Loading...
1/*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/bcd.h>
26#include <linux/module.h>
27#include <linux/version.h>
28#include <linux/kernel.h>
29#include <linux/slab.h>
30#include <linux/completion.h>
31#include <linux/utsname.h>
32#include <linux/mm.h>
33#include <asm/io.h>
34#include <linux/device.h>
35#include <linux/dma-mapping.h>
36#include <linux/mutex.h>
37#include <asm/irq.h>
38#include <asm/byteorder.h>
39#include <asm/unaligned.h>
40#include <linux/platform_device.h>
41#include <linux/workqueue.h>
42#include <linux/pm_runtime.h>
43#include <linux/types.h>
44
45#include <linux/phy/phy.h>
46#include <linux/usb.h>
47#include <linux/usb/hcd.h>
48#include <linux/usb/phy.h>
49#include <linux/usb/otg.h>
50
51#include "usb.h"
52
53
54/*-------------------------------------------------------------------------*/
55
56/*
57 * USB Host Controller Driver framework
58 *
59 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
60 * HCD-specific behaviors/bugs.
61 *
62 * This does error checks, tracks devices and urbs, and delegates to a
63 * "hc_driver" only for code (and data) that really needs to know about
64 * hardware differences. That includes root hub registers, i/o queues,
65 * and so on ... but as little else as possible.
66 *
67 * Shared code includes most of the "root hub" code (these are emulated,
68 * though each HC's hardware works differently) and PCI glue, plus request
69 * tracking overhead. The HCD code should only block on spinlocks or on
70 * hardware handshaking; blocking on software events (such as other kernel
71 * threads releasing resources, or completing actions) is all generic.
72 *
73 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
74 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
75 * only by the hub driver ... and that neither should be seen or used by
76 * usb client device drivers.
77 *
78 * Contributors of ideas or unattributed patches include: David Brownell,
79 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
80 *
81 * HISTORY:
82 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
83 * associated cleanup. "usb_hcd" still != "usb_bus".
84 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
85 */
86
87/*-------------------------------------------------------------------------*/
88
89/* Keep track of which host controller drivers are loaded */
90unsigned long usb_hcds_loaded;
91EXPORT_SYMBOL_GPL(usb_hcds_loaded);
92
93/* host controllers we manage */
94DEFINE_IDR (usb_bus_idr);
95EXPORT_SYMBOL_GPL (usb_bus_idr);
96
97/* used when allocating bus numbers */
98#define USB_MAXBUS 64
99
100/* used when updating list of hcds */
101DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
102EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
103
104/* used for controlling access to virtual root hubs */
105static DEFINE_SPINLOCK(hcd_root_hub_lock);
106
107/* used when updating an endpoint's URB list */
108static DEFINE_SPINLOCK(hcd_urb_list_lock);
109
110/* used to protect against unlinking URBs after the device is gone */
111static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
112
113/* wait queue for synchronous unlinks */
114DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
115
116static inline int is_root_hub(struct usb_device *udev)
117{
118 return (udev->parent == NULL);
119}
120
121/*-------------------------------------------------------------------------*/
122
123/*
124 * Sharable chunks of root hub code.
125 */
126
127/*-------------------------------------------------------------------------*/
128#define KERNEL_REL bin2bcd(((LINUX_VERSION_CODE >> 16) & 0x0ff))
129#define KERNEL_VER bin2bcd(((LINUX_VERSION_CODE >> 8) & 0x0ff))
130
131/* usb 3.1 root hub device descriptor */
132static const u8 usb31_rh_dev_descriptor[18] = {
133 0x12, /* __u8 bLength; */
134 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
135 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
136
137 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
138 0x00, /* __u8 bDeviceSubClass; */
139 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
140 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
141
142 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
143 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
144 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
145
146 0x03, /* __u8 iManufacturer; */
147 0x02, /* __u8 iProduct; */
148 0x01, /* __u8 iSerialNumber; */
149 0x01 /* __u8 bNumConfigurations; */
150};
151
152/* usb 3.0 root hub device descriptor */
153static const u8 usb3_rh_dev_descriptor[18] = {
154 0x12, /* __u8 bLength; */
155 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
156 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
157
158 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
159 0x00, /* __u8 bDeviceSubClass; */
160 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
161 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
162
163 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
164 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
165 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
166
167 0x03, /* __u8 iManufacturer; */
168 0x02, /* __u8 iProduct; */
169 0x01, /* __u8 iSerialNumber; */
170 0x01 /* __u8 bNumConfigurations; */
171};
172
173/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
174static const u8 usb25_rh_dev_descriptor[18] = {
175 0x12, /* __u8 bLength; */
176 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
177 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
178
179 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
180 0x00, /* __u8 bDeviceSubClass; */
181 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
182 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
183
184 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
185 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
186 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
187
188 0x03, /* __u8 iManufacturer; */
189 0x02, /* __u8 iProduct; */
190 0x01, /* __u8 iSerialNumber; */
191 0x01 /* __u8 bNumConfigurations; */
192};
193
194/* usb 2.0 root hub device descriptor */
195static const u8 usb2_rh_dev_descriptor[18] = {
196 0x12, /* __u8 bLength; */
197 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
198 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
199
200 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
201 0x00, /* __u8 bDeviceSubClass; */
202 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
203 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
204
205 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
206 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
207 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
208
209 0x03, /* __u8 iManufacturer; */
210 0x02, /* __u8 iProduct; */
211 0x01, /* __u8 iSerialNumber; */
212 0x01 /* __u8 bNumConfigurations; */
213};
214
215/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
216
217/* usb 1.1 root hub device descriptor */
218static const u8 usb11_rh_dev_descriptor[18] = {
219 0x12, /* __u8 bLength; */
220 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
221 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
222
223 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
224 0x00, /* __u8 bDeviceSubClass; */
225 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
226 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
227
228 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
229 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
230 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
231
232 0x03, /* __u8 iManufacturer; */
233 0x02, /* __u8 iProduct; */
234 0x01, /* __u8 iSerialNumber; */
235 0x01 /* __u8 bNumConfigurations; */
236};
237
238
239/*-------------------------------------------------------------------------*/
240
241/* Configuration descriptors for our root hubs */
242
243static const u8 fs_rh_config_descriptor[] = {
244
245 /* one configuration */
246 0x09, /* __u8 bLength; */
247 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
248 0x19, 0x00, /* __le16 wTotalLength; */
249 0x01, /* __u8 bNumInterfaces; (1) */
250 0x01, /* __u8 bConfigurationValue; */
251 0x00, /* __u8 iConfiguration; */
252 0xc0, /* __u8 bmAttributes;
253 Bit 7: must be set,
254 6: Self-powered,
255 5: Remote wakeup,
256 4..0: resvd */
257 0x00, /* __u8 MaxPower; */
258
259 /* USB 1.1:
260 * USB 2.0, single TT organization (mandatory):
261 * one interface, protocol 0
262 *
263 * USB 2.0, multiple TT organization (optional):
264 * two interfaces, protocols 1 (like single TT)
265 * and 2 (multiple TT mode) ... config is
266 * sometimes settable
267 * NOT IMPLEMENTED
268 */
269
270 /* one interface */
271 0x09, /* __u8 if_bLength; */
272 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
273 0x00, /* __u8 if_bInterfaceNumber; */
274 0x00, /* __u8 if_bAlternateSetting; */
275 0x01, /* __u8 if_bNumEndpoints; */
276 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
277 0x00, /* __u8 if_bInterfaceSubClass; */
278 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
279 0x00, /* __u8 if_iInterface; */
280
281 /* one endpoint (status change endpoint) */
282 0x07, /* __u8 ep_bLength; */
283 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
284 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
285 0x03, /* __u8 ep_bmAttributes; Interrupt */
286 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
287 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
288};
289
290static const u8 hs_rh_config_descriptor[] = {
291
292 /* one configuration */
293 0x09, /* __u8 bLength; */
294 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
295 0x19, 0x00, /* __le16 wTotalLength; */
296 0x01, /* __u8 bNumInterfaces; (1) */
297 0x01, /* __u8 bConfigurationValue; */
298 0x00, /* __u8 iConfiguration; */
299 0xc0, /* __u8 bmAttributes;
300 Bit 7: must be set,
301 6: Self-powered,
302 5: Remote wakeup,
303 4..0: resvd */
304 0x00, /* __u8 MaxPower; */
305
306 /* USB 1.1:
307 * USB 2.0, single TT organization (mandatory):
308 * one interface, protocol 0
309 *
310 * USB 2.0, multiple TT organization (optional):
311 * two interfaces, protocols 1 (like single TT)
312 * and 2 (multiple TT mode) ... config is
313 * sometimes settable
314 * NOT IMPLEMENTED
315 */
316
317 /* one interface */
318 0x09, /* __u8 if_bLength; */
319 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
320 0x00, /* __u8 if_bInterfaceNumber; */
321 0x00, /* __u8 if_bAlternateSetting; */
322 0x01, /* __u8 if_bNumEndpoints; */
323 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
324 0x00, /* __u8 if_bInterfaceSubClass; */
325 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
326 0x00, /* __u8 if_iInterface; */
327
328 /* one endpoint (status change endpoint) */
329 0x07, /* __u8 ep_bLength; */
330 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
331 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
332 0x03, /* __u8 ep_bmAttributes; Interrupt */
333 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
334 * see hub.c:hub_configure() for details. */
335 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
336 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
337};
338
339static const u8 ss_rh_config_descriptor[] = {
340 /* one configuration */
341 0x09, /* __u8 bLength; */
342 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
343 0x1f, 0x00, /* __le16 wTotalLength; */
344 0x01, /* __u8 bNumInterfaces; (1) */
345 0x01, /* __u8 bConfigurationValue; */
346 0x00, /* __u8 iConfiguration; */
347 0xc0, /* __u8 bmAttributes;
348 Bit 7: must be set,
349 6: Self-powered,
350 5: Remote wakeup,
351 4..0: resvd */
352 0x00, /* __u8 MaxPower; */
353
354 /* one interface */
355 0x09, /* __u8 if_bLength; */
356 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
357 0x00, /* __u8 if_bInterfaceNumber; */
358 0x00, /* __u8 if_bAlternateSetting; */
359 0x01, /* __u8 if_bNumEndpoints; */
360 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
361 0x00, /* __u8 if_bInterfaceSubClass; */
362 0x00, /* __u8 if_bInterfaceProtocol; */
363 0x00, /* __u8 if_iInterface; */
364
365 /* one endpoint (status change endpoint) */
366 0x07, /* __u8 ep_bLength; */
367 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
368 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
369 0x03, /* __u8 ep_bmAttributes; Interrupt */
370 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
371 * see hub.c:hub_configure() for details. */
372 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
373 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
374
375 /* one SuperSpeed endpoint companion descriptor */
376 0x06, /* __u8 ss_bLength */
377 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
378 /* Companion */
379 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
380 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
381 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
382};
383
384/* authorized_default behaviour:
385 * -1 is authorized for all devices except wireless (old behaviour)
386 * 0 is unauthorized for all devices
387 * 1 is authorized for all devices
388 */
389static int authorized_default = -1;
390module_param(authorized_default, int, S_IRUGO|S_IWUSR);
391MODULE_PARM_DESC(authorized_default,
392 "Default USB device authorization: 0 is not authorized, 1 is "
393 "authorized, -1 is authorized except for wireless USB (default, "
394 "old behaviour");
395/*-------------------------------------------------------------------------*/
396
397/**
398 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
399 * @s: Null-terminated ASCII (actually ISO-8859-1) string
400 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
401 * @len: Length (in bytes; may be odd) of descriptor buffer.
402 *
403 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
404 * whichever is less.
405 *
406 * Note:
407 * USB String descriptors can contain at most 126 characters; input
408 * strings longer than that are truncated.
409 */
410static unsigned
411ascii2desc(char const *s, u8 *buf, unsigned len)
412{
413 unsigned n, t = 2 + 2*strlen(s);
414
415 if (t > 254)
416 t = 254; /* Longest possible UTF string descriptor */
417 if (len > t)
418 len = t;
419
420 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
421
422 n = len;
423 while (n--) {
424 *buf++ = t;
425 if (!n--)
426 break;
427 *buf++ = t >> 8;
428 t = (unsigned char)*s++;
429 }
430 return len;
431}
432
433/**
434 * rh_string() - provides string descriptors for root hub
435 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
436 * @hcd: the host controller for this root hub
437 * @data: buffer for output packet
438 * @len: length of the provided buffer
439 *
440 * Produces either a manufacturer, product or serial number string for the
441 * virtual root hub device.
442 *
443 * Return: The number of bytes filled in: the length of the descriptor or
444 * of the provided buffer, whichever is less.
445 */
446static unsigned
447rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
448{
449 char buf[100];
450 char const *s;
451 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
452
453 /* language ids */
454 switch (id) {
455 case 0:
456 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
457 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
458 if (len > 4)
459 len = 4;
460 memcpy(data, langids, len);
461 return len;
462 case 1:
463 /* Serial number */
464 s = hcd->self.bus_name;
465 break;
466 case 2:
467 /* Product name */
468 s = hcd->product_desc;
469 break;
470 case 3:
471 /* Manufacturer */
472 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
473 init_utsname()->release, hcd->driver->description);
474 s = buf;
475 break;
476 default:
477 /* Can't happen; caller guarantees it */
478 return 0;
479 }
480
481 return ascii2desc(s, data, len);
482}
483
484
485/* Root hub control transfers execute synchronously */
486static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
487{
488 struct usb_ctrlrequest *cmd;
489 u16 typeReq, wValue, wIndex, wLength;
490 u8 *ubuf = urb->transfer_buffer;
491 unsigned len = 0;
492 int status;
493 u8 patch_wakeup = 0;
494 u8 patch_protocol = 0;
495 u16 tbuf_size;
496 u8 *tbuf = NULL;
497 const u8 *bufp;
498
499 might_sleep();
500
501 spin_lock_irq(&hcd_root_hub_lock);
502 status = usb_hcd_link_urb_to_ep(hcd, urb);
503 spin_unlock_irq(&hcd_root_hub_lock);
504 if (status)
505 return status;
506 urb->hcpriv = hcd; /* Indicate it's queued */
507
508 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
509 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
510 wValue = le16_to_cpu (cmd->wValue);
511 wIndex = le16_to_cpu (cmd->wIndex);
512 wLength = le16_to_cpu (cmd->wLength);
513
514 if (wLength > urb->transfer_buffer_length)
515 goto error;
516
517 /*
518 * tbuf should be at least as big as the
519 * USB hub descriptor.
520 */
521 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
522 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
523 if (!tbuf) {
524 status = -ENOMEM;
525 goto err_alloc;
526 }
527
528 bufp = tbuf;
529
530
531 urb->actual_length = 0;
532 switch (typeReq) {
533
534 /* DEVICE REQUESTS */
535
536 /* The root hub's remote wakeup enable bit is implemented using
537 * driver model wakeup flags. If this system supports wakeup
538 * through USB, userspace may change the default "allow wakeup"
539 * policy through sysfs or these calls.
540 *
541 * Most root hubs support wakeup from downstream devices, for
542 * runtime power management (disabling USB clocks and reducing
543 * VBUS power usage). However, not all of them do so; silicon,
544 * board, and BIOS bugs here are not uncommon, so these can't
545 * be treated quite like external hubs.
546 *
547 * Likewise, not all root hubs will pass wakeup events upstream,
548 * to wake up the whole system. So don't assume root hub and
549 * controller capabilities are identical.
550 */
551
552 case DeviceRequest | USB_REQ_GET_STATUS:
553 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
554 << USB_DEVICE_REMOTE_WAKEUP)
555 | (1 << USB_DEVICE_SELF_POWERED);
556 tbuf[1] = 0;
557 len = 2;
558 break;
559 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
560 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
561 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
562 else
563 goto error;
564 break;
565 case DeviceOutRequest | USB_REQ_SET_FEATURE:
566 if (device_can_wakeup(&hcd->self.root_hub->dev)
567 && wValue == USB_DEVICE_REMOTE_WAKEUP)
568 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
569 else
570 goto error;
571 break;
572 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
573 tbuf[0] = 1;
574 len = 1;
575 /* FALLTHROUGH */
576 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
577 break;
578 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
579 switch (wValue & 0xff00) {
580 case USB_DT_DEVICE << 8:
581 switch (hcd->speed) {
582 case HCD_USB31:
583 bufp = usb31_rh_dev_descriptor;
584 break;
585 case HCD_USB3:
586 bufp = usb3_rh_dev_descriptor;
587 break;
588 case HCD_USB25:
589 bufp = usb25_rh_dev_descriptor;
590 break;
591 case HCD_USB2:
592 bufp = usb2_rh_dev_descriptor;
593 break;
594 case HCD_USB11:
595 bufp = usb11_rh_dev_descriptor;
596 break;
597 default:
598 goto error;
599 }
600 len = 18;
601 if (hcd->has_tt)
602 patch_protocol = 1;
603 break;
604 case USB_DT_CONFIG << 8:
605 switch (hcd->speed) {
606 case HCD_USB31:
607 case HCD_USB3:
608 bufp = ss_rh_config_descriptor;
609 len = sizeof ss_rh_config_descriptor;
610 break;
611 case HCD_USB25:
612 case HCD_USB2:
613 bufp = hs_rh_config_descriptor;
614 len = sizeof hs_rh_config_descriptor;
615 break;
616 case HCD_USB11:
617 bufp = fs_rh_config_descriptor;
618 len = sizeof fs_rh_config_descriptor;
619 break;
620 default:
621 goto error;
622 }
623 if (device_can_wakeup(&hcd->self.root_hub->dev))
624 patch_wakeup = 1;
625 break;
626 case USB_DT_STRING << 8:
627 if ((wValue & 0xff) < 4)
628 urb->actual_length = rh_string(wValue & 0xff,
629 hcd, ubuf, wLength);
630 else /* unsupported IDs --> "protocol stall" */
631 goto error;
632 break;
633 case USB_DT_BOS << 8:
634 goto nongeneric;
635 default:
636 goto error;
637 }
638 break;
639 case DeviceRequest | USB_REQ_GET_INTERFACE:
640 tbuf[0] = 0;
641 len = 1;
642 /* FALLTHROUGH */
643 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
644 break;
645 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
646 /* wValue == urb->dev->devaddr */
647 dev_dbg (hcd->self.controller, "root hub device address %d\n",
648 wValue);
649 break;
650
651 /* INTERFACE REQUESTS (no defined feature/status flags) */
652
653 /* ENDPOINT REQUESTS */
654
655 case EndpointRequest | USB_REQ_GET_STATUS:
656 /* ENDPOINT_HALT flag */
657 tbuf[0] = 0;
658 tbuf[1] = 0;
659 len = 2;
660 /* FALLTHROUGH */
661 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
662 case EndpointOutRequest | USB_REQ_SET_FEATURE:
663 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
664 break;
665
666 /* CLASS REQUESTS (and errors) */
667
668 default:
669nongeneric:
670 /* non-generic request */
671 switch (typeReq) {
672 case GetHubStatus:
673 len = 4;
674 break;
675 case GetPortStatus:
676 if (wValue == HUB_PORT_STATUS)
677 len = 4;
678 else
679 /* other port status types return 8 bytes */
680 len = 8;
681 break;
682 case GetHubDescriptor:
683 len = sizeof (struct usb_hub_descriptor);
684 break;
685 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
686 /* len is returned by hub_control */
687 break;
688 }
689 status = hcd->driver->hub_control (hcd,
690 typeReq, wValue, wIndex,
691 tbuf, wLength);
692
693 if (typeReq == GetHubDescriptor)
694 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
695 (struct usb_hub_descriptor *)tbuf);
696 break;
697error:
698 /* "protocol stall" on error */
699 status = -EPIPE;
700 }
701
702 if (status < 0) {
703 len = 0;
704 if (status != -EPIPE) {
705 dev_dbg (hcd->self.controller,
706 "CTRL: TypeReq=0x%x val=0x%x "
707 "idx=0x%x len=%d ==> %d\n",
708 typeReq, wValue, wIndex,
709 wLength, status);
710 }
711 } else if (status > 0) {
712 /* hub_control may return the length of data copied. */
713 len = status;
714 status = 0;
715 }
716 if (len) {
717 if (urb->transfer_buffer_length < len)
718 len = urb->transfer_buffer_length;
719 urb->actual_length = len;
720 /* always USB_DIR_IN, toward host */
721 memcpy (ubuf, bufp, len);
722
723 /* report whether RH hardware supports remote wakeup */
724 if (patch_wakeup &&
725 len > offsetof (struct usb_config_descriptor,
726 bmAttributes))
727 ((struct usb_config_descriptor *)ubuf)->bmAttributes
728 |= USB_CONFIG_ATT_WAKEUP;
729
730 /* report whether RH hardware has an integrated TT */
731 if (patch_protocol &&
732 len > offsetof(struct usb_device_descriptor,
733 bDeviceProtocol))
734 ((struct usb_device_descriptor *) ubuf)->
735 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
736 }
737
738 kfree(tbuf);
739 err_alloc:
740
741 /* any errors get returned through the urb completion */
742 spin_lock_irq(&hcd_root_hub_lock);
743 usb_hcd_unlink_urb_from_ep(hcd, urb);
744 usb_hcd_giveback_urb(hcd, urb, status);
745 spin_unlock_irq(&hcd_root_hub_lock);
746 return 0;
747}
748
749/*-------------------------------------------------------------------------*/
750
751/*
752 * Root Hub interrupt transfers are polled using a timer if the
753 * driver requests it; otherwise the driver is responsible for
754 * calling usb_hcd_poll_rh_status() when an event occurs.
755 *
756 * Completions are called in_interrupt(), but they may or may not
757 * be in_irq().
758 */
759void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
760{
761 struct urb *urb;
762 int length;
763 unsigned long flags;
764 char buffer[6]; /* Any root hubs with > 31 ports? */
765
766 if (unlikely(!hcd->rh_pollable))
767 return;
768 if (!hcd->uses_new_polling && !hcd->status_urb)
769 return;
770
771 length = hcd->driver->hub_status_data(hcd, buffer);
772 if (length > 0) {
773
774 /* try to complete the status urb */
775 spin_lock_irqsave(&hcd_root_hub_lock, flags);
776 urb = hcd->status_urb;
777 if (urb) {
778 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
779 hcd->status_urb = NULL;
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, 0);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799}
800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802/* timer callback */
803static void rh_timer_func (unsigned long _hcd)
804{
805 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
806}
807
808/*-------------------------------------------------------------------------*/
809
810static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
811{
812 int retval;
813 unsigned long flags;
814 unsigned len = 1 + (urb->dev->maxchild / 8);
815
816 spin_lock_irqsave (&hcd_root_hub_lock, flags);
817 if (hcd->status_urb || urb->transfer_buffer_length < len) {
818 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
819 retval = -EINVAL;
820 goto done;
821 }
822
823 retval = usb_hcd_link_urb_to_ep(hcd, urb);
824 if (retval)
825 goto done;
826
827 hcd->status_urb = urb;
828 urb->hcpriv = hcd; /* indicate it's queued */
829 if (!hcd->uses_new_polling)
830 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
831
832 /* If a status change has already occurred, report it ASAP */
833 else if (HCD_POLL_PENDING(hcd))
834 mod_timer(&hcd->rh_timer, jiffies);
835 retval = 0;
836 done:
837 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
838 return retval;
839}
840
841static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
842{
843 if (usb_endpoint_xfer_int(&urb->ep->desc))
844 return rh_queue_status (hcd, urb);
845 if (usb_endpoint_xfer_control(&urb->ep->desc))
846 return rh_call_control (hcd, urb);
847 return -EINVAL;
848}
849
850/*-------------------------------------------------------------------------*/
851
852/* Unlinks of root-hub control URBs are legal, but they don't do anything
853 * since these URBs always execute synchronously.
854 */
855static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
856{
857 unsigned long flags;
858 int rc;
859
860 spin_lock_irqsave(&hcd_root_hub_lock, flags);
861 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
862 if (rc)
863 goto done;
864
865 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
866 ; /* Do nothing */
867
868 } else { /* Status URB */
869 if (!hcd->uses_new_polling)
870 del_timer (&hcd->rh_timer);
871 if (urb == hcd->status_urb) {
872 hcd->status_urb = NULL;
873 usb_hcd_unlink_urb_from_ep(hcd, urb);
874 usb_hcd_giveback_urb(hcd, urb, status);
875 }
876 }
877 done:
878 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
879 return rc;
880}
881
882
883
884/*
885 * Show & store the current value of authorized_default
886 */
887static ssize_t authorized_default_show(struct device *dev,
888 struct device_attribute *attr, char *buf)
889{
890 struct usb_device *rh_usb_dev = to_usb_device(dev);
891 struct usb_bus *usb_bus = rh_usb_dev->bus;
892 struct usb_hcd *hcd;
893
894 hcd = bus_to_hcd(usb_bus);
895 return snprintf(buf, PAGE_SIZE, "%u\n", !!HCD_DEV_AUTHORIZED(hcd));
896}
897
898static ssize_t authorized_default_store(struct device *dev,
899 struct device_attribute *attr,
900 const char *buf, size_t size)
901{
902 ssize_t result;
903 unsigned val;
904 struct usb_device *rh_usb_dev = to_usb_device(dev);
905 struct usb_bus *usb_bus = rh_usb_dev->bus;
906 struct usb_hcd *hcd;
907
908 hcd = bus_to_hcd(usb_bus);
909 result = sscanf(buf, "%u\n", &val);
910 if (result == 1) {
911 if (val)
912 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
913 else
914 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
915
916 result = size;
917 } else {
918 result = -EINVAL;
919 }
920 return result;
921}
922static DEVICE_ATTR_RW(authorized_default);
923
924/*
925 * interface_authorized_default_show - show default authorization status
926 * for USB interfaces
927 *
928 * note: interface_authorized_default is the default value
929 * for initializing the authorized attribute of interfaces
930 */
931static ssize_t interface_authorized_default_show(struct device *dev,
932 struct device_attribute *attr, char *buf)
933{
934 struct usb_device *usb_dev = to_usb_device(dev);
935 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
936
937 return sprintf(buf, "%u\n", !!HCD_INTF_AUTHORIZED(hcd));
938}
939
940/*
941 * interface_authorized_default_store - store default authorization status
942 * for USB interfaces
943 *
944 * note: interface_authorized_default is the default value
945 * for initializing the authorized attribute of interfaces
946 */
947static ssize_t interface_authorized_default_store(struct device *dev,
948 struct device_attribute *attr, const char *buf, size_t count)
949{
950 struct usb_device *usb_dev = to_usb_device(dev);
951 struct usb_hcd *hcd = bus_to_hcd(usb_dev->bus);
952 int rc = count;
953 bool val;
954
955 if (strtobool(buf, &val) != 0)
956 return -EINVAL;
957
958 if (val)
959 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
960 else
961 clear_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
962
963 return rc;
964}
965static DEVICE_ATTR_RW(interface_authorized_default);
966
967/* Group all the USB bus attributes */
968static struct attribute *usb_bus_attrs[] = {
969 &dev_attr_authorized_default.attr,
970 &dev_attr_interface_authorized_default.attr,
971 NULL,
972};
973
974static struct attribute_group usb_bus_attr_group = {
975 .name = NULL, /* we want them in the same directory */
976 .attrs = usb_bus_attrs,
977};
978
979
980
981/*-------------------------------------------------------------------------*/
982
983/**
984 * usb_bus_init - shared initialization code
985 * @bus: the bus structure being initialized
986 *
987 * This code is used to initialize a usb_bus structure, memory for which is
988 * separately managed.
989 */
990static void usb_bus_init (struct usb_bus *bus)
991{
992 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
993
994 bus->devnum_next = 1;
995
996 bus->root_hub = NULL;
997 bus->busnum = -1;
998 bus->bandwidth_allocated = 0;
999 bus->bandwidth_int_reqs = 0;
1000 bus->bandwidth_isoc_reqs = 0;
1001 mutex_init(&bus->devnum_next_mutex);
1002}
1003
1004/*-------------------------------------------------------------------------*/
1005
1006/**
1007 * usb_register_bus - registers the USB host controller with the usb core
1008 * @bus: pointer to the bus to register
1009 * Context: !in_interrupt()
1010 *
1011 * Assigns a bus number, and links the controller into usbcore data
1012 * structures so that it can be seen by scanning the bus list.
1013 *
1014 * Return: 0 if successful. A negative error code otherwise.
1015 */
1016static int usb_register_bus(struct usb_bus *bus)
1017{
1018 int result = -E2BIG;
1019 int busnum;
1020
1021 mutex_lock(&usb_bus_idr_lock);
1022 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
1023 if (busnum < 0) {
1024 pr_err("%s: failed to get bus number\n", usbcore_name);
1025 goto error_find_busnum;
1026 }
1027 bus->busnum = busnum;
1028 mutex_unlock(&usb_bus_idr_lock);
1029
1030 usb_notify_add_bus(bus);
1031
1032 dev_info (bus->controller, "new USB bus registered, assigned bus "
1033 "number %d\n", bus->busnum);
1034 return 0;
1035
1036error_find_busnum:
1037 mutex_unlock(&usb_bus_idr_lock);
1038 return result;
1039}
1040
1041/**
1042 * usb_deregister_bus - deregisters the USB host controller
1043 * @bus: pointer to the bus to deregister
1044 * Context: !in_interrupt()
1045 *
1046 * Recycles the bus number, and unlinks the controller from usbcore data
1047 * structures so that it won't be seen by scanning the bus list.
1048 */
1049static void usb_deregister_bus (struct usb_bus *bus)
1050{
1051 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
1052
1053 /*
1054 * NOTE: make sure that all the devices are removed by the
1055 * controller code, as well as having it call this when cleaning
1056 * itself up
1057 */
1058 mutex_lock(&usb_bus_idr_lock);
1059 idr_remove(&usb_bus_idr, bus->busnum);
1060 mutex_unlock(&usb_bus_idr_lock);
1061
1062 usb_notify_remove_bus(bus);
1063}
1064
1065/**
1066 * register_root_hub - called by usb_add_hcd() to register a root hub
1067 * @hcd: host controller for this root hub
1068 *
1069 * This function registers the root hub with the USB subsystem. It sets up
1070 * the device properly in the device tree and then calls usb_new_device()
1071 * to register the usb device. It also assigns the root hub's USB address
1072 * (always 1).
1073 *
1074 * Return: 0 if successful. A negative error code otherwise.
1075 */
1076static int register_root_hub(struct usb_hcd *hcd)
1077{
1078 struct device *parent_dev = hcd->self.controller;
1079 struct usb_device *usb_dev = hcd->self.root_hub;
1080 const int devnum = 1;
1081 int retval;
1082
1083 usb_dev->devnum = devnum;
1084 usb_dev->bus->devnum_next = devnum + 1;
1085 memset (&usb_dev->bus->devmap.devicemap, 0,
1086 sizeof usb_dev->bus->devmap.devicemap);
1087 set_bit (devnum, usb_dev->bus->devmap.devicemap);
1088 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
1089
1090 mutex_lock(&usb_bus_idr_lock);
1091
1092 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
1093 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
1094 if (retval != sizeof usb_dev->descriptor) {
1095 mutex_unlock(&usb_bus_idr_lock);
1096 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1097 dev_name(&usb_dev->dev), retval);
1098 return (retval < 0) ? retval : -EMSGSIZE;
1099 }
1100
1101 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1102 retval = usb_get_bos_descriptor(usb_dev);
1103 if (!retval) {
1104 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1105 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1106 mutex_unlock(&usb_bus_idr_lock);
1107 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1108 dev_name(&usb_dev->dev), retval);
1109 return retval;
1110 }
1111 }
1112
1113 retval = usb_new_device (usb_dev);
1114 if (retval) {
1115 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1116 dev_name(&usb_dev->dev), retval);
1117 } else {
1118 spin_lock_irq (&hcd_root_hub_lock);
1119 hcd->rh_registered = 1;
1120 spin_unlock_irq (&hcd_root_hub_lock);
1121
1122 /* Did the HC die before the root hub was registered? */
1123 if (HCD_DEAD(hcd))
1124 usb_hc_died (hcd); /* This time clean up */
1125 usb_dev->dev.of_node = parent_dev->of_node;
1126 }
1127 mutex_unlock(&usb_bus_idr_lock);
1128
1129 return retval;
1130}
1131
1132/*
1133 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1134 * @bus: the bus which the root hub belongs to
1135 * @portnum: the port which is being resumed
1136 *
1137 * HCDs should call this function when they know that a resume signal is
1138 * being sent to a root-hub port. The root hub will be prevented from
1139 * going into autosuspend until usb_hcd_end_port_resume() is called.
1140 *
1141 * The bus's private lock must be held by the caller.
1142 */
1143void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1144{
1145 unsigned bit = 1 << portnum;
1146
1147 if (!(bus->resuming_ports & bit)) {
1148 bus->resuming_ports |= bit;
1149 pm_runtime_get_noresume(&bus->root_hub->dev);
1150 }
1151}
1152EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1153
1154/*
1155 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1156 * @bus: the bus which the root hub belongs to
1157 * @portnum: the port which is being resumed
1158 *
1159 * HCDs should call this function when they know that a resume signal has
1160 * stopped being sent to a root-hub port. The root hub will be allowed to
1161 * autosuspend again.
1162 *
1163 * The bus's private lock must be held by the caller.
1164 */
1165void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1166{
1167 unsigned bit = 1 << portnum;
1168
1169 if (bus->resuming_ports & bit) {
1170 bus->resuming_ports &= ~bit;
1171 pm_runtime_put_noidle(&bus->root_hub->dev);
1172 }
1173}
1174EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1175
1176/*-------------------------------------------------------------------------*/
1177
1178/**
1179 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1180 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1181 * @is_input: true iff the transaction sends data to the host
1182 * @isoc: true for isochronous transactions, false for interrupt ones
1183 * @bytecount: how many bytes in the transaction.
1184 *
1185 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1186 *
1187 * Note:
1188 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1189 * scheduled in software, this function is only used for such scheduling.
1190 */
1191long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1192{
1193 unsigned long tmp;
1194
1195 switch (speed) {
1196 case USB_SPEED_LOW: /* INTR only */
1197 if (is_input) {
1198 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1199 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1200 } else {
1201 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1202 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1203 }
1204 case USB_SPEED_FULL: /* ISOC or INTR */
1205 if (isoc) {
1206 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1207 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1208 } else {
1209 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1210 return 9107L + BW_HOST_DELAY + tmp;
1211 }
1212 case USB_SPEED_HIGH: /* ISOC or INTR */
1213 /* FIXME adjust for input vs output */
1214 if (isoc)
1215 tmp = HS_NSECS_ISO (bytecount);
1216 else
1217 tmp = HS_NSECS (bytecount);
1218 return tmp;
1219 default:
1220 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1221 return -1;
1222 }
1223}
1224EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1225
1226
1227/*-------------------------------------------------------------------------*/
1228
1229/*
1230 * Generic HC operations.
1231 */
1232
1233/*-------------------------------------------------------------------------*/
1234
1235/**
1236 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1237 * @hcd: host controller to which @urb was submitted
1238 * @urb: URB being submitted
1239 *
1240 * Host controller drivers should call this routine in their enqueue()
1241 * method. The HCD's private spinlock must be held and interrupts must
1242 * be disabled. The actions carried out here are required for URB
1243 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1244 *
1245 * Return: 0 for no error, otherwise a negative error code (in which case
1246 * the enqueue() method must fail). If no error occurs but enqueue() fails
1247 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1248 * the private spinlock and returning.
1249 */
1250int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1251{
1252 int rc = 0;
1253
1254 spin_lock(&hcd_urb_list_lock);
1255
1256 /* Check that the URB isn't being killed */
1257 if (unlikely(atomic_read(&urb->reject))) {
1258 rc = -EPERM;
1259 goto done;
1260 }
1261
1262 if (unlikely(!urb->ep->enabled)) {
1263 rc = -ENOENT;
1264 goto done;
1265 }
1266
1267 if (unlikely(!urb->dev->can_submit)) {
1268 rc = -EHOSTUNREACH;
1269 goto done;
1270 }
1271
1272 /*
1273 * Check the host controller's state and add the URB to the
1274 * endpoint's queue.
1275 */
1276 if (HCD_RH_RUNNING(hcd)) {
1277 urb->unlinked = 0;
1278 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1279 } else {
1280 rc = -ESHUTDOWN;
1281 goto done;
1282 }
1283 done:
1284 spin_unlock(&hcd_urb_list_lock);
1285 return rc;
1286}
1287EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1288
1289/**
1290 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1291 * @hcd: host controller to which @urb was submitted
1292 * @urb: URB being checked for unlinkability
1293 * @status: error code to store in @urb if the unlink succeeds
1294 *
1295 * Host controller drivers should call this routine in their dequeue()
1296 * method. The HCD's private spinlock must be held and interrupts must
1297 * be disabled. The actions carried out here are required for making
1298 * sure than an unlink is valid.
1299 *
1300 * Return: 0 for no error, otherwise a negative error code (in which case
1301 * the dequeue() method must fail). The possible error codes are:
1302 *
1303 * -EIDRM: @urb was not submitted or has already completed.
1304 * The completion function may not have been called yet.
1305 *
1306 * -EBUSY: @urb has already been unlinked.
1307 */
1308int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1309 int status)
1310{
1311 struct list_head *tmp;
1312
1313 /* insist the urb is still queued */
1314 list_for_each(tmp, &urb->ep->urb_list) {
1315 if (tmp == &urb->urb_list)
1316 break;
1317 }
1318 if (tmp != &urb->urb_list)
1319 return -EIDRM;
1320
1321 /* Any status except -EINPROGRESS means something already started to
1322 * unlink this URB from the hardware. So there's no more work to do.
1323 */
1324 if (urb->unlinked)
1325 return -EBUSY;
1326 urb->unlinked = status;
1327 return 0;
1328}
1329EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1330
1331/**
1332 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1333 * @hcd: host controller to which @urb was submitted
1334 * @urb: URB being unlinked
1335 *
1336 * Host controller drivers should call this routine before calling
1337 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1338 * interrupts must be disabled. The actions carried out here are required
1339 * for URB completion.
1340 */
1341void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1342{
1343 /* clear all state linking urb to this dev (and hcd) */
1344 spin_lock(&hcd_urb_list_lock);
1345 list_del_init(&urb->urb_list);
1346 spin_unlock(&hcd_urb_list_lock);
1347}
1348EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1349
1350/*
1351 * Some usb host controllers can only perform dma using a small SRAM area.
1352 * The usb core itself is however optimized for host controllers that can dma
1353 * using regular system memory - like pci devices doing bus mastering.
1354 *
1355 * To support host controllers with limited dma capabilities we provide dma
1356 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1357 * For this to work properly the host controller code must first use the
1358 * function dma_declare_coherent_memory() to point out which memory area
1359 * that should be used for dma allocations.
1360 *
1361 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1362 * dma using dma_alloc_coherent() which in turn allocates from the memory
1363 * area pointed out with dma_declare_coherent_memory().
1364 *
1365 * So, to summarize...
1366 *
1367 * - We need "local" memory, canonical example being
1368 * a small SRAM on a discrete controller being the
1369 * only memory that the controller can read ...
1370 * (a) "normal" kernel memory is no good, and
1371 * (b) there's not enough to share
1372 *
1373 * - The only *portable* hook for such stuff in the
1374 * DMA framework is dma_declare_coherent_memory()
1375 *
1376 * - So we use that, even though the primary requirement
1377 * is that the memory be "local" (hence addressable
1378 * by that device), not "coherent".
1379 *
1380 */
1381
1382static int hcd_alloc_coherent(struct usb_bus *bus,
1383 gfp_t mem_flags, dma_addr_t *dma_handle,
1384 void **vaddr_handle, size_t size,
1385 enum dma_data_direction dir)
1386{
1387 unsigned char *vaddr;
1388
1389 if (*vaddr_handle == NULL) {
1390 WARN_ON_ONCE(1);
1391 return -EFAULT;
1392 }
1393
1394 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1395 mem_flags, dma_handle);
1396 if (!vaddr)
1397 return -ENOMEM;
1398
1399 /*
1400 * Store the virtual address of the buffer at the end
1401 * of the allocated dma buffer. The size of the buffer
1402 * may be uneven so use unaligned functions instead
1403 * of just rounding up. It makes sense to optimize for
1404 * memory footprint over access speed since the amount
1405 * of memory available for dma may be limited.
1406 */
1407 put_unaligned((unsigned long)*vaddr_handle,
1408 (unsigned long *)(vaddr + size));
1409
1410 if (dir == DMA_TO_DEVICE)
1411 memcpy(vaddr, *vaddr_handle, size);
1412
1413 *vaddr_handle = vaddr;
1414 return 0;
1415}
1416
1417static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1418 void **vaddr_handle, size_t size,
1419 enum dma_data_direction dir)
1420{
1421 unsigned char *vaddr = *vaddr_handle;
1422
1423 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1424
1425 if (dir == DMA_FROM_DEVICE)
1426 memcpy(vaddr, *vaddr_handle, size);
1427
1428 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1429
1430 *vaddr_handle = vaddr;
1431 *dma_handle = 0;
1432}
1433
1434void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1435{
1436 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1437 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1438 dma_unmap_single(hcd->self.controller,
1439 urb->setup_dma,
1440 sizeof(struct usb_ctrlrequest),
1441 DMA_TO_DEVICE);
1442 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1443 hcd_free_coherent(urb->dev->bus,
1444 &urb->setup_dma,
1445 (void **) &urb->setup_packet,
1446 sizeof(struct usb_ctrlrequest),
1447 DMA_TO_DEVICE);
1448
1449 /* Make it safe to call this routine more than once */
1450 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1451}
1452EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1453
1454static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1455{
1456 if (hcd->driver->unmap_urb_for_dma)
1457 hcd->driver->unmap_urb_for_dma(hcd, urb);
1458 else
1459 usb_hcd_unmap_urb_for_dma(hcd, urb);
1460}
1461
1462void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1463{
1464 enum dma_data_direction dir;
1465
1466 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1467
1468 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1469 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1470 (urb->transfer_flags & URB_DMA_MAP_SG))
1471 dma_unmap_sg(hcd->self.controller,
1472 urb->sg,
1473 urb->num_sgs,
1474 dir);
1475 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1476 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1477 dma_unmap_page(hcd->self.controller,
1478 urb->transfer_dma,
1479 urb->transfer_buffer_length,
1480 dir);
1481 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1482 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1483 dma_unmap_single(hcd->self.controller,
1484 urb->transfer_dma,
1485 urb->transfer_buffer_length,
1486 dir);
1487 else if (urb->transfer_flags & URB_MAP_LOCAL)
1488 hcd_free_coherent(urb->dev->bus,
1489 &urb->transfer_dma,
1490 &urb->transfer_buffer,
1491 urb->transfer_buffer_length,
1492 dir);
1493
1494 /* Make it safe to call this routine more than once */
1495 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1496 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1497}
1498EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1499
1500static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1501 gfp_t mem_flags)
1502{
1503 if (hcd->driver->map_urb_for_dma)
1504 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1505 else
1506 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1507}
1508
1509int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1510 gfp_t mem_flags)
1511{
1512 enum dma_data_direction dir;
1513 int ret = 0;
1514
1515 /* Map the URB's buffers for DMA access.
1516 * Lower level HCD code should use *_dma exclusively,
1517 * unless it uses pio or talks to another transport,
1518 * or uses the provided scatter gather list for bulk.
1519 */
1520
1521 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1522 if (hcd->self.uses_pio_for_control)
1523 return ret;
1524 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1525 urb->setup_dma = dma_map_single(
1526 hcd->self.controller,
1527 urb->setup_packet,
1528 sizeof(struct usb_ctrlrequest),
1529 DMA_TO_DEVICE);
1530 if (dma_mapping_error(hcd->self.controller,
1531 urb->setup_dma))
1532 return -EAGAIN;
1533 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1534 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1535 ret = hcd_alloc_coherent(
1536 urb->dev->bus, mem_flags,
1537 &urb->setup_dma,
1538 (void **)&urb->setup_packet,
1539 sizeof(struct usb_ctrlrequest),
1540 DMA_TO_DEVICE);
1541 if (ret)
1542 return ret;
1543 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1544 }
1545 }
1546
1547 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1548 if (urb->transfer_buffer_length != 0
1549 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1550 if (IS_ENABLED(CONFIG_HAS_DMA) && hcd->self.uses_dma) {
1551 if (urb->num_sgs) {
1552 int n;
1553
1554 /* We don't support sg for isoc transfers ! */
1555 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1556 WARN_ON(1);
1557 return -EINVAL;
1558 }
1559
1560 n = dma_map_sg(
1561 hcd->self.controller,
1562 urb->sg,
1563 urb->num_sgs,
1564 dir);
1565 if (n <= 0)
1566 ret = -EAGAIN;
1567 else
1568 urb->transfer_flags |= URB_DMA_MAP_SG;
1569 urb->num_mapped_sgs = n;
1570 if (n != urb->num_sgs)
1571 urb->transfer_flags |=
1572 URB_DMA_SG_COMBINED;
1573 } else if (urb->sg) {
1574 struct scatterlist *sg = urb->sg;
1575 urb->transfer_dma = dma_map_page(
1576 hcd->self.controller,
1577 sg_page(sg),
1578 sg->offset,
1579 urb->transfer_buffer_length,
1580 dir);
1581 if (dma_mapping_error(hcd->self.controller,
1582 urb->transfer_dma))
1583 ret = -EAGAIN;
1584 else
1585 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1586 } else if (is_vmalloc_addr(urb->transfer_buffer)) {
1587 WARN_ONCE(1, "transfer buffer not dma capable\n");
1588 ret = -EAGAIN;
1589 } else {
1590 urb->transfer_dma = dma_map_single(
1591 hcd->self.controller,
1592 urb->transfer_buffer,
1593 urb->transfer_buffer_length,
1594 dir);
1595 if (dma_mapping_error(hcd->self.controller,
1596 urb->transfer_dma))
1597 ret = -EAGAIN;
1598 else
1599 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1600 }
1601 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1602 ret = hcd_alloc_coherent(
1603 urb->dev->bus, mem_flags,
1604 &urb->transfer_dma,
1605 &urb->transfer_buffer,
1606 urb->transfer_buffer_length,
1607 dir);
1608 if (ret == 0)
1609 urb->transfer_flags |= URB_MAP_LOCAL;
1610 }
1611 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1612 URB_SETUP_MAP_LOCAL)))
1613 usb_hcd_unmap_urb_for_dma(hcd, urb);
1614 }
1615 return ret;
1616}
1617EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1618
1619/*-------------------------------------------------------------------------*/
1620
1621/* may be called in any context with a valid urb->dev usecount
1622 * caller surrenders "ownership" of urb
1623 * expects usb_submit_urb() to have sanity checked and conditioned all
1624 * inputs in the urb
1625 */
1626int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1627{
1628 int status;
1629 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1630
1631 /* increment urb's reference count as part of giving it to the HCD
1632 * (which will control it). HCD guarantees that it either returns
1633 * an error or calls giveback(), but not both.
1634 */
1635 usb_get_urb(urb);
1636 atomic_inc(&urb->use_count);
1637 atomic_inc(&urb->dev->urbnum);
1638 usbmon_urb_submit(&hcd->self, urb);
1639
1640 /* NOTE requirements on root-hub callers (usbfs and the hub
1641 * driver, for now): URBs' urb->transfer_buffer must be
1642 * valid and usb_buffer_{sync,unmap}() not be needed, since
1643 * they could clobber root hub response data. Also, control
1644 * URBs must be submitted in process context with interrupts
1645 * enabled.
1646 */
1647
1648 if (is_root_hub(urb->dev)) {
1649 status = rh_urb_enqueue(hcd, urb);
1650 } else {
1651 status = map_urb_for_dma(hcd, urb, mem_flags);
1652 if (likely(status == 0)) {
1653 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1654 if (unlikely(status))
1655 unmap_urb_for_dma(hcd, urb);
1656 }
1657 }
1658
1659 if (unlikely(status)) {
1660 usbmon_urb_submit_error(&hcd->self, urb, status);
1661 urb->hcpriv = NULL;
1662 INIT_LIST_HEAD(&urb->urb_list);
1663 atomic_dec(&urb->use_count);
1664 atomic_dec(&urb->dev->urbnum);
1665 if (atomic_read(&urb->reject))
1666 wake_up(&usb_kill_urb_queue);
1667 usb_put_urb(urb);
1668 }
1669 return status;
1670}
1671
1672/*-------------------------------------------------------------------------*/
1673
1674/* this makes the hcd giveback() the urb more quickly, by kicking it
1675 * off hardware queues (which may take a while) and returning it as
1676 * soon as practical. we've already set up the urb's return status,
1677 * but we can't know if the callback completed already.
1678 */
1679static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1680{
1681 int value;
1682
1683 if (is_root_hub(urb->dev))
1684 value = usb_rh_urb_dequeue(hcd, urb, status);
1685 else {
1686
1687 /* The only reason an HCD might fail this call is if
1688 * it has not yet fully queued the urb to begin with.
1689 * Such failures should be harmless. */
1690 value = hcd->driver->urb_dequeue(hcd, urb, status);
1691 }
1692 return value;
1693}
1694
1695/*
1696 * called in any context
1697 *
1698 * caller guarantees urb won't be recycled till both unlink()
1699 * and the urb's completion function return
1700 */
1701int usb_hcd_unlink_urb (struct urb *urb, int status)
1702{
1703 struct usb_hcd *hcd;
1704 struct usb_device *udev = urb->dev;
1705 int retval = -EIDRM;
1706 unsigned long flags;
1707
1708 /* Prevent the device and bus from going away while
1709 * the unlink is carried out. If they are already gone
1710 * then urb->use_count must be 0, since disconnected
1711 * devices can't have any active URBs.
1712 */
1713 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1714 if (atomic_read(&urb->use_count) > 0) {
1715 retval = 0;
1716 usb_get_dev(udev);
1717 }
1718 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1719 if (retval == 0) {
1720 hcd = bus_to_hcd(urb->dev->bus);
1721 retval = unlink1(hcd, urb, status);
1722 if (retval == 0)
1723 retval = -EINPROGRESS;
1724 else if (retval != -EIDRM && retval != -EBUSY)
1725 dev_dbg(&udev->dev, "hcd_unlink_urb %p fail %d\n",
1726 urb, retval);
1727 usb_put_dev(udev);
1728 }
1729 return retval;
1730}
1731
1732/*-------------------------------------------------------------------------*/
1733
1734static void __usb_hcd_giveback_urb(struct urb *urb)
1735{
1736 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1737 struct usb_anchor *anchor = urb->anchor;
1738 int status = urb->unlinked;
1739 unsigned long flags;
1740
1741 urb->hcpriv = NULL;
1742 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1743 urb->actual_length < urb->transfer_buffer_length &&
1744 !status))
1745 status = -EREMOTEIO;
1746
1747 unmap_urb_for_dma(hcd, urb);
1748 usbmon_urb_complete(&hcd->self, urb, status);
1749 usb_anchor_suspend_wakeups(anchor);
1750 usb_unanchor_urb(urb);
1751 if (likely(status == 0))
1752 usb_led_activity(USB_LED_EVENT_HOST);
1753
1754 /* pass ownership to the completion handler */
1755 urb->status = status;
1756
1757 /*
1758 * We disable local IRQs here avoid possible deadlock because
1759 * drivers may call spin_lock() to hold lock which might be
1760 * acquired in one hard interrupt handler.
1761 *
1762 * The local_irq_save()/local_irq_restore() around complete()
1763 * will be removed if current USB drivers have been cleaned up
1764 * and no one may trigger the above deadlock situation when
1765 * running complete() in tasklet.
1766 */
1767 local_irq_save(flags);
1768 urb->complete(urb);
1769 local_irq_restore(flags);
1770
1771 usb_anchor_resume_wakeups(anchor);
1772 atomic_dec(&urb->use_count);
1773 if (unlikely(atomic_read(&urb->reject)))
1774 wake_up(&usb_kill_urb_queue);
1775 usb_put_urb(urb);
1776}
1777
1778static void usb_giveback_urb_bh(unsigned long param)
1779{
1780 struct giveback_urb_bh *bh = (struct giveback_urb_bh *)param;
1781 struct list_head local_list;
1782
1783 spin_lock_irq(&bh->lock);
1784 bh->running = true;
1785 restart:
1786 list_replace_init(&bh->head, &local_list);
1787 spin_unlock_irq(&bh->lock);
1788
1789 while (!list_empty(&local_list)) {
1790 struct urb *urb;
1791
1792 urb = list_entry(local_list.next, struct urb, urb_list);
1793 list_del_init(&urb->urb_list);
1794 bh->completing_ep = urb->ep;
1795 __usb_hcd_giveback_urb(urb);
1796 bh->completing_ep = NULL;
1797 }
1798
1799 /* check if there are new URBs to giveback */
1800 spin_lock_irq(&bh->lock);
1801 if (!list_empty(&bh->head))
1802 goto restart;
1803 bh->running = false;
1804 spin_unlock_irq(&bh->lock);
1805}
1806
1807/**
1808 * usb_hcd_giveback_urb - return URB from HCD to device driver
1809 * @hcd: host controller returning the URB
1810 * @urb: urb being returned to the USB device driver.
1811 * @status: completion status code for the URB.
1812 * Context: in_interrupt()
1813 *
1814 * This hands the URB from HCD to its USB device driver, using its
1815 * completion function. The HCD has freed all per-urb resources
1816 * (and is done using urb->hcpriv). It also released all HCD locks;
1817 * the device driver won't cause problems if it frees, modifies,
1818 * or resubmits this URB.
1819 *
1820 * If @urb was unlinked, the value of @status will be overridden by
1821 * @urb->unlinked. Erroneous short transfers are detected in case
1822 * the HCD hasn't checked for them.
1823 */
1824void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1825{
1826 struct giveback_urb_bh *bh;
1827 bool running, high_prio_bh;
1828
1829 /* pass status to tasklet via unlinked */
1830 if (likely(!urb->unlinked))
1831 urb->unlinked = status;
1832
1833 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1834 __usb_hcd_giveback_urb(urb);
1835 return;
1836 }
1837
1838 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe)) {
1839 bh = &hcd->high_prio_bh;
1840 high_prio_bh = true;
1841 } else {
1842 bh = &hcd->low_prio_bh;
1843 high_prio_bh = false;
1844 }
1845
1846 spin_lock(&bh->lock);
1847 list_add_tail(&urb->urb_list, &bh->head);
1848 running = bh->running;
1849 spin_unlock(&bh->lock);
1850
1851 if (running)
1852 ;
1853 else if (high_prio_bh)
1854 tasklet_hi_schedule(&bh->bh);
1855 else
1856 tasklet_schedule(&bh->bh);
1857}
1858EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1859
1860/*-------------------------------------------------------------------------*/
1861
1862/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1863 * queue to drain completely. The caller must first insure that no more
1864 * URBs can be submitted for this endpoint.
1865 */
1866void usb_hcd_flush_endpoint(struct usb_device *udev,
1867 struct usb_host_endpoint *ep)
1868{
1869 struct usb_hcd *hcd;
1870 struct urb *urb;
1871
1872 if (!ep)
1873 return;
1874 might_sleep();
1875 hcd = bus_to_hcd(udev->bus);
1876
1877 /* No more submits can occur */
1878 spin_lock_irq(&hcd_urb_list_lock);
1879rescan:
1880 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1881 int is_in;
1882
1883 if (urb->unlinked)
1884 continue;
1885 usb_get_urb (urb);
1886 is_in = usb_urb_dir_in(urb);
1887 spin_unlock(&hcd_urb_list_lock);
1888
1889 /* kick hcd */
1890 unlink1(hcd, urb, -ESHUTDOWN);
1891 dev_dbg (hcd->self.controller,
1892 "shutdown urb %p ep%d%s%s\n",
1893 urb, usb_endpoint_num(&ep->desc),
1894 is_in ? "in" : "out",
1895 ({ char *s;
1896
1897 switch (usb_endpoint_type(&ep->desc)) {
1898 case USB_ENDPOINT_XFER_CONTROL:
1899 s = ""; break;
1900 case USB_ENDPOINT_XFER_BULK:
1901 s = "-bulk"; break;
1902 case USB_ENDPOINT_XFER_INT:
1903 s = "-intr"; break;
1904 default:
1905 s = "-iso"; break;
1906 };
1907 s;
1908 }));
1909 usb_put_urb (urb);
1910
1911 /* list contents may have changed */
1912 spin_lock(&hcd_urb_list_lock);
1913 goto rescan;
1914 }
1915 spin_unlock_irq(&hcd_urb_list_lock);
1916
1917 /* Wait until the endpoint queue is completely empty */
1918 while (!list_empty (&ep->urb_list)) {
1919 spin_lock_irq(&hcd_urb_list_lock);
1920
1921 /* The list may have changed while we acquired the spinlock */
1922 urb = NULL;
1923 if (!list_empty (&ep->urb_list)) {
1924 urb = list_entry (ep->urb_list.prev, struct urb,
1925 urb_list);
1926 usb_get_urb (urb);
1927 }
1928 spin_unlock_irq(&hcd_urb_list_lock);
1929
1930 if (urb) {
1931 usb_kill_urb (urb);
1932 usb_put_urb (urb);
1933 }
1934 }
1935}
1936
1937/**
1938 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1939 * the bus bandwidth
1940 * @udev: target &usb_device
1941 * @new_config: new configuration to install
1942 * @cur_alt: the current alternate interface setting
1943 * @new_alt: alternate interface setting that is being installed
1944 *
1945 * To change configurations, pass in the new configuration in new_config,
1946 * and pass NULL for cur_alt and new_alt.
1947 *
1948 * To reset a device's configuration (put the device in the ADDRESSED state),
1949 * pass in NULL for new_config, cur_alt, and new_alt.
1950 *
1951 * To change alternate interface settings, pass in NULL for new_config,
1952 * pass in the current alternate interface setting in cur_alt,
1953 * and pass in the new alternate interface setting in new_alt.
1954 *
1955 * Return: An error if the requested bandwidth change exceeds the
1956 * bus bandwidth or host controller internal resources.
1957 */
1958int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1959 struct usb_host_config *new_config,
1960 struct usb_host_interface *cur_alt,
1961 struct usb_host_interface *new_alt)
1962{
1963 int num_intfs, i, j;
1964 struct usb_host_interface *alt = NULL;
1965 int ret = 0;
1966 struct usb_hcd *hcd;
1967 struct usb_host_endpoint *ep;
1968
1969 hcd = bus_to_hcd(udev->bus);
1970 if (!hcd->driver->check_bandwidth)
1971 return 0;
1972
1973 /* Configuration is being removed - set configuration 0 */
1974 if (!new_config && !cur_alt) {
1975 for (i = 1; i < 16; ++i) {
1976 ep = udev->ep_out[i];
1977 if (ep)
1978 hcd->driver->drop_endpoint(hcd, udev, ep);
1979 ep = udev->ep_in[i];
1980 if (ep)
1981 hcd->driver->drop_endpoint(hcd, udev, ep);
1982 }
1983 hcd->driver->check_bandwidth(hcd, udev);
1984 return 0;
1985 }
1986 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1987 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1988 * of the bus. There will always be bandwidth for endpoint 0, so it's
1989 * ok to exclude it.
1990 */
1991 if (new_config) {
1992 num_intfs = new_config->desc.bNumInterfaces;
1993 /* Remove endpoints (except endpoint 0, which is always on the
1994 * schedule) from the old config from the schedule
1995 */
1996 for (i = 1; i < 16; ++i) {
1997 ep = udev->ep_out[i];
1998 if (ep) {
1999 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2000 if (ret < 0)
2001 goto reset;
2002 }
2003 ep = udev->ep_in[i];
2004 if (ep) {
2005 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
2006 if (ret < 0)
2007 goto reset;
2008 }
2009 }
2010 for (i = 0; i < num_intfs; ++i) {
2011 struct usb_host_interface *first_alt;
2012 int iface_num;
2013
2014 first_alt = &new_config->intf_cache[i]->altsetting[0];
2015 iface_num = first_alt->desc.bInterfaceNumber;
2016 /* Set up endpoints for alternate interface setting 0 */
2017 alt = usb_find_alt_setting(new_config, iface_num, 0);
2018 if (!alt)
2019 /* No alt setting 0? Pick the first setting. */
2020 alt = first_alt;
2021
2022 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
2023 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
2024 if (ret < 0)
2025 goto reset;
2026 }
2027 }
2028 }
2029 if (cur_alt && new_alt) {
2030 struct usb_interface *iface = usb_ifnum_to_if(udev,
2031 cur_alt->desc.bInterfaceNumber);
2032
2033 if (!iface)
2034 return -EINVAL;
2035 if (iface->resetting_device) {
2036 /*
2037 * The USB core just reset the device, so the xHCI host
2038 * and the device will think alt setting 0 is installed.
2039 * However, the USB core will pass in the alternate
2040 * setting installed before the reset as cur_alt. Dig
2041 * out the alternate setting 0 structure, or the first
2042 * alternate setting if a broken device doesn't have alt
2043 * setting 0.
2044 */
2045 cur_alt = usb_altnum_to_altsetting(iface, 0);
2046 if (!cur_alt)
2047 cur_alt = &iface->altsetting[0];
2048 }
2049
2050 /* Drop all the endpoints in the current alt setting */
2051 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
2052 ret = hcd->driver->drop_endpoint(hcd, udev,
2053 &cur_alt->endpoint[i]);
2054 if (ret < 0)
2055 goto reset;
2056 }
2057 /* Add all the endpoints in the new alt setting */
2058 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
2059 ret = hcd->driver->add_endpoint(hcd, udev,
2060 &new_alt->endpoint[i]);
2061 if (ret < 0)
2062 goto reset;
2063 }
2064 }
2065 ret = hcd->driver->check_bandwidth(hcd, udev);
2066reset:
2067 if (ret < 0)
2068 hcd->driver->reset_bandwidth(hcd, udev);
2069 return ret;
2070}
2071
2072/* Disables the endpoint: synchronizes with the hcd to make sure all
2073 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
2074 * have been called previously. Use for set_configuration, set_interface,
2075 * driver removal, physical disconnect.
2076 *
2077 * example: a qh stored in ep->hcpriv, holding state related to endpoint
2078 * type, maxpacket size, toggle, halt status, and scheduling.
2079 */
2080void usb_hcd_disable_endpoint(struct usb_device *udev,
2081 struct usb_host_endpoint *ep)
2082{
2083 struct usb_hcd *hcd;
2084
2085 might_sleep();
2086 hcd = bus_to_hcd(udev->bus);
2087 if (hcd->driver->endpoint_disable)
2088 hcd->driver->endpoint_disable(hcd, ep);
2089}
2090
2091/**
2092 * usb_hcd_reset_endpoint - reset host endpoint state
2093 * @udev: USB device.
2094 * @ep: the endpoint to reset.
2095 *
2096 * Resets any host endpoint state such as the toggle bit, sequence
2097 * number and current window.
2098 */
2099void usb_hcd_reset_endpoint(struct usb_device *udev,
2100 struct usb_host_endpoint *ep)
2101{
2102 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2103
2104 if (hcd->driver->endpoint_reset)
2105 hcd->driver->endpoint_reset(hcd, ep);
2106 else {
2107 int epnum = usb_endpoint_num(&ep->desc);
2108 int is_out = usb_endpoint_dir_out(&ep->desc);
2109 int is_control = usb_endpoint_xfer_control(&ep->desc);
2110
2111 usb_settoggle(udev, epnum, is_out, 0);
2112 if (is_control)
2113 usb_settoggle(udev, epnum, !is_out, 0);
2114 }
2115}
2116
2117/**
2118 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2119 * @interface: alternate setting that includes all endpoints.
2120 * @eps: array of endpoints that need streams.
2121 * @num_eps: number of endpoints in the array.
2122 * @num_streams: number of streams to allocate.
2123 * @mem_flags: flags hcd should use to allocate memory.
2124 *
2125 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2126 * Drivers may queue multiple transfers to different stream IDs, which may
2127 * complete in a different order than they were queued.
2128 *
2129 * Return: On success, the number of allocated streams. On failure, a negative
2130 * error code.
2131 */
2132int usb_alloc_streams(struct usb_interface *interface,
2133 struct usb_host_endpoint **eps, unsigned int num_eps,
2134 unsigned int num_streams, gfp_t mem_flags)
2135{
2136 struct usb_hcd *hcd;
2137 struct usb_device *dev;
2138 int i, ret;
2139
2140 dev = interface_to_usbdev(interface);
2141 hcd = bus_to_hcd(dev->bus);
2142 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2143 return -EINVAL;
2144 if (dev->speed < USB_SPEED_SUPER)
2145 return -EINVAL;
2146 if (dev->state < USB_STATE_CONFIGURED)
2147 return -ENODEV;
2148
2149 for (i = 0; i < num_eps; i++) {
2150 /* Streams only apply to bulk endpoints. */
2151 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2152 return -EINVAL;
2153 /* Re-alloc is not allowed */
2154 if (eps[i]->streams)
2155 return -EINVAL;
2156 }
2157
2158 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2159 num_streams, mem_flags);
2160 if (ret < 0)
2161 return ret;
2162
2163 for (i = 0; i < num_eps; i++)
2164 eps[i]->streams = ret;
2165
2166 return ret;
2167}
2168EXPORT_SYMBOL_GPL(usb_alloc_streams);
2169
2170/**
2171 * usb_free_streams - free bulk endpoint stream IDs.
2172 * @interface: alternate setting that includes all endpoints.
2173 * @eps: array of endpoints to remove streams from.
2174 * @num_eps: number of endpoints in the array.
2175 * @mem_flags: flags hcd should use to allocate memory.
2176 *
2177 * Reverts a group of bulk endpoints back to not using stream IDs.
2178 * Can fail if we are given bad arguments, or HCD is broken.
2179 *
2180 * Return: 0 on success. On failure, a negative error code.
2181 */
2182int usb_free_streams(struct usb_interface *interface,
2183 struct usb_host_endpoint **eps, unsigned int num_eps,
2184 gfp_t mem_flags)
2185{
2186 struct usb_hcd *hcd;
2187 struct usb_device *dev;
2188 int i, ret;
2189
2190 dev = interface_to_usbdev(interface);
2191 hcd = bus_to_hcd(dev->bus);
2192 if (dev->speed < USB_SPEED_SUPER)
2193 return -EINVAL;
2194
2195 /* Double-free is not allowed */
2196 for (i = 0; i < num_eps; i++)
2197 if (!eps[i] || !eps[i]->streams)
2198 return -EINVAL;
2199
2200 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2201 if (ret < 0)
2202 return ret;
2203
2204 for (i = 0; i < num_eps; i++)
2205 eps[i]->streams = 0;
2206
2207 return ret;
2208}
2209EXPORT_SYMBOL_GPL(usb_free_streams);
2210
2211/* Protect against drivers that try to unlink URBs after the device
2212 * is gone, by waiting until all unlinks for @udev are finished.
2213 * Since we don't currently track URBs by device, simply wait until
2214 * nothing is running in the locked region of usb_hcd_unlink_urb().
2215 */
2216void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2217{
2218 spin_lock_irq(&hcd_urb_unlink_lock);
2219 spin_unlock_irq(&hcd_urb_unlink_lock);
2220}
2221
2222/*-------------------------------------------------------------------------*/
2223
2224/* called in any context */
2225int usb_hcd_get_frame_number (struct usb_device *udev)
2226{
2227 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2228
2229 if (!HCD_RH_RUNNING(hcd))
2230 return -ESHUTDOWN;
2231 return hcd->driver->get_frame_number (hcd);
2232}
2233
2234/*-------------------------------------------------------------------------*/
2235
2236#ifdef CONFIG_PM
2237
2238int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2239{
2240 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2241 int status;
2242 int old_state = hcd->state;
2243
2244 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2245 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2246 rhdev->do_remote_wakeup);
2247 if (HCD_DEAD(hcd)) {
2248 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2249 return 0;
2250 }
2251
2252 if (!hcd->driver->bus_suspend) {
2253 status = -ENOENT;
2254 } else {
2255 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2256 hcd->state = HC_STATE_QUIESCING;
2257 status = hcd->driver->bus_suspend(hcd);
2258 }
2259 if (status == 0) {
2260 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2261 hcd->state = HC_STATE_SUSPENDED;
2262
2263 /* Did we race with a root-hub wakeup event? */
2264 if (rhdev->do_remote_wakeup) {
2265 char buffer[6];
2266
2267 status = hcd->driver->hub_status_data(hcd, buffer);
2268 if (status != 0) {
2269 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2270 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2271 status = -EBUSY;
2272 }
2273 }
2274 } else {
2275 spin_lock_irq(&hcd_root_hub_lock);
2276 if (!HCD_DEAD(hcd)) {
2277 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2278 hcd->state = old_state;
2279 }
2280 spin_unlock_irq(&hcd_root_hub_lock);
2281 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2282 "suspend", status);
2283 }
2284 return status;
2285}
2286
2287int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2288{
2289 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2290 int status;
2291 int old_state = hcd->state;
2292
2293 dev_dbg(&rhdev->dev, "usb %sresume\n",
2294 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2295 if (HCD_DEAD(hcd)) {
2296 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2297 return 0;
2298 }
2299 if (!hcd->driver->bus_resume)
2300 return -ENOENT;
2301 if (HCD_RH_RUNNING(hcd))
2302 return 0;
2303
2304 hcd->state = HC_STATE_RESUMING;
2305 status = hcd->driver->bus_resume(hcd);
2306 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2307 if (status == 0) {
2308 struct usb_device *udev;
2309 int port1;
2310
2311 spin_lock_irq(&hcd_root_hub_lock);
2312 if (!HCD_DEAD(hcd)) {
2313 usb_set_device_state(rhdev, rhdev->actconfig
2314 ? USB_STATE_CONFIGURED
2315 : USB_STATE_ADDRESS);
2316 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2317 hcd->state = HC_STATE_RUNNING;
2318 }
2319 spin_unlock_irq(&hcd_root_hub_lock);
2320
2321 /*
2322 * Check whether any of the enabled ports on the root hub are
2323 * unsuspended. If they are then a TRSMRCY delay is needed
2324 * (this is what the USB-2 spec calls a "global resume").
2325 * Otherwise we can skip the delay.
2326 */
2327 usb_hub_for_each_child(rhdev, port1, udev) {
2328 if (udev->state != USB_STATE_NOTATTACHED &&
2329 !udev->port_is_suspended) {
2330 usleep_range(10000, 11000); /* TRSMRCY */
2331 break;
2332 }
2333 }
2334 } else {
2335 hcd->state = old_state;
2336 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2337 "resume", status);
2338 if (status != -ESHUTDOWN)
2339 usb_hc_died(hcd);
2340 }
2341 return status;
2342}
2343
2344/* Workqueue routine for root-hub remote wakeup */
2345static void hcd_resume_work(struct work_struct *work)
2346{
2347 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2348 struct usb_device *udev = hcd->self.root_hub;
2349
2350 usb_remote_wakeup(udev);
2351}
2352
2353/**
2354 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2355 * @hcd: host controller for this root hub
2356 *
2357 * The USB host controller calls this function when its root hub is
2358 * suspended (with the remote wakeup feature enabled) and a remote
2359 * wakeup request is received. The routine submits a workqueue request
2360 * to resume the root hub (that is, manage its downstream ports again).
2361 */
2362void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2363{
2364 unsigned long flags;
2365
2366 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2367 if (hcd->rh_registered) {
2368 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2369 queue_work(pm_wq, &hcd->wakeup_work);
2370 }
2371 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2372}
2373EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2374
2375#endif /* CONFIG_PM */
2376
2377/*-------------------------------------------------------------------------*/
2378
2379#ifdef CONFIG_USB_OTG
2380
2381/**
2382 * usb_bus_start_enum - start immediate enumeration (for OTG)
2383 * @bus: the bus (must use hcd framework)
2384 * @port_num: 1-based number of port; usually bus->otg_port
2385 * Context: in_interrupt()
2386 *
2387 * Starts enumeration, with an immediate reset followed later by
2388 * hub_wq identifying and possibly configuring the device.
2389 * This is needed by OTG controller drivers, where it helps meet
2390 * HNP protocol timing requirements for starting a port reset.
2391 *
2392 * Return: 0 if successful.
2393 */
2394int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2395{
2396 struct usb_hcd *hcd;
2397 int status = -EOPNOTSUPP;
2398
2399 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2400 * boards with root hubs hooked up to internal devices (instead of
2401 * just the OTG port) may need more attention to resetting...
2402 */
2403 hcd = bus_to_hcd(bus);
2404 if (port_num && hcd->driver->start_port_reset)
2405 status = hcd->driver->start_port_reset(hcd, port_num);
2406
2407 /* allocate hub_wq shortly after (first) root port reset finishes;
2408 * it may issue others, until at least 50 msecs have passed.
2409 */
2410 if (status == 0)
2411 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2412 return status;
2413}
2414EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2415
2416#endif
2417
2418/*-------------------------------------------------------------------------*/
2419
2420/**
2421 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2422 * @irq: the IRQ being raised
2423 * @__hcd: pointer to the HCD whose IRQ is being signaled
2424 *
2425 * If the controller isn't HALTed, calls the driver's irq handler.
2426 * Checks whether the controller is now dead.
2427 *
2428 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2429 */
2430irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2431{
2432 struct usb_hcd *hcd = __hcd;
2433 irqreturn_t rc;
2434
2435 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2436 rc = IRQ_NONE;
2437 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2438 rc = IRQ_NONE;
2439 else
2440 rc = IRQ_HANDLED;
2441
2442 return rc;
2443}
2444EXPORT_SYMBOL_GPL(usb_hcd_irq);
2445
2446/*-------------------------------------------------------------------------*/
2447
2448/**
2449 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2450 * @hcd: pointer to the HCD representing the controller
2451 *
2452 * This is called by bus glue to report a USB host controller that died
2453 * while operations may still have been pending. It's called automatically
2454 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2455 *
2456 * Only call this function with the primary HCD.
2457 */
2458void usb_hc_died (struct usb_hcd *hcd)
2459{
2460 unsigned long flags;
2461
2462 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2463
2464 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2465 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2466 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2467 if (hcd->rh_registered) {
2468 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2469
2470 /* make hub_wq clean up old urbs and devices */
2471 usb_set_device_state (hcd->self.root_hub,
2472 USB_STATE_NOTATTACHED);
2473 usb_kick_hub_wq(hcd->self.root_hub);
2474 }
2475 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2476 hcd = hcd->shared_hcd;
2477 if (hcd->rh_registered) {
2478 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2479
2480 /* make hub_wq clean up old urbs and devices */
2481 usb_set_device_state(hcd->self.root_hub,
2482 USB_STATE_NOTATTACHED);
2483 usb_kick_hub_wq(hcd->self.root_hub);
2484 }
2485 }
2486 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2487 /* Make sure that the other roothub is also deallocated. */
2488}
2489EXPORT_SYMBOL_GPL (usb_hc_died);
2490
2491/*-------------------------------------------------------------------------*/
2492
2493static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2494{
2495
2496 spin_lock_init(&bh->lock);
2497 INIT_LIST_HEAD(&bh->head);
2498 tasklet_init(&bh->bh, usb_giveback_urb_bh, (unsigned long)bh);
2499}
2500
2501/**
2502 * usb_create_shared_hcd - create and initialize an HCD structure
2503 * @driver: HC driver that will use this hcd
2504 * @dev: device for this HC, stored in hcd->self.controller
2505 * @bus_name: value to store in hcd->self.bus_name
2506 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2507 * PCI device. Only allocate certain resources for the primary HCD
2508 * Context: !in_interrupt()
2509 *
2510 * Allocate a struct usb_hcd, with extra space at the end for the
2511 * HC driver's private data. Initialize the generic members of the
2512 * hcd structure.
