Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
v4.10.11
 
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
 
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
 
 
 
 
  25#include <linux/syscalls.h>
  26#include <linux/vmalloc.h>
  27#include "kexec_internal.h"
  28
 
 
  29/*
  30 * Declare these symbols weak so that if architecture provides a purgatory,
  31 * these will be overridden.
 
  32 */
  33char __weak kexec_purgatory[0];
  34size_t __weak kexec_purgatory_size = 0;
 
 
 
  35
  36static int kexec_calculate_store_digests(struct kimage *image);
 
 
 
 
 
 
 
 
 
  37
  38/* Architectures can provide this probe function */
  39int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  40					 unsigned long buf_len)
  41{
  42	return -ENOEXEC;
 
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  46{
  47	return ERR_PTR(-ENOEXEC);
 
 
 
 
 
 
 
 
  48}
  49
  50int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  51{
  52	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
  53}
  54
  55#ifdef CONFIG_KEXEC_VERIFY_SIG
  56int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  57					unsigned long buf_len)
  58{
  59	return -EKEYREJECTED;
  60}
  61#endif
  62
  63/* Apply relocations of type RELA */
 
 
 
 
 
 
 
 
  64int __weak
  65arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  66				 unsigned int relsec)
  67{
  68	pr_err("RELA relocation unsupported.\n");
  69	return -ENOEXEC;
  70}
  71
  72/* Apply relocations of type REL */
 
 
 
 
 
 
 
 
  73int __weak
  74arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  75			     unsigned int relsec)
  76{
  77	pr_err("REL relocation unsupported.\n");
  78	return -ENOEXEC;
  79}
  80
  81/*
  82 * Free up memory used by kernel, initrd, and command line. This is temporary
  83 * memory allocation which is not needed any more after these buffers have
  84 * been loaded into separate segments and have been copied elsewhere.
  85 */
  86void kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	struct purgatory_info *pi = &image->purgatory_info;
  89
  90	vfree(image->kernel_buf);
  91	image->kernel_buf = NULL;
  92
  93	vfree(image->initrd_buf);
  94	image->initrd_buf = NULL;
  95
  96	kfree(image->cmdline_buf);
  97	image->cmdline_buf = NULL;
  98
  99	vfree(pi->purgatory_buf);
 100	pi->purgatory_buf = NULL;
 101
 102	vfree(pi->sechdrs);
 103	pi->sechdrs = NULL;
 104
 
 
 
 
 
 105	/* See if architecture has anything to cleanup post load */
 106	arch_kimage_file_post_load_cleanup(image);
 107
 108	/*
 109	 * Above call should have called into bootloader to free up
 110	 * any data stored in kimage->image_loader_data. It should
 111	 * be ok now to free it up.
 112	 */
 113	kfree(image->image_loader_data);
 114	image->image_loader_data = NULL;
 115}
 116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 117/*
 118 * In file mode list of segments is prepared by kernel. Copy relevant
 119 * data from user space, do error checking, prepare segment list
 120 */
 121static int
 122kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 123			     const char __user *cmdline_ptr,
 124			     unsigned long cmdline_len, unsigned flags)
 125{
 126	int ret = 0;
 127	void *ldata;
 128	loff_t size;
 129
 130	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 131				       &size, INT_MAX, READING_KEXEC_IMAGE);
 132	if (ret)
 133		return ret;
 134	image->kernel_buf_len = size;
 135
 136	/* IMA needs to pass the measurement list to the next kernel. */
 137	ima_add_kexec_buffer(image);
 138
 139	/* Call arch image probe handlers */
 140	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 141					    image->kernel_buf_len);
 142	if (ret)
 143		goto out;
 144
 145#ifdef CONFIG_KEXEC_VERIFY_SIG
 146	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 147					   image->kernel_buf_len);
 148	if (ret) {
 149		pr_debug("kernel signature verification failed.\n");
 150		goto out;
 151	}
 152	pr_debug("kernel signature verification successful.\n");
 153#endif
 154	/* It is possible that there no initramfs is being loaded */
 155	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 156		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 157					       &size, INT_MAX,
 158					       READING_KEXEC_INITRAMFS);
 159		if (ret)
 160			goto out;
 161		image->initrd_buf_len = size;
 
 162	}
 163
 164	if (cmdline_len) {
 165		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 166		if (!image->cmdline_buf) {
 167			ret = -ENOMEM;
 168			goto out;
 169		}
 170
 171		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 172				     cmdline_len);
 173		if (ret) {
 174			ret = -EFAULT;
 175			goto out;
 176		}
 177
 178		image->cmdline_buf_len = cmdline_len;
 179
 180		/* command line should be a string with last byte null */
 181		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 182			ret = -EINVAL;
 183			goto out;
 184		}
 
 
 
 185	}
 186
 
 
 
 187	/* Call arch image load handlers */
 188	ldata = arch_kexec_kernel_image_load(image);
 189
 190	if (IS_ERR(ldata)) {
 191		ret = PTR_ERR(ldata);
 192		goto out;
 193	}
 194
 195	image->image_loader_data = ldata;
 196out:
 197	/* In case of error, free up all allocated memory in this function */
 198	if (ret)
 199		kimage_file_post_load_cleanup(image);
 200	return ret;
 201}
 202
 203static int
 204kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 205		       int initrd_fd, const char __user *cmdline_ptr,
 206		       unsigned long cmdline_len, unsigned long flags)
 207{
 208	int ret;
 209	struct kimage *image;
 210	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 211
 212	image = do_kimage_alloc_init();
 213	if (!image)
 214		return -ENOMEM;
 215
 216	image->file_mode = 1;
 217
 218	if (kexec_on_panic) {
 219		/* Enable special crash kernel control page alloc policy. */
 220		image->control_page = crashk_res.start;
 221		image->type = KEXEC_TYPE_CRASH;
 222	}
 223
 224	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 225					   cmdline_ptr, cmdline_len, flags);
 226	if (ret)
 227		goto out_free_image;
 228
 229	ret = sanity_check_segment_list(image);
 230	if (ret)
 231		goto out_free_post_load_bufs;
 232
 233	ret = -ENOMEM;
 234	image->control_code_page = kimage_alloc_control_pages(image,
 235					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 236	if (!image->control_code_page) {
 237		pr_err("Could not allocate control_code_buffer\n");
 238		goto out_free_post_load_bufs;
 239	}
 240
 241	if (!kexec_on_panic) {
 242		image->swap_page = kimage_alloc_control_pages(image, 0);
 243		if (!image->swap_page) {
 244			pr_err("Could not allocate swap buffer\n");
 245			goto out_free_control_pages;
 246		}
 247	}
 248
 249	*rimage = image;
 250	return 0;
 251out_free_control_pages:
 252	kimage_free_page_list(&image->control_pages);
 253out_free_post_load_bufs:
 254	kimage_file_post_load_cleanup(image);
 255out_free_image:
 256	kfree(image);
 257	return ret;
 258}
 259
 260SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 261		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 262		unsigned long, flags)
 263{
 264	int ret = 0, i;
 265	struct kimage **dest_image, *image;
 266
 267	/* We only trust the superuser with rebooting the system. */
 268	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 269		return -EPERM;
 270
 271	/* Make sure we have a legal set of flags */
 272	if (flags != (flags & KEXEC_FILE_FLAGS))
 273		return -EINVAL;
 274
 275	image = NULL;
 276
 277	if (!mutex_trylock(&kexec_mutex))
 278		return -EBUSY;
 279
 280	dest_image = &kexec_image;
 281	if (flags & KEXEC_FILE_ON_CRASH) {
 282		dest_image = &kexec_crash_image;
 283		if (kexec_crash_image)
 284			arch_kexec_unprotect_crashkres();
 285	}
 286
 287	if (flags & KEXEC_FILE_UNLOAD)
 288		goto exchange;
 289
 290	/*
 291	 * In case of crash, new kernel gets loaded in reserved region. It is
 292	 * same memory where old crash kernel might be loaded. Free any
 293	 * current crash dump kernel before we corrupt it.
 294	 */
 295	if (flags & KEXEC_FILE_ON_CRASH)
 296		kimage_free(xchg(&kexec_crash_image, NULL));
 297
 298	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 299				     cmdline_len, flags);
 300	if (ret)
 301		goto out;
 302
 303	ret = machine_kexec_prepare(image);
 304	if (ret)
 305		goto out;
 306
 
 
 
 
 
 
 
 
 307	ret = kexec_calculate_store_digests(image);
 308	if (ret)
 309		goto out;
 310
 311	for (i = 0; i < image->nr_segments; i++) {
 312		struct kexec_segment *ksegment;
 313
 314		ksegment = &image->segment[i];
 315		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 316			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 317			 ksegment->memsz);
 318
 319		ret = kimage_load_segment(image, &image->segment[i]);
 320		if (ret)
 321			goto out;
 322	}
 323
 324	kimage_terminate(image);
 325
 
 
 
 
 326	/*
 327	 * Free up any temporary buffers allocated which are not needed
 328	 * after image has been loaded
 329	 */
 330	kimage_file_post_load_cleanup(image);
 331exchange:
 332	image = xchg(dest_image, image);
 333out:
 334	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 335		arch_kexec_protect_crashkres();
 336
 337	mutex_unlock(&kexec_mutex);
 338	kimage_free(image);
 339	return ret;
 340}
 341
 342static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 343				    struct kexec_buf *kbuf)
 344{
 345	struct kimage *image = kbuf->image;
 346	unsigned long temp_start, temp_end;
 347
 348	temp_end = min(end, kbuf->buf_max);
 349	temp_start = temp_end - kbuf->memsz;
 350
 351	do {
 352		/* align down start */
 353		temp_start = temp_start & (~(kbuf->buf_align - 1));
 354
 355		if (temp_start < start || temp_start < kbuf->buf_min)
 356			return 0;
 357
 358		temp_end = temp_start + kbuf->memsz - 1;
 359
 360		/*
 361		 * Make sure this does not conflict with any of existing
 362		 * segments
 363		 */
 364		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 365			temp_start = temp_start - PAGE_SIZE;
 366			continue;
 367		}
 368
 369		/* We found a suitable memory range */
 370		break;
 371	} while (1);
 372
 373	/* If we are here, we found a suitable memory range */
 374	kbuf->mem = temp_start;
 375
 376	/* Success, stop navigating through remaining System RAM ranges */
 377	return 1;
 378}
 379
 380static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 381				     struct kexec_buf *kbuf)
 382{
 383	struct kimage *image = kbuf->image;
 384	unsigned long temp_start, temp_end;
 385
 386	temp_start = max(start, kbuf->buf_min);
 387
 388	do {
 389		temp_start = ALIGN(temp_start, kbuf->buf_align);
 390		temp_end = temp_start + kbuf->memsz - 1;
 391
 392		if (temp_end > end || temp_end > kbuf->buf_max)
 393			return 0;
 394		/*
 395		 * Make sure this does not conflict with any of existing
 396		 * segments
 397		 */
 398		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 399			temp_start = temp_start + PAGE_SIZE;
 400			continue;
 401		}
 402
 403		/* We found a suitable memory range */
 404		break;
 405	} while (1);
 406
 407	/* If we are here, we found a suitable memory range */
 408	kbuf->mem = temp_start;
 409
 410	/* Success, stop navigating through remaining System RAM ranges */
 411	return 1;
 412}
 413
 414static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 415{
 416	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
 417	unsigned long sz = end - start + 1;
 418
 419	/* Returning 0 will take to next memory range */
 
 
 
 
 
 420	if (sz < kbuf->memsz)
 421		return 0;
 422
 423	if (end < kbuf->buf_min || start > kbuf->buf_max)
 424		return 0;
 425
 426	/*
 427	 * Allocate memory top down with-in ram range. Otherwise bottom up
 428	 * allocation.
 429	 */
 430	if (kbuf->top_down)
 431		return locate_mem_hole_top_down(start, end, kbuf);
 432	return locate_mem_hole_bottom_up(start, end, kbuf);
 433}
 434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435/**
 436 * arch_kexec_walk_mem - call func(data) on free memory regions
 437 * @kbuf:	Context info for the search. Also passed to @func.
 438 * @func:	Function to call for each memory region.
 439 *
 440 * Return: The memory walk will stop when func returns a non-zero value
 441 * and that value will be returned. If all free regions are visited without
 442 * func returning non-zero, then zero will be returned.
 443 */
 444int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 445			       int (*func)(u64, u64, void *))
 446{
 447	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 448		return walk_iomem_res_desc(crashk_res.desc,
 449					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 450					   crashk_res.start, crashk_res.end,
 451					   kbuf, func);
 452	else
 453		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 454}
 455
 456/**
 457 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 458 * @kbuf:	Parameters for the memory search.
 459 *
 460 * On success, kbuf->mem will have the start address of the memory region found.
 461 *
 462 * Return: 0 on success, negative errno on error.
 463 */
 464int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 465{
 466	int ret;
 467
 468	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 
 
 
 
 
 
 
 469
 470	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 471}
 472
 473/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 474 * kexec_add_buffer - place a buffer in a kexec segment
 475 * @kbuf:	Buffer contents and memory parameters.
 476 *
 477 * This function assumes that kexec_mutex is held.
 478 * On successful return, @kbuf->mem will have the physical address of
 479 * the buffer in memory.
 480 *
 481 * Return: 0 on success, negative errno on error.
 482 */
 483int kexec_add_buffer(struct kexec_buf *kbuf)
 484{
 485
 486	struct kexec_segment *ksegment;
 487	int ret;
 488
 489	/* Currently adding segment this way is allowed only in file mode */
 490	if (!kbuf->image->file_mode)
 491		return -EINVAL;
 492
 493	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 494		return -EINVAL;
 495
 496	/*
 497	 * Make sure we are not trying to add buffer after allocating
 498	 * control pages. All segments need to be placed first before
 499	 * any control pages are allocated. As control page allocation
 500	 * logic goes through list of segments to make sure there are
 501	 * no destination overlaps.
 502	 */
 503	if (!list_empty(&kbuf->image->control_pages)) {
 504		WARN_ON(1);
 505		return -EINVAL;
 506	}
 507
 508	/* Ensure minimum alignment needed for segments. */
 509	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 510	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 511
 512	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 513	ret = kexec_locate_mem_hole(kbuf);
 514	if (ret)
 515		return ret;
 516
 517	/* Found a suitable memory range */
 518	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 519	ksegment->kbuf = kbuf->buffer;
 520	ksegment->bufsz = kbuf->bufsz;
 521	ksegment->mem = kbuf->mem;
 522	ksegment->memsz = kbuf->memsz;
 523	kbuf->image->nr_segments++;
 524	return 0;
 525}
 526
 527/* Calculate and store the digest of segments */
 528static int kexec_calculate_store_digests(struct kimage *image)
 529{
 530	struct crypto_shash *tfm;
 531	struct shash_desc *desc;
 532	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 533	size_t desc_size, nullsz;
 534	char *digest;
 535	void *zero_buf;
 536	struct kexec_sha_region *sha_regions;
 537	struct purgatory_info *pi = &image->purgatory_info;
 538
 
 
 
 539	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 540	zero_buf_sz = PAGE_SIZE;
 541
 542	tfm = crypto_alloc_shash("sha256", 0, 0);
 543	if (IS_ERR(tfm)) {
 544		ret = PTR_ERR(tfm);
 545		goto out;
 546	}
 547
 548	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 549	desc = kzalloc(desc_size, GFP_KERNEL);
 550	if (!desc) {
 551		ret = -ENOMEM;
 552		goto out_free_tfm;
 553	}
 554
 555	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 556	sha_regions = vzalloc(sha_region_sz);
 557	if (!sha_regions)
 
 558		goto out_free_desc;
 
 559
 560	desc->tfm   = tfm;
 561	desc->flags = 0;
 562
 563	ret = crypto_shash_init(desc);
 564	if (ret < 0)
 565		goto out_free_sha_regions;
 566
 567	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 568	if (!digest) {
 569		ret = -ENOMEM;
 570		goto out_free_sha_regions;
 571	}
 572
 573	for (j = i = 0; i < image->nr_segments; i++) {
 574		struct kexec_segment *ksegment;
 575
 576		ksegment = &image->segment[i];
 577		/*
 578		 * Skip purgatory as it will be modified once we put digest
 579		 * info in purgatory.
 580		 */
 581		if (ksegment->kbuf == pi->purgatory_buf)
 582			continue;
 583
 584		ret = crypto_shash_update(desc, ksegment->kbuf,
 585					  ksegment->bufsz);
 586		if (ret)
 587			break;
 588
 589		/*
 590		 * Assume rest of the buffer is filled with zero and
 591		 * update digest accordingly.
 592		 */
 593		nullsz = ksegment->memsz - ksegment->bufsz;
 594		while (nullsz) {
 595			unsigned long bytes = nullsz;
 596
 597			if (bytes > zero_buf_sz)
 598				bytes = zero_buf_sz;
 599			ret = crypto_shash_update(desc, zero_buf, bytes);
 600			if (ret)
 601				break;
 602			nullsz -= bytes;
 603		}
 604
 605		if (ret)
 606			break;
 607
 608		sha_regions[j].start = ksegment->mem;
 609		sha_regions[j].len = ksegment->memsz;
 610		j++;
 611	}
 612
 613	if (!ret) {
 614		ret = crypto_shash_final(desc, digest);
 615		if (ret)
 616			goto out_free_digest;
 617		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 618						sha_regions, sha_region_sz, 0);
 619		if (ret)
 620			goto out_free_digest;
 621
 622		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 623						digest, SHA256_DIGEST_SIZE, 0);
 624		if (ret)
 625			goto out_free_digest;
 626	}
 627
 628out_free_digest:
 629	kfree(digest);
 630out_free_sha_regions:
 631	vfree(sha_regions);
 632out_free_desc:
 633	kfree(desc);
 634out_free_tfm:
 635	kfree(tfm);
 636out:
 637	return ret;
 638}
 639
 640/* Actually load purgatory. Lot of code taken from kexec-tools */
 641static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 642				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
 643{
 644	struct purgatory_info *pi = &image->purgatory_info;
 645	unsigned long align, bss_align, bss_sz, bss_pad;
 646	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
 647	unsigned char *buf_addr, *src;
 648	int i, ret = 0, entry_sidx = -1;
 649	const Elf_Shdr *sechdrs_c;
 650	Elf_Shdr *sechdrs = NULL;
 651	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
 652				  .buf_min = min, .buf_max = max,
 653				  .top_down = top_down };
 654
 655	/*
 656	 * sechdrs_c points to section headers in purgatory and are read
 657	 * only. No modifications allowed.
 658	 */
 659	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 660
 661	/*
 662	 * We can not modify sechdrs_c[] and its fields. It is read only.
 663	 * Copy it over to a local copy where one can store some temporary
 664	 * data and free it at the end. We need to modify ->sh_addr and
 665	 * ->sh_offset fields to keep track of permanent and temporary
 666	 * locations of sections.
 667	 */
 668	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 669	if (!sechdrs)
 670		return -ENOMEM;
 671
 672	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 673
 674	/*
 675	 * We seem to have multiple copies of sections. First copy is which
 676	 * is embedded in kernel in read only section. Some of these sections
 677	 * will be copied to a temporary buffer and relocated. And these
 678	 * sections will finally be copied to their final destination at
 679	 * segment load time.
 680	 *
 681	 * Use ->sh_offset to reflect section address in memory. It will
 682	 * point to original read only copy if section is not allocatable.
 683	 * Otherwise it will point to temporary copy which will be relocated.
 684	 *
 685	 * Use ->sh_addr to contain final address of the section where it
 686	 * will go during execution time.
 687	 */
 688	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 689		if (sechdrs[i].sh_type == SHT_NOBITS)
 690			continue;
 691
 692		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 693						sechdrs[i].sh_offset;
 694	}
 695
 696	/*
 697	 * Identify entry point section and make entry relative to section
 698	 * start.
 699	 */
 700	entry = pi->ehdr->e_entry;
 701	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 702		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 703			continue;
 704
 705		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 706			continue;
 707
 708		/* Make entry section relative */
 709		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 710		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 711		     pi->ehdr->e_entry)) {
 712			entry_sidx = i;
 713			entry -= sechdrs[i].sh_addr;
 714			break;
 715		}
 716	}
 717
 718	/* Determine how much memory is needed to load relocatable object. */
 719	bss_align = 1;
 720	bss_sz = 0;
 721
 722	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724			continue;
 725
 726		align = sechdrs[i].sh_addralign;
 727		if (sechdrs[i].sh_type != SHT_NOBITS) {
 728			if (kbuf.buf_align < align)
 729				kbuf.buf_align = align;
 730			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
 731			kbuf.bufsz += sechdrs[i].sh_size;
 732		} else {
 733			/* bss section */
 734			if (bss_align < align)
 735				bss_align = align;
 736			bss_sz = ALIGN(bss_sz, align);
 737			bss_sz += sechdrs[i].sh_size;
 738		}
 739	}
 
 
 
 
 740
 741	/* Determine the bss padding required to align bss properly */
 742	bss_pad = 0;
 743	if (kbuf.bufsz & (bss_align - 1))
 744		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
 745
 746	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
 747
 748	/* Allocate buffer for purgatory */
 749	kbuf.buffer = vzalloc(kbuf.bufsz);
 750	if (!kbuf.buffer) {
 751		ret = -ENOMEM;
 752		goto out;
 753	}
 754
 755	if (kbuf.buf_align < bss_align)
 756		kbuf.buf_align = bss_align;
 757
 758	/* Add buffer to segment list */
 759	ret = kexec_add_buffer(&kbuf);
 760	if (ret)
 761		goto out;
 762	pi->purgatory_load_addr = kbuf.mem;
 763
 764	/* Load SHF_ALLOC sections */
 765	buf_addr = kbuf.buffer;
 766	load_addr = curr_load_addr = pi->purgatory_load_addr;
 767	bss_addr = load_addr + kbuf.bufsz + bss_pad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
 770		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 771			continue;
 772
 773		align = sechdrs[i].sh_addralign;
 774		if (sechdrs[i].sh_type != SHT_NOBITS) {
 775			curr_load_addr = ALIGN(curr_load_addr, align);
 776			offset = curr_load_addr - load_addr;
 777			/* We already modifed ->sh_offset to keep src addr */
 778			src = (char *) sechdrs[i].sh_offset;
 779			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 780
 781			/* Store load address and source address of section */
 782			sechdrs[i].sh_addr = curr_load_addr;
 783
 784			/*
 785			 * This section got copied to temporary buffer. Update
 786			 * ->sh_offset accordingly.
 787			 */
 788			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 789
 790			/* Advance to the next address */
 791			curr_load_addr += sechdrs[i].sh_size;
 792		} else {
 793			bss_addr = ALIGN(bss_addr, align);
 794			sechdrs[i].sh_addr = bss_addr;
 795			bss_addr += sechdrs[i].sh_size;
 
 796		}
 797	}
 798
 799	/* Update entry point based on load address of text section */
 800	if (entry_sidx >= 0)
 801		entry += sechdrs[entry_sidx].sh_addr;
 802
 803	/* Make kernel jump to purgatory after shutdown */
 804	image->start = entry;
 
 
 
 
 
 
 805
 806	/* Used later to get/set symbol values */
 807	pi->sechdrs = sechdrs;
 
 
 
 
 
 
 808
 809	/*
 810	 * Used later to identify which section is purgatory and skip it
 811	 * from checksumming.
 812	 */
 813	pi->purgatory_buf = kbuf.buffer;
 814	return ret;
 815out:
 816	vfree(sechdrs);
 817	vfree(kbuf.buffer);
 818	return ret;
 819}
 820
 821static int kexec_apply_relocations(struct kimage *image)
 822{
 823	int i, ret;
 824	struct purgatory_info *pi = &image->purgatory_info;
 825	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
 826
 827	/* Apply relocations */
 828	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 829		Elf_Shdr *section, *symtab;
 
 
 830
 831		if (sechdrs[i].sh_type != SHT_RELA &&
 832		    sechdrs[i].sh_type != SHT_REL)
 
 
 833			continue;
 834
 835		/*
 836		 * For section of type SHT_RELA/SHT_REL,
 837		 * ->sh_link contains section header index of associated
 838		 * symbol table. And ->sh_info contains section header
 839		 * index of section to which relocations apply.
 840		 */
 841		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 842		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 843			return -ENOEXEC;
 844
 845		section = &sechdrs[sechdrs[i].sh_info];
 846		symtab = &sechdrs[sechdrs[i].sh_link];
 847
 848		if (!(section->sh_flags & SHF_ALLOC))
 849			continue;
 850
 851		/*
 852		 * symtab->sh_link contain section header index of associated
 853		 * string table.
 854		 */
 855		if (symtab->sh_link >= pi->ehdr->e_shnum)
 856			/* Invalid section number? */
 857			continue;
 858
 859		/*
 860		 * Respective architecture needs to provide support for applying
 861		 * relocations of type SHT_RELA/SHT_REL.
 862		 */
 863		if (sechdrs[i].sh_type == SHT_RELA)
 864			ret = arch_kexec_apply_relocations_add(pi->ehdr,
 865							       sechdrs, i);
 866		else if (sechdrs[i].sh_type == SHT_REL)
 867			ret = arch_kexec_apply_relocations(pi->ehdr,
 868							   sechdrs, i);
 869		if (ret)
 870			return ret;
 871	}
 872
 873	return 0;
 874}
 875
 876/* Load relocatable purgatory object and relocate it appropriately */
 877int kexec_load_purgatory(struct kimage *image, unsigned long min,
 878			 unsigned long max, int top_down,
 879			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
 880{
 881	struct purgatory_info *pi = &image->purgatory_info;
 882	int ret;
 883
 884	if (kexec_purgatory_size <= 0)
 885		return -EINVAL;
 886
 887	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 888		return -ENOEXEC;
 889
 890	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 891
 892	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 893	    || pi->ehdr->e_type != ET_REL
 894	    || !elf_check_arch(pi->ehdr)
 895	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 896		return -ENOEXEC;
 897
 898	if (pi->ehdr->e_shoff >= kexec_purgatory_size
 899	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 900	    kexec_purgatory_size - pi->ehdr->e_shoff))
 901		return -ENOEXEC;
 902
 903	ret = __kexec_load_purgatory(image, min, max, top_down);
 904	if (ret)
 905		return ret;
 906
 
 
 
 
 907	ret = kexec_apply_relocations(image);
 908	if (ret)
 909		goto out;
 910
 911	*load_addr = pi->purgatory_load_addr;
 912	return 0;
 913out:
 914	vfree(pi->sechdrs);
 915	pi->sechdrs = NULL;
 916
 917	vfree(pi->purgatory_buf);
 918	pi->purgatory_buf = NULL;
 919	return ret;
 920}
 921
 922static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 923					    const char *name)
 
 
 
 
 
 
 
 924{
 925	Elf_Sym *syms;
 926	Elf_Shdr *sechdrs;
 927	Elf_Ehdr *ehdr;
 928	int i, k;
 929	const char *strtab;
 
 930
 931	if (!pi->sechdrs || !pi->ehdr)
 932		return NULL;
 933
 934	sechdrs = pi->sechdrs;
 935	ehdr = pi->ehdr;
 
 936
 937	for (i = 0; i < ehdr->e_shnum; i++) {
 938		if (sechdrs[i].sh_type != SHT_SYMTAB)
 939			continue;
 940
 941		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 942			/* Invalid strtab section number */
 943			continue;
 944		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 945		syms = (Elf_Sym *)sechdrs[i].sh_offset;
 946
 947		/* Go through symbols for a match */
 948		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 949			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 950				continue;
 951
 952			if (strcmp(strtab + syms[k].st_name, name) != 0)
 953				continue;
 954
 955			if (syms[k].st_shndx == SHN_UNDEF ||
 956			    syms[k].st_shndx >= ehdr->e_shnum) {
 957				pr_debug("Symbol: %s has bad section index %d.\n",
 958						name, syms[k].st_shndx);
 959				return NULL;
 960			}
 961
 962			/* Found the symbol we are looking for */
 963			return &syms[k];
 964		}
 965	}
 966
 967	return NULL;
 968}
 969
 970void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 971{
 972	struct purgatory_info *pi = &image->purgatory_info;
 973	Elf_Sym *sym;
 974	Elf_Shdr *sechdr;
 975
 976	sym = kexec_purgatory_find_symbol(pi, name);
 977	if (!sym)
 978		return ERR_PTR(-EINVAL);
 979
 980	sechdr = &pi->sechdrs[sym->st_shndx];
 981
 982	/*
 983	 * Returns the address where symbol will finally be loaded after
 984	 * kexec_load_segment()
 985	 */
 986	return (void *)(sechdr->sh_addr + sym->st_value);
 987}
 988
 989/*
 990 * Get or set value of a symbol. If "get_value" is true, symbol value is
 991 * returned in buf otherwise symbol value is set based on value in buf.
 992 */
 993int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 994				   void *buf, unsigned int size, bool get_value)
 995{
 996	Elf_Sym *sym;
 997	Elf_Shdr *sechdrs;
 998	struct purgatory_info *pi = &image->purgatory_info;
 
 
 999	char *sym_buf;
1000
1001	sym = kexec_purgatory_find_symbol(pi, name);
1002	if (!sym)
1003		return -EINVAL;
1004
1005	if (sym->st_size != size) {
1006		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007		       name, (unsigned long)sym->st_size, size);
1008		return -EINVAL;
1009	}
1010
1011	sechdrs = pi->sechdrs;
1012
1013	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015		       get_value ? "get" : "set");
1016		return -EINVAL;
1017	}
1018
1019	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020					sym->st_value;
1021
1022	if (get_value)
1023		memcpy((void *)buf, sym_buf, size);
1024	else
1025		memcpy((void *)sym_buf, buf, size);
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	return 0;
1028}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * kexec: kexec_file_load system call
   4 *
   5 * Copyright (C) 2014 Red Hat Inc.
   6 * Authors:
   7 *      Vivek Goyal <vgoyal@redhat.com>
 
 
 
   8 */
   9
  10#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  11
  12#include <linux/capability.h>
  13#include <linux/mm.h>
  14#include <linux/file.h>
  15#include <linux/slab.h>
  16#include <linux/kexec.h>
  17#include <linux/memblock.h>
  18#include <linux/mutex.h>
  19#include <linux/list.h>
  20#include <linux/fs.h>
  21#include <linux/ima.h>
  22#include <crypto/hash.h>
  23#include <crypto/sha2.h>
  24#include <linux/elf.h>
  25#include <linux/elfcore.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/syscalls.h>
  29#include <linux/vmalloc.h>
  30#include "kexec_internal.h"
  31
  32static int kexec_calculate_store_digests(struct kimage *image);
  33
  34/*
  35 * Currently this is the only default function that is exported as some
  36 * architectures need it to do additional handlings.
  37 * In the future, other default functions may be exported too if required.
  38 */
  39int kexec_image_probe_default(struct kimage *image, void *buf,
  40			      unsigned long buf_len)
  41{
  42	const struct kexec_file_ops * const *fops;
  43	int ret = -ENOEXEC;
  44
  45	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  46		ret = (*fops)->probe(buf, buf_len);
  47		if (!ret) {
  48			image->fops = *fops;
  49			return ret;
  50		}
  51	}
  52
  53	return ret;
  54}
  55
  56/* Architectures can provide this probe function */
  57int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  58					 unsigned long buf_len)
  59{
  60	return kexec_image_probe_default(image, buf, buf_len);
  61}
  62
  63static void *kexec_image_load_default(struct kimage *image)
  64{
  65	if (!image->fops || !image->fops->load)
  66		return ERR_PTR(-ENOEXEC);
  67
  68	return image->fops->load(image, image->kernel_buf,
  69				 image->kernel_buf_len, image->initrd_buf,
  70				 image->initrd_buf_len, image->cmdline_buf,
  71				 image->cmdline_buf_len);
  72}
  73
  74void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  75{
  76	return kexec_image_load_default(image);
  77}
  78
  79int kexec_image_post_load_cleanup_default(struct kimage *image)
  80{
  81	if (!image->fops || !image->fops->cleanup)
  82		return 0;
  83
  84	return image->fops->cleanup(image->image_loader_data);
  85}
  86
  87int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  88{
  89	return kexec_image_post_load_cleanup_default(image);
  90}
  91
  92#ifdef CONFIG_KEXEC_SIG
  93static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  94					  unsigned long buf_len)
  95{
  96	if (!image->fops || !image->fops->verify_sig) {
  97		pr_debug("kernel loader does not support signature verification.\n");
  98		return -EKEYREJECTED;
  99	}
 100
 101	return image->fops->verify_sig(buf, buf_len);
 102}
 103
 
 104int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 105					unsigned long buf_len)
 106{
 107	return kexec_image_verify_sig_default(image, buf, buf_len);
 108}
 109#endif
 110
 111/*
 112 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 113 * @pi:		Purgatory to be relocated.
 114 * @section:	Section relocations applying to.
 115 * @relsec:	Section containing RELAs.
 116 * @symtab:	Corresponding symtab.
 117 *
 118 * Return: 0 on success, negative errno on error.
 119 */
 120int __weak
 121arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 122				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 123{
 124	pr_err("RELA relocation unsupported.\n");
 125	return -ENOEXEC;
 126}
 127
 128/*
 129 * arch_kexec_apply_relocations - apply relocations of type REL
 130 * @pi:		Purgatory to be relocated.
 131 * @section:	Section relocations applying to.
 132 * @relsec:	Section containing RELs.
 133 * @symtab:	Corresponding symtab.
 134 *
 135 * Return: 0 on success, negative errno on error.
 136 */
 137int __weak
 138arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 139			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 140{
 141	pr_err("REL relocation unsupported.\n");
 142	return -ENOEXEC;
 143}
 144
 145/*
 146 * Free up memory used by kernel, initrd, and command line. This is temporary
 147 * memory allocation which is not needed any more after these buffers have
 148 * been loaded into separate segments and have been copied elsewhere.
 149 */
 150void kimage_file_post_load_cleanup(struct kimage *image)
 151{
 152	struct purgatory_info *pi = &image->purgatory_info;
 153
 154	vfree(image->kernel_buf);
 155	image->kernel_buf = NULL;
 156
 157	vfree(image->initrd_buf);
 158	image->initrd_buf = NULL;
 159
 160	kfree(image->cmdline_buf);
 161	image->cmdline_buf = NULL;
 162
 163	vfree(pi->purgatory_buf);
 164	pi->purgatory_buf = NULL;
 165
 166	vfree(pi->sechdrs);
 167	pi->sechdrs = NULL;
 168
 169#ifdef CONFIG_IMA_KEXEC
 170	vfree(image->ima_buffer);
 171	image->ima_buffer = NULL;
 172#endif /* CONFIG_IMA_KEXEC */
 173
 174	/* See if architecture has anything to cleanup post load */
 175	arch_kimage_file_post_load_cleanup(image);
 176
 177	/*
 178	 * Above call should have called into bootloader to free up
 179	 * any data stored in kimage->image_loader_data. It should
 180	 * be ok now to free it up.
 181	 */
 182	kfree(image->image_loader_data);
 183	image->image_loader_data = NULL;
 184}
 185
 186#ifdef CONFIG_KEXEC_SIG
 187static int
 188kimage_validate_signature(struct kimage *image)
 189{
 190	int ret;
 191
 192	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 193					   image->kernel_buf_len);
 194	if (ret) {
 195
 196		if (IS_ENABLED(CONFIG_KEXEC_SIG_FORCE)) {
 197			pr_notice("Enforced kernel signature verification failed (%d).\n", ret);
 198			return ret;
 199		}
 200
 201		/*
 202		 * If IMA is guaranteed to appraise a signature on the kexec
 203		 * image, permit it even if the kernel is otherwise locked
 204		 * down.
 205		 */
 206		if (!ima_appraise_signature(READING_KEXEC_IMAGE) &&
 207		    security_locked_down(LOCKDOWN_KEXEC))
 208			return -EPERM;
 209
 210		pr_debug("kernel signature verification failed (%d).\n", ret);
 211	}
 212
 213	return 0;
 214}
 215#endif
 216
 217/*
 218 * In file mode list of segments is prepared by kernel. Copy relevant
 219 * data from user space, do error checking, prepare segment list
 220 */
 221static int
 222kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 223			     const char __user *cmdline_ptr,
 224			     unsigned long cmdline_len, unsigned flags)
 225{
 226	int ret;
 227	void *ldata;
 
 228
 229	ret = kernel_read_file_from_fd(kernel_fd, 0, &image->kernel_buf,
 230				       INT_MAX, NULL, READING_KEXEC_IMAGE);
 231	if (ret < 0)
 232		return ret;
 233	image->kernel_buf_len = ret;
 
 
 
 234
 235	/* Call arch image probe handlers */
 236	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 237					    image->kernel_buf_len);
 238	if (ret)
 239		goto out;
 240
 241#ifdef CONFIG_KEXEC_SIG
 242	ret = kimage_validate_signature(image);
 243
 244	if (ret)
 
 245		goto out;
 
 
 246#endif
 247	/* It is possible that there no initramfs is being loaded */
 248	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 249		ret = kernel_read_file_from_fd(initrd_fd, 0, &image->initrd_buf,
 250					       INT_MAX, NULL,
 251					       READING_KEXEC_INITRAMFS);
 252		if (ret < 0)
 253			goto out;
 254		image->initrd_buf_len = ret;
 255		ret = 0;
 256	}
 257
 258	if (cmdline_len) {
 259		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 260		if (IS_ERR(image->cmdline_buf)) {
 261			ret = PTR_ERR(image->cmdline_buf);
 262			image->cmdline_buf = NULL;
 
 
 
 
 
 
 263			goto out;
 264		}
 265
 266		image->cmdline_buf_len = cmdline_len;
 267
 268		/* command line should be a string with last byte null */
 269		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 270			ret = -EINVAL;
 271			goto out;
 272		}
 273
 274		ima_kexec_cmdline(kernel_fd, image->cmdline_buf,
 275				  image->cmdline_buf_len - 1);
 276	}
 277
 278	/* IMA needs to pass the measurement list to the next kernel. */
 279	ima_add_kexec_buffer(image);
 280
 281	/* Call arch image load handlers */
 282	ldata = arch_kexec_kernel_image_load(image);
 283
 284	if (IS_ERR(ldata)) {
 285		ret = PTR_ERR(ldata);
 286		goto out;
 287	}
 288
 289	image->image_loader_data = ldata;
 290out:
 291	/* In case of error, free up all allocated memory in this function */
 292	if (ret)
 293		kimage_file_post_load_cleanup(image);
 294	return ret;
 295}
 296
 297static int
 298kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 299		       int initrd_fd, const char __user *cmdline_ptr,
 300		       unsigned long cmdline_len, unsigned long flags)
 301{
 302	int ret;
 303	struct kimage *image;
 304	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 305
 306	image = do_kimage_alloc_init();
 307	if (!image)
 308		return -ENOMEM;
 309
 310	image->file_mode = 1;
 311
 312	if (kexec_on_panic) {
 313		/* Enable special crash kernel control page alloc policy. */
 314		image->control_page = crashk_res.start;
 315		image->type = KEXEC_TYPE_CRASH;
 316	}
 317
 318	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 319					   cmdline_ptr, cmdline_len, flags);
 320	if (ret)
 321		goto out_free_image;
 322
 323	ret = sanity_check_segment_list(image);
 324	if (ret)
 325		goto out_free_post_load_bufs;
 326
 327	ret = -ENOMEM;
 328	image->control_code_page = kimage_alloc_control_pages(image,
 329					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 330	if (!image->control_code_page) {
 331		pr_err("Could not allocate control_code_buffer\n");
 332		goto out_free_post_load_bufs;
 333	}
 334
 335	if (!kexec_on_panic) {
 336		image->swap_page = kimage_alloc_control_pages(image, 0);
 337		if (!image->swap_page) {
 338			pr_err("Could not allocate swap buffer\n");
 339			goto out_free_control_pages;
 340		}
 341	}
 342
 343	*rimage = image;
 344	return 0;
 345out_free_control_pages:
 346	kimage_free_page_list(&image->control_pages);
 347out_free_post_load_bufs:
 348	kimage_file_post_load_cleanup(image);
 349out_free_image:
 350	kfree(image);
 351	return ret;
 352}
 353
 354SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 355		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 356		unsigned long, flags)
 357{
 358	int ret = 0, i;
 359	struct kimage **dest_image, *image;
 360
 361	/* We only trust the superuser with rebooting the system. */
 362	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 363		return -EPERM;
 364
 365	/* Make sure we have a legal set of flags */
 366	if (flags != (flags & KEXEC_FILE_FLAGS))
 367		return -EINVAL;
 368
 369	image = NULL;
 370
 371	if (!mutex_trylock(&kexec_mutex))
 372		return -EBUSY;
 373
 374	dest_image = &kexec_image;
 375	if (flags & KEXEC_FILE_ON_CRASH) {
 376		dest_image = &kexec_crash_image;
 377		if (kexec_crash_image)
 378			arch_kexec_unprotect_crashkres();
 379	}
 380
 381	if (flags & KEXEC_FILE_UNLOAD)
 382		goto exchange;
 383
 384	/*
 385	 * In case of crash, new kernel gets loaded in reserved region. It is
 386	 * same memory where old crash kernel might be loaded. Free any
 387	 * current crash dump kernel before we corrupt it.
 388	 */
 389	if (flags & KEXEC_FILE_ON_CRASH)
 390		kimage_free(xchg(&kexec_crash_image, NULL));
 391
 392	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 393				     cmdline_len, flags);
 394	if (ret)
 395		goto out;
 396
 397	ret = machine_kexec_prepare(image);
 398	if (ret)
 399		goto out;
 400
 401	/*
 402	 * Some architecture(like S390) may touch the crash memory before
 403	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 404	 */
 405	ret = kimage_crash_copy_vmcoreinfo(image);
 406	if (ret)
 407		goto out;
 408
 409	ret = kexec_calculate_store_digests(image);
 410	if (ret)
 411		goto out;
 412
 413	for (i = 0; i < image->nr_segments; i++) {
 414		struct kexec_segment *ksegment;
 415
 416		ksegment = &image->segment[i];
 417		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 418			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 419			 ksegment->memsz);
 420
 421		ret = kimage_load_segment(image, &image->segment[i]);
 422		if (ret)
 423			goto out;
 424	}
 425
 426	kimage_terminate(image);
 427
 428	ret = machine_kexec_post_load(image);
 429	if (ret)
 430		goto out;
 431
 432	/*
 433	 * Free up any temporary buffers allocated which are not needed
 434	 * after image has been loaded
 435	 */
 436	kimage_file_post_load_cleanup(image);
 437exchange:
 438	image = xchg(dest_image, image);
 439out:
 440	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 441		arch_kexec_protect_crashkres();
 442
 443	mutex_unlock(&kexec_mutex);
 444	kimage_free(image);
 445	return ret;
 446}
 447
 448static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 449				    struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_end = min(end, kbuf->buf_max);
 455	temp_start = temp_end - kbuf->memsz;
 456
 457	do {
 458		/* align down start */
 459		temp_start = temp_start & (~(kbuf->buf_align - 1));
 460
 461		if (temp_start < start || temp_start < kbuf->buf_min)
 462			return 0;
 463
 464		temp_end = temp_start + kbuf->memsz - 1;
 465
 466		/*
 467		 * Make sure this does not conflict with any of existing
 468		 * segments
 469		 */
 470		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 471			temp_start = temp_start - PAGE_SIZE;
 472			continue;
 473		}
 474
 475		/* We found a suitable memory range */
 476		break;
 477	} while (1);
 478
 479	/* If we are here, we found a suitable memory range */
 480	kbuf->mem = temp_start;
 481
 482	/* Success, stop navigating through remaining System RAM ranges */
 483	return 1;
 484}
 485
 486static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 487				     struct kexec_buf *kbuf)
 488{
 489	struct kimage *image = kbuf->image;
 490	unsigned long temp_start, temp_end;
 491
 492	temp_start = max(start, kbuf->buf_min);
 493
 494	do {
 495		temp_start = ALIGN(temp_start, kbuf->buf_align);
 496		temp_end = temp_start + kbuf->memsz - 1;
 497
 498		if (temp_end > end || temp_end > kbuf->buf_max)
 499			return 0;
 500		/*
 501		 * Make sure this does not conflict with any of existing
 502		 * segments
 503		 */
 504		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 505			temp_start = temp_start + PAGE_SIZE;
 506			continue;
 507		}
 508
 509		/* We found a suitable memory range */
 510		break;
 511	} while (1);
 512
 513	/* If we are here, we found a suitable memory range */
 514	kbuf->mem = temp_start;
 515
 516	/* Success, stop navigating through remaining System RAM ranges */
 517	return 1;
 518}
 519
 520static int locate_mem_hole_callback(struct resource *res, void *arg)
 521{
 522	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 523	u64 start = res->start, end = res->end;
 524	unsigned long sz = end - start + 1;
 525
 526	/* Returning 0 will take to next memory range */
 527
 528	/* Don't use memory that will be detected and handled by a driver. */
 529	if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
 530		return 0;
 531
 532	if (sz < kbuf->memsz)
 533		return 0;
 534
 535	if (end < kbuf->buf_min || start > kbuf->buf_max)
 536		return 0;
 537
 538	/*
 539	 * Allocate memory top down with-in ram range. Otherwise bottom up
 540	 * allocation.
 541	 */
 542	if (kbuf->top_down)
 543		return locate_mem_hole_top_down(start, end, kbuf);
 544	return locate_mem_hole_bottom_up(start, end, kbuf);
 545}
 546
 547#ifdef CONFIG_ARCH_KEEP_MEMBLOCK
 548static int kexec_walk_memblock(struct kexec_buf *kbuf,
 549			       int (*func)(struct resource *, void *))
 550{
 551	int ret = 0;
 552	u64 i;
 553	phys_addr_t mstart, mend;
 554	struct resource res = { };
 555
 556	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 557		return func(&crashk_res, kbuf);
 558
 559	if (kbuf->top_down) {
 560		for_each_free_mem_range_reverse(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 561						&mstart, &mend, NULL) {
 562			/*
 563			 * In memblock, end points to the first byte after the
 564			 * range while in kexec, end points to the last byte
 565			 * in the range.
 566			 */
 567			res.start = mstart;
 568			res.end = mend - 1;
 569			ret = func(&res, kbuf);
 570			if (ret)
 571				break;
 572		}
 573	} else {
 574		for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE,
 575					&mstart, &mend, NULL) {
 576			/*
 577			 * In memblock, end points to the first byte after the
 578			 * range while in kexec, end points to the last byte
 579			 * in the range.
 580			 */
 581			res.start = mstart;
 582			res.end = mend - 1;
 583			ret = func(&res, kbuf);
 584			if (ret)
 585				break;
 586		}
 587	}
 588
 589	return ret;
 590}
 591#else
 592static int kexec_walk_memblock(struct kexec_buf *kbuf,
 593			       int (*func)(struct resource *, void *))
 594{
 595	return 0;
 596}
 597#endif
 598
 599/**
 600 * kexec_walk_resources - call func(data) on free memory regions
 601 * @kbuf:	Context info for the search. Also passed to @func.
 602 * @func:	Function to call for each memory region.
 603 *
 604 * Return: The memory walk will stop when func returns a non-zero value
 605 * and that value will be returned. If all free regions are visited without
 606 * func returning non-zero, then zero will be returned.
 607 */
 608static int kexec_walk_resources(struct kexec_buf *kbuf,
 609				int (*func)(struct resource *, void *))
 610{
 611	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 612		return walk_iomem_res_desc(crashk_res.desc,
 613					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 614					   crashk_res.start, crashk_res.end,
 615					   kbuf, func);
 616	else
 617		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 618}
 619
 620/**
 621 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 622 * @kbuf:	Parameters for the memory search.
 623 *
 624 * On success, kbuf->mem will have the start address of the memory region found.
 625 *
 626 * Return: 0 on success, negative errno on error.
 627 */
 628int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 629{
 630	int ret;
 631
 632	/* Arch knows where to place */
 633	if (kbuf->mem != KEXEC_BUF_MEM_UNKNOWN)
 634		return 0;
 635
 636	if (!IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
 637		ret = kexec_walk_resources(kbuf, locate_mem_hole_callback);
 638	else
 639		ret = kexec_walk_memblock(kbuf, locate_mem_hole_callback);
 640
 641	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 642}
 643
 644/**
 645 * arch_kexec_locate_mem_hole - Find free memory to place the segments.
 646 * @kbuf:                       Parameters for the memory search.
 647 *
 648 * On success, kbuf->mem will have the start address of the memory region found.
 649 *
 650 * Return: 0 on success, negative errno on error.
 651 */
 652int __weak arch_kexec_locate_mem_hole(struct kexec_buf *kbuf)
 653{
 654	return kexec_locate_mem_hole(kbuf);
 655}
 656
 657/**
 658 * kexec_add_buffer - place a buffer in a kexec segment
 659 * @kbuf:	Buffer contents and memory parameters.
 660 *
 661 * This function assumes that kexec_mutex is held.
 662 * On successful return, @kbuf->mem will have the physical address of
 663 * the buffer in memory.
 664 *
 665 * Return: 0 on success, negative errno on error.
 666 */
 667int kexec_add_buffer(struct kexec_buf *kbuf)
 668{
 
 669	struct kexec_segment *ksegment;
 670	int ret;
 671
 672	/* Currently adding segment this way is allowed only in file mode */
 673	if (!kbuf->image->file_mode)
 674		return -EINVAL;
 675
 676	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 677		return -EINVAL;
 678
 679	/*
 680	 * Make sure we are not trying to add buffer after allocating
 681	 * control pages. All segments need to be placed first before
 682	 * any control pages are allocated. As control page allocation
 683	 * logic goes through list of segments to make sure there are
 684	 * no destination overlaps.
 685	 */
 686	if (!list_empty(&kbuf->image->control_pages)) {
 687		WARN_ON(1);
 688		return -EINVAL;
 689	}
 690
 691	/* Ensure minimum alignment needed for segments. */
 692	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 693	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 694
 695	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 696	ret = arch_kexec_locate_mem_hole(kbuf);
 697	if (ret)
 698		return ret;
 699
 700	/* Found a suitable memory range */
 701	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 702	ksegment->kbuf = kbuf->buffer;
 703	ksegment->bufsz = kbuf->bufsz;
 704	ksegment->mem = kbuf->mem;
 705	ksegment->memsz = kbuf->memsz;
 706	kbuf->image->nr_segments++;
 707	return 0;
 708}
 709
 710/* Calculate and store the digest of segments */
 711static int kexec_calculate_store_digests(struct kimage *image)
 712{
 713	struct crypto_shash *tfm;
 714	struct shash_desc *desc;
 715	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 716	size_t desc_size, nullsz;
 717	char *digest;
 718	void *zero_buf;
 719	struct kexec_sha_region *sha_regions;
 720	struct purgatory_info *pi = &image->purgatory_info;
 721
 722	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 723		return 0;
 724
 725	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 726	zero_buf_sz = PAGE_SIZE;
 727
 728	tfm = crypto_alloc_shash("sha256", 0, 0);
 729	if (IS_ERR(tfm)) {
 730		ret = PTR_ERR(tfm);
 731		goto out;
 732	}
 733
 734	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 735	desc = kzalloc(desc_size, GFP_KERNEL);
 736	if (!desc) {
 737		ret = -ENOMEM;
 738		goto out_free_tfm;
 739	}
 740
 741	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 742	sha_regions = vzalloc(sha_region_sz);
 743	if (!sha_regions) {
 744		ret = -ENOMEM;
 745		goto out_free_desc;
 746	}
 747
 748	desc->tfm   = tfm;
 
 749
 750	ret = crypto_shash_init(desc);
 751	if (ret < 0)
 752		goto out_free_sha_regions;
 753
 754	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 755	if (!digest) {
 756		ret = -ENOMEM;
 757		goto out_free_sha_regions;
 758	}
 759
 760	for (j = i = 0; i < image->nr_segments; i++) {
 761		struct kexec_segment *ksegment;
 762
 763		ksegment = &image->segment[i];
 764		/*
 765		 * Skip purgatory as it will be modified once we put digest
 766		 * info in purgatory.
 767		 */
 768		if (ksegment->kbuf == pi->purgatory_buf)
 769			continue;
 770
 771		ret = crypto_shash_update(desc, ksegment->kbuf,
 772					  ksegment->bufsz);
 773		if (ret)
 774			break;
 775
 776		/*
 777		 * Assume rest of the buffer is filled with zero and
 778		 * update digest accordingly.
 779		 */
 780		nullsz = ksegment->memsz - ksegment->bufsz;
 781		while (nullsz) {
 782			unsigned long bytes = nullsz;
 783
 784			if (bytes > zero_buf_sz)
 785				bytes = zero_buf_sz;
 786			ret = crypto_shash_update(desc, zero_buf, bytes);
 787			if (ret)
 788				break;
 789			nullsz -= bytes;
 790		}
 791
 792		if (ret)
 793			break;
 794
 795		sha_regions[j].start = ksegment->mem;
 796		sha_regions[j].len = ksegment->memsz;
 797		j++;
 798	}
 799
 800	if (!ret) {
 801		ret = crypto_shash_final(desc, digest);
 802		if (ret)
 803			goto out_free_digest;
 804		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 805						     sha_regions, sha_region_sz, 0);
 806		if (ret)
 807			goto out_free_digest;
 808
 809		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 810						     digest, SHA256_DIGEST_SIZE, 0);
 811		if (ret)
 812			goto out_free_digest;
 813	}
 814
 815out_free_digest:
 816	kfree(digest);
 817out_free_sha_regions:
 818	vfree(sha_regions);
 819out_free_desc:
 820	kfree(desc);
 821out_free_tfm:
 822	kfree(tfm);
 823out:
 824	return ret;
 825}
 826
 827#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 828/*
 829 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 830 * @pi:		Purgatory to be loaded.
 831 * @kbuf:	Buffer to setup.
 832 *
 833 * Allocates the memory needed for the buffer. Caller is responsible to free
 834 * the memory after use.
 835 *
 836 * Return: 0 on success, negative errno on error.
 837 */
 838static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 839				      struct kexec_buf *kbuf)
 840{
 841	const Elf_Shdr *sechdrs;
 842	unsigned long bss_align;
 843	unsigned long bss_sz;
 844	unsigned long align;
 845	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 848	kbuf->buf_align = bss_align = 1;
 849	kbuf->bufsz = bss_sz = 0;
 850
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 853			continue;
 854
 855		align = sechdrs[i].sh_addralign;
 856		if (sechdrs[i].sh_type != SHT_NOBITS) {
 857			if (kbuf->buf_align < align)
 858				kbuf->buf_align = align;
 859			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 860			kbuf->bufsz += sechdrs[i].sh_size;
 861		} else {
 
 862			if (bss_align < align)
 863				bss_align = align;
 864			bss_sz = ALIGN(bss_sz, align);
 865			bss_sz += sechdrs[i].sh_size;
 866		}
 867	}
 868	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 869	kbuf->memsz = kbuf->bufsz + bss_sz;
 870	if (kbuf->buf_align < bss_align)
 871		kbuf->buf_align = bss_align;
 872
 873	kbuf->buffer = vzalloc(kbuf->bufsz);
 874	if (!kbuf->buffer)
 875		return -ENOMEM;
 876	pi->purgatory_buf = kbuf->buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 877
 878	ret = kexec_add_buffer(kbuf);
 
 879	if (ret)
 880		goto out;
 
 881
 882	return 0;
 883out:
 884	vfree(pi->purgatory_buf);
 885	pi->purgatory_buf = NULL;
 886	return ret;
 887}
 888
 889/*
 890 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 891 * @pi:		Purgatory to be loaded.
 892 * @kbuf:	Buffer prepared to store purgatory.
 893 *
 894 * Allocates the memory needed for the buffer. Caller is responsible to free
 895 * the memory after use.
 896 *
 897 * Return: 0 on success, negative errno on error.
 898 */
 899static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 900					 struct kexec_buf *kbuf)
 901{
 902	unsigned long bss_addr;
 903	unsigned long offset;
 904	Elf_Shdr *sechdrs;
 905	int i;
 906
 907	/*
 908	 * The section headers in kexec_purgatory are read-only. In order to
 909	 * have them modifiable make a temporary copy.
 910	 */
 911	sechdrs = vzalloc(array_size(sizeof(Elf_Shdr), pi->ehdr->e_shnum));
 912	if (!sechdrs)
 913		return -ENOMEM;
 914	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 915	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 916	pi->sechdrs = sechdrs;
 917
 918	offset = 0;
 919	bss_addr = kbuf->mem + kbuf->bufsz;
 920	kbuf->image->start = pi->ehdr->e_entry;
 921
 922	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 923		unsigned long align;
 924		void *src, *dst;
 925
 926		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 927			continue;
 928
 929		align = sechdrs[i].sh_addralign;
 930		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 931			bss_addr = ALIGN(bss_addr, align);
 932			sechdrs[i].sh_addr = bss_addr;
 933			bss_addr += sechdrs[i].sh_size;
 934			continue;
 935		}
 
 
 
 
 
 936
 937		offset = ALIGN(offset, align);
 938		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 939		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 940		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 941					 + sechdrs[i].sh_size)) {
 942			kbuf->image->start -= sechdrs[i].sh_addr;
 943			kbuf->image->start += kbuf->mem + offset;
 944		}
 945
 946		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 947		dst = pi->purgatory_buf + offset;
 948		memcpy(dst, src, sechdrs[i].sh_size);
 949
 950		sechdrs[i].sh_addr = kbuf->mem + offset;
 951		sechdrs[i].sh_offset = offset;
 952		offset += sechdrs[i].sh_size;
 953	}
 954
 955	return 0;
 
 
 
 
 
 
 
 
 
 956}
 957
 958static int kexec_apply_relocations(struct kimage *image)
 959{
 960	int i, ret;
 961	struct purgatory_info *pi = &image->purgatory_info;
 962	const Elf_Shdr *sechdrs;
 963
 964	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 965
 
 966	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 967		const Elf_Shdr *relsec;
 968		const Elf_Shdr *symtab;
 969		Elf_Shdr *section;
 970
 971		relsec = sechdrs + i;
 972
 973		if (relsec->sh_type != SHT_RELA &&
 974		    relsec->sh_type != SHT_REL)
 975			continue;
 976
 977		/*
 978		 * For section of type SHT_RELA/SHT_REL,
 979		 * ->sh_link contains section header index of associated
 980		 * symbol table. And ->sh_info contains section header
 981		 * index of section to which relocations apply.
 982		 */
 983		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 984		    relsec->sh_link >= pi->ehdr->e_shnum)
 985			return -ENOEXEC;
 986
 987		section = pi->sechdrs + relsec->sh_info;
 988		symtab = sechdrs + relsec->sh_link;
 989
 990		if (!(section->sh_flags & SHF_ALLOC))
 991			continue;
 992
 993		/*
 994		 * symtab->sh_link contain section header index of associated
 995		 * string table.
 996		 */
 997		if (symtab->sh_link >= pi->ehdr->e_shnum)
 998			/* Invalid section number? */
 999			continue;
1000
1001		/*
1002		 * Respective architecture needs to provide support for applying
1003		 * relocations of type SHT_RELA/SHT_REL.
1004		 */
1005		if (relsec->sh_type == SHT_RELA)
1006			ret = arch_kexec_apply_relocations_add(pi, section,
1007							       relsec, symtab);
1008		else if (relsec->sh_type == SHT_REL)
1009			ret = arch_kexec_apply_relocations(pi, section,
1010							   relsec, symtab);
1011		if (ret)
1012			return ret;
1013	}
1014
1015	return 0;
1016}
1017
1018/*
1019 * kexec_load_purgatory - Load and relocate the purgatory object.
1020 * @image:	Image to add the purgatory to.
1021 * @kbuf:	Memory parameters to use.
1022 *
1023 * Allocates the memory needed for image->purgatory_info.sechdrs and
1024 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
1025 * to free the memory after use.
1026 *
1027 * Return: 0 on success, negative errno on error.
1028 */
1029int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
1030{
1031	struct purgatory_info *pi = &image->purgatory_info;
1032	int ret;
1033
1034	if (kexec_purgatory_size <= 0)
1035		return -EINVAL;
1036
1037	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1038
1039	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
1040	if (ret)
1041		return ret;
1042
1043	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
1044	if (ret)
1045		goto out_free_kbuf;
1046
1047	ret = kexec_apply_relocations(image);
1048	if (ret)
1049		goto out;
1050
 
1051	return 0;
1052out:
1053	vfree(pi->sechdrs);
1054	pi->sechdrs = NULL;
1055out_free_kbuf:
1056	vfree(pi->purgatory_buf);
1057	pi->purgatory_buf = NULL;
1058	return ret;
1059}
1060
1061/*
1062 * kexec_purgatory_find_symbol - find a symbol in the purgatory
1063 * @pi:		Purgatory to search in.
1064 * @name:	Name of the symbol.
1065 *
1066 * Return: pointer to symbol in read-only symtab on success, NULL on error.
1067 */
1068static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
1069						  const char *name)
1070{
1071	const Elf_Shdr *sechdrs;
1072	const Elf_Ehdr *ehdr;
1073	const Elf_Sym *syms;
 
1074	const char *strtab;
1075	int i, k;
1076
1077	if (!pi->ehdr)
1078		return NULL;
1079
 
1080	ehdr = pi->ehdr;
1081	sechdrs = (void *)ehdr + ehdr->e_shoff;
1082
1083	for (i = 0; i < ehdr->e_shnum; i++) {
1084		if (sechdrs[i].sh_type != SHT_SYMTAB)
1085			continue;
1086
1087		if (sechdrs[i].sh_link >= ehdr->e_shnum)
1088			/* Invalid strtab section number */
1089			continue;
1090		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
1091		syms = (void *)ehdr + sechdrs[i].sh_offset;
1092
1093		/* Go through symbols for a match */
1094		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
1095			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
1096				continue;
1097
1098			if (strcmp(strtab + syms[k].st_name, name) != 0)
1099				continue;
1100
1101			if (syms[k].st_shndx == SHN_UNDEF ||
1102			    syms[k].st_shndx >= ehdr->e_shnum) {
1103				pr_debug("Symbol: %s has bad section index %d.\n",
1104						name, syms[k].st_shndx);
1105				return NULL;
1106			}
1107
1108			/* Found the symbol we are looking for */
1109			return &syms[k];
1110		}
1111	}
1112
1113	return NULL;
1114}
1115
1116void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1117{
1118	struct purgatory_info *pi = &image->purgatory_info;
1119	const Elf_Sym *sym;
1120	Elf_Shdr *sechdr;
1121
1122	sym = kexec_purgatory_find_symbol(pi, name);
1123	if (!sym)
1124		return ERR_PTR(-EINVAL);
1125
1126	sechdr = &pi->sechdrs[sym->st_shndx];
1127
1128	/*
1129	 * Returns the address where symbol will finally be loaded after
1130	 * kexec_load_segment()
1131	 */
1132	return (void *)(sechdr->sh_addr + sym->st_value);
1133}
1134
1135/*
1136 * Get or set value of a symbol. If "get_value" is true, symbol value is
1137 * returned in buf otherwise symbol value is set based on value in buf.
1138 */
1139int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1140				   void *buf, unsigned int size, bool get_value)
1141{
 
 
1142	struct purgatory_info *pi = &image->purgatory_info;
1143	const Elf_Sym *sym;
1144	Elf_Shdr *sec;
1145	char *sym_buf;
1146
1147	sym = kexec_purgatory_find_symbol(pi, name);
1148	if (!sym)
1149		return -EINVAL;
1150
1151	if (sym->st_size != size) {
1152		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1153		       name, (unsigned long)sym->st_size, size);
1154		return -EINVAL;
1155	}
1156
1157	sec = pi->sechdrs + sym->st_shndx;
1158
1159	if (sec->sh_type == SHT_NOBITS) {
1160		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1161		       get_value ? "get" : "set");
1162		return -EINVAL;
1163	}
1164
1165	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1166
1167	if (get_value)
1168		memcpy((void *)buf, sym_buf, size);
1169	else
1170		memcpy((void *)sym_buf, buf, size);
1171
1172	return 0;
1173}
1174#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1175
1176int crash_exclude_mem_range(struct crash_mem *mem,
1177			    unsigned long long mstart, unsigned long long mend)
1178{
1179	int i, j;
1180	unsigned long long start, end, p_start, p_end;
1181	struct crash_mem_range temp_range = {0, 0};
1182
1183	for (i = 0; i < mem->nr_ranges; i++) {
1184		start = mem->ranges[i].start;
1185		end = mem->ranges[i].end;
1186		p_start = mstart;
1187		p_end = mend;
1188
1189		if (mstart > end || mend < start)
1190			continue;
1191
1192		/* Truncate any area outside of range */
1193		if (mstart < start)
1194			p_start = start;
1195		if (mend > end)
1196			p_end = end;
1197
1198		/* Found completely overlapping range */
1199		if (p_start == start && p_end == end) {
1200			mem->ranges[i].start = 0;
1201			mem->ranges[i].end = 0;
1202			if (i < mem->nr_ranges - 1) {
1203				/* Shift rest of the ranges to left */
1204				for (j = i; j < mem->nr_ranges - 1; j++) {
1205					mem->ranges[j].start =
1206						mem->ranges[j+1].start;
1207					mem->ranges[j].end =
1208							mem->ranges[j+1].end;
1209				}
1210
1211				/*
1212				 * Continue to check if there are another overlapping ranges
1213				 * from the current position because of shifting the above
1214				 * mem ranges.
1215				 */
1216				i--;
1217				mem->nr_ranges--;
1218				continue;
1219			}
1220			mem->nr_ranges--;
1221			return 0;
1222		}
1223
1224		if (p_start > start && p_end < end) {
1225			/* Split original range */
1226			mem->ranges[i].end = p_start - 1;
1227			temp_range.start = p_end + 1;
1228			temp_range.end = end;
1229		} else if (p_start != start)
1230			mem->ranges[i].end = p_start - 1;
1231		else
1232			mem->ranges[i].start = p_end + 1;
1233		break;
1234	}
1235
1236	/* If a split happened, add the split to array */
1237	if (!temp_range.end)
1238		return 0;
1239
1240	/* Split happened */
1241	if (i == mem->max_nr_ranges - 1)
1242		return -ENOMEM;
1243
1244	/* Location where new range should go */
1245	j = i + 1;
1246	if (j < mem->nr_ranges) {
1247		/* Move over all ranges one slot towards the end */
1248		for (i = mem->nr_ranges - 1; i >= j; i--)
1249			mem->ranges[i + 1] = mem->ranges[i];
1250	}
1251
1252	mem->ranges[j].start = temp_range.start;
1253	mem->ranges[j].end = temp_range.end;
1254	mem->nr_ranges++;
1255	return 0;
1256}
1257
1258int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1259			  void **addr, unsigned long *sz)
1260{
1261	Elf64_Ehdr *ehdr;
1262	Elf64_Phdr *phdr;
1263	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1264	unsigned char *buf;
1265	unsigned int cpu, i;
1266	unsigned long long notes_addr;
1267	unsigned long mstart, mend;
1268
1269	/* extra phdr for vmcoreinfo ELF note */
1270	nr_phdr = nr_cpus + 1;
1271	nr_phdr += mem->nr_ranges;
1272
1273	/*
1274	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1275	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1276	 * I think this is required by tools like gdb. So same physical
1277	 * memory will be mapped in two ELF headers. One will contain kernel
1278	 * text virtual addresses and other will have __va(physical) addresses.
1279	 */
1280
1281	nr_phdr++;
1282	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1283	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1284
1285	buf = vzalloc(elf_sz);
1286	if (!buf)
1287		return -ENOMEM;
1288
1289	ehdr = (Elf64_Ehdr *)buf;
1290	phdr = (Elf64_Phdr *)(ehdr + 1);
1291	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1292	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1293	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1294	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1295	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1296	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1297	ehdr->e_type = ET_CORE;
1298	ehdr->e_machine = ELF_ARCH;
1299	ehdr->e_version = EV_CURRENT;
1300	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1301	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1302	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1303
1304	/* Prepare one phdr of type PT_NOTE for each present CPU */
1305	for_each_present_cpu(cpu) {
1306		phdr->p_type = PT_NOTE;
1307		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1308		phdr->p_offset = phdr->p_paddr = notes_addr;
1309		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1310		(ehdr->e_phnum)++;
1311		phdr++;
1312	}
1313
1314	/* Prepare one PT_NOTE header for vmcoreinfo */
1315	phdr->p_type = PT_NOTE;
1316	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1317	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1318	(ehdr->e_phnum)++;
1319	phdr++;
1320
1321	/* Prepare PT_LOAD type program header for kernel text region */
1322	if (kernel_map) {
1323		phdr->p_type = PT_LOAD;
1324		phdr->p_flags = PF_R|PF_W|PF_X;
1325		phdr->p_vaddr = (unsigned long) _text;
1326		phdr->p_filesz = phdr->p_memsz = _end - _text;
1327		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1328		ehdr->e_phnum++;
1329		phdr++;
1330	}
1331
1332	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1333	for (i = 0; i < mem->nr_ranges; i++) {
1334		mstart = mem->ranges[i].start;
1335		mend = mem->ranges[i].end;
1336
1337		phdr->p_type = PT_LOAD;
1338		phdr->p_flags = PF_R|PF_W|PF_X;
1339		phdr->p_offset  = mstart;
1340
1341		phdr->p_paddr = mstart;
1342		phdr->p_vaddr = (unsigned long) __va(mstart);
1343		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1344		phdr->p_align = 0;
1345		ehdr->e_phnum++;
1346		pr_debug("Crash PT_LOAD ELF header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1347			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1348			ehdr->e_phnum, phdr->p_offset);
1349		phdr++;
1350	}
1351
1352	*addr = buf;
1353	*sz = elf_sz;
1354	return 0;
1355}