Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49#include <linux/usb/otg.h>
50
51#include "usb.h"
52
53
54/*-------------------------------------------------------------------------*/
55
56/*
57 * USB Host Controller Driver framework
58 *
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
61 *
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
66 *
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
72 *
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
77 *
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80 *
81 * HISTORY:
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
85 */
86
87/*-------------------------------------------------------------------------*/
88
89/* Keep track of which host controller drivers are loaded */
90unsigned long usb_hcds_loaded;
91EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93/* host controllers we manage */
94DEFINE_IDR (usb_bus_idr);
95EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97/* used when allocating bus numbers */
98#define USB_MAXBUS 64
99
100/* used when updating list of hcds */
101DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104/* used for controlling access to virtual root hubs */
105static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107/* used when updating an endpoint's URB list */
108static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110/* used to protect against unlinking URBs after the device is gone */
111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113/* wait queue for synchronous unlinks */
114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116static inline int is_root_hub(struct usb_device *udev)
117{
118 return (udev->parent == NULL);
119}
120
121/*-------------------------------------------------------------------------*/
122
123/*
124 * Sharable chunks of root hub code.
125 */
126
127/*-------------------------------------------------------------------------*/
128#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131/* usb 3.1 root hub device descriptor */
132static const u8 usb31_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150};
151
152/* usb 3.0 root hub device descriptor */
153static const u8 usb3_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171};
172
173/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174static const u8 usb25_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192};
193
194/* usb 2.0 root hub device descriptor */
195static const u8 usb2_rh_dev_descriptor[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
199
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
204
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
208
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
213};
214
215/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217/* usb 1.1 root hub device descriptor */
218static const u8 usb11_rh_dev_descriptor[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
222
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
227
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
231
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
236};
237
238
239/*-------------------------------------------------------------------------*/
240
241/* Configuration descriptors for our root hubs */
242
243static const u8 fs_rh_config_descriptor[] = {
244
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
253 Bit 7: must be set,
254 6: Self-powered,
255 5: Remote wakeup,
256 4..0: resvd */
257 0x00, /* __u8 MaxPower; */
258
259 /* USB 1.1:
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
262 *
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
266 * sometimes settable
267 * NOT IMPLEMENTED
268 */
269
270 /* one interface */
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
280
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
288};
289
290static const u8 hs_rh_config_descriptor[] = {
291
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
300 Bit 7: must be set,
301 6: Self-powered,
302 5: Remote wakeup,
303 4..0: resvd */
304 0x00, /* __u8 MaxPower; */
305
306 /* USB 1.1:
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
309 *
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
313 * sometimes settable
314 * NOT IMPLEMENTED
315 */
316
317 /* one interface */
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
327
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
337};
338
339static const u8 ss_rh_config_descriptor[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
348 Bit 7: must be set,
349 6: Self-powered,
350 5: Remote wakeup,
351 4..0: resvd */
352 0x00, /* __u8 MaxPower; */
353
354 /* one interface */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
364
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
374
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 /* Companion */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382};
383
384/* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
388 */
389static int authorized_default = -1;
390module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391MODULE_PARM_DESC(authorized_default,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
394 "old behaviour");
395/*-------------------------------------------------------------------------*/
396
397/**
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
402 *
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404 * whichever is less.
405 *
406 * Note:
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
409 */
410static unsigned
411ascii2desc(char const *s, u8 *buf, unsigned len)
412{
413 unsigned n, t = 2 + 2*strlen(s);
414
415 if (t > 254)
416 t = 254; /* Longest possible UTF string descriptor */
417 if (len > t)
418 len = t;
419
420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
421
422 n = len;
423 while (n--) {
424 *buf++ = t;
425 if (!n--)
426 break;
427 *buf++ = t >> 8;
428 t = (unsigned char)*s++;
429 }
430 return len;
431}
432
433/**
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
439 *
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
442 *
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
445 */
446static unsigned
447rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448{
449 char buf[100];
450 char const *s;
451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453 /* language ids */
454 switch (id) {
455 case 0:
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 if (len > 4)
459 len = 4;
460 memcpy(data, langids, len);
461 return len;
462 case 1:
463 /* Serial number */
464 s = hcd->self.bus_name;
465 break;
466 case 2:
467 /* Product name */
468 s = hcd->product_desc;
469 break;
470 case 3:
471 /* Manufacturer */
472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 init_utsname()->release, hcd->driver->description);
474 s = buf;
475 break;
476 default:
477 /* Can't happen; caller guarantees it */
478 return 0;
479 }
480
481 return ascii2desc(s, data, len);
482}
483
484
485/* Root hub control transfers execute synchronously */
486static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487{
488 struct usb_ctrlrequest *cmd;
489 u16 typeReq, wValue, wIndex, wLength;
490 u8 *ubuf = urb->transfer_buffer;
491 unsigned len = 0;
492 int status;
493 u8 patch_wakeup = 0;
494 u8 patch_protocol = 0;
495 u16 tbuf_size;
496 u8 *tbuf = NULL;
497 const u8 *bufp;
498
499 might_sleep();
500
501 spin_lock_irq(&hcd_root_hub_lock);
502 status = usb_hcd_link_urb_to_ep(hcd, urb);
503 spin_unlock_irq(&hcd_root_hub_lock);
504 if (status)
505 return status;
506 urb->hcpriv = hcd; /* Indicate it's queued */
507
508 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
510 wValue = le16_to_cpu (cmd->wValue);
511 wIndex = le16_to_cpu (cmd->wIndex);
512 wLength = le16_to_cpu (cmd->wLength);
513
514 if (wLength > urb->transfer_buffer_length)
515 goto error;
516
517 /*
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
520 */
521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 if (!tbuf) {
524 status = -ENOMEM;
525 goto err_alloc;
526 }
527
528 bufp = tbuf;
529
530
531 urb->actual_length = 0;
532 switch (typeReq) {
533
534 /* DEVICE REQUESTS */
535
536 /* The root hub's remote wakeup enable bit is implemented using
537 * driver model wakeup flags. If this system supports wakeup
538 * through USB, userspace may change the default "allow wakeup"
539 * policy through sysfs or these calls.
540 *
541 * Most root hubs support wakeup from downstream devices, for
542 * runtime power management (disabling USB clocks and reducing
543 * VBUS power usage). However, not all of them do so; silicon,
544 * board, and BIOS bugs here are not uncommon, so these can't
545 * be treated quite like external hubs.
546 *
547 * Likewise, not all root hubs will pass wakeup events upstream,
548 * to wake up the whole system. So don't assume root hub and
549 * controller capabilities are identical.
550 */
551
552 case DeviceRequest | USB_REQ_GET_STATUS:
553 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 << USB_DEVICE_REMOTE_WAKEUP)
555 | (1 << USB_DEVICE_SELF_POWERED);
556 tbuf[1] = 0;
557 len = 2;
558 break;
559 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 else
563 goto error;
564 break;
565 case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 if (device_can_wakeup(&hcd->self.root_hub->dev)
567 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 else
570 goto error;
571 break;
572 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 tbuf[0] = 1;
574 len = 1;
575 /* FALLTHROUGH */
576 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 break;
578 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 switch (wValue & 0xff00) {
580 case USB_DT_DEVICE << 8:
581 switch (hcd->speed) {
582 case HCD_USB31:
583 bufp = usb31_rh_dev_descriptor;
584 break;
585 case HCD_USB3:
586 bufp = usb3_rh_dev_descriptor;
587 break;
588 case HCD_USB25:
589 bufp = usb25_rh_dev_descriptor;
590 break;
591 case HCD_USB2:
592 bufp = usb2_rh_dev_descriptor;
593 break;
594 case HCD_USB11:
595 bufp = usb11_rh_dev_descriptor;
596 break;
597 default:
598 goto error;
599 }
600 len = 18;
601 if (hcd->has_tt)
602 patch_protocol = 1;
603 break;
604 case USB_DT_CONFIG << 8:
605 switch (hcd->speed) {
606 case HCD_USB31:
607 case HCD_USB3:
608 bufp = ss_rh_config_descriptor;
609 len = sizeof ss_rh_config_descriptor;
610 break;
611 case HCD_USB25:
612 case HCD_USB2:
613 bufp = hs_rh_config_descriptor;
614 len = sizeof hs_rh_config_descriptor;
615 break;
616 case HCD_USB11:
617 bufp = fs_rh_config_descriptor;
618 len = sizeof fs_rh_config_descriptor;
619 break;
620 default:
621 goto error;
622 }
623 if (device_can_wakeup(&hcd->self.root_hub->dev))
624 patch_wakeup = 1;
625 break;
626 case USB_DT_STRING << 8:
627 if ((wValue & 0xff) < 4)
628 urb->actual_length = rh_string(wValue & 0xff,
629 hcd, ubuf, wLength);
630 else /* unsupported IDs --> "protocol stall" */
631 goto error;
632 break;
633 case USB_DT_BOS << 8:
634 goto nongeneric;
635 default:
636 goto error;
637 }
638 break;
639 case DeviceRequest | USB_REQ_GET_INTERFACE:
640 tbuf[0] = 0;
641 len = 1;
642 /* FALLTHROUGH */
643 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 break;
645 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 /* wValue == urb->dev->devaddr */
647 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 wValue);
649 break;
650
651 /* INTERFACE REQUESTS (no defined feature/status flags) */
652
653 /* ENDPOINT REQUESTS */
654
655 case EndpointRequest | USB_REQ_GET_STATUS:
656 /* ENDPOINT_HALT flag */
657 tbuf[0] = 0;
658 tbuf[1] = 0;
659 len = 2;
660 /* FALLTHROUGH */
661 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 break;
665
666 /* CLASS REQUESTS (and errors) */
667
668 default:
669nongeneric:
670 /* non-generic request */
671 switch (typeReq) {
672 case GetHubStatus:
673 len = 4;
674 break;
675 case GetPortStatus:
676 if (wValue == HUB_PORT_STATUS)
677 len = 4;
678 else
679 /* other port status types return 8 bytes */
680 len = 8;
681 break;
682 case GetHubDescriptor:
683 len = sizeof (struct usb_hub_descriptor);
684 break;
685 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 /* len is returned by hub_control */
687 break;
688 }
689 status = hcd->driver->hub_control (hcd,
690 typeReq, wValue, wIndex,
691 tbuf, wLength);
692
693 if (typeReq == GetHubDescriptor)
694 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 (struct usb_hub_descriptor *)tbuf);
696 break;
697error:
698 /* "protocol stall" on error */
699 status = -EPIPE;
700 }
701
702 if (status < 0) {
703 len = 0;
704 if (status != -EPIPE) {
705 dev_dbg (hcd->self.controller,
706 "CTRL: TypeReq=0x%x val=0x%x "
707 "idx=0x%x len=%d ==> %d\n",
708 typeReq, wValue, wIndex,
709 wLength, status);
710 }
711 } else if (status > 0) {
712 /* hub_control may return the length of data copied. */
713 len = status;
714 status = 0;
715 }
716 if (len) {
717 if (urb->transfer_buffer_length < len)
718 len = urb->transfer_buffer_length;
719 urb->actual_length = len;
720 /* always USB_DIR_IN, toward host */
721 memcpy (ubuf, bufp, len);
722
723 /* report whether RH hardware supports remote wakeup */
724 if (patch_wakeup &&
725 len > offsetof (struct usb_config_descriptor,
726 bmAttributes))
727 ((struct usb_config_descriptor *)ubuf)->bmAttributes
728 |= USB_CONFIG_ATT_WAKEUP;
729
730 /* report whether RH hardware has an integrated TT */
731 if (patch_protocol &&
732 len > offsetof(struct usb_device_descriptor,
733 bDeviceProtocol))
734 ((struct usb_device_descriptor *) ubuf)->
735 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736 }
737
738 kfree(tbuf);
739 err_alloc:
740
741 /* any errors get returned through the urb completion */
742 spin_lock_irq(&hcd_root_hub_lock);
743 usb_hcd_unlink_urb_from_ep(hcd, urb);
744 usb_hcd_giveback_urb(hcd, urb, status);
745 spin_unlock_irq(&hcd_root_hub_lock);
746 return 0;
747}
748
749/*-------------------------------------------------------------------------*/
750
751/*
752 * Root Hub interrupt transfers are polled using a timer if the
753 * driver requests it; otherwise the driver is responsible for
754 * calling usb_hcd_poll_rh_status() when an event occurs.
755 *
756 * Completions are called in_interrupt(), but they may or may not
757 * be in_irq().
758 */
759void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760{
761 struct urb *urb;
762 int length;
763 unsigned long flags;
764 char buffer[6]; /* Any root hubs with > 31 ports? */
765
766 if (unlikely(!hcd->rh_pollable))
767 return;
768 if (!hcd->uses_new_polling && !hcd->status_urb)
769 return;
770
771 length = hcd->driver->hub_status_data(hcd, buffer);
772 if (length > 0) {
773
774 /* try to complete the status urb */
775 spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 urb = hcd->status_urb;
777 if (urb) {
778 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 hcd->status_urb = NULL;
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, 0);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799}
800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802/* timer callback */
803static void rh_timer_func (unsigned long _hcd)
804{
805 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806}
807
808/*-------------------------------------------------------------------------*/
809
810static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811{
812 int retval;
813 unsigned long flags;
814 unsigned len = 1 + (urb->dev->maxchild / 8);
815
816 spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 retval = -EINVAL;
820 goto done;
821 }
822
823 retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 if (retval)
825 goto done;
826
827 hcd->status_urb = urb;
828 urb->hcpriv = hcd; /* indicate it's queued */
829 if (!hcd->uses_new_polling)
830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831
832 /* If a status change has already occurred, report it ASAP */
833 else if (HCD_POLL_PENDING(hcd))
834 mod_timer(&hcd->rh_timer, jiffies);
835 retval = 0;
836 done:
837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 return retval;
839}
840
841static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842{
843 if (usb_endpoint_xfer_int(&urb->ep->desc))
844 return rh_queue_status (hcd, urb);
845 if (usb_endpoint_xfer_control(&urb->ep->desc))
846 return rh_call_control (hcd, urb);
847 return -EINVAL;
848}
849
850/*-------------------------------------------------------------------------*/
851
852/* Unlinks of root-hub control URBs are legal, but they don't do anything
853 * since these URBs always execute synchronously.
854 */
855static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856{
857 unsigned long flags;
858 int rc;
859
860 spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 if (rc)
863 goto done;
864
865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
866 ; /* Do nothing */
867
868 } else { /* Status URB */
869 if (!hcd->uses_new_polling)
870 del_timer (&hcd->rh_timer);
871 if (urb == hcd->status_urb) {
872 hcd->status_urb = NULL;
873 usb_hcd_unlink_urb_from_ep(hcd, urb);
874 usb_hcd_giveback_urb(hcd, urb, status);
875 }
876 }
877 done:
878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 return rc;
880}
881
882
883
884/*
885 * Show & store the current value of authorized_default
886 */
887static ssize_t authorized_default_show(struct device *dev,
888 struct device_attribute *attr, char *buf)
889{
890 struct usb_device *rh_usb_dev = to_usb_device(dev);
891 struct usb_bus *usb_bus = rh_usb_dev->bus;
892 struct usb_hcd *hcd;
893
894 hcd = bus_to_hcd(usb_bus);
895 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896}
897
898static ssize_t authorized_default_store(struct device *dev,
899 struct device_attribute *attr,
900 const char *buf, size_t size)
901{
902 ssize_t result;
903 unsigned val;
904 struct usb_device *rh_usb_dev = to_usb_device(dev);
905 struct usb_bus *usb_bus = rh_usb_dev->bus;
906 struct usb_hcd *hcd;
907
908 hcd = bus_to_hcd(usb_bus);
909 result = sscanf(buf, "%u\n", &val);
910 if (result == 1) {
911 if (val)
912 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 else
914 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915
916 result = size;
917 } else {
918 result = -EINVAL;
919 }
920 return result;
921}
922static DEVICE_ATTR_RW(authorized_default);
923
924/*
925 * interface_authorized_default_show - show default authorization status
926 * for USB interfaces
927 *
928 * note: interface_authorized_default is the default value
929 * for initializing the authorized attribute of interfaces
930 */
931static ssize_t interface_authorized_default_show(struct device *dev,
932 struct device_attribute *attr, char *buf)
933{
934 struct usb_device *usb_dev = to_usb_device(dev);
935 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936
937 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938}
939
940/*
941 * interface_authorized_default_store - store default authorization status
942 * for USB interfaces
943 *
944 * note: interface_authorized_default is the default value
945 * for initializing the authorized attribute of interfaces
946 */
947static ssize_t interface_authorized_default_store(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
949{
950 struct usb_device *usb_dev = to_usb_device(dev);
951 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 int rc = count;
953 bool val;
954
955 if (strtobool(buf, &val) != 0)
956 return -EINVAL;
957
958 if (val)
959 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 else
961 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962
963 return rc;
964}
965static DEVICE_ATTR_RW(interface_authorized_default);
966
967/* Group all the USB bus attributes */
968static struct attribute *usb_bus_attrs[] = {
969 &dev_attr_authorized_default.attr,
970 &dev_attr_interface_authorized_default.attr,
971 NULL,
972};
973
974static struct attribute_group usb_bus_attr_group = {
975 .name = NULL, /* we want them in the same directory */
976 .attrs = usb_bus_attrs,
977};
978
979
980
981/*-------------------------------------------------------------------------*/
982
983/**
984 * usb_bus_init - shared initialization code
985 * @bus: the bus structure being initialized
986 *
987 * This code is used to initialize a usb_bus structure, memory for which is
988 * separately managed.
989 */
990static void usb_bus_init (struct usb_bus *bus)
991{
992 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993
994 bus->devnum_next = 1;
995
996 bus->root_hub = NULL;
997 bus->busnum = -1;
998 bus->bandwidth_allocated = 0;
999 bus->bandwidth_int_reqs = 0;
1000 bus->bandwidth_isoc_reqs = 0;
1001 mutex_init(&bus->devnum_next_mutex);
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/**
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1010 *
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1013 *
1014 * Return: 0 if successful. A negative error code otherwise.
1015 */
1016static int usb_register_bus(struct usb_bus *bus)
1017{
1018 int result = -E2BIG;
1019 int busnum;
1020
1021 mutex_lock(&usb_bus_idr_lock);
1022 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 if (busnum < 0) {
1024 pr_err("%s: failed to get bus number\n", usbcore_name);
1025 goto error_find_busnum;
1026 }
1027 bus->busnum = busnum;
1028 mutex_unlock(&usb_bus_idr_lock);
1029
1030 usb_notify_add_bus(bus);
1031
1032 dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 "number %d\n", bus->busnum);
1034 return 0;
1035
1036error_find_busnum:
1037 mutex_unlock(&usb_bus_idr_lock);
1038 return result;
1039}
1040
1041/**
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1045 *
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1048 */
1049static void usb_deregister_bus (struct usb_bus *bus)
1050{
1051 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053 /*
1054 * NOTE: make sure that all the devices are removed by the
1055 * controller code, as well as having it call this when cleaning
1056 * itself up
1057 */
1058 mutex_lock(&usb_bus_idr_lock);
1059 idr_remove(&usb_bus_idr, bus->busnum);
1060 mutex_unlock(&usb_bus_idr_lock);
1061
1062 usb_notify_remove_bus(bus);
1063}
1064
1065/**
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1068 *
1069 * This function registers the root hub with the USB subsystem. It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device. It also assigns the root hub's USB address
1072 * (always 1).
