Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
 
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
 
 
  44
  45#include <linux/phy/phy.h>
  46#include <linux/usb.h>
  47#include <linux/usb/hcd.h>
  48#include <linux/usb/phy.h>
  49#include <linux/usb/otg.h>
  50
  51#include "usb.h"
 
  52
  53
  54/*-------------------------------------------------------------------------*/
  55
  56/*
  57 * USB Host Controller Driver framework
  58 *
  59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  60 * HCD-specific behaviors/bugs.
  61 *
  62 * This does error checks, tracks devices and urbs, and delegates to a
  63 * "hc_driver" only for code (and data) that really needs to know about
  64 * hardware differences.  That includes root hub registers, i/o queues,
  65 * and so on ... but as little else as possible.
  66 *
  67 * Shared code includes most of the "root hub" code (these are emulated,
  68 * though each HC's hardware works differently) and PCI glue, plus request
  69 * tracking overhead.  The HCD code should only block on spinlocks or on
  70 * hardware handshaking; blocking on software events (such as other kernel
  71 * threads releasing resources, or completing actions) is all generic.
  72 *
  73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  75 * only by the hub driver ... and that neither should be seen or used by
  76 * usb client device drivers.
  77 *
  78 * Contributors of ideas or unattributed patches include: David Brownell,
  79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  80 *
  81 * HISTORY:
  82 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  83 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  84 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  85 */
  86
  87/*-------------------------------------------------------------------------*/
  88
  89/* Keep track of which host controller drivers are loaded */
  90unsigned long usb_hcds_loaded;
  91EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  92
  93/* host controllers we manage */
  94DEFINE_IDR (usb_bus_idr);
  95EXPORT_SYMBOL_GPL (usb_bus_idr);
  96
  97/* used when allocating bus numbers */
  98#define USB_MAXBUS		64
  99
 100/* used when updating list of hcds */
 101DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
 102EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
 103
 104/* used for controlling access to virtual root hubs */
 105static DEFINE_SPINLOCK(hcd_root_hub_lock);
 106
 107/* used when updating an endpoint's URB list */
 108static DEFINE_SPINLOCK(hcd_urb_list_lock);
 109
 110/* used to protect against unlinking URBs after the device is gone */
 111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 112
 113/* wait queue for synchronous unlinks */
 114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 115
 116static inline int is_root_hub(struct usb_device *udev)
 117{
 118	return (udev->parent == NULL);
 119}
 120
 121/*-------------------------------------------------------------------------*/
 122
 123/*
 124 * Sharable chunks of root hub code.
 125 */
 126
 127/*-------------------------------------------------------------------------*/
 128#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 129#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 130
 131/* usb 3.1 root hub device descriptor */
 132static const u8 usb31_rh_dev_descriptor[18] = {
 133	0x12,       /*  __u8  bLength; */
 134	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 135	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 136
 137	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 138	0x00,	    /*  __u8  bDeviceSubClass; */
 139	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 140	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 141
 142	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 143	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 144	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 145
 146	0x03,       /*  __u8  iManufacturer; */
 147	0x02,       /*  __u8  iProduct; */
 148	0x01,       /*  __u8  iSerialNumber; */
 149	0x01        /*  __u8  bNumConfigurations; */
 150};
 151
 152/* usb 3.0 root hub device descriptor */
 153static const u8 usb3_rh_dev_descriptor[18] = {
 154	0x12,       /*  __u8  bLength; */
 155	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 156	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 157
 158	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 159	0x00,	    /*  __u8  bDeviceSubClass; */
 160	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 161	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 162
 163	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 164	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 165	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 166
 167	0x03,       /*  __u8  iManufacturer; */
 168	0x02,       /*  __u8  iProduct; */
 169	0x01,       /*  __u8  iSerialNumber; */
 170	0x01        /*  __u8  bNumConfigurations; */
 171};
 172
 173/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 174static const u8 usb25_rh_dev_descriptor[18] = {
 175	0x12,       /*  __u8  bLength; */
 176	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 177	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 178
 179	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 180	0x00,	    /*  __u8  bDeviceSubClass; */
 181	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 182	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 183
 184	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 185	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 186	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 187
 188	0x03,       /*  __u8  iManufacturer; */
 189	0x02,       /*  __u8  iProduct; */
 190	0x01,       /*  __u8  iSerialNumber; */
 191	0x01        /*  __u8  bNumConfigurations; */
 192};
 193
 194/* usb 2.0 root hub device descriptor */
 195static const u8 usb2_rh_dev_descriptor[18] = {
 196	0x12,       /*  __u8  bLength; */
 197	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 198	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 199
 200	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 201	0x00,	    /*  __u8  bDeviceSubClass; */
 202	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 203	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 204
 205	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 206	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 207	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 208
 209	0x03,       /*  __u8  iManufacturer; */
 210	0x02,       /*  __u8  iProduct; */
 211	0x01,       /*  __u8  iSerialNumber; */
 212	0x01        /*  __u8  bNumConfigurations; */
 213};
 214
 215/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 216
 217/* usb 1.1 root hub device descriptor */
 218static const u8 usb11_rh_dev_descriptor[18] = {
 219	0x12,       /*  __u8  bLength; */
 220	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 221	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 222
 223	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 224	0x00,	    /*  __u8  bDeviceSubClass; */
 225	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 226	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 227
 228	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 229	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 230	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 231
 232	0x03,       /*  __u8  iManufacturer; */
 233	0x02,       /*  __u8  iProduct; */
 234	0x01,       /*  __u8  iSerialNumber; */
 235	0x01        /*  __u8  bNumConfigurations; */
 236};
 237
 238
 239/*-------------------------------------------------------------------------*/
 240
 241/* Configuration descriptors for our root hubs */
 242
 243static const u8 fs_rh_config_descriptor[] = {
 244
 245	/* one configuration */
 246	0x09,       /*  __u8  bLength; */
 247	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 248	0x19, 0x00, /*  __le16 wTotalLength; */
 249	0x01,       /*  __u8  bNumInterfaces; (1) */
 250	0x01,       /*  __u8  bConfigurationValue; */
 251	0x00,       /*  __u8  iConfiguration; */
 252	0xc0,       /*  __u8  bmAttributes;
 253				 Bit 7: must be set,
 254				     6: Self-powered,
 255				     5: Remote wakeup,
 256				     4..0: resvd */
 257	0x00,       /*  __u8  MaxPower; */
 258
 259	/* USB 1.1:
 260	 * USB 2.0, single TT organization (mandatory):
 261	 *	one interface, protocol 0
 262	 *
 263	 * USB 2.0, multiple TT organization (optional):
 264	 *	two interfaces, protocols 1 (like single TT)
 265	 *	and 2 (multiple TT mode) ... config is
 266	 *	sometimes settable
 267	 *	NOT IMPLEMENTED
 268	 */
 269
 270	/* one interface */
 271	0x09,       /*  __u8  if_bLength; */
 272	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 273	0x00,       /*  __u8  if_bInterfaceNumber; */
 274	0x00,       /*  __u8  if_bAlternateSetting; */
 275	0x01,       /*  __u8  if_bNumEndpoints; */
 276	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 277	0x00,       /*  __u8  if_bInterfaceSubClass; */
 278	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 279	0x00,       /*  __u8  if_iInterface; */
 280
 281	/* one endpoint (status change endpoint) */
 282	0x07,       /*  __u8  ep_bLength; */
 283	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 284	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 285	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 286	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 287	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 288};
 289
 290static const u8 hs_rh_config_descriptor[] = {
 291
 292	/* one configuration */
 293	0x09,       /*  __u8  bLength; */
 294	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 295	0x19, 0x00, /*  __le16 wTotalLength; */
 296	0x01,       /*  __u8  bNumInterfaces; (1) */
 297	0x01,       /*  __u8  bConfigurationValue; */
 298	0x00,       /*  __u8  iConfiguration; */
 299	0xc0,       /*  __u8  bmAttributes;
 300				 Bit 7: must be set,
 301				     6: Self-powered,
 302				     5: Remote wakeup,
 303				     4..0: resvd */
 304	0x00,       /*  __u8  MaxPower; */
 305
 306	/* USB 1.1:
 307	 * USB 2.0, single TT organization (mandatory):
 308	 *	one interface, protocol 0
 309	 *
 310	 * USB 2.0, multiple TT organization (optional):
 311	 *	two interfaces, protocols 1 (like single TT)
 312	 *	and 2 (multiple TT mode) ... config is
 313	 *	sometimes settable
 314	 *	NOT IMPLEMENTED
 315	 */
 316
 317	/* one interface */
 318	0x09,       /*  __u8  if_bLength; */
 319	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 320	0x00,       /*  __u8  if_bInterfaceNumber; */
 321	0x00,       /*  __u8  if_bAlternateSetting; */
 322	0x01,       /*  __u8  if_bNumEndpoints; */
 323	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 324	0x00,       /*  __u8  if_bInterfaceSubClass; */
 325	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 326	0x00,       /*  __u8  if_iInterface; */
 327
 328	/* one endpoint (status change endpoint) */
 329	0x07,       /*  __u8  ep_bLength; */
 330	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 331	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 332	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 333		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 334		     * see hub.c:hub_configure() for details. */
 335	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 336	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 337};
 338
 339static const u8 ss_rh_config_descriptor[] = {
 340	/* one configuration */
 341	0x09,       /*  __u8  bLength; */
 342	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 343	0x1f, 0x00, /*  __le16 wTotalLength; */
 344	0x01,       /*  __u8  bNumInterfaces; (1) */
 345	0x01,       /*  __u8  bConfigurationValue; */
 346	0x00,       /*  __u8  iConfiguration; */
 347	0xc0,       /*  __u8  bmAttributes;
 348				 Bit 7: must be set,
 349				     6: Self-powered,
 350				     5: Remote wakeup,
 351				     4..0: resvd */
 352	0x00,       /*  __u8  MaxPower; */
 353
 354	/* one interface */
 355	0x09,       /*  __u8  if_bLength; */
 356	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 357	0x00,       /*  __u8  if_bInterfaceNumber; */
 358	0x00,       /*  __u8  if_bAlternateSetting; */
 359	0x01,       /*  __u8  if_bNumEndpoints; */
 360	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 361	0x00,       /*  __u8  if_bInterfaceSubClass; */
 362	0x00,       /*  __u8  if_bInterfaceProtocol; */
 363	0x00,       /*  __u8  if_iInterface; */
 364
 365	/* one endpoint (status change endpoint) */
 366	0x07,       /*  __u8  ep_bLength; */
 367	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 368	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 369	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 370		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 371		     * see hub.c:hub_configure() for details. */
 372	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 373	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 374
 375	/* one SuperSpeed endpoint companion descriptor */
 376	0x06,        /* __u8 ss_bLength */
 377	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 378		     /* Companion */
 379	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 380	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 381	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 382};
 383
 384/* authorized_default behaviour:
 385 * -1 is authorized for all devices except wireless (old behaviour)
 386 * 0 is unauthorized for all devices
 387 * 1 is authorized for all devices
 
 388 */
 389static int authorized_default = -1;
 
 
 
 
 
 390module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 391MODULE_PARM_DESC(authorized_default,
 392		"Default USB device authorization: 0 is not authorized, 1 is "
 393		"authorized, -1 is authorized except for wireless USB (default, "
 394		"old behaviour");
 395/*-------------------------------------------------------------------------*/
 396
 397/**
 398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 401 * @len: Length (in bytes; may be odd) of descriptor buffer.
 402 *
 403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 404 * whichever is less.
 405 *
 406 * Note:
 407 * USB String descriptors can contain at most 126 characters; input
 408 * strings longer than that are truncated.
 409 */
 410static unsigned
 411ascii2desc(char const *s, u8 *buf, unsigned len)
 412{
 413	unsigned n, t = 2 + 2*strlen(s);
 414
 415	if (t > 254)
 416		t = 254;	/* Longest possible UTF string descriptor */
 417	if (len > t)
 418		len = t;
 419
 420	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 421
 422	n = len;
 423	while (n--) {
 424		*buf++ = t;
 425		if (!n--)
 426			break;
 427		*buf++ = t >> 8;
 428		t = (unsigned char)*s++;
 429	}
 430	return len;
 431}
 432
 433/**
 434 * rh_string() - provides string descriptors for root hub
 435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 436 * @hcd: the host controller for this root hub
 437 * @data: buffer for output packet
 438 * @len: length of the provided buffer
 439 *
 440 * Produces either a manufacturer, product or serial number string for the
 441 * virtual root hub device.
 442 *
 443 * Return: The number of bytes filled in: the length of the descriptor or
 444 * of the provided buffer, whichever is less.
 445 */
 446static unsigned
 447rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 448{
 449	char buf[100];
 450	char const *s;
 451	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 452
 453	/* language ids */
 454	switch (id) {
 455	case 0:
 456		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 457		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 458		if (len > 4)
 459			len = 4;
 460		memcpy(data, langids, len);
 461		return len;
 462	case 1:
 463		/* Serial number */
 464		s = hcd->self.bus_name;
 465		break;
 466	case 2:
 467		/* Product name */
 468		s = hcd->product_desc;
 469		break;
 470	case 3:
 471		/* Manufacturer */
 472		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 473			init_utsname()->release, hcd->driver->description);
 474		s = buf;
 475		break;
 476	default:
 477		/* Can't happen; caller guarantees it */
 478		return 0;
 479	}
 480
 481	return ascii2desc(s, data, len);
 482}
 483
 484
 485/* Root hub control transfers execute synchronously */
 486static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 487{
 488	struct usb_ctrlrequest *cmd;
 489	u16		typeReq, wValue, wIndex, wLength;
 490	u8		*ubuf = urb->transfer_buffer;
 491	unsigned	len = 0;
 492	int		status;
 493	u8		patch_wakeup = 0;
 494	u8		patch_protocol = 0;
 495	u16		tbuf_size;
 496	u8		*tbuf = NULL;
 497	const u8	*bufp;
 498
 499	might_sleep();
 500
 501	spin_lock_irq(&hcd_root_hub_lock);
 502	status = usb_hcd_link_urb_to_ep(hcd, urb);
 503	spin_unlock_irq(&hcd_root_hub_lock);
 504	if (status)
 505		return status;
 506	urb->hcpriv = hcd;	/* Indicate it's queued */
 507
 508	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 509	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 510	wValue   = le16_to_cpu (cmd->wValue);
 511	wIndex   = le16_to_cpu (cmd->wIndex);
 512	wLength  = le16_to_cpu (cmd->wLength);
 513
 514	if (wLength > urb->transfer_buffer_length)
 515		goto error;
 516
 517	/*
 518	 * tbuf should be at least as big as the
 519	 * USB hub descriptor.
 520	 */
 521	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 522	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 523	if (!tbuf) {
 524		status = -ENOMEM;
 525		goto err_alloc;
 526	}
 527
 528	bufp = tbuf;
 529
 530
 531	urb->actual_length = 0;
 532	switch (typeReq) {
 533
 534	/* DEVICE REQUESTS */
 535
 536	/* The root hub's remote wakeup enable bit is implemented using
 537	 * driver model wakeup flags.  If this system supports wakeup
 538	 * through USB, userspace may change the default "allow wakeup"
 539	 * policy through sysfs or these calls.
 540	 *
 541	 * Most root hubs support wakeup from downstream devices, for
 542	 * runtime power management (disabling USB clocks and reducing
 543	 * VBUS power usage).  However, not all of them do so; silicon,
 544	 * board, and BIOS bugs here are not uncommon, so these can't
 545	 * be treated quite like external hubs.
 546	 *
 547	 * Likewise, not all root hubs will pass wakeup events upstream,
 548	 * to wake up the whole system.  So don't assume root hub and
 549	 * controller capabilities are identical.
 550	 */
 551
 552	case DeviceRequest | USB_REQ_GET_STATUS:
 553		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 554					<< USB_DEVICE_REMOTE_WAKEUP)
 555				| (1 << USB_DEVICE_SELF_POWERED);
 556		tbuf[1] = 0;
 557		len = 2;
 558		break;
 559	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 560		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 561			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 562		else
 563			goto error;
 564		break;
 565	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 566		if (device_can_wakeup(&hcd->self.root_hub->dev)
 567				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 568			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 569		else
 570			goto error;
 571		break;
 572	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 573		tbuf[0] = 1;
 574		len = 1;
 575			/* FALLTHROUGH */
 576	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 577		break;
 578	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 579		switch (wValue & 0xff00) {
 580		case USB_DT_DEVICE << 8:
 581			switch (hcd->speed) {
 
 582			case HCD_USB31:
 583				bufp = usb31_rh_dev_descriptor;
 584				break;
 585			case HCD_USB3:
 586				bufp = usb3_rh_dev_descriptor;
 587				break;
 588			case HCD_USB25:
 589				bufp = usb25_rh_dev_descriptor;
 590				break;
 591			case HCD_USB2:
 592				bufp = usb2_rh_dev_descriptor;
 593				break;
 594			case HCD_USB11:
 595				bufp = usb11_rh_dev_descriptor;
 596				break;
 597			default:
 598				goto error;
 599			}
 600			len = 18;
 601			if (hcd->has_tt)
 602				patch_protocol = 1;
 603			break;
 604		case USB_DT_CONFIG << 8:
 605			switch (hcd->speed) {
 
 606			case HCD_USB31:
 607			case HCD_USB3:
 608				bufp = ss_rh_config_descriptor;
 609				len = sizeof ss_rh_config_descriptor;
 610				break;
 611			case HCD_USB25:
 612			case HCD_USB2:
 613				bufp = hs_rh_config_descriptor;
 614				len = sizeof hs_rh_config_descriptor;
 615				break;
 616			case HCD_USB11:
 617				bufp = fs_rh_config_descriptor;
 618				len = sizeof fs_rh_config_descriptor;
 619				break;
 620			default:
 621				goto error;
 622			}
 623			if (device_can_wakeup(&hcd->self.root_hub->dev))
 624				patch_wakeup = 1;
 625			break;
 626		case USB_DT_STRING << 8:
 627			if ((wValue & 0xff) < 4)
 628				urb->actual_length = rh_string(wValue & 0xff,
 629						hcd, ubuf, wLength);
 630			else /* unsupported IDs --> "protocol stall" */
 631				goto error;
 632			break;
 633		case USB_DT_BOS << 8:
 634			goto nongeneric;
 635		default:
 636			goto error;
 637		}
 638		break;
 639	case DeviceRequest | USB_REQ_GET_INTERFACE:
 640		tbuf[0] = 0;
 641		len = 1;
 642			/* FALLTHROUGH */
 643	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 644		break;
 645	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 646		/* wValue == urb->dev->devaddr */
 647		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 648			wValue);
 649		break;
 650
 651	/* INTERFACE REQUESTS (no defined feature/status flags) */
 652
 653	/* ENDPOINT REQUESTS */
 654
 655	case EndpointRequest | USB_REQ_GET_STATUS:
 656		/* ENDPOINT_HALT flag */
 657		tbuf[0] = 0;
 658		tbuf[1] = 0;
 659		len = 2;
 660			/* FALLTHROUGH */
 661	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 662	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 663		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 664		break;
 665
 666	/* CLASS REQUESTS (and errors) */
 667
 668	default:
 669nongeneric:
 670		/* non-generic request */
 671		switch (typeReq) {
 672		case GetHubStatus:
 673			len = 4;
 674			break;
 675		case GetPortStatus:
 676			if (wValue == HUB_PORT_STATUS)
 677				len = 4;
 678			else
 679				/* other port status types return 8 bytes */
 680				len = 8;
 681			break;
 682		case GetHubDescriptor:
 683			len = sizeof (struct usb_hub_descriptor);
 684			break;
 685		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 686			/* len is returned by hub_control */
 687			break;
 688		}
 689		status = hcd->driver->hub_control (hcd,
 690			typeReq, wValue, wIndex,
 691			tbuf, wLength);
 692
 693		if (typeReq == GetHubDescriptor)
 694			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 695				(struct usb_hub_descriptor *)tbuf);
 696		break;
 697error:
 698		/* "protocol stall" on error */
 699		status = -EPIPE;
 700	}
 701
 702	if (status < 0) {
 703		len = 0;
 704		if (status != -EPIPE) {
 705			dev_dbg (hcd->self.controller,
 706				"CTRL: TypeReq=0x%x val=0x%x "
 707				"idx=0x%x len=%d ==> %d\n",
 708				typeReq, wValue, wIndex,
 709				wLength, status);
 710		}
 711	} else if (status > 0) {
 712		/* hub_control may return the length of data copied. */
 713		len = status;
 714		status = 0;
 715	}
 716	if (len) {
 717		if (urb->transfer_buffer_length < len)
 718			len = urb->transfer_buffer_length;
 719		urb->actual_length = len;
 720		/* always USB_DIR_IN, toward host */
 721		memcpy (ubuf, bufp, len);
 722
 723		/* report whether RH hardware supports remote wakeup */
 724		if (patch_wakeup &&
 725				len > offsetof (struct usb_config_descriptor,
 726						bmAttributes))
 727			((struct usb_config_descriptor *)ubuf)->bmAttributes
 728				|= USB_CONFIG_ATT_WAKEUP;
 729
 730		/* report whether RH hardware has an integrated TT */
 731		if (patch_protocol &&
 732				len > offsetof(struct usb_device_descriptor,
 733						bDeviceProtocol))
 734			((struct usb_device_descriptor *) ubuf)->
 735				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 736	}
 737
 738	kfree(tbuf);
 739 err_alloc:
 740
 741	/* any errors get returned through the urb completion */
 742	spin_lock_irq(&hcd_root_hub_lock);
 743	usb_hcd_unlink_urb_from_ep(hcd, urb);
 744	usb_hcd_giveback_urb(hcd, urb, status);
 745	spin_unlock_irq(&hcd_root_hub_lock);
 746	return 0;
 747}
 748
 749/*-------------------------------------------------------------------------*/
 750
 751/*
 752 * Root Hub interrupt transfers are polled using a timer if the
 753 * driver requests it; otherwise the driver is responsible for
 754 * calling usb_hcd_poll_rh_status() when an event occurs.
 755 *
 756 * Completions are called in_interrupt(), but they may or may not
 757 * be in_irq().
 758 */
 759void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 760{
 761	struct urb	*urb;
 762	int		length;
 763	unsigned long	flags;
 764	char		buffer[6];	/* Any root hubs with > 31 ports? */
 765
 766	if (unlikely(!hcd->rh_pollable))
 767		return;
 768	if (!hcd->uses_new_polling && !hcd->status_urb)
 769		return;
 770
 771	length = hcd->driver->hub_status_data(hcd, buffer);
 772	if (length > 0) {
 773
 774		/* try to complete the status urb */
 775		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 776		urb = hcd->status_urb;
 777		if (urb) {
 778			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 779			hcd->status_urb = NULL;
 780			urb->actual_length = length;
 781			memcpy(urb->transfer_buffer, buffer, length);
 782
 783			usb_hcd_unlink_urb_from_ep(hcd, urb);
 784			usb_hcd_giveback_urb(hcd, urb, 0);
 785		} else {
 786			length = 0;
 787			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 788		}
 789		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 790	}
 791
 792	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 793	 * exceed that limit if HZ is 100. The math is more clunky than
 794	 * maybe expected, this is to make sure that all timers for USB devices
 795	 * fire at the same time to give the CPU a break in between */
 796	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 797			(length == 0 && hcd->status_urb != NULL))
 798		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 799}
 800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 801
 802/* timer callback */
 803static void rh_timer_func (unsigned long _hcd)
 804{
 805	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 
 
 806}
 807
 808/*-------------------------------------------------------------------------*/
 809
 810static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 811{
 812	int		retval;
 813	unsigned long	flags;
 814	unsigned	len = 1 + (urb->dev->maxchild / 8);
 815
 816	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 817	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 818		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 819		retval = -EINVAL;
 820		goto done;
 821	}
 822
 823	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 824	if (retval)
 825		goto done;
 826
 827	hcd->status_urb = urb;
 828	urb->hcpriv = hcd;	/* indicate it's queued */
 829	if (!hcd->uses_new_polling)
 830		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 831
 832	/* If a status change has already occurred, report it ASAP */
 833	else if (HCD_POLL_PENDING(hcd))
 834		mod_timer(&hcd->rh_timer, jiffies);
 835	retval = 0;
 836 done:
 837	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 838	return retval;
 839}
 840
 841static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 842{
 843	if (usb_endpoint_xfer_int(&urb->ep->desc))
 844		return rh_queue_status (hcd, urb);
 845	if (usb_endpoint_xfer_control(&urb->ep->desc))
 846		return rh_call_control (hcd, urb);
 847	return -EINVAL;
 848}
 849
 850/*-------------------------------------------------------------------------*/
 851
 852/* Unlinks of root-hub control URBs are legal, but they don't do anything
 853 * since these URBs always execute synchronously.
 854 */
 855static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 856{
 857	unsigned long	flags;
 858	int		rc;
 859
 860	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 861	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 862	if (rc)
 863		goto done;
 864
 865	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 866		;	/* Do nothing */
 867
 868	} else {				/* Status URB */
 869		if (!hcd->uses_new_polling)
 870			del_timer (&hcd->rh_timer);
 871		if (urb == hcd->status_urb) {
 872			hcd->status_urb = NULL;
 873			usb_hcd_unlink_urb_from_ep(hcd, urb);
 874			usb_hcd_giveback_urb(hcd, urb, status);
 875		}
 876	}
 877 done:
 878	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 879	return rc;
 880}
 881
 882
 883
 884/*
 885 * Show & store the current value of authorized_default
 886 */
 887static ssize_t authorized_default_show(struct device *dev,
 888				       struct device_attribute *attr, char *buf)
 889{
 890	struct usb_device *rh_usb_dev = to_usb_device(dev);
 891	struct usb_bus *usb_bus = rh_usb_dev->bus;
 892	struct usb_hcd *hcd;
 893
 894	hcd = bus_to_hcd(usb_bus);
 895	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
 896}
 897
 898static ssize_t authorized_default_store(struct device *dev,
 899					struct device_attribute *attr,
 900					const char *buf, size_t size)
 901{
 902	ssize_t result;
 903	unsigned val;
 904	struct usb_device *rh_usb_dev = to_usb_device(dev);
 905	struct usb_bus *usb_bus = rh_usb_dev->bus;
 906	struct usb_hcd *hcd;
 907
 908	hcd = bus_to_hcd(usb_bus);
 909	result = sscanf(buf, "%u\n", &val);
 910	if (result == 1) {
 911		if (val)
 912			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 913		else
 914			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 915
 916		result = size;
 917	} else {
 918		result = -EINVAL;
 919	}
 920	return result;
 921}
 922static DEVICE_ATTR_RW(authorized_default);
 923
 924/*
 925 * interface_authorized_default_show - show default authorization status
 926 * for USB interfaces
 927 *
 928 * note: interface_authorized_default is the default value
 929 *       for initializing the authorized attribute of interfaces
 930 */
 931static ssize_t interface_authorized_default_show(struct device *dev,
 932		struct device_attribute *attr, char *buf)
 933{
 934	struct usb_device *usb_dev = to_usb_device(dev);
 935	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 936
 937	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
 938}
 939
 940/*
 941 * interface_authorized_default_store - store default authorization status
 942 * for USB interfaces
 943 *
 944 * note: interface_authorized_default is the default value
 945 *       for initializing the authorized attribute of interfaces
 946 */
 947static ssize_t interface_authorized_default_store(struct device *dev,
 948		struct device_attribute *attr, const char *buf, size_t count)
 949{
 950	struct usb_device *usb_dev = to_usb_device(dev);
 951	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 952	int rc = count;
 953	bool val;
 954
 955	if (strtobool(buf, &val) != 0)
 956		return -EINVAL;
 957
 958	if (val)
 959		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 960	else
 961		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 962
 963	return rc;
 964}
 965static DEVICE_ATTR_RW(interface_authorized_default);
 966
 967/* Group all the USB bus attributes */
 968static struct attribute *usb_bus_attrs[] = {
 969		&dev_attr_authorized_default.attr,
 970		&dev_attr_interface_authorized_default.attr,
 971		NULL,
 972};
 973
 974static struct attribute_group usb_bus_attr_group = {
 975	.name = NULL,	/* we want them in the same directory */
 976	.attrs = usb_bus_attrs,
 977};
 978
 979
 980
 981/*-------------------------------------------------------------------------*/
 982
 983/**
 984 * usb_bus_init - shared initialization code
 985 * @bus: the bus structure being initialized
 986 *
 987 * This code is used to initialize a usb_bus structure, memory for which is
 988 * separately managed.
 989 */
 990static void usb_bus_init (struct usb_bus *bus)
 991{
 992	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 993
 994	bus->devnum_next = 1;
 995
 996	bus->root_hub = NULL;
 997	bus->busnum = -1;
 998	bus->bandwidth_allocated = 0;
 999	bus->bandwidth_int_reqs  = 0;
1000	bus->bandwidth_isoc_reqs = 0;
1001	mutex_init(&bus->devnum_next_mutex);
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/**
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1010 *
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1013 *
1014 * Return: 0 if successful. A negative error code otherwise.
1015 */
1016static int usb_register_bus(struct usb_bus *bus)
1017{
1018	int result = -E2BIG;
1019	int busnum;
1020
1021	mutex_lock(&usb_bus_idr_lock);
1022	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023	if (busnum < 0) {
1024		pr_err("%s: failed to get bus number\n", usbcore_name);
1025		goto error_find_busnum;
1026	}
1027	bus->busnum = busnum;
1028	mutex_unlock(&usb_bus_idr_lock);
1029
1030	usb_notify_add_bus(bus);
1031
1032	dev_info (bus->controller, "new USB bus registered, assigned bus "
1033		  "number %d\n", bus->busnum);
1034	return 0;
1035
1036error_find_busnum:
1037	mutex_unlock(&usb_bus_idr_lock);
1038	return result;
1039}
1040
1041/**
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1045 *
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1048 */
1049static void usb_deregister_bus (struct usb_bus *bus)
1050{
1051	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053	/*
1054	 * NOTE: make sure that all the devices are removed by the
1055	 * controller code, as well as having it call this when cleaning
1056	 * itself up
1057	 */
1058	mutex_lock(&usb_bus_idr_lock);
1059	idr_remove(&usb_bus_idr, bus->busnum);
1060	mutex_unlock(&usb_bus_idr_lock);
1061
1062	usb_notify_remove_bus(bus);
1063}
1064
1065/**
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1068 *
1069 * This function registers the root hub with the USB subsystem.  It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device.  It also assigns the root hub's USB address
1072 * (always 1).
1073 *
1074 * Return: 0 if successful. A negative error code otherwise.
1075 */
1076static int register_root_hub(struct usb_hcd *hcd)
1077{
1078	struct device *parent_dev = hcd->self.controller;
1079	struct usb_device *usb_dev = hcd->self.root_hub;
1080	const int devnum = 1;
1081	int retval;
1082
1083	usb_dev->devnum = devnum;
1084	usb_dev->bus->devnum_next = devnum + 1;
1085	memset (&usb_dev->bus->devmap.devicemap, 0,
1086			sizeof usb_dev->bus->devmap.devicemap);
1087	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089
1090	mutex_lock(&usb_bus_idr_lock);
1091
1092	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094	if (retval != sizeof usb_dev->descriptor) {
1095		mutex_unlock(&usb_bus_idr_lock);
1096		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097				dev_name(&usb_dev->dev), retval);
1098		return (retval < 0) ? retval : -EMSGSIZE;
1099	}
1100
1101	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102		retval = usb_get_bos_descriptor(usb_dev);
1103		if (!retval) {
1104			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106			mutex_unlock(&usb_bus_idr_lock);
1107			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108					dev_name(&usb_dev->dev), retval);
1109			return retval;
1110		}
1111	}
1112
1113	retval = usb_new_device (usb_dev);
1114	if (retval) {
1115		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116				dev_name(&usb_dev->dev), retval);
1117	} else {
1118		spin_lock_irq (&hcd_root_hub_lock);
1119		hcd->rh_registered = 1;
1120		spin_unlock_irq (&hcd_root_hub_lock);
1121
1122		/* Did the HC die before the root hub was registered? */
1123		if (HCD_DEAD(hcd))
1124			usb_hc_died (hcd);	/* This time clean up */
1125		usb_dev->dev.of_node = parent_dev->of_node;
1126	}
1127	mutex_unlock(&usb_bus_idr_lock);
1128
1129	return retval;
1130}
1131
1132/*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port.  The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144{
1145	unsigned bit = 1 << portnum;
1146
1147	if (!(bus->resuming_ports & bit)) {
1148		bus->resuming_ports |= bit;
1149		pm_runtime_get_noresume(&bus->root_hub->dev);
1150	}
1151}
1152EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154/*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port.  The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166{
1167	unsigned bit = 1 << portnum;
1168
1169	if (bus->resuming_ports & bit) {
1170		bus->resuming_ports &= ~bit;
1171		pm_runtime_put_noidle(&bus->root_hub->dev);
1172	}
1173}
1174EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176/*-------------------------------------------------------------------------*/
1177
1178/**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192{
1193	unsigned long	tmp;
1194
1195	switch (speed) {
1196	case USB_SPEED_LOW: 	/* INTR only */
1197		if (is_input) {
1198			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200		} else {
1201			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203		}
1204	case USB_SPEED_FULL:	/* ISOC or INTR */
1205		if (isoc) {
1206			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208		} else {
1209			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210			return 9107L + BW_HOST_DELAY + tmp;
1211		}
1212	case USB_SPEED_HIGH:	/* ISOC or INTR */
1213		/* FIXME adjust for input vs output */
1214		if (isoc)
1215			tmp = HS_NSECS_ISO (bytecount);
1216		else
1217			tmp = HS_NSECS (bytecount);
1218		return tmp;
1219	default:
1220		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221		return -1;
1222	}
1223}
1224EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/*
1230 * Generic HC operations.
1231 */
1232
1233/*-------------------------------------------------------------------------*/
1234
1235/**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method.  The HCD's private spinlock must be held and interrupts must
1242 * be disabled.  The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251{
1252	int		rc = 0;
1253
1254	spin_lock(&hcd_urb_list_lock);
1255
1256	/* Check that the URB isn't being killed */
1257	if (unlikely(atomic_read(&urb->reject))) {
1258		rc = -EPERM;
1259		goto done;
1260	}
1261
1262	if (unlikely(!urb->ep->enabled)) {
1263		rc = -ENOENT;
1264		goto done;
1265	}
1266
1267	if (unlikely(!urb->dev->can_submit)) {
1268		rc = -EHOSTUNREACH;
1269		goto done;
1270	}
1271
1272	/*
1273	 * Check the host controller's state and add the URB to the
1274	 * endpoint's queue.
1275	 */
1276	if (HCD_RH_RUNNING(hcd)) {
1277		urb->unlinked = 0;
1278		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279	} else {
1280		rc = -ESHUTDOWN;
1281		goto done;
1282	}
1283 done:
1284	spin_unlock(&hcd_urb_list_lock);
1285	return rc;
1286}
1287EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289/**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method.  The HCD's private spinlock must be held and interrupts must
1297 * be disabled.  The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail).  The possible error codes are:
1302 *
1303 *	-EIDRM: @urb was not submitted or has already completed.
1304 *		The completion function may not have been called yet.
1305 *
1306 *	-EBUSY: @urb has already been unlinked.
1307 */
1308int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309		int status)
1310{
1311	struct list_head	*tmp;
1312
1313	/* insist the urb is still queued */
1314	list_for_each(tmp, &urb->ep->urb_list) {
1315		if (tmp == &urb->urb_list)
1316			break;
1317	}
1318	if (tmp != &urb->urb_list)
1319		return -EIDRM;
1320
1321	/* Any status except -EINPROGRESS means something already started to
1322	 * unlink this URB from the hardware.  So there's no more work to do.
1323	 */
1324	if (urb->unlinked)
1325		return -EBUSY;
1326	urb->unlinked = status;
1327	return 0;
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331/**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1338 * interrupts must be disabled.  The actions carried out here are required
1339 * for URB completion.
1340 */
1341void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342{
1343	/* clear all state linking urb to this dev (and hcd) */
1344	spin_lock(&hcd_urb_list_lock);
1345	list_del_init(&urb->urb_list);
1346	spin_unlock(&hcd_urb_list_lock);
1347}
1348EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350/*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 *   a small SRAM on a discrete controller being the
1369 *   only memory that the controller can read ...
1370 *   (a) "normal" kernel memory is no good, and
1371 *   (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 *   DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 *   is that the memory be "local" (hence addressable
1378 *   by that device), not "coherent".
1379 *
1380 */
1381
1382static int hcd_alloc_coherent(struct usb_bus *bus,
1383			      gfp_t mem_flags, dma_addr_t *dma_handle,
1384			      void **vaddr_handle, size_t size,
1385			      enum dma_data_direction dir)
1386{
1387	unsigned char *vaddr;
1388
1389	if (*vaddr_handle == NULL) {
1390		WARN_ON_ONCE(1);
1391		return -EFAULT;
1392	}
1393
1394	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395				 mem_flags, dma_handle);
1396	if (!vaddr)
1397		return -ENOMEM;
1398
1399	/*
1400	 * Store the virtual address of the buffer at the end
1401	 * of the allocated dma buffer. The size of the buffer
1402	 * may be uneven so use unaligned functions instead
1403	 * of just rounding up. It makes sense to optimize for
1404	 * memory footprint over access speed since the amount
1405	 * of memory available for dma may be limited.
1406	 */
1407	put_unaligned((unsigned long)*vaddr_handle,
1408		      (unsigned long *)(vaddr + size));
1409
1410	if (dir == DMA_TO_DEVICE)
1411		memcpy(vaddr, *vaddr_handle, size);
1412
1413	*vaddr_handle = vaddr;
1414	return 0;
1415}
1416
1417static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418			      void **vaddr_handle, size_t size,
1419			      enum dma_data_direction dir)
1420{
1421	unsigned char *vaddr = *vaddr_handle;
1422
1423	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425	if (dir == DMA_FROM_DEVICE)
1426		memcpy(vaddr, *vaddr_handle, size);
1427
1428	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430	*vaddr_handle = vaddr;
1431	*dma_handle = 0;
1432}
1433
1434void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435{
1436	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438		dma_unmap_single(hcd->self.controller,
1439				urb->setup_dma,
1440				sizeof(struct usb_ctrlrequest),
1441				DMA_TO_DEVICE);
1442	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443		hcd_free_coherent(urb->dev->bus,
1444				&urb->setup_dma,
1445				(void **) &urb->setup_packet,
1446				sizeof(struct usb_ctrlrequest),
1447				DMA_TO_DEVICE);
1448
1449	/* Make it safe to call this routine more than once */
1450	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451}
1452EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455{
1456	if (hcd->driver->unmap_urb_for_dma)
1457		hcd->driver->unmap_urb_for_dma(hcd, urb);
1458	else
1459		usb_hcd_unmap_urb_for_dma(hcd, urb);
1460}
1461
1462void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463{
1464	enum dma_data_direction dir;
1465
1466	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470	    (urb->transfer_flags & URB_DMA_MAP_SG))
1471		dma_unmap_sg(hcd->self.controller,
1472				urb->sg,
1473				urb->num_sgs,
1474				dir);
1475	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477		dma_unmap_page(hcd->self.controller,
1478				urb->transfer_dma,
1479				urb->transfer_buffer_length,
1480				dir);
1481	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483		dma_unmap_single(hcd->self.controller,
1484				urb->transfer_dma,
1485				urb->transfer_buffer_length,
1486				dir);
1487	else if (urb->transfer_flags & URB_MAP_LOCAL)
1488		hcd_free_coherent(urb->dev->bus,
1489				&urb->transfer_dma,
1490				&urb->transfer_buffer,
1491				urb->transfer_buffer_length,
1492				dir);
1493
1494	/* Make it safe to call this routine more than once */
1495	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497}
1498EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501			   gfp_t mem_flags)
1502{
1503	if (hcd->driver->map_urb_for_dma)
1504		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505	else
1506		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507}
1508
1509int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510			    gfp_t mem_flags)
1511{
1512	enum dma_data_direction dir;
1513	int ret = 0;
1514
1515	/* Map the URB's buffers for DMA access.
1516	 * Lower level HCD code should use *_dma exclusively,
1517	 * unless it uses pio or talks to another transport,
1518	 * or uses the provided scatter gather list for bulk.
1519	 */
1520
1521	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522		if (hcd->self.uses_pio_for_control)
1523			return ret;
1524		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
 
 
 
 
 
 
 
 
1525			urb->setup_dma = dma_map_single(
1526					hcd->self.controller,
1527					urb->setup_packet,
1528					sizeof(struct usb_ctrlrequest),
1529					DMA_TO_DEVICE);
1530			if (dma_mapping_error(hcd->self.controller,
1531						urb->setup_dma))
1532				return -EAGAIN;
1533			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535			ret = hcd_alloc_coherent(
1536					urb->dev->bus, mem_flags,
1537					&urb->setup_dma,
1538					(void **)&urb->setup_packet,
1539					sizeof(struct usb_ctrlrequest),
1540					DMA_TO_DEVICE);
1541			if (ret)
1542				return ret;
1543			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544		}
1545	}
1546
1547	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548	if (urb->transfer_buffer_length != 0
1549	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551			if (urb->num_sgs) {
1552				int n;
1553
1554				/* We don't support sg for isoc transfers ! */
1555				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556					WARN_ON(1);
1557					return -EINVAL;
1558				}
1559
1560				n = dma_map_sg(
1561						hcd->self.controller,
1562						urb->sg,
1563						urb->num_sgs,
1564						dir);
1565				if (n <= 0)
1566					ret = -EAGAIN;
1567				else
1568					urb->transfer_flags |= URB_DMA_MAP_SG;
1569				urb->num_mapped_sgs = n;
1570				if (n != urb->num_sgs)
1571					urb->transfer_flags |=
1572							URB_DMA_SG_COMBINED;
1573			} else if (urb->sg) {
1574				struct scatterlist *sg = urb->sg;
1575				urb->transfer_dma = dma_map_page(
1576						hcd->self.controller,
1577						sg_page(sg),
1578						sg->offset,
1579						urb->transfer_buffer_length,
1580						dir);
1581				if (dma_mapping_error(hcd->self.controller,
1582						urb->transfer_dma))
1583					ret = -EAGAIN;
1584				else
1585					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587				WARN_ONCE(1, "transfer buffer not dma capable\n");
1588				ret = -EAGAIN;
 
 
 
1589			} else {
1590				urb->transfer_dma = dma_map_single(
1591						hcd->self.controller,
1592						urb->transfer_buffer,
1593						urb->transfer_buffer_length,
1594						dir);
1595				if (dma_mapping_error(hcd->self.controller,
1596						urb->transfer_dma))
1597					ret = -EAGAIN;
1598				else
1599					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600			}
1601		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602			ret = hcd_alloc_coherent(
1603					urb->dev->bus, mem_flags,
1604					&urb->transfer_dma,
1605					&urb->transfer_buffer,
1606					urb->transfer_buffer_length,
1607					dir);
1608			if (ret == 0)
1609				urb->transfer_flags |= URB_MAP_LOCAL;
1610		}
1611		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612				URB_SETUP_MAP_LOCAL)))
1613			usb_hcd_unmap_urb_for_dma(hcd, urb);
1614	}
1615	return ret;
1616}
1617EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627{
1628	int			status;
1629	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1630
1631	/* increment urb's reference count as part of giving it to the HCD
1632	 * (which will control it).  HCD guarantees that it either returns
1633	 * an error or calls giveback(), but not both.
1634	 */
1635	usb_get_urb(urb);
1636	atomic_inc(&urb->use_count);
1637	atomic_inc(&urb->dev->urbnum);
1638	usbmon_urb_submit(&hcd->self, urb);
1639
1640	/* NOTE requirements on root-hub callers (usbfs and the hub
1641	 * driver, for now):  URBs' urb->transfer_buffer must be
1642	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643	 * they could clobber root hub response data.  Also, control
1644	 * URBs must be submitted in process context with interrupts
1645	 * enabled.
1646	 */
1647
1648	if (is_root_hub(urb->dev)) {
1649		status = rh_urb_enqueue(hcd, urb);
1650	} else {
1651		status = map_urb_for_dma(hcd, urb, mem_flags);
1652		if (likely(status == 0)) {
1653			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654			if (unlikely(status))
1655				unmap_urb_for_dma(hcd, urb);
1656		}
1657	}
1658
1659	if (unlikely(status)) {
1660		usbmon_urb_submit_error(&hcd->self, urb, status);
1661		urb->hcpriv = NULL;
1662		INIT_LIST_HEAD(&urb->urb_list);
1663		atomic_dec(&urb->use_count);
1664		atomic_dec(&urb->dev->urbnum);
1665		if (atomic_read(&urb->reject))
1666			wake_up(&usb_kill_urb_queue);
1667		usb_put_urb(urb);
1668	}
1669	return status;
1670}
1671
1672/*-------------------------------------------------------------------------*/
1673
1674/* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical.  we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680{
1681	int		value;
1682
1683	if (is_root_hub(urb->dev))
1684		value = usb_rh_urb_dequeue(hcd, urb, status);
1685	else {
1686
1687		/* The only reason an HCD might fail this call is if
1688		 * it has not yet fully queued the urb to begin with.
1689		 * Such failures should be harmless. */
1690		value = hcd->driver->urb_dequeue(hcd, urb, status);
1691	}
1692	return value;
1693}
1694
1695/*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701int usb_hcd_unlink_urb (struct urb *urb, int status)
1702{
1703	struct usb_hcd		*hcd;
1704	struct usb_device	*udev = urb->dev;
1705	int			retval = -EIDRM;
1706	unsigned long		flags;
1707
1708	/* Prevent the device and bus from going away while
1709	 * the unlink is carried out.  If they are already gone
1710	 * then urb->use_count must be 0, since disconnected
1711	 * devices can't have any active URBs.
1712	 */
1713	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714	if (atomic_read(&urb->use_count) > 0) {
1715		retval = 0;
1716		usb_get_dev(udev);
1717	}
1718	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719	if (retval == 0) {
1720		hcd = bus_to_hcd(urb->dev->bus);
1721		retval = unlink1(hcd, urb, status);
1722		if (retval == 0)
1723			retval = -EINPROGRESS;
1724		else if (retval != -EIDRM && retval != -EBUSY)
1725			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726					urb, retval);
1727		usb_put_dev(udev);
1728	}
1729	return retval;
1730}
1731
1732/*-------------------------------------------------------------------------*/
1733
1734static void __usb_hcd_giveback_urb(struct urb *urb)
1735{
1736	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737	struct usb_anchor *anchor = urb->anchor;
1738	int status = urb->unlinked;
1739	unsigned long flags;
1740
1741	urb->hcpriv = NULL;
1742	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743	    urb->actual_length < urb->transfer_buffer_length &&
1744	    !status))
1745		status = -EREMOTEIO;
1746
1747	unmap_urb_for_dma(hcd, urb);
1748	usbmon_urb_complete(&hcd->self, urb, status);
1749	usb_anchor_suspend_wakeups(anchor);
1750	usb_unanchor_urb(urb);
1751	if (likely(status == 0))
1752		usb_led_activity(USB_LED_EVENT_HOST);
1753
1754	/* pass ownership to the completion handler */
1755	urb->status = status;
1756
1757	/*
1758	 * We disable local IRQs here avoid possible deadlock because
1759	 * drivers may call spin_lock() to hold lock which might be
1760	 * acquired in one hard interrupt handler.
1761	 *
1762	 * The local_irq_save()/local_irq_restore() around complete()
1763	 * will be removed if current USB drivers have been cleaned up
1764	 * and no one may trigger the above deadlock situation when
1765	 * running complete() in tasklet.
1766	 */
1767	local_irq_save(flags);
1768	urb->complete(urb);
1769	local_irq_restore(flags);
1770
1771	usb_anchor_resume_wakeups(anchor);
1772	atomic_dec(&urb->use_count);
1773	if (unlikely(atomic_read(&urb->reject)))
1774		wake_up(&usb_kill_urb_queue);
1775	usb_put_urb(urb);
1776}
1777
1778static void usb_giveback_urb_bh(unsigned long param)
1779{
1780	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781	struct list_head local_list;
1782
1783	spin_lock_irq(&bh->lock);
1784	bh->running = true;
1785 restart:
1786	list_replace_init(&bh->head, &local_list);
1787	spin_unlock_irq(&bh->lock);
1788
1789	while (!list_empty(&local_list)) {
1790		struct urb *urb;
1791
1792		urb = list_entry(local_list.next, struct urb, urb_list);
1793		list_del_init(&urb->urb_list);
1794		bh->completing_ep = urb->ep;
1795		__usb_hcd_giveback_urb(urb);
1796		bh->completing_ep = NULL;
1797	}
1798
1799	/* check if there are new URBs to giveback */
1800	spin_lock_irq(&bh->lock);
1801	if (!list_empty(&bh->head))
1802		goto restart;
1803	bh->running = false;
1804	spin_unlock_irq(&bh->lock);
1805}
1806
1807/**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function.  The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv).  It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked.  Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825{
1826	struct giveback_urb_bh *bh;
1827	bool running, high_prio_bh;
1828
1829	/* pass status to tasklet via unlinked */
1830	if (likely(!urb->unlinked))
1831		urb->unlinked = status;
1832
1833	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834		__usb_hcd_giveback_urb(urb);
1835		return;
1836	}
1837
1838	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839		bh = &hcd->high_prio_bh;
1840		high_prio_bh = true;
1841	} else {
1842		bh = &hcd->low_prio_bh;
1843		high_prio_bh = false;
1844	}
1845
1846	spin_lock(&bh->lock);
1847	list_add_tail(&urb->urb_list, &bh->head);
1848	running = bh->running;
1849	spin_unlock(&bh->lock);
1850
1851	if (running)
1852		;
1853	else if (high_prio_bh)
1854		tasklet_hi_schedule(&bh->bh);
1855	else
1856		tasklet_schedule(&bh->bh);
1857}
1858EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860/*-------------------------------------------------------------------------*/
1861
1862/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely.  The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866void usb_hcd_flush_endpoint(struct usb_device *udev,
1867		struct usb_host_endpoint *ep)
1868{
1869	struct usb_hcd		*hcd;
1870	struct urb		*urb;
1871
1872	if (!ep)
1873		return;
1874	might_sleep();
1875	hcd = bus_to_hcd(udev->bus);
1876
1877	/* No more submits can occur */
1878	spin_lock_irq(&hcd_urb_list_lock);
1879rescan:
1880	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881		int	is_in;
1882
1883		if (urb->unlinked)
1884			continue;
1885		usb_get_urb (urb);
1886		is_in = usb_urb_dir_in(urb);
1887		spin_unlock(&hcd_urb_list_lock);
1888
1889		/* kick hcd */
1890		unlink1(hcd, urb, -ESHUTDOWN);
1891		dev_dbg (hcd->self.controller,
1892			"shutdown urb %p ep%d%s%s\n",
1893			urb, usb_endpoint_num(&ep->desc),
1894			is_in ? "in" : "out",
1895			({	char *s;
1896
1897				 switch (usb_endpoint_type(&ep->desc)) {
1898				 case USB_ENDPOINT_XFER_CONTROL:
1899					s = ""; break;
1900				 case USB_ENDPOINT_XFER_BULK:
1901					s = "-bulk"; break;
1902				 case USB_ENDPOINT_XFER_INT:
1903					s = "-intr"; break;
1904				 default:
1905					s = "-iso"; break;
1906				};
1907				s;
1908			}));
1909		usb_put_urb (urb);
1910
1911		/* list contents may have changed */
1912		spin_lock(&hcd_urb_list_lock);
1913		goto rescan;
1914	}
1915	spin_unlock_irq(&hcd_urb_list_lock);
1916
1917	/* Wait until the endpoint queue is completely empty */
1918	while (!list_empty (&ep->urb_list)) {
1919		spin_lock_irq(&hcd_urb_list_lock);
1920
1921		/* The list may have changed while we acquired the spinlock */
1922		urb = NULL;
1923		if (!list_empty (&ep->urb_list)) {
1924			urb = list_entry (ep->urb_list.prev, struct urb,
1925					urb_list);
1926			usb_get_urb (urb);
1927		}
1928		spin_unlock_irq(&hcd_urb_list_lock);
1929
1930		if (urb) {
1931			usb_kill_urb (urb);
1932			usb_put_urb (urb);
1933		}
1934	}
1935}
1936
1937/**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 *				the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959		struct usb_host_config *new_config,
1960		struct usb_host_interface *cur_alt,
1961		struct usb_host_interface *new_alt)
1962{
1963	int num_intfs, i, j;
1964	struct usb_host_interface *alt = NULL;
1965	int ret = 0;
1966	struct usb_hcd *hcd;
1967	struct usb_host_endpoint *ep;
1968
1969	hcd = bus_to_hcd(udev->bus);
1970	if (!hcd->driver->check_bandwidth)
1971		return 0;
1972
1973	/* Configuration is being removed - set configuration 0 */
1974	if (!new_config && !cur_alt) {
1975		for (i = 1; i < 16; ++i) {
1976			ep = udev->ep_out[i];
1977			if (ep)
1978				hcd->driver->drop_endpoint(hcd, udev, ep);
1979			ep = udev->ep_in[i];
1980			if (ep)
1981				hcd->driver->drop_endpoint(hcd, udev, ep);
1982		}
1983		hcd->driver->check_bandwidth(hcd, udev);
1984		return 0;
1985	}
1986	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1987	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1989	 * ok to exclude it.
1990	 */
1991	if (new_config) {
1992		num_intfs = new_config->desc.bNumInterfaces;
1993		/* Remove endpoints (except endpoint 0, which is always on the
1994		 * schedule) from the old config from the schedule
1995		 */
1996		for (i = 1; i < 16; ++i) {
1997			ep = udev->ep_out[i];
1998			if (ep) {
1999				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000				if (ret < 0)
2001					goto reset;
2002			}
2003			ep = udev->ep_in[i];
2004			if (ep) {
2005				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006				if (ret < 0)
2007					goto reset;
2008			}
2009		}
2010		for (i = 0; i < num_intfs; ++i) {
2011			struct usb_host_interface *first_alt;
2012			int iface_num;
2013
2014			first_alt = &new_config->intf_cache[i]->altsetting[0];
2015			iface_num = first_alt->desc.bInterfaceNumber;
2016			/* Set up endpoints for alternate interface setting 0 */
2017			alt = usb_find_alt_setting(new_config, iface_num, 0);
2018			if (!alt)
2019				/* No alt setting 0? Pick the first setting. */
2020				alt = first_alt;
2021
2022			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024				if (ret < 0)
2025					goto reset;
2026			}
2027		}
2028	}
2029	if (cur_alt && new_alt) {
2030		struct usb_interface *iface = usb_ifnum_to_if(udev,
2031				cur_alt->desc.bInterfaceNumber);
2032
2033		if (!iface)
2034			return -EINVAL;
2035		if (iface->resetting_device) {
2036			/*
2037			 * The USB core just reset the device, so the xHCI host
2038			 * and the device will think alt setting 0 is installed.
2039			 * However, the USB core will pass in the alternate
2040			 * setting installed before the reset as cur_alt.  Dig
2041			 * out the alternate setting 0 structure, or the first
2042			 * alternate setting if a broken device doesn't have alt
2043			 * setting 0.
2044			 */
2045			cur_alt = usb_altnum_to_altsetting(iface, 0);
2046			if (!cur_alt)
2047				cur_alt = &iface->altsetting[0];
2048		}
2049
2050		/* Drop all the endpoints in the current alt setting */
2051		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052			ret = hcd->driver->drop_endpoint(hcd, udev,
2053					&cur_alt->endpoint[i]);
2054			if (ret < 0)
2055				goto reset;
2056		}
2057		/* Add all the endpoints in the new alt setting */
2058		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059			ret = hcd->driver->add_endpoint(hcd, udev,
2060					&new_alt->endpoint[i]);
2061			if (ret < 0)
2062				goto reset;
2063		}
2064	}
2065	ret = hcd->driver->check_bandwidth(hcd, udev);
2066reset:
2067	if (ret < 0)
2068		hcd->driver->reset_bandwidth(hcd, udev);
2069	return ret;
2070}
2071
2072/* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2074 * have been called previously.  Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080void usb_hcd_disable_endpoint(struct usb_device *udev,
2081		struct usb_host_endpoint *ep)
2082{
2083	struct usb_hcd		*hcd;
2084
2085	might_sleep();
2086	hcd = bus_to_hcd(udev->bus);
2087	if (hcd->driver->endpoint_disable)
2088		hcd->driver->endpoint_disable(hcd, ep);
2089}
2090
2091/**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep:   the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099void usb_hcd_reset_endpoint(struct usb_device *udev,
2100			    struct usb_host_endpoint *ep)
2101{
2102	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104	if (hcd->driver->endpoint_reset)
2105		hcd->driver->endpoint_reset(hcd, ep);
2106	else {
2107		int epnum = usb_endpoint_num(&ep->desc);
2108		int is_out = usb_endpoint_dir_out(&ep->desc);
2109		int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111		usb_settoggle(udev, epnum, is_out, 0);
2112		if (is_control)
2113			usb_settoggle(udev, epnum, !is_out, 0);
2114	}
2115}
2116
2117/**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface:		alternate setting that includes all endpoints.
2120 * @eps:		array of endpoints that need streams.
2121 * @num_eps:		number of endpoints in the array.
2122 * @num_streams:	number of streams to allocate.
2123 * @mem_flags:		flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132int usb_alloc_streams(struct usb_interface *interface,
2133		struct usb_host_endpoint **eps, unsigned int num_eps,
2134		unsigned int num_streams, gfp_t mem_flags)
2135{
2136	struct usb_hcd *hcd;
2137	struct usb_device *dev;
2138	int i, ret;
2139
2140	dev = interface_to_usbdev(interface);
2141	hcd = bus_to_hcd(dev->bus);
2142	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143		return -EINVAL;
2144	if (dev->speed < USB_SPEED_SUPER)
2145		return -EINVAL;
2146	if (dev->state < USB_STATE_CONFIGURED)
2147		return -ENODEV;
2148
2149	for (i = 0; i < num_eps; i++) {
2150		/* Streams only apply to bulk endpoints. */
2151		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152			return -EINVAL;
2153		/* Re-alloc is not allowed */
2154		if (eps[i]->streams)
2155			return -EINVAL;
2156	}
2157
2158	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159			num_streams, mem_flags);
2160	if (ret < 0)
2161		return ret;
2162
2163	for (i = 0; i < num_eps; i++)
2164		eps[i]->streams = ret;
2165
2166	return ret;
2167}
2168EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170/**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface:	alternate setting that includes all endpoints.
2173 * @eps:	array of endpoints to remove streams from.
2174 * @num_eps:	number of endpoints in the array.
2175 * @mem_flags:	flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182int usb_free_streams(struct usb_interface *interface,
2183		struct usb_host_endpoint **eps, unsigned int num_eps,
2184		gfp_t mem_flags)
2185{
2186	struct usb_hcd *hcd;
2187	struct usb_device *dev;
2188	int i, ret;
2189
2190	dev = interface_to_usbdev(interface);
2191	hcd = bus_to_hcd(dev->bus);
2192	if (dev->speed < USB_SPEED_SUPER)
2193		return -EINVAL;
2194
2195	/* Double-free is not allowed */
2196	for (i = 0; i < num_eps; i++)
2197		if (!eps[i] || !eps[i]->streams)
2198			return -EINVAL;
2199
2200	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201	if (ret < 0)
2202		return ret;
2203
2204	for (i = 0; i < num_eps; i++)
2205		eps[i]->streams = 0;
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211/* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217{
2218	spin_lock_irq(&hcd_urb_unlink_lock);
2219	spin_unlock_irq(&hcd_urb_unlink_lock);
2220}
2221
2222/*-------------------------------------------------------------------------*/
2223
2224/* called in any context */
2225int usb_hcd_get_frame_number (struct usb_device *udev)
2226{
2227	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2228
2229	if (!HCD_RH_RUNNING(hcd))
2230		return -ESHUTDOWN;
2231	return hcd->driver->get_frame_number (hcd);
2232}
2233
2234/*-------------------------------------------------------------------------*/
2235
2236#ifdef	CONFIG_PM
2237
2238int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239{
2240	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2241	int		status;
2242	int		old_state = hcd->state;
2243
2244	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246			rhdev->do_remote_wakeup);
2247	if (HCD_DEAD(hcd)) {
2248		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249		return 0;
2250	}
2251
2252	if (!hcd->driver->bus_suspend) {
2253		status = -ENOENT;
2254	} else {
2255		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256		hcd->state = HC_STATE_QUIESCING;
2257		status = hcd->driver->bus_suspend(hcd);
2258	}
2259	if (status == 0) {
2260		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261		hcd->state = HC_STATE_SUSPENDED;
2262
 
 
 
 
2263		/* Did we race with a root-hub wakeup event? */
2264		if (rhdev->do_remote_wakeup) {
2265			char	buffer[6];
2266
2267			status = hcd->driver->hub_status_data(hcd, buffer);
2268			if (status != 0) {
2269				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271				status = -EBUSY;
2272			}
2273		}
2274	} else {
2275		spin_lock_irq(&hcd_root_hub_lock);
2276		if (!HCD_DEAD(hcd)) {
2277			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278			hcd->state = old_state;
2279		}
2280		spin_unlock_irq(&hcd_root_hub_lock);
2281		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282				"suspend", status);
2283	}
2284	return status;
2285}
2286
2287int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288{
2289	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2290	int		status;
2291	int		old_state = hcd->state;
2292
2293	dev_dbg(&rhdev->dev, "usb %sresume\n",
2294			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295	if (HCD_DEAD(hcd)) {
2296		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297		return 0;
2298	}
 
 
 
 
 
 
 
 
2299	if (!hcd->driver->bus_resume)
2300		return -ENOENT;
2301	if (HCD_RH_RUNNING(hcd))
2302		return 0;
2303
2304	hcd->state = HC_STATE_RESUMING;
2305	status = hcd->driver->bus_resume(hcd);
2306	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
 
 
 
2307	if (status == 0) {
2308		struct usb_device *udev;
2309		int port1;
2310
2311		spin_lock_irq(&hcd_root_hub_lock);
2312		if (!HCD_DEAD(hcd)) {
2313			usb_set_device_state(rhdev, rhdev->actconfig
2314					? USB_STATE_CONFIGURED
2315					: USB_STATE_ADDRESS);
2316			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317			hcd->state = HC_STATE_RUNNING;
2318		}
2319		spin_unlock_irq(&hcd_root_hub_lock);
2320
2321		/*
2322		 * Check whether any of the enabled ports on the root hub are
2323		 * unsuspended.  If they are then a TRSMRCY delay is needed
2324		 * (this is what the USB-2 spec calls a "global resume").
2325		 * Otherwise we can skip the delay.
2326		 */
2327		usb_hub_for_each_child(rhdev, port1, udev) {
2328			if (udev->state != USB_STATE_NOTATTACHED &&
2329					!udev->port_is_suspended) {
2330				usleep_range(10000, 11000);	/* TRSMRCY */
2331				break;
2332			}
2333		}
2334	} else {
2335		hcd->state = old_state;
 
2336		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337				"resume", status);
2338		if (status != -ESHUTDOWN)
2339			usb_hc_died(hcd);
2340	}
2341	return status;
2342}
2343
2344/* Workqueue routine for root-hub remote wakeup */
2345static void hcd_resume_work(struct work_struct *work)
2346{
2347	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348	struct usb_device *udev = hcd->self.root_hub;
2349
2350	usb_remote_wakeup(udev);
2351}
2352
2353/**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received.  The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363{
2364	unsigned long flags;
2365
2366	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367	if (hcd->rh_registered) {
 
2368		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369		queue_work(pm_wq, &hcd->wakeup_work);
2370	}
2371	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372}
2373EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375#endif	/* CONFIG_PM */
2376
2377/*-------------------------------------------------------------------------*/
2378
2379#ifdef	CONFIG_USB_OTG
2380
2381/**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395{
2396	struct usb_hcd		*hcd;
2397	int			status = -EOPNOTSUPP;
2398
2399	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400	 * boards with root hubs hooked up to internal devices (instead of
2401	 * just the OTG port) may need more attention to resetting...
2402	 */
2403	hcd = bus_to_hcd(bus);
2404	if (port_num && hcd->driver->start_port_reset)
2405		status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407	/* allocate hub_wq shortly after (first) root port reset finishes;
2408	 * it may issue others, until at least 50 msecs have passed.
2409	 */
2410	if (status == 0)
2411		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412	return status;
2413}
2414EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416#endif
2417
2418/*-------------------------------------------------------------------------*/
2419
2420/**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431{
2432	struct usb_hcd		*hcd = __hcd;
2433	irqreturn_t		rc;
2434
2435	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436		rc = IRQ_NONE;
2437	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438		rc = IRQ_NONE;
2439	else
2440		rc = IRQ_HANDLED;
2441
2442	return rc;
2443}
2444EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446/*-------------------------------------------------------------------------*/
2447
 
 
 
 
 
 
 
 
 
 
 
 
 
2448/**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending.  It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458void usb_hc_died (struct usb_hcd *hcd)
2459{
2460	unsigned long flags;
2461
2462	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467	if (hcd->rh_registered) {
2468		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470		/* make hub_wq clean up old urbs and devices */
2471		usb_set_device_state (hcd->self.root_hub,
2472				USB_STATE_NOTATTACHED);
2473		usb_kick_hub_wq(hcd->self.root_hub);
2474	}
2475	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476		hcd = hcd->shared_hcd;
 
 
2477		if (hcd->rh_registered) {
2478			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479
2480			/* make hub_wq clean up old urbs and devices */
2481			usb_set_device_state(hcd->self.root_hub,
2482					USB_STATE_NOTATTACHED);
2483			usb_kick_hub_wq(hcd->self.root_hub);
2484		}
2485	}
 
 
 
 
 
 
 
2486	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487	/* Make sure that the other roothub is also deallocated. */
2488}
2489EXPORT_SYMBOL_GPL (usb_hc_died);
2490
2491/*-------------------------------------------------------------------------*/
2492
2493static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494{
2495
2496	spin_lock_init(&bh->lock);
2497	INIT_LIST_HEAD(&bh->head);
2498	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499}
2500
2501/**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 *              PCI device.  Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data.  Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
2517struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518		struct device *dev, const char *bus_name,
2519		struct usb_hcd *primary_hcd)
2520{
2521	struct usb_hcd *hcd;
2522
2523	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524	if (!hcd)
2525		return NULL;
2526	if (primary_hcd == NULL) {
2527		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528				GFP_KERNEL);
2529		if (!hcd->address0_mutex) {
2530			kfree(hcd);
2531			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532			return NULL;
2533		}
2534		mutex_init(hcd->address0_mutex);
2535		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536				GFP_KERNEL);
2537		if (!hcd->bandwidth_mutex) {
 
2538			kfree(hcd);
2539			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540			return NULL;
2541		}
2542		mutex_init(hcd->bandwidth_mutex);
2543		dev_set_drvdata(dev, hcd);
2544	} else {
2545		mutex_lock(&usb_port_peer_mutex);
2546		hcd->address0_mutex = primary_hcd->address0_mutex;
2547		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548		hcd->primary_hcd = primary_hcd;
2549		primary_hcd->primary_hcd = primary_hcd;
2550		hcd->shared_hcd = primary_hcd;
2551		primary_hcd->shared_hcd = hcd;
2552		mutex_unlock(&usb_port_peer_mutex);
2553	}
2554
2555	kref_init(&hcd->kref);
2556
2557	usb_bus_init(&hcd->self);
2558	hcd->self.controller = dev;
 
2559	hcd->self.bus_name = bus_name;
2560	hcd->self.uses_dma = (dev->dma_mask != NULL);
2561
2562	init_timer(&hcd->rh_timer);
2563	hcd->rh_timer.function = rh_timer_func;
2564	hcd->rh_timer.data = (unsigned long) hcd;
2565#ifdef CONFIG_PM
2566	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567#endif
2568
 
 
2569	hcd->driver = driver;
2570	hcd->speed = driver->flags & HCD_MASK;
2571	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572			"USB Host Controller";
2573	return hcd;
2574}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576
2577/**
2578 * usb_create_hcd - create and initialize an HCD structure
2579 * @driver: HC driver that will use this hcd
2580 * @dev: device for this HC, stored in hcd->self.controller
2581 * @bus_name: value to store in hcd->self.bus_name
2582 * Context: !in_interrupt()
2583 *
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data.  Initialize the generic members of the
2586 * hcd structure.
2587 *
2588 * Return: On success, a pointer to the created and initialized HCD
2589 * structure. On failure (e.g. if memory is unavailable), %NULL.
2590 */
2591struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592		struct device *dev, const char *bus_name)
2593{
2594	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595}
2596EXPORT_SYMBOL_GPL(usb_create_hcd);
2597
2598/*
2599 * Roothubs that share one PCI device must also share the bandwidth mutex.
2600 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601 * deallocated.
2602 *
2603 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604 * freed.  When hcd_release() is called for either hcd in a peer set,
2605 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606 */
2607static void hcd_release(struct kref *kref)
2608{
2609	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610
2611	mutex_lock(&usb_port_peer_mutex);
2612	if (hcd->shared_hcd) {
2613		struct usb_hcd *peer = hcd->shared_hcd;
2614
2615		peer->shared_hcd = NULL;
2616		peer->primary_hcd = NULL;
2617	} else {
2618		kfree(hcd->address0_mutex);
2619		kfree(hcd->bandwidth_mutex);
2620	}
2621	mutex_unlock(&usb_port_peer_mutex);
2622	kfree(hcd);
2623}
2624
2625struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626{
2627	if (hcd)
2628		kref_get (&hcd->kref);
2629	return hcd;
2630}
2631EXPORT_SYMBOL_GPL(usb_get_hcd);
2632
2633void usb_put_hcd (struct usb_hcd *hcd)
2634{
2635	if (hcd)
2636		kref_put (&hcd->kref, hcd_release);
2637}
2638EXPORT_SYMBOL_GPL(usb_put_hcd);
2639
2640int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641{
2642	if (!hcd->primary_hcd)
2643		return 1;
2644	return hcd == hcd->primary_hcd;
2645}
2646EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647
2648int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649{
2650	if (!hcd->driver->find_raw_port_number)
2651		return port1;
2652
2653	return hcd->driver->find_raw_port_number(hcd, port1);
2654}
2655
2656static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657		unsigned int irqnum, unsigned long irqflags)
2658{
2659	int retval;
2660
2661	if (hcd->driver->irq) {
2662
2663		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664				hcd->driver->description, hcd->self.busnum);
2665		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666				hcd->irq_descr, hcd);
2667		if (retval != 0) {
2668			dev_err(hcd->self.controller,
2669					"request interrupt %d failed\n",
2670					irqnum);
2671			return retval;
2672		}
2673		hcd->irq = irqnum;
2674		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675				(hcd->driver->flags & HCD_MEMORY) ?
2676					"io mem" : "io base",
2677					(unsigned long long)hcd->rsrc_start);
2678	} else {
2679		hcd->irq = 0;
2680		if (hcd->rsrc_start)
2681			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682					(hcd->driver->flags & HCD_MEMORY) ?
2683					"io mem" : "io base",
2684					(unsigned long long)hcd->rsrc_start);
2685	}
2686	return 0;
2687}
2688
2689/*
2690 * Before we free this root hub, flush in-flight peering attempts
2691 * and disable peer lookups
2692 */
2693static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694{
2695	struct usb_device *rhdev;
2696
2697	mutex_lock(&usb_port_peer_mutex);
2698	rhdev = hcd->self.root_hub;
2699	hcd->self.root_hub = NULL;
2700	mutex_unlock(&usb_port_peer_mutex);
2701	usb_put_dev(rhdev);
2702}
2703
2704/**
2705 * usb_add_hcd - finish generic HCD structure initialization and register
2706 * @hcd: the usb_hcd structure to initialize
2707 * @irqnum: Interrupt line to allocate
2708 * @irqflags: Interrupt type flags
2709 *
2710 * Finish the remaining parts of generic HCD initialization: allocate the
2711 * buffers of consistent memory, register the bus, request the IRQ line,
2712 * and call the driver's reset() and start() routines.
2713 */
2714int usb_add_hcd(struct usb_hcd *hcd,
2715		unsigned int irqnum, unsigned long irqflags)
2716{
2717	int retval;
2718	struct usb_device *rhdev;
2719
2720	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
 
 
2722
2723		if (IS_ERR(phy)) {
2724			retval = PTR_ERR(phy);
2725			if (retval == -EPROBE_DEFER)
2726				return retval;
2727		} else {
2728			retval = usb_phy_init(phy);
2729			if (retval) {
2730				usb_put_phy(phy);
2731				return retval;
2732			}
2733			hcd->usb_phy = phy;
2734			hcd->remove_phy = 1;
2735		}
2736	}
2737
2738	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739		struct phy *phy = phy_get(hcd->self.controller, "usb");
 
 
 
 
 
2740
2741		if (IS_ERR(phy)) {
2742			retval = PTR_ERR(phy);
2743			if (retval == -EPROBE_DEFER)
2744				goto err_phy;
2745		} else {
2746			retval = phy_init(phy);
2747			if (retval) {
2748				phy_put(phy);
2749				goto err_phy;
2750			}
2751			retval = phy_power_on(phy);
2752			if (retval) {
2753				phy_exit(phy);
2754				phy_put(phy);
2755				goto err_phy;
2756			}
2757			hcd->phy = phy;
2758			hcd->remove_phy = 1;
2759		}
2760	}
2761
2762	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763
2764	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2765	if (authorized_default < 0 || authorized_default > 1) {
2766		if (hcd->wireless)
2767			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768		else
2769			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770	} else {
2771		if (authorized_default)
2772			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773		else
2774			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 
 
 
 
 
 
 
2775	}
 
2776	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777
2778	/* per default all interfaces are authorized */
2779	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780
2781	/* HC is in reset state, but accessible.  Now do the one-time init,
2782	 * bottom up so that hcds can customize the root hubs before hub_wq
2783	 * starts talking to them.  (Note, bus id is assigned early too.)
2784	 */
2785	retval = hcd_buffer_create(hcd);
2786	if (retval != 0) {
2787		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788		goto err_create_buf;
2789	}
2790
2791	retval = usb_register_bus(&hcd->self);
2792	if (retval < 0)
2793		goto err_register_bus;
2794
2795	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796	if (rhdev == NULL) {
2797		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798		retval = -ENOMEM;
2799		goto err_allocate_root_hub;
2800	}
2801	mutex_lock(&usb_port_peer_mutex);
2802	hcd->self.root_hub = rhdev;
2803	mutex_unlock(&usb_port_peer_mutex);
2804
 
 
 
2805	switch (hcd->speed) {
2806	case HCD_USB11:
2807		rhdev->speed = USB_SPEED_FULL;
2808		break;
2809	case HCD_USB2:
2810		rhdev->speed = USB_SPEED_HIGH;
2811		break;
2812	case HCD_USB25:
2813		rhdev->speed = USB_SPEED_WIRELESS;
2814		break;
2815	case HCD_USB3:
2816		rhdev->speed = USB_SPEED_SUPER;
2817		break;
 
 
 
 
2818	case HCD_USB31:
2819		rhdev->speed = USB_SPEED_SUPER_PLUS;
2820		break;
2821	default:
2822		retval = -EINVAL;
2823		goto err_set_rh_speed;
2824	}
2825
2826	/* wakeup flag init defaults to "everything works" for root hubs,
2827	 * but drivers can override it in reset() if needed, along with
2828	 * recording the overall controller's system wakeup capability.
2829	 */
2830	device_set_wakeup_capable(&rhdev->dev, 1);
2831
2832	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833	 * registered.  But since the controller can die at any time,
2834	 * let's initialize the flag before touching the hardware.
2835	 */
2836	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837
2838	/* "reset" is misnamed; its role is now one-time init. the controller
2839	 * should already have been reset (and boot firmware kicked off etc).
2840	 */
2841	if (hcd->driver->reset) {
2842		retval = hcd->driver->reset(hcd);
2843		if (retval < 0) {
2844			dev_err(hcd->self.controller, "can't setup: %d\n",
2845					retval);
2846			goto err_hcd_driver_setup;
2847		}
2848	}
2849	hcd->rh_pollable = 1;
2850
 
 
 
 
2851	/* NOTE: root hub and controller capabilities may not be the same */
2852	if (device_can_wakeup(hcd->self.controller)
2853			&& device_can_wakeup(&hcd->self.root_hub->dev))
2854		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855
2856	/* initialize tasklets */
2857	init_giveback_urb_bh(&hcd->high_prio_bh);
2858	init_giveback_urb_bh(&hcd->low_prio_bh);
2859
2860	/* enable irqs just before we start the controller,
2861	 * if the BIOS provides legacy PCI irqs.
2862	 */
2863	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865		if (retval)
2866			goto err_request_irq;
2867	}
2868
2869	hcd->state = HC_STATE_RUNNING;
2870	retval = hcd->driver->start(hcd);
2871	if (retval < 0) {
2872		dev_err(hcd->self.controller, "startup error %d\n", retval);
2873		goto err_hcd_driver_start;
2874	}
2875
2876	/* starting here, usbcore will pay attention to this root hub */
2877	retval = register_root_hub(hcd);
2878	if (retval != 0)
2879		goto err_register_root_hub;
2880
2881	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882	if (retval < 0) {
2883		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884		       retval);
2885		goto error_create_attr_group;
2886	}
2887	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888		usb_hcd_poll_rh_status(hcd);
2889
2890	return retval;
2891
2892error_create_attr_group:
2893	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894	if (HC_IS_RUNNING(hcd->state))
2895		hcd->state = HC_STATE_QUIESCING;
2896	spin_lock_irq(&hcd_root_hub_lock);
2897	hcd->rh_registered = 0;
2898	spin_unlock_irq(&hcd_root_hub_lock);
2899
2900#ifdef CONFIG_PM
2901	cancel_work_sync(&hcd->wakeup_work);
2902#endif
2903	mutex_lock(&usb_bus_idr_lock);
2904	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2905	mutex_unlock(&usb_bus_idr_lock);
2906err_register_root_hub:
2907	hcd->rh_pollable = 0;
2908	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909	del_timer_sync(&hcd->rh_timer);
2910	hcd->driver->stop(hcd);
2911	hcd->state = HC_STATE_HALT;
2912	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913	del_timer_sync(&hcd->rh_timer);
2914err_hcd_driver_start:
2915	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916		free_irq(irqnum, hcd);
2917err_request_irq:
2918err_hcd_driver_setup:
2919err_set_rh_speed:
2920	usb_put_invalidate_rhdev(hcd);
2921err_allocate_root_hub:
2922	usb_deregister_bus(&hcd->self);
2923err_register_bus:
2924	hcd_buffer_destroy(hcd);
2925err_create_buf:
2926	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927		phy_power_off(hcd->phy);
2928		phy_exit(hcd->phy);
2929		phy_put(hcd->phy);
2930		hcd->phy = NULL;
2931	}
2932err_phy:
2933	if (hcd->remove_phy && hcd->usb_phy) {
2934		usb_phy_shutdown(hcd->usb_phy);
2935		usb_put_phy(hcd->usb_phy);
2936		hcd->usb_phy = NULL;
2937	}
2938	return retval;
2939}
2940EXPORT_SYMBOL_GPL(usb_add_hcd);
2941
2942/**
2943 * usb_remove_hcd - shutdown processing for generic HCDs
2944 * @hcd: the usb_hcd structure to remove
2945 * Context: !in_interrupt()
2946 *
2947 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948 * invoking the HCD's stop() method.
2949 */
2950void usb_remove_hcd(struct usb_hcd *hcd)
2951{
2952	struct usb_device *rhdev = hcd->self.root_hub;
2953
2954	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955
2956	usb_get_dev(rhdev);
2957	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958
2959	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960	if (HC_IS_RUNNING (hcd->state))
2961		hcd->state = HC_STATE_QUIESCING;
2962
2963	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964	spin_lock_irq (&hcd_root_hub_lock);
2965	hcd->rh_registered = 0;
2966	spin_unlock_irq (&hcd_root_hub_lock);
2967
2968#ifdef CONFIG_PM
2969	cancel_work_sync(&hcd->wakeup_work);
2970#endif
 
2971
2972	mutex_lock(&usb_bus_idr_lock);
2973	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2974	mutex_unlock(&usb_bus_idr_lock);
2975
2976	/*
2977	 * tasklet_kill() isn't needed here because:
2978	 * - driver's disconnect() called from usb_disconnect() should
2979	 *   make sure its URBs are completed during the disconnect()
2980	 *   callback
2981	 *
2982	 * - it is too late to run complete() here since driver may have
2983	 *   been removed already now
2984	 */
2985
2986	/* Prevent any more root-hub status calls from the timer.
2987	 * The HCD might still restart the timer (if a port status change
2988	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989	 * the hub_status_data() callback.
2990	 */
2991	hcd->rh_pollable = 0;
2992	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993	del_timer_sync(&hcd->rh_timer);
2994
2995	hcd->driver->stop(hcd);
2996	hcd->state = HC_STATE_HALT;
2997
2998	/* In case the HCD restarted the timer, stop it again. */
2999	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000	del_timer_sync(&hcd->rh_timer);
3001
3002	if (usb_hcd_is_primary_hcd(hcd)) {
3003		if (hcd->irq > 0)
3004			free_irq(hcd->irq, hcd);
3005	}
3006
3007	usb_deregister_bus(&hcd->self);
3008	hcd_buffer_destroy(hcd);
3009
3010	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011		phy_power_off(hcd->phy);
3012		phy_exit(hcd->phy);
3013		phy_put(hcd->phy);
3014		hcd->phy = NULL;
3015	}
3016	if (hcd->remove_phy && hcd->usb_phy) {
3017		usb_phy_shutdown(hcd->usb_phy);
3018		usb_put_phy(hcd->usb_phy);
3019		hcd->usb_phy = NULL;
3020	}
3021
3022	usb_put_invalidate_rhdev(hcd);
 
3023}
3024EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026void
3027usb_hcd_platform_shutdown(struct platform_device *dev)
3028{
3029	struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
 
 
 
3031	if (hcd->driver->shutdown)
3032		hcd->driver->shutdown(hcd);
3033}
3034EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3035
3036/*-------------------------------------------------------------------------*/
3037
3038#if IS_ENABLED(CONFIG_USB_MON)
3039
3040const struct usb_mon_operations *mon_ops;
3041
3042/*
3043 * The registration is unlocked.
3044 * We do it this way because we do not want to lock in hot paths.
3045 *
3046 * Notice that the code is minimally error-proof. Because usbmon needs
3047 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3048 */
3049
3050int usb_mon_register(const struct usb_mon_operations *ops)
3051{
3052
3053	if (mon_ops)
3054		return -EBUSY;
3055
3056	mon_ops = ops;
3057	mb();
3058	return 0;
3059}
3060EXPORT_SYMBOL_GPL (usb_mon_register);
3061
3062void usb_mon_deregister (void)
3063{
3064
3065	if (mon_ops == NULL) {
3066		printk(KERN_ERR "USB: monitor was not registered\n");
3067		return;
3068	}
3069	mon_ops = NULL;
3070	mb();
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_deregister);
3073
3074#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v5.4
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <asm/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32#include <linux/genalloc.h>
  33#include <linux/io.h>
  34
  35#include <linux/phy/phy.h>
  36#include <linux/usb.h>
  37#include <linux/usb/hcd.h>
 
  38#include <linux/usb/otg.h>
  39
  40#include "usb.h"
  41#include "phy.h"
  42
  43
  44/*-------------------------------------------------------------------------*/
  45
  46/*
  47 * USB Host Controller Driver framework
  48 *
  49 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  50 * HCD-specific behaviors/bugs.
  51 *
  52 * This does error checks, tracks devices and urbs, and delegates to a
  53 * "hc_driver" only for code (and data) that really needs to know about
  54 * hardware differences.  That includes root hub registers, i/o queues,
  55 * and so on ... but as little else as possible.
  56 *
  57 * Shared code includes most of the "root hub" code (these are emulated,
  58 * though each HC's hardware works differently) and PCI glue, plus request
  59 * tracking overhead.  The HCD code should only block on spinlocks or on
  60 * hardware handshaking; blocking on software events (such as other kernel
  61 * threads releasing resources, or completing actions) is all generic.
  62 *
  63 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  64 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  65 * only by the hub driver ... and that neither should be seen or used by
  66 * usb client device drivers.
  67 *
  68 * Contributors of ideas or unattributed patches include: David Brownell,
  69 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  70 *
  71 * HISTORY:
  72 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  73 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  74 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  75 */
  76
  77/*-------------------------------------------------------------------------*/
  78
  79/* Keep track of which host controller drivers are loaded */
  80unsigned long usb_hcds_loaded;
  81EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  82
  83/* host controllers we manage */
  84DEFINE_IDR (usb_bus_idr);
  85EXPORT_SYMBOL_GPL (usb_bus_idr);
  86
  87/* used when allocating bus numbers */
  88#define USB_MAXBUS		64
  89
  90/* used when updating list of hcds */
  91DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  92EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  93
  94/* used for controlling access to virtual root hubs */
  95static DEFINE_SPINLOCK(hcd_root_hub_lock);
  96
  97/* used when updating an endpoint's URB list */
  98static DEFINE_SPINLOCK(hcd_urb_list_lock);
  99
 100/* used to protect against unlinking URBs after the device is gone */
 101static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 102
 103/* wait queue for synchronous unlinks */
 104DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 105
 
 
 
 
 
 106/*-------------------------------------------------------------------------*/
 107
 108/*
 109 * Sharable chunks of root hub code.
 110 */
 111
 112/*-------------------------------------------------------------------------*/
 113#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 114#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 115
 116/* usb 3.1 root hub device descriptor */
 117static const u8 usb31_rh_dev_descriptor[18] = {
 118	0x12,       /*  __u8  bLength; */
 119	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 120	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 121
 122	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 123	0x00,	    /*  __u8  bDeviceSubClass; */
 124	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 125	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 126
 127	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 128	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 129	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 130
 131	0x03,       /*  __u8  iManufacturer; */
 132	0x02,       /*  __u8  iProduct; */
 133	0x01,       /*  __u8  iSerialNumber; */
 134	0x01        /*  __u8  bNumConfigurations; */
 135};
 136
 137/* usb 3.0 root hub device descriptor */
 138static const u8 usb3_rh_dev_descriptor[18] = {
 139	0x12,       /*  __u8  bLength; */
 140	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 141	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 142
 143	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 144	0x00,	    /*  __u8  bDeviceSubClass; */
 145	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 146	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 147
 148	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 149	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 150	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 151
 152	0x03,       /*  __u8  iManufacturer; */
 153	0x02,       /*  __u8  iProduct; */
 154	0x01,       /*  __u8  iSerialNumber; */
 155	0x01        /*  __u8  bNumConfigurations; */
 156};
 157
 158/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 159static const u8 usb25_rh_dev_descriptor[18] = {
 160	0x12,       /*  __u8  bLength; */
 161	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 162	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 163
 164	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 165	0x00,	    /*  __u8  bDeviceSubClass; */
 166	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 167	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 168
 169	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 170	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 171	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 172
 173	0x03,       /*  __u8  iManufacturer; */
 174	0x02,       /*  __u8  iProduct; */
 175	0x01,       /*  __u8  iSerialNumber; */
 176	0x01        /*  __u8  bNumConfigurations; */
 177};
 178
 179/* usb 2.0 root hub device descriptor */
 180static const u8 usb2_rh_dev_descriptor[18] = {
 181	0x12,       /*  __u8  bLength; */
 182	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 183	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 184
 185	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 186	0x00,	    /*  __u8  bDeviceSubClass; */
 187	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 188	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 189
 190	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 191	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 192	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 193
 194	0x03,       /*  __u8  iManufacturer; */
 195	0x02,       /*  __u8  iProduct; */
 196	0x01,       /*  __u8  iSerialNumber; */
 197	0x01        /*  __u8  bNumConfigurations; */
 198};
 199
 200/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 201
 202/* usb 1.1 root hub device descriptor */
 203static const u8 usb11_rh_dev_descriptor[18] = {
 204	0x12,       /*  __u8  bLength; */
 205	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 206	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 207
 208	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 209	0x00,	    /*  __u8  bDeviceSubClass; */
 210	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 211	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 212
 213	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 214	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 215	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 216
 217	0x03,       /*  __u8  iManufacturer; */
 218	0x02,       /*  __u8  iProduct; */
 219	0x01,       /*  __u8  iSerialNumber; */
 220	0x01        /*  __u8  bNumConfigurations; */
 221};
 222
 223
 224/*-------------------------------------------------------------------------*/
 225
 226/* Configuration descriptors for our root hubs */
 227
 228static const u8 fs_rh_config_descriptor[] = {
 229
 230	/* one configuration */
 231	0x09,       /*  __u8  bLength; */
 232	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 233	0x19, 0x00, /*  __le16 wTotalLength; */
 234	0x01,       /*  __u8  bNumInterfaces; (1) */
 235	0x01,       /*  __u8  bConfigurationValue; */
 236	0x00,       /*  __u8  iConfiguration; */
 237	0xc0,       /*  __u8  bmAttributes;
 238				 Bit 7: must be set,
 239				     6: Self-powered,
 240				     5: Remote wakeup,
 241				     4..0: resvd */
 242	0x00,       /*  __u8  MaxPower; */
 243
 244	/* USB 1.1:
 245	 * USB 2.0, single TT organization (mandatory):
 246	 *	one interface, protocol 0
 247	 *
 248	 * USB 2.0, multiple TT organization (optional):
 249	 *	two interfaces, protocols 1 (like single TT)
 250	 *	and 2 (multiple TT mode) ... config is
 251	 *	sometimes settable
 252	 *	NOT IMPLEMENTED
 253	 */
 254
 255	/* one interface */
 256	0x09,       /*  __u8  if_bLength; */
 257	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 258	0x00,       /*  __u8  if_bInterfaceNumber; */
 259	0x00,       /*  __u8  if_bAlternateSetting; */
 260	0x01,       /*  __u8  if_bNumEndpoints; */
 261	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 262	0x00,       /*  __u8  if_bInterfaceSubClass; */
 263	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 264	0x00,       /*  __u8  if_iInterface; */
 265
 266	/* one endpoint (status change endpoint) */
 267	0x07,       /*  __u8  ep_bLength; */
 268	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 269	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 270	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 271	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 272	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 273};
 274
 275static const u8 hs_rh_config_descriptor[] = {
 276
 277	/* one configuration */
 278	0x09,       /*  __u8  bLength; */
 279	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 280	0x19, 0x00, /*  __le16 wTotalLength; */
 281	0x01,       /*  __u8  bNumInterfaces; (1) */
 282	0x01,       /*  __u8  bConfigurationValue; */
 283	0x00,       /*  __u8  iConfiguration; */
 284	0xc0,       /*  __u8  bmAttributes;
 285				 Bit 7: must be set,
 286				     6: Self-powered,
 287				     5: Remote wakeup,
 288				     4..0: resvd */
 289	0x00,       /*  __u8  MaxPower; */
 290
 291	/* USB 1.1:
 292	 * USB 2.0, single TT organization (mandatory):
 293	 *	one interface, protocol 0
 294	 *
 295	 * USB 2.0, multiple TT organization (optional):
 296	 *	two interfaces, protocols 1 (like single TT)
 297	 *	and 2 (multiple TT mode) ... config is
 298	 *	sometimes settable
 299	 *	NOT IMPLEMENTED
 300	 */
 301
 302	/* one interface */
 303	0x09,       /*  __u8  if_bLength; */
 304	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 305	0x00,       /*  __u8  if_bInterfaceNumber; */
 306	0x00,       /*  __u8  if_bAlternateSetting; */
 307	0x01,       /*  __u8  if_bNumEndpoints; */
 308	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 309	0x00,       /*  __u8  if_bInterfaceSubClass; */
 310	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 311	0x00,       /*  __u8  if_iInterface; */
 312
 313	/* one endpoint (status change endpoint) */
 314	0x07,       /*  __u8  ep_bLength; */
 315	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 316	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 317	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 318		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 319		     * see hub.c:hub_configure() for details. */
 320	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 321	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 322};
 323
 324static const u8 ss_rh_config_descriptor[] = {
 325	/* one configuration */
 326	0x09,       /*  __u8  bLength; */
 327	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 328	0x1f, 0x00, /*  __le16 wTotalLength; */
 329	0x01,       /*  __u8  bNumInterfaces; (1) */
 330	0x01,       /*  __u8  bConfigurationValue; */
 331	0x00,       /*  __u8  iConfiguration; */
 332	0xc0,       /*  __u8  bmAttributes;
 333				 Bit 7: must be set,
 334				     6: Self-powered,
 335				     5: Remote wakeup,
 336				     4..0: resvd */
 337	0x00,       /*  __u8  MaxPower; */
 338
 339	/* one interface */
 340	0x09,       /*  __u8  if_bLength; */
 341	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 342	0x00,       /*  __u8  if_bInterfaceNumber; */
 343	0x00,       /*  __u8  if_bAlternateSetting; */
 344	0x01,       /*  __u8  if_bNumEndpoints; */
 345	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 346	0x00,       /*  __u8  if_bInterfaceSubClass; */
 347	0x00,       /*  __u8  if_bInterfaceProtocol; */
 348	0x00,       /*  __u8  if_iInterface; */
 349
 350	/* one endpoint (status change endpoint) */
 351	0x07,       /*  __u8  ep_bLength; */
 352	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 353	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 354	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 355		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 356		     * see hub.c:hub_configure() for details. */
 357	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 358	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 359
 360	/* one SuperSpeed endpoint companion descriptor */
 361	0x06,        /* __u8 ss_bLength */
 362	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 363		     /* Companion */
 364	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 365	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 366	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 367};
 368
 369/* authorized_default behaviour:
 370 * -1 is authorized for all devices except wireless (old behaviour)
 371 * 0 is unauthorized for all devices
 372 * 1 is authorized for all devices
 373 * 2 is authorized for internal devices
 374 */
 375#define USB_AUTHORIZE_WIRED	-1
 376#define USB_AUTHORIZE_NONE	0
 377#define USB_AUTHORIZE_ALL	1
 378#define USB_AUTHORIZE_INTERNAL	2
 379
 380static int authorized_default = USB_AUTHORIZE_WIRED;
 381module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 382MODULE_PARM_DESC(authorized_default,
 383		"Default USB device authorization: 0 is not authorized, 1 is "
 384		"authorized, 2 is authorized for internal devices, -1 is "
 385		"authorized except for wireless USB (default, old behaviour)");
 386/*-------------------------------------------------------------------------*/
 387
 388/**
 389 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 390 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 391 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 392 * @len: Length (in bytes; may be odd) of descriptor buffer.
 393 *
 394 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 395 * whichever is less.
 396 *
 397 * Note:
 398 * USB String descriptors can contain at most 126 characters; input
 399 * strings longer than that are truncated.
 400 */
 401static unsigned
 402ascii2desc(char const *s, u8 *buf, unsigned len)
 403{
 404	unsigned n, t = 2 + 2*strlen(s);
 405
 406	if (t > 254)
 407		t = 254;	/* Longest possible UTF string descriptor */
 408	if (len > t)
 409		len = t;
 410
 411	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 412
 413	n = len;
 414	while (n--) {
 415		*buf++ = t;
 416		if (!n--)
 417			break;
 418		*buf++ = t >> 8;
 419		t = (unsigned char)*s++;
 420	}
 421	return len;
 422}
 423
 424/**
 425 * rh_string() - provides string descriptors for root hub
 426 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 427 * @hcd: the host controller for this root hub
 428 * @data: buffer for output packet
 429 * @len: length of the provided buffer
 430 *
 431 * Produces either a manufacturer, product or serial number string for the
 432 * virtual root hub device.
 433 *
 434 * Return: The number of bytes filled in: the length of the descriptor or
 435 * of the provided buffer, whichever is less.
 436 */
 437static unsigned
 438rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 439{
 440	char buf[100];
 441	char const *s;
 442	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 443
 444	/* language ids */
 445	switch (id) {
 446	case 0:
 447		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 448		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 449		if (len > 4)
 450			len = 4;
 451		memcpy(data, langids, len);
 452		return len;
 453	case 1:
 454		/* Serial number */
 455		s = hcd->self.bus_name;
 456		break;
 457	case 2:
 458		/* Product name */
 459		s = hcd->product_desc;
 460		break;
 461	case 3:
 462		/* Manufacturer */
 463		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 464			init_utsname()->release, hcd->driver->description);
 465		s = buf;
 466		break;
 467	default:
 468		/* Can't happen; caller guarantees it */
 469		return 0;
 470	}
 471
 472	return ascii2desc(s, data, len);
 473}
 474
 475
 476/* Root hub control transfers execute synchronously */
 477static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 478{
 479	struct usb_ctrlrequest *cmd;
 480	u16		typeReq, wValue, wIndex, wLength;
 481	u8		*ubuf = urb->transfer_buffer;
 482	unsigned	len = 0;
 483	int		status;
 484	u8		patch_wakeup = 0;
 485	u8		patch_protocol = 0;
 486	u16		tbuf_size;
 487	u8		*tbuf = NULL;
 488	const u8	*bufp;
 489
 490	might_sleep();
 491
 492	spin_lock_irq(&hcd_root_hub_lock);
 493	status = usb_hcd_link_urb_to_ep(hcd, urb);
 494	spin_unlock_irq(&hcd_root_hub_lock);
 495	if (status)
 496		return status;
 497	urb->hcpriv = hcd;	/* Indicate it's queued */
 498
 499	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 500	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 501	wValue   = le16_to_cpu (cmd->wValue);
 502	wIndex   = le16_to_cpu (cmd->wIndex);
 503	wLength  = le16_to_cpu (cmd->wLength);
 504
 505	if (wLength > urb->transfer_buffer_length)
 506		goto error;
 507
 508	/*
 509	 * tbuf should be at least as big as the
 510	 * USB hub descriptor.
 511	 */
 512	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 513	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 514	if (!tbuf) {
 515		status = -ENOMEM;
 516		goto err_alloc;
 517	}
 518
 519	bufp = tbuf;
 520
 521
 522	urb->actual_length = 0;
 523	switch (typeReq) {
 524
 525	/* DEVICE REQUESTS */
 526
 527	/* The root hub's remote wakeup enable bit is implemented using
 528	 * driver model wakeup flags.  If this system supports wakeup
 529	 * through USB, userspace may change the default "allow wakeup"
 530	 * policy through sysfs or these calls.
 531	 *
 532	 * Most root hubs support wakeup from downstream devices, for
 533	 * runtime power management (disabling USB clocks and reducing
 534	 * VBUS power usage).  However, not all of them do so; silicon,
 535	 * board, and BIOS bugs here are not uncommon, so these can't
 536	 * be treated quite like external hubs.
 537	 *
 538	 * Likewise, not all root hubs will pass wakeup events upstream,
 539	 * to wake up the whole system.  So don't assume root hub and
 540	 * controller capabilities are identical.
 541	 */
 542
 543	case DeviceRequest | USB_REQ_GET_STATUS:
 544		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 545					<< USB_DEVICE_REMOTE_WAKEUP)
 546				| (1 << USB_DEVICE_SELF_POWERED);
 547		tbuf[1] = 0;
 548		len = 2;
 549		break;
 550	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 551		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 552			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 553		else
 554			goto error;
 555		break;
 556	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 557		if (device_can_wakeup(&hcd->self.root_hub->dev)
 558				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 559			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 560		else
 561			goto error;
 562		break;
 563	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 564		tbuf[0] = 1;
 565		len = 1;
 566			/* FALLTHROUGH */
 567	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 568		break;
 569	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 570		switch (wValue & 0xff00) {
 571		case USB_DT_DEVICE << 8:
 572			switch (hcd->speed) {
 573			case HCD_USB32:
 574			case HCD_USB31:
 575				bufp = usb31_rh_dev_descriptor;
 576				break;
 577			case HCD_USB3:
 578				bufp = usb3_rh_dev_descriptor;
 579				break;
 580			case HCD_USB25:
 581				bufp = usb25_rh_dev_descriptor;
 582				break;
 583			case HCD_USB2:
 584				bufp = usb2_rh_dev_descriptor;
 585				break;
 586			case HCD_USB11:
 587				bufp = usb11_rh_dev_descriptor;
 588				break;
 589			default:
 590				goto error;
 591			}
 592			len = 18;
 593			if (hcd->has_tt)
 594				patch_protocol = 1;
 595			break;
 596		case USB_DT_CONFIG << 8:
 597			switch (hcd->speed) {
 598			case HCD_USB32:
 599			case HCD_USB31:
 600			case HCD_USB3:
 601				bufp = ss_rh_config_descriptor;
 602				len = sizeof ss_rh_config_descriptor;
 603				break;
 604			case HCD_USB25:
 605			case HCD_USB2:
 606				bufp = hs_rh_config_descriptor;
 607				len = sizeof hs_rh_config_descriptor;
 608				break;
 609			case HCD_USB11:
 610				bufp = fs_rh_config_descriptor;
 611				len = sizeof fs_rh_config_descriptor;
 612				break;
 613			default:
 614				goto error;
 615			}
 616			if (device_can_wakeup(&hcd->self.root_hub->dev))
 617				patch_wakeup = 1;
 618			break;
 619		case USB_DT_STRING << 8:
 620			if ((wValue & 0xff) < 4)
 621				urb->actual_length = rh_string(wValue & 0xff,
 622						hcd, ubuf, wLength);
 623			else /* unsupported IDs --> "protocol stall" */
 624				goto error;
 625			break;
 626		case USB_DT_BOS << 8:
 627			goto nongeneric;
 628		default:
 629			goto error;
 630		}
 631		break;
 632	case DeviceRequest | USB_REQ_GET_INTERFACE:
 633		tbuf[0] = 0;
 634		len = 1;
 635			/* FALLTHROUGH */
 636	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 637		break;
 638	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 639		/* wValue == urb->dev->devaddr */
 640		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 641			wValue);
 642		break;
 643
 644	/* INTERFACE REQUESTS (no defined feature/status flags) */
 645
 646	/* ENDPOINT REQUESTS */
 647
 648	case EndpointRequest | USB_REQ_GET_STATUS:
 649		/* ENDPOINT_HALT flag */
 650		tbuf[0] = 0;
 651		tbuf[1] = 0;
 652		len = 2;
 653			/* FALLTHROUGH */
 654	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 655	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 656		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 657		break;
 658
 659	/* CLASS REQUESTS (and errors) */
 660
 661	default:
 662nongeneric:
 663		/* non-generic request */
 664		switch (typeReq) {
 665		case GetHubStatus:
 666			len = 4;
 667			break;
 668		case GetPortStatus:
 669			if (wValue == HUB_PORT_STATUS)
 670				len = 4;
 671			else
 672				/* other port status types return 8 bytes */
 673				len = 8;
 674			break;
 675		case GetHubDescriptor:
 676			len = sizeof (struct usb_hub_descriptor);
 677			break;
 678		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 679			/* len is returned by hub_control */
 680			break;
 681		}
 682		status = hcd->driver->hub_control (hcd,
 683			typeReq, wValue, wIndex,
 684			tbuf, wLength);
 685
 686		if (typeReq == GetHubDescriptor)
 687			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 688				(struct usb_hub_descriptor *)tbuf);
 689		break;
 690error:
 691		/* "protocol stall" on error */
 692		status = -EPIPE;
 693	}
 694
 695	if (status < 0) {
 696		len = 0;
 697		if (status != -EPIPE) {
 698			dev_dbg (hcd->self.controller,
 699				"CTRL: TypeReq=0x%x val=0x%x "
 700				"idx=0x%x len=%d ==> %d\n",
 701				typeReq, wValue, wIndex,
 702				wLength, status);
 703		}
 704	} else if (status > 0) {
 705		/* hub_control may return the length of data copied. */
 706		len = status;
 707		status = 0;
 708	}
 709	if (len) {
 710		if (urb->transfer_buffer_length < len)
 711			len = urb->transfer_buffer_length;
 712		urb->actual_length = len;
 713		/* always USB_DIR_IN, toward host */
 714		memcpy (ubuf, bufp, len);
 715
 716		/* report whether RH hardware supports remote wakeup */
 717		if (patch_wakeup &&
 718				len > offsetof (struct usb_config_descriptor,
 719						bmAttributes))
 720			((struct usb_config_descriptor *)ubuf)->bmAttributes
 721				|= USB_CONFIG_ATT_WAKEUP;
 722
 723		/* report whether RH hardware has an integrated TT */
 724		if (patch_protocol &&
 725				len > offsetof(struct usb_device_descriptor,
 726						bDeviceProtocol))
 727			((struct usb_device_descriptor *) ubuf)->
 728				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 729	}
 730
 731	kfree(tbuf);
 732 err_alloc:
 733
 734	/* any errors get returned through the urb completion */
 735	spin_lock_irq(&hcd_root_hub_lock);
 736	usb_hcd_unlink_urb_from_ep(hcd, urb);
 737	usb_hcd_giveback_urb(hcd, urb, status);
 738	spin_unlock_irq(&hcd_root_hub_lock);
 739	return 0;
 740}
 741
 742/*-------------------------------------------------------------------------*/
 743
 744/*
 745 * Root Hub interrupt transfers are polled using a timer if the
 746 * driver requests it; otherwise the driver is responsible for
 747 * calling usb_hcd_poll_rh_status() when an event occurs.
 748 *
 749 * Completions are called in_interrupt(), but they may or may not
 750 * be in_irq().
 751 */
 752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 753{
 754	struct urb	*urb;
 755	int		length;
 756	unsigned long	flags;
 757	char		buffer[6];	/* Any root hubs with > 31 ports? */
 758
 759	if (unlikely(!hcd->rh_pollable))
 760		return;
 761	if (!hcd->uses_new_polling && !hcd->status_urb)
 762		return;
 763
 764	length = hcd->driver->hub_status_data(hcd, buffer);
 765	if (length > 0) {
 766
 767		/* try to complete the status urb */
 768		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 769		urb = hcd->status_urb;
 770		if (urb) {
 771			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 772			hcd->status_urb = NULL;
 773			urb->actual_length = length;
 774			memcpy(urb->transfer_buffer, buffer, length);
 775
 776			usb_hcd_unlink_urb_from_ep(hcd, urb);
 777			usb_hcd_giveback_urb(hcd, urb, 0);
 778		} else {
 779			length = 0;
 780			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 781		}
 782		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 783	}
 784
 785	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 786	 * exceed that limit if HZ is 100. The math is more clunky than
 787	 * maybe expected, this is to make sure that all timers for USB devices
 788	 * fire at the same time to give the CPU a break in between */
 789	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 790			(length == 0 && hcd->status_urb != NULL))
 791		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 792}
 793EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 794
 795/* timer callback */
 796static void rh_timer_func (struct timer_list *t)
 797{
 798	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 799
 800	usb_hcd_poll_rh_status(_hcd);
 801}
 802
 803/*-------------------------------------------------------------------------*/
 804
 805static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 806{
 807	int		retval;
 808	unsigned long	flags;
 809	unsigned	len = 1 + (urb->dev->maxchild / 8);
 810
 811	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 812	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 813		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 814		retval = -EINVAL;
 815		goto done;
 816	}
 817
 818	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 819	if (retval)
 820		goto done;
 821
 822	hcd->status_urb = urb;
 823	urb->hcpriv = hcd;	/* indicate it's queued */
 824	if (!hcd->uses_new_polling)
 825		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 826
 827	/* If a status change has already occurred, report it ASAP */
 828	else if (HCD_POLL_PENDING(hcd))
 829		mod_timer(&hcd->rh_timer, jiffies);
 830	retval = 0;
 831 done:
 832	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 833	return retval;
 834}
 835
 836static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 837{
 838	if (usb_endpoint_xfer_int(&urb->ep->desc))
 839		return rh_queue_status (hcd, urb);
 840	if (usb_endpoint_xfer_control(&urb->ep->desc))
 841		return rh_call_control (hcd, urb);
 842	return -EINVAL;
 843}
 844
 845/*-------------------------------------------------------------------------*/
 846
 847/* Unlinks of root-hub control URBs are legal, but they don't do anything
 848 * since these URBs always execute synchronously.
 849 */
 850static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 851{
 852	unsigned long	flags;
 853	int		rc;
 854
 855	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 856	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 857	if (rc)
 858		goto done;
 859
 860	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 861		;	/* Do nothing */
 862
 863	} else {				/* Status URB */
 864		if (!hcd->uses_new_polling)
 865			del_timer (&hcd->rh_timer);
 866		if (urb == hcd->status_urb) {
 867			hcd->status_urb = NULL;
 868			usb_hcd_unlink_urb_from_ep(hcd, urb);
 869			usb_hcd_giveback_urb(hcd, urb, status);
 870		}
 871	}
 872 done:
 873	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 874	return rc;
 875}
 876
 877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 878/*-------------------------------------------------------------------------*/
 879
 880/**
 881 * usb_bus_init - shared initialization code
 882 * @bus: the bus structure being initialized
 883 *
 884 * This code is used to initialize a usb_bus structure, memory for which is
 885 * separately managed.
 886 */
 887static void usb_bus_init (struct usb_bus *bus)
 888{
 889	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 890
 891	bus->devnum_next = 1;
 892
 893	bus->root_hub = NULL;
 894	bus->busnum = -1;
 895	bus->bandwidth_allocated = 0;
 896	bus->bandwidth_int_reqs  = 0;
 897	bus->bandwidth_isoc_reqs = 0;
 898	mutex_init(&bus->devnum_next_mutex);
 899}
 900
 901/*-------------------------------------------------------------------------*/
 902
 903/**
 904 * usb_register_bus - registers the USB host controller with the usb core
 905 * @bus: pointer to the bus to register
 906 * Context: !in_interrupt()
 907 *
 908 * Assigns a bus number, and links the controller into usbcore data
 909 * structures so that it can be seen by scanning the bus list.
 910 *
 911 * Return: 0 if successful. A negative error code otherwise.
 912 */
 913static int usb_register_bus(struct usb_bus *bus)
 914{
 915	int result = -E2BIG;
 916	int busnum;
 917
 918	mutex_lock(&usb_bus_idr_lock);
 919	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
 920	if (busnum < 0) {
 921		pr_err("%s: failed to get bus number\n", usbcore_name);
 922		goto error_find_busnum;
 923	}
 924	bus->busnum = busnum;
 925	mutex_unlock(&usb_bus_idr_lock);
 926
 927	usb_notify_add_bus(bus);
 928
 929	dev_info (bus->controller, "new USB bus registered, assigned bus "
 930		  "number %d\n", bus->busnum);
 931	return 0;
 932
 933error_find_busnum:
 934	mutex_unlock(&usb_bus_idr_lock);
 935	return result;
 936}
 937
 938/**
 939 * usb_deregister_bus - deregisters the USB host controller
 940 * @bus: pointer to the bus to deregister
 941 * Context: !in_interrupt()
 942 *
 943 * Recycles the bus number, and unlinks the controller from usbcore data
 944 * structures so that it won't be seen by scanning the bus list.
 945 */
 946static void usb_deregister_bus (struct usb_bus *bus)
 947{
 948	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
 949
 950	/*
 951	 * NOTE: make sure that all the devices are removed by the
 952	 * controller code, as well as having it call this when cleaning
 953	 * itself up
 954	 */
 955	mutex_lock(&usb_bus_idr_lock);
 956	idr_remove(&usb_bus_idr, bus->busnum);
 957	mutex_unlock(&usb_bus_idr_lock);
 958
 959	usb_notify_remove_bus(bus);
 960}
 961
 962/**
 963 * register_root_hub - called by usb_add_hcd() to register a root hub
 964 * @hcd: host controller for this root hub
 965 *
 966 * This function registers the root hub with the USB subsystem.  It sets up
 967 * the device properly in the device tree and then calls usb_new_device()
 968 * to register the usb device.  It also assigns the root hub's USB address
 969 * (always 1).
 970 *
 971 * Return: 0 if successful. A negative error code otherwise.
 972 */
 973static int register_root_hub(struct usb_hcd *hcd)
 974{
 975	struct device *parent_dev = hcd->self.controller;
 976	struct usb_device *usb_dev = hcd->self.root_hub;
 977	const int devnum = 1;
 978	int retval;
 979
 980	usb_dev->devnum = devnum;
 981	usb_dev->bus->devnum_next = devnum + 1;
 
 
 982	set_bit (devnum, usb_dev->bus->devmap.devicemap);
 983	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
 984
 985	mutex_lock(&usb_bus_idr_lock);
 986
 987	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
 988	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
 989	if (retval != sizeof usb_dev->descriptor) {
 990		mutex_unlock(&usb_bus_idr_lock);
 991		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
 992				dev_name(&usb_dev->dev), retval);
 993		return (retval < 0) ? retval : -EMSGSIZE;
 994	}
 995
 996	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
 997		retval = usb_get_bos_descriptor(usb_dev);
 998		if (!retval) {
 999			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1000		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1001			mutex_unlock(&usb_bus_idr_lock);
1002			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1003					dev_name(&usb_dev->dev), retval);
1004			return retval;
1005		}
1006	}
1007
1008	retval = usb_new_device (usb_dev);
1009	if (retval) {
1010		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1011				dev_name(&usb_dev->dev), retval);
1012	} else {
1013		spin_lock_irq (&hcd_root_hub_lock);
1014		hcd->rh_registered = 1;
1015		spin_unlock_irq (&hcd_root_hub_lock);
1016
1017		/* Did the HC die before the root hub was registered? */
1018		if (HCD_DEAD(hcd))
1019			usb_hc_died (hcd);	/* This time clean up */
 
1020	}
1021	mutex_unlock(&usb_bus_idr_lock);
1022
1023	return retval;
1024}
1025
1026/*
1027 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1028 * @bus: the bus which the root hub belongs to
1029 * @portnum: the port which is being resumed
1030 *
1031 * HCDs should call this function when they know that a resume signal is
1032 * being sent to a root-hub port.  The root hub will be prevented from
1033 * going into autosuspend until usb_hcd_end_port_resume() is called.
1034 *
1035 * The bus's private lock must be held by the caller.
1036 */
1037void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1038{
1039	unsigned bit = 1 << portnum;
1040
1041	if (!(bus->resuming_ports & bit)) {
1042		bus->resuming_ports |= bit;
1043		pm_runtime_get_noresume(&bus->root_hub->dev);
1044	}
1045}
1046EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1047
1048/*
1049 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1050 * @bus: the bus which the root hub belongs to
1051 * @portnum: the port which is being resumed
1052 *
1053 * HCDs should call this function when they know that a resume signal has
1054 * stopped being sent to a root-hub port.  The root hub will be allowed to
1055 * autosuspend again.
1056 *
1057 * The bus's private lock must be held by the caller.
1058 */
1059void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1060{
1061	unsigned bit = 1 << portnum;
1062
1063	if (bus->resuming_ports & bit) {
1064		bus->resuming_ports &= ~bit;
1065		pm_runtime_put_noidle(&bus->root_hub->dev);
1066	}
1067}
1068EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1069
1070/*-------------------------------------------------------------------------*/
1071
1072/**
1073 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1074 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1075 * @is_input: true iff the transaction sends data to the host
1076 * @isoc: true for isochronous transactions, false for interrupt ones
1077 * @bytecount: how many bytes in the transaction.
1078 *
1079 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1080 *
1081 * Note:
1082 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1083 * scheduled in software, this function is only used for such scheduling.
1084 */
1085long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1086{
1087	unsigned long	tmp;
1088
1089	switch (speed) {
1090	case USB_SPEED_LOW: 	/* INTR only */
1091		if (is_input) {
1092			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1093			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1094		} else {
1095			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1096			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1097		}
1098	case USB_SPEED_FULL:	/* ISOC or INTR */
1099		if (isoc) {
1100			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1101			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1102		} else {
1103			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1104			return 9107L + BW_HOST_DELAY + tmp;
1105		}
1106	case USB_SPEED_HIGH:	/* ISOC or INTR */
1107		/* FIXME adjust for input vs output */
1108		if (isoc)
1109			tmp = HS_NSECS_ISO (bytecount);
1110		else
1111			tmp = HS_NSECS (bytecount);
1112		return tmp;
1113	default:
1114		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1115		return -1;
1116	}
1117}
1118EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1119
1120
1121/*-------------------------------------------------------------------------*/
1122
1123/*
1124 * Generic HC operations.
1125 */
1126
1127/*-------------------------------------------------------------------------*/
1128
1129/**
1130 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1131 * @hcd: host controller to which @urb was submitted
1132 * @urb: URB being submitted
1133 *
1134 * Host controller drivers should call this routine in their enqueue()
1135 * method.  The HCD's private spinlock must be held and interrupts must
1136 * be disabled.  The actions carried out here are required for URB
1137 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1138 *
1139 * Return: 0 for no error, otherwise a negative error code (in which case
1140 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1141 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1142 * the private spinlock and returning.
1143 */
1144int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1145{
1146	int		rc = 0;
1147
1148	spin_lock(&hcd_urb_list_lock);
1149
1150	/* Check that the URB isn't being killed */
1151	if (unlikely(atomic_read(&urb->reject))) {
1152		rc = -EPERM;
1153		goto done;
1154	}
1155
1156	if (unlikely(!urb->ep->enabled)) {
1157		rc = -ENOENT;
1158		goto done;
1159	}
1160
1161	if (unlikely(!urb->dev->can_submit)) {
1162		rc = -EHOSTUNREACH;
1163		goto done;
1164	}
1165
1166	/*
1167	 * Check the host controller's state and add the URB to the
1168	 * endpoint's queue.
1169	 */
1170	if (HCD_RH_RUNNING(hcd)) {
1171		urb->unlinked = 0;
1172		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1173	} else {
1174		rc = -ESHUTDOWN;
1175		goto done;
1176	}
1177 done:
1178	spin_unlock(&hcd_urb_list_lock);
1179	return rc;
1180}
1181EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1182
1183/**
1184 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1185 * @hcd: host controller to which @urb was submitted
1186 * @urb: URB being checked for unlinkability
1187 * @status: error code to store in @urb if the unlink succeeds
1188 *
1189 * Host controller drivers should call this routine in their dequeue()
1190 * method.  The HCD's private spinlock must be held and interrupts must
1191 * be disabled.  The actions carried out here are required for making
1192 * sure than an unlink is valid.
1193 *
1194 * Return: 0 for no error, otherwise a negative error code (in which case
1195 * the dequeue() method must fail).  The possible error codes are:
1196 *
1197 *	-EIDRM: @urb was not submitted or has already completed.
1198 *		The completion function may not have been called yet.
1199 *
1200 *	-EBUSY: @urb has already been unlinked.
1201 */
1202int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1203		int status)
1204{
1205	struct list_head	*tmp;
1206
1207	/* insist the urb is still queued */
1208	list_for_each(tmp, &urb->ep->urb_list) {
1209		if (tmp == &urb->urb_list)
1210			break;
1211	}
1212	if (tmp != &urb->urb_list)
1213		return -EIDRM;
1214
1215	/* Any status except -EINPROGRESS means something already started to
1216	 * unlink this URB from the hardware.  So there's no more work to do.
1217	 */
1218	if (urb->unlinked)
1219		return -EBUSY;
1220	urb->unlinked = status;
1221	return 0;
1222}
1223EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1224
1225/**
1226 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being unlinked
1229 *
1230 * Host controller drivers should call this routine before calling
1231 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1232 * interrupts must be disabled.  The actions carried out here are required
1233 * for URB completion.
1234 */
1235void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1236{
1237	/* clear all state linking urb to this dev (and hcd) */
1238	spin_lock(&hcd_urb_list_lock);
1239	list_del_init(&urb->urb_list);
1240	spin_unlock(&hcd_urb_list_lock);
1241}
1242EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1243
1244/*
1245 * Some usb host controllers can only perform dma using a small SRAM area.
1246 * The usb core itself is however optimized for host controllers that can dma
1247 * using regular system memory - like pci devices doing bus mastering.
1248 *
1249 * To support host controllers with limited dma capabilities we provide dma
1250 * bounce buffers. This feature can be enabled by initializing
1251 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1252 *
1253 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1254 * data for dma using the genalloc API.
 
 
 
1255 *
1256 * So, to summarize...
1257 *
1258 * - We need "local" memory, canonical example being
1259 *   a small SRAM on a discrete controller being the
1260 *   only memory that the controller can read ...
1261 *   (a) "normal" kernel memory is no good, and
1262 *   (b) there's not enough to share
1263 *
 
 
 
1264 * - So we use that, even though the primary requirement
1265 *   is that the memory be "local" (hence addressable
1266 *   by that device), not "coherent".
1267 *
1268 */
1269
1270static int hcd_alloc_coherent(struct usb_bus *bus,
1271			      gfp_t mem_flags, dma_addr_t *dma_handle,
1272			      void **vaddr_handle, size_t size,
1273			      enum dma_data_direction dir)
1274{
1275	unsigned char *vaddr;
1276
1277	if (*vaddr_handle == NULL) {
1278		WARN_ON_ONCE(1);
1279		return -EFAULT;
1280	}
1281
1282	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1283				 mem_flags, dma_handle);
1284	if (!vaddr)
1285		return -ENOMEM;
1286
1287	/*
1288	 * Store the virtual address of the buffer at the end
1289	 * of the allocated dma buffer. The size of the buffer
1290	 * may be uneven so use unaligned functions instead
1291	 * of just rounding up. It makes sense to optimize for
1292	 * memory footprint over access speed since the amount
1293	 * of memory available for dma may be limited.
1294	 */
1295	put_unaligned((unsigned long)*vaddr_handle,
1296		      (unsigned long *)(vaddr + size));
1297
1298	if (dir == DMA_TO_DEVICE)
1299		memcpy(vaddr, *vaddr_handle, size);
1300
1301	*vaddr_handle = vaddr;
1302	return 0;
1303}
1304
1305static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1306			      void **vaddr_handle, size_t size,
1307			      enum dma_data_direction dir)
1308{
1309	unsigned char *vaddr = *vaddr_handle;
1310
1311	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1312
1313	if (dir == DMA_FROM_DEVICE)
1314		memcpy(vaddr, *vaddr_handle, size);
1315
1316	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1317
1318	*vaddr_handle = vaddr;
1319	*dma_handle = 0;
1320}
1321
1322void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1323{
1324	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1325	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1326		dma_unmap_single(hcd->self.sysdev,
1327				urb->setup_dma,
1328				sizeof(struct usb_ctrlrequest),
1329				DMA_TO_DEVICE);
1330	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1331		hcd_free_coherent(urb->dev->bus,
1332				&urb->setup_dma,
1333				(void **) &urb->setup_packet,
1334				sizeof(struct usb_ctrlrequest),
1335				DMA_TO_DEVICE);
1336
1337	/* Make it safe to call this routine more than once */
1338	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1339}
1340EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1341
1342static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1343{
1344	if (hcd->driver->unmap_urb_for_dma)
1345		hcd->driver->unmap_urb_for_dma(hcd, urb);
1346	else
1347		usb_hcd_unmap_urb_for_dma(hcd, urb);
1348}
1349
1350void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1351{
1352	enum dma_data_direction dir;
1353
1354	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1355
1356	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1357	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1358	    (urb->transfer_flags & URB_DMA_MAP_SG))
1359		dma_unmap_sg(hcd->self.sysdev,
1360				urb->sg,
1361				urb->num_sgs,
1362				dir);
1363	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1364		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1365		dma_unmap_page(hcd->self.sysdev,
1366				urb->transfer_dma,
1367				urb->transfer_buffer_length,
1368				dir);
1369	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1370		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1371		dma_unmap_single(hcd->self.sysdev,
1372				urb->transfer_dma,
1373				urb->transfer_buffer_length,
1374				dir);
1375	else if (urb->transfer_flags & URB_MAP_LOCAL)
1376		hcd_free_coherent(urb->dev->bus,
1377				&urb->transfer_dma,
1378				&urb->transfer_buffer,
1379				urb->transfer_buffer_length,
1380				dir);
1381
1382	/* Make it safe to call this routine more than once */
1383	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1384			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1385}
1386EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1387
1388static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1389			   gfp_t mem_flags)
1390{
1391	if (hcd->driver->map_urb_for_dma)
1392		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1393	else
1394		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1395}
1396
1397int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1398			    gfp_t mem_flags)
1399{
1400	enum dma_data_direction dir;
1401	int ret = 0;
1402
1403	/* Map the URB's buffers for DMA access.
1404	 * Lower level HCD code should use *_dma exclusively,
1405	 * unless it uses pio or talks to another transport,
1406	 * or uses the provided scatter gather list for bulk.
1407	 */
1408
1409	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1410		if (hcd->self.uses_pio_for_control)
1411			return ret;
1412		if (hcd_uses_dma(hcd)) {
1413			if (is_vmalloc_addr(urb->setup_packet)) {
1414				WARN_ONCE(1, "setup packet is not dma capable\n");
1415				return -EAGAIN;
1416			} else if (object_is_on_stack(urb->setup_packet)) {
1417				WARN_ONCE(1, "setup packet is on stack\n");
1418				return -EAGAIN;
1419			}
1420
1421			urb->setup_dma = dma_map_single(
1422					hcd->self.sysdev,
1423					urb->setup_packet,
1424					sizeof(struct usb_ctrlrequest),
1425					DMA_TO_DEVICE);
1426			if (dma_mapping_error(hcd->self.sysdev,
1427						urb->setup_dma))
1428				return -EAGAIN;
1429			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1430		} else if (hcd->localmem_pool) {
1431			ret = hcd_alloc_coherent(
1432					urb->dev->bus, mem_flags,
1433					&urb->setup_dma,
1434					(void **)&urb->setup_packet,
1435					sizeof(struct usb_ctrlrequest),
1436					DMA_TO_DEVICE);
1437			if (ret)
1438				return ret;
1439			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1440		}
1441	}
1442
1443	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1444	if (urb->transfer_buffer_length != 0
1445	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1446		if (hcd_uses_dma(hcd)) {
1447			if (urb->num_sgs) {
1448				int n;
1449
1450				/* We don't support sg for isoc transfers ! */
1451				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1452					WARN_ON(1);
1453					return -EINVAL;
1454				}
1455
1456				n = dma_map_sg(
1457						hcd->self.sysdev,
1458						urb->sg,
1459						urb->num_sgs,
1460						dir);
1461				if (n <= 0)
1462					ret = -EAGAIN;
1463				else
1464					urb->transfer_flags |= URB_DMA_MAP_SG;
1465				urb->num_mapped_sgs = n;
1466				if (n != urb->num_sgs)
1467					urb->transfer_flags |=
1468							URB_DMA_SG_COMBINED;
1469			} else if (urb->sg) {
1470				struct scatterlist *sg = urb->sg;
1471				urb->transfer_dma = dma_map_page(
1472						hcd->self.sysdev,
1473						sg_page(sg),
1474						sg->offset,
1475						urb->transfer_buffer_length,
1476						dir);
1477				if (dma_mapping_error(hcd->self.sysdev,
1478						urb->transfer_dma))
1479					ret = -EAGAIN;
1480				else
1481					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1482			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1483				WARN_ONCE(1, "transfer buffer not dma capable\n");
1484				ret = -EAGAIN;
1485			} else if (object_is_on_stack(urb->transfer_buffer)) {
1486				WARN_ONCE(1, "transfer buffer is on stack\n");
1487				ret = -EAGAIN;
1488			} else {
1489				urb->transfer_dma = dma_map_single(
1490						hcd->self.sysdev,
1491						urb->transfer_buffer,
1492						urb->transfer_buffer_length,
1493						dir);
1494				if (dma_mapping_error(hcd->self.sysdev,
1495						urb->transfer_dma))
1496					ret = -EAGAIN;
1497				else
1498					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1499			}
1500		} else if (hcd->localmem_pool) {
1501			ret = hcd_alloc_coherent(
1502					urb->dev->bus, mem_flags,
1503					&urb->transfer_dma,
1504					&urb->transfer_buffer,
1505					urb->transfer_buffer_length,
1506					dir);
1507			if (ret == 0)
1508				urb->transfer_flags |= URB_MAP_LOCAL;
1509		}
1510		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1511				URB_SETUP_MAP_LOCAL)))
1512			usb_hcd_unmap_urb_for_dma(hcd, urb);
1513	}
1514	return ret;
1515}
1516EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1517
1518/*-------------------------------------------------------------------------*/
1519
1520/* may be called in any context with a valid urb->dev usecount
1521 * caller surrenders "ownership" of urb
1522 * expects usb_submit_urb() to have sanity checked and conditioned all
1523 * inputs in the urb
1524 */
1525int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1526{
1527	int			status;
1528	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1529
1530	/* increment urb's reference count as part of giving it to the HCD
1531	 * (which will control it).  HCD guarantees that it either returns
1532	 * an error or calls giveback(), but not both.
1533	 */
1534	usb_get_urb(urb);
1535	atomic_inc(&urb->use_count);
1536	atomic_inc(&urb->dev->urbnum);
1537	usbmon_urb_submit(&hcd->self, urb);
1538
1539	/* NOTE requirements on root-hub callers (usbfs and the hub
1540	 * driver, for now):  URBs' urb->transfer_buffer must be
1541	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1542	 * they could clobber root hub response data.  Also, control
1543	 * URBs must be submitted in process context with interrupts
1544	 * enabled.
1545	 */
1546
1547	if (is_root_hub(urb->dev)) {
1548		status = rh_urb_enqueue(hcd, urb);
1549	} else {
1550		status = map_urb_for_dma(hcd, urb, mem_flags);
1551		if (likely(status == 0)) {
1552			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1553			if (unlikely(status))
1554				unmap_urb_for_dma(hcd, urb);
1555		}
1556	}
1557
1558	if (unlikely(status)) {
1559		usbmon_urb_submit_error(&hcd->self, urb, status);
1560		urb->hcpriv = NULL;
1561		INIT_LIST_HEAD(&urb->urb_list);
1562		atomic_dec(&urb->use_count);
1563		atomic_dec(&urb->dev->urbnum);
1564		if (atomic_read(&urb->reject))
1565			wake_up(&usb_kill_urb_queue);
1566		usb_put_urb(urb);
1567	}
1568	return status;
1569}
1570
1571/*-------------------------------------------------------------------------*/
1572
1573/* this makes the hcd giveback() the urb more quickly, by kicking it
1574 * off hardware queues (which may take a while) and returning it as
1575 * soon as practical.  we've already set up the urb's return status,
1576 * but we can't know if the callback completed already.
1577 */
1578static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1579{
1580	int		value;
1581
1582	if (is_root_hub(urb->dev))
1583		value = usb_rh_urb_dequeue(hcd, urb, status);
1584	else {
1585
1586		/* The only reason an HCD might fail this call is if
1587		 * it has not yet fully queued the urb to begin with.
1588		 * Such failures should be harmless. */
1589		value = hcd->driver->urb_dequeue(hcd, urb, status);
1590	}
1591	return value;
1592}
1593
1594/*
1595 * called in any context
1596 *
1597 * caller guarantees urb won't be recycled till both unlink()
1598 * and the urb's completion function return
1599 */
1600int usb_hcd_unlink_urb (struct urb *urb, int status)
1601{
1602	struct usb_hcd		*hcd;
1603	struct usb_device	*udev = urb->dev;
1604	int			retval = -EIDRM;
1605	unsigned long		flags;
1606
1607	/* Prevent the device and bus from going away while
1608	 * the unlink is carried out.  If they are already gone
1609	 * then urb->use_count must be 0, since disconnected
1610	 * devices can't have any active URBs.
1611	 */
1612	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1613	if (atomic_read(&urb->use_count) > 0) {
1614		retval = 0;
1615		usb_get_dev(udev);
1616	}
1617	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1618	if (retval == 0) {
1619		hcd = bus_to_hcd(urb->dev->bus);
1620		retval = unlink1(hcd, urb, status);
1621		if (retval == 0)
1622			retval = -EINPROGRESS;
1623		else if (retval != -EIDRM && retval != -EBUSY)
1624			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1625					urb, retval);
1626		usb_put_dev(udev);
1627	}
1628	return retval;
1629}
1630
1631/*-------------------------------------------------------------------------*/
1632
1633static void __usb_hcd_giveback_urb(struct urb *urb)
1634{
1635	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1636	struct usb_anchor *anchor = urb->anchor;
1637	int status = urb->unlinked;
 
1638
1639	urb->hcpriv = NULL;
1640	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1641	    urb->actual_length < urb->transfer_buffer_length &&
1642	    !status))
1643		status = -EREMOTEIO;
1644
1645	unmap_urb_for_dma(hcd, urb);
1646	usbmon_urb_complete(&hcd->self, urb, status);
1647	usb_anchor_suspend_wakeups(anchor);
1648	usb_unanchor_urb(urb);
1649	if (likely(status == 0))
1650		usb_led_activity(USB_LED_EVENT_HOST);
1651
1652	/* pass ownership to the completion handler */
1653	urb->status = status;
 
 
 
 
 
 
 
 
 
 
 
 
1654	urb->complete(urb);
 
1655
1656	usb_anchor_resume_wakeups(anchor);
1657	atomic_dec(&urb->use_count);
1658	if (unlikely(atomic_read(&urb->reject)))
1659		wake_up(&usb_kill_urb_queue);
1660	usb_put_urb(urb);
1661}
1662
1663static void usb_giveback_urb_bh(unsigned long param)
1664{
1665	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1666	struct list_head local_list;
1667
1668	spin_lock_irq(&bh->lock);
1669	bh->running = true;
1670 restart:
1671	list_replace_init(&bh->head, &local_list);
1672	spin_unlock_irq(&bh->lock);
1673
1674	while (!list_empty(&local_list)) {
1675		struct urb *urb;
1676
1677		urb = list_entry(local_list.next, struct urb, urb_list);
1678		list_del_init(&urb->urb_list);
1679		bh->completing_ep = urb->ep;
1680		__usb_hcd_giveback_urb(urb);
1681		bh->completing_ep = NULL;
1682	}
1683
1684	/* check if there are new URBs to giveback */
1685	spin_lock_irq(&bh->lock);
1686	if (!list_empty(&bh->head))
1687		goto restart;
1688	bh->running = false;
1689	spin_unlock_irq(&bh->lock);
1690}
1691
1692/**
1693 * usb_hcd_giveback_urb - return URB from HCD to device driver
1694 * @hcd: host controller returning the URB
1695 * @urb: urb being returned to the USB device driver.
1696 * @status: completion status code for the URB.
1697 * Context: in_interrupt()
1698 *
1699 * This hands the URB from HCD to its USB device driver, using its
1700 * completion function.  The HCD has freed all per-urb resources
1701 * (and is done using urb->hcpriv).  It also released all HCD locks;
1702 * the device driver won't cause problems if it frees, modifies,
1703 * or resubmits this URB.
1704 *
1705 * If @urb was unlinked, the value of @status will be overridden by
1706 * @urb->unlinked.  Erroneous short transfers are detected in case
1707 * the HCD hasn't checked for them.
1708 */
1709void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1710{
1711	struct giveback_urb_bh *bh;
1712	bool running, high_prio_bh;
1713
1714	/* pass status to tasklet via unlinked */
1715	if (likely(!urb->unlinked))
1716		urb->unlinked = status;
1717
1718	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1719		__usb_hcd_giveback_urb(urb);
1720		return;
1721	}
1722
1723	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1724		bh = &hcd->high_prio_bh;
1725		high_prio_bh = true;
1726	} else {
1727		bh = &hcd->low_prio_bh;
1728		high_prio_bh = false;
1729	}
1730
1731	spin_lock(&bh->lock);
1732	list_add_tail(&urb->urb_list, &bh->head);
1733	running = bh->running;
1734	spin_unlock(&bh->lock);
1735
1736	if (running)
1737		;
1738	else if (high_prio_bh)
1739		tasklet_hi_schedule(&bh->bh);
1740	else
1741		tasklet_schedule(&bh->bh);
1742}
1743EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1744
1745/*-------------------------------------------------------------------------*/
1746
1747/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1748 * queue to drain completely.  The caller must first insure that no more
1749 * URBs can be submitted for this endpoint.
1750 */
1751void usb_hcd_flush_endpoint(struct usb_device *udev,
1752		struct usb_host_endpoint *ep)
1753{
1754	struct usb_hcd		*hcd;
1755	struct urb		*urb;
1756
1757	if (!ep)
1758		return;
1759	might_sleep();
1760	hcd = bus_to_hcd(udev->bus);
1761
1762	/* No more submits can occur */
1763	spin_lock_irq(&hcd_urb_list_lock);
1764rescan:
1765	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1766		int	is_in;
1767
1768		if (urb->unlinked)
1769			continue;
1770		usb_get_urb (urb);
1771		is_in = usb_urb_dir_in(urb);
1772		spin_unlock(&hcd_urb_list_lock);
1773
1774		/* kick hcd */
1775		unlink1(hcd, urb, -ESHUTDOWN);
1776		dev_dbg (hcd->self.controller,
1777			"shutdown urb %pK ep%d%s-%s\n",
1778			urb, usb_endpoint_num(&ep->desc),
1779			is_in ? "in" : "out",
1780			usb_ep_type_string(usb_endpoint_type(&ep->desc)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1781		usb_put_urb (urb);
1782
1783		/* list contents may have changed */
1784		spin_lock(&hcd_urb_list_lock);
1785		goto rescan;
1786	}
1787	spin_unlock_irq(&hcd_urb_list_lock);
1788
1789	/* Wait until the endpoint queue is completely empty */
1790	while (!list_empty (&ep->urb_list)) {
1791		spin_lock_irq(&hcd_urb_list_lock);
1792
1793		/* The list may have changed while we acquired the spinlock */
1794		urb = NULL;
1795		if (!list_empty (&ep->urb_list)) {
1796			urb = list_entry (ep->urb_list.prev, struct urb,
1797					urb_list);
1798			usb_get_urb (urb);
1799		}
1800		spin_unlock_irq(&hcd_urb_list_lock);
1801
1802		if (urb) {
1803			usb_kill_urb (urb);
1804			usb_put_urb (urb);
1805		}
1806	}
1807}
1808
1809/**
1810 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1811 *				the bus bandwidth
1812 * @udev: target &usb_device
1813 * @new_config: new configuration to install
1814 * @cur_alt: the current alternate interface setting
1815 * @new_alt: alternate interface setting that is being installed
1816 *
1817 * To change configurations, pass in the new configuration in new_config,
1818 * and pass NULL for cur_alt and new_alt.
1819 *
1820 * To reset a device's configuration (put the device in the ADDRESSED state),
1821 * pass in NULL for new_config, cur_alt, and new_alt.
1822 *
1823 * To change alternate interface settings, pass in NULL for new_config,
1824 * pass in the current alternate interface setting in cur_alt,
1825 * and pass in the new alternate interface setting in new_alt.
1826 *
1827 * Return: An error if the requested bandwidth change exceeds the
1828 * bus bandwidth or host controller internal resources.
1829 */
1830int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1831		struct usb_host_config *new_config,
1832		struct usb_host_interface *cur_alt,
1833		struct usb_host_interface *new_alt)
1834{
1835	int num_intfs, i, j;
1836	struct usb_host_interface *alt = NULL;
1837	int ret = 0;
1838	struct usb_hcd *hcd;
1839	struct usb_host_endpoint *ep;
1840
1841	hcd = bus_to_hcd(udev->bus);
1842	if (!hcd->driver->check_bandwidth)
1843		return 0;
1844
1845	/* Configuration is being removed - set configuration 0 */
1846	if (!new_config && !cur_alt) {
1847		for (i = 1; i < 16; ++i) {
1848			ep = udev->ep_out[i];
1849			if (ep)
1850				hcd->driver->drop_endpoint(hcd, udev, ep);
1851			ep = udev->ep_in[i];
1852			if (ep)
1853				hcd->driver->drop_endpoint(hcd, udev, ep);
1854		}
1855		hcd->driver->check_bandwidth(hcd, udev);
1856		return 0;
1857	}
1858	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1859	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1860	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1861	 * ok to exclude it.
1862	 */
1863	if (new_config) {
1864		num_intfs = new_config->desc.bNumInterfaces;
1865		/* Remove endpoints (except endpoint 0, which is always on the
1866		 * schedule) from the old config from the schedule
1867		 */
1868		for (i = 1; i < 16; ++i) {
1869			ep = udev->ep_out[i];
1870			if (ep) {
1871				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1872				if (ret < 0)
1873					goto reset;
1874			}
1875			ep = udev->ep_in[i];
1876			if (ep) {
1877				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1878				if (ret < 0)
1879					goto reset;
1880			}
1881		}
1882		for (i = 0; i < num_intfs; ++i) {
1883			struct usb_host_interface *first_alt;
1884			int iface_num;
1885
1886			first_alt = &new_config->intf_cache[i]->altsetting[0];
1887			iface_num = first_alt->desc.bInterfaceNumber;
1888			/* Set up endpoints for alternate interface setting 0 */
1889			alt = usb_find_alt_setting(new_config, iface_num, 0);
1890			if (!alt)
1891				/* No alt setting 0? Pick the first setting. */
1892				alt = first_alt;
1893
1894			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1895				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1896				if (ret < 0)
1897					goto reset;
1898			}
1899		}
1900	}
1901	if (cur_alt && new_alt) {
1902		struct usb_interface *iface = usb_ifnum_to_if(udev,
1903				cur_alt->desc.bInterfaceNumber);
1904
1905		if (!iface)
1906			return -EINVAL;
1907		if (iface->resetting_device) {
1908			/*
1909			 * The USB core just reset the device, so the xHCI host
1910			 * and the device will think alt setting 0 is installed.
1911			 * However, the USB core will pass in the alternate
1912			 * setting installed before the reset as cur_alt.  Dig
1913			 * out the alternate setting 0 structure, or the first
1914			 * alternate setting if a broken device doesn't have alt
1915			 * setting 0.
1916			 */
1917			cur_alt = usb_altnum_to_altsetting(iface, 0);
1918			if (!cur_alt)
1919				cur_alt = &iface->altsetting[0];
1920		}
1921
1922		/* Drop all the endpoints in the current alt setting */
1923		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1924			ret = hcd->driver->drop_endpoint(hcd, udev,
1925					&cur_alt->endpoint[i]);
1926			if (ret < 0)
1927				goto reset;
1928		}
1929		/* Add all the endpoints in the new alt setting */
1930		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1931			ret = hcd->driver->add_endpoint(hcd, udev,
1932					&new_alt->endpoint[i]);
1933			if (ret < 0)
1934				goto reset;
1935		}
1936	}
1937	ret = hcd->driver->check_bandwidth(hcd, udev);
1938reset:
1939	if (ret < 0)
1940		hcd->driver->reset_bandwidth(hcd, udev);
1941	return ret;
1942}
1943
1944/* Disables the endpoint: synchronizes with the hcd to make sure all
1945 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
1946 * have been called previously.  Use for set_configuration, set_interface,
1947 * driver removal, physical disconnect.
1948 *
1949 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
1950 * type, maxpacket size, toggle, halt status, and scheduling.
1951 */
1952void usb_hcd_disable_endpoint(struct usb_device *udev,
1953		struct usb_host_endpoint *ep)
1954{
1955	struct usb_hcd		*hcd;
1956
1957	might_sleep();
1958	hcd = bus_to_hcd(udev->bus);
1959	if (hcd->driver->endpoint_disable)
1960		hcd->driver->endpoint_disable(hcd, ep);
1961}
1962
1963/**
1964 * usb_hcd_reset_endpoint - reset host endpoint state
1965 * @udev: USB device.
1966 * @ep:   the endpoint to reset.
1967 *
1968 * Resets any host endpoint state such as the toggle bit, sequence
1969 * number and current window.
1970 */
1971void usb_hcd_reset_endpoint(struct usb_device *udev,
1972			    struct usb_host_endpoint *ep)
1973{
1974	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1975
1976	if (hcd->driver->endpoint_reset)
1977		hcd->driver->endpoint_reset(hcd, ep);
1978	else {
1979		int epnum = usb_endpoint_num(&ep->desc);
1980		int is_out = usb_endpoint_dir_out(&ep->desc);
1981		int is_control = usb_endpoint_xfer_control(&ep->desc);
1982
1983		usb_settoggle(udev, epnum, is_out, 0);
1984		if (is_control)
1985			usb_settoggle(udev, epnum, !is_out, 0);
1986	}
1987}
1988
1989/**
1990 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1991 * @interface:		alternate setting that includes all endpoints.
1992 * @eps:		array of endpoints that need streams.
1993 * @num_eps:		number of endpoints in the array.
1994 * @num_streams:	number of streams to allocate.
1995 * @mem_flags:		flags hcd should use to allocate memory.
1996 *
1997 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
1998 * Drivers may queue multiple transfers to different stream IDs, which may
1999 * complete in a different order than they were queued.
2000 *
2001 * Return: On success, the number of allocated streams. On failure, a negative
2002 * error code.
2003 */
2004int usb_alloc_streams(struct usb_interface *interface,
2005		struct usb_host_endpoint **eps, unsigned int num_eps,
2006		unsigned int num_streams, gfp_t mem_flags)
2007{
2008	struct usb_hcd *hcd;
2009	struct usb_device *dev;
2010	int i, ret;
2011
2012	dev = interface_to_usbdev(interface);
2013	hcd = bus_to_hcd(dev->bus);
2014	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2015		return -EINVAL;
2016	if (dev->speed < USB_SPEED_SUPER)
2017		return -EINVAL;
2018	if (dev->state < USB_STATE_CONFIGURED)
2019		return -ENODEV;
2020
2021	for (i = 0; i < num_eps; i++) {
2022		/* Streams only apply to bulk endpoints. */
2023		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2024			return -EINVAL;
2025		/* Re-alloc is not allowed */
2026		if (eps[i]->streams)
2027			return -EINVAL;
2028	}
2029
2030	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2031			num_streams, mem_flags);
2032	if (ret < 0)
2033		return ret;
2034
2035	for (i = 0; i < num_eps; i++)
2036		eps[i]->streams = ret;
2037
2038	return ret;
2039}
2040EXPORT_SYMBOL_GPL(usb_alloc_streams);
2041
2042/**
2043 * usb_free_streams - free bulk endpoint stream IDs.
2044 * @interface:	alternate setting that includes all endpoints.
2045 * @eps:	array of endpoints to remove streams from.
2046 * @num_eps:	number of endpoints in the array.
2047 * @mem_flags:	flags hcd should use to allocate memory.
2048 *
2049 * Reverts a group of bulk endpoints back to not using stream IDs.
2050 * Can fail if we are given bad arguments, or HCD is broken.
2051 *
2052 * Return: 0 on success. On failure, a negative error code.
2053 */
2054int usb_free_streams(struct usb_interface *interface,
2055		struct usb_host_endpoint **eps, unsigned int num_eps,
2056		gfp_t mem_flags)
2057{
2058	struct usb_hcd *hcd;
2059	struct usb_device *dev;
2060	int i, ret;
2061
2062	dev = interface_to_usbdev(interface);
2063	hcd = bus_to_hcd(dev->bus);
2064	if (dev->speed < USB_SPEED_SUPER)
2065		return -EINVAL;
2066
2067	/* Double-free is not allowed */
2068	for (i = 0; i < num_eps; i++)
2069		if (!eps[i] || !eps[i]->streams)
2070			return -EINVAL;
2071
2072	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2073	if (ret < 0)
2074		return ret;
2075
2076	for (i = 0; i < num_eps; i++)
2077		eps[i]->streams = 0;
2078
2079	return ret;
2080}
2081EXPORT_SYMBOL_GPL(usb_free_streams);
2082
2083/* Protect against drivers that try to unlink URBs after the device
2084 * is gone, by waiting until all unlinks for @udev are finished.
2085 * Since we don't currently track URBs by device, simply wait until
2086 * nothing is running in the locked region of usb_hcd_unlink_urb().
2087 */
2088void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2089{
2090	spin_lock_irq(&hcd_urb_unlink_lock);
2091	spin_unlock_irq(&hcd_urb_unlink_lock);
2092}
2093
2094/*-------------------------------------------------------------------------*/
2095
2096/* called in any context */
2097int usb_hcd_get_frame_number (struct usb_device *udev)
2098{
2099	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2100
2101	if (!HCD_RH_RUNNING(hcd))
2102		return -ESHUTDOWN;
2103	return hcd->driver->get_frame_number (hcd);
2104}
2105
2106/*-------------------------------------------------------------------------*/
2107
2108#ifdef	CONFIG_PM
2109
2110int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2111{
2112	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2113	int		status;
2114	int		old_state = hcd->state;
2115
2116	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2117			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2118			rhdev->do_remote_wakeup);
2119	if (HCD_DEAD(hcd)) {
2120		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2121		return 0;
2122	}
2123
2124	if (!hcd->driver->bus_suspend) {
2125		status = -ENOENT;
2126	} else {
2127		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2128		hcd->state = HC_STATE_QUIESCING;
2129		status = hcd->driver->bus_suspend(hcd);
2130	}
2131	if (status == 0) {
2132		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2133		hcd->state = HC_STATE_SUSPENDED;
2134
2135		if (!PMSG_IS_AUTO(msg))
2136			usb_phy_roothub_suspend(hcd->self.sysdev,
2137						hcd->phy_roothub);
2138
2139		/* Did we race with a root-hub wakeup event? */
2140		if (rhdev->do_remote_wakeup) {
2141			char	buffer[6];
2142
2143			status = hcd->driver->hub_status_data(hcd, buffer);
2144			if (status != 0) {
2145				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2146				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2147				status = -EBUSY;
2148			}
2149		}
2150	} else {
2151		spin_lock_irq(&hcd_root_hub_lock);
2152		if (!HCD_DEAD(hcd)) {
2153			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2154			hcd->state = old_state;
2155		}
2156		spin_unlock_irq(&hcd_root_hub_lock);
2157		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2158				"suspend", status);
2159	}
2160	return status;
2161}
2162
2163int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2164{
2165	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2166	int		status;
2167	int		old_state = hcd->state;
2168
2169	dev_dbg(&rhdev->dev, "usb %sresume\n",
2170			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2171	if (HCD_DEAD(hcd)) {
2172		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2173		return 0;
2174	}
2175
2176	if (!PMSG_IS_AUTO(msg)) {
2177		status = usb_phy_roothub_resume(hcd->self.sysdev,
2178						hcd->phy_roothub);
2179		if (status)
2180			return status;
2181	}
2182
2183	if (!hcd->driver->bus_resume)
2184		return -ENOENT;
2185	if (HCD_RH_RUNNING(hcd))
2186		return 0;
2187
2188	hcd->state = HC_STATE_RESUMING;
2189	status = hcd->driver->bus_resume(hcd);
2190	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2191	if (status == 0)
2192		status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2193
2194	if (status == 0) {
2195		struct usb_device *udev;
2196		int port1;
2197
2198		spin_lock_irq(&hcd_root_hub_lock);
2199		if (!HCD_DEAD(hcd)) {
2200			usb_set_device_state(rhdev, rhdev->actconfig
2201					? USB_STATE_CONFIGURED
2202					: USB_STATE_ADDRESS);
2203			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2204			hcd->state = HC_STATE_RUNNING;
2205		}
2206		spin_unlock_irq(&hcd_root_hub_lock);
2207
2208		/*
2209		 * Check whether any of the enabled ports on the root hub are
2210		 * unsuspended.  If they are then a TRSMRCY delay is needed
2211		 * (this is what the USB-2 spec calls a "global resume").
2212		 * Otherwise we can skip the delay.
2213		 */
2214		usb_hub_for_each_child(rhdev, port1, udev) {
2215			if (udev->state != USB_STATE_NOTATTACHED &&
2216					!udev->port_is_suspended) {
2217				usleep_range(10000, 11000);	/* TRSMRCY */
2218				break;
2219			}
2220		}
2221	} else {
2222		hcd->state = old_state;
2223		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2224		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2225				"resume", status);
2226		if (status != -ESHUTDOWN)
2227			usb_hc_died(hcd);
2228	}
2229	return status;
2230}
2231
2232/* Workqueue routine for root-hub remote wakeup */
2233static void hcd_resume_work(struct work_struct *work)
2234{
2235	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2236	struct usb_device *udev = hcd->self.root_hub;
2237
2238	usb_remote_wakeup(udev);
2239}
2240
2241/**
2242 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2243 * @hcd: host controller for this root hub
2244 *
2245 * The USB host controller calls this function when its root hub is
2246 * suspended (with the remote wakeup feature enabled) and a remote
2247 * wakeup request is received.  The routine submits a workqueue request
2248 * to resume the root hub (that is, manage its downstream ports again).
2249 */
2250void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2251{
2252	unsigned long flags;
2253
2254	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2255	if (hcd->rh_registered) {
2256		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2257		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2258		queue_work(pm_wq, &hcd->wakeup_work);
2259	}
2260	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2261}
2262EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2263
2264#endif	/* CONFIG_PM */
2265
2266/*-------------------------------------------------------------------------*/
2267
2268#ifdef	CONFIG_USB_OTG
2269
2270/**
2271 * usb_bus_start_enum - start immediate enumeration (for OTG)
2272 * @bus: the bus (must use hcd framework)
2273 * @port_num: 1-based number of port; usually bus->otg_port
2274 * Context: in_interrupt()
2275 *
2276 * Starts enumeration, with an immediate reset followed later by
2277 * hub_wq identifying and possibly configuring the device.
2278 * This is needed by OTG controller drivers, where it helps meet
2279 * HNP protocol timing requirements for starting a port reset.
2280 *
2281 * Return: 0 if successful.
2282 */
2283int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2284{
2285	struct usb_hcd		*hcd;
2286	int			status = -EOPNOTSUPP;
2287
2288	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2289	 * boards with root hubs hooked up to internal devices (instead of
2290	 * just the OTG port) may need more attention to resetting...
2291	 */
2292	hcd = bus_to_hcd(bus);
2293	if (port_num && hcd->driver->start_port_reset)
2294		status = hcd->driver->start_port_reset(hcd, port_num);
2295
2296	/* allocate hub_wq shortly after (first) root port reset finishes;
2297	 * it may issue others, until at least 50 msecs have passed.
2298	 */
2299	if (status == 0)
2300		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2301	return status;
2302}
2303EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2304
2305#endif
2306
2307/*-------------------------------------------------------------------------*/
2308
2309/**
2310 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2311 * @irq: the IRQ being raised
2312 * @__hcd: pointer to the HCD whose IRQ is being signaled
2313 *
2314 * If the controller isn't HALTed, calls the driver's irq handler.
2315 * Checks whether the controller is now dead.
2316 *
2317 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2318 */
2319irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2320{
2321	struct usb_hcd		*hcd = __hcd;
2322	irqreturn_t		rc;
2323
2324	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2325		rc = IRQ_NONE;
2326	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2327		rc = IRQ_NONE;
2328	else
2329		rc = IRQ_HANDLED;
2330
2331	return rc;
2332}
2333EXPORT_SYMBOL_GPL(usb_hcd_irq);
2334
2335/*-------------------------------------------------------------------------*/
2336
2337/* Workqueue routine for when the root-hub has died. */
2338static void hcd_died_work(struct work_struct *work)
2339{
2340	struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2341	static char *env[] = {
2342		"ERROR=DEAD",
2343		NULL
2344	};
2345
2346	/* Notify user space that the host controller has died */
2347	kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2348}
2349
2350/**
2351 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2352 * @hcd: pointer to the HCD representing the controller
2353 *
2354 * This is called by bus glue to report a USB host controller that died
2355 * while operations may still have been pending.  It's called automatically
2356 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2357 *
2358 * Only call this function with the primary HCD.
2359 */
2360void usb_hc_died (struct usb_hcd *hcd)
2361{
2362	unsigned long flags;
2363
2364	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2365
2366	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2368	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2369	if (hcd->rh_registered) {
2370		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2371
2372		/* make hub_wq clean up old urbs and devices */
2373		usb_set_device_state (hcd->self.root_hub,
2374				USB_STATE_NOTATTACHED);
2375		usb_kick_hub_wq(hcd->self.root_hub);
2376	}
2377	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2378		hcd = hcd->shared_hcd;
2379		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2380		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2381		if (hcd->rh_registered) {
2382			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2383
2384			/* make hub_wq clean up old urbs and devices */
2385			usb_set_device_state(hcd->self.root_hub,
2386					USB_STATE_NOTATTACHED);
2387			usb_kick_hub_wq(hcd->self.root_hub);
2388		}
2389	}
2390
2391	/* Handle the case where this function gets called with a shared HCD */
2392	if (usb_hcd_is_primary_hcd(hcd))
2393		schedule_work(&hcd->died_work);
2394	else
2395		schedule_work(&hcd->primary_hcd->died_work);
2396
2397	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2398	/* Make sure that the other roothub is also deallocated. */
2399}
2400EXPORT_SYMBOL_GPL (usb_hc_died);
2401
2402/*-------------------------------------------------------------------------*/
2403
2404static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2405{
2406
2407	spin_lock_init(&bh->lock);
2408	INIT_LIST_HEAD(&bh->head);
2409	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2410}
2411
2412struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2413		struct device *sysdev, struct device *dev, const char *bus_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2414		struct usb_hcd *primary_hcd)
2415{
2416	struct usb_hcd *hcd;
2417
2418	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2419	if (!hcd)
2420		return NULL;
2421	if (primary_hcd == NULL) {
2422		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2423				GFP_KERNEL);
2424		if (!hcd->address0_mutex) {
2425			kfree(hcd);
2426			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2427			return NULL;
2428		}
2429		mutex_init(hcd->address0_mutex);
2430		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2431				GFP_KERNEL);
2432		if (!hcd->bandwidth_mutex) {
2433			kfree(hcd->address0_mutex);
2434			kfree(hcd);
2435			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2436			return NULL;
2437		}
2438		mutex_init(hcd->bandwidth_mutex);
2439		dev_set_drvdata(dev, hcd);
2440	} else {
2441		mutex_lock(&usb_port_peer_mutex);
2442		hcd->address0_mutex = primary_hcd->address0_mutex;
2443		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2444		hcd->primary_hcd = primary_hcd;
2445		primary_hcd->primary_hcd = primary_hcd;
2446		hcd->shared_hcd = primary_hcd;
2447		primary_hcd->shared_hcd = hcd;
2448		mutex_unlock(&usb_port_peer_mutex);
2449	}
2450
2451	kref_init(&hcd->kref);
2452
2453	usb_bus_init(&hcd->self);
2454	hcd->self.controller = dev;
2455	hcd->self.sysdev = sysdev;
2456	hcd->self.bus_name = bus_name;
 
2457
2458	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
 
 
2459#ifdef CONFIG_PM
2460	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2461#endif
2462
2463	INIT_WORK(&hcd->died_work, hcd_died_work);
2464
2465	hcd->driver = driver;
2466	hcd->speed = driver->flags & HCD_MASK;
2467	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2468			"USB Host Controller";
2469	return hcd;
2470}
2471EXPORT_SYMBOL_GPL(__usb_create_hcd);
2472
2473/**
2474 * usb_create_shared_hcd - create and initialize an HCD structure
2475 * @driver: HC driver that will use this hcd
2476 * @dev: device for this HC, stored in hcd->self.controller
2477 * @bus_name: value to store in hcd->self.bus_name
2478 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2479 *              PCI device.  Only allocate certain resources for the primary HCD
2480 * Context: !in_interrupt()
2481 *
2482 * Allocate a struct usb_hcd, with extra space at the end for the
2483 * HC driver's private data.  Initialize the generic members of the
2484 * hcd structure.
2485 *
2486 * Return: On success, a pointer to the created and initialized HCD structure.
2487 * On failure (e.g. if memory is unavailable), %NULL.
2488 */
2489struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2490		struct device *dev, const char *bus_name,
2491		struct usb_hcd *primary_hcd)
2492{
2493	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2494}
2495EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2496
2497/**
2498 * usb_create_hcd - create and initialize an HCD structure
2499 * @driver: HC driver that will use this hcd
2500 * @dev: device for this HC, stored in hcd->self.controller
2501 * @bus_name: value to store in hcd->self.bus_name
2502 * Context: !in_interrupt()
2503 *
2504 * Allocate a struct usb_hcd, with extra space at the end for the
2505 * HC driver's private data.  Initialize the generic members of the
2506 * hcd structure.
2507 *
2508 * Return: On success, a pointer to the created and initialized HCD
2509 * structure. On failure (e.g. if memory is unavailable), %NULL.
2510 */
2511struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2512		struct device *dev, const char *bus_name)
2513{
2514	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2515}
2516EXPORT_SYMBOL_GPL(usb_create_hcd);
2517
2518/*
2519 * Roothubs that share one PCI device must also share the bandwidth mutex.
2520 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2521 * deallocated.
2522 *
2523 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2524 * freed.  When hcd_release() is called for either hcd in a peer set,
2525 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2526 */
2527static void hcd_release(struct kref *kref)
2528{
2529	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2530
2531	mutex_lock(&usb_port_peer_mutex);
2532	if (hcd->shared_hcd) {
2533		struct usb_hcd *peer = hcd->shared_hcd;
2534
2535		peer->shared_hcd = NULL;
2536		peer->primary_hcd = NULL;
2537	} else {
2538		kfree(hcd->address0_mutex);
2539		kfree(hcd->bandwidth_mutex);
2540	}
2541	mutex_unlock(&usb_port_peer_mutex);
2542	kfree(hcd);
2543}
2544
2545struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2546{
2547	if (hcd)
2548		kref_get (&hcd->kref);
2549	return hcd;
2550}
2551EXPORT_SYMBOL_GPL(usb_get_hcd);
2552
2553void usb_put_hcd (struct usb_hcd *hcd)
2554{
2555	if (hcd)
2556		kref_put (&hcd->kref, hcd_release);
2557}
2558EXPORT_SYMBOL_GPL(usb_put_hcd);
2559
2560int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2561{
2562	if (!hcd->primary_hcd)
2563		return 1;
2564	return hcd == hcd->primary_hcd;
2565}
2566EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2567
2568int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2569{
2570	if (!hcd->driver->find_raw_port_number)
2571		return port1;
2572
2573	return hcd->driver->find_raw_port_number(hcd, port1);
2574}
2575
2576static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2577		unsigned int irqnum, unsigned long irqflags)
2578{
2579	int retval;
2580
2581	if (hcd->driver->irq) {
2582
2583		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2584				hcd->driver->description, hcd->self.busnum);
2585		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2586				hcd->irq_descr, hcd);
2587		if (retval != 0) {
2588			dev_err(hcd->self.controller,
2589					"request interrupt %d failed\n",
2590					irqnum);
2591			return retval;
2592		}
2593		hcd->irq = irqnum;
2594		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2595				(hcd->driver->flags & HCD_MEMORY) ?
2596					"io mem" : "io base",
2597					(unsigned long long)hcd->rsrc_start);
2598	} else {
2599		hcd->irq = 0;
2600		if (hcd->rsrc_start)
2601			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2602					(hcd->driver->flags & HCD_MEMORY) ?
2603					"io mem" : "io base",
2604					(unsigned long long)hcd->rsrc_start);
2605	}
2606	return 0;
2607}
2608
2609/*
2610 * Before we free this root hub, flush in-flight peering attempts
2611 * and disable peer lookups
2612 */
2613static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2614{
2615	struct usb_device *rhdev;
2616
2617	mutex_lock(&usb_port_peer_mutex);
2618	rhdev = hcd->self.root_hub;
2619	hcd->self.root_hub = NULL;
2620	mutex_unlock(&usb_port_peer_mutex);
2621	usb_put_dev(rhdev);
2622}
2623
2624/**
2625 * usb_add_hcd - finish generic HCD structure initialization and register
2626 * @hcd: the usb_hcd structure to initialize
2627 * @irqnum: Interrupt line to allocate
2628 * @irqflags: Interrupt type flags
2629 *
2630 * Finish the remaining parts of generic HCD initialization: allocate the
2631 * buffers of consistent memory, register the bus, request the IRQ line,
2632 * and call the driver's reset() and start() routines.
2633 */
2634int usb_add_hcd(struct usb_hcd *hcd,
2635		unsigned int irqnum, unsigned long irqflags)
2636{
2637	int retval;
2638	struct usb_device *rhdev;
2639
2640	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2641		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2642		if (IS_ERR(hcd->phy_roothub))
2643			return PTR_ERR(hcd->phy_roothub);
2644
2645		retval = usb_phy_roothub_init(hcd->phy_roothub);
2646		if (retval)
2647			return retval;
 
 
 
 
 
 
 
 
 
 
 
2648
2649		retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2650						  PHY_MODE_USB_HOST_SS);
2651		if (retval)
2652			retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2653							  PHY_MODE_USB_HOST);
2654		if (retval)
2655			goto err_usb_phy_roothub_power_on;
2656
2657		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2658		if (retval)
2659			goto err_usb_phy_roothub_power_on;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2660	}
2661
2662	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2663
2664	switch (authorized_default) {
2665	case USB_AUTHORIZE_NONE:
2666		hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2667		break;
2668
2669	case USB_AUTHORIZE_ALL:
2670		hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2671		break;
2672
2673	case USB_AUTHORIZE_INTERNAL:
2674		hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2675		break;
2676
2677	case USB_AUTHORIZE_WIRED:
2678	default:
2679		hcd->dev_policy = hcd->wireless ?
2680			USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2681		break;
2682	}
2683
2684	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2685
2686	/* per default all interfaces are authorized */
2687	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2688
2689	/* HC is in reset state, but accessible.  Now do the one-time init,
2690	 * bottom up so that hcds can customize the root hubs before hub_wq
2691	 * starts talking to them.  (Note, bus id is assigned early too.)
2692	 */
2693	retval = hcd_buffer_create(hcd);
2694	if (retval != 0) {
2695		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2696		goto err_create_buf;
2697	}
2698
2699	retval = usb_register_bus(&hcd->self);
2700	if (retval < 0)
2701		goto err_register_bus;
2702
2703	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2704	if (rhdev == NULL) {
2705		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2706		retval = -ENOMEM;
2707		goto err_allocate_root_hub;
2708	}
2709	mutex_lock(&usb_port_peer_mutex);
2710	hcd->self.root_hub = rhdev;
2711	mutex_unlock(&usb_port_peer_mutex);
2712
2713	rhdev->rx_lanes = 1;
2714	rhdev->tx_lanes = 1;
2715
2716	switch (hcd->speed) {
2717	case HCD_USB11:
2718		rhdev->speed = USB_SPEED_FULL;
2719		break;
2720	case HCD_USB2:
2721		rhdev->speed = USB_SPEED_HIGH;
2722		break;
2723	case HCD_USB25:
2724		rhdev->speed = USB_SPEED_WIRELESS;
2725		break;
2726	case HCD_USB3:
2727		rhdev->speed = USB_SPEED_SUPER;
2728		break;
2729	case HCD_USB32:
2730		rhdev->rx_lanes = 2;
2731		rhdev->tx_lanes = 2;
2732		/* fall through */
2733	case HCD_USB31:
2734		rhdev->speed = USB_SPEED_SUPER_PLUS;
2735		break;
2736	default:
2737		retval = -EINVAL;
2738		goto err_set_rh_speed;
2739	}
2740
2741	/* wakeup flag init defaults to "everything works" for root hubs,
2742	 * but drivers can override it in reset() if needed, along with
2743	 * recording the overall controller's system wakeup capability.
2744	 */
2745	device_set_wakeup_capable(&rhdev->dev, 1);
2746
2747	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2748	 * registered.  But since the controller can die at any time,
2749	 * let's initialize the flag before touching the hardware.
2750	 */
2751	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2752
2753	/* "reset" is misnamed; its role is now one-time init. the controller
2754	 * should already have been reset (and boot firmware kicked off etc).
2755	 */
2756	if (hcd->driver->reset) {
2757		retval = hcd->driver->reset(hcd);
2758		if (retval < 0) {
2759			dev_err(hcd->self.controller, "can't setup: %d\n",
2760					retval);
2761			goto err_hcd_driver_setup;
2762		}
2763	}
2764	hcd->rh_pollable = 1;
2765
2766	retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2767	if (retval)
2768		goto err_hcd_driver_setup;
2769
2770	/* NOTE: root hub and controller capabilities may not be the same */
2771	if (device_can_wakeup(hcd->self.controller)
2772			&& device_can_wakeup(&hcd->self.root_hub->dev))
2773		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2774
2775	/* initialize tasklets */
2776	init_giveback_urb_bh(&hcd->high_prio_bh);
2777	init_giveback_urb_bh(&hcd->low_prio_bh);
2778
2779	/* enable irqs just before we start the controller,
2780	 * if the BIOS provides legacy PCI irqs.
2781	 */
2782	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2783		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2784		if (retval)
2785			goto err_request_irq;
2786	}
2787
2788	hcd->state = HC_STATE_RUNNING;
2789	retval = hcd->driver->start(hcd);
2790	if (retval < 0) {
2791		dev_err(hcd->self.controller, "startup error %d\n", retval);
2792		goto err_hcd_driver_start;
2793	}
2794
2795	/* starting here, usbcore will pay attention to this root hub */
2796	retval = register_root_hub(hcd);
2797	if (retval != 0)
2798		goto err_register_root_hub;
2799
 
 
 
 
 
 
2800	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2801		usb_hcd_poll_rh_status(hcd);
2802
2803	return retval;
2804
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2805err_register_root_hub:
2806	hcd->rh_pollable = 0;
2807	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2808	del_timer_sync(&hcd->rh_timer);
2809	hcd->driver->stop(hcd);
2810	hcd->state = HC_STATE_HALT;
2811	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2812	del_timer_sync(&hcd->rh_timer);
2813err_hcd_driver_start:
2814	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2815		free_irq(irqnum, hcd);
2816err_request_irq:
2817err_hcd_driver_setup:
2818err_set_rh_speed:
2819	usb_put_invalidate_rhdev(hcd);
2820err_allocate_root_hub:
2821	usb_deregister_bus(&hcd->self);
2822err_register_bus:
2823	hcd_buffer_destroy(hcd);
2824err_create_buf:
2825	usb_phy_roothub_power_off(hcd->phy_roothub);
2826err_usb_phy_roothub_power_on:
2827	usb_phy_roothub_exit(hcd->phy_roothub);
2828
 
 
 
 
 
 
 
 
2829	return retval;
2830}
2831EXPORT_SYMBOL_GPL(usb_add_hcd);
2832
2833/**
2834 * usb_remove_hcd - shutdown processing for generic HCDs
2835 * @hcd: the usb_hcd structure to remove
2836 * Context: !in_interrupt()
2837 *
2838 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2839 * invoking the HCD's stop() method.
2840 */
2841void usb_remove_hcd(struct usb_hcd *hcd)
2842{
2843	struct usb_device *rhdev = hcd->self.root_hub;
2844
2845	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2846
2847	usb_get_dev(rhdev);
 
 
2848	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2849	if (HC_IS_RUNNING (hcd->state))
2850		hcd->state = HC_STATE_QUIESCING;
2851
2852	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2853	spin_lock_irq (&hcd_root_hub_lock);
2854	hcd->rh_registered = 0;
2855	spin_unlock_irq (&hcd_root_hub_lock);
2856
2857#ifdef CONFIG_PM
2858	cancel_work_sync(&hcd->wakeup_work);
2859#endif
2860	cancel_work_sync(&hcd->died_work);
2861
2862	mutex_lock(&usb_bus_idr_lock);
2863	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2864	mutex_unlock(&usb_bus_idr_lock);
2865
2866	/*
2867	 * tasklet_kill() isn't needed here because:
2868	 * - driver's disconnect() called from usb_disconnect() should
2869	 *   make sure its URBs are completed during the disconnect()
2870	 *   callback
2871	 *
2872	 * - it is too late to run complete() here since driver may have
2873	 *   been removed already now
2874	 */
2875
2876	/* Prevent any more root-hub status calls from the timer.
2877	 * The HCD might still restart the timer (if a port status change
2878	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2879	 * the hub_status_data() callback.
2880	 */
2881	hcd->rh_pollable = 0;
2882	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2883	del_timer_sync(&hcd->rh_timer);
2884
2885	hcd->driver->stop(hcd);
2886	hcd->state = HC_STATE_HALT;
2887
2888	/* In case the HCD restarted the timer, stop it again. */
2889	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2890	del_timer_sync(&hcd->rh_timer);
2891
2892	if (usb_hcd_is_primary_hcd(hcd)) {
2893		if (hcd->irq > 0)
2894			free_irq(hcd->irq, hcd);
2895	}
2896
2897	usb_deregister_bus(&hcd->self);
2898	hcd_buffer_destroy(hcd);
2899
2900	usb_phy_roothub_power_off(hcd->phy_roothub);
2901	usb_phy_roothub_exit(hcd->phy_roothub);
 
 
 
 
 
 
 
 
 
2902
2903	usb_put_invalidate_rhdev(hcd);
2904	hcd->flags = 0;
2905}
2906EXPORT_SYMBOL_GPL(usb_remove_hcd);
2907
2908void
2909usb_hcd_platform_shutdown(struct platform_device *dev)
2910{
2911	struct usb_hcd *hcd = platform_get_drvdata(dev);
2912
2913	/* No need for pm_runtime_put(), we're shutting down */
2914	pm_runtime_get_sync(&dev->dev);
2915
2916	if (hcd->driver->shutdown)
2917		hcd->driver->shutdown(hcd);
2918}
2919EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2920
2921int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
2922			    dma_addr_t dma, size_t size)
2923{
2924	int err;
2925	void *local_mem;
2926
2927	hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
2928						  dev_to_node(hcd->self.sysdev),
2929						  dev_name(hcd->self.sysdev));
2930	if (IS_ERR(hcd->localmem_pool))
2931		return PTR_ERR(hcd->localmem_pool);
2932
2933	local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
2934				  size, MEMREMAP_WC);
2935	if (IS_ERR(local_mem))
2936		return PTR_ERR(local_mem);
2937
2938	/*
2939	 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
2940	 * It's not backed by system memory and thus there's no kernel mapping
2941	 * for it.
2942	 */
2943	err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
2944				dma, size, dev_to_node(hcd->self.sysdev));
2945	if (err < 0) {
2946		dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
2947			err);
2948		return err;
2949	}
2950
2951	return 0;
2952}
2953EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
2954
2955/*-------------------------------------------------------------------------*/
2956
2957#if IS_ENABLED(CONFIG_USB_MON)
2958
2959const struct usb_mon_operations *mon_ops;
2960
2961/*
2962 * The registration is unlocked.
2963 * We do it this way because we do not want to lock in hot paths.
2964 *
2965 * Notice that the code is minimally error-proof. Because usbmon needs
2966 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2967 */
2968
2969int usb_mon_register(const struct usb_mon_operations *ops)
2970{
2971
2972	if (mon_ops)
2973		return -EBUSY;
2974
2975	mon_ops = ops;
2976	mb();
2977	return 0;
2978}
2979EXPORT_SYMBOL_GPL (usb_mon_register);
2980
2981void usb_mon_deregister (void)
2982{
2983
2984	if (mon_ops == NULL) {
2985		printk(KERN_ERR "USB: monitor was not registered\n");
2986		return;
2987	}
2988	mon_ops = NULL;
2989	mb();
2990}
2991EXPORT_SYMBOL_GPL (usb_mon_deregister);
2992
2993#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */