Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40#include <linux/iomap.h>
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "truncate.h"
  46
  47#include <trace/events/ext4.h>
  48
  49#define MPAGE_DA_EXTENT_TAIL 0x01
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52			      struct ext4_inode_info *ei)
  53{
  54	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 
 
  55	__u32 csum;
  56	__u16 dummy_csum = 0;
  57	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58	unsigned int csum_size = sizeof(dummy_csum);
  59
  60	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62	offset += csum_size;
  63	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67		offset = offsetof(struct ext4_inode, i_checksum_hi);
  68		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69				   EXT4_GOOD_OLD_INODE_SIZE,
  70				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73					   csum_size);
  74			offset += csum_size;
  75		}
  76		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78	}
  79
 
 
 
 
 
 
 
 
  80	return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84				  struct ext4_inode_info *ei)
  85{
  86	__u32 provided, calculated;
  87
  88	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89	    cpu_to_le32(EXT4_OS_LINUX) ||
  90	    !ext4_has_metadata_csum(inode->i_sb))
  91		return 1;
  92
  93	provided = le16_to_cpu(raw->i_checksum_lo);
  94	calculated = ext4_inode_csum(inode, raw, ei);
  95	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98	else
  99		calculated &= 0xFFFF;
 100
 101	return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105				struct ext4_inode_info *ei)
 106{
 107	__u32 csum;
 108
 109	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110	    cpu_to_le32(EXT4_OS_LINUX) ||
 111	    !ext4_has_metadata_csum(inode->i_sb))
 112		return;
 113
 114	csum = ext4_inode_csum(inode, raw, ei);
 115	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122					      loff_t new_size)
 123{
 124	trace_ext4_begin_ordered_truncate(inode, new_size);
 125	/*
 126	 * If jinode is zero, then we never opened the file for
 127	 * writing, so there's no need to call
 128	 * jbd2_journal_begin_ordered_truncate() since there's no
 129	 * outstanding writes we need to flush.
 130	 */
 131	if (!EXT4_I(inode)->jinode)
 132		return 0;
 133	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134						   EXT4_I(inode)->jinode,
 135						   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139				unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143				  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 147 */
 148int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 152
 153	if (ext4_has_inline_data(inode))
 154		return 0;
 155
 156	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 157}
 158
 159/*
 160 * Restart the transaction associated with *handle.  This does a commit,
 161 * so before we call here everything must be consistently dirtied against
 162 * this transaction.
 163 */
 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 165				 int nblocks)
 166{
 167	int ret;
 168
 169	/*
 170	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 171	 * moment, get_block can be called only for blocks inside i_size since
 172	 * page cache has been already dropped and writes are blocked by
 173	 * i_mutex. So we can safely drop the i_data_sem here.
 174	 */
 175	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 176	jbd_debug(2, "restarting handle %p\n", handle);
 177	up_write(&EXT4_I(inode)->i_data_sem);
 178	ret = ext4_journal_restart(handle, nblocks);
 179	down_write(&EXT4_I(inode)->i_data_sem);
 180	ext4_discard_preallocations(inode);
 181
 182	return ret;
 183}
 184
 185/*
 186 * Called at the last iput() if i_nlink is zero.
 187 */
 188void ext4_evict_inode(struct inode *inode)
 189{
 190	handle_t *handle;
 191	int err;
 192
 193	trace_ext4_evict_inode(inode);
 194
 195	if (inode->i_nlink) {
 196		/*
 197		 * When journalling data dirty buffers are tracked only in the
 198		 * journal. So although mm thinks everything is clean and
 199		 * ready for reaping the inode might still have some pages to
 200		 * write in the running transaction or waiting to be
 201		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 202		 * (via truncate_inode_pages()) to discard these buffers can
 203		 * cause data loss. Also even if we did not discard these
 204		 * buffers, we would have no way to find them after the inode
 205		 * is reaped and thus user could see stale data if he tries to
 206		 * read them before the transaction is checkpointed. So be
 207		 * careful and force everything to disk here... We use
 208		 * ei->i_datasync_tid to store the newest transaction
 209		 * containing inode's data.
 210		 *
 211		 * Note that directories do not have this problem because they
 212		 * don't use page cache.
 213		 */
 214		if (inode->i_ino != EXT4_JOURNAL_INO &&
 215		    ext4_should_journal_data(inode) &&
 216		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 217			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 218			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 219
 220			jbd2_complete_transaction(journal, commit_tid);
 221			filemap_write_and_wait(&inode->i_data);
 222		}
 223		truncate_inode_pages_final(&inode->i_data);
 224
 225		goto no_delete;
 226	}
 227
 228	if (is_bad_inode(inode))
 229		goto no_delete;
 230	dquot_initialize(inode);
 231
 232	if (ext4_should_order_data(inode))
 233		ext4_begin_ordered_truncate(inode, 0);
 234	truncate_inode_pages_final(&inode->i_data);
 235
 236	/*
 237	 * Protect us against freezing - iput() caller didn't have to have any
 238	 * protection against it
 239	 */
 240	sb_start_intwrite(inode->i_sb);
 241	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 242				    ext4_blocks_for_truncate(inode)+3);
 243	if (IS_ERR(handle)) {
 244		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 245		/*
 246		 * If we're going to skip the normal cleanup, we still need to
 247		 * make sure that the in-core orphan linked list is properly
 248		 * cleaned up.
 249		 */
 250		ext4_orphan_del(NULL, inode);
 251		sb_end_intwrite(inode->i_sb);
 252		goto no_delete;
 253	}
 254
 255	if (IS_SYNC(inode))
 256		ext4_handle_sync(handle);
 257	inode->i_size = 0;
 258	err = ext4_mark_inode_dirty(handle, inode);
 259	if (err) {
 260		ext4_warning(inode->i_sb,
 261			     "couldn't mark inode dirty (err %d)", err);
 262		goto stop_handle;
 263	}
 264	if (inode->i_blocks) {
 265		err = ext4_truncate(inode);
 266		if (err) {
 267			ext4_error(inode->i_sb,
 268				   "couldn't truncate inode %lu (err %d)",
 269				   inode->i_ino, err);
 270			goto stop_handle;
 271		}
 272	}
 273
 274	/*
 275	 * ext4_ext_truncate() doesn't reserve any slop when it
 276	 * restarts journal transactions; therefore there may not be
 277	 * enough credits left in the handle to remove the inode from
 278	 * the orphan list and set the dtime field.
 279	 */
 280	if (!ext4_handle_has_enough_credits(handle, 3)) {
 281		err = ext4_journal_extend(handle, 3);
 282		if (err > 0)
 283			err = ext4_journal_restart(handle, 3);
 284		if (err != 0) {
 285			ext4_warning(inode->i_sb,
 286				     "couldn't extend journal (err %d)", err);
 287		stop_handle:
 288			ext4_journal_stop(handle);
 289			ext4_orphan_del(NULL, inode);
 290			sb_end_intwrite(inode->i_sb);
 291			goto no_delete;
 292		}
 293	}
 294
 295	/*
 296	 * Kill off the orphan record which ext4_truncate created.
 297	 * AKPM: I think this can be inside the above `if'.
 298	 * Note that ext4_orphan_del() has to be able to cope with the
 299	 * deletion of a non-existent orphan - this is because we don't
 300	 * know if ext4_truncate() actually created an orphan record.
 301	 * (Well, we could do this if we need to, but heck - it works)
 302	 */
 303	ext4_orphan_del(handle, inode);
 304	EXT4_I(inode)->i_dtime	= get_seconds();
 305
 306	/*
 307	 * One subtle ordering requirement: if anything has gone wrong
 308	 * (transaction abort, IO errors, whatever), then we can still
 309	 * do these next steps (the fs will already have been marked as
 310	 * having errors), but we can't free the inode if the mark_dirty
 311	 * fails.
 312	 */
 313	if (ext4_mark_inode_dirty(handle, inode))
 314		/* If that failed, just do the required in-core inode clear. */
 315		ext4_clear_inode(inode);
 316	else
 317		ext4_free_inode(handle, inode);
 318	ext4_journal_stop(handle);
 319	sb_end_intwrite(inode->i_sb);
 320	return;
 321no_delete:
 322	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 323}
 324
 325#ifdef CONFIG_QUOTA
 326qsize_t *ext4_get_reserved_space(struct inode *inode)
 327{
 328	return &EXT4_I(inode)->i_reserved_quota;
 329}
 330#endif
 331
 332/*
 333 * Called with i_data_sem down, which is important since we can call
 334 * ext4_discard_preallocations() from here.
 335 */
 336void ext4_da_update_reserve_space(struct inode *inode,
 337					int used, int quota_claim)
 338{
 339	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 340	struct ext4_inode_info *ei = EXT4_I(inode);
 341
 342	spin_lock(&ei->i_block_reservation_lock);
 343	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 344	if (unlikely(used > ei->i_reserved_data_blocks)) {
 345		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 346			 "with only %d reserved data blocks",
 347			 __func__, inode->i_ino, used,
 348			 ei->i_reserved_data_blocks);
 349		WARN_ON(1);
 350		used = ei->i_reserved_data_blocks;
 351	}
 352
 353	/* Update per-inode reservations */
 354	ei->i_reserved_data_blocks -= used;
 355	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 356
 357	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 358
 359	/* Update quota subsystem for data blocks */
 360	if (quota_claim)
 361		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 362	else {
 363		/*
 364		 * We did fallocate with an offset that is already delayed
 365		 * allocated. So on delayed allocated writeback we should
 366		 * not re-claim the quota for fallocated blocks.
 367		 */
 368		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 369	}
 370
 371	/*
 372	 * If we have done all the pending block allocations and if
 373	 * there aren't any writers on the inode, we can discard the
 374	 * inode's preallocations.
 375	 */
 376	if ((ei->i_reserved_data_blocks == 0) &&
 377	    (atomic_read(&inode->i_writecount) == 0))
 378		ext4_discard_preallocations(inode);
 379}
 380
 381static int __check_block_validity(struct inode *inode, const char *func,
 382				unsigned int line,
 383				struct ext4_map_blocks *map)
 384{
 385	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 386				   map->m_len)) {
 387		ext4_error_inode(inode, func, line, map->m_pblk,
 388				 "lblock %lu mapped to illegal pblock "
 389				 "(length %d)", (unsigned long) map->m_lblk,
 390				 map->m_len);
 391		return -EFSCORRUPTED;
 392	}
 393	return 0;
 394}
 395
 396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 397		       ext4_lblk_t len)
 398{
 399	int ret;
 400
 401	if (ext4_encrypted_inode(inode))
 402		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 403
 404	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 405	if (ret > 0)
 406		ret = 0;
 407
 408	return ret;
 409}
 410
 411#define check_block_validity(inode, map)	\
 412	__check_block_validity((inode), __func__, __LINE__, (map))
 413
 414#ifdef ES_AGGRESSIVE_TEST
 415static void ext4_map_blocks_es_recheck(handle_t *handle,
 416				       struct inode *inode,
 417				       struct ext4_map_blocks *es_map,
 418				       struct ext4_map_blocks *map,
 419				       int flags)
 420{
 421	int retval;
 422
 423	map->m_flags = 0;
 424	/*
 425	 * There is a race window that the result is not the same.
 426	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 427	 * is that we lookup a block mapping in extent status tree with
 428	 * out taking i_data_sem.  So at the time the unwritten extent
 429	 * could be converted.
 430	 */
 431	down_read(&EXT4_I(inode)->i_data_sem);
 432	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 433		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 434					     EXT4_GET_BLOCKS_KEEP_SIZE);
 435	} else {
 436		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 437					     EXT4_GET_BLOCKS_KEEP_SIZE);
 438	}
 439	up_read((&EXT4_I(inode)->i_data_sem));
 440
 441	/*
 442	 * We don't check m_len because extent will be collpased in status
 443	 * tree.  So the m_len might not equal.
 444	 */
 445	if (es_map->m_lblk != map->m_lblk ||
 446	    es_map->m_flags != map->m_flags ||
 447	    es_map->m_pblk != map->m_pblk) {
 448		printk("ES cache assertion failed for inode: %lu "
 449		       "es_cached ex [%d/%d/%llu/%x] != "
 450		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 451		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 452		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 453		       map->m_len, map->m_pblk, map->m_flags,
 454		       retval, flags);
 455	}
 456}
 457#endif /* ES_AGGRESSIVE_TEST */
 458
 459/*
 460 * The ext4_map_blocks() function tries to look up the requested blocks,
 461 * and returns if the blocks are already mapped.
 462 *
 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 464 * and store the allocated blocks in the result buffer head and mark it
 465 * mapped.
 466 *
 467 * If file type is extents based, it will call ext4_ext_map_blocks(),
 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 469 * based files
 470 *
 471 * On success, it returns the number of blocks being mapped or allocated.  if
 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 474 *
 475 * It returns 0 if plain look up failed (blocks have not been allocated), in
 476 * that case, @map is returned as unmapped but we still do fill map->m_len to
 477 * indicate the length of a hole starting at map->m_lblk.
 478 *
 479 * It returns the error in case of allocation failure.
 480 */
 481int ext4_map_blocks(handle_t *handle, struct inode *inode,
 482		    struct ext4_map_blocks *map, int flags)
 483{
 484	struct extent_status es;
 485	int retval;
 486	int ret = 0;
 487#ifdef ES_AGGRESSIVE_TEST
 488	struct ext4_map_blocks orig_map;
 489
 490	memcpy(&orig_map, map, sizeof(*map));
 491#endif
 492
 493	map->m_flags = 0;
 494	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 495		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 496		  (unsigned long) map->m_lblk);
 497
 498	/*
 499	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 500	 */
 501	if (unlikely(map->m_len > INT_MAX))
 502		map->m_len = INT_MAX;
 503
 504	/* We can handle the block number less than EXT_MAX_BLOCKS */
 505	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 506		return -EFSCORRUPTED;
 507
 508	/* Lookup extent status tree firstly */
 509	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 510		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 511			map->m_pblk = ext4_es_pblock(&es) +
 512					map->m_lblk - es.es_lblk;
 513			map->m_flags |= ext4_es_is_written(&es) ?
 514					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 515			retval = es.es_len - (map->m_lblk - es.es_lblk);
 516			if (retval > map->m_len)
 517				retval = map->m_len;
 518			map->m_len = retval;
 519		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 520			map->m_pblk = 0;
 521			retval = es.es_len - (map->m_lblk - es.es_lblk);
 522			if (retval > map->m_len)
 523				retval = map->m_len;
 524			map->m_len = retval;
 525			retval = 0;
 526		} else {
 527			BUG_ON(1);
 528		}
 529#ifdef ES_AGGRESSIVE_TEST
 530		ext4_map_blocks_es_recheck(handle, inode, map,
 531					   &orig_map, flags);
 532#endif
 533		goto found;
 534	}
 535
 536	/*
 537	 * Try to see if we can get the block without requesting a new
 538	 * file system block.
 539	 */
 540	down_read(&EXT4_I(inode)->i_data_sem);
 541	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 542		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 543					     EXT4_GET_BLOCKS_KEEP_SIZE);
 544	} else {
 545		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 546					     EXT4_GET_BLOCKS_KEEP_SIZE);
 547	}
 548	if (retval > 0) {
 549		unsigned int status;
 550
 551		if (unlikely(retval != map->m_len)) {
 552			ext4_warning(inode->i_sb,
 553				     "ES len assertion failed for inode "
 554				     "%lu: retval %d != map->m_len %d",
 555				     inode->i_ino, retval, map->m_len);
 556			WARN_ON(1);
 557		}
 558
 559		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 560				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 561		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 562		    !(status & EXTENT_STATUS_WRITTEN) &&
 563		    ext4_find_delalloc_range(inode, map->m_lblk,
 564					     map->m_lblk + map->m_len - 1))
 565			status |= EXTENT_STATUS_DELAYED;
 566		ret = ext4_es_insert_extent(inode, map->m_lblk,
 567					    map->m_len, map->m_pblk, status);
 568		if (ret < 0)
 569			retval = ret;
 570	}
 571	up_read((&EXT4_I(inode)->i_data_sem));
 572
 573found:
 574	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 575		ret = check_block_validity(inode, map);
 576		if (ret != 0)
 577			return ret;
 578	}
 579
 580	/* If it is only a block(s) look up */
 581	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 582		return retval;
 583
 584	/*
 585	 * Returns if the blocks have already allocated
 586	 *
 587	 * Note that if blocks have been preallocated
 588	 * ext4_ext_get_block() returns the create = 0
 589	 * with buffer head unmapped.
 590	 */
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 592		/*
 593		 * If we need to convert extent to unwritten
 594		 * we continue and do the actual work in
 595		 * ext4_ext_map_blocks()
 596		 */
 597		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 598			return retval;
 599
 600	/*
 601	 * Here we clear m_flags because after allocating an new extent,
 602	 * it will be set again.
 603	 */
 604	map->m_flags &= ~EXT4_MAP_FLAGS;
 605
 606	/*
 607	 * New blocks allocate and/or writing to unwritten extent
 608	 * will possibly result in updating i_data, so we take
 609	 * the write lock of i_data_sem, and call get_block()
 610	 * with create == 1 flag.
 611	 */
 612	down_write(&EXT4_I(inode)->i_data_sem);
 613
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642
 643	if (retval > 0) {
 644		unsigned int status;
 645
 646		if (unlikely(retval != map->m_len)) {
 647			ext4_warning(inode->i_sb,
 648				     "ES len assertion failed for inode "
 649				     "%lu: retval %d != map->m_len %d",
 650				     inode->i_ino, retval, map->m_len);
 651			WARN_ON(1);
 652		}
 653
 654		/*
 655		 * We have to zeroout blocks before inserting them into extent
 656		 * status tree. Otherwise someone could look them up there and
 657		 * use them before they are really zeroed. We also have to
 658		 * unmap metadata before zeroing as otherwise writeback can
 659		 * overwrite zeros with stale data from block device.
 660		 */
 661		if (flags & EXT4_GET_BLOCKS_ZERO &&
 662		    map->m_flags & EXT4_MAP_MAPPED &&
 663		    map->m_flags & EXT4_MAP_NEW) {
 664			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 665					   map->m_len);
 666			ret = ext4_issue_zeroout(inode, map->m_lblk,
 667						 map->m_pblk, map->m_len);
 668			if (ret) {
 669				retval = ret;
 670				goto out_sem;
 671			}
 672		}
 673
 674		/*
 675		 * If the extent has been zeroed out, we don't need to update
 676		 * extent status tree.
 677		 */
 678		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 679		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 680			if (ext4_es_is_written(&es))
 681				goto out_sem;
 682		}
 683		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 684				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 685		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 686		    !(status & EXTENT_STATUS_WRITTEN) &&
 687		    ext4_find_delalloc_range(inode, map->m_lblk,
 688					     map->m_lblk + map->m_len - 1))
 689			status |= EXTENT_STATUS_DELAYED;
 690		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 691					    map->m_pblk, status);
 692		if (ret < 0) {
 693			retval = ret;
 694			goto out_sem;
 695		}
 696	}
 697
 698out_sem:
 699	up_write((&EXT4_I(inode)->i_data_sem));
 700	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 701		ret = check_block_validity(inode, map);
 702		if (ret != 0)
 703			return ret;
 704
 705		/*
 706		 * Inodes with freshly allocated blocks where contents will be
 707		 * visible after transaction commit must be on transaction's
 708		 * ordered data list.
 709		 */
 710		if (map->m_flags & EXT4_MAP_NEW &&
 711		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 712		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 713		    !IS_NOQUOTA(inode) &&
 714		    ext4_should_order_data(inode)) {
 715			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 716				ret = ext4_jbd2_inode_add_wait(handle, inode);
 717			else
 718				ret = ext4_jbd2_inode_add_write(handle, inode);
 719			if (ret)
 720				return ret;
 721		}
 722	}
 723	return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732	unsigned long old_state;
 733	unsigned long new_state;
 734
 735	flags &= EXT4_MAP_FLAGS;
 736
 737	/* Dummy buffer_head? Set non-atomically. */
 738	if (!bh->b_page) {
 739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740		return;
 741	}
 742	/*
 743	 * Someone else may be modifying b_state. Be careful! This is ugly but
 744	 * once we get rid of using bh as a container for mapping information
 745	 * to pass to / from get_block functions, this can go away.
 746	 */
 747	do {
 748		old_state = READ_ONCE(bh->b_state);
 749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750	} while (unlikely(
 751		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 752}
 753
 754static int _ext4_get_block(struct inode *inode, sector_t iblock,
 755			   struct buffer_head *bh, int flags)
 756{
 757	struct ext4_map_blocks map;
 758	int ret = 0;
 759
 760	if (ext4_has_inline_data(inode))
 761		return -ERANGE;
 762
 763	map.m_lblk = iblock;
 764	map.m_len = bh->b_size >> inode->i_blkbits;
 765
 766	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 767			      flags);
 768	if (ret > 0) {
 769		map_bh(bh, inode->i_sb, map.m_pblk);
 770		ext4_update_bh_state(bh, map.m_flags);
 771		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 772		ret = 0;
 773	} else if (ret == 0) {
 774		/* hole case, need to fill in bh->b_size */
 775		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 776	}
 777	return ret;
 778}
 779
 780int ext4_get_block(struct inode *inode, sector_t iblock,
 781		   struct buffer_head *bh, int create)
 782{
 783	return _ext4_get_block(inode, iblock, bh,
 784			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 785}
 786
 787/*
 788 * Get block function used when preparing for buffered write if we require
 789 * creating an unwritten extent if blocks haven't been allocated.  The extent
 790 * will be converted to written after the IO is complete.
 791 */
 792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 793			     struct buffer_head *bh_result, int create)
 794{
 795	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 796		   inode->i_ino, create);
 797	return _ext4_get_block(inode, iblock, bh_result,
 798			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 799}
 800
 801/* Maximum number of blocks we map for direct IO at once. */
 802#define DIO_MAX_BLOCKS 4096
 803
 804/*
 805 * Get blocks function for the cases that need to start a transaction -
 806 * generally difference cases of direct IO and DAX IO. It also handles retries
 807 * in case of ENOSPC.
 808 */
 809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 810				struct buffer_head *bh_result, int flags)
 811{
 812	int dio_credits;
 813	handle_t *handle;
 814	int retries = 0;
 815	int ret;
 816
 817	/* Trim mapping request to maximum we can map at once for DIO */
 818	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 819		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 820	dio_credits = ext4_chunk_trans_blocks(inode,
 821				      bh_result->b_size >> inode->i_blkbits);
 822retry:
 823	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 824	if (IS_ERR(handle))
 825		return PTR_ERR(handle);
 826
 827	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 828	ext4_journal_stop(handle);
 829
 830	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 831		goto retry;
 832	return ret;
 833}
 834
 835/* Get block function for DIO reads and writes to inodes without extents */
 836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 837		       struct buffer_head *bh, int create)
 838{
 839	/* We don't expect handle for direct IO */
 840	WARN_ON_ONCE(ext4_journal_current_handle());
 841
 842	if (!create)
 843		return _ext4_get_block(inode, iblock, bh, 0);
 844	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 845}
 846
 847/*
 848 * Get block function for AIO DIO writes when we create unwritten extent if
 849 * blocks are not allocated yet. The extent will be converted to written
 850 * after IO is complete.
 851 */
 852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 853		sector_t iblock, struct buffer_head *bh_result,	int create)
 854{
 855	int ret;
 856
 857	/* We don't expect handle for direct IO */
 858	WARN_ON_ONCE(ext4_journal_current_handle());
 859
 860	ret = ext4_get_block_trans(inode, iblock, bh_result,
 861				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 862
 863	/*
 864	 * When doing DIO using unwritten extents, we need io_end to convert
 865	 * unwritten extents to written on IO completion. We allocate io_end
 866	 * once we spot unwritten extent and store it in b_private. Generic
 867	 * DIO code keeps b_private set and furthermore passes the value to
 868	 * our completion callback in 'private' argument.
 869	 */
 870	if (!ret && buffer_unwritten(bh_result)) {
 871		if (!bh_result->b_private) {
 872			ext4_io_end_t *io_end;
 873
 874			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 875			if (!io_end)
 876				return -ENOMEM;
 877			bh_result->b_private = io_end;
 878			ext4_set_io_unwritten_flag(inode, io_end);
 879		}
 880		set_buffer_defer_completion(bh_result);
 881	}
 882
 883	return ret;
 884}
 885
 886/*
 887 * Get block function for non-AIO DIO writes when we create unwritten extent if
 888 * blocks are not allocated yet. The extent will be converted to written
 889 * after IO is complete from ext4_ext_direct_IO() function.
 890 */
 891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 892		sector_t iblock, struct buffer_head *bh_result,	int create)
 893{
 894	int ret;
 895
 896	/* We don't expect handle for direct IO */
 897	WARN_ON_ONCE(ext4_journal_current_handle());
 898
 899	ret = ext4_get_block_trans(inode, iblock, bh_result,
 900				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 901
 902	/*
 903	 * Mark inode as having pending DIO writes to unwritten extents.
 904	 * ext4_ext_direct_IO() checks this flag and converts extents to
 905	 * written.
 906	 */
 907	if (!ret && buffer_unwritten(bh_result))
 908		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 909
 910	return ret;
 911}
 912
 913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 914		   struct buffer_head *bh_result, int create)
 915{
 916	int ret;
 917
 918	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 919		   inode->i_ino, create);
 920	/* We don't expect handle for direct IO */
 921	WARN_ON_ONCE(ext4_journal_current_handle());
 922
 923	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 924	/*
 925	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 926	 * that.
 927	 */
 928	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 929
 930	return ret;
 931}
 932
 933
 934/*
 935 * `handle' can be NULL if create is zero
 936 */
 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 938				ext4_lblk_t block, int map_flags)
 939{
 940	struct ext4_map_blocks map;
 941	struct buffer_head *bh;
 942	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 943	int err;
 944
 945	J_ASSERT(handle != NULL || create == 0);
 946
 947	map.m_lblk = block;
 948	map.m_len = 1;
 949	err = ext4_map_blocks(handle, inode, &map, map_flags);
 950
 951	if (err == 0)
 952		return create ? ERR_PTR(-ENOSPC) : NULL;
 953	if (err < 0)
 954		return ERR_PTR(err);
 955
 956	bh = sb_getblk(inode->i_sb, map.m_pblk);
 957	if (unlikely(!bh))
 958		return ERR_PTR(-ENOMEM);
 959	if (map.m_flags & EXT4_MAP_NEW) {
 960		J_ASSERT(create != 0);
 961		J_ASSERT(handle != NULL);
 962
 963		/*
 964		 * Now that we do not always journal data, we should
 965		 * keep in mind whether this should always journal the
 966		 * new buffer as metadata.  For now, regular file
 967		 * writes use ext4_get_block instead, so it's not a
 968		 * problem.
 969		 */
 970		lock_buffer(bh);
 971		BUFFER_TRACE(bh, "call get_create_access");
 972		err = ext4_journal_get_create_access(handle, bh);
 973		if (unlikely(err)) {
 974			unlock_buffer(bh);
 975			goto errout;
 976		}
 977		if (!buffer_uptodate(bh)) {
 978			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 979			set_buffer_uptodate(bh);
 980		}
 981		unlock_buffer(bh);
 982		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 983		err = ext4_handle_dirty_metadata(handle, inode, bh);
 984		if (unlikely(err))
 985			goto errout;
 986	} else
 987		BUFFER_TRACE(bh, "not a new buffer");
 988	return bh;
 989errout:
 990	brelse(bh);
 991	return ERR_PTR(err);
 992}
 993
 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 995			       ext4_lblk_t block, int map_flags)
 996{
 997	struct buffer_head *bh;
 998
 999	bh = ext4_getblk(handle, inode, block, map_flags);
1000	if (IS_ERR(bh))
1001		return bh;
1002	if (!bh || buffer_uptodate(bh))
1003		return bh;
1004	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005	wait_on_buffer(bh);
1006	if (buffer_uptodate(bh))
1007		return bh;
1008	put_bh(bh);
1009	return ERR_PTR(-EIO);
1010}
1011
1012int ext4_walk_page_buffers(handle_t *handle,
1013			   struct buffer_head *head,
1014			   unsigned from,
1015			   unsigned to,
1016			   int *partial,
1017			   int (*fn)(handle_t *handle,
1018				     struct buffer_head *bh))
1019{
1020	struct buffer_head *bh;
1021	unsigned block_start, block_end;
1022	unsigned blocksize = head->b_size;
1023	int err, ret = 0;
1024	struct buffer_head *next;
1025
1026	for (bh = head, block_start = 0;
1027	     ret == 0 && (bh != head || !block_start);
1028	     block_start = block_end, bh = next) {
1029		next = bh->b_this_page;
1030		block_end = block_start + blocksize;
1031		if (block_end <= from || block_start >= to) {
1032			if (partial && !buffer_uptodate(bh))
1033				*partial = 1;
1034			continue;
1035		}
1036		err = (*fn)(handle, bh);
1037		if (!ret)
1038			ret = err;
1039	}
1040	return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction.  We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write().  So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage().  In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page.  So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes.  If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated.  We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067int do_journal_get_write_access(handle_t *handle,
1068				struct buffer_head *bh)
1069{
1070	int dirty = buffer_dirty(bh);
1071	int ret;
1072
1073	if (!buffer_mapped(bh) || buffer_freed(bh))
1074		return 0;
1075	/*
1076	 * __block_write_begin() could have dirtied some buffers. Clean
1077	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078	 * otherwise about fs integrity issues. Setting of the dirty bit
1079	 * by __block_write_begin() isn't a real problem here as we clear
1080	 * the bit before releasing a page lock and thus writeback cannot
1081	 * ever write the buffer.
1082	 */
1083	if (dirty)
1084		clear_buffer_dirty(bh);
1085	BUFFER_TRACE(bh, "get write access");
1086	ret = ext4_journal_get_write_access(handle, bh);
1087	if (!ret && dirty)
1088		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089	return ret;
1090}
1091
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094				  get_block_t *get_block)
1095{
1096	unsigned from = pos & (PAGE_SIZE - 1);
1097	unsigned to = from + len;
1098	struct inode *inode = page->mapping->host;
1099	unsigned block_start, block_end;
1100	sector_t block;
1101	int err = 0;
1102	unsigned blocksize = inode->i_sb->s_blocksize;
1103	unsigned bbits;
1104	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105	bool decrypt = false;
1106
1107	BUG_ON(!PageLocked(page));
1108	BUG_ON(from > PAGE_SIZE);
1109	BUG_ON(to > PAGE_SIZE);
1110	BUG_ON(from > to);
1111
1112	if (!page_has_buffers(page))
1113		create_empty_buffers(page, blocksize, 0);
1114	head = page_buffers(page);
1115	bbits = ilog2(blocksize);
1116	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118	for (bh = head, block_start = 0; bh != head || !block_start;
1119	    block++, block_start = block_end, bh = bh->b_this_page) {
1120		block_end = block_start + blocksize;
1121		if (block_end <= from || block_start >= to) {
1122			if (PageUptodate(page)) {
1123				if (!buffer_uptodate(bh))
1124					set_buffer_uptodate(bh);
1125			}
1126			continue;
1127		}
1128		if (buffer_new(bh))
1129			clear_buffer_new(bh);
1130		if (!buffer_mapped(bh)) {
1131			WARN_ON(bh->b_size != blocksize);
1132			err = get_block(inode, block, bh, 1);
1133			if (err)
1134				break;
1135			if (buffer_new(bh)) {
1136				clean_bdev_bh_alias(bh);
 
1137				if (PageUptodate(page)) {
1138					clear_buffer_new(bh);
1139					set_buffer_uptodate(bh);
1140					mark_buffer_dirty(bh);
1141					continue;
1142				}
1143				if (block_end > to || block_start < from)
1144					zero_user_segments(page, to, block_end,
1145							   block_start, from);
1146				continue;
1147			}
1148		}
1149		if (PageUptodate(page)) {
1150			if (!buffer_uptodate(bh))
1151				set_buffer_uptodate(bh);
1152			continue;
1153		}
1154		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155		    !buffer_unwritten(bh) &&
1156		    (block_start < from || block_end > to)) {
1157			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158			*wait_bh++ = bh;
1159			decrypt = ext4_encrypted_inode(inode) &&
1160				S_ISREG(inode->i_mode);
1161		}
1162	}
1163	/*
1164	 * If we issued read requests, let them complete.
1165	 */
1166	while (wait_bh > wait) {
1167		wait_on_buffer(*--wait_bh);
1168		if (!buffer_uptodate(*wait_bh))
1169			err = -EIO;
1170	}
1171	if (unlikely(err))
1172		page_zero_new_buffers(page, from, to);
1173	else if (decrypt)
1174		err = fscrypt_decrypt_page(page->mapping->host, page,
1175				PAGE_SIZE, 0, page->index);
1176	return err;
1177}
1178#endif
1179
1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181			    loff_t pos, unsigned len, unsigned flags,
1182			    struct page **pagep, void **fsdata)
1183{
1184	struct inode *inode = mapping->host;
1185	int ret, needed_blocks;
1186	handle_t *handle;
1187	int retries = 0;
1188	struct page *page;
1189	pgoff_t index;
1190	unsigned from, to;
1191
1192	trace_ext4_write_begin(inode, pos, len, flags);
1193	/*
1194	 * Reserve one block more for addition to orphan list in case
1195	 * we allocate blocks but write fails for some reason
1196	 */
1197	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198	index = pos >> PAGE_SHIFT;
1199	from = pos & (PAGE_SIZE - 1);
1200	to = from + len;
1201
1202	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204						    flags, pagep);
1205		if (ret < 0)
1206			return ret;
1207		if (ret == 1)
1208			return 0;
1209	}
1210
1211	/*
1212	 * grab_cache_page_write_begin() can take a long time if the
1213	 * system is thrashing due to memory pressure, or if the page
1214	 * is being written back.  So grab it first before we start
1215	 * the transaction handle.  This also allows us to allocate
1216	 * the page (if needed) without using GFP_NOFS.
1217	 */
1218retry_grab:
1219	page = grab_cache_page_write_begin(mapping, index, flags);
1220	if (!page)
1221		return -ENOMEM;
1222	unlock_page(page);
1223
1224retry_journal:
1225	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226	if (IS_ERR(handle)) {
1227		put_page(page);
1228		return PTR_ERR(handle);
1229	}
1230
1231	lock_page(page);
1232	if (page->mapping != mapping) {
1233		/* The page got truncated from under us */
1234		unlock_page(page);
1235		put_page(page);
1236		ext4_journal_stop(handle);
1237		goto retry_grab;
1238	}
1239	/* In case writeback began while the page was unlocked */
1240	wait_for_stable_page(page);
1241
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243	if (ext4_should_dioread_nolock(inode))
1244		ret = ext4_block_write_begin(page, pos, len,
1245					     ext4_get_block_unwritten);
1246	else
1247		ret = ext4_block_write_begin(page, pos, len,
1248					     ext4_get_block);
1249#else
1250	if (ext4_should_dioread_nolock(inode))
1251		ret = __block_write_begin(page, pos, len,
1252					  ext4_get_block_unwritten);
1253	else
1254		ret = __block_write_begin(page, pos, len, ext4_get_block);
1255#endif
1256	if (!ret && ext4_should_journal_data(inode)) {
1257		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258					     from, to, NULL,
1259					     do_journal_get_write_access);
1260	}
1261
1262	if (ret) {
1263		unlock_page(page);
1264		/*
1265		 * __block_write_begin may have instantiated a few blocks
1266		 * outside i_size.  Trim these off again. Don't need
1267		 * i_size_read because we hold i_mutex.
1268		 *
1269		 * Add inode to orphan list in case we crash before
1270		 * truncate finishes
1271		 */
1272		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273			ext4_orphan_add(handle, inode);
1274
1275		ext4_journal_stop(handle);
1276		if (pos + len > inode->i_size) {
1277			ext4_truncate_failed_write(inode);
1278			/*
1279			 * If truncate failed early the inode might
1280			 * still be on the orphan list; we need to
1281			 * make sure the inode is removed from the
1282			 * orphan list in that case.
1283			 */
1284			if (inode->i_nlink)
1285				ext4_orphan_del(NULL, inode);
1286		}
1287
1288		if (ret == -ENOSPC &&
1289		    ext4_should_retry_alloc(inode->i_sb, &retries))
1290			goto retry_journal;
1291		put_page(page);
1292		return ret;
1293	}
1294	*pagep = page;
1295	return ret;
1296}
1297
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300{
1301	int ret;
1302	if (!buffer_mapped(bh) || buffer_freed(bh))
1303		return 0;
1304	set_buffer_uptodate(bh);
1305	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306	clear_buffer_meta(bh);
1307	clear_buffer_prio(bh);
1308	return ret;
1309}
1310
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319			  struct address_space *mapping,
1320			  loff_t pos, unsigned len, unsigned copied,
1321			  struct page *page, void *fsdata)
1322{
1323	handle_t *handle = ext4_journal_current_handle();
1324	struct inode *inode = mapping->host;
1325	loff_t old_size = inode->i_size;
1326	int ret = 0, ret2;
1327	int i_size_changed = 0;
1328
1329	trace_ext4_write_end(inode, pos, len, copied);
1330	if (ext4_has_inline_data(inode)) {
1331		ret = ext4_write_inline_data_end(inode, pos, len,
1332						 copied, page);
1333		if (ret < 0) {
1334			unlock_page(page);
1335			put_page(page);
1336			goto errout;
1337		}
 
 
 
 
 
 
 
1338		copied = ret;
1339	} else
1340		copied = block_write_end(file, mapping, pos,
1341					 len, copied, page, fsdata);
1342	/*
1343	 * it's important to update i_size while still holding page lock:
1344	 * page writeout could otherwise come in and zero beyond i_size.
1345	 */
1346	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1347	unlock_page(page);
1348	put_page(page);
1349
1350	if (old_size < pos)
1351		pagecache_isize_extended(inode, old_size, pos);
1352	/*
1353	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1354	 * makes the holding time of page lock longer. Second, it forces lock
1355	 * ordering of page lock and transaction start for journaling
1356	 * filesystems.
1357	 */
1358	if (i_size_changed)
1359		ext4_mark_inode_dirty(handle, inode);
1360
1361	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1362		/* if we have allocated more blocks and copied
1363		 * less. We will have blocks allocated outside
1364		 * inode->i_size. So truncate them
1365		 */
1366		ext4_orphan_add(handle, inode);
1367errout:
1368	ret2 = ext4_journal_stop(handle);
1369	if (!ret)
1370		ret = ret2;
1371
1372	if (pos + len > inode->i_size) {
1373		ext4_truncate_failed_write(inode);
1374		/*
1375		 * If truncate failed early the inode might still be
1376		 * on the orphan list; we need to make sure the inode
1377		 * is removed from the orphan list in that case.
1378		 */
1379		if (inode->i_nlink)
1380			ext4_orphan_del(NULL, inode);
1381	}
1382
1383	return ret ? ret : copied;
1384}
1385
1386/*
1387 * This is a private version of page_zero_new_buffers() which doesn't
1388 * set the buffer to be dirty, since in data=journalled mode we need
1389 * to call ext4_handle_dirty_metadata() instead.
1390 */
1391static void ext4_journalled_zero_new_buffers(handle_t *handle,
1392					    struct page *page,
1393					    unsigned from, unsigned to)
1394{
1395	unsigned int block_start = 0, block_end;
1396	struct buffer_head *head, *bh;
1397
1398	bh = head = page_buffers(page);
1399	do {
1400		block_end = block_start + bh->b_size;
1401		if (buffer_new(bh)) {
1402			if (block_end > from && block_start < to) {
1403				if (!PageUptodate(page)) {
1404					unsigned start, size;
1405
1406					start = max(from, block_start);
1407					size = min(to, block_end) - start;
1408
1409					zero_user(page, start, size);
1410					write_end_fn(handle, bh);
1411				}
1412				clear_buffer_new(bh);
1413			}
1414		}
1415		block_start = block_end;
1416		bh = bh->b_this_page;
1417	} while (bh != head);
1418}
1419
1420static int ext4_journalled_write_end(struct file *file,
1421				     struct address_space *mapping,
1422				     loff_t pos, unsigned len, unsigned copied,
1423				     struct page *page, void *fsdata)
1424{
1425	handle_t *handle = ext4_journal_current_handle();
1426	struct inode *inode = mapping->host;
1427	loff_t old_size = inode->i_size;
1428	int ret = 0, ret2;
1429	int partial = 0;
1430	unsigned from, to;
1431	int size_changed = 0;
1432
1433	trace_ext4_journalled_write_end(inode, pos, len, copied);
1434	from = pos & (PAGE_SIZE - 1);
1435	to = from + len;
1436
1437	BUG_ON(!ext4_handle_valid(handle));
1438
1439	if (ext4_has_inline_data(inode)) {
1440		ret = ext4_write_inline_data_end(inode, pos, len,
1441						 copied, page);
1442		if (ret < 0) {
1443			unlock_page(page);
1444			put_page(page);
1445			goto errout;
 
1446		}
1447		copied = ret;
1448	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1449		copied = 0;
1450		ext4_journalled_zero_new_buffers(handle, page, from, to);
1451	} else {
1452		if (unlikely(copied < len))
1453			ext4_journalled_zero_new_buffers(handle, page,
1454							 from + copied, to);
1455		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1456					     from + copied, &partial,
1457					     write_end_fn);
1458		if (!partial)
1459			SetPageUptodate(page);
1460	}
1461	size_changed = ext4_update_inode_size(inode, pos + copied);
1462	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1463	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1464	unlock_page(page);
1465	put_page(page);
1466
1467	if (old_size < pos)
1468		pagecache_isize_extended(inode, old_size, pos);
1469
1470	if (size_changed) {
1471		ret2 = ext4_mark_inode_dirty(handle, inode);
1472		if (!ret)
1473			ret = ret2;
1474	}
1475
1476	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1477		/* if we have allocated more blocks and copied
1478		 * less. We will have blocks allocated outside
1479		 * inode->i_size. So truncate them
1480		 */
1481		ext4_orphan_add(handle, inode);
1482
1483errout:
1484	ret2 = ext4_journal_stop(handle);
1485	if (!ret)
1486		ret = ret2;
1487	if (pos + len > inode->i_size) {
1488		ext4_truncate_failed_write(inode);
1489		/*
1490		 * If truncate failed early the inode might still be
1491		 * on the orphan list; we need to make sure the inode
1492		 * is removed from the orphan list in that case.
1493		 */
1494		if (inode->i_nlink)
1495			ext4_orphan_del(NULL, inode);
1496	}
1497
1498	return ret ? ret : copied;
1499}
1500
1501/*
1502 * Reserve space for a single cluster
1503 */
1504static int ext4_da_reserve_space(struct inode *inode)
1505{
1506	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507	struct ext4_inode_info *ei = EXT4_I(inode);
1508	int ret;
1509
1510	/*
1511	 * We will charge metadata quota at writeout time; this saves
1512	 * us from metadata over-estimation, though we may go over by
1513	 * a small amount in the end.  Here we just reserve for data.
1514	 */
1515	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1516	if (ret)
1517		return ret;
1518
1519	spin_lock(&ei->i_block_reservation_lock);
1520	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1521		spin_unlock(&ei->i_block_reservation_lock);
1522		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1523		return -ENOSPC;
1524	}
1525	ei->i_reserved_data_blocks++;
1526	trace_ext4_da_reserve_space(inode);
1527	spin_unlock(&ei->i_block_reservation_lock);
1528
1529	return 0;       /* success */
1530}
1531
1532static void ext4_da_release_space(struct inode *inode, int to_free)
1533{
1534	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535	struct ext4_inode_info *ei = EXT4_I(inode);
1536
1537	if (!to_free)
1538		return;		/* Nothing to release, exit */
1539
1540	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1541
1542	trace_ext4_da_release_space(inode, to_free);
1543	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1544		/*
1545		 * if there aren't enough reserved blocks, then the
1546		 * counter is messed up somewhere.  Since this
1547		 * function is called from invalidate page, it's
1548		 * harmless to return without any action.
1549		 */
1550		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1551			 "ino %lu, to_free %d with only %d reserved "
1552			 "data blocks", inode->i_ino, to_free,
1553			 ei->i_reserved_data_blocks);
1554		WARN_ON(1);
1555		to_free = ei->i_reserved_data_blocks;
1556	}
1557	ei->i_reserved_data_blocks -= to_free;
1558
1559	/* update fs dirty data blocks counter */
1560	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1561
1562	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563
1564	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1565}
1566
1567static void ext4_da_page_release_reservation(struct page *page,
1568					     unsigned int offset,
1569					     unsigned int length)
1570{
1571	int to_release = 0, contiguous_blks = 0;
1572	struct buffer_head *head, *bh;
1573	unsigned int curr_off = 0;
1574	struct inode *inode = page->mapping->host;
1575	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1576	unsigned int stop = offset + length;
1577	int num_clusters;
1578	ext4_fsblk_t lblk;
1579
1580	BUG_ON(stop > PAGE_SIZE || stop < length);
1581
1582	head = page_buffers(page);
1583	bh = head;
1584	do {
1585		unsigned int next_off = curr_off + bh->b_size;
1586
1587		if (next_off > stop)
1588			break;
1589
1590		if ((offset <= curr_off) && (buffer_delay(bh))) {
1591			to_release++;
1592			contiguous_blks++;
1593			clear_buffer_delay(bh);
1594		} else if (contiguous_blks) {
1595			lblk = page->index <<
1596			       (PAGE_SHIFT - inode->i_blkbits);
1597			lblk += (curr_off >> inode->i_blkbits) -
1598				contiguous_blks;
1599			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1600			contiguous_blks = 0;
1601		}
1602		curr_off = next_off;
1603	} while ((bh = bh->b_this_page) != head);
1604
1605	if (contiguous_blks) {
1606		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1607		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1608		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609	}
1610
1611	/* If we have released all the blocks belonging to a cluster, then we
1612	 * need to release the reserved space for that cluster. */
1613	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1614	while (num_clusters > 0) {
1615		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1616			((num_clusters - 1) << sbi->s_cluster_bits);
1617		if (sbi->s_cluster_ratio == 1 ||
1618		    !ext4_find_delalloc_cluster(inode, lblk))
1619			ext4_da_release_space(inode, 1);
1620
1621		num_clusters--;
1622	}
1623}
1624
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
1630	struct inode *inode;
1631	struct writeback_control *wbc;
1632
1633	pgoff_t first_page;	/* The first page to write */
1634	pgoff_t next_page;	/* Current page to examine */
1635	pgoff_t last_page;	/* Last page to examine */
1636	/*
1637	 * Extent to map - this can be after first_page because that can be
1638	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1639	 * is delalloc or unwritten.
1640	 */
1641	struct ext4_map_blocks map;
1642	struct ext4_io_submit io_submit;	/* IO submission data */
1643};
1644
1645static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1646				       bool invalidate)
1647{
1648	int nr_pages, i;
1649	pgoff_t index, end;
1650	struct pagevec pvec;
1651	struct inode *inode = mpd->inode;
1652	struct address_space *mapping = inode->i_mapping;
1653
1654	/* This is necessary when next_page == 0. */
1655	if (mpd->first_page >= mpd->next_page)
1656		return;
1657
1658	index = mpd->first_page;
1659	end   = mpd->next_page - 1;
1660	if (invalidate) {
1661		ext4_lblk_t start, last;
1662		start = index << (PAGE_SHIFT - inode->i_blkbits);
1663		last = end << (PAGE_SHIFT - inode->i_blkbits);
1664		ext4_es_remove_extent(inode, start, last - start + 1);
1665	}
1666
1667	pagevec_init(&pvec, 0);
1668	while (index <= end) {
1669		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1670		if (nr_pages == 0)
1671			break;
1672		for (i = 0; i < nr_pages; i++) {
1673			struct page *page = pvec.pages[i];
1674			if (page->index > end)
1675				break;
1676			BUG_ON(!PageLocked(page));
1677			BUG_ON(PageWriteback(page));
1678			if (invalidate) {
1679				if (page_mapped(page))
1680					clear_page_dirty_for_io(page);
1681				block_invalidatepage(page, 0, PAGE_SIZE);
1682				ClearPageUptodate(page);
1683			}
1684			unlock_page(page);
1685		}
1686		index = pvec.pages[nr_pages - 1]->index + 1;
1687		pagevec_release(&pvec);
1688	}
1689}
1690
1691static void ext4_print_free_blocks(struct inode *inode)
1692{
1693	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1694	struct super_block *sb = inode->i_sb;
1695	struct ext4_inode_info *ei = EXT4_I(inode);
1696
1697	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1698	       EXT4_C2B(EXT4_SB(inode->i_sb),
1699			ext4_count_free_clusters(sb)));
1700	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1701	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1702	       (long long) EXT4_C2B(EXT4_SB(sb),
1703		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1704	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1705	       (long long) EXT4_C2B(EXT4_SB(sb),
1706		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1707	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1708	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1709		 ei->i_reserved_data_blocks);
1710	return;
1711}
1712
1713static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1714{
1715	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1716}
1717
1718/*
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725			      struct ext4_map_blocks *map,
1726			      struct buffer_head *bh)
1727{
1728	struct extent_status es;
1729	int retval;
1730	sector_t invalid_block = ~((sector_t) 0xffff);
1731#ifdef ES_AGGRESSIVE_TEST
1732	struct ext4_map_blocks orig_map;
1733
1734	memcpy(&orig_map, map, sizeof(*map));
1735#endif
1736
1737	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738		invalid_block = ~0;
1739
1740	map->m_flags = 0;
1741	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1742		  "logical block %lu\n", inode->i_ino, map->m_len,
1743		  (unsigned long) map->m_lblk);
1744
1745	/* Lookup extent status tree firstly */
1746	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1747		if (ext4_es_is_hole(&es)) {
1748			retval = 0;
1749			down_read(&EXT4_I(inode)->i_data_sem);
1750			goto add_delayed;
1751		}
1752
1753		/*
1754		 * Delayed extent could be allocated by fallocate.
1755		 * So we need to check it.
1756		 */
1757		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758			map_bh(bh, inode->i_sb, invalid_block);
1759			set_buffer_new(bh);
1760			set_buffer_delay(bh);
1761			return 0;
1762		}
1763
1764		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765		retval = es.es_len - (iblock - es.es_lblk);
1766		if (retval > map->m_len)
1767			retval = map->m_len;
1768		map->m_len = retval;
1769		if (ext4_es_is_written(&es))
1770			map->m_flags |= EXT4_MAP_MAPPED;
1771		else if (ext4_es_is_unwritten(&es))
1772			map->m_flags |= EXT4_MAP_UNWRITTEN;
1773		else
1774			BUG_ON(1);
1775
1776#ifdef ES_AGGRESSIVE_TEST
1777		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778#endif
1779		return retval;
1780	}
1781
1782	/*
1783	 * Try to see if we can get the block without requesting a new
1784	 * file system block.
1785	 */
1786	down_read(&EXT4_I(inode)->i_data_sem);
1787	if (ext4_has_inline_data(inode))
1788		retval = 0;
1789	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791	else
1792		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1793
1794add_delayed:
1795	if (retval == 0) {
1796		int ret;
1797		/*
1798		 * XXX: __block_prepare_write() unmaps passed block,
1799		 * is it OK?
1800		 */
1801		/*
1802		 * If the block was allocated from previously allocated cluster,
1803		 * then we don't need to reserve it again. However we still need
1804		 * to reserve metadata for every block we're going to write.
1805		 */
1806		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1807		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1808			ret = ext4_da_reserve_space(inode);
1809			if (ret) {
1810				/* not enough space to reserve */
1811				retval = ret;
1812				goto out_unlock;
1813			}
1814		}
1815
1816		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1817					    ~0, EXTENT_STATUS_DELAYED);
1818		if (ret) {
1819			retval = ret;
1820			goto out_unlock;
1821		}
1822
1823		map_bh(bh, inode->i_sb, invalid_block);
1824		set_buffer_new(bh);
1825		set_buffer_delay(bh);
1826	} else if (retval > 0) {
1827		int ret;
1828		unsigned int status;
1829
1830		if (unlikely(retval != map->m_len)) {
1831			ext4_warning(inode->i_sb,
1832				     "ES len assertion failed for inode "
1833				     "%lu: retval %d != map->m_len %d",
1834				     inode->i_ino, retval, map->m_len);
1835			WARN_ON(1);
1836		}
1837
1838		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1839				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1840		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1841					    map->m_pblk, status);
1842		if (ret != 0)
1843			retval = ret;
1844	}
1845
1846out_unlock:
1847	up_read((&EXT4_I(inode)->i_data_sem));
1848
1849	return retval;
1850}
1851
1852/*
1853 * This is a special get_block_t callback which is used by
1854 * ext4_da_write_begin().  It will either return mapped block or
1855 * reserve space for a single block.
1856 *
1857 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1858 * We also have b_blocknr = -1 and b_bdev initialized properly
1859 *
1860 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1861 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1862 * initialized properly.
1863 */
1864int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1865			   struct buffer_head *bh, int create)
1866{
1867	struct ext4_map_blocks map;
1868	int ret = 0;
1869
1870	BUG_ON(create == 0);
1871	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872
1873	map.m_lblk = iblock;
1874	map.m_len = 1;
1875
1876	/*
1877	 * first, we need to know whether the block is allocated already
1878	 * preallocated blocks are unmapped but should treated
1879	 * the same as allocated blocks.
1880	 */
1881	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1882	if (ret <= 0)
1883		return ret;
1884
1885	map_bh(bh, inode->i_sb, map.m_pblk);
1886	ext4_update_bh_state(bh, map.m_flags);
1887
1888	if (buffer_unwritten(bh)) {
1889		/* A delayed write to unwritten bh should be marked
1890		 * new and mapped.  Mapped ensures that we don't do
1891		 * get_block multiple times when we write to the same
1892		 * offset and new ensures that we do proper zero out
1893		 * for partial write.
1894		 */
1895		set_buffer_new(bh);
1896		set_buffer_mapped(bh);
1897	}
1898	return 0;
1899}
1900
1901static int bget_one(handle_t *handle, struct buffer_head *bh)
1902{
1903	get_bh(bh);
1904	return 0;
1905}
1906
1907static int bput_one(handle_t *handle, struct buffer_head *bh)
1908{
1909	put_bh(bh);
1910	return 0;
1911}
1912
1913static int __ext4_journalled_writepage(struct page *page,
1914				       unsigned int len)
1915{
1916	struct address_space *mapping = page->mapping;
1917	struct inode *inode = mapping->host;
1918	struct buffer_head *page_bufs = NULL;
1919	handle_t *handle = NULL;
1920	int ret = 0, err = 0;
1921	int inline_data = ext4_has_inline_data(inode);
1922	struct buffer_head *inode_bh = NULL;
1923
1924	ClearPageChecked(page);
1925
1926	if (inline_data) {
1927		BUG_ON(page->index != 0);
1928		BUG_ON(len > ext4_get_max_inline_size(inode));
1929		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1930		if (inode_bh == NULL)
1931			goto out;
1932	} else {
1933		page_bufs = page_buffers(page);
1934		if (!page_bufs) {
1935			BUG();
1936			goto out;
1937		}
1938		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1939				       NULL, bget_one);
1940	}
1941	/*
1942	 * We need to release the page lock before we start the
1943	 * journal, so grab a reference so the page won't disappear
1944	 * out from under us.
1945	 */
1946	get_page(page);
1947	unlock_page(page);
1948
1949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1950				    ext4_writepage_trans_blocks(inode));
1951	if (IS_ERR(handle)) {
1952		ret = PTR_ERR(handle);
1953		put_page(page);
1954		goto out_no_pagelock;
1955	}
1956	BUG_ON(!ext4_handle_valid(handle));
1957
1958	lock_page(page);
1959	put_page(page);
1960	if (page->mapping != mapping) {
1961		/* The page got truncated from under us */
1962		ext4_journal_stop(handle);
1963		ret = 0;
1964		goto out;
1965	}
1966
1967	if (inline_data) {
1968		BUFFER_TRACE(inode_bh, "get write access");
1969		ret = ext4_journal_get_write_access(handle, inode_bh);
1970
1971		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1972
1973	} else {
1974		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1975					     do_journal_get_write_access);
1976
1977		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978					     write_end_fn);
1979	}
1980	if (ret == 0)
1981		ret = err;
1982	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1983	err = ext4_journal_stop(handle);
1984	if (!ret)
1985		ret = err;
1986
1987	if (!ext4_has_inline_data(inode))
1988		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1989				       NULL, bput_one);
1990	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1991out:
1992	unlock_page(page);
1993out_no_pagelock:
1994	brelse(inode_bh);
1995	return ret;
1996}
1997
1998/*
1999 * Note that we don't need to start a transaction unless we're journaling data
2000 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2001 * need to file the inode to the transaction's list in ordered mode because if
2002 * we are writing back data added by write(), the inode is already there and if
2003 * we are writing back data modified via mmap(), no one guarantees in which
2004 * transaction the data will hit the disk. In case we are journaling data, we
2005 * cannot start transaction directly because transaction start ranks above page
2006 * lock so we have to do some magic.
2007 *
2008 * This function can get called via...
2009 *   - ext4_writepages after taking page lock (have journal handle)
2010 *   - journal_submit_inode_data_buffers (no journal handle)
2011 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2012 *   - grab_page_cache when doing write_begin (have journal handle)
2013 *
2014 * We don't do any block allocation in this function. If we have page with
2015 * multiple blocks we need to write those buffer_heads that are mapped. This
2016 * is important for mmaped based write. So if we do with blocksize 1K
2017 * truncate(f, 1024);
2018 * a = mmap(f, 0, 4096);
2019 * a[0] = 'a';
2020 * truncate(f, 4096);
2021 * we have in the page first buffer_head mapped via page_mkwrite call back
2022 * but other buffer_heads would be unmapped but dirty (dirty done via the
2023 * do_wp_page). So writepage should write the first block. If we modify
2024 * the mmap area beyond 1024 we will again get a page_fault and the
2025 * page_mkwrite callback will do the block allocation and mark the
2026 * buffer_heads mapped.
2027 *
2028 * We redirty the page if we have any buffer_heads that is either delay or
2029 * unwritten in the page.
2030 *
2031 * We can get recursively called as show below.
2032 *
2033 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2034 *		ext4_writepage()
2035 *
2036 * But since we don't do any block allocation we should not deadlock.
2037 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2038 */
2039static int ext4_writepage(struct page *page,
2040			  struct writeback_control *wbc)
2041{
2042	int ret = 0;
2043	loff_t size;
2044	unsigned int len;
2045	struct buffer_head *page_bufs = NULL;
2046	struct inode *inode = page->mapping->host;
2047	struct ext4_io_submit io_submit;
2048	bool keep_towrite = false;
2049
2050	trace_ext4_writepage(page);
2051	size = i_size_read(inode);
2052	if (page->index == size >> PAGE_SHIFT)
2053		len = size & ~PAGE_MASK;
2054	else
2055		len = PAGE_SIZE;
2056
2057	page_bufs = page_buffers(page);
2058	/*
2059	 * We cannot do block allocation or other extent handling in this
2060	 * function. If there are buffers needing that, we have to redirty
2061	 * the page. But we may reach here when we do a journal commit via
2062	 * journal_submit_inode_data_buffers() and in that case we must write
2063	 * allocated buffers to achieve data=ordered mode guarantees.
2064	 *
2065	 * Also, if there is only one buffer per page (the fs block
2066	 * size == the page size), if one buffer needs block
2067	 * allocation or needs to modify the extent tree to clear the
2068	 * unwritten flag, we know that the page can't be written at
2069	 * all, so we might as well refuse the write immediately.
2070	 * Unfortunately if the block size != page size, we can't as
2071	 * easily detect this case using ext4_walk_page_buffers(), but
2072	 * for the extremely common case, this is an optimization that
2073	 * skips a useless round trip through ext4_bio_write_page().
2074	 */
2075	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2076				   ext4_bh_delay_or_unwritten)) {
2077		redirty_page_for_writepage(wbc, page);
2078		if ((current->flags & PF_MEMALLOC) ||
2079		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2080			/*
2081			 * For memory cleaning there's no point in writing only
2082			 * some buffers. So just bail out. Warn if we came here
2083			 * from direct reclaim.
2084			 */
2085			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2086							== PF_MEMALLOC);
2087			unlock_page(page);
2088			return 0;
2089		}
2090		keep_towrite = true;
2091	}
2092
2093	if (PageChecked(page) && ext4_should_journal_data(inode))
2094		/*
2095		 * It's mmapped pagecache.  Add buffers and journal it.  There
2096		 * doesn't seem much point in redirtying the page here.
2097		 */
2098		return __ext4_journalled_writepage(page, len);
2099
2100	ext4_io_submit_init(&io_submit, wbc);
2101	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2102	if (!io_submit.io_end) {
2103		redirty_page_for_writepage(wbc, page);
2104		unlock_page(page);
2105		return -ENOMEM;
2106	}
2107	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2108	ext4_io_submit(&io_submit);
2109	/* Drop io_end reference we got from init */
2110	ext4_put_io_end_defer(io_submit.io_end);
2111	return ret;
2112}
2113
2114static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2115{
2116	int len;
2117	loff_t size = i_size_read(mpd->inode);
2118	int err;
2119
2120	BUG_ON(page->index != mpd->first_page);
2121	if (page->index == size >> PAGE_SHIFT)
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125	clear_page_dirty_for_io(page);
2126	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2127	if (!err)
2128		mpd->wbc->nr_to_write--;
2129	mpd->first_page++;
2130
2131	return err;
2132}
2133
2134#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2135
2136/*
2137 * mballoc gives us at most this number of blocks...
2138 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2139 * The rest of mballoc seems to handle chunks up to full group size.
2140 */
2141#define MAX_WRITEPAGES_EXTENT_LEN 2048
2142
2143/*
2144 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2145 *
2146 * @mpd - extent of blocks
2147 * @lblk - logical number of the block in the file
2148 * @bh - buffer head we want to add to the extent
2149 *
2150 * The function is used to collect contig. blocks in the same state. If the
2151 * buffer doesn't require mapping for writeback and we haven't started the
2152 * extent of buffers to map yet, the function returns 'true' immediately - the
2153 * caller can write the buffer right away. Otherwise the function returns true
2154 * if the block has been added to the extent, false if the block couldn't be
2155 * added.
2156 */
2157static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2158				   struct buffer_head *bh)
2159{
2160	struct ext4_map_blocks *map = &mpd->map;
2161
2162	/* Buffer that doesn't need mapping for writeback? */
2163	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2164	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2165		/* So far no extent to map => we write the buffer right away */
2166		if (map->m_len == 0)
2167			return true;
2168		return false;
2169	}
2170
2171	/* First block in the extent? */
2172	if (map->m_len == 0) {
2173		map->m_lblk = lblk;
2174		map->m_len = 1;
2175		map->m_flags = bh->b_state & BH_FLAGS;
2176		return true;
2177	}
2178
2179	/* Don't go larger than mballoc is willing to allocate */
2180	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2181		return false;
2182
2183	/* Can we merge the block to our big extent? */
2184	if (lblk == map->m_lblk + map->m_len &&
2185	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2186		map->m_len++;
2187		return true;
2188	}
2189	return false;
2190}
2191
2192/*
2193 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2194 *
2195 * @mpd - extent of blocks for mapping
2196 * @head - the first buffer in the page
2197 * @bh - buffer we should start processing from
2198 * @lblk - logical number of the block in the file corresponding to @bh
2199 *
2200 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2201 * the page for IO if all buffers in this page were mapped and there's no
2202 * accumulated extent of buffers to map or add buffers in the page to the
2203 * extent of buffers to map. The function returns 1 if the caller can continue
2204 * by processing the next page, 0 if it should stop adding buffers to the
2205 * extent to map because we cannot extend it anymore. It can also return value
2206 * < 0 in case of error during IO submission.
2207 */
2208static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2209				   struct buffer_head *head,
2210				   struct buffer_head *bh,
2211				   ext4_lblk_t lblk)
2212{
2213	struct inode *inode = mpd->inode;
2214	int err;
2215	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2216							>> inode->i_blkbits;
2217
2218	do {
2219		BUG_ON(buffer_locked(bh));
2220
2221		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2222			/* Found extent to map? */
2223			if (mpd->map.m_len)
2224				return 0;
2225			/* Everything mapped so far and we hit EOF */
2226			break;
2227		}
2228	} while (lblk++, (bh = bh->b_this_page) != head);
2229	/* So far everything mapped? Submit the page for IO. */
2230	if (mpd->map.m_len == 0) {
2231		err = mpage_submit_page(mpd, head->b_page);
2232		if (err < 0)
2233			return err;
2234	}
2235	return lblk < blocks;
2236}
2237
2238/*
2239 * mpage_map_buffers - update buffers corresponding to changed extent and
2240 *		       submit fully mapped pages for IO
2241 *
2242 * @mpd - description of extent to map, on return next extent to map
2243 *
2244 * Scan buffers corresponding to changed extent (we expect corresponding pages
2245 * to be already locked) and update buffer state according to new extent state.
2246 * We map delalloc buffers to their physical location, clear unwritten bits,
2247 * and mark buffers as uninit when we perform writes to unwritten extents
2248 * and do extent conversion after IO is finished. If the last page is not fully
2249 * mapped, we update @map to the next extent in the last page that needs
2250 * mapping. Otherwise we submit the page for IO.
2251 */
2252static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2253{
2254	struct pagevec pvec;
2255	int nr_pages, i;
2256	struct inode *inode = mpd->inode;
2257	struct buffer_head *head, *bh;
2258	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2259	pgoff_t start, end;
2260	ext4_lblk_t lblk;
2261	sector_t pblock;
2262	int err;
2263
2264	start = mpd->map.m_lblk >> bpp_bits;
2265	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2266	lblk = start << bpp_bits;
2267	pblock = mpd->map.m_pblk;
2268
2269	pagevec_init(&pvec, 0);
2270	while (start <= end) {
2271		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2272					  PAGEVEC_SIZE);
2273		if (nr_pages == 0)
2274			break;
2275		for (i = 0; i < nr_pages; i++) {
2276			struct page *page = pvec.pages[i];
2277
2278			if (page->index > end)
2279				break;
2280			/* Up to 'end' pages must be contiguous */
2281			BUG_ON(page->index != start);
2282			bh = head = page_buffers(page);
2283			do {
2284				if (lblk < mpd->map.m_lblk)
2285					continue;
2286				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287					/*
2288					 * Buffer after end of mapped extent.
2289					 * Find next buffer in the page to map.
2290					 */
2291					mpd->map.m_len = 0;
2292					mpd->map.m_flags = 0;
2293					/*
2294					 * FIXME: If dioread_nolock supports
2295					 * blocksize < pagesize, we need to make
2296					 * sure we add size mapped so far to
2297					 * io_end->size as the following call
2298					 * can submit the page for IO.
2299					 */
2300					err = mpage_process_page_bufs(mpd, head,
2301								      bh, lblk);
2302					pagevec_release(&pvec);
2303					if (err > 0)
2304						err = 0;
2305					return err;
2306				}
2307				if (buffer_delay(bh)) {
2308					clear_buffer_delay(bh);
2309					bh->b_blocknr = pblock++;
2310				}
2311				clear_buffer_unwritten(bh);
2312			} while (lblk++, (bh = bh->b_this_page) != head);
2313
2314			/*
2315			 * FIXME: This is going to break if dioread_nolock
2316			 * supports blocksize < pagesize as we will try to
2317			 * convert potentially unmapped parts of inode.
2318			 */
2319			mpd->io_submit.io_end->size += PAGE_SIZE;
2320			/* Page fully mapped - let IO run! */
2321			err = mpage_submit_page(mpd, page);
2322			if (err < 0) {
2323				pagevec_release(&pvec);
2324				return err;
2325			}
2326			start++;
2327		}
2328		pagevec_release(&pvec);
2329	}
2330	/* Extent fully mapped and matches with page boundary. We are done. */
2331	mpd->map.m_len = 0;
2332	mpd->map.m_flags = 0;
2333	return 0;
2334}
2335
2336static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337{
2338	struct inode *inode = mpd->inode;
2339	struct ext4_map_blocks *map = &mpd->map;
2340	int get_blocks_flags;
2341	int err, dioread_nolock;
2342
2343	trace_ext4_da_write_pages_extent(inode, map);
2344	/*
2345	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2346	 * to convert an unwritten extent to be initialized (in the case
2347	 * where we have written into one or more preallocated blocks).  It is
2348	 * possible that we're going to need more metadata blocks than
2349	 * previously reserved. However we must not fail because we're in
2350	 * writeback and there is nothing we can do about it so it might result
2351	 * in data loss.  So use reserved blocks to allocate metadata if
2352	 * possible.
2353	 *
2354	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2355	 * the blocks in question are delalloc blocks.  This indicates
2356	 * that the blocks and quotas has already been checked when
2357	 * the data was copied into the page cache.
2358	 */
2359	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2360			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2361			   EXT4_GET_BLOCKS_IO_SUBMIT;
2362	dioread_nolock = ext4_should_dioread_nolock(inode);
2363	if (dioread_nolock)
2364		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2365	if (map->m_flags & (1 << BH_Delay))
2366		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367
2368	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369	if (err < 0)
2370		return err;
2371	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2372		if (!mpd->io_submit.io_end->handle &&
2373		    ext4_handle_valid(handle)) {
2374			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2375			handle->h_rsv_handle = NULL;
2376		}
2377		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2378	}
2379
2380	BUG_ON(map->m_len == 0);
2381	if (map->m_flags & EXT4_MAP_NEW) {
2382		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2383				   map->m_len);
 
 
 
2384	}
2385	return 0;
2386}
2387
2388/*
2389 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2390 *				 mpd->len and submit pages underlying it for IO
2391 *
2392 * @handle - handle for journal operations
2393 * @mpd - extent to map
2394 * @give_up_on_write - we set this to true iff there is a fatal error and there
2395 *                     is no hope of writing the data. The caller should discard
2396 *                     dirty pages to avoid infinite loops.
2397 *
2398 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2399 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2400 * them to initialized or split the described range from larger unwritten
2401 * extent. Note that we need not map all the described range since allocation
2402 * can return less blocks or the range is covered by more unwritten extents. We
2403 * cannot map more because we are limited by reserved transaction credits. On
2404 * the other hand we always make sure that the last touched page is fully
2405 * mapped so that it can be written out (and thus forward progress is
2406 * guaranteed). After mapping we submit all mapped pages for IO.
2407 */
2408static int mpage_map_and_submit_extent(handle_t *handle,
2409				       struct mpage_da_data *mpd,
2410				       bool *give_up_on_write)
2411{
2412	struct inode *inode = mpd->inode;
2413	struct ext4_map_blocks *map = &mpd->map;
2414	int err;
2415	loff_t disksize;
2416	int progress = 0;
2417
2418	mpd->io_submit.io_end->offset =
2419				((loff_t)map->m_lblk) << inode->i_blkbits;
2420	do {
2421		err = mpage_map_one_extent(handle, mpd);
2422		if (err < 0) {
2423			struct super_block *sb = inode->i_sb;
2424
2425			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2426				goto invalidate_dirty_pages;
2427			/*
2428			 * Let the uper layers retry transient errors.
2429			 * In the case of ENOSPC, if ext4_count_free_blocks()
2430			 * is non-zero, a commit should free up blocks.
2431			 */
2432			if ((err == -ENOMEM) ||
2433			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434				if (progress)
2435					goto update_disksize;
2436				return err;
2437			}
2438			ext4_msg(sb, KERN_CRIT,
2439				 "Delayed block allocation failed for "
2440				 "inode %lu at logical offset %llu with"
2441				 " max blocks %u with error %d",
2442				 inode->i_ino,
2443				 (unsigned long long)map->m_lblk,
2444				 (unsigned)map->m_len, -err);
2445			ext4_msg(sb, KERN_CRIT,
2446				 "This should not happen!! Data will "
2447				 "be lost\n");
2448			if (err == -ENOSPC)
2449				ext4_print_free_blocks(inode);
2450		invalidate_dirty_pages:
2451			*give_up_on_write = true;
2452			return err;
2453		}
2454		progress = 1;
2455		/*
2456		 * Update buffer state, submit mapped pages, and get us new
2457		 * extent to map
2458		 */
2459		err = mpage_map_and_submit_buffers(mpd);
2460		if (err < 0)
2461			goto update_disksize;
2462	} while (map->m_len);
2463
2464update_disksize:
2465	/*
2466	 * Update on-disk size after IO is submitted.  Races with
2467	 * truncate are avoided by checking i_size under i_data_sem.
2468	 */
2469	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2470	if (disksize > EXT4_I(inode)->i_disksize) {
2471		int err2;
2472		loff_t i_size;
2473
2474		down_write(&EXT4_I(inode)->i_data_sem);
2475		i_size = i_size_read(inode);
2476		if (disksize > i_size)
2477			disksize = i_size;
2478		if (disksize > EXT4_I(inode)->i_disksize)
2479			EXT4_I(inode)->i_disksize = disksize;
2480		err2 = ext4_mark_inode_dirty(handle, inode);
2481		up_write(&EXT4_I(inode)->i_data_sem);
2482		if (err2)
2483			ext4_error(inode->i_sb,
2484				   "Failed to mark inode %lu dirty",
2485				   inode->i_ino);
2486		if (!err)
2487			err = err2;
2488	}
2489	return err;
2490}
2491
2492/*
2493 * Calculate the total number of credits to reserve for one writepages
2494 * iteration. This is called from ext4_writepages(). We map an extent of
2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497 * bpp - 1 blocks in bpp different extents.
2498 */
2499static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500{
2501	int bpp = ext4_journal_blocks_per_page(inode);
2502
2503	return ext4_meta_trans_blocks(inode,
2504				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505}
2506
2507/*
2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509 * 				 and underlying extent to map
2510 *
2511 * @mpd - where to look for pages
2512 *
2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514 * IO immediately. When we find a page which isn't mapped we start accumulating
2515 * extent of buffers underlying these pages that needs mapping (formed by
2516 * either delayed or unwritten buffers). We also lock the pages containing
2517 * these buffers. The extent found is returned in @mpd structure (starting at
2518 * mpd->lblk with length mpd->len blocks).
2519 *
2520 * Note that this function can attach bios to one io_end structure which are
2521 * neither logically nor physically contiguous. Although it may seem as an
2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523 * case as we need to track IO to all buffers underlying a page in one io_end.
2524 */
2525static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526{
2527	struct address_space *mapping = mpd->inode->i_mapping;
2528	struct pagevec pvec;
2529	unsigned int nr_pages;
2530	long left = mpd->wbc->nr_to_write;
2531	pgoff_t index = mpd->first_page;
2532	pgoff_t end = mpd->last_page;
2533	int tag;
2534	int i, err = 0;
2535	int blkbits = mpd->inode->i_blkbits;
2536	ext4_lblk_t lblk;
2537	struct buffer_head *head;
2538
2539	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540		tag = PAGECACHE_TAG_TOWRITE;
2541	else
2542		tag = PAGECACHE_TAG_DIRTY;
2543
2544	pagevec_init(&pvec, 0);
2545	mpd->map.m_len = 0;
2546	mpd->next_page = index;
2547	while (index <= end) {
2548		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2549			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2550		if (nr_pages == 0)
2551			goto out;
2552
2553		for (i = 0; i < nr_pages; i++) {
2554			struct page *page = pvec.pages[i];
2555
2556			/*
2557			 * At this point, the page may be truncated or
2558			 * invalidated (changing page->mapping to NULL), or
2559			 * even swizzled back from swapper_space to tmpfs file
2560			 * mapping. However, page->index will not change
2561			 * because we have a reference on the page.
2562			 */
2563			if (page->index > end)
2564				goto out;
2565
2566			/*
2567			 * Accumulated enough dirty pages? This doesn't apply
2568			 * to WB_SYNC_ALL mode. For integrity sync we have to
2569			 * keep going because someone may be concurrently
2570			 * dirtying pages, and we might have synced a lot of
2571			 * newly appeared dirty pages, but have not synced all
2572			 * of the old dirty pages.
2573			 */
2574			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575				goto out;
2576
2577			/* If we can't merge this page, we are done. */
2578			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579				goto out;
2580
2581			lock_page(page);
2582			/*
2583			 * If the page is no longer dirty, or its mapping no
2584			 * longer corresponds to inode we are writing (which
2585			 * means it has been truncated or invalidated), or the
2586			 * page is already under writeback and we are not doing
2587			 * a data integrity writeback, skip the page
2588			 */
2589			if (!PageDirty(page) ||
2590			    (PageWriteback(page) &&
2591			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592			    unlikely(page->mapping != mapping)) {
2593				unlock_page(page);
2594				continue;
2595			}
2596
2597			wait_on_page_writeback(page);
2598			BUG_ON(PageWriteback(page));
2599
2600			if (mpd->map.m_len == 0)
2601				mpd->first_page = page->index;
2602			mpd->next_page = page->index + 1;
2603			/* Add all dirty buffers to mpd */
2604			lblk = ((ext4_lblk_t)page->index) <<
2605				(PAGE_SHIFT - blkbits);
2606			head = page_buffers(page);
2607			err = mpage_process_page_bufs(mpd, head, head, lblk);
2608			if (err <= 0)
2609				goto out;
2610			err = 0;
2611			left--;
2612		}
2613		pagevec_release(&pvec);
2614		cond_resched();
2615	}
2616	return 0;
2617out:
2618	pagevec_release(&pvec);
2619	return err;
2620}
2621
2622static int __writepage(struct page *page, struct writeback_control *wbc,
2623		       void *data)
2624{
2625	struct address_space *mapping = data;
2626	int ret = ext4_writepage(page, wbc);
2627	mapping_set_error(mapping, ret);
2628	return ret;
2629}
2630
2631static int ext4_writepages(struct address_space *mapping,
2632			   struct writeback_control *wbc)
2633{
2634	pgoff_t	writeback_index = 0;
2635	long nr_to_write = wbc->nr_to_write;
2636	int range_whole = 0;
2637	int cycled = 1;
2638	handle_t *handle = NULL;
2639	struct mpage_da_data mpd;
2640	struct inode *inode = mapping->host;
2641	int needed_blocks, rsv_blocks = 0, ret = 0;
2642	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2643	bool done;
2644	struct blk_plug plug;
2645	bool give_up_on_write = false;
2646
2647	percpu_down_read(&sbi->s_journal_flag_rwsem);
2648	trace_ext4_writepages(inode, wbc);
2649
2650	if (dax_mapping(mapping)) {
2651		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2652						  wbc);
2653		goto out_writepages;
2654	}
2655
2656	/*
2657	 * No pages to write? This is mainly a kludge to avoid starting
2658	 * a transaction for special inodes like journal inode on last iput()
2659	 * because that could violate lock ordering on umount
2660	 */
2661	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2662		goto out_writepages;
2663
2664	if (ext4_should_journal_data(inode)) {
2665		struct blk_plug plug;
2666
2667		blk_start_plug(&plug);
2668		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2669		blk_finish_plug(&plug);
2670		goto out_writepages;
2671	}
2672
2673	/*
2674	 * If the filesystem has aborted, it is read-only, so return
2675	 * right away instead of dumping stack traces later on that
2676	 * will obscure the real source of the problem.  We test
2677	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2678	 * the latter could be true if the filesystem is mounted
2679	 * read-only, and in that case, ext4_writepages should
2680	 * *never* be called, so if that ever happens, we would want
2681	 * the stack trace.
2682	 */
2683	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2684		ret = -EROFS;
2685		goto out_writepages;
2686	}
2687
2688	if (ext4_should_dioread_nolock(inode)) {
2689		/*
2690		 * We may need to convert up to one extent per block in
2691		 * the page and we may dirty the inode.
2692		 */
2693		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2694	}
2695
2696	/*
2697	 * If we have inline data and arrive here, it means that
2698	 * we will soon create the block for the 1st page, so
2699	 * we'd better clear the inline data here.
2700	 */
2701	if (ext4_has_inline_data(inode)) {
2702		/* Just inode will be modified... */
2703		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704		if (IS_ERR(handle)) {
2705			ret = PTR_ERR(handle);
2706			goto out_writepages;
2707		}
2708		BUG_ON(ext4_test_inode_state(inode,
2709				EXT4_STATE_MAY_INLINE_DATA));
2710		ext4_destroy_inline_data(handle, inode);
2711		ext4_journal_stop(handle);
2712	}
2713
2714	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715		range_whole = 1;
2716
2717	if (wbc->range_cyclic) {
2718		writeback_index = mapping->writeback_index;
2719		if (writeback_index)
2720			cycled = 0;
2721		mpd.first_page = writeback_index;
2722		mpd.last_page = -1;
2723	} else {
2724		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726	}
2727
2728	mpd.inode = inode;
2729	mpd.wbc = wbc;
2730	ext4_io_submit_init(&mpd.io_submit, wbc);
2731retry:
2732	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734	done = false;
2735	blk_start_plug(&plug);
2736	while (!done && mpd.first_page <= mpd.last_page) {
2737		/* For each extent of pages we use new io_end */
2738		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2739		if (!mpd.io_submit.io_end) {
2740			ret = -ENOMEM;
2741			break;
2742		}
2743
2744		/*
2745		 * We have two constraints: We find one extent to map and we
2746		 * must always write out whole page (makes a difference when
2747		 * blocksize < pagesize) so that we don't block on IO when we
2748		 * try to write out the rest of the page. Journalled mode is
2749		 * not supported by delalloc.
2750		 */
2751		BUG_ON(ext4_should_journal_data(inode));
2752		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2753
2754		/* start a new transaction */
2755		handle = ext4_journal_start_with_reserve(inode,
2756				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2757		if (IS_ERR(handle)) {
2758			ret = PTR_ERR(handle);
2759			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2760			       "%ld pages, ino %lu; err %d", __func__,
2761				wbc->nr_to_write, inode->i_ino, ret);
2762			/* Release allocated io_end */
2763			ext4_put_io_end(mpd.io_submit.io_end);
2764			break;
2765		}
2766
2767		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768		ret = mpage_prepare_extent_to_map(&mpd);
2769		if (!ret) {
2770			if (mpd.map.m_len)
2771				ret = mpage_map_and_submit_extent(handle, &mpd,
2772					&give_up_on_write);
2773			else {
2774				/*
2775				 * We scanned the whole range (or exhausted
2776				 * nr_to_write), submitted what was mapped and
2777				 * didn't find anything needing mapping. We are
2778				 * done.
2779				 */
2780				done = true;
2781			}
2782		}
2783		/*
2784		 * Caution: If the handle is synchronous,
2785		 * ext4_journal_stop() can wait for transaction commit
2786		 * to finish which may depend on writeback of pages to
2787		 * complete or on page lock to be released.  In that
2788		 * case, we have to wait until after after we have
2789		 * submitted all the IO, released page locks we hold,
2790		 * and dropped io_end reference (for extent conversion
2791		 * to be able to complete) before stopping the handle.
2792		 */
2793		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794			ext4_journal_stop(handle);
2795			handle = NULL;
2796		}
2797		/* Submit prepared bio */
2798		ext4_io_submit(&mpd.io_submit);
2799		/* Unlock pages we didn't use */
2800		mpage_release_unused_pages(&mpd, give_up_on_write);
2801		/*
2802		 * Drop our io_end reference we got from init. We have
2803		 * to be careful and use deferred io_end finishing if
2804		 * we are still holding the transaction as we can
2805		 * release the last reference to io_end which may end
2806		 * up doing unwritten extent conversion.
2807		 */
2808		if (handle) {
2809			ext4_put_io_end_defer(mpd.io_submit.io_end);
2810			ext4_journal_stop(handle);
2811		} else
2812			ext4_put_io_end(mpd.io_submit.io_end);
2813
2814		if (ret == -ENOSPC && sbi->s_journal) {
2815			/*
2816			 * Commit the transaction which would
2817			 * free blocks released in the transaction
2818			 * and try again
2819			 */
2820			jbd2_journal_force_commit_nested(sbi->s_journal);
2821			ret = 0;
2822			continue;
2823		}
2824		/* Fatal error - ENOMEM, EIO... */
2825		if (ret)
2826			break;
2827	}
2828	blk_finish_plug(&plug);
2829	if (!ret && !cycled && wbc->nr_to_write > 0) {
2830		cycled = 1;
2831		mpd.last_page = writeback_index - 1;
2832		mpd.first_page = 0;
2833		goto retry;
2834	}
2835
2836	/* Update index */
2837	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838		/*
2839		 * Set the writeback_index so that range_cyclic
2840		 * mode will write it back later
2841		 */
2842		mapping->writeback_index = mpd.first_page;
2843
2844out_writepages:
2845	trace_ext4_writepages_result(inode, wbc, ret,
2846				     nr_to_write - wbc->nr_to_write);
2847	percpu_up_read(&sbi->s_journal_flag_rwsem);
2848	return ret;
2849}
2850
2851static int ext4_nonda_switch(struct super_block *sb)
2852{
2853	s64 free_clusters, dirty_clusters;
2854	struct ext4_sb_info *sbi = EXT4_SB(sb);
2855
2856	/*
2857	 * switch to non delalloc mode if we are running low
2858	 * on free block. The free block accounting via percpu
2859	 * counters can get slightly wrong with percpu_counter_batch getting
2860	 * accumulated on each CPU without updating global counters
2861	 * Delalloc need an accurate free block accounting. So switch
2862	 * to non delalloc when we are near to error range.
2863	 */
2864	free_clusters =
2865		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866	dirty_clusters =
2867		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2868	/*
2869	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870	 */
2871	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2872		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2873
2874	if (2 * free_clusters < 3 * dirty_clusters ||
2875	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2876		/*
2877		 * free block count is less than 150% of dirty blocks
2878		 * or free blocks is less than watermark
2879		 */
2880		return 1;
2881	}
2882	return 0;
2883}
2884
2885/* We always reserve for an inode update; the superblock could be there too */
2886static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2887{
2888	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2889		return 1;
2890
2891	if (pos + len <= 0x7fffffffULL)
2892		return 1;
2893
2894	/* We might need to update the superblock to set LARGE_FILE */
2895	return 2;
2896}
2897
2898static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899			       loff_t pos, unsigned len, unsigned flags,
2900			       struct page **pagep, void **fsdata)
2901{
2902	int ret, retries = 0;
2903	struct page *page;
2904	pgoff_t index;
2905	struct inode *inode = mapping->host;
2906	handle_t *handle;
2907
2908	index = pos >> PAGE_SHIFT;
2909
2910	if (ext4_nonda_switch(inode->i_sb) ||
2911	    S_ISLNK(inode->i_mode)) {
2912		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2913		return ext4_write_begin(file, mapping, pos,
2914					len, flags, pagep, fsdata);
2915	}
2916	*fsdata = (void *)0;
2917	trace_ext4_da_write_begin(inode, pos, len, flags);
2918
2919	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2920		ret = ext4_da_write_inline_data_begin(mapping, inode,
2921						      pos, len, flags,
2922						      pagep, fsdata);
2923		if (ret < 0)
2924			return ret;
2925		if (ret == 1)
2926			return 0;
2927	}
2928
2929	/*
2930	 * grab_cache_page_write_begin() can take a long time if the
2931	 * system is thrashing due to memory pressure, or if the page
2932	 * is being written back.  So grab it first before we start
2933	 * the transaction handle.  This also allows us to allocate
2934	 * the page (if needed) without using GFP_NOFS.
2935	 */
2936retry_grab:
2937	page = grab_cache_page_write_begin(mapping, index, flags);
2938	if (!page)
2939		return -ENOMEM;
2940	unlock_page(page);
2941
2942	/*
2943	 * With delayed allocation, we don't log the i_disksize update
2944	 * if there is delayed block allocation. But we still need
2945	 * to journalling the i_disksize update if writes to the end
2946	 * of file which has an already mapped buffer.
2947	 */
2948retry_journal:
2949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2950				ext4_da_write_credits(inode, pos, len));
2951	if (IS_ERR(handle)) {
2952		put_page(page);
2953		return PTR_ERR(handle);
2954	}
2955
2956	lock_page(page);
2957	if (page->mapping != mapping) {
2958		/* The page got truncated from under us */
2959		unlock_page(page);
2960		put_page(page);
2961		ext4_journal_stop(handle);
2962		goto retry_grab;
2963	}
2964	/* In case writeback began while the page was unlocked */
2965	wait_for_stable_page(page);
2966
2967#ifdef CONFIG_EXT4_FS_ENCRYPTION
2968	ret = ext4_block_write_begin(page, pos, len,
2969				     ext4_da_get_block_prep);
2970#else
2971	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2972#endif
2973	if (ret < 0) {
2974		unlock_page(page);
2975		ext4_journal_stop(handle);
2976		/*
2977		 * block_write_begin may have instantiated a few blocks
2978		 * outside i_size.  Trim these off again. Don't need
2979		 * i_size_read because we hold i_mutex.
2980		 */
2981		if (pos + len > inode->i_size)
2982			ext4_truncate_failed_write(inode);
2983
2984		if (ret == -ENOSPC &&
2985		    ext4_should_retry_alloc(inode->i_sb, &retries))
2986			goto retry_journal;
2987
2988		put_page(page);
2989		return ret;
2990	}
2991
2992	*pagep = page;
2993	return ret;
2994}
2995
2996/*
2997 * Check if we should update i_disksize
2998 * when write to the end of file but not require block allocation
2999 */
3000static int ext4_da_should_update_i_disksize(struct page *page,
3001					    unsigned long offset)
3002{
3003	struct buffer_head *bh;
3004	struct inode *inode = page->mapping->host;
3005	unsigned int idx;
3006	int i;
3007
3008	bh = page_buffers(page);
3009	idx = offset >> inode->i_blkbits;
3010
3011	for (i = 0; i < idx; i++)
3012		bh = bh->b_this_page;
3013
3014	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3015		return 0;
3016	return 1;
3017}
3018
3019static int ext4_da_write_end(struct file *file,
3020			     struct address_space *mapping,
3021			     loff_t pos, unsigned len, unsigned copied,
3022			     struct page *page, void *fsdata)
3023{
3024	struct inode *inode = mapping->host;
3025	int ret = 0, ret2;
3026	handle_t *handle = ext4_journal_current_handle();
3027	loff_t new_i_size;
3028	unsigned long start, end;
3029	int write_mode = (int)(unsigned long)fsdata;
3030
3031	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3032		return ext4_write_end(file, mapping, pos,
3033				      len, copied, page, fsdata);
3034
3035	trace_ext4_da_write_end(inode, pos, len, copied);
3036	start = pos & (PAGE_SIZE - 1);
3037	end = start + copied - 1;
3038
3039	/*
3040	 * generic_write_end() will run mark_inode_dirty() if i_size
3041	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3042	 * into that.
3043	 */
3044	new_i_size = pos + copied;
3045	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3046		if (ext4_has_inline_data(inode) ||
3047		    ext4_da_should_update_i_disksize(page, end)) {
3048			ext4_update_i_disksize(inode, new_i_size);
3049			/* We need to mark inode dirty even if
3050			 * new_i_size is less that inode->i_size
3051			 * bu greater than i_disksize.(hint delalloc)
3052			 */
3053			ext4_mark_inode_dirty(handle, inode);
3054		}
3055	}
3056
3057	if (write_mode != CONVERT_INLINE_DATA &&
3058	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059	    ext4_has_inline_data(inode))
3060		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3061						     page);
3062	else
3063		ret2 = generic_write_end(file, mapping, pos, len, copied,
3064							page, fsdata);
3065
3066	copied = ret2;
3067	if (ret2 < 0)
3068		ret = ret2;
3069	ret2 = ext4_journal_stop(handle);
3070	if (!ret)
3071		ret = ret2;
3072
3073	return ret ? ret : copied;
3074}
3075
3076static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3077				   unsigned int length)
3078{
3079	/*
3080	 * Drop reserved blocks
3081	 */
3082	BUG_ON(!PageLocked(page));
3083	if (!page_has_buffers(page))
3084		goto out;
3085
3086	ext4_da_page_release_reservation(page, offset, length);
3087
3088out:
3089	ext4_invalidatepage(page, offset, length);
3090
3091	return;
3092}
3093
3094/*
3095 * Force all delayed allocation blocks to be allocated for a given inode.
3096 */
3097int ext4_alloc_da_blocks(struct inode *inode)
3098{
3099	trace_ext4_alloc_da_blocks(inode);
3100
3101	if (!EXT4_I(inode)->i_reserved_data_blocks)
3102		return 0;
3103
3104	/*
3105	 * We do something simple for now.  The filemap_flush() will
3106	 * also start triggering a write of the data blocks, which is
3107	 * not strictly speaking necessary (and for users of
3108	 * laptop_mode, not even desirable).  However, to do otherwise
3109	 * would require replicating code paths in:
3110	 *
3111	 * ext4_writepages() ->
3112	 *    write_cache_pages() ---> (via passed in callback function)
3113	 *        __mpage_da_writepage() -->
3114	 *           mpage_add_bh_to_extent()
3115	 *           mpage_da_map_blocks()
3116	 *
3117	 * The problem is that write_cache_pages(), located in
3118	 * mm/page-writeback.c, marks pages clean in preparation for
3119	 * doing I/O, which is not desirable if we're not planning on
3120	 * doing I/O at all.
3121	 *
3122	 * We could call write_cache_pages(), and then redirty all of
3123	 * the pages by calling redirty_page_for_writepage() but that
3124	 * would be ugly in the extreme.  So instead we would need to
3125	 * replicate parts of the code in the above functions,
3126	 * simplifying them because we wouldn't actually intend to
3127	 * write out the pages, but rather only collect contiguous
3128	 * logical block extents, call the multi-block allocator, and
3129	 * then update the buffer heads with the block allocations.
3130	 *
3131	 * For now, though, we'll cheat by calling filemap_flush(),
3132	 * which will map the blocks, and start the I/O, but not
3133	 * actually wait for the I/O to complete.
3134	 */
3135	return filemap_flush(inode->i_mapping);
3136}
3137
3138/*
3139 * bmap() is special.  It gets used by applications such as lilo and by
3140 * the swapper to find the on-disk block of a specific piece of data.
3141 *
3142 * Naturally, this is dangerous if the block concerned is still in the
3143 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3144 * filesystem and enables swap, then they may get a nasty shock when the
3145 * data getting swapped to that swapfile suddenly gets overwritten by
3146 * the original zero's written out previously to the journal and
3147 * awaiting writeback in the kernel's buffer cache.
3148 *
3149 * So, if we see any bmap calls here on a modified, data-journaled file,
3150 * take extra steps to flush any blocks which might be in the cache.
3151 */
3152static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3153{
3154	struct inode *inode = mapping->host;
3155	journal_t *journal;
3156	int err;
3157
3158	/*
3159	 * We can get here for an inline file via the FIBMAP ioctl
3160	 */
3161	if (ext4_has_inline_data(inode))
3162		return 0;
3163
3164	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165			test_opt(inode->i_sb, DELALLOC)) {
3166		/*
3167		 * With delalloc we want to sync the file
3168		 * so that we can make sure we allocate
3169		 * blocks for file
3170		 */
3171		filemap_write_and_wait(mapping);
3172	}
3173
3174	if (EXT4_JOURNAL(inode) &&
3175	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176		/*
3177		 * This is a REALLY heavyweight approach, but the use of
3178		 * bmap on dirty files is expected to be extremely rare:
3179		 * only if we run lilo or swapon on a freshly made file
3180		 * do we expect this to happen.
3181		 *
3182		 * (bmap requires CAP_SYS_RAWIO so this does not
3183		 * represent an unprivileged user DOS attack --- we'd be
3184		 * in trouble if mortal users could trigger this path at
3185		 * will.)
3186		 *
3187		 * NB. EXT4_STATE_JDATA is not set on files other than
3188		 * regular files.  If somebody wants to bmap a directory
3189		 * or symlink and gets confused because the buffer
3190		 * hasn't yet been flushed to disk, they deserve
3191		 * everything they get.
3192		 */
3193
3194		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195		journal = EXT4_JOURNAL(inode);
3196		jbd2_journal_lock_updates(journal);
3197		err = jbd2_journal_flush(journal);
3198		jbd2_journal_unlock_updates(journal);
3199
3200		if (err)
3201			return 0;
3202	}
3203
3204	return generic_block_bmap(mapping, block, ext4_get_block);
3205}
3206
3207static int ext4_readpage(struct file *file, struct page *page)
3208{
3209	int ret = -EAGAIN;
3210	struct inode *inode = page->mapping->host;
3211
3212	trace_ext4_readpage(page);
3213
3214	if (ext4_has_inline_data(inode))
3215		ret = ext4_readpage_inline(inode, page);
3216
3217	if (ret == -EAGAIN)
3218		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3219
3220	return ret;
3221}
3222
3223static int
3224ext4_readpages(struct file *file, struct address_space *mapping,
3225		struct list_head *pages, unsigned nr_pages)
3226{
3227	struct inode *inode = mapping->host;
3228
3229	/* If the file has inline data, no need to do readpages. */
3230	if (ext4_has_inline_data(inode))
3231		return 0;
3232
3233	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3234}
3235
3236static void ext4_invalidatepage(struct page *page, unsigned int offset,
3237				unsigned int length)
3238{
3239	trace_ext4_invalidatepage(page, offset, length);
3240
3241	/* No journalling happens on data buffers when this function is used */
3242	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3243
3244	block_invalidatepage(page, offset, length);
3245}
3246
3247static int __ext4_journalled_invalidatepage(struct page *page,
3248					    unsigned int offset,
3249					    unsigned int length)
3250{
3251	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
3253	trace_ext4_journalled_invalidatepage(page, offset, length);
3254
3255	/*
3256	 * If it's a full truncate we just forget about the pending dirtying
3257	 */
3258	if (offset == 0 && length == PAGE_SIZE)
3259		ClearPageChecked(page);
3260
3261	return jbd2_journal_invalidatepage(journal, page, offset, length);
3262}
3263
3264/* Wrapper for aops... */
3265static void ext4_journalled_invalidatepage(struct page *page,
3266					   unsigned int offset,
3267					   unsigned int length)
3268{
3269	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3270}
3271
3272static int ext4_releasepage(struct page *page, gfp_t wait)
3273{
3274	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3275
3276	trace_ext4_releasepage(page);
3277
3278	/* Page has dirty journalled data -> cannot release */
3279	if (PageChecked(page))
3280		return 0;
3281	if (journal)
3282		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3283	else
3284		return try_to_free_buffers(page);
3285}
3286
3287#ifdef CONFIG_FS_DAX
3288static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3289			    unsigned flags, struct iomap *iomap)
3290{
3291	unsigned int blkbits = inode->i_blkbits;
3292	unsigned long first_block = offset >> blkbits;
3293	unsigned long last_block = (offset + length - 1) >> blkbits;
3294	struct ext4_map_blocks map;
3295	int ret;
3296
3297	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3298		return -ERANGE;
3299
3300	map.m_lblk = first_block;
3301	map.m_len = last_block - first_block + 1;
3302
3303	if (!(flags & IOMAP_WRITE)) {
3304		ret = ext4_map_blocks(NULL, inode, &map, 0);
3305	} else {
3306		int dio_credits;
3307		handle_t *handle;
3308		int retries = 0;
3309
3310		/* Trim mapping request to maximum we can map at once for DIO */
3311		if (map.m_len > DIO_MAX_BLOCKS)
3312			map.m_len = DIO_MAX_BLOCKS;
3313		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3314retry:
3315		/*
3316		 * Either we allocate blocks and then we don't get unwritten
3317		 * extent so we have reserved enough credits, or the blocks
3318		 * are already allocated and unwritten and in that case
3319		 * extent conversion fits in the credits as well.
3320		 */
3321		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3322					    dio_credits);
3323		if (IS_ERR(handle))
3324			return PTR_ERR(handle);
3325
3326		ret = ext4_map_blocks(handle, inode, &map,
3327				      EXT4_GET_BLOCKS_CREATE_ZERO);
3328		if (ret < 0) {
3329			ext4_journal_stop(handle);
3330			if (ret == -ENOSPC &&
3331			    ext4_should_retry_alloc(inode->i_sb, &retries))
3332				goto retry;
 
 
 
3333			return ret;
3334		}
3335
3336		/*
3337		 * If we added blocks beyond i_size, we need to make sure they
3338		 * will get truncated if we crash before updating i_size in
3339		 * ext4_iomap_end(). For faults we don't need to do that (and
3340		 * even cannot because for orphan list operations inode_lock is
3341		 * required) - if we happen to instantiate block beyond i_size,
3342		 * it is because we race with truncate which has already added
3343		 * the inode to the orphan list.
3344		 */
3345		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3346		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3347			int err;
3348
3349			err = ext4_orphan_add(handle, inode);
3350			if (err < 0) {
3351				ext4_journal_stop(handle);
3352				return err;
3353			}
3354		}
3355		ext4_journal_stop(handle);
3356	}
3357
3358	iomap->flags = 0;
3359	iomap->bdev = inode->i_sb->s_bdev;
3360	iomap->offset = first_block << blkbits;
3361
3362	if (ret == 0) {
3363		iomap->type = IOMAP_HOLE;
3364		iomap->blkno = IOMAP_NULL_BLOCK;
3365		iomap->length = (u64)map.m_len << blkbits;
3366	} else {
3367		if (map.m_flags & EXT4_MAP_MAPPED) {
3368			iomap->type = IOMAP_MAPPED;
3369		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3370			iomap->type = IOMAP_UNWRITTEN;
3371		} else {
3372			WARN_ON_ONCE(1);
3373			return -EIO;
3374		}
3375		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3376		iomap->length = (u64)map.m_len << blkbits;
3377	}
 
 
 
 
3378
3379	if (map.m_flags & EXT4_MAP_NEW)
3380		iomap->flags |= IOMAP_F_NEW;
3381	return 0;
3382}
3383
3384static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385			  ssize_t written, unsigned flags, struct iomap *iomap)
3386{
3387	int ret = 0;
3388	handle_t *handle;
3389	int blkbits = inode->i_blkbits;
3390	bool truncate = false;
3391
3392	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3393		return 0;
3394
3395	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3396	if (IS_ERR(handle)) {
3397		ret = PTR_ERR(handle);
3398		goto orphan_del;
3399	}
3400	if (ext4_update_inode_size(inode, offset + written))
3401		ext4_mark_inode_dirty(handle, inode);
3402	/*
3403	 * We may need to truncate allocated but not written blocks beyond EOF.
3404	 */
3405	if (iomap->offset + iomap->length > 
3406	    ALIGN(inode->i_size, 1 << blkbits)) {
3407		ext4_lblk_t written_blk, end_blk;
3408
3409		written_blk = (offset + written) >> blkbits;
3410		end_blk = (offset + length) >> blkbits;
3411		if (written_blk < end_blk && ext4_can_truncate(inode))
3412			truncate = true;
 
 
 
3413	}
3414	/*
3415	 * Remove inode from orphan list if we were extending a inode and
3416	 * everything went fine.
3417	 */
3418	if (!truncate && inode->i_nlink &&
3419	    !list_empty(&EXT4_I(inode)->i_orphan))
3420		ext4_orphan_del(handle, inode);
3421	ext4_journal_stop(handle);
3422	if (truncate) {
3423		ext4_truncate_failed_write(inode);
3424orphan_del:
3425		/*
3426		 * If truncate failed early the inode might still be on the
3427		 * orphan list; we need to make sure the inode is removed from
3428		 * the orphan list in that case.
3429		 */
3430		if (inode->i_nlink)
3431			ext4_orphan_del(NULL, inode);
 
 
3432	}
3433	return ret;
3434}
3435
3436struct iomap_ops ext4_iomap_ops = {
3437	.iomap_begin		= ext4_iomap_begin,
3438	.iomap_end		= ext4_iomap_end,
3439};
3440
3441#endif
3442
3443static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3444			    ssize_t size, void *private)
3445{
3446        ext4_io_end_t *io_end = private;
3447
3448	/* if not async direct IO just return */
3449	if (!io_end)
3450		return 0;
3451
3452	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3453		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3454		  io_end, io_end->inode->i_ino, iocb, offset, size);
3455
3456	/*
3457	 * Error during AIO DIO. We cannot convert unwritten extents as the
3458	 * data was not written. Just clear the unwritten flag and drop io_end.
3459	 */
3460	if (size <= 0) {
3461		ext4_clear_io_unwritten_flag(io_end);
3462		size = 0;
3463	}
3464	io_end->offset = offset;
3465	io_end->size = size;
3466	ext4_put_io_end(io_end);
3467
3468	return 0;
3469}
3470
3471/*
3472 * Handling of direct IO writes.
3473 *
3474 * For ext4 extent files, ext4 will do direct-io write even to holes,
3475 * preallocated extents, and those write extend the file, no need to
3476 * fall back to buffered IO.
3477 *
3478 * For holes, we fallocate those blocks, mark them as unwritten
3479 * If those blocks were preallocated, we mark sure they are split, but
3480 * still keep the range to write as unwritten.
3481 *
3482 * The unwritten extents will be converted to written when DIO is completed.
3483 * For async direct IO, since the IO may still pending when return, we
3484 * set up an end_io call back function, which will do the conversion
3485 * when async direct IO completed.
3486 *
3487 * If the O_DIRECT write will extend the file then add this inode to the
3488 * orphan list.  So recovery will truncate it back to the original size
3489 * if the machine crashes during the write.
3490 *
3491 */
3492static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
 
3493{
3494	struct file *file = iocb->ki_filp;
3495	struct inode *inode = file->f_mapping->host;
3496	struct ext4_inode_info *ei = EXT4_I(inode);
3497	ssize_t ret;
3498	loff_t offset = iocb->ki_pos;
3499	size_t count = iov_iter_count(iter);
3500	int overwrite = 0;
3501	get_block_t *get_block_func = NULL;
3502	int dio_flags = 0;
3503	loff_t final_size = offset + count;
3504	int orphan = 0;
3505	handle_t *handle;
3506
3507	if (final_size > inode->i_size) {
3508		/* Credits for sb + inode write */
3509		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3510		if (IS_ERR(handle)) {
3511			ret = PTR_ERR(handle);
3512			goto out;
3513		}
3514		ret = ext4_orphan_add(handle, inode);
3515		if (ret) {
3516			ext4_journal_stop(handle);
3517			goto out;
3518		}
3519		orphan = 1;
3520		ei->i_disksize = inode->i_size;
3521		ext4_journal_stop(handle);
3522	}
3523
3524	BUG_ON(iocb->private == NULL);
3525
3526	/*
3527	 * Make all waiters for direct IO properly wait also for extent
3528	 * conversion. This also disallows race between truncate() and
3529	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3530	 */
3531	inode_dio_begin(inode);
 
3532
3533	/* If we do a overwrite dio, i_mutex locking can be released */
3534	overwrite = *((int *)iocb->private);
3535
3536	if (overwrite)
3537		inode_unlock(inode);
3538
3539	/*
3540	 * For extent mapped files we could direct write to holes and fallocate.
3541	 *
3542	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3543	 * parallel buffered read to expose the stale data before DIO complete
3544	 * the data IO.
3545	 *
3546	 * As to previously fallocated extents, ext4 get_block will just simply
3547	 * mark the buffer mapped but still keep the extents unwritten.
3548	 *
3549	 * For non AIO case, we will convert those unwritten extents to written
3550	 * after return back from blockdev_direct_IO. That way we save us from
3551	 * allocating io_end structure and also the overhead of offloading
3552	 * the extent convertion to a workqueue.
3553	 *
3554	 * For async DIO, the conversion needs to be deferred when the
3555	 * IO is completed. The ext4 end_io callback function will be
3556	 * called to take care of the conversion work.  Here for async
3557	 * case, we allocate an io_end structure to hook to the iocb.
3558	 */
3559	iocb->private = NULL;
3560	if (overwrite)
3561		get_block_func = ext4_dio_get_block_overwrite;
3562	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3563		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3564		get_block_func = ext4_dio_get_block;
3565		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3566	} else if (is_sync_kiocb(iocb)) {
3567		get_block_func = ext4_dio_get_block_unwritten_sync;
3568		dio_flags = DIO_LOCKING;
3569	} else {
3570		get_block_func = ext4_dio_get_block_unwritten_async;
3571		dio_flags = DIO_LOCKING;
3572	}
3573#ifdef CONFIG_EXT4_FS_ENCRYPTION
3574	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3575#endif
3576	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3577				   get_block_func, ext4_end_io_dio, NULL,
3578				   dio_flags);
 
 
 
 
 
3579
3580	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3581						EXT4_STATE_DIO_UNWRITTEN)) {
3582		int err;
3583		/*
3584		 * for non AIO case, since the IO is already
3585		 * completed, we could do the conversion right here
3586		 */
3587		err = ext4_convert_unwritten_extents(NULL, inode,
3588						     offset, ret);
3589		if (err < 0)
3590			ret = err;
3591		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592	}
3593
3594	inode_dio_end(inode);
 
3595	/* take i_mutex locking again if we do a ovewrite dio */
3596	if (overwrite)
3597		inode_lock(inode);
3598
3599	if (ret < 0 && final_size > inode->i_size)
3600		ext4_truncate_failed_write(inode);
3601
3602	/* Handle extending of i_size after direct IO write */
3603	if (orphan) {
3604		int err;
3605
3606		/* Credits for sb + inode write */
3607		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3608		if (IS_ERR(handle)) {
3609			/* This is really bad luck. We've written the data
3610			 * but cannot extend i_size. Bail out and pretend
3611			 * the write failed... */
3612			ret = PTR_ERR(handle);
3613			if (inode->i_nlink)
3614				ext4_orphan_del(NULL, inode);
3615
3616			goto out;
3617		}
3618		if (inode->i_nlink)
3619			ext4_orphan_del(handle, inode);
3620		if (ret > 0) {
3621			loff_t end = offset + ret;
3622			if (end > inode->i_size) {
3623				ei->i_disksize = end;
3624				i_size_write(inode, end);
3625				/*
3626				 * We're going to return a positive `ret'
3627				 * here due to non-zero-length I/O, so there's
3628				 * no way of reporting error returns from
3629				 * ext4_mark_inode_dirty() to userspace.  So
3630				 * ignore it.
3631				 */
3632				ext4_mark_inode_dirty(handle, inode);
3633			}
3634		}
3635		err = ext4_journal_stop(handle);
3636		if (ret == 0)
3637			ret = err;
3638	}
3639out:
3640	return ret;
3641}
3642
3643static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3644{
3645	struct address_space *mapping = iocb->ki_filp->f_mapping;
3646	struct inode *inode = mapping->host;
3647	size_t count = iov_iter_count(iter);
3648	ssize_t ret;
3649
3650	/*
3651	 * Shared inode_lock is enough for us - it protects against concurrent
3652	 * writes & truncates and since we take care of writing back page cache,
3653	 * we are protected against page writeback as well.
3654	 */
3655	inode_lock_shared(inode);
3656	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3657					   iocb->ki_pos + count);
3658	if (ret)
3659		goto out_unlock;
3660	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3661				   iter, ext4_dio_get_block, NULL, NULL, 0);
3662out_unlock:
3663	inode_unlock_shared(inode);
3664	return ret;
3665}
3666
3667static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
3668{
3669	struct file *file = iocb->ki_filp;
3670	struct inode *inode = file->f_mapping->host;
3671	size_t count = iov_iter_count(iter);
3672	loff_t offset = iocb->ki_pos;
3673	ssize_t ret;
3674
3675#ifdef CONFIG_EXT4_FS_ENCRYPTION
3676	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3677		return 0;
3678#endif
3679
3680	/*
3681	 * If we are doing data journalling we don't support O_DIRECT
3682	 */
3683	if (ext4_should_journal_data(inode))
3684		return 0;
3685
3686	/* Let buffer I/O handle the inline data case. */
3687	if (ext4_has_inline_data(inode))
3688		return 0;
3689
3690	/* DAX uses iomap path now */
3691	if (WARN_ON_ONCE(IS_DAX(inode)))
3692		return 0;
3693
3694	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3695	if (iov_iter_rw(iter) == READ)
3696		ret = ext4_direct_IO_read(iocb, iter);
3697	else
3698		ret = ext4_direct_IO_write(iocb, iter);
3699	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3700	return ret;
3701}
3702
3703/*
3704 * Pages can be marked dirty completely asynchronously from ext4's journalling
3705 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3706 * much here because ->set_page_dirty is called under VFS locks.  The page is
3707 * not necessarily locked.
3708 *
3709 * We cannot just dirty the page and leave attached buffers clean, because the
3710 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3711 * or jbddirty because all the journalling code will explode.
3712 *
3713 * So what we do is to mark the page "pending dirty" and next time writepage
3714 * is called, propagate that into the buffers appropriately.
3715 */
3716static int ext4_journalled_set_page_dirty(struct page *page)
3717{
3718	SetPageChecked(page);
3719	return __set_page_dirty_nobuffers(page);
3720}
3721
3722static int ext4_set_page_dirty(struct page *page)
3723{
3724	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3725	WARN_ON_ONCE(!page_has_buffers(page));
3726	return __set_page_dirty_buffers(page);
3727}
3728
3729static const struct address_space_operations ext4_aops = {
3730	.readpage		= ext4_readpage,
3731	.readpages		= ext4_readpages,
3732	.writepage		= ext4_writepage,
3733	.writepages		= ext4_writepages,
3734	.write_begin		= ext4_write_begin,
3735	.write_end		= ext4_write_end,
3736	.set_page_dirty		= ext4_set_page_dirty,
3737	.bmap			= ext4_bmap,
3738	.invalidatepage		= ext4_invalidatepage,
3739	.releasepage		= ext4_releasepage,
3740	.direct_IO		= ext4_direct_IO,
3741	.migratepage		= buffer_migrate_page,
3742	.is_partially_uptodate  = block_is_partially_uptodate,
3743	.error_remove_page	= generic_error_remove_page,
3744};
3745
3746static const struct address_space_operations ext4_journalled_aops = {
3747	.readpage		= ext4_readpage,
3748	.readpages		= ext4_readpages,
3749	.writepage		= ext4_writepage,
3750	.writepages		= ext4_writepages,
3751	.write_begin		= ext4_write_begin,
3752	.write_end		= ext4_journalled_write_end,
3753	.set_page_dirty		= ext4_journalled_set_page_dirty,
3754	.bmap			= ext4_bmap,
3755	.invalidatepage		= ext4_journalled_invalidatepage,
3756	.releasepage		= ext4_releasepage,
3757	.direct_IO		= ext4_direct_IO,
3758	.is_partially_uptodate  = block_is_partially_uptodate,
3759	.error_remove_page	= generic_error_remove_page,
3760};
3761
3762static const struct address_space_operations ext4_da_aops = {
3763	.readpage		= ext4_readpage,
3764	.readpages		= ext4_readpages,
3765	.writepage		= ext4_writepage,
3766	.writepages		= ext4_writepages,
3767	.write_begin		= ext4_da_write_begin,
3768	.write_end		= ext4_da_write_end,
3769	.set_page_dirty		= ext4_set_page_dirty,
3770	.bmap			= ext4_bmap,
3771	.invalidatepage		= ext4_da_invalidatepage,
3772	.releasepage		= ext4_releasepage,
3773	.direct_IO		= ext4_direct_IO,
3774	.migratepage		= buffer_migrate_page,
3775	.is_partially_uptodate  = block_is_partially_uptodate,
3776	.error_remove_page	= generic_error_remove_page,
3777};
3778
3779void ext4_set_aops(struct inode *inode)
3780{
3781	switch (ext4_inode_journal_mode(inode)) {
3782	case EXT4_INODE_ORDERED_DATA_MODE:
 
 
3783	case EXT4_INODE_WRITEBACK_DATA_MODE:
 
3784		break;
3785	case EXT4_INODE_JOURNAL_DATA_MODE:
3786		inode->i_mapping->a_ops = &ext4_journalled_aops;
3787		return;
3788	default:
3789		BUG();
3790	}
3791	if (test_opt(inode->i_sb, DELALLOC))
3792		inode->i_mapping->a_ops = &ext4_da_aops;
3793	else
3794		inode->i_mapping->a_ops = &ext4_aops;
3795}
3796
3797static int __ext4_block_zero_page_range(handle_t *handle,
3798		struct address_space *mapping, loff_t from, loff_t length)
3799{
3800	ext4_fsblk_t index = from >> PAGE_SHIFT;
3801	unsigned offset = from & (PAGE_SIZE-1);
3802	unsigned blocksize, pos;
3803	ext4_lblk_t iblock;
3804	struct inode *inode = mapping->host;
3805	struct buffer_head *bh;
3806	struct page *page;
3807	int err = 0;
3808
3809	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3810				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3811	if (!page)
3812		return -ENOMEM;
3813
3814	blocksize = inode->i_sb->s_blocksize;
3815
3816	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3817
3818	if (!page_has_buffers(page))
3819		create_empty_buffers(page, blocksize, 0);
3820
3821	/* Find the buffer that contains "offset" */
3822	bh = page_buffers(page);
3823	pos = blocksize;
3824	while (offset >= pos) {
3825		bh = bh->b_this_page;
3826		iblock++;
3827		pos += blocksize;
3828	}
3829	if (buffer_freed(bh)) {
3830		BUFFER_TRACE(bh, "freed: skip");
3831		goto unlock;
3832	}
3833	if (!buffer_mapped(bh)) {
3834		BUFFER_TRACE(bh, "unmapped");
3835		ext4_get_block(inode, iblock, bh, 0);
3836		/* unmapped? It's a hole - nothing to do */
3837		if (!buffer_mapped(bh)) {
3838			BUFFER_TRACE(bh, "still unmapped");
3839			goto unlock;
3840		}
3841	}
3842
3843	/* Ok, it's mapped. Make sure it's up-to-date */
3844	if (PageUptodate(page))
3845		set_buffer_uptodate(bh);
3846
3847	if (!buffer_uptodate(bh)) {
3848		err = -EIO;
3849		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3850		wait_on_buffer(bh);
3851		/* Uhhuh. Read error. Complain and punt. */
3852		if (!buffer_uptodate(bh))
3853			goto unlock;
3854		if (S_ISREG(inode->i_mode) &&
3855		    ext4_encrypted_inode(inode)) {
3856			/* We expect the key to be set. */
3857			BUG_ON(!fscrypt_has_encryption_key(inode));
3858			BUG_ON(blocksize != PAGE_SIZE);
3859			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3860						page, PAGE_SIZE, 0, page->index));
3861		}
3862	}
3863	if (ext4_should_journal_data(inode)) {
3864		BUFFER_TRACE(bh, "get write access");
3865		err = ext4_journal_get_write_access(handle, bh);
3866		if (err)
3867			goto unlock;
3868	}
3869	zero_user(page, offset, length);
3870	BUFFER_TRACE(bh, "zeroed end of block");
3871
3872	if (ext4_should_journal_data(inode)) {
3873		err = ext4_handle_dirty_metadata(handle, inode, bh);
3874	} else {
3875		err = 0;
3876		mark_buffer_dirty(bh);
3877		if (ext4_should_order_data(inode))
3878			err = ext4_jbd2_inode_add_write(handle, inode);
3879	}
3880
3881unlock:
3882	unlock_page(page);
3883	put_page(page);
3884	return err;
3885}
3886
3887/*
3888 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3889 * starting from file offset 'from'.  The range to be zero'd must
3890 * be contained with in one block.  If the specified range exceeds
3891 * the end of the block it will be shortened to end of the block
3892 * that cooresponds to 'from'
3893 */
3894static int ext4_block_zero_page_range(handle_t *handle,
3895		struct address_space *mapping, loff_t from, loff_t length)
3896{
3897	struct inode *inode = mapping->host;
3898	unsigned offset = from & (PAGE_SIZE-1);
3899	unsigned blocksize = inode->i_sb->s_blocksize;
3900	unsigned max = blocksize - (offset & (blocksize - 1));
3901
3902	/*
3903	 * correct length if it does not fall between
3904	 * 'from' and the end of the block
3905	 */
3906	if (length > max || length < 0)
3907		length = max;
3908
3909	if (IS_DAX(inode)) {
3910		return iomap_zero_range(inode, from, length, NULL,
3911					&ext4_iomap_ops);
3912	}
3913	return __ext4_block_zero_page_range(handle, mapping, from, length);
3914}
3915
3916/*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
3922static int ext4_block_truncate_page(handle_t *handle,
3923		struct address_space *mapping, loff_t from)
3924{
3925	unsigned offset = from & (PAGE_SIZE-1);
3926	unsigned length;
3927	unsigned blocksize;
3928	struct inode *inode = mapping->host;
3929
3930	/* If we are processing an encrypted inode during orphan list handling */
3931	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3932		return 0;
3933
3934	blocksize = inode->i_sb->s_blocksize;
3935	length = blocksize - (offset & (blocksize - 1));
3936
3937	return ext4_block_zero_page_range(handle, mapping, from, length);
3938}
3939
3940int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3941			     loff_t lstart, loff_t length)
3942{
3943	struct super_block *sb = inode->i_sb;
3944	struct address_space *mapping = inode->i_mapping;
3945	unsigned partial_start, partial_end;
3946	ext4_fsblk_t start, end;
3947	loff_t byte_end = (lstart + length - 1);
3948	int err = 0;
3949
3950	partial_start = lstart & (sb->s_blocksize - 1);
3951	partial_end = byte_end & (sb->s_blocksize - 1);
3952
3953	start = lstart >> sb->s_blocksize_bits;
3954	end = byte_end >> sb->s_blocksize_bits;
3955
3956	/* Handle partial zero within the single block */
3957	if (start == end &&
3958	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3959		err = ext4_block_zero_page_range(handle, mapping,
3960						 lstart, length);
3961		return err;
3962	}
3963	/* Handle partial zero out on the start of the range */
3964	if (partial_start) {
3965		err = ext4_block_zero_page_range(handle, mapping,
3966						 lstart, sb->s_blocksize);
3967		if (err)
3968			return err;
3969	}
3970	/* Handle partial zero out on the end of the range */
3971	if (partial_end != sb->s_blocksize - 1)
3972		err = ext4_block_zero_page_range(handle, mapping,
3973						 byte_end - partial_end,
3974						 partial_end + 1);
3975	return err;
3976}
3977
3978int ext4_can_truncate(struct inode *inode)
3979{
3980	if (S_ISREG(inode->i_mode))
3981		return 1;
3982	if (S_ISDIR(inode->i_mode))
3983		return 1;
3984	if (S_ISLNK(inode->i_mode))
3985		return !ext4_inode_is_fast_symlink(inode);
3986	return 0;
3987}
3988
3989/*
3990 * We have to make sure i_disksize gets properly updated before we truncate
3991 * page cache due to hole punching or zero range. Otherwise i_disksize update
3992 * can get lost as it may have been postponed to submission of writeback but
3993 * that will never happen after we truncate page cache.
3994 */
3995int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3996				      loff_t len)
3997{
3998	handle_t *handle;
3999	loff_t size = i_size_read(inode);
4000
4001	WARN_ON(!inode_is_locked(inode));
4002	if (offset > size || offset + len < size)
4003		return 0;
4004
4005	if (EXT4_I(inode)->i_disksize >= size)
4006		return 0;
4007
4008	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4009	if (IS_ERR(handle))
4010		return PTR_ERR(handle);
4011	ext4_update_i_disksize(inode, size);
4012	ext4_mark_inode_dirty(handle, inode);
4013	ext4_journal_stop(handle);
4014
4015	return 0;
4016}
4017
4018/*
4019 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4020 * associated with the given offset and length
4021 *
4022 * @inode:  File inode
4023 * @offset: The offset where the hole will begin
4024 * @len:    The length of the hole
4025 *
4026 * Returns: 0 on success or negative on failure
4027 */
4028
4029int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4030{
4031	struct super_block *sb = inode->i_sb;
4032	ext4_lblk_t first_block, stop_block;
4033	struct address_space *mapping = inode->i_mapping;
4034	loff_t first_block_offset, last_block_offset;
4035	handle_t *handle;
4036	unsigned int credits;
4037	int ret = 0;
4038
4039	if (!S_ISREG(inode->i_mode))
4040		return -EOPNOTSUPP;
4041
4042	trace_ext4_punch_hole(inode, offset, length, 0);
4043
4044	/*
4045	 * Write out all dirty pages to avoid race conditions
4046	 * Then release them.
4047	 */
4048	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4049		ret = filemap_write_and_wait_range(mapping, offset,
4050						   offset + length - 1);
4051		if (ret)
4052			return ret;
4053	}
4054
4055	inode_lock(inode);
4056
4057	/* No need to punch hole beyond i_size */
4058	if (offset >= inode->i_size)
4059		goto out_mutex;
4060
4061	/*
4062	 * If the hole extends beyond i_size, set the hole
4063	 * to end after the page that contains i_size
4064	 */
4065	if (offset + length > inode->i_size) {
4066		length = inode->i_size +
4067		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4068		   offset;
4069	}
4070
4071	if (offset & (sb->s_blocksize - 1) ||
4072	    (offset + length) & (sb->s_blocksize - 1)) {
4073		/*
4074		 * Attach jinode to inode for jbd2 if we do any zeroing of
4075		 * partial block
4076		 */
4077		ret = ext4_inode_attach_jinode(inode);
4078		if (ret < 0)
4079			goto out_mutex;
4080
4081	}
4082
4083	/* Wait all existing dio workers, newcomers will block on i_mutex */
4084	ext4_inode_block_unlocked_dio(inode);
4085	inode_dio_wait(inode);
4086
4087	/*
4088	 * Prevent page faults from reinstantiating pages we have released from
4089	 * page cache.
4090	 */
4091	down_write(&EXT4_I(inode)->i_mmap_sem);
4092	first_block_offset = round_up(offset, sb->s_blocksize);
4093	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4094
4095	/* Now release the pages and zero block aligned part of pages*/
4096	if (last_block_offset > first_block_offset) {
4097		ret = ext4_update_disksize_before_punch(inode, offset, length);
4098		if (ret)
4099			goto out_dio;
4100		truncate_pagecache_range(inode, first_block_offset,
4101					 last_block_offset);
4102	}
4103
4104	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4105		credits = ext4_writepage_trans_blocks(inode);
4106	else
4107		credits = ext4_blocks_for_truncate(inode);
4108	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4109	if (IS_ERR(handle)) {
4110		ret = PTR_ERR(handle);
4111		ext4_std_error(sb, ret);
4112		goto out_dio;
4113	}
4114
4115	ret = ext4_zero_partial_blocks(handle, inode, offset,
4116				       length);
4117	if (ret)
4118		goto out_stop;
4119
4120	first_block = (offset + sb->s_blocksize - 1) >>
4121		EXT4_BLOCK_SIZE_BITS(sb);
4122	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4123
4124	/* If there are no blocks to remove, return now */
4125	if (first_block >= stop_block)
4126		goto out_stop;
4127
4128	down_write(&EXT4_I(inode)->i_data_sem);
4129	ext4_discard_preallocations(inode);
4130
4131	ret = ext4_es_remove_extent(inode, first_block,
4132				    stop_block - first_block);
4133	if (ret) {
4134		up_write(&EXT4_I(inode)->i_data_sem);
4135		goto out_stop;
4136	}
4137
4138	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139		ret = ext4_ext_remove_space(inode, first_block,
4140					    stop_block - 1);
4141	else
4142		ret = ext4_ind_remove_space(handle, inode, first_block,
4143					    stop_block);
4144
4145	up_write(&EXT4_I(inode)->i_data_sem);
4146	if (IS_SYNC(inode))
4147		ext4_handle_sync(handle);
4148
4149	inode->i_mtime = inode->i_ctime = current_time(inode);
4150	ext4_mark_inode_dirty(handle, inode);
4151out_stop:
4152	ext4_journal_stop(handle);
4153out_dio:
4154	up_write(&EXT4_I(inode)->i_mmap_sem);
4155	ext4_inode_resume_unlocked_dio(inode);
4156out_mutex:
4157	inode_unlock(inode);
4158	return ret;
4159}
4160
4161int ext4_inode_attach_jinode(struct inode *inode)
4162{
4163	struct ext4_inode_info *ei = EXT4_I(inode);
4164	struct jbd2_inode *jinode;
4165
4166	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4167		return 0;
4168
4169	jinode = jbd2_alloc_inode(GFP_KERNEL);
4170	spin_lock(&inode->i_lock);
4171	if (!ei->jinode) {
4172		if (!jinode) {
4173			spin_unlock(&inode->i_lock);
4174			return -ENOMEM;
4175		}
4176		ei->jinode = jinode;
4177		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4178		jinode = NULL;
4179	}
4180	spin_unlock(&inode->i_lock);
4181	if (unlikely(jinode != NULL))
4182		jbd2_free_inode(jinode);
4183	return 0;
4184}
4185
4186/*
4187 * ext4_truncate()
4188 *
4189 * We block out ext4_get_block() block instantiations across the entire
4190 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4191 * simultaneously on behalf of the same inode.
4192 *
4193 * As we work through the truncate and commit bits of it to the journal there
4194 * is one core, guiding principle: the file's tree must always be consistent on
4195 * disk.  We must be able to restart the truncate after a crash.
4196 *
4197 * The file's tree may be transiently inconsistent in memory (although it
4198 * probably isn't), but whenever we close off and commit a journal transaction,
4199 * the contents of (the filesystem + the journal) must be consistent and
4200 * restartable.  It's pretty simple, really: bottom up, right to left (although
4201 * left-to-right works OK too).
4202 *
4203 * Note that at recovery time, journal replay occurs *before* the restart of
4204 * truncate against the orphan inode list.
4205 *
4206 * The committed inode has the new, desired i_size (which is the same as
4207 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4208 * that this inode's truncate did not complete and it will again call
4209 * ext4_truncate() to have another go.  So there will be instantiated blocks
4210 * to the right of the truncation point in a crashed ext4 filesystem.  But
4211 * that's fine - as long as they are linked from the inode, the post-crash
4212 * ext4_truncate() run will find them and release them.
4213 */
4214int ext4_truncate(struct inode *inode)
4215{
4216	struct ext4_inode_info *ei = EXT4_I(inode);
4217	unsigned int credits;
4218	int err = 0;
4219	handle_t *handle;
4220	struct address_space *mapping = inode->i_mapping;
4221
4222	/*
4223	 * There is a possibility that we're either freeing the inode
4224	 * or it's a completely new inode. In those cases we might not
4225	 * have i_mutex locked because it's not necessary.
4226	 */
4227	if (!(inode->i_state & (I_NEW|I_FREEING)))
4228		WARN_ON(!inode_is_locked(inode));
4229	trace_ext4_truncate_enter(inode);
4230
4231	if (!ext4_can_truncate(inode))
4232		return 0;
4233
4234	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4235
4236	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4237		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4238
4239	if (ext4_has_inline_data(inode)) {
4240		int has_inline = 1;
4241
4242		ext4_inline_data_truncate(inode, &has_inline);
4243		if (has_inline)
4244			return 0;
4245	}
4246
4247	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4248	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4249		if (ext4_inode_attach_jinode(inode) < 0)
4250			return 0;
4251	}
4252
4253	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4254		credits = ext4_writepage_trans_blocks(inode);
4255	else
4256		credits = ext4_blocks_for_truncate(inode);
4257
4258	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4259	if (IS_ERR(handle))
4260		return PTR_ERR(handle);
 
 
4261
4262	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4263		ext4_block_truncate_page(handle, mapping, inode->i_size);
4264
4265	/*
4266	 * We add the inode to the orphan list, so that if this
4267	 * truncate spans multiple transactions, and we crash, we will
4268	 * resume the truncate when the filesystem recovers.  It also
4269	 * marks the inode dirty, to catch the new size.
4270	 *
4271	 * Implication: the file must always be in a sane, consistent
4272	 * truncatable state while each transaction commits.
4273	 */
4274	err = ext4_orphan_add(handle, inode);
4275	if (err)
4276		goto out_stop;
4277
4278	down_write(&EXT4_I(inode)->i_data_sem);
4279
4280	ext4_discard_preallocations(inode);
4281
4282	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4283		err = ext4_ext_truncate(handle, inode);
4284	else
4285		ext4_ind_truncate(handle, inode);
4286
4287	up_write(&ei->i_data_sem);
4288	if (err)
4289		goto out_stop;
4290
4291	if (IS_SYNC(inode))
4292		ext4_handle_sync(handle);
4293
4294out_stop:
4295	/*
4296	 * If this was a simple ftruncate() and the file will remain alive,
4297	 * then we need to clear up the orphan record which we created above.
4298	 * However, if this was a real unlink then we were called by
4299	 * ext4_evict_inode(), and we allow that function to clean up the
4300	 * orphan info for us.
4301	 */
4302	if (inode->i_nlink)
4303		ext4_orphan_del(handle, inode);
4304
4305	inode->i_mtime = inode->i_ctime = current_time(inode);
4306	ext4_mark_inode_dirty(handle, inode);
4307	ext4_journal_stop(handle);
4308
4309	trace_ext4_truncate_exit(inode);
4310	return err;
4311}
4312
4313/*
4314 * ext4_get_inode_loc returns with an extra refcount against the inode's
4315 * underlying buffer_head on success. If 'in_mem' is true, we have all
4316 * data in memory that is needed to recreate the on-disk version of this
4317 * inode.
4318 */
4319static int __ext4_get_inode_loc(struct inode *inode,
4320				struct ext4_iloc *iloc, int in_mem)
4321{
4322	struct ext4_group_desc	*gdp;
4323	struct buffer_head	*bh;
4324	struct super_block	*sb = inode->i_sb;
4325	ext4_fsblk_t		block;
4326	int			inodes_per_block, inode_offset;
4327
4328	iloc->bh = NULL;
4329	if (!ext4_valid_inum(sb, inode->i_ino))
4330		return -EFSCORRUPTED;
4331
4332	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4333	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4334	if (!gdp)
4335		return -EIO;
4336
4337	/*
4338	 * Figure out the offset within the block group inode table
4339	 */
4340	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4341	inode_offset = ((inode->i_ino - 1) %
4342			EXT4_INODES_PER_GROUP(sb));
4343	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4344	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4345
4346	bh = sb_getblk(sb, block);
4347	if (unlikely(!bh))
4348		return -ENOMEM;
4349	if (!buffer_uptodate(bh)) {
4350		lock_buffer(bh);
4351
4352		/*
4353		 * If the buffer has the write error flag, we have failed
4354		 * to write out another inode in the same block.  In this
4355		 * case, we don't have to read the block because we may
4356		 * read the old inode data successfully.
4357		 */
4358		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4359			set_buffer_uptodate(bh);
4360
4361		if (buffer_uptodate(bh)) {
4362			/* someone brought it uptodate while we waited */
4363			unlock_buffer(bh);
4364			goto has_buffer;
4365		}
4366
4367		/*
4368		 * If we have all information of the inode in memory and this
4369		 * is the only valid inode in the block, we need not read the
4370		 * block.
4371		 */
4372		if (in_mem) {
4373			struct buffer_head *bitmap_bh;
4374			int i, start;
4375
4376			start = inode_offset & ~(inodes_per_block - 1);
4377
4378			/* Is the inode bitmap in cache? */
4379			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4380			if (unlikely(!bitmap_bh))
4381				goto make_io;
4382
4383			/*
4384			 * If the inode bitmap isn't in cache then the
4385			 * optimisation may end up performing two reads instead
4386			 * of one, so skip it.
4387			 */
4388			if (!buffer_uptodate(bitmap_bh)) {
4389				brelse(bitmap_bh);
4390				goto make_io;
4391			}
4392			for (i = start; i < start + inodes_per_block; i++) {
4393				if (i == inode_offset)
4394					continue;
4395				if (ext4_test_bit(i, bitmap_bh->b_data))
4396					break;
4397			}
4398			brelse(bitmap_bh);
4399			if (i == start + inodes_per_block) {
4400				/* all other inodes are free, so skip I/O */
4401				memset(bh->b_data, 0, bh->b_size);
4402				set_buffer_uptodate(bh);
4403				unlock_buffer(bh);
4404				goto has_buffer;
4405			}
4406		}
4407
4408make_io:
4409		/*
4410		 * If we need to do any I/O, try to pre-readahead extra
4411		 * blocks from the inode table.
4412		 */
4413		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4414			ext4_fsblk_t b, end, table;
4415			unsigned num;
4416			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4417
4418			table = ext4_inode_table(sb, gdp);
4419			/* s_inode_readahead_blks is always a power of 2 */
4420			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4421			if (table > b)
4422				b = table;
4423			end = b + ra_blks;
4424			num = EXT4_INODES_PER_GROUP(sb);
4425			if (ext4_has_group_desc_csum(sb))
4426				num -= ext4_itable_unused_count(sb, gdp);
4427			table += num / inodes_per_block;
4428			if (end > table)
4429				end = table;
4430			while (b <= end)
4431				sb_breadahead(sb, b++);
4432		}
4433
4434		/*
4435		 * There are other valid inodes in the buffer, this inode
4436		 * has in-inode xattrs, or we don't have this inode in memory.
4437		 * Read the block from disk.
4438		 */
4439		trace_ext4_load_inode(inode);
4440		get_bh(bh);
4441		bh->b_end_io = end_buffer_read_sync;
4442		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4443		wait_on_buffer(bh);
4444		if (!buffer_uptodate(bh)) {
4445			EXT4_ERROR_INODE_BLOCK(inode, block,
4446					       "unable to read itable block");
4447			brelse(bh);
4448			return -EIO;
4449		}
4450	}
4451has_buffer:
4452	iloc->bh = bh;
4453	return 0;
4454}
4455
4456int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4457{
4458	/* We have all inode data except xattrs in memory here. */
4459	return __ext4_get_inode_loc(inode, iloc,
4460		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4461}
4462
4463void ext4_set_inode_flags(struct inode *inode)
4464{
4465	unsigned int flags = EXT4_I(inode)->i_flags;
4466	unsigned int new_fl = 0;
4467
4468	if (flags & EXT4_SYNC_FL)
4469		new_fl |= S_SYNC;
4470	if (flags & EXT4_APPEND_FL)
4471		new_fl |= S_APPEND;
4472	if (flags & EXT4_IMMUTABLE_FL)
4473		new_fl |= S_IMMUTABLE;
4474	if (flags & EXT4_NOATIME_FL)
4475		new_fl |= S_NOATIME;
4476	if (flags & EXT4_DIRSYNC_FL)
4477		new_fl |= S_DIRSYNC;
4478	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4479	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4480	    !ext4_encrypted_inode(inode))
4481		new_fl |= S_DAX;
4482	inode_set_flags(inode, new_fl,
4483			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4484}
4485
4486/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4487void ext4_get_inode_flags(struct ext4_inode_info *ei)
4488{
4489	unsigned int vfs_fl;
4490	unsigned long old_fl, new_fl;
4491
4492	do {
4493		vfs_fl = ei->vfs_inode.i_flags;
4494		old_fl = ei->i_flags;
4495		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4496				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4497				EXT4_DIRSYNC_FL);
4498		if (vfs_fl & S_SYNC)
4499			new_fl |= EXT4_SYNC_FL;
4500		if (vfs_fl & S_APPEND)
4501			new_fl |= EXT4_APPEND_FL;
4502		if (vfs_fl & S_IMMUTABLE)
4503			new_fl |= EXT4_IMMUTABLE_FL;
4504		if (vfs_fl & S_NOATIME)
4505			new_fl |= EXT4_NOATIME_FL;
4506		if (vfs_fl & S_DIRSYNC)
4507			new_fl |= EXT4_DIRSYNC_FL;
4508	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4509}
4510
4511static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4512				  struct ext4_inode_info *ei)
4513{
4514	blkcnt_t i_blocks ;
4515	struct inode *inode = &(ei->vfs_inode);
4516	struct super_block *sb = inode->i_sb;
4517
4518	if (ext4_has_feature_huge_file(sb)) {
4519		/* we are using combined 48 bit field */
4520		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4521					le32_to_cpu(raw_inode->i_blocks_lo);
4522		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4523			/* i_blocks represent file system block size */
4524			return i_blocks  << (inode->i_blkbits - 9);
4525		} else {
4526			return i_blocks;
4527		}
4528	} else {
4529		return le32_to_cpu(raw_inode->i_blocks_lo);
4530	}
4531}
4532
4533static inline void ext4_iget_extra_inode(struct inode *inode,
4534					 struct ext4_inode *raw_inode,
4535					 struct ext4_inode_info *ei)
4536{
4537	__le32 *magic = (void *)raw_inode +
4538			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4539	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4540	    EXT4_INODE_SIZE(inode->i_sb) &&
4541	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4542		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4543		ext4_find_inline_data_nolock(inode);
4544	} else
4545		EXT4_I(inode)->i_inline_off = 0;
4546}
4547
4548int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4549{
4550	if (!ext4_has_feature_project(inode->i_sb))
4551		return -EOPNOTSUPP;
4552	*projid = EXT4_I(inode)->i_projid;
4553	return 0;
4554}
4555
4556struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4557{
4558	struct ext4_iloc iloc;
4559	struct ext4_inode *raw_inode;
4560	struct ext4_inode_info *ei;
4561	struct inode *inode;
4562	journal_t *journal = EXT4_SB(sb)->s_journal;
4563	long ret;
4564	loff_t size;
4565	int block;
4566	uid_t i_uid;
4567	gid_t i_gid;
4568	projid_t i_projid;
4569
4570	inode = iget_locked(sb, ino);
4571	if (!inode)
4572		return ERR_PTR(-ENOMEM);
4573	if (!(inode->i_state & I_NEW))
4574		return inode;
4575
4576	ei = EXT4_I(inode);
4577	iloc.bh = NULL;
4578
4579	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4580	if (ret < 0)
4581		goto bad_inode;
4582	raw_inode = ext4_raw_inode(&iloc);
4583
4584	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4585		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4586		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4587			EXT4_INODE_SIZE(inode->i_sb) ||
4588		    (ei->i_extra_isize & 3)) {
4589			EXT4_ERROR_INODE(inode,
4590					 "bad extra_isize %u (inode size %u)",
4591					 ei->i_extra_isize,
4592					 EXT4_INODE_SIZE(inode->i_sb));
4593			ret = -EFSCORRUPTED;
4594			goto bad_inode;
4595		}
4596	} else
4597		ei->i_extra_isize = 0;
4598
4599	/* Precompute checksum seed for inode metadata */
4600	if (ext4_has_metadata_csum(sb)) {
4601		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602		__u32 csum;
4603		__le32 inum = cpu_to_le32(inode->i_ino);
4604		__le32 gen = raw_inode->i_generation;
4605		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4606				   sizeof(inum));
4607		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4608					      sizeof(gen));
4609	}
4610
4611	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4612		EXT4_ERROR_INODE(inode, "checksum invalid");
4613		ret = -EFSBADCRC;
4614		goto bad_inode;
4615	}
4616
4617	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4618	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4619	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4620	if (ext4_has_feature_project(sb) &&
4621	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4622	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4623		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4624	else
4625		i_projid = EXT4_DEF_PROJID;
4626
4627	if (!(test_opt(inode->i_sb, NO_UID32))) {
4628		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4629		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4630	}
4631	i_uid_write(inode, i_uid);
4632	i_gid_write(inode, i_gid);
4633	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4634	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4635
4636	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4637	ei->i_inline_off = 0;
4638	ei->i_dir_start_lookup = 0;
4639	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4640	/* We now have enough fields to check if the inode was active or not.
4641	 * This is needed because nfsd might try to access dead inodes
4642	 * the test is that same one that e2fsck uses
4643	 * NeilBrown 1999oct15
4644	 */
4645	if (inode->i_nlink == 0) {
4646		if ((inode->i_mode == 0 ||
4647		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4648		    ino != EXT4_BOOT_LOADER_INO) {
4649			/* this inode is deleted */
4650			ret = -ESTALE;
4651			goto bad_inode;
4652		}
4653		/* The only unlinked inodes we let through here have
4654		 * valid i_mode and are being read by the orphan
4655		 * recovery code: that's fine, we're about to complete
4656		 * the process of deleting those.
4657		 * OR it is the EXT4_BOOT_LOADER_INO which is
4658		 * not initialized on a new filesystem. */
4659	}
4660	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4661	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4662	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4663	if (ext4_has_feature_64bit(sb))
4664		ei->i_file_acl |=
4665			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4666	inode->i_size = ext4_isize(raw_inode);
4667	if ((size = i_size_read(inode)) < 0) {
4668		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4669		ret = -EFSCORRUPTED;
4670		goto bad_inode;
4671	}
4672	ei->i_disksize = inode->i_size;
4673#ifdef CONFIG_QUOTA
4674	ei->i_reserved_quota = 0;
4675#endif
4676	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4677	ei->i_block_group = iloc.block_group;
4678	ei->i_last_alloc_group = ~0;
4679	/*
4680	 * NOTE! The in-memory inode i_data array is in little-endian order
4681	 * even on big-endian machines: we do NOT byteswap the block numbers!
4682	 */
4683	for (block = 0; block < EXT4_N_BLOCKS; block++)
4684		ei->i_data[block] = raw_inode->i_block[block];
4685	INIT_LIST_HEAD(&ei->i_orphan);
4686
4687	/*
4688	 * Set transaction id's of transactions that have to be committed
4689	 * to finish f[data]sync. We set them to currently running transaction
4690	 * as we cannot be sure that the inode or some of its metadata isn't
4691	 * part of the transaction - the inode could have been reclaimed and
4692	 * now it is reread from disk.
4693	 */
4694	if (journal) {
4695		transaction_t *transaction;
4696		tid_t tid;
4697
4698		read_lock(&journal->j_state_lock);
4699		if (journal->j_running_transaction)
4700			transaction = journal->j_running_transaction;
4701		else
4702			transaction = journal->j_committing_transaction;
4703		if (transaction)
4704			tid = transaction->t_tid;
4705		else
4706			tid = journal->j_commit_sequence;
4707		read_unlock(&journal->j_state_lock);
4708		ei->i_sync_tid = tid;
4709		ei->i_datasync_tid = tid;
4710	}
4711
4712	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713		if (ei->i_extra_isize == 0) {
4714			/* The extra space is currently unused. Use it. */
4715			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4716			ei->i_extra_isize = sizeof(struct ext4_inode) -
4717					    EXT4_GOOD_OLD_INODE_SIZE;
4718		} else {
4719			ext4_iget_extra_inode(inode, raw_inode, ei);
4720		}
4721	}
4722
4723	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4724	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4725	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4726	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4727
4728	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4729		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4730		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732				inode->i_version |=
4733		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4734		}
4735	}
4736
4737	ret = 0;
4738	if (ei->i_file_acl &&
4739	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4740		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4741				 ei->i_file_acl);
4742		ret = -EFSCORRUPTED;
4743		goto bad_inode;
4744	} else if (!ext4_has_inline_data(inode)) {
4745		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4746			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4747			    (S_ISLNK(inode->i_mode) &&
4748			     !ext4_inode_is_fast_symlink(inode))))
4749				/* Validate extent which is part of inode */
4750				ret = ext4_ext_check_inode(inode);
4751		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4752			   (S_ISLNK(inode->i_mode) &&
4753			    !ext4_inode_is_fast_symlink(inode))) {
4754			/* Validate block references which are part of inode */
4755			ret = ext4_ind_check_inode(inode);
4756		}
4757	}
4758	if (ret)
4759		goto bad_inode;
4760
4761	if (S_ISREG(inode->i_mode)) {
4762		inode->i_op = &ext4_file_inode_operations;
4763		inode->i_fop = &ext4_file_operations;
4764		ext4_set_aops(inode);
4765	} else if (S_ISDIR(inode->i_mode)) {
4766		inode->i_op = &ext4_dir_inode_operations;
4767		inode->i_fop = &ext4_dir_operations;
4768	} else if (S_ISLNK(inode->i_mode)) {
4769		if (ext4_encrypted_inode(inode)) {
4770			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4771			ext4_set_aops(inode);
4772		} else if (ext4_inode_is_fast_symlink(inode)) {
4773			inode->i_link = (char *)ei->i_data;
4774			inode->i_op = &ext4_fast_symlink_inode_operations;
4775			nd_terminate_link(ei->i_data, inode->i_size,
4776				sizeof(ei->i_data) - 1);
4777		} else {
4778			inode->i_op = &ext4_symlink_inode_operations;
4779			ext4_set_aops(inode);
4780		}
4781		inode_nohighmem(inode);
4782	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4783	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4784		inode->i_op = &ext4_special_inode_operations;
4785		if (raw_inode->i_block[0])
4786			init_special_inode(inode, inode->i_mode,
4787			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4788		else
4789			init_special_inode(inode, inode->i_mode,
4790			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4791	} else if (ino == EXT4_BOOT_LOADER_INO) {
4792		make_bad_inode(inode);
4793	} else {
4794		ret = -EFSCORRUPTED;
4795		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4796		goto bad_inode;
4797	}
4798	brelse(iloc.bh);
4799	ext4_set_inode_flags(inode);
4800	unlock_new_inode(inode);
4801	return inode;
4802
4803bad_inode:
4804	brelse(iloc.bh);
4805	iget_failed(inode);
4806	return ERR_PTR(ret);
4807}
4808
4809struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4810{
4811	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4812		return ERR_PTR(-EFSCORRUPTED);
4813	return ext4_iget(sb, ino);
4814}
4815
4816static int ext4_inode_blocks_set(handle_t *handle,
4817				struct ext4_inode *raw_inode,
4818				struct ext4_inode_info *ei)
4819{
4820	struct inode *inode = &(ei->vfs_inode);
4821	u64 i_blocks = inode->i_blocks;
4822	struct super_block *sb = inode->i_sb;
4823
4824	if (i_blocks <= ~0U) {
4825		/*
4826		 * i_blocks can be represented in a 32 bit variable
4827		 * as multiple of 512 bytes
4828		 */
4829		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4830		raw_inode->i_blocks_high = 0;
4831		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4832		return 0;
4833	}
4834	if (!ext4_has_feature_huge_file(sb))
4835		return -EFBIG;
4836
4837	if (i_blocks <= 0xffffffffffffULL) {
4838		/*
4839		 * i_blocks can be represented in a 48 bit variable
4840		 * as multiple of 512 bytes
4841		 */
4842		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4843		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4844		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4845	} else {
4846		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4847		/* i_block is stored in file system block size */
4848		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4849		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4850		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4851	}
4852	return 0;
4853}
4854
4855struct other_inode {
4856	unsigned long		orig_ino;
4857	struct ext4_inode	*raw_inode;
4858};
4859
4860static int other_inode_match(struct inode * inode, unsigned long ino,
4861			     void *data)
4862{
4863	struct other_inode *oi = (struct other_inode *) data;
4864
4865	if ((inode->i_ino != ino) ||
4866	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4867			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4868	    ((inode->i_state & I_DIRTY_TIME) == 0))
4869		return 0;
4870	spin_lock(&inode->i_lock);
4871	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4872				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4873	    (inode->i_state & I_DIRTY_TIME)) {
4874		struct ext4_inode_info	*ei = EXT4_I(inode);
4875
4876		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4877		spin_unlock(&inode->i_lock);
4878
4879		spin_lock(&ei->i_raw_lock);
4880		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4881		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4882		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4883		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4884		spin_unlock(&ei->i_raw_lock);
4885		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4886		return -1;
4887	}
4888	spin_unlock(&inode->i_lock);
4889	return -1;
4890}
4891
4892/*
4893 * Opportunistically update the other time fields for other inodes in
4894 * the same inode table block.
4895 */
4896static void ext4_update_other_inodes_time(struct super_block *sb,
4897					  unsigned long orig_ino, char *buf)
4898{
4899	struct other_inode oi;
4900	unsigned long ino;
4901	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4902	int inode_size = EXT4_INODE_SIZE(sb);
4903
4904	oi.orig_ino = orig_ino;
4905	/*
4906	 * Calculate the first inode in the inode table block.  Inode
4907	 * numbers are one-based.  That is, the first inode in a block
4908	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4909	 */
4910	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4911	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4912		if (ino == orig_ino)
4913			continue;
4914		oi.raw_inode = (struct ext4_inode *) buf;
4915		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4916	}
4917}
4918
4919/*
4920 * Post the struct inode info into an on-disk inode location in the
4921 * buffer-cache.  This gobbles the caller's reference to the
4922 * buffer_head in the inode location struct.
4923 *
4924 * The caller must have write access to iloc->bh.
4925 */
4926static int ext4_do_update_inode(handle_t *handle,
4927				struct inode *inode,
4928				struct ext4_iloc *iloc)
4929{
4930	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4931	struct ext4_inode_info *ei = EXT4_I(inode);
4932	struct buffer_head *bh = iloc->bh;
4933	struct super_block *sb = inode->i_sb;
4934	int err = 0, rc, block;
4935	int need_datasync = 0, set_large_file = 0;
4936	uid_t i_uid;
4937	gid_t i_gid;
4938	projid_t i_projid;
4939
4940	spin_lock(&ei->i_raw_lock);
4941
4942	/* For fields not tracked in the in-memory inode,
4943	 * initialise them to zero for new inodes. */
4944	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4945		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4946
4947	ext4_get_inode_flags(ei);
4948	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4949	i_uid = i_uid_read(inode);
4950	i_gid = i_gid_read(inode);
4951	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4952	if (!(test_opt(inode->i_sb, NO_UID32))) {
4953		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4954		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4955/*
4956 * Fix up interoperability with old kernels. Otherwise, old inodes get
4957 * re-used with the upper 16 bits of the uid/gid intact
4958 */
4959		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4960			raw_inode->i_uid_high = 0;
4961			raw_inode->i_gid_high = 0;
4962		} else {
4963			raw_inode->i_uid_high =
4964				cpu_to_le16(high_16_bits(i_uid));
4965			raw_inode->i_gid_high =
4966				cpu_to_le16(high_16_bits(i_gid));
 
 
 
4967		}
4968	} else {
4969		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4970		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4971		raw_inode->i_uid_high = 0;
4972		raw_inode->i_gid_high = 0;
4973	}
4974	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4975
4976	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4980
4981	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4982	if (err) {
4983		spin_unlock(&ei->i_raw_lock);
4984		goto out_brelse;
4985	}
4986	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4987	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4988	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4989		raw_inode->i_file_acl_high =
4990			cpu_to_le16(ei->i_file_acl >> 32);
4991	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4992	if (ei->i_disksize != ext4_isize(raw_inode)) {
4993		ext4_isize_set(raw_inode, ei->i_disksize);
4994		need_datasync = 1;
4995	}
4996	if (ei->i_disksize > 0x7fffffffULL) {
4997		if (!ext4_has_feature_large_file(sb) ||
4998				EXT4_SB(sb)->s_es->s_rev_level ==
4999		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5000			set_large_file = 1;
5001	}
5002	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5003	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5004		if (old_valid_dev(inode->i_rdev)) {
5005			raw_inode->i_block[0] =
5006				cpu_to_le32(old_encode_dev(inode->i_rdev));
5007			raw_inode->i_block[1] = 0;
5008		} else {
5009			raw_inode->i_block[0] = 0;
5010			raw_inode->i_block[1] =
5011				cpu_to_le32(new_encode_dev(inode->i_rdev));
5012			raw_inode->i_block[2] = 0;
5013		}
5014	} else if (!ext4_has_inline_data(inode)) {
5015		for (block = 0; block < EXT4_N_BLOCKS; block++)
5016			raw_inode->i_block[block] = ei->i_data[block];
5017	}
5018
5019	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5021		if (ei->i_extra_isize) {
5022			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023				raw_inode->i_version_hi =
5024					cpu_to_le32(inode->i_version >> 32);
5025			raw_inode->i_extra_isize =
5026				cpu_to_le16(ei->i_extra_isize);
5027		}
5028	}
5029
5030	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
 
5031	       i_projid != EXT4_DEF_PROJID);
5032
5033	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5034	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5035		raw_inode->i_projid = cpu_to_le32(i_projid);
5036
5037	ext4_inode_csum_set(inode, raw_inode, ei);
5038	spin_unlock(&ei->i_raw_lock);
5039	if (inode->i_sb->s_flags & MS_LAZYTIME)
5040		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5041					      bh->b_data);
5042
5043	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5045	if (!err)
5046		err = rc;
5047	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5048	if (set_large_file) {
5049		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5050		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5051		if (err)
5052			goto out_brelse;
5053		ext4_update_dynamic_rev(sb);
5054		ext4_set_feature_large_file(sb);
5055		ext4_handle_sync(handle);
5056		err = ext4_handle_dirty_super(handle, sb);
5057	}
5058	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5059out_brelse:
5060	brelse(bh);
5061	ext4_std_error(inode->i_sb, err);
5062	return err;
5063}
5064
5065/*
5066 * ext4_write_inode()
5067 *
5068 * We are called from a few places:
5069 *
5070 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5071 *   Here, there will be no transaction running. We wait for any running
5072 *   transaction to commit.
5073 *
5074 * - Within flush work (sys_sync(), kupdate and such).
5075 *   We wait on commit, if told to.
5076 *
5077 * - Within iput_final() -> write_inode_now()
5078 *   We wait on commit, if told to.
5079 *
5080 * In all cases it is actually safe for us to return without doing anything,
5081 * because the inode has been copied into a raw inode buffer in
5082 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5083 * writeback.
5084 *
5085 * Note that we are absolutely dependent upon all inode dirtiers doing the
5086 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5087 * which we are interested.
5088 *
5089 * It would be a bug for them to not do this.  The code:
5090 *
5091 *	mark_inode_dirty(inode)
5092 *	stuff();
5093 *	inode->i_size = expr;
5094 *
5095 * is in error because write_inode() could occur while `stuff()' is running,
5096 * and the new i_size will be lost.  Plus the inode will no longer be on the
5097 * superblock's dirty inode list.
5098 */
5099int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5100{
5101	int err;
5102
5103	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5104		return 0;
5105
5106	if (EXT4_SB(inode->i_sb)->s_journal) {
5107		if (ext4_journal_current_handle()) {
5108			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5109			dump_stack();
5110			return -EIO;
5111		}
5112
5113		/*
5114		 * No need to force transaction in WB_SYNC_NONE mode. Also
5115		 * ext4_sync_fs() will force the commit after everything is
5116		 * written.
5117		 */
5118		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5119			return 0;
5120
5121		err = ext4_force_commit(inode->i_sb);
5122	} else {
5123		struct ext4_iloc iloc;
5124
5125		err = __ext4_get_inode_loc(inode, &iloc, 0);
5126		if (err)
5127			return err;
5128		/*
5129		 * sync(2) will flush the whole buffer cache. No need to do
5130		 * it here separately for each inode.
5131		 */
5132		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5133			sync_dirty_buffer(iloc.bh);
5134		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5135			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5136					 "IO error syncing inode");
5137			err = -EIO;
5138		}
5139		brelse(iloc.bh);
5140	}
5141	return err;
5142}
5143
5144/*
5145 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5146 * buffers that are attached to a page stradding i_size and are undergoing
5147 * commit. In that case we have to wait for commit to finish and try again.
5148 */
5149static void ext4_wait_for_tail_page_commit(struct inode *inode)
5150{
5151	struct page *page;
5152	unsigned offset;
5153	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5154	tid_t commit_tid = 0;
5155	int ret;
5156
5157	offset = inode->i_size & (PAGE_SIZE - 1);
5158	/*
5159	 * All buffers in the last page remain valid? Then there's nothing to
5160	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5161	 * blocksize case
5162	 */
5163	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5164		return;
5165	while (1) {
5166		page = find_lock_page(inode->i_mapping,
5167				      inode->i_size >> PAGE_SHIFT);
5168		if (!page)
5169			return;
5170		ret = __ext4_journalled_invalidatepage(page, offset,
5171						PAGE_SIZE - offset);
5172		unlock_page(page);
5173		put_page(page);
5174		if (ret != -EBUSY)
5175			return;
5176		commit_tid = 0;
5177		read_lock(&journal->j_state_lock);
5178		if (journal->j_committing_transaction)
5179			commit_tid = journal->j_committing_transaction->t_tid;
5180		read_unlock(&journal->j_state_lock);
5181		if (commit_tid)
5182			jbd2_log_wait_commit(journal, commit_tid);
5183	}
5184}
5185
5186/*
5187 * ext4_setattr()
5188 *
5189 * Called from notify_change.
5190 *
5191 * We want to trap VFS attempts to truncate the file as soon as
5192 * possible.  In particular, we want to make sure that when the VFS
5193 * shrinks i_size, we put the inode on the orphan list and modify
5194 * i_disksize immediately, so that during the subsequent flushing of
5195 * dirty pages and freeing of disk blocks, we can guarantee that any
5196 * commit will leave the blocks being flushed in an unused state on
5197 * disk.  (On recovery, the inode will get truncated and the blocks will
5198 * be freed, so we have a strong guarantee that no future commit will
5199 * leave these blocks visible to the user.)
5200 *
5201 * Another thing we have to assure is that if we are in ordered mode
5202 * and inode is still attached to the committing transaction, we must
5203 * we start writeout of all the dirty pages which are being truncated.
5204 * This way we are sure that all the data written in the previous
5205 * transaction are already on disk (truncate waits for pages under
5206 * writeback).
5207 *
5208 * Called with inode->i_mutex down.
5209 */
5210int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211{
5212	struct inode *inode = d_inode(dentry);
5213	int error, rc = 0;
5214	int orphan = 0;
5215	const unsigned int ia_valid = attr->ia_valid;
5216
5217	error = setattr_prepare(dentry, attr);
5218	if (error)
5219		return error;
5220
5221	if (is_quota_modification(inode, attr)) {
5222		error = dquot_initialize(inode);
5223		if (error)
5224			return error;
5225	}
5226	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5227	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5228		handle_t *handle;
5229
5230		/* (user+group)*(old+new) structure, inode write (sb,
5231		 * inode block, ? - but truncate inode update has it) */
5232		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5234			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5235		if (IS_ERR(handle)) {
5236			error = PTR_ERR(handle);
5237			goto err_out;
5238		}
5239		error = dquot_transfer(inode, attr);
5240		if (error) {
5241			ext4_journal_stop(handle);
5242			return error;
5243		}
5244		/* Update corresponding info in inode so that everything is in
5245		 * one transaction */
5246		if (attr->ia_valid & ATTR_UID)
5247			inode->i_uid = attr->ia_uid;
5248		if (attr->ia_valid & ATTR_GID)
5249			inode->i_gid = attr->ia_gid;
5250		error = ext4_mark_inode_dirty(handle, inode);
5251		ext4_journal_stop(handle);
5252	}
5253
5254	if (attr->ia_valid & ATTR_SIZE) {
5255		handle_t *handle;
5256		loff_t oldsize = inode->i_size;
5257		int shrink = (attr->ia_size <= inode->i_size);
5258
5259		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5260			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261
5262			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5263				return -EFBIG;
5264		}
5265		if (!S_ISREG(inode->i_mode))
5266			return -EINVAL;
5267
5268		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5269			inode_inc_iversion(inode);
5270
5271		if (ext4_should_order_data(inode) &&
5272		    (attr->ia_size < inode->i_size)) {
5273			error = ext4_begin_ordered_truncate(inode,
5274							    attr->ia_size);
5275			if (error)
5276				goto err_out;
5277		}
5278		if (attr->ia_size != inode->i_size) {
5279			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5280			if (IS_ERR(handle)) {
5281				error = PTR_ERR(handle);
5282				goto err_out;
5283			}
5284			if (ext4_handle_valid(handle) && shrink) {
5285				error = ext4_orphan_add(handle, inode);
5286				orphan = 1;
5287			}
5288			/*
5289			 * Update c/mtime on truncate up, ext4_truncate() will
5290			 * update c/mtime in shrink case below
5291			 */
5292			if (!shrink) {
5293				inode->i_mtime = current_time(inode);
5294				inode->i_ctime = inode->i_mtime;
5295			}
5296			down_write(&EXT4_I(inode)->i_data_sem);
5297			EXT4_I(inode)->i_disksize = attr->ia_size;
5298			rc = ext4_mark_inode_dirty(handle, inode);
5299			if (!error)
5300				error = rc;
5301			/*
5302			 * We have to update i_size under i_data_sem together
5303			 * with i_disksize to avoid races with writeback code
5304			 * running ext4_wb_update_i_disksize().
5305			 */
5306			if (!error)
5307				i_size_write(inode, attr->ia_size);
5308			up_write(&EXT4_I(inode)->i_data_sem);
5309			ext4_journal_stop(handle);
5310			if (error) {
5311				if (orphan)
5312					ext4_orphan_del(NULL, inode);
5313				goto err_out;
5314			}
5315		}
5316		if (!shrink)
5317			pagecache_isize_extended(inode, oldsize, inode->i_size);
5318
5319		/*
5320		 * Blocks are going to be removed from the inode. Wait
5321		 * for dio in flight.  Temporarily disable
5322		 * dioread_nolock to prevent livelock.
5323		 */
5324		if (orphan) {
5325			if (!ext4_should_journal_data(inode)) {
5326				ext4_inode_block_unlocked_dio(inode);
5327				inode_dio_wait(inode);
5328				ext4_inode_resume_unlocked_dio(inode);
5329			} else
5330				ext4_wait_for_tail_page_commit(inode);
5331		}
5332		down_write(&EXT4_I(inode)->i_mmap_sem);
5333		/*
5334		 * Truncate pagecache after we've waited for commit
5335		 * in data=journal mode to make pages freeable.
5336		 */
5337		truncate_pagecache(inode, inode->i_size);
5338		if (shrink) {
5339			rc = ext4_truncate(inode);
5340			if (rc)
5341				error = rc;
5342		}
5343		up_write(&EXT4_I(inode)->i_mmap_sem);
5344	}
5345
5346	if (!error) {
5347		setattr_copy(inode, attr);
5348		mark_inode_dirty(inode);
5349	}
5350
5351	/*
5352	 * If the call to ext4_truncate failed to get a transaction handle at
5353	 * all, we need to clean up the in-core orphan list manually.
5354	 */
5355	if (orphan && inode->i_nlink)
5356		ext4_orphan_del(NULL, inode);
5357
5358	if (!error && (ia_valid & ATTR_MODE))
5359		rc = posix_acl_chmod(inode, inode->i_mode);
5360
5361err_out:
5362	ext4_std_error(inode->i_sb, error);
5363	if (!error)
5364		error = rc;
5365	return error;
5366}
5367
5368int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5369		 struct kstat *stat)
5370{
5371	struct inode *inode;
5372	unsigned long long delalloc_blocks;
5373
5374	inode = d_inode(dentry);
5375	generic_fillattr(inode, stat);
5376
5377	/*
5378	 * If there is inline data in the inode, the inode will normally not
5379	 * have data blocks allocated (it may have an external xattr block).
5380	 * Report at least one sector for such files, so tools like tar, rsync,
5381	 * others doen't incorrectly think the file is completely sparse.
5382	 */
5383	if (unlikely(ext4_has_inline_data(inode)))
5384		stat->blocks += (stat->size + 511) >> 9;
5385
5386	/*
5387	 * We can't update i_blocks if the block allocation is delayed
5388	 * otherwise in the case of system crash before the real block
5389	 * allocation is done, we will have i_blocks inconsistent with
5390	 * on-disk file blocks.
5391	 * We always keep i_blocks updated together with real
5392	 * allocation. But to not confuse with user, stat
5393	 * will return the blocks that include the delayed allocation
5394	 * blocks for this file.
5395	 */
5396	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5397				   EXT4_I(inode)->i_reserved_data_blocks);
5398	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5399	return 0;
5400}
5401
5402static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5403				   int pextents)
5404{
5405	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5406		return ext4_ind_trans_blocks(inode, lblocks);
5407	return ext4_ext_index_trans_blocks(inode, pextents);
5408}
5409
5410/*
5411 * Account for index blocks, block groups bitmaps and block group
5412 * descriptor blocks if modify datablocks and index blocks
5413 * worse case, the indexs blocks spread over different block groups
5414 *
5415 * If datablocks are discontiguous, they are possible to spread over
5416 * different block groups too. If they are contiguous, with flexbg,
5417 * they could still across block group boundary.
5418 *
5419 * Also account for superblock, inode, quota and xattr blocks
5420 */
5421static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5422				  int pextents)
5423{
5424	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5425	int gdpblocks;
5426	int idxblocks;
5427	int ret = 0;
5428
5429	/*
5430	 * How many index blocks need to touch to map @lblocks logical blocks
5431	 * to @pextents physical extents?
5432	 */
5433	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5434
5435	ret = idxblocks;
5436
5437	/*
5438	 * Now let's see how many group bitmaps and group descriptors need
5439	 * to account
5440	 */
5441	groups = idxblocks + pextents;
5442	gdpblocks = groups;
5443	if (groups > ngroups)
5444		groups = ngroups;
5445	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5446		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5447
5448	/* bitmaps and block group descriptor blocks */
5449	ret += groups + gdpblocks;
5450
5451	/* Blocks for super block, inode, quota and xattr blocks */
5452	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5453
5454	return ret;
5455}
5456
5457/*
5458 * Calculate the total number of credits to reserve to fit
5459 * the modification of a single pages into a single transaction,
5460 * which may include multiple chunks of block allocations.
5461 *
5462 * This could be called via ext4_write_begin()
5463 *
5464 * We need to consider the worse case, when
5465 * one new block per extent.
5466 */
5467int ext4_writepage_trans_blocks(struct inode *inode)
5468{
5469	int bpp = ext4_journal_blocks_per_page(inode);
5470	int ret;
5471
5472	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5473
5474	/* Account for data blocks for journalled mode */
5475	if (ext4_should_journal_data(inode))
5476		ret += bpp;
5477	return ret;
5478}
5479
5480/*
5481 * Calculate the journal credits for a chunk of data modification.
5482 *
5483 * This is called from DIO, fallocate or whoever calling
5484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5485 *
5486 * journal buffers for data blocks are not included here, as DIO
5487 * and fallocate do no need to journal data buffers.
5488 */
5489int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5490{
5491	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5492}
5493
5494/*
5495 * The caller must have previously called ext4_reserve_inode_write().
5496 * Give this, we know that the caller already has write access to iloc->bh.
5497 */
5498int ext4_mark_iloc_dirty(handle_t *handle,
5499			 struct inode *inode, struct ext4_iloc *iloc)
5500{
5501	int err = 0;
5502
5503	if (IS_I_VERSION(inode))
5504		inode_inc_iversion(inode);
5505
5506	/* the do_update_inode consumes one bh->b_count */
5507	get_bh(iloc->bh);
5508
5509	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5510	err = ext4_do_update_inode(handle, inode, iloc);
5511	put_bh(iloc->bh);
5512	return err;
5513}
5514
5515/*
5516 * On success, We end up with an outstanding reference count against
5517 * iloc->bh.  This _must_ be cleaned up later.
5518 */
5519
5520int
5521ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5522			 struct ext4_iloc *iloc)
5523{
5524	int err;
5525
5526	err = ext4_get_inode_loc(inode, iloc);
5527	if (!err) {
5528		BUFFER_TRACE(iloc->bh, "get_write_access");
5529		err = ext4_journal_get_write_access(handle, iloc->bh);
5530		if (err) {
5531			brelse(iloc->bh);
5532			iloc->bh = NULL;
5533		}
5534	}
5535	ext4_std_error(inode->i_sb, err);
5536	return err;
5537}
5538
5539/*
5540 * Expand an inode by new_extra_isize bytes.
5541 * Returns 0 on success or negative error number on failure.
5542 */
5543static int ext4_expand_extra_isize(struct inode *inode,
5544				   unsigned int new_extra_isize,
5545				   struct ext4_iloc iloc,
5546				   handle_t *handle)
5547{
5548	struct ext4_inode *raw_inode;
5549	struct ext4_xattr_ibody_header *header;
5550
5551	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5552		return 0;
5553
5554	raw_inode = ext4_raw_inode(&iloc);
5555
5556	header = IHDR(inode, raw_inode);
5557
5558	/* No extended attributes present */
5559	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5560	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5561		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5562			new_extra_isize);
5563		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5564		return 0;
5565	}
5566
5567	/* try to expand with EAs present */
5568	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5569					  raw_inode, handle);
5570}
5571
5572/*
5573 * What we do here is to mark the in-core inode as clean with respect to inode
5574 * dirtiness (it may still be data-dirty).
5575 * This means that the in-core inode may be reaped by prune_icache
5576 * without having to perform any I/O.  This is a very good thing,
5577 * because *any* task may call prune_icache - even ones which
5578 * have a transaction open against a different journal.
5579 *
5580 * Is this cheating?  Not really.  Sure, we haven't written the
5581 * inode out, but prune_icache isn't a user-visible syncing function.
5582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5583 * we start and wait on commits.
5584 */
5585int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5586{
5587	struct ext4_iloc iloc;
5588	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5589	static unsigned int mnt_count;
5590	int err, ret;
5591
5592	might_sleep();
5593	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5594	err = ext4_reserve_inode_write(handle, inode, &iloc);
5595	if (err)
5596		return err;
5597	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
 
5598	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5599		/*
5600		 * In nojournal mode, we can immediately attempt to expand
5601		 * the inode.  When journaled, we first need to obtain extra
5602		 * buffer credits since we may write into the EA block
5603		 * with this same handle. If journal_extend fails, then it will
5604		 * only result in a minor loss of functionality for that inode.
5605		 * If this is felt to be critical, then e2fsck should be run to
5606		 * force a large enough s_min_extra_isize.
5607		 */
5608		if (!ext4_handle_valid(handle) ||
5609		    jbd2_journal_extend(handle,
5610			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5611			ret = ext4_expand_extra_isize(inode,
5612						      sbi->s_want_extra_isize,
5613						      iloc, handle);
5614			if (ret) {
 
 
5615				if (mnt_count !=
5616					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5617					ext4_warning(inode->i_sb,
5618					"Unable to expand inode %lu. Delete"
5619					" some EAs or run e2fsck.",
5620					inode->i_ino);
5621					mnt_count =
5622					  le16_to_cpu(sbi->s_es->s_mnt_count);
5623				}
5624			}
5625		}
5626	}
5627	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5628}
5629
5630/*
5631 * ext4_dirty_inode() is called from __mark_inode_dirty()
5632 *
5633 * We're really interested in the case where a file is being extended.
5634 * i_size has been changed by generic_commit_write() and we thus need
5635 * to include the updated inode in the current transaction.
5636 *
5637 * Also, dquot_alloc_block() will always dirty the inode when blocks
5638 * are allocated to the file.
5639 *
5640 * If the inode is marked synchronous, we don't honour that here - doing
5641 * so would cause a commit on atime updates, which we don't bother doing.
5642 * We handle synchronous inodes at the highest possible level.
5643 *
5644 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5645 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5646 * to copy into the on-disk inode structure are the timestamp files.
5647 */
5648void ext4_dirty_inode(struct inode *inode, int flags)
5649{
5650	handle_t *handle;
5651
5652	if (flags == I_DIRTY_TIME)
5653		return;
5654	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5655	if (IS_ERR(handle))
5656		goto out;
5657
5658	ext4_mark_inode_dirty(handle, inode);
5659
5660	ext4_journal_stop(handle);
5661out:
5662	return;
5663}
5664
5665#if 0
5666/*
5667 * Bind an inode's backing buffer_head into this transaction, to prevent
5668 * it from being flushed to disk early.  Unlike
5669 * ext4_reserve_inode_write, this leaves behind no bh reference and
5670 * returns no iloc structure, so the caller needs to repeat the iloc
5671 * lookup to mark the inode dirty later.
5672 */
5673static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5674{
5675	struct ext4_iloc iloc;
5676
5677	int err = 0;
5678	if (handle) {
5679		err = ext4_get_inode_loc(inode, &iloc);
5680		if (!err) {
5681			BUFFER_TRACE(iloc.bh, "get_write_access");
5682			err = jbd2_journal_get_write_access(handle, iloc.bh);
5683			if (!err)
5684				err = ext4_handle_dirty_metadata(handle,
5685								 NULL,
5686								 iloc.bh);
5687			brelse(iloc.bh);
5688		}
5689	}
5690	ext4_std_error(inode->i_sb, err);
5691	return err;
5692}
5693#endif
5694
5695int ext4_change_inode_journal_flag(struct inode *inode, int val)
5696{
5697	journal_t *journal;
5698	handle_t *handle;
5699	int err;
5700	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5701
5702	/*
5703	 * We have to be very careful here: changing a data block's
5704	 * journaling status dynamically is dangerous.  If we write a
5705	 * data block to the journal, change the status and then delete
5706	 * that block, we risk forgetting to revoke the old log record
5707	 * from the journal and so a subsequent replay can corrupt data.
5708	 * So, first we make sure that the journal is empty and that
5709	 * nobody is changing anything.
5710	 */
5711
5712	journal = EXT4_JOURNAL(inode);
5713	if (!journal)
5714		return 0;
5715	if (is_journal_aborted(journal))
5716		return -EROFS;
 
 
 
 
 
 
 
 
 
 
 
5717
5718	/* Wait for all existing dio workers */
5719	ext4_inode_block_unlocked_dio(inode);
5720	inode_dio_wait(inode);
5721
5722	/*
5723	 * Before flushing the journal and switching inode's aops, we have
5724	 * to flush all dirty data the inode has. There can be outstanding
5725	 * delayed allocations, there can be unwritten extents created by
5726	 * fallocate or buffered writes in dioread_nolock mode covered by
5727	 * dirty data which can be converted only after flushing the dirty
5728	 * data (and journalled aops don't know how to handle these cases).
5729	 */
5730	if (val) {
5731		down_write(&EXT4_I(inode)->i_mmap_sem);
5732		err = filemap_write_and_wait(inode->i_mapping);
5733		if (err < 0) {
5734			up_write(&EXT4_I(inode)->i_mmap_sem);
5735			ext4_inode_resume_unlocked_dio(inode);
5736			return err;
5737		}
5738	}
5739
5740	percpu_down_write(&sbi->s_journal_flag_rwsem);
5741	jbd2_journal_lock_updates(journal);
5742
5743	/*
5744	 * OK, there are no updates running now, and all cached data is
5745	 * synced to disk.  We are now in a completely consistent state
5746	 * which doesn't have anything in the journal, and we know that
5747	 * no filesystem updates are running, so it is safe to modify
5748	 * the inode's in-core data-journaling state flag now.
5749	 */
5750
5751	if (val)
5752		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753	else {
5754		err = jbd2_journal_flush(journal);
5755		if (err < 0) {
5756			jbd2_journal_unlock_updates(journal);
5757			percpu_up_write(&sbi->s_journal_flag_rwsem);
5758			ext4_inode_resume_unlocked_dio(inode);
5759			return err;
5760		}
5761		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5762	}
5763	ext4_set_aops(inode);
5764	/*
5765	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5766	 * E.g. S_DAX may get cleared / set.
5767	 */
5768	ext4_set_inode_flags(inode);
5769
5770	jbd2_journal_unlock_updates(journal);
5771	percpu_up_write(&sbi->s_journal_flag_rwsem);
5772
5773	if (val)
5774		up_write(&EXT4_I(inode)->i_mmap_sem);
5775	ext4_inode_resume_unlocked_dio(inode);
5776
5777	/* Finally we can mark the inode as dirty. */
5778
5779	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5780	if (IS_ERR(handle))
5781		return PTR_ERR(handle);
5782
5783	err = ext4_mark_inode_dirty(handle, inode);
5784	ext4_handle_sync(handle);
5785	ext4_journal_stop(handle);
5786	ext4_std_error(inode->i_sb, err);
5787
5788	return err;
5789}
5790
5791static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5792{
5793	return !buffer_mapped(bh);
5794}
5795
5796int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5797{
5798	struct page *page = vmf->page;
5799	loff_t size;
5800	unsigned long len;
5801	int ret;
5802	struct file *file = vma->vm_file;
5803	struct inode *inode = file_inode(file);
5804	struct address_space *mapping = inode->i_mapping;
5805	handle_t *handle;
5806	get_block_t *get_block;
5807	int retries = 0;
5808
5809	sb_start_pagefault(inode->i_sb);
5810	file_update_time(vma->vm_file);
5811
5812	down_read(&EXT4_I(inode)->i_mmap_sem);
5813	/* Delalloc case is easy... */
5814	if (test_opt(inode->i_sb, DELALLOC) &&
5815	    !ext4_should_journal_data(inode) &&
5816	    !ext4_nonda_switch(inode->i_sb)) {
5817		do {
5818			ret = block_page_mkwrite(vma, vmf,
5819						   ext4_da_get_block_prep);
5820		} while (ret == -ENOSPC &&
5821		       ext4_should_retry_alloc(inode->i_sb, &retries));
5822		goto out_ret;
5823	}
5824
5825	lock_page(page);
5826	size = i_size_read(inode);
5827	/* Page got truncated from under us? */
5828	if (page->mapping != mapping || page_offset(page) > size) {
5829		unlock_page(page);
5830		ret = VM_FAULT_NOPAGE;
5831		goto out;
5832	}
5833
5834	if (page->index == size >> PAGE_SHIFT)
5835		len = size & ~PAGE_MASK;
5836	else
5837		len = PAGE_SIZE;
5838	/*
5839	 * Return if we have all the buffers mapped. This avoids the need to do
5840	 * journal_start/journal_stop which can block and take a long time
5841	 */
5842	if (page_has_buffers(page)) {
5843		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5844					    0, len, NULL,
5845					    ext4_bh_unmapped)) {
5846			/* Wait so that we don't change page under IO */
5847			wait_for_stable_page(page);
5848			ret = VM_FAULT_LOCKED;
5849			goto out;
5850		}
5851	}
5852	unlock_page(page);
5853	/* OK, we need to fill the hole... */
5854	if (ext4_should_dioread_nolock(inode))
5855		get_block = ext4_get_block_unwritten;
5856	else
5857		get_block = ext4_get_block;
5858retry_alloc:
5859	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5860				    ext4_writepage_trans_blocks(inode));
5861	if (IS_ERR(handle)) {
5862		ret = VM_FAULT_SIGBUS;
5863		goto out;
5864	}
5865	ret = block_page_mkwrite(vma, vmf, get_block);
5866	if (!ret && ext4_should_journal_data(inode)) {
5867		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5868			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5869			unlock_page(page);
5870			ret = VM_FAULT_SIGBUS;
5871			ext4_journal_stop(handle);
5872			goto out;
5873		}
5874		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5875	}
5876	ext4_journal_stop(handle);
5877	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5878		goto retry_alloc;
5879out_ret:
5880	ret = block_page_mkwrite_return(ret);
5881out:
5882	up_read(&EXT4_I(inode)->i_mmap_sem);
5883	sb_end_pagefault(inode->i_sb);
5884	return ret;
5885}
5886
5887int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5888{
5889	struct inode *inode = file_inode(vma->vm_file);
5890	int err;
5891
5892	down_read(&EXT4_I(inode)->i_mmap_sem);
5893	err = filemap_fault(vma, vmf);
5894	up_read(&EXT4_I(inode)->i_mmap_sem);
5895
5896	return err;
5897}
5898
5899/*
5900 * Find the first extent at or after @lblk in an inode that is not a hole.
5901 * Search for @map_len blocks at most. The extent is returned in @result.
5902 *
5903 * The function returns 1 if we found an extent. The function returns 0 in
5904 * case there is no extent at or after @lblk and in that case also sets
5905 * @result->es_len to 0. In case of error, the error code is returned.
5906 */
5907int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5908			 unsigned int map_len, struct extent_status *result)
5909{
5910	struct ext4_map_blocks map;
5911	struct extent_status es = {};
5912	int ret;
5913
5914	map.m_lblk = lblk;
5915	map.m_len = map_len;
5916
5917	/*
5918	 * For non-extent based files this loop may iterate several times since
5919	 * we do not determine full hole size.
5920	 */
5921	while (map.m_len > 0) {
5922		ret = ext4_map_blocks(NULL, inode, &map, 0);
5923		if (ret < 0)
5924			return ret;
5925		/* There's extent covering m_lblk? Just return it. */
5926		if (ret > 0) {
5927			int status;
5928
5929			ext4_es_store_pblock(result, map.m_pblk);
5930			result->es_lblk = map.m_lblk;
5931			result->es_len = map.m_len;
5932			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5933				status = EXTENT_STATUS_UNWRITTEN;
5934			else
5935				status = EXTENT_STATUS_WRITTEN;
5936			ext4_es_store_status(result, status);
5937			return 1;
5938		}
5939		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5940						  map.m_lblk + map.m_len - 1,
5941						  &es);
5942		/* Is delalloc data before next block in extent tree? */
5943		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5944			ext4_lblk_t offset = 0;
5945
5946			if (es.es_lblk < lblk)
5947				offset = lblk - es.es_lblk;
5948			result->es_lblk = es.es_lblk + offset;
5949			ext4_es_store_pblock(result,
5950					     ext4_es_pblock(&es) + offset);
5951			result->es_len = es.es_len - offset;
5952			ext4_es_store_status(result, ext4_es_status(&es));
5953
5954			return 1;
5955		}
5956		/* There's a hole at m_lblk, advance us after it */
5957		map.m_lblk += map.m_len;
5958		map_len -= map.m_len;
5959		map.m_len = map_len;
5960		cond_resched();
5961	}
5962	result->es_len = 0;
5963	return 0;
5964}
v4.6
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
 
  40
  41#include "ext4_jbd2.h"
  42#include "xattr.h"
  43#include "acl.h"
  44#include "truncate.h"
  45
  46#include <trace/events/ext4.h>
  47
  48#define MPAGE_DA_EXTENT_TAIL 0x01
  49
  50static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  51			      struct ext4_inode_info *ei)
  52{
  53	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  54	__u16 csum_lo;
  55	__u16 csum_hi = 0;
  56	__u32 csum;
 
 
 
 
 
 
 
 
 
  57
  58	csum_lo = le16_to_cpu(raw->i_checksum_lo);
  59	raw->i_checksum_lo = 0;
  60	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  61	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  62		csum_hi = le16_to_cpu(raw->i_checksum_hi);
  63		raw->i_checksum_hi = 0;
 
 
 
 
 
 
  64	}
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
  67			   EXT4_INODE_SIZE(inode->i_sb));
  68
  69	raw->i_checksum_lo = cpu_to_le16(csum_lo);
  70	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  71	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  72		raw->i_checksum_hi = cpu_to_le16(csum_hi);
  73
  74	return csum;
  75}
  76
  77static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  78				  struct ext4_inode_info *ei)
  79{
  80	__u32 provided, calculated;
  81
  82	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  83	    cpu_to_le32(EXT4_OS_LINUX) ||
  84	    !ext4_has_metadata_csum(inode->i_sb))
  85		return 1;
  86
  87	provided = le16_to_cpu(raw->i_checksum_lo);
  88	calculated = ext4_inode_csum(inode, raw, ei);
  89	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  90	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  91		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  92	else
  93		calculated &= 0xFFFF;
  94
  95	return provided == calculated;
  96}
  97
  98static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
  99				struct ext4_inode_info *ei)
 100{
 101	__u32 csum;
 102
 103	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 104	    cpu_to_le32(EXT4_OS_LINUX) ||
 105	    !ext4_has_metadata_csum(inode->i_sb))
 106		return;
 107
 108	csum = ext4_inode_csum(inode, raw, ei);
 109	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 110	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 111	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 112		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 113}
 114
 115static inline int ext4_begin_ordered_truncate(struct inode *inode,
 116					      loff_t new_size)
 117{
 118	trace_ext4_begin_ordered_truncate(inode, new_size);
 119	/*
 120	 * If jinode is zero, then we never opened the file for
 121	 * writing, so there's no need to call
 122	 * jbd2_journal_begin_ordered_truncate() since there's no
 123	 * outstanding writes we need to flush.
 124	 */
 125	if (!EXT4_I(inode)->jinode)
 126		return 0;
 127	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 128						   EXT4_I(inode)->jinode,
 129						   new_size);
 130}
 131
 132static void ext4_invalidatepage(struct page *page, unsigned int offset,
 133				unsigned int length);
 134static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 135static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 136static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 137				  int pextents);
 138
 139/*
 140 * Test whether an inode is a fast symlink.
 141 */
 142int ext4_inode_is_fast_symlink(struct inode *inode)
 143{
 144        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 145		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 146
 147	if (ext4_has_inline_data(inode))
 148		return 0;
 149
 150	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 151}
 152
 153/*
 154 * Restart the transaction associated with *handle.  This does a commit,
 155 * so before we call here everything must be consistently dirtied against
 156 * this transaction.
 157 */
 158int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 159				 int nblocks)
 160{
 161	int ret;
 162
 163	/*
 164	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 165	 * moment, get_block can be called only for blocks inside i_size since
 166	 * page cache has been already dropped and writes are blocked by
 167	 * i_mutex. So we can safely drop the i_data_sem here.
 168	 */
 169	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 170	jbd_debug(2, "restarting handle %p\n", handle);
 171	up_write(&EXT4_I(inode)->i_data_sem);
 172	ret = ext4_journal_restart(handle, nblocks);
 173	down_write(&EXT4_I(inode)->i_data_sem);
 174	ext4_discard_preallocations(inode);
 175
 176	return ret;
 177}
 178
 179/*
 180 * Called at the last iput() if i_nlink is zero.
 181 */
 182void ext4_evict_inode(struct inode *inode)
 183{
 184	handle_t *handle;
 185	int err;
 186
 187	trace_ext4_evict_inode(inode);
 188
 189	if (inode->i_nlink) {
 190		/*
 191		 * When journalling data dirty buffers are tracked only in the
 192		 * journal. So although mm thinks everything is clean and
 193		 * ready for reaping the inode might still have some pages to
 194		 * write in the running transaction or waiting to be
 195		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 196		 * (via truncate_inode_pages()) to discard these buffers can
 197		 * cause data loss. Also even if we did not discard these
 198		 * buffers, we would have no way to find them after the inode
 199		 * is reaped and thus user could see stale data if he tries to
 200		 * read them before the transaction is checkpointed. So be
 201		 * careful and force everything to disk here... We use
 202		 * ei->i_datasync_tid to store the newest transaction
 203		 * containing inode's data.
 204		 *
 205		 * Note that directories do not have this problem because they
 206		 * don't use page cache.
 207		 */
 208		if (ext4_should_journal_data(inode) &&
 209		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 210		    inode->i_ino != EXT4_JOURNAL_INO) {
 211			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 212			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 213
 214			jbd2_complete_transaction(journal, commit_tid);
 215			filemap_write_and_wait(&inode->i_data);
 216		}
 217		truncate_inode_pages_final(&inode->i_data);
 218
 219		goto no_delete;
 220	}
 221
 222	if (is_bad_inode(inode))
 223		goto no_delete;
 224	dquot_initialize(inode);
 225
 226	if (ext4_should_order_data(inode))
 227		ext4_begin_ordered_truncate(inode, 0);
 228	truncate_inode_pages_final(&inode->i_data);
 229
 230	/*
 231	 * Protect us against freezing - iput() caller didn't have to have any
 232	 * protection against it
 233	 */
 234	sb_start_intwrite(inode->i_sb);
 235	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 236				    ext4_blocks_for_truncate(inode)+3);
 237	if (IS_ERR(handle)) {
 238		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 239		/*
 240		 * If we're going to skip the normal cleanup, we still need to
 241		 * make sure that the in-core orphan linked list is properly
 242		 * cleaned up.
 243		 */
 244		ext4_orphan_del(NULL, inode);
 245		sb_end_intwrite(inode->i_sb);
 246		goto no_delete;
 247	}
 248
 249	if (IS_SYNC(inode))
 250		ext4_handle_sync(handle);
 251	inode->i_size = 0;
 252	err = ext4_mark_inode_dirty(handle, inode);
 253	if (err) {
 254		ext4_warning(inode->i_sb,
 255			     "couldn't mark inode dirty (err %d)", err);
 256		goto stop_handle;
 257	}
 258	if (inode->i_blocks)
 259		ext4_truncate(inode);
 
 
 
 
 
 
 
 260
 261	/*
 262	 * ext4_ext_truncate() doesn't reserve any slop when it
 263	 * restarts journal transactions; therefore there may not be
 264	 * enough credits left in the handle to remove the inode from
 265	 * the orphan list and set the dtime field.
 266	 */
 267	if (!ext4_handle_has_enough_credits(handle, 3)) {
 268		err = ext4_journal_extend(handle, 3);
 269		if (err > 0)
 270			err = ext4_journal_restart(handle, 3);
 271		if (err != 0) {
 272			ext4_warning(inode->i_sb,
 273				     "couldn't extend journal (err %d)", err);
 274		stop_handle:
 275			ext4_journal_stop(handle);
 276			ext4_orphan_del(NULL, inode);
 277			sb_end_intwrite(inode->i_sb);
 278			goto no_delete;
 279		}
 280	}
 281
 282	/*
 283	 * Kill off the orphan record which ext4_truncate created.
 284	 * AKPM: I think this can be inside the above `if'.
 285	 * Note that ext4_orphan_del() has to be able to cope with the
 286	 * deletion of a non-existent orphan - this is because we don't
 287	 * know if ext4_truncate() actually created an orphan record.
 288	 * (Well, we could do this if we need to, but heck - it works)
 289	 */
 290	ext4_orphan_del(handle, inode);
 291	EXT4_I(inode)->i_dtime	= get_seconds();
 292
 293	/*
 294	 * One subtle ordering requirement: if anything has gone wrong
 295	 * (transaction abort, IO errors, whatever), then we can still
 296	 * do these next steps (the fs will already have been marked as
 297	 * having errors), but we can't free the inode if the mark_dirty
 298	 * fails.
 299	 */
 300	if (ext4_mark_inode_dirty(handle, inode))
 301		/* If that failed, just do the required in-core inode clear. */
 302		ext4_clear_inode(inode);
 303	else
 304		ext4_free_inode(handle, inode);
 305	ext4_journal_stop(handle);
 306	sb_end_intwrite(inode->i_sb);
 307	return;
 308no_delete:
 309	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 310}
 311
 312#ifdef CONFIG_QUOTA
 313qsize_t *ext4_get_reserved_space(struct inode *inode)
 314{
 315	return &EXT4_I(inode)->i_reserved_quota;
 316}
 317#endif
 318
 319/*
 320 * Called with i_data_sem down, which is important since we can call
 321 * ext4_discard_preallocations() from here.
 322 */
 323void ext4_da_update_reserve_space(struct inode *inode,
 324					int used, int quota_claim)
 325{
 326	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 327	struct ext4_inode_info *ei = EXT4_I(inode);
 328
 329	spin_lock(&ei->i_block_reservation_lock);
 330	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 331	if (unlikely(used > ei->i_reserved_data_blocks)) {
 332		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 333			 "with only %d reserved data blocks",
 334			 __func__, inode->i_ino, used,
 335			 ei->i_reserved_data_blocks);
 336		WARN_ON(1);
 337		used = ei->i_reserved_data_blocks;
 338	}
 339
 340	/* Update per-inode reservations */
 341	ei->i_reserved_data_blocks -= used;
 342	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 343
 344	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 345
 346	/* Update quota subsystem for data blocks */
 347	if (quota_claim)
 348		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 349	else {
 350		/*
 351		 * We did fallocate with an offset that is already delayed
 352		 * allocated. So on delayed allocated writeback we should
 353		 * not re-claim the quota for fallocated blocks.
 354		 */
 355		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 356	}
 357
 358	/*
 359	 * If we have done all the pending block allocations and if
 360	 * there aren't any writers on the inode, we can discard the
 361	 * inode's preallocations.
 362	 */
 363	if ((ei->i_reserved_data_blocks == 0) &&
 364	    (atomic_read(&inode->i_writecount) == 0))
 365		ext4_discard_preallocations(inode);
 366}
 367
 368static int __check_block_validity(struct inode *inode, const char *func,
 369				unsigned int line,
 370				struct ext4_map_blocks *map)
 371{
 372	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 373				   map->m_len)) {
 374		ext4_error_inode(inode, func, line, map->m_pblk,
 375				 "lblock %lu mapped to illegal pblock "
 376				 "(length %d)", (unsigned long) map->m_lblk,
 377				 map->m_len);
 378		return -EFSCORRUPTED;
 379	}
 380	return 0;
 381}
 382
 383int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 384		       ext4_lblk_t len)
 385{
 386	int ret;
 387
 388	if (ext4_encrypted_inode(inode))
 389		return ext4_encrypted_zeroout(inode, lblk, pblk, len);
 390
 391	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 392	if (ret > 0)
 393		ret = 0;
 394
 395	return ret;
 396}
 397
 398#define check_block_validity(inode, map)	\
 399	__check_block_validity((inode), __func__, __LINE__, (map))
 400
 401#ifdef ES_AGGRESSIVE_TEST
 402static void ext4_map_blocks_es_recheck(handle_t *handle,
 403				       struct inode *inode,
 404				       struct ext4_map_blocks *es_map,
 405				       struct ext4_map_blocks *map,
 406				       int flags)
 407{
 408	int retval;
 409
 410	map->m_flags = 0;
 411	/*
 412	 * There is a race window that the result is not the same.
 413	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 414	 * is that we lookup a block mapping in extent status tree with
 415	 * out taking i_data_sem.  So at the time the unwritten extent
 416	 * could be converted.
 417	 */
 418	down_read(&EXT4_I(inode)->i_data_sem);
 419	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 420		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 421					     EXT4_GET_BLOCKS_KEEP_SIZE);
 422	} else {
 423		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 424					     EXT4_GET_BLOCKS_KEEP_SIZE);
 425	}
 426	up_read((&EXT4_I(inode)->i_data_sem));
 427
 428	/*
 429	 * We don't check m_len because extent will be collpased in status
 430	 * tree.  So the m_len might not equal.
 431	 */
 432	if (es_map->m_lblk != map->m_lblk ||
 433	    es_map->m_flags != map->m_flags ||
 434	    es_map->m_pblk != map->m_pblk) {
 435		printk("ES cache assertion failed for inode: %lu "
 436		       "es_cached ex [%d/%d/%llu/%x] != "
 437		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 438		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 439		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 440		       map->m_len, map->m_pblk, map->m_flags,
 441		       retval, flags);
 442	}
 443}
 444#endif /* ES_AGGRESSIVE_TEST */
 445
 446/*
 447 * The ext4_map_blocks() function tries to look up the requested blocks,
 448 * and returns if the blocks are already mapped.
 449 *
 450 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 451 * and store the allocated blocks in the result buffer head and mark it
 452 * mapped.
 453 *
 454 * If file type is extents based, it will call ext4_ext_map_blocks(),
 455 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 456 * based files
 457 *
 458 * On success, it returns the number of blocks being mapped or allocated.  if
 459 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 460 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 461 *
 462 * It returns 0 if plain look up failed (blocks have not been allocated), in
 463 * that case, @map is returned as unmapped but we still do fill map->m_len to
 464 * indicate the length of a hole starting at map->m_lblk.
 465 *
 466 * It returns the error in case of allocation failure.
 467 */
 468int ext4_map_blocks(handle_t *handle, struct inode *inode,
 469		    struct ext4_map_blocks *map, int flags)
 470{
 471	struct extent_status es;
 472	int retval;
 473	int ret = 0;
 474#ifdef ES_AGGRESSIVE_TEST
 475	struct ext4_map_blocks orig_map;
 476
 477	memcpy(&orig_map, map, sizeof(*map));
 478#endif
 479
 480	map->m_flags = 0;
 481	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 482		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 483		  (unsigned long) map->m_lblk);
 484
 485	/*
 486	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 487	 */
 488	if (unlikely(map->m_len > INT_MAX))
 489		map->m_len = INT_MAX;
 490
 491	/* We can handle the block number less than EXT_MAX_BLOCKS */
 492	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 493		return -EFSCORRUPTED;
 494
 495	/* Lookup extent status tree firstly */
 496	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 497		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 498			map->m_pblk = ext4_es_pblock(&es) +
 499					map->m_lblk - es.es_lblk;
 500			map->m_flags |= ext4_es_is_written(&es) ?
 501					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 502			retval = es.es_len - (map->m_lblk - es.es_lblk);
 503			if (retval > map->m_len)
 504				retval = map->m_len;
 505			map->m_len = retval;
 506		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 507			map->m_pblk = 0;
 508			retval = es.es_len - (map->m_lblk - es.es_lblk);
 509			if (retval > map->m_len)
 510				retval = map->m_len;
 511			map->m_len = retval;
 512			retval = 0;
 513		} else {
 514			BUG_ON(1);
 515		}
 516#ifdef ES_AGGRESSIVE_TEST
 517		ext4_map_blocks_es_recheck(handle, inode, map,
 518					   &orig_map, flags);
 519#endif
 520		goto found;
 521	}
 522
 523	/*
 524	 * Try to see if we can get the block without requesting a new
 525	 * file system block.
 526	 */
 527	down_read(&EXT4_I(inode)->i_data_sem);
 528	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 529		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 530					     EXT4_GET_BLOCKS_KEEP_SIZE);
 531	} else {
 532		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 533					     EXT4_GET_BLOCKS_KEEP_SIZE);
 534	}
 535	if (retval > 0) {
 536		unsigned int status;
 537
 538		if (unlikely(retval != map->m_len)) {
 539			ext4_warning(inode->i_sb,
 540				     "ES len assertion failed for inode "
 541				     "%lu: retval %d != map->m_len %d",
 542				     inode->i_ino, retval, map->m_len);
 543			WARN_ON(1);
 544		}
 545
 546		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 547				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 548		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 549		    !(status & EXTENT_STATUS_WRITTEN) &&
 550		    ext4_find_delalloc_range(inode, map->m_lblk,
 551					     map->m_lblk + map->m_len - 1))
 552			status |= EXTENT_STATUS_DELAYED;
 553		ret = ext4_es_insert_extent(inode, map->m_lblk,
 554					    map->m_len, map->m_pblk, status);
 555		if (ret < 0)
 556			retval = ret;
 557	}
 558	up_read((&EXT4_I(inode)->i_data_sem));
 559
 560found:
 561	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 562		ret = check_block_validity(inode, map);
 563		if (ret != 0)
 564			return ret;
 565	}
 566
 567	/* If it is only a block(s) look up */
 568	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 569		return retval;
 570
 571	/*
 572	 * Returns if the blocks have already allocated
 573	 *
 574	 * Note that if blocks have been preallocated
 575	 * ext4_ext_get_block() returns the create = 0
 576	 * with buffer head unmapped.
 577	 */
 578	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 579		/*
 580		 * If we need to convert extent to unwritten
 581		 * we continue and do the actual work in
 582		 * ext4_ext_map_blocks()
 583		 */
 584		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 585			return retval;
 586
 587	/*
 588	 * Here we clear m_flags because after allocating an new extent,
 589	 * it will be set again.
 590	 */
 591	map->m_flags &= ~EXT4_MAP_FLAGS;
 592
 593	/*
 594	 * New blocks allocate and/or writing to unwritten extent
 595	 * will possibly result in updating i_data, so we take
 596	 * the write lock of i_data_sem, and call get_block()
 597	 * with create == 1 flag.
 598	 */
 599	down_write(&EXT4_I(inode)->i_data_sem);
 600
 601	/*
 602	 * We need to check for EXT4 here because migrate
 603	 * could have changed the inode type in between
 604	 */
 605	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 606		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 607	} else {
 608		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 609
 610		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 611			/*
 612			 * We allocated new blocks which will result in
 613			 * i_data's format changing.  Force the migrate
 614			 * to fail by clearing migrate flags
 615			 */
 616			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 617		}
 618
 619		/*
 620		 * Update reserved blocks/metadata blocks after successful
 621		 * block allocation which had been deferred till now. We don't
 622		 * support fallocate for non extent files. So we can update
 623		 * reserve space here.
 624		 */
 625		if ((retval > 0) &&
 626			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 627			ext4_da_update_reserve_space(inode, retval, 1);
 628	}
 629
 630	if (retval > 0) {
 631		unsigned int status;
 632
 633		if (unlikely(retval != map->m_len)) {
 634			ext4_warning(inode->i_sb,
 635				     "ES len assertion failed for inode "
 636				     "%lu: retval %d != map->m_len %d",
 637				     inode->i_ino, retval, map->m_len);
 638			WARN_ON(1);
 639		}
 640
 641		/*
 642		 * We have to zeroout blocks before inserting them into extent
 643		 * status tree. Otherwise someone could look them up there and
 644		 * use them before they are really zeroed.
 
 
 645		 */
 646		if (flags & EXT4_GET_BLOCKS_ZERO &&
 647		    map->m_flags & EXT4_MAP_MAPPED &&
 648		    map->m_flags & EXT4_MAP_NEW) {
 
 
 649			ret = ext4_issue_zeroout(inode, map->m_lblk,
 650						 map->m_pblk, map->m_len);
 651			if (ret) {
 652				retval = ret;
 653				goto out_sem;
 654			}
 655		}
 656
 657		/*
 658		 * If the extent has been zeroed out, we don't need to update
 659		 * extent status tree.
 660		 */
 661		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 662		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 663			if (ext4_es_is_written(&es))
 664				goto out_sem;
 665		}
 666		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 667				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 668		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 669		    !(status & EXTENT_STATUS_WRITTEN) &&
 670		    ext4_find_delalloc_range(inode, map->m_lblk,
 671					     map->m_lblk + map->m_len - 1))
 672			status |= EXTENT_STATUS_DELAYED;
 673		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 674					    map->m_pblk, status);
 675		if (ret < 0) {
 676			retval = ret;
 677			goto out_sem;
 678		}
 679	}
 680
 681out_sem:
 682	up_write((&EXT4_I(inode)->i_data_sem));
 683	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 684		ret = check_block_validity(inode, map);
 685		if (ret != 0)
 686			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 687	}
 688	return retval;
 689}
 690
 691/*
 692 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 693 * we have to be careful as someone else may be manipulating b_state as well.
 694 */
 695static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 696{
 697	unsigned long old_state;
 698	unsigned long new_state;
 699
 700	flags &= EXT4_MAP_FLAGS;
 701
 702	/* Dummy buffer_head? Set non-atomically. */
 703	if (!bh->b_page) {
 704		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 705		return;
 706	}
 707	/*
 708	 * Someone else may be modifying b_state. Be careful! This is ugly but
 709	 * once we get rid of using bh as a container for mapping information
 710	 * to pass to / from get_block functions, this can go away.
 711	 */
 712	do {
 713		old_state = READ_ONCE(bh->b_state);
 714		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 715	} while (unlikely(
 716		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 717}
 718
 719static int _ext4_get_block(struct inode *inode, sector_t iblock,
 720			   struct buffer_head *bh, int flags)
 721{
 722	struct ext4_map_blocks map;
 723	int ret = 0;
 724
 725	if (ext4_has_inline_data(inode))
 726		return -ERANGE;
 727
 728	map.m_lblk = iblock;
 729	map.m_len = bh->b_size >> inode->i_blkbits;
 730
 731	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 732			      flags);
 733	if (ret > 0) {
 734		map_bh(bh, inode->i_sb, map.m_pblk);
 735		ext4_update_bh_state(bh, map.m_flags);
 736		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 737		ret = 0;
 
 
 
 738	}
 739	return ret;
 740}
 741
 742int ext4_get_block(struct inode *inode, sector_t iblock,
 743		   struct buffer_head *bh, int create)
 744{
 745	return _ext4_get_block(inode, iblock, bh,
 746			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 747}
 748
 749/*
 750 * Get block function used when preparing for buffered write if we require
 751 * creating an unwritten extent if blocks haven't been allocated.  The extent
 752 * will be converted to written after the IO is complete.
 753 */
 754int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 755			     struct buffer_head *bh_result, int create)
 756{
 757	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 758		   inode->i_ino, create);
 759	return _ext4_get_block(inode, iblock, bh_result,
 760			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 761}
 762
 763/* Maximum number of blocks we map for direct IO at once. */
 764#define DIO_MAX_BLOCKS 4096
 765
 766/*
 767 * Get blocks function for the cases that need to start a transaction -
 768 * generally difference cases of direct IO and DAX IO. It also handles retries
 769 * in case of ENOSPC.
 770 */
 771static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 772				struct buffer_head *bh_result, int flags)
 773{
 774	int dio_credits;
 775	handle_t *handle;
 776	int retries = 0;
 777	int ret;
 778
 779	/* Trim mapping request to maximum we can map at once for DIO */
 780	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 781		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 782	dio_credits = ext4_chunk_trans_blocks(inode,
 783				      bh_result->b_size >> inode->i_blkbits);
 784retry:
 785	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 786	if (IS_ERR(handle))
 787		return PTR_ERR(handle);
 788
 789	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 790	ext4_journal_stop(handle);
 791
 792	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 793		goto retry;
 794	return ret;
 795}
 796
 797/* Get block function for DIO reads and writes to inodes without extents */
 798int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 799		       struct buffer_head *bh, int create)
 800{
 801	/* We don't expect handle for direct IO */
 802	WARN_ON_ONCE(ext4_journal_current_handle());
 803
 804	if (!create)
 805		return _ext4_get_block(inode, iblock, bh, 0);
 806	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 807}
 808
 809/*
 810 * Get block function for AIO DIO writes when we create unwritten extent if
 811 * blocks are not allocated yet. The extent will be converted to written
 812 * after IO is complete.
 813 */
 814static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 815		sector_t iblock, struct buffer_head *bh_result,	int create)
 816{
 817	int ret;
 818
 819	/* We don't expect handle for direct IO */
 820	WARN_ON_ONCE(ext4_journal_current_handle());
 821
 822	ret = ext4_get_block_trans(inode, iblock, bh_result,
 823				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 824
 825	/*
 826	 * When doing DIO using unwritten extents, we need io_end to convert
 827	 * unwritten extents to written on IO completion. We allocate io_end
 828	 * once we spot unwritten extent and store it in b_private. Generic
 829	 * DIO code keeps b_private set and furthermore passes the value to
 830	 * our completion callback in 'private' argument.
 831	 */
 832	if (!ret && buffer_unwritten(bh_result)) {
 833		if (!bh_result->b_private) {
 834			ext4_io_end_t *io_end;
 835
 836			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 837			if (!io_end)
 838				return -ENOMEM;
 839			bh_result->b_private = io_end;
 840			ext4_set_io_unwritten_flag(inode, io_end);
 841		}
 842		set_buffer_defer_completion(bh_result);
 843	}
 844
 845	return ret;
 846}
 847
 848/*
 849 * Get block function for non-AIO DIO writes when we create unwritten extent if
 850 * blocks are not allocated yet. The extent will be converted to written
 851 * after IO is complete from ext4_ext_direct_IO() function.
 852 */
 853static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 854		sector_t iblock, struct buffer_head *bh_result,	int create)
 855{
 856	int ret;
 857
 858	/* We don't expect handle for direct IO */
 859	WARN_ON_ONCE(ext4_journal_current_handle());
 860
 861	ret = ext4_get_block_trans(inode, iblock, bh_result,
 862				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 863
 864	/*
 865	 * Mark inode as having pending DIO writes to unwritten extents.
 866	 * ext4_ext_direct_IO() checks this flag and converts extents to
 867	 * written.
 868	 */
 869	if (!ret && buffer_unwritten(bh_result))
 870		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 871
 872	return ret;
 873}
 874
 875static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 876		   struct buffer_head *bh_result, int create)
 877{
 878	int ret;
 879
 880	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 881		   inode->i_ino, create);
 882	/* We don't expect handle for direct IO */
 883	WARN_ON_ONCE(ext4_journal_current_handle());
 884
 885	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 886	/*
 887	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 888	 * that.
 889	 */
 890	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 891
 892	return ret;
 893}
 894
 895
 896/*
 897 * `handle' can be NULL if create is zero
 898 */
 899struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 900				ext4_lblk_t block, int map_flags)
 901{
 902	struct ext4_map_blocks map;
 903	struct buffer_head *bh;
 904	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 905	int err;
 906
 907	J_ASSERT(handle != NULL || create == 0);
 908
 909	map.m_lblk = block;
 910	map.m_len = 1;
 911	err = ext4_map_blocks(handle, inode, &map, map_flags);
 912
 913	if (err == 0)
 914		return create ? ERR_PTR(-ENOSPC) : NULL;
 915	if (err < 0)
 916		return ERR_PTR(err);
 917
 918	bh = sb_getblk(inode->i_sb, map.m_pblk);
 919	if (unlikely(!bh))
 920		return ERR_PTR(-ENOMEM);
 921	if (map.m_flags & EXT4_MAP_NEW) {
 922		J_ASSERT(create != 0);
 923		J_ASSERT(handle != NULL);
 924
 925		/*
 926		 * Now that we do not always journal data, we should
 927		 * keep in mind whether this should always journal the
 928		 * new buffer as metadata.  For now, regular file
 929		 * writes use ext4_get_block instead, so it's not a
 930		 * problem.
 931		 */
 932		lock_buffer(bh);
 933		BUFFER_TRACE(bh, "call get_create_access");
 934		err = ext4_journal_get_create_access(handle, bh);
 935		if (unlikely(err)) {
 936			unlock_buffer(bh);
 937			goto errout;
 938		}
 939		if (!buffer_uptodate(bh)) {
 940			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 941			set_buffer_uptodate(bh);
 942		}
 943		unlock_buffer(bh);
 944		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 945		err = ext4_handle_dirty_metadata(handle, inode, bh);
 946		if (unlikely(err))
 947			goto errout;
 948	} else
 949		BUFFER_TRACE(bh, "not a new buffer");
 950	return bh;
 951errout:
 952	brelse(bh);
 953	return ERR_PTR(err);
 954}
 955
 956struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 957			       ext4_lblk_t block, int map_flags)
 958{
 959	struct buffer_head *bh;
 960
 961	bh = ext4_getblk(handle, inode, block, map_flags);
 962	if (IS_ERR(bh))
 963		return bh;
 964	if (!bh || buffer_uptodate(bh))
 965		return bh;
 966	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
 967	wait_on_buffer(bh);
 968	if (buffer_uptodate(bh))
 969		return bh;
 970	put_bh(bh);
 971	return ERR_PTR(-EIO);
 972}
 973
 974int ext4_walk_page_buffers(handle_t *handle,
 975			   struct buffer_head *head,
 976			   unsigned from,
 977			   unsigned to,
 978			   int *partial,
 979			   int (*fn)(handle_t *handle,
 980				     struct buffer_head *bh))
 981{
 982	struct buffer_head *bh;
 983	unsigned block_start, block_end;
 984	unsigned blocksize = head->b_size;
 985	int err, ret = 0;
 986	struct buffer_head *next;
 987
 988	for (bh = head, block_start = 0;
 989	     ret == 0 && (bh != head || !block_start);
 990	     block_start = block_end, bh = next) {
 991		next = bh->b_this_page;
 992		block_end = block_start + blocksize;
 993		if (block_end <= from || block_start >= to) {
 994			if (partial && !buffer_uptodate(bh))
 995				*partial = 1;
 996			continue;
 997		}
 998		err = (*fn)(handle, bh);
 999		if (!ret)
1000			ret = err;
1001	}
1002	return ret;
1003}
1004
1005/*
1006 * To preserve ordering, it is essential that the hole instantiation and
1007 * the data write be encapsulated in a single transaction.  We cannot
1008 * close off a transaction and start a new one between the ext4_get_block()
1009 * and the commit_write().  So doing the jbd2_journal_start at the start of
1010 * prepare_write() is the right place.
1011 *
1012 * Also, this function can nest inside ext4_writepage().  In that case, we
1013 * *know* that ext4_writepage() has generated enough buffer credits to do the
1014 * whole page.  So we won't block on the journal in that case, which is good,
1015 * because the caller may be PF_MEMALLOC.
1016 *
1017 * By accident, ext4 can be reentered when a transaction is open via
1018 * quota file writes.  If we were to commit the transaction while thus
1019 * reentered, there can be a deadlock - we would be holding a quota
1020 * lock, and the commit would never complete if another thread had a
1021 * transaction open and was blocking on the quota lock - a ranking
1022 * violation.
1023 *
1024 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1025 * will _not_ run commit under these circumstances because handle->h_ref
1026 * is elevated.  We'll still have enough credits for the tiny quotafile
1027 * write.
1028 */
1029int do_journal_get_write_access(handle_t *handle,
1030				struct buffer_head *bh)
1031{
1032	int dirty = buffer_dirty(bh);
1033	int ret;
1034
1035	if (!buffer_mapped(bh) || buffer_freed(bh))
1036		return 0;
1037	/*
1038	 * __block_write_begin() could have dirtied some buffers. Clean
1039	 * the dirty bit as jbd2_journal_get_write_access() could complain
1040	 * otherwise about fs integrity issues. Setting of the dirty bit
1041	 * by __block_write_begin() isn't a real problem here as we clear
1042	 * the bit before releasing a page lock and thus writeback cannot
1043	 * ever write the buffer.
1044	 */
1045	if (dirty)
1046		clear_buffer_dirty(bh);
1047	BUFFER_TRACE(bh, "get write access");
1048	ret = ext4_journal_get_write_access(handle, bh);
1049	if (!ret && dirty)
1050		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1051	return ret;
1052}
1053
1054#ifdef CONFIG_EXT4_FS_ENCRYPTION
1055static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1056				  get_block_t *get_block)
1057{
1058	unsigned from = pos & (PAGE_SIZE - 1);
1059	unsigned to = from + len;
1060	struct inode *inode = page->mapping->host;
1061	unsigned block_start, block_end;
1062	sector_t block;
1063	int err = 0;
1064	unsigned blocksize = inode->i_sb->s_blocksize;
1065	unsigned bbits;
1066	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1067	bool decrypt = false;
1068
1069	BUG_ON(!PageLocked(page));
1070	BUG_ON(from > PAGE_SIZE);
1071	BUG_ON(to > PAGE_SIZE);
1072	BUG_ON(from > to);
1073
1074	if (!page_has_buffers(page))
1075		create_empty_buffers(page, blocksize, 0);
1076	head = page_buffers(page);
1077	bbits = ilog2(blocksize);
1078	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1079
1080	for (bh = head, block_start = 0; bh != head || !block_start;
1081	    block++, block_start = block_end, bh = bh->b_this_page) {
1082		block_end = block_start + blocksize;
1083		if (block_end <= from || block_start >= to) {
1084			if (PageUptodate(page)) {
1085				if (!buffer_uptodate(bh))
1086					set_buffer_uptodate(bh);
1087			}
1088			continue;
1089		}
1090		if (buffer_new(bh))
1091			clear_buffer_new(bh);
1092		if (!buffer_mapped(bh)) {
1093			WARN_ON(bh->b_size != blocksize);
1094			err = get_block(inode, block, bh, 1);
1095			if (err)
1096				break;
1097			if (buffer_new(bh)) {
1098				unmap_underlying_metadata(bh->b_bdev,
1099							  bh->b_blocknr);
1100				if (PageUptodate(page)) {
1101					clear_buffer_new(bh);
1102					set_buffer_uptodate(bh);
1103					mark_buffer_dirty(bh);
1104					continue;
1105				}
1106				if (block_end > to || block_start < from)
1107					zero_user_segments(page, to, block_end,
1108							   block_start, from);
1109				continue;
1110			}
1111		}
1112		if (PageUptodate(page)) {
1113			if (!buffer_uptodate(bh))
1114				set_buffer_uptodate(bh);
1115			continue;
1116		}
1117		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1118		    !buffer_unwritten(bh) &&
1119		    (block_start < from || block_end > to)) {
1120			ll_rw_block(READ, 1, &bh);
1121			*wait_bh++ = bh;
1122			decrypt = ext4_encrypted_inode(inode) &&
1123				S_ISREG(inode->i_mode);
1124		}
1125	}
1126	/*
1127	 * If we issued read requests, let them complete.
1128	 */
1129	while (wait_bh > wait) {
1130		wait_on_buffer(*--wait_bh);
1131		if (!buffer_uptodate(*wait_bh))
1132			err = -EIO;
1133	}
1134	if (unlikely(err))
1135		page_zero_new_buffers(page, from, to);
1136	else if (decrypt)
1137		err = ext4_decrypt(page);
 
1138	return err;
1139}
1140#endif
1141
1142static int ext4_write_begin(struct file *file, struct address_space *mapping,
1143			    loff_t pos, unsigned len, unsigned flags,
1144			    struct page **pagep, void **fsdata)
1145{
1146	struct inode *inode = mapping->host;
1147	int ret, needed_blocks;
1148	handle_t *handle;
1149	int retries = 0;
1150	struct page *page;
1151	pgoff_t index;
1152	unsigned from, to;
1153
1154	trace_ext4_write_begin(inode, pos, len, flags);
1155	/*
1156	 * Reserve one block more for addition to orphan list in case
1157	 * we allocate blocks but write fails for some reason
1158	 */
1159	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1160	index = pos >> PAGE_SHIFT;
1161	from = pos & (PAGE_SIZE - 1);
1162	to = from + len;
1163
1164	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1165		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1166						    flags, pagep);
1167		if (ret < 0)
1168			return ret;
1169		if (ret == 1)
1170			return 0;
1171	}
1172
1173	/*
1174	 * grab_cache_page_write_begin() can take a long time if the
1175	 * system is thrashing due to memory pressure, or if the page
1176	 * is being written back.  So grab it first before we start
1177	 * the transaction handle.  This also allows us to allocate
1178	 * the page (if needed) without using GFP_NOFS.
1179	 */
1180retry_grab:
1181	page = grab_cache_page_write_begin(mapping, index, flags);
1182	if (!page)
1183		return -ENOMEM;
1184	unlock_page(page);
1185
1186retry_journal:
1187	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1188	if (IS_ERR(handle)) {
1189		put_page(page);
1190		return PTR_ERR(handle);
1191	}
1192
1193	lock_page(page);
1194	if (page->mapping != mapping) {
1195		/* The page got truncated from under us */
1196		unlock_page(page);
1197		put_page(page);
1198		ext4_journal_stop(handle);
1199		goto retry_grab;
1200	}
1201	/* In case writeback began while the page was unlocked */
1202	wait_for_stable_page(page);
1203
1204#ifdef CONFIG_EXT4_FS_ENCRYPTION
1205	if (ext4_should_dioread_nolock(inode))
1206		ret = ext4_block_write_begin(page, pos, len,
1207					     ext4_get_block_unwritten);
1208	else
1209		ret = ext4_block_write_begin(page, pos, len,
1210					     ext4_get_block);
1211#else
1212	if (ext4_should_dioread_nolock(inode))
1213		ret = __block_write_begin(page, pos, len,
1214					  ext4_get_block_unwritten);
1215	else
1216		ret = __block_write_begin(page, pos, len, ext4_get_block);
1217#endif
1218	if (!ret && ext4_should_journal_data(inode)) {
1219		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1220					     from, to, NULL,
1221					     do_journal_get_write_access);
1222	}
1223
1224	if (ret) {
1225		unlock_page(page);
1226		/*
1227		 * __block_write_begin may have instantiated a few blocks
1228		 * outside i_size.  Trim these off again. Don't need
1229		 * i_size_read because we hold i_mutex.
1230		 *
1231		 * Add inode to orphan list in case we crash before
1232		 * truncate finishes
1233		 */
1234		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1235			ext4_orphan_add(handle, inode);
1236
1237		ext4_journal_stop(handle);
1238		if (pos + len > inode->i_size) {
1239			ext4_truncate_failed_write(inode);
1240			/*
1241			 * If truncate failed early the inode might
1242			 * still be on the orphan list; we need to
1243			 * make sure the inode is removed from the
1244			 * orphan list in that case.
1245			 */
1246			if (inode->i_nlink)
1247				ext4_orphan_del(NULL, inode);
1248		}
1249
1250		if (ret == -ENOSPC &&
1251		    ext4_should_retry_alloc(inode->i_sb, &retries))
1252			goto retry_journal;
1253		put_page(page);
1254		return ret;
1255	}
1256	*pagep = page;
1257	return ret;
1258}
1259
1260/* For write_end() in data=journal mode */
1261static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1262{
1263	int ret;
1264	if (!buffer_mapped(bh) || buffer_freed(bh))
1265		return 0;
1266	set_buffer_uptodate(bh);
1267	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1268	clear_buffer_meta(bh);
1269	clear_buffer_prio(bh);
1270	return ret;
1271}
1272
1273/*
1274 * We need to pick up the new inode size which generic_commit_write gave us
1275 * `file' can be NULL - eg, when called from page_symlink().
1276 *
1277 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1278 * buffers are managed internally.
1279 */
1280static int ext4_write_end(struct file *file,
1281			  struct address_space *mapping,
1282			  loff_t pos, unsigned len, unsigned copied,
1283			  struct page *page, void *fsdata)
1284{
1285	handle_t *handle = ext4_journal_current_handle();
1286	struct inode *inode = mapping->host;
1287	loff_t old_size = inode->i_size;
1288	int ret = 0, ret2;
1289	int i_size_changed = 0;
1290
1291	trace_ext4_write_end(inode, pos, len, copied);
1292	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1293		ret = ext4_jbd2_file_inode(handle, inode);
1294		if (ret) {
 
1295			unlock_page(page);
1296			put_page(page);
1297			goto errout;
1298		}
1299	}
1300
1301	if (ext4_has_inline_data(inode)) {
1302		ret = ext4_write_inline_data_end(inode, pos, len,
1303						 copied, page);
1304		if (ret < 0)
1305			goto errout;
1306		copied = ret;
1307	} else
1308		copied = block_write_end(file, mapping, pos,
1309					 len, copied, page, fsdata);
1310	/*
1311	 * it's important to update i_size while still holding page lock:
1312	 * page writeout could otherwise come in and zero beyond i_size.
1313	 */
1314	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1315	unlock_page(page);
1316	put_page(page);
1317
1318	if (old_size < pos)
1319		pagecache_isize_extended(inode, old_size, pos);
1320	/*
1321	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1322	 * makes the holding time of page lock longer. Second, it forces lock
1323	 * ordering of page lock and transaction start for journaling
1324	 * filesystems.
1325	 */
1326	if (i_size_changed)
1327		ext4_mark_inode_dirty(handle, inode);
1328
1329	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1330		/* if we have allocated more blocks and copied
1331		 * less. We will have blocks allocated outside
1332		 * inode->i_size. So truncate them
1333		 */
1334		ext4_orphan_add(handle, inode);
1335errout:
1336	ret2 = ext4_journal_stop(handle);
1337	if (!ret)
1338		ret = ret2;
1339
1340	if (pos + len > inode->i_size) {
1341		ext4_truncate_failed_write(inode);
1342		/*
1343		 * If truncate failed early the inode might still be
1344		 * on the orphan list; we need to make sure the inode
1345		 * is removed from the orphan list in that case.
1346		 */
1347		if (inode->i_nlink)
1348			ext4_orphan_del(NULL, inode);
1349	}
1350
1351	return ret ? ret : copied;
1352}
1353
1354/*
1355 * This is a private version of page_zero_new_buffers() which doesn't
1356 * set the buffer to be dirty, since in data=journalled mode we need
1357 * to call ext4_handle_dirty_metadata() instead.
1358 */
1359static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
 
 
1360{
1361	unsigned int block_start = 0, block_end;
1362	struct buffer_head *head, *bh;
1363
1364	bh = head = page_buffers(page);
1365	do {
1366		block_end = block_start + bh->b_size;
1367		if (buffer_new(bh)) {
1368			if (block_end > from && block_start < to) {
1369				if (!PageUptodate(page)) {
1370					unsigned start, size;
1371
1372					start = max(from, block_start);
1373					size = min(to, block_end) - start;
1374
1375					zero_user(page, start, size);
1376					set_buffer_uptodate(bh);
1377				}
1378				clear_buffer_new(bh);
1379			}
1380		}
1381		block_start = block_end;
1382		bh = bh->b_this_page;
1383	} while (bh != head);
1384}
1385
1386static int ext4_journalled_write_end(struct file *file,
1387				     struct address_space *mapping,
1388				     loff_t pos, unsigned len, unsigned copied,
1389				     struct page *page, void *fsdata)
1390{
1391	handle_t *handle = ext4_journal_current_handle();
1392	struct inode *inode = mapping->host;
1393	loff_t old_size = inode->i_size;
1394	int ret = 0, ret2;
1395	int partial = 0;
1396	unsigned from, to;
1397	int size_changed = 0;
1398
1399	trace_ext4_journalled_write_end(inode, pos, len, copied);
1400	from = pos & (PAGE_SIZE - 1);
1401	to = from + len;
1402
1403	BUG_ON(!ext4_handle_valid(handle));
1404
1405	if (ext4_has_inline_data(inode))
1406		copied = ext4_write_inline_data_end(inode, pos, len,
1407						    copied, page);
1408	else {
1409		if (copied < len) {
1410			if (!PageUptodate(page))
1411				copied = 0;
1412			zero_new_buffers(page, from+copied, to);
1413		}
1414
 
 
 
 
 
 
 
1415		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1416					     to, &partial, write_end_fn);
 
1417		if (!partial)
1418			SetPageUptodate(page);
1419	}
1420	size_changed = ext4_update_inode_size(inode, pos + copied);
1421	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1422	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1423	unlock_page(page);
1424	put_page(page);
1425
1426	if (old_size < pos)
1427		pagecache_isize_extended(inode, old_size, pos);
1428
1429	if (size_changed) {
1430		ret2 = ext4_mark_inode_dirty(handle, inode);
1431		if (!ret)
1432			ret = ret2;
1433	}
1434
1435	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1436		/* if we have allocated more blocks and copied
1437		 * less. We will have blocks allocated outside
1438		 * inode->i_size. So truncate them
1439		 */
1440		ext4_orphan_add(handle, inode);
1441
 
1442	ret2 = ext4_journal_stop(handle);
1443	if (!ret)
1444		ret = ret2;
1445	if (pos + len > inode->i_size) {
1446		ext4_truncate_failed_write(inode);
1447		/*
1448		 * If truncate failed early the inode might still be
1449		 * on the orphan list; we need to make sure the inode
1450		 * is removed from the orphan list in that case.
1451		 */
1452		if (inode->i_nlink)
1453			ext4_orphan_del(NULL, inode);
1454	}
1455
1456	return ret ? ret : copied;
1457}
1458
1459/*
1460 * Reserve space for a single cluster
1461 */
1462static int ext4_da_reserve_space(struct inode *inode)
1463{
1464	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1465	struct ext4_inode_info *ei = EXT4_I(inode);
1466	int ret;
1467
1468	/*
1469	 * We will charge metadata quota at writeout time; this saves
1470	 * us from metadata over-estimation, though we may go over by
1471	 * a small amount in the end.  Here we just reserve for data.
1472	 */
1473	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1474	if (ret)
1475		return ret;
1476
1477	spin_lock(&ei->i_block_reservation_lock);
1478	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1479		spin_unlock(&ei->i_block_reservation_lock);
1480		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1481		return -ENOSPC;
1482	}
1483	ei->i_reserved_data_blocks++;
1484	trace_ext4_da_reserve_space(inode);
1485	spin_unlock(&ei->i_block_reservation_lock);
1486
1487	return 0;       /* success */
1488}
1489
1490static void ext4_da_release_space(struct inode *inode, int to_free)
1491{
1492	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1493	struct ext4_inode_info *ei = EXT4_I(inode);
1494
1495	if (!to_free)
1496		return;		/* Nothing to release, exit */
1497
1498	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1499
1500	trace_ext4_da_release_space(inode, to_free);
1501	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1502		/*
1503		 * if there aren't enough reserved blocks, then the
1504		 * counter is messed up somewhere.  Since this
1505		 * function is called from invalidate page, it's
1506		 * harmless to return without any action.
1507		 */
1508		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1509			 "ino %lu, to_free %d with only %d reserved "
1510			 "data blocks", inode->i_ino, to_free,
1511			 ei->i_reserved_data_blocks);
1512		WARN_ON(1);
1513		to_free = ei->i_reserved_data_blocks;
1514	}
1515	ei->i_reserved_data_blocks -= to_free;
1516
1517	/* update fs dirty data blocks counter */
1518	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1519
1520	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1521
1522	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1523}
1524
1525static void ext4_da_page_release_reservation(struct page *page,
1526					     unsigned int offset,
1527					     unsigned int length)
1528{
1529	int to_release = 0, contiguous_blks = 0;
1530	struct buffer_head *head, *bh;
1531	unsigned int curr_off = 0;
1532	struct inode *inode = page->mapping->host;
1533	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1534	unsigned int stop = offset + length;
1535	int num_clusters;
1536	ext4_fsblk_t lblk;
1537
1538	BUG_ON(stop > PAGE_SIZE || stop < length);
1539
1540	head = page_buffers(page);
1541	bh = head;
1542	do {
1543		unsigned int next_off = curr_off + bh->b_size;
1544
1545		if (next_off > stop)
1546			break;
1547
1548		if ((offset <= curr_off) && (buffer_delay(bh))) {
1549			to_release++;
1550			contiguous_blks++;
1551			clear_buffer_delay(bh);
1552		} else if (contiguous_blks) {
1553			lblk = page->index <<
1554			       (PAGE_SHIFT - inode->i_blkbits);
1555			lblk += (curr_off >> inode->i_blkbits) -
1556				contiguous_blks;
1557			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1558			contiguous_blks = 0;
1559		}
1560		curr_off = next_off;
1561	} while ((bh = bh->b_this_page) != head);
1562
1563	if (contiguous_blks) {
1564		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1565		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1566		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1567	}
1568
1569	/* If we have released all the blocks belonging to a cluster, then we
1570	 * need to release the reserved space for that cluster. */
1571	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1572	while (num_clusters > 0) {
1573		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1574			((num_clusters - 1) << sbi->s_cluster_bits);
1575		if (sbi->s_cluster_ratio == 1 ||
1576		    !ext4_find_delalloc_cluster(inode, lblk))
1577			ext4_da_release_space(inode, 1);
1578
1579		num_clusters--;
1580	}
1581}
1582
1583/*
1584 * Delayed allocation stuff
1585 */
1586
1587struct mpage_da_data {
1588	struct inode *inode;
1589	struct writeback_control *wbc;
1590
1591	pgoff_t first_page;	/* The first page to write */
1592	pgoff_t next_page;	/* Current page to examine */
1593	pgoff_t last_page;	/* Last page to examine */
1594	/*
1595	 * Extent to map - this can be after first_page because that can be
1596	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1597	 * is delalloc or unwritten.
1598	 */
1599	struct ext4_map_blocks map;
1600	struct ext4_io_submit io_submit;	/* IO submission data */
1601};
1602
1603static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1604				       bool invalidate)
1605{
1606	int nr_pages, i;
1607	pgoff_t index, end;
1608	struct pagevec pvec;
1609	struct inode *inode = mpd->inode;
1610	struct address_space *mapping = inode->i_mapping;
1611
1612	/* This is necessary when next_page == 0. */
1613	if (mpd->first_page >= mpd->next_page)
1614		return;
1615
1616	index = mpd->first_page;
1617	end   = mpd->next_page - 1;
1618	if (invalidate) {
1619		ext4_lblk_t start, last;
1620		start = index << (PAGE_SHIFT - inode->i_blkbits);
1621		last = end << (PAGE_SHIFT - inode->i_blkbits);
1622		ext4_es_remove_extent(inode, start, last - start + 1);
1623	}
1624
1625	pagevec_init(&pvec, 0);
1626	while (index <= end) {
1627		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1628		if (nr_pages == 0)
1629			break;
1630		for (i = 0; i < nr_pages; i++) {
1631			struct page *page = pvec.pages[i];
1632			if (page->index > end)
1633				break;
1634			BUG_ON(!PageLocked(page));
1635			BUG_ON(PageWriteback(page));
1636			if (invalidate) {
 
 
1637				block_invalidatepage(page, 0, PAGE_SIZE);
1638				ClearPageUptodate(page);
1639			}
1640			unlock_page(page);
1641		}
1642		index = pvec.pages[nr_pages - 1]->index + 1;
1643		pagevec_release(&pvec);
1644	}
1645}
1646
1647static void ext4_print_free_blocks(struct inode *inode)
1648{
1649	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1650	struct super_block *sb = inode->i_sb;
1651	struct ext4_inode_info *ei = EXT4_I(inode);
1652
1653	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1654	       EXT4_C2B(EXT4_SB(inode->i_sb),
1655			ext4_count_free_clusters(sb)));
1656	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1657	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1658	       (long long) EXT4_C2B(EXT4_SB(sb),
1659		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1660	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1661	       (long long) EXT4_C2B(EXT4_SB(sb),
1662		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1663	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1664	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1665		 ei->i_reserved_data_blocks);
1666	return;
1667}
1668
1669static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1670{
1671	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1672}
1673
1674/*
1675 * This function is grabs code from the very beginning of
1676 * ext4_map_blocks, but assumes that the caller is from delayed write
1677 * time. This function looks up the requested blocks and sets the
1678 * buffer delay bit under the protection of i_data_sem.
1679 */
1680static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1681			      struct ext4_map_blocks *map,
1682			      struct buffer_head *bh)
1683{
1684	struct extent_status es;
1685	int retval;
1686	sector_t invalid_block = ~((sector_t) 0xffff);
1687#ifdef ES_AGGRESSIVE_TEST
1688	struct ext4_map_blocks orig_map;
1689
1690	memcpy(&orig_map, map, sizeof(*map));
1691#endif
1692
1693	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1694		invalid_block = ~0;
1695
1696	map->m_flags = 0;
1697	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1698		  "logical block %lu\n", inode->i_ino, map->m_len,
1699		  (unsigned long) map->m_lblk);
1700
1701	/* Lookup extent status tree firstly */
1702	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1703		if (ext4_es_is_hole(&es)) {
1704			retval = 0;
1705			down_read(&EXT4_I(inode)->i_data_sem);
1706			goto add_delayed;
1707		}
1708
1709		/*
1710		 * Delayed extent could be allocated by fallocate.
1711		 * So we need to check it.
1712		 */
1713		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1714			map_bh(bh, inode->i_sb, invalid_block);
1715			set_buffer_new(bh);
1716			set_buffer_delay(bh);
1717			return 0;
1718		}
1719
1720		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1721		retval = es.es_len - (iblock - es.es_lblk);
1722		if (retval > map->m_len)
1723			retval = map->m_len;
1724		map->m_len = retval;
1725		if (ext4_es_is_written(&es))
1726			map->m_flags |= EXT4_MAP_MAPPED;
1727		else if (ext4_es_is_unwritten(&es))
1728			map->m_flags |= EXT4_MAP_UNWRITTEN;
1729		else
1730			BUG_ON(1);
1731
1732#ifdef ES_AGGRESSIVE_TEST
1733		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1734#endif
1735		return retval;
1736	}
1737
1738	/*
1739	 * Try to see if we can get the block without requesting a new
1740	 * file system block.
1741	 */
1742	down_read(&EXT4_I(inode)->i_data_sem);
1743	if (ext4_has_inline_data(inode))
1744		retval = 0;
1745	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1746		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1747	else
1748		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1749
1750add_delayed:
1751	if (retval == 0) {
1752		int ret;
1753		/*
1754		 * XXX: __block_prepare_write() unmaps passed block,
1755		 * is it OK?
1756		 */
1757		/*
1758		 * If the block was allocated from previously allocated cluster,
1759		 * then we don't need to reserve it again. However we still need
1760		 * to reserve metadata for every block we're going to write.
1761		 */
1762		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1763		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1764			ret = ext4_da_reserve_space(inode);
1765			if (ret) {
1766				/* not enough space to reserve */
1767				retval = ret;
1768				goto out_unlock;
1769			}
1770		}
1771
1772		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773					    ~0, EXTENT_STATUS_DELAYED);
1774		if (ret) {
1775			retval = ret;
1776			goto out_unlock;
1777		}
1778
1779		map_bh(bh, inode->i_sb, invalid_block);
1780		set_buffer_new(bh);
1781		set_buffer_delay(bh);
1782	} else if (retval > 0) {
1783		int ret;
1784		unsigned int status;
1785
1786		if (unlikely(retval != map->m_len)) {
1787			ext4_warning(inode->i_sb,
1788				     "ES len assertion failed for inode "
1789				     "%lu: retval %d != map->m_len %d",
1790				     inode->i_ino, retval, map->m_len);
1791			WARN_ON(1);
1792		}
1793
1794		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1795				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1796		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1797					    map->m_pblk, status);
1798		if (ret != 0)
1799			retval = ret;
1800	}
1801
1802out_unlock:
1803	up_read((&EXT4_I(inode)->i_data_sem));
1804
1805	return retval;
1806}
1807
1808/*
1809 * This is a special get_block_t callback which is used by
1810 * ext4_da_write_begin().  It will either return mapped block or
1811 * reserve space for a single block.
1812 *
1813 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1814 * We also have b_blocknr = -1 and b_bdev initialized properly
1815 *
1816 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1817 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1818 * initialized properly.
1819 */
1820int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1821			   struct buffer_head *bh, int create)
1822{
1823	struct ext4_map_blocks map;
1824	int ret = 0;
1825
1826	BUG_ON(create == 0);
1827	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1828
1829	map.m_lblk = iblock;
1830	map.m_len = 1;
1831
1832	/*
1833	 * first, we need to know whether the block is allocated already
1834	 * preallocated blocks are unmapped but should treated
1835	 * the same as allocated blocks.
1836	 */
1837	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1838	if (ret <= 0)
1839		return ret;
1840
1841	map_bh(bh, inode->i_sb, map.m_pblk);
1842	ext4_update_bh_state(bh, map.m_flags);
1843
1844	if (buffer_unwritten(bh)) {
1845		/* A delayed write to unwritten bh should be marked
1846		 * new and mapped.  Mapped ensures that we don't do
1847		 * get_block multiple times when we write to the same
1848		 * offset and new ensures that we do proper zero out
1849		 * for partial write.
1850		 */
1851		set_buffer_new(bh);
1852		set_buffer_mapped(bh);
1853	}
1854	return 0;
1855}
1856
1857static int bget_one(handle_t *handle, struct buffer_head *bh)
1858{
1859	get_bh(bh);
1860	return 0;
1861}
1862
1863static int bput_one(handle_t *handle, struct buffer_head *bh)
1864{
1865	put_bh(bh);
1866	return 0;
1867}
1868
1869static int __ext4_journalled_writepage(struct page *page,
1870				       unsigned int len)
1871{
1872	struct address_space *mapping = page->mapping;
1873	struct inode *inode = mapping->host;
1874	struct buffer_head *page_bufs = NULL;
1875	handle_t *handle = NULL;
1876	int ret = 0, err = 0;
1877	int inline_data = ext4_has_inline_data(inode);
1878	struct buffer_head *inode_bh = NULL;
1879
1880	ClearPageChecked(page);
1881
1882	if (inline_data) {
1883		BUG_ON(page->index != 0);
1884		BUG_ON(len > ext4_get_max_inline_size(inode));
1885		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1886		if (inode_bh == NULL)
1887			goto out;
1888	} else {
1889		page_bufs = page_buffers(page);
1890		if (!page_bufs) {
1891			BUG();
1892			goto out;
1893		}
1894		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1895				       NULL, bget_one);
1896	}
1897	/*
1898	 * We need to release the page lock before we start the
1899	 * journal, so grab a reference so the page won't disappear
1900	 * out from under us.
1901	 */
1902	get_page(page);
1903	unlock_page(page);
1904
1905	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1906				    ext4_writepage_trans_blocks(inode));
1907	if (IS_ERR(handle)) {
1908		ret = PTR_ERR(handle);
1909		put_page(page);
1910		goto out_no_pagelock;
1911	}
1912	BUG_ON(!ext4_handle_valid(handle));
1913
1914	lock_page(page);
1915	put_page(page);
1916	if (page->mapping != mapping) {
1917		/* The page got truncated from under us */
1918		ext4_journal_stop(handle);
1919		ret = 0;
1920		goto out;
1921	}
1922
1923	if (inline_data) {
1924		BUFFER_TRACE(inode_bh, "get write access");
1925		ret = ext4_journal_get_write_access(handle, inode_bh);
1926
1927		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1928
1929	} else {
1930		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1931					     do_journal_get_write_access);
1932
1933		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1934					     write_end_fn);
1935	}
1936	if (ret == 0)
1937		ret = err;
1938	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1939	err = ext4_journal_stop(handle);
1940	if (!ret)
1941		ret = err;
1942
1943	if (!ext4_has_inline_data(inode))
1944		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1945				       NULL, bput_one);
1946	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1947out:
1948	unlock_page(page);
1949out_no_pagelock:
1950	brelse(inode_bh);
1951	return ret;
1952}
1953
1954/*
1955 * Note that we don't need to start a transaction unless we're journaling data
1956 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1957 * need to file the inode to the transaction's list in ordered mode because if
1958 * we are writing back data added by write(), the inode is already there and if
1959 * we are writing back data modified via mmap(), no one guarantees in which
1960 * transaction the data will hit the disk. In case we are journaling data, we
1961 * cannot start transaction directly because transaction start ranks above page
1962 * lock so we have to do some magic.
1963 *
1964 * This function can get called via...
1965 *   - ext4_writepages after taking page lock (have journal handle)
1966 *   - journal_submit_inode_data_buffers (no journal handle)
1967 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1968 *   - grab_page_cache when doing write_begin (have journal handle)
1969 *
1970 * We don't do any block allocation in this function. If we have page with
1971 * multiple blocks we need to write those buffer_heads that are mapped. This
1972 * is important for mmaped based write. So if we do with blocksize 1K
1973 * truncate(f, 1024);
1974 * a = mmap(f, 0, 4096);
1975 * a[0] = 'a';
1976 * truncate(f, 4096);
1977 * we have in the page first buffer_head mapped via page_mkwrite call back
1978 * but other buffer_heads would be unmapped but dirty (dirty done via the
1979 * do_wp_page). So writepage should write the first block. If we modify
1980 * the mmap area beyond 1024 we will again get a page_fault and the
1981 * page_mkwrite callback will do the block allocation and mark the
1982 * buffer_heads mapped.
1983 *
1984 * We redirty the page if we have any buffer_heads that is either delay or
1985 * unwritten in the page.
1986 *
1987 * We can get recursively called as show below.
1988 *
1989 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1990 *		ext4_writepage()
1991 *
1992 * But since we don't do any block allocation we should not deadlock.
1993 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1994 */
1995static int ext4_writepage(struct page *page,
1996			  struct writeback_control *wbc)
1997{
1998	int ret = 0;
1999	loff_t size;
2000	unsigned int len;
2001	struct buffer_head *page_bufs = NULL;
2002	struct inode *inode = page->mapping->host;
2003	struct ext4_io_submit io_submit;
2004	bool keep_towrite = false;
2005
2006	trace_ext4_writepage(page);
2007	size = i_size_read(inode);
2008	if (page->index == size >> PAGE_SHIFT)
2009		len = size & ~PAGE_MASK;
2010	else
2011		len = PAGE_SIZE;
2012
2013	page_bufs = page_buffers(page);
2014	/*
2015	 * We cannot do block allocation or other extent handling in this
2016	 * function. If there are buffers needing that, we have to redirty
2017	 * the page. But we may reach here when we do a journal commit via
2018	 * journal_submit_inode_data_buffers() and in that case we must write
2019	 * allocated buffers to achieve data=ordered mode guarantees.
2020	 *
2021	 * Also, if there is only one buffer per page (the fs block
2022	 * size == the page size), if one buffer needs block
2023	 * allocation or needs to modify the extent tree to clear the
2024	 * unwritten flag, we know that the page can't be written at
2025	 * all, so we might as well refuse the write immediately.
2026	 * Unfortunately if the block size != page size, we can't as
2027	 * easily detect this case using ext4_walk_page_buffers(), but
2028	 * for the extremely common case, this is an optimization that
2029	 * skips a useless round trip through ext4_bio_write_page().
2030	 */
2031	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2032				   ext4_bh_delay_or_unwritten)) {
2033		redirty_page_for_writepage(wbc, page);
2034		if ((current->flags & PF_MEMALLOC) ||
2035		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2036			/*
2037			 * For memory cleaning there's no point in writing only
2038			 * some buffers. So just bail out. Warn if we came here
2039			 * from direct reclaim.
2040			 */
2041			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2042							== PF_MEMALLOC);
2043			unlock_page(page);
2044			return 0;
2045		}
2046		keep_towrite = true;
2047	}
2048
2049	if (PageChecked(page) && ext4_should_journal_data(inode))
2050		/*
2051		 * It's mmapped pagecache.  Add buffers and journal it.  There
2052		 * doesn't seem much point in redirtying the page here.
2053		 */
2054		return __ext4_journalled_writepage(page, len);
2055
2056	ext4_io_submit_init(&io_submit, wbc);
2057	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2058	if (!io_submit.io_end) {
2059		redirty_page_for_writepage(wbc, page);
2060		unlock_page(page);
2061		return -ENOMEM;
2062	}
2063	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2064	ext4_io_submit(&io_submit);
2065	/* Drop io_end reference we got from init */
2066	ext4_put_io_end_defer(io_submit.io_end);
2067	return ret;
2068}
2069
2070static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2071{
2072	int len;
2073	loff_t size = i_size_read(mpd->inode);
2074	int err;
2075
2076	BUG_ON(page->index != mpd->first_page);
2077	if (page->index == size >> PAGE_SHIFT)
2078		len = size & ~PAGE_MASK;
2079	else
2080		len = PAGE_SIZE;
2081	clear_page_dirty_for_io(page);
2082	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2083	if (!err)
2084		mpd->wbc->nr_to_write--;
2085	mpd->first_page++;
2086
2087	return err;
2088}
2089
2090#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2091
2092/*
2093 * mballoc gives us at most this number of blocks...
2094 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2095 * The rest of mballoc seems to handle chunks up to full group size.
2096 */
2097#define MAX_WRITEPAGES_EXTENT_LEN 2048
2098
2099/*
2100 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2101 *
2102 * @mpd - extent of blocks
2103 * @lblk - logical number of the block in the file
2104 * @bh - buffer head we want to add to the extent
2105 *
2106 * The function is used to collect contig. blocks in the same state. If the
2107 * buffer doesn't require mapping for writeback and we haven't started the
2108 * extent of buffers to map yet, the function returns 'true' immediately - the
2109 * caller can write the buffer right away. Otherwise the function returns true
2110 * if the block has been added to the extent, false if the block couldn't be
2111 * added.
2112 */
2113static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2114				   struct buffer_head *bh)
2115{
2116	struct ext4_map_blocks *map = &mpd->map;
2117
2118	/* Buffer that doesn't need mapping for writeback? */
2119	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2120	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2121		/* So far no extent to map => we write the buffer right away */
2122		if (map->m_len == 0)
2123			return true;
2124		return false;
2125	}
2126
2127	/* First block in the extent? */
2128	if (map->m_len == 0) {
2129		map->m_lblk = lblk;
2130		map->m_len = 1;
2131		map->m_flags = bh->b_state & BH_FLAGS;
2132		return true;
2133	}
2134
2135	/* Don't go larger than mballoc is willing to allocate */
2136	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2137		return false;
2138
2139	/* Can we merge the block to our big extent? */
2140	if (lblk == map->m_lblk + map->m_len &&
2141	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2142		map->m_len++;
2143		return true;
2144	}
2145	return false;
2146}
2147
2148/*
2149 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2150 *
2151 * @mpd - extent of blocks for mapping
2152 * @head - the first buffer in the page
2153 * @bh - buffer we should start processing from
2154 * @lblk - logical number of the block in the file corresponding to @bh
2155 *
2156 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2157 * the page for IO if all buffers in this page were mapped and there's no
2158 * accumulated extent of buffers to map or add buffers in the page to the
2159 * extent of buffers to map. The function returns 1 if the caller can continue
2160 * by processing the next page, 0 if it should stop adding buffers to the
2161 * extent to map because we cannot extend it anymore. It can also return value
2162 * < 0 in case of error during IO submission.
2163 */
2164static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2165				   struct buffer_head *head,
2166				   struct buffer_head *bh,
2167				   ext4_lblk_t lblk)
2168{
2169	struct inode *inode = mpd->inode;
2170	int err;
2171	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2172							>> inode->i_blkbits;
2173
2174	do {
2175		BUG_ON(buffer_locked(bh));
2176
2177		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178			/* Found extent to map? */
2179			if (mpd->map.m_len)
2180				return 0;
2181			/* Everything mapped so far and we hit EOF */
2182			break;
2183		}
2184	} while (lblk++, (bh = bh->b_this_page) != head);
2185	/* So far everything mapped? Submit the page for IO. */
2186	if (mpd->map.m_len == 0) {
2187		err = mpage_submit_page(mpd, head->b_page);
2188		if (err < 0)
2189			return err;
2190	}
2191	return lblk < blocks;
2192}
2193
2194/*
2195 * mpage_map_buffers - update buffers corresponding to changed extent and
2196 *		       submit fully mapped pages for IO
2197 *
2198 * @mpd - description of extent to map, on return next extent to map
2199 *
2200 * Scan buffers corresponding to changed extent (we expect corresponding pages
2201 * to be already locked) and update buffer state according to new extent state.
2202 * We map delalloc buffers to their physical location, clear unwritten bits,
2203 * and mark buffers as uninit when we perform writes to unwritten extents
2204 * and do extent conversion after IO is finished. If the last page is not fully
2205 * mapped, we update @map to the next extent in the last page that needs
2206 * mapping. Otherwise we submit the page for IO.
2207 */
2208static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2209{
2210	struct pagevec pvec;
2211	int nr_pages, i;
2212	struct inode *inode = mpd->inode;
2213	struct buffer_head *head, *bh;
2214	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2215	pgoff_t start, end;
2216	ext4_lblk_t lblk;
2217	sector_t pblock;
2218	int err;
2219
2220	start = mpd->map.m_lblk >> bpp_bits;
2221	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2222	lblk = start << bpp_bits;
2223	pblock = mpd->map.m_pblk;
2224
2225	pagevec_init(&pvec, 0);
2226	while (start <= end) {
2227		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2228					  PAGEVEC_SIZE);
2229		if (nr_pages == 0)
2230			break;
2231		for (i = 0; i < nr_pages; i++) {
2232			struct page *page = pvec.pages[i];
2233
2234			if (page->index > end)
2235				break;
2236			/* Up to 'end' pages must be contiguous */
2237			BUG_ON(page->index != start);
2238			bh = head = page_buffers(page);
2239			do {
2240				if (lblk < mpd->map.m_lblk)
2241					continue;
2242				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2243					/*
2244					 * Buffer after end of mapped extent.
2245					 * Find next buffer in the page to map.
2246					 */
2247					mpd->map.m_len = 0;
2248					mpd->map.m_flags = 0;
2249					/*
2250					 * FIXME: If dioread_nolock supports
2251					 * blocksize < pagesize, we need to make
2252					 * sure we add size mapped so far to
2253					 * io_end->size as the following call
2254					 * can submit the page for IO.
2255					 */
2256					err = mpage_process_page_bufs(mpd, head,
2257								      bh, lblk);
2258					pagevec_release(&pvec);
2259					if (err > 0)
2260						err = 0;
2261					return err;
2262				}
2263				if (buffer_delay(bh)) {
2264					clear_buffer_delay(bh);
2265					bh->b_blocknr = pblock++;
2266				}
2267				clear_buffer_unwritten(bh);
2268			} while (lblk++, (bh = bh->b_this_page) != head);
2269
2270			/*
2271			 * FIXME: This is going to break if dioread_nolock
2272			 * supports blocksize < pagesize as we will try to
2273			 * convert potentially unmapped parts of inode.
2274			 */
2275			mpd->io_submit.io_end->size += PAGE_SIZE;
2276			/* Page fully mapped - let IO run! */
2277			err = mpage_submit_page(mpd, page);
2278			if (err < 0) {
2279				pagevec_release(&pvec);
2280				return err;
2281			}
2282			start++;
2283		}
2284		pagevec_release(&pvec);
2285	}
2286	/* Extent fully mapped and matches with page boundary. We are done. */
2287	mpd->map.m_len = 0;
2288	mpd->map.m_flags = 0;
2289	return 0;
2290}
2291
2292static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2293{
2294	struct inode *inode = mpd->inode;
2295	struct ext4_map_blocks *map = &mpd->map;
2296	int get_blocks_flags;
2297	int err, dioread_nolock;
2298
2299	trace_ext4_da_write_pages_extent(inode, map);
2300	/*
2301	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2302	 * to convert an unwritten extent to be initialized (in the case
2303	 * where we have written into one or more preallocated blocks).  It is
2304	 * possible that we're going to need more metadata blocks than
2305	 * previously reserved. However we must not fail because we're in
2306	 * writeback and there is nothing we can do about it so it might result
2307	 * in data loss.  So use reserved blocks to allocate metadata if
2308	 * possible.
2309	 *
2310	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2311	 * the blocks in question are delalloc blocks.  This indicates
2312	 * that the blocks and quotas has already been checked when
2313	 * the data was copied into the page cache.
2314	 */
2315	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2316			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
 
2317	dioread_nolock = ext4_should_dioread_nolock(inode);
2318	if (dioread_nolock)
2319		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2320	if (map->m_flags & (1 << BH_Delay))
2321		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2322
2323	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2324	if (err < 0)
2325		return err;
2326	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2327		if (!mpd->io_submit.io_end->handle &&
2328		    ext4_handle_valid(handle)) {
2329			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2330			handle->h_rsv_handle = NULL;
2331		}
2332		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2333	}
2334
2335	BUG_ON(map->m_len == 0);
2336	if (map->m_flags & EXT4_MAP_NEW) {
2337		struct block_device *bdev = inode->i_sb->s_bdev;
2338		int i;
2339
2340		for (i = 0; i < map->m_len; i++)
2341			unmap_underlying_metadata(bdev, map->m_pblk + i);
2342	}
2343	return 0;
2344}
2345
2346/*
2347 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2348 *				 mpd->len and submit pages underlying it for IO
2349 *
2350 * @handle - handle for journal operations
2351 * @mpd - extent to map
2352 * @give_up_on_write - we set this to true iff there is a fatal error and there
2353 *                     is no hope of writing the data. The caller should discard
2354 *                     dirty pages to avoid infinite loops.
2355 *
2356 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2357 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2358 * them to initialized or split the described range from larger unwritten
2359 * extent. Note that we need not map all the described range since allocation
2360 * can return less blocks or the range is covered by more unwritten extents. We
2361 * cannot map more because we are limited by reserved transaction credits. On
2362 * the other hand we always make sure that the last touched page is fully
2363 * mapped so that it can be written out (and thus forward progress is
2364 * guaranteed). After mapping we submit all mapped pages for IO.
2365 */
2366static int mpage_map_and_submit_extent(handle_t *handle,
2367				       struct mpage_da_data *mpd,
2368				       bool *give_up_on_write)
2369{
2370	struct inode *inode = mpd->inode;
2371	struct ext4_map_blocks *map = &mpd->map;
2372	int err;
2373	loff_t disksize;
2374	int progress = 0;
2375
2376	mpd->io_submit.io_end->offset =
2377				((loff_t)map->m_lblk) << inode->i_blkbits;
2378	do {
2379		err = mpage_map_one_extent(handle, mpd);
2380		if (err < 0) {
2381			struct super_block *sb = inode->i_sb;
2382
2383			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2384				goto invalidate_dirty_pages;
2385			/*
2386			 * Let the uper layers retry transient errors.
2387			 * In the case of ENOSPC, if ext4_count_free_blocks()
2388			 * is non-zero, a commit should free up blocks.
2389			 */
2390			if ((err == -ENOMEM) ||
2391			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2392				if (progress)
2393					goto update_disksize;
2394				return err;
2395			}
2396			ext4_msg(sb, KERN_CRIT,
2397				 "Delayed block allocation failed for "
2398				 "inode %lu at logical offset %llu with"
2399				 " max blocks %u with error %d",
2400				 inode->i_ino,
2401				 (unsigned long long)map->m_lblk,
2402				 (unsigned)map->m_len, -err);
2403			ext4_msg(sb, KERN_CRIT,
2404				 "This should not happen!! Data will "
2405				 "be lost\n");
2406			if (err == -ENOSPC)
2407				ext4_print_free_blocks(inode);
2408		invalidate_dirty_pages:
2409			*give_up_on_write = true;
2410			return err;
2411		}
2412		progress = 1;
2413		/*
2414		 * Update buffer state, submit mapped pages, and get us new
2415		 * extent to map
2416		 */
2417		err = mpage_map_and_submit_buffers(mpd);
2418		if (err < 0)
2419			goto update_disksize;
2420	} while (map->m_len);
2421
2422update_disksize:
2423	/*
2424	 * Update on-disk size after IO is submitted.  Races with
2425	 * truncate are avoided by checking i_size under i_data_sem.
2426	 */
2427	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2428	if (disksize > EXT4_I(inode)->i_disksize) {
2429		int err2;
2430		loff_t i_size;
2431
2432		down_write(&EXT4_I(inode)->i_data_sem);
2433		i_size = i_size_read(inode);
2434		if (disksize > i_size)
2435			disksize = i_size;
2436		if (disksize > EXT4_I(inode)->i_disksize)
2437			EXT4_I(inode)->i_disksize = disksize;
2438		err2 = ext4_mark_inode_dirty(handle, inode);
2439		up_write(&EXT4_I(inode)->i_data_sem);
2440		if (err2)
2441			ext4_error(inode->i_sb,
2442				   "Failed to mark inode %lu dirty",
2443				   inode->i_ino);
2444		if (!err)
2445			err = err2;
2446	}
2447	return err;
2448}
2449
2450/*
2451 * Calculate the total number of credits to reserve for one writepages
2452 * iteration. This is called from ext4_writepages(). We map an extent of
2453 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2454 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2455 * bpp - 1 blocks in bpp different extents.
2456 */
2457static int ext4_da_writepages_trans_blocks(struct inode *inode)
2458{
2459	int bpp = ext4_journal_blocks_per_page(inode);
2460
2461	return ext4_meta_trans_blocks(inode,
2462				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2463}
2464
2465/*
2466 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2467 * 				 and underlying extent to map
2468 *
2469 * @mpd - where to look for pages
2470 *
2471 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2472 * IO immediately. When we find a page which isn't mapped we start accumulating
2473 * extent of buffers underlying these pages that needs mapping (formed by
2474 * either delayed or unwritten buffers). We also lock the pages containing
2475 * these buffers. The extent found is returned in @mpd structure (starting at
2476 * mpd->lblk with length mpd->len blocks).
2477 *
2478 * Note that this function can attach bios to one io_end structure which are
2479 * neither logically nor physically contiguous. Although it may seem as an
2480 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2481 * case as we need to track IO to all buffers underlying a page in one io_end.
2482 */
2483static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2484{
2485	struct address_space *mapping = mpd->inode->i_mapping;
2486	struct pagevec pvec;
2487	unsigned int nr_pages;
2488	long left = mpd->wbc->nr_to_write;
2489	pgoff_t index = mpd->first_page;
2490	pgoff_t end = mpd->last_page;
2491	int tag;
2492	int i, err = 0;
2493	int blkbits = mpd->inode->i_blkbits;
2494	ext4_lblk_t lblk;
2495	struct buffer_head *head;
2496
2497	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2498		tag = PAGECACHE_TAG_TOWRITE;
2499	else
2500		tag = PAGECACHE_TAG_DIRTY;
2501
2502	pagevec_init(&pvec, 0);
2503	mpd->map.m_len = 0;
2504	mpd->next_page = index;
2505	while (index <= end) {
2506		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2507			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2508		if (nr_pages == 0)
2509			goto out;
2510
2511		for (i = 0; i < nr_pages; i++) {
2512			struct page *page = pvec.pages[i];
2513
2514			/*
2515			 * At this point, the page may be truncated or
2516			 * invalidated (changing page->mapping to NULL), or
2517			 * even swizzled back from swapper_space to tmpfs file
2518			 * mapping. However, page->index will not change
2519			 * because we have a reference on the page.
2520			 */
2521			if (page->index > end)
2522				goto out;
2523
2524			/*
2525			 * Accumulated enough dirty pages? This doesn't apply
2526			 * to WB_SYNC_ALL mode. For integrity sync we have to
2527			 * keep going because someone may be concurrently
2528			 * dirtying pages, and we might have synced a lot of
2529			 * newly appeared dirty pages, but have not synced all
2530			 * of the old dirty pages.
2531			 */
2532			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2533				goto out;
2534
2535			/* If we can't merge this page, we are done. */
2536			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2537				goto out;
2538
2539			lock_page(page);
2540			/*
2541			 * If the page is no longer dirty, or its mapping no
2542			 * longer corresponds to inode we are writing (which
2543			 * means it has been truncated or invalidated), or the
2544			 * page is already under writeback and we are not doing
2545			 * a data integrity writeback, skip the page
2546			 */
2547			if (!PageDirty(page) ||
2548			    (PageWriteback(page) &&
2549			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2550			    unlikely(page->mapping != mapping)) {
2551				unlock_page(page);
2552				continue;
2553			}
2554
2555			wait_on_page_writeback(page);
2556			BUG_ON(PageWriteback(page));
2557
2558			if (mpd->map.m_len == 0)
2559				mpd->first_page = page->index;
2560			mpd->next_page = page->index + 1;
2561			/* Add all dirty buffers to mpd */
2562			lblk = ((ext4_lblk_t)page->index) <<
2563				(PAGE_SHIFT - blkbits);
2564			head = page_buffers(page);
2565			err = mpage_process_page_bufs(mpd, head, head, lblk);
2566			if (err <= 0)
2567				goto out;
2568			err = 0;
2569			left--;
2570		}
2571		pagevec_release(&pvec);
2572		cond_resched();
2573	}
2574	return 0;
2575out:
2576	pagevec_release(&pvec);
2577	return err;
2578}
2579
2580static int __writepage(struct page *page, struct writeback_control *wbc,
2581		       void *data)
2582{
2583	struct address_space *mapping = data;
2584	int ret = ext4_writepage(page, wbc);
2585	mapping_set_error(mapping, ret);
2586	return ret;
2587}
2588
2589static int ext4_writepages(struct address_space *mapping,
2590			   struct writeback_control *wbc)
2591{
2592	pgoff_t	writeback_index = 0;
2593	long nr_to_write = wbc->nr_to_write;
2594	int range_whole = 0;
2595	int cycled = 1;
2596	handle_t *handle = NULL;
2597	struct mpage_da_data mpd;
2598	struct inode *inode = mapping->host;
2599	int needed_blocks, rsv_blocks = 0, ret = 0;
2600	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2601	bool done;
2602	struct blk_plug plug;
2603	bool give_up_on_write = false;
2604
 
2605	trace_ext4_writepages(inode, wbc);
2606
2607	if (dax_mapping(mapping))
2608		return dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2609						   wbc);
 
 
2610
2611	/*
2612	 * No pages to write? This is mainly a kludge to avoid starting
2613	 * a transaction for special inodes like journal inode on last iput()
2614	 * because that could violate lock ordering on umount
2615	 */
2616	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2617		goto out_writepages;
2618
2619	if (ext4_should_journal_data(inode)) {
2620		struct blk_plug plug;
2621
2622		blk_start_plug(&plug);
2623		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2624		blk_finish_plug(&plug);
2625		goto out_writepages;
2626	}
2627
2628	/*
2629	 * If the filesystem has aborted, it is read-only, so return
2630	 * right away instead of dumping stack traces later on that
2631	 * will obscure the real source of the problem.  We test
2632	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2633	 * the latter could be true if the filesystem is mounted
2634	 * read-only, and in that case, ext4_writepages should
2635	 * *never* be called, so if that ever happens, we would want
2636	 * the stack trace.
2637	 */
2638	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2639		ret = -EROFS;
2640		goto out_writepages;
2641	}
2642
2643	if (ext4_should_dioread_nolock(inode)) {
2644		/*
2645		 * We may need to convert up to one extent per block in
2646		 * the page and we may dirty the inode.
2647		 */
2648		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2649	}
2650
2651	/*
2652	 * If we have inline data and arrive here, it means that
2653	 * we will soon create the block for the 1st page, so
2654	 * we'd better clear the inline data here.
2655	 */
2656	if (ext4_has_inline_data(inode)) {
2657		/* Just inode will be modified... */
2658		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2659		if (IS_ERR(handle)) {
2660			ret = PTR_ERR(handle);
2661			goto out_writepages;
2662		}
2663		BUG_ON(ext4_test_inode_state(inode,
2664				EXT4_STATE_MAY_INLINE_DATA));
2665		ext4_destroy_inline_data(handle, inode);
2666		ext4_journal_stop(handle);
2667	}
2668
2669	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2670		range_whole = 1;
2671
2672	if (wbc->range_cyclic) {
2673		writeback_index = mapping->writeback_index;
2674		if (writeback_index)
2675			cycled = 0;
2676		mpd.first_page = writeback_index;
2677		mpd.last_page = -1;
2678	} else {
2679		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2680		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2681	}
2682
2683	mpd.inode = inode;
2684	mpd.wbc = wbc;
2685	ext4_io_submit_init(&mpd.io_submit, wbc);
2686retry:
2687	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2688		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2689	done = false;
2690	blk_start_plug(&plug);
2691	while (!done && mpd.first_page <= mpd.last_page) {
2692		/* For each extent of pages we use new io_end */
2693		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2694		if (!mpd.io_submit.io_end) {
2695			ret = -ENOMEM;
2696			break;
2697		}
2698
2699		/*
2700		 * We have two constraints: We find one extent to map and we
2701		 * must always write out whole page (makes a difference when
2702		 * blocksize < pagesize) so that we don't block on IO when we
2703		 * try to write out the rest of the page. Journalled mode is
2704		 * not supported by delalloc.
2705		 */
2706		BUG_ON(ext4_should_journal_data(inode));
2707		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2708
2709		/* start a new transaction */
2710		handle = ext4_journal_start_with_reserve(inode,
2711				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2712		if (IS_ERR(handle)) {
2713			ret = PTR_ERR(handle);
2714			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2715			       "%ld pages, ino %lu; err %d", __func__,
2716				wbc->nr_to_write, inode->i_ino, ret);
2717			/* Release allocated io_end */
2718			ext4_put_io_end(mpd.io_submit.io_end);
2719			break;
2720		}
2721
2722		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2723		ret = mpage_prepare_extent_to_map(&mpd);
2724		if (!ret) {
2725			if (mpd.map.m_len)
2726				ret = mpage_map_and_submit_extent(handle, &mpd,
2727					&give_up_on_write);
2728			else {
2729				/*
2730				 * We scanned the whole range (or exhausted
2731				 * nr_to_write), submitted what was mapped and
2732				 * didn't find anything needing mapping. We are
2733				 * done.
2734				 */
2735				done = true;
2736			}
2737		}
2738		ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
2739		/* Submit prepared bio */
2740		ext4_io_submit(&mpd.io_submit);
2741		/* Unlock pages we didn't use */
2742		mpage_release_unused_pages(&mpd, give_up_on_write);
2743		/* Drop our io_end reference we got from init */
2744		ext4_put_io_end(mpd.io_submit.io_end);
 
 
 
 
 
 
 
 
 
 
2745
2746		if (ret == -ENOSPC && sbi->s_journal) {
2747			/*
2748			 * Commit the transaction which would
2749			 * free blocks released in the transaction
2750			 * and try again
2751			 */
2752			jbd2_journal_force_commit_nested(sbi->s_journal);
2753			ret = 0;
2754			continue;
2755		}
2756		/* Fatal error - ENOMEM, EIO... */
2757		if (ret)
2758			break;
2759	}
2760	blk_finish_plug(&plug);
2761	if (!ret && !cycled && wbc->nr_to_write > 0) {
2762		cycled = 1;
2763		mpd.last_page = writeback_index - 1;
2764		mpd.first_page = 0;
2765		goto retry;
2766	}
2767
2768	/* Update index */
2769	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2770		/*
2771		 * Set the writeback_index so that range_cyclic
2772		 * mode will write it back later
2773		 */
2774		mapping->writeback_index = mpd.first_page;
2775
2776out_writepages:
2777	trace_ext4_writepages_result(inode, wbc, ret,
2778				     nr_to_write - wbc->nr_to_write);
 
2779	return ret;
2780}
2781
2782static int ext4_nonda_switch(struct super_block *sb)
2783{
2784	s64 free_clusters, dirty_clusters;
2785	struct ext4_sb_info *sbi = EXT4_SB(sb);
2786
2787	/*
2788	 * switch to non delalloc mode if we are running low
2789	 * on free block. The free block accounting via percpu
2790	 * counters can get slightly wrong with percpu_counter_batch getting
2791	 * accumulated on each CPU without updating global counters
2792	 * Delalloc need an accurate free block accounting. So switch
2793	 * to non delalloc when we are near to error range.
2794	 */
2795	free_clusters =
2796		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2797	dirty_clusters =
2798		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2799	/*
2800	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2801	 */
2802	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2803		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2804
2805	if (2 * free_clusters < 3 * dirty_clusters ||
2806	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2807		/*
2808		 * free block count is less than 150% of dirty blocks
2809		 * or free blocks is less than watermark
2810		 */
2811		return 1;
2812	}
2813	return 0;
2814}
2815
2816/* We always reserve for an inode update; the superblock could be there too */
2817static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2818{
2819	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2820		return 1;
2821
2822	if (pos + len <= 0x7fffffffULL)
2823		return 1;
2824
2825	/* We might need to update the superblock to set LARGE_FILE */
2826	return 2;
2827}
2828
2829static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2830			       loff_t pos, unsigned len, unsigned flags,
2831			       struct page **pagep, void **fsdata)
2832{
2833	int ret, retries = 0;
2834	struct page *page;
2835	pgoff_t index;
2836	struct inode *inode = mapping->host;
2837	handle_t *handle;
2838
2839	index = pos >> PAGE_SHIFT;
2840
2841	if (ext4_nonda_switch(inode->i_sb)) {
 
2842		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2843		return ext4_write_begin(file, mapping, pos,
2844					len, flags, pagep, fsdata);
2845	}
2846	*fsdata = (void *)0;
2847	trace_ext4_da_write_begin(inode, pos, len, flags);
2848
2849	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2850		ret = ext4_da_write_inline_data_begin(mapping, inode,
2851						      pos, len, flags,
2852						      pagep, fsdata);
2853		if (ret < 0)
2854			return ret;
2855		if (ret == 1)
2856			return 0;
2857	}
2858
2859	/*
2860	 * grab_cache_page_write_begin() can take a long time if the
2861	 * system is thrashing due to memory pressure, or if the page
2862	 * is being written back.  So grab it first before we start
2863	 * the transaction handle.  This also allows us to allocate
2864	 * the page (if needed) without using GFP_NOFS.
2865	 */
2866retry_grab:
2867	page = grab_cache_page_write_begin(mapping, index, flags);
2868	if (!page)
2869		return -ENOMEM;
2870	unlock_page(page);
2871
2872	/*
2873	 * With delayed allocation, we don't log the i_disksize update
2874	 * if there is delayed block allocation. But we still need
2875	 * to journalling the i_disksize update if writes to the end
2876	 * of file which has an already mapped buffer.
2877	 */
2878retry_journal:
2879	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2880				ext4_da_write_credits(inode, pos, len));
2881	if (IS_ERR(handle)) {
2882		put_page(page);
2883		return PTR_ERR(handle);
2884	}
2885
2886	lock_page(page);
2887	if (page->mapping != mapping) {
2888		/* The page got truncated from under us */
2889		unlock_page(page);
2890		put_page(page);
2891		ext4_journal_stop(handle);
2892		goto retry_grab;
2893	}
2894	/* In case writeback began while the page was unlocked */
2895	wait_for_stable_page(page);
2896
2897#ifdef CONFIG_EXT4_FS_ENCRYPTION
2898	ret = ext4_block_write_begin(page, pos, len,
2899				     ext4_da_get_block_prep);
2900#else
2901	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2902#endif
2903	if (ret < 0) {
2904		unlock_page(page);
2905		ext4_journal_stop(handle);
2906		/*
2907		 * block_write_begin may have instantiated a few blocks
2908		 * outside i_size.  Trim these off again. Don't need
2909		 * i_size_read because we hold i_mutex.
2910		 */
2911		if (pos + len > inode->i_size)
2912			ext4_truncate_failed_write(inode);
2913
2914		if (ret == -ENOSPC &&
2915		    ext4_should_retry_alloc(inode->i_sb, &retries))
2916			goto retry_journal;
2917
2918		put_page(page);
2919		return ret;
2920	}
2921
2922	*pagep = page;
2923	return ret;
2924}
2925
2926/*
2927 * Check if we should update i_disksize
2928 * when write to the end of file but not require block allocation
2929 */
2930static int ext4_da_should_update_i_disksize(struct page *page,
2931					    unsigned long offset)
2932{
2933	struct buffer_head *bh;
2934	struct inode *inode = page->mapping->host;
2935	unsigned int idx;
2936	int i;
2937
2938	bh = page_buffers(page);
2939	idx = offset >> inode->i_blkbits;
2940
2941	for (i = 0; i < idx; i++)
2942		bh = bh->b_this_page;
2943
2944	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2945		return 0;
2946	return 1;
2947}
2948
2949static int ext4_da_write_end(struct file *file,
2950			     struct address_space *mapping,
2951			     loff_t pos, unsigned len, unsigned copied,
2952			     struct page *page, void *fsdata)
2953{
2954	struct inode *inode = mapping->host;
2955	int ret = 0, ret2;
2956	handle_t *handle = ext4_journal_current_handle();
2957	loff_t new_i_size;
2958	unsigned long start, end;
2959	int write_mode = (int)(unsigned long)fsdata;
2960
2961	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2962		return ext4_write_end(file, mapping, pos,
2963				      len, copied, page, fsdata);
2964
2965	trace_ext4_da_write_end(inode, pos, len, copied);
2966	start = pos & (PAGE_SIZE - 1);
2967	end = start + copied - 1;
2968
2969	/*
2970	 * generic_write_end() will run mark_inode_dirty() if i_size
2971	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2972	 * into that.
2973	 */
2974	new_i_size = pos + copied;
2975	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2976		if (ext4_has_inline_data(inode) ||
2977		    ext4_da_should_update_i_disksize(page, end)) {
2978			ext4_update_i_disksize(inode, new_i_size);
2979			/* We need to mark inode dirty even if
2980			 * new_i_size is less that inode->i_size
2981			 * bu greater than i_disksize.(hint delalloc)
2982			 */
2983			ext4_mark_inode_dirty(handle, inode);
2984		}
2985	}
2986
2987	if (write_mode != CONVERT_INLINE_DATA &&
2988	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2989	    ext4_has_inline_data(inode))
2990		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2991						     page);
2992	else
2993		ret2 = generic_write_end(file, mapping, pos, len, copied,
2994							page, fsdata);
2995
2996	copied = ret2;
2997	if (ret2 < 0)
2998		ret = ret2;
2999	ret2 = ext4_journal_stop(handle);
3000	if (!ret)
3001		ret = ret2;
3002
3003	return ret ? ret : copied;
3004}
3005
3006static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3007				   unsigned int length)
3008{
3009	/*
3010	 * Drop reserved blocks
3011	 */
3012	BUG_ON(!PageLocked(page));
3013	if (!page_has_buffers(page))
3014		goto out;
3015
3016	ext4_da_page_release_reservation(page, offset, length);
3017
3018out:
3019	ext4_invalidatepage(page, offset, length);
3020
3021	return;
3022}
3023
3024/*
3025 * Force all delayed allocation blocks to be allocated for a given inode.
3026 */
3027int ext4_alloc_da_blocks(struct inode *inode)
3028{
3029	trace_ext4_alloc_da_blocks(inode);
3030
3031	if (!EXT4_I(inode)->i_reserved_data_blocks)
3032		return 0;
3033
3034	/*
3035	 * We do something simple for now.  The filemap_flush() will
3036	 * also start triggering a write of the data blocks, which is
3037	 * not strictly speaking necessary (and for users of
3038	 * laptop_mode, not even desirable).  However, to do otherwise
3039	 * would require replicating code paths in:
3040	 *
3041	 * ext4_writepages() ->
3042	 *    write_cache_pages() ---> (via passed in callback function)
3043	 *        __mpage_da_writepage() -->
3044	 *           mpage_add_bh_to_extent()
3045	 *           mpage_da_map_blocks()
3046	 *
3047	 * The problem is that write_cache_pages(), located in
3048	 * mm/page-writeback.c, marks pages clean in preparation for
3049	 * doing I/O, which is not desirable if we're not planning on
3050	 * doing I/O at all.
3051	 *
3052	 * We could call write_cache_pages(), and then redirty all of
3053	 * the pages by calling redirty_page_for_writepage() but that
3054	 * would be ugly in the extreme.  So instead we would need to
3055	 * replicate parts of the code in the above functions,
3056	 * simplifying them because we wouldn't actually intend to
3057	 * write out the pages, but rather only collect contiguous
3058	 * logical block extents, call the multi-block allocator, and
3059	 * then update the buffer heads with the block allocations.
3060	 *
3061	 * For now, though, we'll cheat by calling filemap_flush(),
3062	 * which will map the blocks, and start the I/O, but not
3063	 * actually wait for the I/O to complete.
3064	 */
3065	return filemap_flush(inode->i_mapping);
3066}
3067
3068/*
3069 * bmap() is special.  It gets used by applications such as lilo and by
3070 * the swapper to find the on-disk block of a specific piece of data.
3071 *
3072 * Naturally, this is dangerous if the block concerned is still in the
3073 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3074 * filesystem and enables swap, then they may get a nasty shock when the
3075 * data getting swapped to that swapfile suddenly gets overwritten by
3076 * the original zero's written out previously to the journal and
3077 * awaiting writeback in the kernel's buffer cache.
3078 *
3079 * So, if we see any bmap calls here on a modified, data-journaled file,
3080 * take extra steps to flush any blocks which might be in the cache.
3081 */
3082static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3083{
3084	struct inode *inode = mapping->host;
3085	journal_t *journal;
3086	int err;
3087
3088	/*
3089	 * We can get here for an inline file via the FIBMAP ioctl
3090	 */
3091	if (ext4_has_inline_data(inode))
3092		return 0;
3093
3094	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3095			test_opt(inode->i_sb, DELALLOC)) {
3096		/*
3097		 * With delalloc we want to sync the file
3098		 * so that we can make sure we allocate
3099		 * blocks for file
3100		 */
3101		filemap_write_and_wait(mapping);
3102	}
3103
3104	if (EXT4_JOURNAL(inode) &&
3105	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3106		/*
3107		 * This is a REALLY heavyweight approach, but the use of
3108		 * bmap on dirty files is expected to be extremely rare:
3109		 * only if we run lilo or swapon on a freshly made file
3110		 * do we expect this to happen.
3111		 *
3112		 * (bmap requires CAP_SYS_RAWIO so this does not
3113		 * represent an unprivileged user DOS attack --- we'd be
3114		 * in trouble if mortal users could trigger this path at
3115		 * will.)
3116		 *
3117		 * NB. EXT4_STATE_JDATA is not set on files other than
3118		 * regular files.  If somebody wants to bmap a directory
3119		 * or symlink and gets confused because the buffer
3120		 * hasn't yet been flushed to disk, they deserve
3121		 * everything they get.
3122		 */
3123
3124		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3125		journal = EXT4_JOURNAL(inode);
3126		jbd2_journal_lock_updates(journal);
3127		err = jbd2_journal_flush(journal);
3128		jbd2_journal_unlock_updates(journal);
3129
3130		if (err)
3131			return 0;
3132	}
3133
3134	return generic_block_bmap(mapping, block, ext4_get_block);
3135}
3136
3137static int ext4_readpage(struct file *file, struct page *page)
3138{
3139	int ret = -EAGAIN;
3140	struct inode *inode = page->mapping->host;
3141
3142	trace_ext4_readpage(page);
3143
3144	if (ext4_has_inline_data(inode))
3145		ret = ext4_readpage_inline(inode, page);
3146
3147	if (ret == -EAGAIN)
3148		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3149
3150	return ret;
3151}
3152
3153static int
3154ext4_readpages(struct file *file, struct address_space *mapping,
3155		struct list_head *pages, unsigned nr_pages)
3156{
3157	struct inode *inode = mapping->host;
3158
3159	/* If the file has inline data, no need to do readpages. */
3160	if (ext4_has_inline_data(inode))
3161		return 0;
3162
3163	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3164}
3165
3166static void ext4_invalidatepage(struct page *page, unsigned int offset,
3167				unsigned int length)
3168{
3169	trace_ext4_invalidatepage(page, offset, length);
3170
3171	/* No journalling happens on data buffers when this function is used */
3172	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3173
3174	block_invalidatepage(page, offset, length);
3175}
3176
3177static int __ext4_journalled_invalidatepage(struct page *page,
3178					    unsigned int offset,
3179					    unsigned int length)
3180{
3181	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3182
3183	trace_ext4_journalled_invalidatepage(page, offset, length);
3184
3185	/*
3186	 * If it's a full truncate we just forget about the pending dirtying
3187	 */
3188	if (offset == 0 && length == PAGE_SIZE)
3189		ClearPageChecked(page);
3190
3191	return jbd2_journal_invalidatepage(journal, page, offset, length);
3192}
3193
3194/* Wrapper for aops... */
3195static void ext4_journalled_invalidatepage(struct page *page,
3196					   unsigned int offset,
3197					   unsigned int length)
3198{
3199	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3200}
3201
3202static int ext4_releasepage(struct page *page, gfp_t wait)
3203{
3204	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3205
3206	trace_ext4_releasepage(page);
3207
3208	/* Page has dirty journalled data -> cannot release */
3209	if (PageChecked(page))
3210		return 0;
3211	if (journal)
3212		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3213	else
3214		return try_to_free_buffers(page);
3215}
3216
3217#ifdef CONFIG_FS_DAX
3218int ext4_dax_mmap_get_block(struct inode *inode, sector_t iblock,
3219			    struct buffer_head *bh_result, int create)
3220{
3221	int ret, err;
3222	int credits;
 
3223	struct ext4_map_blocks map;
3224	handle_t *handle = NULL;
3225	int flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3226
3227	ext4_debug("ext4_dax_mmap_get_block: inode %lu, create flag %d\n",
3228		   inode->i_ino, create);
3229	map.m_lblk = iblock;
3230	map.m_len = bh_result->b_size >> inode->i_blkbits;
3231	credits = ext4_chunk_trans_blocks(inode, map.m_len);
3232	if (create) {
3233		flags |= EXT4_GET_BLOCKS_PRE_IO | EXT4_GET_BLOCKS_CREATE_ZERO;
3234		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3235		if (IS_ERR(handle)) {
3236			ret = PTR_ERR(handle);
3237			return ret;
3238		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3239	}
3240
3241	ret = ext4_map_blocks(handle, inode, &map, flags);
3242	if (create) {
3243		err = ext4_journal_stop(handle);
3244		if (ret >= 0 && err < 0)
3245			ret = err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3246	}
3247	if (ret <= 0)
3248		goto out;
3249	if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3250		int err2;
3251
3252		/*
3253		 * We are protected by i_mmap_sem so we know block cannot go
3254		 * away from under us even though we dropped i_data_sem.
3255		 * Convert extent to written and write zeros there.
3256		 *
3257		 * Note: We may get here even when create == 0.
3258		 */
3259		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, credits);
3260		if (IS_ERR(handle)) {
3261			ret = PTR_ERR(handle);
3262			goto out;
3263		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3264
3265		err = ext4_map_blocks(handle, inode, &map,
3266		      EXT4_GET_BLOCKS_CONVERT | EXT4_GET_BLOCKS_CREATE_ZERO);
3267		if (err < 0)
3268			ret = err;
3269		err2 = ext4_journal_stop(handle);
3270		if (err2 < 0 && ret > 0)
3271			ret = err2;
3272	}
3273out:
3274	WARN_ON_ONCE(ret == 0 && create);
3275	if (ret > 0) {
3276		map_bh(bh_result, inode->i_sb, map.m_pblk);
 
 
 
 
 
 
 
3277		/*
3278		 * At least for now we have to clear BH_New so that DAX code
3279		 * doesn't attempt to zero blocks again in a racy way.
 
3280		 */
3281		map.m_flags &= ~EXT4_MAP_NEW;
3282		ext4_update_bh_state(bh_result, map.m_flags);
3283		bh_result->b_size = map.m_len << inode->i_blkbits;
3284		ret = 0;
3285	}
3286	return ret;
3287}
 
 
 
 
 
 
3288#endif
3289
3290static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3291			    ssize_t size, void *private)
3292{
3293        ext4_io_end_t *io_end = private;
3294
3295	/* if not async direct IO just return */
3296	if (!io_end)
3297		return 0;
3298
3299	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3300		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3301		  io_end, io_end->inode->i_ino, iocb, offset, size);
3302
3303	/*
3304	 * Error during AIO DIO. We cannot convert unwritten extents as the
3305	 * data was not written. Just clear the unwritten flag and drop io_end.
3306	 */
3307	if (size <= 0) {
3308		ext4_clear_io_unwritten_flag(io_end);
3309		size = 0;
3310	}
3311	io_end->offset = offset;
3312	io_end->size = size;
3313	ext4_put_io_end(io_end);
3314
3315	return 0;
3316}
3317
3318/*
3319 * For ext4 extent files, ext4 will do direct-io write to holes,
 
 
3320 * preallocated extents, and those write extend the file, no need to
3321 * fall back to buffered IO.
3322 *
3323 * For holes, we fallocate those blocks, mark them as unwritten
3324 * If those blocks were preallocated, we mark sure they are split, but
3325 * still keep the range to write as unwritten.
3326 *
3327 * The unwritten extents will be converted to written when DIO is completed.
3328 * For async direct IO, since the IO may still pending when return, we
3329 * set up an end_io call back function, which will do the conversion
3330 * when async direct IO completed.
3331 *
3332 * If the O_DIRECT write will extend the file then add this inode to the
3333 * orphan list.  So recovery will truncate it back to the original size
3334 * if the machine crashes during the write.
3335 *
3336 */
3337static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3338				  loff_t offset)
3339{
3340	struct file *file = iocb->ki_filp;
3341	struct inode *inode = file->f_mapping->host;
 
3342	ssize_t ret;
 
3343	size_t count = iov_iter_count(iter);
3344	int overwrite = 0;
3345	get_block_t *get_block_func = NULL;
3346	int dio_flags = 0;
3347	loff_t final_size = offset + count;
 
 
3348
3349	/* Use the old path for reads and writes beyond i_size. */
3350	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3351		return ext4_ind_direct_IO(iocb, iter, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
3352
3353	BUG_ON(iocb->private == NULL);
3354
3355	/*
3356	 * Make all waiters for direct IO properly wait also for extent
3357	 * conversion. This also disallows race between truncate() and
3358	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3359	 */
3360	if (iov_iter_rw(iter) == WRITE)
3361		inode_dio_begin(inode);
3362
3363	/* If we do a overwrite dio, i_mutex locking can be released */
3364	overwrite = *((int *)iocb->private);
3365
3366	if (overwrite)
3367		inode_unlock(inode);
3368
3369	/*
3370	 * We could direct write to holes and fallocate.
3371	 *
3372	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3373	 * parallel buffered read to expose the stale data before DIO complete
3374	 * the data IO.
3375	 *
3376	 * As to previously fallocated extents, ext4 get_block will just simply
3377	 * mark the buffer mapped but still keep the extents unwritten.
3378	 *
3379	 * For non AIO case, we will convert those unwritten extents to written
3380	 * after return back from blockdev_direct_IO. That way we save us from
3381	 * allocating io_end structure and also the overhead of offloading
3382	 * the extent convertion to a workqueue.
3383	 *
3384	 * For async DIO, the conversion needs to be deferred when the
3385	 * IO is completed. The ext4 end_io callback function will be
3386	 * called to take care of the conversion work.  Here for async
3387	 * case, we allocate an io_end structure to hook to the iocb.
3388	 */
3389	iocb->private = NULL;
3390	if (overwrite)
3391		get_block_func = ext4_dio_get_block_overwrite;
3392	else if (is_sync_kiocb(iocb)) {
 
 
 
 
3393		get_block_func = ext4_dio_get_block_unwritten_sync;
3394		dio_flags = DIO_LOCKING;
3395	} else {
3396		get_block_func = ext4_dio_get_block_unwritten_async;
3397		dio_flags = DIO_LOCKING;
3398	}
3399#ifdef CONFIG_EXT4_FS_ENCRYPTION
3400	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3401#endif
3402	if (IS_DAX(inode))
3403		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3404				ext4_end_io_dio, dio_flags);
3405	else
3406		ret = __blockdev_direct_IO(iocb, inode,
3407					   inode->i_sb->s_bdev, iter, offset,
3408					   get_block_func,
3409					   ext4_end_io_dio, NULL, dio_flags);
3410
3411	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3412						EXT4_STATE_DIO_UNWRITTEN)) {
3413		int err;
3414		/*
3415		 * for non AIO case, since the IO is already
3416		 * completed, we could do the conversion right here
3417		 */
3418		err = ext4_convert_unwritten_extents(NULL, inode,
3419						     offset, ret);
3420		if (err < 0)
3421			ret = err;
3422		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3423	}
3424
3425	if (iov_iter_rw(iter) == WRITE)
3426		inode_dio_end(inode);
3427	/* take i_mutex locking again if we do a ovewrite dio */
3428	if (overwrite)
3429		inode_lock(inode);
3430
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3431	return ret;
3432}
3433
3434static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3435			      loff_t offset)
3436{
3437	struct file *file = iocb->ki_filp;
3438	struct inode *inode = file->f_mapping->host;
3439	size_t count = iov_iter_count(iter);
 
3440	ssize_t ret;
3441
3442#ifdef CONFIG_EXT4_FS_ENCRYPTION
3443	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3444		return 0;
3445#endif
3446
3447	/*
3448	 * If we are doing data journalling we don't support O_DIRECT
3449	 */
3450	if (ext4_should_journal_data(inode))
3451		return 0;
3452
3453	/* Let buffer I/O handle the inline data case. */
3454	if (ext4_has_inline_data(inode))
3455		return 0;
3456
 
 
 
 
3457	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3458	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3459		ret = ext4_ext_direct_IO(iocb, iter, offset);
3460	else
3461		ret = ext4_ind_direct_IO(iocb, iter, offset);
3462	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3463	return ret;
3464}
3465
3466/*
3467 * Pages can be marked dirty completely asynchronously from ext4's journalling
3468 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3469 * much here because ->set_page_dirty is called under VFS locks.  The page is
3470 * not necessarily locked.
3471 *
3472 * We cannot just dirty the page and leave attached buffers clean, because the
3473 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3474 * or jbddirty because all the journalling code will explode.
3475 *
3476 * So what we do is to mark the page "pending dirty" and next time writepage
3477 * is called, propagate that into the buffers appropriately.
3478 */
3479static int ext4_journalled_set_page_dirty(struct page *page)
3480{
3481	SetPageChecked(page);
3482	return __set_page_dirty_nobuffers(page);
3483}
3484
 
 
 
 
 
 
 
3485static const struct address_space_operations ext4_aops = {
3486	.readpage		= ext4_readpage,
3487	.readpages		= ext4_readpages,
3488	.writepage		= ext4_writepage,
3489	.writepages		= ext4_writepages,
3490	.write_begin		= ext4_write_begin,
3491	.write_end		= ext4_write_end,
 
3492	.bmap			= ext4_bmap,
3493	.invalidatepage		= ext4_invalidatepage,
3494	.releasepage		= ext4_releasepage,
3495	.direct_IO		= ext4_direct_IO,
3496	.migratepage		= buffer_migrate_page,
3497	.is_partially_uptodate  = block_is_partially_uptodate,
3498	.error_remove_page	= generic_error_remove_page,
3499};
3500
3501static const struct address_space_operations ext4_journalled_aops = {
3502	.readpage		= ext4_readpage,
3503	.readpages		= ext4_readpages,
3504	.writepage		= ext4_writepage,
3505	.writepages		= ext4_writepages,
3506	.write_begin		= ext4_write_begin,
3507	.write_end		= ext4_journalled_write_end,
3508	.set_page_dirty		= ext4_journalled_set_page_dirty,
3509	.bmap			= ext4_bmap,
3510	.invalidatepage		= ext4_journalled_invalidatepage,
3511	.releasepage		= ext4_releasepage,
3512	.direct_IO		= ext4_direct_IO,
3513	.is_partially_uptodate  = block_is_partially_uptodate,
3514	.error_remove_page	= generic_error_remove_page,
3515};
3516
3517static const struct address_space_operations ext4_da_aops = {
3518	.readpage		= ext4_readpage,
3519	.readpages		= ext4_readpages,
3520	.writepage		= ext4_writepage,
3521	.writepages		= ext4_writepages,
3522	.write_begin		= ext4_da_write_begin,
3523	.write_end		= ext4_da_write_end,
 
3524	.bmap			= ext4_bmap,
3525	.invalidatepage		= ext4_da_invalidatepage,
3526	.releasepage		= ext4_releasepage,
3527	.direct_IO		= ext4_direct_IO,
3528	.migratepage		= buffer_migrate_page,
3529	.is_partially_uptodate  = block_is_partially_uptodate,
3530	.error_remove_page	= generic_error_remove_page,
3531};
3532
3533void ext4_set_aops(struct inode *inode)
3534{
3535	switch (ext4_inode_journal_mode(inode)) {
3536	case EXT4_INODE_ORDERED_DATA_MODE:
3537		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3538		break;
3539	case EXT4_INODE_WRITEBACK_DATA_MODE:
3540		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3541		break;
3542	case EXT4_INODE_JOURNAL_DATA_MODE:
3543		inode->i_mapping->a_ops = &ext4_journalled_aops;
3544		return;
3545	default:
3546		BUG();
3547	}
3548	if (test_opt(inode->i_sb, DELALLOC))
3549		inode->i_mapping->a_ops = &ext4_da_aops;
3550	else
3551		inode->i_mapping->a_ops = &ext4_aops;
3552}
3553
3554static int __ext4_block_zero_page_range(handle_t *handle,
3555		struct address_space *mapping, loff_t from, loff_t length)
3556{
3557	ext4_fsblk_t index = from >> PAGE_SHIFT;
3558	unsigned offset = from & (PAGE_SIZE-1);
3559	unsigned blocksize, pos;
3560	ext4_lblk_t iblock;
3561	struct inode *inode = mapping->host;
3562	struct buffer_head *bh;
3563	struct page *page;
3564	int err = 0;
3565
3566	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3567				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3568	if (!page)
3569		return -ENOMEM;
3570
3571	blocksize = inode->i_sb->s_blocksize;
3572
3573	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3574
3575	if (!page_has_buffers(page))
3576		create_empty_buffers(page, blocksize, 0);
3577
3578	/* Find the buffer that contains "offset" */
3579	bh = page_buffers(page);
3580	pos = blocksize;
3581	while (offset >= pos) {
3582		bh = bh->b_this_page;
3583		iblock++;
3584		pos += blocksize;
3585	}
3586	if (buffer_freed(bh)) {
3587		BUFFER_TRACE(bh, "freed: skip");
3588		goto unlock;
3589	}
3590	if (!buffer_mapped(bh)) {
3591		BUFFER_TRACE(bh, "unmapped");
3592		ext4_get_block(inode, iblock, bh, 0);
3593		/* unmapped? It's a hole - nothing to do */
3594		if (!buffer_mapped(bh)) {
3595			BUFFER_TRACE(bh, "still unmapped");
3596			goto unlock;
3597		}
3598	}
3599
3600	/* Ok, it's mapped. Make sure it's up-to-date */
3601	if (PageUptodate(page))
3602		set_buffer_uptodate(bh);
3603
3604	if (!buffer_uptodate(bh)) {
3605		err = -EIO;
3606		ll_rw_block(READ, 1, &bh);
3607		wait_on_buffer(bh);
3608		/* Uhhuh. Read error. Complain and punt. */
3609		if (!buffer_uptodate(bh))
3610			goto unlock;
3611		if (S_ISREG(inode->i_mode) &&
3612		    ext4_encrypted_inode(inode)) {
3613			/* We expect the key to be set. */
3614			BUG_ON(!ext4_has_encryption_key(inode));
3615			BUG_ON(blocksize != PAGE_SIZE);
3616			WARN_ON_ONCE(ext4_decrypt(page));
 
3617		}
3618	}
3619	if (ext4_should_journal_data(inode)) {
3620		BUFFER_TRACE(bh, "get write access");
3621		err = ext4_journal_get_write_access(handle, bh);
3622		if (err)
3623			goto unlock;
3624	}
3625	zero_user(page, offset, length);
3626	BUFFER_TRACE(bh, "zeroed end of block");
3627
3628	if (ext4_should_journal_data(inode)) {
3629		err = ext4_handle_dirty_metadata(handle, inode, bh);
3630	} else {
3631		err = 0;
3632		mark_buffer_dirty(bh);
3633		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3634			err = ext4_jbd2_file_inode(handle, inode);
3635	}
3636
3637unlock:
3638	unlock_page(page);
3639	put_page(page);
3640	return err;
3641}
3642
3643/*
3644 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3645 * starting from file offset 'from'.  The range to be zero'd must
3646 * be contained with in one block.  If the specified range exceeds
3647 * the end of the block it will be shortened to end of the block
3648 * that cooresponds to 'from'
3649 */
3650static int ext4_block_zero_page_range(handle_t *handle,
3651		struct address_space *mapping, loff_t from, loff_t length)
3652{
3653	struct inode *inode = mapping->host;
3654	unsigned offset = from & (PAGE_SIZE-1);
3655	unsigned blocksize = inode->i_sb->s_blocksize;
3656	unsigned max = blocksize - (offset & (blocksize - 1));
3657
3658	/*
3659	 * correct length if it does not fall between
3660	 * 'from' and the end of the block
3661	 */
3662	if (length > max || length < 0)
3663		length = max;
3664
3665	if (IS_DAX(inode))
3666		return dax_zero_page_range(inode, from, length, ext4_get_block);
 
 
3667	return __ext4_block_zero_page_range(handle, mapping, from, length);
3668}
3669
3670/*
3671 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3672 * up to the end of the block which corresponds to `from'.
3673 * This required during truncate. We need to physically zero the tail end
3674 * of that block so it doesn't yield old data if the file is later grown.
3675 */
3676static int ext4_block_truncate_page(handle_t *handle,
3677		struct address_space *mapping, loff_t from)
3678{
3679	unsigned offset = from & (PAGE_SIZE-1);
3680	unsigned length;
3681	unsigned blocksize;
3682	struct inode *inode = mapping->host;
3683
 
 
 
 
3684	blocksize = inode->i_sb->s_blocksize;
3685	length = blocksize - (offset & (blocksize - 1));
3686
3687	return ext4_block_zero_page_range(handle, mapping, from, length);
3688}
3689
3690int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3691			     loff_t lstart, loff_t length)
3692{
3693	struct super_block *sb = inode->i_sb;
3694	struct address_space *mapping = inode->i_mapping;
3695	unsigned partial_start, partial_end;
3696	ext4_fsblk_t start, end;
3697	loff_t byte_end = (lstart + length - 1);
3698	int err = 0;
3699
3700	partial_start = lstart & (sb->s_blocksize - 1);
3701	partial_end = byte_end & (sb->s_blocksize - 1);
3702
3703	start = lstart >> sb->s_blocksize_bits;
3704	end = byte_end >> sb->s_blocksize_bits;
3705
3706	/* Handle partial zero within the single block */
3707	if (start == end &&
3708	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3709		err = ext4_block_zero_page_range(handle, mapping,
3710						 lstart, length);
3711		return err;
3712	}
3713	/* Handle partial zero out on the start of the range */
3714	if (partial_start) {
3715		err = ext4_block_zero_page_range(handle, mapping,
3716						 lstart, sb->s_blocksize);
3717		if (err)
3718			return err;
3719	}
3720	/* Handle partial zero out on the end of the range */
3721	if (partial_end != sb->s_blocksize - 1)
3722		err = ext4_block_zero_page_range(handle, mapping,
3723						 byte_end - partial_end,
3724						 partial_end + 1);
3725	return err;
3726}
3727
3728int ext4_can_truncate(struct inode *inode)
3729{
3730	if (S_ISREG(inode->i_mode))
3731		return 1;
3732	if (S_ISDIR(inode->i_mode))
3733		return 1;
3734	if (S_ISLNK(inode->i_mode))
3735		return !ext4_inode_is_fast_symlink(inode);
3736	return 0;
3737}
3738
3739/*
3740 * We have to make sure i_disksize gets properly updated before we truncate
3741 * page cache due to hole punching or zero range. Otherwise i_disksize update
3742 * can get lost as it may have been postponed to submission of writeback but
3743 * that will never happen after we truncate page cache.
3744 */
3745int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3746				      loff_t len)
3747{
3748	handle_t *handle;
3749	loff_t size = i_size_read(inode);
3750
3751	WARN_ON(!inode_is_locked(inode));
3752	if (offset > size || offset + len < size)
3753		return 0;
3754
3755	if (EXT4_I(inode)->i_disksize >= size)
3756		return 0;
3757
3758	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3759	if (IS_ERR(handle))
3760		return PTR_ERR(handle);
3761	ext4_update_i_disksize(inode, size);
3762	ext4_mark_inode_dirty(handle, inode);
3763	ext4_journal_stop(handle);
3764
3765	return 0;
3766}
3767
3768/*
3769 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3770 * associated with the given offset and length
3771 *
3772 * @inode:  File inode
3773 * @offset: The offset where the hole will begin
3774 * @len:    The length of the hole
3775 *
3776 * Returns: 0 on success or negative on failure
3777 */
3778
3779int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3780{
3781	struct super_block *sb = inode->i_sb;
3782	ext4_lblk_t first_block, stop_block;
3783	struct address_space *mapping = inode->i_mapping;
3784	loff_t first_block_offset, last_block_offset;
3785	handle_t *handle;
3786	unsigned int credits;
3787	int ret = 0;
3788
3789	if (!S_ISREG(inode->i_mode))
3790		return -EOPNOTSUPP;
3791
3792	trace_ext4_punch_hole(inode, offset, length, 0);
3793
3794	/*
3795	 * Write out all dirty pages to avoid race conditions
3796	 * Then release them.
3797	 */
3798	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3799		ret = filemap_write_and_wait_range(mapping, offset,
3800						   offset + length - 1);
3801		if (ret)
3802			return ret;
3803	}
3804
3805	inode_lock(inode);
3806
3807	/* No need to punch hole beyond i_size */
3808	if (offset >= inode->i_size)
3809		goto out_mutex;
3810
3811	/*
3812	 * If the hole extends beyond i_size, set the hole
3813	 * to end after the page that contains i_size
3814	 */
3815	if (offset + length > inode->i_size) {
3816		length = inode->i_size +
3817		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3818		   offset;
3819	}
3820
3821	if (offset & (sb->s_blocksize - 1) ||
3822	    (offset + length) & (sb->s_blocksize - 1)) {
3823		/*
3824		 * Attach jinode to inode for jbd2 if we do any zeroing of
3825		 * partial block
3826		 */
3827		ret = ext4_inode_attach_jinode(inode);
3828		if (ret < 0)
3829			goto out_mutex;
3830
3831	}
3832
3833	/* Wait all existing dio workers, newcomers will block on i_mutex */
3834	ext4_inode_block_unlocked_dio(inode);
3835	inode_dio_wait(inode);
3836
3837	/*
3838	 * Prevent page faults from reinstantiating pages we have released from
3839	 * page cache.
3840	 */
3841	down_write(&EXT4_I(inode)->i_mmap_sem);
3842	first_block_offset = round_up(offset, sb->s_blocksize);
3843	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3844
3845	/* Now release the pages and zero block aligned part of pages*/
3846	if (last_block_offset > first_block_offset) {
3847		ret = ext4_update_disksize_before_punch(inode, offset, length);
3848		if (ret)
3849			goto out_dio;
3850		truncate_pagecache_range(inode, first_block_offset,
3851					 last_block_offset);
3852	}
3853
3854	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3855		credits = ext4_writepage_trans_blocks(inode);
3856	else
3857		credits = ext4_blocks_for_truncate(inode);
3858	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3859	if (IS_ERR(handle)) {
3860		ret = PTR_ERR(handle);
3861		ext4_std_error(sb, ret);
3862		goto out_dio;
3863	}
3864
3865	ret = ext4_zero_partial_blocks(handle, inode, offset,
3866				       length);
3867	if (ret)
3868		goto out_stop;
3869
3870	first_block = (offset + sb->s_blocksize - 1) >>
3871		EXT4_BLOCK_SIZE_BITS(sb);
3872	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3873
3874	/* If there are no blocks to remove, return now */
3875	if (first_block >= stop_block)
3876		goto out_stop;
3877
3878	down_write(&EXT4_I(inode)->i_data_sem);
3879	ext4_discard_preallocations(inode);
3880
3881	ret = ext4_es_remove_extent(inode, first_block,
3882				    stop_block - first_block);
3883	if (ret) {
3884		up_write(&EXT4_I(inode)->i_data_sem);
3885		goto out_stop;
3886	}
3887
3888	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3889		ret = ext4_ext_remove_space(inode, first_block,
3890					    stop_block - 1);
3891	else
3892		ret = ext4_ind_remove_space(handle, inode, first_block,
3893					    stop_block);
3894
3895	up_write(&EXT4_I(inode)->i_data_sem);
3896	if (IS_SYNC(inode))
3897		ext4_handle_sync(handle);
3898
3899	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3900	ext4_mark_inode_dirty(handle, inode);
3901out_stop:
3902	ext4_journal_stop(handle);
3903out_dio:
3904	up_write(&EXT4_I(inode)->i_mmap_sem);
3905	ext4_inode_resume_unlocked_dio(inode);
3906out_mutex:
3907	inode_unlock(inode);
3908	return ret;
3909}
3910
3911int ext4_inode_attach_jinode(struct inode *inode)
3912{
3913	struct ext4_inode_info *ei = EXT4_I(inode);
3914	struct jbd2_inode *jinode;
3915
3916	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3917		return 0;
3918
3919	jinode = jbd2_alloc_inode(GFP_KERNEL);
3920	spin_lock(&inode->i_lock);
3921	if (!ei->jinode) {
3922		if (!jinode) {
3923			spin_unlock(&inode->i_lock);
3924			return -ENOMEM;
3925		}
3926		ei->jinode = jinode;
3927		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3928		jinode = NULL;
3929	}
3930	spin_unlock(&inode->i_lock);
3931	if (unlikely(jinode != NULL))
3932		jbd2_free_inode(jinode);
3933	return 0;
3934}
3935
3936/*
3937 * ext4_truncate()
3938 *
3939 * We block out ext4_get_block() block instantiations across the entire
3940 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3941 * simultaneously on behalf of the same inode.
3942 *
3943 * As we work through the truncate and commit bits of it to the journal there
3944 * is one core, guiding principle: the file's tree must always be consistent on
3945 * disk.  We must be able to restart the truncate after a crash.
3946 *
3947 * The file's tree may be transiently inconsistent in memory (although it
3948 * probably isn't), but whenever we close off and commit a journal transaction,
3949 * the contents of (the filesystem + the journal) must be consistent and
3950 * restartable.  It's pretty simple, really: bottom up, right to left (although
3951 * left-to-right works OK too).
3952 *
3953 * Note that at recovery time, journal replay occurs *before* the restart of
3954 * truncate against the orphan inode list.
3955 *
3956 * The committed inode has the new, desired i_size (which is the same as
3957 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3958 * that this inode's truncate did not complete and it will again call
3959 * ext4_truncate() to have another go.  So there will be instantiated blocks
3960 * to the right of the truncation point in a crashed ext4 filesystem.  But
3961 * that's fine - as long as they are linked from the inode, the post-crash
3962 * ext4_truncate() run will find them and release them.
3963 */
3964void ext4_truncate(struct inode *inode)
3965{
3966	struct ext4_inode_info *ei = EXT4_I(inode);
3967	unsigned int credits;
 
3968	handle_t *handle;
3969	struct address_space *mapping = inode->i_mapping;
3970
3971	/*
3972	 * There is a possibility that we're either freeing the inode
3973	 * or it's a completely new inode. In those cases we might not
3974	 * have i_mutex locked because it's not necessary.
3975	 */
3976	if (!(inode->i_state & (I_NEW|I_FREEING)))
3977		WARN_ON(!inode_is_locked(inode));
3978	trace_ext4_truncate_enter(inode);
3979
3980	if (!ext4_can_truncate(inode))
3981		return;
3982
3983	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3984
3985	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3986		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3987
3988	if (ext4_has_inline_data(inode)) {
3989		int has_inline = 1;
3990
3991		ext4_inline_data_truncate(inode, &has_inline);
3992		if (has_inline)
3993			return;
3994	}
3995
3996	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3997	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3998		if (ext4_inode_attach_jinode(inode) < 0)
3999			return;
4000	}
4001
4002	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4003		credits = ext4_writepage_trans_blocks(inode);
4004	else
4005		credits = ext4_blocks_for_truncate(inode);
4006
4007	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4008	if (IS_ERR(handle)) {
4009		ext4_std_error(inode->i_sb, PTR_ERR(handle));
4010		return;
4011	}
4012
4013	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4014		ext4_block_truncate_page(handle, mapping, inode->i_size);
4015
4016	/*
4017	 * We add the inode to the orphan list, so that if this
4018	 * truncate spans multiple transactions, and we crash, we will
4019	 * resume the truncate when the filesystem recovers.  It also
4020	 * marks the inode dirty, to catch the new size.
4021	 *
4022	 * Implication: the file must always be in a sane, consistent
4023	 * truncatable state while each transaction commits.
4024	 */
4025	if (ext4_orphan_add(handle, inode))
 
4026		goto out_stop;
4027
4028	down_write(&EXT4_I(inode)->i_data_sem);
4029
4030	ext4_discard_preallocations(inode);
4031
4032	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4033		ext4_ext_truncate(handle, inode);
4034	else
4035		ext4_ind_truncate(handle, inode);
4036
4037	up_write(&ei->i_data_sem);
 
 
4038
4039	if (IS_SYNC(inode))
4040		ext4_handle_sync(handle);
4041
4042out_stop:
4043	/*
4044	 * If this was a simple ftruncate() and the file will remain alive,
4045	 * then we need to clear up the orphan record which we created above.
4046	 * However, if this was a real unlink then we were called by
4047	 * ext4_evict_inode(), and we allow that function to clean up the
4048	 * orphan info for us.
4049	 */
4050	if (inode->i_nlink)
4051		ext4_orphan_del(handle, inode);
4052
4053	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4054	ext4_mark_inode_dirty(handle, inode);
4055	ext4_journal_stop(handle);
4056
4057	trace_ext4_truncate_exit(inode);
 
4058}
4059
4060/*
4061 * ext4_get_inode_loc returns with an extra refcount against the inode's
4062 * underlying buffer_head on success. If 'in_mem' is true, we have all
4063 * data in memory that is needed to recreate the on-disk version of this
4064 * inode.
4065 */
4066static int __ext4_get_inode_loc(struct inode *inode,
4067				struct ext4_iloc *iloc, int in_mem)
4068{
4069	struct ext4_group_desc	*gdp;
4070	struct buffer_head	*bh;
4071	struct super_block	*sb = inode->i_sb;
4072	ext4_fsblk_t		block;
4073	int			inodes_per_block, inode_offset;
4074
4075	iloc->bh = NULL;
4076	if (!ext4_valid_inum(sb, inode->i_ino))
4077		return -EFSCORRUPTED;
4078
4079	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4080	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4081	if (!gdp)
4082		return -EIO;
4083
4084	/*
4085	 * Figure out the offset within the block group inode table
4086	 */
4087	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4088	inode_offset = ((inode->i_ino - 1) %
4089			EXT4_INODES_PER_GROUP(sb));
4090	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4091	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4092
4093	bh = sb_getblk(sb, block);
4094	if (unlikely(!bh))
4095		return -ENOMEM;
4096	if (!buffer_uptodate(bh)) {
4097		lock_buffer(bh);
4098
4099		/*
4100		 * If the buffer has the write error flag, we have failed
4101		 * to write out another inode in the same block.  In this
4102		 * case, we don't have to read the block because we may
4103		 * read the old inode data successfully.
4104		 */
4105		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4106			set_buffer_uptodate(bh);
4107
4108		if (buffer_uptodate(bh)) {
4109			/* someone brought it uptodate while we waited */
4110			unlock_buffer(bh);
4111			goto has_buffer;
4112		}
4113
4114		/*
4115		 * If we have all information of the inode in memory and this
4116		 * is the only valid inode in the block, we need not read the
4117		 * block.
4118		 */
4119		if (in_mem) {
4120			struct buffer_head *bitmap_bh;
4121			int i, start;
4122
4123			start = inode_offset & ~(inodes_per_block - 1);
4124
4125			/* Is the inode bitmap in cache? */
4126			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4127			if (unlikely(!bitmap_bh))
4128				goto make_io;
4129
4130			/*
4131			 * If the inode bitmap isn't in cache then the
4132			 * optimisation may end up performing two reads instead
4133			 * of one, so skip it.
4134			 */
4135			if (!buffer_uptodate(bitmap_bh)) {
4136				brelse(bitmap_bh);
4137				goto make_io;
4138			}
4139			for (i = start; i < start + inodes_per_block; i++) {
4140				if (i == inode_offset)
4141					continue;
4142				if (ext4_test_bit(i, bitmap_bh->b_data))
4143					break;
4144			}
4145			brelse(bitmap_bh);
4146			if (i == start + inodes_per_block) {
4147				/* all other inodes are free, so skip I/O */
4148				memset(bh->b_data, 0, bh->b_size);
4149				set_buffer_uptodate(bh);
4150				unlock_buffer(bh);
4151				goto has_buffer;
4152			}
4153		}
4154
4155make_io:
4156		/*
4157		 * If we need to do any I/O, try to pre-readahead extra
4158		 * blocks from the inode table.
4159		 */
4160		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4161			ext4_fsblk_t b, end, table;
4162			unsigned num;
4163			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4164
4165			table = ext4_inode_table(sb, gdp);
4166			/* s_inode_readahead_blks is always a power of 2 */
4167			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4168			if (table > b)
4169				b = table;
4170			end = b + ra_blks;
4171			num = EXT4_INODES_PER_GROUP(sb);
4172			if (ext4_has_group_desc_csum(sb))
4173				num -= ext4_itable_unused_count(sb, gdp);
4174			table += num / inodes_per_block;
4175			if (end > table)
4176				end = table;
4177			while (b <= end)
4178				sb_breadahead(sb, b++);
4179		}
4180
4181		/*
4182		 * There are other valid inodes in the buffer, this inode
4183		 * has in-inode xattrs, or we don't have this inode in memory.
4184		 * Read the block from disk.
4185		 */
4186		trace_ext4_load_inode(inode);
4187		get_bh(bh);
4188		bh->b_end_io = end_buffer_read_sync;
4189		submit_bh(READ | REQ_META | REQ_PRIO, bh);
4190		wait_on_buffer(bh);
4191		if (!buffer_uptodate(bh)) {
4192			EXT4_ERROR_INODE_BLOCK(inode, block,
4193					       "unable to read itable block");
4194			brelse(bh);
4195			return -EIO;
4196		}
4197	}
4198has_buffer:
4199	iloc->bh = bh;
4200	return 0;
4201}
4202
4203int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4204{
4205	/* We have all inode data except xattrs in memory here. */
4206	return __ext4_get_inode_loc(inode, iloc,
4207		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4208}
4209
4210void ext4_set_inode_flags(struct inode *inode)
4211{
4212	unsigned int flags = EXT4_I(inode)->i_flags;
4213	unsigned int new_fl = 0;
4214
4215	if (flags & EXT4_SYNC_FL)
4216		new_fl |= S_SYNC;
4217	if (flags & EXT4_APPEND_FL)
4218		new_fl |= S_APPEND;
4219	if (flags & EXT4_IMMUTABLE_FL)
4220		new_fl |= S_IMMUTABLE;
4221	if (flags & EXT4_NOATIME_FL)
4222		new_fl |= S_NOATIME;
4223	if (flags & EXT4_DIRSYNC_FL)
4224		new_fl |= S_DIRSYNC;
4225	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
 
 
4226		new_fl |= S_DAX;
4227	inode_set_flags(inode, new_fl,
4228			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4229}
4230
4231/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4232void ext4_get_inode_flags(struct ext4_inode_info *ei)
4233{
4234	unsigned int vfs_fl;
4235	unsigned long old_fl, new_fl;
4236
4237	do {
4238		vfs_fl = ei->vfs_inode.i_flags;
4239		old_fl = ei->i_flags;
4240		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4241				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4242				EXT4_DIRSYNC_FL);
4243		if (vfs_fl & S_SYNC)
4244			new_fl |= EXT4_SYNC_FL;
4245		if (vfs_fl & S_APPEND)
4246			new_fl |= EXT4_APPEND_FL;
4247		if (vfs_fl & S_IMMUTABLE)
4248			new_fl |= EXT4_IMMUTABLE_FL;
4249		if (vfs_fl & S_NOATIME)
4250			new_fl |= EXT4_NOATIME_FL;
4251		if (vfs_fl & S_DIRSYNC)
4252			new_fl |= EXT4_DIRSYNC_FL;
4253	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4254}
4255
4256static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4257				  struct ext4_inode_info *ei)
4258{
4259	blkcnt_t i_blocks ;
4260	struct inode *inode = &(ei->vfs_inode);
4261	struct super_block *sb = inode->i_sb;
4262
4263	if (ext4_has_feature_huge_file(sb)) {
4264		/* we are using combined 48 bit field */
4265		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4266					le32_to_cpu(raw_inode->i_blocks_lo);
4267		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4268			/* i_blocks represent file system block size */
4269			return i_blocks  << (inode->i_blkbits - 9);
4270		} else {
4271			return i_blocks;
4272		}
4273	} else {
4274		return le32_to_cpu(raw_inode->i_blocks_lo);
4275	}
4276}
4277
4278static inline void ext4_iget_extra_inode(struct inode *inode,
4279					 struct ext4_inode *raw_inode,
4280					 struct ext4_inode_info *ei)
4281{
4282	__le32 *magic = (void *)raw_inode +
4283			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4284	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
 
 
4285		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4286		ext4_find_inline_data_nolock(inode);
4287	} else
4288		EXT4_I(inode)->i_inline_off = 0;
4289}
4290
4291int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4292{
4293	if (!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, EXT4_FEATURE_RO_COMPAT_PROJECT))
4294		return -EOPNOTSUPP;
4295	*projid = EXT4_I(inode)->i_projid;
4296	return 0;
4297}
4298
4299struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4300{
4301	struct ext4_iloc iloc;
4302	struct ext4_inode *raw_inode;
4303	struct ext4_inode_info *ei;
4304	struct inode *inode;
4305	journal_t *journal = EXT4_SB(sb)->s_journal;
4306	long ret;
 
4307	int block;
4308	uid_t i_uid;
4309	gid_t i_gid;
4310	projid_t i_projid;
4311
4312	inode = iget_locked(sb, ino);
4313	if (!inode)
4314		return ERR_PTR(-ENOMEM);
4315	if (!(inode->i_state & I_NEW))
4316		return inode;
4317
4318	ei = EXT4_I(inode);
4319	iloc.bh = NULL;
4320
4321	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4322	if (ret < 0)
4323		goto bad_inode;
4324	raw_inode = ext4_raw_inode(&iloc);
4325
4326	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4327		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4328		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4329		    EXT4_INODE_SIZE(inode->i_sb)) {
4330			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4331				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4332				EXT4_INODE_SIZE(inode->i_sb));
 
 
4333			ret = -EFSCORRUPTED;
4334			goto bad_inode;
4335		}
4336	} else
4337		ei->i_extra_isize = 0;
4338
4339	/* Precompute checksum seed for inode metadata */
4340	if (ext4_has_metadata_csum(sb)) {
4341		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4342		__u32 csum;
4343		__le32 inum = cpu_to_le32(inode->i_ino);
4344		__le32 gen = raw_inode->i_generation;
4345		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4346				   sizeof(inum));
4347		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4348					      sizeof(gen));
4349	}
4350
4351	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4352		EXT4_ERROR_INODE(inode, "checksum invalid");
4353		ret = -EFSBADCRC;
4354		goto bad_inode;
4355	}
4356
4357	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4358	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4359	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4360	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4361	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4362	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4363		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4364	else
4365		i_projid = EXT4_DEF_PROJID;
4366
4367	if (!(test_opt(inode->i_sb, NO_UID32))) {
4368		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4369		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4370	}
4371	i_uid_write(inode, i_uid);
4372	i_gid_write(inode, i_gid);
4373	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4374	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4375
4376	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4377	ei->i_inline_off = 0;
4378	ei->i_dir_start_lookup = 0;
4379	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4380	/* We now have enough fields to check if the inode was active or not.
4381	 * This is needed because nfsd might try to access dead inodes
4382	 * the test is that same one that e2fsck uses
4383	 * NeilBrown 1999oct15
4384	 */
4385	if (inode->i_nlink == 0) {
4386		if ((inode->i_mode == 0 ||
4387		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4388		    ino != EXT4_BOOT_LOADER_INO) {
4389			/* this inode is deleted */
4390			ret = -ESTALE;
4391			goto bad_inode;
4392		}
4393		/* The only unlinked inodes we let through here have
4394		 * valid i_mode and are being read by the orphan
4395		 * recovery code: that's fine, we're about to complete
4396		 * the process of deleting those.
4397		 * OR it is the EXT4_BOOT_LOADER_INO which is
4398		 * not initialized on a new filesystem. */
4399	}
4400	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4401	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4402	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4403	if (ext4_has_feature_64bit(sb))
4404		ei->i_file_acl |=
4405			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4406	inode->i_size = ext4_isize(raw_inode);
 
 
 
 
 
4407	ei->i_disksize = inode->i_size;
4408#ifdef CONFIG_QUOTA
4409	ei->i_reserved_quota = 0;
4410#endif
4411	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4412	ei->i_block_group = iloc.block_group;
4413	ei->i_last_alloc_group = ~0;
4414	/*
4415	 * NOTE! The in-memory inode i_data array is in little-endian order
4416	 * even on big-endian machines: we do NOT byteswap the block numbers!
4417	 */
4418	for (block = 0; block < EXT4_N_BLOCKS; block++)
4419		ei->i_data[block] = raw_inode->i_block[block];
4420	INIT_LIST_HEAD(&ei->i_orphan);
4421
4422	/*
4423	 * Set transaction id's of transactions that have to be committed
4424	 * to finish f[data]sync. We set them to currently running transaction
4425	 * as we cannot be sure that the inode or some of its metadata isn't
4426	 * part of the transaction - the inode could have been reclaimed and
4427	 * now it is reread from disk.
4428	 */
4429	if (journal) {
4430		transaction_t *transaction;
4431		tid_t tid;
4432
4433		read_lock(&journal->j_state_lock);
4434		if (journal->j_running_transaction)
4435			transaction = journal->j_running_transaction;
4436		else
4437			transaction = journal->j_committing_transaction;
4438		if (transaction)
4439			tid = transaction->t_tid;
4440		else
4441			tid = journal->j_commit_sequence;
4442		read_unlock(&journal->j_state_lock);
4443		ei->i_sync_tid = tid;
4444		ei->i_datasync_tid = tid;
4445	}
4446
4447	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4448		if (ei->i_extra_isize == 0) {
4449			/* The extra space is currently unused. Use it. */
 
4450			ei->i_extra_isize = sizeof(struct ext4_inode) -
4451					    EXT4_GOOD_OLD_INODE_SIZE;
4452		} else {
4453			ext4_iget_extra_inode(inode, raw_inode, ei);
4454		}
4455	}
4456
4457	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4458	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4459	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4460	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4461
4462	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4463		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4464		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4465			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4466				inode->i_version |=
4467		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4468		}
4469	}
4470
4471	ret = 0;
4472	if (ei->i_file_acl &&
4473	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4474		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4475				 ei->i_file_acl);
4476		ret = -EFSCORRUPTED;
4477		goto bad_inode;
4478	} else if (!ext4_has_inline_data(inode)) {
4479		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4480			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4481			    (S_ISLNK(inode->i_mode) &&
4482			     !ext4_inode_is_fast_symlink(inode))))
4483				/* Validate extent which is part of inode */
4484				ret = ext4_ext_check_inode(inode);
4485		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4486			   (S_ISLNK(inode->i_mode) &&
4487			    !ext4_inode_is_fast_symlink(inode))) {
4488			/* Validate block references which are part of inode */
4489			ret = ext4_ind_check_inode(inode);
4490		}
4491	}
4492	if (ret)
4493		goto bad_inode;
4494
4495	if (S_ISREG(inode->i_mode)) {
4496		inode->i_op = &ext4_file_inode_operations;
4497		inode->i_fop = &ext4_file_operations;
4498		ext4_set_aops(inode);
4499	} else if (S_ISDIR(inode->i_mode)) {
4500		inode->i_op = &ext4_dir_inode_operations;
4501		inode->i_fop = &ext4_dir_operations;
4502	} else if (S_ISLNK(inode->i_mode)) {
4503		if (ext4_encrypted_inode(inode)) {
4504			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4505			ext4_set_aops(inode);
4506		} else if (ext4_inode_is_fast_symlink(inode)) {
4507			inode->i_link = (char *)ei->i_data;
4508			inode->i_op = &ext4_fast_symlink_inode_operations;
4509			nd_terminate_link(ei->i_data, inode->i_size,
4510				sizeof(ei->i_data) - 1);
4511		} else {
4512			inode->i_op = &ext4_symlink_inode_operations;
4513			ext4_set_aops(inode);
4514		}
4515		inode_nohighmem(inode);
4516	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4517	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4518		inode->i_op = &ext4_special_inode_operations;
4519		if (raw_inode->i_block[0])
4520			init_special_inode(inode, inode->i_mode,
4521			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4522		else
4523			init_special_inode(inode, inode->i_mode,
4524			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4525	} else if (ino == EXT4_BOOT_LOADER_INO) {
4526		make_bad_inode(inode);
4527	} else {
4528		ret = -EFSCORRUPTED;
4529		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4530		goto bad_inode;
4531	}
4532	brelse(iloc.bh);
4533	ext4_set_inode_flags(inode);
4534	unlock_new_inode(inode);
4535	return inode;
4536
4537bad_inode:
4538	brelse(iloc.bh);
4539	iget_failed(inode);
4540	return ERR_PTR(ret);
4541}
4542
4543struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4544{
4545	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4546		return ERR_PTR(-EFSCORRUPTED);
4547	return ext4_iget(sb, ino);
4548}
4549
4550static int ext4_inode_blocks_set(handle_t *handle,
4551				struct ext4_inode *raw_inode,
4552				struct ext4_inode_info *ei)
4553{
4554	struct inode *inode = &(ei->vfs_inode);
4555	u64 i_blocks = inode->i_blocks;
4556	struct super_block *sb = inode->i_sb;
4557
4558	if (i_blocks <= ~0U) {
4559		/*
4560		 * i_blocks can be represented in a 32 bit variable
4561		 * as multiple of 512 bytes
4562		 */
4563		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4564		raw_inode->i_blocks_high = 0;
4565		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4566		return 0;
4567	}
4568	if (!ext4_has_feature_huge_file(sb))
4569		return -EFBIG;
4570
4571	if (i_blocks <= 0xffffffffffffULL) {
4572		/*
4573		 * i_blocks can be represented in a 48 bit variable
4574		 * as multiple of 512 bytes
4575		 */
4576		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4577		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4578		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4579	} else {
4580		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4581		/* i_block is stored in file system block size */
4582		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4583		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4584		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4585	}
4586	return 0;
4587}
4588
4589struct other_inode {
4590	unsigned long		orig_ino;
4591	struct ext4_inode	*raw_inode;
4592};
4593
4594static int other_inode_match(struct inode * inode, unsigned long ino,
4595			     void *data)
4596{
4597	struct other_inode *oi = (struct other_inode *) data;
4598
4599	if ((inode->i_ino != ino) ||
4600	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4601			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4602	    ((inode->i_state & I_DIRTY_TIME) == 0))
4603		return 0;
4604	spin_lock(&inode->i_lock);
4605	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4606				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4607	    (inode->i_state & I_DIRTY_TIME)) {
4608		struct ext4_inode_info	*ei = EXT4_I(inode);
4609
4610		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4611		spin_unlock(&inode->i_lock);
4612
4613		spin_lock(&ei->i_raw_lock);
4614		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4615		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4616		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4617		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4618		spin_unlock(&ei->i_raw_lock);
4619		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4620		return -1;
4621	}
4622	spin_unlock(&inode->i_lock);
4623	return -1;
4624}
4625
4626/*
4627 * Opportunistically update the other time fields for other inodes in
4628 * the same inode table block.
4629 */
4630static void ext4_update_other_inodes_time(struct super_block *sb,
4631					  unsigned long orig_ino, char *buf)
4632{
4633	struct other_inode oi;
4634	unsigned long ino;
4635	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4636	int inode_size = EXT4_INODE_SIZE(sb);
4637
4638	oi.orig_ino = orig_ino;
4639	/*
4640	 * Calculate the first inode in the inode table block.  Inode
4641	 * numbers are one-based.  That is, the first inode in a block
4642	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4643	 */
4644	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4645	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4646		if (ino == orig_ino)
4647			continue;
4648		oi.raw_inode = (struct ext4_inode *) buf;
4649		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4650	}
4651}
4652
4653/*
4654 * Post the struct inode info into an on-disk inode location in the
4655 * buffer-cache.  This gobbles the caller's reference to the
4656 * buffer_head in the inode location struct.
4657 *
4658 * The caller must have write access to iloc->bh.
4659 */
4660static int ext4_do_update_inode(handle_t *handle,
4661				struct inode *inode,
4662				struct ext4_iloc *iloc)
4663{
4664	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4665	struct ext4_inode_info *ei = EXT4_I(inode);
4666	struct buffer_head *bh = iloc->bh;
4667	struct super_block *sb = inode->i_sb;
4668	int err = 0, rc, block;
4669	int need_datasync = 0, set_large_file = 0;
4670	uid_t i_uid;
4671	gid_t i_gid;
4672	projid_t i_projid;
4673
4674	spin_lock(&ei->i_raw_lock);
4675
4676	/* For fields not tracked in the in-memory inode,
4677	 * initialise them to zero for new inodes. */
4678	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4679		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4680
4681	ext4_get_inode_flags(ei);
4682	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4683	i_uid = i_uid_read(inode);
4684	i_gid = i_gid_read(inode);
4685	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4686	if (!(test_opt(inode->i_sb, NO_UID32))) {
4687		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4688		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4689/*
4690 * Fix up interoperability with old kernels. Otherwise, old inodes get
4691 * re-used with the upper 16 bits of the uid/gid intact
4692 */
4693		if (!ei->i_dtime) {
 
 
 
4694			raw_inode->i_uid_high =
4695				cpu_to_le16(high_16_bits(i_uid));
4696			raw_inode->i_gid_high =
4697				cpu_to_le16(high_16_bits(i_gid));
4698		} else {
4699			raw_inode->i_uid_high = 0;
4700			raw_inode->i_gid_high = 0;
4701		}
4702	} else {
4703		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4704		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4705		raw_inode->i_uid_high = 0;
4706		raw_inode->i_gid_high = 0;
4707	}
4708	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4709
4710	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4711	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4712	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4713	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4714
4715	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4716	if (err) {
4717		spin_unlock(&ei->i_raw_lock);
4718		goto out_brelse;
4719	}
4720	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4721	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4722	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4723		raw_inode->i_file_acl_high =
4724			cpu_to_le16(ei->i_file_acl >> 32);
4725	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4726	if (ei->i_disksize != ext4_isize(raw_inode)) {
4727		ext4_isize_set(raw_inode, ei->i_disksize);
4728		need_datasync = 1;
4729	}
4730	if (ei->i_disksize > 0x7fffffffULL) {
4731		if (!ext4_has_feature_large_file(sb) ||
4732				EXT4_SB(sb)->s_es->s_rev_level ==
4733		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4734			set_large_file = 1;
4735	}
4736	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4737	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4738		if (old_valid_dev(inode->i_rdev)) {
4739			raw_inode->i_block[0] =
4740				cpu_to_le32(old_encode_dev(inode->i_rdev));
4741			raw_inode->i_block[1] = 0;
4742		} else {
4743			raw_inode->i_block[0] = 0;
4744			raw_inode->i_block[1] =
4745				cpu_to_le32(new_encode_dev(inode->i_rdev));
4746			raw_inode->i_block[2] = 0;
4747		}
4748	} else if (!ext4_has_inline_data(inode)) {
4749		for (block = 0; block < EXT4_N_BLOCKS; block++)
4750			raw_inode->i_block[block] = ei->i_data[block];
4751	}
4752
4753	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4754		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4755		if (ei->i_extra_isize) {
4756			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4757				raw_inode->i_version_hi =
4758					cpu_to_le32(inode->i_version >> 32);
4759			raw_inode->i_extra_isize =
4760				cpu_to_le16(ei->i_extra_isize);
4761		}
4762	}
4763
4764	BUG_ON(!EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
4765			EXT4_FEATURE_RO_COMPAT_PROJECT) &&
4766	       i_projid != EXT4_DEF_PROJID);
4767
4768	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4769	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4770		raw_inode->i_projid = cpu_to_le32(i_projid);
4771
4772	ext4_inode_csum_set(inode, raw_inode, ei);
4773	spin_unlock(&ei->i_raw_lock);
4774	if (inode->i_sb->s_flags & MS_LAZYTIME)
4775		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4776					      bh->b_data);
4777
4778	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4779	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4780	if (!err)
4781		err = rc;
4782	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4783	if (set_large_file) {
4784		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4785		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4786		if (err)
4787			goto out_brelse;
4788		ext4_update_dynamic_rev(sb);
4789		ext4_set_feature_large_file(sb);
4790		ext4_handle_sync(handle);
4791		err = ext4_handle_dirty_super(handle, sb);
4792	}
4793	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4794out_brelse:
4795	brelse(bh);
4796	ext4_std_error(inode->i_sb, err);
4797	return err;
4798}
4799
4800/*
4801 * ext4_write_inode()
4802 *
4803 * We are called from a few places:
4804 *
4805 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4806 *   Here, there will be no transaction running. We wait for any running
4807 *   transaction to commit.
4808 *
4809 * - Within flush work (sys_sync(), kupdate and such).
4810 *   We wait on commit, if told to.
4811 *
4812 * - Within iput_final() -> write_inode_now()
4813 *   We wait on commit, if told to.
4814 *
4815 * In all cases it is actually safe for us to return without doing anything,
4816 * because the inode has been copied into a raw inode buffer in
4817 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4818 * writeback.
4819 *
4820 * Note that we are absolutely dependent upon all inode dirtiers doing the
4821 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4822 * which we are interested.
4823 *
4824 * It would be a bug for them to not do this.  The code:
4825 *
4826 *	mark_inode_dirty(inode)
4827 *	stuff();
4828 *	inode->i_size = expr;
4829 *
4830 * is in error because write_inode() could occur while `stuff()' is running,
4831 * and the new i_size will be lost.  Plus the inode will no longer be on the
4832 * superblock's dirty inode list.
4833 */
4834int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4835{
4836	int err;
4837
4838	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4839		return 0;
4840
4841	if (EXT4_SB(inode->i_sb)->s_journal) {
4842		if (ext4_journal_current_handle()) {
4843			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4844			dump_stack();
4845			return -EIO;
4846		}
4847
4848		/*
4849		 * No need to force transaction in WB_SYNC_NONE mode. Also
4850		 * ext4_sync_fs() will force the commit after everything is
4851		 * written.
4852		 */
4853		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4854			return 0;
4855
4856		err = ext4_force_commit(inode->i_sb);
4857	} else {
4858		struct ext4_iloc iloc;
4859
4860		err = __ext4_get_inode_loc(inode, &iloc, 0);
4861		if (err)
4862			return err;
4863		/*
4864		 * sync(2) will flush the whole buffer cache. No need to do
4865		 * it here separately for each inode.
4866		 */
4867		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4868			sync_dirty_buffer(iloc.bh);
4869		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4870			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4871					 "IO error syncing inode");
4872			err = -EIO;
4873		}
4874		brelse(iloc.bh);
4875	}
4876	return err;
4877}
4878
4879/*
4880 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4881 * buffers that are attached to a page stradding i_size and are undergoing
4882 * commit. In that case we have to wait for commit to finish and try again.
4883 */
4884static void ext4_wait_for_tail_page_commit(struct inode *inode)
4885{
4886	struct page *page;
4887	unsigned offset;
4888	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4889	tid_t commit_tid = 0;
4890	int ret;
4891
4892	offset = inode->i_size & (PAGE_SIZE - 1);
4893	/*
4894	 * All buffers in the last page remain valid? Then there's nothing to
4895	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
4896	 * blocksize case
4897	 */
4898	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
4899		return;
4900	while (1) {
4901		page = find_lock_page(inode->i_mapping,
4902				      inode->i_size >> PAGE_SHIFT);
4903		if (!page)
4904			return;
4905		ret = __ext4_journalled_invalidatepage(page, offset,
4906						PAGE_SIZE - offset);
4907		unlock_page(page);
4908		put_page(page);
4909		if (ret != -EBUSY)
4910			return;
4911		commit_tid = 0;
4912		read_lock(&journal->j_state_lock);
4913		if (journal->j_committing_transaction)
4914			commit_tid = journal->j_committing_transaction->t_tid;
4915		read_unlock(&journal->j_state_lock);
4916		if (commit_tid)
4917			jbd2_log_wait_commit(journal, commit_tid);
4918	}
4919}
4920
4921/*
4922 * ext4_setattr()
4923 *
4924 * Called from notify_change.
4925 *
4926 * We want to trap VFS attempts to truncate the file as soon as
4927 * possible.  In particular, we want to make sure that when the VFS
4928 * shrinks i_size, we put the inode on the orphan list and modify
4929 * i_disksize immediately, so that during the subsequent flushing of
4930 * dirty pages and freeing of disk blocks, we can guarantee that any
4931 * commit will leave the blocks being flushed in an unused state on
4932 * disk.  (On recovery, the inode will get truncated and the blocks will
4933 * be freed, so we have a strong guarantee that no future commit will
4934 * leave these blocks visible to the user.)
4935 *
4936 * Another thing we have to assure is that if we are in ordered mode
4937 * and inode is still attached to the committing transaction, we must
4938 * we start writeout of all the dirty pages which are being truncated.
4939 * This way we are sure that all the data written in the previous
4940 * transaction are already on disk (truncate waits for pages under
4941 * writeback).
4942 *
4943 * Called with inode->i_mutex down.
4944 */
4945int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4946{
4947	struct inode *inode = d_inode(dentry);
4948	int error, rc = 0;
4949	int orphan = 0;
4950	const unsigned int ia_valid = attr->ia_valid;
4951
4952	error = inode_change_ok(inode, attr);
4953	if (error)
4954		return error;
4955
4956	if (is_quota_modification(inode, attr)) {
4957		error = dquot_initialize(inode);
4958		if (error)
4959			return error;
4960	}
4961	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4962	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4963		handle_t *handle;
4964
4965		/* (user+group)*(old+new) structure, inode write (sb,
4966		 * inode block, ? - but truncate inode update has it) */
4967		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4968			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4969			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4970		if (IS_ERR(handle)) {
4971			error = PTR_ERR(handle);
4972			goto err_out;
4973		}
4974		error = dquot_transfer(inode, attr);
4975		if (error) {
4976			ext4_journal_stop(handle);
4977			return error;
4978		}
4979		/* Update corresponding info in inode so that everything is in
4980		 * one transaction */
4981		if (attr->ia_valid & ATTR_UID)
4982			inode->i_uid = attr->ia_uid;
4983		if (attr->ia_valid & ATTR_GID)
4984			inode->i_gid = attr->ia_gid;
4985		error = ext4_mark_inode_dirty(handle, inode);
4986		ext4_journal_stop(handle);
4987	}
4988
4989	if (attr->ia_valid & ATTR_SIZE) {
4990		handle_t *handle;
4991		loff_t oldsize = inode->i_size;
4992		int shrink = (attr->ia_size <= inode->i_size);
4993
4994		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4995			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4996
4997			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4998				return -EFBIG;
4999		}
5000		if (!S_ISREG(inode->i_mode))
5001			return -EINVAL;
5002
5003		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5004			inode_inc_iversion(inode);
5005
5006		if (ext4_should_order_data(inode) &&
5007		    (attr->ia_size < inode->i_size)) {
5008			error = ext4_begin_ordered_truncate(inode,
5009							    attr->ia_size);
5010			if (error)
5011				goto err_out;
5012		}
5013		if (attr->ia_size != inode->i_size) {
5014			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5015			if (IS_ERR(handle)) {
5016				error = PTR_ERR(handle);
5017				goto err_out;
5018			}
5019			if (ext4_handle_valid(handle) && shrink) {
5020				error = ext4_orphan_add(handle, inode);
5021				orphan = 1;
5022			}
5023			/*
5024			 * Update c/mtime on truncate up, ext4_truncate() will
5025			 * update c/mtime in shrink case below
5026			 */
5027			if (!shrink) {
5028				inode->i_mtime = ext4_current_time(inode);
5029				inode->i_ctime = inode->i_mtime;
5030			}
5031			down_write(&EXT4_I(inode)->i_data_sem);
5032			EXT4_I(inode)->i_disksize = attr->ia_size;
5033			rc = ext4_mark_inode_dirty(handle, inode);
5034			if (!error)
5035				error = rc;
5036			/*
5037			 * We have to update i_size under i_data_sem together
5038			 * with i_disksize to avoid races with writeback code
5039			 * running ext4_wb_update_i_disksize().
5040			 */
5041			if (!error)
5042				i_size_write(inode, attr->ia_size);
5043			up_write(&EXT4_I(inode)->i_data_sem);
5044			ext4_journal_stop(handle);
5045			if (error) {
5046				if (orphan)
5047					ext4_orphan_del(NULL, inode);
5048				goto err_out;
5049			}
5050		}
5051		if (!shrink)
5052			pagecache_isize_extended(inode, oldsize, inode->i_size);
5053
5054		/*
5055		 * Blocks are going to be removed from the inode. Wait
5056		 * for dio in flight.  Temporarily disable
5057		 * dioread_nolock to prevent livelock.
5058		 */
5059		if (orphan) {
5060			if (!ext4_should_journal_data(inode)) {
5061				ext4_inode_block_unlocked_dio(inode);
5062				inode_dio_wait(inode);
5063				ext4_inode_resume_unlocked_dio(inode);
5064			} else
5065				ext4_wait_for_tail_page_commit(inode);
5066		}
5067		down_write(&EXT4_I(inode)->i_mmap_sem);
5068		/*
5069		 * Truncate pagecache after we've waited for commit
5070		 * in data=journal mode to make pages freeable.
5071		 */
5072		truncate_pagecache(inode, inode->i_size);
5073		if (shrink)
5074			ext4_truncate(inode);
 
 
 
5075		up_write(&EXT4_I(inode)->i_mmap_sem);
5076	}
5077
5078	if (!rc) {
5079		setattr_copy(inode, attr);
5080		mark_inode_dirty(inode);
5081	}
5082
5083	/*
5084	 * If the call to ext4_truncate failed to get a transaction handle at
5085	 * all, we need to clean up the in-core orphan list manually.
5086	 */
5087	if (orphan && inode->i_nlink)
5088		ext4_orphan_del(NULL, inode);
5089
5090	if (!rc && (ia_valid & ATTR_MODE))
5091		rc = posix_acl_chmod(inode, inode->i_mode);
5092
5093err_out:
5094	ext4_std_error(inode->i_sb, error);
5095	if (!error)
5096		error = rc;
5097	return error;
5098}
5099
5100int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5101		 struct kstat *stat)
5102{
5103	struct inode *inode;
5104	unsigned long long delalloc_blocks;
5105
5106	inode = d_inode(dentry);
5107	generic_fillattr(inode, stat);
5108
5109	/*
5110	 * If there is inline data in the inode, the inode will normally not
5111	 * have data blocks allocated (it may have an external xattr block).
5112	 * Report at least one sector for such files, so tools like tar, rsync,
5113	 * others doen't incorrectly think the file is completely sparse.
5114	 */
5115	if (unlikely(ext4_has_inline_data(inode)))
5116		stat->blocks += (stat->size + 511) >> 9;
5117
5118	/*
5119	 * We can't update i_blocks if the block allocation is delayed
5120	 * otherwise in the case of system crash before the real block
5121	 * allocation is done, we will have i_blocks inconsistent with
5122	 * on-disk file blocks.
5123	 * We always keep i_blocks updated together with real
5124	 * allocation. But to not confuse with user, stat
5125	 * will return the blocks that include the delayed allocation
5126	 * blocks for this file.
5127	 */
5128	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5129				   EXT4_I(inode)->i_reserved_data_blocks);
5130	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5131	return 0;
5132}
5133
5134static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5135				   int pextents)
5136{
5137	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5138		return ext4_ind_trans_blocks(inode, lblocks);
5139	return ext4_ext_index_trans_blocks(inode, pextents);
5140}
5141
5142/*
5143 * Account for index blocks, block groups bitmaps and block group
5144 * descriptor blocks if modify datablocks and index blocks
5145 * worse case, the indexs blocks spread over different block groups
5146 *
5147 * If datablocks are discontiguous, they are possible to spread over
5148 * different block groups too. If they are contiguous, with flexbg,
5149 * they could still across block group boundary.
5150 *
5151 * Also account for superblock, inode, quota and xattr blocks
5152 */
5153static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5154				  int pextents)
5155{
5156	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5157	int gdpblocks;
5158	int idxblocks;
5159	int ret = 0;
5160
5161	/*
5162	 * How many index blocks need to touch to map @lblocks logical blocks
5163	 * to @pextents physical extents?
5164	 */
5165	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5166
5167	ret = idxblocks;
5168
5169	/*
5170	 * Now let's see how many group bitmaps and group descriptors need
5171	 * to account
5172	 */
5173	groups = idxblocks + pextents;
5174	gdpblocks = groups;
5175	if (groups > ngroups)
5176		groups = ngroups;
5177	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5178		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5179
5180	/* bitmaps and block group descriptor blocks */
5181	ret += groups + gdpblocks;
5182
5183	/* Blocks for super block, inode, quota and xattr blocks */
5184	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5185
5186	return ret;
5187}
5188
5189/*
5190 * Calculate the total number of credits to reserve to fit
5191 * the modification of a single pages into a single transaction,
5192 * which may include multiple chunks of block allocations.
5193 *
5194 * This could be called via ext4_write_begin()
5195 *
5196 * We need to consider the worse case, when
5197 * one new block per extent.
5198 */
5199int ext4_writepage_trans_blocks(struct inode *inode)
5200{
5201	int bpp = ext4_journal_blocks_per_page(inode);
5202	int ret;
5203
5204	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5205
5206	/* Account for data blocks for journalled mode */
5207	if (ext4_should_journal_data(inode))
5208		ret += bpp;
5209	return ret;
5210}
5211
5212/*
5213 * Calculate the journal credits for a chunk of data modification.
5214 *
5215 * This is called from DIO, fallocate or whoever calling
5216 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5217 *
5218 * journal buffers for data blocks are not included here, as DIO
5219 * and fallocate do no need to journal data buffers.
5220 */
5221int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5222{
5223	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5224}
5225
5226/*
5227 * The caller must have previously called ext4_reserve_inode_write().
5228 * Give this, we know that the caller already has write access to iloc->bh.
5229 */
5230int ext4_mark_iloc_dirty(handle_t *handle,
5231			 struct inode *inode, struct ext4_iloc *iloc)
5232{
5233	int err = 0;
5234
5235	if (IS_I_VERSION(inode))
5236		inode_inc_iversion(inode);
5237
5238	/* the do_update_inode consumes one bh->b_count */
5239	get_bh(iloc->bh);
5240
5241	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5242	err = ext4_do_update_inode(handle, inode, iloc);
5243	put_bh(iloc->bh);
5244	return err;
5245}
5246
5247/*
5248 * On success, We end up with an outstanding reference count against
5249 * iloc->bh.  This _must_ be cleaned up later.
5250 */
5251
5252int
5253ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5254			 struct ext4_iloc *iloc)
5255{
5256	int err;
5257
5258	err = ext4_get_inode_loc(inode, iloc);
5259	if (!err) {
5260		BUFFER_TRACE(iloc->bh, "get_write_access");
5261		err = ext4_journal_get_write_access(handle, iloc->bh);
5262		if (err) {
5263			brelse(iloc->bh);
5264			iloc->bh = NULL;
5265		}
5266	}
5267	ext4_std_error(inode->i_sb, err);
5268	return err;
5269}
5270
5271/*
5272 * Expand an inode by new_extra_isize bytes.
5273 * Returns 0 on success or negative error number on failure.
5274 */
5275static int ext4_expand_extra_isize(struct inode *inode,
5276				   unsigned int new_extra_isize,
5277				   struct ext4_iloc iloc,
5278				   handle_t *handle)
5279{
5280	struct ext4_inode *raw_inode;
5281	struct ext4_xattr_ibody_header *header;
5282
5283	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5284		return 0;
5285
5286	raw_inode = ext4_raw_inode(&iloc);
5287
5288	header = IHDR(inode, raw_inode);
5289
5290	/* No extended attributes present */
5291	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5292	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5293		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5294			new_extra_isize);
5295		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5296		return 0;
5297	}
5298
5299	/* try to expand with EAs present */
5300	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5301					  raw_inode, handle);
5302}
5303
5304/*
5305 * What we do here is to mark the in-core inode as clean with respect to inode
5306 * dirtiness (it may still be data-dirty).
5307 * This means that the in-core inode may be reaped by prune_icache
5308 * without having to perform any I/O.  This is a very good thing,
5309 * because *any* task may call prune_icache - even ones which
5310 * have a transaction open against a different journal.
5311 *
5312 * Is this cheating?  Not really.  Sure, we haven't written the
5313 * inode out, but prune_icache isn't a user-visible syncing function.
5314 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5315 * we start and wait on commits.
5316 */
5317int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5318{
5319	struct ext4_iloc iloc;
5320	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5321	static unsigned int mnt_count;
5322	int err, ret;
5323
5324	might_sleep();
5325	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5326	err = ext4_reserve_inode_write(handle, inode, &iloc);
5327	if (err)
5328		return err;
5329	if (ext4_handle_valid(handle) &&
5330	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5331	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5332		/*
5333		 * We need extra buffer credits since we may write into EA block
 
 
5334		 * with this same handle. If journal_extend fails, then it will
5335		 * only result in a minor loss of functionality for that inode.
5336		 * If this is felt to be critical, then e2fsck should be run to
5337		 * force a large enough s_min_extra_isize.
5338		 */
5339		if ((jbd2_journal_extend(handle,
5340			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
 
5341			ret = ext4_expand_extra_isize(inode,
5342						      sbi->s_want_extra_isize,
5343						      iloc, handle);
5344			if (ret) {
5345				ext4_set_inode_state(inode,
5346						     EXT4_STATE_NO_EXPAND);
5347				if (mnt_count !=
5348					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5349					ext4_warning(inode->i_sb,
5350					"Unable to expand inode %lu. Delete"
5351					" some EAs or run e2fsck.",
5352					inode->i_ino);
5353					mnt_count =
5354					  le16_to_cpu(sbi->s_es->s_mnt_count);
5355				}
5356			}
5357		}
5358	}
5359	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5360}
5361
5362/*
5363 * ext4_dirty_inode() is called from __mark_inode_dirty()
5364 *
5365 * We're really interested in the case where a file is being extended.
5366 * i_size has been changed by generic_commit_write() and we thus need
5367 * to include the updated inode in the current transaction.
5368 *
5369 * Also, dquot_alloc_block() will always dirty the inode when blocks
5370 * are allocated to the file.
5371 *
5372 * If the inode is marked synchronous, we don't honour that here - doing
5373 * so would cause a commit on atime updates, which we don't bother doing.
5374 * We handle synchronous inodes at the highest possible level.
5375 *
5376 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5377 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5378 * to copy into the on-disk inode structure are the timestamp files.
5379 */
5380void ext4_dirty_inode(struct inode *inode, int flags)
5381{
5382	handle_t *handle;
5383
5384	if (flags == I_DIRTY_TIME)
5385		return;
5386	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5387	if (IS_ERR(handle))
5388		goto out;
5389
5390	ext4_mark_inode_dirty(handle, inode);
5391
5392	ext4_journal_stop(handle);
5393out:
5394	return;
5395}
5396
5397#if 0
5398/*
5399 * Bind an inode's backing buffer_head into this transaction, to prevent
5400 * it from being flushed to disk early.  Unlike
5401 * ext4_reserve_inode_write, this leaves behind no bh reference and
5402 * returns no iloc structure, so the caller needs to repeat the iloc
5403 * lookup to mark the inode dirty later.
5404 */
5405static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5406{
5407	struct ext4_iloc iloc;
5408
5409	int err = 0;
5410	if (handle) {
5411		err = ext4_get_inode_loc(inode, &iloc);
5412		if (!err) {
5413			BUFFER_TRACE(iloc.bh, "get_write_access");
5414			err = jbd2_journal_get_write_access(handle, iloc.bh);
5415			if (!err)
5416				err = ext4_handle_dirty_metadata(handle,
5417								 NULL,
5418								 iloc.bh);
5419			brelse(iloc.bh);
5420		}
5421	}
5422	ext4_std_error(inode->i_sb, err);
5423	return err;
5424}
5425#endif
5426
5427int ext4_change_inode_journal_flag(struct inode *inode, int val)
5428{
5429	journal_t *journal;
5430	handle_t *handle;
5431	int err;
 
5432
5433	/*
5434	 * We have to be very careful here: changing a data block's
5435	 * journaling status dynamically is dangerous.  If we write a
5436	 * data block to the journal, change the status and then delete
5437	 * that block, we risk forgetting to revoke the old log record
5438	 * from the journal and so a subsequent replay can corrupt data.
5439	 * So, first we make sure that the journal is empty and that
5440	 * nobody is changing anything.
5441	 */
5442
5443	journal = EXT4_JOURNAL(inode);
5444	if (!journal)
5445		return 0;
5446	if (is_journal_aborted(journal))
5447		return -EROFS;
5448	/* We have to allocate physical blocks for delalloc blocks
5449	 * before flushing journal. otherwise delalloc blocks can not
5450	 * be allocated any more. even more truncate on delalloc blocks
5451	 * could trigger BUG by flushing delalloc blocks in journal.
5452	 * There is no delalloc block in non-journal data mode.
5453	 */
5454	if (val && test_opt(inode->i_sb, DELALLOC)) {
5455		err = ext4_alloc_da_blocks(inode);
5456		if (err < 0)
5457			return err;
5458	}
5459
5460	/* Wait for all existing dio workers */
5461	ext4_inode_block_unlocked_dio(inode);
5462	inode_dio_wait(inode);
5463
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5464	jbd2_journal_lock_updates(journal);
5465
5466	/*
5467	 * OK, there are no updates running now, and all cached data is
5468	 * synced to disk.  We are now in a completely consistent state
5469	 * which doesn't have anything in the journal, and we know that
5470	 * no filesystem updates are running, so it is safe to modify
5471	 * the inode's in-core data-journaling state flag now.
5472	 */
5473
5474	if (val)
5475		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5476	else {
5477		err = jbd2_journal_flush(journal);
5478		if (err < 0) {
5479			jbd2_journal_unlock_updates(journal);
 
5480			ext4_inode_resume_unlocked_dio(inode);
5481			return err;
5482		}
5483		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5484	}
5485	ext4_set_aops(inode);
 
 
 
 
 
5486
5487	jbd2_journal_unlock_updates(journal);
 
 
 
 
5488	ext4_inode_resume_unlocked_dio(inode);
5489
5490	/* Finally we can mark the inode as dirty. */
5491
5492	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5493	if (IS_ERR(handle))
5494		return PTR_ERR(handle);
5495
5496	err = ext4_mark_inode_dirty(handle, inode);
5497	ext4_handle_sync(handle);
5498	ext4_journal_stop(handle);
5499	ext4_std_error(inode->i_sb, err);
5500
5501	return err;
5502}
5503
5504static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5505{
5506	return !buffer_mapped(bh);
5507}
5508
5509int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5510{
5511	struct page *page = vmf->page;
5512	loff_t size;
5513	unsigned long len;
5514	int ret;
5515	struct file *file = vma->vm_file;
5516	struct inode *inode = file_inode(file);
5517	struct address_space *mapping = inode->i_mapping;
5518	handle_t *handle;
5519	get_block_t *get_block;
5520	int retries = 0;
5521
5522	sb_start_pagefault(inode->i_sb);
5523	file_update_time(vma->vm_file);
5524
5525	down_read(&EXT4_I(inode)->i_mmap_sem);
5526	/* Delalloc case is easy... */
5527	if (test_opt(inode->i_sb, DELALLOC) &&
5528	    !ext4_should_journal_data(inode) &&
5529	    !ext4_nonda_switch(inode->i_sb)) {
5530		do {
5531			ret = block_page_mkwrite(vma, vmf,
5532						   ext4_da_get_block_prep);
5533		} while (ret == -ENOSPC &&
5534		       ext4_should_retry_alloc(inode->i_sb, &retries));
5535		goto out_ret;
5536	}
5537
5538	lock_page(page);
5539	size = i_size_read(inode);
5540	/* Page got truncated from under us? */
5541	if (page->mapping != mapping || page_offset(page) > size) {
5542		unlock_page(page);
5543		ret = VM_FAULT_NOPAGE;
5544		goto out;
5545	}
5546
5547	if (page->index == size >> PAGE_SHIFT)
5548		len = size & ~PAGE_MASK;
5549	else
5550		len = PAGE_SIZE;
5551	/*
5552	 * Return if we have all the buffers mapped. This avoids the need to do
5553	 * journal_start/journal_stop which can block and take a long time
5554	 */
5555	if (page_has_buffers(page)) {
5556		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5557					    0, len, NULL,
5558					    ext4_bh_unmapped)) {
5559			/* Wait so that we don't change page under IO */
5560			wait_for_stable_page(page);
5561			ret = VM_FAULT_LOCKED;
5562			goto out;
5563		}
5564	}
5565	unlock_page(page);
5566	/* OK, we need to fill the hole... */
5567	if (ext4_should_dioread_nolock(inode))
5568		get_block = ext4_get_block_unwritten;
5569	else
5570		get_block = ext4_get_block;
5571retry_alloc:
5572	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5573				    ext4_writepage_trans_blocks(inode));
5574	if (IS_ERR(handle)) {
5575		ret = VM_FAULT_SIGBUS;
5576		goto out;
5577	}
5578	ret = block_page_mkwrite(vma, vmf, get_block);
5579	if (!ret && ext4_should_journal_data(inode)) {
5580		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5581			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5582			unlock_page(page);
5583			ret = VM_FAULT_SIGBUS;
5584			ext4_journal_stop(handle);
5585			goto out;
5586		}
5587		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5588	}
5589	ext4_journal_stop(handle);
5590	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5591		goto retry_alloc;
5592out_ret:
5593	ret = block_page_mkwrite_return(ret);
5594out:
5595	up_read(&EXT4_I(inode)->i_mmap_sem);
5596	sb_end_pagefault(inode->i_sb);
5597	return ret;
5598}
5599
5600int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5601{
5602	struct inode *inode = file_inode(vma->vm_file);
5603	int err;
5604
5605	down_read(&EXT4_I(inode)->i_mmap_sem);
5606	err = filemap_fault(vma, vmf);
5607	up_read(&EXT4_I(inode)->i_mmap_sem);
5608
5609	return err;
5610}
5611
5612/*
5613 * Find the first extent at or after @lblk in an inode that is not a hole.
5614 * Search for @map_len blocks at most. The extent is returned in @result.
5615 *
5616 * The function returns 1 if we found an extent. The function returns 0 in
5617 * case there is no extent at or after @lblk and in that case also sets
5618 * @result->es_len to 0. In case of error, the error code is returned.
5619 */
5620int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5621			 unsigned int map_len, struct extent_status *result)
5622{
5623	struct ext4_map_blocks map;
5624	struct extent_status es = {};
5625	int ret;
5626
5627	map.m_lblk = lblk;
5628	map.m_len = map_len;
5629
5630	/*
5631	 * For non-extent based files this loop may iterate several times since
5632	 * we do not determine full hole size.
5633	 */
5634	while (map.m_len > 0) {
5635		ret = ext4_map_blocks(NULL, inode, &map, 0);
5636		if (ret < 0)
5637			return ret;
5638		/* There's extent covering m_lblk? Just return it. */
5639		if (ret > 0) {
5640			int status;
5641
5642			ext4_es_store_pblock(result, map.m_pblk);
5643			result->es_lblk = map.m_lblk;
5644			result->es_len = map.m_len;
5645			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5646				status = EXTENT_STATUS_UNWRITTEN;
5647			else
5648				status = EXTENT_STATUS_WRITTEN;
5649			ext4_es_store_status(result, status);
5650			return 1;
5651		}
5652		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5653						  map.m_lblk + map.m_len - 1,
5654						  &es);
5655		/* Is delalloc data before next block in extent tree? */
5656		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5657			ext4_lblk_t offset = 0;
5658
5659			if (es.es_lblk < lblk)
5660				offset = lblk - es.es_lblk;
5661			result->es_lblk = es.es_lblk + offset;
5662			ext4_es_store_pblock(result,
5663					     ext4_es_pblock(&es) + offset);
5664			result->es_len = es.es_len - offset;
5665			ext4_es_store_status(result, ext4_es_status(&es));
5666
5667			return 1;
5668		}
5669		/* There's a hole at m_lblk, advance us after it */
5670		map.m_lblk += map.m_len;
5671		map_len -= map.m_len;
5672		map.m_len = map_len;
5673		cond_resched();
5674	}
5675	result->es_len = 0;
5676	return 0;
5677}