1073 *
1074 * Return: 0 if successful. A negative error code otherwise.
1075 */
1076static int register_root_hub(struct usb_hcd *hcd)
1077{
1078 struct device *parent_dev = hcd->self.controller;
1079 struct usb_device *usb_dev = hcd->self.root_hub;
1080 const int devnum = 1;
1081 int retval;
1082
1083 usb_dev->devnum = devnum;
1084 usb_dev->bus->devnum_next = devnum + 1;
1085 memset (&usb_dev->bus->devmap.devicemap, 0,
1086 sizeof usb_dev->bus->devmap.devicemap);
1087 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089
1090 mutex_lock(&usb_bus_idr_lock);
1091
1092 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094 if (retval != sizeof usb_dev->descriptor) {
1095 mutex_unlock(&usb_bus_idr_lock);
1096 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097 dev_name(&usb_dev->dev), retval);
1098 return (retval < 0) ? retval : -EMSGSIZE;
1099 }
1100
1101 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102 retval = usb_get_bos_descriptor(usb_dev);
1103 if (!retval) {
1104 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106 mutex_unlock(&usb_bus_idr_lock);
1107 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108 dev_name(&usb_dev->dev), retval);
1109 return retval;
1110 }
1111 }
1112
1113 retval = usb_new_device (usb_dev);
1114 if (retval) {
1115 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116 dev_name(&usb_dev->dev), retval);
1117 } else {
1118 spin_lock_irq (&hcd_root_hub_lock);
1119 hcd->rh_registered = 1;
1120 spin_unlock_irq (&hcd_root_hub_lock);
1121
1122 /* Did the HC die before the root hub was registered? */
1123 if (HCD_DEAD(hcd))
1124 usb_hc_died (hcd); /* This time clean up */
1125 usb_dev->dev.of_node = parent_dev->of_node;
1126 }
1127 mutex_unlock(&usb_bus_idr_lock);
1128
1129 return retval;
1130}
1131
1132/*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144{
1145 unsigned bit = 1 << portnum;
1146
1147 if (!(bus->resuming_ports & bit)) {
1148 bus->resuming_ports |= bit;
1149 pm_runtime_get_noresume(&bus->root_hub->dev);
1150 }
1151}
1152EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154/*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166{
1167 unsigned bit = 1 << portnum;
1168
1169 if (bus->resuming_ports & bit) {
1170 bus->resuming_ports &= ~bit;
1171 pm_runtime_put_noidle(&bus->root_hub->dev);
1172 }
1173}
1174EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176/*-------------------------------------------------------------------------*/
1177
1178/**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192{
1193 unsigned long tmp;
1194
1195 switch (speed) {
1196 case USB_SPEED_LOW: /* INTR only */
1197 if (is_input) {
1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 } else {
1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 }
1204 case USB_SPEED_FULL: /* ISOC or INTR */
1205 if (isoc) {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 } else {
1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 return 9107L + BW_HOST_DELAY + tmp;
1211 }
1212 case USB_SPEED_HIGH: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1214 if (isoc)
1215 tmp = HS_NSECS_ISO (bytecount);
1216 else
1217 tmp = HS_NSECS (bytecount);
1218 return tmp;
1219 default:
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 return -1;
1222 }
1223}
1224EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/*
1230 * Generic HC operations.
1231 */
1232
1233/*-------------------------------------------------------------------------*/
1234
1235/**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251{
1252 int rc = 0;
1253
1254 spin_lock(&hcd_urb_list_lock);
1255
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb->reject))) {
1258 rc = -EPERM;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->ep->enabled)) {
1263 rc = -ENOENT;
1264 goto done;
1265 }
1266
1267 if (unlikely(!urb->dev->can_submit)) {
1268 rc = -EHOSTUNREACH;
1269 goto done;
1270 }
1271
1272 /*
1273 * Check the host controller's state and add the URB to the
1274 * endpoint's queue.
1275 */
1276 if (HCD_RH_RUNNING(hcd)) {
1277 urb->unlinked = 0;
1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 } else {
1280 rc = -ESHUTDOWN;
1281 goto done;
1282 }
1283 done:
1284 spin_unlock(&hcd_urb_list_lock);
1285 return rc;
1286}
1287EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289/**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1302 *
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1305 *
1306 * -EBUSY: @urb has already been unlinked.
1307 */
1308int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 int status)
1310{
1311 struct list_head *tmp;
1312
1313 /* insist the urb is still queued */
1314 list_for_each(tmp, &urb->ep->urb_list) {
1315 if (tmp == &urb->urb_list)
1316 break;
1317 }
1318 if (tmp != &urb->urb_list)
1319 return -EIDRM;
1320
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1323 */
1324 if (urb->unlinked)
1325 return -EBUSY;
1326 urb->unlinked = status;
1327 return 0;
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331/**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1340 */
1341void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342{
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock);
1345 list_del_init(&urb->urb_list);
1346 spin_unlock(&hcd_urb_list_lock);
1347}
1348EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350/*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1379 *
1380 */
1381
1382static int hcd_alloc_coherent(struct usb_bus *bus,
1383 gfp_t mem_flags, dma_addr_t *dma_handle,
1384 void **vaddr_handle, size_t size,
1385 enum dma_data_direction dir)
1386{
1387 unsigned char *vaddr;
1388
1389 if (*vaddr_handle == NULL) {
1390 WARN_ON_ONCE(1);
1391 return -EFAULT;
1392 }
1393
1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 mem_flags, dma_handle);
1396 if (!vaddr)
1397 return -ENOMEM;
1398
1399 /*
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1406 */
1407 put_unaligned((unsigned long)*vaddr_handle,
1408 (unsigned long *)(vaddr + size));
1409
1410 if (dir == DMA_TO_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1412
1413 *vaddr_handle = vaddr;
1414 return 0;
1415}
1416
1417static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 void **vaddr_handle, size_t size,
1419 enum dma_data_direction dir)
1420{
1421 unsigned char *vaddr = *vaddr_handle;
1422
1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425 if (dir == DMA_FROM_DEVICE)
1426 memcpy(vaddr, *vaddr_handle, size);
1427
1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430 *vaddr_handle = vaddr;
1431 *dma_handle = 0;
1432}
1433
1434void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435{
1436 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 dma_unmap_single(hcd->self.controller,
1439 urb->setup_dma,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 hcd_free_coherent(urb->dev->bus,
1444 &urb->setup_dma,
1445 (void **) &urb->setup_packet,
1446 sizeof(struct usb_ctrlrequest),
1447 DMA_TO_DEVICE);
1448
1449 /* Make it safe to call this routine more than once */
1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451}
1452EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455{
1456 if (hcd->driver->unmap_urb_for_dma)
1457 hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 else
1459 usb_hcd_unmap_urb_for_dma(hcd, urb);
1460}
1461
1462void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463{
1464 enum dma_data_direction dir;
1465
1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 (urb->transfer_flags & URB_DMA_MAP_SG))
1471 dma_unmap_sg(hcd->self.controller,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 dma_unmap_page(hcd->self.controller,
1478 urb->transfer_dma,
1479 urb->transfer_buffer_length,
1480 dir);
1481 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 dma_unmap_single(hcd->self.controller,
1484 urb->transfer_dma,
1485 urb->transfer_buffer_length,
1486 dir);
1487 else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 hcd_free_coherent(urb->dev->bus,
1489 &urb->transfer_dma,
1490 &urb->transfer_buffer,
1491 urb->transfer_buffer_length,
1492 dir);
1493
1494 /* Make it safe to call this routine more than once */
1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497}
1498EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1502{
1503 if (hcd->driver->map_urb_for_dma)
1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 else
1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507}
1508
1509int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 gfp_t mem_flags)
1511{
1512 enum dma_data_direction dir;
1513 int ret = 0;
1514
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1519 */
1520
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 if (hcd->self.uses_pio_for_control)
1523 return ret;
1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 urb->setup_dma = dma_map_single(
1526 hcd->self.controller,
1527 urb->setup_packet,
1528 sizeof(struct usb_ctrlrequest),
1529 DMA_TO_DEVICE);
1530 if (dma_mapping_error(hcd->self.controller,
1531 urb->setup_dma))
1532 return -EAGAIN;
1533 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535 ret = hcd_alloc_coherent(
1536 urb->dev->bus, mem_flags,
1537 &urb->setup_dma,
1538 (void **)&urb->setup_packet,
1539 sizeof(struct usb_ctrlrequest),
1540 DMA_TO_DEVICE);
1541 if (ret)
1542 return ret;
1543 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544 }
1545 }
1546
1547 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548 if (urb->transfer_buffer_length != 0
1549 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551 if (urb->num_sgs) {
1552 int n;
1553
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556 WARN_ON(1);
1557 return -EINVAL;
1558 }
1559
1560 n = dma_map_sg(
1561 hcd->self.controller,
1562 urb->sg,
1563 urb->num_sgs,
1564 dir);
1565 if (n <= 0)
1566 ret = -EAGAIN;
1567 else
1568 urb->transfer_flags |= URB_DMA_MAP_SG;
1569 urb->num_mapped_sgs = n;
1570 if (n != urb->num_sgs)
1571 urb->transfer_flags |=
1572 URB_DMA_SG_COMBINED;
1573 } else if (urb->sg) {
1574 struct scatterlist *sg = urb->sg;
1575 urb->transfer_dma = dma_map_page(
1576 hcd->self.controller,
1577 sg_page(sg),
1578 sg->offset,
1579 urb->transfer_buffer_length,
1580 dir);
1581 if (dma_mapping_error(hcd->self.controller,
1582 urb->transfer_dma))
1583 ret = -EAGAIN;
1584 else
1585 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 ret = -EAGAIN;
1589 } else {
1590 urb->transfer_dma = dma_map_single(
1591 hcd->self.controller,
1592 urb->transfer_buffer,
1593 urb->transfer_buffer_length,
1594 dir);
1595 if (dma_mapping_error(hcd->self.controller,
1596 urb->transfer_dma))
1597 ret = -EAGAIN;
1598 else
1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600 }
1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 ret = hcd_alloc_coherent(
1603 urb->dev->bus, mem_flags,
1604 &urb->transfer_dma,
1605 &urb->transfer_buffer,
1606 urb->transfer_buffer_length,
1607 dir);
1608 if (ret == 0)
1609 urb->transfer_flags |= URB_MAP_LOCAL;
1610 }
1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 URB_SETUP_MAP_LOCAL)))
1613 usb_hcd_unmap_urb_for_dma(hcd, urb);
1614 }
1615 return ret;
1616}
1617EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627{
1628 int status;
1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1630
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1634 */
1635 usb_get_urb(urb);
1636 atomic_inc(&urb->use_count);
1637 atomic_inc(&urb->dev->urbnum);
1638 usbmon_urb_submit(&hcd->self, urb);
1639
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1645 * enabled.
1646 */
1647
1648 if (is_root_hub(urb->dev)) {
1649 status = rh_urb_enqueue(hcd, urb);
1650 } else {
1651 status = map_urb_for_dma(hcd, urb, mem_flags);
1652 if (likely(status == 0)) {
1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 if (unlikely(status))
1655 unmap_urb_for_dma(hcd, urb);
1656 }
1657 }
1658
1659 if (unlikely(status)) {
1660 usbmon_urb_submit_error(&hcd->self, urb, status);
1661 urb->hcpriv = NULL;
1662 INIT_LIST_HEAD(&urb->urb_list);
1663 atomic_dec(&urb->use_count);
1664 atomic_dec(&urb->dev->urbnum);
1665 if (atomic_read(&urb->reject))
1666 wake_up(&usb_kill_urb_queue);
1667 usb_put_urb(urb);
1668 }
1669 return status;
1670}
1671
1672/*-------------------------------------------------------------------------*/
1673
1674/* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680{
1681 int value;
1682
1683 if (is_root_hub(urb->dev))
1684 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 else {
1686
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value = hcd->driver->urb_dequeue(hcd, urb, status);
1691 }
1692 return value;
1693}
1694
1695/*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701int usb_hcd_unlink_urb (struct urb *urb, int status)
1702{
1703 struct usb_hcd *hcd;
1704 struct usb_device *udev = urb->dev;
1705 int retval = -EIDRM;
1706 unsigned long flags;
1707
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1712 */
1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 if (atomic_read(&urb->use_count) > 0) {
1715 retval = 0;
1716 usb_get_dev(udev);
1717 }
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 if (retval == 0) {
1720 hcd = bus_to_hcd(urb->dev->bus);
1721 retval = unlink1(hcd, urb, status);
1722 if (retval == 0)
1723 retval = -EINPROGRESS;
1724 else if (retval != -EIDRM && retval != -EBUSY)
1725 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726 urb, retval);
1727 usb_put_dev(udev);
1728 }
1729 return retval;
1730}
1731
1732/*-------------------------------------------------------------------------*/
1733
1734static void __usb_hcd_giveback_urb(struct urb *urb)
1735{
1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 struct usb_anchor *anchor = urb->anchor;
1738 int status = urb->unlinked;
1739 unsigned long flags;
1740
1741 urb->hcpriv = NULL;
1742 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 urb->actual_length < urb->transfer_buffer_length &&
1744 !status))
1745 status = -EREMOTEIO;
1746
1747 unmap_urb_for_dma(hcd, urb);
1748 usbmon_urb_complete(&hcd->self, urb, status);
1749 usb_anchor_suspend_wakeups(anchor);
1750 usb_unanchor_urb(urb);
1751 if (likely(status == 0))
1752 usb_led_activity(USB_LED_EVENT_HOST);
1753
1754 /* pass ownership to the completion handler */
1755 urb->status = status;
1756
1757 /*
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1761 *
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1766 */
1767 local_irq_save(flags);
1768 urb->complete(urb);
1769 local_irq_restore(flags);
1770
1771 usb_anchor_resume_wakeups(anchor);
1772 atomic_dec(&urb->use_count);
1773 if (unlikely(atomic_read(&urb->reject)))
1774 wake_up(&usb_kill_urb_queue);
1775 usb_put_urb(urb);
1776}
1777
1778static void usb_giveback_urb_bh(unsigned long param)
1779{
1780 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 struct list_head local_list;
1782
1783 spin_lock_irq(&bh->lock);
1784 bh->running = true;
1785 restart:
1786 list_replace_init(&bh->head, &local_list);
1787 spin_unlock_irq(&bh->lock);
1788
1789 while (!list_empty(&local_list)) {
1790 struct urb *urb;
1791
1792 urb = list_entry(local_list.next, struct urb, urb_list);
1793 list_del_init(&urb->urb_list);
1794 bh->completing_ep = urb->ep;
1795 __usb_hcd_giveback_urb(urb);
1796 bh->completing_ep = NULL;
1797 }
1798
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh->lock);
1801 if (!list_empty(&bh->head))
1802 goto restart;
1803 bh->running = false;
1804 spin_unlock_irq(&bh->lock);
1805}
1806
1807/**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825{
1826 struct giveback_urb_bh *bh;
1827 bool running, high_prio_bh;
1828
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb->unlinked))
1831 urb->unlinked = status;
1832
1833 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 __usb_hcd_giveback_urb(urb);
1835 return;
1836 }
1837
1838 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 bh = &hcd->high_prio_bh;
1840 high_prio_bh = true;
1841 } else {
1842 bh = &hcd->low_prio_bh;
1843 high_prio_bh = false;
1844 }
1845
1846 spin_lock(&bh->lock);
1847 list_add_tail(&urb->urb_list, &bh->head);
1848 running = bh->running;
1849 spin_unlock(&bh->lock);
1850
1851 if (running)
1852 ;
1853 else if (high_prio_bh)
1854 tasklet_hi_schedule(&bh->bh);
1855 else
1856 tasklet_schedule(&bh->bh);
1857}
1858EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860/*-------------------------------------------------------------------------*/
1861
1862/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1868{
1869 struct usb_hcd *hcd;
1870 struct urb *urb;
1871
1872 if (!ep)
1873 return;
1874 might_sleep();
1875 hcd = bus_to_hcd(udev->bus);
1876
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock);
1879rescan:
1880 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881 int is_in;
1882
1883 if (urb->unlinked)
1884 continue;
1885 usb_get_urb (urb);
1886 is_in = usb_urb_dir_in(urb);
1887 spin_unlock(&hcd_urb_list_lock);
1888
1889 /* kick hcd */
1890 unlink1(hcd, urb, -ESHUTDOWN);
1891 dev_dbg (hcd->self.controller,
1892 "shutdown urb %p ep%d%s%s\n",
1893 urb, usb_endpoint_num(&ep->desc),
1894 is_in ? "in" : "out",
1895 ({ char *s;
1896
1897 switch (usb_endpoint_type(&ep->desc)) {
1898 case USB_ENDPOINT_XFER_CONTROL:
1899 s = ""; break;
1900 case USB_ENDPOINT_XFER_BULK:
1901 s = "-bulk"; break;
1902 case USB_ENDPOINT_XFER_INT:
1903 s = "-intr"; break;
1904 default:
1905 s = "-iso"; break;
1906 };
1907 s;
1908 }));
1909 usb_put_urb (urb);
1910
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock);
1913 goto rescan;
1914 }
1915 spin_unlock_irq(&hcd_urb_list_lock);
1916
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep->urb_list)) {
1919 spin_lock_irq(&hcd_urb_list_lock);
1920
1921 /* The list may have changed while we acquired the spinlock */
1922 urb = NULL;
1923 if (!list_empty (&ep->urb_list)) {
1924 urb = list_entry (ep->urb_list.prev, struct urb,
1925 urb_list);
1926 usb_get_urb (urb);
1927 }
1928 spin_unlock_irq(&hcd_urb_list_lock);
1929
1930 if (urb) {
1931 usb_kill_urb (urb);
1932 usb_put_urb (urb);
1933 }
1934 }
1935}
1936
1937/**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 * the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 struct usb_host_config *new_config,
1960 struct usb_host_interface *cur_alt,
1961 struct usb_host_interface *new_alt)
1962{
1963 int num_intfs, i, j;
1964 struct usb_host_interface *alt = NULL;
1965 int ret = 0;
1966 struct usb_hcd *hcd;
1967 struct usb_host_endpoint *ep;
1968
1969 hcd = bus_to_hcd(udev->bus);
1970 if (!hcd->driver->check_bandwidth)
1971 return 0;
1972
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config && !cur_alt) {
1975 for (i = 1; i < 16; ++i) {
1976 ep = udev->ep_out[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 ep = udev->ep_in[i];
1980 if (ep)
1981 hcd->driver->drop_endpoint(hcd, udev, ep);
1982 }
1983 hcd->driver->check_bandwidth(hcd, udev);
1984 return 0;
1985 }
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1989 * ok to exclude it.
1990 */
1991 if (new_config) {
1992 num_intfs = new_config->desc.bNumInterfaces;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1995 */
1996 for (i = 1; i < 16; ++i) {
1997 ep = udev->ep_out[i];
1998 if (ep) {
1999 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 if (ret < 0)
2001 goto reset;
2002 }
2003 ep = udev->ep_in[i];
2004 if (ep) {
2005 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 if (ret < 0)
2007 goto reset;
2008 }
2009 }
2010 for (i = 0; i < num_intfs; ++i) {
2011 struct usb_host_interface *first_alt;
2012 int iface_num;
2013
2014 first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 iface_num = first_alt->desc.bInterfaceNumber;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 if (!alt)
2019 /* No alt setting 0? Pick the first setting. */
2020 alt = first_alt;
2021
2022 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 if (ret < 0)
2025 goto reset;
2026 }
2027 }
2028 }
2029 if (cur_alt && new_alt) {
2030 struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 cur_alt->desc.bInterfaceNumber);
2032
2033 if (!iface)
2034 return -EINVAL;
2035 if (iface->resetting_device) {
2036 /*
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2043 * setting 0.
2044 */
2045 cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 if (!cur_alt)
2047 cur_alt = &iface->altsetting[0];
2048 }
2049
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 ret = hcd->driver->drop_endpoint(hcd, udev,
2053 &cur_alt->endpoint[i]);
2054 if (ret < 0)
2055 goto reset;
2056 }
2057 /* Add all the endpoints in the new alt setting */
2058 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 ret = hcd->driver->add_endpoint(hcd, udev,
2060 &new_alt->endpoint[i]);
2061 if (ret < 0)
2062 goto reset;
2063 }
2064 }
2065 ret = hcd->driver->check_bandwidth(hcd, udev);
2066reset:
2067 if (ret < 0)
2068 hcd->driver->reset_bandwidth(hcd, udev);
2069 return ret;
2070}
2071
2072/* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 struct usb_host_endpoint *ep)
2082{
2083 struct usb_hcd *hcd;
2084
2085 might_sleep();
2086 hcd = bus_to_hcd(udev->bus);
2087 if (hcd->driver->endpoint_disable)
2088 hcd->driver->endpoint_disable(hcd, ep);
2089}
2090
2091/**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 struct usb_host_endpoint *ep)
2101{
2102 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104 if (hcd->driver->endpoint_reset)
2105 hcd->driver->endpoint_reset(hcd, ep);
2106 else {
2107 int epnum = usb_endpoint_num(&ep->desc);
2108 int is_out = usb_endpoint_dir_out(&ep->desc);
2109 int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111 usb_settoggle(udev, epnum, is_out, 0);
2112 if (is_control)
2113 usb_settoggle(udev, epnum, !is_out, 0);
2114 }
2115}
2116
2117/**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132int usb_alloc_streams(struct usb_interface *interface,
2133 struct usb_host_endpoint **eps, unsigned int num_eps,
2134 unsigned int num_streams, gfp_t mem_flags)
2135{
2136 struct usb_hcd *hcd;
2137 struct usb_device *dev;
2138 int i, ret;
2139
2140 dev = interface_to_usbdev(interface);
2141 hcd = bus_to_hcd(dev->bus);
2142 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 return -EINVAL;
2144 if (dev->speed < USB_SPEED_SUPER)
2145 return -EINVAL;
2146 if (dev->state < USB_STATE_CONFIGURED)
2147 return -ENODEV;
2148
2149 for (i = 0; i < num_eps; i++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 return -EINVAL;
2153 /* Re-alloc is not allowed */
2154 if (eps[i]->streams)
2155 return -EINVAL;
2156 }
2157
2158 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 num_streams, mem_flags);
2160 if (ret < 0)
2161 return ret;
2162
2163 for (i = 0; i < num_eps; i++)
2164 eps[i]->streams = ret;
2165
2166 return ret;
2167}
2168EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170/**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182int usb_free_streams(struct usb_interface *interface,
2183 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 gfp_t mem_flags)
2185{
2186 struct usb_hcd *hcd;
2187 struct usb_device *dev;
2188 int i, ret;
2189
2190 dev = interface_to_usbdev(interface);
2191 hcd = bus_to_hcd(dev->bus);
2192 if (dev->speed < USB_SPEED_SUPER)
2193 return -EINVAL;
2194
2195 /* Double-free is not allowed */
2196 for (i = 0; i < num_eps; i++)
2197 if (!eps[i] || !eps[i]->streams)
2198 return -EINVAL;
2199
2200 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 if (ret < 0)
2202 return ret;
2203
2204 for (i = 0; i < num_eps; i++)
2205 eps[i]->streams = 0;
2206
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211/* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217{
2218 spin_lock_irq(&hcd_urb_unlink_lock);
2219 spin_unlock_irq(&hcd_urb_unlink_lock);
2220}
2221
2222/*-------------------------------------------------------------------------*/
2223
2224/* called in any context */
2225int usb_hcd_get_frame_number (struct usb_device *udev)
2226{
2227 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2228
2229 if (!HCD_RH_RUNNING(hcd))
2230 return -ESHUTDOWN;
2231 return hcd->driver->get_frame_number (hcd);
2232}
2233
2234/*-------------------------------------------------------------------------*/
2235
2236#ifdef CONFIG_PM
2237
2238int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239{
2240 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2241 int status;
2242 int old_state = hcd->state;
2243
2244 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 rhdev->do_remote_wakeup);
2247 if (HCD_DEAD(hcd)) {
2248 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 return 0;
2250 }
2251
2252 if (!hcd->driver->bus_suspend) {
2253 status = -ENOENT;
2254 } else {
2255 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 hcd->state = HC_STATE_QUIESCING;
2257 status = hcd->driver->bus_suspend(hcd);
2258 }
2259 if (status == 0) {
2260 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 hcd->state = HC_STATE_SUSPENDED;
2262
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev->do_remote_wakeup) {
2265 char buffer[6];
2266
2267 status = hcd->driver->hub_status_data(hcd, buffer);
2268 if (status != 0) {
2269 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 status = -EBUSY;
2272 }
2273 }
2274 } else {
2275 spin_lock_irq(&hcd_root_hub_lock);
2276 if (!HCD_DEAD(hcd)) {
2277 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 hcd->state = old_state;
2279 }
2280 spin_unlock_irq(&hcd_root_hub_lock);
2281 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 "suspend", status);
2283 }
2284 return status;
2285}
2286
2287int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288{
2289 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2290 int status;
2291 int old_state = hcd->state;
2292
2293 dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd)) {
2296 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 return 0;
2298 }
2299 if (!hcd->driver->bus_resume)
2300 return -ENOENT;
2301 if (HCD_RH_RUNNING(hcd))
2302 return 0;
2303
2304 hcd->state = HC_STATE_RESUMING;
2305 status = hcd->driver->bus_resume(hcd);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 if (status == 0) {
2308 struct usb_device *udev;
2309 int port1;
2310
2311 spin_lock_irq(&hcd_root_hub_lock);
2312 if (!HCD_DEAD(hcd)) {
2313 usb_set_device_state(rhdev, rhdev->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS);
2316 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 hcd->state = HC_STATE_RUNNING;
2318 }
2319 spin_unlock_irq(&hcd_root_hub_lock);
2320
2321 /*
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2326 */
2327 usb_hub_for_each_child(rhdev, port1, udev) {
2328 if (udev->state != USB_STATE_NOTATTACHED &&
2329 !udev->port_is_suspended) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2331 break;
2332 }
2333 }
2334 } else {
2335 hcd->state = old_state;
2336 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 "resume", status);
2338 if (status != -ESHUTDOWN)
2339 usb_hc_died(hcd);
2340 }
2341 return status;
2342}
2343
2344/* Workqueue routine for root-hub remote wakeup */
2345static void hcd_resume_work(struct work_struct *work)
2346{
2347 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 struct usb_device *udev = hcd->self.root_hub;
2349
2350 usb_remote_wakeup(udev);
2351}
2352
2353/**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363{
2364 unsigned long flags;
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 if (hcd->rh_registered) {
2368 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369 queue_work(pm_wq, &hcd->wakeup_work);
2370 }
2371 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372}
2373EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375#endif /* CONFIG_PM */
2376
2377/*-------------------------------------------------------------------------*/
2378
2379#ifdef CONFIG_USB_OTG
2380
2381/**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395{
2396 struct usb_hcd *hcd;
2397 int status = -EOPNOTSUPP;
2398
2399 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400 * boards with root hubs hooked up to internal devices (instead of
2401 * just the OTG port) may need more attention to resetting...
2402 */
2403 hcd = bus_to_hcd(bus);
2404 if (port_num && hcd->driver->start_port_reset)
2405 status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407 /* allocate hub_wq shortly after (first) root port reset finishes;
2408 * it may issue others, until at least 50 msecs have passed.
2409 */
2410 if (status == 0)
2411 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 return status;
2413}
2414EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416#endif
2417
2418/*-------------------------------------------------------------------------*/
2419
2420/**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431{
2432 struct usb_hcd *hcd = __hcd;
2433 irqreturn_t rc;
2434
2435 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436 rc = IRQ_NONE;
2437 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438 rc = IRQ_NONE;
2439 else
2440 rc = IRQ_HANDLED;
2441
2442 return rc;
2443}
2444EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446/*-------------------------------------------------------------------------*/
2447
2448/**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending. It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458void usb_hc_died (struct usb_hcd *hcd)
2459{
2460 unsigned long flags;
2461
2462 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467 if (hcd->rh_registered) {
2468 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470 /* make hub_wq clean up old urbs and devices */
2471 usb_set_device_state (hcd->self.root_hub,
2472 USB_STATE_NOTATTACHED);
2473 usb_kick_hub_wq(hcd->self.root_hub);
2474 }
2475 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476 hcd = hcd->shared_hcd;
2477 if (hcd->rh_registered) {
2478 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479
2480 /* make hub_wq clean up old urbs and devices */
2481 usb_set_device_state(hcd->self.root_hub,
2482 USB_STATE_NOTATTACHED);
2483 usb_kick_hub_wq(hcd->self.root_hub);
2484 }
2485 }
2486 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487 /* Make sure that the other roothub is also deallocated. */
2488}
2489EXPORT_SYMBOL_GPL (usb_hc_died);
2490
2491/*-------------------------------------------------------------------------*/
2492
2493static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494{
2495
2496 spin_lock_init(&bh->lock);
2497 INIT_LIST_HEAD(&bh->head);
2498 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499}
2500
2501/**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 * PCI device. Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data. Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
2517struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 struct device *dev, const char *bus_name,
2519 struct usb_hcd *primary_hcd)
2520{
2521 struct usb_hcd *hcd;
2522
2523 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524 if (!hcd)
2525 return NULL;
2526 if (primary_hcd == NULL) {
2527 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528 GFP_KERNEL);
2529 if (!hcd->address0_mutex) {
2530 kfree(hcd);
2531 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532 return NULL;
2533 }
2534 mutex_init(hcd->address0_mutex);
2535 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536 GFP_KERNEL);
2537 if (!hcd->bandwidth_mutex) {
2538 kfree(hcd);
2539 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540 return NULL;
2541 }
2542 mutex_init(hcd->bandwidth_mutex);
2543 dev_set_drvdata(dev, hcd);
2544 } else {
2545 mutex_lock(&usb_port_peer_mutex);
2546 hcd->address0_mutex = primary_hcd->address0_mutex;
2547 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548 hcd->primary_hcd = primary_hcd;
2549 primary_hcd->primary_hcd = primary_hcd;
2550 hcd->shared_hcd = primary_hcd;
2551 primary_hcd->shared_hcd = hcd;
2552 mutex_unlock(&usb_port_peer_mutex);
2553 }
2554
2555 kref_init(&hcd->kref);
2556
2557 usb_bus_init(&hcd->self);
2558 hcd->self.controller = dev;
2559 hcd->self.bus_name = bus_name;
2560 hcd->self.uses_dma = (dev->dma_mask != NULL);
2561
2562 init_timer(&hcd->rh_timer);
2563 hcd->rh_timer.function = rh_timer_func;
2564 hcd->rh_timer.data = (unsigned long) hcd;
2565#ifdef CONFIG_PM
2566 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567#endif
2568
2569 hcd->driver = driver;
2570 hcd->speed = driver->flags & HCD_MASK;
2571 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572 "USB Host Controller";
2573 return hcd;
2574}
2575EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576
2577/**
2578 * usb_create_hcd - create and initialize an HCD structure
2579 * @driver: HC driver that will use this hcd
2580 * @dev: device for this HC, stored in hcd->self.controller
2581 * @bus_name: value to store in hcd->self.bus_name
2582 * Context: !in_interrupt()
2583 *
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data. Initialize the generic members of the
2586 * hcd structure.
2587 *
2588 * Return: On success, a pointer to the created and initialized HCD
2589 * structure. On failure (e.g. if memory is unavailable), %NULL.
2590 */
2591struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592 struct device *dev, const char *bus_name)
2593{
2594 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595}
2596EXPORT_SYMBOL_GPL(usb_create_hcd);
2597
2598/*
2599 * Roothubs that share one PCI device must also share the bandwidth mutex.
2600 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601 * deallocated.
2602 *
2603 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604 * freed. When hcd_release() is called for either hcd in a peer set,
2605 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606 */
2607static void hcd_release(struct kref *kref)
2608{
2609 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610
2611 mutex_lock(&usb_port_peer_mutex);
2612 if (hcd->shared_hcd) {
2613 struct usb_hcd *peer = hcd->shared_hcd;
2614
2615 peer->shared_hcd = NULL;
2616 peer->primary_hcd = NULL;
2617 } else {
2618 kfree(hcd->address0_mutex);
2619 kfree(hcd->bandwidth_mutex);
2620 }
2621 mutex_unlock(&usb_port_peer_mutex);
2622 kfree(hcd);
2623}
2624
2625struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626{
2627 if (hcd)
2628 kref_get (&hcd->kref);
2629 return hcd;
2630}
2631EXPORT_SYMBOL_GPL(usb_get_hcd);
2632
2633void usb_put_hcd (struct usb_hcd *hcd)
2634{
2635 if (hcd)
2636 kref_put (&hcd->kref, hcd_release);
2637}
2638EXPORT_SYMBOL_GPL(usb_put_hcd);
2639
2640int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641{
2642 if (!hcd->primary_hcd)
2643 return 1;
2644 return hcd == hcd->primary_hcd;
2645}
2646EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647
2648int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649{
2650 if (!hcd->driver->find_raw_port_number)
2651 return port1;
2652
2653 return hcd->driver->find_raw_port_number(hcd, port1);
2654}
2655
2656static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657 unsigned int irqnum, unsigned long irqflags)
2658{
2659 int retval;
2660
2661 if (hcd->driver->irq) {
2662
2663 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664 hcd->driver->description, hcd->self.busnum);
2665 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666 hcd->irq_descr, hcd);
2667 if (retval != 0) {
2668 dev_err(hcd->self.controller,
2669 "request interrupt %d failed\n",
2670 irqnum);
2671 return retval;
2672 }
2673 hcd->irq = irqnum;
2674 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675 (hcd->driver->flags & HCD_MEMORY) ?
2676 "io mem" : "io base",
2677 (unsigned long long)hcd->rsrc_start);
2678 } else {
2679 hcd->irq = 0;
2680 if (hcd->rsrc_start)
2681 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682 (hcd->driver->flags & HCD_MEMORY) ?
2683 "io mem" : "io base",
2684 (unsigned long long)hcd->rsrc_start);
2685 }
2686 return 0;
2687}
2688
2689/*
2690 * Before we free this root hub, flush in-flight peering attempts
2691 * and disable peer lookups
2692 */
2693static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694{
2695 struct usb_device *rhdev;
2696
2697 mutex_lock(&usb_port_peer_mutex);
2698 rhdev = hcd->self.root_hub;
2699 hcd->self.root_hub = NULL;
2700 mutex_unlock(&usb_port_peer_mutex);
2701 usb_put_dev(rhdev);
2702}
2703
2704/**
2705 * usb_add_hcd - finish generic HCD structure initialization and register
2706 * @hcd: the usb_hcd structure to initialize
2707 * @irqnum: Interrupt line to allocate
2708 * @irqflags: Interrupt type flags
2709 *
2710 * Finish the remaining parts of generic HCD initialization: allocate the
2711 * buffers of consistent memory, register the bus, request the IRQ line,
2712 * and call the driver's reset() and start() routines.
2713 */
2714int usb_add_hcd(struct usb_hcd *hcd,
2715 unsigned int irqnum, unsigned long irqflags)
2716{
2717 int retval;
2718 struct usb_device *rhdev;
2719
2720 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2722
2723 if (IS_ERR(phy)) {
2724 retval = PTR_ERR(phy);
2725 if (retval == -EPROBE_DEFER)
2726 return retval;
2727 } else {
2728 retval = usb_phy_init(phy);
2729 if (retval) {
2730 usb_put_phy(phy);
2731 return retval;
2732 }
2733 hcd->usb_phy = phy;
2734 hcd->remove_phy = 1;
2735 }
2736 }
2737
2738 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739 struct phy *phy = phy_get(hcd->self.controller, "usb");
2740
2741 if (IS_ERR(phy)) {
2742 retval = PTR_ERR(phy);
2743 if (retval == -EPROBE_DEFER)
2744 goto err_phy;
2745 } else {
2746 retval = phy_init(phy);
2747 if (retval) {
2748 phy_put(phy);
2749 goto err_phy;
2750 }
2751 retval = phy_power_on(phy);
2752 if (retval) {
2753 phy_exit(phy);
2754 phy_put(phy);
2755 goto err_phy;
2756 }
2757 hcd->phy = phy;
2758 hcd->remove_phy = 1;
2759 }
2760 }
2761
2762 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763
2764 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2765 if (authorized_default < 0 || authorized_default > 1) {
2766 if (hcd->wireless)
2767 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 else
2769 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 } else {
2771 if (authorized_default)
2772 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 else
2774 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2775 }
2776 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777
2778 /* per default all interfaces are authorized */
2779 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780
2781 /* HC is in reset state, but accessible. Now do the one-time init,
2782 * bottom up so that hcds can customize the root hubs before hub_wq
2783 * starts talking to them. (Note, bus id is assigned early too.)
2784 */
2785 retval = hcd_buffer_create(hcd);
2786 if (retval != 0) {
2787 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788 goto err_create_buf;
2789 }
2790
2791 retval = usb_register_bus(&hcd->self);
2792 if (retval < 0)
2793 goto err_register_bus;
2794
2795 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796 if (rhdev == NULL) {
2797 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798 retval = -ENOMEM;
2799 goto err_allocate_root_hub;
2800 }
2801 mutex_lock(&usb_port_peer_mutex);
2802 hcd->self.root_hub = rhdev;
2803 mutex_unlock(&usb_port_peer_mutex);
2804
2805 switch (hcd->speed) {
2806 case HCD_USB11:
2807 rhdev->speed = USB_SPEED_FULL;
2808 break;
2809 case HCD_USB2:
2810 rhdev->speed = USB_SPEED_HIGH;
2811 break;
2812 case HCD_USB25:
2813 rhdev->speed = USB_SPEED_WIRELESS;
2814 break;
2815 case HCD_USB3:
2816 rhdev->speed = USB_SPEED_SUPER;
2817 break;
2818 case HCD_USB31:
2819 rhdev->speed = USB_SPEED_SUPER_PLUS;
2820 break;
2821 default:
2822 retval = -EINVAL;
2823 goto err_set_rh_speed;
2824 }
2825
2826 /* wakeup flag init defaults to "everything works" for root hubs,
2827 * but drivers can override it in reset() if needed, along with
2828 * recording the overall controller's system wakeup capability.
2829 */
2830 device_set_wakeup_capable(&rhdev->dev, 1);
2831
2832 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833 * registered. But since the controller can die at any time,
2834 * let's initialize the flag before touching the hardware.
2835 */
2836 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837
2838 /* "reset" is misnamed; its role is now one-time init. the controller
2839 * should already have been reset (and boot firmware kicked off etc).
2840 */
2841 if (hcd->driver->reset) {
2842 retval = hcd->driver->reset(hcd);
2843 if (retval < 0) {
2844 dev_err(hcd->self.controller, "can't setup: %d\n",
2845 retval);
2846 goto err_hcd_driver_setup;
2847 }
2848 }
2849 hcd->rh_pollable = 1;
2850
2851 /* NOTE: root hub and controller capabilities may not be the same */
2852 if (device_can_wakeup(hcd->self.controller)
2853 && device_can_wakeup(&hcd->self.root_hub->dev))
2854 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855
2856 /* initialize tasklets */
2857 init_giveback_urb_bh(&hcd->high_prio_bh);
2858 init_giveback_urb_bh(&hcd->low_prio_bh);
2859
2860 /* enable irqs just before we start the controller,
2861 * if the BIOS provides legacy PCI irqs.
2862 */
2863 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865 if (retval)
2866 goto err_request_irq;
2867 }
2868
2869 hcd->state = HC_STATE_RUNNING;
2870 retval = hcd->driver->start(hcd);
2871 if (retval < 0) {
2872 dev_err(hcd->self.controller, "startup error %d\n", retval);
2873 goto err_hcd_driver_start;
2874 }
2875
2876 /* starting here, usbcore will pay attention to this root hub */
2877 retval = register_root_hub(hcd);
2878 if (retval != 0)
2879 goto err_register_root_hub;
2880
2881 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882 if (retval < 0) {
2883 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884 retval);
2885 goto error_create_attr_group;
2886 }
2887 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888 usb_hcd_poll_rh_status(hcd);
2889
2890 return retval;
2891
2892error_create_attr_group:
2893 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894 if (HC_IS_RUNNING(hcd->state))
2895 hcd->state = HC_STATE_QUIESCING;
2896 spin_lock_irq(&hcd_root_hub_lock);
2897 hcd->rh_registered = 0;
2898 spin_unlock_irq(&hcd_root_hub_lock);
2899
2900#ifdef CONFIG_PM
2901 cancel_work_sync(&hcd->wakeup_work);
2902#endif
2903 mutex_lock(&usb_bus_idr_lock);
2904 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2905 mutex_unlock(&usb_bus_idr_lock);
2906err_register_root_hub:
2907 hcd->rh_pollable = 0;
2908 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909 del_timer_sync(&hcd->rh_timer);
2910 hcd->driver->stop(hcd);
2911 hcd->state = HC_STATE_HALT;
2912 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913 del_timer_sync(&hcd->rh_timer);
2914err_hcd_driver_start:
2915 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916 free_irq(irqnum, hcd);
2917err_request_irq:
2918err_hcd_driver_setup:
2919err_set_rh_speed:
2920 usb_put_invalidate_rhdev(hcd);
2921err_allocate_root_hub:
2922 usb_deregister_bus(&hcd->self);
2923err_register_bus:
2924 hcd_buffer_destroy(hcd);
2925err_create_buf:
2926 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927 phy_power_off(hcd->phy);
2928 phy_exit(hcd->phy);
2929 phy_put(hcd->phy);
2930 hcd->phy = NULL;
2931 }
2932err_phy:
2933 if (hcd->remove_phy && hcd->usb_phy) {
2934 usb_phy_shutdown(hcd->usb_phy);
2935 usb_put_phy(hcd->usb_phy);
2936 hcd->usb_phy = NULL;
2937 }
2938 return retval;
2939}
2940EXPORT_SYMBOL_GPL(usb_add_hcd);
2941
2942/**
2943 * usb_remove_hcd - shutdown processing for generic HCDs
2944 * @hcd: the usb_hcd structure to remove
2945 * Context: !in_interrupt()
2946 *
2947 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948 * invoking the HCD's stop() method.
2949 */
2950void usb_remove_hcd(struct usb_hcd *hcd)
2951{
2952 struct usb_device *rhdev = hcd->self.root_hub;
2953
2954 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955
2956 usb_get_dev(rhdev);
2957 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958
2959 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960 if (HC_IS_RUNNING (hcd->state))
2961 hcd->state = HC_STATE_QUIESCING;
2962
2963 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964 spin_lock_irq (&hcd_root_hub_lock);
2965 hcd->rh_registered = 0;
2966 spin_unlock_irq (&hcd_root_hub_lock);
2967
2968#ifdef CONFIG_PM
2969 cancel_work_sync(&hcd->wakeup_work);
2970#endif
2971
2972 mutex_lock(&usb_bus_idr_lock);
2973 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2974 mutex_unlock(&usb_bus_idr_lock);
2975
2976 /*
2977 * tasklet_kill() isn't needed here because:
2978 * - driver's disconnect() called from usb_disconnect() should
2979 * make sure its URBs are completed during the disconnect()
2980 * callback
2981 *
2982 * - it is too late to run complete() here since driver may have
2983 * been removed already now
2984 */
2985
2986 /* Prevent any more root-hub status calls from the timer.
2987 * The HCD might still restart the timer (if a port status change
2988 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989 * the hub_status_data() callback.
2990 */
2991 hcd->rh_pollable = 0;
2992 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993 del_timer_sync(&hcd->rh_timer);
2994
2995 hcd->driver->stop(hcd);
2996 hcd->state = HC_STATE_HALT;
2997
2998 /* In case the HCD restarted the timer, stop it again. */
2999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000 del_timer_sync(&hcd->rh_timer);
3001
3002 if (usb_hcd_is_primary_hcd(hcd)) {
3003 if (hcd->irq > 0)
3004 free_irq(hcd->irq, hcd);
3005 }
3006
3007 usb_deregister_bus(&hcd->self);
3008 hcd_buffer_destroy(hcd);
3009
3010 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011 phy_power_off(hcd->phy);
3012 phy_exit(hcd->phy);
3013 phy_put(hcd->phy);
3014 hcd->phy = NULL;
3015 }
3016 if (hcd->remove_phy && hcd->usb_phy) {
3017 usb_phy_shutdown(hcd->usb_phy);
3018 usb_put_phy(hcd->usb_phy);
3019 hcd->usb_phy = NULL;
3020 }
3021
3022 usb_put_invalidate_rhdev(hcd);
3023}
3024EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026void
3027usb_hcd_platform_shutdown(struct platform_device *dev)
3028{
3029 struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
3031 if (hcd->driver->shutdown)
3032 hcd->driver->shutdown(hcd);
3033}
3034EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3035
3036/*-------------------------------------------------------------------------*/
3037
3038#if IS_ENABLED(CONFIG_USB_MON)
3039
3040const struct usb_mon_operations *mon_ops;
3041
3042/*
3043 * The registration is unlocked.
3044 * We do it this way because we do not want to lock in hot paths.
3045 *
3046 * Notice that the code is minimally error-proof. Because usbmon needs
3047 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3048 */
3049
3050int usb_mon_register(const struct usb_mon_operations *ops)
3051{
3052
3053 if (mon_ops)
3054 return -EBUSY;
3055
3056 mon_ops = ops;
3057 mb();
3058 return 0;
3059}
3060EXPORT_SYMBOL_GPL (usb_mon_register);
3061
3062void usb_mon_deregister (void)
3063{
3064
3065 if (mon_ops == NULL) {
3066 printk(KERN_ERR "USB: monitor was not registered\n");
3067 return;
3068 }
3069 mon_ops = NULL;
3070 mb();
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_deregister);
3073
3074#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34
35#include <linux/phy/phy.h>
36#include <linux/usb.h>
37#include <linux/usb/hcd.h>
38#include <linux/usb/otg.h>
39
40#include "usb.h"
41#include "phy.h"
42
43
44/*-------------------------------------------------------------------------*/
45
46/*
47 * USB Host Controller Driver framework
48 *
49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
50 * HCD-specific behaviors/bugs.
51 *
52 * This does error checks, tracks devices and urbs, and delegates to a
53 * "hc_driver" only for code (and data) that really needs to know about
54 * hardware differences. That includes root hub registers, i/o queues,
55 * and so on ... but as little else as possible.
56 *
57 * Shared code includes most of the "root hub" code (these are emulated,
58 * though each HC's hardware works differently) and PCI glue, plus request
59 * tracking overhead. The HCD code should only block on spinlocks or on
60 * hardware handshaking; blocking on software events (such as other kernel
61 * threads releasing resources, or completing actions) is all generic.
62 *
63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
65 * only by the hub driver ... and that neither should be seen or used by
66 * usb client device drivers.
67 *
68 * Contributors of ideas or unattributed patches include: David Brownell,
69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
70 *
71 * HISTORY:
72 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
73 * associated cleanup. "usb_hcd" still != "usb_bus".
74 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
75 */
76
77/*-------------------------------------------------------------------------*/
78
79/* Keep track of which host controller drivers are loaded */
80unsigned long usb_hcds_loaded;
81EXPORT_SYMBOL_GPL(usb_hcds_loaded);
82
83/* host controllers we manage */
84DEFINE_IDR (usb_bus_idr);
85EXPORT_SYMBOL_GPL (usb_bus_idr);
86
87/* used when allocating bus numbers */
88#define USB_MAXBUS 64
89
90/* used when updating list of hcds */
91DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
92EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
93
94/* used for controlling access to virtual root hubs */
95static DEFINE_SPINLOCK(hcd_root_hub_lock);
96
97/* used when updating an endpoint's URB list */
98static DEFINE_SPINLOCK(hcd_urb_list_lock);
99
100/* used to protect against unlinking URBs after the device is gone */
101static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
102
103/* wait queue for synchronous unlinks */
104DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
105
106/*-------------------------------------------------------------------------*/
107
108/*
109 * Sharable chunks of root hub code.
110 */
111
112/*-------------------------------------------------------------------------*/
113#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
114#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
115
116/* usb 3.1 root hub device descriptor */
117static const u8 usb31_rh_dev_descriptor[18] = {
118 0x12, /* __u8 bLength; */
119 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
120 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
121
122 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
123 0x00, /* __u8 bDeviceSubClass; */
124 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
125 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
126
127 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
128 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
129 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
130
131 0x03, /* __u8 iManufacturer; */
132 0x02, /* __u8 iProduct; */
133 0x01, /* __u8 iSerialNumber; */
134 0x01 /* __u8 bNumConfigurations; */
135};
136
137/* usb 3.0 root hub device descriptor */
138static const u8 usb3_rh_dev_descriptor[18] = {
139 0x12, /* __u8 bLength; */
140 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
141 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
142
143 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
144 0x00, /* __u8 bDeviceSubClass; */
145 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
146 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
147
148 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
149 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
150 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
151
152 0x03, /* __u8 iManufacturer; */
153 0x02, /* __u8 iProduct; */
154 0x01, /* __u8 iSerialNumber; */
155 0x01 /* __u8 bNumConfigurations; */
156};
157
158/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
159static const u8 usb25_rh_dev_descriptor[18] = {
160 0x12, /* __u8 bLength; */
161 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
162 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
163
164 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
165 0x00, /* __u8 bDeviceSubClass; */
166 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
167 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
168
169 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
170 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
171 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
172
173 0x03, /* __u8 iManufacturer; */
174 0x02, /* __u8 iProduct; */
175 0x01, /* __u8 iSerialNumber; */
176 0x01 /* __u8 bNumConfigurations; */
177};
178
179/* usb 2.0 root hub device descriptor */
180static const u8 usb2_rh_dev_descriptor[18] = {
181 0x12, /* __u8 bLength; */
182 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
183 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
184
185 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
186 0x00, /* __u8 bDeviceSubClass; */
187 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
188 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
189
190 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
191 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
192 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
193
194 0x03, /* __u8 iManufacturer; */
195 0x02, /* __u8 iProduct; */
196 0x01, /* __u8 iSerialNumber; */
197 0x01 /* __u8 bNumConfigurations; */
198};
199
200/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
201
202/* usb 1.1 root hub device descriptor */
203static const u8 usb11_rh_dev_descriptor[18] = {
204 0x12, /* __u8 bLength; */
205 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
206 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
207
208 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
209 0x00, /* __u8 bDeviceSubClass; */
210 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
211 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
212
213 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
214 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
215 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
216
217 0x03, /* __u8 iManufacturer; */
218 0x02, /* __u8 iProduct; */
219 0x01, /* __u8 iSerialNumber; */
220 0x01 /* __u8 bNumConfigurations; */
221};
222
223
224/*-------------------------------------------------------------------------*/
225
226/* Configuration descriptors for our root hubs */
227
228static const u8 fs_rh_config_descriptor[] = {
229
230 /* one configuration */
231 0x09, /* __u8 bLength; */
232 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
233 0x19, 0x00, /* __le16 wTotalLength; */
234 0x01, /* __u8 bNumInterfaces; (1) */
235 0x01, /* __u8 bConfigurationValue; */
236 0x00, /* __u8 iConfiguration; */
237 0xc0, /* __u8 bmAttributes;
238 Bit 7: must be set,
239 6: Self-powered,
240 5: Remote wakeup,
241 4..0: resvd */
242 0x00, /* __u8 MaxPower; */
243
244 /* USB 1.1:
245 * USB 2.0, single TT organization (mandatory):
246 * one interface, protocol 0
247 *
248 * USB 2.0, multiple TT organization (optional):
249 * two interfaces, protocols 1 (like single TT)
250 * and 2 (multiple TT mode) ... config is
251 * sometimes settable
252 * NOT IMPLEMENTED
253 */
254
255 /* one interface */
256 0x09, /* __u8 if_bLength; */
257 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
258 0x00, /* __u8 if_bInterfaceNumber; */
259 0x00, /* __u8 if_bAlternateSetting; */
260 0x01, /* __u8 if_bNumEndpoints; */
261 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
262 0x00, /* __u8 if_bInterfaceSubClass; */
263 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
264 0x00, /* __u8 if_iInterface; */
265
266 /* one endpoint (status change endpoint) */
267 0x07, /* __u8 ep_bLength; */
268 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
269 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
270 0x03, /* __u8 ep_bmAttributes; Interrupt */
271 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
272 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
273};
274
275static const u8 hs_rh_config_descriptor[] = {
276
277 /* one configuration */
278 0x09, /* __u8 bLength; */
279 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
280 0x19, 0x00, /* __le16 wTotalLength; */
281 0x01, /* __u8 bNumInterfaces; (1) */
282 0x01, /* __u8 bConfigurationValue; */
283 0x00, /* __u8 iConfiguration; */
284 0xc0, /* __u8 bmAttributes;
285 Bit 7: must be set,
286 6: Self-powered,
287 5: Remote wakeup,
288 4..0: resvd */
289 0x00, /* __u8 MaxPower; */
290
291 /* USB 1.1:
292 * USB 2.0, single TT organization (mandatory):
293 * one interface, protocol 0
294 *
295 * USB 2.0, multiple TT organization (optional):
296 * two interfaces, protocols 1 (like single TT)
297 * and 2 (multiple TT mode) ... config is
298 * sometimes settable
299 * NOT IMPLEMENTED
300 */
301
302 /* one interface */
303 0x09, /* __u8 if_bLength; */
304 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
305 0x00, /* __u8 if_bInterfaceNumber; */
306 0x00, /* __u8 if_bAlternateSetting; */
307 0x01, /* __u8 if_bNumEndpoints; */
308 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
309 0x00, /* __u8 if_bInterfaceSubClass; */
310 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
311 0x00, /* __u8 if_iInterface; */
312
313 /* one endpoint (status change endpoint) */
314 0x07, /* __u8 ep_bLength; */
315 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
316 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
317 0x03, /* __u8 ep_bmAttributes; Interrupt */
318 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
319 * see hub.c:hub_configure() for details. */
320 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
321 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
322};
323
324static const u8 ss_rh_config_descriptor[] = {
325 /* one configuration */
326 0x09, /* __u8 bLength; */
327 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
328 0x1f, 0x00, /* __le16 wTotalLength; */
329 0x01, /* __u8 bNumInterfaces; (1) */
330 0x01, /* __u8 bConfigurationValue; */
331 0x00, /* __u8 iConfiguration; */
332 0xc0, /* __u8 bmAttributes;
333 Bit 7: must be set,
334 6: Self-powered,
335 5: Remote wakeup,
336 4..0: resvd */
337 0x00, /* __u8 MaxPower; */
338
339 /* one interface */
340 0x09, /* __u8 if_bLength; */
341 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
342 0x00, /* __u8 if_bInterfaceNumber; */
343 0x00, /* __u8 if_bAlternateSetting; */
344 0x01, /* __u8 if_bNumEndpoints; */
345 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
346 0x00, /* __u8 if_bInterfaceSubClass; */
347 0x00, /* __u8 if_bInterfaceProtocol; */
348 0x00, /* __u8 if_iInterface; */
349
350 /* one endpoint (status change endpoint) */
351 0x07, /* __u8 ep_bLength; */
352 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
353 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
354 0x03, /* __u8 ep_bmAttributes; Interrupt */
355 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
356 * see hub.c:hub_configure() for details. */
357 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
358 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
359
360 /* one SuperSpeed endpoint companion descriptor */
361 0x06, /* __u8 ss_bLength */
362 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
363 /* Companion */
364 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
365 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
366 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
367};
368
369/* authorized_default behaviour:
370 * -1 is authorized for all devices except wireless (old behaviour)
371 * 0 is unauthorized for all devices
372 * 1 is authorized for all devices
373 * 2 is authorized for internal devices
374 */
375#define USB_AUTHORIZE_WIRED -1
376#define USB_AUTHORIZE_NONE 0
377#define USB_AUTHORIZE_ALL 1
378#define USB_AUTHORIZE_INTERNAL 2
379
380static int authorized_default = USB_AUTHORIZE_WIRED;
381module_param(authorized_default, int, S_IRUGO|S_IWUSR);
382MODULE_PARM_DESC(authorized_default,
383 "Default USB device authorization: 0 is not authorized, 1 is "
384 "authorized, 2 is authorized for internal devices, -1 is "
385 "authorized except for wireless USB (default, old behaviour)");
386/*-------------------------------------------------------------------------*/
387
388/**
389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
390 * @s: Null-terminated ASCII (actually ISO-8859-1) string
391 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
392 * @len: Length (in bytes; may be odd) of descriptor buffer.
393 *
394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
395 * whichever is less.
396 *
397 * Note:
398 * USB String descriptors can contain at most 126 characters; input
399 * strings longer than that are truncated.
400 */
401static unsigned
402ascii2desc(char const *s, u8 *buf, unsigned len)
403{
404 unsigned n, t = 2 + 2*strlen(s);
405
406 if (t > 254)
407 t = 254; /* Longest possible UTF string descriptor */
408 if (len > t)
409 len = t;
410
411 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
412
413 n = len;
414 while (n--) {
415 *buf++ = t;
416 if (!n--)
417 break;
418 *buf++ = t >> 8;
419 t = (unsigned char)*s++;
420 }
421 return len;
422}
423
424/**
425 * rh_string() - provides string descriptors for root hub
426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
427 * @hcd: the host controller for this root hub
428 * @data: buffer for output packet
429 * @len: length of the provided buffer
430 *
431 * Produces either a manufacturer, product or serial number string for the
432 * virtual root hub device.
433 *
434 * Return: The number of bytes filled in: the length of the descriptor or
435 * of the provided buffer, whichever is less.
436 */
437static unsigned
438rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
439{
440 char buf[100];
441 char const *s;
442 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
443
444 /* language ids */
445 switch (id) {
446 case 0:
447 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
448 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
449 if (len > 4)
450 len = 4;
451 memcpy(data, langids, len);
452 return len;
453 case 1:
454 /* Serial number */
455 s = hcd->self.bus_name;
456 break;
457 case 2:
458 /* Product name */
459 s = hcd->product_desc;
460 break;
461 case 3:
462 /* Manufacturer */
463 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
464 init_utsname()->release, hcd->driver->description);
465 s = buf;
466 break;
467 default:
468 /* Can't happen; caller guarantees it */
469 return 0;
470 }
471
472 return ascii2desc(s, data, len);
473}
474
475
476/* Root hub control transfers execute synchronously */
477static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
478{
479 struct usb_ctrlrequest *cmd;
480 u16 typeReq, wValue, wIndex, wLength;
481 u8 *ubuf = urb->transfer_buffer;
482 unsigned len = 0;
483 int status;
484 u8 patch_wakeup = 0;
485 u8 patch_protocol = 0;
486 u16 tbuf_size;
487 u8 *tbuf = NULL;
488 const u8 *bufp;
489
490 might_sleep();
491
492 spin_lock_irq(&hcd_root_hub_lock);
493 status = usb_hcd_link_urb_to_ep(hcd, urb);
494 spin_unlock_irq(&hcd_root_hub_lock);
495 if (status)
496 return status;
497 urb->hcpriv = hcd; /* Indicate it's queued */
498
499 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
500 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
501 wValue = le16_to_cpu (cmd->wValue);
502 wIndex = le16_to_cpu (cmd->wIndex);
503 wLength = le16_to_cpu (cmd->wLength);
504
505 if (wLength > urb->transfer_buffer_length)
506 goto error;
507
508 /*
509 * tbuf should be at least as big as the
510 * USB hub descriptor.
511 */
512 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
513 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
514 if (!tbuf) {
515 status = -ENOMEM;
516 goto err_alloc;
517 }
518
519 bufp = tbuf;
520
521
522 urb->actual_length = 0;
523 switch (typeReq) {
524
525 /* DEVICE REQUESTS */
526
527 /* The root hub's remote wakeup enable bit is implemented using
528 * driver model wakeup flags. If this system supports wakeup
529 * through USB, userspace may change the default "allow wakeup"
530 * policy through sysfs or these calls.
531 *
532 * Most root hubs support wakeup from downstream devices, for
533 * runtime power management (disabling USB clocks and reducing
534 * VBUS power usage). However, not all of them do so; silicon,
535 * board, and BIOS bugs here are not uncommon, so these can't
536 * be treated quite like external hubs.
537 *
538 * Likewise, not all root hubs will pass wakeup events upstream,
539 * to wake up the whole system. So don't assume root hub and
540 * controller capabilities are identical.
541 */
542
543 case DeviceRequest | USB_REQ_GET_STATUS:
544 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
545 << USB_DEVICE_REMOTE_WAKEUP)
546 | (1 << USB_DEVICE_SELF_POWERED);
547 tbuf[1] = 0;
548 len = 2;
549 break;
550 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
551 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
552 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
553 else
554 goto error;
555 break;
556 case DeviceOutRequest | USB_REQ_SET_FEATURE:
557 if (device_can_wakeup(&hcd->self.root_hub->dev)
558 && wValue == USB_DEVICE_REMOTE_WAKEUP)
559 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
560 else
561 goto error;
562 break;
563 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
564 tbuf[0] = 1;
565 len = 1;
566 /* FALLTHROUGH */
567 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
568 break;
569 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
570 switch (wValue & 0xff00) {
571 case USB_DT_DEVICE << 8:
572 switch (hcd->speed) {
573 case HCD_USB32:
574 case HCD_USB31:
575 bufp = usb31_rh_dev_descriptor;
576 break;
577 case HCD_USB3:
578 bufp = usb3_rh_dev_descriptor;
579 break;
580 case HCD_USB25:
581 bufp = usb25_rh_dev_descriptor;
582 break;
583 case HCD_USB2:
584 bufp = usb2_rh_dev_descriptor;
585 break;
586 case HCD_USB11:
587 bufp = usb11_rh_dev_descriptor;
588 break;
589 default:
590 goto error;
591 }
592 len = 18;
593 if (hcd->has_tt)
594 patch_protocol = 1;
595 break;
596 case USB_DT_CONFIG << 8:
597 switch (hcd->speed) {
598 case HCD_USB32:
599 case HCD_USB31:
600 case HCD_USB3:
601 bufp = ss_rh_config_descriptor;
602 len = sizeof ss_rh_config_descriptor;
603 break;
604 case HCD_USB25:
605 case HCD_USB2:
606 bufp = hs_rh_config_descriptor;
607 len = sizeof hs_rh_config_descriptor;
608 break;
609 case HCD_USB11:
610 bufp = fs_rh_config_descriptor;
611 len = sizeof fs_rh_config_descriptor;
612 break;
613 default:
614 goto error;
615 }
616 if (device_can_wakeup(&hcd->self.root_hub->dev))
617 patch_wakeup = 1;
618 break;
619 case USB_DT_STRING << 8:
620 if ((wValue & 0xff) < 4)
621 urb->actual_length = rh_string(wValue & 0xff,
622 hcd, ubuf, wLength);
623 else /* unsupported IDs --> "protocol stall" */
624 goto error;
625 break;
626 case USB_DT_BOS << 8:
627 goto nongeneric;
628 default:
629 goto error;
630 }
631 break;
632 case DeviceRequest | USB_REQ_GET_INTERFACE:
633 tbuf[0] = 0;
634 len = 1;
635 /* FALLTHROUGH */
636 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
637 break;
638 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
639 /* wValue == urb->dev->devaddr */
640 dev_dbg (hcd->self.controller, "root hub device address %d\n",
641 wValue);
642 break;
643
644 /* INTERFACE REQUESTS (no defined feature/status flags) */
645
646 /* ENDPOINT REQUESTS */
647
648 case EndpointRequest | USB_REQ_GET_STATUS:
649 /* ENDPOINT_HALT flag */
650 tbuf[0] = 0;
651 tbuf[1] = 0;
652 len = 2;
653 /* FALLTHROUGH */
654 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
655 case EndpointOutRequest | USB_REQ_SET_FEATURE:
656 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
657 break;
658
659 /* CLASS REQUESTS (and errors) */
660
661 default:
662nongeneric:
663 /* non-generic request */
664 switch (typeReq) {
665 case GetHubStatus:
666 len = 4;
667 break;
668 case GetPortStatus:
669 if (wValue == HUB_PORT_STATUS)
670 len = 4;
671 else
672 /* other port status types return 8 bytes */
673 len = 8;
674 break;
675 case GetHubDescriptor:
676 len = sizeof (struct usb_hub_descriptor);
677 break;
678 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
679 /* len is returned by hub_control */
680 break;
681 }
682 status = hcd->driver->hub_control (hcd,
683 typeReq, wValue, wIndex,
684 tbuf, wLength);
685
686 if (typeReq == GetHubDescriptor)
687 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
688 (struct usb_hub_descriptor *)tbuf);
689 break;
690error:
691 /* "protocol stall" on error */
692 status = -EPIPE;
693 }
694
695 if (status < 0) {
696 len = 0;
697 if (status != -EPIPE) {
698 dev_dbg (hcd->self.controller,
699 "CTRL: TypeReq=0x%x val=0x%x "
700 "idx=0x%x len=%d ==> %d\n",
701 typeReq, wValue, wIndex,
702 wLength, status);
703 }
704 } else if (status > 0) {
705 /* hub_control may return the length of data copied. */
706 len = status;
707 status = 0;
708 }
709 if (len) {
710 if (urb->transfer_buffer_length < len)
711 len = urb->transfer_buffer_length;
712 urb->actual_length = len;
713 /* always USB_DIR_IN, toward host */
714 memcpy (ubuf, bufp, len);
715
716 /* report whether RH hardware supports remote wakeup */
717 if (patch_wakeup &&
718 len > offsetof (struct usb_config_descriptor,
719 bmAttributes))
720 ((struct usb_config_descriptor *)ubuf)->bmAttributes
721 |= USB_CONFIG_ATT_WAKEUP;
722
723 /* report whether RH hardware has an integrated TT */
724 if (patch_protocol &&
725 len > offsetof(struct usb_device_descriptor,
726 bDeviceProtocol))
727 ((struct usb_device_descriptor *) ubuf)->
728 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
729 }
730
731 kfree(tbuf);
732 err_alloc:
733
734 /* any errors get returned through the urb completion */
735 spin_lock_irq(&hcd_root_hub_lock);
736 usb_hcd_unlink_urb_from_ep(hcd, urb);
737 usb_hcd_giveback_urb(hcd, urb, status);
738 spin_unlock_irq(&hcd_root_hub_lock);
739 return 0;
740}
741
742/*-------------------------------------------------------------------------*/
743
744/*
745 * Root Hub interrupt transfers are polled using a timer if the
746 * driver requests it; otherwise the driver is responsible for
747 * calling usb_hcd_poll_rh_status() when an event occurs.
748 *
749 * Completions are called in_interrupt(), but they may or may not
750 * be in_irq().
751 */
752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753{
754 struct urb *urb;
755 int length;
756 unsigned long flags;
757 char buffer[6]; /* Any root hubs with > 31 ports? */
758
759 if (unlikely(!hcd->rh_pollable))
760 return;
761 if (!hcd->uses_new_polling && !hcd->status_urb)
762 return;
763
764 length = hcd->driver->hub_status_data(hcd, buffer);
765 if (length > 0) {
766
767 /* try to complete the status urb */
768 spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 urb = hcd->status_urb;
770 if (urb) {
771 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
772 hcd->status_urb = NULL;
773 urb->actual_length = length;
774 memcpy(urb->transfer_buffer, buffer, length);
775
776 usb_hcd_unlink_urb_from_ep(hcd, urb);
777 usb_hcd_giveback_urb(hcd, urb, 0);
778 } else {
779 length = 0;
780 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
781 }
782 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
783 }
784
785 /* The USB 2.0 spec says 256 ms. This is close enough and won't
786 * exceed that limit if HZ is 100. The math is more clunky than
787 * maybe expected, this is to make sure that all timers for USB devices
788 * fire at the same time to give the CPU a break in between */
789 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
790 (length == 0 && hcd->status_urb != NULL))
791 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
792}
793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
794
795/* timer callback */
796static void rh_timer_func (struct timer_list *t)
797{
798 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
799
800 usb_hcd_poll_rh_status(_hcd);
801}
802
803/*-------------------------------------------------------------------------*/
804
805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
806{
807 int retval;
808 unsigned long flags;
809 unsigned len = 1 + (urb->dev->maxchild / 8);
810
811 spin_lock_irqsave (&hcd_root_hub_lock, flags);
812 if (hcd->status_urb || urb->transfer_buffer_length < len) {
813 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
814 retval = -EINVAL;
815 goto done;
816 }
817
818 retval = usb_hcd_link_urb_to_ep(hcd, urb);
819 if (retval)
820 goto done;
821
822 hcd->status_urb = urb;
823 urb->hcpriv = hcd; /* indicate it's queued */
824 if (!hcd->uses_new_polling)
825 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
826
827 /* If a status change has already occurred, report it ASAP */
828 else if (HCD_POLL_PENDING(hcd))
829 mod_timer(&hcd->rh_timer, jiffies);
830 retval = 0;
831 done:
832 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
833 return retval;
834}
835
836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
837{
838 if (usb_endpoint_xfer_int(&urb->ep->desc))
839 return rh_queue_status (hcd, urb);
840 if (usb_endpoint_xfer_control(&urb->ep->desc))
841 return rh_call_control (hcd, urb);
842 return -EINVAL;
843}
844
845/*-------------------------------------------------------------------------*/
846
847/* Unlinks of root-hub control URBs are legal, but they don't do anything
848 * since these URBs always execute synchronously.
849 */
850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
851{
852 unsigned long flags;
853 int rc;
854
855 spin_lock_irqsave(&hcd_root_hub_lock, flags);
856 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
857 if (rc)
858 goto done;
859
860 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
861 ; /* Do nothing */
862
863 } else { /* Status URB */
864 if (!hcd->uses_new_polling)
865 del_timer (&hcd->rh_timer);
866 if (urb == hcd->status_urb) {
867 hcd->status_urb = NULL;
868 usb_hcd_unlink_urb_from_ep(hcd, urb);
869 usb_hcd_giveback_urb(hcd, urb, status);
870 }
871 }
872 done:
873 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
874 return rc;
875}
876
877
878/*-------------------------------------------------------------------------*/
879
880/**
881 * usb_bus_init - shared initialization code
882 * @bus: the bus structure being initialized
883 *
884 * This code is used to initialize a usb_bus structure, memory for which is
885 * separately managed.
886 */
887static void usb_bus_init (struct usb_bus *bus)
888{
889 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
890
891 bus->devnum_next = 1;
892
893 bus->root_hub = NULL;
894 bus->busnum = -1;
895 bus->bandwidth_allocated = 0;
896 bus->bandwidth_int_reqs = 0;
897 bus->bandwidth_isoc_reqs = 0;
898 mutex_init(&bus->devnum_next_mutex);
899}
900
901/*-------------------------------------------------------------------------*/
902
903/**
904 * usb_register_bus - registers the USB host controller with the usb core
905 * @bus: pointer to the bus to register
906 * Context: !in_interrupt()
907 *
908 * Assigns a bus number, and links the controller into usbcore data
909 * structures so that it can be seen by scanning the bus list.
910 *
911 * Return: 0 if successful. A negative error code otherwise.
912 */
913static int usb_register_bus(struct usb_bus *bus)
914{
915 int result = -E2BIG;
916 int busnum;
917
918 mutex_lock(&usb_bus_idr_lock);
919 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
920 if (busnum < 0) {
921 pr_err("%s: failed to get bus number\n", usbcore_name);
922 goto error_find_busnum;
923 }
924 bus->busnum = busnum;
925 mutex_unlock(&usb_bus_idr_lock);
926
927 usb_notify_add_bus(bus);
928
929 dev_info (bus->controller, "new USB bus registered, assigned bus "
930 "number %d\n", bus->busnum);
931 return 0;
932
933error_find_busnum:
934 mutex_unlock(&usb_bus_idr_lock);
935 return result;
936}
937
938/**
939 * usb_deregister_bus - deregisters the USB host controller
940 * @bus: pointer to the bus to deregister
941 * Context: !in_interrupt()
942 *
943 * Recycles the bus number, and unlinks the controller from usbcore data
944 * structures so that it won't be seen by scanning the bus list.
945 */
946static void usb_deregister_bus (struct usb_bus *bus)
947{
948 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
949
950 /*
951 * NOTE: make sure that all the devices are removed by the
952 * controller code, as well as having it call this when cleaning
953 * itself up
954 */
955 mutex_lock(&usb_bus_idr_lock);
956 idr_remove(&usb_bus_idr, bus->busnum);
957 mutex_unlock(&usb_bus_idr_lock);
958
959 usb_notify_remove_bus(bus);
960}
961
962/**
963 * register_root_hub - called by usb_add_hcd() to register a root hub
964 * @hcd: host controller for this root hub
965 *
966 * This function registers the root hub with the USB subsystem. It sets up
967 * the device properly in the device tree and then calls usb_new_device()
968 * to register the usb device. It also assigns the root hub's USB address
969 * (always 1).
970 *
971 * Return: 0 if successful. A negative error code otherwise.
972 */
973static int register_root_hub(struct usb_hcd *hcd)
974{
975 struct device *parent_dev = hcd->self.controller;
976 struct usb_device *usb_dev = hcd->self.root_hub;
977 const int devnum = 1;
978 int retval;
979
980 usb_dev->devnum = devnum;
981 usb_dev->bus->devnum_next = devnum + 1;
982 set_bit (devnum, usb_dev->bus->devmap.devicemap);
983 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
984
985 mutex_lock(&usb_bus_idr_lock);
986
987 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
988 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
989 if (retval != sizeof usb_dev->descriptor) {
990 mutex_unlock(&usb_bus_idr_lock);
991 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
992 dev_name(&usb_dev->dev), retval);
993 return (retval < 0) ? retval : -EMSGSIZE;
994 }
995
996 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
997 retval = usb_get_bos_descriptor(usb_dev);
998 if (!retval) {
999 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1000 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1001 mutex_unlock(&usb_bus_idr_lock);
1002 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1003 dev_name(&usb_dev->dev), retval);
1004 return retval;
1005 }
1006 }
1007
1008 retval = usb_new_device (usb_dev);
1009 if (retval) {
1010 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1011 dev_name(&usb_dev->dev), retval);
1012 } else {
1013 spin_lock_irq (&hcd_root_hub_lock);
1014 hcd->rh_registered = 1;
1015 spin_unlock_irq (&hcd_root_hub_lock);
1016
1017 /* Did the HC die before the root hub was registered? */
1018 if (HCD_DEAD(hcd))
1019 usb_hc_died (hcd); /* This time clean up */
1020 }
1021 mutex_unlock(&usb_bus_idr_lock);
1022
1023 return retval;
1024}
1025
1026/*
1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1028 * @bus: the bus which the root hub belongs to
1029 * @portnum: the port which is being resumed
1030 *
1031 * HCDs should call this function when they know that a resume signal is
1032 * being sent to a root-hub port. The root hub will be prevented from
1033 * going into autosuspend until usb_hcd_end_port_resume() is called.
1034 *
1035 * The bus's private lock must be held by the caller.
1036 */
1037void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1038{
1039 unsigned bit = 1 << portnum;
1040
1041 if (!(bus->resuming_ports & bit)) {
1042 bus->resuming_ports |= bit;
1043 pm_runtime_get_noresume(&bus->root_hub->dev);
1044 }
1045}
1046EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1047
1048/*
1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1050 * @bus: the bus which the root hub belongs to
1051 * @portnum: the port which is being resumed
1052 *
1053 * HCDs should call this function when they know that a resume signal has
1054 * stopped being sent to a root-hub port. The root hub will be allowed to
1055 * autosuspend again.
1056 *
1057 * The bus's private lock must be held by the caller.
1058 */
1059void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1060{
1061 unsigned bit = 1 << portnum;
1062
1063 if (bus->resuming_ports & bit) {
1064 bus->resuming_ports &= ~bit;
1065 pm_runtime_put_noidle(&bus->root_hub->dev);
1066 }
1067}
1068EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1075 * @is_input: true iff the transaction sends data to the host
1076 * @isoc: true for isochronous transactions, false for interrupt ones
1077 * @bytecount: how many bytes in the transaction.
1078 *
1079 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1080 *
1081 * Note:
1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1083 * scheduled in software, this function is only used for such scheduling.
1084 */
1085long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1086{
1087 unsigned long tmp;
1088
1089 switch (speed) {
1090 case USB_SPEED_LOW: /* INTR only */
1091 if (is_input) {
1092 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1093 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1094 } else {
1095 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1096 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1097 }
1098 case USB_SPEED_FULL: /* ISOC or INTR */
1099 if (isoc) {
1100 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1102 } else {
1103 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104 return 9107L + BW_HOST_DELAY + tmp;
1105 }
1106 case USB_SPEED_HIGH: /* ISOC or INTR */
1107 /* FIXME adjust for input vs output */
1108 if (isoc)
1109 tmp = HS_NSECS_ISO (bytecount);
1110 else
1111 tmp = HS_NSECS (bytecount);
1112 return tmp;
1113 default:
1114 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1115 return -1;
1116 }
1117}
1118EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1119
1120
1121/*-------------------------------------------------------------------------*/
1122
1123/*
1124 * Generic HC operations.
1125 */
1126
1127/*-------------------------------------------------------------------------*/
1128
1129/**
1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1131 * @hcd: host controller to which @urb was submitted
1132 * @urb: URB being submitted
1133 *
1134 * Host controller drivers should call this routine in their enqueue()
1135 * method. The HCD's private spinlock must be held and interrupts must
1136 * be disabled. The actions carried out here are required for URB
1137 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1138 *
1139 * Return: 0 for no error, otherwise a negative error code (in which case
1140 * the enqueue() method must fail). If no error occurs but enqueue() fails
1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1142 * the private spinlock and returning.
1143 */
1144int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1145{
1146 int rc = 0;
1147
1148 spin_lock(&hcd_urb_list_lock);
1149
1150 /* Check that the URB isn't being killed */
1151 if (unlikely(atomic_read(&urb->reject))) {
1152 rc = -EPERM;
1153 goto done;
1154 }
1155
1156 if (unlikely(!urb->ep->enabled)) {
1157 rc = -ENOENT;
1158 goto done;
1159 }
1160
1161 if (unlikely(!urb->dev->can_submit)) {
1162 rc = -EHOSTUNREACH;
1163 goto done;
1164 }
1165
1166 /*
1167 * Check the host controller's state and add the URB to the
1168 * endpoint's queue.
1169 */
1170 if (HCD_RH_RUNNING(hcd)) {
1171 urb->unlinked = 0;
1172 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1173 } else {
1174 rc = -ESHUTDOWN;
1175 goto done;
1176 }
1177 done:
1178 spin_unlock(&hcd_urb_list_lock);
1179 return rc;
1180}
1181EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1182
1183/**
1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1185 * @hcd: host controller to which @urb was submitted
1186 * @urb: URB being checked for unlinkability
1187 * @status: error code to store in @urb if the unlink succeeds
1188 *
1189 * Host controller drivers should call this routine in their dequeue()
1190 * method. The HCD's private spinlock must be held and interrupts must
1191 * be disabled. The actions carried out here are required for making
1192 * sure than an unlink is valid.
1193 *
1194 * Return: 0 for no error, otherwise a negative error code (in which case
1195 * the dequeue() method must fail). The possible error codes are:
1196 *
1197 * -EIDRM: @urb was not submitted or has already completed.
1198 * The completion function may not have been called yet.
1199 *
1200 * -EBUSY: @urb has already been unlinked.
1201 */
1202int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1203 int status)
1204{
1205 struct list_head *tmp;
1206
1207 /* insist the urb is still queued */
1208 list_for_each(tmp, &urb->ep->urb_list) {
1209 if (tmp == &urb->urb_list)
1210 break;
1211 }
1212 if (tmp != &urb->urb_list)
1213 return -EIDRM;
1214
1215 /* Any status except -EINPROGRESS means something already started to
1216 * unlink this URB from the hardware. So there's no more work to do.
1217 */
1218 if (urb->unlinked)
1219 return -EBUSY;
1220 urb->unlinked = status;
1221 return 0;
1222}
1223EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1224
1225/**
1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being unlinked
1229 *
1230 * Host controller drivers should call this routine before calling
1231 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1232 * interrupts must be disabled. The actions carried out here are required
1233 * for URB completion.
1234 */
1235void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1236{
1237 /* clear all state linking urb to this dev (and hcd) */
1238 spin_lock(&hcd_urb_list_lock);
1239 list_del_init(&urb->urb_list);
1240 spin_unlock(&hcd_urb_list_lock);
1241}
1242EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1243
1244/*
1245 * Some usb host controllers can only perform dma using a small SRAM area.
1246 * The usb core itself is however optimized for host controllers that can dma
1247 * using regular system memory - like pci devices doing bus mastering.
1248 *
1249 * To support host controllers with limited dma capabilities we provide dma
1250 * bounce buffers. This feature can be enabled by initializing
1251 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1252 *
1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1254 * data for dma using the genalloc API.
1255 *
1256 * So, to summarize...
1257 *
1258 * - We need "local" memory, canonical example being
1259 * a small SRAM on a discrete controller being the
1260 * only memory that the controller can read ...
1261 * (a) "normal" kernel memory is no good, and
1262 * (b) there's not enough to share
1263 *
1264 * - So we use that, even though the primary requirement
1265 * is that the memory be "local" (hence addressable
1266 * by that device), not "coherent".
1267 *
1268 */
1269
1270static int hcd_alloc_coherent(struct usb_bus *bus,
1271 gfp_t mem_flags, dma_addr_t *dma_handle,
1272 void **vaddr_handle, size_t size,
1273 enum dma_data_direction dir)
1274{
1275 unsigned char *vaddr;
1276
1277 if (*vaddr_handle == NULL) {
1278 WARN_ON_ONCE(1);
1279 return -EFAULT;
1280 }
1281
1282 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1283 mem_flags, dma_handle);
1284 if (!vaddr)
1285 return -ENOMEM;
1286
1287 /*
1288 * Store the virtual address of the buffer at the end
1289 * of the allocated dma buffer. The size of the buffer
1290 * may be uneven so use unaligned functions instead
1291 * of just rounding up. It makes sense to optimize for
1292 * memory footprint over access speed since the amount
1293 * of memory available for dma may be limited.
1294 */
1295 put_unaligned((unsigned long)*vaddr_handle,
1296 (unsigned long *)(vaddr + size));
1297
1298 if (dir == DMA_TO_DEVICE)
1299 memcpy(vaddr, *vaddr_handle, size);
1300
1301 *vaddr_handle = vaddr;
1302 return 0;
1303}
1304
1305static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1306 void **vaddr_handle, size_t size,
1307 enum dma_data_direction dir)
1308{
1309 unsigned char *vaddr = *vaddr_handle;
1310
1311 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1312
1313 if (dir == DMA_FROM_DEVICE)
1314 memcpy(vaddr, *vaddr_handle, size);
1315
1316 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1317
1318 *vaddr_handle = vaddr;
1319 *dma_handle = 0;
1320}
1321
1322void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1323{
1324 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1325 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1326 dma_unmap_single(hcd->self.sysdev,
1327 urb->setup_dma,
1328 sizeof(struct usb_ctrlrequest),
1329 DMA_TO_DEVICE);
1330 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1331 hcd_free_coherent(urb->dev->bus,
1332 &urb->setup_dma,
1333 (void **) &urb->setup_packet,
1334 sizeof(struct usb_ctrlrequest),
1335 DMA_TO_DEVICE);
1336
1337 /* Make it safe to call this routine more than once */
1338 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1339}
1340EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1341
1342static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344 if (hcd->driver->unmap_urb_for_dma)
1345 hcd->driver->unmap_urb_for_dma(hcd, urb);
1346 else
1347 usb_hcd_unmap_urb_for_dma(hcd, urb);
1348}
1349
1350void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351{
1352 enum dma_data_direction dir;
1353
1354 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1355
1356 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358 (urb->transfer_flags & URB_DMA_MAP_SG))
1359 dma_unmap_sg(hcd->self.sysdev,
1360 urb->sg,
1361 urb->num_sgs,
1362 dir);
1363 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1364 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1365 dma_unmap_page(hcd->self.sysdev,
1366 urb->transfer_dma,
1367 urb->transfer_buffer_length,
1368 dir);
1369 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1371 dma_unmap_single(hcd->self.sysdev,
1372 urb->transfer_dma,
1373 urb->transfer_buffer_length,
1374 dir);
1375 else if (urb->transfer_flags & URB_MAP_LOCAL)
1376 hcd_free_coherent(urb->dev->bus,
1377 &urb->transfer_dma,
1378 &urb->transfer_buffer,
1379 urb->transfer_buffer_length,
1380 dir);
1381
1382 /* Make it safe to call this routine more than once */
1383 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1384 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1385}
1386EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1387
1388static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389 gfp_t mem_flags)
1390{
1391 if (hcd->driver->map_urb_for_dma)
1392 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1393 else
1394 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395}
1396
1397int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398 gfp_t mem_flags)
1399{
1400 enum dma_data_direction dir;
1401 int ret = 0;
1402
1403 /* Map the URB's buffers for DMA access.
1404 * Lower level HCD code should use *_dma exclusively,
1405 * unless it uses pio or talks to another transport,
1406 * or uses the provided scatter gather list for bulk.
1407 */
1408
1409 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1410 if (hcd->self.uses_pio_for_control)
1411 return ret;
1412 if (hcd_uses_dma(hcd)) {
1413 if (is_vmalloc_addr(urb->setup_packet)) {
1414 WARN_ONCE(1, "setup packet is not dma capable\n");
1415 return -EAGAIN;
1416 } else if (object_is_on_stack(urb->setup_packet)) {
1417 WARN_ONCE(1, "setup packet is on stack\n");
1418 return -EAGAIN;
1419 }
1420
1421 urb->setup_dma = dma_map_single(
1422 hcd->self.sysdev,
1423 urb->setup_packet,
1424 sizeof(struct usb_ctrlrequest),
1425 DMA_TO_DEVICE);
1426 if (dma_mapping_error(hcd->self.sysdev,
1427 urb->setup_dma))
1428 return -EAGAIN;
1429 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430 } else if (hcd->localmem_pool) {
1431 ret = hcd_alloc_coherent(
1432 urb->dev->bus, mem_flags,
1433 &urb->setup_dma,
1434 (void **)&urb->setup_packet,
1435 sizeof(struct usb_ctrlrequest),
1436 DMA_TO_DEVICE);
1437 if (ret)
1438 return ret;
1439 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1440 }
1441 }
1442
1443 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444 if (urb->transfer_buffer_length != 0
1445 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446 if (hcd_uses_dma(hcd)) {
1447 if (urb->num_sgs) {
1448 int n;
1449
1450 /* We don't support sg for isoc transfers ! */
1451 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1452 WARN_ON(1);
1453 return -EINVAL;
1454 }
1455
1456 n = dma_map_sg(
1457 hcd->self.sysdev,
1458 urb->sg,
1459 urb->num_sgs,
1460 dir);
1461 if (n <= 0)
1462 ret = -EAGAIN;
1463 else
1464 urb->transfer_flags |= URB_DMA_MAP_SG;
1465 urb->num_mapped_sgs = n;
1466 if (n != urb->num_sgs)
1467 urb->transfer_flags |=
1468 URB_DMA_SG_COMBINED;
1469 } else if (urb->sg) {
1470 struct scatterlist *sg = urb->sg;
1471 urb->transfer_dma = dma_map_page(
1472 hcd->self.sysdev,
1473 sg_page(sg),
1474 sg->offset,
1475 urb->transfer_buffer_length,
1476 dir);
1477 if (dma_mapping_error(hcd->self.sysdev,
1478 urb->transfer_dma))
1479 ret = -EAGAIN;
1480 else
1481 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1482 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1483 WARN_ONCE(1, "transfer buffer not dma capable\n");
1484 ret = -EAGAIN;
1485 } else if (object_is_on_stack(urb->transfer_buffer)) {
1486 WARN_ONCE(1, "transfer buffer is on stack\n");
1487 ret = -EAGAIN;
1488 } else {
1489 urb->transfer_dma = dma_map_single(
1490 hcd->self.sysdev,
1491 urb->transfer_buffer,
1492 urb->transfer_buffer_length,
1493 dir);
1494 if (dma_mapping_error(hcd->self.sysdev,
1495 urb->transfer_dma))
1496 ret = -EAGAIN;
1497 else
1498 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1499 }
1500 } else if (hcd->localmem_pool) {
1501 ret = hcd_alloc_coherent(
1502 urb->dev->bus, mem_flags,
1503 &urb->transfer_dma,
1504 &urb->transfer_buffer,
1505 urb->transfer_buffer_length,
1506 dir);
1507 if (ret == 0)
1508 urb->transfer_flags |= URB_MAP_LOCAL;
1509 }
1510 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1511 URB_SETUP_MAP_LOCAL)))
1512 usb_hcd_unmap_urb_for_dma(hcd, urb);
1513 }
1514 return ret;
1515}
1516EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1517
1518/*-------------------------------------------------------------------------*/
1519
1520/* may be called in any context with a valid urb->dev usecount
1521 * caller surrenders "ownership" of urb
1522 * expects usb_submit_urb() to have sanity checked and conditioned all
1523 * inputs in the urb
1524 */
1525int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1526{
1527 int status;
1528 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1529
1530 /* increment urb's reference count as part of giving it to the HCD
1531 * (which will control it). HCD guarantees that it either returns
1532 * an error or calls giveback(), but not both.
1533 */
1534 usb_get_urb(urb);
1535 atomic_inc(&urb->use_count);
1536 atomic_inc(&urb->dev->urbnum);
1537 usbmon_urb_submit(&hcd->self, urb);
1538
1539 /* NOTE requirements on root-hub callers (usbfs and the hub
1540 * driver, for now): URBs' urb->transfer_buffer must be
1541 * valid and usb_buffer_{sync,unmap}() not be needed, since
1542 * they could clobber root hub response data. Also, control
1543 * URBs must be submitted in process context with interrupts
1544 * enabled.
1545 */
1546
1547 if (is_root_hub(urb->dev)) {
1548 status = rh_urb_enqueue(hcd, urb);
1549 } else {
1550 status = map_urb_for_dma(hcd, urb, mem_flags);
1551 if (likely(status == 0)) {
1552 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1553 if (unlikely(status))
1554 unmap_urb_for_dma(hcd, urb);
1555 }
1556 }
1557
1558 if (unlikely(status)) {
1559 usbmon_urb_submit_error(&hcd->self, urb, status);
1560 urb->hcpriv = NULL;
1561 INIT_LIST_HEAD(&urb->urb_list);
1562 atomic_dec(&urb->use_count);
1563 atomic_dec(&urb->dev->urbnum);
1564 if (atomic_read(&urb->reject))
1565 wake_up(&usb_kill_urb_queue);
1566 usb_put_urb(urb);
1567 }
1568 return status;
1569}
1570
1571/*-------------------------------------------------------------------------*/
1572
1573/* this makes the hcd giveback() the urb more quickly, by kicking it
1574 * off hardware queues (which may take a while) and returning it as
1575 * soon as practical. we've already set up the urb's return status,
1576 * but we can't know if the callback completed already.
1577 */
1578static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1579{
1580 int value;
1581
1582 if (is_root_hub(urb->dev))
1583 value = usb_rh_urb_dequeue(hcd, urb, status);
1584 else {
1585
1586 /* The only reason an HCD might fail this call is if
1587 * it has not yet fully queued the urb to begin with.
1588 * Such failures should be harmless. */
1589 value = hcd->driver->urb_dequeue(hcd, urb, status);
1590 }
1591 return value;
1592}
1593
1594/*
1595 * called in any context
1596 *
1597 * caller guarantees urb won't be recycled till both unlink()
1598 * and the urb's completion function return
1599 */
1600int usb_hcd_unlink_urb (struct urb *urb, int status)
1601{
1602 struct usb_hcd *hcd;
1603 struct usb_device *udev = urb->dev;
1604 int retval = -EIDRM;
1605 unsigned long flags;
1606
1607 /* Prevent the device and bus from going away while
1608 * the unlink is carried out. If they are already gone
1609 * then urb->use_count must be 0, since disconnected
1610 * devices can't have any active URBs.
1611 */
1612 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1613 if (atomic_read(&urb->use_count) > 0) {
1614 retval = 0;
1615 usb_get_dev(udev);
1616 }
1617 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1618 if (retval == 0) {
1619 hcd = bus_to_hcd(urb->dev->bus);
1620 retval = unlink1(hcd, urb, status);
1621 if (retval == 0)
1622 retval = -EINPROGRESS;
1623 else if (retval != -EIDRM && retval != -EBUSY)
1624 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1625 urb, retval);
1626 usb_put_dev(udev);
1627 }
1628 return retval;
1629}
1630
1631/*-------------------------------------------------------------------------*/
1632
1633static void __usb_hcd_giveback_urb(struct urb *urb)
1634{
1635 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1636 struct usb_anchor *anchor = urb->anchor;
1637 int status = urb->unlinked;
1638
1639 urb->hcpriv = NULL;
1640 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1641 urb->actual_length < urb->transfer_buffer_length &&
1642 !status))
1643 status = -EREMOTEIO;
1644
1645 unmap_urb_for_dma(hcd, urb);
1646 usbmon_urb_complete(&hcd->self, urb, status);
1647 usb_anchor_suspend_wakeups(anchor);
1648 usb_unanchor_urb(urb);
1649 if (likely(status == 0))
1650 usb_led_activity(USB_LED_EVENT_HOST);
1651
1652 /* pass ownership to the completion handler */
1653 urb->status = status;
1654 urb->complete(urb);
1655
1656 usb_anchor_resume_wakeups(anchor);
1657 atomic_dec(&urb->use_count);
1658 if (unlikely(atomic_read(&urb->reject)))
1659 wake_up(&usb_kill_urb_queue);
1660 usb_put_urb(urb);
1661}
1662
1663static void usb_giveback_urb_bh(unsigned long param)
1664{
1665 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1666 struct list_head local_list;
1667
1668 spin_lock_irq(&bh->lock);
1669 bh->running = true;
1670 restart:
1671 list_replace_init(&bh->head, &local_list);
1672 spin_unlock_irq(&bh->lock);
1673
1674 while (!list_empty(&local_list)) {
1675 struct urb *urb;
1676
1677 urb = list_entry(local_list.next, struct urb, urb_list);
1678 list_del_init(&urb->urb_list);
1679 bh->completing_ep = urb->ep;
1680 __usb_hcd_giveback_urb(urb);
1681 bh->completing_ep = NULL;
1682 }
1683
1684 /* check if there are new URBs to giveback */
1685 spin_lock_irq(&bh->lock);
1686 if (!list_empty(&bh->head))
1687 goto restart;
1688 bh->running = false;
1689 spin_unlock_irq(&bh->lock);
1690}
1691
1692/**
1693 * usb_hcd_giveback_urb - return URB from HCD to device driver
1694 * @hcd: host controller returning the URB
1695 * @urb: urb being returned to the USB device driver.
1696 * @status: completion status code for the URB.
1697 * Context: in_interrupt()
1698 *
1699 * This hands the URB from HCD to its USB device driver, using its
1700 * completion function. The HCD has freed all per-urb resources
1701 * (and is done using urb->hcpriv). It also released all HCD locks;
1702 * the device driver won't cause problems if it frees, modifies,
1703 * or resubmits this URB.
1704 *
1705 * If @urb was unlinked, the value of @status will be overridden by
1706 * @urb->unlinked. Erroneous short transfers are detected in case
1707 * the HCD hasn't checked for them.
1708 */
1709void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1710{
1711 struct giveback_urb_bh *bh;
1712 bool running, high_prio_bh;
1713
1714 /* pass status to tasklet via unlinked */
1715 if (likely(!urb->unlinked))
1716 urb->unlinked = status;
1717
1718 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1719 __usb_hcd_giveback_urb(urb);
1720 return;
1721 }
1722
1723 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1724 bh = &hcd->high_prio_bh;
1725 high_prio_bh = true;
1726 } else {
1727 bh = &hcd->low_prio_bh;
1728 high_prio_bh = false;
1729 }
1730
1731 spin_lock(&bh->lock);
1732 list_add_tail(&urb->urb_list, &bh->head);
1733 running = bh->running;
1734 spin_unlock(&bh->lock);
1735
1736 if (running)
1737 ;
1738 else if (high_prio_bh)
1739 tasklet_hi_schedule(&bh->bh);
1740 else
1741 tasklet_schedule(&bh->bh);
1742}
1743EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1744
1745/*-------------------------------------------------------------------------*/
1746
1747/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1748 * queue to drain completely. The caller must first insure that no more
1749 * URBs can be submitted for this endpoint.
1750 */
1751void usb_hcd_flush_endpoint(struct usb_device *udev,
1752 struct usb_host_endpoint *ep)
1753{
1754 struct usb_hcd *hcd;
1755 struct urb *urb;
1756
1757 if (!ep)
1758 return;
1759 might_sleep();
1760 hcd = bus_to_hcd(udev->bus);
1761
1762 /* No more submits can occur */
1763 spin_lock_irq(&hcd_urb_list_lock);
1764rescan:
1765 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1766 int is_in;
1767
1768 if (urb->unlinked)
1769 continue;
1770 usb_get_urb (urb);
1771 is_in = usb_urb_dir_in(urb);
1772 spin_unlock(&hcd_urb_list_lock);
1773
1774 /* kick hcd */
1775 unlink1(hcd, urb, -ESHUTDOWN);
1776 dev_dbg (hcd->self.controller,
1777 "shutdown urb %pK ep%d%s-%s\n",
1778 urb, usb_endpoint_num(&ep->desc),
1779 is_in ? "in" : "out",
1780 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1781 usb_put_urb (urb);
1782
1783 /* list contents may have changed */
1784 spin_lock(&hcd_urb_list_lock);
1785 goto rescan;
1786 }
1787 spin_unlock_irq(&hcd_urb_list_lock);
1788
1789 /* Wait until the endpoint queue is completely empty */
1790 while (!list_empty (&ep->urb_list)) {
1791 spin_lock_irq(&hcd_urb_list_lock);
1792
1793 /* The list may have changed while we acquired the spinlock */
1794 urb = NULL;
1795 if (!list_empty (&ep->urb_list)) {
1796 urb = list_entry (ep->urb_list.prev, struct urb,
1797 urb_list);
1798 usb_get_urb (urb);
1799 }
1800 spin_unlock_irq(&hcd_urb_list_lock);
1801
1802 if (urb) {
1803 usb_kill_urb (urb);
1804 usb_put_urb (urb);
1805 }
1806 }
1807}
1808
1809/**
1810 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1811 * the bus bandwidth
1812 * @udev: target &usb_device
1813 * @new_config: new configuration to install
1814 * @cur_alt: the current alternate interface setting
1815 * @new_alt: alternate interface setting that is being installed
1816 *
1817 * To change configurations, pass in the new configuration in new_config,
1818 * and pass NULL for cur_alt and new_alt.
1819 *
1820 * To reset a device's configuration (put the device in the ADDRESSED state),
1821 * pass in NULL for new_config, cur_alt, and new_alt.
1822 *
1823 * To change alternate interface settings, pass in NULL for new_config,
1824 * pass in the current alternate interface setting in cur_alt,
1825 * and pass in the new alternate interface setting in new_alt.
1826 *
1827 * Return: An error if the requested bandwidth change exceeds the
1828 * bus bandwidth or host controller internal resources.
1829 */
1830int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1831 struct usb_host_config *new_config,
1832 struct usb_host_interface *cur_alt,
1833 struct usb_host_interface *new_alt)
1834{
1835 int num_intfs, i, j;
1836 struct usb_host_interface *alt = NULL;
1837 int ret = 0;
1838 struct usb_hcd *hcd;
1839 struct usb_host_endpoint *ep;
1840
1841 hcd = bus_to_hcd(udev->bus);
1842 if (!hcd->driver->check_bandwidth)
1843 return 0;
1844
1845 /* Configuration is being removed - set configuration 0 */
1846 if (!new_config && !cur_alt) {
1847 for (i = 1; i < 16; ++i) {
1848 ep = udev->ep_out[i];
1849 if (ep)
1850 hcd->driver->drop_endpoint(hcd, udev, ep);
1851 ep = udev->ep_in[i];
1852 if (ep)
1853 hcd->driver->drop_endpoint(hcd, udev, ep);
1854 }
1855 hcd->driver->check_bandwidth(hcd, udev);
1856 return 0;
1857 }
1858 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1859 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1860 * of the bus. There will always be bandwidth for endpoint 0, so it's
1861 * ok to exclude it.
1862 */
1863 if (new_config) {
1864 num_intfs = new_config->desc.bNumInterfaces;
1865 /* Remove endpoints (except endpoint 0, which is always on the
1866 * schedule) from the old config from the schedule
1867 */
1868 for (i = 1; i < 16; ++i) {
1869 ep = udev->ep_out[i];
1870 if (ep) {
1871 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1872 if (ret < 0)
1873 goto reset;
1874 }
1875 ep = udev->ep_in[i];
1876 if (ep) {
1877 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1878 if (ret < 0)
1879 goto reset;
1880 }
1881 }
1882 for (i = 0; i < num_intfs; ++i) {
1883 struct usb_host_interface *first_alt;
1884 int iface_num;
1885
1886 first_alt = &new_config->intf_cache[i]->altsetting[0];
1887 iface_num = first_alt->desc.bInterfaceNumber;
1888 /* Set up endpoints for alternate interface setting 0 */
1889 alt = usb_find_alt_setting(new_config, iface_num, 0);
1890 if (!alt)
1891 /* No alt setting 0? Pick the first setting. */
1892 alt = first_alt;
1893
1894 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1895 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1896 if (ret < 0)
1897 goto reset;
1898 }
1899 }
1900 }
1901 if (cur_alt && new_alt) {
1902 struct usb_interface *iface = usb_ifnum_to_if(udev,
1903 cur_alt->desc.bInterfaceNumber);
1904
1905 if (!iface)
1906 return -EINVAL;
1907 if (iface->resetting_device) {
1908 /*
1909 * The USB core just reset the device, so the xHCI host
1910 * and the device will think alt setting 0 is installed.
1911 * However, the USB core will pass in the alternate
1912 * setting installed before the reset as cur_alt. Dig
1913 * out the alternate setting 0 structure, or the first
1914 * alternate setting if a broken device doesn't have alt
1915 * setting 0.
1916 */
1917 cur_alt = usb_altnum_to_altsetting(iface, 0);
1918 if (!cur_alt)
1919 cur_alt = &iface->altsetting[0];
1920 }
1921
1922 /* Drop all the endpoints in the current alt setting */
1923 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1924 ret = hcd->driver->drop_endpoint(hcd, udev,
1925 &cur_alt->endpoint[i]);
1926 if (ret < 0)
1927 goto reset;
1928 }
1929 /* Add all the endpoints in the new alt setting */
1930 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1931 ret = hcd->driver->add_endpoint(hcd, udev,
1932 &new_alt->endpoint[i]);
1933 if (ret < 0)
1934 goto reset;
1935 }
1936 }
1937 ret = hcd->driver->check_bandwidth(hcd, udev);
1938reset:
1939 if (ret < 0)
1940 hcd->driver->reset_bandwidth(hcd, udev);
1941 return ret;
1942}
1943
1944/* Disables the endpoint: synchronizes with the hcd to make sure all
1945 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1946 * have been called previously. Use for set_configuration, set_interface,
1947 * driver removal, physical disconnect.
1948 *
1949 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1950 * type, maxpacket size, toggle, halt status, and scheduling.
1951 */
1952void usb_hcd_disable_endpoint(struct usb_device *udev,
1953 struct usb_host_endpoint *ep)
1954{
1955 struct usb_hcd *hcd;
1956
1957 might_sleep();
1958 hcd = bus_to_hcd(udev->bus);
1959 if (hcd->driver->endpoint_disable)
1960 hcd->driver->endpoint_disable(hcd, ep);
1961}
1962
1963/**
1964 * usb_hcd_reset_endpoint - reset host endpoint state
1965 * @udev: USB device.
1966 * @ep: the endpoint to reset.
1967 *
1968 * Resets any host endpoint state such as the toggle bit, sequence
1969 * number and current window.
1970 */
1971void usb_hcd_reset_endpoint(struct usb_device *udev,
1972 struct usb_host_endpoint *ep)
1973{
1974 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1975
1976 if (hcd->driver->endpoint_reset)
1977 hcd->driver->endpoint_reset(hcd, ep);
1978 else {
1979 int epnum = usb_endpoint_num(&ep->desc);
1980 int is_out = usb_endpoint_dir_out(&ep->desc);
1981 int is_control = usb_endpoint_xfer_control(&ep->desc);
1982
1983 usb_settoggle(udev, epnum, is_out, 0);
1984 if (is_control)
1985 usb_settoggle(udev, epnum, !is_out, 0);
1986 }
1987}
1988
1989/**
1990 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1991 * @interface: alternate setting that includes all endpoints.
1992 * @eps: array of endpoints that need streams.
1993 * @num_eps: number of endpoints in the array.
1994 * @num_streams: number of streams to allocate.
1995 * @mem_flags: flags hcd should use to allocate memory.
1996 *
1997 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1998 * Drivers may queue multiple transfers to different stream IDs, which may
1999 * complete in a different order than they were queued.
2000 *
2001 * Return: On success, the number of allocated streams. On failure, a negative
2002 * error code.
2003 */
2004int usb_alloc_streams(struct usb_interface *interface,
2005 struct usb_host_endpoint **eps, unsigned int num_eps,
2006 unsigned int num_streams, gfp_t mem_flags)
2007{
2008 struct usb_hcd *hcd;
2009 struct usb_device *dev;
2010 int i, ret;
2011
2012 dev = interface_to_usbdev(interface);
2013 hcd = bus_to_hcd(dev->bus);
2014 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2015 return -EINVAL;
2016 if (dev->speed < USB_SPEED_SUPER)
2017 return -EINVAL;
2018 if (dev->state < USB_STATE_CONFIGURED)
2019 return -ENODEV;
2020
2021 for (i = 0; i < num_eps; i++) {
2022 /* Streams only apply to bulk endpoints. */
2023 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2024 return -EINVAL;
2025 /* Re-alloc is not allowed */
2026 if (eps[i]->streams)
2027 return -EINVAL;
2028 }
2029
2030 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2031 num_streams, mem_flags);
2032 if (ret < 0)
2033 return ret;
2034
2035 for (i = 0; i < num_eps; i++)
2036 eps[i]->streams = ret;
2037
2038 return ret;
2039}
2040EXPORT_SYMBOL_GPL(usb_alloc_streams);
2041
2042/**
2043 * usb_free_streams - free bulk endpoint stream IDs.
2044 * @interface: alternate setting that includes all endpoints.
2045 * @eps: array of endpoints to remove streams from.
2046 * @num_eps: number of endpoints in the array.
2047 * @mem_flags: flags hcd should use to allocate memory.
2048 *
2049 * Reverts a group of bulk endpoints back to not using stream IDs.
2050 * Can fail if we are given bad arguments, or HCD is broken.
2051 *
2052 * Return: 0 on success. On failure, a negative error code.
2053 */
2054int usb_free_streams(struct usb_interface *interface,
2055 struct usb_host_endpoint **eps, unsigned int num_eps,
2056 gfp_t mem_flags)
2057{
2058 struct usb_hcd *hcd;
2059 struct usb_device *dev;
2060 int i, ret;
2061
2062 dev = interface_to_usbdev(interface);
2063 hcd = bus_to_hcd(dev->bus);
2064 if (dev->speed < USB_SPEED_SUPER)
2065 return -EINVAL;
2066
2067 /* Double-free is not allowed */
2068 for (i = 0; i < num_eps; i++)
2069 if (!eps[i] || !eps[i]->streams)
2070 return -EINVAL;
2071
2072 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2073 if (ret < 0)
2074 return ret;
2075
2076 for (i = 0; i < num_eps; i++)
2077 eps[i]->streams = 0;
2078
2079 return ret;
2080}
2081EXPORT_SYMBOL_GPL(usb_free_streams);
2082
2083/* Protect against drivers that try to unlink URBs after the device
2084 * is gone, by waiting until all unlinks for @udev are finished.
2085 * Since we don't currently track URBs by device, simply wait until
2086 * nothing is running in the locked region of usb_hcd_unlink_urb().
2087 */
2088void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2089{
2090 spin_lock_irq(&hcd_urb_unlink_lock);
2091 spin_unlock_irq(&hcd_urb_unlink_lock);
2092}
2093
2094/*-------------------------------------------------------------------------*/
2095
2096/* called in any context */
2097int usb_hcd_get_frame_number (struct usb_device *udev)
2098{
2099 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2100
2101 if (!HCD_RH_RUNNING(hcd))
2102 return -ESHUTDOWN;
2103 return hcd->driver->get_frame_number (hcd);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108#ifdef CONFIG_PM
2109
2110int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2111{
2112 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2113 int status;
2114 int old_state = hcd->state;
2115
2116 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2117 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2118 rhdev->do_remote_wakeup);
2119 if (HCD_DEAD(hcd)) {
2120 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2121 return 0;
2122 }
2123
2124 if (!hcd->driver->bus_suspend) {
2125 status = -ENOENT;
2126 } else {
2127 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2128 hcd->state = HC_STATE_QUIESCING;
2129 status = hcd->driver->bus_suspend(hcd);
2130 }
2131 if (status == 0) {
2132 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2133 hcd->state = HC_STATE_SUSPENDED;
2134
2135 if (!PMSG_IS_AUTO(msg))
2136 usb_phy_roothub_suspend(hcd->self.sysdev,
2137 hcd->phy_roothub);
2138
2139 /* Did we race with a root-hub wakeup event? */
2140 if (rhdev->do_remote_wakeup) {
2141 char buffer[6];
2142
2143 status = hcd->driver->hub_status_data(hcd, buffer);
2144 if (status != 0) {
2145 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2146 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2147 status = -EBUSY;
2148 }
2149 }
2150 } else {
2151 spin_lock_irq(&hcd_root_hub_lock);
2152 if (!HCD_DEAD(hcd)) {
2153 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2154 hcd->state = old_state;
2155 }
2156 spin_unlock_irq(&hcd_root_hub_lock);
2157 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2158 "suspend", status);
2159 }
2160 return status;
2161}
2162
2163int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2164{
2165 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2166 int status;
2167 int old_state = hcd->state;
2168
2169 dev_dbg(&rhdev->dev, "usb %sresume\n",
2170 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2171 if (HCD_DEAD(hcd)) {
2172 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2173 return 0;
2174 }
2175
2176 if (!PMSG_IS_AUTO(msg)) {
2177 status = usb_phy_roothub_resume(hcd->self.sysdev,
2178 hcd->phy_roothub);
2179 if (status)
2180 return status;
2181 }
2182
2183 if (!hcd->driver->bus_resume)
2184 return -ENOENT;
2185 if (HCD_RH_RUNNING(hcd))
2186 return 0;
2187
2188 hcd->state = HC_STATE_RESUMING;
2189 status = hcd->driver->bus_resume(hcd);
2190 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2191 if (status == 0)
2192 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2193
2194 if (status == 0) {
2195 struct usb_device *udev;
2196 int port1;
2197
2198 spin_lock_irq(&hcd_root_hub_lock);
2199 if (!HCD_DEAD(hcd)) {
2200 usb_set_device_state(rhdev, rhdev->actconfig
2201 ? USB_STATE_CONFIGURED
2202 : USB_STATE_ADDRESS);
2203 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2204 hcd->state = HC_STATE_RUNNING;
2205 }
2206 spin_unlock_irq(&hcd_root_hub_lock);
2207
2208 /*
2209 * Check whether any of the enabled ports on the root hub are
2210 * unsuspended. If they are then a TRSMRCY delay is needed
2211 * (this is what the USB-2 spec calls a "global resume").
2212 * Otherwise we can skip the delay.
2213 */
2214 usb_hub_for_each_child(rhdev, port1, udev) {
2215 if (udev->state != USB_STATE_NOTATTACHED &&
2216 !udev->port_is_suspended) {
2217 usleep_range(10000, 11000); /* TRSMRCY */
2218 break;
2219 }
2220 }
2221 } else {
2222 hcd->state = old_state;
2223 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2224 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225 "resume", status);
2226 if (status != -ESHUTDOWN)
2227 usb_hc_died(hcd);
2228 }
2229 return status;
2230}
2231
2232/* Workqueue routine for root-hub remote wakeup */
2233static void hcd_resume_work(struct work_struct *work)
2234{
2235 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2236 struct usb_device *udev = hcd->self.root_hub;
2237
2238 usb_remote_wakeup(udev);
2239}
2240
2241/**
2242 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2243 * @hcd: host controller for this root hub
2244 *
2245 * The USB host controller calls this function when its root hub is
2246 * suspended (with the remote wakeup feature enabled) and a remote
2247 * wakeup request is received. The routine submits a workqueue request
2248 * to resume the root hub (that is, manage its downstream ports again).
2249 */
2250void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2251{
2252 unsigned long flags;
2253
2254 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2255 if (hcd->rh_registered) {
2256 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2257 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2258 queue_work(pm_wq, &hcd->wakeup_work);
2259 }
2260 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2261}
2262EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2263
2264#endif /* CONFIG_PM */
2265
2266/*-------------------------------------------------------------------------*/
2267
2268#ifdef CONFIG_USB_OTG
2269
2270/**
2271 * usb_bus_start_enum - start immediate enumeration (for OTG)
2272 * @bus: the bus (must use hcd framework)
2273 * @port_num: 1-based number of port; usually bus->otg_port
2274 * Context: in_interrupt()
2275 *
2276 * Starts enumeration, with an immediate reset followed later by
2277 * hub_wq identifying and possibly configuring the device.
2278 * This is needed by OTG controller drivers, where it helps meet
2279 * HNP protocol timing requirements for starting a port reset.
2280 *
2281 * Return: 0 if successful.
2282 */
2283int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2284{
2285 struct usb_hcd *hcd;
2286 int status = -EOPNOTSUPP;
2287
2288 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2289 * boards with root hubs hooked up to internal devices (instead of
2290 * just the OTG port) may need more attention to resetting...
2291 */
2292 hcd = bus_to_hcd(bus);
2293 if (port_num && hcd->driver->start_port_reset)
2294 status = hcd->driver->start_port_reset(hcd, port_num);
2295
2296 /* allocate hub_wq shortly after (first) root port reset finishes;
2297 * it may issue others, until at least 50 msecs have passed.
2298 */
2299 if (status == 0)
2300 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2301 return status;
2302}
2303EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2304
2305#endif
2306
2307/*-------------------------------------------------------------------------*/
2308
2309/**
2310 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2311 * @irq: the IRQ being raised
2312 * @__hcd: pointer to the HCD whose IRQ is being signaled
2313 *
2314 * If the controller isn't HALTed, calls the driver's irq handler.
2315 * Checks whether the controller is now dead.
2316 *
2317 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2318 */
2319irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2320{
2321 struct usb_hcd *hcd = __hcd;
2322 irqreturn_t rc;
2323
2324 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2325 rc = IRQ_NONE;
2326 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2327 rc = IRQ_NONE;
2328 else
2329 rc = IRQ_HANDLED;
2330
2331 return rc;
2332}
2333EXPORT_SYMBOL_GPL(usb_hcd_irq);
2334
2335/*-------------------------------------------------------------------------*/
2336
2337/* Workqueue routine for when the root-hub has died. */
2338static void hcd_died_work(struct work_struct *work)
2339{
2340 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2341 static char *env[] = {
2342 "ERROR=DEAD",
2343 NULL
2344 };
2345
2346 /* Notify user space that the host controller has died */
2347 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2348}
2349
2350/**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending. It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360void usb_hc_died (struct usb_hcd *hcd)
2361{
2362 unsigned long flags;
2363
2364 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369 if (hcd->rh_registered) {
2370 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372 /* make hub_wq clean up old urbs and devices */
2373 usb_set_device_state (hcd->self.root_hub,
2374 USB_STATE_NOTATTACHED);
2375 usb_kick_hub_wq(hcd->self.root_hub);
2376 }
2377 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378 hcd = hcd->shared_hcd;
2379 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2380 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2381 if (hcd->rh_registered) {
2382 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2383
2384 /* make hub_wq clean up old urbs and devices */
2385 usb_set_device_state(hcd->self.root_hub,
2386 USB_STATE_NOTATTACHED);
2387 usb_kick_hub_wq(hcd->self.root_hub);
2388 }
2389 }
2390
2391 /* Handle the case where this function gets called with a shared HCD */
2392 if (usb_hcd_is_primary_hcd(hcd))
2393 schedule_work(&hcd->died_work);
2394 else
2395 schedule_work(&hcd->primary_hcd->died_work);
2396
2397 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398 /* Make sure that the other roothub is also deallocated. */
2399}
2400EXPORT_SYMBOL_GPL (usb_hc_died);
2401
2402/*-------------------------------------------------------------------------*/
2403
2404static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2405{
2406
2407 spin_lock_init(&bh->lock);
2408 INIT_LIST_HEAD(&bh->head);
2409 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2410}
2411
2412struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2413 struct device *sysdev, struct device *dev, const char *bus_name,
2414 struct usb_hcd *primary_hcd)
2415{
2416 struct usb_hcd *hcd;
2417
2418 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2419 if (!hcd)
2420 return NULL;
2421 if (primary_hcd == NULL) {
2422 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2423 GFP_KERNEL);
2424 if (!hcd->address0_mutex) {
2425 kfree(hcd);
2426 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2427 return NULL;
2428 }
2429 mutex_init(hcd->address0_mutex);
2430 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431 GFP_KERNEL);
2432 if (!hcd->bandwidth_mutex) {
2433 kfree(hcd->address0_mutex);
2434 kfree(hcd);
2435 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436 return NULL;
2437 }
2438 mutex_init(hcd->bandwidth_mutex);
2439 dev_set_drvdata(dev, hcd);
2440 } else {
2441 mutex_lock(&usb_port_peer_mutex);
2442 hcd->address0_mutex = primary_hcd->address0_mutex;
2443 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2444 hcd->primary_hcd = primary_hcd;
2445 primary_hcd->primary_hcd = primary_hcd;
2446 hcd->shared_hcd = primary_hcd;
2447 primary_hcd->shared_hcd = hcd;
2448 mutex_unlock(&usb_port_peer_mutex);
2449 }
2450
2451 kref_init(&hcd->kref);
2452
2453 usb_bus_init(&hcd->self);
2454 hcd->self.controller = dev;
2455 hcd->self.sysdev = sysdev;
2456 hcd->self.bus_name = bus_name;
2457
2458 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2459#ifdef CONFIG_PM
2460 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2461#endif
2462
2463 INIT_WORK(&hcd->died_work, hcd_died_work);
2464
2465 hcd->driver = driver;
2466 hcd->speed = driver->flags & HCD_MASK;
2467 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2468 "USB Host Controller";
2469 return hcd;
2470}
2471EXPORT_SYMBOL_GPL(__usb_create_hcd);
2472
2473/**
2474 * usb_create_shared_hcd - create and initialize an HCD structure
2475 * @driver: HC driver that will use this hcd
2476 * @dev: device for this HC, stored in hcd->self.controller
2477 * @bus_name: value to store in hcd->self.bus_name
2478 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2479 * PCI device. Only allocate certain resources for the primary HCD
2480 * Context: !in_interrupt()
2481 *
2482 * Allocate a struct usb_hcd, with extra space at the end for the
2483 * HC driver's private data. Initialize the generic members of the
2484 * hcd structure.
2485 *
2486 * Return: On success, a pointer to the created and initialized HCD structure.
2487 * On failure (e.g. if memory is unavailable), %NULL.
2488 */
2489struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2490 struct device *dev, const char *bus_name,
2491 struct usb_hcd *primary_hcd)
2492{
2493 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2494}
2495EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2496
2497/**
2498 * usb_create_hcd - create and initialize an HCD structure
2499 * @driver: HC driver that will use this hcd
2500 * @dev: device for this HC, stored in hcd->self.controller
2501 * @bus_name: value to store in hcd->self.bus_name
2502 * Context: !in_interrupt()
2503 *
2504 * Allocate a struct usb_hcd, with extra space at the end for the
2505 * HC driver's private data. Initialize the generic members of the
2506 * hcd structure.
2507 *
2508 * Return: On success, a pointer to the created and initialized HCD
2509 * structure. On failure (e.g. if memory is unavailable), %NULL.
2510 */
2511struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2512 struct device *dev, const char *bus_name)
2513{
2514 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2515}
2516EXPORT_SYMBOL_GPL(usb_create_hcd);
2517
2518/*
2519 * Roothubs that share one PCI device must also share the bandwidth mutex.
2520 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2521 * deallocated.
2522 *
2523 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2524 * freed. When hcd_release() is called for either hcd in a peer set,
2525 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2526 */
2527static void hcd_release(struct kref *kref)
2528{
2529 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2530
2531 mutex_lock(&usb_port_peer_mutex);
2532 if (hcd->shared_hcd) {
2533 struct usb_hcd *peer = hcd->shared_hcd;
2534
2535 peer->shared_hcd = NULL;
2536 peer->primary_hcd = NULL;
2537 } else {
2538 kfree(hcd->address0_mutex);
2539 kfree(hcd->bandwidth_mutex);
2540 }
2541 mutex_unlock(&usb_port_peer_mutex);
2542 kfree(hcd);
2543}
2544
2545struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2546{
2547 if (hcd)
2548 kref_get (&hcd->kref);
2549 return hcd;
2550}
2551EXPORT_SYMBOL_GPL(usb_get_hcd);
2552
2553void usb_put_hcd (struct usb_hcd *hcd)
2554{
2555 if (hcd)
2556 kref_put (&hcd->kref, hcd_release);
2557}
2558EXPORT_SYMBOL_GPL(usb_put_hcd);
2559
2560int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2561{
2562 if (!hcd->primary_hcd)
2563 return 1;
2564 return hcd == hcd->primary_hcd;
2565}
2566EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2567
2568int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2569{
2570 if (!hcd->driver->find_raw_port_number)
2571 return port1;
2572
2573 return hcd->driver->find_raw_port_number(hcd, port1);
2574}
2575
2576static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2577 unsigned int irqnum, unsigned long irqflags)
2578{
2579 int retval;
2580
2581 if (hcd->driver->irq) {
2582
2583 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2584 hcd->driver->description, hcd->self.busnum);
2585 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2586 hcd->irq_descr, hcd);
2587 if (retval != 0) {
2588 dev_err(hcd->self.controller,
2589 "request interrupt %d failed\n",
2590 irqnum);
2591 return retval;
2592 }
2593 hcd->irq = irqnum;
2594 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2595 (hcd->driver->flags & HCD_MEMORY) ?
2596 "io mem" : "io base",
2597 (unsigned long long)hcd->rsrc_start);
2598 } else {
2599 hcd->irq = 0;
2600 if (hcd->rsrc_start)
2601 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2602 (hcd->driver->flags & HCD_MEMORY) ?
2603 "io mem" : "io base",
2604 (unsigned long long)hcd->rsrc_start);
2605 }
2606 return 0;
2607}
2608
2609/*
2610 * Before we free this root hub, flush in-flight peering attempts
2611 * and disable peer lookups
2612 */
2613static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2614{
2615 struct usb_device *rhdev;
2616
2617 mutex_lock(&usb_port_peer_mutex);
2618 rhdev = hcd->self.root_hub;
2619 hcd->self.root_hub = NULL;
2620 mutex_unlock(&usb_port_peer_mutex);
2621 usb_put_dev(rhdev);
2622}
2623
2624/**
2625 * usb_add_hcd - finish generic HCD structure initialization and register
2626 * @hcd: the usb_hcd structure to initialize
2627 * @irqnum: Interrupt line to allocate
2628 * @irqflags: Interrupt type flags
2629 *
2630 * Finish the remaining parts of generic HCD initialization: allocate the
2631 * buffers of consistent memory, register the bus, request the IRQ line,
2632 * and call the driver's reset() and start() routines.
2633 */
2634int usb_add_hcd(struct usb_hcd *hcd,
2635 unsigned int irqnum, unsigned long irqflags)
2636{
2637 int retval;
2638 struct usb_device *rhdev;
2639
2640 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2641 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2642 if (IS_ERR(hcd->phy_roothub))
2643 return PTR_ERR(hcd->phy_roothub);
2644
2645 retval = usb_phy_roothub_init(hcd->phy_roothub);
2646 if (retval)
2647 return retval;
2648
2649 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650 PHY_MODE_USB_HOST_SS);
2651 if (retval)
2652 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2653 PHY_MODE_USB_HOST);
2654 if (retval)
2655 goto err_usb_phy_roothub_power_on;
2656
2657 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2658 if (retval)
2659 goto err_usb_phy_roothub_power_on;
2660 }
2661
2662 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2663
2664 switch (authorized_default) {
2665 case USB_AUTHORIZE_NONE:
2666 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2667 break;
2668
2669 case USB_AUTHORIZE_ALL:
2670 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2671 break;
2672
2673 case USB_AUTHORIZE_INTERNAL:
2674 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2675 break;
2676
2677 case USB_AUTHORIZE_WIRED:
2678 default:
2679 hcd->dev_policy = hcd->wireless ?
2680 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2681 break;
2682 }
2683
2684 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2685
2686 /* per default all interfaces are authorized */
2687 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2688
2689 /* HC is in reset state, but accessible. Now do the one-time init,
2690 * bottom up so that hcds can customize the root hubs before hub_wq
2691 * starts talking to them. (Note, bus id is assigned early too.)
2692 */
2693 retval = hcd_buffer_create(hcd);
2694 if (retval != 0) {
2695 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2696 goto err_create_buf;
2697 }
2698
2699 retval = usb_register_bus(&hcd->self);
2700 if (retval < 0)
2701 goto err_register_bus;
2702
2703 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2704 if (rhdev == NULL) {
2705 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2706 retval = -ENOMEM;
2707 goto err_allocate_root_hub;
2708 }
2709 mutex_lock(&usb_port_peer_mutex);
2710 hcd->self.root_hub = rhdev;
2711 mutex_unlock(&usb_port_peer_mutex);
2712
2713 rhdev->rx_lanes = 1;
2714 rhdev->tx_lanes = 1;
2715
2716 switch (hcd->speed) {
2717 case HCD_USB11:
2718 rhdev->speed = USB_SPEED_FULL;
2719 break;
2720 case HCD_USB2:
2721 rhdev->speed = USB_SPEED_HIGH;
2722 break;
2723 case HCD_USB25:
2724 rhdev->speed = USB_SPEED_WIRELESS;
2725 break;
2726 case HCD_USB3:
2727 rhdev->speed = USB_SPEED_SUPER;
2728 break;
2729 case HCD_USB32:
2730 rhdev->rx_lanes = 2;
2731 rhdev->tx_lanes = 2;
2732 /* fall through */
2733 case HCD_USB31:
2734 rhdev->speed = USB_SPEED_SUPER_PLUS;
2735 break;
2736 default:
2737 retval = -EINVAL;
2738 goto err_set_rh_speed;
2739 }
2740
2741 /* wakeup flag init defaults to "everything works" for root hubs,
2742 * but drivers can override it in reset() if needed, along with
2743 * recording the overall controller's system wakeup capability.
2744 */
2745 device_set_wakeup_capable(&rhdev->dev, 1);
2746
2747 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2748 * registered. But since the controller can die at any time,
2749 * let's initialize the flag before touching the hardware.
2750 */
2751 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2752
2753 /* "reset" is misnamed; its role is now one-time init. the controller
2754 * should already have been reset (and boot firmware kicked off etc).
2755 */
2756 if (hcd->driver->reset) {
2757 retval = hcd->driver->reset(hcd);
2758 if (retval < 0) {
2759 dev_err(hcd->self.controller, "can't setup: %d\n",
2760 retval);
2761 goto err_hcd_driver_setup;
2762 }
2763 }
2764 hcd->rh_pollable = 1;
2765
2766 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2767 if (retval)
2768 goto err_hcd_driver_setup;
2769
2770 /* NOTE: root hub and controller capabilities may not be the same */
2771 if (device_can_wakeup(hcd->self.controller)
2772 && device_can_wakeup(&hcd->self.root_hub->dev))
2773 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2774
2775 /* initialize tasklets */
2776 init_giveback_urb_bh(&hcd->high_prio_bh);
2777 init_giveback_urb_bh(&hcd->low_prio_bh);
2778
2779 /* enable irqs just before we start the controller,
2780 * if the BIOS provides legacy PCI irqs.
2781 */
2782 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2783 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2784 if (retval)
2785 goto err_request_irq;
2786 }
2787
2788 hcd->state = HC_STATE_RUNNING;
2789 retval = hcd->driver->start(hcd);
2790 if (retval < 0) {
2791 dev_err(hcd->self.controller, "startup error %d\n", retval);
2792 goto err_hcd_driver_start;
2793 }
2794
2795 /* starting here, usbcore will pay attention to this root hub */
2796 retval = register_root_hub(hcd);
2797 if (retval != 0)
2798 goto err_register_root_hub;
2799
2800 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2801 usb_hcd_poll_rh_status(hcd);
2802
2803 return retval;
2804
2805err_register_root_hub:
2806 hcd->rh_pollable = 0;
2807 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808 del_timer_sync(&hcd->rh_timer);
2809 hcd->driver->stop(hcd);
2810 hcd->state = HC_STATE_HALT;
2811 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812 del_timer_sync(&hcd->rh_timer);
2813err_hcd_driver_start:
2814 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2815 free_irq(irqnum, hcd);
2816err_request_irq:
2817err_hcd_driver_setup:
2818err_set_rh_speed:
2819 usb_put_invalidate_rhdev(hcd);
2820err_allocate_root_hub:
2821 usb_deregister_bus(&hcd->self);
2822err_register_bus:
2823 hcd_buffer_destroy(hcd);
2824err_create_buf:
2825 usb_phy_roothub_power_off(hcd->phy_roothub);
2826err_usb_phy_roothub_power_on:
2827 usb_phy_roothub_exit(hcd->phy_roothub);
2828
2829 return retval;
2830}
2831EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833/**
2834 * usb_remove_hcd - shutdown processing for generic HCDs
2835 * @hcd: the usb_hcd structure to remove
2836 * Context: !in_interrupt()
2837 *
2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839 * invoking the HCD's stop() method.
2840 */
2841void usb_remove_hcd(struct usb_hcd *hcd)
2842{
2843 struct usb_device *rhdev = hcd->self.root_hub;
2844
2845 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847 usb_get_dev(rhdev);
2848 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2849 if (HC_IS_RUNNING (hcd->state))
2850 hcd->state = HC_STATE_QUIESCING;
2851
2852 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2853 spin_lock_irq (&hcd_root_hub_lock);
2854 hcd->rh_registered = 0;
2855 spin_unlock_irq (&hcd_root_hub_lock);
2856
2857#ifdef CONFIG_PM
2858 cancel_work_sync(&hcd->wakeup_work);
2859#endif
2860 cancel_work_sync(&hcd->died_work);
2861
2862 mutex_lock(&usb_bus_idr_lock);
2863 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2864 mutex_unlock(&usb_bus_idr_lock);
2865
2866 /*
2867 * tasklet_kill() isn't needed here because:
2868 * - driver's disconnect() called from usb_disconnect() should
2869 * make sure its URBs are completed during the disconnect()
2870 * callback
2871 *
2872 * - it is too late to run complete() here since driver may have
2873 * been removed already now
2874 */
2875
2876 /* Prevent any more root-hub status calls from the timer.
2877 * The HCD might still restart the timer (if a port status change
2878 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879 * the hub_status_data() callback.
2880 */
2881 hcd->rh_pollable = 0;
2882 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883 del_timer_sync(&hcd->rh_timer);
2884
2885 hcd->driver->stop(hcd);
2886 hcd->state = HC_STATE_HALT;
2887
2888 /* In case the HCD restarted the timer, stop it again. */
2889 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2890 del_timer_sync(&hcd->rh_timer);
2891
2892 if (usb_hcd_is_primary_hcd(hcd)) {
2893 if (hcd->irq > 0)
2894 free_irq(hcd->irq, hcd);
2895 }
2896
2897 usb_deregister_bus(&hcd->self);
2898 hcd_buffer_destroy(hcd);
2899
2900 usb_phy_roothub_power_off(hcd->phy_roothub);
2901 usb_phy_roothub_exit(hcd->phy_roothub);
2902
2903 usb_put_invalidate_rhdev(hcd);
2904 hcd->flags = 0;
2905}
2906EXPORT_SYMBOL_GPL(usb_remove_hcd);
2907
2908void
2909usb_hcd_platform_shutdown(struct platform_device *dev)
2910{
2911 struct usb_hcd *hcd = platform_get_drvdata(dev);
2912
2913 /* No need for pm_runtime_put(), we're shutting down */
2914 pm_runtime_get_sync(&dev->dev);
2915
2916 if (hcd->driver->shutdown)
2917 hcd->driver->shutdown(hcd);
2918}
2919EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2920
2921int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2922 dma_addr_t dma, size_t size)
2923{
2924 int err;
2925 void *local_mem;
2926
2927 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2928 dev_to_node(hcd->self.sysdev),
2929 dev_name(hcd->self.sysdev));
2930 if (IS_ERR(hcd->localmem_pool))
2931 return PTR_ERR(hcd->localmem_pool);
2932
2933 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2934 size, MEMREMAP_WC);
2935 if (IS_ERR(local_mem))
2936 return PTR_ERR(local_mem);
2937
2938 /*
2939 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2940 * It's not backed by system memory and thus there's no kernel mapping
2941 * for it.
2942 */
2943 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2944 dma, size, dev_to_node(hcd->self.sysdev));
2945 if (err < 0) {
2946 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2947 err);
2948 return err;
2949 }
2950
2951 return 0;
2952}
2953EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2954
2955/*-------------------------------------------------------------------------*/
2956
2957#if IS_ENABLED(CONFIG_USB_MON)
2958
2959const struct usb_mon_operations *mon_ops;
2960
2961/*
2962 * The registration is unlocked.
2963 * We do it this way because we do not want to lock in hot paths.
2964 *
2965 * Notice that the code is minimally error-proof. Because usbmon needs
2966 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2967 */
2968
2969int usb_mon_register(const struct usb_mon_operations *ops)
2970{
2971
2972 if (mon_ops)
2973 return -EBUSY;
2974
2975 mon_ops = ops;
2976 mb();
2977 return 0;
2978}
2979EXPORT_SYMBOL_GPL (usb_mon_register);
2980
2981void usb_mon_deregister (void)
2982{
2983
2984 if (mon_ops == NULL) {
2985 printk(KERN_ERR "USB: monitor was not registered\n");
2986 return;
2987 }
2988 mon_ops = NULL;
2989 mb();
2990}
2991EXPORT_SYMBOL_GPL (usb_mon_deregister);
2992
2993#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */