Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 * (C) Copyright Linus Torvalds 1999
   3 * (C) Copyright Johannes Erdfelt 1999-2001
   4 * (C) Copyright Andreas Gal 1999
   5 * (C) Copyright Gregory P. Smith 1999
   6 * (C) Copyright Deti Fliegl 1999
   7 * (C) Copyright Randy Dunlap 2000
   8 * (C) Copyright David Brownell 2000-2002
   9 *
  10 * This program is free software; you can redistribute it and/or modify it
  11 * under the terms of the GNU General Public License as published by the
  12 * Free Software Foundation; either version 2 of the License, or (at your
  13 * option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
  17 * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  18 * for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software Foundation,
  22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bcd.h>
  26#include <linux/module.h>
  27#include <linux/version.h>
  28#include <linux/kernel.h>
 
  29#include <linux/slab.h>
  30#include <linux/completion.h>
  31#include <linux/utsname.h>
  32#include <linux/mm.h>
  33#include <asm/io.h>
  34#include <linux/device.h>
  35#include <linux/dma-mapping.h>
  36#include <linux/mutex.h>
  37#include <asm/irq.h>
  38#include <asm/byteorder.h>
  39#include <asm/unaligned.h>
  40#include <linux/platform_device.h>
  41#include <linux/workqueue.h>
  42#include <linux/pm_runtime.h>
  43#include <linux/types.h>
  44
  45#include <linux/phy/phy.h>
  46#include <linux/usb.h>
  47#include <linux/usb/hcd.h>
  48#include <linux/usb/phy.h>
  49#include <linux/usb/otg.h>
  50
  51#include "usb.h"
 
  52
  53
  54/*-------------------------------------------------------------------------*/
  55
  56/*
  57 * USB Host Controller Driver framework
  58 *
  59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  60 * HCD-specific behaviors/bugs.
  61 *
  62 * This does error checks, tracks devices and urbs, and delegates to a
  63 * "hc_driver" only for code (and data) that really needs to know about
  64 * hardware differences.  That includes root hub registers, i/o queues,
  65 * and so on ... but as little else as possible.
  66 *
  67 * Shared code includes most of the "root hub" code (these are emulated,
  68 * though each HC's hardware works differently) and PCI glue, plus request
  69 * tracking overhead.  The HCD code should only block on spinlocks or on
  70 * hardware handshaking; blocking on software events (such as other kernel
  71 * threads releasing resources, or completing actions) is all generic.
  72 *
  73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  75 * only by the hub driver ... and that neither should be seen or used by
  76 * usb client device drivers.
  77 *
  78 * Contributors of ideas or unattributed patches include: David Brownell,
  79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  80 *
  81 * HISTORY:
  82 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  83 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  84 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  85 */
  86
  87/*-------------------------------------------------------------------------*/
  88
  89/* Keep track of which host controller drivers are loaded */
  90unsigned long usb_hcds_loaded;
  91EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  92
  93/* host controllers we manage */
  94DEFINE_IDR (usb_bus_idr);
  95EXPORT_SYMBOL_GPL (usb_bus_idr);
  96
  97/* used when allocating bus numbers */
  98#define USB_MAXBUS		64
  99
 100/* used when updating list of hcds */
 101DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
 102EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
 103
 104/* used for controlling access to virtual root hubs */
 105static DEFINE_SPINLOCK(hcd_root_hub_lock);
 106
 107/* used when updating an endpoint's URB list */
 108static DEFINE_SPINLOCK(hcd_urb_list_lock);
 109
 110/* used to protect against unlinking URBs after the device is gone */
 111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 112
 113/* wait queue for synchronous unlinks */
 114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 115
 116static inline int is_root_hub(struct usb_device *udev)
 117{
 118	return (udev->parent == NULL);
 119}
 120
 121/*-------------------------------------------------------------------------*/
 122
 123/*
 124 * Sharable chunks of root hub code.
 125 */
 126
 127/*-------------------------------------------------------------------------*/
 128#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 129#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 130
 131/* usb 3.1 root hub device descriptor */
 132static const u8 usb31_rh_dev_descriptor[18] = {
 133	0x12,       /*  __u8  bLength; */
 134	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 135	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 136
 137	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 138	0x00,	    /*  __u8  bDeviceSubClass; */
 139	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 140	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 141
 142	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 143	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 144	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 145
 146	0x03,       /*  __u8  iManufacturer; */
 147	0x02,       /*  __u8  iProduct; */
 148	0x01,       /*  __u8  iSerialNumber; */
 149	0x01        /*  __u8  bNumConfigurations; */
 150};
 151
 152/* usb 3.0 root hub device descriptor */
 153static const u8 usb3_rh_dev_descriptor[18] = {
 154	0x12,       /*  __u8  bLength; */
 155	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 156	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 157
 158	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 159	0x00,	    /*  __u8  bDeviceSubClass; */
 160	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 161	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 162
 163	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 164	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 165	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 166
 167	0x03,       /*  __u8  iManufacturer; */
 168	0x02,       /*  __u8  iProduct; */
 169	0x01,       /*  __u8  iSerialNumber; */
 170	0x01        /*  __u8  bNumConfigurations; */
 171};
 172
 173/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 174static const u8 usb25_rh_dev_descriptor[18] = {
 175	0x12,       /*  __u8  bLength; */
 176	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 177	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 178
 179	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 180	0x00,	    /*  __u8  bDeviceSubClass; */
 181	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 182	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 183
 184	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 185	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 186	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 187
 188	0x03,       /*  __u8  iManufacturer; */
 189	0x02,       /*  __u8  iProduct; */
 190	0x01,       /*  __u8  iSerialNumber; */
 191	0x01        /*  __u8  bNumConfigurations; */
 192};
 193
 194/* usb 2.0 root hub device descriptor */
 195static const u8 usb2_rh_dev_descriptor[18] = {
 196	0x12,       /*  __u8  bLength; */
 197	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 198	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 199
 200	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 201	0x00,	    /*  __u8  bDeviceSubClass; */
 202	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 203	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 204
 205	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 206	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 207	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 208
 209	0x03,       /*  __u8  iManufacturer; */
 210	0x02,       /*  __u8  iProduct; */
 211	0x01,       /*  __u8  iSerialNumber; */
 212	0x01        /*  __u8  bNumConfigurations; */
 213};
 214
 215/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 216
 217/* usb 1.1 root hub device descriptor */
 218static const u8 usb11_rh_dev_descriptor[18] = {
 219	0x12,       /*  __u8  bLength; */
 220	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 221	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 222
 223	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 224	0x00,	    /*  __u8  bDeviceSubClass; */
 225	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 226	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 227
 228	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 229	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 230	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 231
 232	0x03,       /*  __u8  iManufacturer; */
 233	0x02,       /*  __u8  iProduct; */
 234	0x01,       /*  __u8  iSerialNumber; */
 235	0x01        /*  __u8  bNumConfigurations; */
 236};
 237
 238
 239/*-------------------------------------------------------------------------*/
 240
 241/* Configuration descriptors for our root hubs */
 242
 243static const u8 fs_rh_config_descriptor[] = {
 244
 245	/* one configuration */
 246	0x09,       /*  __u8  bLength; */
 247	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 248	0x19, 0x00, /*  __le16 wTotalLength; */
 249	0x01,       /*  __u8  bNumInterfaces; (1) */
 250	0x01,       /*  __u8  bConfigurationValue; */
 251	0x00,       /*  __u8  iConfiguration; */
 252	0xc0,       /*  __u8  bmAttributes;
 253				 Bit 7: must be set,
 254				     6: Self-powered,
 255				     5: Remote wakeup,
 256				     4..0: resvd */
 257	0x00,       /*  __u8  MaxPower; */
 258
 259	/* USB 1.1:
 260	 * USB 2.0, single TT organization (mandatory):
 261	 *	one interface, protocol 0
 262	 *
 263	 * USB 2.0, multiple TT organization (optional):
 264	 *	two interfaces, protocols 1 (like single TT)
 265	 *	and 2 (multiple TT mode) ... config is
 266	 *	sometimes settable
 267	 *	NOT IMPLEMENTED
 268	 */
 269
 270	/* one interface */
 271	0x09,       /*  __u8  if_bLength; */
 272	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 273	0x00,       /*  __u8  if_bInterfaceNumber; */
 274	0x00,       /*  __u8  if_bAlternateSetting; */
 275	0x01,       /*  __u8  if_bNumEndpoints; */
 276	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 277	0x00,       /*  __u8  if_bInterfaceSubClass; */
 278	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 279	0x00,       /*  __u8  if_iInterface; */
 280
 281	/* one endpoint (status change endpoint) */
 282	0x07,       /*  __u8  ep_bLength; */
 283	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 284	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 285	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 286	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 287	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 288};
 289
 290static const u8 hs_rh_config_descriptor[] = {
 291
 292	/* one configuration */
 293	0x09,       /*  __u8  bLength; */
 294	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 295	0x19, 0x00, /*  __le16 wTotalLength; */
 296	0x01,       /*  __u8  bNumInterfaces; (1) */
 297	0x01,       /*  __u8  bConfigurationValue; */
 298	0x00,       /*  __u8  iConfiguration; */
 299	0xc0,       /*  __u8  bmAttributes;
 300				 Bit 7: must be set,
 301				     6: Self-powered,
 302				     5: Remote wakeup,
 303				     4..0: resvd */
 304	0x00,       /*  __u8  MaxPower; */
 305
 306	/* USB 1.1:
 307	 * USB 2.0, single TT organization (mandatory):
 308	 *	one interface, protocol 0
 309	 *
 310	 * USB 2.0, multiple TT organization (optional):
 311	 *	two interfaces, protocols 1 (like single TT)
 312	 *	and 2 (multiple TT mode) ... config is
 313	 *	sometimes settable
 314	 *	NOT IMPLEMENTED
 315	 */
 316
 317	/* one interface */
 318	0x09,       /*  __u8  if_bLength; */
 319	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 320	0x00,       /*  __u8  if_bInterfaceNumber; */
 321	0x00,       /*  __u8  if_bAlternateSetting; */
 322	0x01,       /*  __u8  if_bNumEndpoints; */
 323	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 324	0x00,       /*  __u8  if_bInterfaceSubClass; */
 325	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 326	0x00,       /*  __u8  if_iInterface; */
 327
 328	/* one endpoint (status change endpoint) */
 329	0x07,       /*  __u8  ep_bLength; */
 330	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 331	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 332	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 333		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 334		     * see hub.c:hub_configure() for details. */
 335	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 336	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 337};
 338
 339static const u8 ss_rh_config_descriptor[] = {
 340	/* one configuration */
 341	0x09,       /*  __u8  bLength; */
 342	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 343	0x1f, 0x00, /*  __le16 wTotalLength; */
 344	0x01,       /*  __u8  bNumInterfaces; (1) */
 345	0x01,       /*  __u8  bConfigurationValue; */
 346	0x00,       /*  __u8  iConfiguration; */
 347	0xc0,       /*  __u8  bmAttributes;
 348				 Bit 7: must be set,
 349				     6: Self-powered,
 350				     5: Remote wakeup,
 351				     4..0: resvd */
 352	0x00,       /*  __u8  MaxPower; */
 353
 354	/* one interface */
 355	0x09,       /*  __u8  if_bLength; */
 356	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 357	0x00,       /*  __u8  if_bInterfaceNumber; */
 358	0x00,       /*  __u8  if_bAlternateSetting; */
 359	0x01,       /*  __u8  if_bNumEndpoints; */
 360	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 361	0x00,       /*  __u8  if_bInterfaceSubClass; */
 362	0x00,       /*  __u8  if_bInterfaceProtocol; */
 363	0x00,       /*  __u8  if_iInterface; */
 364
 365	/* one endpoint (status change endpoint) */
 366	0x07,       /*  __u8  ep_bLength; */
 367	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 368	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 369	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 370		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 371		     * see hub.c:hub_configure() for details. */
 372	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 373	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 374
 375	/* one SuperSpeed endpoint companion descriptor */
 376	0x06,        /* __u8 ss_bLength */
 377	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 378		     /* Companion */
 379	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 380	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 381	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 382};
 383
 384/* authorized_default behaviour:
 385 * -1 is authorized for all devices except wireless (old behaviour)
 386 * 0 is unauthorized for all devices
 387 * 1 is authorized for all devices
 388 */
 389static int authorized_default = -1;
 390module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 391MODULE_PARM_DESC(authorized_default,
 392		"Default USB device authorization: 0 is not authorized, 1 is "
 393		"authorized, -1 is authorized except for wireless USB (default, "
 394		"old behaviour");
 395/*-------------------------------------------------------------------------*/
 396
 397/**
 398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 401 * @len: Length (in bytes; may be odd) of descriptor buffer.
 402 *
 403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 404 * whichever is less.
 405 *
 406 * Note:
 407 * USB String descriptors can contain at most 126 characters; input
 408 * strings longer than that are truncated.
 409 */
 410static unsigned
 411ascii2desc(char const *s, u8 *buf, unsigned len)
 412{
 413	unsigned n, t = 2 + 2*strlen(s);
 414
 415	if (t > 254)
 416		t = 254;	/* Longest possible UTF string descriptor */
 417	if (len > t)
 418		len = t;
 419
 420	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 421
 422	n = len;
 423	while (n--) {
 424		*buf++ = t;
 425		if (!n--)
 426			break;
 427		*buf++ = t >> 8;
 428		t = (unsigned char)*s++;
 429	}
 430	return len;
 431}
 432
 433/**
 434 * rh_string() - provides string descriptors for root hub
 435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 436 * @hcd: the host controller for this root hub
 437 * @data: buffer for output packet
 438 * @len: length of the provided buffer
 439 *
 440 * Produces either a manufacturer, product or serial number string for the
 441 * virtual root hub device.
 442 *
 443 * Return: The number of bytes filled in: the length of the descriptor or
 444 * of the provided buffer, whichever is less.
 445 */
 446static unsigned
 447rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 448{
 449	char buf[100];
 450	char const *s;
 451	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 452
 453	/* language ids */
 454	switch (id) {
 455	case 0:
 456		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 457		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 458		if (len > 4)
 459			len = 4;
 460		memcpy(data, langids, len);
 461		return len;
 462	case 1:
 463		/* Serial number */
 464		s = hcd->self.bus_name;
 465		break;
 466	case 2:
 467		/* Product name */
 468		s = hcd->product_desc;
 469		break;
 470	case 3:
 471		/* Manufacturer */
 472		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 473			init_utsname()->release, hcd->driver->description);
 474		s = buf;
 475		break;
 476	default:
 477		/* Can't happen; caller guarantees it */
 478		return 0;
 479	}
 480
 481	return ascii2desc(s, data, len);
 482}
 483
 484
 485/* Root hub control transfers execute synchronously */
 486static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 487{
 488	struct usb_ctrlrequest *cmd;
 489	u16		typeReq, wValue, wIndex, wLength;
 490	u8		*ubuf = urb->transfer_buffer;
 491	unsigned	len = 0;
 492	int		status;
 493	u8		patch_wakeup = 0;
 494	u8		patch_protocol = 0;
 495	u16		tbuf_size;
 496	u8		*tbuf = NULL;
 497	const u8	*bufp;
 498
 499	might_sleep();
 500
 501	spin_lock_irq(&hcd_root_hub_lock);
 502	status = usb_hcd_link_urb_to_ep(hcd, urb);
 503	spin_unlock_irq(&hcd_root_hub_lock);
 504	if (status)
 505		return status;
 506	urb->hcpriv = hcd;	/* Indicate it's queued */
 507
 508	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 509	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 510	wValue   = le16_to_cpu (cmd->wValue);
 511	wIndex   = le16_to_cpu (cmd->wIndex);
 512	wLength  = le16_to_cpu (cmd->wLength);
 513
 514	if (wLength > urb->transfer_buffer_length)
 515		goto error;
 516
 517	/*
 518	 * tbuf should be at least as big as the
 519	 * USB hub descriptor.
 520	 */
 521	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 522	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 523	if (!tbuf) {
 524		status = -ENOMEM;
 525		goto err_alloc;
 526	}
 527
 528	bufp = tbuf;
 529
 530
 531	urb->actual_length = 0;
 532	switch (typeReq) {
 533
 534	/* DEVICE REQUESTS */
 535
 536	/* The root hub's remote wakeup enable bit is implemented using
 537	 * driver model wakeup flags.  If this system supports wakeup
 538	 * through USB, userspace may change the default "allow wakeup"
 539	 * policy through sysfs or these calls.
 540	 *
 541	 * Most root hubs support wakeup from downstream devices, for
 542	 * runtime power management (disabling USB clocks and reducing
 543	 * VBUS power usage).  However, not all of them do so; silicon,
 544	 * board, and BIOS bugs here are not uncommon, so these can't
 545	 * be treated quite like external hubs.
 546	 *
 547	 * Likewise, not all root hubs will pass wakeup events upstream,
 548	 * to wake up the whole system.  So don't assume root hub and
 549	 * controller capabilities are identical.
 550	 */
 551
 552	case DeviceRequest | USB_REQ_GET_STATUS:
 553		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 554					<< USB_DEVICE_REMOTE_WAKEUP)
 555				| (1 << USB_DEVICE_SELF_POWERED);
 556		tbuf[1] = 0;
 557		len = 2;
 558		break;
 559	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 560		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 561			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 562		else
 563			goto error;
 564		break;
 565	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 566		if (device_can_wakeup(&hcd->self.root_hub->dev)
 567				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 568			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 569		else
 570			goto error;
 571		break;
 572	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 573		tbuf[0] = 1;
 574		len = 1;
 575			/* FALLTHROUGH */
 576	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 577		break;
 578	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 579		switch (wValue & 0xff00) {
 580		case USB_DT_DEVICE << 8:
 581			switch (hcd->speed) {
 582			case HCD_USB31:
 583				bufp = usb31_rh_dev_descriptor;
 584				break;
 585			case HCD_USB3:
 586				bufp = usb3_rh_dev_descriptor;
 587				break;
 588			case HCD_USB25:
 589				bufp = usb25_rh_dev_descriptor;
 590				break;
 591			case HCD_USB2:
 592				bufp = usb2_rh_dev_descriptor;
 593				break;
 594			case HCD_USB11:
 595				bufp = usb11_rh_dev_descriptor;
 596				break;
 597			default:
 598				goto error;
 599			}
 600			len = 18;
 601			if (hcd->has_tt)
 602				patch_protocol = 1;
 603			break;
 604		case USB_DT_CONFIG << 8:
 605			switch (hcd->speed) {
 606			case HCD_USB31:
 607			case HCD_USB3:
 608				bufp = ss_rh_config_descriptor;
 609				len = sizeof ss_rh_config_descriptor;
 610				break;
 611			case HCD_USB25:
 612			case HCD_USB2:
 613				bufp = hs_rh_config_descriptor;
 614				len = sizeof hs_rh_config_descriptor;
 615				break;
 616			case HCD_USB11:
 617				bufp = fs_rh_config_descriptor;
 618				len = sizeof fs_rh_config_descriptor;
 619				break;
 620			default:
 621				goto error;
 622			}
 623			if (device_can_wakeup(&hcd->self.root_hub->dev))
 624				patch_wakeup = 1;
 625			break;
 626		case USB_DT_STRING << 8:
 627			if ((wValue & 0xff) < 4)
 628				urb->actual_length = rh_string(wValue & 0xff,
 629						hcd, ubuf, wLength);
 630			else /* unsupported IDs --> "protocol stall" */
 631				goto error;
 632			break;
 633		case USB_DT_BOS << 8:
 634			goto nongeneric;
 635		default:
 636			goto error;
 637		}
 638		break;
 639	case DeviceRequest | USB_REQ_GET_INTERFACE:
 640		tbuf[0] = 0;
 641		len = 1;
 642			/* FALLTHROUGH */
 643	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 644		break;
 645	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 646		/* wValue == urb->dev->devaddr */
 647		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 648			wValue);
 649		break;
 650
 651	/* INTERFACE REQUESTS (no defined feature/status flags) */
 652
 653	/* ENDPOINT REQUESTS */
 654
 655	case EndpointRequest | USB_REQ_GET_STATUS:
 656		/* ENDPOINT_HALT flag */
 657		tbuf[0] = 0;
 658		tbuf[1] = 0;
 659		len = 2;
 660			/* FALLTHROUGH */
 661	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 662	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 663		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 664		break;
 665
 666	/* CLASS REQUESTS (and errors) */
 667
 668	default:
 669nongeneric:
 670		/* non-generic request */
 671		switch (typeReq) {
 672		case GetHubStatus:
 673			len = 4;
 674			break;
 675		case GetPortStatus:
 676			if (wValue == HUB_PORT_STATUS)
 677				len = 4;
 678			else
 679				/* other port status types return 8 bytes */
 680				len = 8;
 681			break;
 682		case GetHubDescriptor:
 683			len = sizeof (struct usb_hub_descriptor);
 684			break;
 685		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 686			/* len is returned by hub_control */
 687			break;
 688		}
 689		status = hcd->driver->hub_control (hcd,
 690			typeReq, wValue, wIndex,
 691			tbuf, wLength);
 692
 693		if (typeReq == GetHubDescriptor)
 694			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 695				(struct usb_hub_descriptor *)tbuf);
 696		break;
 697error:
 698		/* "protocol stall" on error */
 699		status = -EPIPE;
 700	}
 701
 702	if (status < 0) {
 703		len = 0;
 704		if (status != -EPIPE) {
 705			dev_dbg (hcd->self.controller,
 706				"CTRL: TypeReq=0x%x val=0x%x "
 707				"idx=0x%x len=%d ==> %d\n",
 708				typeReq, wValue, wIndex,
 709				wLength, status);
 710		}
 711	} else if (status > 0) {
 712		/* hub_control may return the length of data copied. */
 713		len = status;
 714		status = 0;
 715	}
 716	if (len) {
 717		if (urb->transfer_buffer_length < len)
 718			len = urb->transfer_buffer_length;
 719		urb->actual_length = len;
 720		/* always USB_DIR_IN, toward host */
 721		memcpy (ubuf, bufp, len);
 722
 723		/* report whether RH hardware supports remote wakeup */
 724		if (patch_wakeup &&
 725				len > offsetof (struct usb_config_descriptor,
 726						bmAttributes))
 727			((struct usb_config_descriptor *)ubuf)->bmAttributes
 728				|= USB_CONFIG_ATT_WAKEUP;
 729
 730		/* report whether RH hardware has an integrated TT */
 731		if (patch_protocol &&
 732				len > offsetof(struct usb_device_descriptor,
 733						bDeviceProtocol))
 734			((struct usb_device_descriptor *) ubuf)->
 735				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 736	}
 737
 738	kfree(tbuf);
 739 err_alloc:
 740
 741	/* any errors get returned through the urb completion */
 742	spin_lock_irq(&hcd_root_hub_lock);
 743	usb_hcd_unlink_urb_from_ep(hcd, urb);
 744	usb_hcd_giveback_urb(hcd, urb, status);
 745	spin_unlock_irq(&hcd_root_hub_lock);
 746	return 0;
 747}
 748
 749/*-------------------------------------------------------------------------*/
 750
 751/*
 752 * Root Hub interrupt transfers are polled using a timer if the
 753 * driver requests it; otherwise the driver is responsible for
 754 * calling usb_hcd_poll_rh_status() when an event occurs.
 755 *
 756 * Completions are called in_interrupt(), but they may or may not
 757 * be in_irq().
 758 */
 759void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 760{
 761	struct urb	*urb;
 762	int		length;
 763	unsigned long	flags;
 764	char		buffer[6];	/* Any root hubs with > 31 ports? */
 765
 766	if (unlikely(!hcd->rh_pollable))
 767		return;
 768	if (!hcd->uses_new_polling && !hcd->status_urb)
 769		return;
 770
 771	length = hcd->driver->hub_status_data(hcd, buffer);
 772	if (length > 0) {
 773
 774		/* try to complete the status urb */
 775		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 776		urb = hcd->status_urb;
 777		if (urb) {
 778			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 779			hcd->status_urb = NULL;
 780			urb->actual_length = length;
 781			memcpy(urb->transfer_buffer, buffer, length);
 782
 783			usb_hcd_unlink_urb_from_ep(hcd, urb);
 784			usb_hcd_giveback_urb(hcd, urb, 0);
 785		} else {
 786			length = 0;
 787			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 788		}
 789		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 790	}
 791
 792	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 793	 * exceed that limit if HZ is 100. The math is more clunky than
 794	 * maybe expected, this is to make sure that all timers for USB devices
 795	 * fire at the same time to give the CPU a break in between */
 796	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 797			(length == 0 && hcd->status_urb != NULL))
 798		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 799}
 800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 801
 802/* timer callback */
 803static void rh_timer_func (unsigned long _hcd)
 804{
 805	usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
 
