Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/syscalls.h>
  26#include <linux/vmalloc.h>
  27#include "kexec_internal.h"
  28
  29/*
  30 * Declare these symbols weak so that if architecture provides a purgatory,
  31 * these will be overridden.
  32 */
  33char __weak kexec_purgatory[0];
  34size_t __weak kexec_purgatory_size = 0;
  35
  36static int kexec_calculate_store_digests(struct kimage *image);
  37
  38/* Architectures can provide this probe function */
  39int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  40					 unsigned long buf_len)
  41{
  42	return -ENOEXEC;
  43}
  44
  45void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  46{
  47	return ERR_PTR(-ENOEXEC);
  48}
  49
  50int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  51{
  52	return -EINVAL;
  53}
  54
  55#ifdef CONFIG_KEXEC_VERIFY_SIG
  56int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  57					unsigned long buf_len)
  58{
  59	return -EKEYREJECTED;
  60}
  61#endif
  62
  63/* Apply relocations of type RELA */
  64int __weak
  65arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  66				 unsigned int relsec)
  67{
  68	pr_err("RELA relocation unsupported.\n");
  69	return -ENOEXEC;
  70}
  71
  72/* Apply relocations of type REL */
  73int __weak
  74arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  75			     unsigned int relsec)
  76{
  77	pr_err("REL relocation unsupported.\n");
  78	return -ENOEXEC;
  79}
  80
  81/*
  82 * Free up memory used by kernel, initrd, and command line. This is temporary
  83 * memory allocation which is not needed any more after these buffers have
  84 * been loaded into separate segments and have been copied elsewhere.
  85 */
  86void kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	struct purgatory_info *pi = &image->purgatory_info;
  89
  90	vfree(image->kernel_buf);
  91	image->kernel_buf = NULL;
  92
  93	vfree(image->initrd_buf);
  94	image->initrd_buf = NULL;
  95
  96	kfree(image->cmdline_buf);
  97	image->cmdline_buf = NULL;
  98
  99	vfree(pi->purgatory_buf);
 100	pi->purgatory_buf = NULL;
 101
 102	vfree(pi->sechdrs);
 103	pi->sechdrs = NULL;
 104
 105	/* See if architecture has anything to cleanup post load */
 106	arch_kimage_file_post_load_cleanup(image);
 107
 108	/*
 109	 * Above call should have called into bootloader to free up
 110	 * any data stored in kimage->image_loader_data. It should
 111	 * be ok now to free it up.
 112	 */
 113	kfree(image->image_loader_data);
 114	image->image_loader_data = NULL;
 115}
 116
 117/*
 118 * In file mode list of segments is prepared by kernel. Copy relevant
 119 * data from user space, do error checking, prepare segment list
 120 */
 121static int
 122kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 123			     const char __user *cmdline_ptr,
 124			     unsigned long cmdline_len, unsigned flags)
 125{
 126	int ret = 0;
 127	void *ldata;
 128	loff_t size;
 129
 130	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 131				       &size, INT_MAX, READING_KEXEC_IMAGE);
 132	if (ret)
 133		return ret;
 134	image->kernel_buf_len = size;
 135
 136	/* IMA needs to pass the measurement list to the next kernel. */
 137	ima_add_kexec_buffer(image);
 138
 139	/* Call arch image probe handlers */
 140	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 141					    image->kernel_buf_len);
 142	if (ret)
 143		goto out;
 144
 145#ifdef CONFIG_KEXEC_VERIFY_SIG
 146	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 147					   image->kernel_buf_len);
 148	if (ret) {
 149		pr_debug("kernel signature verification failed.\n");
 150		goto out;
 151	}
 152	pr_debug("kernel signature verification successful.\n");
 153#endif
 154	/* It is possible that there no initramfs is being loaded */
 155	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 156		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 157					       &size, INT_MAX,
 158					       READING_KEXEC_INITRAMFS);
 159		if (ret)
 160			goto out;
 161		image->initrd_buf_len = size;
 162	}
 163
 164	if (cmdline_len) {
 165		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 166		if (!image->cmdline_buf) {
 167			ret = -ENOMEM;
 168			goto out;
 169		}
 170
 171		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 172				     cmdline_len);
 173		if (ret) {
 174			ret = -EFAULT;
 175			goto out;
 176		}
 177
 178		image->cmdline_buf_len = cmdline_len;
 179
 180		/* command line should be a string with last byte null */
 181		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 182			ret = -EINVAL;
 183			goto out;
 184		}
 185	}
 186
 187	/* Call arch image load handlers */
 188	ldata = arch_kexec_kernel_image_load(image);
 189
 190	if (IS_ERR(ldata)) {
 191		ret = PTR_ERR(ldata);
 192		goto out;
 193	}
 194
 195	image->image_loader_data = ldata;
 196out:
 197	/* In case of error, free up all allocated memory in this function */
 198	if (ret)
 199		kimage_file_post_load_cleanup(image);
 200	return ret;
 201}
 202
 203static int
 204kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 205		       int initrd_fd, const char __user *cmdline_ptr,
 206		       unsigned long cmdline_len, unsigned long flags)
 207{
 208	int ret;
 209	struct kimage *image;
 210	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 211
 212	image = do_kimage_alloc_init();
 213	if (!image)
 214		return -ENOMEM;
 215
 216	image->file_mode = 1;
 217
 218	if (kexec_on_panic) {
 219		/* Enable special crash kernel control page alloc policy. */
 220		image->control_page = crashk_res.start;
 221		image->type = KEXEC_TYPE_CRASH;
 222	}
 223
 224	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 225					   cmdline_ptr, cmdline_len, flags);
 226	if (ret)
 227		goto out_free_image;
 228
 229	ret = sanity_check_segment_list(image);
 230	if (ret)
 231		goto out_free_post_load_bufs;
 232
 233	ret = -ENOMEM;
 234	image->control_code_page = kimage_alloc_control_pages(image,
 235					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 236	if (!image->control_code_page) {
 237		pr_err("Could not allocate control_code_buffer\n");
 238		goto out_free_post_load_bufs;
 239	}
 240
 241	if (!kexec_on_panic) {
 242		image->swap_page = kimage_alloc_control_pages(image, 0);
 243		if (!image->swap_page) {
 244			pr_err("Could not allocate swap buffer\n");
 245			goto out_free_control_pages;
 246		}
 247	}
 248
 249	*rimage = image;
 250	return 0;
 251out_free_control_pages:
 252	kimage_free_page_list(&image->control_pages);
 253out_free_post_load_bufs:
 254	kimage_file_post_load_cleanup(image);
 255out_free_image:
 256	kfree(image);
 257	return ret;
 258}
 259
 260SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 261		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 262		unsigned long, flags)
 263{
 264	int ret = 0, i;
 265	struct kimage **dest_image, *image;
 266
 267	/* We only trust the superuser with rebooting the system. */
 268	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 269		return -EPERM;
 270
 271	/* Make sure we have a legal set of flags */
 272	if (flags != (flags & KEXEC_FILE_FLAGS))
 273		return -EINVAL;
 274
 275	image = NULL;
 276
 277	if (!mutex_trylock(&kexec_mutex))
 278		return -EBUSY;
 279
 280	dest_image = &kexec_image;
 281	if (flags & KEXEC_FILE_ON_CRASH) {
 282		dest_image = &kexec_crash_image;
 283		if (kexec_crash_image)
 284			arch_kexec_unprotect_crashkres();
 285	}
 286
 287	if (flags & KEXEC_FILE_UNLOAD)
 288		goto exchange;
 289
 290	/*
 291	 * In case of crash, new kernel gets loaded in reserved region. It is
 292	 * same memory where old crash kernel might be loaded. Free any
 293	 * current crash dump kernel before we corrupt it.
 294	 */
 295	if (flags & KEXEC_FILE_ON_CRASH)
 296		kimage_free(xchg(&kexec_crash_image, NULL));
 297
 298	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 299				     cmdline_len, flags);
 300	if (ret)
 301		goto out;
 302
 303	ret = machine_kexec_prepare(image);
 304	if (ret)
 305		goto out;
 306
 307	ret = kexec_calculate_store_digests(image);
 308	if (ret)
 309		goto out;
 310
 311	for (i = 0; i < image->nr_segments; i++) {
 312		struct kexec_segment *ksegment;
 313
 314		ksegment = &image->segment[i];
 315		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 316			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 317			 ksegment->memsz);
 318
 319		ret = kimage_load_segment(image, &image->segment[i]);
 320		if (ret)
 321			goto out;
 322	}
 323
 324	kimage_terminate(image);
 325
 326	/*
 327	 * Free up any temporary buffers allocated which are not needed
 328	 * after image has been loaded
 329	 */
 330	kimage_file_post_load_cleanup(image);
 331exchange:
 332	image = xchg(dest_image, image);
 333out:
 334	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 335		arch_kexec_protect_crashkres();
 336
 337	mutex_unlock(&kexec_mutex);
 338	kimage_free(image);
 339	return ret;
 340}
 341
 342static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 343				    struct kexec_buf *kbuf)
 344{
 345	struct kimage *image = kbuf->image;
 346	unsigned long temp_start, temp_end;
 347
 348	temp_end = min(end, kbuf->buf_max);
 349	temp_start = temp_end - kbuf->memsz;
 350
 351	do {
 352		/* align down start */
 353		temp_start = temp_start & (~(kbuf->buf_align - 1));
 354
 355		if (temp_start < start || temp_start < kbuf->buf_min)
 356			return 0;
 357
 358		temp_end = temp_start + kbuf->memsz - 1;
 359
 360		/*
 361		 * Make sure this does not conflict with any of existing
 362		 * segments
 363		 */
 364		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 365			temp_start = temp_start - PAGE_SIZE;
 366			continue;
 367		}
 368
 369		/* We found a suitable memory range */
 370		break;
 371	} while (1);
 372
 373	/* If we are here, we found a suitable memory range */
 374	kbuf->mem = temp_start;
 375
 376	/* Success, stop navigating through remaining System RAM ranges */
 377	return 1;
 378}
 379
 380static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 381				     struct kexec_buf *kbuf)
 382{
 383	struct kimage *image = kbuf->image;
 384	unsigned long temp_start, temp_end;
 385
 386	temp_start = max(start, kbuf->buf_min);
 387
 388	do {
 389		temp_start = ALIGN(temp_start, kbuf->buf_align);
 390		temp_end = temp_start + kbuf->memsz - 1;
 391
 392		if (temp_end > end || temp_end > kbuf->buf_max)
 393			return 0;
 394		/*
 395		 * Make sure this does not conflict with any of existing
 396		 * segments
 397		 */
 398		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 399			temp_start = temp_start + PAGE_SIZE;
 400			continue;
 401		}
 402
 403		/* We found a suitable memory range */
 404		break;
 405	} while (1);
 406
 407	/* If we are here, we found a suitable memory range */
 408	kbuf->mem = temp_start;
 409
 410	/* Success, stop navigating through remaining System RAM ranges */
 411	return 1;
 412}
 413
 414static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 415{
 416	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 417	unsigned long sz = end - start + 1;
 418
 419	/* Returning 0 will take to next memory range */
 420	if (sz < kbuf->memsz)
 421		return 0;
 422
 423	if (end < kbuf->buf_min || start > kbuf->buf_max)
 424		return 0;
 425
 426	/*
 427	 * Allocate memory top down with-in ram range. Otherwise bottom up
 428	 * allocation.
 429	 */
 430	if (kbuf->top_down)
 431		return locate_mem_hole_top_down(start, end, kbuf);
 432	return locate_mem_hole_bottom_up(start, end, kbuf);
 433}
 434
 435/**
 436 * arch_kexec_walk_mem - call func(data) on free memory regions
 437 * @kbuf:	Context info for the search. Also passed to @func.
 438 * @func:	Function to call for each memory region.
 439 *
 440 * Return: The memory walk will stop when func returns a non-zero value
 441 * and that value will be returned. If all free regions are visited without
 442 * func returning non-zero, then zero will be returned.
 443 */
 444int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 445			       int (*func)(u64, u64, void *))
 446{
 447	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 448		return walk_iomem_res_desc(crashk_res.desc,
 449					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 450					   crashk_res.start, crashk_res.end,
 451					   kbuf, func);
 452	else
 453		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 454}
 455
 456/**
 457 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 458 * @kbuf:	Parameters for the memory search.
 459 *
 460 * On success, kbuf->mem will have the start address of the memory region found.
 461 *
 462 * Return: 0 on success, negative errno on error.
 463 */
 464int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 465{
 466	int ret;
 467
 468	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 469
 470	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 471}
 472
 473/**
 474 * kexec_add_buffer - place a buffer in a kexec segment
 475 * @kbuf:	Buffer contents and memory parameters.
 476 *
 477 * This function assumes that kexec_mutex is held.
 478 * On successful return, @kbuf->mem will have the physical address of
 479 * the buffer in memory.
 480 *
 481 * Return: 0 on success, negative errno on error.
 482 */
 483int kexec_add_buffer(struct kexec_buf *kbuf)
 484{
 485
 486	struct kexec_segment *ksegment;
 487	int ret;
 488
 489	/* Currently adding segment this way is allowed only in file mode */
 490	if (!kbuf->image->file_mode)
 491		return -EINVAL;
 492
 493	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 494		return -EINVAL;
 495
 496	/*
 497	 * Make sure we are not trying to add buffer after allocating
 498	 * control pages. All segments need to be placed first before
 499	 * any control pages are allocated. As control page allocation
 500	 * logic goes through list of segments to make sure there are
 501	 * no destination overlaps.
 502	 */
 503	if (!list_empty(&kbuf->image->control_pages)) {
 504		WARN_ON(1);
 505		return -EINVAL;
 506	}
 507
 508	/* Ensure minimum alignment needed for segments. */
 509	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 510	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 511
 512	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 513	ret = kexec_locate_mem_hole(kbuf);
 514	if (ret)
 515		return ret;
 516
 517	/* Found a suitable memory range */
 518	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 519	ksegment->kbuf = kbuf->buffer;
 520	ksegment->bufsz = kbuf->bufsz;
 521	ksegment->mem = kbuf->mem;
 522	ksegment->memsz = kbuf->memsz;
 523	kbuf->image->nr_segments++;
 524	return 0;
 525}
 526
 527/* Calculate and store the digest of segments */
 528static int kexec_calculate_store_digests(struct kimage *image)
 529{
 530	struct crypto_shash *tfm;
 531	struct shash_desc *desc;
 532	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 533	size_t desc_size, nullsz;
 534	char *digest;
 535	void *zero_buf;
 536	struct kexec_sha_region *sha_regions;
 537	struct purgatory_info *pi = &image->purgatory_info;
 538
 539	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 540	zero_buf_sz = PAGE_SIZE;
 541
 542	tfm = crypto_alloc_shash("sha256", 0, 0);
 543	if (IS_ERR(tfm)) {
 544		ret = PTR_ERR(tfm);
 545		goto out;
 546	}
 547
 548	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 549	desc = kzalloc(desc_size, GFP_KERNEL);
 550	if (!desc) {
 551		ret = -ENOMEM;
 552		goto out_free_tfm;
 553	}
 554
 555	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 556	sha_regions = vzalloc(sha_region_sz);
 557	if (!sha_regions)
 558		goto out_free_desc;
 559
 560	desc->tfm   = tfm;
 561	desc->flags = 0;
 562
 563	ret = crypto_shash_init(desc);
 564	if (ret < 0)
 565		goto out_free_sha_regions;
 566
 567	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 568	if (!digest) {
 569		ret = -ENOMEM;
 570		goto out_free_sha_regions;
 571	}
 572
 573	for (j = i = 0; i < image->nr_segments; i++) {
 574		struct kexec_segment *ksegment;
 575
 576		ksegment = &image->segment[i];
 577		/*
 578		 * Skip purgatory as it will be modified once we put digest
 579		 * info in purgatory.
 580		 */
 581		if (ksegment->kbuf == pi->purgatory_buf)
 582			continue;
 583
 584		ret = crypto_shash_update(desc, ksegment->kbuf,
 585					  ksegment->bufsz);
 586		if (ret)
 587			break;
 588
 589		/*
 590		 * Assume rest of the buffer is filled with zero and
 591		 * update digest accordingly.
 592		 */
 593		nullsz = ksegment->memsz - ksegment->bufsz;
 594		while (nullsz) {
 595			unsigned long bytes = nullsz;
 596
 597			if (bytes > zero_buf_sz)
 598				bytes = zero_buf_sz;
 599			ret = crypto_shash_update(desc, zero_buf, bytes);
 600			if (ret)
 601				break;
 602			nullsz -= bytes;
 603		}
 604
 605		if (ret)
 606			break;
 607
 608		sha_regions[j].start = ksegment->mem;
 609		sha_regions[j].len = ksegment->memsz;
 610		j++;
 611	}
 612
 613	if (!ret) {
 614		ret = crypto_shash_final(desc, digest);
 615		if (ret)
 616			goto out_free_digest;
 617		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 618						sha_regions, sha_region_sz, 0);
 619		if (ret)
 620			goto out_free_digest;
 621
 622		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 623						digest, SHA256_DIGEST_SIZE, 0);
 624		if (ret)
 625			goto out_free_digest;
 626	}
 627
 628out_free_digest:
 629	kfree(digest);
 630out_free_sha_regions:
 631	vfree(sha_regions);
 632out_free_desc:
 633	kfree(desc);
 634out_free_tfm:
 635	kfree(tfm);
 636out:
 637	return ret;
 638}
 639
 640/* Actually load purgatory. Lot of code taken from kexec-tools */
 641static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 642				  unsigned long max, int top_down)
 643{
 644	struct purgatory_info *pi = &image->purgatory_info;
 645	unsigned long align, bss_align, bss_sz, bss_pad;
 646	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
 647	unsigned char *buf_addr, *src;
 648	int i, ret = 0, entry_sidx = -1;
 649	const Elf_Shdr *sechdrs_c;
 650	Elf_Shdr *sechdrs = NULL;
 651	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
 652				  .buf_min = min, .buf_max = max,
 653				  .top_down = top_down };
 654
 655	/*
 656	 * sechdrs_c points to section headers in purgatory and are read
 657	 * only. No modifications allowed.
 658	 */
 659	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 660
 661	/*
 662	 * We can not modify sechdrs_c[] and its fields. It is read only.
 663	 * Copy it over to a local copy where one can store some temporary
 664	 * data and free it at the end. We need to modify ->sh_addr and
 665	 * ->sh_offset fields to keep track of permanent and temporary
 666	 * locations of sections.
 667	 */
 668	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 669	if (!sechdrs)
 670		return -ENOMEM;
 671
 672	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 673
 674	/*
 675	 * We seem to have multiple copies of sections. First copy is which
 676	 * is embedded in kernel in read only section. Some of these sections
 677	 * will be copied to a temporary buffer and relocated. And these
 678	 * sections will finally be copied to their final destination at
 679	 * segment load time.
 680	 *
 681	 * Use ->sh_offset to reflect section address in memory. It will
 682	 * point to original read only copy if section is not allocatable.
 683	 * Otherwise it will point to temporary copy which will be relocated.
 684	 *
 685	 * Use ->sh_addr to contain final address of the section where it
 686	 * will go during execution time.
 687	 */
 688	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 689		if (sechdrs[i].sh_type == SHT_NOBITS)
 690			continue;
 691
 692		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 693						sechdrs[i].sh_offset;
 694	}
 695
 696	/*
 697	 * Identify entry point section and make entry relative to section
 698	 * start.
 699	 */
 700	entry = pi->ehdr->e_entry;
 701	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 702		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 703			continue;
 704
 705		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 706			continue;
 707
 708		/* Make entry section relative */
 709		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 710		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 711		     pi->ehdr->e_entry)) {
 712			entry_sidx = i;
 713			entry -= sechdrs[i].sh_addr;
 714			break;
 715		}
 716	}
 717
 718	/* Determine how much memory is needed to load relocatable object. */
 719	bss_align = 1;
 720	bss_sz = 0;
 721
 722	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724			continue;
 725
 726		align = sechdrs[i].sh_addralign;
 727		if (sechdrs[i].sh_type != SHT_NOBITS) {
 728			if (kbuf.buf_align < align)
 729				kbuf.buf_align = align;
 730			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
 731			kbuf.bufsz += sechdrs[i].sh_size;
 732		} else {
 733			/* bss section */
 734			if (bss_align < align)
 735				bss_align = align;
 736			bss_sz = ALIGN(bss_sz, align);
 737			bss_sz += sechdrs[i].sh_size;
 738		}
 739	}
 740
 741	/* Determine the bss padding required to align bss properly */
 742	bss_pad = 0;
 743	if (kbuf.bufsz & (bss_align - 1))
 744		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
 745
 746	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
 747
 748	/* Allocate buffer for purgatory */
 749	kbuf.buffer = vzalloc(kbuf.bufsz);
 750	if (!kbuf.buffer) {
 751		ret = -ENOMEM;
 752		goto out;
 753	}
 754
 755	if (kbuf.buf_align < bss_align)
 756		kbuf.buf_align = bss_align;
 757
 758	/* Add buffer to segment list */
 759	ret = kexec_add_buffer(&kbuf);
 760	if (ret)
 761		goto out;
 762	pi->purgatory_load_addr = kbuf.mem;
 763
 764	/* Load SHF_ALLOC sections */
 765	buf_addr = kbuf.buffer;
 766	load_addr = curr_load_addr = pi->purgatory_load_addr;
 767	bss_addr = load_addr + kbuf.bufsz + bss_pad;
 768
 769	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 770		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 771			continue;
 772
 773		align = sechdrs[i].sh_addralign;
 774		if (sechdrs[i].sh_type != SHT_NOBITS) {
 775			curr_load_addr = ALIGN(curr_load_addr, align);
 776			offset = curr_load_addr - load_addr;
 777			/* We already modifed ->sh_offset to keep src addr */
 778			src = (char *) sechdrs[i].sh_offset;
 779			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 780
 781			/* Store load address and source address of section */
 782			sechdrs[i].sh_addr = curr_load_addr;
 783
 784			/*
 785			 * This section got copied to temporary buffer. Update
 786			 * ->sh_offset accordingly.
 787			 */
 788			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 789
 790			/* Advance to the next address */
 791			curr_load_addr += sechdrs[i].sh_size;
 792		} else {
 793			bss_addr = ALIGN(bss_addr, align);
 794			sechdrs[i].sh_addr = bss_addr;
 795			bss_addr += sechdrs[i].sh_size;
 796		}
 797	}
 798
 799	/* Update entry point based on load address of text section */
 800	if (entry_sidx >= 0)
 801		entry += sechdrs[entry_sidx].sh_addr;
 802
 803	/* Make kernel jump to purgatory after shutdown */
 804	image->start = entry;
 805
 806	/* Used later to get/set symbol values */
 807	pi->sechdrs = sechdrs;
 808
 809	/*
 810	 * Used later to identify which section is purgatory and skip it
 811	 * from checksumming.
 812	 */
 813	pi->purgatory_buf = kbuf.buffer;
 814	return ret;
 815out:
 816	vfree(sechdrs);
 817	vfree(kbuf.buffer);
 818	return ret;
 819}
 820
 821static int kexec_apply_relocations(struct kimage *image)
 822{
 823	int i, ret;
 824	struct purgatory_info *pi = &image->purgatory_info;
 825	Elf_Shdr *sechdrs = pi->sechdrs;
 826
 827	/* Apply relocations */
 828	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 829		Elf_Shdr *section, *symtab;
 830
 831		if (sechdrs[i].sh_type != SHT_RELA &&
 832		    sechdrs[i].sh_type != SHT_REL)
 833			continue;
 834
 835		/*
 836		 * For section of type SHT_RELA/SHT_REL,
 837		 * ->sh_link contains section header index of associated
 838		 * symbol table. And ->sh_info contains section header
 839		 * index of section to which relocations apply.
 840		 */
 841		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 842		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 843			return -ENOEXEC;
 844
 845		section = &sechdrs[sechdrs[i].sh_info];
 846		symtab = &sechdrs[sechdrs[i].sh_link];
 847
 848		if (!(section->sh_flags & SHF_ALLOC))
 849			continue;
 850
 851		/*
 852		 * symtab->sh_link contain section header index of associated
 853		 * string table.
 854		 */
 855		if (symtab->sh_link >= pi->ehdr->e_shnum)
 856			/* Invalid section number? */
 857			continue;
 858
 859		/*
 860		 * Respective architecture needs to provide support for applying
 861		 * relocations of type SHT_RELA/SHT_REL.
 862		 */
 863		if (sechdrs[i].sh_type == SHT_RELA)
 864			ret = arch_kexec_apply_relocations_add(pi->ehdr,
 865							       sechdrs, i);
 866		else if (sechdrs[i].sh_type == SHT_REL)
 867			ret = arch_kexec_apply_relocations(pi->ehdr,
 868							   sechdrs, i);
 869		if (ret)
 870			return ret;
 871	}
 872
 873	return 0;
 874}
 875
 876/* Load relocatable purgatory object and relocate it appropriately */
 877int kexec_load_purgatory(struct kimage *image, unsigned long min,
 878			 unsigned long max, int top_down,
 879			 unsigned long *load_addr)
 880{
 881	struct purgatory_info *pi = &image->purgatory_info;
 882	int ret;
 883
 884	if (kexec_purgatory_size <= 0)
 885		return -EINVAL;
 886
 887	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 888		return -ENOEXEC;
 889
 890	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 891
 892	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 893	    || pi->ehdr->e_type != ET_REL
 894	    || !elf_check_arch(pi->ehdr)
 895	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 896		return -ENOEXEC;
 897
 898	if (pi->ehdr->e_shoff >= kexec_purgatory_size
 899	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 900	    kexec_purgatory_size - pi->ehdr->e_shoff))
 901		return -ENOEXEC;
 902
 903	ret = __kexec_load_purgatory(image, min, max, top_down);
 904	if (ret)
 905		return ret;
 906
 907	ret = kexec_apply_relocations(image);
 908	if (ret)
 909		goto out;
 910
 911	*load_addr = pi->purgatory_load_addr;
 912	return 0;
 913out:
 914	vfree(pi->sechdrs);
 915	pi->sechdrs = NULL;
 916
 917	vfree(pi->purgatory_buf);
 918	pi->purgatory_buf = NULL;
 919	return ret;
 920}
 921
 922static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 923					    const char *name)
 924{
 925	Elf_Sym *syms;
 926	Elf_Shdr *sechdrs;
 927	Elf_Ehdr *ehdr;
 928	int i, k;
 929	const char *strtab;
 930
 931	if (!pi->sechdrs || !pi->ehdr)
 932		return NULL;
 933
 934	sechdrs = pi->sechdrs;
 935	ehdr = pi->ehdr;
 936
 937	for (i = 0; i < ehdr->e_shnum; i++) {
 938		if (sechdrs[i].sh_type != SHT_SYMTAB)
 939			continue;
 940
 941		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 942			/* Invalid strtab section number */
 943			continue;
 944		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 945		syms = (Elf_Sym *)sechdrs[i].sh_offset;
 946
 947		/* Go through symbols for a match */
 948		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 949			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 950				continue;
 951
 952			if (strcmp(strtab + syms[k].st_name, name) != 0)
 953				continue;
 954
 955			if (syms[k].st_shndx == SHN_UNDEF ||
 956			    syms[k].st_shndx >= ehdr->e_shnum) {
 957				pr_debug("Symbol: %s has bad section index %d.\n",
 958						name, syms[k].st_shndx);
 959				return NULL;
 960			}
 961
 962			/* Found the symbol we are looking for */
 963			return &syms[k];
 964		}
 965	}
 966
 967	return NULL;
 968}
 969
 970void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 971{
 972	struct purgatory_info *pi = &image->purgatory_info;
 973	Elf_Sym *sym;
 974	Elf_Shdr *sechdr;
 975
 976	sym = kexec_purgatory_find_symbol(pi, name);
 977	if (!sym)
 978		return ERR_PTR(-EINVAL);
 979
 980	sechdr = &pi->sechdrs[sym->st_shndx];
 981
 982	/*
 983	 * Returns the address where symbol will finally be loaded after
 984	 * kexec_load_segment()
 985	 */
 986	return (void *)(sechdr->sh_addr + sym->st_value);
 987}
 988
 989/*
 990 * Get or set value of a symbol. If "get_value" is true, symbol value is
 991 * returned in buf otherwise symbol value is set based on value in buf.
 992 */
 993int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 994				   void *buf, unsigned int size, bool get_value)
 995{
 996	Elf_Sym *sym;
 997	Elf_Shdr *sechdrs;
 998	struct purgatory_info *pi = &image->purgatory_info;
 999	char *sym_buf;
1000
1001	sym = kexec_purgatory_find_symbol(pi, name);
1002	if (!sym)
1003		return -EINVAL;
1004
1005	if (sym->st_size != size) {
1006		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007		       name, (unsigned long)sym->st_size, size);
1008		return -EINVAL;
1009	}
1010
1011	sechdrs = pi->sechdrs;
1012
1013	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015		       get_value ? "get" : "set");
1016		return -EINVAL;
1017	}
1018
1019	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020					sym->st_value;
1021
1022	if (get_value)
1023		memcpy((void *)buf, sym_buf, size);
1024	else
1025		memcpy((void *)sym_buf, buf, size);
1026
1027	return 0;
1028}