removal-schedule.txt.
 948	 */
 949	printk_once(KERN_WARNING "%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n",
 950		  current->comm, task_pid_nr(current), task_pid_nr(task),
 951		  task_pid_nr(task));
 952	task->signal->oom_adj = oom_adjust;
 953	/*
 954	 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum
 955	 * value is always attainable.
 956	 */
 957	if (task->signal->oom_adj == OOM_ADJUST_MAX)
 958		task->signal->oom_score_adj = OOM_SCORE_ADJ_MAX;
 959	else
 960		task->signal->oom_score_adj = (oom_adjust * OOM_SCORE_ADJ_MAX) /
 961								-OOM_DISABLE;
 962	trace_oom_score_adj_update(task);
 963err_sighand:
 964	unlock_task_sighand(task, &flags);
 965err_task_lock:
 966	task_unlock(task);
 967	put_task_struct(task);
 968out:
 969	return err < 0 ? err : count;
 970}
 971
 972static const struct file_operations proc_oom_adjust_operations = {
 973	.read		= oom_adjust_read,
 974	.write		= oom_adjust_write,
 975	.llseek		= generic_file_llseek,
 976};
 977
 978static ssize_t oom_score_adj_read(struct file *file, char __user *buf,
 979					size_t count, loff_t *ppos)
 980{
 981	struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
 982	char buffer[PROC_NUMBUF];
 983	int oom_score_adj = OOM_SCORE_ADJ_MIN;
 984	unsigned long flags;
 985	size_t len;
 986
 987	if (!task)
 988		return -ESRCH;
 989	if (lock_task_sighand(task, &flags)) {
 990		oom_score_adj = task->signal->oom_score_adj;
 991		unlock_task_sighand(task, &flags);
 992	}
 993	put_task_struct(task);
 994	len = snprintf(buffer, sizeof(buffer), "%d\n", oom_score_adj);
 995	return simple_read_from_buffer(buf, count, ppos, buffer, len);
 996}
 997
 998static ssize_t oom_score_adj_write(struct file *file, const char __user *buf,
 999					size_t count, loff_t *ppos)
1000{
1001	struct task_struct *task;
1002	char buffer[PROC_NUMBUF];
1003	unsigned long flags;
1004	int oom_score_adj;
1005	int err;
1006
1007	memset(buffer, 0, sizeof(buffer));
1008	if (count > sizeof(buffer) - 1)
1009		count = sizeof(buffer) - 1;
1010	if (copy_from_user(buffer, buf, count)) {
1011		err = -EFAULT;
1012		goto out;
1013	}
1014
1015	err = kstrtoint(strstrip(buffer), 0, &oom_score_adj);
1016	if (err)
1017		goto out;
1018	if (oom_score_adj < OOM_SCORE_ADJ_MIN ||
1019			oom_score_adj > OOM_SCORE_ADJ_MAX) {
1020		err = -EINVAL;
1021		goto out;
1022	}
1023
1024	task = get_proc_task(file->f_path.dentry->d_inode);
1025	if (!task) {
1026		err = -ESRCH;
1027		goto out;
1028	}
1029
1030	task_lock(task);
1031	if (!task->mm) {
1032		err = -EINVAL;
1033		goto err_task_lock;
1034	}
1035
1036	if (!lock_task_sighand(task, &flags)) {
1037		err = -ESRCH;
1038		goto err_task_lock;
1039	}
1040
1041	if (oom_score_adj < task->signal->oom_score_adj_min &&
1042			!capable(CAP_SYS_RESOURCE)) {
1043		err = -EACCES;
1044		goto err_sighand;
1045	}
1046
1047	task->signal->oom_score_adj = oom_score_adj;
1048	if (has_capability_noaudit(current, CAP_SYS_RESOURCE))
1049		task->signal->oom_score_adj_min = oom_score_adj;
1050	trace_oom_score_adj_update(task);
1051	/*
1052	 * Scale /proc/pid/oom_adj appropriately ensuring that OOM_DISABLE is
1053	 * always attainable.
1054	 */
1055	if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MIN)
1056		task->signal->oom_adj = OOM_DISABLE;
1057	else
1058		task->signal->oom_adj = (oom_score_adj * OOM_ADJUST_MAX) /
1059							OOM_SCORE_ADJ_MAX;
1060err_sighand:
1061	unlock_task_sighand(task, &flags);
1062err_task_lock:
1063	task_unlock(task);
1064	put_task_struct(task);
1065out:
1066	return err < 0 ? err : count;
1067}
1068
1069static const struct file_operations proc_oom_score_adj_operations = {
1070	.read		= oom_score_adj_read,
1071	.write		= oom_score_adj_write,
1072	.llseek		= default_llseek,
1073};
1074
1075#ifdef CONFIG_AUDITSYSCALL
1076#define TMPBUFLEN 21
1077static ssize_t proc_loginuid_read(struct file * file, char __user * buf,
1078				  size_t count, loff_t *ppos)
1079{
1080	struct inode * inode = file->f_path.dentry->d_inode;
1081	struct task_struct *task = get_proc_task(inode);
1082	ssize_t length;
1083	char tmpbuf[TMPBUFLEN];
1084
1085	if (!task)
1086		return -ESRCH;
1087	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1088				audit_get_loginuid(task));
 
1089	put_task_struct(task);
1090	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1091}
1092
1093static ssize_t proc_loginuid_write(struct file * file, const char __user * buf,
1094				   size_t count, loff_t *ppos)
1095{
1096	struct inode * inode = file->f_path.dentry->d_inode;
1097	char *page, *tmp;
1098	ssize_t length;
1099	uid_t loginuid;
 
 
1100
1101	rcu_read_lock();
1102	if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) {
1103		rcu_read_unlock();
1104		return -EPERM;
1105	}
1106	rcu_read_unlock();
1107
1108	if (count >= PAGE_SIZE)
1109		count = PAGE_SIZE - 1;
1110
1111	if (*ppos != 0) {
1112		/* No partial writes. */
1113		return -EINVAL;
1114	}
1115	page = (char*)__get_free_page(GFP_TEMPORARY);
1116	if (!page)
1117		return -ENOMEM;
1118	length = -EFAULT;
1119	if (copy_from_user(page, buf, count))
1120		goto out_free_page;
1121
1122	page[count] = '\0';
1123	loginuid = simple_strtoul(page, &tmp, 10);
1124	if (tmp == page) {
1125		length = -EINVAL;
1126		goto out_free_page;
1127
1128	}
1129	length = audit_set_loginuid(loginuid);
1130	if (likely(length == 0))
1131		length = count;
1132
1133out_free_page:
1134	free_page((unsigned long) page);
1135	return length;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1136}
1137
1138static const struct file_operations proc_loginuid_operations = {
1139	.read		= proc_loginuid_read,
1140	.write		= proc_loginuid_write,
1141	.llseek		= generic_file_llseek,
1142};
1143
1144static ssize_t proc_sessionid_read(struct file * file, char __user * buf,
1145				  size_t count, loff_t *ppos)
1146{
1147	struct inode * inode = file->f_path.dentry->d_inode;
1148	struct task_struct *task = get_proc_task(inode);
1149	ssize_t length;
1150	char tmpbuf[TMPBUFLEN];
1151
1152	if (!task)
1153		return -ESRCH;
1154	length = scnprintf(tmpbuf, TMPBUFLEN, "%u",
1155				audit_get_sessionid(task));
1156	put_task_struct(task);
1157	return simple_read_from_buffer(buf, count, ppos, tmpbuf, length);
1158}
1159
1160static const struct file_operations proc_sessionid_operations = {
1161	.read		= proc_sessionid_read,
1162	.llseek		= generic_file_llseek,
1163};
1164#endif
1165
1166#ifdef CONFIG_FAULT_INJECTION
1167static ssize_t proc_fault_inject_read(struct file * file, char __user * buf,
1168				      size_t count, loff_t *ppos)
1169{
1170	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
1171	char buffer[PROC_NUMBUF];
1172	size_t len;
1173	int make_it_fail;
1174
1175	if (!task)
1176		return -ESRCH;
1177	make_it_fail = task->make_it_fail;
1178	put_task_struct(task);
1179
1180	len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail);
1181
1182	return simple_read_from_buffer(buf, count, ppos, buffer, len);
1183}
1184
1185static ssize_t proc_fault_inject_write(struct file * file,
1186			const char __user * buf, size_t count, loff_t *ppos)
1187{
1188	struct task_struct *task;
1189	char buffer[PROC_NUMBUF], *end;
1190	int make_it_fail;
 
1191
1192	if (!capable(CAP_SYS_RESOURCE))
1193		return -EPERM;
1194	memset(buffer, 0, sizeof(buffer));
1195	if (count > sizeof(buffer) - 1)
1196		count = sizeof(buffer) - 1;
1197	if (copy_from_user(buffer, buf, count))
1198		return -EFAULT;
1199	make_it_fail = simple_strtol(strstrip(buffer), &end, 0);
1200	if (*end)
 
 
1201		return -EINVAL;
1202	task = get_proc_task(file->f_dentry->d_inode);
 
1203	if (!task)
1204		return -ESRCH;
1205	task->make_it_fail = make_it_fail;
1206	put_task_struct(task);
1207
1208	return count;
1209}
1210
1211static const struct file_operations proc_fault_inject_operations = {
1212	.read		= proc_fault_inject_read,
1213	.write		= proc_fault_inject_write,
1214	.llseek		= generic_file_llseek,
1215};
1216#endif
1217
1218
1219#ifdef CONFIG_SCHED_DEBUG
1220/*
1221 * Print out various scheduling related per-task fields:
1222 */
1223static int sched_show(struct seq_file *m, void *v)
1224{
1225	struct inode *inode = m->private;
1226	struct task_struct *p;
1227
1228	p = get_proc_task(inode);
1229	if (!p)
1230		return -ESRCH;
1231	proc_sched_show_task(p, m);
1232
1233	put_task_struct(p);
1234
1235	return 0;
1236}
1237
1238static ssize_t
1239sched_write(struct file *file, const char __user *buf,
1240	    size_t count, loff_t *offset)
1241{
1242	struct inode *inode = file->f_path.dentry->d_inode;
1243	struct task_struct *p;
1244
1245	p = get_proc_task(inode);
1246	if (!p)
1247		return -ESRCH;
1248	proc_sched_set_task(p);
1249
1250	put_task_struct(p);
1251
1252	return count;
1253}
1254
1255static int sched_open(struct inode *inode, struct file *filp)
1256{
1257	return single_open(filp, sched_show, inode);
1258}
1259
1260static const struct file_operations proc_pid_sched_operations = {
1261	.open		= sched_open,
1262	.read		= seq_read,
1263	.write		= sched_write,
1264	.llseek		= seq_lseek,
1265	.release	= single_release,
1266};
1267
1268#endif
1269
1270#ifdef CONFIG_SCHED_AUTOGROUP
1271/*
1272 * Print out autogroup related information:
1273 */
1274static int sched_autogroup_show(struct seq_file *m, void *v)
1275{
1276	struct inode *inode = m->private;
1277	struct task_struct *p;
1278
1279	p = get_proc_task(inode);
1280	if (!p)
1281		return -ESRCH;
1282	proc_sched_autogroup_show_task(p, m);
1283
1284	put_task_struct(p);
1285
1286	return 0;
1287}
1288
1289static ssize_t
1290sched_autogroup_write(struct file *file, const char __user *buf,
1291	    size_t count, loff_t *offset)
1292{
1293	struct inode *inode = file->f_path.dentry->d_inode;
1294	struct task_struct *p;
1295	char buffer[PROC_NUMBUF];
1296	int nice;
1297	int err;
1298
1299	memset(buffer, 0, sizeof(buffer));
1300	if (count > sizeof(buffer) - 1)
1301		count = sizeof(buffer) - 1;
1302	if (copy_from_user(buffer, buf, count))
1303		return -EFAULT;
1304
1305	err = kstrtoint(strstrip(buffer), 0, &nice);
1306	if (err < 0)
1307		return err;
1308
1309	p = get_proc_task(inode);
1310	if (!p)
1311		return -ESRCH;
1312
1313	err = proc_sched_autogroup_set_nice(p, nice);
1314	if (err)
1315		count = err;
1316
1317	put_task_struct(p);
1318
1319	return count;
1320}
1321
1322static int sched_autogroup_open(struct inode *inode, struct file *filp)
1323{
1324	int ret;
1325
1326	ret = single_open(filp, sched_autogroup_show, NULL);
1327	if (!ret) {
1328		struct seq_file *m = filp->private_data;
1329
1330		m->private = inode;
1331	}
1332	return ret;
1333}
1334
1335static const struct file_operations proc_pid_sched_autogroup_operations = {
1336	.open		= sched_autogroup_open,
1337	.read		= seq_read,
1338	.write		= sched_autogroup_write,
1339	.llseek		= seq_lseek,
1340	.release	= single_release,
1341};
1342
1343#endif /* CONFIG_SCHED_AUTOGROUP */
1344
1345static ssize_t comm_write(struct file *file, const char __user *buf,
1346				size_t count, loff_t *offset)
1347{
1348	struct inode *inode = file->f_path.dentry->d_inode;
1349	struct task_struct *p;
1350	char buffer[TASK_COMM_LEN];
 
1351
1352	memset(buffer, 0, sizeof(buffer));
1353	if (count > sizeof(buffer) - 1)
1354		count = sizeof(buffer) - 1;
1355	if (copy_from_user(buffer, buf, count))
1356		return -EFAULT;
1357
1358	p = get_proc_task(inode);
1359	if (!p)
1360		return -ESRCH;
1361
1362	if (same_thread_group(current, p))
1363		set_task_comm(p, buffer);
1364	else
1365		count = -EINVAL;
1366
1367	put_task_struct(p);
1368
1369	return count;
1370}
1371
1372static int comm_show(struct seq_file *m, void *v)
1373{
1374	struct inode *inode = m->private;
1375	struct task_struct *p;
1376
1377	p = get_proc_task(inode);
1378	if (!p)
1379		return -ESRCH;
1380
1381	task_lock(p);
1382	seq_printf(m, "%s\n", p->comm);
1383	task_unlock(p);
1384
1385	put_task_struct(p);
1386
1387	return 0;
1388}
1389
1390static int comm_open(struct inode *inode, struct file *filp)
1391{
1392	return single_open(filp, comm_show, inode);
1393}
1394
1395static const struct file_operations proc_pid_set_comm_operations = {
1396	.open		= comm_open,
1397	.read		= seq_read,
1398	.write		= comm_write,
1399	.llseek		= seq_lseek,
1400	.release	= single_release,
1401};
1402
1403static int proc_exe_link(struct dentry *dentry, struct path *exe_path)
1404{
1405	struct task_struct *task;
1406	struct mm_struct *mm;
1407	struct file *exe_file;
1408
1409	task = get_proc_task(dentry->d_inode);
1410	if (!task)
1411		return -ENOENT;
1412	mm = get_task_mm(task);
1413	put_task_struct(task);
1414	if (!mm)
1415		return -ENOENT;
1416	exe_file = get_mm_exe_file(mm);
1417	mmput(mm);
1418	if (exe_file) {
1419		*exe_path = exe_file->f_path;
1420		path_get(&exe_file->f_path);
1421		fput(exe_file);
1422		return 0;
1423	} else
1424		return -ENOENT;
1425}
1426
1427static void *proc_pid_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 
1428{
1429	struct inode *inode = dentry->d_inode;
1430	int error = -EACCES;
1431
1432	/* We don't need a base pointer in the /proc filesystem */
1433	path_put(&nd->path);
1434
1435	/* Are we allowed to snoop on the tasks file descriptors? */
1436	if (!proc_fd_access_allowed(inode))
1437		goto out;
1438
1439	error = PROC_I(inode)->op.proc_get_link(dentry, &nd->path);
 
 
 
 
 
1440out:
1441	return ERR_PTR(error);
1442}
1443
1444static int do_proc_readlink(struct path *path, char __user *buffer, int buflen)
1445{
1446	char *tmp = (char*)__get_free_page(GFP_TEMPORARY);
1447	char *pathname;
1448	int len;
1449
1450	if (!tmp)
1451		return -ENOMEM;
1452
1453	pathname = d_path(path, tmp, PAGE_SIZE);
1454	len = PTR_ERR(pathname);
1455	if (IS_ERR(pathname))
1456		goto out;
1457	len = tmp + PAGE_SIZE - 1 - pathname;
1458
1459	if (len > buflen)
1460		len = buflen;
1461	if (copy_to_user(buffer, pathname, len))
1462		len = -EFAULT;
1463 out:
1464	free_page((unsigned long)tmp);
1465	return len;
1466}
1467
1468static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen)
1469{
1470	int error = -EACCES;
1471	struct inode *inode = dentry->d_inode;
1472	struct path path;
1473
1474	/* Are we allowed to snoop on the tasks file descriptors? */
1475	if (!proc_fd_access_allowed(inode))
1476		goto out;
1477
1478	error = PROC_I(inode)->op.proc_get_link(dentry, &path);
1479	if (error)
1480		goto out;
1481
1482	error = do_proc_readlink(&path, buffer, buflen);
1483	path_put(&path);
1484out:
1485	return error;
1486}
1487
1488static const struct inode_operations proc_pid_link_inode_operations = {
1489	.readlink	= proc_pid_readlink,
1490	.follow_link	= proc_pid_follow_link,
1491	.setattr	= proc_setattr,
1492};
1493
1494
1495/* building an inode */
1496
1497static int task_dumpable(struct task_struct *task)
1498{
1499	int dumpable = 0;
1500	struct mm_struct *mm;
1501
1502	task_lock(task);
1503	mm = task->mm;
1504	if (mm)
1505		dumpable = get_dumpable(mm);
1506	task_unlock(task);
1507	if(dumpable == 1)
1508		return 1;
1509	return 0;
1510}
1511
1512struct inode *proc_pid_make_inode(struct super_block * sb, struct task_struct *task)
1513{
1514	struct inode * inode;
1515	struct proc_inode *ei;
1516	const struct cred *cred;
1517
1518	/* We need a new inode */
1519
1520	inode = new_inode(sb);
1521	if (!inode)
1522		goto out;
1523
1524	/* Common stuff */
1525	ei = PROC_I(inode);
 
1526	inode->i_ino = get_next_ino();
1527	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
1528	inode->i_op = &proc_def_inode_operations;
1529
1530	/*
1531	 * grab the reference to task.
1532	 */
1533	ei->pid = get_task_pid(task, PIDTYPE_PID);
1534	if (!ei->pid)
1535		goto out_unlock;
1536
1537	if (task_dumpable(task)) {
1538		rcu_read_lock();
1539		cred = __task_cred(task);
1540		inode->i_uid = cred->euid;
1541		inode->i_gid = cred->egid;
1542		rcu_read_unlock();
1543	}
1544	security_task_to_inode(task, inode);
1545
1546out:
1547	return inode;
1548
1549out_unlock:
1550	iput(inode);
1551	return NULL;
1552}
1553
1554int pid_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
1555{
1556	struct inode *inode = dentry->d_inode;
1557	struct task_struct *task;
1558	const struct cred *cred;
1559	struct pid_namespace *pid = dentry->d_sb->s_fs_info;
1560
1561	generic_fillattr(inode, stat);
1562
1563	rcu_read_lock();
1564	stat->uid = GLOBAL_ROOT_UID;
1565	stat->gid = GLOBAL_ROOT_GID;
1566	task = pid_task(proc_pid(inode), PIDTYPE_PID);
1567	if (task) {
1568		if (!has_pid_permissions(pid, task, 2)) {
1569			rcu_read_unlock();
1570			/*
1571			 * This doesn't prevent learning whether PID exists,
1572			 * it only makes getattr() consistent with readdir().
1573			 */
1574			return -ENOENT;
1575		}
1576		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1577		    task_dumpable(task)) {
1578			cred = __task_cred(task);
1579			stat->uid = cred->euid;
1580			stat->gid = cred->egid;
1581		}
1582	}
1583	rcu_read_unlock();
1584	return 0;
1585}
1586
1587/* dentry stuff */
1588
1589/*
1590 *	Exceptional case: normally we are not allowed to unhash a busy
1591 * directory. In this case, however, we can do it - no aliasing problems
1592 * due to the way we treat inodes.
1593 *
1594 * Rewrite the inode's ownerships here because the owning task may have
1595 * performed a setuid(), etc.
1596 *
1597 * Before the /proc/pid/status file was created the only way to read
1598 * the effective uid of a /process was to stat /proc/pid.  Reading
1599 * /proc/pid/status is slow enough that procps and other packages
1600 * kept stating /proc/pid.  To keep the rules in /proc simple I have
1601 * made this apply to all per process world readable and executable
1602 * directories.
1603 */
1604int pid_revalidate(struct dentry *dentry, struct nameidata *nd)
1605{
1606	struct inode *inode;
1607	struct task_struct *task;
1608	const struct cred *cred;
1609
1610	if (nd && nd->flags & LOOKUP_RCU)
1611		return -ECHILD;
1612
1613	inode = dentry->d_inode;
1614	task = get_proc_task(inode);
1615
1616	if (task) {
1617		if ((inode->i_mode == (S_IFDIR|S_IRUGO|S_IXUGO)) ||
1618		    task_dumpable(task)) {
1619			rcu_read_lock();
1620			cred = __task_cred(task);
1621			inode->i_uid = cred->euid;
1622			inode->i_gid = cred->egid;
1623			rcu_read_unlock();
1624		} else {
1625			inode->i_uid = GLOBAL_ROOT_UID;
1626			inode->i_gid = GLOBAL_ROOT_GID;
1627		}
1628		inode->i_mode &= ~(S_ISUID | S_ISGID);
1629		security_task_to_inode(task, inode);
1630		put_task_struct(task);
1631		return 1;
1632	}
1633	d_drop(dentry);
1634	return 0;
1635}
1636
1637static int pid_delete_dentry(const struct dentry * dentry)
 
 
 
 
 
1638{
1639	/* Is the task we represent dead?
1640	 * If so, then don't put the dentry on the lru list,
1641	 * kill it immediately.
1642	 */
1643	return !proc_pid(dentry->d_inode)->tasks[PIDTYPE_PID].first;
1644}
1645
1646const struct dentry_operations pid_dentry_operations =
1647{
1648	.d_revalidate	= pid_revalidate,
1649	.d_delete	= pid_delete_dentry,
1650};
1651
1652/* Lookups */
1653
1654/*
1655 * Fill a directory entry.
1656 *
1657 * If possible create the dcache entry and derive our inode number and
1658 * file type from dcache entry.
1659 *
1660 * Since all of the proc inode numbers are dynamically generated, the inode
1661 * numbers do not exist until the inode is cache.  This means creating the
1662 * the dcache entry in readdir is necessary to keep the inode numbers
1663 * reported by readdir in sync with the inode numbers reported
1664 * by stat.
1665 */
1666int proc_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
1667	const char *name, int len,
1668	instantiate_t instantiate, struct task_struct *task, const void *ptr)
1669{
1670	struct dentry *child, *dir = filp->f_path.dentry;
 
1671	struct inode *inode;
1672	struct qstr qname;
1673	ino_t ino = 0;
1674	unsigned type = DT_UNKNOWN;
1675
1676	qname.name = name;
1677	qname.len  = len;
1678	qname.hash = full_name_hash(name, len);
1679
1680	child = d_lookup(dir, &qname);
1681	if (!child) {
1682		struct dentry *new;
1683		new = d_alloc(dir, &qname);
1684		if (new) {
1685			child = instantiate(dir->d_inode, new, task, ptr);
1686			if (child)
1687				dput(new);
1688			else
1689				child = new;
1690		}
1691	}
1692	if (!child || IS_ERR(child) || !child->d_inode)
1693		goto end_instantiate;
1694	inode = child->d_inode;
1695	if (inode) {
1696		ino = inode->i_ino;
1697		type = inode->i_mode >> 12;
1698	}
1699	dput(child);
1700end_instantiate:
1701	if (!ino)
1702		ino = find_inode_number(dir, &qname);
1703	if (!ino)
1704		ino = 1;
1705	return filldir(dirent, name, len, filp->f_pos, ino, type);
1706}
1707
1708static unsigned name_to_int(struct dentry *dentry)
1709{
1710	const char *name = dentry->d_name.name;
1711	int len = dentry->d_name.len;
1712	unsigned n = 0;
1713
1714	if (len > 1 && *name == '0')
1715		goto out;
1716	while (len-- > 0) {
1717		unsigned c = *name++ - '0';
1718		if (c > 9)
1719			goto out;
1720		if (n >= (~0U-9)/10)
1721			goto out;
1722		n *= 10;
1723		n += c;
1724	}
1725	return n;
1726out:
1727	return ~0U;
1728}
1729
1730#define PROC_FDINFO_MAX 64
1731
1732static int proc_fd_info(struct inode *inode, struct path *path, char *info)
1733{
1734	struct task_struct *task = get_proc_task(inode);
1735	struct files_struct *files = NULL;
1736	struct file *file;
1737	int fd = proc_fd(inode);
1738
1739	if (task) {
1740		files = get_files_struct(task);
1741		put_task_struct(task);
1742	}
1743	if (files) {
1744		/*
1745		 * We are not taking a ref to the file structure, so we must
1746		 * hold ->file_lock.
1747		 */
1748		spin_lock(&files->file_lock);
1749		file = fcheck_files(files, fd);
1750		if (file) {
1751			unsigned int f_flags;
1752			struct fdtable *fdt;
1753
1754			fdt = files_fdtable(files);
1755			f_flags = file->f_flags & ~O_CLOEXEC;
1756			if (close_on_exec(fd, fdt))
1757				f_flags |= O_CLOEXEC;
1758
1759			if (path) {
1760				*path = file->f_path;
1761				path_get(&file->f_path);
1762			}
1763			if (info)
1764				snprintf(info, PROC_FDINFO_MAX,
1765					 "pos:\t%lli\n"
1766					 "flags:\t0%o\n",
1767					 (long long) file->f_pos,
1768					 f_flags);
1769			spin_unlock(&files->file_lock);
1770			put_files_struct(files);
1771			return 0;
1772		}
1773		spin_unlock(&files->file_lock);
1774		put_files_struct(files);
1775	}
1776	return -ENOENT;
1777}
 
 
 
1778
1779static int proc_fd_link(struct dentry *dentry, struct path *path)
1780{
1781	return proc_fd_info(dentry->d_inode, path, NULL);
1782}
1783
1784static int tid_fd_revalidate(struct dentry *dentry, struct nameidata *nd)
1785{
1786	struct inode *inode;
1787	struct task_struct *task;
1788	int fd;
1789	struct files_struct *files;
1790	const struct cred *cred;
1791
1792	if (nd && nd->flags & LOOKUP_RCU)
1793		return -ECHILD;
1794
1795	inode = dentry->d_inode;
1796	task = get_proc_task(inode);
1797	fd = proc_fd(inode);
1798
1799	if (task) {
1800		files = get_files_struct(task);
1801		if (files) {
1802			struct file *file;
1803			rcu_read_lock();
1804			file = fcheck_files(files, fd);
1805			if (file) {
1806				unsigned f_mode = file->f_mode;
1807
1808				rcu_read_unlock();
1809				put_files_struct(files);
1810
1811				if (task_dumpable(task)) {
1812					rcu_read_lock();
1813					cred = __task_cred(task);
1814					inode->i_uid = cred->euid;
1815					inode->i_gid = cred->egid;
1816					rcu_read_unlock();
1817				} else {
1818					inode->i_uid = GLOBAL_ROOT_UID;
1819					inode->i_gid = GLOBAL_ROOT_GID;
1820				}
1821
1822				if (S_ISLNK(inode->i_mode)) {
1823					unsigned i_mode = S_IFLNK;
1824					if (f_mode & FMODE_READ)
1825						i_mode |= S_IRUSR | S_IXUSR;
1826					if (f_mode & FMODE_WRITE)
1827						i_mode |= S_IWUSR | S_IXUSR;
1828					inode->i_mode = i_mode;
1829				}
1830
1831				security_task_to_inode(task, inode);
1832				put_task_struct(task);
1833				return 1;
1834			}
1835			rcu_read_unlock();
1836			put_files_struct(files);
1837		}
1838		put_task_struct(task);
1839	}
1840	d_drop(dentry);
1841	return 0;
1842}
1843
1844static const struct dentry_operations tid_fd_dentry_operations =
1845{
1846	.d_revalidate	= tid_fd_revalidate,
1847	.d_delete	= pid_delete_dentry,
1848};
1849
1850static struct dentry *proc_fd_instantiate(struct inode *dir,
1851	struct dentry *dentry, struct task_struct *task, const void *ptr)
1852{
1853	unsigned fd = (unsigned long)ptr;
1854 	struct inode *inode;
1855 	struct proc_inode *ei;
1856	struct dentry *error = ERR_PTR(-ENOENT);
1857
1858	inode = proc_pid_make_inode(dir->i_sb, task);
1859	if (!inode)
1860		goto out;
1861	ei = PROC_I(inode);
1862	ei->fd = fd;
1863
1864	inode->i_mode = S_IFLNK;
1865	inode->i_op = &proc_pid_link_inode_operations;
1866	inode->i_size = 64;
1867	ei->op.proc_get_link = proc_fd_link;
1868	d_set_d_op(dentry, &tid_fd_dentry_operations);
1869	d_add(dentry, inode);
1870	/* Close the race of the process dying before we return the dentry */
1871	if (tid_fd_revalidate(dentry, NULL))
1872		error = NULL;
1873
1874 out:
1875	return error;
1876}
1877
1878static struct dentry *proc_lookupfd_common(struct inode *dir,
1879					   struct dentry *dentry,
1880					   instantiate_t instantiate)
1881{
1882	struct task_struct *task = get_proc_task(dir);
1883	unsigned fd = name_to_int(dentry);
1884	struct dentry *result = ERR_PTR(-ENOENT);
1885
1886	if (!task)
1887		goto out_no_task;
1888	if (fd == ~0U)
1889		goto out;
1890
1891	result = instantiate(dir, dentry, task, (void *)(unsigned long)fd);
1892out:
1893	put_task_struct(task);
1894out_no_task:
1895	return result;
1896}
1897
1898static int proc_readfd_common(struct file * filp, void * dirent,
1899			      filldir_t filldir, instantiate_t instantiate)
1900{
1901	struct dentry *dentry = filp->f_path.dentry;
1902	struct inode *inode = dentry->d_inode;
1903	struct task_struct *p = get_proc_task(inode);
1904	unsigned int fd, ino;
1905	int retval;
1906	struct files_struct * files;
1907
1908	retval = -ENOENT;
1909	if (!p)
1910		goto out_no_task;
1911	retval = 0;
1912
1913	fd = filp->f_pos;
1914	switch (fd) {
1915		case 0:
1916			if (filldir(dirent, ".", 1, 0, inode->i_ino, DT_DIR) < 0)
1917				goto out;
1918			filp->f_pos++;
1919		case 1:
1920			ino = parent_ino(dentry);
1921			if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
1922				goto out;
1923			filp->f_pos++;
1924		default:
1925			files = get_files_struct(p);
1926			if (!files)
1927				goto out;
1928			rcu_read_lock();
1929			for (fd = filp->f_pos-2;
1930			     fd < files_fdtable(files)->max_fds;
1931			     fd++, filp->f_pos++) {
1932				char name[PROC_NUMBUF];
1933				int len;
1934				int rv;
1935
1936				if (!fcheck_files(files, fd))
1937					continue;
1938				rcu_read_unlock();
1939
1940				len = snprintf(name, sizeof(name), "%d", fd);
1941				rv = proc_fill_cache(filp, dirent, filldir,
1942						     name, len, instantiate, p,
1943						     (void *)(unsigned long)fd);
1944				if (rv < 0)
1945					goto out_fd_loop;
1946				rcu_read_lock();
1947			}
1948			rcu_read_unlock();
1949out_fd_loop:
1950			put_files_struct(files);
1951	}
1952out:
1953	put_task_struct(p);
1954out_no_task:
1955	return retval;
1956}
1957
1958static struct dentry *proc_lookupfd(struct inode *dir, struct dentry *dentry,
1959				    struct nameidata *nd)
1960{
1961	return proc_lookupfd_common(dir, dentry, proc_fd_instantiate);
1962}
1963
1964static int proc_readfd(struct file *filp, void *dirent, filldir_t filldir)
1965{
1966	return proc_readfd_common(filp, dirent, filldir, proc_fd_instantiate);
1967}
1968
1969static ssize_t proc_fdinfo_read(struct file *file, char __user *buf,
1970				      size_t len, loff_t *ppos)
1971{
1972	char tmp[PROC_FDINFO_MAX];
1973	int err = proc_fd_info(file->f_path.dentry->d_inode, NULL, tmp);
1974	if (!err)
1975		err = simple_read_from_buffer(buf, len, ppos, tmp, strlen(tmp));
1976	return err;
1977}
1978
1979static const struct file_operations proc_fdinfo_file_operations = {
1980	.open           = nonseekable_open,
1981	.read		= proc_fdinfo_read,
1982	.llseek		= no_llseek,
1983};
1984
1985static const struct file_operations proc_fd_operations = {
1986	.read		= generic_read_dir,
1987	.readdir	= proc_readfd,
1988	.llseek		= default_llseek,
1989};
1990
1991#ifdef CONFIG_CHECKPOINT_RESTORE
1992
1993/*
1994 * dname_to_vma_addr - maps a dentry name into two unsigned longs
1995 * which represent vma start and end addresses.
1996 */
1997static int dname_to_vma_addr(struct dentry *dentry,
1998			     unsigned long *start, unsigned long *end)
1999{
2000	if (sscanf(dentry->d_name.name, "%lx-%lx", start, end) != 2)
2001		return -EINVAL;
2002
2003	return 0;
2004}
2005
2006static int map_files_d_revalidate(struct dentry *dentry, struct nameidata *nd)
2007{
2008	unsigned long vm_start, vm_end;
2009	bool exact_vma_exists = false;
2010	struct mm_struct *mm = NULL;
2011	struct task_struct *task;
2012	const struct cred *cred;
2013	struct inode *inode;
2014	int status = 0;
2015
2016	if (nd && nd->flags & LOOKUP_RCU)
2017		return -ECHILD;
2018
2019	if (!capable(CAP_SYS_ADMIN)) {
2020		status = -EACCES;
2021		goto out_notask;
2022	}
2023
2024	inode = dentry->d_inode;
2025	task = get_proc_task(inode);
2026	if (!task)
2027		goto out_notask;
2028
2029	mm = mm_access(task, PTRACE_MODE_READ);
2030	if (IS_ERR_OR_NULL(mm))
2031		goto out;
2032
2033	if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) {
2034		down_read(&mm->mmap_sem);
2035		exact_vma_exists = !!find_exact_vma(mm, vm_start, vm_end);
2036		up_read(&mm->mmap_sem);
2037	}
2038
2039	mmput(mm);
2040
2041	if (exact_vma_exists) {
2042		if (task_dumpable(task)) {
2043			rcu_read_lock();
2044			cred = __task_cred(task);
2045			inode->i_uid = cred->euid;
2046			inode->i_gid = cred->egid;
2047			rcu_read_unlock();
2048		} else {
2049			inode->i_uid = GLOBAL_ROOT_UID;
2050			inode->i_gid = GLOBAL_ROOT_GID;
2051		}
2052		security_task_to_inode(task, inode);
2053		status = 1;
2054	}
2055
2056out:
2057	put_task_struct(task);
2058
2059out_notask:
2060	if (status <= 0)
2061		d_drop(dentry);
2062
2063	return status;
2064}
2065
2066static const struct dentry_operations tid_map_files_dentry_operations = {
2067	.d_revalidate	= map_files_d_revalidate,
2068	.d_delete	= pid_delete_dentry,
2069};
2070
2071static int proc_map_files_get_link(struct dentry *dentry, struct path *path)
2072{
2073	unsigned long vm_start, vm_end;
2074	struct vm_area_struct *vma;
2075	struct task_struct *task;
2076	struct mm_struct *mm;
2077	int rc;
2078
2079	rc = -ENOENT;
2080	task = get_proc_task(dentry->d_inode);
2081	if (!task)
2082		goto out;
2083
2084	mm = get_task_mm(task);
2085	put_task_struct(task);
2086	if (!mm)
2087		goto out;
2088
2089	rc = dname_to_vma_addr(dentry, &vm_start, &vm_end);
2090	if (rc)
2091		goto out_mmput;
2092
 
2093	down_read(&mm->mmap_sem);
2094	vma = find_exact_vma(mm, vm_start, vm_end);
2095	if (vma && vma->vm_file) {
2096		*path = vma->vm_file->f_path;
2097		path_get(path);
2098		rc = 0;
2099	}
2100	up_read(&mm->mmap_sem);
2101
2102out_mmput:
2103	mmput(mm);
2104out:
2105	return rc;
2106}
2107
2108struct map_files_info {
2109	struct file	*file;
2110	unsigned long	len;
2111	unsigned char	name[4*sizeof(long)+2]; /* max: %lx-%lx\0 */
2112};
2113
2114static struct dentry *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2115proc_map_files_instantiate(struct inode *dir, struct dentry *dentry,
2116			   struct task_struct *task, const void *ptr)
2117{
2118	const struct file *file = ptr;
2119	struct proc_inode *ei;
2120	struct inode *inode;
2121
2122	if (!file)
2123		return ERR_PTR(-ENOENT);
2124
2125	inode = proc_pid_make_inode(dir->i_sb, task);
2126	if (!inode)
2127		return ERR_PTR(-ENOENT);
2128
2129	ei = PROC_I(inode);
2130	ei->op.proc_get_link = proc_map_files_get_link;
2131
2132	inode->i_op = &proc_pid_link_inode_operations;
2133	inode->i_size = 64;
2134	inode->i_mode = S_IFLNK;
2135
2136	if (file->f_mode & FMODE_READ)
2137		inode->i_mode |= S_IRUSR;
2138	if (file->f_mode & FMODE_WRITE)
2139		inode->i_mode |= S_IWUSR;
2140
2141	d_set_d_op(dentry, &tid_map_files_dentry_operations);
2142	d_add(dentry, inode);
2143
2144	return NULL;
2145}
2146
2147static struct dentry *proc_map_files_lookup(struct inode *dir,
2148		struct dentry *dentry, struct nameidata *nd)
2149{
2150	unsigned long vm_start, vm_end;
2151	struct vm_area_struct *vma;
2152	struct task_struct *task;
2153	struct dentry *result;
2154	struct mm_struct *mm;
2155
2156	result = ERR_PTR(-EACCES);
2157	if (!capable(CAP_SYS_ADMIN))
2158		goto out;
2159
2160	result = ERR_PTR(-ENOENT);
2161	task = get_proc_task(dir);
2162	if (!task)
2163		goto out;
2164
2165	result = ERR_PTR(-EACCES);
2166	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2167		goto out_put_task;
2168
2169	result = ERR_PTR(-ENOENT);
2170	if (dname_to_vma_addr(dentry, &vm_start, &vm_end))
2171		goto out_put_task;
2172
2173	mm = get_task_mm(task);
2174	if (!mm)
2175		goto out_put_task;
2176
2177	down_read(&mm->mmap_sem);
2178	vma = find_exact_vma(mm, vm_start, vm_end);
2179	if (!vma)
2180		goto out_no_vma;
2181
2182	result = proc_map_files_instantiate(dir, dentry, task, vma->vm_file);
 
 
2183
2184out_no_vma:
2185	up_read(&mm->mmap_sem);
2186	mmput(mm);
2187out_put_task:
2188	put_task_struct(task);
2189out:
2190	return result;
2191}
2192
2193static const struct inode_operations proc_map_files_inode_operations = {
2194	.lookup		= proc_map_files_lookup,
2195	.permission	= proc_fd_permission,
2196	.setattr	= proc_setattr,
2197};
2198
2199static int
2200proc_map_files_readdir(struct file *filp, void *dirent, filldir_t filldir)
2201{
2202	struct dentry *dentry = filp->f_path.dentry;
2203	struct inode *inode = dentry->d_inode;
2204	struct vm_area_struct *vma;
2205	struct task_struct *task;
2206	struct mm_struct *mm;
2207	ino_t ino;
 
 
 
2208	int ret;
2209
2210	ret = -EACCES;
2211	if (!capable(CAP_SYS_ADMIN))
2212		goto out;
2213
2214	ret = -ENOENT;
2215	task = get_proc_task(inode);
2216	if (!task)
2217		goto out;
2218
2219	ret = -EACCES;
2220	if (!ptrace_may_access(task, PTRACE_MODE_READ))
2221		goto out_put_task;
2222
2223	ret = 0;
2224	switch (filp->f_pos) {
2225	case 0:
2226		ino = inode->i_ino;
2227		if (filldir(dirent, ".", 1, 0, ino, DT_DIR) < 0)
2228			goto out_put_task;
2229		filp->f_pos++;
2230	case 1:
2231		ino = parent_ino(dentry);
2232		if (filldir(dirent, "..", 2, 1, ino, DT_DIR) < 0)
2233			goto out_put_task;
2234		filp->f_pos++;
2235	default:
2236	{
2237		unsigned long nr_files, pos, i;
2238		struct flex_array *fa = NULL;
2239		struct map_files_info info;
2240		struct map_files_info *p;
2241
2242		mm = get_task_mm(task);
2243		if (!mm)
2244			goto out_put_task;
2245		down_read(&mm->mmap_sem);
2246
2247		nr_files = 0;
2248
2249		/*
2250		 * We need two passes here:
2251		 *
2252		 *  1) Collect vmas of mapped files with mmap_sem taken
2253		 *  2) Release mmap_sem and instantiate entries
2254		 *
2255		 * otherwise we get lockdep complained, since filldir()
2256		 * routine might require mmap_sem taken in might_fault().
2257		 */
2258
2259		for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) {
2260			if (vma->vm_file && ++pos > filp->f_pos)
2261				nr_files++;
2262		}
2263
2264		if (nr_files) {
2265			fa = flex_array_alloc(sizeof(info), nr_files,
2266						GFP_KERNEL);
2267			if (!fa || flex_array_prealloc(fa, 0, nr_files,
2268							GFP_KERNEL)) {
2269				ret = -ENOMEM;
2270				if (fa)
2271					flex_array_free(fa);
2272				up_read(&mm->mmap_sem);
2273				mmput(mm);
2274				goto out_put_task;
2275			}
2276			for (i = 0, vma = mm->mmap, pos = 2; vma;
2277					vma = vma->vm_next) {
2278				if (!vma->vm_file)
2279					continue;
2280				if (++pos <= filp->f_pos)
2281					continue;
2282
2283				get_file(vma->vm_file);
2284				info.file = vma->vm_file;
2285				info.len = snprintf(info.name,
2286						sizeof(info.name), "%lx-%lx",
2287						vma->vm_start, vma->vm_end);
2288				if (flex_array_put(fa, i++, &info, GFP_KERNEL))
2289					BUG();
2290			}
2291		}
2292		up_read(&mm->mmap_sem);
2293
2294		for (i = 0; i < nr_files; i++) {
2295			p = flex_array_get(fa, i);
2296			ret = proc_fill_cache(filp, dirent, filldir,
2297					      p->name, p->len,
2298					      proc_map_files_instantiate,
2299					      task, p->file);
2300			if (ret)
2301				break;
2302			filp->f_pos++;
2303			fput(p->file);
 
2304		}
2305		for (; i < nr_files; i++) {
2306			/*
2307			 * In case of error don't forget
2308			 * to put rest of file refs.
2309			 */
2310			p = flex_array_get(fa, i);
2311			fput(p->file);
 
 
 
 
 
 
2312		}
2313		if (fa)
2314			flex_array_free(fa);
2315		mmput(mm);
2316	}
 
 
 
 
 
 
 
 
 
 
 
2317	}
 
 
 
2318
2319out_put_task:
2320	put_task_struct(task);
2321out:
2322	return ret;
2323}
2324
2325static const struct file_operations proc_map_files_operations = {
2326	.read		= generic_read_dir,
2327	.readdir	= proc_map_files_readdir,
2328	.llseek		= default_llseek,
 
 
 
 
 
 
 
 
 
2329};
2330
2331#endif /* CONFIG_CHECKPOINT_RESTORE */
 
 
2332
2333/*
2334 * /proc/pid/fd needs a special permission handler so that a process can still
2335 * access /proc/self/fd after it has executed a setuid().
2336 */
2337static int proc_fd_permission(struct inode *inode, int mask)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338{
2339	int rv = generic_permission(inode, mask);
2340	if (rv == 0)
2341		return 0;
2342	if (task_pid(current) == proc_pid(inode))
2343		rv = 0;
2344	return rv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2345}
2346
2347/*
2348 * proc directories can do almost nothing..
2349 */
2350static const struct inode_operations proc_fd_inode_operations = {
2351	.lookup		= proc_lookupfd,
2352	.permission	= proc_fd_permission,
2353	.setattr	= proc_setattr,
2354};
2355
2356static struct dentry *proc_fdinfo_instantiate(struct inode *dir,
2357	struct dentry *dentry, struct task_struct *task, const void *ptr)
2358{
2359	unsigned fd = (unsigned long)ptr;
2360 	struct inode *inode;
2361 	struct proc_inode *ei;
2362	struct dentry *error = ERR_PTR(-ENOENT);
2363
2364	inode = proc_pid_make_inode(dir->i_sb, task);
2365	if (!inode)
2366		goto out;
2367	ei = PROC_I(inode);
2368	ei->fd = fd;
2369	inode->i_mode = S_IFREG | S_IRUSR;
2370	inode->i_fop = &proc_fdinfo_file_operations;
2371	d_set_d_op(dentry, &tid_fd_dentry_operations);
2372	d_add(dentry, inode);
2373	/* Close the race of the process dying before we return the dentry */
2374	if (tid_fd_revalidate(dentry, NULL))
2375		error = NULL;
2376
2377 out:
2378	return error;
 
2379}
2380
2381static struct dentry *proc_lookupfdinfo(struct inode *dir,
2382					struct dentry *dentry,
2383					struct nameidata *nd)
 
 
 
 
 
 
 
2384{
2385	return proc_lookupfd_common(dir, dentry, proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2386}
2387
2388static int proc_readfdinfo(struct file *filp, void *dirent, filldir_t filldir)
2389{
2390	return proc_readfd_common(filp, dirent, filldir,
2391				  proc_fdinfo_instantiate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2392}
2393
2394static const struct file_operations proc_fdinfo_operations = {
2395	.read		= generic_read_dir,
2396	.readdir	= proc_readfdinfo,
2397	.llseek		= default_llseek,
2398};
2399
2400/*
2401 * proc directories can do almost nothing..
2402 */
2403static const struct inode_operations proc_fdinfo_inode_operations = {
2404	.lookup		= proc_lookupfdinfo,
2405	.setattr	= proc_setattr,
2406};
2407
2408
2409static struct dentry *proc_pident_instantiate(struct inode *dir,
2410	struct dentry *dentry, struct task_struct *task, const void *ptr)
2411{
2412	const struct pid_entry *p = ptr;
2413	struct inode *inode;
2414	struct proc_inode *ei;
2415	struct dentry *error = ERR_PTR(-ENOENT);
2416
2417	inode = proc_pid_make_inode(dir->i_sb, task);
2418	if (!inode)
2419		goto out;
2420
2421	ei = PROC_I(inode);
2422	inode->i_mode = p->mode;
2423	if (S_ISDIR(inode->i_mode))
2424		set_nlink(inode, 2);	/* Use getattr to fix if necessary */
2425	if (p->iop)
2426		inode->i_op = p->iop;
2427	if (p->fop)
2428		inode->i_fop = p->fop;
2429	ei->op = p->op;
2430	d_set_d_op(dentry, &pid_dentry_operations);
2431	d_add(dentry, inode);
2432	/* Close the race of the process dying before we return the dentry */
2433	if (pid_revalidate(dentry, NULL))
2434		error = NULL;
2435out:
2436	return error;
2437}
2438
2439static struct dentry *proc_pident_lookup(struct inode *dir, 
2440					 struct dentry *dentry,
2441					 const struct pid_entry *ents,
2442					 unsigned int nents)
2443{
2444	struct dentry *error;
2445	struct task_struct *task = get_proc_task(dir);
2446	const struct pid_entry *p, *last;
2447
2448	error = ERR_PTR(-ENOENT);
2449
2450	if (!task)
2451		goto out_no_task;
2452
2453	/*
2454	 * Yes, it does not scale. And it should not. Don't add
2455	 * new entries into /proc/<tgid>/ without very good reasons.
2456	 */
2457	last = &ents[nents - 1];
2458	for (p = ents; p <= last; p++) {
2459		if (p->len != dentry->d_name.len)
2460			continue;
2461		if (!memcmp(dentry->d_name.name, p->name, p->len))
2462			break;
2463	}
2464	if (p > last)
2465		goto out;
2466
2467	error = proc_pident_instantiate(dir, dentry, task, p);
2468out:
2469	put_task_struct(task);
2470out_no_task:
2471	return error;
2472}
2473
2474static int proc_pident_fill_cache(struct file *filp, void *dirent,
2475	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2476{
2477	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2478				proc_pident_instantiate, task, p);
2479}
2480
2481static int proc_pident_readdir(struct file *filp,
2482		void *dirent, filldir_t filldir,
2483		const struct pid_entry *ents, unsigned int nents)
2484{
2485	int i;
2486	struct dentry *dentry = filp->f_path.dentry;
2487	struct inode *inode = dentry->d_inode;
2488	struct task_struct *task = get_proc_task(inode);
2489	const struct pid_entry *p, *last;
2490	ino_t ino;
2491	int ret;
2492
2493	ret = -ENOENT;
2494	if (!task)
2495		goto out_no_task;
 
 
 
 
 
 
2496
2497	ret = 0;
2498	i = filp->f_pos;
2499	switch (i) {
2500	case 0:
2501		ino = inode->i_ino;
2502		if (filldir(dirent, ".", 1, i, ino, DT_DIR) < 0)
2503			goto out;
2504		i++;
2505		filp->f_pos++;
2506		/* fall through */
2507	case 1:
2508		ino = parent_ino(dentry);
2509		if (filldir(dirent, "..", 2, i, ino, DT_DIR) < 0)
2510			goto out;
2511		i++;
2512		filp->f_pos++;
2513		/* fall through */
2514	default:
2515		i -= 2;
2516		if (i >= nents) {
2517			ret = 1;
2518			goto out;
2519		}
2520		p = ents + i;
2521		last = &ents[nents - 1];
2522		while (p <= last) {
2523			if (proc_pident_fill_cache(filp, dirent, filldir, task, p) < 0)
2524				goto out;
2525			filp->f_pos++;
2526			p++;
2527		}
2528	}
2529
2530	ret = 1;
2531out:
2532	put_task_struct(task);
2533out_no_task:
2534	return ret;
2535}
2536
2537#ifdef CONFIG_SECURITY
2538static ssize_t proc_pid_attr_read(struct file * file, char __user * buf,
2539				  size_t count, loff_t *ppos)
2540{
2541	struct inode * inode = file->f_path.dentry->d_inode;
2542	char *p = NULL;
2543	ssize_t length;
2544	struct task_struct *task = get_proc_task(inode);
2545
2546	if (!task)
2547		return -ESRCH;
2548
2549	length = security_getprocattr(task,
2550				      (char*)file->f_path.dentry->d_name.name,
2551				      &p);
2552	put_task_struct(task);
2553	if (length > 0)
2554		length = simple_read_from_buffer(buf, count, ppos, p, length);
2555	kfree(p);
2556	return length;
2557}
2558
2559static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf,
2560				   size_t count, loff_t *ppos)
2561{
2562	struct inode * inode = file->f_path.dentry->d_inode;
2563	char *page;
2564	ssize_t length;
2565	struct task_struct *task = get_proc_task(inode);
2566
2567	length = -ESRCH;
2568	if (!task)
2569		goto out_no_task;
2570	if (count > PAGE_SIZE)
2571		count = PAGE_SIZE;
2572
2573	/* No partial writes. */
2574	length = -EINVAL;
2575	if (*ppos != 0)
2576		goto out;
2577
2578	length = -ENOMEM;
2579	page = (char*)__get_free_page(GFP_TEMPORARY);
2580	if (!page)
2581		goto out;
2582
2583	length = -EFAULT;
2584	if (copy_from_user(page, buf, count))
2585		goto out_free;
2586
2587	/* Guard against adverse ptrace interaction */
2588	length = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
2589	if (length < 0)
2590		goto out_free;
2591
2592	length = security_setprocattr(task,
2593				      (char*)file->f_path.dentry->d_name.name,
2594				      (void*)page, count);
2595	mutex_unlock(&task->signal->cred_guard_mutex);
2596out_free:
2597	free_page((unsigned long) page);
2598out:
2599	put_task_struct(task);
2600out_no_task:
2601	return length;
2602}
2603
2604static const struct file_operations proc_pid_attr_operations = {
2605	.read		= proc_pid_attr_read,
2606	.write		= proc_pid_attr_write,
2607	.llseek		= generic_file_llseek,
2608};
2609
2610static const struct pid_entry attr_dir_stuff[] = {
2611	REG("current",    S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2612	REG("prev",       S_IRUGO,	   proc_pid_attr_operations),
2613	REG("exec",       S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2614	REG("fscreate",   S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2615	REG("keycreate",  S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2616	REG("sockcreate", S_IRUGO|S_IWUGO, proc_pid_attr_operations),
2617};
2618
2619static int proc_attr_dir_readdir(struct file * filp,
2620			     void * dirent, filldir_t filldir)
2621{
2622	return proc_pident_readdir(filp,dirent,filldir,
2623				   attr_dir_stuff,ARRAY_SIZE(attr_dir_stuff));
2624}
2625
2626static const struct file_operations proc_attr_dir_operations = {
2627	.read		= generic_read_dir,
2628	.readdir	= proc_attr_dir_readdir,
2629	.llseek		= default_llseek,
2630};
2631
2632static struct dentry *proc_attr_dir_lookup(struct inode *dir,
2633				struct dentry *dentry, struct nameidata *nd)
2634{
2635	return proc_pident_lookup(dir, dentry,
2636				  attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff));
2637}
2638
2639static const struct inode_operations proc_attr_dir_inode_operations = {
2640	.lookup		= proc_attr_dir_lookup,
2641	.getattr	= pid_getattr,
2642	.setattr	= proc_setattr,
2643};
2644
2645#endif
2646
2647#ifdef CONFIG_ELF_CORE
2648static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf,
2649					 size_t count, loff_t *ppos)
2650{
2651	struct task_struct *task = get_proc_task(file->f_dentry->d_inode);
2652	struct mm_struct *mm;
2653	char buffer[PROC_NUMBUF];
2654	size_t len;
2655	int ret;
2656
2657	if (!task)
2658		return -ESRCH;
2659
2660	ret = 0;
2661	mm = get_task_mm(task);
2662	if (mm) {
2663		len = snprintf(buffer, sizeof(buffer), "%08lx\n",
2664			       ((mm->flags & MMF_DUMP_FILTER_MASK) >>
2665				MMF_DUMP_FILTER_SHIFT));
2666		mmput(mm);
2667		ret = simple_read_from_buffer(buf, count, ppos, buffer, len);
2668	}
2669
2670	put_task_struct(task);
2671
2672	return ret;
2673}
2674
2675static ssize_t proc_coredump_filter_write(struct file *file,
2676					  const char __user *buf,
2677					  size_t count,
2678					  loff_t *ppos)
2679{
2680	struct task_struct *task;
2681	struct mm_struct *mm;
2682	char buffer[PROC_NUMBUF], *end;
2683	unsigned int val;
2684	int ret;
2685	int i;
2686	unsigned long mask;
2687
2688	ret = -EFAULT;
2689	memset(buffer, 0, sizeof(buffer));
2690	if (count > sizeof(buffer) - 1)
2691		count = sizeof(buffer) - 1;
2692	if (copy_from_user(buffer, buf, count))
2693		goto out_no_task;
2694
2695	ret = -EINVAL;
2696	val = (unsigned int)simple_strtoul(buffer, &end, 0);
2697	if (*end == '\n')
2698		end++;
2699	if (end - buffer == 0)
2700		goto out_no_task;
2701
2702	ret = -ESRCH;
2703	task = get_proc_task(file->f_dentry->d_inode);
2704	if (!task)
2705		goto out_no_task;
2706
2707	ret = end - buffer;
2708	mm = get_task_mm(task);
2709	if (!mm)
2710		goto out_no_mm;
 
2711
2712	for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) {
2713		if (val & mask)
2714			set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2715		else
2716			clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags);
2717	}
2718
2719	mmput(mm);
2720 out_no_mm:
2721	put_task_struct(task);
2722 out_no_task:
2723	return ret;
 
 
2724}
2725
2726static const struct file_operations proc_coredump_filter_operations = {
2727	.read		= proc_coredump_filter_read,
2728	.write		= proc_coredump_filter_write,
2729	.llseek		= generic_file_llseek,
2730};
2731#endif
2732
2733/*
2734 * /proc/self:
2735 */
2736static int proc_self_readlink(struct dentry *dentry, char __user *buffer,
2737			      int buflen)
2738{
2739	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2740	pid_t tgid = task_tgid_nr_ns(current, ns);
2741	char tmp[PROC_NUMBUF];
2742	if (!tgid)
2743		return -ENOENT;
2744	sprintf(tmp, "%d", tgid);
2745	return vfs_readlink(dentry,buffer,buflen,tmp);
2746}
2747
2748static void *proc_self_follow_link(struct dentry *dentry, struct nameidata *nd)
2749{
2750	struct pid_namespace *ns = dentry->d_sb->s_fs_info;
2751	pid_t tgid = task_tgid_nr_ns(current, ns);
2752	char *name = ERR_PTR(-ENOENT);
2753	if (tgid) {
2754		name = __getname();
2755		if (!name)
2756			name = ERR_PTR(-ENOMEM);
2757		else
2758			sprintf(name, "%d", tgid);
2759	}
2760	nd_set_link(nd, name);
2761	return NULL;
2762}
2763
2764static void proc_self_put_link(struct dentry *dentry, struct nameidata *nd,
2765				void *cookie)
2766{
2767	char *s = nd_get_link(nd);
2768	if (!IS_ERR(s))
2769		__putname(s);
2770}
2771
2772static const struct inode_operations proc_self_inode_operations = {
2773	.readlink	= proc_self_readlink,
2774	.follow_link	= proc_self_follow_link,
2775	.put_link	= proc_self_put_link,
2776};
2777
2778/*
2779 * proc base
2780 *
2781 * These are the directory entries in the root directory of /proc
2782 * that properly belong to the /proc filesystem, as they describe
2783 * describe something that is process related.
2784 */
2785static const struct pid_entry proc_base_stuff[] = {
2786	NOD("self", S_IFLNK|S_IRWXUGO,
2787		&proc_self_inode_operations, NULL, {}),
2788};
2789
2790static struct dentry *proc_base_instantiate(struct inode *dir,
2791	struct dentry *dentry, struct task_struct *task, const void *ptr)
2792{
2793	const struct pid_entry *p = ptr;
2794	struct inode *inode;
2795	struct proc_inode *ei;
2796	struct dentry *error;
2797
2798	/* Allocate the inode */
2799	error = ERR_PTR(-ENOMEM);
2800	inode = new_inode(dir->i_sb);
2801	if (!inode)
2802		goto out;
2803
2804	/* Initialize the inode */
2805	ei = PROC_I(inode);
2806	inode->i_ino = get_next_ino();
2807	inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
2808
2809	/*
2810	 * grab the reference to the task.
2811	 */
2812	ei->pid = get_task_pid(task, PIDTYPE_PID);
2813	if (!ei->pid)
2814		goto out_iput;
2815
2816	inode->i_mode = p->mode;
2817	if (S_ISDIR(inode->i_mode))
2818		set_nlink(inode, 2);
2819	if (S_ISLNK(inode->i_mode))
2820		inode->i_size = 64;
2821	if (p->iop)
2822		inode->i_op = p->iop;
2823	if (p->fop)
2824		inode->i_fop = p->fop;
2825	ei->op = p->op;
2826	d_add(dentry, inode);
2827	error = NULL;
2828out:
2829	return error;
2830out_iput:
2831	iput(inode);
2832	goto out;
2833}
2834
2835static struct dentry *proc_base_lookup(struct inode *dir, struct dentry *dentry)
2836{
2837	struct dentry *error;
2838	struct task_struct *task = get_proc_task(dir);
2839	const struct pid_entry *p, *last;
2840
2841	error = ERR_PTR(-ENOENT);
2842
2843	if (!task)
2844		goto out_no_task;
2845
2846	/* Lookup the directory entry */
2847	last = &proc_base_stuff[ARRAY_SIZE(proc_base_stuff) - 1];
2848	for (p = proc_base_stuff; p <= last; p++) {
2849		if (p->len != dentry->d_name.len)
2850			continue;
2851		if (!memcmp(dentry->d_name.name, p->name, p->len))
2852			break;
2853	}
2854	if (p > last)
2855		goto out;
2856
2857	error = proc_base_instantiate(dir, dentry, task, p);
2858
2859out:
2860	put_task_struct(task);
2861out_no_task:
2862	return error;
2863}
2864
2865static int proc_base_fill_cache(struct file *filp, void *dirent,
2866	filldir_t filldir, struct task_struct *task, const struct pid_entry *p)
2867{
2868	return proc_fill_cache(filp, dirent, filldir, p->name, p->len,
2869				proc_base_instantiate, task, p);
2870}
2871
2872#ifdef CONFIG_TASK_IO_ACCOUNTING
2873static int do_io_accounting(struct task_struct *task, char *buffer, int whole)
2874{
2875	struct task_io_accounting acct = task->ioac;
2876	unsigned long flags;
2877	int result;
2878
2879	result = mutex_lock_killable(&task->signal->cred_guard_mutex);
2880	if (result)
2881		return result;
2882
2883	if (!ptrace_may_access(task, PTRACE_MODE_READ)) {
2884		result = -EACCES;
2885		goto out_unlock;
2886	}
2887
2888	if (whole && lock_task_sighand(task, &flags)) {
2889		struct task_struct *t = task;
2890
2891		task_io_accounting_add(&acct, &task->signal->ioac);
2892		while_each_thread(task, t)
2893			task_io_accounting_add(&acct, &t->ioac);
2894
2895		unlock_task_sighand(task, &flags);
2896	}
2897	result = sprintf(buffer,
2898			"rchar: %llu\n"
2899			"wchar: %llu\n"
2900			"syscr: %llu\n"
2901			"syscw: %llu\n"
2902			"read_bytes: %llu\n"
2903			"write_bytes: %llu\n"
2904			"cancelled_write_bytes: %llu\n",
2905			(unsigned long long)acct.rchar,
2906			(unsigned long long)acct.wchar,
2907			(unsigned long long)acct.syscr,
2908			(unsigned long long)acct.syscw,
2909			(unsigned long long)acct.read_bytes,
2910			(unsigned long long)acct.write_bytes,
2911			(unsigned long long)acct.cancelled_write_bytes);
 
 
2912out_unlock:
2913	mutex_unlock(&task->signal->cred_guard_mutex);
2914	return result;
2915}
2916
2917static int proc_tid_io_accounting(struct task_struct *task, char *buffer)
 
2918{
2919	return do_io_accounting(task, buffer, 0);
2920}
2921
2922static int proc_tgid_io_accounting(struct task_struct *task, char *buffer)
 
2923{
2924	return do_io_accounting(task, buffer, 1);
2925}
2926#endif /* CONFIG_TASK_IO_ACCOUNTING */
2927
2928#ifdef CONFIG_USER_NS
2929static int proc_id_map_open(struct inode *inode, struct file *file,
2930	struct seq_operations *seq_ops)
2931{
2932	struct user_namespace *ns = NULL;
2933	struct task_struct *task;
2934	struct seq_file *seq;
2935	int ret = -EINVAL;
2936
2937	task = get_proc_task(inode);
2938	if (task) {
2939		rcu_read_lock();
2940		ns = get_user_ns(task_cred_xxx(task, user_ns));
2941		rcu_read_unlock();
2942		put_task_struct(task);
2943	}
2944	if (!ns)
2945		goto err;
2946
2947	ret = seq_open(file, seq_ops);
2948	if (ret)
2949		goto err_put_ns;
2950
2951	seq = file->private_data;
2952	seq->private = ns;
2953
2954	return 0;
2955err_put_ns:
2956	put_user_ns(ns);
2957err:
2958	return ret;
2959}
2960
2961static int proc_id_map_release(struct inode *inode, struct file *file)
2962{
2963	struct seq_file *seq = file->private_data;
2964	struct user_namespace *ns = seq->private;
2965	put_user_ns(ns);
2966	return seq_release(inode, file);
2967}
2968
2969static int proc_uid_map_open(struct inode *inode, struct file *file)
2970{
2971	return proc_id_map_open(inode, file, &proc_uid_seq_operations);
2972}
2973
2974static int proc_gid_map_open(struct inode *inode, struct file *file)
2975{
2976	return proc_id_map_open(inode, file, &proc_gid_seq_operations);
2977}
2978
 
 
 
 
 
2979static const struct file_operations proc_uid_map_operations = {
2980	.open		= proc_uid_map_open,
2981	.write		= proc_uid_map_write,
2982	.read		= seq_read,
2983	.llseek		= seq_lseek,
2984	.release	= proc_id_map_release,
2985};
2986
2987static const struct file_operations proc_gid_map_operations = {
2988	.open		= proc_gid_map_open,
2989	.write		= proc_gid_map_write,
2990	.read		= seq_read,
2991	.llseek		= seq_lseek,
2992	.release	= proc_id_map_release,
2993};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994#endif /* CONFIG_USER_NS */
2995
2996static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns,
2997				struct pid *pid, struct task_struct *task)
2998{
2999	int err = lock_trace(task);
3000	if (!err) {
3001		seq_printf(m, "%08x\n", task->personality);
3002		unlock_trace(task);
3003	}
3004	return err;
3005}
3006
3007/*
3008 * Thread groups
3009 */
3010static const struct file_operations proc_task_operations;
3011static const struct inode_operations proc_task_inode_operations;
3012
3013static const struct pid_entry tgid_base_stuff[] = {
3014	DIR("task",       S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations),
3015	DIR("fd",         S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3016#ifdef CONFIG_CHECKPOINT_RESTORE
3017	DIR("map_files",  S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations),
3018#endif
3019	DIR("fdinfo",     S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3020	DIR("ns",	  S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
3021#ifdef CONFIG_NET
3022	DIR("net",        S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations),
3023#endif
3024	REG("environ",    S_IRUSR, proc_environ_operations),
3025	INF("auxv",       S_IRUSR, proc_pid_auxv),
3026	ONE("status",     S_IRUGO, proc_pid_status),
3027	ONE("personality", S_IRUGO, proc_pid_personality),
3028	INF("limits",	  S_IRUGO, proc_pid_limits),
3029#ifdef CONFIG_SCHED_DEBUG
3030	REG("sched",      S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3031#endif
3032#ifdef CONFIG_SCHED_AUTOGROUP
3033	REG("autogroup",  S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations),
3034#endif
3035	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
3036#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3037	INF("syscall",    S_IRUGO, proc_pid_syscall),
3038#endif
3039	INF("cmdline",    S_IRUGO, proc_pid_cmdline),
3040	ONE("stat",       S_IRUGO, proc_tgid_stat),
3041	ONE("statm",      S_IRUGO, proc_pid_statm),
3042	REG("maps",       S_IRUGO, proc_pid_maps_operations),
3043#ifdef CONFIG_NUMA
3044	REG("numa_maps",  S_IRUGO, proc_pid_numa_maps_operations),
3045#endif
3046	REG("mem",        S_IRUSR|S_IWUSR, proc_mem_operations),
3047	LNK("cwd",        proc_cwd_link),
3048	LNK("root",       proc_root_link),
3049	LNK("exe",        proc_exe_link),
3050	REG("mounts",     S_IRUGO, proc_mounts_operations),
3051	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3052	REG("mountstats", S_IRUSR, proc_mountstats_operations),
3053#ifdef CONFIG_PROC_PAGE_MONITOR
3054	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3055	REG("smaps",      S_IRUGO, proc_pid_smaps_operations),
3056	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3057#endif
3058#ifdef CONFIG_SECURITY
3059	DIR("attr",       S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3060#endif
3061#ifdef CONFIG_KALLSYMS
3062	INF("wchan",      S_IRUGO, proc_pid_wchan),
3063#endif
3064#ifdef CONFIG_STACKTRACE
3065	ONE("stack",      S_IRUGO, proc_pid_stack),
3066#endif
3067#ifdef CONFIG_SCHEDSTATS
3068	INF("schedstat",  S_IRUGO, proc_pid_schedstat),
3069#endif
3070#ifdef CONFIG_LATENCYTOP
3071	REG("latency",  S_IRUGO, proc_lstats_operations),
3072#endif
3073#ifdef CONFIG_PROC_PID_CPUSET
3074	REG("cpuset",     S_IRUGO, proc_cpuset_operations),
3075#endif
3076#ifdef CONFIG_CGROUPS
3077	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3078#endif
3079	INF("oom_score",  S_IRUGO, proc_oom_score),
3080	REG("oom_adj",    S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3081	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3082#ifdef CONFIG_AUDITSYSCALL
3083	REG("loginuid",   S_IWUSR|S_IRUGO, proc_loginuid_operations),
3084	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3085#endif
3086#ifdef CONFIG_FAULT_INJECTION
3087	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3088#endif
3089#ifdef CONFIG_ELF_CORE
3090	REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations),
3091#endif
3092#ifdef CONFIG_TASK_IO_ACCOUNTING
3093	INF("io",	S_IRUSR, proc_tgid_io_accounting),
3094#endif
3095#ifdef CONFIG_HARDWALL
3096	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3097#endif
3098#ifdef CONFIG_USER_NS
3099	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3100	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
 
 
3101#endif
 
 
 
 
3102};
3103
3104static int proc_tgid_base_readdir(struct file * filp,
3105			     void * dirent, filldir_t filldir)
3106{
3107	return proc_pident_readdir(filp,dirent,filldir,
3108				   tgid_base_stuff,ARRAY_SIZE(tgid_base_stuff));
3109}
3110
3111static const struct file_operations proc_tgid_base_operations = {
3112	.read		= generic_read_dir,
3113	.readdir	= proc_tgid_base_readdir,
3114	.llseek		= default_llseek,
3115};
3116
3117static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3118	return proc_pident_lookup(dir, dentry,
3119				  tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff));
3120}
3121
3122static const struct inode_operations proc_tgid_base_inode_operations = {
3123	.lookup		= proc_tgid_base_lookup,
3124	.getattr	= pid_getattr,
3125	.setattr	= proc_setattr,
3126	.permission	= proc_pid_permission,
3127};
3128
3129static void proc_flush_task_mnt(struct vfsmount *mnt, pid_t pid, pid_t tgid)
3130{
3131	struct dentry *dentry, *leader, *dir;
3132	char buf[PROC_NUMBUF];
3133	struct qstr name;
3134
3135	name.name = buf;
3136	name.len = snprintf(buf, sizeof(buf), "%d", pid);
 
3137	dentry = d_hash_and_lookup(mnt->mnt_root, &name);
3138	if (dentry) {
3139		shrink_dcache_parent(dentry);
3140		d_drop(dentry);
3141		dput(dentry);
3142	}
3143
 
 
 
3144	name.name = buf;
3145	name.len = snprintf(buf, sizeof(buf), "%d", tgid);
3146	leader = d_hash_and_lookup(mnt->mnt_root, &name);
3147	if (!leader)
3148		goto out;
3149
3150	name.name = "task";
3151	name.len = strlen(name.name);
3152	dir = d_hash_and_lookup(leader, &name);
3153	if (!dir)
3154		goto out_put_leader;
3155
3156	name.name = buf;
3157	name.len = snprintf(buf, sizeof(buf), "%d", pid);
3158	dentry = d_hash_and_lookup(dir, &name);
3159	if (dentry) {
3160		shrink_dcache_parent(dentry);
3161		d_drop(dentry);
3162		dput(dentry);
3163	}
3164
3165	dput(dir);
3166out_put_leader:
3167	dput(leader);
3168out:
3169	return;
3170}
3171
3172/**
3173 * proc_flush_task -  Remove dcache entries for @task from the /proc dcache.
3174 * @task: task that should be flushed.
3175 *
3176 * When flushing dentries from proc, one needs to flush them from global
3177 * proc (proc_mnt) and from all the namespaces' procs this task was seen
3178 * in. This call is supposed to do all of this job.
3179 *
3180 * Looks in the dcache for
3181 * /proc/@pid
3182 * /proc/@tgid/task/@pid
3183 * if either directory is present flushes it and all of it'ts children
3184 * from the dcache.
3185 *
3186 * It is safe and reasonable to cache /proc entries for a task until
3187 * that task exits.  After that they just clog up the dcache with
3188 * useless entries, possibly causing useful dcache entries to be
3189 * flushed instead.  This routine is proved to flush those useless
3190 * dcache entries at process exit time.
3191 *
3192 * NOTE: This routine is just an optimization so it does not guarantee
3193 *       that no dcache entries will exist at process exit time it
3194 *       just makes it very unlikely that any will persist.
3195 */
3196
3197void proc_flush_task(struct task_struct *task)
3198{
3199	int i;
3200	struct pid *pid, *tgid;
3201	struct upid *upid;
3202
3203	pid = task_pid(task);
3204	tgid = task_tgid(task);
3205
3206	for (i = 0; i <= pid->level; i++) {
3207		upid = &pid->numbers[i];
3208		proc_flush_task_mnt(upid->ns->proc_mnt, upid->nr,
3209					tgid->numbers[i].nr);
3210	}
3211
3212	upid = &pid->numbers[pid->level];
3213	if (upid->nr == 1)
3214		pid_ns_release_proc(upid->ns);
3215}
3216
3217static struct dentry *proc_pid_instantiate(struct inode *dir,
3218					   struct dentry * dentry,
3219					   struct task_struct *task, const void *ptr)
3220{
3221	struct dentry *error = ERR_PTR(-ENOENT);
3222	struct inode *inode;
3223
3224	inode = proc_pid_make_inode(dir->i_sb, task);
3225	if (!inode)
3226		goto out;
3227
3228	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3229	inode->i_op = &proc_tgid_base_inode_operations;
3230	inode->i_fop = &proc_tgid_base_operations;
3231	inode->i_flags|=S_IMMUTABLE;
3232
3233	set_nlink(inode, 2 + pid_entry_count_dirs(tgid_base_stuff,
3234						  ARRAY_SIZE(tgid_base_stuff)));
3235
3236	d_set_d_op(dentry, &pid_dentry_operations);
3237
3238	d_add(dentry, inode);
3239	/* Close the race of the process dying before we return the dentry */
3240	if (pid_revalidate(dentry, NULL))
3241		error = NULL;
3242out:
3243	return error;
3244}
3245
3246struct dentry *proc_pid_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3247{
3248	struct dentry *result;
3249	struct task_struct *task;
3250	unsigned tgid;
3251	struct pid_namespace *ns;
3252
3253	result = proc_base_lookup(dir, dentry);
3254	if (!IS_ERR(result) || PTR_ERR(result) != -ENOENT)
3255		goto out;
3256
3257	tgid = name_to_int(dentry);
3258	if (tgid == ~0U)
3259		goto out;
3260
3261	ns = dentry->d_sb->s_fs_info;
3262	rcu_read_lock();
3263	task = find_task_by_pid_ns(tgid, ns);
3264	if (task)
3265		get_task_struct(task);
3266	rcu_read_unlock();
3267	if (!task)
3268		goto out;
3269
3270	result = proc_pid_instantiate(dir, dentry, task, NULL);
3271	put_task_struct(task);
3272out:
3273	return result;
3274}
3275
3276/*
3277 * Find the first task with tgid >= tgid
3278 *
3279 */
3280struct tgid_iter {
3281	unsigned int tgid;
3282	struct task_struct *task;
3283};
3284static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter)
3285{
3286	struct pid *pid;
3287
3288	if (iter.task)
3289		put_task_struct(iter.task);
3290	rcu_read_lock();
3291retry:
3292	iter.task = NULL;
3293	pid = find_ge_pid(iter.tgid, ns);
3294	if (pid) {
3295		iter.tgid = pid_nr_ns(pid, ns);
3296		iter.task = pid_task(pid, PIDTYPE_PID);
3297		/* What we to know is if the pid we have find is the
3298		 * pid of a thread_group_leader.  Testing for task
3299		 * being a thread_group_leader is the obvious thing
3300		 * todo but there is a window when it fails, due to
3301		 * the pid transfer logic in de_thread.
3302		 *
3303		 * So we perform the straight forward test of seeing
3304		 * if the pid we have found is the pid of a thread
3305		 * group leader, and don't worry if the task we have
3306		 * found doesn't happen to be a thread group leader.
3307		 * As we don't care in the case of readdir.
3308		 */
3309		if (!iter.task || !has_group_leader_pid(iter.task)) {
3310			iter.tgid += 1;
3311			goto retry;
3312		}
3313		get_task_struct(iter.task);
3314	}
3315	rcu_read_unlock();
3316	return iter;
3317}
3318
3319#define TGID_OFFSET (FIRST_PROCESS_ENTRY + ARRAY_SIZE(proc_base_stuff))
3320
3321static int proc_pid_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3322	struct tgid_iter iter)
3323{
3324	char name[PROC_NUMBUF];
3325	int len = snprintf(name, sizeof(name), "%d", iter.tgid);
3326	return proc_fill_cache(filp, dirent, filldir, name, len,
3327				proc_pid_instantiate, iter.task, NULL);
3328}
3329
3330static int fake_filldir(void *buf, const char *name, int namelen,
3331			loff_t offset, u64 ino, unsigned d_type)
3332{
3333	return 0;
3334}
3335
3336/* for the /proc/ directory itself, after non-process stuff has been done */
3337int proc_pid_readdir(struct file * filp, void * dirent, filldir_t filldir)
3338{
3339	unsigned int nr;
3340	struct task_struct *reaper;
3341	struct tgid_iter iter;
3342	struct pid_namespace *ns;
3343	filldir_t __filldir;
3344
3345	if (filp->f_pos >= PID_MAX_LIMIT + TGID_OFFSET)
3346		goto out_no_task;
3347	nr = filp->f_pos - FIRST_PROCESS_ENTRY;
3348
3349	reaper = get_proc_task(filp->f_path.dentry->d_inode);
3350	if (!reaper)
3351		goto out_no_task;
3352
3353	for (; nr < ARRAY_SIZE(proc_base_stuff); filp->f_pos++, nr++) {
3354		const struct pid_entry *p = &proc_base_stuff[nr];
3355		if (proc_base_fill_cache(filp, dirent, filldir, reaper, p) < 0)
3356			goto out;
 
 
 
3357	}
3358
3359	ns = filp->f_dentry->d_sb->s_fs_info;
3360	iter.task = NULL;
3361	iter.tgid = filp->f_pos - TGID_OFFSET;
3362	for (iter = next_tgid(ns, iter);
3363	     iter.task;
3364	     iter.tgid += 1, iter = next_tgid(ns, iter)) {
3365		if (has_pid_permissions(ns, iter.task, 2))
3366			__filldir = filldir;
3367		else
3368			__filldir = fake_filldir;
 
 
3369
3370		filp->f_pos = iter.tgid + TGID_OFFSET;
3371		if (proc_pid_fill_cache(filp, dirent, __filldir, iter) < 0) {
 
 
3372			put_task_struct(iter.task);
3373			goto out;
3374		}
3375	}
3376	filp->f_pos = PID_MAX_LIMIT + TGID_OFFSET;
3377out:
3378	put_task_struct(reaper);
3379out_no_task:
3380	return 0;
3381}
3382
3383/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3384 * Tasks
3385 */
3386static const struct pid_entry tid_base_stuff[] = {
3387	DIR("fd",        S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations),
3388	DIR("fdinfo",    S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations),
3389	DIR("ns",	 S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations),
 
 
 
3390	REG("environ",   S_IRUSR, proc_environ_operations),
3391	INF("auxv",      S_IRUSR, proc_pid_auxv),
3392	ONE("status",    S_IRUGO, proc_pid_status),
3393	ONE("personality", S_IRUGO, proc_pid_personality),
3394	INF("limits",	 S_IRUGO, proc_pid_limits),
3395#ifdef CONFIG_SCHED_DEBUG
3396	REG("sched",     S_IRUGO|S_IWUSR, proc_pid_sched_operations),
3397#endif
3398	REG("comm",      S_IRUGO|S_IWUSR, proc_pid_set_comm_operations),
 
 
3399#ifdef CONFIG_HAVE_ARCH_TRACEHOOK
3400	INF("syscall",   S_IRUGO, proc_pid_syscall),
3401#endif
3402	INF("cmdline",   S_IRUGO, proc_pid_cmdline),
3403	ONE("stat",      S_IRUGO, proc_tid_stat),
3404	ONE("statm",     S_IRUGO, proc_pid_statm),
3405	REG("maps",      S_IRUGO, proc_tid_maps_operations),
3406#ifdef CONFIG_CHECKPOINT_RESTORE
3407	REG("children",  S_IRUGO, proc_tid_children_operations),
3408#endif
3409#ifdef CONFIG_NUMA
3410	REG("numa_maps", S_IRUGO, proc_tid_numa_maps_operations),
3411#endif
3412	REG("mem",       S_IRUSR|S_IWUSR, proc_mem_operations),
3413	LNK("cwd",       proc_cwd_link),
3414	LNK("root",      proc_root_link),
3415	LNK("exe",       proc_exe_link),
3416	REG("mounts",    S_IRUGO, proc_mounts_operations),
3417	REG("mountinfo",  S_IRUGO, proc_mountinfo_operations),
3418#ifdef CONFIG_PROC_PAGE_MONITOR
3419	REG("clear_refs", S_IWUSR, proc_clear_refs_operations),
3420	REG("smaps",     S_IRUGO, proc_tid_smaps_operations),
3421	REG("pagemap",    S_IRUGO, proc_pagemap_operations),
3422#endif
3423#ifdef CONFIG_SECURITY
3424	DIR("attr",      S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations),
3425#endif
3426#ifdef CONFIG_KALLSYMS
3427	INF("wchan",     S_IRUGO, proc_pid_wchan),
3428#endif
3429#ifdef CONFIG_STACKTRACE
3430	ONE("stack",      S_IRUGO, proc_pid_stack),
3431#endif
3432#ifdef CONFIG_SCHEDSTATS
3433	INF("schedstat", S_IRUGO, proc_pid_schedstat),
3434#endif
3435#ifdef CONFIG_LATENCYTOP
3436	REG("latency",  S_IRUGO, proc_lstats_operations),
3437#endif
3438#ifdef CONFIG_PROC_PID_CPUSET
3439	REG("cpuset",    S_IRUGO, proc_cpuset_operations),
3440#endif
3441#ifdef CONFIG_CGROUPS
3442	REG("cgroup",  S_IRUGO, proc_cgroup_operations),
3443#endif
3444	INF("oom_score", S_IRUGO, proc_oom_score),
3445	REG("oom_adj",   S_IRUGO|S_IWUSR, proc_oom_adjust_operations),
3446	REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations),
3447#ifdef CONFIG_AUDITSYSCALL
3448	REG("loginuid",  S_IWUSR|S_IRUGO, proc_loginuid_operations),
3449	REG("sessionid",  S_IRUGO, proc_sessionid_operations),
3450#endif
3451#ifdef CONFIG_FAULT_INJECTION
3452	REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations),
3453#endif
3454#ifdef CONFIG_TASK_IO_ACCOUNTING
3455	INF("io",	S_IRUSR, proc_tid_io_accounting),
3456#endif
3457#ifdef CONFIG_HARDWALL
3458	INF("hardwall",   S_IRUGO, proc_pid_hardwall),
3459#endif
3460#ifdef CONFIG_USER_NS
3461	REG("uid_map",    S_IRUGO|S_IWUSR, proc_uid_map_operations),
3462	REG("gid_map",    S_IRUGO|S_IWUSR, proc_gid_map_operations),
 
 
3463#endif
3464};
3465
3466static int proc_tid_base_readdir(struct file * filp,
3467			     void * dirent, filldir_t filldir)
3468{
3469	return proc_pident_readdir(filp,dirent,filldir,
3470				   tid_base_stuff,ARRAY_SIZE(tid_base_stuff));
3471}
3472
3473static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd){
 
3474	return proc_pident_lookup(dir, dentry,
3475				  tid_base_stuff, ARRAY_SIZE(tid_base_stuff));
3476}
3477
3478static const struct file_operations proc_tid_base_operations = {
3479	.read		= generic_read_dir,
3480	.readdir	= proc_tid_base_readdir,
3481	.llseek		= default_llseek,
3482};
3483
3484static const struct inode_operations proc_tid_base_inode_operations = {
3485	.lookup		= proc_tid_base_lookup,
3486	.getattr	= pid_getattr,
3487	.setattr	= proc_setattr,
3488};
3489
3490static struct dentry *proc_task_instantiate(struct inode *dir,
3491	struct dentry *dentry, struct task_struct *task, const void *ptr)
3492{
3493	struct dentry *error = ERR_PTR(-ENOENT);
3494	struct inode *inode;
3495	inode = proc_pid_make_inode(dir->i_sb, task);
3496
3497	if (!inode)
3498		goto out;
3499	inode->i_mode = S_IFDIR|S_IRUGO|S_IXUGO;
3500	inode->i_op = &proc_tid_base_inode_operations;
3501	inode->i_fop = &proc_tid_base_operations;
3502	inode->i_flags|=S_IMMUTABLE;
3503
3504	set_nlink(inode, 2 + pid_entry_count_dirs(tid_base_stuff,
3505						  ARRAY_SIZE(tid_base_stuff)));
3506
3507	d_set_d_op(dentry, &pid_dentry_operations);
3508
3509	d_add(dentry, inode);
3510	/* Close the race of the process dying before we return the dentry */
3511	if (pid_revalidate(dentry, NULL))
3512		error = NULL;
3513out:
3514	return error;
3515}
3516
3517static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
3518{
3519	struct dentry *result = ERR_PTR(-ENOENT);
3520	struct task_struct *task;
3521	struct task_struct *leader = get_proc_task(dir);
3522	unsigned tid;
3523	struct pid_namespace *ns;
3524
3525	if (!leader)
3526		goto out_no_task;
3527
3528	tid = name_to_int(dentry);
3529	if (tid == ~0U)
3530		goto out;
3531
3532	ns = dentry->d_sb->s_fs_info;
3533	rcu_read_lock();
3534	task = find_task_by_pid_ns(tid, ns);
3535	if (task)
3536		get_task_struct(task);
3537	rcu_read_unlock();
3538	if (!task)
3539		goto out;
3540	if (!same_thread_group(leader, task))
3541		goto out_drop_task;
3542
3543	result = proc_task_instantiate(dir, dentry, task, NULL);
3544out_drop_task:
3545	put_task_struct(task);
3546out:
3547	put_task_struct(leader);
3548out_no_task:
3549	return result;
3550}
3551
3552/*
3553 * Find the first tid of a thread group to return to user space.
3554 *
3555 * Usually this is just the thread group leader, but if the users
3556 * buffer was too small or there was a seek into the middle of the
3557 * directory we have more work todo.
3558 *
3559 * In the case of a short read we start with find_task_by_pid.
3560 *
3561 * In the case of a seek we start with the leader and walk nr
3562 * threads past it.
3563 */
3564static struct task_struct *first_tid(struct task_struct *leader,
3565		int tid, int nr, struct pid_namespace *ns)
3566{
3567	struct task_struct *pos;
 
 
 
 
3568
3569	rcu_read_lock();
3570	/* Attempt to start with the pid of a thread */
3571	if (tid && (nr > 0)) {
 
 
 
 
3572		pos = find_task_by_pid_ns(tid, ns);
3573		if (pos && (pos->group_leader == leader))
3574			goto found;
3575	}
3576
3577	/* If nr exceeds the number of threads there is nothing todo */
3578	pos = NULL;
3579	if (nr && nr >= get_nr_threads(leader))
3580		goto out;
3581
3582	/* If we haven't found our starting place yet start
3583	 * with the leader and walk nr threads forward.
3584	 */
3585	for (pos = leader; nr > 0; --nr) {
3586		pos = next_thread(pos);
3587		if (pos == leader) {
3588			pos = NULL;
3589			goto out;
3590		}
3591	}
 
3592found:
3593	get_task_struct(pos);
3594out:
3595	rcu_read_unlock();
3596	return pos;
3597}
3598
3599/*
3600 * Find the next thread in the thread list.
3601 * Return NULL if there is an error or no next thread.
3602 *
3603 * The reference to the input task_struct is released.
3604 */
3605static struct task_struct *next_tid(struct task_struct *start)
3606{
3607	struct task_struct *pos = NULL;
3608	rcu_read_lock();
3609	if (pid_alive(start)) {
3610		pos = next_thread(start);
3611		if (thread_group_leader(pos))
3612			pos = NULL;
3613		else
3614			get_task_struct(pos);
3615	}
3616	rcu_read_unlock();
3617	put_task_struct(start);
3618	return pos;
3619}
3620
3621static int proc_task_fill_cache(struct file *filp, void *dirent, filldir_t filldir,
3622	struct task_struct *task, int tid)
3623{
3624	char name[PROC_NUMBUF];
3625	int len = snprintf(name, sizeof(name), "%d", tid);
3626	return proc_fill_cache(filp, dirent, filldir, name, len,
3627				proc_task_instantiate, task, NULL);
3628}
3629
3630/* for the /proc/TGID/task/ directories */
3631static int proc_task_readdir(struct file * filp, void * dirent, filldir_t filldir)
3632{
3633	struct dentry *dentry = filp->f_path.dentry;
3634	struct inode *inode = dentry->d_inode;
3635	struct task_struct *leader = NULL;
3636	struct task_struct *task;
3637	int retval = -ENOENT;
3638	ino_t ino;
3639	int tid;
3640	struct pid_namespace *ns;
3641
3642	task = get_proc_task(inode);
3643	if (!task)
3644		goto out_no_task;
3645	rcu_read_lock();
3646	if (pid_alive(task)) {
3647		leader = task->group_leader;
3648		get_task_struct(leader);
3649	}
3650	rcu_read_unlock();
3651	put_task_struct(task);
3652	if (!leader)
3653		goto out_no_task;
3654	retval = 0;
3655
3656	switch ((unsigned long)filp->f_pos) {
3657	case 0:
3658		ino = inode->i_ino;
3659		if (filldir(dirent, ".", 1, filp->f_pos, ino, DT_DIR) < 0)
3660			goto out;
3661		filp->f_pos++;
3662		/* fall through */
3663	case 1:
3664		ino = parent_ino(dentry);
3665		if (filldir(dirent, "..", 2, filp->f_pos, ino, DT_DIR) < 0)
3666			goto out;
3667		filp->f_pos++;
3668		/* fall through */
3669	}
3670
3671	/* f_version caches the tgid value that the last readdir call couldn't
3672	 * return. lseek aka telldir automagically resets f_version to 0.
3673	 */
3674	ns = filp->f_dentry->d_sb->s_fs_info;
3675	tid = (int)filp->f_version;
3676	filp->f_version = 0;
3677	for (task = first_tid(leader, tid, filp->f_pos - 2, ns);
3678	     task;
3679	     task = next_tid(task), filp->f_pos++) {
 
 
3680		tid = task_pid_nr_ns(task, ns);
3681		if (proc_task_fill_cache(filp, dirent, filldir, task, tid) < 0) {
 
 
3682			/* returning this tgid failed, save it as the first
3683			 * pid for the next readir call */
3684			filp->f_version = (u64)tid;
3685			put_task_struct(task);
3686			break;
3687		}
3688	}
3689out:
3690	put_task_struct(leader);
3691out_no_task:
3692	return retval;
3693}
3694
3695static int proc_task_getattr(struct vfsmount *mnt, struct dentry *dentry, struct kstat *stat)
3696{
3697	struct inode *inode = dentry->d_inode;
3698	struct task_struct *p = get_proc_task(inode);
3699	generic_fillattr(inode, stat);
3700
3701	if (p) {
3702		stat->nlink += get_nr_threads(p);
3703		put_task_struct(p);
3704	}
3705
3706	return 0;
3707}
3708
3709static const struct inode_operations proc_task_inode_operations = {
3710	.lookup		= proc_task_lookup,
3711	.getattr	= proc_task_getattr,
3712	.setattr	= proc_setattr,
3713	.permission	= proc_pid_permission,
3714};
3715
3716static const struct file_operations proc_task_operations = {
3717	.read		= generic_read_dir,
3718	.readdir	= proc_task_readdir,
3719	.llseek		= default_llseek,
3720};