 
 806}
 807
 808/*-------------------------------------------------------------------------*/
 809
 810static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 811{
 812	int		retval;
 813	unsigned long	flags;
 814	unsigned	len = 1 + (urb->dev->maxchild / 8);
 815
 816	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 817	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 818		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 819		retval = -EINVAL;
 820		goto done;
 821	}
 822
 823	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 824	if (retval)
 825		goto done;
 826
 827	hcd->status_urb = urb;
 828	urb->hcpriv = hcd;	/* indicate it's queued */
 829	if (!hcd->uses_new_polling)
 830		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 831
 832	/* If a status change has already occurred, report it ASAP */
 833	else if (HCD_POLL_PENDING(hcd))
 834		mod_timer(&hcd->rh_timer, jiffies);
 835	retval = 0;
 836 done:
 837	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 838	return retval;
 839}
 840
 841static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 842{
 843	if (usb_endpoint_xfer_int(&urb->ep->desc))
 844		return rh_queue_status (hcd, urb);
 845	if (usb_endpoint_xfer_control(&urb->ep->desc))
 846		return rh_call_control (hcd, urb);
 847	return -EINVAL;
 848}
 849
 850/*-------------------------------------------------------------------------*/
 851
 852/* Unlinks of root-hub control URBs are legal, but they don't do anything
 853 * since these URBs always execute synchronously.
 854 */
 855static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 856{
 857	unsigned long	flags;
 858	int		rc;
 859
 860	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 861	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 862	if (rc)
 863		goto done;
 864
 865	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 866		;	/* Do nothing */
 867
 868	} else {				/* Status URB */
 869		if (!hcd->uses_new_polling)
 870			del_timer (&hcd->rh_timer);
 871		if (urb == hcd->status_urb) {
 872			hcd->status_urb = NULL;
 873			usb_hcd_unlink_urb_from_ep(hcd, urb);
 874			usb_hcd_giveback_urb(hcd, urb, status);
 875		}
 876	}
 877 done:
 878	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 879	return rc;
 880}
 881
 882
 883
 884/*
 885 * Show & store the current value of authorized_default
 886 */
 887static ssize_t authorized_default_show(struct device *dev,
 888				       struct device_attribute *attr, char *buf)
 889{
 890	struct usb_device *rh_usb_dev = to_usb_device(dev);
 891	struct usb_bus *usb_bus = rh_usb_dev->bus;
 892	struct usb_hcd *hcd;
 893
 894	hcd = bus_to_hcd(usb_bus);
 895	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
 896}
 897
 898static ssize_t authorized_default_store(struct device *dev,
 899					struct device_attribute *attr,
 900					const char *buf, size_t size)
 901{
 902	ssize_t result;
 903	unsigned val;
 904	struct usb_device *rh_usb_dev = to_usb_device(dev);
 905	struct usb_bus *usb_bus = rh_usb_dev->bus;
 906	struct usb_hcd *hcd;
 907
 908	hcd = bus_to_hcd(usb_bus);
 909	result = sscanf(buf, "%u\n", &val);
 910	if (result == 1) {
 911		if (val)
 912			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 913		else
 914			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 915
 916		result = size;
 917	} else {
 918		result = -EINVAL;
 919	}
 920	return result;
 921}
 922static DEVICE_ATTR_RW(authorized_default);
 923
 924/*
 925 * interface_authorized_default_show - show default authorization status
 926 * for USB interfaces
 927 *
 928 * note: interface_authorized_default is the default value
 929 *       for initializing the authorized attribute of interfaces
 930 */
 931static ssize_t interface_authorized_default_show(struct device *dev,
 932		struct device_attribute *attr, char *buf)
 933{
 934	struct usb_device *usb_dev = to_usb_device(dev);
 935	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 936
 937	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
 938}
 939
 940/*
 941 * interface_authorized_default_store - store default authorization status
 942 * for USB interfaces
 943 *
 944 * note: interface_authorized_default is the default value
 945 *       for initializing the authorized attribute of interfaces
 946 */
 947static ssize_t interface_authorized_default_store(struct device *dev,
 948		struct device_attribute *attr, const char *buf, size_t count)
 949{
 950	struct usb_device *usb_dev = to_usb_device(dev);
 951	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 952	int rc = count;
 953	bool val;
 954
 955	if (strtobool(buf, &val) != 0)
 956		return -EINVAL;
 957
 958	if (val)
 959		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 960	else
 961		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 962
 963	return rc;
 964}
 965static DEVICE_ATTR_RW(interface_authorized_default);
 966
 967/* Group all the USB bus attributes */
 968static struct attribute *usb_bus_attrs[] = {
 969		&dev_attr_authorized_default.attr,
 970		&dev_attr_interface_authorized_default.attr,
 971		NULL,
 972};
 973
 974static struct attribute_group usb_bus_attr_group = {
 975	.name = NULL,	/* we want them in the same directory */
 976	.attrs = usb_bus_attrs,
 977};
 978
 979
 980
 981/*-------------------------------------------------------------------------*/
 982
 983/**
 984 * usb_bus_init - shared initialization code
 985 * @bus: the bus structure being initialized
 986 *
 987 * This code is used to initialize a usb_bus structure, memory for which is
 988 * separately managed.
 989 */
 990static void usb_bus_init (struct usb_bus *bus)
 991{
 992	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 993
 994	bus->devnum_next = 1;
 995
 996	bus->root_hub = NULL;
 997	bus->busnum = -1;
 998	bus->bandwidth_allocated = 0;
 999	bus->bandwidth_int_reqs  = 0;
1000	bus->bandwidth_isoc_reqs = 0;
1001	mutex_init(&bus->devnum_next_mutex);
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/**
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1010 *
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1013 *
1014 * Return: 0 if successful. A negative error code otherwise.
1015 */
1016static int usb_register_bus(struct usb_bus *bus)
1017{
1018	int result = -E2BIG;
1019	int busnum;
1020
1021	mutex_lock(&usb_bus_idr_lock);
1022	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023	if (busnum < 0) {
1024		pr_err("%s: failed to get bus number\n", usbcore_name);
1025		goto error_find_busnum;
1026	}
1027	bus->busnum = busnum;
1028	mutex_unlock(&usb_bus_idr_lock);
1029
1030	usb_notify_add_bus(bus);
1031
1032	dev_info (bus->controller, "new USB bus registered, assigned bus "
1033		  "number %d\n", bus->busnum);
1034	return 0;
1035
1036error_find_busnum:
1037	mutex_unlock(&usb_bus_idr_lock);
1038	return result;
1039}
1040
1041/**
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1045 *
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1048 */
1049static void usb_deregister_bus (struct usb_bus *bus)
1050{
1051	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053	/*
1054	 * NOTE: make sure that all the devices are removed by the
1055	 * controller code, as well as having it call this when cleaning
1056	 * itself up
1057	 */
1058	mutex_lock(&usb_bus_idr_lock);
1059	idr_remove(&usb_bus_idr, bus->busnum);
1060	mutex_unlock(&usb_bus_idr_lock);
1061
1062	usb_notify_remove_bus(bus);
1063}
1064
1065/**
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1068 *
1069 * This function registers the root hub with the USB subsystem.  It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device.  It also assigns the root hub's USB address
1072 * (always 1).
1073 *
1074 * Return: 0 if successful. A negative error code otherwise.
1075 */
1076static int register_root_hub(struct usb_hcd *hcd)
1077{
1078	struct device *parent_dev = hcd->self.controller;
1079	struct usb_device *usb_dev = hcd->self.root_hub;
1080	const int devnum = 1;
1081	int retval;
1082
1083	usb_dev->devnum = devnum;
1084	usb_dev->bus->devnum_next = devnum + 1;
1085	memset (&usb_dev->bus->devmap.devicemap, 0,
1086			sizeof usb_dev->bus->devmap.devicemap);
1087	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089
1090	mutex_lock(&usb_bus_idr_lock);
1091
1092	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094	if (retval != sizeof usb_dev->descriptor) {
1095		mutex_unlock(&usb_bus_idr_lock);
1096		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097				dev_name(&usb_dev->dev), retval);
1098		return (retval < 0) ? retval : -EMSGSIZE;
1099	}
1100
1101	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102		retval = usb_get_bos_descriptor(usb_dev);
1103		if (!retval) {
1104			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106			mutex_unlock(&usb_bus_idr_lock);
1107			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108					dev_name(&usb_dev->dev), retval);
1109			return retval;
1110		}
1111	}
1112
1113	retval = usb_new_device (usb_dev);
1114	if (retval) {
1115		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116				dev_name(&usb_dev->dev), retval);
1117	} else {
1118		spin_lock_irq (&hcd_root_hub_lock);
1119		hcd->rh_registered = 1;
1120		spin_unlock_irq (&hcd_root_hub_lock);
1121
1122		/* Did the HC die before the root hub was registered? */
1123		if (HCD_DEAD(hcd))
1124			usb_hc_died (hcd);	/* This time clean up */
1125		usb_dev->dev.of_node = parent_dev->of_node;
1126	}
1127	mutex_unlock(&usb_bus_idr_lock);
1128
1129	return retval;
1130}
1131
1132/*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port.  The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144{
1145	unsigned bit = 1 << portnum;
1146
1147	if (!(bus->resuming_ports & bit)) {
1148		bus->resuming_ports |= bit;
1149		pm_runtime_get_noresume(&bus->root_hub->dev);
1150	}
1151}
1152EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154/*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port.  The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166{
1167	unsigned bit = 1 << portnum;
1168
1169	if (bus->resuming_ports & bit) {
1170		bus->resuming_ports &= ~bit;
1171		pm_runtime_put_noidle(&bus->root_hub->dev);
1172	}
1173}
1174EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176/*-------------------------------------------------------------------------*/
1177
1178/**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192{
1193	unsigned long	tmp;
1194
1195	switch (speed) {
1196	case USB_SPEED_LOW: 	/* INTR only */
1197		if (is_input) {
1198			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200		} else {
1201			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203		}
1204	case USB_SPEED_FULL:	/* ISOC or INTR */
1205		if (isoc) {
1206			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208		} else {
1209			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210			return 9107L + BW_HOST_DELAY + tmp;
1211		}
1212	case USB_SPEED_HIGH:	/* ISOC or INTR */
1213		/* FIXME adjust for input vs output */
1214		if (isoc)
1215			tmp = HS_NSECS_ISO (bytecount);
1216		else
1217			tmp = HS_NSECS (bytecount);
1218		return tmp;
1219	default:
1220		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221		return -1;
1222	}
1223}
1224EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/*
1230 * Generic HC operations.
1231 */
1232
1233/*-------------------------------------------------------------------------*/
1234
1235/**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method.  The HCD's private spinlock must be held and interrupts must
1242 * be disabled.  The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251{
1252	int		rc = 0;
1253
1254	spin_lock(&hcd_urb_list_lock);
1255
1256	/* Check that the URB isn't being killed */
1257	if (unlikely(atomic_read(&urb->reject))) {
1258		rc = -EPERM;
1259		goto done;
1260	}
1261
1262	if (unlikely(!urb->ep->enabled)) {
1263		rc = -ENOENT;
1264		goto done;
1265	}
1266
1267	if (unlikely(!urb->dev->can_submit)) {
1268		rc = -EHOSTUNREACH;
1269		goto done;
1270	}
1271
1272	/*
1273	 * Check the host controller's state and add the URB to the
1274	 * endpoint's queue.
1275	 */
1276	if (HCD_RH_RUNNING(hcd)) {
1277		urb->unlinked = 0;
1278		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279	} else {
1280		rc = -ESHUTDOWN;
1281		goto done;
1282	}
1283 done:
1284	spin_unlock(&hcd_urb_list_lock);
1285	return rc;
1286}
1287EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289/**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method.  The HCD's private spinlock must be held and interrupts must
1297 * be disabled.  The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail).  The possible error codes are:
1302 *
1303 *	-EIDRM: @urb was not submitted or has already completed.
1304 *		The completion function may not have been called yet.
1305 *
1306 *	-EBUSY: @urb has already been unlinked.
1307 */
1308int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309		int status)
1310{
1311	struct list_head	*tmp;
1312
1313	/* insist the urb is still queued */
1314	list_for_each(tmp, &urb->ep->urb_list) {
1315		if (tmp == &urb->urb_list)
1316			break;
1317	}
1318	if (tmp != &urb->urb_list)
1319		return -EIDRM;
1320
1321	/* Any status except -EINPROGRESS means something already started to
1322	 * unlink this URB from the hardware.  So there's no more work to do.
1323	 */
1324	if (urb->unlinked)
1325		return -EBUSY;
1326	urb->unlinked = status;
1327	return 0;
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331/**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1338 * interrupts must be disabled.  The actions carried out here are required
1339 * for URB completion.
1340 */
1341void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342{
1343	/* clear all state linking urb to this dev (and hcd) */
1344	spin_lock(&hcd_urb_list_lock);
1345	list_del_init(&urb->urb_list);
1346	spin_unlock(&hcd_urb_list_lock);
1347}
1348EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350/*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 *   a small SRAM on a discrete controller being the
1369 *   only memory that the controller can read ...
1370 *   (a) "normal" kernel memory is no good, and
1371 *   (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 *   DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 *   is that the memory be "local" (hence addressable
1378 *   by that device), not "coherent".
1379 *
1380 */
1381
1382static int hcd_alloc_coherent(struct usb_bus *bus,
1383			      gfp_t mem_flags, dma_addr_t *dma_handle,
1384			      void **vaddr_handle, size_t size,
1385			      enum dma_data_direction dir)
1386{
1387	unsigned char *vaddr;
1388
1389	if (*vaddr_handle == NULL) {
1390		WARN_ON_ONCE(1);
1391		return -EFAULT;
1392	}
1393
1394	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395				 mem_flags, dma_handle);
1396	if (!vaddr)
1397		return -ENOMEM;
1398
1399	/*
1400	 * Store the virtual address of the buffer at the end
1401	 * of the allocated dma buffer. The size of the buffer
1402	 * may be uneven so use unaligned functions instead
1403	 * of just rounding up. It makes sense to optimize for
1404	 * memory footprint over access speed since the amount
1405	 * of memory available for dma may be limited.
1406	 */
1407	put_unaligned((unsigned long)*vaddr_handle,
1408		      (unsigned long *)(vaddr + size));
1409
1410	if (dir == DMA_TO_DEVICE)
1411		memcpy(vaddr, *vaddr_handle, size);
1412
1413	*vaddr_handle = vaddr;
1414	return 0;
1415}
1416
1417static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418			      void **vaddr_handle, size_t size,
1419			      enum dma_data_direction dir)
1420{
1421	unsigned char *vaddr = *vaddr_handle;
1422
1423	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425	if (dir == DMA_FROM_DEVICE)
1426		memcpy(vaddr, *vaddr_handle, size);
1427
1428	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430	*vaddr_handle = vaddr;
1431	*dma_handle = 0;
1432}
1433
1434void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435{
1436	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438		dma_unmap_single(hcd->self.controller,
1439				urb->setup_dma,
1440				sizeof(struct usb_ctrlrequest),
1441				DMA_TO_DEVICE);
1442	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443		hcd_free_coherent(urb->dev->bus,
1444				&urb->setup_dma,
1445				(void **) &urb->setup_packet,
1446				sizeof(struct usb_ctrlrequest),
1447				DMA_TO_DEVICE);
1448
1449	/* Make it safe to call this routine more than once */
1450	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451}
1452EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455{
1456	if (hcd->driver->unmap_urb_for_dma)
1457		hcd->driver->unmap_urb_for_dma(hcd, urb);
1458	else
1459		usb_hcd_unmap_urb_for_dma(hcd, urb);
1460}
1461
1462void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463{
1464	enum dma_data_direction dir;
1465
1466	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470	    (urb->transfer_flags & URB_DMA_MAP_SG))
1471		dma_unmap_sg(hcd->self.controller,
1472				urb->sg,
1473				urb->num_sgs,
1474				dir);
1475	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477		dma_unmap_page(hcd->self.controller,
1478				urb->transfer_dma,
1479				urb->transfer_buffer_length,
1480				dir);
1481	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483		dma_unmap_single(hcd->self.controller,
1484				urb->transfer_dma,
1485				urb->transfer_buffer_length,
1486				dir);
1487	else if (urb->transfer_flags & URB_MAP_LOCAL)
1488		hcd_free_coherent(urb->dev->bus,
1489				&urb->transfer_dma,
1490				&urb->transfer_buffer,
1491				urb->transfer_buffer_length,
1492				dir);
1493
1494	/* Make it safe to call this routine more than once */
1495	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497}
1498EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501			   gfp_t mem_flags)
1502{
1503	if (hcd->driver->map_urb_for_dma)
1504		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505	else
1506		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507}
1508
1509int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510			    gfp_t mem_flags)
1511{
1512	enum dma_data_direction dir;
1513	int ret = 0;
1514
1515	/* Map the URB's buffers for DMA access.
1516	 * Lower level HCD code should use *_dma exclusively,
1517	 * unless it uses pio or talks to another transport,
1518	 * or uses the provided scatter gather list for bulk.
1519	 */
1520
1521	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522		if (hcd->self.uses_pio_for_control)
1523			return ret;
1524		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
 
 
 
 
 
 
 
 
1525			urb->setup_dma = dma_map_single(
1526					hcd->self.controller,
1527					urb->setup_packet,
1528					sizeof(struct usb_ctrlrequest),
1529					DMA_TO_DEVICE);
1530			if (dma_mapping_error(hcd->self.controller,
1531						urb->setup_dma))
1532				return -EAGAIN;
1533			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535			ret = hcd_alloc_coherent(
1536					urb->dev->bus, mem_flags,
1537					&urb->setup_dma,
1538					(void **)&urb->setup_packet,
1539					sizeof(struct usb_ctrlrequest),
1540					DMA_TO_DEVICE);
1541			if (ret)
1542				return ret;
1543			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544		}
1545	}
1546
1547	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548	if (urb->transfer_buffer_length != 0
1549	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551			if (urb->num_sgs) {
1552				int n;
1553
1554				/* We don't support sg for isoc transfers ! */
1555				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556					WARN_ON(1);
1557					return -EINVAL;
1558				}
1559
1560				n = dma_map_sg(
1561						hcd->self.controller,
1562						urb->sg,
1563						urb->num_sgs,
1564						dir);
1565				if (n <= 0)
1566					ret = -EAGAIN;
1567				else
1568					urb->transfer_flags |= URB_DMA_MAP_SG;
1569				urb->num_mapped_sgs = n;
1570				if (n != urb->num_sgs)
1571					urb->transfer_flags |=
1572							URB_DMA_SG_COMBINED;
1573			} else if (urb->sg) {
1574				struct scatterlist *sg = urb->sg;
1575				urb->transfer_dma = dma_map_page(
1576						hcd->self.controller,
1577						sg_page(sg),
1578						sg->offset,
1579						urb->transfer_buffer_length,
1580						dir);
1581				if (dma_mapping_error(hcd->self.controller,
1582						urb->transfer_dma))
1583					ret = -EAGAIN;
1584				else
1585					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587				WARN_ONCE(1, "transfer buffer not dma capable\n");
1588				ret = -EAGAIN;
 
 
 
1589			} else {
1590				urb->transfer_dma = dma_map_single(
1591						hcd->self.controller,
1592						urb->transfer_buffer,
1593						urb->transfer_buffer_length,
1594						dir);
1595				if (dma_mapping_error(hcd->self.controller,
1596						urb->transfer_dma))
1597					ret = -EAGAIN;
1598				else
1599					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600			}
1601		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602			ret = hcd_alloc_coherent(
1603					urb->dev->bus, mem_flags,
1604					&urb->transfer_dma,
1605					&urb->transfer_buffer,
1606					urb->transfer_buffer_length,
1607					dir);
1608			if (ret == 0)
1609				urb->transfer_flags |= URB_MAP_LOCAL;
1610		}
1611		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612				URB_SETUP_MAP_LOCAL)))
1613			usb_hcd_unmap_urb_for_dma(hcd, urb);
1614	}
1615	return ret;
1616}
1617EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627{
1628	int			status;
1629	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1630
1631	/* increment urb's reference count as part of giving it to the HCD
1632	 * (which will control it).  HCD guarantees that it either returns
1633	 * an error or calls giveback(), but not both.
1634	 */
1635	usb_get_urb(urb);
1636	atomic_inc(&urb->use_count);
1637	atomic_inc(&urb->dev->urbnum);
1638	usbmon_urb_submit(&hcd->self, urb);
1639
1640	/* NOTE requirements on root-hub callers (usbfs and the hub
1641	 * driver, for now):  URBs' urb->transfer_buffer must be
1642	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643	 * they could clobber root hub response data.  Also, control
1644	 * URBs must be submitted in process context with interrupts
1645	 * enabled.
1646	 */
1647
1648	if (is_root_hub(urb->dev)) {
1649		status = rh_urb_enqueue(hcd, urb);
1650	} else {
1651		status = map_urb_for_dma(hcd, urb, mem_flags);
1652		if (likely(status == 0)) {
1653			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654			if (unlikely(status))
1655				unmap_urb_for_dma(hcd, urb);
1656		}
1657	}
1658
1659	if (unlikely(status)) {
1660		usbmon_urb_submit_error(&hcd->self, urb, status);
1661		urb->hcpriv = NULL;
1662		INIT_LIST_HEAD(&urb->urb_list);
1663		atomic_dec(&urb->use_count);
1664		atomic_dec(&urb->dev->urbnum);
1665		if (atomic_read(&urb->reject))
1666			wake_up(&usb_kill_urb_queue);
1667		usb_put_urb(urb);
1668	}
1669	return status;
1670}
1671
1672/*-------------------------------------------------------------------------*/
1673
1674/* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical.  we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680{
1681	int		value;
1682
1683	if (is_root_hub(urb->dev))
1684		value = usb_rh_urb_dequeue(hcd, urb, status);
1685	else {
1686
1687		/* The only reason an HCD might fail this call is if
1688		 * it has not yet fully queued the urb to begin with.
1689		 * Such failures should be harmless. */
1690		value = hcd->driver->urb_dequeue(hcd, urb, status);
1691	}
1692	return value;
1693}
1694
1695/*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701int usb_hcd_unlink_urb (struct urb *urb, int status)
1702{
1703	struct usb_hcd		*hcd;
1704	struct usb_device	*udev = urb->dev;
1705	int			retval = -EIDRM;
1706	unsigned long		flags;
1707
1708	/* Prevent the device and bus from going away while
1709	 * the unlink is carried out.  If they are already gone
1710	 * then urb->use_count must be 0, since disconnected
1711	 * devices can't have any active URBs.
1712	 */
1713	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714	if (atomic_read(&urb->use_count) > 0) {
1715		retval = 0;
1716		usb_get_dev(udev);
1717	}
1718	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719	if (retval == 0) {
1720		hcd = bus_to_hcd(urb->dev->bus);
1721		retval = unlink1(hcd, urb, status);
1722		if (retval == 0)
1723			retval = -EINPROGRESS;
1724		else if (retval != -EIDRM && retval != -EBUSY)
1725			dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726					urb, retval);
1727		usb_put_dev(udev);
1728	}
1729	return retval;
1730}
1731
1732/*-------------------------------------------------------------------------*/
1733
1734static void __usb_hcd_giveback_urb(struct urb *urb)
1735{
1736	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737	struct usb_anchor *anchor = urb->anchor;
1738	int status = urb->unlinked;
1739	unsigned long flags;
1740
1741	urb->hcpriv = NULL;
1742	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743	    urb->actual_length < urb->transfer_buffer_length &&
1744	    !status))
1745		status = -EREMOTEIO;
1746
1747	unmap_urb_for_dma(hcd, urb);
1748	usbmon_urb_complete(&hcd->self, urb, status);
1749	usb_anchor_suspend_wakeups(anchor);
1750	usb_unanchor_urb(urb);
1751	if (likely(status == 0))
1752		usb_led_activity(USB_LED_EVENT_HOST);
1753
1754	/* pass ownership to the completion handler */
1755	urb->status = status;
1756
1757	/*
1758	 * We disable local IRQs here avoid possible deadlock because
1759	 * drivers may call spin_lock() to hold lock which might be
1760	 * acquired in one hard interrupt handler.
1761	 *
1762	 * The local_irq_save()/local_irq_restore() around complete()
1763	 * will be removed if current USB drivers have been cleaned up
1764	 * and no one may trigger the above deadlock situation when
1765	 * running complete() in tasklet.
1766	 */
1767	local_irq_save(flags);
1768	urb->complete(urb);
1769	local_irq_restore(flags);
1770
1771	usb_anchor_resume_wakeups(anchor);
1772	atomic_dec(&urb->use_count);
1773	if (unlikely(atomic_read(&urb->reject)))
1774		wake_up(&usb_kill_urb_queue);
1775	usb_put_urb(urb);
1776}
1777
1778static void usb_giveback_urb_bh(unsigned long param)
1779{
1780	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781	struct list_head local_list;
1782
1783	spin_lock_irq(&bh->lock);
1784	bh->running = true;
1785 restart:
1786	list_replace_init(&bh->head, &local_list);
1787	spin_unlock_irq(&bh->lock);
1788
1789	while (!list_empty(&local_list)) {
1790		struct urb *urb;
1791
1792		urb = list_entry(local_list.next, struct urb, urb_list);
1793		list_del_init(&urb->urb_list);
1794		bh->completing_ep = urb->ep;
1795		__usb_hcd_giveback_urb(urb);
1796		bh->completing_ep = NULL;
1797	}
1798
1799	/* check if there are new URBs to giveback */
1800	spin_lock_irq(&bh->lock);
1801	if (!list_empty(&bh->head))
1802		goto restart;
1803	bh->running = false;
1804	spin_unlock_irq(&bh->lock);
1805}
1806
1807/**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function.  The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv).  It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked.  Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825{
1826	struct giveback_urb_bh *bh;
1827	bool running, high_prio_bh;
1828
1829	/* pass status to tasklet via unlinked */
1830	if (likely(!urb->unlinked))
1831		urb->unlinked = status;
1832
1833	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834		__usb_hcd_giveback_urb(urb);
1835		return;
1836	}
1837
1838	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839		bh = &hcd->high_prio_bh;
1840		high_prio_bh = true;
1841	} else {
1842		bh = &hcd->low_prio_bh;
1843		high_prio_bh = false;
1844	}
1845
1846	spin_lock(&bh->lock);
1847	list_add_tail(&urb->urb_list, &bh->head);
1848	running = bh->running;
1849	spin_unlock(&bh->lock);
1850
1851	if (running)
1852		;
1853	else if (high_prio_bh)
1854		tasklet_hi_schedule(&bh->bh);
1855	else
1856		tasklet_schedule(&bh->bh);
1857}
1858EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860/*-------------------------------------------------------------------------*/
1861
1862/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely.  The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866void usb_hcd_flush_endpoint(struct usb_device *udev,
1867		struct usb_host_endpoint *ep)
1868{
1869	struct usb_hcd		*hcd;
1870	struct urb		*urb;
1871
1872	if (!ep)
1873		return;
1874	might_sleep();
1875	hcd = bus_to_hcd(udev->bus);
1876
1877	/* No more submits can occur */
1878	spin_lock_irq(&hcd_urb_list_lock);
1879rescan:
1880	list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881		int	is_in;
1882
1883		if (urb->unlinked)
1884			continue;
1885		usb_get_urb (urb);
1886		is_in = usb_urb_dir_in(urb);
1887		spin_unlock(&hcd_urb_list_lock);
1888
1889		/* kick hcd */
1890		unlink1(hcd, urb, -ESHUTDOWN);
1891		dev_dbg (hcd->self.controller,
1892			"shutdown urb %p ep%d%s%s\n",
1893			urb, usb_endpoint_num(&ep->desc),
1894			is_in ? "in" : "out",
1895			({	char *s;
1896
1897				 switch (usb_endpoint_type(&ep->desc)) {
1898				 case USB_ENDPOINT_XFER_CONTROL:
1899					s = ""; break;
1900				 case USB_ENDPOINT_XFER_BULK:
1901					s = "-bulk"; break;
1902				 case USB_ENDPOINT_XFER_INT:
1903					s = "-intr"; break;
1904				 default:
1905					s = "-iso"; break;
1906				};
1907				s;
1908			}));
1909		usb_put_urb (urb);
1910
1911		/* list contents may have changed */
1912		spin_lock(&hcd_urb_list_lock);
1913		goto rescan;
1914	}
1915	spin_unlock_irq(&hcd_urb_list_lock);
1916
1917	/* Wait until the endpoint queue is completely empty */
1918	while (!list_empty (&ep->urb_list)) {
1919		spin_lock_irq(&hcd_urb_list_lock);
1920
1921		/* The list may have changed while we acquired the spinlock */
1922		urb = NULL;
1923		if (!list_empty (&ep->urb_list)) {
1924			urb = list_entry (ep->urb_list.prev, struct urb,
1925					urb_list);
1926			usb_get_urb (urb);
1927		}
1928		spin_unlock_irq(&hcd_urb_list_lock);
1929
1930		if (urb) {
1931			usb_kill_urb (urb);
1932			usb_put_urb (urb);
1933		}
1934	}
1935}
1936
1937/**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 *				the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959		struct usb_host_config *new_config,
1960		struct usb_host_interface *cur_alt,
1961		struct usb_host_interface *new_alt)
1962{
1963	int num_intfs, i, j;
1964	struct usb_host_interface *alt = NULL;
1965	int ret = 0;
1966	struct usb_hcd *hcd;
1967	struct usb_host_endpoint *ep;
1968
1969	hcd = bus_to_hcd(udev->bus);
1970	if (!hcd->driver->check_bandwidth)
1971		return 0;
1972
1973	/* Configuration is being removed - set configuration 0 */
1974	if (!new_config && !cur_alt) {
1975		for (i = 1; i < 16; ++i) {
1976			ep = udev->ep_out[i];
1977			if (ep)
1978				hcd->driver->drop_endpoint(hcd, udev, ep);
1979			ep = udev->ep_in[i];
1980			if (ep)
1981				hcd->driver->drop_endpoint(hcd, udev, ep);
1982		}
1983		hcd->driver->check_bandwidth(hcd, udev);
1984		return 0;
1985	}
1986	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1987	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1989	 * ok to exclude it.
1990	 */
1991	if (new_config) {
1992		num_intfs = new_config->desc.bNumInterfaces;
1993		/* Remove endpoints (except endpoint 0, which is always on the
1994		 * schedule) from the old config from the schedule
1995		 */
1996		for (i = 1; i < 16; ++i) {
1997			ep = udev->ep_out[i];
1998			if (ep) {
1999				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000				if (ret < 0)
2001					goto reset;
2002			}
2003			ep = udev->ep_in[i];
2004			if (ep) {
2005				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006				if (ret < 0)
2007					goto reset;
2008			}
2009		}
2010		for (i = 0; i < num_intfs; ++i) {
2011			struct usb_host_interface *first_alt;
2012			int iface_num;
2013
2014			first_alt = &new_config->intf_cache[i]->altsetting[0];
2015			iface_num = first_alt->desc.bInterfaceNumber;
2016			/* Set up endpoints for alternate interface setting 0 */
2017			alt = usb_find_alt_setting(new_config, iface_num, 0);
2018			if (!alt)
2019				/* No alt setting 0? Pick the first setting. */
2020				alt = first_alt;
2021
2022			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024				if (ret < 0)
2025					goto reset;
2026			}
2027		}
2028	}
2029	if (cur_alt && new_alt) {
2030		struct usb_interface *iface = usb_ifnum_to_if(udev,
2031				cur_alt->desc.bInterfaceNumber);
2032
2033		if (!iface)
2034			return -EINVAL;
2035		if (iface->resetting_device) {
2036			/*
2037			 * The USB core just reset the device, so the xHCI host
2038			 * and the device will think alt setting 0 is installed.
2039			 * However, the USB core will pass in the alternate
2040			 * setting installed before the reset as cur_alt.  Dig
2041			 * out the alternate setting 0 structure, or the first
2042			 * alternate setting if a broken device doesn't have alt
2043			 * setting 0.
2044			 */
2045			cur_alt = usb_altnum_to_altsetting(iface, 0);
2046			if (!cur_alt)
2047				cur_alt = &iface->altsetting[0];
2048		}
2049
2050		/* Drop all the endpoints in the current alt setting */
2051		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052			ret = hcd->driver->drop_endpoint(hcd, udev,
2053					&cur_alt->endpoint[i]);
2054			if (ret < 0)
2055				goto reset;
2056		}
2057		/* Add all the endpoints in the new alt setting */
2058		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059			ret = hcd->driver->add_endpoint(hcd, udev,
2060					&new_alt->endpoint[i]);
2061			if (ret < 0)
2062				goto reset;
2063		}
2064	}
2065	ret = hcd->driver->check_bandwidth(hcd, udev);
2066reset:
2067	if (ret < 0)
2068		hcd->driver->reset_bandwidth(hcd, udev);
2069	return ret;
2070}
2071
2072/* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2074 * have been called previously.  Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080void usb_hcd_disable_endpoint(struct usb_device *udev,
2081		struct usb_host_endpoint *ep)
2082{
2083	struct usb_hcd		*hcd;
2084
2085	might_sleep();
2086	hcd = bus_to_hcd(udev->bus);
2087	if (hcd->driver->endpoint_disable)
2088		hcd->driver->endpoint_disable(hcd, ep);
2089}
2090
2091/**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep:   the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099void usb_hcd_reset_endpoint(struct usb_device *udev,
2100			    struct usb_host_endpoint *ep)
2101{
2102	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104	if (hcd->driver->endpoint_reset)
2105		hcd->driver->endpoint_reset(hcd, ep);
2106	else {
2107		int epnum = usb_endpoint_num(&ep->desc);
2108		int is_out = usb_endpoint_dir_out(&ep->desc);
2109		int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111		usb_settoggle(udev, epnum, is_out, 0);
2112		if (is_control)
2113			usb_settoggle(udev, epnum, !is_out, 0);
2114	}
2115}
2116
2117/**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface:		alternate setting that includes all endpoints.
2120 * @eps:		array of endpoints that need streams.
2121 * @num_eps:		number of endpoints in the array.
2122 * @num_streams:	number of streams to allocate.
2123 * @mem_flags:		flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132int usb_alloc_streams(struct usb_interface *interface,
2133		struct usb_host_endpoint **eps, unsigned int num_eps,
2134		unsigned int num_streams, gfp_t mem_flags)
2135{
2136	struct usb_hcd *hcd;
2137	struct usb_device *dev;
2138	int i, ret;
2139
2140	dev = interface_to_usbdev(interface);
2141	hcd = bus_to_hcd(dev->bus);
2142	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143		return -EINVAL;
2144	if (dev->speed < USB_SPEED_SUPER)
2145		return -EINVAL;
2146	if (dev->state < USB_STATE_CONFIGURED)
2147		return -ENODEV;
2148
2149	for (i = 0; i < num_eps; i++) {
2150		/* Streams only apply to bulk endpoints. */
2151		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152			return -EINVAL;
2153		/* Re-alloc is not allowed */
2154		if (eps[i]->streams)
2155			return -EINVAL;
2156	}
2157
2158	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159			num_streams, mem_flags);
2160	if (ret < 0)
2161		return ret;
2162
2163	for (i = 0; i < num_eps; i++)
2164		eps[i]->streams = ret;
2165
2166	return ret;
2167}
2168EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170/**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface:	alternate setting that includes all endpoints.
2173 * @eps:	array of endpoints to remove streams from.
2174 * @num_eps:	number of endpoints in the array.
2175 * @mem_flags:	flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182int usb_free_streams(struct usb_interface *interface,
2183		struct usb_host_endpoint **eps, unsigned int num_eps,
2184		gfp_t mem_flags)
2185{
2186	struct usb_hcd *hcd;
2187	struct usb_device *dev;
2188	int i, ret;
2189
2190	dev = interface_to_usbdev(interface);
2191	hcd = bus_to_hcd(dev->bus);
2192	if (dev->speed < USB_SPEED_SUPER)
2193		return -EINVAL;
2194
2195	/* Double-free is not allowed */
2196	for (i = 0; i < num_eps; i++)
2197		if (!eps[i] || !eps[i]->streams)
2198			return -EINVAL;
2199
2200	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201	if (ret < 0)
2202		return ret;
2203
2204	for (i = 0; i < num_eps; i++)
2205		eps[i]->streams = 0;
2206
2207	return ret;
2208}
2209EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211/* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217{
2218	spin_lock_irq(&hcd_urb_unlink_lock);
2219	spin_unlock_irq(&hcd_urb_unlink_lock);
2220}
2221
2222/*-------------------------------------------------------------------------*/
2223
2224/* called in any context */
2225int usb_hcd_get_frame_number (struct usb_device *udev)
2226{
2227	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2228
2229	if (!HCD_RH_RUNNING(hcd))
2230		return -ESHUTDOWN;
2231	return hcd->driver->get_frame_number (hcd);
2232}
2233
2234/*-------------------------------------------------------------------------*/
2235
2236#ifdef	CONFIG_PM
2237
2238int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239{
2240	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2241	int		status;
2242	int		old_state = hcd->state;
2243
2244	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246			rhdev->do_remote_wakeup);
2247	if (HCD_DEAD(hcd)) {
2248		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249		return 0;
2250	}
2251
2252	if (!hcd->driver->bus_suspend) {
2253		status = -ENOENT;
2254	} else {
2255		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256		hcd->state = HC_STATE_QUIESCING;
2257		status = hcd->driver->bus_suspend(hcd);
2258	}
2259	if (status == 0) {
2260		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261		hcd->state = HC_STATE_SUSPENDED;
2262
 
 
 
 
2263		/* Did we race with a root-hub wakeup event? */
2264		if (rhdev->do_remote_wakeup) {
2265			char	buffer[6];
2266
2267			status = hcd->driver->hub_status_data(hcd, buffer);
2268			if (status != 0) {
2269				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271				status = -EBUSY;
2272			}
2273		}
2274	} else {
2275		spin_lock_irq(&hcd_root_hub_lock);
2276		if (!HCD_DEAD(hcd)) {
2277			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278			hcd->state = old_state;
2279		}
2280		spin_unlock_irq(&hcd_root_hub_lock);
2281		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282				"suspend", status);
2283	}
2284	return status;
2285}
2286
2287int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288{
2289	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2290	int		status;
2291	int		old_state = hcd->state;
2292
2293	dev_dbg(&rhdev->dev, "usb %sresume\n",
2294			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295	if (HCD_DEAD(hcd)) {
2296		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297		return 0;
2298	}
 
 
 
 
 
 
 
 
2299	if (!hcd->driver->bus_resume)
2300		return -ENOENT;
2301	if (HCD_RH_RUNNING(hcd))
2302		return 0;
2303
2304	hcd->state = HC_STATE_RESUMING;
2305	status = hcd->driver->bus_resume(hcd);
2306	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307	if (status == 0) {
2308		struct usb_device *udev;
2309		int port1;
2310
2311		spin_lock_irq(&hcd_root_hub_lock);
2312		if (!HCD_DEAD(hcd)) {
2313			usb_set_device_state(rhdev, rhdev->actconfig
2314					? USB_STATE_CONFIGURED
2315					: USB_STATE_ADDRESS);
2316			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317			hcd->state = HC_STATE_RUNNING;
2318		}
2319		spin_unlock_irq(&hcd_root_hub_lock);
2320
2321		/*
2322		 * Check whether any of the enabled ports on the root hub are
2323		 * unsuspended.  If they are then a TRSMRCY delay is needed
2324		 * (this is what the USB-2 spec calls a "global resume").
2325		 * Otherwise we can skip the delay.
2326		 */
2327		usb_hub_for_each_child(rhdev, port1, udev) {
2328			if (udev->state != USB_STATE_NOTATTACHED &&
2329					!udev->port_is_suspended) {
2330				usleep_range(10000, 11000);	/* TRSMRCY */
2331				break;
2332			}
2333		}
2334	} else {
2335		hcd->state = old_state;
 
2336		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337				"resume", status);
2338		if (status != -ESHUTDOWN)
2339			usb_hc_died(hcd);
2340	}
2341	return status;
2342}
2343
2344/* Workqueue routine for root-hub remote wakeup */
2345static void hcd_resume_work(struct work_struct *work)
2346{
2347	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348	struct usb_device *udev = hcd->self.root_hub;
2349
2350	usb_remote_wakeup(udev);
2351}
2352
2353/**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received.  The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363{
2364	unsigned long flags;
2365
2366	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367	if (hcd->rh_registered) {
 
2368		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369		queue_work(pm_wq, &hcd->wakeup_work);
2370	}
2371	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372}
2373EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375#endif	/* CONFIG_PM */
2376
2377/*-------------------------------------------------------------------------*/
2378
2379#ifdef	CONFIG_USB_OTG
2380
2381/**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395{
2396	struct usb_hcd		*hcd;
2397	int			status = -EOPNOTSUPP;
2398
2399	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400	 * boards with root hubs hooked up to internal devices (instead of
2401	 * just the OTG port) may need more attention to resetting...
2402	 */
2403	hcd = bus_to_hcd(bus);
2404	if (port_num && hcd->driver->start_port_reset)
2405		status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407	/* allocate hub_wq shortly after (first) root port reset finishes;
2408	 * it may issue others, until at least 50 msecs have passed.
2409	 */
2410	if (status == 0)
2411		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412	return status;
2413}
2414EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416#endif
2417
2418/*-------------------------------------------------------------------------*/
2419
2420/**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431{
2432	struct usb_hcd		*hcd = __hcd;
2433	irqreturn_t		rc;
2434
2435	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436		rc = IRQ_NONE;
2437	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438		rc = IRQ_NONE;
2439	else
2440		rc = IRQ_HANDLED;
2441
2442	return rc;
2443}
2444EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446/*-------------------------------------------------------------------------*/
2447
2448/**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending.  It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458void usb_hc_died (struct usb_hcd *hcd)
2459{
2460	unsigned long flags;
2461
2462	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467	if (hcd->rh_registered) {
2468		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470		/* make hub_wq clean up old urbs and devices */
2471		usb_set_device_state (hcd->self.root_hub,
2472				USB_STATE_NOTATTACHED);
2473		usb_kick_hub_wq(hcd->self.root_hub);
2474	}
2475	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476		hcd = hcd->shared_hcd;
 
 
2477		if (hcd->rh_registered) {
2478			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479
2480			/* make hub_wq clean up old urbs and devices */
2481			usb_set_device_state(hcd->self.root_hub,
2482					USB_STATE_NOTATTACHED);
2483			usb_kick_hub_wq(hcd->self.root_hub);
2484		}
2485	}
2486	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487	/* Make sure that the other roothub is also deallocated. */
2488}
2489EXPORT_SYMBOL_GPL (usb_hc_died);
2490
2491/*-------------------------------------------------------------------------*/
2492
2493static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494{
2495
2496	spin_lock_init(&bh->lock);
2497	INIT_LIST_HEAD(&bh->head);
2498	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499}
2500
2501/**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 *              PCI device.  Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data.  Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
2517struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518		struct device *dev, const char *bus_name,
2519		struct usb_hcd *primary_hcd)
2520{
2521	struct usb_hcd *hcd;
2522
2523	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524	if (!hcd)
2525		return NULL;
2526	if (primary_hcd == NULL) {
2527		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528				GFP_KERNEL);
2529		if (!hcd->address0_mutex) {
2530			kfree(hcd);
2531			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532			return NULL;
2533		}
2534		mutex_init(hcd->address0_mutex);
2535		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536				GFP_KERNEL);
2537		if (!hcd->bandwidth_mutex) {
 
2538			kfree(hcd);
2539			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540			return NULL;
2541		}
2542		mutex_init(hcd->bandwidth_mutex);
2543		dev_set_drvdata(dev, hcd);
2544	} else {
2545		mutex_lock(&usb_port_peer_mutex);
2546		hcd->address0_mutex = primary_hcd->address0_mutex;
2547		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548		hcd->primary_hcd = primary_hcd;
2549		primary_hcd->primary_hcd = primary_hcd;
2550		hcd->shared_hcd = primary_hcd;
2551		primary_hcd->shared_hcd = hcd;
2552		mutex_unlock(&usb_port_peer_mutex);
2553	}
2554
2555	kref_init(&hcd->kref);
2556
2557	usb_bus_init(&hcd->self);
2558	hcd->self.controller = dev;
 
2559	hcd->self.bus_name = bus_name;
2560	hcd->self.uses_dma = (dev->dma_mask != NULL);
2561
2562	init_timer(&hcd->rh_timer);
2563	hcd->rh_timer.function = rh_timer_func;
2564	hcd->rh_timer.data = (unsigned long) hcd;
2565#ifdef CONFIG_PM
2566	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567#endif
2568
2569	hcd->driver = driver;
2570	hcd->speed = driver->flags & HCD_MASK;
2571	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572			"USB Host Controller";
2573	return hcd;
2574}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2575EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576
2577/**
2578 * usb_create_hcd - create and initialize an HCD structure
2579 * @driver: HC driver that will use this hcd
2580 * @dev: device for this HC, stored in hcd->self.controller
2581 * @bus_name: value to store in hcd->self.bus_name
2582 * Context: !in_interrupt()
2583 *
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data.  Initialize the generic members of the
2586 * hcd structure.
2587 *
2588 * Return: On success, a pointer to the created and initialized HCD
2589 * structure. On failure (e.g. if memory is unavailable), %NULL.
2590 */
2591struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592		struct device *dev, const char *bus_name)
2593{
2594	return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595}
2596EXPORT_SYMBOL_GPL(usb_create_hcd);
2597
2598/*
2599 * Roothubs that share one PCI device must also share the bandwidth mutex.
2600 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601 * deallocated.
2602 *
2603 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604 * freed.  When hcd_release() is called for either hcd in a peer set,
2605 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606 */
2607static void hcd_release(struct kref *kref)
2608{
2609	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610
2611	mutex_lock(&usb_port_peer_mutex);
2612	if (hcd->shared_hcd) {
2613		struct usb_hcd *peer = hcd->shared_hcd;
2614
2615		peer->shared_hcd = NULL;
2616		peer->primary_hcd = NULL;
2617	} else {
2618		kfree(hcd->address0_mutex);
2619		kfree(hcd->bandwidth_mutex);
2620	}
2621	mutex_unlock(&usb_port_peer_mutex);
2622	kfree(hcd);
2623}
2624
2625struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626{
2627	if (hcd)
2628		kref_get (&hcd->kref);
2629	return hcd;
2630}
2631EXPORT_SYMBOL_GPL(usb_get_hcd);
2632
2633void usb_put_hcd (struct usb_hcd *hcd)
2634{
2635	if (hcd)
2636		kref_put (&hcd->kref, hcd_release);
2637}
2638EXPORT_SYMBOL_GPL(usb_put_hcd);
2639
2640int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641{
2642	if (!hcd->primary_hcd)
2643		return 1;
2644	return hcd == hcd->primary_hcd;
2645}
2646EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647
2648int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649{
2650	if (!hcd->driver->find_raw_port_number)
2651		return port1;
2652
2653	return hcd->driver->find_raw_port_number(hcd, port1);
2654}
2655
2656static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657		unsigned int irqnum, unsigned long irqflags)
2658{
2659	int retval;
2660
2661	if (hcd->driver->irq) {
2662
2663		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664				hcd->driver->description, hcd->self.busnum);
2665		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666				hcd->irq_descr, hcd);
2667		if (retval != 0) {
2668			dev_err(hcd->self.controller,
2669					"request interrupt %d failed\n",
2670					irqnum);
2671			return retval;
2672		}
2673		hcd->irq = irqnum;
2674		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675				(hcd->driver->flags & HCD_MEMORY) ?
2676					"io mem" : "io base",
2677					(unsigned long long)hcd->rsrc_start);
2678	} else {
2679		hcd->irq = 0;
2680		if (hcd->rsrc_start)
2681			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682					(hcd->driver->flags & HCD_MEMORY) ?
2683					"io mem" : "io base",
2684					(unsigned long long)hcd->rsrc_start);
2685	}
2686	return 0;
2687}
2688
2689/*
2690 * Before we free this root hub, flush in-flight peering attempts
2691 * and disable peer lookups
2692 */
2693static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694{
2695	struct usb_device *rhdev;
2696
2697	mutex_lock(&usb_port_peer_mutex);
2698	rhdev = hcd->self.root_hub;
2699	hcd->self.root_hub = NULL;
2700	mutex_unlock(&usb_port_peer_mutex);
2701	usb_put_dev(rhdev);
2702}
2703
2704/**
2705 * usb_add_hcd - finish generic HCD structure initialization and register
2706 * @hcd: the usb_hcd structure to initialize
2707 * @irqnum: Interrupt line to allocate
2708 * @irqflags: Interrupt type flags
2709 *
2710 * Finish the remaining parts of generic HCD initialization: allocate the
2711 * buffers of consistent memory, register the bus, request the IRQ line,
2712 * and call the driver's reset() and start() routines.
2713 */
2714int usb_add_hcd(struct usb_hcd *hcd,
2715		unsigned int irqnum, unsigned long irqflags)
2716{
2717	int retval;
2718	struct usb_device *rhdev;
2719
2720	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721		struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2722
2723		if (IS_ERR(phy)) {
2724			retval = PTR_ERR(phy);
2725			if (retval == -EPROBE_DEFER)
2726				return retval;
2727		} else {
2728			retval = usb_phy_init(phy);
2729			if (retval) {
2730				usb_put_phy(phy);
2731				return retval;
2732			}
2733			hcd->usb_phy = phy;
2734			hcd->remove_phy = 1;
2735		}
2736	}
2737
2738	if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739		struct phy *phy = phy_get(hcd->self.controller, "usb");
2740
2741		if (IS_ERR(phy)) {
2742			retval = PTR_ERR(phy);
2743			if (retval == -EPROBE_DEFER)
2744				goto err_phy;
2745		} else {
2746			retval = phy_init(phy);
2747			if (retval) {
2748				phy_put(phy);
2749				goto err_phy;
2750			}
2751			retval = phy_power_on(phy);
2752			if (retval) {
2753				phy_exit(phy);
2754				phy_put(phy);
2755				goto err_phy;
2756			}
2757			hcd->phy = phy;
2758			hcd->remove_phy = 1;
2759		}
 
 
 
 
 
 
 
 
2760	}
2761
2762	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763
2764	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2765	if (authorized_default < 0 || authorized_default > 1) {
2766		if (hcd->wireless)
2767			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768		else
2769			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770	} else {
2771		if (authorized_default)
2772			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773		else
2774			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2775	}
2776	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777
2778	/* per default all interfaces are authorized */
2779	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780
2781	/* HC is in reset state, but accessible.  Now do the one-time init,
2782	 * bottom up so that hcds can customize the root hubs before hub_wq
2783	 * starts talking to them.  (Note, bus id is assigned early too.)
2784	 */
2785	retval = hcd_buffer_create(hcd);
2786	if (retval != 0) {
2787		dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788		goto err_create_buf;
2789	}
2790
2791	retval = usb_register_bus(&hcd->self);
2792	if (retval < 0)
2793		goto err_register_bus;
2794
2795	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796	if (rhdev == NULL) {
2797		dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798		retval = -ENOMEM;
2799		goto err_allocate_root_hub;
2800	}
2801	mutex_lock(&usb_port_peer_mutex);
2802	hcd->self.root_hub = rhdev;
2803	mutex_unlock(&usb_port_peer_mutex);
2804
2805	switch (hcd->speed) {
2806	case HCD_USB11:
2807		rhdev->speed = USB_SPEED_FULL;
2808		break;
2809	case HCD_USB2:
2810		rhdev->speed = USB_SPEED_HIGH;
2811		break;
2812	case HCD_USB25:
2813		rhdev->speed = USB_SPEED_WIRELESS;
2814		break;
2815	case HCD_USB3:
2816		rhdev->speed = USB_SPEED_SUPER;
2817		break;
2818	case HCD_USB31:
2819		rhdev->speed = USB_SPEED_SUPER_PLUS;
2820		break;
2821	default:
2822		retval = -EINVAL;
2823		goto err_set_rh_speed;
2824	}
2825
2826	/* wakeup flag init defaults to "everything works" for root hubs,
2827	 * but drivers can override it in reset() if needed, along with
2828	 * recording the overall controller's system wakeup capability.
2829	 */
2830	device_set_wakeup_capable(&rhdev->dev, 1);
2831
2832	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833	 * registered.  But since the controller can die at any time,
2834	 * let's initialize the flag before touching the hardware.
2835	 */
2836	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837
2838	/* "reset" is misnamed; its role is now one-time init. the controller
2839	 * should already have been reset (and boot firmware kicked off etc).
2840	 */
2841	if (hcd->driver->reset) {
2842		retval = hcd->driver->reset(hcd);
2843		if (retval < 0) {
2844			dev_err(hcd->self.controller, "can't setup: %d\n",
2845					retval);
2846			goto err_hcd_driver_setup;
2847		}
2848	}
2849	hcd->rh_pollable = 1;
2850
2851	/* NOTE: root hub and controller capabilities may not be the same */
2852	if (device_can_wakeup(hcd->self.controller)
2853			&& device_can_wakeup(&hcd->self.root_hub->dev))
2854		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855
2856	/* initialize tasklets */
2857	init_giveback_urb_bh(&hcd->high_prio_bh);
2858	init_giveback_urb_bh(&hcd->low_prio_bh);
2859
2860	/* enable irqs just before we start the controller,
2861	 * if the BIOS provides legacy PCI irqs.
2862	 */
2863	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865		if (retval)
2866			goto err_request_irq;
2867	}
2868
2869	hcd->state = HC_STATE_RUNNING;
2870	retval = hcd->driver->start(hcd);
2871	if (retval < 0) {
2872		dev_err(hcd->self.controller, "startup error %d\n", retval);
2873		goto err_hcd_driver_start;
2874	}
2875
2876	/* starting here, usbcore will pay attention to this root hub */
2877	retval = register_root_hub(hcd);
2878	if (retval != 0)
2879		goto err_register_root_hub;
2880
2881	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882	if (retval < 0) {
2883		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884		       retval);
2885		goto error_create_attr_group;
2886	}
2887	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888		usb_hcd_poll_rh_status(hcd);
2889
2890	return retval;
2891
2892error_create_attr_group:
2893	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894	if (HC_IS_RUNNING(hcd->state))
2895		hcd->state = HC_STATE_QUIESCING;
2896	spin_lock_irq(&hcd_root_hub_lock);
2897	hcd->rh_registered = 0;
2898	spin_unlock_irq(&hcd_root_hub_lock);
2899
2900#ifdef CONFIG_PM
2901	cancel_work_sync(&hcd->wakeup_work);
2902#endif
2903	mutex_lock(&usb_bus_idr_lock);
2904	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2905	mutex_unlock(&usb_bus_idr_lock);
2906err_register_root_hub:
2907	hcd->rh_pollable = 0;
2908	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909	del_timer_sync(&hcd->rh_timer);
2910	hcd->driver->stop(hcd);
2911	hcd->state = HC_STATE_HALT;
2912	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913	del_timer_sync(&hcd->rh_timer);
2914err_hcd_driver_start:
2915	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916		free_irq(irqnum, hcd);
2917err_request_irq:
2918err_hcd_driver_setup:
2919err_set_rh_speed:
2920	usb_put_invalidate_rhdev(hcd);
2921err_allocate_root_hub:
2922	usb_deregister_bus(&hcd->self);
2923err_register_bus:
2924	hcd_buffer_destroy(hcd);
2925err_create_buf:
2926	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927		phy_power_off(hcd->phy);
2928		phy_exit(hcd->phy);
2929		phy_put(hcd->phy);
2930		hcd->phy = NULL;
2931	}
2932err_phy:
2933	if (hcd->remove_phy && hcd->usb_phy) {
2934		usb_phy_shutdown(hcd->usb_phy);
2935		usb_put_phy(hcd->usb_phy);
2936		hcd->usb_phy = NULL;
2937	}
2938	return retval;
2939}
2940EXPORT_SYMBOL_GPL(usb_add_hcd);
2941
2942/**
2943 * usb_remove_hcd - shutdown processing for generic HCDs
2944 * @hcd: the usb_hcd structure to remove
2945 * Context: !in_interrupt()
2946 *
2947 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948 * invoking the HCD's stop() method.
2949 */
2950void usb_remove_hcd(struct usb_hcd *hcd)
2951{
2952	struct usb_device *rhdev = hcd->self.root_hub;
2953
2954	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955
2956	usb_get_dev(rhdev);
2957	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958
2959	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960	if (HC_IS_RUNNING (hcd->state))
2961		hcd->state = HC_STATE_QUIESCING;
2962
2963	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964	spin_lock_irq (&hcd_root_hub_lock);
2965	hcd->rh_registered = 0;
2966	spin_unlock_irq (&hcd_root_hub_lock);
2967
2968#ifdef CONFIG_PM
2969	cancel_work_sync(&hcd->wakeup_work);
2970#endif
2971
2972	mutex_lock(&usb_bus_idr_lock);
2973	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2974	mutex_unlock(&usb_bus_idr_lock);
2975
2976	/*
2977	 * tasklet_kill() isn't needed here because:
2978	 * - driver's disconnect() called from usb_disconnect() should
2979	 *   make sure its URBs are completed during the disconnect()
2980	 *   callback
2981	 *
2982	 * - it is too late to run complete() here since driver may have
2983	 *   been removed already now
2984	 */
2985
2986	/* Prevent any more root-hub status calls from the timer.
2987	 * The HCD might still restart the timer (if a port status change
2988	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989	 * the hub_status_data() callback.
2990	 */
2991	hcd->rh_pollable = 0;
2992	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993	del_timer_sync(&hcd->rh_timer);
2994
2995	hcd->driver->stop(hcd);
2996	hcd->state = HC_STATE_HALT;
2997
2998	/* In case the HCD restarted the timer, stop it again. */
2999	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000	del_timer_sync(&hcd->rh_timer);
3001
3002	if (usb_hcd_is_primary_hcd(hcd)) {
3003		if (hcd->irq > 0)
3004			free_irq(hcd->irq, hcd);
3005	}
3006
3007	usb_deregister_bus(&hcd->self);
3008	hcd_buffer_destroy(hcd);
3009
3010	if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011		phy_power_off(hcd->phy);
3012		phy_exit(hcd->phy);
3013		phy_put(hcd->phy);
3014		hcd->phy = NULL;
3015	}
3016	if (hcd->remove_phy && hcd->usb_phy) {
3017		usb_phy_shutdown(hcd->usb_phy);
3018		usb_put_phy(hcd->usb_phy);
3019		hcd->usb_phy = NULL;
3020	}
3021
3022	usb_put_invalidate_rhdev(hcd);
 
3023}
3024EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026void
3027usb_hcd_platform_shutdown(struct platform_device *dev)
3028{
3029	struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
3031	if (hcd->driver->shutdown)
3032		hcd->driver->shutdown(hcd);
3033}
3034EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3035
3036/*-------------------------------------------------------------------------*/
3037
3038#if IS_ENABLED(CONFIG_USB_MON)
3039
3040const struct usb_mon_operations *mon_ops;
3041
3042/*
3043 * The registration is unlocked.
3044 * We do it this way because we do not want to lock in hot paths.
3045 *
3046 * Notice that the code is minimally error-proof. Because usbmon needs
3047 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3048 */
3049
3050int usb_mon_register(const struct usb_mon_operations *ops)
3051{
3052
3053	if (mon_ops)
3054		return -EBUSY;
3055
3056	mon_ops = ops;
3057	mb();
3058	return 0;
3059}
3060EXPORT_SYMBOL_GPL (usb_mon_register);
3061
3062void usb_mon_deregister (void)
3063{
3064
3065	if (mon_ops == NULL) {
3066		printk(KERN_ERR "USB: monitor was not registered\n");
3067		return;
3068	}
3069	mon_ops = NULL;
3070	mb();
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_deregister);
3073
3074#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
v4.17
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * (C) Copyright Linus Torvalds 1999
   4 * (C) Copyright Johannes Erdfelt 1999-2001
   5 * (C) Copyright Andreas Gal 1999
   6 * (C) Copyright Gregory P. Smith 1999
   7 * (C) Copyright Deti Fliegl 1999
   8 * (C) Copyright Randy Dunlap 2000
   9 * (C) Copyright David Brownell 2000-2002
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bcd.h>
  13#include <linux/module.h>
  14#include <linux/version.h>
  15#include <linux/kernel.h>
  16#include <linux/sched/task_stack.h>
  17#include <linux/slab.h>
  18#include <linux/completion.h>
  19#include <linux/utsname.h>
  20#include <linux/mm.h>
  21#include <asm/io.h>
  22#include <linux/device.h>
  23#include <linux/dma-mapping.h>
  24#include <linux/mutex.h>
  25#include <asm/irq.h>
  26#include <asm/byteorder.h>
  27#include <asm/unaligned.h>
  28#include <linux/platform_device.h>
  29#include <linux/workqueue.h>
  30#include <linux/pm_runtime.h>
  31#include <linux/types.h>
  32
  33#include <linux/phy/phy.h>
  34#include <linux/usb.h>
  35#include <linux/usb/hcd.h>
  36#include <linux/usb/phy.h>
  37#include <linux/usb/otg.h>
  38
  39#include "usb.h"
  40#include "phy.h"
  41
  42
  43/*-------------------------------------------------------------------------*/
  44
  45/*
  46 * USB Host Controller Driver framework
  47 *
  48 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
  49 * HCD-specific behaviors/bugs.
  50 *
  51 * This does error checks, tracks devices and urbs, and delegates to a
  52 * "hc_driver" only for code (and data) that really needs to know about
  53 * hardware differences.  That includes root hub registers, i/o queues,
  54 * and so on ... but as little else as possible.
  55 *
  56 * Shared code includes most of the "root hub" code (these are emulated,
  57 * though each HC's hardware works differently) and PCI glue, plus request
  58 * tracking overhead.  The HCD code should only block on spinlocks or on
  59 * hardware handshaking; blocking on software events (such as other kernel
  60 * threads releasing resources, or completing actions) is all generic.
  61 *
  62 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
  63 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
  64 * only by the hub driver ... and that neither should be seen or used by
  65 * usb client device drivers.
  66 *
  67 * Contributors of ideas or unattributed patches include: David Brownell,
  68 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
  69 *
  70 * HISTORY:
  71 * 2002-02-21	Pull in most of the usb_bus support from usb.c; some
  72 *		associated cleanup.  "usb_hcd" still != "usb_bus".
  73 * 2001-12-12	Initial patch version for Linux 2.5.1 kernel.
  74 */
  75
  76/*-------------------------------------------------------------------------*/
  77
  78/* Keep track of which host controller drivers are loaded */
  79unsigned long usb_hcds_loaded;
  80EXPORT_SYMBOL_GPL(usb_hcds_loaded);
  81
  82/* host controllers we manage */
  83DEFINE_IDR (usb_bus_idr);
  84EXPORT_SYMBOL_GPL (usb_bus_idr);
  85
  86/* used when allocating bus numbers */
  87#define USB_MAXBUS		64
  88
  89/* used when updating list of hcds */
  90DEFINE_MUTEX(usb_bus_idr_lock);	/* exported only for usbfs */
  91EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
  92
  93/* used for controlling access to virtual root hubs */
  94static DEFINE_SPINLOCK(hcd_root_hub_lock);
  95
  96/* used when updating an endpoint's URB list */
  97static DEFINE_SPINLOCK(hcd_urb_list_lock);
  98
  99/* used to protect against unlinking URBs after the device is gone */
 100static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
 101
 102/* wait queue for synchronous unlinks */
 103DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
 104
 105static inline int is_root_hub(struct usb_device *udev)
 106{
 107	return (udev->parent == NULL);
 108}
 109
 110/*-------------------------------------------------------------------------*/
 111
 112/*
 113 * Sharable chunks of root hub code.
 114 */
 115
 116/*-------------------------------------------------------------------------*/
 117#define KERNEL_REL	bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
 118#define KERNEL_VER	bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
 119
 120/* usb 3.1 root hub device descriptor */
 121static const u8 usb31_rh_dev_descriptor[18] = {
 122	0x12,       /*  __u8  bLength; */
 123	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 124	0x10, 0x03, /*  __le16 bcdUSB; v3.1 */
 125
 126	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 127	0x00,	    /*  __u8  bDeviceSubClass; */
 128	0x03,       /*  __u8  bDeviceProtocol; USB 3 hub */
 129	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 130
 131	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 132	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 133	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 134
 135	0x03,       /*  __u8  iManufacturer; */
 136	0x02,       /*  __u8  iProduct; */
 137	0x01,       /*  __u8  iSerialNumber; */
 138	0x01        /*  __u8  bNumConfigurations; */
 139};
 140
 141/* usb 3.0 root hub device descriptor */
 142static const u8 usb3_rh_dev_descriptor[18] = {
 143	0x12,       /*  __u8  bLength; */
 144	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 145	0x00, 0x03, /*  __le16 bcdUSB; v3.0 */
 146
 147	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 148	0x00,	    /*  __u8  bDeviceSubClass; */
 149	0x03,       /*  __u8  bDeviceProtocol; USB 3.0 hub */
 150	0x09,       /*  __u8  bMaxPacketSize0; 2^9 = 512 Bytes */
 151
 152	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 153	0x03, 0x00, /*  __le16 idProduct; device 0x0003 */
 154	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 155
 156	0x03,       /*  __u8  iManufacturer; */
 157	0x02,       /*  __u8  iProduct; */
 158	0x01,       /*  __u8  iSerialNumber; */
 159	0x01        /*  __u8  bNumConfigurations; */
 160};
 161
 162/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
 163static const u8 usb25_rh_dev_descriptor[18] = {
 164	0x12,       /*  __u8  bLength; */
 165	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 166	0x50, 0x02, /*  __le16 bcdUSB; v2.5 */
 167
 168	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 169	0x00,	    /*  __u8  bDeviceSubClass; */
 170	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 171	0xFF,       /*  __u8  bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
 172
 173	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 174	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 175	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 176
 177	0x03,       /*  __u8  iManufacturer; */
 178	0x02,       /*  __u8  iProduct; */
 179	0x01,       /*  __u8  iSerialNumber; */
 180	0x01        /*  __u8  bNumConfigurations; */
 181};
 182
 183/* usb 2.0 root hub device descriptor */
 184static const u8 usb2_rh_dev_descriptor[18] = {
 185	0x12,       /*  __u8  bLength; */
 186	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 187	0x00, 0x02, /*  __le16 bcdUSB; v2.0 */
 188
 189	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 190	0x00,	    /*  __u8  bDeviceSubClass; */
 191	0x00,       /*  __u8  bDeviceProtocol; [ usb 2.0 no TT ] */
 192	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 193
 194	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 195	0x02, 0x00, /*  __le16 idProduct; device 0x0002 */
 196	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 197
 198	0x03,       /*  __u8  iManufacturer; */
 199	0x02,       /*  __u8  iProduct; */
 200	0x01,       /*  __u8  iSerialNumber; */
 201	0x01        /*  __u8  bNumConfigurations; */
 202};
 203
 204/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
 205
 206/* usb 1.1 root hub device descriptor */
 207static const u8 usb11_rh_dev_descriptor[18] = {
 208	0x12,       /*  __u8  bLength; */
 209	USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
 210	0x10, 0x01, /*  __le16 bcdUSB; v1.1 */
 211
 212	0x09,	    /*  __u8  bDeviceClass; HUB_CLASSCODE */
 213	0x00,	    /*  __u8  bDeviceSubClass; */
 214	0x00,       /*  __u8  bDeviceProtocol; [ low/full speeds only ] */
 215	0x40,       /*  __u8  bMaxPacketSize0; 64 Bytes */
 216
 217	0x6b, 0x1d, /*  __le16 idVendor; Linux Foundation 0x1d6b */
 218	0x01, 0x00, /*  __le16 idProduct; device 0x0001 */
 219	KERNEL_VER, KERNEL_REL, /*  __le16 bcdDevice */
 220
 221	0x03,       /*  __u8  iManufacturer; */
 222	0x02,       /*  __u8  iProduct; */
 223	0x01,       /*  __u8  iSerialNumber; */
 224	0x01        /*  __u8  bNumConfigurations; */
 225};
 226
 227
 228/*-------------------------------------------------------------------------*/
 229
 230/* Configuration descriptors for our root hubs */
 231
 232static const u8 fs_rh_config_descriptor[] = {
 233
 234	/* one configuration */
 235	0x09,       /*  __u8  bLength; */
 236	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 237	0x19, 0x00, /*  __le16 wTotalLength; */
 238	0x01,       /*  __u8  bNumInterfaces; (1) */
 239	0x01,       /*  __u8  bConfigurationValue; */
 240	0x00,       /*  __u8  iConfiguration; */
 241	0xc0,       /*  __u8  bmAttributes;
 242				 Bit 7: must be set,
 243				     6: Self-powered,
 244				     5: Remote wakeup,
 245				     4..0: resvd */
 246	0x00,       /*  __u8  MaxPower; */
 247
 248	/* USB 1.1:
 249	 * USB 2.0, single TT organization (mandatory):
 250	 *	one interface, protocol 0
 251	 *
 252	 * USB 2.0, multiple TT organization (optional):
 253	 *	two interfaces, protocols 1 (like single TT)
 254	 *	and 2 (multiple TT mode) ... config is
 255	 *	sometimes settable
 256	 *	NOT IMPLEMENTED
 257	 */
 258
 259	/* one interface */
 260	0x09,       /*  __u8  if_bLength; */
 261	USB_DT_INTERFACE,  /* __u8 if_bDescriptorType; Interface */
 262	0x00,       /*  __u8  if_bInterfaceNumber; */
 263	0x00,       /*  __u8  if_bAlternateSetting; */
 264	0x01,       /*  __u8  if_bNumEndpoints; */
 265	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 266	0x00,       /*  __u8  if_bInterfaceSubClass; */
 267	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 268	0x00,       /*  __u8  if_iInterface; */
 269
 270	/* one endpoint (status change endpoint) */
 271	0x07,       /*  __u8  ep_bLength; */
 272	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 273	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 274	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 275	0x02, 0x00, /*  __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
 276	0xff        /*  __u8  ep_bInterval; (255ms -- usb 2.0 spec) */
 277};
 278
 279static const u8 hs_rh_config_descriptor[] = {
 280
 281	/* one configuration */
 282	0x09,       /*  __u8  bLength; */
 283	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 284	0x19, 0x00, /*  __le16 wTotalLength; */
 285	0x01,       /*  __u8  bNumInterfaces; (1) */
 286	0x01,       /*  __u8  bConfigurationValue; */
 287	0x00,       /*  __u8  iConfiguration; */
 288	0xc0,       /*  __u8  bmAttributes;
 289				 Bit 7: must be set,
 290				     6: Self-powered,
 291				     5: Remote wakeup,
 292				     4..0: resvd */
 293	0x00,       /*  __u8  MaxPower; */
 294
 295	/* USB 1.1:
 296	 * USB 2.0, single TT organization (mandatory):
 297	 *	one interface, protocol 0
 298	 *
 299	 * USB 2.0, multiple TT organization (optional):
 300	 *	two interfaces, protocols 1 (like single TT)
 301	 *	and 2 (multiple TT mode) ... config is
 302	 *	sometimes settable
 303	 *	NOT IMPLEMENTED
 304	 */
 305
 306	/* one interface */
 307	0x09,       /*  __u8  if_bLength; */
 308	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 309	0x00,       /*  __u8  if_bInterfaceNumber; */
 310	0x00,       /*  __u8  if_bAlternateSetting; */
 311	0x01,       /*  __u8  if_bNumEndpoints; */
 312	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 313	0x00,       /*  __u8  if_bInterfaceSubClass; */
 314	0x00,       /*  __u8  if_bInterfaceProtocol; [usb1.1 or single tt] */
 315	0x00,       /*  __u8  if_iInterface; */
 316
 317	/* one endpoint (status change endpoint) */
 318	0x07,       /*  __u8  ep_bLength; */
 319	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 320	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 321	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 322		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 323		     * see hub.c:hub_configure() for details. */
 324	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 325	0x0c        /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 326};
 327
 328static const u8 ss_rh_config_descriptor[] = {
 329	/* one configuration */
 330	0x09,       /*  __u8  bLength; */
 331	USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
 332	0x1f, 0x00, /*  __le16 wTotalLength; */
 333	0x01,       /*  __u8  bNumInterfaces; (1) */
 334	0x01,       /*  __u8  bConfigurationValue; */
 335	0x00,       /*  __u8  iConfiguration; */
 336	0xc0,       /*  __u8  bmAttributes;
 337				 Bit 7: must be set,
 338				     6: Self-powered,
 339				     5: Remote wakeup,
 340				     4..0: resvd */
 341	0x00,       /*  __u8  MaxPower; */
 342
 343	/* one interface */
 344	0x09,       /*  __u8  if_bLength; */
 345	USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
 346	0x00,       /*  __u8  if_bInterfaceNumber; */
 347	0x00,       /*  __u8  if_bAlternateSetting; */
 348	0x01,       /*  __u8  if_bNumEndpoints; */
 349	0x09,       /*  __u8  if_bInterfaceClass; HUB_CLASSCODE */
 350	0x00,       /*  __u8  if_bInterfaceSubClass; */
 351	0x00,       /*  __u8  if_bInterfaceProtocol; */
 352	0x00,       /*  __u8  if_iInterface; */
 353
 354	/* one endpoint (status change endpoint) */
 355	0x07,       /*  __u8  ep_bLength; */
 356	USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
 357	0x81,       /*  __u8  ep_bEndpointAddress; IN Endpoint 1 */
 358	0x03,       /*  __u8  ep_bmAttributes; Interrupt */
 359		    /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
 360		     * see hub.c:hub_configure() for details. */
 361	(USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
 362	0x0c,       /*  __u8  ep_bInterval; (256ms -- usb 2.0 spec) */
 363
 364	/* one SuperSpeed endpoint companion descriptor */
 365	0x06,        /* __u8 ss_bLength */
 366	USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
 367		     /* Companion */
 368	0x00,        /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
 369	0x00,        /* __u8 ss_bmAttributes; 1 packet per service interval */
 370	0x02, 0x00   /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
 371};
 372
 373/* authorized_default behaviour:
 374 * -1 is authorized for all devices except wireless (old behaviour)
 375 * 0 is unauthorized for all devices
 376 * 1 is authorized for all devices
 377 */
 378static int authorized_default = -1;
 379module_param(authorized_default, int, S_IRUGO|S_IWUSR);
 380MODULE_PARM_DESC(authorized_default,
 381		"Default USB device authorization: 0 is not authorized, 1 is "
 382		"authorized, -1 is authorized except for wireless USB (default, "
 383		"old behaviour");
 384/*-------------------------------------------------------------------------*/
 385
 386/**
 387 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
 388 * @s: Null-terminated ASCII (actually ISO-8859-1) string
 389 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
 390 * @len: Length (in bytes; may be odd) of descriptor buffer.
 391 *
 392 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
 393 * whichever is less.
 394 *
 395 * Note:
 396 * USB String descriptors can contain at most 126 characters; input
 397 * strings longer than that are truncated.
 398 */
 399static unsigned
 400ascii2desc(char const *s, u8 *buf, unsigned len)
 401{
 402	unsigned n, t = 2 + 2*strlen(s);
 403
 404	if (t > 254)
 405		t = 254;	/* Longest possible UTF string descriptor */
 406	if (len > t)
 407		len = t;
 408
 409	t += USB_DT_STRING << 8;	/* Now t is first 16 bits to store */
 410
 411	n = len;
 412	while (n--) {
 413		*buf++ = t;
 414		if (!n--)
 415			break;
 416		*buf++ = t >> 8;
 417		t = (unsigned char)*s++;
 418	}
 419	return len;
 420}
 421
 422/**
 423 * rh_string() - provides string descriptors for root hub
 424 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
 425 * @hcd: the host controller for this root hub
 426 * @data: buffer for output packet
 427 * @len: length of the provided buffer
 428 *
 429 * Produces either a manufacturer, product or serial number string for the
 430 * virtual root hub device.
 431 *
 432 * Return: The number of bytes filled in: the length of the descriptor or
 433 * of the provided buffer, whichever is less.
 434 */
 435static unsigned
 436rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
 437{
 438	char buf[100];
 439	char const *s;
 440	static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
 441
 442	/* language ids */
 443	switch (id) {
 444	case 0:
 445		/* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
 446		/* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
 447		if (len > 4)
 448			len = 4;
 449		memcpy(data, langids, len);
 450		return len;
 451	case 1:
 452		/* Serial number */
 453		s = hcd->self.bus_name;
 454		break;
 455	case 2:
 456		/* Product name */
 457		s = hcd->product_desc;
 458		break;
 459	case 3:
 460		/* Manufacturer */
 461		snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
 462			init_utsname()->release, hcd->driver->description);
 463		s = buf;
 464		break;
 465	default:
 466		/* Can't happen; caller guarantees it */
 467		return 0;
 468	}
 469
 470	return ascii2desc(s, data, len);
 471}
 472
 473
 474/* Root hub control transfers execute synchronously */
 475static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
 476{
 477	struct usb_ctrlrequest *cmd;
 478	u16		typeReq, wValue, wIndex, wLength;
 479	u8		*ubuf = urb->transfer_buffer;
 480	unsigned	len = 0;
 481	int		status;
 482	u8		patch_wakeup = 0;
 483	u8		patch_protocol = 0;
 484	u16		tbuf_size;
 485	u8		*tbuf = NULL;
 486	const u8	*bufp;
 487
 488	might_sleep();
 489
 490	spin_lock_irq(&hcd_root_hub_lock);
 491	status = usb_hcd_link_urb_to_ep(hcd, urb);
 492	spin_unlock_irq(&hcd_root_hub_lock);
 493	if (status)
 494		return status;
 495	urb->hcpriv = hcd;	/* Indicate it's queued */
 496
 497	cmd = (struct usb_ctrlrequest *) urb->setup_packet;
 498	typeReq  = (cmd->bRequestType << 8) | cmd->bRequest;
 499	wValue   = le16_to_cpu (cmd->wValue);
 500	wIndex   = le16_to_cpu (cmd->wIndex);
 501	wLength  = le16_to_cpu (cmd->wLength);
 502
 503	if (wLength > urb->transfer_buffer_length)
 504		goto error;
 505
 506	/*
 507	 * tbuf should be at least as big as the
 508	 * USB hub descriptor.
 509	 */
 510	tbuf_size =  max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
 511	tbuf = kzalloc(tbuf_size, GFP_KERNEL);
 512	if (!tbuf) {
 513		status = -ENOMEM;
 514		goto err_alloc;
 515	}
 516
 517	bufp = tbuf;
 518
 519
 520	urb->actual_length = 0;
 521	switch (typeReq) {
 522
 523	/* DEVICE REQUESTS */
 524
 525	/* The root hub's remote wakeup enable bit is implemented using
 526	 * driver model wakeup flags.  If this system supports wakeup
 527	 * through USB, userspace may change the default "allow wakeup"
 528	 * policy through sysfs or these calls.
 529	 *
 530	 * Most root hubs support wakeup from downstream devices, for
 531	 * runtime power management (disabling USB clocks and reducing
 532	 * VBUS power usage).  However, not all of them do so; silicon,
 533	 * board, and BIOS bugs here are not uncommon, so these can't
 534	 * be treated quite like external hubs.
 535	 *
 536	 * Likewise, not all root hubs will pass wakeup events upstream,
 537	 * to wake up the whole system.  So don't assume root hub and
 538	 * controller capabilities are identical.
 539	 */
 540
 541	case DeviceRequest | USB_REQ_GET_STATUS:
 542		tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
 543					<< USB_DEVICE_REMOTE_WAKEUP)
 544				| (1 << USB_DEVICE_SELF_POWERED);
 545		tbuf[1] = 0;
 546		len = 2;
 547		break;
 548	case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
 549		if (wValue == USB_DEVICE_REMOTE_WAKEUP)
 550			device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
 551		else
 552			goto error;
 553		break;
 554	case DeviceOutRequest | USB_REQ_SET_FEATURE:
 555		if (device_can_wakeup(&hcd->self.root_hub->dev)
 556				&& wValue == USB_DEVICE_REMOTE_WAKEUP)
 557			device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
 558		else
 559			goto error;
 560		break;
 561	case DeviceRequest | USB_REQ_GET_CONFIGURATION:
 562		tbuf[0] = 1;
 563		len = 1;
 564			/* FALLTHROUGH */
 565	case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
 566		break;
 567	case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 568		switch (wValue & 0xff00) {
 569		case USB_DT_DEVICE << 8:
 570			switch (hcd->speed) {
 571			case HCD_USB31:
 572				bufp = usb31_rh_dev_descriptor;
 573				break;
 574			case HCD_USB3:
 575				bufp = usb3_rh_dev_descriptor;
 576				break;
 577			case HCD_USB25:
 578				bufp = usb25_rh_dev_descriptor;
 579				break;
 580			case HCD_USB2:
 581				bufp = usb2_rh_dev_descriptor;
 582				break;
 583			case HCD_USB11:
 584				bufp = usb11_rh_dev_descriptor;
 585				break;
 586			default:
 587				goto error;
 588			}
 589			len = 18;
 590			if (hcd->has_tt)
 591				patch_protocol = 1;
 592			break;
 593		case USB_DT_CONFIG << 8:
 594			switch (hcd->speed) {
 595			case HCD_USB31:
 596			case HCD_USB3:
 597				bufp = ss_rh_config_descriptor;
 598				len = sizeof ss_rh_config_descriptor;
 599				break;
 600			case HCD_USB25:
 601			case HCD_USB2:
 602				bufp = hs_rh_config_descriptor;
 603				len = sizeof hs_rh_config_descriptor;
 604				break;
 605			case HCD_USB11:
 606				bufp = fs_rh_config_descriptor;
 607				len = sizeof fs_rh_config_descriptor;
 608				break;
 609			default:
 610				goto error;
 611			}
 612			if (device_can_wakeup(&hcd->self.root_hub->dev))
 613				patch_wakeup = 1;
 614			break;
 615		case USB_DT_STRING << 8:
 616			if ((wValue & 0xff) < 4)
 617				urb->actual_length = rh_string(wValue & 0xff,
 618						hcd, ubuf, wLength);
 619			else /* unsupported IDs --> "protocol stall" */
 620				goto error;
 621			break;
 622		case USB_DT_BOS << 8:
 623			goto nongeneric;
 624		default:
 625			goto error;
 626		}
 627		break;
 628	case DeviceRequest | USB_REQ_GET_INTERFACE:
 629		tbuf[0] = 0;
 630		len = 1;
 631			/* FALLTHROUGH */
 632	case DeviceOutRequest | USB_REQ_SET_INTERFACE:
 633		break;
 634	case DeviceOutRequest | USB_REQ_SET_ADDRESS:
 635		/* wValue == urb->dev->devaddr */
 636		dev_dbg (hcd->self.controller, "root hub device address %d\n",
 637			wValue);
 638		break;
 639
 640	/* INTERFACE REQUESTS (no defined feature/status flags) */
 641
 642	/* ENDPOINT REQUESTS */
 643
 644	case EndpointRequest | USB_REQ_GET_STATUS:
 645		/* ENDPOINT_HALT flag */
 646		tbuf[0] = 0;
 647		tbuf[1] = 0;
 648		len = 2;
 649			/* FALLTHROUGH */
 650	case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
 651	case EndpointOutRequest | USB_REQ_SET_FEATURE:
 652		dev_dbg (hcd->self.controller, "no endpoint features yet\n");
 653		break;
 654
 655	/* CLASS REQUESTS (and errors) */
 656
 657	default:
 658nongeneric:
 659		/* non-generic request */
 660		switch (typeReq) {
 661		case GetHubStatus:
 662			len = 4;
 663			break;
 664		case GetPortStatus:
 665			if (wValue == HUB_PORT_STATUS)
 666				len = 4;
 667			else
 668				/* other port status types return 8 bytes */
 669				len = 8;
 670			break;
 671		case GetHubDescriptor:
 672			len = sizeof (struct usb_hub_descriptor);
 673			break;
 674		case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
 675			/* len is returned by hub_control */
 676			break;
 677		}
 678		status = hcd->driver->hub_control (hcd,
 679			typeReq, wValue, wIndex,
 680			tbuf, wLength);
 681
 682		if (typeReq == GetHubDescriptor)
 683			usb_hub_adjust_deviceremovable(hcd->self.root_hub,
 684				(struct usb_hub_descriptor *)tbuf);
 685		break;
 686error:
 687		/* "protocol stall" on error */
 688		status = -EPIPE;
 689	}
 690
 691	if (status < 0) {
 692		len = 0;
 693		if (status != -EPIPE) {
 694			dev_dbg (hcd->self.controller,
 695				"CTRL: TypeReq=0x%x val=0x%x "
 696				"idx=0x%x len=%d ==> %d\n",
 697				typeReq, wValue, wIndex,
 698				wLength, status);
 699		}
 700	} else if (status > 0) {
 701		/* hub_control may return the length of data copied. */
 702		len = status;
 703		status = 0;
 704	}
 705	if (len) {
 706		if (urb->transfer_buffer_length < len)
 707			len = urb->transfer_buffer_length;
 708		urb->actual_length = len;
 709		/* always USB_DIR_IN, toward host */
 710		memcpy (ubuf, bufp, len);
 711
 712		/* report whether RH hardware supports remote wakeup */
 713		if (patch_wakeup &&
 714				len > offsetof (struct usb_config_descriptor,
 715						bmAttributes))
 716			((struct usb_config_descriptor *)ubuf)->bmAttributes
 717				|= USB_CONFIG_ATT_WAKEUP;
 718
 719		/* report whether RH hardware has an integrated TT */
 720		if (patch_protocol &&
 721				len > offsetof(struct usb_device_descriptor,
 722						bDeviceProtocol))
 723			((struct usb_device_descriptor *) ubuf)->
 724				bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
 725	}
 726
 727	kfree(tbuf);
 728 err_alloc:
 729
 730	/* any errors get returned through the urb completion */
 731	spin_lock_irq(&hcd_root_hub_lock);
 732	usb_hcd_unlink_urb_from_ep(hcd, urb);
 733	usb_hcd_giveback_urb(hcd, urb, status);
 734	spin_unlock_irq(&hcd_root_hub_lock);
 735	return 0;
 736}
 737
 738/*-------------------------------------------------------------------------*/
 739
 740/*
 741 * Root Hub interrupt transfers are polled using a timer if the
 742 * driver requests it; otherwise the driver is responsible for
 743 * calling usb_hcd_poll_rh_status() when an event occurs.
 744 *
 745 * Completions are called in_interrupt(), but they may or may not
 746 * be in_irq().
 747 */
 748void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
 749{
 750	struct urb	*urb;
 751	int		length;
 752	unsigned long	flags;
 753	char		buffer[6];	/* Any root hubs with > 31 ports? */
 754
 755	if (unlikely(!hcd->rh_pollable))
 756		return;
 757	if (!hcd->uses_new_polling && !hcd->status_urb)
 758		return;
 759
 760	length = hcd->driver->hub_status_data(hcd, buffer);
 761	if (length > 0) {
 762
 763		/* try to complete the status urb */
 764		spin_lock_irqsave(&hcd_root_hub_lock, flags);
 765		urb = hcd->status_urb;
 766		if (urb) {
 767			clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 768			hcd->status_urb = NULL;
 769			urb->actual_length = length;
 770			memcpy(urb->transfer_buffer, buffer, length);
 771
 772			usb_hcd_unlink_urb_from_ep(hcd, urb);
 773			usb_hcd_giveback_urb(hcd, urb, 0);
 774		} else {
 775			length = 0;
 776			set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
 777		}
 778		spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 779	}
 780
 781	/* The USB 2.0 spec says 256 ms.  This is close enough and won't
 782	 * exceed that limit if HZ is 100. The math is more clunky than
 783	 * maybe expected, this is to make sure that all timers for USB devices
 784	 * fire at the same time to give the CPU a break in between */
 785	if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
 786			(length == 0 && hcd->status_urb != NULL))
 787		mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 788}
 789EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
 790
 791/* timer callback */
 792static void rh_timer_func (struct timer_list *t)
 793{
 794	struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
 795
 796	usb_hcd_poll_rh_status(_hcd);
 797}
 798
 799/*-------------------------------------------------------------------------*/
 800
 801static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
 802{
 803	int		retval;
 804	unsigned long	flags;
 805	unsigned	len = 1 + (urb->dev->maxchild / 8);
 806
 807	spin_lock_irqsave (&hcd_root_hub_lock, flags);
 808	if (hcd->status_urb || urb->transfer_buffer_length < len) {
 809		dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
 810		retval = -EINVAL;
 811		goto done;
 812	}
 813
 814	retval = usb_hcd_link_urb_to_ep(hcd, urb);
 815	if (retval)
 816		goto done;
 817
 818	hcd->status_urb = urb;
 819	urb->hcpriv = hcd;	/* indicate it's queued */
 820	if (!hcd->uses_new_polling)
 821		mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
 822
 823	/* If a status change has already occurred, report it ASAP */
 824	else if (HCD_POLL_PENDING(hcd))
 825		mod_timer(&hcd->rh_timer, jiffies);
 826	retval = 0;
 827 done:
 828	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
 829	return retval;
 830}
 831
 832static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
 833{
 834	if (usb_endpoint_xfer_int(&urb->ep->desc))
 835		return rh_queue_status (hcd, urb);
 836	if (usb_endpoint_xfer_control(&urb->ep->desc))
 837		return rh_call_control (hcd, urb);
 838	return -EINVAL;
 839}
 840
 841/*-------------------------------------------------------------------------*/
 842
 843/* Unlinks of root-hub control URBs are legal, but they don't do anything
 844 * since these URBs always execute synchronously.
 845 */
 846static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
 847{
 848	unsigned long	flags;
 849	int		rc;
 850
 851	spin_lock_irqsave(&hcd_root_hub_lock, flags);
 852	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
 853	if (rc)
 854		goto done;
 855
 856	if (usb_endpoint_num(&urb->ep->desc) == 0) {	/* Control URB */
 857		;	/* Do nothing */
 858
 859	} else {				/* Status URB */
 860		if (!hcd->uses_new_polling)
 861			del_timer (&hcd->rh_timer);
 862		if (urb == hcd->status_urb) {
 863			hcd->status_urb = NULL;
 864			usb_hcd_unlink_urb_from_ep(hcd, urb);
 865			usb_hcd_giveback_urb(hcd, urb, status);
 866		}
 867	}
 868 done:
 869	spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
 870	return rc;
 871}
 872
 873
 874
 875/*
 876 * Show & store the current value of authorized_default
 877 */
 878static ssize_t authorized_default_show(struct device *dev,
 879				       struct device_attribute *attr, char *buf)
 880{
 881	struct usb_device *rh_usb_dev = to_usb_device(dev);
 882	struct usb_bus *usb_bus = rh_usb_dev->bus;
 883	struct usb_hcd *hcd;
 884
 885	hcd = bus_to_hcd(usb_bus);
 886	return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
 887}
 888
 889static ssize_t authorized_default_store(struct device *dev,
 890					struct device_attribute *attr,
 891					const char *buf, size_t size)
 892{
 893	ssize_t result;
 894	unsigned val;
 895	struct usb_device *rh_usb_dev = to_usb_device(dev);
 896	struct usb_bus *usb_bus = rh_usb_dev->bus;
 897	struct usb_hcd *hcd;
 898
 899	hcd = bus_to_hcd(usb_bus);
 900	result = sscanf(buf, "%u\n", &val);
 901	if (result == 1) {
 902		if (val)
 903			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 904		else
 905			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
 906
 907		result = size;
 908	} else {
 909		result = -EINVAL;
 910	}
 911	return result;
 912}
 913static DEVICE_ATTR_RW(authorized_default);
 914
 915/*
 916 * interface_authorized_default_show - show default authorization status
 917 * for USB interfaces
 918 *
 919 * note: interface_authorized_default is the default value
 920 *       for initializing the authorized attribute of interfaces
 921 */
 922static ssize_t interface_authorized_default_show(struct device *dev,
 923		struct device_attribute *attr, char *buf)
 924{
 925	struct usb_device *usb_dev = to_usb_device(dev);
 926	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 927
 928	return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
 929}
 930
 931/*
 932 * interface_authorized_default_store - store default authorization status
 933 * for USB interfaces
 934 *
 935 * note: interface_authorized_default is the default value
 936 *       for initializing the authorized attribute of interfaces
 937 */
 938static ssize_t interface_authorized_default_store(struct device *dev,
 939		struct device_attribute *attr, const char *buf, size_t count)
 940{
 941	struct usb_device *usb_dev = to_usb_device(dev);
 942	struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
 943	int rc = count;
 944	bool val;
 945
 946	if (strtobool(buf, &val) != 0)
 947		return -EINVAL;
 948
 949	if (val)
 950		set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 951	else
 952		clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
 953
 954	return rc;
 955}
 956static DEVICE_ATTR_RW(interface_authorized_default);
 957
 958/* Group all the USB bus attributes */
 959static struct attribute *usb_bus_attrs[] = {
 960		&dev_attr_authorized_default.attr,
 961		&dev_attr_interface_authorized_default.attr,
 962		NULL,
 963};
 964
 965static const struct attribute_group usb_bus_attr_group = {
 966	.name = NULL,	/* we want them in the same directory */
 967	.attrs = usb_bus_attrs,
 968};
 969
 970
 971
 972/*-------------------------------------------------------------------------*/
 973
 974/**
 975 * usb_bus_init - shared initialization code
 976 * @bus: the bus structure being initialized
 977 *
 978 * This code is used to initialize a usb_bus structure, memory for which is
 979 * separately managed.
 980 */
 981static void usb_bus_init (struct usb_bus *bus)
 982{
 983	memset (&bus->devmap, 0, sizeof(struct usb_devmap));
 984
 985	bus->devnum_next = 1;
 986
 987	bus->root_hub = NULL;
 988	bus->busnum = -1;
 989	bus->bandwidth_allocated = 0;
 990	bus->bandwidth_int_reqs  = 0;
 991	bus->bandwidth_isoc_reqs = 0;
 992	mutex_init(&bus->devnum_next_mutex);
 993}
 994
 995/*-------------------------------------------------------------------------*/
 996
 997/**
 998 * usb_register_bus - registers the USB host controller with the usb core
 999 * @bus: pointer to the bus to register
1000 * Context: !in_interrupt()
1001 *
1002 * Assigns a bus number, and links the controller into usbcore data
1003 * structures so that it can be seen by scanning the bus list.
1004 *
1005 * Return: 0 if successful. A negative error code otherwise.
1006 */
1007static int usb_register_bus(struct usb_bus *bus)
1008{
1009	int result = -E2BIG;
1010	int busnum;
1011
1012	mutex_lock(&usb_bus_idr_lock);
1013	busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1014	if (busnum < 0) {
1015		pr_err("%s: failed to get bus number\n", usbcore_name);
1016		goto error_find_busnum;
1017	}
1018	bus->busnum = busnum;
1019	mutex_unlock(&usb_bus_idr_lock);
1020
1021	usb_notify_add_bus(bus);
1022
1023	dev_info (bus->controller, "new USB bus registered, assigned bus "
1024		  "number %d\n", bus->busnum);
1025	return 0;
1026
1027error_find_busnum:
1028	mutex_unlock(&usb_bus_idr_lock);
1029	return result;
1030}
1031
1032/**
1033 * usb_deregister_bus - deregisters the USB host controller
1034 * @bus: pointer to the bus to deregister
1035 * Context: !in_interrupt()
1036 *
1037 * Recycles the bus number, and unlinks the controller from usbcore data
1038 * structures so that it won't be seen by scanning the bus list.
1039 */
1040static void usb_deregister_bus (struct usb_bus *bus)
1041{
1042	dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1043
1044	/*
1045	 * NOTE: make sure that all the devices are removed by the
1046	 * controller code, as well as having it call this when cleaning
1047	 * itself up
1048	 */
1049	mutex_lock(&usb_bus_idr_lock);
1050	idr_remove(&usb_bus_idr, bus->busnum);
1051	mutex_unlock(&usb_bus_idr_lock);
1052
1053	usb_notify_remove_bus(bus);
1054}
1055
1056/**
1057 * register_root_hub - called by usb_add_hcd() to register a root hub
1058 * @hcd: host controller for this root hub
1059 *
1060 * This function registers the root hub with the USB subsystem.  It sets up
1061 * the device properly in the device tree and then calls usb_new_device()
1062 * to register the usb device.  It also assigns the root hub's USB address
1063 * (always 1).
1064 *
1065 * Return: 0 if successful. A negative error code otherwise.
1066 */
1067static int register_root_hub(struct usb_hcd *hcd)
1068{
1069	struct device *parent_dev = hcd->self.controller;
1070	struct usb_device *usb_dev = hcd->self.root_hub;
1071	const int devnum = 1;
1072	int retval;
1073
1074	usb_dev->devnum = devnum;
1075	usb_dev->bus->devnum_next = devnum + 1;
1076	memset (&usb_dev->bus->devmap.devicemap, 0,
1077			sizeof usb_dev->bus->devmap.devicemap);
1078	set_bit (devnum, usb_dev->bus->devmap.devicemap);
1079	usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1080
1081	mutex_lock(&usb_bus_idr_lock);
1082
1083	usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1084	retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1085	if (retval != sizeof usb_dev->descriptor) {
1086		mutex_unlock(&usb_bus_idr_lock);
1087		dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1088				dev_name(&usb_dev->dev), retval);
1089		return (retval < 0) ? retval : -EMSGSIZE;
1090	}
1091
1092	if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1093		retval = usb_get_bos_descriptor(usb_dev);
1094		if (!retval) {
1095			usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1096		} else if (usb_dev->speed >= USB_SPEED_SUPER) {
1097			mutex_unlock(&usb_bus_idr_lock);
1098			dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1099					dev_name(&usb_dev->dev), retval);
1100			return retval;
1101		}
1102	}
1103
1104	retval = usb_new_device (usb_dev);
1105	if (retval) {
1106		dev_err (parent_dev, "can't register root hub for %s, %d\n",
1107				dev_name(&usb_dev->dev), retval);
1108	} else {
1109		spin_lock_irq (&hcd_root_hub_lock);
1110		hcd->rh_registered = 1;
1111		spin_unlock_irq (&hcd_root_hub_lock);
1112
1113		/* Did the HC die before the root hub was registered? */
1114		if (HCD_DEAD(hcd))
1115			usb_hc_died (hcd);	/* This time clean up */
 
1116	}
1117	mutex_unlock(&usb_bus_idr_lock);
1118
1119	return retval;
1120}
1121
1122/*
1123 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1124 * @bus: the bus which the root hub belongs to
1125 * @portnum: the port which is being resumed
1126 *
1127 * HCDs should call this function when they know that a resume signal is
1128 * being sent to a root-hub port.  The root hub will be prevented from
1129 * going into autosuspend until usb_hcd_end_port_resume() is called.
1130 *
1131 * The bus's private lock must be held by the caller.
1132 */
1133void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1134{
1135	unsigned bit = 1 << portnum;
1136
1137	if (!(bus->resuming_ports & bit)) {
1138		bus->resuming_ports |= bit;
1139		pm_runtime_get_noresume(&bus->root_hub->dev);
1140	}
1141}
1142EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1143
1144/*
1145 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1146 * @bus: the bus which the root hub belongs to
1147 * @portnum: the port which is being resumed
1148 *
1149 * HCDs should call this function when they know that a resume signal has
1150 * stopped being sent to a root-hub port.  The root hub will be allowed to
1151 * autosuspend again.
1152 *
1153 * The bus's private lock must be held by the caller.
1154 */
1155void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1156{
1157	unsigned bit = 1 << portnum;
1158
1159	if (bus->resuming_ports & bit) {
1160		bus->resuming_ports &= ~bit;
1161		pm_runtime_put_noidle(&bus->root_hub->dev);
1162	}
1163}
1164EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1165
1166/*-------------------------------------------------------------------------*/
1167
1168/**
1169 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1170 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1171 * @is_input: true iff the transaction sends data to the host
1172 * @isoc: true for isochronous transactions, false for interrupt ones
1173 * @bytecount: how many bytes in the transaction.
1174 *
1175 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1176 *
1177 * Note:
1178 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1179 * scheduled in software, this function is only used for such scheduling.
1180 */
1181long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1182{
1183	unsigned long	tmp;
1184
1185	switch (speed) {
1186	case USB_SPEED_LOW: 	/* INTR only */
1187		if (is_input) {
1188			tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1189			return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1190		} else {
1191			tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1192			return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1193		}
1194	case USB_SPEED_FULL:	/* ISOC or INTR */
1195		if (isoc) {
1196			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1197			return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1198		} else {
1199			tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1200			return 9107L + BW_HOST_DELAY + tmp;
1201		}
1202	case USB_SPEED_HIGH:	/* ISOC or INTR */
1203		/* FIXME adjust for input vs output */
1204		if (isoc)
1205			tmp = HS_NSECS_ISO (bytecount);
1206		else
1207			tmp = HS_NSECS (bytecount);
1208		return tmp;
1209	default:
1210		pr_debug ("%s: bogus device speed!\n", usbcore_name);
1211		return -1;
1212	}
1213}
1214EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1215
1216
1217/*-------------------------------------------------------------------------*/
1218
1219/*
1220 * Generic HC operations.
1221 */
1222
1223/*-------------------------------------------------------------------------*/
1224
1225/**
1226 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1227 * @hcd: host controller to which @urb was submitted
1228 * @urb: URB being submitted
1229 *
1230 * Host controller drivers should call this routine in their enqueue()
1231 * method.  The HCD's private spinlock must be held and interrupts must
1232 * be disabled.  The actions carried out here are required for URB
1233 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1234 *
1235 * Return: 0 for no error, otherwise a negative error code (in which case
1236 * the enqueue() method must fail).  If no error occurs but enqueue() fails
1237 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1238 * the private spinlock and returning.
1239 */
1240int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1241{
1242	int		rc = 0;
1243
1244	spin_lock(&hcd_urb_list_lock);
1245
1246	/* Check that the URB isn't being killed */
1247	if (unlikely(atomic_read(&urb->reject))) {
1248		rc = -EPERM;
1249		goto done;
1250	}
1251
1252	if (unlikely(!urb->ep->enabled)) {
1253		rc = -ENOENT;
1254		goto done;
1255	}
1256
1257	if (unlikely(!urb->dev->can_submit)) {
1258		rc = -EHOSTUNREACH;
1259		goto done;
1260	}
1261
1262	/*
1263	 * Check the host controller's state and add the URB to the
1264	 * endpoint's queue.
1265	 */
1266	if (HCD_RH_RUNNING(hcd)) {
1267		urb->unlinked = 0;
1268		list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1269	} else {
1270		rc = -ESHUTDOWN;
1271		goto done;
1272	}
1273 done:
1274	spin_unlock(&hcd_urb_list_lock);
1275	return rc;
1276}
1277EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1278
1279/**
1280 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1281 * @hcd: host controller to which @urb was submitted
1282 * @urb: URB being checked for unlinkability
1283 * @status: error code to store in @urb if the unlink succeeds
1284 *
1285 * Host controller drivers should call this routine in their dequeue()
1286 * method.  The HCD's private spinlock must be held and interrupts must
1287 * be disabled.  The actions carried out here are required for making
1288 * sure than an unlink is valid.
1289 *
1290 * Return: 0 for no error, otherwise a negative error code (in which case
1291 * the dequeue() method must fail).  The possible error codes are:
1292 *
1293 *	-EIDRM: @urb was not submitted or has already completed.
1294 *		The completion function may not have been called yet.
1295 *
1296 *	-EBUSY: @urb has already been unlinked.
1297 */
1298int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1299		int status)
1300{
1301	struct list_head	*tmp;
1302
1303	/* insist the urb is still queued */
1304	list_for_each(tmp, &urb->ep->urb_list) {
1305		if (tmp == &urb->urb_list)
1306			break;
1307	}
1308	if (tmp != &urb->urb_list)
1309		return -EIDRM;
1310
1311	/* Any status except -EINPROGRESS means something already started to
1312	 * unlink this URB from the hardware.  So there's no more work to do.
1313	 */
1314	if (urb->unlinked)
1315		return -EBUSY;
1316	urb->unlinked = status;
1317	return 0;
1318}
1319EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1320
1321/**
1322 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1323 * @hcd: host controller to which @urb was submitted
1324 * @urb: URB being unlinked
1325 *
1326 * Host controller drivers should call this routine before calling
1327 * usb_hcd_giveback_urb().  The HCD's private spinlock must be held and
1328 * interrupts must be disabled.  The actions carried out here are required
1329 * for URB completion.
1330 */
1331void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1332{
1333	/* clear all state linking urb to this dev (and hcd) */
1334	spin_lock(&hcd_urb_list_lock);
1335	list_del_init(&urb->urb_list);
1336	spin_unlock(&hcd_urb_list_lock);
1337}
1338EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1339
1340/*
1341 * Some usb host controllers can only perform dma using a small SRAM area.
1342 * The usb core itself is however optimized for host controllers that can dma
1343 * using regular system memory - like pci devices doing bus mastering.
1344 *
1345 * To support host controllers with limited dma capabilities we provide dma
1346 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1347 * For this to work properly the host controller code must first use the
1348 * function dma_declare_coherent_memory() to point out which memory area
1349 * that should be used for dma allocations.
1350 *
1351 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1352 * dma using dma_alloc_coherent() which in turn allocates from the memory
1353 * area pointed out with dma_declare_coherent_memory().
1354 *
1355 * So, to summarize...
1356 *
1357 * - We need "local" memory, canonical example being
1358 *   a small SRAM on a discrete controller being the
1359 *   only memory that the controller can read ...
1360 *   (a) "normal" kernel memory is no good, and
1361 *   (b) there's not enough to share
1362 *
1363 * - The only *portable* hook for such stuff in the
1364 *   DMA framework is dma_declare_coherent_memory()
1365 *
1366 * - So we use that, even though the primary requirement
1367 *   is that the memory be "local" (hence addressable
1368 *   by that device), not "coherent".
1369 *
1370 */
1371
1372static int hcd_alloc_coherent(struct usb_bus *bus,
1373			      gfp_t mem_flags, dma_addr_t *dma_handle,
1374			      void **vaddr_handle, size_t size,
1375			      enum dma_data_direction dir)
1376{
1377	unsigned char *vaddr;
1378
1379	if (*vaddr_handle == NULL) {
1380		WARN_ON_ONCE(1);
1381		return -EFAULT;
1382	}
1383
1384	vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1385				 mem_flags, dma_handle);
1386	if (!vaddr)
1387		return -ENOMEM;
1388
1389	/*
1390	 * Store the virtual address of the buffer at the end
1391	 * of the allocated dma buffer. The size of the buffer
1392	 * may be uneven so use unaligned functions instead
1393	 * of just rounding up. It makes sense to optimize for
1394	 * memory footprint over access speed since the amount
1395	 * of memory available for dma may be limited.
1396	 */
1397	put_unaligned((unsigned long)*vaddr_handle,
1398		      (unsigned long *)(vaddr + size));
1399
1400	if (dir == DMA_TO_DEVICE)
1401		memcpy(vaddr, *vaddr_handle, size);
1402
1403	*vaddr_handle = vaddr;
1404	return 0;
1405}
1406
1407static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1408			      void **vaddr_handle, size_t size,
1409			      enum dma_data_direction dir)
1410{
1411	unsigned char *vaddr = *vaddr_handle;
1412
1413	vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1414
1415	if (dir == DMA_FROM_DEVICE)
1416		memcpy(vaddr, *vaddr_handle, size);
1417
1418	hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1419
1420	*vaddr_handle = vaddr;
1421	*dma_handle = 0;
1422}
1423
1424void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1425{
1426	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1427	    (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1428		dma_unmap_single(hcd->self.sysdev,
1429				urb->setup_dma,
1430				sizeof(struct usb_ctrlrequest),
1431				DMA_TO_DEVICE);
1432	else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1433		hcd_free_coherent(urb->dev->bus,
1434				&urb->setup_dma,
1435				(void **) &urb->setup_packet,
1436				sizeof(struct usb_ctrlrequest),
1437				DMA_TO_DEVICE);
1438
1439	/* Make it safe to call this routine more than once */
1440	urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1441}
1442EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1443
1444static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1445{
1446	if (hcd->driver->unmap_urb_for_dma)
1447		hcd->driver->unmap_urb_for_dma(hcd, urb);
1448	else
1449		usb_hcd_unmap_urb_for_dma(hcd, urb);
1450}
1451
1452void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1453{
1454	enum dma_data_direction dir;
1455
1456	usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1457
1458	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1459	if (IS_ENABLED(CONFIG_HAS_DMA) &&
1460	    (urb->transfer_flags & URB_DMA_MAP_SG))
1461		dma_unmap_sg(hcd->self.sysdev,
1462				urb->sg,
1463				urb->num_sgs,
1464				dir);
1465	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1466		 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1467		dma_unmap_page(hcd->self.sysdev,
1468				urb->transfer_dma,
1469				urb->transfer_buffer_length,
1470				dir);
1471	else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1472		 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1473		dma_unmap_single(hcd->self.sysdev,
1474				urb->transfer_dma,
1475				urb->transfer_buffer_length,
1476				dir);
1477	else if (urb->transfer_flags & URB_MAP_LOCAL)
1478		hcd_free_coherent(urb->dev->bus,
1479				&urb->transfer_dma,
1480				&urb->transfer_buffer,
1481				urb->transfer_buffer_length,
1482				dir);
1483
1484	/* Make it safe to call this routine more than once */
1485	urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1486			URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1487}
1488EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1489
1490static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1491			   gfp_t mem_flags)
1492{
1493	if (hcd->driver->map_urb_for_dma)
1494		return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1495	else
1496		return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1497}
1498
1499int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1500			    gfp_t mem_flags)
1501{
1502	enum dma_data_direction dir;
1503	int ret = 0;
1504
1505	/* Map the URB's buffers for DMA access.
1506	 * Lower level HCD code should use *_dma exclusively,
1507	 * unless it uses pio or talks to another transport,
1508	 * or uses the provided scatter gather list for bulk.
1509	 */
1510
1511	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1512		if (hcd->self.uses_pio_for_control)
1513			return ret;
1514		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1515			if (is_vmalloc_addr(urb->setup_packet)) {
1516				WARN_ONCE(1, "setup packet is not dma capable\n");
1517				return -EAGAIN;
1518			} else if (object_is_on_stack(urb->setup_packet)) {
1519				WARN_ONCE(1, "setup packet is on stack\n");
1520				return -EAGAIN;
1521			}
1522
1523			urb->setup_dma = dma_map_single(
1524					hcd->self.sysdev,
1525					urb->setup_packet,
1526					sizeof(struct usb_ctrlrequest),
1527					DMA_TO_DEVICE);
1528			if (dma_mapping_error(hcd->self.sysdev,
1529						urb->setup_dma))
1530				return -EAGAIN;
1531			urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1532		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1533			ret = hcd_alloc_coherent(
1534					urb->dev->bus, mem_flags,
1535					&urb->setup_dma,
1536					(void **)&urb->setup_packet,
1537					sizeof(struct usb_ctrlrequest),
1538					DMA_TO_DEVICE);
1539			if (ret)
1540				return ret;
1541			urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1542		}
1543	}
1544
1545	dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1546	if (urb->transfer_buffer_length != 0
1547	    && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1548		if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1549			if (urb->num_sgs) {
1550				int n;
1551
1552				/* We don't support sg for isoc transfers ! */
1553				if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1554					WARN_ON(1);
1555					return -EINVAL;
1556				}
1557
1558				n = dma_map_sg(
1559						hcd->self.sysdev,
1560						urb->sg,
1561						urb->num_sgs,
1562						dir);
1563				if (n <= 0)
1564					ret = -EAGAIN;
1565				else
1566					urb->transfer_flags |= URB_DMA_MAP_SG;
1567				urb->num_mapped_sgs = n;
1568				if (n != urb->num_sgs)
1569					urb->transfer_flags |=
1570							URB_DMA_SG_COMBINED;
1571			} else if (urb->sg) {
1572				struct scatterlist *sg = urb->sg;
1573				urb->transfer_dma = dma_map_page(
1574						hcd->self.sysdev,
1575						sg_page(sg),
1576						sg->offset,
1577						urb->transfer_buffer_length,
1578						dir);
1579				if (dma_mapping_error(hcd->self.sysdev,
1580						urb->transfer_dma))
1581					ret = -EAGAIN;
1582				else
1583					urb->transfer_flags |= URB_DMA_MAP_PAGE;
1584			} else if (is_vmalloc_addr(urb->transfer_buffer)) {
1585				WARN_ONCE(1, "transfer buffer not dma capable\n");
1586				ret = -EAGAIN;
1587			} else if (object_is_on_stack(urb->transfer_buffer)) {
1588				WARN_ONCE(1, "transfer buffer is on stack\n");
1589				ret = -EAGAIN;
1590			} else {
1591				urb->transfer_dma = dma_map_single(
1592						hcd->self.sysdev,
1593						urb->transfer_buffer,
1594						urb->transfer_buffer_length,
1595						dir);
1596				if (dma_mapping_error(hcd->self.sysdev,
1597						urb->transfer_dma))
1598					ret = -EAGAIN;
1599				else
1600					urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1601			}
1602		} else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1603			ret = hcd_alloc_coherent(
1604					urb->dev->bus, mem_flags,
1605					&urb->transfer_dma,
1606					&urb->transfer_buffer,
1607					urb->transfer_buffer_length,
1608					dir);
1609			if (ret == 0)
1610				urb->transfer_flags |= URB_MAP_LOCAL;
1611		}
1612		if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1613				URB_SETUP_MAP_LOCAL)))
1614			usb_hcd_unmap_urb_for_dma(hcd, urb);
1615	}
1616	return ret;
1617}
1618EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1619
1620/*-------------------------------------------------------------------------*/
1621
1622/* may be called in any context with a valid urb->dev usecount
1623 * caller surrenders "ownership" of urb
1624 * expects usb_submit_urb() to have sanity checked and conditioned all
1625 * inputs in the urb
1626 */
1627int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1628{
1629	int			status;
1630	struct usb_hcd		*hcd = bus_to_hcd(urb->dev->bus);
1631
1632	/* increment urb's reference count as part of giving it to the HCD
1633	 * (which will control it).  HCD guarantees that it either returns
1634	 * an error or calls giveback(), but not both.
1635	 */
1636	usb_get_urb(urb);
1637	atomic_inc(&urb->use_count);
1638	atomic_inc(&urb->dev->urbnum);
1639	usbmon_urb_submit(&hcd->self, urb);
1640
1641	/* NOTE requirements on root-hub callers (usbfs and the hub
1642	 * driver, for now):  URBs' urb->transfer_buffer must be
1643	 * valid and usb_buffer_{sync,unmap}() not be needed, since
1644	 * they could clobber root hub response data.  Also, control
1645	 * URBs must be submitted in process context with interrupts
1646	 * enabled.
1647	 */
1648
1649	if (is_root_hub(urb->dev)) {
1650		status = rh_urb_enqueue(hcd, urb);
1651	} else {
1652		status = map_urb_for_dma(hcd, urb, mem_flags);
1653		if (likely(status == 0)) {
1654			status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1655			if (unlikely(status))
1656				unmap_urb_for_dma(hcd, urb);
1657		}
1658	}
1659
1660	if (unlikely(status)) {
1661		usbmon_urb_submit_error(&hcd->self, urb, status);
1662		urb->hcpriv = NULL;
1663		INIT_LIST_HEAD(&urb->urb_list);
1664		atomic_dec(&urb->use_count);
1665		atomic_dec(&urb->dev->urbnum);
1666		if (atomic_read(&urb->reject))
1667			wake_up(&usb_kill_urb_queue);
1668		usb_put_urb(urb);
1669	}
1670	return status;
1671}
1672
1673/*-------------------------------------------------------------------------*/
1674
1675/* this makes the hcd giveback() the urb more quickly, by kicking it
1676 * off hardware queues (which may take a while) and returning it as
1677 * soon as practical.  we've already set up the urb's return status,
1678 * but we can't know if the callback completed already.
1679 */
1680static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1681{
1682	int		value;
1683
1684	if (is_root_hub(urb->dev))
1685		value = usb_rh_urb_dequeue(hcd, urb, status);
1686	else {
1687
1688		/* The only reason an HCD might fail this call is if
1689		 * it has not yet fully queued the urb to begin with.
1690		 * Such failures should be harmless. */
1691		value = hcd->driver->urb_dequeue(hcd, urb, status);
1692	}
1693	return value;
1694}
1695
1696/*
1697 * called in any context
1698 *
1699 * caller guarantees urb won't be recycled till both unlink()
1700 * and the urb's completion function return
1701 */
1702int usb_hcd_unlink_urb (struct urb *urb, int status)
1703{
1704	struct usb_hcd		*hcd;
1705	struct usb_device	*udev = urb->dev;
1706	int			retval = -EIDRM;
1707	unsigned long		flags;
1708
1709	/* Prevent the device and bus from going away while
1710	 * the unlink is carried out.  If they are already gone
1711	 * then urb->use_count must be 0, since disconnected
1712	 * devices can't have any active URBs.
1713	 */
1714	spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1715	if (atomic_read(&urb->use_count) > 0) {
1716		retval = 0;
1717		usb_get_dev(udev);
1718	}
1719	spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1720	if (retval == 0) {
1721		hcd = bus_to_hcd(urb->dev->bus);
1722		retval = unlink1(hcd, urb, status);
1723		if (retval == 0)
1724			retval = -EINPROGRESS;
1725		else if (retval != -EIDRM && retval != -EBUSY)
1726			dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1727					urb, retval);
1728		usb_put_dev(udev);
1729	}
1730	return retval;
1731}
1732
1733/*-------------------------------------------------------------------------*/
1734
1735static void __usb_hcd_giveback_urb(struct urb *urb)
1736{
1737	struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1738	struct usb_anchor *anchor = urb->anchor;
1739	int status = urb->unlinked;
1740	unsigned long flags;
1741
1742	urb->hcpriv = NULL;
1743	if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1744	    urb->actual_length < urb->transfer_buffer_length &&
1745	    !status))
1746		status = -EREMOTEIO;
1747
1748	unmap_urb_for_dma(hcd, urb);
1749	usbmon_urb_complete(&hcd->self, urb, status);
1750	usb_anchor_suspend_wakeups(anchor);
1751	usb_unanchor_urb(urb);
1752	if (likely(status == 0))
1753		usb_led_activity(USB_LED_EVENT_HOST);
1754
1755	/* pass ownership to the completion handler */
1756	urb->status = status;
1757
1758	/*
1759	 * We disable local IRQs here avoid possible deadlock because
1760	 * drivers may call spin_lock() to hold lock which might be
1761	 * acquired in one hard interrupt handler.
1762	 *
1763	 * The local_irq_save()/local_irq_restore() around complete()
1764	 * will be removed if current USB drivers have been cleaned up
1765	 * and no one may trigger the above deadlock situation when
1766	 * running complete() in tasklet.
1767	 */
1768	local_irq_save(flags);
1769	urb->complete(urb);
1770	local_irq_restore(flags);
1771
1772	usb_anchor_resume_wakeups(anchor);
1773	atomic_dec(&urb->use_count);
1774	if (unlikely(atomic_read(&urb->reject)))
1775		wake_up(&usb_kill_urb_queue);
1776	usb_put_urb(urb);
1777}
1778
1779static void usb_giveback_urb_bh(unsigned long param)
1780{
1781	struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1782	struct list_head local_list;
1783
1784	spin_lock_irq(&bh->lock);
1785	bh->running = true;
1786 restart:
1787	list_replace_init(&bh->head, &local_list);
1788	spin_unlock_irq(&bh->lock);
1789
1790	while (!list_empty(&local_list)) {
1791		struct urb *urb;
1792
1793		urb = list_entry(local_list.next, struct urb, urb_list);
1794		list_del_init(&urb->urb_list);
1795		bh->completing_ep = urb->ep;
1796		__usb_hcd_giveback_urb(urb);
1797		bh->completing_ep = NULL;
1798	}
1799
1800	/* check if there are new URBs to giveback */
1801	spin_lock_irq(&bh->lock);
1802	if (!list_empty(&bh->head))
1803		goto restart;
1804	bh->running = false;
1805	spin_unlock_irq(&bh->lock);
1806}
1807
1808/**
1809 * usb_hcd_giveback_urb - return URB from HCD to device driver
1810 * @hcd: host controller returning the URB
1811 * @urb: urb being returned to the USB device driver.
1812 * @status: completion status code for the URB.
1813 * Context: in_interrupt()
1814 *
1815 * This hands the URB from HCD to its USB device driver, using its
1816 * completion function.  The HCD has freed all per-urb resources
1817 * (and is done using urb->hcpriv).  It also released all HCD locks;
1818 * the device driver won't cause problems if it frees, modifies,
1819 * or resubmits this URB.
1820 *
1821 * If @urb was unlinked, the value of @status will be overridden by
1822 * @urb->unlinked.  Erroneous short transfers are detected in case
1823 * the HCD hasn't checked for them.
1824 */
1825void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1826{
1827	struct giveback_urb_bh *bh;
1828	bool running, high_prio_bh;
1829
1830	/* pass status to tasklet via unlinked */
1831	if (likely(!urb->unlinked))
1832		urb->unlinked = status;
1833
1834	if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1835		__usb_hcd_giveback_urb(urb);
1836		return;
1837	}
1838
1839	if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1840		bh = &hcd->high_prio_bh;
1841		high_prio_bh = true;
1842	} else {
1843		bh = &hcd->low_prio_bh;
1844		high_prio_bh = false;
1845	}
1846
1847	spin_lock(&bh->lock);
1848	list_add_tail(&urb->urb_list, &bh->head);
1849	running = bh->running;
1850	spin_unlock(&bh->lock);
1851
1852	if (running)
1853		;
1854	else if (high_prio_bh)
1855		tasklet_hi_schedule(&bh->bh);
1856	else
1857		tasklet_schedule(&bh->bh);
1858}
1859EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1860
1861/*-------------------------------------------------------------------------*/
1862
1863/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1864 * queue to drain completely.  The caller must first insure that no more
1865 * URBs can be submitted for this endpoint.
1866 */
1867void usb_hcd_flush_endpoint(struct usb_device *udev,
1868		struct usb_host_endpoint *ep)
1869{
1870	struct usb_hcd		*hcd;
1871	struct urb		*urb;
1872
1873	if (!ep)
1874		return;
1875	might_sleep();
1876	hcd = bus_to_hcd(udev->bus);
1877
1878	/* No more submits can occur */
1879	spin_lock_irq(&hcd_urb_list_lock);
1880rescan:
1881	list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1882		int	is_in;
1883
1884		if (urb->unlinked)
1885			continue;
1886		usb_get_urb (urb);
1887		is_in = usb_urb_dir_in(urb);
1888		spin_unlock(&hcd_urb_list_lock);
1889
1890		/* kick hcd */
1891		unlink1(hcd, urb, -ESHUTDOWN);
1892		dev_dbg (hcd->self.controller,
1893			"shutdown urb %pK ep%d%s%s\n",
1894			urb, usb_endpoint_num(&ep->desc),
1895			is_in ? "in" : "out",
1896			({	char *s;
1897
1898				 switch (usb_endpoint_type(&ep->desc)) {
1899				 case USB_ENDPOINT_XFER_CONTROL:
1900					s = ""; break;
1901				 case USB_ENDPOINT_XFER_BULK:
1902					s = "-bulk"; break;
1903				 case USB_ENDPOINT_XFER_INT:
1904					s = "-intr"; break;
1905				 default:
1906					s = "-iso"; break;
1907				};
1908				s;
1909			}));
1910		usb_put_urb (urb);
1911
1912		/* list contents may have changed */
1913		spin_lock(&hcd_urb_list_lock);
1914		goto rescan;
1915	}
1916	spin_unlock_irq(&hcd_urb_list_lock);
1917
1918	/* Wait until the endpoint queue is completely empty */
1919	while (!list_empty (&ep->urb_list)) {
1920		spin_lock_irq(&hcd_urb_list_lock);
1921
1922		/* The list may have changed while we acquired the spinlock */
1923		urb = NULL;
1924		if (!list_empty (&ep->urb_list)) {
1925			urb = list_entry (ep->urb_list.prev, struct urb,
1926					urb_list);
1927			usb_get_urb (urb);
1928		}
1929		spin_unlock_irq(&hcd_urb_list_lock);
1930
1931		if (urb) {
1932			usb_kill_urb (urb);
1933			usb_put_urb (urb);
1934		}
1935	}
1936}
1937
1938/**
1939 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1940 *				the bus bandwidth
1941 * @udev: target &usb_device
1942 * @new_config: new configuration to install
1943 * @cur_alt: the current alternate interface setting
1944 * @new_alt: alternate interface setting that is being installed
1945 *
1946 * To change configurations, pass in the new configuration in new_config,
1947 * and pass NULL for cur_alt and new_alt.
1948 *
1949 * To reset a device's configuration (put the device in the ADDRESSED state),
1950 * pass in NULL for new_config, cur_alt, and new_alt.
1951 *
1952 * To change alternate interface settings, pass in NULL for new_config,
1953 * pass in the current alternate interface setting in cur_alt,
1954 * and pass in the new alternate interface setting in new_alt.
1955 *
1956 * Return: An error if the requested bandwidth change exceeds the
1957 * bus bandwidth or host controller internal resources.
1958 */
1959int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1960		struct usb_host_config *new_config,
1961		struct usb_host_interface *cur_alt,
1962		struct usb_host_interface *new_alt)
1963{
1964	int num_intfs, i, j;
1965	struct usb_host_interface *alt = NULL;
1966	int ret = 0;
1967	struct usb_hcd *hcd;
1968	struct usb_host_endpoint *ep;
1969
1970	hcd = bus_to_hcd(udev->bus);
1971	if (!hcd->driver->check_bandwidth)
1972		return 0;
1973
1974	/* Configuration is being removed - set configuration 0 */
1975	if (!new_config && !cur_alt) {
1976		for (i = 1; i < 16; ++i) {
1977			ep = udev->ep_out[i];
1978			if (ep)
1979				hcd->driver->drop_endpoint(hcd, udev, ep);
1980			ep = udev->ep_in[i];
1981			if (ep)
1982				hcd->driver->drop_endpoint(hcd, udev, ep);
1983		}
1984		hcd->driver->check_bandwidth(hcd, udev);
1985		return 0;
1986	}
1987	/* Check if the HCD says there's enough bandwidth.  Enable all endpoints
1988	 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1989	 * of the bus.  There will always be bandwidth for endpoint 0, so it's
1990	 * ok to exclude it.
1991	 */
1992	if (new_config) {
1993		num_intfs = new_config->desc.bNumInterfaces;
1994		/* Remove endpoints (except endpoint 0, which is always on the
1995		 * schedule) from the old config from the schedule
1996		 */
1997		for (i = 1; i < 16; ++i) {
1998			ep = udev->ep_out[i];
1999			if (ep) {
2000				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2001				if (ret < 0)
2002					goto reset;
2003			}
2004			ep = udev->ep_in[i];
2005			if (ep) {
2006				ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2007				if (ret < 0)
2008					goto reset;
2009			}
2010		}
2011		for (i = 0; i < num_intfs; ++i) {
2012			struct usb_host_interface *first_alt;
2013			int iface_num;
2014
2015			first_alt = &new_config->intf_cache[i]->altsetting[0];
2016			iface_num = first_alt->desc.bInterfaceNumber;
2017			/* Set up endpoints for alternate interface setting 0 */
2018			alt = usb_find_alt_setting(new_config, iface_num, 0);
2019			if (!alt)
2020				/* No alt setting 0? Pick the first setting. */
2021				alt = first_alt;
2022
2023			for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2024				ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2025				if (ret < 0)
2026					goto reset;
2027			}
2028		}
2029	}
2030	if (cur_alt && new_alt) {
2031		struct usb_interface *iface = usb_ifnum_to_if(udev,
2032				cur_alt->desc.bInterfaceNumber);
2033
2034		if (!iface)
2035			return -EINVAL;
2036		if (iface->resetting_device) {
2037			/*
2038			 * The USB core just reset the device, so the xHCI host
2039			 * and the device will think alt setting 0 is installed.
2040			 * However, the USB core will pass in the alternate
2041			 * setting installed before the reset as cur_alt.  Dig
2042			 * out the alternate setting 0 structure, or the first
2043			 * alternate setting if a broken device doesn't have alt
2044			 * setting 0.
2045			 */
2046			cur_alt = usb_altnum_to_altsetting(iface, 0);
2047			if (!cur_alt)
2048				cur_alt = &iface->altsetting[0];
2049		}
2050
2051		/* Drop all the endpoints in the current alt setting */
2052		for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2053			ret = hcd->driver->drop_endpoint(hcd, udev,
2054					&cur_alt->endpoint[i]);
2055			if (ret < 0)
2056				goto reset;
2057		}
2058		/* Add all the endpoints in the new alt setting */
2059		for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2060			ret = hcd->driver->add_endpoint(hcd, udev,
2061					&new_alt->endpoint[i]);
2062			if (ret < 0)
2063				goto reset;
2064		}
2065	}
2066	ret = hcd->driver->check_bandwidth(hcd, udev);
2067reset:
2068	if (ret < 0)
2069		hcd->driver->reset_bandwidth(hcd, udev);
2070	return ret;
2071}
2072
2073/* Disables the endpoint: synchronizes with the hcd to make sure all
2074 * endpoint state is gone from hardware.  usb_hcd_flush_endpoint() must
2075 * have been called previously.  Use for set_configuration, set_interface,
2076 * driver removal, physical disconnect.
2077 *
2078 * example:  a qh stored in ep->hcpriv, holding state related to endpoint
2079 * type, maxpacket size, toggle, halt status, and scheduling.
2080 */
2081void usb_hcd_disable_endpoint(struct usb_device *udev,
2082		struct usb_host_endpoint *ep)
2083{
2084	struct usb_hcd		*hcd;
2085
2086	might_sleep();
2087	hcd = bus_to_hcd(udev->bus);
2088	if (hcd->driver->endpoint_disable)
2089		hcd->driver->endpoint_disable(hcd, ep);
2090}
2091
2092/**
2093 * usb_hcd_reset_endpoint - reset host endpoint state
2094 * @udev: USB device.
2095 * @ep:   the endpoint to reset.
2096 *
2097 * Resets any host endpoint state such as the toggle bit, sequence
2098 * number and current window.
2099 */
2100void usb_hcd_reset_endpoint(struct usb_device *udev,
2101			    struct usb_host_endpoint *ep)
2102{
2103	struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2104
2105	if (hcd->driver->endpoint_reset)
2106		hcd->driver->endpoint_reset(hcd, ep);
2107	else {
2108		int epnum = usb_endpoint_num(&ep->desc);
2109		int is_out = usb_endpoint_dir_out(&ep->desc);
2110		int is_control = usb_endpoint_xfer_control(&ep->desc);
2111
2112		usb_settoggle(udev, epnum, is_out, 0);
2113		if (is_control)
2114			usb_settoggle(udev, epnum, !is_out, 0);
2115	}
2116}
2117
2118/**
2119 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2120 * @interface:		alternate setting that includes all endpoints.
2121 * @eps:		array of endpoints that need streams.
2122 * @num_eps:		number of endpoints in the array.
2123 * @num_streams:	number of streams to allocate.
2124 * @mem_flags:		flags hcd should use to allocate memory.
2125 *
2126 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2127 * Drivers may queue multiple transfers to different stream IDs, which may
2128 * complete in a different order than they were queued.
2129 *
2130 * Return: On success, the number of allocated streams. On failure, a negative
2131 * error code.
2132 */
2133int usb_alloc_streams(struct usb_interface *interface,
2134		struct usb_host_endpoint **eps, unsigned int num_eps,
2135		unsigned int num_streams, gfp_t mem_flags)
2136{
2137	struct usb_hcd *hcd;
2138	struct usb_device *dev;
2139	int i, ret;
2140
2141	dev = interface_to_usbdev(interface);
2142	hcd = bus_to_hcd(dev->bus);
2143	if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2144		return -EINVAL;
2145	if (dev->speed < USB_SPEED_SUPER)
2146		return -EINVAL;
2147	if (dev->state < USB_STATE_CONFIGURED)
2148		return -ENODEV;
2149
2150	for (i = 0; i < num_eps; i++) {
2151		/* Streams only apply to bulk endpoints. */
2152		if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2153			return -EINVAL;
2154		/* Re-alloc is not allowed */
2155		if (eps[i]->streams)
2156			return -EINVAL;
2157	}
2158
2159	ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2160			num_streams, mem_flags);
2161	if (ret < 0)
2162		return ret;
2163
2164	for (i = 0; i < num_eps; i++)
2165		eps[i]->streams = ret;
2166
2167	return ret;
2168}
2169EXPORT_SYMBOL_GPL(usb_alloc_streams);
2170
2171/**
2172 * usb_free_streams - free bulk endpoint stream IDs.
2173 * @interface:	alternate setting that includes all endpoints.
2174 * @eps:	array of endpoints to remove streams from.
2175 * @num_eps:	number of endpoints in the array.
2176 * @mem_flags:	flags hcd should use to allocate memory.
2177 *
2178 * Reverts a group of bulk endpoints back to not using stream IDs.
2179 * Can fail if we are given bad arguments, or HCD is broken.
2180 *
2181 * Return: 0 on success. On failure, a negative error code.
2182 */
2183int usb_free_streams(struct usb_interface *interface,
2184		struct usb_host_endpoint **eps, unsigned int num_eps,
2185		gfp_t mem_flags)
2186{
2187	struct usb_hcd *hcd;
2188	struct usb_device *dev;
2189	int i, ret;
2190
2191	dev = interface_to_usbdev(interface);
2192	hcd = bus_to_hcd(dev->bus);
2193	if (dev->speed < USB_SPEED_SUPER)
2194		return -EINVAL;
2195
2196	/* Double-free is not allowed */
2197	for (i = 0; i < num_eps; i++)
2198		if (!eps[i] || !eps[i]->streams)
2199			return -EINVAL;
2200
2201	ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2202	if (ret < 0)
2203		return ret;
2204
2205	for (i = 0; i < num_eps; i++)
2206		eps[i]->streams = 0;
2207
2208	return ret;
2209}
2210EXPORT_SYMBOL_GPL(usb_free_streams);
2211
2212/* Protect against drivers that try to unlink URBs after the device
2213 * is gone, by waiting until all unlinks for @udev are finished.
2214 * Since we don't currently track URBs by device, simply wait until
2215 * nothing is running in the locked region of usb_hcd_unlink_urb().
2216 */
2217void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2218{
2219	spin_lock_irq(&hcd_urb_unlink_lock);
2220	spin_unlock_irq(&hcd_urb_unlink_lock);
2221}
2222
2223/*-------------------------------------------------------------------------*/
2224
2225/* called in any context */
2226int usb_hcd_get_frame_number (struct usb_device *udev)
2227{
2228	struct usb_hcd	*hcd = bus_to_hcd(udev->bus);
2229
2230	if (!HCD_RH_RUNNING(hcd))
2231		return -ESHUTDOWN;
2232	return hcd->driver->get_frame_number (hcd);
2233}
2234
2235/*-------------------------------------------------------------------------*/
2236
2237#ifdef	CONFIG_PM
2238
2239int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2240{
2241	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2242	int		status;
2243	int		old_state = hcd->state;
2244
2245	dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2246			(PMSG_IS_AUTO(msg) ? "auto-" : ""),
2247			rhdev->do_remote_wakeup);
2248	if (HCD_DEAD(hcd)) {
2249		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2250		return 0;
2251	}
2252
2253	if (!hcd->driver->bus_suspend) {
2254		status = -ENOENT;
2255	} else {
2256		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2257		hcd->state = HC_STATE_QUIESCING;
2258		status = hcd->driver->bus_suspend(hcd);
2259	}
2260	if (status == 0) {
2261		usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2262		hcd->state = HC_STATE_SUSPENDED;
2263
2264		if (!PMSG_IS_AUTO(msg))
2265			usb_phy_roothub_suspend(hcd->self.sysdev,
2266						hcd->phy_roothub);
2267
2268		/* Did we race with a root-hub wakeup event? */
2269		if (rhdev->do_remote_wakeup) {
2270			char	buffer[6];
2271
2272			status = hcd->driver->hub_status_data(hcd, buffer);
2273			if (status != 0) {
2274				dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2275				hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2276				status = -EBUSY;
2277			}
2278		}
2279	} else {
2280		spin_lock_irq(&hcd_root_hub_lock);
2281		if (!HCD_DEAD(hcd)) {
2282			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283			hcd->state = old_state;
2284		}
2285		spin_unlock_irq(&hcd_root_hub_lock);
2286		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2287				"suspend", status);
2288	}
2289	return status;
2290}
2291
2292int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2293{
2294	struct usb_hcd	*hcd = bus_to_hcd(rhdev->bus);
2295	int		status;
2296	int		old_state = hcd->state;
2297
2298	dev_dbg(&rhdev->dev, "usb %sresume\n",
2299			(PMSG_IS_AUTO(msg) ? "auto-" : ""));
2300	if (HCD_DEAD(hcd)) {
2301		dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2302		return 0;
2303	}
2304
2305	if (!PMSG_IS_AUTO(msg)) {
2306		status = usb_phy_roothub_resume(hcd->self.sysdev,
2307						hcd->phy_roothub);
2308		if (status)
2309			return status;
2310	}
2311
2312	if (!hcd->driver->bus_resume)
2313		return -ENOENT;
2314	if (HCD_RH_RUNNING(hcd))
2315		return 0;
2316
2317	hcd->state = HC_STATE_RESUMING;
2318	status = hcd->driver->bus_resume(hcd);
2319	clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2320	if (status == 0) {
2321		struct usb_device *udev;
2322		int port1;
2323
2324		spin_lock_irq(&hcd_root_hub_lock);
2325		if (!HCD_DEAD(hcd)) {
2326			usb_set_device_state(rhdev, rhdev->actconfig
2327					? USB_STATE_CONFIGURED
2328					: USB_STATE_ADDRESS);
2329			set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2330			hcd->state = HC_STATE_RUNNING;
2331		}
2332		spin_unlock_irq(&hcd_root_hub_lock);
2333
2334		/*
2335		 * Check whether any of the enabled ports on the root hub are
2336		 * unsuspended.  If they are then a TRSMRCY delay is needed
2337		 * (this is what the USB-2 spec calls a "global resume").
2338		 * Otherwise we can skip the delay.
2339		 */
2340		usb_hub_for_each_child(rhdev, port1, udev) {
2341			if (udev->state != USB_STATE_NOTATTACHED &&
2342					!udev->port_is_suspended) {
2343				usleep_range(10000, 11000);	/* TRSMRCY */
2344				break;
2345			}
2346		}
2347	} else {
2348		hcd->state = old_state;
2349		usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2350		dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2351				"resume", status);
2352		if (status != -ESHUTDOWN)
2353			usb_hc_died(hcd);
2354	}
2355	return status;
2356}
2357
2358/* Workqueue routine for root-hub remote wakeup */
2359static void hcd_resume_work(struct work_struct *work)
2360{
2361	struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2362	struct usb_device *udev = hcd->self.root_hub;
2363
2364	usb_remote_wakeup(udev);
2365}
2366
2367/**
2368 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2369 * @hcd: host controller for this root hub
2370 *
2371 * The USB host controller calls this function when its root hub is
2372 * suspended (with the remote wakeup feature enabled) and a remote
2373 * wakeup request is received.  The routine submits a workqueue request
2374 * to resume the root hub (that is, manage its downstream ports again).
2375 */
2376void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2377{
2378	unsigned long flags;
2379
2380	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2381	if (hcd->rh_registered) {
2382		pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2383		set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2384		queue_work(pm_wq, &hcd->wakeup_work);
2385	}
2386	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2387}
2388EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2389
2390#endif	/* CONFIG_PM */
2391
2392/*-------------------------------------------------------------------------*/
2393
2394#ifdef	CONFIG_USB_OTG
2395
2396/**
2397 * usb_bus_start_enum - start immediate enumeration (for OTG)
2398 * @bus: the bus (must use hcd framework)
2399 * @port_num: 1-based number of port; usually bus->otg_port
2400 * Context: in_interrupt()
2401 *
2402 * Starts enumeration, with an immediate reset followed later by
2403 * hub_wq identifying and possibly configuring the device.
2404 * This is needed by OTG controller drivers, where it helps meet
2405 * HNP protocol timing requirements for starting a port reset.
2406 *
2407 * Return: 0 if successful.
2408 */
2409int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2410{
2411	struct usb_hcd		*hcd;
2412	int			status = -EOPNOTSUPP;
2413
2414	/* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2415	 * boards with root hubs hooked up to internal devices (instead of
2416	 * just the OTG port) may need more attention to resetting...
2417	 */
2418	hcd = bus_to_hcd(bus);
2419	if (port_num && hcd->driver->start_port_reset)
2420		status = hcd->driver->start_port_reset(hcd, port_num);
2421
2422	/* allocate hub_wq shortly after (first) root port reset finishes;
2423	 * it may issue others, until at least 50 msecs have passed.
2424	 */
2425	if (status == 0)
2426		mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2427	return status;
2428}
2429EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2430
2431#endif
2432
2433/*-------------------------------------------------------------------------*/
2434
2435/**
2436 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2437 * @irq: the IRQ being raised
2438 * @__hcd: pointer to the HCD whose IRQ is being signaled
2439 *
2440 * If the controller isn't HALTed, calls the driver's irq handler.
2441 * Checks whether the controller is now dead.
2442 *
2443 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2444 */
2445irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2446{
2447	struct usb_hcd		*hcd = __hcd;
2448	irqreturn_t		rc;
2449
2450	if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2451		rc = IRQ_NONE;
2452	else if (hcd->driver->irq(hcd) == IRQ_NONE)
2453		rc = IRQ_NONE;
2454	else
2455		rc = IRQ_HANDLED;
2456
2457	return rc;
2458}
2459EXPORT_SYMBOL_GPL(usb_hcd_irq);
2460
2461/*-------------------------------------------------------------------------*/
2462
2463/**
2464 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2465 * @hcd: pointer to the HCD representing the controller
2466 *
2467 * This is called by bus glue to report a USB host controller that died
2468 * while operations may still have been pending.  It's called automatically
2469 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2470 *
2471 * Only call this function with the primary HCD.
2472 */
2473void usb_hc_died (struct usb_hcd *hcd)
2474{
2475	unsigned long flags;
2476
2477	dev_err (hcd->self.controller, "HC died; cleaning up\n");
2478
2479	spin_lock_irqsave (&hcd_root_hub_lock, flags);
2480	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2481	set_bit(HCD_FLAG_DEAD, &hcd->flags);
2482	if (hcd->rh_registered) {
2483		clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2484
2485		/* make hub_wq clean up old urbs and devices */
2486		usb_set_device_state (hcd->self.root_hub,
2487				USB_STATE_NOTATTACHED);
2488		usb_kick_hub_wq(hcd->self.root_hub);
2489	}
2490	if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2491		hcd = hcd->shared_hcd;
2492		clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2493		set_bit(HCD_FLAG_DEAD, &hcd->flags);
2494		if (hcd->rh_registered) {
2495			clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2496
2497			/* make hub_wq clean up old urbs and devices */
2498			usb_set_device_state(hcd->self.root_hub,
2499					USB_STATE_NOTATTACHED);
2500			usb_kick_hub_wq(hcd->self.root_hub);
2501		}
2502	}
2503	spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2504	/* Make sure that the other roothub is also deallocated. */
2505}
2506EXPORT_SYMBOL_GPL (usb_hc_died);
2507
2508/*-------------------------------------------------------------------------*/
2509
2510static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2511{
2512
2513	spin_lock_init(&bh->lock);
2514	INIT_LIST_HEAD(&bh->head);
2515	tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2516}
2517
2518struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2519		struct device *sysdev, struct device *dev, const char *bus_name,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520		struct usb_hcd *primary_hcd)
2521{
2522	struct usb_hcd *hcd;
2523
2524	hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2525	if (!hcd)
2526		return NULL;
2527	if (primary_hcd == NULL) {
2528		hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2529				GFP_KERNEL);
2530		if (!hcd->address0_mutex) {
2531			kfree(hcd);
2532			dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2533			return NULL;
2534		}
2535		mutex_init(hcd->address0_mutex);
2536		hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2537				GFP_KERNEL);
2538		if (!hcd->bandwidth_mutex) {
2539			kfree(hcd->address0_mutex);
2540			kfree(hcd);
2541			dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2542			return NULL;
2543		}
2544		mutex_init(hcd->bandwidth_mutex);
2545		dev_set_drvdata(dev, hcd);
2546	} else {
2547		mutex_lock(&usb_port_peer_mutex);
2548		hcd->address0_mutex = primary_hcd->address0_mutex;
2549		hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2550		hcd->primary_hcd = primary_hcd;
2551		primary_hcd->primary_hcd = primary_hcd;
2552		hcd->shared_hcd = primary_hcd;
2553		primary_hcd->shared_hcd = hcd;
2554		mutex_unlock(&usb_port_peer_mutex);
2555	}
2556
2557	kref_init(&hcd->kref);
2558
2559	usb_bus_init(&hcd->self);
2560	hcd->self.controller = dev;
2561	hcd->self.sysdev = sysdev;
2562	hcd->self.bus_name = bus_name;
2563	hcd->self.uses_dma = (sysdev->dma_mask != NULL);
2564
2565	timer_setup(&hcd->rh_timer, rh_timer_func, 0);
 
 
2566#ifdef CONFIG_PM
2567	INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2568#endif
2569
2570	hcd->driver = driver;
2571	hcd->speed = driver->flags & HCD_MASK;
2572	hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2573			"USB Host Controller";
2574	return hcd;
2575}
2576EXPORT_SYMBOL_GPL(__usb_create_hcd);
2577
2578/**
2579 * usb_create_shared_hcd - create and initialize an HCD structure
2580 * @driver: HC driver that will use this hcd
2581 * @dev: device for this HC, stored in hcd->self.controller
2582 * @bus_name: value to store in hcd->self.bus_name
2583 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2584 *              PCI device.  Only allocate certain resources for the primary HCD
2585 * Context: !in_interrupt()
2586 *
2587 * Allocate a struct usb_hcd, with extra space at the end for the
2588 * HC driver's private data.  Initialize the generic members of the
2589 * hcd structure.
2590 *
2591 * Return: On success, a pointer to the created and initialized HCD structure.
2592 * On failure (e.g. if memory is unavailable), %NULL.
2593 */
2594struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2595		struct device *dev, const char *bus_name,
2596		struct usb_hcd *primary_hcd)
2597{
2598	return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2599}
2600EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2601
2602/**
2603 * usb_create_hcd - create and initialize an HCD structure
2604 * @driver: HC driver that will use this hcd
2605 * @dev: device for this HC, stored in hcd->self.controller
2606 * @bus_name: value to store in hcd->self.bus_name
2607 * Context: !in_interrupt()
2608 *
2609 * Allocate a struct usb_hcd, with extra space at the end for the
2610 * HC driver's private data.  Initialize the generic members of the
2611 * hcd structure.
2612 *
2613 * Return: On success, a pointer to the created and initialized HCD
2614 * structure. On failure (e.g. if memory is unavailable), %NULL.
2615 */
2616struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2617		struct device *dev, const char *bus_name)
2618{
2619	return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2620}
2621EXPORT_SYMBOL_GPL(usb_create_hcd);
2622
2623/*
2624 * Roothubs that share one PCI device must also share the bandwidth mutex.
2625 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2626 * deallocated.
2627 *
2628 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2629 * freed.  When hcd_release() is called for either hcd in a peer set,
2630 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2631 */
2632static void hcd_release(struct kref *kref)
2633{
2634	struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2635
2636	mutex_lock(&usb_port_peer_mutex);
2637	if (hcd->shared_hcd) {
2638		struct usb_hcd *peer = hcd->shared_hcd;
2639
2640		peer->shared_hcd = NULL;
2641		peer->primary_hcd = NULL;
2642	} else {
2643		kfree(hcd->address0_mutex);
2644		kfree(hcd->bandwidth_mutex);
2645	}
2646	mutex_unlock(&usb_port_peer_mutex);
2647	kfree(hcd);
2648}
2649
2650struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2651{
2652	if (hcd)
2653		kref_get (&hcd->kref);
2654	return hcd;
2655}
2656EXPORT_SYMBOL_GPL(usb_get_hcd);
2657
2658void usb_put_hcd (struct usb_hcd *hcd)
2659{
2660	if (hcd)
2661		kref_put (&hcd->kref, hcd_release);
2662}
2663EXPORT_SYMBOL_GPL(usb_put_hcd);
2664
2665int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2666{
2667	if (!hcd->primary_hcd)
2668		return 1;
2669	return hcd == hcd->primary_hcd;
2670}
2671EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2672
2673int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2674{
2675	if (!hcd->driver->find_raw_port_number)
2676		return port1;
2677
2678	return hcd->driver->find_raw_port_number(hcd, port1);
2679}
2680
2681static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2682		unsigned int irqnum, unsigned long irqflags)
2683{
2684	int retval;
2685
2686	if (hcd->driver->irq) {
2687
2688		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2689				hcd->driver->description, hcd->self.busnum);
2690		retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2691				hcd->irq_descr, hcd);
2692		if (retval != 0) {
2693			dev_err(hcd->self.controller,
2694					"request interrupt %d failed\n",
2695					irqnum);
2696			return retval;
2697		}
2698		hcd->irq = irqnum;
2699		dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2700				(hcd->driver->flags & HCD_MEMORY) ?
2701					"io mem" : "io base",
2702					(unsigned long long)hcd->rsrc_start);
2703	} else {
2704		hcd->irq = 0;
2705		if (hcd->rsrc_start)
2706			dev_info(hcd->self.controller, "%s 0x%08llx\n",
2707					(hcd->driver->flags & HCD_MEMORY) ?
2708					"io mem" : "io base",
2709					(unsigned long long)hcd->rsrc_start);
2710	}
2711	return 0;
2712}
2713
2714/*
2715 * Before we free this root hub, flush in-flight peering attempts
2716 * and disable peer lookups
2717 */
2718static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2719{
2720	struct usb_device *rhdev;
2721
2722	mutex_lock(&usb_port_peer_mutex);
2723	rhdev = hcd->self.root_hub;
2724	hcd->self.root_hub = NULL;
2725	mutex_unlock(&usb_port_peer_mutex);
2726	usb_put_dev(rhdev);
2727}
2728
2729/**
2730 * usb_add_hcd - finish generic HCD structure initialization and register
2731 * @hcd: the usb_hcd structure to initialize
2732 * @irqnum: Interrupt line to allocate
2733 * @irqflags: Interrupt type flags
2734 *
2735 * Finish the remaining parts of generic HCD initialization: allocate the
2736 * buffers of consistent memory, register the bus, request the IRQ line,
2737 * and call the driver's reset() and start() routines.
2738 */
2739int usb_add_hcd(struct usb_hcd *hcd,
2740		unsigned int irqnum, unsigned long irqflags)
2741{
2742	int retval;
2743	struct usb_device *rhdev;
2744
2745	if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->skip_phy_initialization) {
2746		struct usb_phy *phy = usb_get_phy_dev(hcd->self.sysdev, 0);
2747
2748		if (IS_ERR(phy)) {
2749			retval = PTR_ERR(phy);
2750			if (retval == -EPROBE_DEFER)
2751				return retval;
2752		} else {
2753			retval = usb_phy_init(phy);
2754			if (retval) {
2755				usb_put_phy(phy);
2756				return retval;
2757			}
2758			hcd->usb_phy = phy;
2759			hcd->remove_phy = 1;
2760		}
2761	}
2762
2763	if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2764		hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2765		if (IS_ERR(hcd->phy_roothub)) {
2766			retval = PTR_ERR(hcd->phy_roothub);
2767			goto err_phy_roothub_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768		}
2769
2770		retval = usb_phy_roothub_init(hcd->phy_roothub);
2771		if (retval)
2772			goto err_phy_roothub_alloc;
2773
2774		retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2775		if (retval)
2776			goto err_usb_phy_roothub_power_on;
2777	}
2778
2779	dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2780
2781	/* Keep old behaviour if authorized_default is not in [0, 1]. */
2782	if (authorized_default < 0 || authorized_default > 1) {
2783		if (hcd->wireless)
2784			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2785		else
2786			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2787	} else {
2788		if (authorized_default)
2789			set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2790		else
2791			clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2792	}
2793	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2794
2795	/* per default all interfaces are authorized */
2796	set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2797
2798	/* HC is in reset state, but accessible.  Now do the one-time init,
2799	 * bottom up so that hcds can customize the root hubs before hub_wq
2800	 * starts talking to them.  (Note, bus id is assigned early too.)
2801	 */
2802	retval = hcd_buffer_create(hcd);
2803	if (retval != 0) {
2804		dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2805		goto err_create_buf;
2806	}
2807
2808	retval = usb_register_bus(&hcd->self);
2809	if (retval < 0)
2810		goto err_register_bus;
2811
2812	rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2813	if (rhdev == NULL) {
2814		dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2815		retval = -ENOMEM;
2816		goto err_allocate_root_hub;
2817	}
2818	mutex_lock(&usb_port_peer_mutex);
2819	hcd->self.root_hub = rhdev;
2820	mutex_unlock(&usb_port_peer_mutex);
2821
2822	switch (hcd->speed) {
2823	case HCD_USB11:
2824		rhdev->speed = USB_SPEED_FULL;
2825		break;
2826	case HCD_USB2:
2827		rhdev->speed = USB_SPEED_HIGH;
2828		break;
2829	case HCD_USB25:
2830		rhdev->speed = USB_SPEED_WIRELESS;
2831		break;
2832	case HCD_USB3:
2833		rhdev->speed = USB_SPEED_SUPER;
2834		break;
2835	case HCD_USB31:
2836		rhdev->speed = USB_SPEED_SUPER_PLUS;
2837		break;
2838	default:
2839		retval = -EINVAL;
2840		goto err_set_rh_speed;
2841	}
2842
2843	/* wakeup flag init defaults to "everything works" for root hubs,
2844	 * but drivers can override it in reset() if needed, along with
2845	 * recording the overall controller's system wakeup capability.
2846	 */
2847	device_set_wakeup_capable(&rhdev->dev, 1);
2848
2849	/* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2850	 * registered.  But since the controller can die at any time,
2851	 * let's initialize the flag before touching the hardware.
2852	 */
2853	set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2854
2855	/* "reset" is misnamed; its role is now one-time init. the controller
2856	 * should already have been reset (and boot firmware kicked off etc).
2857	 */
2858	if (hcd->driver->reset) {
2859		retval = hcd->driver->reset(hcd);
2860		if (retval < 0) {
2861			dev_err(hcd->self.controller, "can't setup: %d\n",
2862					retval);
2863			goto err_hcd_driver_setup;
2864		}
2865	}
2866	hcd->rh_pollable = 1;
2867
2868	/* NOTE: root hub and controller capabilities may not be the same */
2869	if (device_can_wakeup(hcd->self.controller)
2870			&& device_can_wakeup(&hcd->self.root_hub->dev))
2871		dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2872
2873	/* initialize tasklets */
2874	init_giveback_urb_bh(&hcd->high_prio_bh);
2875	init_giveback_urb_bh(&hcd->low_prio_bh);
2876
2877	/* enable irqs just before we start the controller,
2878	 * if the BIOS provides legacy PCI irqs.
2879	 */
2880	if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2881		retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2882		if (retval)
2883			goto err_request_irq;
2884	}
2885
2886	hcd->state = HC_STATE_RUNNING;
2887	retval = hcd->driver->start(hcd);
2888	if (retval < 0) {
2889		dev_err(hcd->self.controller, "startup error %d\n", retval);
2890		goto err_hcd_driver_start;
2891	}
2892
2893	/* starting here, usbcore will pay attention to this root hub */
2894	retval = register_root_hub(hcd);
2895	if (retval != 0)
2896		goto err_register_root_hub;
2897
2898	retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2899	if (retval < 0) {
2900		printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2901		       retval);
2902		goto error_create_attr_group;
2903	}
2904	if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2905		usb_hcd_poll_rh_status(hcd);
2906
2907	return retval;
2908
2909error_create_attr_group:
2910	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2911	if (HC_IS_RUNNING(hcd->state))
2912		hcd->state = HC_STATE_QUIESCING;
2913	spin_lock_irq(&hcd_root_hub_lock);
2914	hcd->rh_registered = 0;
2915	spin_unlock_irq(&hcd_root_hub_lock);
2916
2917#ifdef CONFIG_PM
2918	cancel_work_sync(&hcd->wakeup_work);
2919#endif
2920	mutex_lock(&usb_bus_idr_lock);
2921	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2922	mutex_unlock(&usb_bus_idr_lock);
2923err_register_root_hub:
2924	hcd->rh_pollable = 0;
2925	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2926	del_timer_sync(&hcd->rh_timer);
2927	hcd->driver->stop(hcd);
2928	hcd->state = HC_STATE_HALT;
2929	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2930	del_timer_sync(&hcd->rh_timer);
2931err_hcd_driver_start:
2932	if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2933		free_irq(irqnum, hcd);
2934err_request_irq:
2935err_hcd_driver_setup:
2936err_set_rh_speed:
2937	usb_put_invalidate_rhdev(hcd);
2938err_allocate_root_hub:
2939	usb_deregister_bus(&hcd->self);
2940err_register_bus:
2941	hcd_buffer_destroy(hcd);
2942err_create_buf:
2943	usb_phy_roothub_power_off(hcd->phy_roothub);
2944err_usb_phy_roothub_power_on:
2945	usb_phy_roothub_exit(hcd->phy_roothub);
2946err_phy_roothub_alloc:
 
 
 
2947	if (hcd->remove_phy && hcd->usb_phy) {
2948		usb_phy_shutdown(hcd->usb_phy);
2949		usb_put_phy(hcd->usb_phy);
2950		hcd->usb_phy = NULL;
2951	}
2952	return retval;
2953}
2954EXPORT_SYMBOL_GPL(usb_add_hcd);
2955
2956/**
2957 * usb_remove_hcd - shutdown processing for generic HCDs
2958 * @hcd: the usb_hcd structure to remove
2959 * Context: !in_interrupt()
2960 *
2961 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2962 * invoking the HCD's stop() method.
2963 */
2964void usb_remove_hcd(struct usb_hcd *hcd)
2965{
2966	struct usb_device *rhdev = hcd->self.root_hub;
2967
2968	dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2969
2970	usb_get_dev(rhdev);
2971	sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2972
2973	clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2974	if (HC_IS_RUNNING (hcd->state))
2975		hcd->state = HC_STATE_QUIESCING;
2976
2977	dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2978	spin_lock_irq (&hcd_root_hub_lock);
2979	hcd->rh_registered = 0;
2980	spin_unlock_irq (&hcd_root_hub_lock);
2981
2982#ifdef CONFIG_PM
2983	cancel_work_sync(&hcd->wakeup_work);
2984#endif
2985
2986	mutex_lock(&usb_bus_idr_lock);
2987	usb_disconnect(&rhdev);		/* Sets rhdev to NULL */
2988	mutex_unlock(&usb_bus_idr_lock);
2989
2990	/*
2991	 * tasklet_kill() isn't needed here because:
2992	 * - driver's disconnect() called from usb_disconnect() should
2993	 *   make sure its URBs are completed during the disconnect()
2994	 *   callback
2995	 *
2996	 * - it is too late to run complete() here since driver may have
2997	 *   been removed already now
2998	 */
2999
3000	/* Prevent any more root-hub status calls from the timer.
3001	 * The HCD might still restart the timer (if a port status change
3002	 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3003	 * the hub_status_data() callback.
3004	 */
3005	hcd->rh_pollable = 0;
3006	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3007	del_timer_sync(&hcd->rh_timer);
3008
3009	hcd->driver->stop(hcd);
3010	hcd->state = HC_STATE_HALT;
3011
3012	/* In case the HCD restarted the timer, stop it again. */
3013	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3014	del_timer_sync(&hcd->rh_timer);
3015
3016	if (usb_hcd_is_primary_hcd(hcd)) {
3017		if (hcd->irq > 0)
3018			free_irq(hcd->irq, hcd);
3019	}
3020
3021	usb_deregister_bus(&hcd->self);
3022	hcd_buffer_destroy(hcd);
3023
3024	usb_phy_roothub_power_off(hcd->phy_roothub);
3025	usb_phy_roothub_exit(hcd->phy_roothub);
3026
 
 
 
3027	if (hcd->remove_phy && hcd->usb_phy) {
3028		usb_phy_shutdown(hcd->usb_phy);
3029		usb_put_phy(hcd->usb_phy);
3030		hcd->usb_phy = NULL;
3031	}
3032
3033	usb_put_invalidate_rhdev(hcd);
3034	hcd->flags = 0;
3035}
3036EXPORT_SYMBOL_GPL(usb_remove_hcd);
3037
3038void
3039usb_hcd_platform_shutdown(struct platform_device *dev)
3040{
3041	struct usb_hcd *hcd = platform_get_drvdata(dev);
3042
3043	if (hcd->driver->shutdown)
3044		hcd->driver->shutdown(hcd);
3045}
3046EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3047
3048/*-------------------------------------------------------------------------*/
3049
3050#if IS_ENABLED(CONFIG_USB_MON)
3051
3052const struct usb_mon_operations *mon_ops;
3053
3054/*
3055 * The registration is unlocked.
3056 * We do it this way because we do not want to lock in hot paths.
3057 *
3058 * Notice that the code is minimally error-proof. Because usbmon needs
3059 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3060 */
3061
3062int usb_mon_register(const struct usb_mon_operations *ops)
3063{
3064
3065	if (mon_ops)
3066		return -EBUSY;
3067
3068	mon_ops = ops;
3069	mb();
3070	return 0;
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_register);
3073
3074void usb_mon_deregister (void)
3075{
3076
3077	if (mon_ops == NULL) {
3078		printk(KERN_ERR "USB: monitor was not registered\n");
3079		return;
3080	}
3081	mon_ops = NULL;
3082	mb();
3083}
3084EXPORT_SYMBOL_GPL (usb_mon_deregister);
3085
3086#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */