Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
 
 
 
 
 
  25#include <linux/syscalls.h>
  26#include <linux/vmalloc.h>
  27#include "kexec_internal.h"
  28
 
 
  29/*
  30 * Declare these symbols weak so that if architecture provides a purgatory,
  31 * these will be overridden.
 
  32 */
  33char __weak kexec_purgatory[0];
  34size_t __weak kexec_purgatory_size = 0;
 
 
 
  35
  36static int kexec_calculate_store_digests(struct kimage *image);
 
 
 
 
 
 
 
 
 
  37
  38/* Architectures can provide this probe function */
  39int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  40					 unsigned long buf_len)
  41{
  42	return -ENOEXEC;
 
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  46{
  47	return ERR_PTR(-ENOEXEC);
 
 
 
 
 
 
 
 
  48}
  49
  50int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  51{
  52	return -EINVAL;
  53}
  54
  55#ifdef CONFIG_KEXEC_VERIFY_SIG
 
 
 
 
 
 
 
 
 
 
 
  56int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
  57					unsigned long buf_len)
  58{
  59	return -EKEYREJECTED;
  60}
  61#endif
  62
  63/* Apply relocations of type RELA */
 
 
 
 
 
 
 
 
  64int __weak
  65arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  66				 unsigned int relsec)
  67{
  68	pr_err("RELA relocation unsupported.\n");
  69	return -ENOEXEC;
  70}
  71
  72/* Apply relocations of type REL */
 
 
 
 
 
 
 
 
  73int __weak
  74arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
  75			     unsigned int relsec)
  76{
  77	pr_err("REL relocation unsupported.\n");
  78	return -ENOEXEC;
  79}
  80
  81/*
  82 * Free up memory used by kernel, initrd, and command line. This is temporary
  83 * memory allocation which is not needed any more after these buffers have
  84 * been loaded into separate segments and have been copied elsewhere.
  85 */
  86void kimage_file_post_load_cleanup(struct kimage *image)
  87{
  88	struct purgatory_info *pi = &image->purgatory_info;
  89
  90	vfree(image->kernel_buf);
  91	image->kernel_buf = NULL;
  92
  93	vfree(image->initrd_buf);
  94	image->initrd_buf = NULL;
  95
  96	kfree(image->cmdline_buf);
  97	image->cmdline_buf = NULL;
  98
  99	vfree(pi->purgatory_buf);
 100	pi->purgatory_buf = NULL;
 101
 102	vfree(pi->sechdrs);
 103	pi->sechdrs = NULL;
 104
 105	/* See if architecture has anything to cleanup post load */
 106	arch_kimage_file_post_load_cleanup(image);
 107
 108	/*
 109	 * Above call should have called into bootloader to free up
 110	 * any data stored in kimage->image_loader_data. It should
 111	 * be ok now to free it up.
 112	 */
 113	kfree(image->image_loader_data);
 114	image->image_loader_data = NULL;
 115}
 116
 117/*
 118 * In file mode list of segments is prepared by kernel. Copy relevant
 119 * data from user space, do error checking, prepare segment list
 120 */
 121static int
 122kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 123			     const char __user *cmdline_ptr,
 124			     unsigned long cmdline_len, unsigned flags)
 125{
 126	int ret = 0;
 127	void *ldata;
 128	loff_t size;
 129
 130	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 131				       &size, INT_MAX, READING_KEXEC_IMAGE);
 132	if (ret)
 133		return ret;
 134	image->kernel_buf_len = size;
 135
 136	/* IMA needs to pass the measurement list to the next kernel. */
 137	ima_add_kexec_buffer(image);
 138
 139	/* Call arch image probe handlers */
 140	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 141					    image->kernel_buf_len);
 142	if (ret)
 143		goto out;
 144
 145#ifdef CONFIG_KEXEC_VERIFY_SIG
 146	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 147					   image->kernel_buf_len);
 148	if (ret) {
 149		pr_debug("kernel signature verification failed.\n");
 150		goto out;
 151	}
 152	pr_debug("kernel signature verification successful.\n");
 153#endif
 154	/* It is possible that there no initramfs is being loaded */
 155	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 156		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 157					       &size, INT_MAX,
 158					       READING_KEXEC_INITRAMFS);
 159		if (ret)
 160			goto out;
 161		image->initrd_buf_len = size;
 162	}
 163
 164	if (cmdline_len) {
 165		image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
 166		if (!image->cmdline_buf) {
 167			ret = -ENOMEM;
 168			goto out;
 169		}
 170
 171		ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
 172				     cmdline_len);
 173		if (ret) {
 174			ret = -EFAULT;
 175			goto out;
 176		}
 177
 178		image->cmdline_buf_len = cmdline_len;
 179
 180		/* command line should be a string with last byte null */
 181		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 182			ret = -EINVAL;
 183			goto out;
 184		}
 185	}
 186
 187	/* Call arch image load handlers */
 188	ldata = arch_kexec_kernel_image_load(image);
 189
 190	if (IS_ERR(ldata)) {
 191		ret = PTR_ERR(ldata);
 192		goto out;
 193	}
 194
 195	image->image_loader_data = ldata;
 196out:
 197	/* In case of error, free up all allocated memory in this function */
 198	if (ret)
 199		kimage_file_post_load_cleanup(image);
 200	return ret;
 201}
 202
 203static int
 204kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 205		       int initrd_fd, const char __user *cmdline_ptr,
 206		       unsigned long cmdline_len, unsigned long flags)
 207{
 208	int ret;
 209	struct kimage *image;
 210	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 211
 212	image = do_kimage_alloc_init();
 213	if (!image)
 214		return -ENOMEM;
 215
 216	image->file_mode = 1;
 217
 218	if (kexec_on_panic) {
 219		/* Enable special crash kernel control page alloc policy. */
 220		image->control_page = crashk_res.start;
 221		image->type = KEXEC_TYPE_CRASH;
 222	}
 223
 224	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 225					   cmdline_ptr, cmdline_len, flags);
 226	if (ret)
 227		goto out_free_image;
 228
 229	ret = sanity_check_segment_list(image);
 230	if (ret)
 231		goto out_free_post_load_bufs;
 232
 233	ret = -ENOMEM;
 234	image->control_code_page = kimage_alloc_control_pages(image,
 235					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 236	if (!image->control_code_page) {
 237		pr_err("Could not allocate control_code_buffer\n");
 238		goto out_free_post_load_bufs;
 239	}
 240
 241	if (!kexec_on_panic) {
 242		image->swap_page = kimage_alloc_control_pages(image, 0);
 243		if (!image->swap_page) {
 244			pr_err("Could not allocate swap buffer\n");
 245			goto out_free_control_pages;
 246		}
 247	}
 248
 249	*rimage = image;
 250	return 0;
 251out_free_control_pages:
 252	kimage_free_page_list(&image->control_pages);
 253out_free_post_load_bufs:
 254	kimage_file_post_load_cleanup(image);
 255out_free_image:
 256	kfree(image);
 257	return ret;
 258}
 259
 260SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 261		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 262		unsigned long, flags)
 263{
 264	int ret = 0, i;
 265	struct kimage **dest_image, *image;
 266
 267	/* We only trust the superuser with rebooting the system. */
 268	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 269		return -EPERM;
 270
 271	/* Make sure we have a legal set of flags */
 272	if (flags != (flags & KEXEC_FILE_FLAGS))
 273		return -EINVAL;
 274
 275	image = NULL;
 276
 277	if (!mutex_trylock(&kexec_mutex))
 278		return -EBUSY;
 279
 280	dest_image = &kexec_image;
 281	if (flags & KEXEC_FILE_ON_CRASH) {
 282		dest_image = &kexec_crash_image;
 283		if (kexec_crash_image)
 284			arch_kexec_unprotect_crashkres();
 285	}
 286
 287	if (flags & KEXEC_FILE_UNLOAD)
 288		goto exchange;
 289
 290	/*
 291	 * In case of crash, new kernel gets loaded in reserved region. It is
 292	 * same memory where old crash kernel might be loaded. Free any
 293	 * current crash dump kernel before we corrupt it.
 294	 */
 295	if (flags & KEXEC_FILE_ON_CRASH)
 296		kimage_free(xchg(&kexec_crash_image, NULL));
 297
 298	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 299				     cmdline_len, flags);
 300	if (ret)
 301		goto out;
 302
 303	ret = machine_kexec_prepare(image);
 304	if (ret)
 305		goto out;
 306
 
 
 
 
 
 
 
 
 307	ret = kexec_calculate_store_digests(image);
 308	if (ret)
 309		goto out;
 310
 311	for (i = 0; i < image->nr_segments; i++) {
 312		struct kexec_segment *ksegment;
 313
 314		ksegment = &image->segment[i];
 315		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 316			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 317			 ksegment->memsz);
 318
 319		ret = kimage_load_segment(image, &image->segment[i]);
 320		if (ret)
 321			goto out;
 322	}
 323
 324	kimage_terminate(image);
 325
 326	/*
 327	 * Free up any temporary buffers allocated which are not needed
 328	 * after image has been loaded
 329	 */
 330	kimage_file_post_load_cleanup(image);
 331exchange:
 332	image = xchg(dest_image, image);
 333out:
 334	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 335		arch_kexec_protect_crashkres();
 336
 337	mutex_unlock(&kexec_mutex);
 338	kimage_free(image);
 339	return ret;
 340}
 341
 342static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 343				    struct kexec_buf *kbuf)
 344{
 345	struct kimage *image = kbuf->image;
 346	unsigned long temp_start, temp_end;
 347
 348	temp_end = min(end, kbuf->buf_max);
 349	temp_start = temp_end - kbuf->memsz;
 350
 351	do {
 352		/* align down start */
 353		temp_start = temp_start & (~(kbuf->buf_align - 1));
 354
 355		if (temp_start < start || temp_start < kbuf->buf_min)
 356			return 0;
 357
 358		temp_end = temp_start + kbuf->memsz - 1;
 359
 360		/*
 361		 * Make sure this does not conflict with any of existing
 362		 * segments
 363		 */
 364		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 365			temp_start = temp_start - PAGE_SIZE;
 366			continue;
 367		}
 368
 369		/* We found a suitable memory range */
 370		break;
 371	} while (1);
 372
 373	/* If we are here, we found a suitable memory range */
 374	kbuf->mem = temp_start;
 375
 376	/* Success, stop navigating through remaining System RAM ranges */
 377	return 1;
 378}
 379
 380static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 381				     struct kexec_buf *kbuf)
 382{
 383	struct kimage *image = kbuf->image;
 384	unsigned long temp_start, temp_end;
 385
 386	temp_start = max(start, kbuf->buf_min);
 387
 388	do {
 389		temp_start = ALIGN(temp_start, kbuf->buf_align);
 390		temp_end = temp_start + kbuf->memsz - 1;
 391
 392		if (temp_end > end || temp_end > kbuf->buf_max)
 393			return 0;
 394		/*
 395		 * Make sure this does not conflict with any of existing
 396		 * segments
 397		 */
 398		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 399			temp_start = temp_start + PAGE_SIZE;
 400			continue;
 401		}
 402
 403		/* We found a suitable memory range */
 404		break;
 405	} while (1);
 406
 407	/* If we are here, we found a suitable memory range */
 408	kbuf->mem = temp_start;
 409
 410	/* Success, stop navigating through remaining System RAM ranges */
 411	return 1;
 412}
 413
 414static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
 415{
 416	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 
 417	unsigned long sz = end - start + 1;
 418
 419	/* Returning 0 will take to next memory range */
 420	if (sz < kbuf->memsz)
 421		return 0;
 422
 423	if (end < kbuf->buf_min || start > kbuf->buf_max)
 424		return 0;
 425
 426	/*
 427	 * Allocate memory top down with-in ram range. Otherwise bottom up
 428	 * allocation.
 429	 */
 430	if (kbuf->top_down)
 431		return locate_mem_hole_top_down(start, end, kbuf);
 432	return locate_mem_hole_bottom_up(start, end, kbuf);
 433}
 434
 435/**
 436 * arch_kexec_walk_mem - call func(data) on free memory regions
 437 * @kbuf:	Context info for the search. Also passed to @func.
 438 * @func:	Function to call for each memory region.
 439 *
 440 * Return: The memory walk will stop when func returns a non-zero value
 441 * and that value will be returned. If all free regions are visited without
 442 * func returning non-zero, then zero will be returned.
 443 */
 444int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 445			       int (*func)(u64, u64, void *))
 446{
 447	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 448		return walk_iomem_res_desc(crashk_res.desc,
 449					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 450					   crashk_res.start, crashk_res.end,
 451					   kbuf, func);
 452	else
 453		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 454}
 455
 456/**
 457 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 458 * @kbuf:	Parameters for the memory search.
 459 *
 460 * On success, kbuf->mem will have the start address of the memory region found.
 461 *
 462 * Return: 0 on success, negative errno on error.
 463 */
 464int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 465{
 466	int ret;
 467
 468	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 469
 470	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 471}
 472
 473/**
 474 * kexec_add_buffer - place a buffer in a kexec segment
 475 * @kbuf:	Buffer contents and memory parameters.
 476 *
 477 * This function assumes that kexec_mutex is held.
 478 * On successful return, @kbuf->mem will have the physical address of
 479 * the buffer in memory.
 480 *
 481 * Return: 0 on success, negative errno on error.
 482 */
 483int kexec_add_buffer(struct kexec_buf *kbuf)
 484{
 485
 486	struct kexec_segment *ksegment;
 487	int ret;
 488
 489	/* Currently adding segment this way is allowed only in file mode */
 490	if (!kbuf->image->file_mode)
 491		return -EINVAL;
 492
 493	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 494		return -EINVAL;
 495
 496	/*
 497	 * Make sure we are not trying to add buffer after allocating
 498	 * control pages. All segments need to be placed first before
 499	 * any control pages are allocated. As control page allocation
 500	 * logic goes through list of segments to make sure there are
 501	 * no destination overlaps.
 502	 */
 503	if (!list_empty(&kbuf->image->control_pages)) {
 504		WARN_ON(1);
 505		return -EINVAL;
 506	}
 507
 508	/* Ensure minimum alignment needed for segments. */
 509	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 510	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 511
 512	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 513	ret = kexec_locate_mem_hole(kbuf);
 514	if (ret)
 515		return ret;
 516
 517	/* Found a suitable memory range */
 518	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 519	ksegment->kbuf = kbuf->buffer;
 520	ksegment->bufsz = kbuf->bufsz;
 521	ksegment->mem = kbuf->mem;
 522	ksegment->memsz = kbuf->memsz;
 523	kbuf->image->nr_segments++;
 524	return 0;
 525}
 526
 527/* Calculate and store the digest of segments */
 528static int kexec_calculate_store_digests(struct kimage *image)
 529{
 530	struct crypto_shash *tfm;
 531	struct shash_desc *desc;
 532	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 533	size_t desc_size, nullsz;
 534	char *digest;
 535	void *zero_buf;
 536	struct kexec_sha_region *sha_regions;
 537	struct purgatory_info *pi = &image->purgatory_info;
 538
 
 
 
 539	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 540	zero_buf_sz = PAGE_SIZE;
 541
 542	tfm = crypto_alloc_shash("sha256", 0, 0);
 543	if (IS_ERR(tfm)) {
 544		ret = PTR_ERR(tfm);
 545		goto out;
 546	}
 547
 548	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 549	desc = kzalloc(desc_size, GFP_KERNEL);
 550	if (!desc) {
 551		ret = -ENOMEM;
 552		goto out_free_tfm;
 553	}
 554
 555	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 556	sha_regions = vzalloc(sha_region_sz);
 557	if (!sha_regions)
 558		goto out_free_desc;
 559
 560	desc->tfm   = tfm;
 561	desc->flags = 0;
 562
 563	ret = crypto_shash_init(desc);
 564	if (ret < 0)
 565		goto out_free_sha_regions;
 566
 567	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 568	if (!digest) {
 569		ret = -ENOMEM;
 570		goto out_free_sha_regions;
 571	}
 572
 573	for (j = i = 0; i < image->nr_segments; i++) {
 574		struct kexec_segment *ksegment;
 575
 576		ksegment = &image->segment[i];
 577		/*
 578		 * Skip purgatory as it will be modified once we put digest
 579		 * info in purgatory.
 580		 */
 581		if (ksegment->kbuf == pi->purgatory_buf)
 582			continue;
 583
 584		ret = crypto_shash_update(desc, ksegment->kbuf,
 585					  ksegment->bufsz);
 586		if (ret)
 587			break;
 588
 589		/*
 590		 * Assume rest of the buffer is filled with zero and
 591		 * update digest accordingly.
 592		 */
 593		nullsz = ksegment->memsz - ksegment->bufsz;
 594		while (nullsz) {
 595			unsigned long bytes = nullsz;
 596
 597			if (bytes > zero_buf_sz)
 598				bytes = zero_buf_sz;
 599			ret = crypto_shash_update(desc, zero_buf, bytes);
 600			if (ret)
 601				break;
 602			nullsz -= bytes;
 603		}
 604
 605		if (ret)
 606			break;
 607
 608		sha_regions[j].start = ksegment->mem;
 609		sha_regions[j].len = ksegment->memsz;
 610		j++;
 611	}
 612
 613	if (!ret) {
 614		ret = crypto_shash_final(desc, digest);
 615		if (ret)
 616			goto out_free_digest;
 617		ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
 618						sha_regions, sha_region_sz, 0);
 619		if (ret)
 620			goto out_free_digest;
 621
 622		ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
 623						digest, SHA256_DIGEST_SIZE, 0);
 624		if (ret)
 625			goto out_free_digest;
 626	}
 627
 628out_free_digest:
 629	kfree(digest);
 630out_free_sha_regions:
 631	vfree(sha_regions);
 632out_free_desc:
 633	kfree(desc);
 634out_free_tfm:
 635	kfree(tfm);
 636out:
 637	return ret;
 638}
 639
 640/* Actually load purgatory. Lot of code taken from kexec-tools */
 641static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
 642				  unsigned long max, int top_down)
 
 
 
 
 
 
 
 
 
 
 643{
 644	struct purgatory_info *pi = &image->purgatory_info;
 645	unsigned long align, bss_align, bss_sz, bss_pad;
 646	unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
 647	unsigned char *buf_addr, *src;
 648	int i, ret = 0, entry_sidx = -1;
 649	const Elf_Shdr *sechdrs_c;
 650	Elf_Shdr *sechdrs = NULL;
 651	struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
 652				  .buf_min = min, .buf_max = max,
 653				  .top_down = top_down };
 654
 655	/*
 656	 * sechdrs_c points to section headers in purgatory and are read
 657	 * only. No modifications allowed.
 658	 */
 659	sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
 660
 661	/*
 662	 * We can not modify sechdrs_c[] and its fields. It is read only.
 663	 * Copy it over to a local copy where one can store some temporary
 664	 * data and free it at the end. We need to modify ->sh_addr and
 665	 * ->sh_offset fields to keep track of permanent and temporary
 666	 * locations of sections.
 667	 */
 668	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 669	if (!sechdrs)
 670		return -ENOMEM;
 671
 672	memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 673
 674	/*
 675	 * We seem to have multiple copies of sections. First copy is which
 676	 * is embedded in kernel in read only section. Some of these sections
 677	 * will be copied to a temporary buffer and relocated. And these
 678	 * sections will finally be copied to their final destination at
 679	 * segment load time.
 680	 *
 681	 * Use ->sh_offset to reflect section address in memory. It will
 682	 * point to original read only copy if section is not allocatable.
 683	 * Otherwise it will point to temporary copy which will be relocated.
 684	 *
 685	 * Use ->sh_addr to contain final address of the section where it
 686	 * will go during execution time.
 687	 */
 688	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 689		if (sechdrs[i].sh_type == SHT_NOBITS)
 690			continue;
 691
 692		sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
 693						sechdrs[i].sh_offset;
 694	}
 695
 696	/*
 697	 * Identify entry point section and make entry relative to section
 698	 * start.
 699	 */
 700	entry = pi->ehdr->e_entry;
 701	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 702		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 703			continue;
 704
 705		if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
 706			continue;
 707
 708		/* Make entry section relative */
 709		if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
 710		    ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
 711		     pi->ehdr->e_entry)) {
 712			entry_sidx = i;
 713			entry -= sechdrs[i].sh_addr;
 714			break;
 715		}
 716	}
 717
 718	/* Determine how much memory is needed to load relocatable object. */
 719	bss_align = 1;
 720	bss_sz = 0;
 721
 722	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 723		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 724			continue;
 725
 726		align = sechdrs[i].sh_addralign;
 727		if (sechdrs[i].sh_type != SHT_NOBITS) {
 728			if (kbuf.buf_align < align)
 729				kbuf.buf_align = align;
 730			kbuf.bufsz = ALIGN(kbuf.bufsz, align);
 731			kbuf.bufsz += sechdrs[i].sh_size;
 732		} else {
 733			/* bss section */
 734			if (bss_align < align)
 735				bss_align = align;
 736			bss_sz = ALIGN(bss_sz, align);
 737			bss_sz += sechdrs[i].sh_size;
 738		}
 739	}
 
 
 
 
 740
 741	/* Determine the bss padding required to align bss properly */
 742	bss_pad = 0;
 743	if (kbuf.bufsz & (bss_align - 1))
 744		bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
 745
 746	kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
 747
 748	/* Allocate buffer for purgatory */
 749	kbuf.buffer = vzalloc(kbuf.bufsz);
 750	if (!kbuf.buffer) {
 751		ret = -ENOMEM;
 752		goto out;
 753	}
 754
 755	if (kbuf.buf_align < bss_align)
 756		kbuf.buf_align = bss_align;
 757
 758	/* Add buffer to segment list */
 759	ret = kexec_add_buffer(&kbuf);
 760	if (ret)
 761		goto out;
 762	pi->purgatory_load_addr = kbuf.mem;
 763
 764	/* Load SHF_ALLOC sections */
 765	buf_addr = kbuf.buffer;
 766	load_addr = curr_load_addr = pi->purgatory_load_addr;
 767	bss_addr = load_addr + kbuf.bufsz + bss_pad;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768
 769	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 
 
 
 770		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 771			continue;
 772
 773		align = sechdrs[i].sh_addralign;
 774		if (sechdrs[i].sh_type != SHT_NOBITS) {
 775			curr_load_addr = ALIGN(curr_load_addr, align);
 776			offset = curr_load_addr - load_addr;
 777			/* We already modifed ->sh_offset to keep src addr */
 778			src = (char *) sechdrs[i].sh_offset;
 779			memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
 780
 781			/* Store load address and source address of section */
 782			sechdrs[i].sh_addr = curr_load_addr;
 783
 784			/*
 785			 * This section got copied to temporary buffer. Update
 786			 * ->sh_offset accordingly.
 787			 */
 788			sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
 789
 790			/* Advance to the next address */
 791			curr_load_addr += sechdrs[i].sh_size;
 792		} else {
 793			bss_addr = ALIGN(bss_addr, align);
 794			sechdrs[i].sh_addr = bss_addr;
 795			bss_addr += sechdrs[i].sh_size;
 
 796		}
 797	}
 798
 799	/* Update entry point based on load address of text section */
 800	if (entry_sidx >= 0)
 801		entry += sechdrs[entry_sidx].sh_addr;
 802
 803	/* Make kernel jump to purgatory after shutdown */
 804	image->start = entry;
 
 
 
 
 
 
 805
 806	/* Used later to get/set symbol values */
 807	pi->sechdrs = sechdrs;
 
 
 
 
 
 
 808
 809	/*
 810	 * Used later to identify which section is purgatory and skip it
 811	 * from checksumming.
 812	 */
 813	pi->purgatory_buf = kbuf.buffer;
 814	return ret;
 815out:
 816	vfree(sechdrs);
 817	vfree(kbuf.buffer);
 818	return ret;
 819}
 820
 821static int kexec_apply_relocations(struct kimage *image)
 822{
 823	int i, ret;
 824	struct purgatory_info *pi = &image->purgatory_info;
 825	Elf_Shdr *sechdrs = pi->sechdrs;
 
 
 826
 827	/* Apply relocations */
 828	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 829		Elf_Shdr *section, *symtab;
 
 
 
 
 830
 831		if (sechdrs[i].sh_type != SHT_RELA &&
 832		    sechdrs[i].sh_type != SHT_REL)
 833			continue;
 834
 835		/*
 836		 * For section of type SHT_RELA/SHT_REL,
 837		 * ->sh_link contains section header index of associated
 838		 * symbol table. And ->sh_info contains section header
 839		 * index of section to which relocations apply.
 840		 */
 841		if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
 842		    sechdrs[i].sh_link >= pi->ehdr->e_shnum)
 843			return -ENOEXEC;
 844
 845		section = &sechdrs[sechdrs[i].sh_info];
 846		symtab = &sechdrs[sechdrs[i].sh_link];
 847
 848		if (!(section->sh_flags & SHF_ALLOC))
 849			continue;
 850
 851		/*
 852		 * symtab->sh_link contain section header index of associated
 853		 * string table.
 854		 */
 855		if (symtab->sh_link >= pi->ehdr->e_shnum)
 856			/* Invalid section number? */
 857			continue;
 858
 859		/*
 860		 * Respective architecture needs to provide support for applying
 861		 * relocations of type SHT_RELA/SHT_REL.
 862		 */
 863		if (sechdrs[i].sh_type == SHT_RELA)
 864			ret = arch_kexec_apply_relocations_add(pi->ehdr,
 865							       sechdrs, i);
 866		else if (sechdrs[i].sh_type == SHT_REL)
 867			ret = arch_kexec_apply_relocations(pi->ehdr,
 868							   sechdrs, i);
 869		if (ret)
 870			return ret;
 871	}
 872
 873	return 0;
 874}
 875
 876/* Load relocatable purgatory object and relocate it appropriately */
 877int kexec_load_purgatory(struct kimage *image, unsigned long min,
 878			 unsigned long max, int top_down,
 879			 unsigned long *load_addr)
 
 
 
 
 
 
 
 
 880{
 881	struct purgatory_info *pi = &image->purgatory_info;
 882	int ret;
 883
 884	if (kexec_purgatory_size <= 0)
 885		return -EINVAL;
 886
 887	if (kexec_purgatory_size < sizeof(Elf_Ehdr))
 888		return -ENOEXEC;
 889
 890	pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
 891
 892	if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
 893	    || pi->ehdr->e_type != ET_REL
 894	    || !elf_check_arch(pi->ehdr)
 895	    || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
 896		return -ENOEXEC;
 897
 898	if (pi->ehdr->e_shoff >= kexec_purgatory_size
 899	    || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
 900	    kexec_purgatory_size - pi->ehdr->e_shoff))
 901		return -ENOEXEC;
 902
 903	ret = __kexec_load_purgatory(image, min, max, top_down);
 904	if (ret)
 905		return ret;
 906
 
 
 
 
 907	ret = kexec_apply_relocations(image);
 908	if (ret)
 909		goto out;
 910
 911	*load_addr = pi->purgatory_load_addr;
 912	return 0;
 913out:
 914	vfree(pi->sechdrs);
 915	pi->sechdrs = NULL;
 916
 917	vfree(pi->purgatory_buf);
 918	pi->purgatory_buf = NULL;
 919	return ret;
 920}
 921
 922static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 923					    const char *name)
 
 
 
 
 
 
 
 924{
 925	Elf_Sym *syms;
 926	Elf_Shdr *sechdrs;
 927	Elf_Ehdr *ehdr;
 928	int i, k;
 929	const char *strtab;
 
 930
 931	if (!pi->sechdrs || !pi->ehdr)
 932		return NULL;
 933
 934	sechdrs = pi->sechdrs;
 935	ehdr = pi->ehdr;
 
 936
 937	for (i = 0; i < ehdr->e_shnum; i++) {
 938		if (sechdrs[i].sh_type != SHT_SYMTAB)
 939			continue;
 940
 941		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 942			/* Invalid strtab section number */
 943			continue;
 944		strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
 945		syms = (Elf_Sym *)sechdrs[i].sh_offset;
 946
 947		/* Go through symbols for a match */
 948		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 949			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 950				continue;
 951
 952			if (strcmp(strtab + syms[k].st_name, name) != 0)
 953				continue;
 954
 955			if (syms[k].st_shndx == SHN_UNDEF ||
 956			    syms[k].st_shndx >= ehdr->e_shnum) {
 957				pr_debug("Symbol: %s has bad section index %d.\n",
 958						name, syms[k].st_shndx);
 959				return NULL;
 960			}
 961
 962			/* Found the symbol we are looking for */
 963			return &syms[k];
 964		}
 965	}
 966
 967	return NULL;
 968}
 969
 970void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
 971{
 972	struct purgatory_info *pi = &image->purgatory_info;
 973	Elf_Sym *sym;
 974	Elf_Shdr *sechdr;
 975
 976	sym = kexec_purgatory_find_symbol(pi, name);
 977	if (!sym)
 978		return ERR_PTR(-EINVAL);
 979
 980	sechdr = &pi->sechdrs[sym->st_shndx];
 981
 982	/*
 983	 * Returns the address where symbol will finally be loaded after
 984	 * kexec_load_segment()
 985	 */
 986	return (void *)(sechdr->sh_addr + sym->st_value);
 987}
 988
 989/*
 990 * Get or set value of a symbol. If "get_value" is true, symbol value is
 991 * returned in buf otherwise symbol value is set based on value in buf.
 992 */
 993int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
 994				   void *buf, unsigned int size, bool get_value)
 995{
 996	Elf_Sym *sym;
 997	Elf_Shdr *sechdrs;
 998	struct purgatory_info *pi = &image->purgatory_info;
 
 
 999	char *sym_buf;
1000
1001	sym = kexec_purgatory_find_symbol(pi, name);
1002	if (!sym)
1003		return -EINVAL;
1004
1005	if (sym->st_size != size) {
1006		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1007		       name, (unsigned long)sym->st_size, size);
1008		return -EINVAL;
1009	}
1010
1011	sechdrs = pi->sechdrs;
1012
1013	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1014		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1015		       get_value ? "get" : "set");
1016		return -EINVAL;
1017	}
1018
1019	sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1020					sym->st_value;
1021
1022	if (get_value)
1023		memcpy((void *)buf, sym_buf, size);
1024	else
1025		memcpy((void *)sym_buf, buf, size);
1026
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1027	return 0;
1028}
v4.17
   1/*
   2 * kexec: kexec_file_load system call
   3 *
   4 * Copyright (C) 2014 Red Hat Inc.
   5 * Authors:
   6 *      Vivek Goyal <vgoyal@redhat.com>
   7 *
   8 * This source code is licensed under the GNU General Public License,
   9 * Version 2.  See the file COPYING for more details.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#include <linux/capability.h>
  15#include <linux/mm.h>
  16#include <linux/file.h>
  17#include <linux/slab.h>
  18#include <linux/kexec.h>
  19#include <linux/mutex.h>
  20#include <linux/list.h>
  21#include <linux/fs.h>
  22#include <linux/ima.h>
  23#include <crypto/hash.h>
  24#include <crypto/sha.h>
  25#include <linux/elf.h>
  26#include <linux/elfcore.h>
  27#include <linux/kernel.h>
  28#include <linux/kexec.h>
  29#include <linux/slab.h>
  30#include <linux/syscalls.h>
  31#include <linux/vmalloc.h>
  32#include "kexec_internal.h"
  33
  34static int kexec_calculate_store_digests(struct kimage *image);
  35
  36/*
  37 * Currently this is the only default function that is exported as some
  38 * architectures need it to do additional handlings.
  39 * In the future, other default functions may be exported too if required.
  40 */
  41int kexec_image_probe_default(struct kimage *image, void *buf,
  42			      unsigned long buf_len)
  43{
  44	const struct kexec_file_ops * const *fops;
  45	int ret = -ENOEXEC;
  46
  47	for (fops = &kexec_file_loaders[0]; *fops && (*fops)->probe; ++fops) {
  48		ret = (*fops)->probe(buf, buf_len);
  49		if (!ret) {
  50			image->fops = *fops;
  51			return ret;
  52		}
  53	}
  54
  55	return ret;
  56}
  57
  58/* Architectures can provide this probe function */
  59int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
  60					 unsigned long buf_len)
  61{
  62	return kexec_image_probe_default(image, buf, buf_len);
  63}
  64
  65static void *kexec_image_load_default(struct kimage *image)
  66{
  67	if (!image->fops || !image->fops->load)
  68		return ERR_PTR(-ENOEXEC);
  69
  70	return image->fops->load(image, image->kernel_buf,
  71				 image->kernel_buf_len, image->initrd_buf,
  72				 image->initrd_buf_len, image->cmdline_buf,
  73				 image->cmdline_buf_len);
  74}
  75
  76void * __weak arch_kexec_kernel_image_load(struct kimage *image)
  77{
  78	return kexec_image_load_default(image);
  79}
  80
  81static int kexec_image_post_load_cleanup_default(struct kimage *image)
  82{
  83	if (!image->fops || !image->fops->cleanup)
  84		return 0;
  85
  86	return image->fops->cleanup(image->image_loader_data);
  87}
  88
  89int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
  90{
  91	return kexec_image_post_load_cleanup_default(image);
  92}
  93
  94#ifdef CONFIG_KEXEC_VERIFY_SIG
  95static int kexec_image_verify_sig_default(struct kimage *image, void *buf,
  96					  unsigned long buf_len)
  97{
  98	if (!image->fops || !image->fops->verify_sig) {
  99		pr_debug("kernel loader does not support signature verification.\n");
 100		return -EKEYREJECTED;
 101	}
 102
 103	return image->fops->verify_sig(buf, buf_len);
 104}
 105
 106int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
 107					unsigned long buf_len)
 108{
 109	return kexec_image_verify_sig_default(image, buf, buf_len);
 110}
 111#endif
 112
 113/*
 114 * arch_kexec_apply_relocations_add - apply relocations of type RELA
 115 * @pi:		Purgatory to be relocated.
 116 * @section:	Section relocations applying to.
 117 * @relsec:	Section containing RELAs.
 118 * @symtab:	Corresponding symtab.
 119 *
 120 * Return: 0 on success, negative errno on error.
 121 */
 122int __weak
 123arch_kexec_apply_relocations_add(struct purgatory_info *pi, Elf_Shdr *section,
 124				 const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 125{
 126	pr_err("RELA relocation unsupported.\n");
 127	return -ENOEXEC;
 128}
 129
 130/*
 131 * arch_kexec_apply_relocations - apply relocations of type REL
 132 * @pi:		Purgatory to be relocated.
 133 * @section:	Section relocations applying to.
 134 * @relsec:	Section containing RELs.
 135 * @symtab:	Corresponding symtab.
 136 *
 137 * Return: 0 on success, negative errno on error.
 138 */
 139int __weak
 140arch_kexec_apply_relocations(struct purgatory_info *pi, Elf_Shdr *section,
 141			     const Elf_Shdr *relsec, const Elf_Shdr *symtab)
 142{
 143	pr_err("REL relocation unsupported.\n");
 144	return -ENOEXEC;
 145}
 146
 147/*
 148 * Free up memory used by kernel, initrd, and command line. This is temporary
 149 * memory allocation which is not needed any more after these buffers have
 150 * been loaded into separate segments and have been copied elsewhere.
 151 */
 152void kimage_file_post_load_cleanup(struct kimage *image)
 153{
 154	struct purgatory_info *pi = &image->purgatory_info;
 155
 156	vfree(image->kernel_buf);
 157	image->kernel_buf = NULL;
 158
 159	vfree(image->initrd_buf);
 160	image->initrd_buf = NULL;
 161
 162	kfree(image->cmdline_buf);
 163	image->cmdline_buf = NULL;
 164
 165	vfree(pi->purgatory_buf);
 166	pi->purgatory_buf = NULL;
 167
 168	vfree(pi->sechdrs);
 169	pi->sechdrs = NULL;
 170
 171	/* See if architecture has anything to cleanup post load */
 172	arch_kimage_file_post_load_cleanup(image);
 173
 174	/*
 175	 * Above call should have called into bootloader to free up
 176	 * any data stored in kimage->image_loader_data. It should
 177	 * be ok now to free it up.
 178	 */
 179	kfree(image->image_loader_data);
 180	image->image_loader_data = NULL;
 181}
 182
 183/*
 184 * In file mode list of segments is prepared by kernel. Copy relevant
 185 * data from user space, do error checking, prepare segment list
 186 */
 187static int
 188kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
 189			     const char __user *cmdline_ptr,
 190			     unsigned long cmdline_len, unsigned flags)
 191{
 192	int ret = 0;
 193	void *ldata;
 194	loff_t size;
 195
 196	ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
 197				       &size, INT_MAX, READING_KEXEC_IMAGE);
 198	if (ret)
 199		return ret;
 200	image->kernel_buf_len = size;
 201
 202	/* IMA needs to pass the measurement list to the next kernel. */
 203	ima_add_kexec_buffer(image);
 204
 205	/* Call arch image probe handlers */
 206	ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
 207					    image->kernel_buf_len);
 208	if (ret)
 209		goto out;
 210
 211#ifdef CONFIG_KEXEC_VERIFY_SIG
 212	ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
 213					   image->kernel_buf_len);
 214	if (ret) {
 215		pr_debug("kernel signature verification failed.\n");
 216		goto out;
 217	}
 218	pr_debug("kernel signature verification successful.\n");
 219#endif
 220	/* It is possible that there no initramfs is being loaded */
 221	if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
 222		ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
 223					       &size, INT_MAX,
 224					       READING_KEXEC_INITRAMFS);
 225		if (ret)
 226			goto out;
 227		image->initrd_buf_len = size;
 228	}
 229
 230	if (cmdline_len) {
 231		image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
 232		if (IS_ERR(image->cmdline_buf)) {
 233			ret = PTR_ERR(image->cmdline_buf);
 234			image->cmdline_buf = NULL;
 
 
 
 
 
 
 235			goto out;
 236		}
 237
 238		image->cmdline_buf_len = cmdline_len;
 239
 240		/* command line should be a string with last byte null */
 241		if (image->cmdline_buf[cmdline_len - 1] != '\0') {
 242			ret = -EINVAL;
 243			goto out;
 244		}
 245	}
 246
 247	/* Call arch image load handlers */
 248	ldata = arch_kexec_kernel_image_load(image);
 249
 250	if (IS_ERR(ldata)) {
 251		ret = PTR_ERR(ldata);
 252		goto out;
 253	}
 254
 255	image->image_loader_data = ldata;
 256out:
 257	/* In case of error, free up all allocated memory in this function */
 258	if (ret)
 259		kimage_file_post_load_cleanup(image);
 260	return ret;
 261}
 262
 263static int
 264kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
 265		       int initrd_fd, const char __user *cmdline_ptr,
 266		       unsigned long cmdline_len, unsigned long flags)
 267{
 268	int ret;
 269	struct kimage *image;
 270	bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
 271
 272	image = do_kimage_alloc_init();
 273	if (!image)
 274		return -ENOMEM;
 275
 276	image->file_mode = 1;
 277
 278	if (kexec_on_panic) {
 279		/* Enable special crash kernel control page alloc policy. */
 280		image->control_page = crashk_res.start;
 281		image->type = KEXEC_TYPE_CRASH;
 282	}
 283
 284	ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
 285					   cmdline_ptr, cmdline_len, flags);
 286	if (ret)
 287		goto out_free_image;
 288
 289	ret = sanity_check_segment_list(image);
 290	if (ret)
 291		goto out_free_post_load_bufs;
 292
 293	ret = -ENOMEM;
 294	image->control_code_page = kimage_alloc_control_pages(image,
 295					   get_order(KEXEC_CONTROL_PAGE_SIZE));
 296	if (!image->control_code_page) {
 297		pr_err("Could not allocate control_code_buffer\n");
 298		goto out_free_post_load_bufs;
 299	}
 300
 301	if (!kexec_on_panic) {
 302		image->swap_page = kimage_alloc_control_pages(image, 0);
 303		if (!image->swap_page) {
 304			pr_err("Could not allocate swap buffer\n");
 305			goto out_free_control_pages;
 306		}
 307	}
 308
 309	*rimage = image;
 310	return 0;
 311out_free_control_pages:
 312	kimage_free_page_list(&image->control_pages);
 313out_free_post_load_bufs:
 314	kimage_file_post_load_cleanup(image);
 315out_free_image:
 316	kfree(image);
 317	return ret;
 318}
 319
 320SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
 321		unsigned long, cmdline_len, const char __user *, cmdline_ptr,
 322		unsigned long, flags)
 323{
 324	int ret = 0, i;
 325	struct kimage **dest_image, *image;
 326
 327	/* We only trust the superuser with rebooting the system. */
 328	if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
 329		return -EPERM;
 330
 331	/* Make sure we have a legal set of flags */
 332	if (flags != (flags & KEXEC_FILE_FLAGS))
 333		return -EINVAL;
 334
 335	image = NULL;
 336
 337	if (!mutex_trylock(&kexec_mutex))
 338		return -EBUSY;
 339
 340	dest_image = &kexec_image;
 341	if (flags & KEXEC_FILE_ON_CRASH) {
 342		dest_image = &kexec_crash_image;
 343		if (kexec_crash_image)
 344			arch_kexec_unprotect_crashkres();
 345	}
 346
 347	if (flags & KEXEC_FILE_UNLOAD)
 348		goto exchange;
 349
 350	/*
 351	 * In case of crash, new kernel gets loaded in reserved region. It is
 352	 * same memory where old crash kernel might be loaded. Free any
 353	 * current crash dump kernel before we corrupt it.
 354	 */
 355	if (flags & KEXEC_FILE_ON_CRASH)
 356		kimage_free(xchg(&kexec_crash_image, NULL));
 357
 358	ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
 359				     cmdline_len, flags);
 360	if (ret)
 361		goto out;
 362
 363	ret = machine_kexec_prepare(image);
 364	if (ret)
 365		goto out;
 366
 367	/*
 368	 * Some architecture(like S390) may touch the crash memory before
 369	 * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
 370	 */
 371	ret = kimage_crash_copy_vmcoreinfo(image);
 372	if (ret)
 373		goto out;
 374
 375	ret = kexec_calculate_store_digests(image);
 376	if (ret)
 377		goto out;
 378
 379	for (i = 0; i < image->nr_segments; i++) {
 380		struct kexec_segment *ksegment;
 381
 382		ksegment = &image->segment[i];
 383		pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
 384			 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
 385			 ksegment->memsz);
 386
 387		ret = kimage_load_segment(image, &image->segment[i]);
 388		if (ret)
 389			goto out;
 390	}
 391
 392	kimage_terminate(image);
 393
 394	/*
 395	 * Free up any temporary buffers allocated which are not needed
 396	 * after image has been loaded
 397	 */
 398	kimage_file_post_load_cleanup(image);
 399exchange:
 400	image = xchg(dest_image, image);
 401out:
 402	if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
 403		arch_kexec_protect_crashkres();
 404
 405	mutex_unlock(&kexec_mutex);
 406	kimage_free(image);
 407	return ret;
 408}
 409
 410static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
 411				    struct kexec_buf *kbuf)
 412{
 413	struct kimage *image = kbuf->image;
 414	unsigned long temp_start, temp_end;
 415
 416	temp_end = min(end, kbuf->buf_max);
 417	temp_start = temp_end - kbuf->memsz;
 418
 419	do {
 420		/* align down start */
 421		temp_start = temp_start & (~(kbuf->buf_align - 1));
 422
 423		if (temp_start < start || temp_start < kbuf->buf_min)
 424			return 0;
 425
 426		temp_end = temp_start + kbuf->memsz - 1;
 427
 428		/*
 429		 * Make sure this does not conflict with any of existing
 430		 * segments
 431		 */
 432		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 433			temp_start = temp_start - PAGE_SIZE;
 434			continue;
 435		}
 436
 437		/* We found a suitable memory range */
 438		break;
 439	} while (1);
 440
 441	/* If we are here, we found a suitable memory range */
 442	kbuf->mem = temp_start;
 443
 444	/* Success, stop navigating through remaining System RAM ranges */
 445	return 1;
 446}
 447
 448static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
 449				     struct kexec_buf *kbuf)
 450{
 451	struct kimage *image = kbuf->image;
 452	unsigned long temp_start, temp_end;
 453
 454	temp_start = max(start, kbuf->buf_min);
 455
 456	do {
 457		temp_start = ALIGN(temp_start, kbuf->buf_align);
 458		temp_end = temp_start + kbuf->memsz - 1;
 459
 460		if (temp_end > end || temp_end > kbuf->buf_max)
 461			return 0;
 462		/*
 463		 * Make sure this does not conflict with any of existing
 464		 * segments
 465		 */
 466		if (kimage_is_destination_range(image, temp_start, temp_end)) {
 467			temp_start = temp_start + PAGE_SIZE;
 468			continue;
 469		}
 470
 471		/* We found a suitable memory range */
 472		break;
 473	} while (1);
 474
 475	/* If we are here, we found a suitable memory range */
 476	kbuf->mem = temp_start;
 477
 478	/* Success, stop navigating through remaining System RAM ranges */
 479	return 1;
 480}
 481
 482static int locate_mem_hole_callback(struct resource *res, void *arg)
 483{
 484	struct kexec_buf *kbuf = (struct kexec_buf *)arg;
 485	u64 start = res->start, end = res->end;
 486	unsigned long sz = end - start + 1;
 487
 488	/* Returning 0 will take to next memory range */
 489	if (sz < kbuf->memsz)
 490		return 0;
 491
 492	if (end < kbuf->buf_min || start > kbuf->buf_max)
 493		return 0;
 494
 495	/*
 496	 * Allocate memory top down with-in ram range. Otherwise bottom up
 497	 * allocation.
 498	 */
 499	if (kbuf->top_down)
 500		return locate_mem_hole_top_down(start, end, kbuf);
 501	return locate_mem_hole_bottom_up(start, end, kbuf);
 502}
 503
 504/**
 505 * arch_kexec_walk_mem - call func(data) on free memory regions
 506 * @kbuf:	Context info for the search. Also passed to @func.
 507 * @func:	Function to call for each memory region.
 508 *
 509 * Return: The memory walk will stop when func returns a non-zero value
 510 * and that value will be returned. If all free regions are visited without
 511 * func returning non-zero, then zero will be returned.
 512 */
 513int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
 514			       int (*func)(struct resource *, void *))
 515{
 516	if (kbuf->image->type == KEXEC_TYPE_CRASH)
 517		return walk_iomem_res_desc(crashk_res.desc,
 518					   IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
 519					   crashk_res.start, crashk_res.end,
 520					   kbuf, func);
 521	else
 522		return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
 523}
 524
 525/**
 526 * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
 527 * @kbuf:	Parameters for the memory search.
 528 *
 529 * On success, kbuf->mem will have the start address of the memory region found.
 530 *
 531 * Return: 0 on success, negative errno on error.
 532 */
 533int kexec_locate_mem_hole(struct kexec_buf *kbuf)
 534{
 535	int ret;
 536
 537	ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
 538
 539	return ret == 1 ? 0 : -EADDRNOTAVAIL;
 540}
 541
 542/**
 543 * kexec_add_buffer - place a buffer in a kexec segment
 544 * @kbuf:	Buffer contents and memory parameters.
 545 *
 546 * This function assumes that kexec_mutex is held.
 547 * On successful return, @kbuf->mem will have the physical address of
 548 * the buffer in memory.
 549 *
 550 * Return: 0 on success, negative errno on error.
 551 */
 552int kexec_add_buffer(struct kexec_buf *kbuf)
 553{
 554
 555	struct kexec_segment *ksegment;
 556	int ret;
 557
 558	/* Currently adding segment this way is allowed only in file mode */
 559	if (!kbuf->image->file_mode)
 560		return -EINVAL;
 561
 562	if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
 563		return -EINVAL;
 564
 565	/*
 566	 * Make sure we are not trying to add buffer after allocating
 567	 * control pages. All segments need to be placed first before
 568	 * any control pages are allocated. As control page allocation
 569	 * logic goes through list of segments to make sure there are
 570	 * no destination overlaps.
 571	 */
 572	if (!list_empty(&kbuf->image->control_pages)) {
 573		WARN_ON(1);
 574		return -EINVAL;
 575	}
 576
 577	/* Ensure minimum alignment needed for segments. */
 578	kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
 579	kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
 580
 581	/* Walk the RAM ranges and allocate a suitable range for the buffer */
 582	ret = kexec_locate_mem_hole(kbuf);
 583	if (ret)
 584		return ret;
 585
 586	/* Found a suitable memory range */
 587	ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
 588	ksegment->kbuf = kbuf->buffer;
 589	ksegment->bufsz = kbuf->bufsz;
 590	ksegment->mem = kbuf->mem;
 591	ksegment->memsz = kbuf->memsz;
 592	kbuf->image->nr_segments++;
 593	return 0;
 594}
 595
 596/* Calculate and store the digest of segments */
 597static int kexec_calculate_store_digests(struct kimage *image)
 598{
 599	struct crypto_shash *tfm;
 600	struct shash_desc *desc;
 601	int ret = 0, i, j, zero_buf_sz, sha_region_sz;
 602	size_t desc_size, nullsz;
 603	char *digest;
 604	void *zero_buf;
 605	struct kexec_sha_region *sha_regions;
 606	struct purgatory_info *pi = &image->purgatory_info;
 607
 608	if (!IS_ENABLED(CONFIG_ARCH_HAS_KEXEC_PURGATORY))
 609		return 0;
 610
 611	zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
 612	zero_buf_sz = PAGE_SIZE;
 613
 614	tfm = crypto_alloc_shash("sha256", 0, 0);
 615	if (IS_ERR(tfm)) {
 616		ret = PTR_ERR(tfm);
 617		goto out;
 618	}
 619
 620	desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
 621	desc = kzalloc(desc_size, GFP_KERNEL);
 622	if (!desc) {
 623		ret = -ENOMEM;
 624		goto out_free_tfm;
 625	}
 626
 627	sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
 628	sha_regions = vzalloc(sha_region_sz);
 629	if (!sha_regions)
 630		goto out_free_desc;
 631
 632	desc->tfm   = tfm;
 633	desc->flags = 0;
 634
 635	ret = crypto_shash_init(desc);
 636	if (ret < 0)
 637		goto out_free_sha_regions;
 638
 639	digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
 640	if (!digest) {
 641		ret = -ENOMEM;
 642		goto out_free_sha_regions;
 643	}
 644
 645	for (j = i = 0; i < image->nr_segments; i++) {
 646		struct kexec_segment *ksegment;
 647
 648		ksegment = &image->segment[i];
 649		/*
 650		 * Skip purgatory as it will be modified once we put digest
 651		 * info in purgatory.
 652		 */
 653		if (ksegment->kbuf == pi->purgatory_buf)
 654			continue;
 655
 656		ret = crypto_shash_update(desc, ksegment->kbuf,
 657					  ksegment->bufsz);
 658		if (ret)
 659			break;
 660
 661		/*
 662		 * Assume rest of the buffer is filled with zero and
 663		 * update digest accordingly.
 664		 */
 665		nullsz = ksegment->memsz - ksegment->bufsz;
 666		while (nullsz) {
 667			unsigned long bytes = nullsz;
 668
 669			if (bytes > zero_buf_sz)
 670				bytes = zero_buf_sz;
 671			ret = crypto_shash_update(desc, zero_buf, bytes);
 672			if (ret)
 673				break;
 674			nullsz -= bytes;
 675		}
 676
 677		if (ret)
 678			break;
 679
 680		sha_regions[j].start = ksegment->mem;
 681		sha_regions[j].len = ksegment->memsz;
 682		j++;
 683	}
 684
 685	if (!ret) {
 686		ret = crypto_shash_final(desc, digest);
 687		if (ret)
 688			goto out_free_digest;
 689		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
 690						     sha_regions, sha_region_sz, 0);
 691		if (ret)
 692			goto out_free_digest;
 693
 694		ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
 695						     digest, SHA256_DIGEST_SIZE, 0);
 696		if (ret)
 697			goto out_free_digest;
 698	}
 699
 700out_free_digest:
 701	kfree(digest);
 702out_free_sha_regions:
 703	vfree(sha_regions);
 704out_free_desc:
 705	kfree(desc);
 706out_free_tfm:
 707	kfree(tfm);
 708out:
 709	return ret;
 710}
 711
 712#ifdef CONFIG_ARCH_HAS_KEXEC_PURGATORY
 713/*
 714 * kexec_purgatory_setup_kbuf - prepare buffer to load purgatory.
 715 * @pi:		Purgatory to be loaded.
 716 * @kbuf:	Buffer to setup.
 717 *
 718 * Allocates the memory needed for the buffer. Caller is responsible to free
 719 * the memory after use.
 720 *
 721 * Return: 0 on success, negative errno on error.
 722 */
 723static int kexec_purgatory_setup_kbuf(struct purgatory_info *pi,
 724				      struct kexec_buf *kbuf)
 725{
 726	const Elf_Shdr *sechdrs;
 727	unsigned long bss_align;
 728	unsigned long bss_sz;
 729	unsigned long align;
 730	int i, ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731
 732	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 733	kbuf->buf_align = bss_align = 1;
 734	kbuf->bufsz = bss_sz = 0;
 735
 736	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 737		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 738			continue;
 739
 740		align = sechdrs[i].sh_addralign;
 741		if (sechdrs[i].sh_type != SHT_NOBITS) {
 742			if (kbuf->buf_align < align)
 743				kbuf->buf_align = align;
 744			kbuf->bufsz = ALIGN(kbuf->bufsz, align);
 745			kbuf->bufsz += sechdrs[i].sh_size;
 746		} else {
 
 747			if (bss_align < align)
 748				bss_align = align;
 749			bss_sz = ALIGN(bss_sz, align);
 750			bss_sz += sechdrs[i].sh_size;
 751		}
 752	}
 753	kbuf->bufsz = ALIGN(kbuf->bufsz, bss_align);
 754	kbuf->memsz = kbuf->bufsz + bss_sz;
 755	if (kbuf->buf_align < bss_align)
 756		kbuf->buf_align = bss_align;
 757
 758	kbuf->buffer = vzalloc(kbuf->bufsz);
 759	if (!kbuf->buffer)
 760		return -ENOMEM;
 761	pi->purgatory_buf = kbuf->buffer;
 
 
 
 
 
 
 
 
 
 
 
 
 762
 763	ret = kexec_add_buffer(kbuf);
 
 764	if (ret)
 765		goto out;
 
 766
 767	return 0;
 768out:
 769	vfree(pi->purgatory_buf);
 770	pi->purgatory_buf = NULL;
 771	return ret;
 772}
 773
 774/*
 775 * kexec_purgatory_setup_sechdrs - prepares the pi->sechdrs buffer.
 776 * @pi:		Purgatory to be loaded.
 777 * @kbuf:	Buffer prepared to store purgatory.
 778 *
 779 * Allocates the memory needed for the buffer. Caller is responsible to free
 780 * the memory after use.
 781 *
 782 * Return: 0 on success, negative errno on error.
 783 */
 784static int kexec_purgatory_setup_sechdrs(struct purgatory_info *pi,
 785					 struct kexec_buf *kbuf)
 786{
 787	unsigned long bss_addr;
 788	unsigned long offset;
 789	Elf_Shdr *sechdrs;
 790	int i;
 791
 792	/*
 793	 * The section headers in kexec_purgatory are read-only. In order to
 794	 * have them modifiable make a temporary copy.
 795	 */
 796	sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 797	if (!sechdrs)
 798		return -ENOMEM;
 799	memcpy(sechdrs, (void *)pi->ehdr + pi->ehdr->e_shoff,
 800	       pi->ehdr->e_shnum * sizeof(Elf_Shdr));
 801	pi->sechdrs = sechdrs;
 802
 803	offset = 0;
 804	bss_addr = kbuf->mem + kbuf->bufsz;
 805	kbuf->image->start = pi->ehdr->e_entry;
 806
 807	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 808		unsigned long align;
 809		void *src, *dst;
 810
 811		if (!(sechdrs[i].sh_flags & SHF_ALLOC))
 812			continue;
 813
 814		align = sechdrs[i].sh_addralign;
 815		if (sechdrs[i].sh_type == SHT_NOBITS) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 816			bss_addr = ALIGN(bss_addr, align);
 817			sechdrs[i].sh_addr = bss_addr;
 818			bss_addr += sechdrs[i].sh_size;
 819			continue;
 820		}
 
 
 
 
 
 821
 822		offset = ALIGN(offset, align);
 823		if (sechdrs[i].sh_flags & SHF_EXECINSTR &&
 824		    pi->ehdr->e_entry >= sechdrs[i].sh_addr &&
 825		    pi->ehdr->e_entry < (sechdrs[i].sh_addr
 826					 + sechdrs[i].sh_size)) {
 827			kbuf->image->start -= sechdrs[i].sh_addr;
 828			kbuf->image->start += kbuf->mem + offset;
 829		}
 830
 831		src = (void *)pi->ehdr + sechdrs[i].sh_offset;
 832		dst = pi->purgatory_buf + offset;
 833		memcpy(dst, src, sechdrs[i].sh_size);
 834
 835		sechdrs[i].sh_addr = kbuf->mem + offset;
 836		sechdrs[i].sh_offset = offset;
 837		offset += sechdrs[i].sh_size;
 838	}
 839
 840	return 0;
 
 
 
 
 
 
 
 
 
 841}
 842
 843static int kexec_apply_relocations(struct kimage *image)
 844{
 845	int i, ret;
 846	struct purgatory_info *pi = &image->purgatory_info;
 847	const Elf_Shdr *sechdrs;
 848
 849	sechdrs = (void *)pi->ehdr + pi->ehdr->e_shoff;
 850
 
 851	for (i = 0; i < pi->ehdr->e_shnum; i++) {
 852		const Elf_Shdr *relsec;
 853		const Elf_Shdr *symtab;
 854		Elf_Shdr *section;
 855
 856		relsec = sechdrs + i;
 857
 858		if (relsec->sh_type != SHT_RELA &&
 859		    relsec->sh_type != SHT_REL)
 860			continue;
 861
 862		/*
 863		 * For section of type SHT_RELA/SHT_REL,
 864		 * ->sh_link contains section header index of associated
 865		 * symbol table. And ->sh_info contains section header
 866		 * index of section to which relocations apply.
 867		 */
 868		if (relsec->sh_info >= pi->ehdr->e_shnum ||
 869		    relsec->sh_link >= pi->ehdr->e_shnum)
 870			return -ENOEXEC;
 871
 872		section = pi->sechdrs + relsec->sh_info;
 873		symtab = sechdrs + relsec->sh_link;
 874
 875		if (!(section->sh_flags & SHF_ALLOC))
 876			continue;
 877
 878		/*
 879		 * symtab->sh_link contain section header index of associated
 880		 * string table.
 881		 */
 882		if (symtab->sh_link >= pi->ehdr->e_shnum)
 883			/* Invalid section number? */
 884			continue;
 885
 886		/*
 887		 * Respective architecture needs to provide support for applying
 888		 * relocations of type SHT_RELA/SHT_REL.
 889		 */
 890		if (relsec->sh_type == SHT_RELA)
 891			ret = arch_kexec_apply_relocations_add(pi, section,
 892							       relsec, symtab);
 893		else if (relsec->sh_type == SHT_REL)
 894			ret = arch_kexec_apply_relocations(pi, section,
 895							   relsec, symtab);
 896		if (ret)
 897			return ret;
 898	}
 899
 900	return 0;
 901}
 902
 903/*
 904 * kexec_load_purgatory - Load and relocate the purgatory object.
 905 * @image:	Image to add the purgatory to.
 906 * @kbuf:	Memory parameters to use.
 907 *
 908 * Allocates the memory needed for image->purgatory_info.sechdrs and
 909 * image->purgatory_info.purgatory_buf/kbuf->buffer. Caller is responsible
 910 * to free the memory after use.
 911 *
 912 * Return: 0 on success, negative errno on error.
 913 */
 914int kexec_load_purgatory(struct kimage *image, struct kexec_buf *kbuf)
 915{
 916	struct purgatory_info *pi = &image->purgatory_info;
 917	int ret;
 918
 919	if (kexec_purgatory_size <= 0)
 920		return -EINVAL;
 921
 922	pi->ehdr = (const Elf_Ehdr *)kexec_purgatory;
 
 
 
 923
 924	ret = kexec_purgatory_setup_kbuf(pi, kbuf);
 
 
 
 
 
 
 
 
 
 
 
 925	if (ret)
 926		return ret;
 927
 928	ret = kexec_purgatory_setup_sechdrs(pi, kbuf);
 929	if (ret)
 930		goto out_free_kbuf;
 931
 932	ret = kexec_apply_relocations(image);
 933	if (ret)
 934		goto out;
 935
 
 936	return 0;
 937out:
 938	vfree(pi->sechdrs);
 939	pi->sechdrs = NULL;
 940out_free_kbuf:
 941	vfree(pi->purgatory_buf);
 942	pi->purgatory_buf = NULL;
 943	return ret;
 944}
 945
 946/*
 947 * kexec_purgatory_find_symbol - find a symbol in the purgatory
 948 * @pi:		Purgatory to search in.
 949 * @name:	Name of the symbol.
 950 *
 951 * Return: pointer to symbol in read-only symtab on success, NULL on error.
 952 */
 953static const Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
 954						  const char *name)
 955{
 956	const Elf_Shdr *sechdrs;
 957	const Elf_Ehdr *ehdr;
 958	const Elf_Sym *syms;
 
 959	const char *strtab;
 960	int i, k;
 961
 962	if (!pi->ehdr)
 963		return NULL;
 964
 
 965	ehdr = pi->ehdr;
 966	sechdrs = (void *)ehdr + ehdr->e_shoff;
 967
 968	for (i = 0; i < ehdr->e_shnum; i++) {
 969		if (sechdrs[i].sh_type != SHT_SYMTAB)
 970			continue;
 971
 972		if (sechdrs[i].sh_link >= ehdr->e_shnum)
 973			/* Invalid strtab section number */
 974			continue;
 975		strtab = (void *)ehdr + sechdrs[sechdrs[i].sh_link].sh_offset;
 976		syms = (void *)ehdr + sechdrs[i].sh_offset;
 977
 978		/* Go through symbols for a match */
 979		for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
 980			if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
 981				continue;
 982
 983			if (strcmp(strtab + syms[k].st_name, name) != 0)
 984				continue;
 985
 986			if (syms[k].st_shndx == SHN_UNDEF ||
 987			    syms[k].st_shndx >= ehdr->e_shnum) {
 988				pr_debug("Symbol: %s has bad section index %d.\n",
 989						name, syms[k].st_shndx);
 990				return NULL;
 991			}
 992
 993			/* Found the symbol we are looking for */
 994			return &syms[k];
 995		}
 996	}
 997
 998	return NULL;
 999}
1000
1001void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
1002{
1003	struct purgatory_info *pi = &image->purgatory_info;
1004	const Elf_Sym *sym;
1005	Elf_Shdr *sechdr;
1006
1007	sym = kexec_purgatory_find_symbol(pi, name);
1008	if (!sym)
1009		return ERR_PTR(-EINVAL);
1010
1011	sechdr = &pi->sechdrs[sym->st_shndx];
1012
1013	/*
1014	 * Returns the address where symbol will finally be loaded after
1015	 * kexec_load_segment()
1016	 */
1017	return (void *)(sechdr->sh_addr + sym->st_value);
1018}
1019
1020/*
1021 * Get or set value of a symbol. If "get_value" is true, symbol value is
1022 * returned in buf otherwise symbol value is set based on value in buf.
1023 */
1024int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
1025				   void *buf, unsigned int size, bool get_value)
1026{
 
 
1027	struct purgatory_info *pi = &image->purgatory_info;
1028	const Elf_Sym *sym;
1029	Elf_Shdr *sec;
1030	char *sym_buf;
1031
1032	sym = kexec_purgatory_find_symbol(pi, name);
1033	if (!sym)
1034		return -EINVAL;
1035
1036	if (sym->st_size != size) {
1037		pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1038		       name, (unsigned long)sym->st_size, size);
1039		return -EINVAL;
1040	}
1041
1042	sec = pi->sechdrs + sym->st_shndx;
1043
1044	if (sec->sh_type == SHT_NOBITS) {
1045		pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1046		       get_value ? "get" : "set");
1047		return -EINVAL;
1048	}
1049
1050	sym_buf = (char *)pi->purgatory_buf + sec->sh_offset + sym->st_value;
 
1051
1052	if (get_value)
1053		memcpy((void *)buf, sym_buf, size);
1054	else
1055		memcpy((void *)sym_buf, buf, size);
1056
1057	return 0;
1058}
1059#endif /* CONFIG_ARCH_HAS_KEXEC_PURGATORY */
1060
1061int crash_exclude_mem_range(struct crash_mem *mem,
1062			    unsigned long long mstart, unsigned long long mend)
1063{
1064	int i, j;
1065	unsigned long long start, end;
1066	struct crash_mem_range temp_range = {0, 0};
1067
1068	for (i = 0; i < mem->nr_ranges; i++) {
1069		start = mem->ranges[i].start;
1070		end = mem->ranges[i].end;
1071
1072		if (mstart > end || mend < start)
1073			continue;
1074
1075		/* Truncate any area outside of range */
1076		if (mstart < start)
1077			mstart = start;
1078		if (mend > end)
1079			mend = end;
1080
1081		/* Found completely overlapping range */
1082		if (mstart == start && mend == end) {
1083			mem->ranges[i].start = 0;
1084			mem->ranges[i].end = 0;
1085			if (i < mem->nr_ranges - 1) {
1086				/* Shift rest of the ranges to left */
1087				for (j = i; j < mem->nr_ranges - 1; j++) {
1088					mem->ranges[j].start =
1089						mem->ranges[j+1].start;
1090					mem->ranges[j].end =
1091							mem->ranges[j+1].end;
1092				}
1093			}
1094			mem->nr_ranges--;
1095			return 0;
1096		}
1097
1098		if (mstart > start && mend < end) {
1099			/* Split original range */
1100			mem->ranges[i].end = mstart - 1;
1101			temp_range.start = mend + 1;
1102			temp_range.end = end;
1103		} else if (mstart != start)
1104			mem->ranges[i].end = mstart - 1;
1105		else
1106			mem->ranges[i].start = mend + 1;
1107		break;
1108	}
1109
1110	/* If a split happened, add the split to array */
1111	if (!temp_range.end)
1112		return 0;
1113
1114	/* Split happened */
1115	if (i == mem->max_nr_ranges - 1)
1116		return -ENOMEM;
1117
1118	/* Location where new range should go */
1119	j = i + 1;
1120	if (j < mem->nr_ranges) {
1121		/* Move over all ranges one slot towards the end */
1122		for (i = mem->nr_ranges - 1; i >= j; i--)
1123			mem->ranges[i + 1] = mem->ranges[i];
1124	}
1125
1126	mem->ranges[j].start = temp_range.start;
1127	mem->ranges[j].end = temp_range.end;
1128	mem->nr_ranges++;
1129	return 0;
1130}
1131
1132int crash_prepare_elf64_headers(struct crash_mem *mem, int kernel_map,
1133			  void **addr, unsigned long *sz)
1134{
1135	Elf64_Ehdr *ehdr;
1136	Elf64_Phdr *phdr;
1137	unsigned long nr_cpus = num_possible_cpus(), nr_phdr, elf_sz;
1138	unsigned char *buf;
1139	unsigned int cpu, i;
1140	unsigned long long notes_addr;
1141	unsigned long mstart, mend;
1142
1143	/* extra phdr for vmcoreinfo elf note */
1144	nr_phdr = nr_cpus + 1;
1145	nr_phdr += mem->nr_ranges;
1146
1147	/*
1148	 * kexec-tools creates an extra PT_LOAD phdr for kernel text mapping
1149	 * area (for example, ffffffff80000000 - ffffffffa0000000 on x86_64).
1150	 * I think this is required by tools like gdb. So same physical
1151	 * memory will be mapped in two elf headers. One will contain kernel
1152	 * text virtual addresses and other will have __va(physical) addresses.
1153	 */
1154
1155	nr_phdr++;
1156	elf_sz = sizeof(Elf64_Ehdr) + nr_phdr * sizeof(Elf64_Phdr);
1157	elf_sz = ALIGN(elf_sz, ELF_CORE_HEADER_ALIGN);
1158
1159	buf = vzalloc(elf_sz);
1160	if (!buf)
1161		return -ENOMEM;
1162
1163	ehdr = (Elf64_Ehdr *)buf;
1164	phdr = (Elf64_Phdr *)(ehdr + 1);
1165	memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
1166	ehdr->e_ident[EI_CLASS] = ELFCLASS64;
1167	ehdr->e_ident[EI_DATA] = ELFDATA2LSB;
1168	ehdr->e_ident[EI_VERSION] = EV_CURRENT;
1169	ehdr->e_ident[EI_OSABI] = ELF_OSABI;
1170	memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
1171	ehdr->e_type = ET_CORE;
1172	ehdr->e_machine = ELF_ARCH;
1173	ehdr->e_version = EV_CURRENT;
1174	ehdr->e_phoff = sizeof(Elf64_Ehdr);
1175	ehdr->e_ehsize = sizeof(Elf64_Ehdr);
1176	ehdr->e_phentsize = sizeof(Elf64_Phdr);
1177
1178	/* Prepare one phdr of type PT_NOTE for each present cpu */
1179	for_each_present_cpu(cpu) {
1180		phdr->p_type = PT_NOTE;
1181		notes_addr = per_cpu_ptr_to_phys(per_cpu_ptr(crash_notes, cpu));
1182		phdr->p_offset = phdr->p_paddr = notes_addr;
1183		phdr->p_filesz = phdr->p_memsz = sizeof(note_buf_t);
1184		(ehdr->e_phnum)++;
1185		phdr++;
1186	}
1187
1188	/* Prepare one PT_NOTE header for vmcoreinfo */
1189	phdr->p_type = PT_NOTE;
1190	phdr->p_offset = phdr->p_paddr = paddr_vmcoreinfo_note();
1191	phdr->p_filesz = phdr->p_memsz = VMCOREINFO_NOTE_SIZE;
1192	(ehdr->e_phnum)++;
1193	phdr++;
1194
1195	/* Prepare PT_LOAD type program header for kernel text region */
1196	if (kernel_map) {
1197		phdr->p_type = PT_LOAD;
1198		phdr->p_flags = PF_R|PF_W|PF_X;
1199		phdr->p_vaddr = (Elf64_Addr)_text;
1200		phdr->p_filesz = phdr->p_memsz = _end - _text;
1201		phdr->p_offset = phdr->p_paddr = __pa_symbol(_text);
1202		ehdr->e_phnum++;
1203		phdr++;
1204	}
1205
1206	/* Go through all the ranges in mem->ranges[] and prepare phdr */
1207	for (i = 0; i < mem->nr_ranges; i++) {
1208		mstart = mem->ranges[i].start;
1209		mend = mem->ranges[i].end;
1210
1211		phdr->p_type = PT_LOAD;
1212		phdr->p_flags = PF_R|PF_W|PF_X;
1213		phdr->p_offset  = mstart;
1214
1215		phdr->p_paddr = mstart;
1216		phdr->p_vaddr = (unsigned long long) __va(mstart);
1217		phdr->p_filesz = phdr->p_memsz = mend - mstart + 1;
1218		phdr->p_align = 0;
1219		ehdr->e_phnum++;
1220		phdr++;
1221		pr_debug("Crash PT_LOAD elf header. phdr=%p vaddr=0x%llx, paddr=0x%llx, sz=0x%llx e_phnum=%d p_offset=0x%llx\n",
1222			phdr, phdr->p_vaddr, phdr->p_paddr, phdr->p_filesz,
1223			ehdr->e_phnum, phdr->p_offset);
1224	}
1225
1226	*addr = buf;
1227	*sz = elf_sz;
1228	return 0;
1229}