2513 *
2514 * Return: On success, a pointer to the created and initialized HCD structure.
2515 * On failure (e.g. if memory is unavailable), %NULL.
2516 */
2517struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2518 struct device *dev, const char *bus_name,
2519 struct usb_hcd *primary_hcd)
2520{
2521 struct usb_hcd *hcd;
2522
2523 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2524 if (!hcd)
2525 return NULL;
2526 if (primary_hcd == NULL) {
2527 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2528 GFP_KERNEL);
2529 if (!hcd->address0_mutex) {
2530 kfree(hcd);
2531 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2532 return NULL;
2533 }
2534 mutex_init(hcd->address0_mutex);
2535 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2536 GFP_KERNEL);
2537 if (!hcd->bandwidth_mutex) {
2538 kfree(hcd);
2539 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2540 return NULL;
2541 }
2542 mutex_init(hcd->bandwidth_mutex);
2543 dev_set_drvdata(dev, hcd);
2544 } else {
2545 mutex_lock(&usb_port_peer_mutex);
2546 hcd->address0_mutex = primary_hcd->address0_mutex;
2547 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2548 hcd->primary_hcd = primary_hcd;
2549 primary_hcd->primary_hcd = primary_hcd;
2550 hcd->shared_hcd = primary_hcd;
2551 primary_hcd->shared_hcd = hcd;
2552 mutex_unlock(&usb_port_peer_mutex);
2553 }
2554
2555 kref_init(&hcd->kref);
2556
2557 usb_bus_init(&hcd->self);
2558 hcd->self.controller = dev;
2559 hcd->self.bus_name = bus_name;
2560 hcd->self.uses_dma = (dev->dma_mask != NULL);
2561
2562 init_timer(&hcd->rh_timer);
2563 hcd->rh_timer.function = rh_timer_func;
2564 hcd->rh_timer.data = (unsigned long) hcd;
2565#ifdef CONFIG_PM
2566 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2567#endif
2568
2569 hcd->driver = driver;
2570 hcd->speed = driver->flags & HCD_MASK;
2571 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2572 "USB Host Controller";
2573 return hcd;
2574}
2575EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2576
2577/**
2578 * usb_create_hcd - create and initialize an HCD structure
2579 * @driver: HC driver that will use this hcd
2580 * @dev: device for this HC, stored in hcd->self.controller
2581 * @bus_name: value to store in hcd->self.bus_name
2582 * Context: !in_interrupt()
2583 *
2584 * Allocate a struct usb_hcd, with extra space at the end for the
2585 * HC driver's private data. Initialize the generic members of the
2586 * hcd structure.
2587 *
2588 * Return: On success, a pointer to the created and initialized HCD
2589 * structure. On failure (e.g. if memory is unavailable), %NULL.
2590 */
2591struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2592 struct device *dev, const char *bus_name)
2593{
2594 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2595}
2596EXPORT_SYMBOL_GPL(usb_create_hcd);
2597
2598/*
2599 * Roothubs that share one PCI device must also share the bandwidth mutex.
2600 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2601 * deallocated.
2602 *
2603 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2604 * freed. When hcd_release() is called for either hcd in a peer set,
2605 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2606 */
2607static void hcd_release(struct kref *kref)
2608{
2609 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2610
2611 mutex_lock(&usb_port_peer_mutex);
2612 if (hcd->shared_hcd) {
2613 struct usb_hcd *peer = hcd->shared_hcd;
2614
2615 peer->shared_hcd = NULL;
2616 peer->primary_hcd = NULL;
2617 } else {
2618 kfree(hcd->address0_mutex);
2619 kfree(hcd->bandwidth_mutex);
2620 }
2621 mutex_unlock(&usb_port_peer_mutex);
2622 kfree(hcd);
2623}
2624
2625struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2626{
2627 if (hcd)
2628 kref_get (&hcd->kref);
2629 return hcd;
2630}
2631EXPORT_SYMBOL_GPL(usb_get_hcd);
2632
2633void usb_put_hcd (struct usb_hcd *hcd)
2634{
2635 if (hcd)
2636 kref_put (&hcd->kref, hcd_release);
2637}
2638EXPORT_SYMBOL_GPL(usb_put_hcd);
2639
2640int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2641{
2642 if (!hcd->primary_hcd)
2643 return 1;
2644 return hcd == hcd->primary_hcd;
2645}
2646EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2647
2648int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2649{
2650 if (!hcd->driver->find_raw_port_number)
2651 return port1;
2652
2653 return hcd->driver->find_raw_port_number(hcd, port1);
2654}
2655
2656static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2657 unsigned int irqnum, unsigned long irqflags)
2658{
2659 int retval;
2660
2661 if (hcd->driver->irq) {
2662
2663 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2664 hcd->driver->description, hcd->self.busnum);
2665 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2666 hcd->irq_descr, hcd);
2667 if (retval != 0) {
2668 dev_err(hcd->self.controller,
2669 "request interrupt %d failed\n",
2670 irqnum);
2671 return retval;
2672 }
2673 hcd->irq = irqnum;
2674 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2675 (hcd->driver->flags & HCD_MEMORY) ?
2676 "io mem" : "io base",
2677 (unsigned long long)hcd->rsrc_start);
2678 } else {
2679 hcd->irq = 0;
2680 if (hcd->rsrc_start)
2681 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2682 (hcd->driver->flags & HCD_MEMORY) ?
2683 "io mem" : "io base",
2684 (unsigned long long)hcd->rsrc_start);
2685 }
2686 return 0;
2687}
2688
2689/*
2690 * Before we free this root hub, flush in-flight peering attempts
2691 * and disable peer lookups
2692 */
2693static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2694{
2695 struct usb_device *rhdev;
2696
2697 mutex_lock(&usb_port_peer_mutex);
2698 rhdev = hcd->self.root_hub;
2699 hcd->self.root_hub = NULL;
2700 mutex_unlock(&usb_port_peer_mutex);
2701 usb_put_dev(rhdev);
2702}
2703
2704/**
2705 * usb_add_hcd - finish generic HCD structure initialization and register
2706 * @hcd: the usb_hcd structure to initialize
2707 * @irqnum: Interrupt line to allocate
2708 * @irqflags: Interrupt type flags
2709 *
2710 * Finish the remaining parts of generic HCD initialization: allocate the
2711 * buffers of consistent memory, register the bus, request the IRQ line,
2712 * and call the driver's reset() and start() routines.
2713 */
2714int usb_add_hcd(struct usb_hcd *hcd,
2715 unsigned int irqnum, unsigned long irqflags)
2716{
2717 int retval;
2718 struct usb_device *rhdev;
2719
2720 if (IS_ENABLED(CONFIG_USB_PHY) && !hcd->usb_phy) {
2721 struct usb_phy *phy = usb_get_phy_dev(hcd->self.controller, 0);
2722
2723 if (IS_ERR(phy)) {
2724 retval = PTR_ERR(phy);
2725 if (retval == -EPROBE_DEFER)
2726 return retval;
2727 } else {
2728 retval = usb_phy_init(phy);
2729 if (retval) {
2730 usb_put_phy(phy);
2731 return retval;
2732 }
2733 hcd->usb_phy = phy;
2734 hcd->remove_phy = 1;
2735 }
2736 }
2737
2738 if (IS_ENABLED(CONFIG_GENERIC_PHY) && !hcd->phy) {
2739 struct phy *phy = phy_get(hcd->self.controller, "usb");
2740
2741 if (IS_ERR(phy)) {
2742 retval = PTR_ERR(phy);
2743 if (retval == -EPROBE_DEFER)
2744 goto err_phy;
2745 } else {
2746 retval = phy_init(phy);
2747 if (retval) {
2748 phy_put(phy);
2749 goto err_phy;
2750 }
2751 retval = phy_power_on(phy);
2752 if (retval) {
2753 phy_exit(phy);
2754 phy_put(phy);
2755 goto err_phy;
2756 }
2757 hcd->phy = phy;
2758 hcd->remove_phy = 1;
2759 }
2760 }
2761
2762 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2763
2764 /* Keep old behaviour if authorized_default is not in [0, 1]. */
2765 if (authorized_default < 0 || authorized_default > 1) {
2766 if (hcd->wireless)
2767 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2768 else
2769 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2770 } else {
2771 if (authorized_default)
2772 set_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2773 else
2774 clear_bit(HCD_FLAG_DEV_AUTHORIZED, &hcd->flags);
2775 }
2776 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2777
2778 /* per default all interfaces are authorized */
2779 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2780
2781 /* HC is in reset state, but accessible. Now do the one-time init,
2782 * bottom up so that hcds can customize the root hubs before hub_wq
2783 * starts talking to them. (Note, bus id is assigned early too.)
2784 */
2785 retval = hcd_buffer_create(hcd);
2786 if (retval != 0) {
2787 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2788 goto err_create_buf;
2789 }
2790
2791 retval = usb_register_bus(&hcd->self);
2792 if (retval < 0)
2793 goto err_register_bus;
2794
2795 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2796 if (rhdev == NULL) {
2797 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2798 retval = -ENOMEM;
2799 goto err_allocate_root_hub;
2800 }
2801 mutex_lock(&usb_port_peer_mutex);
2802 hcd->self.root_hub = rhdev;
2803 mutex_unlock(&usb_port_peer_mutex);
2804
2805 switch (hcd->speed) {
2806 case HCD_USB11:
2807 rhdev->speed = USB_SPEED_FULL;
2808 break;
2809 case HCD_USB2:
2810 rhdev->speed = USB_SPEED_HIGH;
2811 break;
2812 case HCD_USB25:
2813 rhdev->speed = USB_SPEED_WIRELESS;
2814 break;
2815 case HCD_USB3:
2816 rhdev->speed = USB_SPEED_SUPER;
2817 break;
2818 case HCD_USB31:
2819 rhdev->speed = USB_SPEED_SUPER_PLUS;
2820 break;
2821 default:
2822 retval = -EINVAL;
2823 goto err_set_rh_speed;
2824 }
2825
2826 /* wakeup flag init defaults to "everything works" for root hubs,
2827 * but drivers can override it in reset() if needed, along with
2828 * recording the overall controller's system wakeup capability.
2829 */
2830 device_set_wakeup_capable(&rhdev->dev, 1);
2831
2832 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2833 * registered. But since the controller can die at any time,
2834 * let's initialize the flag before touching the hardware.
2835 */
2836 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2837
2838 /* "reset" is misnamed; its role is now one-time init. the controller
2839 * should already have been reset (and boot firmware kicked off etc).
2840 */
2841 if (hcd->driver->reset) {
2842 retval = hcd->driver->reset(hcd);
2843 if (retval < 0) {
2844 dev_err(hcd->self.controller, "can't setup: %d\n",
2845 retval);
2846 goto err_hcd_driver_setup;
2847 }
2848 }
2849 hcd->rh_pollable = 1;
2850
2851 /* NOTE: root hub and controller capabilities may not be the same */
2852 if (device_can_wakeup(hcd->self.controller)
2853 && device_can_wakeup(&hcd->self.root_hub->dev))
2854 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2855
2856 /* initialize tasklets */
2857 init_giveback_urb_bh(&hcd->high_prio_bh);
2858 init_giveback_urb_bh(&hcd->low_prio_bh);
2859
2860 /* enable irqs just before we start the controller,
2861 * if the BIOS provides legacy PCI irqs.
2862 */
2863 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2864 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2865 if (retval)
2866 goto err_request_irq;
2867 }
2868
2869 hcd->state = HC_STATE_RUNNING;
2870 retval = hcd->driver->start(hcd);
2871 if (retval < 0) {
2872 dev_err(hcd->self.controller, "startup error %d\n", retval);
2873 goto err_hcd_driver_start;
2874 }
2875
2876 /* starting here, usbcore will pay attention to this root hub */
2877 retval = register_root_hub(hcd);
2878 if (retval != 0)
2879 goto err_register_root_hub;
2880
2881 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2882 if (retval < 0) {
2883 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2884 retval);
2885 goto error_create_attr_group;
2886 }
2887 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2888 usb_hcd_poll_rh_status(hcd);
2889
2890 return retval;
2891
2892error_create_attr_group:
2893 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2894 if (HC_IS_RUNNING(hcd->state))
2895 hcd->state = HC_STATE_QUIESCING;
2896 spin_lock_irq(&hcd_root_hub_lock);
2897 hcd->rh_registered = 0;
2898 spin_unlock_irq(&hcd_root_hub_lock);
2899
2900#ifdef CONFIG_PM
2901 cancel_work_sync(&hcd->wakeup_work);
2902#endif
2903 mutex_lock(&usb_bus_idr_lock);
2904 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2905 mutex_unlock(&usb_bus_idr_lock);
2906err_register_root_hub:
2907 hcd->rh_pollable = 0;
2908 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2909 del_timer_sync(&hcd->rh_timer);
2910 hcd->driver->stop(hcd);
2911 hcd->state = HC_STATE_HALT;
2912 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2913 del_timer_sync(&hcd->rh_timer);
2914err_hcd_driver_start:
2915 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
2916 free_irq(irqnum, hcd);
2917err_request_irq:
2918err_hcd_driver_setup:
2919err_set_rh_speed:
2920 usb_put_invalidate_rhdev(hcd);
2921err_allocate_root_hub:
2922 usb_deregister_bus(&hcd->self);
2923err_register_bus:
2924 hcd_buffer_destroy(hcd);
2925err_create_buf:
2926 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
2927 phy_power_off(hcd->phy);
2928 phy_exit(hcd->phy);
2929 phy_put(hcd->phy);
2930 hcd->phy = NULL;
2931 }
2932err_phy:
2933 if (hcd->remove_phy && hcd->usb_phy) {
2934 usb_phy_shutdown(hcd->usb_phy);
2935 usb_put_phy(hcd->usb_phy);
2936 hcd->usb_phy = NULL;
2937 }
2938 return retval;
2939}
2940EXPORT_SYMBOL_GPL(usb_add_hcd);
2941
2942/**
2943 * usb_remove_hcd - shutdown processing for generic HCDs
2944 * @hcd: the usb_hcd structure to remove
2945 * Context: !in_interrupt()
2946 *
2947 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2948 * invoking the HCD's stop() method.
2949 */
2950void usb_remove_hcd(struct usb_hcd *hcd)
2951{
2952 struct usb_device *rhdev = hcd->self.root_hub;
2953
2954 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2955
2956 usb_get_dev(rhdev);
2957 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2958
2959 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2960 if (HC_IS_RUNNING (hcd->state))
2961 hcd->state = HC_STATE_QUIESCING;
2962
2963 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2964 spin_lock_irq (&hcd_root_hub_lock);
2965 hcd->rh_registered = 0;
2966 spin_unlock_irq (&hcd_root_hub_lock);
2967
2968#ifdef CONFIG_PM
2969 cancel_work_sync(&hcd->wakeup_work);
2970#endif
2971
2972 mutex_lock(&usb_bus_idr_lock);
2973 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2974 mutex_unlock(&usb_bus_idr_lock);
2975
2976 /*
2977 * tasklet_kill() isn't needed here because:
2978 * - driver's disconnect() called from usb_disconnect() should
2979 * make sure its URBs are completed during the disconnect()
2980 * callback
2981 *
2982 * - it is too late to run complete() here since driver may have
2983 * been removed already now
2984 */
2985
2986 /* Prevent any more root-hub status calls from the timer.
2987 * The HCD might still restart the timer (if a port status change
2988 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2989 * the hub_status_data() callback.
2990 */
2991 hcd->rh_pollable = 0;
2992 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2993 del_timer_sync(&hcd->rh_timer);
2994
2995 hcd->driver->stop(hcd);
2996 hcd->state = HC_STATE_HALT;
2997
2998 /* In case the HCD restarted the timer, stop it again. */
2999 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
3000 del_timer_sync(&hcd->rh_timer);
3001
3002 if (usb_hcd_is_primary_hcd(hcd)) {
3003 if (hcd->irq > 0)
3004 free_irq(hcd->irq, hcd);
3005 }
3006
3007 usb_deregister_bus(&hcd->self);
3008 hcd_buffer_destroy(hcd);
3009
3010 if (IS_ENABLED(CONFIG_GENERIC_PHY) && hcd->remove_phy && hcd->phy) {
3011 phy_power_off(hcd->phy);
3012 phy_exit(hcd->phy);
3013 phy_put(hcd->phy);
3014 hcd->phy = NULL;
3015 }
3016 if (hcd->remove_phy && hcd->usb_phy) {
3017 usb_phy_shutdown(hcd->usb_phy);
3018 usb_put_phy(hcd->usb_phy);
3019 hcd->usb_phy = NULL;
3020 }
3021
3022 usb_put_invalidate_rhdev(hcd);
3023}
3024EXPORT_SYMBOL_GPL(usb_remove_hcd);
3025
3026void
3027usb_hcd_platform_shutdown(struct platform_device *dev)
3028{
3029 struct usb_hcd *hcd = platform_get_drvdata(dev);
3030
3031 if (hcd->driver->shutdown)
3032 hcd->driver->shutdown(hcd);
3033}
3034EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3035
3036/*-------------------------------------------------------------------------*/
3037
3038#if IS_ENABLED(CONFIG_USB_MON)
3039
3040const struct usb_mon_operations *mon_ops;
3041
3042/*
3043 * The registration is unlocked.
3044 * We do it this way because we do not want to lock in hot paths.
3045 *
3046 * Notice that the code is minimally error-proof. Because usbmon needs
3047 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3048 */
3049
3050int usb_mon_register(const struct usb_mon_operations *ops)
3051{
3052
3053 if (mon_ops)
3054 return -EBUSY;
3055
3056 mon_ops = ops;
3057 mb();
3058 return 0;
3059}
3060EXPORT_SYMBOL_GPL (usb_mon_register);
3061
3062void usb_mon_deregister (void)
3063{
3064
3065 if (mon_ops == NULL) {
3066 printk(KERN_ERR "USB: monitor was not registered\n");
3067 return;
3068 }
3069 mon_ops = NULL;
3070 mb();
3071}
3072EXPORT_SYMBOL_GPL (usb_mon_deregister);
3073
3074#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * (C) Copyright Linus Torvalds 1999
4 * (C) Copyright Johannes Erdfelt 1999-2001
5 * (C) Copyright Andreas Gal 1999
6 * (C) Copyright Gregory P. Smith 1999
7 * (C) Copyright Deti Fliegl 1999
8 * (C) Copyright Randy Dunlap 2000
9 * (C) Copyright David Brownell 2000-2002
10 */
11
12#include <linux/bcd.h>
13#include <linux/module.h>
14#include <linux/version.h>
15#include <linux/kernel.h>
16#include <linux/sched/task_stack.h>
17#include <linux/slab.h>
18#include <linux/completion.h>
19#include <linux/utsname.h>
20#include <linux/mm.h>
21#include <asm/io.h>
22#include <linux/device.h>
23#include <linux/dma-mapping.h>
24#include <linux/mutex.h>
25#include <asm/irq.h>
26#include <asm/byteorder.h>
27#include <asm/unaligned.h>
28#include <linux/platform_device.h>
29#include <linux/workqueue.h>
30#include <linux/pm_runtime.h>
31#include <linux/types.h>
32#include <linux/genalloc.h>
33#include <linux/io.h>
34#include <linux/kcov.h>
35
36#include <linux/phy/phy.h>
37#include <linux/usb.h>
38#include <linux/usb/hcd.h>
39#include <linux/usb/otg.h>
40
41#include "usb.h"
42#include "phy.h"
43
44
45/*-------------------------------------------------------------------------*/
46
47/*
48 * USB Host Controller Driver framework
49 *
50 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
51 * HCD-specific behaviors/bugs.
52 *
53 * This does error checks, tracks devices and urbs, and delegates to a
54 * "hc_driver" only for code (and data) that really needs to know about
55 * hardware differences. That includes root hub registers, i/o queues,
56 * and so on ... but as little else as possible.
57 *
58 * Shared code includes most of the "root hub" code (these are emulated,
59 * though each HC's hardware works differently) and PCI glue, plus request
60 * tracking overhead. The HCD code should only block on spinlocks or on
61 * hardware handshaking; blocking on software events (such as other kernel
62 * threads releasing resources, or completing actions) is all generic.
63 *
64 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
65 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
66 * only by the hub driver ... and that neither should be seen or used by
67 * usb client device drivers.
68 *
69 * Contributors of ideas or unattributed patches include: David Brownell,
70 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
71 *
72 * HISTORY:
73 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
74 * associated cleanup. "usb_hcd" still != "usb_bus".
75 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
76 */
77
78/*-------------------------------------------------------------------------*/
79
80/* Keep track of which host controller drivers are loaded */
81unsigned long usb_hcds_loaded;
82EXPORT_SYMBOL_GPL(usb_hcds_loaded);
83
84/* host controllers we manage */
85DEFINE_IDR (usb_bus_idr);
86EXPORT_SYMBOL_GPL (usb_bus_idr);
87
88/* used when allocating bus numbers */
89#define USB_MAXBUS 64
90
91/* used when updating list of hcds */
92DEFINE_MUTEX(usb_bus_idr_lock); /* exported only for usbfs */
93EXPORT_SYMBOL_GPL (usb_bus_idr_lock);
94
95/* used for controlling access to virtual root hubs */
96static DEFINE_SPINLOCK(hcd_root_hub_lock);
97
98/* used when updating an endpoint's URB list */
99static DEFINE_SPINLOCK(hcd_urb_list_lock);
100
101/* used to protect against unlinking URBs after the device is gone */
102static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
103
104/* wait queue for synchronous unlinks */
105DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
106
107/*-------------------------------------------------------------------------*/
108
109/*
110 * Sharable chunks of root hub code.
111 */
112
113/*-------------------------------------------------------------------------*/
114#define KERNEL_REL bin2bcd(LINUX_VERSION_MAJOR)
115#define KERNEL_VER bin2bcd(LINUX_VERSION_PATCHLEVEL)
116
117/* usb 3.1 root hub device descriptor */
118static const u8 usb31_rh_dev_descriptor[18] = {
119 0x12, /* __u8 bLength; */
120 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
121 0x10, 0x03, /* __le16 bcdUSB; v3.1 */
122
123 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
124 0x00, /* __u8 bDeviceSubClass; */
125 0x03, /* __u8 bDeviceProtocol; USB 3 hub */
126 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
127
128 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
129 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
130 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
131
132 0x03, /* __u8 iManufacturer; */
133 0x02, /* __u8 iProduct; */
134 0x01, /* __u8 iSerialNumber; */
135 0x01 /* __u8 bNumConfigurations; */
136};
137
138/* usb 3.0 root hub device descriptor */
139static const u8 usb3_rh_dev_descriptor[18] = {
140 0x12, /* __u8 bLength; */
141 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
142 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
143
144 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
145 0x00, /* __u8 bDeviceSubClass; */
146 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
147 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
148
149 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
150 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
151 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
152
153 0x03, /* __u8 iManufacturer; */
154 0x02, /* __u8 iProduct; */
155 0x01, /* __u8 iSerialNumber; */
156 0x01 /* __u8 bNumConfigurations; */
157};
158
159/* usb 2.5 (wireless USB 1.0) root hub device descriptor */
160static const u8 usb25_rh_dev_descriptor[18] = {
161 0x12, /* __u8 bLength; */
162 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
163 0x50, 0x02, /* __le16 bcdUSB; v2.5 */
164
165 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
166 0x00, /* __u8 bDeviceSubClass; */
167 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
168 0xFF, /* __u8 bMaxPacketSize0; always 0xFF (WUSB Spec 7.4.1). */
169
170 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
171 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
172 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
173
174 0x03, /* __u8 iManufacturer; */
175 0x02, /* __u8 iProduct; */
176 0x01, /* __u8 iSerialNumber; */
177 0x01 /* __u8 bNumConfigurations; */
178};
179
180/* usb 2.0 root hub device descriptor */
181static const u8 usb2_rh_dev_descriptor[18] = {
182 0x12, /* __u8 bLength; */
183 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
184 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
185
186 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
187 0x00, /* __u8 bDeviceSubClass; */
188 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
189 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
190
191 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
192 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
193 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
194
195 0x03, /* __u8 iManufacturer; */
196 0x02, /* __u8 iProduct; */
197 0x01, /* __u8 iSerialNumber; */
198 0x01 /* __u8 bNumConfigurations; */
199};
200
201/* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
202
203/* usb 1.1 root hub device descriptor */
204static const u8 usb11_rh_dev_descriptor[18] = {
205 0x12, /* __u8 bLength; */
206 USB_DT_DEVICE, /* __u8 bDescriptorType; Device */
207 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
208
209 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
210 0x00, /* __u8 bDeviceSubClass; */
211 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
212 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
213
214 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation 0x1d6b */
215 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
216 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
217
218 0x03, /* __u8 iManufacturer; */
219 0x02, /* __u8 iProduct; */
220 0x01, /* __u8 iSerialNumber; */
221 0x01 /* __u8 bNumConfigurations; */
222};
223
224
225/*-------------------------------------------------------------------------*/
226
227/* Configuration descriptors for our root hubs */
228
229static const u8 fs_rh_config_descriptor[] = {
230
231 /* one configuration */
232 0x09, /* __u8 bLength; */
233 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
234 0x19, 0x00, /* __le16 wTotalLength; */
235 0x01, /* __u8 bNumInterfaces; (1) */
236 0x01, /* __u8 bConfigurationValue; */
237 0x00, /* __u8 iConfiguration; */
238 0xc0, /* __u8 bmAttributes;
239 Bit 7: must be set,
240 6: Self-powered,
241 5: Remote wakeup,
242 4..0: resvd */
243 0x00, /* __u8 MaxPower; */
244
245 /* USB 1.1:
246 * USB 2.0, single TT organization (mandatory):
247 * one interface, protocol 0
248 *
249 * USB 2.0, multiple TT organization (optional):
250 * two interfaces, protocols 1 (like single TT)
251 * and 2 (multiple TT mode) ... config is
252 * sometimes settable
253 * NOT IMPLEMENTED
254 */
255
256 /* one interface */
257 0x09, /* __u8 if_bLength; */
258 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
259 0x00, /* __u8 if_bInterfaceNumber; */
260 0x00, /* __u8 if_bAlternateSetting; */
261 0x01, /* __u8 if_bNumEndpoints; */
262 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
263 0x00, /* __u8 if_bInterfaceSubClass; */
264 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
265 0x00, /* __u8 if_iInterface; */
266
267 /* one endpoint (status change endpoint) */
268 0x07, /* __u8 ep_bLength; */
269 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
270 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
271 0x03, /* __u8 ep_bmAttributes; Interrupt */
272 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
273 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
274};
275
276static const u8 hs_rh_config_descriptor[] = {
277
278 /* one configuration */
279 0x09, /* __u8 bLength; */
280 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
281 0x19, 0x00, /* __le16 wTotalLength; */
282 0x01, /* __u8 bNumInterfaces; (1) */
283 0x01, /* __u8 bConfigurationValue; */
284 0x00, /* __u8 iConfiguration; */
285 0xc0, /* __u8 bmAttributes;
286 Bit 7: must be set,
287 6: Self-powered,
288 5: Remote wakeup,
289 4..0: resvd */
290 0x00, /* __u8 MaxPower; */
291
292 /* USB 1.1:
293 * USB 2.0, single TT organization (mandatory):
294 * one interface, protocol 0
295 *
296 * USB 2.0, multiple TT organization (optional):
297 * two interfaces, protocols 1 (like single TT)
298 * and 2 (multiple TT mode) ... config is
299 * sometimes settable
300 * NOT IMPLEMENTED
301 */
302
303 /* one interface */
304 0x09, /* __u8 if_bLength; */
305 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
306 0x00, /* __u8 if_bInterfaceNumber; */
307 0x00, /* __u8 if_bAlternateSetting; */
308 0x01, /* __u8 if_bNumEndpoints; */
309 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
310 0x00, /* __u8 if_bInterfaceSubClass; */
311 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
312 0x00, /* __u8 if_iInterface; */
313
314 /* one endpoint (status change endpoint) */
315 0x07, /* __u8 ep_bLength; */
316 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
317 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
318 0x03, /* __u8 ep_bmAttributes; Interrupt */
319 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
320 * see hub.c:hub_configure() for details. */
321 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
322 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
323};
324
325static const u8 ss_rh_config_descriptor[] = {
326 /* one configuration */
327 0x09, /* __u8 bLength; */
328 USB_DT_CONFIG, /* __u8 bDescriptorType; Configuration */
329 0x1f, 0x00, /* __le16 wTotalLength; */
330 0x01, /* __u8 bNumInterfaces; (1) */
331 0x01, /* __u8 bConfigurationValue; */
332 0x00, /* __u8 iConfiguration; */
333 0xc0, /* __u8 bmAttributes;
334 Bit 7: must be set,
335 6: Self-powered,
336 5: Remote wakeup,
337 4..0: resvd */
338 0x00, /* __u8 MaxPower; */
339
340 /* one interface */
341 0x09, /* __u8 if_bLength; */
342 USB_DT_INTERFACE, /* __u8 if_bDescriptorType; Interface */
343 0x00, /* __u8 if_bInterfaceNumber; */
344 0x00, /* __u8 if_bAlternateSetting; */
345 0x01, /* __u8 if_bNumEndpoints; */
346 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
347 0x00, /* __u8 if_bInterfaceSubClass; */
348 0x00, /* __u8 if_bInterfaceProtocol; */
349 0x00, /* __u8 if_iInterface; */
350
351 /* one endpoint (status change endpoint) */
352 0x07, /* __u8 ep_bLength; */
353 USB_DT_ENDPOINT, /* __u8 ep_bDescriptorType; Endpoint */
354 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
355 0x03, /* __u8 ep_bmAttributes; Interrupt */
356 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
357 * see hub.c:hub_configure() for details. */
358 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
359 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
360
361 /* one SuperSpeed endpoint companion descriptor */
362 0x06, /* __u8 ss_bLength */
363 USB_DT_SS_ENDPOINT_COMP, /* __u8 ss_bDescriptorType; SuperSpeed EP */
364 /* Companion */
365 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
366 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
367 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
368};
369
370/* authorized_default behaviour:
371 * -1 is authorized for all devices except wireless (old behaviour)
372 * 0 is unauthorized for all devices
373 * 1 is authorized for all devices
374 * 2 is authorized for internal devices
375 */
376#define USB_AUTHORIZE_WIRED -1
377#define USB_AUTHORIZE_NONE 0
378#define USB_AUTHORIZE_ALL 1
379#define USB_AUTHORIZE_INTERNAL 2
380
381static int authorized_default = USB_AUTHORIZE_WIRED;
382module_param(authorized_default, int, S_IRUGO|S_IWUSR);
383MODULE_PARM_DESC(authorized_default,
384 "Default USB device authorization: 0 is not authorized, 1 is "
385 "authorized, 2 is authorized for internal devices, -1 is "
386 "authorized except for wireless USB (default, old behaviour)");
387/*-------------------------------------------------------------------------*/
388
389/**
390 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
391 * @s: Null-terminated ASCII (actually ISO-8859-1) string
392 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
393 * @len: Length (in bytes; may be odd) of descriptor buffer.
394 *
395 * Return: The number of bytes filled in: 2 + 2*strlen(s) or @len,
396 * whichever is less.
397 *
398 * Note:
399 * USB String descriptors can contain at most 126 characters; input
400 * strings longer than that are truncated.
401 */
402static unsigned
403ascii2desc(char const *s, u8 *buf, unsigned len)
404{
405 unsigned n, t = 2 + 2*strlen(s);
406
407 if (t > 254)
408 t = 254; /* Longest possible UTF string descriptor */
409 if (len > t)
410 len = t;
411
412 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
413
414 n = len;
415 while (n--) {
416 *buf++ = t;
417 if (!n--)
418 break;
419 *buf++ = t >> 8;
420 t = (unsigned char)*s++;
421 }
422 return len;
423}
424
425/**
426 * rh_string() - provides string descriptors for root hub
427 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
428 * @hcd: the host controller for this root hub
429 * @data: buffer for output packet
430 * @len: length of the provided buffer
431 *
432 * Produces either a manufacturer, product or serial number string for the
433 * virtual root hub device.
434 *
435 * Return: The number of bytes filled in: the length of the descriptor or
436 * of the provided buffer, whichever is less.
437 */
438static unsigned
439rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
440{
441 char buf[100];
442 char const *s;
443 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
444
445 /* language ids */
446 switch (id) {
447 case 0:
448 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
449 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
450 if (len > 4)
451 len = 4;
452 memcpy(data, langids, len);
453 return len;
454 case 1:
455 /* Serial number */
456 s = hcd->self.bus_name;
457 break;
458 case 2:
459 /* Product name */
460 s = hcd->product_desc;
461 break;
462 case 3:
463 /* Manufacturer */
464 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
465 init_utsname()->release, hcd->driver->description);
466 s = buf;
467 break;
468 default:
469 /* Can't happen; caller guarantees it */
470 return 0;
471 }
472
473 return ascii2desc(s, data, len);
474}
475
476
477/* Root hub control transfers execute synchronously */
478static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
479{
480 struct usb_ctrlrequest *cmd;
481 u16 typeReq, wValue, wIndex, wLength;
482 u8 *ubuf = urb->transfer_buffer;
483 unsigned len = 0;
484 int status;
485 u8 patch_wakeup = 0;
486 u8 patch_protocol = 0;
487 u16 tbuf_size;
488 u8 *tbuf = NULL;
489 const u8 *bufp;
490
491 might_sleep();
492
493 spin_lock_irq(&hcd_root_hub_lock);
494 status = usb_hcd_link_urb_to_ep(hcd, urb);
495 spin_unlock_irq(&hcd_root_hub_lock);
496 if (status)
497 return status;
498 urb->hcpriv = hcd; /* Indicate it's queued */
499
500 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
501 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
502 wValue = le16_to_cpu (cmd->wValue);
503 wIndex = le16_to_cpu (cmd->wIndex);
504 wLength = le16_to_cpu (cmd->wLength);
505
506 if (wLength > urb->transfer_buffer_length)
507 goto error;
508
509 /*
510 * tbuf should be at least as big as the
511 * USB hub descriptor.
512 */
513 tbuf_size = max_t(u16, sizeof(struct usb_hub_descriptor), wLength);
514 tbuf = kzalloc(tbuf_size, GFP_KERNEL);
515 if (!tbuf) {
516 status = -ENOMEM;
517 goto err_alloc;
518 }
519
520 bufp = tbuf;
521
522
523 urb->actual_length = 0;
524 switch (typeReq) {
525
526 /* DEVICE REQUESTS */
527
528 /* The root hub's remote wakeup enable bit is implemented using
529 * driver model wakeup flags. If this system supports wakeup
530 * through USB, userspace may change the default "allow wakeup"
531 * policy through sysfs or these calls.
532 *
533 * Most root hubs support wakeup from downstream devices, for
534 * runtime power management (disabling USB clocks and reducing
535 * VBUS power usage). However, not all of them do so; silicon,
536 * board, and BIOS bugs here are not uncommon, so these can't
537 * be treated quite like external hubs.
538 *
539 * Likewise, not all root hubs will pass wakeup events upstream,
540 * to wake up the whole system. So don't assume root hub and
541 * controller capabilities are identical.
542 */
543
544 case DeviceRequest | USB_REQ_GET_STATUS:
545 tbuf[0] = (device_may_wakeup(&hcd->self.root_hub->dev)
546 << USB_DEVICE_REMOTE_WAKEUP)
547 | (1 << USB_DEVICE_SELF_POWERED);
548 tbuf[1] = 0;
549 len = 2;
550 break;
551 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
552 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
553 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
554 else
555 goto error;
556 break;
557 case DeviceOutRequest | USB_REQ_SET_FEATURE:
558 if (device_can_wakeup(&hcd->self.root_hub->dev)
559 && wValue == USB_DEVICE_REMOTE_WAKEUP)
560 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
561 else
562 goto error;
563 break;
564 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
565 tbuf[0] = 1;
566 len = 1;
567 fallthrough;
568 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
569 break;
570 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
571 switch (wValue & 0xff00) {
572 case USB_DT_DEVICE << 8:
573 switch (hcd->speed) {
574 case HCD_USB32:
575 case HCD_USB31:
576 bufp = usb31_rh_dev_descriptor;
577 break;
578 case HCD_USB3:
579 bufp = usb3_rh_dev_descriptor;
580 break;
581 case HCD_USB25:
582 bufp = usb25_rh_dev_descriptor;
583 break;
584 case HCD_USB2:
585 bufp = usb2_rh_dev_descriptor;
586 break;
587 case HCD_USB11:
588 bufp = usb11_rh_dev_descriptor;
589 break;
590 default:
591 goto error;
592 }
593 len = 18;
594 if (hcd->has_tt)
595 patch_protocol = 1;
596 break;
597 case USB_DT_CONFIG << 8:
598 switch (hcd->speed) {
599 case HCD_USB32:
600 case HCD_USB31:
601 case HCD_USB3:
602 bufp = ss_rh_config_descriptor;
603 len = sizeof ss_rh_config_descriptor;
604 break;
605 case HCD_USB25:
606 case HCD_USB2:
607 bufp = hs_rh_config_descriptor;
608 len = sizeof hs_rh_config_descriptor;
609 break;
610 case HCD_USB11:
611 bufp = fs_rh_config_descriptor;
612 len = sizeof fs_rh_config_descriptor;
613 break;
614 default:
615 goto error;
616 }
617 if (device_can_wakeup(&hcd->self.root_hub->dev))
618 patch_wakeup = 1;
619 break;
620 case USB_DT_STRING << 8:
621 if ((wValue & 0xff) < 4)
622 urb->actual_length = rh_string(wValue & 0xff,
623 hcd, ubuf, wLength);
624 else /* unsupported IDs --> "protocol stall" */
625 goto error;
626 break;
627 case USB_DT_BOS << 8:
628 goto nongeneric;
629 default:
630 goto error;
631 }
632 break;
633 case DeviceRequest | USB_REQ_GET_INTERFACE:
634 tbuf[0] = 0;
635 len = 1;
636 fallthrough;
637 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
638 break;
639 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
640 /* wValue == urb->dev->devaddr */
641 dev_dbg (hcd->self.controller, "root hub device address %d\n",
642 wValue);
643 break;
644
645 /* INTERFACE REQUESTS (no defined feature/status flags) */
646
647 /* ENDPOINT REQUESTS */
648
649 case EndpointRequest | USB_REQ_GET_STATUS:
650 /* ENDPOINT_HALT flag */
651 tbuf[0] = 0;
652 tbuf[1] = 0;
653 len = 2;
654 fallthrough;
655 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
656 case EndpointOutRequest | USB_REQ_SET_FEATURE:
657 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
658 break;
659
660 /* CLASS REQUESTS (and errors) */
661
662 default:
663nongeneric:
664 /* non-generic request */
665 switch (typeReq) {
666 case GetHubStatus:
667 len = 4;
668 break;
669 case GetPortStatus:
670 if (wValue == HUB_PORT_STATUS)
671 len = 4;
672 else
673 /* other port status types return 8 bytes */
674 len = 8;
675 break;
676 case GetHubDescriptor:
677 len = sizeof (struct usb_hub_descriptor);
678 break;
679 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
680 /* len is returned by hub_control */
681 break;
682 }
683 status = hcd->driver->hub_control (hcd,
684 typeReq, wValue, wIndex,
685 tbuf, wLength);
686
687 if (typeReq == GetHubDescriptor)
688 usb_hub_adjust_deviceremovable(hcd->self.root_hub,
689 (struct usb_hub_descriptor *)tbuf);
690 break;
691error:
692 /* "protocol stall" on error */
693 status = -EPIPE;
694 }
695
696 if (status < 0) {
697 len = 0;
698 if (status != -EPIPE) {
699 dev_dbg (hcd->self.controller,
700 "CTRL: TypeReq=0x%x val=0x%x "
701 "idx=0x%x len=%d ==> %d\n",
702 typeReq, wValue, wIndex,
703 wLength, status);
704 }
705 } else if (status > 0) {
706 /* hub_control may return the length of data copied. */
707 len = status;
708 status = 0;
709 }
710 if (len) {
711 if (urb->transfer_buffer_length < len)
712 len = urb->transfer_buffer_length;
713 urb->actual_length = len;
714 /* always USB_DIR_IN, toward host */
715 memcpy (ubuf, bufp, len);
716
717 /* report whether RH hardware supports remote wakeup */
718 if (patch_wakeup &&
719 len > offsetof (struct usb_config_descriptor,
720 bmAttributes))
721 ((struct usb_config_descriptor *)ubuf)->bmAttributes
722 |= USB_CONFIG_ATT_WAKEUP;
723
724 /* report whether RH hardware has an integrated TT */
725 if (patch_protocol &&
726 len > offsetof(struct usb_device_descriptor,
727 bDeviceProtocol))
728 ((struct usb_device_descriptor *) ubuf)->
729 bDeviceProtocol = USB_HUB_PR_HS_SINGLE_TT;
730 }
731
732 kfree(tbuf);
733 err_alloc:
734
735 /* any errors get returned through the urb completion */
736 spin_lock_irq(&hcd_root_hub_lock);
737 usb_hcd_unlink_urb_from_ep(hcd, urb);
738 usb_hcd_giveback_urb(hcd, urb, status);
739 spin_unlock_irq(&hcd_root_hub_lock);
740 return 0;
741}
742
743/*-------------------------------------------------------------------------*/
744
745/*
746 * Root Hub interrupt transfers are polled using a timer if the
747 * driver requests it; otherwise the driver is responsible for
748 * calling usb_hcd_poll_rh_status() when an event occurs.
749 *
750 * Completion handler may not sleep. See usb_hcd_giveback_urb() for details.
751 */
752void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
753{
754 struct urb *urb;
755 int length;
756 int status;
757 unsigned long flags;
758 char buffer[6]; /* Any root hubs with > 31 ports? */
759
760 if (unlikely(!hcd->rh_pollable))
761 return;
762 if (!hcd->uses_new_polling && !hcd->status_urb)
763 return;
764
765 length = hcd->driver->hub_status_data(hcd, buffer);
766 if (length > 0) {
767
768 /* try to complete the status urb */
769 spin_lock_irqsave(&hcd_root_hub_lock, flags);
770 urb = hcd->status_urb;
771 if (urb) {
772 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
773 hcd->status_urb = NULL;
774 if (urb->transfer_buffer_length >= length) {
775 status = 0;
776 } else {
777 status = -EOVERFLOW;
778 length = urb->transfer_buffer_length;
779 }
780 urb->actual_length = length;
781 memcpy(urb->transfer_buffer, buffer, length);
782
783 usb_hcd_unlink_urb_from_ep(hcd, urb);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 } else {
786 length = 0;
787 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
788 }
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 }
791
792 /* The USB 2.0 spec says 256 ms. This is close enough and won't
793 * exceed that limit if HZ is 100. The math is more clunky than
794 * maybe expected, this is to make sure that all timers for USB devices
795 * fire at the same time to give the CPU a break in between */
796 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
797 (length == 0 && hcd->status_urb != NULL))
798 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
799}
800EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
801
802/* timer callback */
803static void rh_timer_func (struct timer_list *t)
804{
805 struct usb_hcd *_hcd = from_timer(_hcd, t, rh_timer);
806
807 usb_hcd_poll_rh_status(_hcd);
808}
809
810/*-------------------------------------------------------------------------*/
811
812static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
813{
814 int retval;
815 unsigned long flags;
816 unsigned len = 1 + (urb->dev->maxchild / 8);
817
818 spin_lock_irqsave (&hcd_root_hub_lock, flags);
819 if (hcd->status_urb || urb->transfer_buffer_length < len) {
820 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
821 retval = -EINVAL;
822 goto done;
823 }
824
825 retval = usb_hcd_link_urb_to_ep(hcd, urb);
826 if (retval)
827 goto done;
828
829 hcd->status_urb = urb;
830 urb->hcpriv = hcd; /* indicate it's queued */
831 if (!hcd->uses_new_polling)
832 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
833
834 /* If a status change has already occurred, report it ASAP */
835 else if (HCD_POLL_PENDING(hcd))
836 mod_timer(&hcd->rh_timer, jiffies);
837 retval = 0;
838 done:
839 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
840 return retval;
841}
842
843static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
844{
845 if (usb_endpoint_xfer_int(&urb->ep->desc))
846 return rh_queue_status (hcd, urb);
847 if (usb_endpoint_xfer_control(&urb->ep->desc))
848 return rh_call_control (hcd, urb);
849 return -EINVAL;
850}
851
852/*-------------------------------------------------------------------------*/
853
854/* Unlinks of root-hub control URBs are legal, but they don't do anything
855 * since these URBs always execute synchronously.
856 */
857static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
858{
859 unsigned long flags;
860 int rc;
861
862 spin_lock_irqsave(&hcd_root_hub_lock, flags);
863 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
864 if (rc)
865 goto done;
866
867 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
868 ; /* Do nothing */
869
870 } else { /* Status URB */
871 if (!hcd->uses_new_polling)
872 del_timer (&hcd->rh_timer);
873 if (urb == hcd->status_urb) {
874 hcd->status_urb = NULL;
875 usb_hcd_unlink_urb_from_ep(hcd, urb);
876 usb_hcd_giveback_urb(hcd, urb, status);
877 }
878 }
879 done:
880 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
881 return rc;
882}
883
884
885/*-------------------------------------------------------------------------*/
886
887/**
888 * usb_bus_init - shared initialization code
889 * @bus: the bus structure being initialized
890 *
891 * This code is used to initialize a usb_bus structure, memory for which is
892 * separately managed.
893 */
894static void usb_bus_init (struct usb_bus *bus)
895{
896 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
897
898 bus->devnum_next = 1;
899
900 bus->root_hub = NULL;
901 bus->busnum = -1;
902 bus->bandwidth_allocated = 0;
903 bus->bandwidth_int_reqs = 0;
904 bus->bandwidth_isoc_reqs = 0;
905 mutex_init(&bus->devnum_next_mutex);
906}
907
908/*-------------------------------------------------------------------------*/
909
910/**
911 * usb_register_bus - registers the USB host controller with the usb core
912 * @bus: pointer to the bus to register
913 *
914 * Context: task context, might sleep.
915 *
916 * Assigns a bus number, and links the controller into usbcore data
917 * structures so that it can be seen by scanning the bus list.
918 *
919 * Return: 0 if successful. A negative error code otherwise.
920 */
921static int usb_register_bus(struct usb_bus *bus)
922{
923 int result = -E2BIG;
924 int busnum;
925
926 mutex_lock(&usb_bus_idr_lock);
927 busnum = idr_alloc(&usb_bus_idr, bus, 1, USB_MAXBUS, GFP_KERNEL);
928 if (busnum < 0) {
929 pr_err("%s: failed to get bus number\n", usbcore_name);
930 goto error_find_busnum;
931 }
932 bus->busnum = busnum;
933 mutex_unlock(&usb_bus_idr_lock);
934
935 usb_notify_add_bus(bus);
936
937 dev_info (bus->controller, "new USB bus registered, assigned bus "
938 "number %d\n", bus->busnum);
939 return 0;
940
941error_find_busnum:
942 mutex_unlock(&usb_bus_idr_lock);
943 return result;
944}
945
946/**
947 * usb_deregister_bus - deregisters the USB host controller
948 * @bus: pointer to the bus to deregister
949 *
950 * Context: task context, might sleep.
951 *
952 * Recycles the bus number, and unlinks the controller from usbcore data
953 * structures so that it won't be seen by scanning the bus list.
954 */
955static void usb_deregister_bus (struct usb_bus *bus)
956{
957 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
958
959 /*
960 * NOTE: make sure that all the devices are removed by the
961 * controller code, as well as having it call this when cleaning
962 * itself up
963 */
964 mutex_lock(&usb_bus_idr_lock);
965 idr_remove(&usb_bus_idr, bus->busnum);
966 mutex_unlock(&usb_bus_idr_lock);
967
968 usb_notify_remove_bus(bus);
969}
970
971/**
972 * register_root_hub - called by usb_add_hcd() to register a root hub
973 * @hcd: host controller for this root hub
974 *
975 * This function registers the root hub with the USB subsystem. It sets up
976 * the device properly in the device tree and then calls usb_new_device()
977 * to register the usb device. It also assigns the root hub's USB address
978 * (always 1).
979 *
980 * Return: 0 if successful. A negative error code otherwise.
981 */
982static int register_root_hub(struct usb_hcd *hcd)
983{
984 struct device *parent_dev = hcd->self.controller;
985 struct usb_device *usb_dev = hcd->self.root_hub;
986 const int devnum = 1;
987 int retval;
988
989 usb_dev->devnum = devnum;
990 usb_dev->bus->devnum_next = devnum + 1;
991 set_bit (devnum, usb_dev->bus->devmap.devicemap);
992 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
993
994 mutex_lock(&usb_bus_idr_lock);
995
996 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
997 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
998 if (retval != sizeof usb_dev->descriptor) {
999 mutex_unlock(&usb_bus_idr_lock);
1000 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
1001 dev_name(&usb_dev->dev), retval);
1002 return (retval < 0) ? retval : -EMSGSIZE;
1003 }
1004
1005 if (le16_to_cpu(usb_dev->descriptor.bcdUSB) >= 0x0201) {
1006 retval = usb_get_bos_descriptor(usb_dev);
1007 if (!retval) {
1008 usb_dev->lpm_capable = usb_device_supports_lpm(usb_dev);
1009 } else if (usb_dev->speed >= USB_SPEED_SUPER) {
1010 mutex_unlock(&usb_bus_idr_lock);
1011 dev_dbg(parent_dev, "can't read %s bos descriptor %d\n",
1012 dev_name(&usb_dev->dev), retval);
1013 return retval;
1014 }
1015 }
1016
1017 retval = usb_new_device (usb_dev);
1018 if (retval) {
1019 dev_err (parent_dev, "can't register root hub for %s, %d\n",
1020 dev_name(&usb_dev->dev), retval);
1021 } else {
1022 spin_lock_irq (&hcd_root_hub_lock);
1023 hcd->rh_registered = 1;
1024 spin_unlock_irq (&hcd_root_hub_lock);
1025
1026 /* Did the HC die before the root hub was registered? */
1027 if (HCD_DEAD(hcd))
1028 usb_hc_died (hcd); /* This time clean up */
1029 }
1030 mutex_unlock(&usb_bus_idr_lock);
1031
1032 return retval;
1033}
1034
1035/*
1036 * usb_hcd_start_port_resume - a root-hub port is sending a resume signal
1037 * @bus: the bus which the root hub belongs to
1038 * @portnum: the port which is being resumed
1039 *
1040 * HCDs should call this function when they know that a resume signal is
1041 * being sent to a root-hub port. The root hub will be prevented from
1042 * going into autosuspend until usb_hcd_end_port_resume() is called.
1043 *
1044 * The bus's private lock must be held by the caller.
1045 */
1046void usb_hcd_start_port_resume(struct usb_bus *bus, int portnum)
1047{
1048 unsigned bit = 1 << portnum;
1049
1050 if (!(bus->resuming_ports & bit)) {
1051 bus->resuming_ports |= bit;
1052 pm_runtime_get_noresume(&bus->root_hub->dev);
1053 }
1054}
1055EXPORT_SYMBOL_GPL(usb_hcd_start_port_resume);
1056
1057/*
1058 * usb_hcd_end_port_resume - a root-hub port has stopped sending a resume signal
1059 * @bus: the bus which the root hub belongs to
1060 * @portnum: the port which is being resumed
1061 *
1062 * HCDs should call this function when they know that a resume signal has
1063 * stopped being sent to a root-hub port. The root hub will be allowed to
1064 * autosuspend again.
1065 *
1066 * The bus's private lock must be held by the caller.
1067 */
1068void usb_hcd_end_port_resume(struct usb_bus *bus, int portnum)
1069{
1070 unsigned bit = 1 << portnum;
1071
1072 if (bus->resuming_ports & bit) {
1073 bus->resuming_ports &= ~bit;
1074 pm_runtime_put_noidle(&bus->root_hub->dev);
1075 }
1076}
1077EXPORT_SYMBOL_GPL(usb_hcd_end_port_resume);
1078
1079/*-------------------------------------------------------------------------*/
1080
1081/**
1082 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1083 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1084 * @is_input: true iff the transaction sends data to the host
1085 * @isoc: true for isochronous transactions, false for interrupt ones
1086 * @bytecount: how many bytes in the transaction.
1087 *
1088 * Return: Approximate bus time in nanoseconds for a periodic transaction.
1089 *
1090 * Note:
1091 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1092 * scheduled in software, this function is only used for such scheduling.
1093 */
1094long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1095{
1096 unsigned long tmp;
1097
1098 switch (speed) {
1099 case USB_SPEED_LOW: /* INTR only */
1100 if (is_input) {
1101 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1102 return 64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1103 } else {
1104 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1105 return 64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp;
1106 }
1107 case USB_SPEED_FULL: /* ISOC or INTR */
1108 if (isoc) {
1109 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1110 return ((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp;
1111 } else {
1112 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1113 return 9107L + BW_HOST_DELAY + tmp;
1114 }
1115 case USB_SPEED_HIGH: /* ISOC or INTR */
1116 /* FIXME adjust for input vs output */
1117 if (isoc)
1118 tmp = HS_NSECS_ISO (bytecount);
1119 else
1120 tmp = HS_NSECS (bytecount);
1121 return tmp;
1122 default:
1123 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1124 return -1;
1125 }
1126}
1127EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1128
1129
1130/*-------------------------------------------------------------------------*/
1131
1132/*
1133 * Generic HC operations.
1134 */
1135
1136/*-------------------------------------------------------------------------*/
1137
1138/**
1139 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1140 * @hcd: host controller to which @urb was submitted
1141 * @urb: URB being submitted
1142 *
1143 * Host controller drivers should call this routine in their enqueue()
1144 * method. The HCD's private spinlock must be held and interrupts must
1145 * be disabled. The actions carried out here are required for URB
1146 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1147 *
1148 * Return: 0 for no error, otherwise a negative error code (in which case
1149 * the enqueue() method must fail). If no error occurs but enqueue() fails
1150 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1151 * the private spinlock and returning.
1152 */
1153int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1154{
1155 int rc = 0;
1156
1157 spin_lock(&hcd_urb_list_lock);
1158
1159 /* Check that the URB isn't being killed */
1160 if (unlikely(atomic_read(&urb->reject))) {
1161 rc = -EPERM;
1162 goto done;
1163 }
1164
1165 if (unlikely(!urb->ep->enabled)) {
1166 rc = -ENOENT;
1167 goto done;
1168 }
1169
1170 if (unlikely(!urb->dev->can_submit)) {
1171 rc = -EHOSTUNREACH;
1172 goto done;
1173 }
1174
1175 /*
1176 * Check the host controller's state and add the URB to the
1177 * endpoint's queue.
1178 */
1179 if (HCD_RH_RUNNING(hcd)) {
1180 urb->unlinked = 0;
1181 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1182 } else {
1183 rc = -ESHUTDOWN;
1184 goto done;
1185 }
1186 done:
1187 spin_unlock(&hcd_urb_list_lock);
1188 return rc;
1189}
1190EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1191
1192/**
1193 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1194 * @hcd: host controller to which @urb was submitted
1195 * @urb: URB being checked for unlinkability
1196 * @status: error code to store in @urb if the unlink succeeds
1197 *
1198 * Host controller drivers should call this routine in their dequeue()
1199 * method. The HCD's private spinlock must be held and interrupts must
1200 * be disabled. The actions carried out here are required for making
1201 * sure than an unlink is valid.
1202 *
1203 * Return: 0 for no error, otherwise a negative error code (in which case
1204 * the dequeue() method must fail). The possible error codes are:
1205 *
1206 * -EIDRM: @urb was not submitted or has already completed.
1207 * The completion function may not have been called yet.
1208 *
1209 * -EBUSY: @urb has already been unlinked.
1210 */
1211int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1212 int status)
1213{
1214 struct list_head *tmp;
1215
1216 /* insist the urb is still queued */
1217 list_for_each(tmp, &urb->ep->urb_list) {
1218 if (tmp == &urb->urb_list)
1219 break;
1220 }
1221 if (tmp != &urb->urb_list)
1222 return -EIDRM;
1223
1224 /* Any status except -EINPROGRESS means something already started to
1225 * unlink this URB from the hardware. So there's no more work to do.
1226 */
1227 if (urb->unlinked)
1228 return -EBUSY;
1229 urb->unlinked = status;
1230 return 0;
1231}
1232EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1233
1234/**
1235 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1236 * @hcd: host controller to which @urb was submitted
1237 * @urb: URB being unlinked
1238 *
1239 * Host controller drivers should call this routine before calling
1240 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1241 * interrupts must be disabled. The actions carried out here are required
1242 * for URB completion.
1243 */
1244void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1245{
1246 /* clear all state linking urb to this dev (and hcd) */
1247 spin_lock(&hcd_urb_list_lock);
1248 list_del_init(&urb->urb_list);
1249 spin_unlock(&hcd_urb_list_lock);
1250}
1251EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1252
1253/*
1254 * Some usb host controllers can only perform dma using a small SRAM area,
1255 * or have restrictions on addressable DRAM.
1256 * The usb core itself is however optimized for host controllers that can dma
1257 * using regular system memory - like pci devices doing bus mastering.
1258 *
1259 * To support host controllers with limited dma capabilities we provide dma
1260 * bounce buffers. This feature can be enabled by initializing
1261 * hcd->localmem_pool using usb_hcd_setup_local_mem().
1262 *
1263 * The initialized hcd->localmem_pool then tells the usb code to allocate all
1264 * data for dma using the genalloc API.
1265 *
1266 * So, to summarize...
1267 *
1268 * - We need "local" memory, canonical example being
1269 * a small SRAM on a discrete controller being the
1270 * only memory that the controller can read ...
1271 * (a) "normal" kernel memory is no good, and
1272 * (b) there's not enough to share
1273 *
1274 * - So we use that, even though the primary requirement
1275 * is that the memory be "local" (hence addressable
1276 * by that device), not "coherent".
1277 *
1278 */
1279
1280static int hcd_alloc_coherent(struct usb_bus *bus,
1281 gfp_t mem_flags, dma_addr_t *dma_handle,
1282 void **vaddr_handle, size_t size,
1283 enum dma_data_direction dir)
1284{
1285 unsigned char *vaddr;
1286
1287 if (*vaddr_handle == NULL) {
1288 WARN_ON_ONCE(1);
1289 return -EFAULT;
1290 }
1291
1292 vaddr = hcd_buffer_alloc(bus, size + sizeof(unsigned long),
1293 mem_flags, dma_handle);
1294 if (!vaddr)
1295 return -ENOMEM;
1296
1297 /*
1298 * Store the virtual address of the buffer at the end
1299 * of the allocated dma buffer. The size of the buffer
1300 * may be uneven so use unaligned functions instead
1301 * of just rounding up. It makes sense to optimize for
1302 * memory footprint over access speed since the amount
1303 * of memory available for dma may be limited.
1304 */
1305 put_unaligned((unsigned long)*vaddr_handle,
1306 (unsigned long *)(vaddr + size));
1307
1308 if (dir == DMA_TO_DEVICE)
1309 memcpy(vaddr, *vaddr_handle, size);
1310
1311 *vaddr_handle = vaddr;
1312 return 0;
1313}
1314
1315static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1316 void **vaddr_handle, size_t size,
1317 enum dma_data_direction dir)
1318{
1319 unsigned char *vaddr = *vaddr_handle;
1320
1321 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1322
1323 if (dir == DMA_FROM_DEVICE)
1324 memcpy(vaddr, *vaddr_handle, size);
1325
1326 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1327
1328 *vaddr_handle = vaddr;
1329 *dma_handle = 0;
1330}
1331
1332void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1333{
1334 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1335 (urb->transfer_flags & URB_SETUP_MAP_SINGLE))
1336 dma_unmap_single(hcd->self.sysdev,
1337 urb->setup_dma,
1338 sizeof(struct usb_ctrlrequest),
1339 DMA_TO_DEVICE);
1340 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1341 hcd_free_coherent(urb->dev->bus,
1342 &urb->setup_dma,
1343 (void **) &urb->setup_packet,
1344 sizeof(struct usb_ctrlrequest),
1345 DMA_TO_DEVICE);
1346
1347 /* Make it safe to call this routine more than once */
1348 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1349}
1350EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1351
1352static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1353{
1354 if (hcd->driver->unmap_urb_for_dma)
1355 hcd->driver->unmap_urb_for_dma(hcd, urb);
1356 else
1357 usb_hcd_unmap_urb_for_dma(hcd, urb);
1358}
1359
1360void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1361{
1362 enum dma_data_direction dir;
1363
1364 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1365
1366 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1367 if (IS_ENABLED(CONFIG_HAS_DMA) &&
1368 (urb->transfer_flags & URB_DMA_MAP_SG))
1369 dma_unmap_sg(hcd->self.sysdev,
1370 urb->sg,
1371 urb->num_sgs,
1372 dir);
1373 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1374 (urb->transfer_flags & URB_DMA_MAP_PAGE))
1375 dma_unmap_page(hcd->self.sysdev,
1376 urb->transfer_dma,
1377 urb->transfer_buffer_length,
1378 dir);
1379 else if (IS_ENABLED(CONFIG_HAS_DMA) &&
1380 (urb->transfer_flags & URB_DMA_MAP_SINGLE))
1381 dma_unmap_single(hcd->self.sysdev,
1382 urb->transfer_dma,
1383 urb->transfer_buffer_length,
1384 dir);
1385 else if (urb->transfer_flags & URB_MAP_LOCAL)
1386 hcd_free_coherent(urb->dev->bus,
1387 &urb->transfer_dma,
1388 &urb->transfer_buffer,
1389 urb->transfer_buffer_length,
1390 dir);
1391
1392 /* Make it safe to call this routine more than once */
1393 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1394 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1395}
1396EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1397
1398static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1399 gfp_t mem_flags)
1400{
1401 if (hcd->driver->map_urb_for_dma)
1402 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1403 else
1404 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1405}
1406
1407int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1408 gfp_t mem_flags)
1409{
1410 enum dma_data_direction dir;
1411 int ret = 0;
1412
1413 /* Map the URB's buffers for DMA access.
1414 * Lower level HCD code should use *_dma exclusively,
1415 * unless it uses pio or talks to another transport,
1416 * or uses the provided scatter gather list for bulk.
1417 */
1418
1419 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1420 if (hcd->self.uses_pio_for_control)
1421 return ret;
1422 if (hcd->localmem_pool) {
1423 ret = hcd_alloc_coherent(
1424 urb->dev->bus, mem_flags,
1425 &urb->setup_dma,
1426 (void **)&urb->setup_packet,
1427 sizeof(struct usb_ctrlrequest),
1428 DMA_TO_DEVICE);
1429 if (ret)
1430 return ret;
1431 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1432 } else if (hcd_uses_dma(hcd)) {
1433 if (object_is_on_stack(urb->setup_packet)) {
1434 WARN_ONCE(1, "setup packet is on stack\n");
1435 return -EAGAIN;
1436 }
1437
1438 urb->setup_dma = dma_map_single(
1439 hcd->self.sysdev,
1440 urb->setup_packet,
1441 sizeof(struct usb_ctrlrequest),
1442 DMA_TO_DEVICE);
1443 if (dma_mapping_error(hcd->self.sysdev,
1444 urb->setup_dma))
1445 return -EAGAIN;
1446 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1447 }
1448 }
1449
1450 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1451 if (urb->transfer_buffer_length != 0
1452 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1453 if (hcd->localmem_pool) {
1454 ret = hcd_alloc_coherent(
1455 urb->dev->bus, mem_flags,
1456 &urb->transfer_dma,
1457 &urb->transfer_buffer,
1458 urb->transfer_buffer_length,
1459 dir);
1460 if (ret == 0)
1461 urb->transfer_flags |= URB_MAP_LOCAL;
1462 } else if (hcd_uses_dma(hcd)) {
1463 if (urb->num_sgs) {
1464 int n;
1465
1466 /* We don't support sg for isoc transfers ! */
1467 if (usb_endpoint_xfer_isoc(&urb->ep->desc)) {
1468 WARN_ON(1);
1469 return -EINVAL;
1470 }
1471
1472 n = dma_map_sg(
1473 hcd->self.sysdev,
1474 urb->sg,
1475 urb->num_sgs,
1476 dir);
1477 if (!n)
1478 ret = -EAGAIN;
1479 else
1480 urb->transfer_flags |= URB_DMA_MAP_SG;
1481 urb->num_mapped_sgs = n;
1482 if (n != urb->num_sgs)
1483 urb->transfer_flags |=
1484 URB_DMA_SG_COMBINED;
1485 } else if (urb->sg) {
1486 struct scatterlist *sg = urb->sg;
1487 urb->transfer_dma = dma_map_page(
1488 hcd->self.sysdev,
1489 sg_page(sg),
1490 sg->offset,
1491 urb->transfer_buffer_length,
1492 dir);
1493 if (dma_mapping_error(hcd->self.sysdev,
1494 urb->transfer_dma))
1495 ret = -EAGAIN;
1496 else
1497 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1498 } else if (object_is_on_stack(urb->transfer_buffer)) {
1499 WARN_ONCE(1, "transfer buffer is on stack\n");
1500 ret = -EAGAIN;
1501 } else {
1502 urb->transfer_dma = dma_map_single(
1503 hcd->self.sysdev,
1504 urb->transfer_buffer,
1505 urb->transfer_buffer_length,
1506 dir);
1507 if (dma_mapping_error(hcd->self.sysdev,
1508 urb->transfer_dma))
1509 ret = -EAGAIN;
1510 else
1511 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1512 }
1513 }
1514 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1515 URB_SETUP_MAP_LOCAL)))
1516 usb_hcd_unmap_urb_for_dma(hcd, urb);
1517 }
1518 return ret;
1519}
1520EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1521
1522/*-------------------------------------------------------------------------*/
1523
1524/* may be called in any context with a valid urb->dev usecount
1525 * caller surrenders "ownership" of urb
1526 * expects usb_submit_urb() to have sanity checked and conditioned all
1527 * inputs in the urb
1528 */
1529int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1530{
1531 int status;
1532 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1533
1534 /* increment urb's reference count as part of giving it to the HCD
1535 * (which will control it). HCD guarantees that it either returns
1536 * an error or calls giveback(), but not both.
1537 */
1538 usb_get_urb(urb);
1539 atomic_inc(&urb->use_count);
1540 atomic_inc(&urb->dev->urbnum);
1541 usbmon_urb_submit(&hcd->self, urb);
1542
1543 /* NOTE requirements on root-hub callers (usbfs and the hub
1544 * driver, for now): URBs' urb->transfer_buffer must be
1545 * valid and usb_buffer_{sync,unmap}() not be needed, since
1546 * they could clobber root hub response data. Also, control
1547 * URBs must be submitted in process context with interrupts
1548 * enabled.
1549 */
1550
1551 if (is_root_hub(urb->dev)) {
1552 status = rh_urb_enqueue(hcd, urb);
1553 } else {
1554 status = map_urb_for_dma(hcd, urb, mem_flags);
1555 if (likely(status == 0)) {
1556 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1557 if (unlikely(status))
1558 unmap_urb_for_dma(hcd, urb);
1559 }
1560 }
1561
1562 if (unlikely(status)) {
1563 usbmon_urb_submit_error(&hcd->self, urb, status);
1564 urb->hcpriv = NULL;
1565 INIT_LIST_HEAD(&urb->urb_list);
1566 atomic_dec(&urb->use_count);
1567 /*
1568 * Order the write of urb->use_count above before the read
1569 * of urb->reject below. Pairs with the memory barriers in
1570 * usb_kill_urb() and usb_poison_urb().
1571 */
1572 smp_mb__after_atomic();
1573
1574 atomic_dec(&urb->dev->urbnum);
1575 if (atomic_read(&urb->reject))
1576 wake_up(&usb_kill_urb_queue);
1577 usb_put_urb(urb);
1578 }
1579 return status;
1580}
1581
1582/*-------------------------------------------------------------------------*/
1583
1584/* this makes the hcd giveback() the urb more quickly, by kicking it
1585 * off hardware queues (which may take a while) and returning it as
1586 * soon as practical. we've already set up the urb's return status,
1587 * but we can't know if the callback completed already.
1588 */
1589static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1590{
1591 int value;
1592
1593 if (is_root_hub(urb->dev))
1594 value = usb_rh_urb_dequeue(hcd, urb, status);
1595 else {
1596
1597 /* The only reason an HCD might fail this call is if
1598 * it has not yet fully queued the urb to begin with.
1599 * Such failures should be harmless. */
1600 value = hcd->driver->urb_dequeue(hcd, urb, status);
1601 }
1602 return value;
1603}
1604
1605/*
1606 * called in any context
1607 *
1608 * caller guarantees urb won't be recycled till both unlink()
1609 * and the urb's completion function return
1610 */
1611int usb_hcd_unlink_urb (struct urb *urb, int status)
1612{
1613 struct usb_hcd *hcd;
1614 struct usb_device *udev = urb->dev;
1615 int retval = -EIDRM;
1616 unsigned long flags;
1617
1618 /* Prevent the device and bus from going away while
1619 * the unlink is carried out. If they are already gone
1620 * then urb->use_count must be 0, since disconnected
1621 * devices can't have any active URBs.
1622 */
1623 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1624 if (atomic_read(&urb->use_count) > 0) {
1625 retval = 0;
1626 usb_get_dev(udev);
1627 }
1628 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1629 if (retval == 0) {
1630 hcd = bus_to_hcd(urb->dev->bus);
1631 retval = unlink1(hcd, urb, status);
1632 if (retval == 0)
1633 retval = -EINPROGRESS;
1634 else if (retval != -EIDRM && retval != -EBUSY)
1635 dev_dbg(&udev->dev, "hcd_unlink_urb %pK fail %d\n",
1636 urb, retval);
1637 usb_put_dev(udev);
1638 }
1639 return retval;
1640}
1641
1642/*-------------------------------------------------------------------------*/
1643
1644static void __usb_hcd_giveback_urb(struct urb *urb)
1645{
1646 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1647 struct usb_anchor *anchor = urb->anchor;
1648 int status = urb->unlinked;
1649
1650 urb->hcpriv = NULL;
1651 if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1652 urb->actual_length < urb->transfer_buffer_length &&
1653 !status))
1654 status = -EREMOTEIO;
1655
1656 unmap_urb_for_dma(hcd, urb);
1657 usbmon_urb_complete(&hcd->self, urb, status);
1658 usb_anchor_suspend_wakeups(anchor);
1659 usb_unanchor_urb(urb);
1660 if (likely(status == 0))
1661 usb_led_activity(USB_LED_EVENT_HOST);
1662
1663 /* pass ownership to the completion handler */
1664 urb->status = status;
1665 /*
1666 * This function can be called in task context inside another remote
1667 * coverage collection section, but kcov doesn't support that kind of
1668 * recursion yet. Only collect coverage in softirq context for now.
1669 */
1670 kcov_remote_start_usb_softirq((u64)urb->dev->bus->busnum);
1671 urb->complete(urb);
1672 kcov_remote_stop_softirq();
1673
1674 usb_anchor_resume_wakeups(anchor);
1675 atomic_dec(&urb->use_count);
1676 /*
1677 * Order the write of urb->use_count above before the read
1678 * of urb->reject below. Pairs with the memory barriers in
1679 * usb_kill_urb() and usb_poison_urb().
1680 */
1681 smp_mb__after_atomic();
1682
1683 if (unlikely(atomic_read(&urb->reject)))
1684 wake_up(&usb_kill_urb_queue);
1685 usb_put_urb(urb);
1686}
1687
1688static void usb_giveback_urb_bh(struct tasklet_struct *t)
1689{
1690 struct giveback_urb_bh *bh = from_tasklet(bh, t, bh);
1691 struct list_head local_list;
1692
1693 spin_lock_irq(&bh->lock);
1694 bh->running = true;
1695 list_replace_init(&bh->head, &local_list);
1696 spin_unlock_irq(&bh->lock);
1697
1698 while (!list_empty(&local_list)) {
1699 struct urb *urb;
1700
1701 urb = list_entry(local_list.next, struct urb, urb_list);
1702 list_del_init(&urb->urb_list);
1703 bh->completing_ep = urb->ep;
1704 __usb_hcd_giveback_urb(urb);
1705 bh->completing_ep = NULL;
1706 }
1707
1708 /*
1709 * giveback new URBs next time to prevent this function
1710 * from not exiting for a long time.
1711 */
1712 spin_lock_irq(&bh->lock);
1713 if (!list_empty(&bh->head)) {
1714 if (bh->high_prio)
1715 tasklet_hi_schedule(&bh->bh);
1716 else
1717 tasklet_schedule(&bh->bh);
1718 }
1719 bh->running = false;
1720 spin_unlock_irq(&bh->lock);
1721}
1722
1723/**
1724 * usb_hcd_giveback_urb - return URB from HCD to device driver
1725 * @hcd: host controller returning the URB
1726 * @urb: urb being returned to the USB device driver.
1727 * @status: completion status code for the URB.
1728 *
1729 * Context: atomic. The completion callback is invoked in caller's context.
1730 * For HCDs with HCD_BH flag set, the completion callback is invoked in tasklet
1731 * context (except for URBs submitted to the root hub which always complete in
1732 * caller's context).
1733 *
1734 * This hands the URB from HCD to its USB device driver, using its
1735 * completion function. The HCD has freed all per-urb resources
1736 * (and is done using urb->hcpriv). It also released all HCD locks;
1737 * the device driver won't cause problems if it frees, modifies,
1738 * or resubmits this URB.
1739 *
1740 * If @urb was unlinked, the value of @status will be overridden by
1741 * @urb->unlinked. Erroneous short transfers are detected in case
1742 * the HCD hasn't checked for them.
1743 */
1744void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1745{
1746 struct giveback_urb_bh *bh;
1747 bool running;
1748
1749 /* pass status to tasklet via unlinked */
1750 if (likely(!urb->unlinked))
1751 urb->unlinked = status;
1752
1753 if (!hcd_giveback_urb_in_bh(hcd) && !is_root_hub(urb->dev)) {
1754 __usb_hcd_giveback_urb(urb);
1755 return;
1756 }
1757
1758 if (usb_pipeisoc(urb->pipe) || usb_pipeint(urb->pipe))
1759 bh = &hcd->high_prio_bh;
1760 else
1761 bh = &hcd->low_prio_bh;
1762
1763 spin_lock(&bh->lock);
1764 list_add_tail(&urb->urb_list, &bh->head);
1765 running = bh->running;
1766 spin_unlock(&bh->lock);
1767
1768 if (running)
1769 ;
1770 else if (bh->high_prio)
1771 tasklet_hi_schedule(&bh->bh);
1772 else
1773 tasklet_schedule(&bh->bh);
1774}
1775EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1776
1777/*-------------------------------------------------------------------------*/
1778
1779/* Cancel all URBs pending on this endpoint and wait for the endpoint's
1780 * queue to drain completely. The caller must first insure that no more
1781 * URBs can be submitted for this endpoint.
1782 */
1783void usb_hcd_flush_endpoint(struct usb_device *udev,
1784 struct usb_host_endpoint *ep)
1785{
1786 struct usb_hcd *hcd;
1787 struct urb *urb;
1788
1789 if (!ep)
1790 return;
1791 might_sleep();
1792 hcd = bus_to_hcd(udev->bus);
1793
1794 /* No more submits can occur */
1795 spin_lock_irq(&hcd_urb_list_lock);
1796rescan:
1797 list_for_each_entry_reverse(urb, &ep->urb_list, urb_list) {
1798 int is_in;
1799
1800 if (urb->unlinked)
1801 continue;
1802 usb_get_urb (urb);
1803 is_in = usb_urb_dir_in(urb);
1804 spin_unlock(&hcd_urb_list_lock);
1805
1806 /* kick hcd */
1807 unlink1(hcd, urb, -ESHUTDOWN);
1808 dev_dbg (hcd->self.controller,
1809 "shutdown urb %pK ep%d%s-%s\n",
1810 urb, usb_endpoint_num(&ep->desc),
1811 is_in ? "in" : "out",
1812 usb_ep_type_string(usb_endpoint_type(&ep->desc)));
1813 usb_put_urb (urb);
1814
1815 /* list contents may have changed */
1816 spin_lock(&hcd_urb_list_lock);
1817 goto rescan;
1818 }
1819 spin_unlock_irq(&hcd_urb_list_lock);
1820
1821 /* Wait until the endpoint queue is completely empty */
1822 while (!list_empty (&ep->urb_list)) {
1823 spin_lock_irq(&hcd_urb_list_lock);
1824
1825 /* The list may have changed while we acquired the spinlock */
1826 urb = NULL;
1827 if (!list_empty (&ep->urb_list)) {
1828 urb = list_entry (ep->urb_list.prev, struct urb,
1829 urb_list);
1830 usb_get_urb (urb);
1831 }
1832 spin_unlock_irq(&hcd_urb_list_lock);
1833
1834 if (urb) {
1835 usb_kill_urb (urb);
1836 usb_put_urb (urb);
1837 }
1838 }
1839}
1840
1841/**
1842 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1843 * the bus bandwidth
1844 * @udev: target &usb_device
1845 * @new_config: new configuration to install
1846 * @cur_alt: the current alternate interface setting
1847 * @new_alt: alternate interface setting that is being installed
1848 *
1849 * To change configurations, pass in the new configuration in new_config,
1850 * and pass NULL for cur_alt and new_alt.
1851 *
1852 * To reset a device's configuration (put the device in the ADDRESSED state),
1853 * pass in NULL for new_config, cur_alt, and new_alt.
1854 *
1855 * To change alternate interface settings, pass in NULL for new_config,
1856 * pass in the current alternate interface setting in cur_alt,
1857 * and pass in the new alternate interface setting in new_alt.
1858 *
1859 * Return: An error if the requested bandwidth change exceeds the
1860 * bus bandwidth or host controller internal resources.
1861 */
1862int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1863 struct usb_host_config *new_config,
1864 struct usb_host_interface *cur_alt,
1865 struct usb_host_interface *new_alt)
1866{
1867 int num_intfs, i, j;
1868 struct usb_host_interface *alt = NULL;
1869 int ret = 0;
1870 struct usb_hcd *hcd;
1871 struct usb_host_endpoint *ep;
1872
1873 hcd = bus_to_hcd(udev->bus);
1874 if (!hcd->driver->check_bandwidth)
1875 return 0;
1876
1877 /* Configuration is being removed - set configuration 0 */
1878 if (!new_config && !cur_alt) {
1879 for (i = 1; i < 16; ++i) {
1880 ep = udev->ep_out[i];
1881 if (ep)
1882 hcd->driver->drop_endpoint(hcd, udev, ep);
1883 ep = udev->ep_in[i];
1884 if (ep)
1885 hcd->driver->drop_endpoint(hcd, udev, ep);
1886 }
1887 hcd->driver->check_bandwidth(hcd, udev);
1888 return 0;
1889 }
1890 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1891 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1892 * of the bus. There will always be bandwidth for endpoint 0, so it's
1893 * ok to exclude it.
1894 */
1895 if (new_config) {
1896 num_intfs = new_config->desc.bNumInterfaces;
1897 /* Remove endpoints (except endpoint 0, which is always on the
1898 * schedule) from the old config from the schedule
1899 */
1900 for (i = 1; i < 16; ++i) {
1901 ep = udev->ep_out[i];
1902 if (ep) {
1903 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1904 if (ret < 0)
1905 goto reset;
1906 }
1907 ep = udev->ep_in[i];
1908 if (ep) {
1909 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1910 if (ret < 0)
1911 goto reset;
1912 }
1913 }
1914 for (i = 0; i < num_intfs; ++i) {
1915 struct usb_host_interface *first_alt;
1916 int iface_num;
1917
1918 first_alt = &new_config->intf_cache[i]->altsetting[0];
1919 iface_num = first_alt->desc.bInterfaceNumber;
1920 /* Set up endpoints for alternate interface setting 0 */
1921 alt = usb_find_alt_setting(new_config, iface_num, 0);
1922 if (!alt)
1923 /* No alt setting 0? Pick the first setting. */
1924 alt = first_alt;
1925
1926 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1927 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1928 if (ret < 0)
1929 goto reset;
1930 }
1931 }
1932 }
1933 if (cur_alt && new_alt) {
1934 struct usb_interface *iface = usb_ifnum_to_if(udev,
1935 cur_alt->desc.bInterfaceNumber);
1936
1937 if (!iface)
1938 return -EINVAL;
1939 if (iface->resetting_device) {
1940 /*
1941 * The USB core just reset the device, so the xHCI host
1942 * and the device will think alt setting 0 is installed.
1943 * However, the USB core will pass in the alternate
1944 * setting installed before the reset as cur_alt. Dig
1945 * out the alternate setting 0 structure, or the first
1946 * alternate setting if a broken device doesn't have alt
1947 * setting 0.
1948 */
1949 cur_alt = usb_altnum_to_altsetting(iface, 0);
1950 if (!cur_alt)
1951 cur_alt = &iface->altsetting[0];
1952 }
1953
1954 /* Drop all the endpoints in the current alt setting */
1955 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1956 ret = hcd->driver->drop_endpoint(hcd, udev,
1957 &cur_alt->endpoint[i]);
1958 if (ret < 0)
1959 goto reset;
1960 }
1961 /* Add all the endpoints in the new alt setting */
1962 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1963 ret = hcd->driver->add_endpoint(hcd, udev,
1964 &new_alt->endpoint[i]);
1965 if (ret < 0)
1966 goto reset;
1967 }
1968 }
1969 ret = hcd->driver->check_bandwidth(hcd, udev);
1970reset:
1971 if (ret < 0)
1972 hcd->driver->reset_bandwidth(hcd, udev);
1973 return ret;
1974}
1975
1976/* Disables the endpoint: synchronizes with the hcd to make sure all
1977 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1978 * have been called previously. Use for set_configuration, set_interface,
1979 * driver removal, physical disconnect.
1980 *
1981 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1982 * type, maxpacket size, toggle, halt status, and scheduling.
1983 */
1984void usb_hcd_disable_endpoint(struct usb_device *udev,
1985 struct usb_host_endpoint *ep)
1986{
1987 struct usb_hcd *hcd;
1988
1989 might_sleep();
1990 hcd = bus_to_hcd(udev->bus);
1991 if (hcd->driver->endpoint_disable)
1992 hcd->driver->endpoint_disable(hcd, ep);
1993}
1994
1995/**
1996 * usb_hcd_reset_endpoint - reset host endpoint state
1997 * @udev: USB device.
1998 * @ep: the endpoint to reset.
1999 *
2000 * Resets any host endpoint state such as the toggle bit, sequence
2001 * number and current window.
2002 */
2003void usb_hcd_reset_endpoint(struct usb_device *udev,
2004 struct usb_host_endpoint *ep)
2005{
2006 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2007
2008 if (hcd->driver->endpoint_reset)
2009 hcd->driver->endpoint_reset(hcd, ep);
2010 else {
2011 int epnum = usb_endpoint_num(&ep->desc);
2012 int is_out = usb_endpoint_dir_out(&ep->desc);
2013 int is_control = usb_endpoint_xfer_control(&ep->desc);
2014
2015 usb_settoggle(udev, epnum, is_out, 0);
2016 if (is_control)
2017 usb_settoggle(udev, epnum, !is_out, 0);
2018 }
2019}
2020
2021/**
2022 * usb_alloc_streams - allocate bulk endpoint stream IDs.
2023 * @interface: alternate setting that includes all endpoints.
2024 * @eps: array of endpoints that need streams.
2025 * @num_eps: number of endpoints in the array.
2026 * @num_streams: number of streams to allocate.
2027 * @mem_flags: flags hcd should use to allocate memory.
2028 *
2029 * Sets up a group of bulk endpoints to have @num_streams stream IDs available.
2030 * Drivers may queue multiple transfers to different stream IDs, which may
2031 * complete in a different order than they were queued.
2032 *
2033 * Return: On success, the number of allocated streams. On failure, a negative
2034 * error code.
2035 */
2036int usb_alloc_streams(struct usb_interface *interface,
2037 struct usb_host_endpoint **eps, unsigned int num_eps,
2038 unsigned int num_streams, gfp_t mem_flags)
2039{
2040 struct usb_hcd *hcd;
2041 struct usb_device *dev;
2042 int i, ret;
2043
2044 dev = interface_to_usbdev(interface);
2045 hcd = bus_to_hcd(dev->bus);
2046 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
2047 return -EINVAL;
2048 if (dev->speed < USB_SPEED_SUPER)
2049 return -EINVAL;
2050 if (dev->state < USB_STATE_CONFIGURED)
2051 return -ENODEV;
2052
2053 for (i = 0; i < num_eps; i++) {
2054 /* Streams only apply to bulk endpoints. */
2055 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
2056 return -EINVAL;
2057 /* Re-alloc is not allowed */
2058 if (eps[i]->streams)
2059 return -EINVAL;
2060 }
2061
2062 ret = hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
2063 num_streams, mem_flags);
2064 if (ret < 0)
2065 return ret;
2066
2067 for (i = 0; i < num_eps; i++)
2068 eps[i]->streams = ret;
2069
2070 return ret;
2071}
2072EXPORT_SYMBOL_GPL(usb_alloc_streams);
2073
2074/**
2075 * usb_free_streams - free bulk endpoint stream IDs.
2076 * @interface: alternate setting that includes all endpoints.
2077 * @eps: array of endpoints to remove streams from.
2078 * @num_eps: number of endpoints in the array.
2079 * @mem_flags: flags hcd should use to allocate memory.
2080 *
2081 * Reverts a group of bulk endpoints back to not using stream IDs.
2082 * Can fail if we are given bad arguments, or HCD is broken.
2083 *
2084 * Return: 0 on success. On failure, a negative error code.
2085 */
2086int usb_free_streams(struct usb_interface *interface,
2087 struct usb_host_endpoint **eps, unsigned int num_eps,
2088 gfp_t mem_flags)
2089{
2090 struct usb_hcd *hcd;
2091 struct usb_device *dev;
2092 int i, ret;
2093
2094 dev = interface_to_usbdev(interface);
2095 hcd = bus_to_hcd(dev->bus);
2096 if (dev->speed < USB_SPEED_SUPER)
2097 return -EINVAL;
2098
2099 /* Double-free is not allowed */
2100 for (i = 0; i < num_eps; i++)
2101 if (!eps[i] || !eps[i]->streams)
2102 return -EINVAL;
2103
2104 ret = hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
2105 if (ret < 0)
2106 return ret;
2107
2108 for (i = 0; i < num_eps; i++)
2109 eps[i]->streams = 0;
2110
2111 return ret;
2112}
2113EXPORT_SYMBOL_GPL(usb_free_streams);
2114
2115/* Protect against drivers that try to unlink URBs after the device
2116 * is gone, by waiting until all unlinks for @udev are finished.
2117 * Since we don't currently track URBs by device, simply wait until
2118 * nothing is running in the locked region of usb_hcd_unlink_urb().
2119 */
2120void usb_hcd_synchronize_unlinks(struct usb_device *udev)
2121{
2122 spin_lock_irq(&hcd_urb_unlink_lock);
2123 spin_unlock_irq(&hcd_urb_unlink_lock);
2124}
2125
2126/*-------------------------------------------------------------------------*/
2127
2128/* called in any context */
2129int usb_hcd_get_frame_number (struct usb_device *udev)
2130{
2131 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2132
2133 if (!HCD_RH_RUNNING(hcd))
2134 return -ESHUTDOWN;
2135 return hcd->driver->get_frame_number (hcd);
2136}
2137
2138/*-------------------------------------------------------------------------*/
2139#ifdef CONFIG_USB_HCD_TEST_MODE
2140
2141static void usb_ehset_completion(struct urb *urb)
2142{
2143 struct completion *done = urb->context;
2144
2145 complete(done);
2146}
2147/*
2148 * Allocate and initialize a control URB. This request will be used by the
2149 * EHSET SINGLE_STEP_SET_FEATURE test in which the DATA and STATUS stages
2150 * of the GetDescriptor request are sent 15 seconds after the SETUP stage.
2151 * Return NULL if failed.
2152 */
2153static struct urb *request_single_step_set_feature_urb(
2154 struct usb_device *udev,
2155 void *dr,
2156 void *buf,
2157 struct completion *done)
2158{
2159 struct urb *urb;
2160 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
2161
2162 urb = usb_alloc_urb(0, GFP_KERNEL);
2163 if (!urb)
2164 return NULL;
2165
2166 urb->pipe = usb_rcvctrlpipe(udev, 0);
2167
2168 urb->ep = &udev->ep0;
2169 urb->dev = udev;
2170 urb->setup_packet = (void *)dr;
2171 urb->transfer_buffer = buf;
2172 urb->transfer_buffer_length = USB_DT_DEVICE_SIZE;
2173 urb->complete = usb_ehset_completion;
2174 urb->status = -EINPROGRESS;
2175 urb->actual_length = 0;
2176 urb->transfer_flags = URB_DIR_IN;
2177 usb_get_urb(urb);
2178 atomic_inc(&urb->use_count);
2179 atomic_inc(&urb->dev->urbnum);
2180 if (map_urb_for_dma(hcd, urb, GFP_KERNEL)) {
2181 usb_put_urb(urb);
2182 usb_free_urb(urb);
2183 return NULL;
2184 }
2185
2186 urb->context = done;
2187 return urb;
2188}
2189
2190int ehset_single_step_set_feature(struct usb_hcd *hcd, int port)
2191{
2192 int retval = -ENOMEM;
2193 struct usb_ctrlrequest *dr;
2194 struct urb *urb;
2195 struct usb_device *udev;
2196 struct usb_device_descriptor *buf;
2197 DECLARE_COMPLETION_ONSTACK(done);
2198
2199 /* Obtain udev of the rhub's child port */
2200 udev = usb_hub_find_child(hcd->self.root_hub, port);
2201 if (!udev) {
2202 dev_err(hcd->self.controller, "No device attached to the RootHub\n");
2203 return -ENODEV;
2204 }
2205 buf = kmalloc(USB_DT_DEVICE_SIZE, GFP_KERNEL);
2206 if (!buf)
2207 return -ENOMEM;
2208
2209 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_KERNEL);
2210 if (!dr) {
2211 kfree(buf);
2212 return -ENOMEM;
2213 }
2214
2215 /* Fill Setup packet for GetDescriptor */
2216 dr->bRequestType = USB_DIR_IN;
2217 dr->bRequest = USB_REQ_GET_DESCRIPTOR;
2218 dr->wValue = cpu_to_le16(USB_DT_DEVICE << 8);
2219 dr->wIndex = 0;
2220 dr->wLength = cpu_to_le16(USB_DT_DEVICE_SIZE);
2221 urb = request_single_step_set_feature_urb(udev, dr, buf, &done);
2222 if (!urb)
2223 goto cleanup;
2224
2225 /* Submit just the SETUP stage */
2226 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 1);
2227 if (retval)
2228 goto out1;
2229 if (!wait_for_completion_timeout(&done, msecs_to_jiffies(2000))) {
2230 usb_kill_urb(urb);
2231 retval = -ETIMEDOUT;
2232 dev_err(hcd->self.controller,
2233 "%s SETUP stage timed out on ep0\n", __func__);
2234 goto out1;
2235 }
2236 msleep(15 * 1000);
2237
2238 /* Complete remaining DATA and STATUS stages using the same URB */
2239 urb->status = -EINPROGRESS;
2240 usb_get_urb(urb);
2241 atomic_inc(&urb->use_count);
2242 atomic_inc(&urb->dev->urbnum);
2243 retval = hcd->driver->submit_single_step_set_feature(hcd, urb, 0);
2244 if (!retval && !wait_for_completion_timeout(&done,
2245 msecs_to_jiffies(2000))) {
2246 usb_kill_urb(urb);
2247 retval = -ETIMEDOUT;
2248 dev_err(hcd->self.controller,
2249 "%s IN stage timed out on ep0\n", __func__);
2250 }
2251out1:
2252 usb_free_urb(urb);
2253cleanup:
2254 kfree(dr);
2255 kfree(buf);
2256 return retval;
2257}
2258EXPORT_SYMBOL_GPL(ehset_single_step_set_feature);
2259#endif /* CONFIG_USB_HCD_TEST_MODE */
2260
2261/*-------------------------------------------------------------------------*/
2262
2263#ifdef CONFIG_PM
2264
2265int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
2266{
2267 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2268 int status;
2269 int old_state = hcd->state;
2270
2271 dev_dbg(&rhdev->dev, "bus %ssuspend, wakeup %d\n",
2272 (PMSG_IS_AUTO(msg) ? "auto-" : ""),
2273 rhdev->do_remote_wakeup);
2274 if (HCD_DEAD(hcd)) {
2275 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
2276 return 0;
2277 }
2278
2279 if (!hcd->driver->bus_suspend) {
2280 status = -ENOENT;
2281 } else {
2282 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2283 hcd->state = HC_STATE_QUIESCING;
2284 status = hcd->driver->bus_suspend(hcd);
2285 }
2286 if (status == 0) {
2287 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
2288 hcd->state = HC_STATE_SUSPENDED;
2289
2290 if (!PMSG_IS_AUTO(msg))
2291 usb_phy_roothub_suspend(hcd->self.sysdev,
2292 hcd->phy_roothub);
2293
2294 /* Did we race with a root-hub wakeup event? */
2295 if (rhdev->do_remote_wakeup) {
2296 char buffer[6];
2297
2298 status = hcd->driver->hub_status_data(hcd, buffer);
2299 if (status != 0) {
2300 dev_dbg(&rhdev->dev, "suspend raced with wakeup event\n");
2301 hcd_bus_resume(rhdev, PMSG_AUTO_RESUME);
2302 status = -EBUSY;
2303 }
2304 }
2305 } else {
2306 spin_lock_irq(&hcd_root_hub_lock);
2307 if (!HCD_DEAD(hcd)) {
2308 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2309 hcd->state = old_state;
2310 }
2311 spin_unlock_irq(&hcd_root_hub_lock);
2312 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2313 "suspend", status);
2314 }
2315 return status;
2316}
2317
2318int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
2319{
2320 struct usb_hcd *hcd = bus_to_hcd(rhdev->bus);
2321 int status;
2322 int old_state = hcd->state;
2323
2324 dev_dbg(&rhdev->dev, "usb %sresume\n",
2325 (PMSG_IS_AUTO(msg) ? "auto-" : ""));
2326 if (HCD_DEAD(hcd)) {
2327 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
2328 return 0;
2329 }
2330
2331 if (!PMSG_IS_AUTO(msg)) {
2332 status = usb_phy_roothub_resume(hcd->self.sysdev,
2333 hcd->phy_roothub);
2334 if (status)
2335 return status;
2336 }
2337
2338 if (!hcd->driver->bus_resume)
2339 return -ENOENT;
2340 if (HCD_RH_RUNNING(hcd))
2341 return 0;
2342
2343 hcd->state = HC_STATE_RESUMING;
2344 status = hcd->driver->bus_resume(hcd);
2345 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2346 if (status == 0)
2347 status = usb_phy_roothub_calibrate(hcd->phy_roothub);
2348
2349 if (status == 0) {
2350 struct usb_device *udev;
2351 int port1;
2352
2353 spin_lock_irq(&hcd_root_hub_lock);
2354 if (!HCD_DEAD(hcd)) {
2355 usb_set_device_state(rhdev, rhdev->actconfig
2356 ? USB_STATE_CONFIGURED
2357 : USB_STATE_ADDRESS);
2358 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2359 hcd->state = HC_STATE_RUNNING;
2360 }
2361 spin_unlock_irq(&hcd_root_hub_lock);
2362
2363 /*
2364 * Check whether any of the enabled ports on the root hub are
2365 * unsuspended. If they are then a TRSMRCY delay is needed
2366 * (this is what the USB-2 spec calls a "global resume").
2367 * Otherwise we can skip the delay.
2368 */
2369 usb_hub_for_each_child(rhdev, port1, udev) {
2370 if (udev->state != USB_STATE_NOTATTACHED &&
2371 !udev->port_is_suspended) {
2372 usleep_range(10000, 11000); /* TRSMRCY */
2373 break;
2374 }
2375 }
2376 } else {
2377 hcd->state = old_state;
2378 usb_phy_roothub_suspend(hcd->self.sysdev, hcd->phy_roothub);
2379 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2380 "resume", status);
2381 if (status != -ESHUTDOWN)
2382 usb_hc_died(hcd);
2383 }
2384 return status;
2385}
2386
2387/* Workqueue routine for root-hub remote wakeup */
2388static void hcd_resume_work(struct work_struct *work)
2389{
2390 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2391 struct usb_device *udev = hcd->self.root_hub;
2392
2393 usb_remote_wakeup(udev);
2394}
2395
2396/**
2397 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2398 * @hcd: host controller for this root hub
2399 *
2400 * The USB host controller calls this function when its root hub is
2401 * suspended (with the remote wakeup feature enabled) and a remote
2402 * wakeup request is received. The routine submits a workqueue request
2403 * to resume the root hub (that is, manage its downstream ports again).
2404 */
2405void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2406{
2407 unsigned long flags;
2408
2409 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2410 if (hcd->rh_registered) {
2411 pm_wakeup_event(&hcd->self.root_hub->dev, 0);
2412 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2413 queue_work(pm_wq, &hcd->wakeup_work);
2414 }
2415 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2416}
2417EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2418
2419#endif /* CONFIG_PM */
2420
2421/*-------------------------------------------------------------------------*/
2422
2423#ifdef CONFIG_USB_OTG
2424
2425/**
2426 * usb_bus_start_enum - start immediate enumeration (for OTG)
2427 * @bus: the bus (must use hcd framework)
2428 * @port_num: 1-based number of port; usually bus->otg_port
2429 * Context: atomic
2430 *
2431 * Starts enumeration, with an immediate reset followed later by
2432 * hub_wq identifying and possibly configuring the device.
2433 * This is needed by OTG controller drivers, where it helps meet
2434 * HNP protocol timing requirements for starting a port reset.
2435 *
2436 * Return: 0 if successful.
2437 */
2438int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2439{
2440 struct usb_hcd *hcd;
2441 int status = -EOPNOTSUPP;
2442
2443 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2444 * boards with root hubs hooked up to internal devices (instead of
2445 * just the OTG port) may need more attention to resetting...
2446 */
2447 hcd = bus_to_hcd(bus);
2448 if (port_num && hcd->driver->start_port_reset)
2449 status = hcd->driver->start_port_reset(hcd, port_num);
2450
2451 /* allocate hub_wq shortly after (first) root port reset finishes;
2452 * it may issue others, until at least 50 msecs have passed.
2453 */
2454 if (status == 0)
2455 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2456 return status;
2457}
2458EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2459
2460#endif
2461
2462/*-------------------------------------------------------------------------*/
2463
2464/**
2465 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2466 * @irq: the IRQ being raised
2467 * @__hcd: pointer to the HCD whose IRQ is being signaled
2468 *
2469 * If the controller isn't HALTed, calls the driver's irq handler.
2470 * Checks whether the controller is now dead.
2471 *
2472 * Return: %IRQ_HANDLED if the IRQ was handled. %IRQ_NONE otherwise.
2473 */
2474irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2475{
2476 struct usb_hcd *hcd = __hcd;
2477 irqreturn_t rc;
2478
2479 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd)))
2480 rc = IRQ_NONE;
2481 else if (hcd->driver->irq(hcd) == IRQ_NONE)
2482 rc = IRQ_NONE;
2483 else
2484 rc = IRQ_HANDLED;
2485
2486 return rc;
2487}
2488EXPORT_SYMBOL_GPL(usb_hcd_irq);
2489
2490/*-------------------------------------------------------------------------*/
2491
2492/* Workqueue routine for when the root-hub has died. */
2493static void hcd_died_work(struct work_struct *work)
2494{
2495 struct usb_hcd *hcd = container_of(work, struct usb_hcd, died_work);
2496 static char *env[] = {
2497 "ERROR=DEAD",
2498 NULL
2499 };
2500
2501 /* Notify user space that the host controller has died */
2502 kobject_uevent_env(&hcd->self.root_hub->dev.kobj, KOBJ_OFFLINE, env);
2503}
2504
2505/**
2506 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2507 * @hcd: pointer to the HCD representing the controller
2508 *
2509 * This is called by bus glue to report a USB host controller that died
2510 * while operations may still have been pending. It's called automatically
2511 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2512 *
2513 * Only call this function with the primary HCD.
2514 */
2515void usb_hc_died (struct usb_hcd *hcd)
2516{
2517 unsigned long flags;
2518
2519 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2520
2521 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2522 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2523 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2524 if (hcd->rh_registered) {
2525 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2526
2527 /* make hub_wq clean up old urbs and devices */
2528 usb_set_device_state (hcd->self.root_hub,
2529 USB_STATE_NOTATTACHED);
2530 usb_kick_hub_wq(hcd->self.root_hub);
2531 }
2532 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2533 hcd = hcd->shared_hcd;
2534 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2535 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2536 if (hcd->rh_registered) {
2537 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2538
2539 /* make hub_wq clean up old urbs and devices */
2540 usb_set_device_state(hcd->self.root_hub,
2541 USB_STATE_NOTATTACHED);
2542 usb_kick_hub_wq(hcd->self.root_hub);
2543 }
2544 }
2545
2546 /* Handle the case where this function gets called with a shared HCD */
2547 if (usb_hcd_is_primary_hcd(hcd))
2548 schedule_work(&hcd->died_work);
2549 else
2550 schedule_work(&hcd->primary_hcd->died_work);
2551
2552 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2553 /* Make sure that the other roothub is also deallocated. */
2554}
2555EXPORT_SYMBOL_GPL (usb_hc_died);
2556
2557/*-------------------------------------------------------------------------*/
2558
2559static void init_giveback_urb_bh(struct giveback_urb_bh *bh)
2560{
2561
2562 spin_lock_init(&bh->lock);
2563 INIT_LIST_HEAD(&bh->head);
2564 tasklet_setup(&bh->bh, usb_giveback_urb_bh);
2565}
2566
2567struct usb_hcd *__usb_create_hcd(const struct hc_driver *driver,
2568 struct device *sysdev, struct device *dev, const char *bus_name,
2569 struct usb_hcd *primary_hcd)
2570{
2571 struct usb_hcd *hcd;
2572
2573 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2574 if (!hcd)
2575 return NULL;
2576 if (primary_hcd == NULL) {
2577 hcd->address0_mutex = kmalloc(sizeof(*hcd->address0_mutex),
2578 GFP_KERNEL);
2579 if (!hcd->address0_mutex) {
2580 kfree(hcd);
2581 dev_dbg(dev, "hcd address0 mutex alloc failed\n");
2582 return NULL;
2583 }
2584 mutex_init(hcd->address0_mutex);
2585 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2586 GFP_KERNEL);
2587 if (!hcd->bandwidth_mutex) {
2588 kfree(hcd->address0_mutex);
2589 kfree(hcd);
2590 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2591 return NULL;
2592 }
2593 mutex_init(hcd->bandwidth_mutex);
2594 dev_set_drvdata(dev, hcd);
2595 } else {
2596 mutex_lock(&usb_port_peer_mutex);
2597 hcd->address0_mutex = primary_hcd->address0_mutex;
2598 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2599 hcd->primary_hcd = primary_hcd;
2600 primary_hcd->primary_hcd = primary_hcd;
2601 hcd->shared_hcd = primary_hcd;
2602 primary_hcd->shared_hcd = hcd;
2603 mutex_unlock(&usb_port_peer_mutex);
2604 }
2605
2606 kref_init(&hcd->kref);
2607
2608 usb_bus_init(&hcd->self);
2609 hcd->self.controller = dev;
2610 hcd->self.sysdev = sysdev;
2611 hcd->self.bus_name = bus_name;
2612
2613 timer_setup(&hcd->rh_timer, rh_timer_func, 0);
2614#ifdef CONFIG_PM
2615 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2616#endif
2617
2618 INIT_WORK(&hcd->died_work, hcd_died_work);
2619
2620 hcd->driver = driver;
2621 hcd->speed = driver->flags & HCD_MASK;
2622 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2623 "USB Host Controller";
2624 return hcd;
2625}
2626EXPORT_SYMBOL_GPL(__usb_create_hcd);
2627
2628/**
2629 * usb_create_shared_hcd - create and initialize an HCD structure
2630 * @driver: HC driver that will use this hcd
2631 * @dev: device for this HC, stored in hcd->self.controller
2632 * @bus_name: value to store in hcd->self.bus_name
2633 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2634 * PCI device. Only allocate certain resources for the primary HCD
2635 *
2636 * Context: task context, might sleep.
2637 *
2638 * Allocate a struct usb_hcd, with extra space at the end for the
2639 * HC driver's private data. Initialize the generic members of the
2640 * hcd structure.
2641 *
2642 * Return: On success, a pointer to the created and initialized HCD structure.
2643 * On failure (e.g. if memory is unavailable), %NULL.
2644 */
2645struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2646 struct device *dev, const char *bus_name,
2647 struct usb_hcd *primary_hcd)
2648{
2649 return __usb_create_hcd(driver, dev, dev, bus_name, primary_hcd);
2650}
2651EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2652
2653/**
2654 * usb_create_hcd - create and initialize an HCD structure
2655 * @driver: HC driver that will use this hcd
2656 * @dev: device for this HC, stored in hcd->self.controller
2657 * @bus_name: value to store in hcd->self.bus_name
2658 *
2659 * Context: task context, might sleep.
2660 *
2661 * Allocate a struct usb_hcd, with extra space at the end for the
2662 * HC driver's private data. Initialize the generic members of the
2663 * hcd structure.
2664 *
2665 * Return: On success, a pointer to the created and initialized HCD
2666 * structure. On failure (e.g. if memory is unavailable), %NULL.
2667 */
2668struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2669 struct device *dev, const char *bus_name)
2670{
2671 return __usb_create_hcd(driver, dev, dev, bus_name, NULL);
2672}
2673EXPORT_SYMBOL_GPL(usb_create_hcd);
2674
2675/*
2676 * Roothubs that share one PCI device must also share the bandwidth mutex.
2677 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2678 * deallocated.
2679 *
2680 * Make sure to deallocate the bandwidth_mutex only when the last HCD is
2681 * freed. When hcd_release() is called for either hcd in a peer set,
2682 * invalidate the peer's ->shared_hcd and ->primary_hcd pointers.
2683 */
2684static void hcd_release(struct kref *kref)
2685{
2686 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2687
2688 mutex_lock(&usb_port_peer_mutex);
2689 if (hcd->shared_hcd) {
2690 struct usb_hcd *peer = hcd->shared_hcd;
2691
2692 peer->shared_hcd = NULL;
2693 peer->primary_hcd = NULL;
2694 } else {
2695 kfree(hcd->address0_mutex);
2696 kfree(hcd->bandwidth_mutex);
2697 }
2698 mutex_unlock(&usb_port_peer_mutex);
2699 kfree(hcd);
2700}
2701
2702struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2703{
2704 if (hcd)
2705 kref_get (&hcd->kref);
2706 return hcd;
2707}
2708EXPORT_SYMBOL_GPL(usb_get_hcd);
2709
2710void usb_put_hcd (struct usb_hcd *hcd)
2711{
2712 if (hcd)
2713 kref_put (&hcd->kref, hcd_release);
2714}
2715EXPORT_SYMBOL_GPL(usb_put_hcd);
2716
2717int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2718{
2719 if (!hcd->primary_hcd)
2720 return 1;
2721 return hcd == hcd->primary_hcd;
2722}
2723EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2724
2725int usb_hcd_find_raw_port_number(struct usb_hcd *hcd, int port1)
2726{
2727 if (!hcd->driver->find_raw_port_number)
2728 return port1;
2729
2730 return hcd->driver->find_raw_port_number(hcd, port1);
2731}
2732
2733static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2734 unsigned int irqnum, unsigned long irqflags)
2735{
2736 int retval;
2737
2738 if (hcd->driver->irq) {
2739
2740 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2741 hcd->driver->description, hcd->self.busnum);
2742 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2743 hcd->irq_descr, hcd);
2744 if (retval != 0) {
2745 dev_err(hcd->self.controller,
2746 "request interrupt %d failed\n",
2747 irqnum);
2748 return retval;
2749 }
2750 hcd->irq = irqnum;
2751 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2752 (hcd->driver->flags & HCD_MEMORY) ?
2753 "io mem" : "io port",
2754 (unsigned long long)hcd->rsrc_start);
2755 } else {
2756 hcd->irq = 0;
2757 if (hcd->rsrc_start)
2758 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2759 (hcd->driver->flags & HCD_MEMORY) ?
2760 "io mem" : "io port",
2761 (unsigned long long)hcd->rsrc_start);
2762 }
2763 return 0;
2764}
2765
2766/*
2767 * Before we free this root hub, flush in-flight peering attempts
2768 * and disable peer lookups
2769 */
2770static void usb_put_invalidate_rhdev(struct usb_hcd *hcd)
2771{
2772 struct usb_device *rhdev;
2773
2774 mutex_lock(&usb_port_peer_mutex);
2775 rhdev = hcd->self.root_hub;
2776 hcd->self.root_hub = NULL;
2777 mutex_unlock(&usb_port_peer_mutex);
2778 usb_put_dev(rhdev);
2779}
2780
2781/**
2782 * usb_stop_hcd - Halt the HCD
2783 * @hcd: the usb_hcd that has to be halted
2784 *
2785 * Stop the root-hub polling timer and invoke the HCD's ->stop callback.
2786 */
2787static void usb_stop_hcd(struct usb_hcd *hcd)
2788{
2789 hcd->rh_pollable = 0;
2790 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2791 del_timer_sync(&hcd->rh_timer);
2792
2793 hcd->driver->stop(hcd);
2794 hcd->state = HC_STATE_HALT;
2795
2796 /* In case the HCD restarted the timer, stop it again. */
2797 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2798 del_timer_sync(&hcd->rh_timer);
2799}
2800
2801/**
2802 * usb_add_hcd - finish generic HCD structure initialization and register
2803 * @hcd: the usb_hcd structure to initialize
2804 * @irqnum: Interrupt line to allocate
2805 * @irqflags: Interrupt type flags
2806 *
2807 * Finish the remaining parts of generic HCD initialization: allocate the
2808 * buffers of consistent memory, register the bus, request the IRQ line,
2809 * and call the driver's reset() and start() routines.
2810 */
2811int usb_add_hcd(struct usb_hcd *hcd,
2812 unsigned int irqnum, unsigned long irqflags)
2813{
2814 int retval;
2815 struct usb_device *rhdev;
2816 struct usb_hcd *shared_hcd;
2817
2818 if (!hcd->skip_phy_initialization && usb_hcd_is_primary_hcd(hcd)) {
2819 hcd->phy_roothub = usb_phy_roothub_alloc(hcd->self.sysdev);
2820 if (IS_ERR(hcd->phy_roothub))
2821 return PTR_ERR(hcd->phy_roothub);
2822
2823 retval = usb_phy_roothub_init(hcd->phy_roothub);
2824 if (retval)
2825 return retval;
2826
2827 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2828 PHY_MODE_USB_HOST_SS);
2829 if (retval)
2830 retval = usb_phy_roothub_set_mode(hcd->phy_roothub,
2831 PHY_MODE_USB_HOST);
2832 if (retval)
2833 goto err_usb_phy_roothub_power_on;
2834
2835 retval = usb_phy_roothub_power_on(hcd->phy_roothub);
2836 if (retval)
2837 goto err_usb_phy_roothub_power_on;
2838 }
2839
2840 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2841
2842 switch (authorized_default) {
2843 case USB_AUTHORIZE_NONE:
2844 hcd->dev_policy = USB_DEVICE_AUTHORIZE_NONE;
2845 break;
2846
2847 case USB_AUTHORIZE_ALL:
2848 hcd->dev_policy = USB_DEVICE_AUTHORIZE_ALL;
2849 break;
2850
2851 case USB_AUTHORIZE_INTERNAL:
2852 hcd->dev_policy = USB_DEVICE_AUTHORIZE_INTERNAL;
2853 break;
2854
2855 case USB_AUTHORIZE_WIRED:
2856 default:
2857 hcd->dev_policy = hcd->wireless ?
2858 USB_DEVICE_AUTHORIZE_NONE : USB_DEVICE_AUTHORIZE_ALL;
2859 break;
2860 }
2861
2862 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2863
2864 /* per default all interfaces are authorized */
2865 set_bit(HCD_FLAG_INTF_AUTHORIZED, &hcd->flags);
2866
2867 /* HC is in reset state, but accessible. Now do the one-time init,
2868 * bottom up so that hcds can customize the root hubs before hub_wq
2869 * starts talking to them. (Note, bus id is assigned early too.)
2870 */
2871 retval = hcd_buffer_create(hcd);
2872 if (retval != 0) {
2873 dev_dbg(hcd->self.sysdev, "pool alloc failed\n");
2874 goto err_create_buf;
2875 }
2876
2877 retval = usb_register_bus(&hcd->self);
2878 if (retval < 0)
2879 goto err_register_bus;
2880
2881 rhdev = usb_alloc_dev(NULL, &hcd->self, 0);
2882 if (rhdev == NULL) {
2883 dev_err(hcd->self.sysdev, "unable to allocate root hub\n");
2884 retval = -ENOMEM;
2885 goto err_allocate_root_hub;
2886 }
2887 mutex_lock(&usb_port_peer_mutex);
2888 hcd->self.root_hub = rhdev;
2889 mutex_unlock(&usb_port_peer_mutex);
2890
2891 rhdev->rx_lanes = 1;
2892 rhdev->tx_lanes = 1;
2893 rhdev->ssp_rate = USB_SSP_GEN_UNKNOWN;
2894
2895 switch (hcd->speed) {
2896 case HCD_USB11:
2897 rhdev->speed = USB_SPEED_FULL;
2898 break;
2899 case HCD_USB2:
2900 rhdev->speed = USB_SPEED_HIGH;
2901 break;
2902 case HCD_USB25:
2903 rhdev->speed = USB_SPEED_WIRELESS;
2904 break;
2905 case HCD_USB3:
2906 rhdev->speed = USB_SPEED_SUPER;
2907 break;
2908 case HCD_USB32:
2909 rhdev->rx_lanes = 2;
2910 rhdev->tx_lanes = 2;
2911 rhdev->ssp_rate = USB_SSP_GEN_2x2;
2912 rhdev->speed = USB_SPEED_SUPER_PLUS;
2913 break;
2914 case HCD_USB31:
2915 rhdev->ssp_rate = USB_SSP_GEN_2x1;
2916 rhdev->speed = USB_SPEED_SUPER_PLUS;
2917 break;
2918 default:
2919 retval = -EINVAL;
2920 goto err_set_rh_speed;
2921 }
2922
2923 /* wakeup flag init defaults to "everything works" for root hubs,
2924 * but drivers can override it in reset() if needed, along with
2925 * recording the overall controller's system wakeup capability.
2926 */
2927 device_set_wakeup_capable(&rhdev->dev, 1);
2928
2929 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2930 * registered. But since the controller can die at any time,
2931 * let's initialize the flag before touching the hardware.
2932 */
2933 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2934
2935 /* "reset" is misnamed; its role is now one-time init. the controller
2936 * should already have been reset (and boot firmware kicked off etc).
2937 */
2938 if (hcd->driver->reset) {
2939 retval = hcd->driver->reset(hcd);
2940 if (retval < 0) {
2941 dev_err(hcd->self.controller, "can't setup: %d\n",
2942 retval);
2943 goto err_hcd_driver_setup;
2944 }
2945 }
2946 hcd->rh_pollable = 1;
2947
2948 retval = usb_phy_roothub_calibrate(hcd->phy_roothub);
2949 if (retval)
2950 goto err_hcd_driver_setup;
2951
2952 /* NOTE: root hub and controller capabilities may not be the same */
2953 if (device_can_wakeup(hcd->self.controller)
2954 && device_can_wakeup(&hcd->self.root_hub->dev))
2955 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2956
2957 /* initialize tasklets */
2958 init_giveback_urb_bh(&hcd->high_prio_bh);
2959 hcd->high_prio_bh.high_prio = true;
2960 init_giveback_urb_bh(&hcd->low_prio_bh);
2961
2962 /* enable irqs just before we start the controller,
2963 * if the BIOS provides legacy PCI irqs.
2964 */
2965 if (usb_hcd_is_primary_hcd(hcd) && irqnum) {
2966 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2967 if (retval)
2968 goto err_request_irq;
2969 }
2970
2971 hcd->state = HC_STATE_RUNNING;
2972 retval = hcd->driver->start(hcd);
2973 if (retval < 0) {
2974 dev_err(hcd->self.controller, "startup error %d\n", retval);
2975 goto err_hcd_driver_start;
2976 }
2977
2978 /* starting here, usbcore will pay attention to the shared HCD roothub */
2979 shared_hcd = hcd->shared_hcd;
2980 if (!usb_hcd_is_primary_hcd(hcd) && shared_hcd && HCD_DEFER_RH_REGISTER(shared_hcd)) {
2981 retval = register_root_hub(shared_hcd);
2982 if (retval != 0)
2983 goto err_register_root_hub;
2984
2985 if (shared_hcd->uses_new_polling && HCD_POLL_RH(shared_hcd))
2986 usb_hcd_poll_rh_status(shared_hcd);
2987 }
2988
2989 /* starting here, usbcore will pay attention to this root hub */
2990 if (!HCD_DEFER_RH_REGISTER(hcd)) {
2991 retval = register_root_hub(hcd);
2992 if (retval != 0)
2993 goto err_register_root_hub;
2994
2995 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2996 usb_hcd_poll_rh_status(hcd);
2997 }
2998
2999 return retval;
3000
3001err_register_root_hub:
3002 usb_stop_hcd(hcd);
3003err_hcd_driver_start:
3004 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq > 0)
3005 free_irq(irqnum, hcd);
3006err_request_irq:
3007err_hcd_driver_setup:
3008err_set_rh_speed:
3009 usb_put_invalidate_rhdev(hcd);
3010err_allocate_root_hub:
3011 usb_deregister_bus(&hcd->self);
3012err_register_bus:
3013 hcd_buffer_destroy(hcd);
3014err_create_buf:
3015 usb_phy_roothub_power_off(hcd->phy_roothub);
3016err_usb_phy_roothub_power_on:
3017 usb_phy_roothub_exit(hcd->phy_roothub);
3018
3019 return retval;
3020}
3021EXPORT_SYMBOL_GPL(usb_add_hcd);
3022
3023/**
3024 * usb_remove_hcd - shutdown processing for generic HCDs
3025 * @hcd: the usb_hcd structure to remove
3026 *
3027 * Context: task context, might sleep.
3028 *
3029 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
3030 * invoking the HCD's stop() method.
3031 */
3032void usb_remove_hcd(struct usb_hcd *hcd)
3033{
3034 struct usb_device *rhdev;
3035 bool rh_registered;
3036
3037 if (!hcd) {
3038 pr_debug("%s: hcd is NULL\n", __func__);
3039 return;
3040 }
3041 rhdev = hcd->self.root_hub;
3042
3043 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
3044
3045 usb_get_dev(rhdev);
3046 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
3047 if (HC_IS_RUNNING (hcd->state))
3048 hcd->state = HC_STATE_QUIESCING;
3049
3050 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
3051 spin_lock_irq (&hcd_root_hub_lock);
3052 rh_registered = hcd->rh_registered;
3053 hcd->rh_registered = 0;
3054 spin_unlock_irq (&hcd_root_hub_lock);
3055
3056#ifdef CONFIG_PM
3057 cancel_work_sync(&hcd->wakeup_work);
3058#endif
3059 cancel_work_sync(&hcd->died_work);
3060
3061 mutex_lock(&usb_bus_idr_lock);
3062 if (rh_registered)
3063 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
3064 mutex_unlock(&usb_bus_idr_lock);
3065
3066 /*
3067 * tasklet_kill() isn't needed here because:
3068 * - driver's disconnect() called from usb_disconnect() should
3069 * make sure its URBs are completed during the disconnect()
3070 * callback
3071 *
3072 * - it is too late to run complete() here since driver may have
3073 * been removed already now
3074 */
3075
3076 /* Prevent any more root-hub status calls from the timer.
3077 * The HCD might still restart the timer (if a port status change
3078 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
3079 * the hub_status_data() callback.
3080 */
3081 usb_stop_hcd(hcd);
3082
3083 if (usb_hcd_is_primary_hcd(hcd)) {
3084 if (hcd->irq > 0)
3085 free_irq(hcd->irq, hcd);
3086 }
3087
3088 usb_deregister_bus(&hcd->self);
3089 hcd_buffer_destroy(hcd);
3090
3091 usb_phy_roothub_power_off(hcd->phy_roothub);
3092 usb_phy_roothub_exit(hcd->phy_roothub);
3093
3094 usb_put_invalidate_rhdev(hcd);
3095 hcd->flags = 0;
3096}
3097EXPORT_SYMBOL_GPL(usb_remove_hcd);
3098
3099void
3100usb_hcd_platform_shutdown(struct platform_device *dev)
3101{
3102 struct usb_hcd *hcd = platform_get_drvdata(dev);
3103
3104 /* No need for pm_runtime_put(), we're shutting down */
3105 pm_runtime_get_sync(&dev->dev);
3106
3107 if (hcd->driver->shutdown)
3108 hcd->driver->shutdown(hcd);
3109}
3110EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
3111
3112int usb_hcd_setup_local_mem(struct usb_hcd *hcd, phys_addr_t phys_addr,
3113 dma_addr_t dma, size_t size)
3114{
3115 int err;
3116 void *local_mem;
3117
3118 hcd->localmem_pool = devm_gen_pool_create(hcd->self.sysdev, 4,
3119 dev_to_node(hcd->self.sysdev),
3120 dev_name(hcd->self.sysdev));
3121 if (IS_ERR(hcd->localmem_pool))
3122 return PTR_ERR(hcd->localmem_pool);
3123
3124 /*
3125 * if a physical SRAM address was passed, map it, otherwise
3126 * allocate system memory as a buffer.
3127 */
3128 if (phys_addr)
3129 local_mem = devm_memremap(hcd->self.sysdev, phys_addr,
3130 size, MEMREMAP_WC);
3131 else
3132 local_mem = dmam_alloc_attrs(hcd->self.sysdev, size, &dma,
3133 GFP_KERNEL,
3134 DMA_ATTR_WRITE_COMBINE);
3135
3136 if (IS_ERR_OR_NULL(local_mem)) {
3137 if (!local_mem)
3138 return -ENOMEM;
3139
3140 return PTR_ERR(local_mem);
3141 }
3142
3143 /*
3144 * Here we pass a dma_addr_t but the arg type is a phys_addr_t.
3145 * It's not backed by system memory and thus there's no kernel mapping
3146 * for it.
3147 */
3148 err = gen_pool_add_virt(hcd->localmem_pool, (unsigned long)local_mem,
3149 dma, size, dev_to_node(hcd->self.sysdev));
3150 if (err < 0) {
3151 dev_err(hcd->self.sysdev, "gen_pool_add_virt failed with %d\n",
3152 err);
3153 return err;
3154 }
3155
3156 return 0;
3157}
3158EXPORT_SYMBOL_GPL(usb_hcd_setup_local_mem);
3159
3160/*-------------------------------------------------------------------------*/
3161
3162#if IS_ENABLED(CONFIG_USB_MON)
3163
3164const struct usb_mon_operations *mon_ops;
3165
3166/*
3167 * The registration is unlocked.
3168 * We do it this way because we do not want to lock in hot paths.
3169 *
3170 * Notice that the code is minimally error-proof. Because usbmon needs
3171 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
3172 */
3173
3174int usb_mon_register(const struct usb_mon_operations *ops)
3175{
3176
3177 if (mon_ops)
3178 return -EBUSY;
3179
3180 mon_ops = ops;
3181 mb();
3182 return 0;
3183}
3184EXPORT_SYMBOL_GPL (usb_mon_register);
3185
3186void usb_mon_deregister (void)
3187{
3188
3189 if (mon_ops == NULL) {
3190 printk(KERN_ERR "USB: monitor was not registered\n");
3191 return;
3192 }
3193 mon_ops = NULL;
3194 mb();
3195}
3196EXPORT_SYMBOL_GPL (usb_mon_deregister);
3197
3198#endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */