Loading...
1/*
2 * linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
17 *
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/dax.h>
26#include <linux/quotaops.h>
27#include <linux/string.h>
28#include <linux/buffer_head.h>
29#include <linux/writeback.h>
30#include <linux/pagevec.h>
31#include <linux/mpage.h>
32#include <linux/namei.h>
33#include <linux/uio.h>
34#include <linux/bio.h>
35#include <linux/workqueue.h>
36#include <linux/kernel.h>
37#include <linux/printk.h>
38#include <linux/slab.h>
39#include <linux/bitops.h>
40#include <linux/iomap.h>
41
42#include "ext4_jbd2.h"
43#include "xattr.h"
44#include "acl.h"
45#include "truncate.h"
46
47#include <trace/events/ext4.h>
48
49#define MPAGE_DA_EXTENT_TAIL 0x01
50
51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
52 struct ext4_inode_info *ei)
53{
54 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
55 __u32 csum;
56 __u16 dummy_csum = 0;
57 int offset = offsetof(struct ext4_inode, i_checksum_lo);
58 unsigned int csum_size = sizeof(dummy_csum);
59
60 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
61 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
62 offset += csum_size;
63 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
64 EXT4_GOOD_OLD_INODE_SIZE - offset);
65
66 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
67 offset = offsetof(struct ext4_inode, i_checksum_hi);
68 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
69 EXT4_GOOD_OLD_INODE_SIZE,
70 offset - EXT4_GOOD_OLD_INODE_SIZE);
71 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
72 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
73 csum_size);
74 offset += csum_size;
75 }
76 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
77 EXT4_INODE_SIZE(inode->i_sb) - offset);
78 }
79
80 return csum;
81}
82
83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
84 struct ext4_inode_info *ei)
85{
86 __u32 provided, calculated;
87
88 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
89 cpu_to_le32(EXT4_OS_LINUX) ||
90 !ext4_has_metadata_csum(inode->i_sb))
91 return 1;
92
93 provided = le16_to_cpu(raw->i_checksum_lo);
94 calculated = ext4_inode_csum(inode, raw, ei);
95 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
96 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
97 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
98 else
99 calculated &= 0xFFFF;
100
101 return provided == calculated;
102}
103
104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
105 struct ext4_inode_info *ei)
106{
107 __u32 csum;
108
109 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
110 cpu_to_le32(EXT4_OS_LINUX) ||
111 !ext4_has_metadata_csum(inode->i_sb))
112 return;
113
114 csum = ext4_inode_csum(inode, raw, ei);
115 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
116 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
117 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
118 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
119}
120
121static inline int ext4_begin_ordered_truncate(struct inode *inode,
122 loff_t new_size)
123{
124 trace_ext4_begin_ordered_truncate(inode, new_size);
125 /*
126 * If jinode is zero, then we never opened the file for
127 * writing, so there's no need to call
128 * jbd2_journal_begin_ordered_truncate() since there's no
129 * outstanding writes we need to flush.
130 */
131 if (!EXT4_I(inode)->jinode)
132 return 0;
133 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
134 EXT4_I(inode)->jinode,
135 new_size);
136}
137
138static void ext4_invalidatepage(struct page *page, unsigned int offset,
139 unsigned int length);
140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
143 int pextents);
144
145/*
146 * Test whether an inode is a fast symlink.
147 */
148int ext4_inode_is_fast_symlink(struct inode *inode)
149{
150 int ea_blocks = EXT4_I(inode)->i_file_acl ?
151 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
152
153 if (ext4_has_inline_data(inode))
154 return 0;
155
156 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
157}
158
159/*
160 * Restart the transaction associated with *handle. This does a commit,
161 * so before we call here everything must be consistently dirtied against
162 * this transaction.
163 */
164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
165 int nblocks)
166{
167 int ret;
168
169 /*
170 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
171 * moment, get_block can be called only for blocks inside i_size since
172 * page cache has been already dropped and writes are blocked by
173 * i_mutex. So we can safely drop the i_data_sem here.
174 */
175 BUG_ON(EXT4_JOURNAL(inode) == NULL);
176 jbd_debug(2, "restarting handle %p\n", handle);
177 up_write(&EXT4_I(inode)->i_data_sem);
178 ret = ext4_journal_restart(handle, nblocks);
179 down_write(&EXT4_I(inode)->i_data_sem);
180 ext4_discard_preallocations(inode);
181
182 return ret;
183}
184
185/*
186 * Called at the last iput() if i_nlink is zero.
187 */
188void ext4_evict_inode(struct inode *inode)
189{
190 handle_t *handle;
191 int err;
192
193 trace_ext4_evict_inode(inode);
194
195 if (inode->i_nlink) {
196 /*
197 * When journalling data dirty buffers are tracked only in the
198 * journal. So although mm thinks everything is clean and
199 * ready for reaping the inode might still have some pages to
200 * write in the running transaction or waiting to be
201 * checkpointed. Thus calling jbd2_journal_invalidatepage()
202 * (via truncate_inode_pages()) to discard these buffers can
203 * cause data loss. Also even if we did not discard these
204 * buffers, we would have no way to find them after the inode
205 * is reaped and thus user could see stale data if he tries to
206 * read them before the transaction is checkpointed. So be
207 * careful and force everything to disk here... We use
208 * ei->i_datasync_tid to store the newest transaction
209 * containing inode's data.
210 *
211 * Note that directories do not have this problem because they
212 * don't use page cache.
213 */
214 if (inode->i_ino != EXT4_JOURNAL_INO &&
215 ext4_should_journal_data(inode) &&
216 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
217 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
218 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
219
220 jbd2_complete_transaction(journal, commit_tid);
221 filemap_write_and_wait(&inode->i_data);
222 }
223 truncate_inode_pages_final(&inode->i_data);
224
225 goto no_delete;
226 }
227
228 if (is_bad_inode(inode))
229 goto no_delete;
230 dquot_initialize(inode);
231
232 if (ext4_should_order_data(inode))
233 ext4_begin_ordered_truncate(inode, 0);
234 truncate_inode_pages_final(&inode->i_data);
235
236 /*
237 * Protect us against freezing - iput() caller didn't have to have any
238 * protection against it
239 */
240 sb_start_intwrite(inode->i_sb);
241 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
242 ext4_blocks_for_truncate(inode)+3);
243 if (IS_ERR(handle)) {
244 ext4_std_error(inode->i_sb, PTR_ERR(handle));
245 /*
246 * If we're going to skip the normal cleanup, we still need to
247 * make sure that the in-core orphan linked list is properly
248 * cleaned up.
249 */
250 ext4_orphan_del(NULL, inode);
251 sb_end_intwrite(inode->i_sb);
252 goto no_delete;
253 }
254
255 if (IS_SYNC(inode))
256 ext4_handle_sync(handle);
257 inode->i_size = 0;
258 err = ext4_mark_inode_dirty(handle, inode);
259 if (err) {
260 ext4_warning(inode->i_sb,
261 "couldn't mark inode dirty (err %d)", err);
262 goto stop_handle;
263 }
264 if (inode->i_blocks) {
265 err = ext4_truncate(inode);
266 if (err) {
267 ext4_error(inode->i_sb,
268 "couldn't truncate inode %lu (err %d)",
269 inode->i_ino, err);
270 goto stop_handle;
271 }
272 }
273
274 /*
275 * ext4_ext_truncate() doesn't reserve any slop when it
276 * restarts journal transactions; therefore there may not be
277 * enough credits left in the handle to remove the inode from
278 * the orphan list and set the dtime field.
279 */
280 if (!ext4_handle_has_enough_credits(handle, 3)) {
281 err = ext4_journal_extend(handle, 3);
282 if (err > 0)
283 err = ext4_journal_restart(handle, 3);
284 if (err != 0) {
285 ext4_warning(inode->i_sb,
286 "couldn't extend journal (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 goto no_delete;
292 }
293 }
294
295 /*
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
302 */
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = get_seconds();
305
306 /*
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
312 */
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 return;
321no_delete:
322 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
323}
324
325#ifdef CONFIG_QUOTA
326qsize_t *ext4_get_reserved_space(struct inode *inode)
327{
328 return &EXT4_I(inode)->i_reserved_quota;
329}
330#endif
331
332/*
333 * Called with i_data_sem down, which is important since we can call
334 * ext4_discard_preallocations() from here.
335 */
336void ext4_da_update_reserve_space(struct inode *inode,
337 int used, int quota_claim)
338{
339 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
340 struct ext4_inode_info *ei = EXT4_I(inode);
341
342 spin_lock(&ei->i_block_reservation_lock);
343 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
344 if (unlikely(used > ei->i_reserved_data_blocks)) {
345 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
346 "with only %d reserved data blocks",
347 __func__, inode->i_ino, used,
348 ei->i_reserved_data_blocks);
349 WARN_ON(1);
350 used = ei->i_reserved_data_blocks;
351 }
352
353 /* Update per-inode reservations */
354 ei->i_reserved_data_blocks -= used;
355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
356
357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
358
359 /* Update quota subsystem for data blocks */
360 if (quota_claim)
361 dquot_claim_block(inode, EXT4_C2B(sbi, used));
362 else {
363 /*
364 * We did fallocate with an offset that is already delayed
365 * allocated. So on delayed allocated writeback we should
366 * not re-claim the quota for fallocated blocks.
367 */
368 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
369 }
370
371 /*
372 * If we have done all the pending block allocations and if
373 * there aren't any writers on the inode, we can discard the
374 * inode's preallocations.
375 */
376 if ((ei->i_reserved_data_blocks == 0) &&
377 (atomic_read(&inode->i_writecount) == 0))
378 ext4_discard_preallocations(inode);
379}
380
381static int __check_block_validity(struct inode *inode, const char *func,
382 unsigned int line,
383 struct ext4_map_blocks *map)
384{
385 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
386 map->m_len)) {
387 ext4_error_inode(inode, func, line, map->m_pblk,
388 "lblock %lu mapped to illegal pblock "
389 "(length %d)", (unsigned long) map->m_lblk,
390 map->m_len);
391 return -EFSCORRUPTED;
392 }
393 return 0;
394}
395
396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
397 ext4_lblk_t len)
398{
399 int ret;
400
401 if (ext4_encrypted_inode(inode))
402 return fscrypt_zeroout_range(inode, lblk, pblk, len);
403
404 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
405 if (ret > 0)
406 ret = 0;
407
408 return ret;
409}
410
411#define check_block_validity(inode, map) \
412 __check_block_validity((inode), __func__, __LINE__, (map))
413
414#ifdef ES_AGGRESSIVE_TEST
415static void ext4_map_blocks_es_recheck(handle_t *handle,
416 struct inode *inode,
417 struct ext4_map_blocks *es_map,
418 struct ext4_map_blocks *map,
419 int flags)
420{
421 int retval;
422
423 map->m_flags = 0;
424 /*
425 * There is a race window that the result is not the same.
426 * e.g. xfstests #223 when dioread_nolock enables. The reason
427 * is that we lookup a block mapping in extent status tree with
428 * out taking i_data_sem. So at the time the unwritten extent
429 * could be converted.
430 */
431 down_read(&EXT4_I(inode)->i_data_sem);
432 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
433 retval = ext4_ext_map_blocks(handle, inode, map, flags &
434 EXT4_GET_BLOCKS_KEEP_SIZE);
435 } else {
436 retval = ext4_ind_map_blocks(handle, inode, map, flags &
437 EXT4_GET_BLOCKS_KEEP_SIZE);
438 }
439 up_read((&EXT4_I(inode)->i_data_sem));
440
441 /*
442 * We don't check m_len because extent will be collpased in status
443 * tree. So the m_len might not equal.
444 */
445 if (es_map->m_lblk != map->m_lblk ||
446 es_map->m_flags != map->m_flags ||
447 es_map->m_pblk != map->m_pblk) {
448 printk("ES cache assertion failed for inode: %lu "
449 "es_cached ex [%d/%d/%llu/%x] != "
450 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
451 inode->i_ino, es_map->m_lblk, es_map->m_len,
452 es_map->m_pblk, es_map->m_flags, map->m_lblk,
453 map->m_len, map->m_pblk, map->m_flags,
454 retval, flags);
455 }
456}
457#endif /* ES_AGGRESSIVE_TEST */
458
459/*
460 * The ext4_map_blocks() function tries to look up the requested blocks,
461 * and returns if the blocks are already mapped.
462 *
463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
464 * and store the allocated blocks in the result buffer head and mark it
465 * mapped.
466 *
467 * If file type is extents based, it will call ext4_ext_map_blocks(),
468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
469 * based files
470 *
471 * On success, it returns the number of blocks being mapped or allocated. if
472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
474 *
475 * It returns 0 if plain look up failed (blocks have not been allocated), in
476 * that case, @map is returned as unmapped but we still do fill map->m_len to
477 * indicate the length of a hole starting at map->m_lblk.
478 *
479 * It returns the error in case of allocation failure.
480 */
481int ext4_map_blocks(handle_t *handle, struct inode *inode,
482 struct ext4_map_blocks *map, int flags)
483{
484 struct extent_status es;
485 int retval;
486 int ret = 0;
487#ifdef ES_AGGRESSIVE_TEST
488 struct ext4_map_blocks orig_map;
489
490 memcpy(&orig_map, map, sizeof(*map));
491#endif
492
493 map->m_flags = 0;
494 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
495 "logical block %lu\n", inode->i_ino, flags, map->m_len,
496 (unsigned long) map->m_lblk);
497
498 /*
499 * ext4_map_blocks returns an int, and m_len is an unsigned int
500 */
501 if (unlikely(map->m_len > INT_MAX))
502 map->m_len = INT_MAX;
503
504 /* We can handle the block number less than EXT_MAX_BLOCKS */
505 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
506 return -EFSCORRUPTED;
507
508 /* Lookup extent status tree firstly */
509 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
510 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
511 map->m_pblk = ext4_es_pblock(&es) +
512 map->m_lblk - es.es_lblk;
513 map->m_flags |= ext4_es_is_written(&es) ?
514 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
515 retval = es.es_len - (map->m_lblk - es.es_lblk);
516 if (retval > map->m_len)
517 retval = map->m_len;
518 map->m_len = retval;
519 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
520 map->m_pblk = 0;
521 retval = es.es_len - (map->m_lblk - es.es_lblk);
522 if (retval > map->m_len)
523 retval = map->m_len;
524 map->m_len = retval;
525 retval = 0;
526 } else {
527 BUG_ON(1);
528 }
529#ifdef ES_AGGRESSIVE_TEST
530 ext4_map_blocks_es_recheck(handle, inode, map,
531 &orig_map, flags);
532#endif
533 goto found;
534 }
535
536 /*
537 * Try to see if we can get the block without requesting a new
538 * file system block.
539 */
540 down_read(&EXT4_I(inode)->i_data_sem);
541 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
542 retval = ext4_ext_map_blocks(handle, inode, map, flags &
543 EXT4_GET_BLOCKS_KEEP_SIZE);
544 } else {
545 retval = ext4_ind_map_blocks(handle, inode, map, flags &
546 EXT4_GET_BLOCKS_KEEP_SIZE);
547 }
548 if (retval > 0) {
549 unsigned int status;
550
551 if (unlikely(retval != map->m_len)) {
552 ext4_warning(inode->i_sb,
553 "ES len assertion failed for inode "
554 "%lu: retval %d != map->m_len %d",
555 inode->i_ino, retval, map->m_len);
556 WARN_ON(1);
557 }
558
559 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
560 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
561 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
562 !(status & EXTENT_STATUS_WRITTEN) &&
563 ext4_find_delalloc_range(inode, map->m_lblk,
564 map->m_lblk + map->m_len - 1))
565 status |= EXTENT_STATUS_DELAYED;
566 ret = ext4_es_insert_extent(inode, map->m_lblk,
567 map->m_len, map->m_pblk, status);
568 if (ret < 0)
569 retval = ret;
570 }
571 up_read((&EXT4_I(inode)->i_data_sem));
572
573found:
574 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
575 ret = check_block_validity(inode, map);
576 if (ret != 0)
577 return ret;
578 }
579
580 /* If it is only a block(s) look up */
581 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
582 return retval;
583
584 /*
585 * Returns if the blocks have already allocated
586 *
587 * Note that if blocks have been preallocated
588 * ext4_ext_get_block() returns the create = 0
589 * with buffer head unmapped.
590 */
591 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
592 /*
593 * If we need to convert extent to unwritten
594 * we continue and do the actual work in
595 * ext4_ext_map_blocks()
596 */
597 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
598 return retval;
599
600 /*
601 * Here we clear m_flags because after allocating an new extent,
602 * it will be set again.
603 */
604 map->m_flags &= ~EXT4_MAP_FLAGS;
605
606 /*
607 * New blocks allocate and/or writing to unwritten extent
608 * will possibly result in updating i_data, so we take
609 * the write lock of i_data_sem, and call get_block()
610 * with create == 1 flag.
611 */
612 down_write(&EXT4_I(inode)->i_data_sem);
613
614 /*
615 * We need to check for EXT4 here because migrate
616 * could have changed the inode type in between
617 */
618 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
619 retval = ext4_ext_map_blocks(handle, inode, map, flags);
620 } else {
621 retval = ext4_ind_map_blocks(handle, inode, map, flags);
622
623 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
624 /*
625 * We allocated new blocks which will result in
626 * i_data's format changing. Force the migrate
627 * to fail by clearing migrate flags
628 */
629 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
630 }
631
632 /*
633 * Update reserved blocks/metadata blocks after successful
634 * block allocation which had been deferred till now. We don't
635 * support fallocate for non extent files. So we can update
636 * reserve space here.
637 */
638 if ((retval > 0) &&
639 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
640 ext4_da_update_reserve_space(inode, retval, 1);
641 }
642
643 if (retval > 0) {
644 unsigned int status;
645
646 if (unlikely(retval != map->m_len)) {
647 ext4_warning(inode->i_sb,
648 "ES len assertion failed for inode "
649 "%lu: retval %d != map->m_len %d",
650 inode->i_ino, retval, map->m_len);
651 WARN_ON(1);
652 }
653
654 /*
655 * We have to zeroout blocks before inserting them into extent
656 * status tree. Otherwise someone could look them up there and
657 * use them before they are really zeroed. We also have to
658 * unmap metadata before zeroing as otherwise writeback can
659 * overwrite zeros with stale data from block device.
660 */
661 if (flags & EXT4_GET_BLOCKS_ZERO &&
662 map->m_flags & EXT4_MAP_MAPPED &&
663 map->m_flags & EXT4_MAP_NEW) {
664 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
665 map->m_len);
666 ret = ext4_issue_zeroout(inode, map->m_lblk,
667 map->m_pblk, map->m_len);
668 if (ret) {
669 retval = ret;
670 goto out_sem;
671 }
672 }
673
674 /*
675 * If the extent has been zeroed out, we don't need to update
676 * extent status tree.
677 */
678 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
679 ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
680 if (ext4_es_is_written(&es))
681 goto out_sem;
682 }
683 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
684 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
685 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
686 !(status & EXTENT_STATUS_WRITTEN) &&
687 ext4_find_delalloc_range(inode, map->m_lblk,
688 map->m_lblk + map->m_len - 1))
689 status |= EXTENT_STATUS_DELAYED;
690 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
691 map->m_pblk, status);
692 if (ret < 0) {
693 retval = ret;
694 goto out_sem;
695 }
696 }
697
698out_sem:
699 up_write((&EXT4_I(inode)->i_data_sem));
700 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
701 ret = check_block_validity(inode, map);
702 if (ret != 0)
703 return ret;
704
705 /*
706 * Inodes with freshly allocated blocks where contents will be
707 * visible after transaction commit must be on transaction's
708 * ordered data list.
709 */
710 if (map->m_flags & EXT4_MAP_NEW &&
711 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
712 !(flags & EXT4_GET_BLOCKS_ZERO) &&
713 !IS_NOQUOTA(inode) &&
714 ext4_should_order_data(inode)) {
715 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
716 ret = ext4_jbd2_inode_add_wait(handle, inode);
717 else
718 ret = ext4_jbd2_inode_add_write(handle, inode);
719 if (ret)
720 return ret;
721 }
722 }
723 return retval;
724}
725
726/*
727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
728 * we have to be careful as someone else may be manipulating b_state as well.
729 */
730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
731{
732 unsigned long old_state;
733 unsigned long new_state;
734
735 flags &= EXT4_MAP_FLAGS;
736
737 /* Dummy buffer_head? Set non-atomically. */
738 if (!bh->b_page) {
739 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
740 return;
741 }
742 /*
743 * Someone else may be modifying b_state. Be careful! This is ugly but
744 * once we get rid of using bh as a container for mapping information
745 * to pass to / from get_block functions, this can go away.
746 */
747 do {
748 old_state = READ_ONCE(bh->b_state);
749 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
750 } while (unlikely(
751 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
752}
753
754static int _ext4_get_block(struct inode *inode, sector_t iblock,
755 struct buffer_head *bh, int flags)
756{
757 struct ext4_map_blocks map;
758 int ret = 0;
759
760 if (ext4_has_inline_data(inode))
761 return -ERANGE;
762
763 map.m_lblk = iblock;
764 map.m_len = bh->b_size >> inode->i_blkbits;
765
766 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
767 flags);
768 if (ret > 0) {
769 map_bh(bh, inode->i_sb, map.m_pblk);
770 ext4_update_bh_state(bh, map.m_flags);
771 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
772 ret = 0;
773 } else if (ret == 0) {
774 /* hole case, need to fill in bh->b_size */
775 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
776 }
777 return ret;
778}
779
780int ext4_get_block(struct inode *inode, sector_t iblock,
781 struct buffer_head *bh, int create)
782{
783 return _ext4_get_block(inode, iblock, bh,
784 create ? EXT4_GET_BLOCKS_CREATE : 0);
785}
786
787/*
788 * Get block function used when preparing for buffered write if we require
789 * creating an unwritten extent if blocks haven't been allocated. The extent
790 * will be converted to written after the IO is complete.
791 */
792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
793 struct buffer_head *bh_result, int create)
794{
795 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
796 inode->i_ino, create);
797 return _ext4_get_block(inode, iblock, bh_result,
798 EXT4_GET_BLOCKS_IO_CREATE_EXT);
799}
800
801/* Maximum number of blocks we map for direct IO at once. */
802#define DIO_MAX_BLOCKS 4096
803
804/*
805 * Get blocks function for the cases that need to start a transaction -
806 * generally difference cases of direct IO and DAX IO. It also handles retries
807 * in case of ENOSPC.
808 */
809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
810 struct buffer_head *bh_result, int flags)
811{
812 int dio_credits;
813 handle_t *handle;
814 int retries = 0;
815 int ret;
816
817 /* Trim mapping request to maximum we can map at once for DIO */
818 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
819 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
820 dio_credits = ext4_chunk_trans_blocks(inode,
821 bh_result->b_size >> inode->i_blkbits);
822retry:
823 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
824 if (IS_ERR(handle))
825 return PTR_ERR(handle);
826
827 ret = _ext4_get_block(inode, iblock, bh_result, flags);
828 ext4_journal_stop(handle);
829
830 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
831 goto retry;
832 return ret;
833}
834
835/* Get block function for DIO reads and writes to inodes without extents */
836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
837 struct buffer_head *bh, int create)
838{
839 /* We don't expect handle for direct IO */
840 WARN_ON_ONCE(ext4_journal_current_handle());
841
842 if (!create)
843 return _ext4_get_block(inode, iblock, bh, 0);
844 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
845}
846
847/*
848 * Get block function for AIO DIO writes when we create unwritten extent if
849 * blocks are not allocated yet. The extent will be converted to written
850 * after IO is complete.
851 */
852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
853 sector_t iblock, struct buffer_head *bh_result, int create)
854{
855 int ret;
856
857 /* We don't expect handle for direct IO */
858 WARN_ON_ONCE(ext4_journal_current_handle());
859
860 ret = ext4_get_block_trans(inode, iblock, bh_result,
861 EXT4_GET_BLOCKS_IO_CREATE_EXT);
862
863 /*
864 * When doing DIO using unwritten extents, we need io_end to convert
865 * unwritten extents to written on IO completion. We allocate io_end
866 * once we spot unwritten extent and store it in b_private. Generic
867 * DIO code keeps b_private set and furthermore passes the value to
868 * our completion callback in 'private' argument.
869 */
870 if (!ret && buffer_unwritten(bh_result)) {
871 if (!bh_result->b_private) {
872 ext4_io_end_t *io_end;
873
874 io_end = ext4_init_io_end(inode, GFP_KERNEL);
875 if (!io_end)
876 return -ENOMEM;
877 bh_result->b_private = io_end;
878 ext4_set_io_unwritten_flag(inode, io_end);
879 }
880 set_buffer_defer_completion(bh_result);
881 }
882
883 return ret;
884}
885
886/*
887 * Get block function for non-AIO DIO writes when we create unwritten extent if
888 * blocks are not allocated yet. The extent will be converted to written
889 * after IO is complete from ext4_ext_direct_IO() function.
890 */
891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
892 sector_t iblock, struct buffer_head *bh_result, int create)
893{
894 int ret;
895
896 /* We don't expect handle for direct IO */
897 WARN_ON_ONCE(ext4_journal_current_handle());
898
899 ret = ext4_get_block_trans(inode, iblock, bh_result,
900 EXT4_GET_BLOCKS_IO_CREATE_EXT);
901
902 /*
903 * Mark inode as having pending DIO writes to unwritten extents.
904 * ext4_ext_direct_IO() checks this flag and converts extents to
905 * written.
906 */
907 if (!ret && buffer_unwritten(bh_result))
908 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
909
910 return ret;
911}
912
913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
914 struct buffer_head *bh_result, int create)
915{
916 int ret;
917
918 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
919 inode->i_ino, create);
920 /* We don't expect handle for direct IO */
921 WARN_ON_ONCE(ext4_journal_current_handle());
922
923 ret = _ext4_get_block(inode, iblock, bh_result, 0);
924 /*
925 * Blocks should have been preallocated! ext4_file_write_iter() checks
926 * that.
927 */
928 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
929
930 return ret;
931}
932
933
934/*
935 * `handle' can be NULL if create is zero
936 */
937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
938 ext4_lblk_t block, int map_flags)
939{
940 struct ext4_map_blocks map;
941 struct buffer_head *bh;
942 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
943 int err;
944
945 J_ASSERT(handle != NULL || create == 0);
946
947 map.m_lblk = block;
948 map.m_len = 1;
949 err = ext4_map_blocks(handle, inode, &map, map_flags);
950
951 if (err == 0)
952 return create ? ERR_PTR(-ENOSPC) : NULL;
953 if (err < 0)
954 return ERR_PTR(err);
955
956 bh = sb_getblk(inode->i_sb, map.m_pblk);
957 if (unlikely(!bh))
958 return ERR_PTR(-ENOMEM);
959 if (map.m_flags & EXT4_MAP_NEW) {
960 J_ASSERT(create != 0);
961 J_ASSERT(handle != NULL);
962
963 /*
964 * Now that we do not always journal data, we should
965 * keep in mind whether this should always journal the
966 * new buffer as metadata. For now, regular file
967 * writes use ext4_get_block instead, so it's not a
968 * problem.
969 */
970 lock_buffer(bh);
971 BUFFER_TRACE(bh, "call get_create_access");
972 err = ext4_journal_get_create_access(handle, bh);
973 if (unlikely(err)) {
974 unlock_buffer(bh);
975 goto errout;
976 }
977 if (!buffer_uptodate(bh)) {
978 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
979 set_buffer_uptodate(bh);
980 }
981 unlock_buffer(bh);
982 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
983 err = ext4_handle_dirty_metadata(handle, inode, bh);
984 if (unlikely(err))
985 goto errout;
986 } else
987 BUFFER_TRACE(bh, "not a new buffer");
988 return bh;
989errout:
990 brelse(bh);
991 return ERR_PTR(err);
992}
993
994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
995 ext4_lblk_t block, int map_flags)
996{
997 struct buffer_head *bh;
998
999 bh = ext4_getblk(handle, inode, block, map_flags);
1000 if (IS_ERR(bh))
1001 return bh;
1002 if (!bh || buffer_uptodate(bh))
1003 return bh;
1004 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005 wait_on_buffer(bh);
1006 if (buffer_uptodate(bh))
1007 return bh;
1008 put_bh(bh);
1009 return ERR_PTR(-EIO);
1010}
1011
1012int ext4_walk_page_buffers(handle_t *handle,
1013 struct buffer_head *head,
1014 unsigned from,
1015 unsigned to,
1016 int *partial,
1017 int (*fn)(handle_t *handle,
1018 struct buffer_head *bh))
1019{
1020 struct buffer_head *bh;
1021 unsigned block_start, block_end;
1022 unsigned blocksize = head->b_size;
1023 int err, ret = 0;
1024 struct buffer_head *next;
1025
1026 for (bh = head, block_start = 0;
1027 ret == 0 && (bh != head || !block_start);
1028 block_start = block_end, bh = next) {
1029 next = bh->b_this_page;
1030 block_end = block_start + blocksize;
1031 if (block_end <= from || block_start >= to) {
1032 if (partial && !buffer_uptodate(bh))
1033 *partial = 1;
1034 continue;
1035 }
1036 err = (*fn)(handle, bh);
1037 if (!ret)
1038 ret = err;
1039 }
1040 return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction. We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write(). So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage(). In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page. So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes. If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated. We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067int do_journal_get_write_access(handle_t *handle,
1068 struct buffer_head *bh)
1069{
1070 int dirty = buffer_dirty(bh);
1071 int ret;
1072
1073 if (!buffer_mapped(bh) || buffer_freed(bh))
1074 return 0;
1075 /*
1076 * __block_write_begin() could have dirtied some buffers. Clean
1077 * the dirty bit as jbd2_journal_get_write_access() could complain
1078 * otherwise about fs integrity issues. Setting of the dirty bit
1079 * by __block_write_begin() isn't a real problem here as we clear
1080 * the bit before releasing a page lock and thus writeback cannot
1081 * ever write the buffer.
1082 */
1083 if (dirty)
1084 clear_buffer_dirty(bh);
1085 BUFFER_TRACE(bh, "get write access");
1086 ret = ext4_journal_get_write_access(handle, bh);
1087 if (!ret && dirty)
1088 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089 return ret;
1090}
1091
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094 get_block_t *get_block)
1095{
1096 unsigned from = pos & (PAGE_SIZE - 1);
1097 unsigned to = from + len;
1098 struct inode *inode = page->mapping->host;
1099 unsigned block_start, block_end;
1100 sector_t block;
1101 int err = 0;
1102 unsigned blocksize = inode->i_sb->s_blocksize;
1103 unsigned bbits;
1104 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105 bool decrypt = false;
1106
1107 BUG_ON(!PageLocked(page));
1108 BUG_ON(from > PAGE_SIZE);
1109 BUG_ON(to > PAGE_SIZE);
1110 BUG_ON(from > to);
1111
1112 if (!page_has_buffers(page))
1113 create_empty_buffers(page, blocksize, 0);
1114 head = page_buffers(page);
1115 bbits = ilog2(blocksize);
1116 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118 for (bh = head, block_start = 0; bh != head || !block_start;
1119 block++, block_start = block_end, bh = bh->b_this_page) {
1120 block_end = block_start + blocksize;
1121 if (block_end <= from || block_start >= to) {
1122 if (PageUptodate(page)) {
1123 if (!buffer_uptodate(bh))
1124 set_buffer_uptodate(bh);
1125 }
1126 continue;
1127 }
1128 if (buffer_new(bh))
1129 clear_buffer_new(bh);
1130 if (!buffer_mapped(bh)) {
1131 WARN_ON(bh->b_size != blocksize);
1132 err = get_block(inode, block, bh, 1);
1133 if (err)
1134 break;
1135 if (buffer_new(bh)) {
1136 clean_bdev_bh_alias(bh);
1137 if (PageUptodate(page)) {
1138 clear_buffer_new(bh);
1139 set_buffer_uptodate(bh);
1140 mark_buffer_dirty(bh);
1141 continue;
1142 }
1143 if (block_end > to || block_start < from)
1144 zero_user_segments(page, to, block_end,
1145 block_start, from);
1146 continue;
1147 }
1148 }
1149 if (PageUptodate(page)) {
1150 if (!buffer_uptodate(bh))
1151 set_buffer_uptodate(bh);
1152 continue;
1153 }
1154 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155 !buffer_unwritten(bh) &&
1156 (block_start < from || block_end > to)) {
1157 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158 *wait_bh++ = bh;
1159 decrypt = ext4_encrypted_inode(inode) &&
1160 S_ISREG(inode->i_mode);
1161 }
1162 }
1163 /*
1164 * If we issued read requests, let them complete.
1165 */
1166 while (wait_bh > wait) {
1167 wait_on_buffer(*--wait_bh);
1168 if (!buffer_uptodate(*wait_bh))
1169 err = -EIO;
1170 }
1171 if (unlikely(err))
1172 page_zero_new_buffers(page, from, to);
1173 else if (decrypt)
1174 err = fscrypt_decrypt_page(page->mapping->host, page,
1175 PAGE_SIZE, 0, page->index);
1176 return err;
1177}
1178#endif
1179
1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181 loff_t pos, unsigned len, unsigned flags,
1182 struct page **pagep, void **fsdata)
1183{
1184 struct inode *inode = mapping->host;
1185 int ret, needed_blocks;
1186 handle_t *handle;
1187 int retries = 0;
1188 struct page *page;
1189 pgoff_t index;
1190 unsigned from, to;
1191
1192 trace_ext4_write_begin(inode, pos, len, flags);
1193 /*
1194 * Reserve one block more for addition to orphan list in case
1195 * we allocate blocks but write fails for some reason
1196 */
1197 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198 index = pos >> PAGE_SHIFT;
1199 from = pos & (PAGE_SIZE - 1);
1200 to = from + len;
1201
1202 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204 flags, pagep);
1205 if (ret < 0)
1206 return ret;
1207 if (ret == 1)
1208 return 0;
1209 }
1210
1211 /*
1212 * grab_cache_page_write_begin() can take a long time if the
1213 * system is thrashing due to memory pressure, or if the page
1214 * is being written back. So grab it first before we start
1215 * the transaction handle. This also allows us to allocate
1216 * the page (if needed) without using GFP_NOFS.
1217 */
1218retry_grab:
1219 page = grab_cache_page_write_begin(mapping, index, flags);
1220 if (!page)
1221 return -ENOMEM;
1222 unlock_page(page);
1223
1224retry_journal:
1225 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226 if (IS_ERR(handle)) {
1227 put_page(page);
1228 return PTR_ERR(handle);
1229 }
1230
1231 lock_page(page);
1232 if (page->mapping != mapping) {
1233 /* The page got truncated from under us */
1234 unlock_page(page);
1235 put_page(page);
1236 ext4_journal_stop(handle);
1237 goto retry_grab;
1238 }
1239 /* In case writeback began while the page was unlocked */
1240 wait_for_stable_page(page);
1241
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243 if (ext4_should_dioread_nolock(inode))
1244 ret = ext4_block_write_begin(page, pos, len,
1245 ext4_get_block_unwritten);
1246 else
1247 ret = ext4_block_write_begin(page, pos, len,
1248 ext4_get_block);
1249#else
1250 if (ext4_should_dioread_nolock(inode))
1251 ret = __block_write_begin(page, pos, len,
1252 ext4_get_block_unwritten);
1253 else
1254 ret = __block_write_begin(page, pos, len, ext4_get_block);
1255#endif
1256 if (!ret && ext4_should_journal_data(inode)) {
1257 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258 from, to, NULL,
1259 do_journal_get_write_access);
1260 }
1261
1262 if (ret) {
1263 unlock_page(page);
1264 /*
1265 * __block_write_begin may have instantiated a few blocks
1266 * outside i_size. Trim these off again. Don't need
1267 * i_size_read because we hold i_mutex.
1268 *
1269 * Add inode to orphan list in case we crash before
1270 * truncate finishes
1271 */
1272 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273 ext4_orphan_add(handle, inode);
1274
1275 ext4_journal_stop(handle);
1276 if (pos + len > inode->i_size) {
1277 ext4_truncate_failed_write(inode);
1278 /*
1279 * If truncate failed early the inode might
1280 * still be on the orphan list; we need to
1281 * make sure the inode is removed from the
1282 * orphan list in that case.
1283 */
1284 if (inode->i_nlink)
1285 ext4_orphan_del(NULL, inode);
1286 }
1287
1288 if (ret == -ENOSPC &&
1289 ext4_should_retry_alloc(inode->i_sb, &retries))
1290 goto retry_journal;
1291 put_page(page);
1292 return ret;
1293 }
1294 *pagep = page;
1295 return ret;
1296}
1297
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300{
1301 int ret;
1302 if (!buffer_mapped(bh) || buffer_freed(bh))
1303 return 0;
1304 set_buffer_uptodate(bh);
1305 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306 clear_buffer_meta(bh);
1307 clear_buffer_prio(bh);
1308 return ret;
1309}
1310
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319 struct address_space *mapping,
1320 loff_t pos, unsigned len, unsigned copied,
1321 struct page *page, void *fsdata)
1322{
1323 handle_t *handle = ext4_journal_current_handle();
1324 struct inode *inode = mapping->host;
1325 loff_t old_size = inode->i_size;
1326 int ret = 0, ret2;
1327 int i_size_changed = 0;
1328
1329 trace_ext4_write_end(inode, pos, len, copied);
1330 if (ext4_has_inline_data(inode)) {
1331 ret = ext4_write_inline_data_end(inode, pos, len,
1332 copied, page);
1333 if (ret < 0) {
1334 unlock_page(page);
1335 put_page(page);
1336 goto errout;
1337 }
1338 copied = ret;
1339 } else
1340 copied = block_write_end(file, mapping, pos,
1341 len, copied, page, fsdata);
1342 /*
1343 * it's important to update i_size while still holding page lock:
1344 * page writeout could otherwise come in and zero beyond i_size.
1345 */
1346 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1347 unlock_page(page);
1348 put_page(page);
1349
1350 if (old_size < pos)
1351 pagecache_isize_extended(inode, old_size, pos);
1352 /*
1353 * Don't mark the inode dirty under page lock. First, it unnecessarily
1354 * makes the holding time of page lock longer. Second, it forces lock
1355 * ordering of page lock and transaction start for journaling
1356 * filesystems.
1357 */
1358 if (i_size_changed)
1359 ext4_mark_inode_dirty(handle, inode);
1360
1361 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1362 /* if we have allocated more blocks and copied
1363 * less. We will have blocks allocated outside
1364 * inode->i_size. So truncate them
1365 */
1366 ext4_orphan_add(handle, inode);
1367errout:
1368 ret2 = ext4_journal_stop(handle);
1369 if (!ret)
1370 ret = ret2;
1371
1372 if (pos + len > inode->i_size) {
1373 ext4_truncate_failed_write(inode);
1374 /*
1375 * If truncate failed early the inode might still be
1376 * on the orphan list; we need to make sure the inode
1377 * is removed from the orphan list in that case.
1378 */
1379 if (inode->i_nlink)
1380 ext4_orphan_del(NULL, inode);
1381 }
1382
1383 return ret ? ret : copied;
1384}
1385
1386/*
1387 * This is a private version of page_zero_new_buffers() which doesn't
1388 * set the buffer to be dirty, since in data=journalled mode we need
1389 * to call ext4_handle_dirty_metadata() instead.
1390 */
1391static void ext4_journalled_zero_new_buffers(handle_t *handle,
1392 struct page *page,
1393 unsigned from, unsigned to)
1394{
1395 unsigned int block_start = 0, block_end;
1396 struct buffer_head *head, *bh;
1397
1398 bh = head = page_buffers(page);
1399 do {
1400 block_end = block_start + bh->b_size;
1401 if (buffer_new(bh)) {
1402 if (block_end > from && block_start < to) {
1403 if (!PageUptodate(page)) {
1404 unsigned start, size;
1405
1406 start = max(from, block_start);
1407 size = min(to, block_end) - start;
1408
1409 zero_user(page, start, size);
1410 write_end_fn(handle, bh);
1411 }
1412 clear_buffer_new(bh);
1413 }
1414 }
1415 block_start = block_end;
1416 bh = bh->b_this_page;
1417 } while (bh != head);
1418}
1419
1420static int ext4_journalled_write_end(struct file *file,
1421 struct address_space *mapping,
1422 loff_t pos, unsigned len, unsigned copied,
1423 struct page *page, void *fsdata)
1424{
1425 handle_t *handle = ext4_journal_current_handle();
1426 struct inode *inode = mapping->host;
1427 loff_t old_size = inode->i_size;
1428 int ret = 0, ret2;
1429 int partial = 0;
1430 unsigned from, to;
1431 int size_changed = 0;
1432
1433 trace_ext4_journalled_write_end(inode, pos, len, copied);
1434 from = pos & (PAGE_SIZE - 1);
1435 to = from + len;
1436
1437 BUG_ON(!ext4_handle_valid(handle));
1438
1439 if (ext4_has_inline_data(inode)) {
1440 ret = ext4_write_inline_data_end(inode, pos, len,
1441 copied, page);
1442 if (ret < 0) {
1443 unlock_page(page);
1444 put_page(page);
1445 goto errout;
1446 }
1447 copied = ret;
1448 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1449 copied = 0;
1450 ext4_journalled_zero_new_buffers(handle, page, from, to);
1451 } else {
1452 if (unlikely(copied < len))
1453 ext4_journalled_zero_new_buffers(handle, page,
1454 from + copied, to);
1455 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1456 from + copied, &partial,
1457 write_end_fn);
1458 if (!partial)
1459 SetPageUptodate(page);
1460 }
1461 size_changed = ext4_update_inode_size(inode, pos + copied);
1462 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1463 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1464 unlock_page(page);
1465 put_page(page);
1466
1467 if (old_size < pos)
1468 pagecache_isize_extended(inode, old_size, pos);
1469
1470 if (size_changed) {
1471 ret2 = ext4_mark_inode_dirty(handle, inode);
1472 if (!ret)
1473 ret = ret2;
1474 }
1475
1476 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1477 /* if we have allocated more blocks and copied
1478 * less. We will have blocks allocated outside
1479 * inode->i_size. So truncate them
1480 */
1481 ext4_orphan_add(handle, inode);
1482
1483errout:
1484 ret2 = ext4_journal_stop(handle);
1485 if (!ret)
1486 ret = ret2;
1487 if (pos + len > inode->i_size) {
1488 ext4_truncate_failed_write(inode);
1489 /*
1490 * If truncate failed early the inode might still be
1491 * on the orphan list; we need to make sure the inode
1492 * is removed from the orphan list in that case.
1493 */
1494 if (inode->i_nlink)
1495 ext4_orphan_del(NULL, inode);
1496 }
1497
1498 return ret ? ret : copied;
1499}
1500
1501/*
1502 * Reserve space for a single cluster
1503 */
1504static int ext4_da_reserve_space(struct inode *inode)
1505{
1506 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507 struct ext4_inode_info *ei = EXT4_I(inode);
1508 int ret;
1509
1510 /*
1511 * We will charge metadata quota at writeout time; this saves
1512 * us from metadata over-estimation, though we may go over by
1513 * a small amount in the end. Here we just reserve for data.
1514 */
1515 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1516 if (ret)
1517 return ret;
1518
1519 spin_lock(&ei->i_block_reservation_lock);
1520 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1521 spin_unlock(&ei->i_block_reservation_lock);
1522 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1523 return -ENOSPC;
1524 }
1525 ei->i_reserved_data_blocks++;
1526 trace_ext4_da_reserve_space(inode);
1527 spin_unlock(&ei->i_block_reservation_lock);
1528
1529 return 0; /* success */
1530}
1531
1532static void ext4_da_release_space(struct inode *inode, int to_free)
1533{
1534 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535 struct ext4_inode_info *ei = EXT4_I(inode);
1536
1537 if (!to_free)
1538 return; /* Nothing to release, exit */
1539
1540 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1541
1542 trace_ext4_da_release_space(inode, to_free);
1543 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1544 /*
1545 * if there aren't enough reserved blocks, then the
1546 * counter is messed up somewhere. Since this
1547 * function is called from invalidate page, it's
1548 * harmless to return without any action.
1549 */
1550 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1551 "ino %lu, to_free %d with only %d reserved "
1552 "data blocks", inode->i_ino, to_free,
1553 ei->i_reserved_data_blocks);
1554 WARN_ON(1);
1555 to_free = ei->i_reserved_data_blocks;
1556 }
1557 ei->i_reserved_data_blocks -= to_free;
1558
1559 /* update fs dirty data blocks counter */
1560 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1561
1562 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563
1564 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1565}
1566
1567static void ext4_da_page_release_reservation(struct page *page,
1568 unsigned int offset,
1569 unsigned int length)
1570{
1571 int to_release = 0, contiguous_blks = 0;
1572 struct buffer_head *head, *bh;
1573 unsigned int curr_off = 0;
1574 struct inode *inode = page->mapping->host;
1575 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1576 unsigned int stop = offset + length;
1577 int num_clusters;
1578 ext4_fsblk_t lblk;
1579
1580 BUG_ON(stop > PAGE_SIZE || stop < length);
1581
1582 head = page_buffers(page);
1583 bh = head;
1584 do {
1585 unsigned int next_off = curr_off + bh->b_size;
1586
1587 if (next_off > stop)
1588 break;
1589
1590 if ((offset <= curr_off) && (buffer_delay(bh))) {
1591 to_release++;
1592 contiguous_blks++;
1593 clear_buffer_delay(bh);
1594 } else if (contiguous_blks) {
1595 lblk = page->index <<
1596 (PAGE_SHIFT - inode->i_blkbits);
1597 lblk += (curr_off >> inode->i_blkbits) -
1598 contiguous_blks;
1599 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1600 contiguous_blks = 0;
1601 }
1602 curr_off = next_off;
1603 } while ((bh = bh->b_this_page) != head);
1604
1605 if (contiguous_blks) {
1606 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1607 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1608 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609 }
1610
1611 /* If we have released all the blocks belonging to a cluster, then we
1612 * need to release the reserved space for that cluster. */
1613 num_clusters = EXT4_NUM_B2C(sbi, to_release);
1614 while (num_clusters > 0) {
1615 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1616 ((num_clusters - 1) << sbi->s_cluster_bits);
1617 if (sbi->s_cluster_ratio == 1 ||
1618 !ext4_find_delalloc_cluster(inode, lblk))
1619 ext4_da_release_space(inode, 1);
1620
1621 num_clusters--;
1622 }
1623}
1624
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
1630 struct inode *inode;
1631 struct writeback_control *wbc;
1632
1633 pgoff_t first_page; /* The first page to write */
1634 pgoff_t next_page; /* Current page to examine */
1635 pgoff_t last_page; /* Last page to examine */
1636 /*
1637 * Extent to map - this can be after first_page because that can be
1638 * fully mapped. We somewhat abuse m_flags to store whether the extent
1639 * is delalloc or unwritten.
1640 */
1641 struct ext4_map_blocks map;
1642 struct ext4_io_submit io_submit; /* IO submission data */
1643};
1644
1645static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1646 bool invalidate)
1647{
1648 int nr_pages, i;
1649 pgoff_t index, end;
1650 struct pagevec pvec;
1651 struct inode *inode = mpd->inode;
1652 struct address_space *mapping = inode->i_mapping;
1653
1654 /* This is necessary when next_page == 0. */
1655 if (mpd->first_page >= mpd->next_page)
1656 return;
1657
1658 index = mpd->first_page;
1659 end = mpd->next_page - 1;
1660 if (invalidate) {
1661 ext4_lblk_t start, last;
1662 start = index << (PAGE_SHIFT - inode->i_blkbits);
1663 last = end << (PAGE_SHIFT - inode->i_blkbits);
1664 ext4_es_remove_extent(inode, start, last - start + 1);
1665 }
1666
1667 pagevec_init(&pvec, 0);
1668 while (index <= end) {
1669 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1670 if (nr_pages == 0)
1671 break;
1672 for (i = 0; i < nr_pages; i++) {
1673 struct page *page = pvec.pages[i];
1674 if (page->index > end)
1675 break;
1676 BUG_ON(!PageLocked(page));
1677 BUG_ON(PageWriteback(page));
1678 if (invalidate) {
1679 if (page_mapped(page))
1680 clear_page_dirty_for_io(page);
1681 block_invalidatepage(page, 0, PAGE_SIZE);
1682 ClearPageUptodate(page);
1683 }
1684 unlock_page(page);
1685 }
1686 index = pvec.pages[nr_pages - 1]->index + 1;
1687 pagevec_release(&pvec);
1688 }
1689}
1690
1691static void ext4_print_free_blocks(struct inode *inode)
1692{
1693 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1694 struct super_block *sb = inode->i_sb;
1695 struct ext4_inode_info *ei = EXT4_I(inode);
1696
1697 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1698 EXT4_C2B(EXT4_SB(inode->i_sb),
1699 ext4_count_free_clusters(sb)));
1700 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1701 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1702 (long long) EXT4_C2B(EXT4_SB(sb),
1703 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1704 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1705 (long long) EXT4_C2B(EXT4_SB(sb),
1706 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1707 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1708 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1709 ei->i_reserved_data_blocks);
1710 return;
1711}
1712
1713static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1714{
1715 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1716}
1717
1718/*
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725 struct ext4_map_blocks *map,
1726 struct buffer_head *bh)
1727{
1728 struct extent_status es;
1729 int retval;
1730 sector_t invalid_block = ~((sector_t) 0xffff);
1731#ifdef ES_AGGRESSIVE_TEST
1732 struct ext4_map_blocks orig_map;
1733
1734 memcpy(&orig_map, map, sizeof(*map));
1735#endif
1736
1737 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738 invalid_block = ~0;
1739
1740 map->m_flags = 0;
1741 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1742 "logical block %lu\n", inode->i_ino, map->m_len,
1743 (unsigned long) map->m_lblk);
1744
1745 /* Lookup extent status tree firstly */
1746 if (ext4_es_lookup_extent(inode, iblock, &es)) {
1747 if (ext4_es_is_hole(&es)) {
1748 retval = 0;
1749 down_read(&EXT4_I(inode)->i_data_sem);
1750 goto add_delayed;
1751 }
1752
1753 /*
1754 * Delayed extent could be allocated by fallocate.
1755 * So we need to check it.
1756 */
1757 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758 map_bh(bh, inode->i_sb, invalid_block);
1759 set_buffer_new(bh);
1760 set_buffer_delay(bh);
1761 return 0;
1762 }
1763
1764 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765 retval = es.es_len - (iblock - es.es_lblk);
1766 if (retval > map->m_len)
1767 retval = map->m_len;
1768 map->m_len = retval;
1769 if (ext4_es_is_written(&es))
1770 map->m_flags |= EXT4_MAP_MAPPED;
1771 else if (ext4_es_is_unwritten(&es))
1772 map->m_flags |= EXT4_MAP_UNWRITTEN;
1773 else
1774 BUG_ON(1);
1775
1776#ifdef ES_AGGRESSIVE_TEST
1777 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778#endif
1779 return retval;
1780 }
1781
1782 /*
1783 * Try to see if we can get the block without requesting a new
1784 * file system block.
1785 */
1786 down_read(&EXT4_I(inode)->i_data_sem);
1787 if (ext4_has_inline_data(inode))
1788 retval = 0;
1789 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791 else
1792 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1793
1794add_delayed:
1795 if (retval == 0) {
1796 int ret;
1797 /*
1798 * XXX: __block_prepare_write() unmaps passed block,
1799 * is it OK?
1800 */
1801 /*
1802 * If the block was allocated from previously allocated cluster,
1803 * then we don't need to reserve it again. However we still need
1804 * to reserve metadata for every block we're going to write.
1805 */
1806 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1807 !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1808 ret = ext4_da_reserve_space(inode);
1809 if (ret) {
1810 /* not enough space to reserve */
1811 retval = ret;
1812 goto out_unlock;
1813 }
1814 }
1815
1816 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1817 ~0, EXTENT_STATUS_DELAYED);
1818 if (ret) {
1819 retval = ret;
1820 goto out_unlock;
1821 }
1822
1823 map_bh(bh, inode->i_sb, invalid_block);
1824 set_buffer_new(bh);
1825 set_buffer_delay(bh);
1826 } else if (retval > 0) {
1827 int ret;
1828 unsigned int status;
1829
1830 if (unlikely(retval != map->m_len)) {
1831 ext4_warning(inode->i_sb,
1832 "ES len assertion failed for inode "
1833 "%lu: retval %d != map->m_len %d",
1834 inode->i_ino, retval, map->m_len);
1835 WARN_ON(1);
1836 }
1837
1838 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1839 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1840 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1841 map->m_pblk, status);
1842 if (ret != 0)
1843 retval = ret;
1844 }
1845
1846out_unlock:
1847 up_read((&EXT4_I(inode)->i_data_sem));
1848
1849 return retval;
1850}
1851
1852/*
1853 * This is a special get_block_t callback which is used by
1854 * ext4_da_write_begin(). It will either return mapped block or
1855 * reserve space for a single block.
1856 *
1857 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1858 * We also have b_blocknr = -1 and b_bdev initialized properly
1859 *
1860 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1861 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1862 * initialized properly.
1863 */
1864int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1865 struct buffer_head *bh, int create)
1866{
1867 struct ext4_map_blocks map;
1868 int ret = 0;
1869
1870 BUG_ON(create == 0);
1871 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872
1873 map.m_lblk = iblock;
1874 map.m_len = 1;
1875
1876 /*
1877 * first, we need to know whether the block is allocated already
1878 * preallocated blocks are unmapped but should treated
1879 * the same as allocated blocks.
1880 */
1881 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1882 if (ret <= 0)
1883 return ret;
1884
1885 map_bh(bh, inode->i_sb, map.m_pblk);
1886 ext4_update_bh_state(bh, map.m_flags);
1887
1888 if (buffer_unwritten(bh)) {
1889 /* A delayed write to unwritten bh should be marked
1890 * new and mapped. Mapped ensures that we don't do
1891 * get_block multiple times when we write to the same
1892 * offset and new ensures that we do proper zero out
1893 * for partial write.
1894 */
1895 set_buffer_new(bh);
1896 set_buffer_mapped(bh);
1897 }
1898 return 0;
1899}
1900
1901static int bget_one(handle_t *handle, struct buffer_head *bh)
1902{
1903 get_bh(bh);
1904 return 0;
1905}
1906
1907static int bput_one(handle_t *handle, struct buffer_head *bh)
1908{
1909 put_bh(bh);
1910 return 0;
1911}
1912
1913static int __ext4_journalled_writepage(struct page *page,
1914 unsigned int len)
1915{
1916 struct address_space *mapping = page->mapping;
1917 struct inode *inode = mapping->host;
1918 struct buffer_head *page_bufs = NULL;
1919 handle_t *handle = NULL;
1920 int ret = 0, err = 0;
1921 int inline_data = ext4_has_inline_data(inode);
1922 struct buffer_head *inode_bh = NULL;
1923
1924 ClearPageChecked(page);
1925
1926 if (inline_data) {
1927 BUG_ON(page->index != 0);
1928 BUG_ON(len > ext4_get_max_inline_size(inode));
1929 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1930 if (inode_bh == NULL)
1931 goto out;
1932 } else {
1933 page_bufs = page_buffers(page);
1934 if (!page_bufs) {
1935 BUG();
1936 goto out;
1937 }
1938 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1939 NULL, bget_one);
1940 }
1941 /*
1942 * We need to release the page lock before we start the
1943 * journal, so grab a reference so the page won't disappear
1944 * out from under us.
1945 */
1946 get_page(page);
1947 unlock_page(page);
1948
1949 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1950 ext4_writepage_trans_blocks(inode));
1951 if (IS_ERR(handle)) {
1952 ret = PTR_ERR(handle);
1953 put_page(page);
1954 goto out_no_pagelock;
1955 }
1956 BUG_ON(!ext4_handle_valid(handle));
1957
1958 lock_page(page);
1959 put_page(page);
1960 if (page->mapping != mapping) {
1961 /* The page got truncated from under us */
1962 ext4_journal_stop(handle);
1963 ret = 0;
1964 goto out;
1965 }
1966
1967 if (inline_data) {
1968 BUFFER_TRACE(inode_bh, "get write access");
1969 ret = ext4_journal_get_write_access(handle, inode_bh);
1970
1971 err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1972
1973 } else {
1974 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1975 do_journal_get_write_access);
1976
1977 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978 write_end_fn);
1979 }
1980 if (ret == 0)
1981 ret = err;
1982 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1983 err = ext4_journal_stop(handle);
1984 if (!ret)
1985 ret = err;
1986
1987 if (!ext4_has_inline_data(inode))
1988 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1989 NULL, bput_one);
1990 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1991out:
1992 unlock_page(page);
1993out_no_pagelock:
1994 brelse(inode_bh);
1995 return ret;
1996}
1997
1998/*
1999 * Note that we don't need to start a transaction unless we're journaling data
2000 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2001 * need to file the inode to the transaction's list in ordered mode because if
2002 * we are writing back data added by write(), the inode is already there and if
2003 * we are writing back data modified via mmap(), no one guarantees in which
2004 * transaction the data will hit the disk. In case we are journaling data, we
2005 * cannot start transaction directly because transaction start ranks above page
2006 * lock so we have to do some magic.
2007 *
2008 * This function can get called via...
2009 * - ext4_writepages after taking page lock (have journal handle)
2010 * - journal_submit_inode_data_buffers (no journal handle)
2011 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2012 * - grab_page_cache when doing write_begin (have journal handle)
2013 *
2014 * We don't do any block allocation in this function. If we have page with
2015 * multiple blocks we need to write those buffer_heads that are mapped. This
2016 * is important for mmaped based write. So if we do with blocksize 1K
2017 * truncate(f, 1024);
2018 * a = mmap(f, 0, 4096);
2019 * a[0] = 'a';
2020 * truncate(f, 4096);
2021 * we have in the page first buffer_head mapped via page_mkwrite call back
2022 * but other buffer_heads would be unmapped but dirty (dirty done via the
2023 * do_wp_page). So writepage should write the first block. If we modify
2024 * the mmap area beyond 1024 we will again get a page_fault and the
2025 * page_mkwrite callback will do the block allocation and mark the
2026 * buffer_heads mapped.
2027 *
2028 * We redirty the page if we have any buffer_heads that is either delay or
2029 * unwritten in the page.
2030 *
2031 * We can get recursively called as show below.
2032 *
2033 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2034 * ext4_writepage()
2035 *
2036 * But since we don't do any block allocation we should not deadlock.
2037 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2038 */
2039static int ext4_writepage(struct page *page,
2040 struct writeback_control *wbc)
2041{
2042 int ret = 0;
2043 loff_t size;
2044 unsigned int len;
2045 struct buffer_head *page_bufs = NULL;
2046 struct inode *inode = page->mapping->host;
2047 struct ext4_io_submit io_submit;
2048 bool keep_towrite = false;
2049
2050 trace_ext4_writepage(page);
2051 size = i_size_read(inode);
2052 if (page->index == size >> PAGE_SHIFT)
2053 len = size & ~PAGE_MASK;
2054 else
2055 len = PAGE_SIZE;
2056
2057 page_bufs = page_buffers(page);
2058 /*
2059 * We cannot do block allocation or other extent handling in this
2060 * function. If there are buffers needing that, we have to redirty
2061 * the page. But we may reach here when we do a journal commit via
2062 * journal_submit_inode_data_buffers() and in that case we must write
2063 * allocated buffers to achieve data=ordered mode guarantees.
2064 *
2065 * Also, if there is only one buffer per page (the fs block
2066 * size == the page size), if one buffer needs block
2067 * allocation or needs to modify the extent tree to clear the
2068 * unwritten flag, we know that the page can't be written at
2069 * all, so we might as well refuse the write immediately.
2070 * Unfortunately if the block size != page size, we can't as
2071 * easily detect this case using ext4_walk_page_buffers(), but
2072 * for the extremely common case, this is an optimization that
2073 * skips a useless round trip through ext4_bio_write_page().
2074 */
2075 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2076 ext4_bh_delay_or_unwritten)) {
2077 redirty_page_for_writepage(wbc, page);
2078 if ((current->flags & PF_MEMALLOC) ||
2079 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2080 /*
2081 * For memory cleaning there's no point in writing only
2082 * some buffers. So just bail out. Warn if we came here
2083 * from direct reclaim.
2084 */
2085 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2086 == PF_MEMALLOC);
2087 unlock_page(page);
2088 return 0;
2089 }
2090 keep_towrite = true;
2091 }
2092
2093 if (PageChecked(page) && ext4_should_journal_data(inode))
2094 /*
2095 * It's mmapped pagecache. Add buffers and journal it. There
2096 * doesn't seem much point in redirtying the page here.
2097 */
2098 return __ext4_journalled_writepage(page, len);
2099
2100 ext4_io_submit_init(&io_submit, wbc);
2101 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2102 if (!io_submit.io_end) {
2103 redirty_page_for_writepage(wbc, page);
2104 unlock_page(page);
2105 return -ENOMEM;
2106 }
2107 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2108 ext4_io_submit(&io_submit);
2109 /* Drop io_end reference we got from init */
2110 ext4_put_io_end_defer(io_submit.io_end);
2111 return ret;
2112}
2113
2114static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2115{
2116 int len;
2117 loff_t size = i_size_read(mpd->inode);
2118 int err;
2119
2120 BUG_ON(page->index != mpd->first_page);
2121 if (page->index == size >> PAGE_SHIFT)
2122 len = size & ~PAGE_MASK;
2123 else
2124 len = PAGE_SIZE;
2125 clear_page_dirty_for_io(page);
2126 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2127 if (!err)
2128 mpd->wbc->nr_to_write--;
2129 mpd->first_page++;
2130
2131 return err;
2132}
2133
2134#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2135
2136/*
2137 * mballoc gives us at most this number of blocks...
2138 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2139 * The rest of mballoc seems to handle chunks up to full group size.
2140 */
2141#define MAX_WRITEPAGES_EXTENT_LEN 2048
2142
2143/*
2144 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2145 *
2146 * @mpd - extent of blocks
2147 * @lblk - logical number of the block in the file
2148 * @bh - buffer head we want to add to the extent
2149 *
2150 * The function is used to collect contig. blocks in the same state. If the
2151 * buffer doesn't require mapping for writeback and we haven't started the
2152 * extent of buffers to map yet, the function returns 'true' immediately - the
2153 * caller can write the buffer right away. Otherwise the function returns true
2154 * if the block has been added to the extent, false if the block couldn't be
2155 * added.
2156 */
2157static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2158 struct buffer_head *bh)
2159{
2160 struct ext4_map_blocks *map = &mpd->map;
2161
2162 /* Buffer that doesn't need mapping for writeback? */
2163 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2164 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2165 /* So far no extent to map => we write the buffer right away */
2166 if (map->m_len == 0)
2167 return true;
2168 return false;
2169 }
2170
2171 /* First block in the extent? */
2172 if (map->m_len == 0) {
2173 map->m_lblk = lblk;
2174 map->m_len = 1;
2175 map->m_flags = bh->b_state & BH_FLAGS;
2176 return true;
2177 }
2178
2179 /* Don't go larger than mballoc is willing to allocate */
2180 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2181 return false;
2182
2183 /* Can we merge the block to our big extent? */
2184 if (lblk == map->m_lblk + map->m_len &&
2185 (bh->b_state & BH_FLAGS) == map->m_flags) {
2186 map->m_len++;
2187 return true;
2188 }
2189 return false;
2190}
2191
2192/*
2193 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2194 *
2195 * @mpd - extent of blocks for mapping
2196 * @head - the first buffer in the page
2197 * @bh - buffer we should start processing from
2198 * @lblk - logical number of the block in the file corresponding to @bh
2199 *
2200 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2201 * the page for IO if all buffers in this page were mapped and there's no
2202 * accumulated extent of buffers to map or add buffers in the page to the
2203 * extent of buffers to map. The function returns 1 if the caller can continue
2204 * by processing the next page, 0 if it should stop adding buffers to the
2205 * extent to map because we cannot extend it anymore. It can also return value
2206 * < 0 in case of error during IO submission.
2207 */
2208static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2209 struct buffer_head *head,
2210 struct buffer_head *bh,
2211 ext4_lblk_t lblk)
2212{
2213 struct inode *inode = mpd->inode;
2214 int err;
2215 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2216 >> inode->i_blkbits;
2217
2218 do {
2219 BUG_ON(buffer_locked(bh));
2220
2221 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2222 /* Found extent to map? */
2223 if (mpd->map.m_len)
2224 return 0;
2225 /* Everything mapped so far and we hit EOF */
2226 break;
2227 }
2228 } while (lblk++, (bh = bh->b_this_page) != head);
2229 /* So far everything mapped? Submit the page for IO. */
2230 if (mpd->map.m_len == 0) {
2231 err = mpage_submit_page(mpd, head->b_page);
2232 if (err < 0)
2233 return err;
2234 }
2235 return lblk < blocks;
2236}
2237
2238/*
2239 * mpage_map_buffers - update buffers corresponding to changed extent and
2240 * submit fully mapped pages for IO
2241 *
2242 * @mpd - description of extent to map, on return next extent to map
2243 *
2244 * Scan buffers corresponding to changed extent (we expect corresponding pages
2245 * to be already locked) and update buffer state according to new extent state.
2246 * We map delalloc buffers to their physical location, clear unwritten bits,
2247 * and mark buffers as uninit when we perform writes to unwritten extents
2248 * and do extent conversion after IO is finished. If the last page is not fully
2249 * mapped, we update @map to the next extent in the last page that needs
2250 * mapping. Otherwise we submit the page for IO.
2251 */
2252static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2253{
2254 struct pagevec pvec;
2255 int nr_pages, i;
2256 struct inode *inode = mpd->inode;
2257 struct buffer_head *head, *bh;
2258 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2259 pgoff_t start, end;
2260 ext4_lblk_t lblk;
2261 sector_t pblock;
2262 int err;
2263
2264 start = mpd->map.m_lblk >> bpp_bits;
2265 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2266 lblk = start << bpp_bits;
2267 pblock = mpd->map.m_pblk;
2268
2269 pagevec_init(&pvec, 0);
2270 while (start <= end) {
2271 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2272 PAGEVEC_SIZE);
2273 if (nr_pages == 0)
2274 break;
2275 for (i = 0; i < nr_pages; i++) {
2276 struct page *page = pvec.pages[i];
2277
2278 if (page->index > end)
2279 break;
2280 /* Up to 'end' pages must be contiguous */
2281 BUG_ON(page->index != start);
2282 bh = head = page_buffers(page);
2283 do {
2284 if (lblk < mpd->map.m_lblk)
2285 continue;
2286 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287 /*
2288 * Buffer after end of mapped extent.
2289 * Find next buffer in the page to map.
2290 */
2291 mpd->map.m_len = 0;
2292 mpd->map.m_flags = 0;
2293 /*
2294 * FIXME: If dioread_nolock supports
2295 * blocksize < pagesize, we need to make
2296 * sure we add size mapped so far to
2297 * io_end->size as the following call
2298 * can submit the page for IO.
2299 */
2300 err = mpage_process_page_bufs(mpd, head,
2301 bh, lblk);
2302 pagevec_release(&pvec);
2303 if (err > 0)
2304 err = 0;
2305 return err;
2306 }
2307 if (buffer_delay(bh)) {
2308 clear_buffer_delay(bh);
2309 bh->b_blocknr = pblock++;
2310 }
2311 clear_buffer_unwritten(bh);
2312 } while (lblk++, (bh = bh->b_this_page) != head);
2313
2314 /*
2315 * FIXME: This is going to break if dioread_nolock
2316 * supports blocksize < pagesize as we will try to
2317 * convert potentially unmapped parts of inode.
2318 */
2319 mpd->io_submit.io_end->size += PAGE_SIZE;
2320 /* Page fully mapped - let IO run! */
2321 err = mpage_submit_page(mpd, page);
2322 if (err < 0) {
2323 pagevec_release(&pvec);
2324 return err;
2325 }
2326 start++;
2327 }
2328 pagevec_release(&pvec);
2329 }
2330 /* Extent fully mapped and matches with page boundary. We are done. */
2331 mpd->map.m_len = 0;
2332 mpd->map.m_flags = 0;
2333 return 0;
2334}
2335
2336static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337{
2338 struct inode *inode = mpd->inode;
2339 struct ext4_map_blocks *map = &mpd->map;
2340 int get_blocks_flags;
2341 int err, dioread_nolock;
2342
2343 trace_ext4_da_write_pages_extent(inode, map);
2344 /*
2345 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2346 * to convert an unwritten extent to be initialized (in the case
2347 * where we have written into one or more preallocated blocks). It is
2348 * possible that we're going to need more metadata blocks than
2349 * previously reserved. However we must not fail because we're in
2350 * writeback and there is nothing we can do about it so it might result
2351 * in data loss. So use reserved blocks to allocate metadata if
2352 * possible.
2353 *
2354 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2355 * the blocks in question are delalloc blocks. This indicates
2356 * that the blocks and quotas has already been checked when
2357 * the data was copied into the page cache.
2358 */
2359 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2360 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2361 EXT4_GET_BLOCKS_IO_SUBMIT;
2362 dioread_nolock = ext4_should_dioread_nolock(inode);
2363 if (dioread_nolock)
2364 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2365 if (map->m_flags & (1 << BH_Delay))
2366 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367
2368 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369 if (err < 0)
2370 return err;
2371 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2372 if (!mpd->io_submit.io_end->handle &&
2373 ext4_handle_valid(handle)) {
2374 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2375 handle->h_rsv_handle = NULL;
2376 }
2377 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2378 }
2379
2380 BUG_ON(map->m_len == 0);
2381 if (map->m_flags & EXT4_MAP_NEW) {
2382 clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2383 map->m_len);
2384 }
2385 return 0;
2386}
2387
2388/*
2389 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2390 * mpd->len and submit pages underlying it for IO
2391 *
2392 * @handle - handle for journal operations
2393 * @mpd - extent to map
2394 * @give_up_on_write - we set this to true iff there is a fatal error and there
2395 * is no hope of writing the data. The caller should discard
2396 * dirty pages to avoid infinite loops.
2397 *
2398 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2399 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2400 * them to initialized or split the described range from larger unwritten
2401 * extent. Note that we need not map all the described range since allocation
2402 * can return less blocks or the range is covered by more unwritten extents. We
2403 * cannot map more because we are limited by reserved transaction credits. On
2404 * the other hand we always make sure that the last touched page is fully
2405 * mapped so that it can be written out (and thus forward progress is
2406 * guaranteed). After mapping we submit all mapped pages for IO.
2407 */
2408static int mpage_map_and_submit_extent(handle_t *handle,
2409 struct mpage_da_data *mpd,
2410 bool *give_up_on_write)
2411{
2412 struct inode *inode = mpd->inode;
2413 struct ext4_map_blocks *map = &mpd->map;
2414 int err;
2415 loff_t disksize;
2416 int progress = 0;
2417
2418 mpd->io_submit.io_end->offset =
2419 ((loff_t)map->m_lblk) << inode->i_blkbits;
2420 do {
2421 err = mpage_map_one_extent(handle, mpd);
2422 if (err < 0) {
2423 struct super_block *sb = inode->i_sb;
2424
2425 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2426 goto invalidate_dirty_pages;
2427 /*
2428 * Let the uper layers retry transient errors.
2429 * In the case of ENOSPC, if ext4_count_free_blocks()
2430 * is non-zero, a commit should free up blocks.
2431 */
2432 if ((err == -ENOMEM) ||
2433 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434 if (progress)
2435 goto update_disksize;
2436 return err;
2437 }
2438 ext4_msg(sb, KERN_CRIT,
2439 "Delayed block allocation failed for "
2440 "inode %lu at logical offset %llu with"
2441 " max blocks %u with error %d",
2442 inode->i_ino,
2443 (unsigned long long)map->m_lblk,
2444 (unsigned)map->m_len, -err);
2445 ext4_msg(sb, KERN_CRIT,
2446 "This should not happen!! Data will "
2447 "be lost\n");
2448 if (err == -ENOSPC)
2449 ext4_print_free_blocks(inode);
2450 invalidate_dirty_pages:
2451 *give_up_on_write = true;
2452 return err;
2453 }
2454 progress = 1;
2455 /*
2456 * Update buffer state, submit mapped pages, and get us new
2457 * extent to map
2458 */
2459 err = mpage_map_and_submit_buffers(mpd);
2460 if (err < 0)
2461 goto update_disksize;
2462 } while (map->m_len);
2463
2464update_disksize:
2465 /*
2466 * Update on-disk size after IO is submitted. Races with
2467 * truncate are avoided by checking i_size under i_data_sem.
2468 */
2469 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2470 if (disksize > EXT4_I(inode)->i_disksize) {
2471 int err2;
2472 loff_t i_size;
2473
2474 down_write(&EXT4_I(inode)->i_data_sem);
2475 i_size = i_size_read(inode);
2476 if (disksize > i_size)
2477 disksize = i_size;
2478 if (disksize > EXT4_I(inode)->i_disksize)
2479 EXT4_I(inode)->i_disksize = disksize;
2480 err2 = ext4_mark_inode_dirty(handle, inode);
2481 up_write(&EXT4_I(inode)->i_data_sem);
2482 if (err2)
2483 ext4_error(inode->i_sb,
2484 "Failed to mark inode %lu dirty",
2485 inode->i_ino);
2486 if (!err)
2487 err = err2;
2488 }
2489 return err;
2490}
2491
2492/*
2493 * Calculate the total number of credits to reserve for one writepages
2494 * iteration. This is called from ext4_writepages(). We map an extent of
2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497 * bpp - 1 blocks in bpp different extents.
2498 */
2499static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500{
2501 int bpp = ext4_journal_blocks_per_page(inode);
2502
2503 return ext4_meta_trans_blocks(inode,
2504 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505}
2506
2507/*
2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509 * and underlying extent to map
2510 *
2511 * @mpd - where to look for pages
2512 *
2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514 * IO immediately. When we find a page which isn't mapped we start accumulating
2515 * extent of buffers underlying these pages that needs mapping (formed by
2516 * either delayed or unwritten buffers). We also lock the pages containing
2517 * these buffers. The extent found is returned in @mpd structure (starting at
2518 * mpd->lblk with length mpd->len blocks).
2519 *
2520 * Note that this function can attach bios to one io_end structure which are
2521 * neither logically nor physically contiguous. Although it may seem as an
2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523 * case as we need to track IO to all buffers underlying a page in one io_end.
2524 */
2525static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526{
2527 struct address_space *mapping = mpd->inode->i_mapping;
2528 struct pagevec pvec;
2529 unsigned int nr_pages;
2530 long left = mpd->wbc->nr_to_write;
2531 pgoff_t index = mpd->first_page;
2532 pgoff_t end = mpd->last_page;
2533 int tag;
2534 int i, err = 0;
2535 int blkbits = mpd->inode->i_blkbits;
2536 ext4_lblk_t lblk;
2537 struct buffer_head *head;
2538
2539 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540 tag = PAGECACHE_TAG_TOWRITE;
2541 else
2542 tag = PAGECACHE_TAG_DIRTY;
2543
2544 pagevec_init(&pvec, 0);
2545 mpd->map.m_len = 0;
2546 mpd->next_page = index;
2547 while (index <= end) {
2548 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2549 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2550 if (nr_pages == 0)
2551 goto out;
2552
2553 for (i = 0; i < nr_pages; i++) {
2554 struct page *page = pvec.pages[i];
2555
2556 /*
2557 * At this point, the page may be truncated or
2558 * invalidated (changing page->mapping to NULL), or
2559 * even swizzled back from swapper_space to tmpfs file
2560 * mapping. However, page->index will not change
2561 * because we have a reference on the page.
2562 */
2563 if (page->index > end)
2564 goto out;
2565
2566 /*
2567 * Accumulated enough dirty pages? This doesn't apply
2568 * to WB_SYNC_ALL mode. For integrity sync we have to
2569 * keep going because someone may be concurrently
2570 * dirtying pages, and we might have synced a lot of
2571 * newly appeared dirty pages, but have not synced all
2572 * of the old dirty pages.
2573 */
2574 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575 goto out;
2576
2577 /* If we can't merge this page, we are done. */
2578 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579 goto out;
2580
2581 lock_page(page);
2582 /*
2583 * If the page is no longer dirty, or its mapping no
2584 * longer corresponds to inode we are writing (which
2585 * means it has been truncated or invalidated), or the
2586 * page is already under writeback and we are not doing
2587 * a data integrity writeback, skip the page
2588 */
2589 if (!PageDirty(page) ||
2590 (PageWriteback(page) &&
2591 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592 unlikely(page->mapping != mapping)) {
2593 unlock_page(page);
2594 continue;
2595 }
2596
2597 wait_on_page_writeback(page);
2598 BUG_ON(PageWriteback(page));
2599
2600 if (mpd->map.m_len == 0)
2601 mpd->first_page = page->index;
2602 mpd->next_page = page->index + 1;
2603 /* Add all dirty buffers to mpd */
2604 lblk = ((ext4_lblk_t)page->index) <<
2605 (PAGE_SHIFT - blkbits);
2606 head = page_buffers(page);
2607 err = mpage_process_page_bufs(mpd, head, head, lblk);
2608 if (err <= 0)
2609 goto out;
2610 err = 0;
2611 left--;
2612 }
2613 pagevec_release(&pvec);
2614 cond_resched();
2615 }
2616 return 0;
2617out:
2618 pagevec_release(&pvec);
2619 return err;
2620}
2621
2622static int __writepage(struct page *page, struct writeback_control *wbc,
2623 void *data)
2624{
2625 struct address_space *mapping = data;
2626 int ret = ext4_writepage(page, wbc);
2627 mapping_set_error(mapping, ret);
2628 return ret;
2629}
2630
2631static int ext4_writepages(struct address_space *mapping,
2632 struct writeback_control *wbc)
2633{
2634 pgoff_t writeback_index = 0;
2635 long nr_to_write = wbc->nr_to_write;
2636 int range_whole = 0;
2637 int cycled = 1;
2638 handle_t *handle = NULL;
2639 struct mpage_da_data mpd;
2640 struct inode *inode = mapping->host;
2641 int needed_blocks, rsv_blocks = 0, ret = 0;
2642 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2643 bool done;
2644 struct blk_plug plug;
2645 bool give_up_on_write = false;
2646
2647 percpu_down_read(&sbi->s_journal_flag_rwsem);
2648 trace_ext4_writepages(inode, wbc);
2649
2650 if (dax_mapping(mapping)) {
2651 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2652 wbc);
2653 goto out_writepages;
2654 }
2655
2656 /*
2657 * No pages to write? This is mainly a kludge to avoid starting
2658 * a transaction for special inodes like journal inode on last iput()
2659 * because that could violate lock ordering on umount
2660 */
2661 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2662 goto out_writepages;
2663
2664 if (ext4_should_journal_data(inode)) {
2665 struct blk_plug plug;
2666
2667 blk_start_plug(&plug);
2668 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2669 blk_finish_plug(&plug);
2670 goto out_writepages;
2671 }
2672
2673 /*
2674 * If the filesystem has aborted, it is read-only, so return
2675 * right away instead of dumping stack traces later on that
2676 * will obscure the real source of the problem. We test
2677 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2678 * the latter could be true if the filesystem is mounted
2679 * read-only, and in that case, ext4_writepages should
2680 * *never* be called, so if that ever happens, we would want
2681 * the stack trace.
2682 */
2683 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2684 ret = -EROFS;
2685 goto out_writepages;
2686 }
2687
2688 if (ext4_should_dioread_nolock(inode)) {
2689 /*
2690 * We may need to convert up to one extent per block in
2691 * the page and we may dirty the inode.
2692 */
2693 rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2694 }
2695
2696 /*
2697 * If we have inline data and arrive here, it means that
2698 * we will soon create the block for the 1st page, so
2699 * we'd better clear the inline data here.
2700 */
2701 if (ext4_has_inline_data(inode)) {
2702 /* Just inode will be modified... */
2703 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704 if (IS_ERR(handle)) {
2705 ret = PTR_ERR(handle);
2706 goto out_writepages;
2707 }
2708 BUG_ON(ext4_test_inode_state(inode,
2709 EXT4_STATE_MAY_INLINE_DATA));
2710 ext4_destroy_inline_data(handle, inode);
2711 ext4_journal_stop(handle);
2712 }
2713
2714 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715 range_whole = 1;
2716
2717 if (wbc->range_cyclic) {
2718 writeback_index = mapping->writeback_index;
2719 if (writeback_index)
2720 cycled = 0;
2721 mpd.first_page = writeback_index;
2722 mpd.last_page = -1;
2723 } else {
2724 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726 }
2727
2728 mpd.inode = inode;
2729 mpd.wbc = wbc;
2730 ext4_io_submit_init(&mpd.io_submit, wbc);
2731retry:
2732 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734 done = false;
2735 blk_start_plug(&plug);
2736 while (!done && mpd.first_page <= mpd.last_page) {
2737 /* For each extent of pages we use new io_end */
2738 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2739 if (!mpd.io_submit.io_end) {
2740 ret = -ENOMEM;
2741 break;
2742 }
2743
2744 /*
2745 * We have two constraints: We find one extent to map and we
2746 * must always write out whole page (makes a difference when
2747 * blocksize < pagesize) so that we don't block on IO when we
2748 * try to write out the rest of the page. Journalled mode is
2749 * not supported by delalloc.
2750 */
2751 BUG_ON(ext4_should_journal_data(inode));
2752 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2753
2754 /* start a new transaction */
2755 handle = ext4_journal_start_with_reserve(inode,
2756 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2757 if (IS_ERR(handle)) {
2758 ret = PTR_ERR(handle);
2759 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2760 "%ld pages, ino %lu; err %d", __func__,
2761 wbc->nr_to_write, inode->i_ino, ret);
2762 /* Release allocated io_end */
2763 ext4_put_io_end(mpd.io_submit.io_end);
2764 break;
2765 }
2766
2767 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768 ret = mpage_prepare_extent_to_map(&mpd);
2769 if (!ret) {
2770 if (mpd.map.m_len)
2771 ret = mpage_map_and_submit_extent(handle, &mpd,
2772 &give_up_on_write);
2773 else {
2774 /*
2775 * We scanned the whole range (or exhausted
2776 * nr_to_write), submitted what was mapped and
2777 * didn't find anything needing mapping. We are
2778 * done.
2779 */
2780 done = true;
2781 }
2782 }
2783 /*
2784 * Caution: If the handle is synchronous,
2785 * ext4_journal_stop() can wait for transaction commit
2786 * to finish which may depend on writeback of pages to
2787 * complete or on page lock to be released. In that
2788 * case, we have to wait until after after we have
2789 * submitted all the IO, released page locks we hold,
2790 * and dropped io_end reference (for extent conversion
2791 * to be able to complete) before stopping the handle.
2792 */
2793 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794 ext4_journal_stop(handle);
2795 handle = NULL;
2796 }
2797 /* Submit prepared bio */
2798 ext4_io_submit(&mpd.io_submit);
2799 /* Unlock pages we didn't use */
2800 mpage_release_unused_pages(&mpd, give_up_on_write);
2801 /*
2802 * Drop our io_end reference we got from init. We have
2803 * to be careful and use deferred io_end finishing if
2804 * we are still holding the transaction as we can
2805 * release the last reference to io_end which may end
2806 * up doing unwritten extent conversion.
2807 */
2808 if (handle) {
2809 ext4_put_io_end_defer(mpd.io_submit.io_end);
2810 ext4_journal_stop(handle);
2811 } else
2812 ext4_put_io_end(mpd.io_submit.io_end);
2813
2814 if (ret == -ENOSPC && sbi->s_journal) {
2815 /*
2816 * Commit the transaction which would
2817 * free blocks released in the transaction
2818 * and try again
2819 */
2820 jbd2_journal_force_commit_nested(sbi->s_journal);
2821 ret = 0;
2822 continue;
2823 }
2824 /* Fatal error - ENOMEM, EIO... */
2825 if (ret)
2826 break;
2827 }
2828 blk_finish_plug(&plug);
2829 if (!ret && !cycled && wbc->nr_to_write > 0) {
2830 cycled = 1;
2831 mpd.last_page = writeback_index - 1;
2832 mpd.first_page = 0;
2833 goto retry;
2834 }
2835
2836 /* Update index */
2837 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838 /*
2839 * Set the writeback_index so that range_cyclic
2840 * mode will write it back later
2841 */
2842 mapping->writeback_index = mpd.first_page;
2843
2844out_writepages:
2845 trace_ext4_writepages_result(inode, wbc, ret,
2846 nr_to_write - wbc->nr_to_write);
2847 percpu_up_read(&sbi->s_journal_flag_rwsem);
2848 return ret;
2849}
2850
2851static int ext4_nonda_switch(struct super_block *sb)
2852{
2853 s64 free_clusters, dirty_clusters;
2854 struct ext4_sb_info *sbi = EXT4_SB(sb);
2855
2856 /*
2857 * switch to non delalloc mode if we are running low
2858 * on free block. The free block accounting via percpu
2859 * counters can get slightly wrong with percpu_counter_batch getting
2860 * accumulated on each CPU without updating global counters
2861 * Delalloc need an accurate free block accounting. So switch
2862 * to non delalloc when we are near to error range.
2863 */
2864 free_clusters =
2865 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866 dirty_clusters =
2867 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2868 /*
2869 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870 */
2871 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2872 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2873
2874 if (2 * free_clusters < 3 * dirty_clusters ||
2875 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2876 /*
2877 * free block count is less than 150% of dirty blocks
2878 * or free blocks is less than watermark
2879 */
2880 return 1;
2881 }
2882 return 0;
2883}
2884
2885/* We always reserve for an inode update; the superblock could be there too */
2886static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2887{
2888 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2889 return 1;
2890
2891 if (pos + len <= 0x7fffffffULL)
2892 return 1;
2893
2894 /* We might need to update the superblock to set LARGE_FILE */
2895 return 2;
2896}
2897
2898static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899 loff_t pos, unsigned len, unsigned flags,
2900 struct page **pagep, void **fsdata)
2901{
2902 int ret, retries = 0;
2903 struct page *page;
2904 pgoff_t index;
2905 struct inode *inode = mapping->host;
2906 handle_t *handle;
2907
2908 index = pos >> PAGE_SHIFT;
2909
2910 if (ext4_nonda_switch(inode->i_sb) ||
2911 S_ISLNK(inode->i_mode)) {
2912 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2913 return ext4_write_begin(file, mapping, pos,
2914 len, flags, pagep, fsdata);
2915 }
2916 *fsdata = (void *)0;
2917 trace_ext4_da_write_begin(inode, pos, len, flags);
2918
2919 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2920 ret = ext4_da_write_inline_data_begin(mapping, inode,
2921 pos, len, flags,
2922 pagep, fsdata);
2923 if (ret < 0)
2924 return ret;
2925 if (ret == 1)
2926 return 0;
2927 }
2928
2929 /*
2930 * grab_cache_page_write_begin() can take a long time if the
2931 * system is thrashing due to memory pressure, or if the page
2932 * is being written back. So grab it first before we start
2933 * the transaction handle. This also allows us to allocate
2934 * the page (if needed) without using GFP_NOFS.
2935 */
2936retry_grab:
2937 page = grab_cache_page_write_begin(mapping, index, flags);
2938 if (!page)
2939 return -ENOMEM;
2940 unlock_page(page);
2941
2942 /*
2943 * With delayed allocation, we don't log the i_disksize update
2944 * if there is delayed block allocation. But we still need
2945 * to journalling the i_disksize update if writes to the end
2946 * of file which has an already mapped buffer.
2947 */
2948retry_journal:
2949 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2950 ext4_da_write_credits(inode, pos, len));
2951 if (IS_ERR(handle)) {
2952 put_page(page);
2953 return PTR_ERR(handle);
2954 }
2955
2956 lock_page(page);
2957 if (page->mapping != mapping) {
2958 /* The page got truncated from under us */
2959 unlock_page(page);
2960 put_page(page);
2961 ext4_journal_stop(handle);
2962 goto retry_grab;
2963 }
2964 /* In case writeback began while the page was unlocked */
2965 wait_for_stable_page(page);
2966
2967#ifdef CONFIG_EXT4_FS_ENCRYPTION
2968 ret = ext4_block_write_begin(page, pos, len,
2969 ext4_da_get_block_prep);
2970#else
2971 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2972#endif
2973 if (ret < 0) {
2974 unlock_page(page);
2975 ext4_journal_stop(handle);
2976 /*
2977 * block_write_begin may have instantiated a few blocks
2978 * outside i_size. Trim these off again. Don't need
2979 * i_size_read because we hold i_mutex.
2980 */
2981 if (pos + len > inode->i_size)
2982 ext4_truncate_failed_write(inode);
2983
2984 if (ret == -ENOSPC &&
2985 ext4_should_retry_alloc(inode->i_sb, &retries))
2986 goto retry_journal;
2987
2988 put_page(page);
2989 return ret;
2990 }
2991
2992 *pagep = page;
2993 return ret;
2994}
2995
2996/*
2997 * Check if we should update i_disksize
2998 * when write to the end of file but not require block allocation
2999 */
3000static int ext4_da_should_update_i_disksize(struct page *page,
3001 unsigned long offset)
3002{
3003 struct buffer_head *bh;
3004 struct inode *inode = page->mapping->host;
3005 unsigned int idx;
3006 int i;
3007
3008 bh = page_buffers(page);
3009 idx = offset >> inode->i_blkbits;
3010
3011 for (i = 0; i < idx; i++)
3012 bh = bh->b_this_page;
3013
3014 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3015 return 0;
3016 return 1;
3017}
3018
3019static int ext4_da_write_end(struct file *file,
3020 struct address_space *mapping,
3021 loff_t pos, unsigned len, unsigned copied,
3022 struct page *page, void *fsdata)
3023{
3024 struct inode *inode = mapping->host;
3025 int ret = 0, ret2;
3026 handle_t *handle = ext4_journal_current_handle();
3027 loff_t new_i_size;
3028 unsigned long start, end;
3029 int write_mode = (int)(unsigned long)fsdata;
3030
3031 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3032 return ext4_write_end(file, mapping, pos,
3033 len, copied, page, fsdata);
3034
3035 trace_ext4_da_write_end(inode, pos, len, copied);
3036 start = pos & (PAGE_SIZE - 1);
3037 end = start + copied - 1;
3038
3039 /*
3040 * generic_write_end() will run mark_inode_dirty() if i_size
3041 * changes. So let's piggyback the i_disksize mark_inode_dirty
3042 * into that.
3043 */
3044 new_i_size = pos + copied;
3045 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3046 if (ext4_has_inline_data(inode) ||
3047 ext4_da_should_update_i_disksize(page, end)) {
3048 ext4_update_i_disksize(inode, new_i_size);
3049 /* We need to mark inode dirty even if
3050 * new_i_size is less that inode->i_size
3051 * bu greater than i_disksize.(hint delalloc)
3052 */
3053 ext4_mark_inode_dirty(handle, inode);
3054 }
3055 }
3056
3057 if (write_mode != CONVERT_INLINE_DATA &&
3058 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059 ext4_has_inline_data(inode))
3060 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3061 page);
3062 else
3063 ret2 = generic_write_end(file, mapping, pos, len, copied,
3064 page, fsdata);
3065
3066 copied = ret2;
3067 if (ret2 < 0)
3068 ret = ret2;
3069 ret2 = ext4_journal_stop(handle);
3070 if (!ret)
3071 ret = ret2;
3072
3073 return ret ? ret : copied;
3074}
3075
3076static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3077 unsigned int length)
3078{
3079 /*
3080 * Drop reserved blocks
3081 */
3082 BUG_ON(!PageLocked(page));
3083 if (!page_has_buffers(page))
3084 goto out;
3085
3086 ext4_da_page_release_reservation(page, offset, length);
3087
3088out:
3089 ext4_invalidatepage(page, offset, length);
3090
3091 return;
3092}
3093
3094/*
3095 * Force all delayed allocation blocks to be allocated for a given inode.
3096 */
3097int ext4_alloc_da_blocks(struct inode *inode)
3098{
3099 trace_ext4_alloc_da_blocks(inode);
3100
3101 if (!EXT4_I(inode)->i_reserved_data_blocks)
3102 return 0;
3103
3104 /*
3105 * We do something simple for now. The filemap_flush() will
3106 * also start triggering a write of the data blocks, which is
3107 * not strictly speaking necessary (and for users of
3108 * laptop_mode, not even desirable). However, to do otherwise
3109 * would require replicating code paths in:
3110 *
3111 * ext4_writepages() ->
3112 * write_cache_pages() ---> (via passed in callback function)
3113 * __mpage_da_writepage() -->
3114 * mpage_add_bh_to_extent()
3115 * mpage_da_map_blocks()
3116 *
3117 * The problem is that write_cache_pages(), located in
3118 * mm/page-writeback.c, marks pages clean in preparation for
3119 * doing I/O, which is not desirable if we're not planning on
3120 * doing I/O at all.
3121 *
3122 * We could call write_cache_pages(), and then redirty all of
3123 * the pages by calling redirty_page_for_writepage() but that
3124 * would be ugly in the extreme. So instead we would need to
3125 * replicate parts of the code in the above functions,
3126 * simplifying them because we wouldn't actually intend to
3127 * write out the pages, but rather only collect contiguous
3128 * logical block extents, call the multi-block allocator, and
3129 * then update the buffer heads with the block allocations.
3130 *
3131 * For now, though, we'll cheat by calling filemap_flush(),
3132 * which will map the blocks, and start the I/O, but not
3133 * actually wait for the I/O to complete.
3134 */
3135 return filemap_flush(inode->i_mapping);
3136}
3137
3138/*
3139 * bmap() is special. It gets used by applications such as lilo and by
3140 * the swapper to find the on-disk block of a specific piece of data.
3141 *
3142 * Naturally, this is dangerous if the block concerned is still in the
3143 * journal. If somebody makes a swapfile on an ext4 data-journaling
3144 * filesystem and enables swap, then they may get a nasty shock when the
3145 * data getting swapped to that swapfile suddenly gets overwritten by
3146 * the original zero's written out previously to the journal and
3147 * awaiting writeback in the kernel's buffer cache.
3148 *
3149 * So, if we see any bmap calls here on a modified, data-journaled file,
3150 * take extra steps to flush any blocks which might be in the cache.
3151 */
3152static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3153{
3154 struct inode *inode = mapping->host;
3155 journal_t *journal;
3156 int err;
3157
3158 /*
3159 * We can get here for an inline file via the FIBMAP ioctl
3160 */
3161 if (ext4_has_inline_data(inode))
3162 return 0;
3163
3164 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165 test_opt(inode->i_sb, DELALLOC)) {
3166 /*
3167 * With delalloc we want to sync the file
3168 * so that we can make sure we allocate
3169 * blocks for file
3170 */
3171 filemap_write_and_wait(mapping);
3172 }
3173
3174 if (EXT4_JOURNAL(inode) &&
3175 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176 /*
3177 * This is a REALLY heavyweight approach, but the use of
3178 * bmap on dirty files is expected to be extremely rare:
3179 * only if we run lilo or swapon on a freshly made file
3180 * do we expect this to happen.
3181 *
3182 * (bmap requires CAP_SYS_RAWIO so this does not
3183 * represent an unprivileged user DOS attack --- we'd be
3184 * in trouble if mortal users could trigger this path at
3185 * will.)
3186 *
3187 * NB. EXT4_STATE_JDATA is not set on files other than
3188 * regular files. If somebody wants to bmap a directory
3189 * or symlink and gets confused because the buffer
3190 * hasn't yet been flushed to disk, they deserve
3191 * everything they get.
3192 */
3193
3194 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195 journal = EXT4_JOURNAL(inode);
3196 jbd2_journal_lock_updates(journal);
3197 err = jbd2_journal_flush(journal);
3198 jbd2_journal_unlock_updates(journal);
3199
3200 if (err)
3201 return 0;
3202 }
3203
3204 return generic_block_bmap(mapping, block, ext4_get_block);
3205}
3206
3207static int ext4_readpage(struct file *file, struct page *page)
3208{
3209 int ret = -EAGAIN;
3210 struct inode *inode = page->mapping->host;
3211
3212 trace_ext4_readpage(page);
3213
3214 if (ext4_has_inline_data(inode))
3215 ret = ext4_readpage_inline(inode, page);
3216
3217 if (ret == -EAGAIN)
3218 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3219
3220 return ret;
3221}
3222
3223static int
3224ext4_readpages(struct file *file, struct address_space *mapping,
3225 struct list_head *pages, unsigned nr_pages)
3226{
3227 struct inode *inode = mapping->host;
3228
3229 /* If the file has inline data, no need to do readpages. */
3230 if (ext4_has_inline_data(inode))
3231 return 0;
3232
3233 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3234}
3235
3236static void ext4_invalidatepage(struct page *page, unsigned int offset,
3237 unsigned int length)
3238{
3239 trace_ext4_invalidatepage(page, offset, length);
3240
3241 /* No journalling happens on data buffers when this function is used */
3242 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3243
3244 block_invalidatepage(page, offset, length);
3245}
3246
3247static int __ext4_journalled_invalidatepage(struct page *page,
3248 unsigned int offset,
3249 unsigned int length)
3250{
3251 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
3253 trace_ext4_journalled_invalidatepage(page, offset, length);
3254
3255 /*
3256 * If it's a full truncate we just forget about the pending dirtying
3257 */
3258 if (offset == 0 && length == PAGE_SIZE)
3259 ClearPageChecked(page);
3260
3261 return jbd2_journal_invalidatepage(journal, page, offset, length);
3262}
3263
3264/* Wrapper for aops... */
3265static void ext4_journalled_invalidatepage(struct page *page,
3266 unsigned int offset,
3267 unsigned int length)
3268{
3269 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3270}
3271
3272static int ext4_releasepage(struct page *page, gfp_t wait)
3273{
3274 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3275
3276 trace_ext4_releasepage(page);
3277
3278 /* Page has dirty journalled data -> cannot release */
3279 if (PageChecked(page))
3280 return 0;
3281 if (journal)
3282 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3283 else
3284 return try_to_free_buffers(page);
3285}
3286
3287#ifdef CONFIG_FS_DAX
3288static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3289 unsigned flags, struct iomap *iomap)
3290{
3291 unsigned int blkbits = inode->i_blkbits;
3292 unsigned long first_block = offset >> blkbits;
3293 unsigned long last_block = (offset + length - 1) >> blkbits;
3294 struct ext4_map_blocks map;
3295 int ret;
3296
3297 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3298 return -ERANGE;
3299
3300 map.m_lblk = first_block;
3301 map.m_len = last_block - first_block + 1;
3302
3303 if (!(flags & IOMAP_WRITE)) {
3304 ret = ext4_map_blocks(NULL, inode, &map, 0);
3305 } else {
3306 int dio_credits;
3307 handle_t *handle;
3308 int retries = 0;
3309
3310 /* Trim mapping request to maximum we can map at once for DIO */
3311 if (map.m_len > DIO_MAX_BLOCKS)
3312 map.m_len = DIO_MAX_BLOCKS;
3313 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3314retry:
3315 /*
3316 * Either we allocate blocks and then we don't get unwritten
3317 * extent so we have reserved enough credits, or the blocks
3318 * are already allocated and unwritten and in that case
3319 * extent conversion fits in the credits as well.
3320 */
3321 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3322 dio_credits);
3323 if (IS_ERR(handle))
3324 return PTR_ERR(handle);
3325
3326 ret = ext4_map_blocks(handle, inode, &map,
3327 EXT4_GET_BLOCKS_CREATE_ZERO);
3328 if (ret < 0) {
3329 ext4_journal_stop(handle);
3330 if (ret == -ENOSPC &&
3331 ext4_should_retry_alloc(inode->i_sb, &retries))
3332 goto retry;
3333 return ret;
3334 }
3335
3336 /*
3337 * If we added blocks beyond i_size, we need to make sure they
3338 * will get truncated if we crash before updating i_size in
3339 * ext4_iomap_end(). For faults we don't need to do that (and
3340 * even cannot because for orphan list operations inode_lock is
3341 * required) - if we happen to instantiate block beyond i_size,
3342 * it is because we race with truncate which has already added
3343 * the inode to the orphan list.
3344 */
3345 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3346 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3347 int err;
3348
3349 err = ext4_orphan_add(handle, inode);
3350 if (err < 0) {
3351 ext4_journal_stop(handle);
3352 return err;
3353 }
3354 }
3355 ext4_journal_stop(handle);
3356 }
3357
3358 iomap->flags = 0;
3359 iomap->bdev = inode->i_sb->s_bdev;
3360 iomap->offset = first_block << blkbits;
3361
3362 if (ret == 0) {
3363 iomap->type = IOMAP_HOLE;
3364 iomap->blkno = IOMAP_NULL_BLOCK;
3365 iomap->length = (u64)map.m_len << blkbits;
3366 } else {
3367 if (map.m_flags & EXT4_MAP_MAPPED) {
3368 iomap->type = IOMAP_MAPPED;
3369 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3370 iomap->type = IOMAP_UNWRITTEN;
3371 } else {
3372 WARN_ON_ONCE(1);
3373 return -EIO;
3374 }
3375 iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3376 iomap->length = (u64)map.m_len << blkbits;
3377 }
3378
3379 if (map.m_flags & EXT4_MAP_NEW)
3380 iomap->flags |= IOMAP_F_NEW;
3381 return 0;
3382}
3383
3384static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385 ssize_t written, unsigned flags, struct iomap *iomap)
3386{
3387 int ret = 0;
3388 handle_t *handle;
3389 int blkbits = inode->i_blkbits;
3390 bool truncate = false;
3391
3392 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3393 return 0;
3394
3395 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3396 if (IS_ERR(handle)) {
3397 ret = PTR_ERR(handle);
3398 goto orphan_del;
3399 }
3400 if (ext4_update_inode_size(inode, offset + written))
3401 ext4_mark_inode_dirty(handle, inode);
3402 /*
3403 * We may need to truncate allocated but not written blocks beyond EOF.
3404 */
3405 if (iomap->offset + iomap->length >
3406 ALIGN(inode->i_size, 1 << blkbits)) {
3407 ext4_lblk_t written_blk, end_blk;
3408
3409 written_blk = (offset + written) >> blkbits;
3410 end_blk = (offset + length) >> blkbits;
3411 if (written_blk < end_blk && ext4_can_truncate(inode))
3412 truncate = true;
3413 }
3414 /*
3415 * Remove inode from orphan list if we were extending a inode and
3416 * everything went fine.
3417 */
3418 if (!truncate && inode->i_nlink &&
3419 !list_empty(&EXT4_I(inode)->i_orphan))
3420 ext4_orphan_del(handle, inode);
3421 ext4_journal_stop(handle);
3422 if (truncate) {
3423 ext4_truncate_failed_write(inode);
3424orphan_del:
3425 /*
3426 * If truncate failed early the inode might still be on the
3427 * orphan list; we need to make sure the inode is removed from
3428 * the orphan list in that case.
3429 */
3430 if (inode->i_nlink)
3431 ext4_orphan_del(NULL, inode);
3432 }
3433 return ret;
3434}
3435
3436struct iomap_ops ext4_iomap_ops = {
3437 .iomap_begin = ext4_iomap_begin,
3438 .iomap_end = ext4_iomap_end,
3439};
3440
3441#endif
3442
3443static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3444 ssize_t size, void *private)
3445{
3446 ext4_io_end_t *io_end = private;
3447
3448 /* if not async direct IO just return */
3449 if (!io_end)
3450 return 0;
3451
3452 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3453 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3454 io_end, io_end->inode->i_ino, iocb, offset, size);
3455
3456 /*
3457 * Error during AIO DIO. We cannot convert unwritten extents as the
3458 * data was not written. Just clear the unwritten flag and drop io_end.
3459 */
3460 if (size <= 0) {
3461 ext4_clear_io_unwritten_flag(io_end);
3462 size = 0;
3463 }
3464 io_end->offset = offset;
3465 io_end->size = size;
3466 ext4_put_io_end(io_end);
3467
3468 return 0;
3469}
3470
3471/*
3472 * Handling of direct IO writes.
3473 *
3474 * For ext4 extent files, ext4 will do direct-io write even to holes,
3475 * preallocated extents, and those write extend the file, no need to
3476 * fall back to buffered IO.
3477 *
3478 * For holes, we fallocate those blocks, mark them as unwritten
3479 * If those blocks were preallocated, we mark sure they are split, but
3480 * still keep the range to write as unwritten.
3481 *
3482 * The unwritten extents will be converted to written when DIO is completed.
3483 * For async direct IO, since the IO may still pending when return, we
3484 * set up an end_io call back function, which will do the conversion
3485 * when async direct IO completed.
3486 *
3487 * If the O_DIRECT write will extend the file then add this inode to the
3488 * orphan list. So recovery will truncate it back to the original size
3489 * if the machine crashes during the write.
3490 *
3491 */
3492static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3493{
3494 struct file *file = iocb->ki_filp;
3495 struct inode *inode = file->f_mapping->host;
3496 struct ext4_inode_info *ei = EXT4_I(inode);
3497 ssize_t ret;
3498 loff_t offset = iocb->ki_pos;
3499 size_t count = iov_iter_count(iter);
3500 int overwrite = 0;
3501 get_block_t *get_block_func = NULL;
3502 int dio_flags = 0;
3503 loff_t final_size = offset + count;
3504 int orphan = 0;
3505 handle_t *handle;
3506
3507 if (final_size > inode->i_size) {
3508 /* Credits for sb + inode write */
3509 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3510 if (IS_ERR(handle)) {
3511 ret = PTR_ERR(handle);
3512 goto out;
3513 }
3514 ret = ext4_orphan_add(handle, inode);
3515 if (ret) {
3516 ext4_journal_stop(handle);
3517 goto out;
3518 }
3519 orphan = 1;
3520 ei->i_disksize = inode->i_size;
3521 ext4_journal_stop(handle);
3522 }
3523
3524 BUG_ON(iocb->private == NULL);
3525
3526 /*
3527 * Make all waiters for direct IO properly wait also for extent
3528 * conversion. This also disallows race between truncate() and
3529 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3530 */
3531 inode_dio_begin(inode);
3532
3533 /* If we do a overwrite dio, i_mutex locking can be released */
3534 overwrite = *((int *)iocb->private);
3535
3536 if (overwrite)
3537 inode_unlock(inode);
3538
3539 /*
3540 * For extent mapped files we could direct write to holes and fallocate.
3541 *
3542 * Allocated blocks to fill the hole are marked as unwritten to prevent
3543 * parallel buffered read to expose the stale data before DIO complete
3544 * the data IO.
3545 *
3546 * As to previously fallocated extents, ext4 get_block will just simply
3547 * mark the buffer mapped but still keep the extents unwritten.
3548 *
3549 * For non AIO case, we will convert those unwritten extents to written
3550 * after return back from blockdev_direct_IO. That way we save us from
3551 * allocating io_end structure and also the overhead of offloading
3552 * the extent convertion to a workqueue.
3553 *
3554 * For async DIO, the conversion needs to be deferred when the
3555 * IO is completed. The ext4 end_io callback function will be
3556 * called to take care of the conversion work. Here for async
3557 * case, we allocate an io_end structure to hook to the iocb.
3558 */
3559 iocb->private = NULL;
3560 if (overwrite)
3561 get_block_func = ext4_dio_get_block_overwrite;
3562 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3563 round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3564 get_block_func = ext4_dio_get_block;
3565 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3566 } else if (is_sync_kiocb(iocb)) {
3567 get_block_func = ext4_dio_get_block_unwritten_sync;
3568 dio_flags = DIO_LOCKING;
3569 } else {
3570 get_block_func = ext4_dio_get_block_unwritten_async;
3571 dio_flags = DIO_LOCKING;
3572 }
3573#ifdef CONFIG_EXT4_FS_ENCRYPTION
3574 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3575#endif
3576 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3577 get_block_func, ext4_end_io_dio, NULL,
3578 dio_flags);
3579
3580 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3581 EXT4_STATE_DIO_UNWRITTEN)) {
3582 int err;
3583 /*
3584 * for non AIO case, since the IO is already
3585 * completed, we could do the conversion right here
3586 */
3587 err = ext4_convert_unwritten_extents(NULL, inode,
3588 offset, ret);
3589 if (err < 0)
3590 ret = err;
3591 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592 }
3593
3594 inode_dio_end(inode);
3595 /* take i_mutex locking again if we do a ovewrite dio */
3596 if (overwrite)
3597 inode_lock(inode);
3598
3599 if (ret < 0 && final_size > inode->i_size)
3600 ext4_truncate_failed_write(inode);
3601
3602 /* Handle extending of i_size after direct IO write */
3603 if (orphan) {
3604 int err;
3605
3606 /* Credits for sb + inode write */
3607 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3608 if (IS_ERR(handle)) {
3609 /* This is really bad luck. We've written the data
3610 * but cannot extend i_size. Bail out and pretend
3611 * the write failed... */
3612 ret = PTR_ERR(handle);
3613 if (inode->i_nlink)
3614 ext4_orphan_del(NULL, inode);
3615
3616 goto out;
3617 }
3618 if (inode->i_nlink)
3619 ext4_orphan_del(handle, inode);
3620 if (ret > 0) {
3621 loff_t end = offset + ret;
3622 if (end > inode->i_size) {
3623 ei->i_disksize = end;
3624 i_size_write(inode, end);
3625 /*
3626 * We're going to return a positive `ret'
3627 * here due to non-zero-length I/O, so there's
3628 * no way of reporting error returns from
3629 * ext4_mark_inode_dirty() to userspace. So
3630 * ignore it.
3631 */
3632 ext4_mark_inode_dirty(handle, inode);
3633 }
3634 }
3635 err = ext4_journal_stop(handle);
3636 if (ret == 0)
3637 ret = err;
3638 }
3639out:
3640 return ret;
3641}
3642
3643static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3644{
3645 struct address_space *mapping = iocb->ki_filp->f_mapping;
3646 struct inode *inode = mapping->host;
3647 size_t count = iov_iter_count(iter);
3648 ssize_t ret;
3649
3650 /*
3651 * Shared inode_lock is enough for us - it protects against concurrent
3652 * writes & truncates and since we take care of writing back page cache,
3653 * we are protected against page writeback as well.
3654 */
3655 inode_lock_shared(inode);
3656 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3657 iocb->ki_pos + count);
3658 if (ret)
3659 goto out_unlock;
3660 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3661 iter, ext4_dio_get_block, NULL, NULL, 0);
3662out_unlock:
3663 inode_unlock_shared(inode);
3664 return ret;
3665}
3666
3667static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3668{
3669 struct file *file = iocb->ki_filp;
3670 struct inode *inode = file->f_mapping->host;
3671 size_t count = iov_iter_count(iter);
3672 loff_t offset = iocb->ki_pos;
3673 ssize_t ret;
3674
3675#ifdef CONFIG_EXT4_FS_ENCRYPTION
3676 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3677 return 0;
3678#endif
3679
3680 /*
3681 * If we are doing data journalling we don't support O_DIRECT
3682 */
3683 if (ext4_should_journal_data(inode))
3684 return 0;
3685
3686 /* Let buffer I/O handle the inline data case. */
3687 if (ext4_has_inline_data(inode))
3688 return 0;
3689
3690 /* DAX uses iomap path now */
3691 if (WARN_ON_ONCE(IS_DAX(inode)))
3692 return 0;
3693
3694 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3695 if (iov_iter_rw(iter) == READ)
3696 ret = ext4_direct_IO_read(iocb, iter);
3697 else
3698 ret = ext4_direct_IO_write(iocb, iter);
3699 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3700 return ret;
3701}
3702
3703/*
3704 * Pages can be marked dirty completely asynchronously from ext4's journalling
3705 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3706 * much here because ->set_page_dirty is called under VFS locks. The page is
3707 * not necessarily locked.
3708 *
3709 * We cannot just dirty the page and leave attached buffers clean, because the
3710 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3711 * or jbddirty because all the journalling code will explode.
3712 *
3713 * So what we do is to mark the page "pending dirty" and next time writepage
3714 * is called, propagate that into the buffers appropriately.
3715 */
3716static int ext4_journalled_set_page_dirty(struct page *page)
3717{
3718 SetPageChecked(page);
3719 return __set_page_dirty_nobuffers(page);
3720}
3721
3722static int ext4_set_page_dirty(struct page *page)
3723{
3724 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3725 WARN_ON_ONCE(!page_has_buffers(page));
3726 return __set_page_dirty_buffers(page);
3727}
3728
3729static const struct address_space_operations ext4_aops = {
3730 .readpage = ext4_readpage,
3731 .readpages = ext4_readpages,
3732 .writepage = ext4_writepage,
3733 .writepages = ext4_writepages,
3734 .write_begin = ext4_write_begin,
3735 .write_end = ext4_write_end,
3736 .set_page_dirty = ext4_set_page_dirty,
3737 .bmap = ext4_bmap,
3738 .invalidatepage = ext4_invalidatepage,
3739 .releasepage = ext4_releasepage,
3740 .direct_IO = ext4_direct_IO,
3741 .migratepage = buffer_migrate_page,
3742 .is_partially_uptodate = block_is_partially_uptodate,
3743 .error_remove_page = generic_error_remove_page,
3744};
3745
3746static const struct address_space_operations ext4_journalled_aops = {
3747 .readpage = ext4_readpage,
3748 .readpages = ext4_readpages,
3749 .writepage = ext4_writepage,
3750 .writepages = ext4_writepages,
3751 .write_begin = ext4_write_begin,
3752 .write_end = ext4_journalled_write_end,
3753 .set_page_dirty = ext4_journalled_set_page_dirty,
3754 .bmap = ext4_bmap,
3755 .invalidatepage = ext4_journalled_invalidatepage,
3756 .releasepage = ext4_releasepage,
3757 .direct_IO = ext4_direct_IO,
3758 .is_partially_uptodate = block_is_partially_uptodate,
3759 .error_remove_page = generic_error_remove_page,
3760};
3761
3762static const struct address_space_operations ext4_da_aops = {
3763 .readpage = ext4_readpage,
3764 .readpages = ext4_readpages,
3765 .writepage = ext4_writepage,
3766 .writepages = ext4_writepages,
3767 .write_begin = ext4_da_write_begin,
3768 .write_end = ext4_da_write_end,
3769 .set_page_dirty = ext4_set_page_dirty,
3770 .bmap = ext4_bmap,
3771 .invalidatepage = ext4_da_invalidatepage,
3772 .releasepage = ext4_releasepage,
3773 .direct_IO = ext4_direct_IO,
3774 .migratepage = buffer_migrate_page,
3775 .is_partially_uptodate = block_is_partially_uptodate,
3776 .error_remove_page = generic_error_remove_page,
3777};
3778
3779void ext4_set_aops(struct inode *inode)
3780{
3781 switch (ext4_inode_journal_mode(inode)) {
3782 case EXT4_INODE_ORDERED_DATA_MODE:
3783 case EXT4_INODE_WRITEBACK_DATA_MODE:
3784 break;
3785 case EXT4_INODE_JOURNAL_DATA_MODE:
3786 inode->i_mapping->a_ops = &ext4_journalled_aops;
3787 return;
3788 default:
3789 BUG();
3790 }
3791 if (test_opt(inode->i_sb, DELALLOC))
3792 inode->i_mapping->a_ops = &ext4_da_aops;
3793 else
3794 inode->i_mapping->a_ops = &ext4_aops;
3795}
3796
3797static int __ext4_block_zero_page_range(handle_t *handle,
3798 struct address_space *mapping, loff_t from, loff_t length)
3799{
3800 ext4_fsblk_t index = from >> PAGE_SHIFT;
3801 unsigned offset = from & (PAGE_SIZE-1);
3802 unsigned blocksize, pos;
3803 ext4_lblk_t iblock;
3804 struct inode *inode = mapping->host;
3805 struct buffer_head *bh;
3806 struct page *page;
3807 int err = 0;
3808
3809 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3810 mapping_gfp_constraint(mapping, ~__GFP_FS));
3811 if (!page)
3812 return -ENOMEM;
3813
3814 blocksize = inode->i_sb->s_blocksize;
3815
3816 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3817
3818 if (!page_has_buffers(page))
3819 create_empty_buffers(page, blocksize, 0);
3820
3821 /* Find the buffer that contains "offset" */
3822 bh = page_buffers(page);
3823 pos = blocksize;
3824 while (offset >= pos) {
3825 bh = bh->b_this_page;
3826 iblock++;
3827 pos += blocksize;
3828 }
3829 if (buffer_freed(bh)) {
3830 BUFFER_TRACE(bh, "freed: skip");
3831 goto unlock;
3832 }
3833 if (!buffer_mapped(bh)) {
3834 BUFFER_TRACE(bh, "unmapped");
3835 ext4_get_block(inode, iblock, bh, 0);
3836 /* unmapped? It's a hole - nothing to do */
3837 if (!buffer_mapped(bh)) {
3838 BUFFER_TRACE(bh, "still unmapped");
3839 goto unlock;
3840 }
3841 }
3842
3843 /* Ok, it's mapped. Make sure it's up-to-date */
3844 if (PageUptodate(page))
3845 set_buffer_uptodate(bh);
3846
3847 if (!buffer_uptodate(bh)) {
3848 err = -EIO;
3849 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3850 wait_on_buffer(bh);
3851 /* Uhhuh. Read error. Complain and punt. */
3852 if (!buffer_uptodate(bh))
3853 goto unlock;
3854 if (S_ISREG(inode->i_mode) &&
3855 ext4_encrypted_inode(inode)) {
3856 /* We expect the key to be set. */
3857 BUG_ON(!fscrypt_has_encryption_key(inode));
3858 BUG_ON(blocksize != PAGE_SIZE);
3859 WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3860 page, PAGE_SIZE, 0, page->index));
3861 }
3862 }
3863 if (ext4_should_journal_data(inode)) {
3864 BUFFER_TRACE(bh, "get write access");
3865 err = ext4_journal_get_write_access(handle, bh);
3866 if (err)
3867 goto unlock;
3868 }
3869 zero_user(page, offset, length);
3870 BUFFER_TRACE(bh, "zeroed end of block");
3871
3872 if (ext4_should_journal_data(inode)) {
3873 err = ext4_handle_dirty_metadata(handle, inode, bh);
3874 } else {
3875 err = 0;
3876 mark_buffer_dirty(bh);
3877 if (ext4_should_order_data(inode))
3878 err = ext4_jbd2_inode_add_write(handle, inode);
3879 }
3880
3881unlock:
3882 unlock_page(page);
3883 put_page(page);
3884 return err;
3885}
3886
3887/*
3888 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3889 * starting from file offset 'from'. The range to be zero'd must
3890 * be contained with in one block. If the specified range exceeds
3891 * the end of the block it will be shortened to end of the block
3892 * that cooresponds to 'from'
3893 */
3894static int ext4_block_zero_page_range(handle_t *handle,
3895 struct address_space *mapping, loff_t from, loff_t length)
3896{
3897 struct inode *inode = mapping->host;
3898 unsigned offset = from & (PAGE_SIZE-1);
3899 unsigned blocksize = inode->i_sb->s_blocksize;
3900 unsigned max = blocksize - (offset & (blocksize - 1));
3901
3902 /*
3903 * correct length if it does not fall between
3904 * 'from' and the end of the block
3905 */
3906 if (length > max || length < 0)
3907 length = max;
3908
3909 if (IS_DAX(inode)) {
3910 return iomap_zero_range(inode, from, length, NULL,
3911 &ext4_iomap_ops);
3912 }
3913 return __ext4_block_zero_page_range(handle, mapping, from, length);
3914}
3915
3916/*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
3922static int ext4_block_truncate_page(handle_t *handle,
3923 struct address_space *mapping, loff_t from)
3924{
3925 unsigned offset = from & (PAGE_SIZE-1);
3926 unsigned length;
3927 unsigned blocksize;
3928 struct inode *inode = mapping->host;
3929
3930 /* If we are processing an encrypted inode during orphan list handling */
3931 if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3932 return 0;
3933
3934 blocksize = inode->i_sb->s_blocksize;
3935 length = blocksize - (offset & (blocksize - 1));
3936
3937 return ext4_block_zero_page_range(handle, mapping, from, length);
3938}
3939
3940int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3941 loff_t lstart, loff_t length)
3942{
3943 struct super_block *sb = inode->i_sb;
3944 struct address_space *mapping = inode->i_mapping;
3945 unsigned partial_start, partial_end;
3946 ext4_fsblk_t start, end;
3947 loff_t byte_end = (lstart + length - 1);
3948 int err = 0;
3949
3950 partial_start = lstart & (sb->s_blocksize - 1);
3951 partial_end = byte_end & (sb->s_blocksize - 1);
3952
3953 start = lstart >> sb->s_blocksize_bits;
3954 end = byte_end >> sb->s_blocksize_bits;
3955
3956 /* Handle partial zero within the single block */
3957 if (start == end &&
3958 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3959 err = ext4_block_zero_page_range(handle, mapping,
3960 lstart, length);
3961 return err;
3962 }
3963 /* Handle partial zero out on the start of the range */
3964 if (partial_start) {
3965 err = ext4_block_zero_page_range(handle, mapping,
3966 lstart, sb->s_blocksize);
3967 if (err)
3968 return err;
3969 }
3970 /* Handle partial zero out on the end of the range */
3971 if (partial_end != sb->s_blocksize - 1)
3972 err = ext4_block_zero_page_range(handle, mapping,
3973 byte_end - partial_end,
3974 partial_end + 1);
3975 return err;
3976}
3977
3978int ext4_can_truncate(struct inode *inode)
3979{
3980 if (S_ISREG(inode->i_mode))
3981 return 1;
3982 if (S_ISDIR(inode->i_mode))
3983 return 1;
3984 if (S_ISLNK(inode->i_mode))
3985 return !ext4_inode_is_fast_symlink(inode);
3986 return 0;
3987}
3988
3989/*
3990 * We have to make sure i_disksize gets properly updated before we truncate
3991 * page cache due to hole punching or zero range. Otherwise i_disksize update
3992 * can get lost as it may have been postponed to submission of writeback but
3993 * that will never happen after we truncate page cache.
3994 */
3995int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3996 loff_t len)
3997{
3998 handle_t *handle;
3999 loff_t size = i_size_read(inode);
4000
4001 WARN_ON(!inode_is_locked(inode));
4002 if (offset > size || offset + len < size)
4003 return 0;
4004
4005 if (EXT4_I(inode)->i_disksize >= size)
4006 return 0;
4007
4008 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4009 if (IS_ERR(handle))
4010 return PTR_ERR(handle);
4011 ext4_update_i_disksize(inode, size);
4012 ext4_mark_inode_dirty(handle, inode);
4013 ext4_journal_stop(handle);
4014
4015 return 0;
4016}
4017
4018/*
4019 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4020 * associated with the given offset and length
4021 *
4022 * @inode: File inode
4023 * @offset: The offset where the hole will begin
4024 * @len: The length of the hole
4025 *
4026 * Returns: 0 on success or negative on failure
4027 */
4028
4029int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4030{
4031 struct super_block *sb = inode->i_sb;
4032 ext4_lblk_t first_block, stop_block;
4033 struct address_space *mapping = inode->i_mapping;
4034 loff_t first_block_offset, last_block_offset;
4035 handle_t *handle;
4036 unsigned int credits;
4037 int ret = 0;
4038
4039 if (!S_ISREG(inode->i_mode))
4040 return -EOPNOTSUPP;
4041
4042 trace_ext4_punch_hole(inode, offset, length, 0);
4043
4044 /*
4045 * Write out all dirty pages to avoid race conditions
4046 * Then release them.
4047 */
4048 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4049 ret = filemap_write_and_wait_range(mapping, offset,
4050 offset + length - 1);
4051 if (ret)
4052 return ret;
4053 }
4054
4055 inode_lock(inode);
4056
4057 /* No need to punch hole beyond i_size */
4058 if (offset >= inode->i_size)
4059 goto out_mutex;
4060
4061 /*
4062 * If the hole extends beyond i_size, set the hole
4063 * to end after the page that contains i_size
4064 */
4065 if (offset + length > inode->i_size) {
4066 length = inode->i_size +
4067 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4068 offset;
4069 }
4070
4071 if (offset & (sb->s_blocksize - 1) ||
4072 (offset + length) & (sb->s_blocksize - 1)) {
4073 /*
4074 * Attach jinode to inode for jbd2 if we do any zeroing of
4075 * partial block
4076 */
4077 ret = ext4_inode_attach_jinode(inode);
4078 if (ret < 0)
4079 goto out_mutex;
4080
4081 }
4082
4083 /* Wait all existing dio workers, newcomers will block on i_mutex */
4084 ext4_inode_block_unlocked_dio(inode);
4085 inode_dio_wait(inode);
4086
4087 /*
4088 * Prevent page faults from reinstantiating pages we have released from
4089 * page cache.
4090 */
4091 down_write(&EXT4_I(inode)->i_mmap_sem);
4092 first_block_offset = round_up(offset, sb->s_blocksize);
4093 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4094
4095 /* Now release the pages and zero block aligned part of pages*/
4096 if (last_block_offset > first_block_offset) {
4097 ret = ext4_update_disksize_before_punch(inode, offset, length);
4098 if (ret)
4099 goto out_dio;
4100 truncate_pagecache_range(inode, first_block_offset,
4101 last_block_offset);
4102 }
4103
4104 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4105 credits = ext4_writepage_trans_blocks(inode);
4106 else
4107 credits = ext4_blocks_for_truncate(inode);
4108 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4109 if (IS_ERR(handle)) {
4110 ret = PTR_ERR(handle);
4111 ext4_std_error(sb, ret);
4112 goto out_dio;
4113 }
4114
4115 ret = ext4_zero_partial_blocks(handle, inode, offset,
4116 length);
4117 if (ret)
4118 goto out_stop;
4119
4120 first_block = (offset + sb->s_blocksize - 1) >>
4121 EXT4_BLOCK_SIZE_BITS(sb);
4122 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4123
4124 /* If there are no blocks to remove, return now */
4125 if (first_block >= stop_block)
4126 goto out_stop;
4127
4128 down_write(&EXT4_I(inode)->i_data_sem);
4129 ext4_discard_preallocations(inode);
4130
4131 ret = ext4_es_remove_extent(inode, first_block,
4132 stop_block - first_block);
4133 if (ret) {
4134 up_write(&EXT4_I(inode)->i_data_sem);
4135 goto out_stop;
4136 }
4137
4138 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139 ret = ext4_ext_remove_space(inode, first_block,
4140 stop_block - 1);
4141 else
4142 ret = ext4_ind_remove_space(handle, inode, first_block,
4143 stop_block);
4144
4145 up_write(&EXT4_I(inode)->i_data_sem);
4146 if (IS_SYNC(inode))
4147 ext4_handle_sync(handle);
4148
4149 inode->i_mtime = inode->i_ctime = current_time(inode);
4150 ext4_mark_inode_dirty(handle, inode);
4151out_stop:
4152 ext4_journal_stop(handle);
4153out_dio:
4154 up_write(&EXT4_I(inode)->i_mmap_sem);
4155 ext4_inode_resume_unlocked_dio(inode);
4156out_mutex:
4157 inode_unlock(inode);
4158 return ret;
4159}
4160
4161int ext4_inode_attach_jinode(struct inode *inode)
4162{
4163 struct ext4_inode_info *ei = EXT4_I(inode);
4164 struct jbd2_inode *jinode;
4165
4166 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4167 return 0;
4168
4169 jinode = jbd2_alloc_inode(GFP_KERNEL);
4170 spin_lock(&inode->i_lock);
4171 if (!ei->jinode) {
4172 if (!jinode) {
4173 spin_unlock(&inode->i_lock);
4174 return -ENOMEM;
4175 }
4176 ei->jinode = jinode;
4177 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4178 jinode = NULL;
4179 }
4180 spin_unlock(&inode->i_lock);
4181 if (unlikely(jinode != NULL))
4182 jbd2_free_inode(jinode);
4183 return 0;
4184}
4185
4186/*
4187 * ext4_truncate()
4188 *
4189 * We block out ext4_get_block() block instantiations across the entire
4190 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4191 * simultaneously on behalf of the same inode.
4192 *
4193 * As we work through the truncate and commit bits of it to the journal there
4194 * is one core, guiding principle: the file's tree must always be consistent on
4195 * disk. We must be able to restart the truncate after a crash.
4196 *
4197 * The file's tree may be transiently inconsistent in memory (although it
4198 * probably isn't), but whenever we close off and commit a journal transaction,
4199 * the contents of (the filesystem + the journal) must be consistent and
4200 * restartable. It's pretty simple, really: bottom up, right to left (although
4201 * left-to-right works OK too).
4202 *
4203 * Note that at recovery time, journal replay occurs *before* the restart of
4204 * truncate against the orphan inode list.
4205 *
4206 * The committed inode has the new, desired i_size (which is the same as
4207 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4208 * that this inode's truncate did not complete and it will again call
4209 * ext4_truncate() to have another go. So there will be instantiated blocks
4210 * to the right of the truncation point in a crashed ext4 filesystem. But
4211 * that's fine - as long as they are linked from the inode, the post-crash
4212 * ext4_truncate() run will find them and release them.
4213 */
4214int ext4_truncate(struct inode *inode)
4215{
4216 struct ext4_inode_info *ei = EXT4_I(inode);
4217 unsigned int credits;
4218 int err = 0;
4219 handle_t *handle;
4220 struct address_space *mapping = inode->i_mapping;
4221
4222 /*
4223 * There is a possibility that we're either freeing the inode
4224 * or it's a completely new inode. In those cases we might not
4225 * have i_mutex locked because it's not necessary.
4226 */
4227 if (!(inode->i_state & (I_NEW|I_FREEING)))
4228 WARN_ON(!inode_is_locked(inode));
4229 trace_ext4_truncate_enter(inode);
4230
4231 if (!ext4_can_truncate(inode))
4232 return 0;
4233
4234 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4235
4236 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4237 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4238
4239 if (ext4_has_inline_data(inode)) {
4240 int has_inline = 1;
4241
4242 ext4_inline_data_truncate(inode, &has_inline);
4243 if (has_inline)
4244 return 0;
4245 }
4246
4247 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4248 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4249 if (ext4_inode_attach_jinode(inode) < 0)
4250 return 0;
4251 }
4252
4253 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4254 credits = ext4_writepage_trans_blocks(inode);
4255 else
4256 credits = ext4_blocks_for_truncate(inode);
4257
4258 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4259 if (IS_ERR(handle))
4260 return PTR_ERR(handle);
4261
4262 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4263 ext4_block_truncate_page(handle, mapping, inode->i_size);
4264
4265 /*
4266 * We add the inode to the orphan list, so that if this
4267 * truncate spans multiple transactions, and we crash, we will
4268 * resume the truncate when the filesystem recovers. It also
4269 * marks the inode dirty, to catch the new size.
4270 *
4271 * Implication: the file must always be in a sane, consistent
4272 * truncatable state while each transaction commits.
4273 */
4274 err = ext4_orphan_add(handle, inode);
4275 if (err)
4276 goto out_stop;
4277
4278 down_write(&EXT4_I(inode)->i_data_sem);
4279
4280 ext4_discard_preallocations(inode);
4281
4282 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4283 err = ext4_ext_truncate(handle, inode);
4284 else
4285 ext4_ind_truncate(handle, inode);
4286
4287 up_write(&ei->i_data_sem);
4288 if (err)
4289 goto out_stop;
4290
4291 if (IS_SYNC(inode))
4292 ext4_handle_sync(handle);
4293
4294out_stop:
4295 /*
4296 * If this was a simple ftruncate() and the file will remain alive,
4297 * then we need to clear up the orphan record which we created above.
4298 * However, if this was a real unlink then we were called by
4299 * ext4_evict_inode(), and we allow that function to clean up the
4300 * orphan info for us.
4301 */
4302 if (inode->i_nlink)
4303 ext4_orphan_del(handle, inode);
4304
4305 inode->i_mtime = inode->i_ctime = current_time(inode);
4306 ext4_mark_inode_dirty(handle, inode);
4307 ext4_journal_stop(handle);
4308
4309 trace_ext4_truncate_exit(inode);
4310 return err;
4311}
4312
4313/*
4314 * ext4_get_inode_loc returns with an extra refcount against the inode's
4315 * underlying buffer_head on success. If 'in_mem' is true, we have all
4316 * data in memory that is needed to recreate the on-disk version of this
4317 * inode.
4318 */
4319static int __ext4_get_inode_loc(struct inode *inode,
4320 struct ext4_iloc *iloc, int in_mem)
4321{
4322 struct ext4_group_desc *gdp;
4323 struct buffer_head *bh;
4324 struct super_block *sb = inode->i_sb;
4325 ext4_fsblk_t block;
4326 int inodes_per_block, inode_offset;
4327
4328 iloc->bh = NULL;
4329 if (!ext4_valid_inum(sb, inode->i_ino))
4330 return -EFSCORRUPTED;
4331
4332 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4333 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4334 if (!gdp)
4335 return -EIO;
4336
4337 /*
4338 * Figure out the offset within the block group inode table
4339 */
4340 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4341 inode_offset = ((inode->i_ino - 1) %
4342 EXT4_INODES_PER_GROUP(sb));
4343 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4344 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4345
4346 bh = sb_getblk(sb, block);
4347 if (unlikely(!bh))
4348 return -ENOMEM;
4349 if (!buffer_uptodate(bh)) {
4350 lock_buffer(bh);
4351
4352 /*
4353 * If the buffer has the write error flag, we have failed
4354 * to write out another inode in the same block. In this
4355 * case, we don't have to read the block because we may
4356 * read the old inode data successfully.
4357 */
4358 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4359 set_buffer_uptodate(bh);
4360
4361 if (buffer_uptodate(bh)) {
4362 /* someone brought it uptodate while we waited */
4363 unlock_buffer(bh);
4364 goto has_buffer;
4365 }
4366
4367 /*
4368 * If we have all information of the inode in memory and this
4369 * is the only valid inode in the block, we need not read the
4370 * block.
4371 */
4372 if (in_mem) {
4373 struct buffer_head *bitmap_bh;
4374 int i, start;
4375
4376 start = inode_offset & ~(inodes_per_block - 1);
4377
4378 /* Is the inode bitmap in cache? */
4379 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4380 if (unlikely(!bitmap_bh))
4381 goto make_io;
4382
4383 /*
4384 * If the inode bitmap isn't in cache then the
4385 * optimisation may end up performing two reads instead
4386 * of one, so skip it.
4387 */
4388 if (!buffer_uptodate(bitmap_bh)) {
4389 brelse(bitmap_bh);
4390 goto make_io;
4391 }
4392 for (i = start; i < start + inodes_per_block; i++) {
4393 if (i == inode_offset)
4394 continue;
4395 if (ext4_test_bit(i, bitmap_bh->b_data))
4396 break;
4397 }
4398 brelse(bitmap_bh);
4399 if (i == start + inodes_per_block) {
4400 /* all other inodes are free, so skip I/O */
4401 memset(bh->b_data, 0, bh->b_size);
4402 set_buffer_uptodate(bh);
4403 unlock_buffer(bh);
4404 goto has_buffer;
4405 }
4406 }
4407
4408make_io:
4409 /*
4410 * If we need to do any I/O, try to pre-readahead extra
4411 * blocks from the inode table.
4412 */
4413 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4414 ext4_fsblk_t b, end, table;
4415 unsigned num;
4416 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4417
4418 table = ext4_inode_table(sb, gdp);
4419 /* s_inode_readahead_blks is always a power of 2 */
4420 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4421 if (table > b)
4422 b = table;
4423 end = b + ra_blks;
4424 num = EXT4_INODES_PER_GROUP(sb);
4425 if (ext4_has_group_desc_csum(sb))
4426 num -= ext4_itable_unused_count(sb, gdp);
4427 table += num / inodes_per_block;
4428 if (end > table)
4429 end = table;
4430 while (b <= end)
4431 sb_breadahead(sb, b++);
4432 }
4433
4434 /*
4435 * There are other valid inodes in the buffer, this inode
4436 * has in-inode xattrs, or we don't have this inode in memory.
4437 * Read the block from disk.
4438 */
4439 trace_ext4_load_inode(inode);
4440 get_bh(bh);
4441 bh->b_end_io = end_buffer_read_sync;
4442 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4443 wait_on_buffer(bh);
4444 if (!buffer_uptodate(bh)) {
4445 EXT4_ERROR_INODE_BLOCK(inode, block,
4446 "unable to read itable block");
4447 brelse(bh);
4448 return -EIO;
4449 }
4450 }
4451has_buffer:
4452 iloc->bh = bh;
4453 return 0;
4454}
4455
4456int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4457{
4458 /* We have all inode data except xattrs in memory here. */
4459 return __ext4_get_inode_loc(inode, iloc,
4460 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4461}
4462
4463void ext4_set_inode_flags(struct inode *inode)
4464{
4465 unsigned int flags = EXT4_I(inode)->i_flags;
4466 unsigned int new_fl = 0;
4467
4468 if (flags & EXT4_SYNC_FL)
4469 new_fl |= S_SYNC;
4470 if (flags & EXT4_APPEND_FL)
4471 new_fl |= S_APPEND;
4472 if (flags & EXT4_IMMUTABLE_FL)
4473 new_fl |= S_IMMUTABLE;
4474 if (flags & EXT4_NOATIME_FL)
4475 new_fl |= S_NOATIME;
4476 if (flags & EXT4_DIRSYNC_FL)
4477 new_fl |= S_DIRSYNC;
4478 if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4479 !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4480 !ext4_encrypted_inode(inode))
4481 new_fl |= S_DAX;
4482 inode_set_flags(inode, new_fl,
4483 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4484}
4485
4486/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4487void ext4_get_inode_flags(struct ext4_inode_info *ei)
4488{
4489 unsigned int vfs_fl;
4490 unsigned long old_fl, new_fl;
4491
4492 do {
4493 vfs_fl = ei->vfs_inode.i_flags;
4494 old_fl = ei->i_flags;
4495 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4496 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4497 EXT4_DIRSYNC_FL);
4498 if (vfs_fl & S_SYNC)
4499 new_fl |= EXT4_SYNC_FL;
4500 if (vfs_fl & S_APPEND)
4501 new_fl |= EXT4_APPEND_FL;
4502 if (vfs_fl & S_IMMUTABLE)
4503 new_fl |= EXT4_IMMUTABLE_FL;
4504 if (vfs_fl & S_NOATIME)
4505 new_fl |= EXT4_NOATIME_FL;
4506 if (vfs_fl & S_DIRSYNC)
4507 new_fl |= EXT4_DIRSYNC_FL;
4508 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4509}
4510
4511static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4512 struct ext4_inode_info *ei)
4513{
4514 blkcnt_t i_blocks ;
4515 struct inode *inode = &(ei->vfs_inode);
4516 struct super_block *sb = inode->i_sb;
4517
4518 if (ext4_has_feature_huge_file(sb)) {
4519 /* we are using combined 48 bit field */
4520 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4521 le32_to_cpu(raw_inode->i_blocks_lo);
4522 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4523 /* i_blocks represent file system block size */
4524 return i_blocks << (inode->i_blkbits - 9);
4525 } else {
4526 return i_blocks;
4527 }
4528 } else {
4529 return le32_to_cpu(raw_inode->i_blocks_lo);
4530 }
4531}
4532
4533static inline void ext4_iget_extra_inode(struct inode *inode,
4534 struct ext4_inode *raw_inode,
4535 struct ext4_inode_info *ei)
4536{
4537 __le32 *magic = (void *)raw_inode +
4538 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4539 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4540 EXT4_INODE_SIZE(inode->i_sb) &&
4541 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4542 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4543 ext4_find_inline_data_nolock(inode);
4544 } else
4545 EXT4_I(inode)->i_inline_off = 0;
4546}
4547
4548int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4549{
4550 if (!ext4_has_feature_project(inode->i_sb))
4551 return -EOPNOTSUPP;
4552 *projid = EXT4_I(inode)->i_projid;
4553 return 0;
4554}
4555
4556struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4557{
4558 struct ext4_iloc iloc;
4559 struct ext4_inode *raw_inode;
4560 struct ext4_inode_info *ei;
4561 struct inode *inode;
4562 journal_t *journal = EXT4_SB(sb)->s_journal;
4563 long ret;
4564 loff_t size;
4565 int block;
4566 uid_t i_uid;
4567 gid_t i_gid;
4568 projid_t i_projid;
4569
4570 inode = iget_locked(sb, ino);
4571 if (!inode)
4572 return ERR_PTR(-ENOMEM);
4573 if (!(inode->i_state & I_NEW))
4574 return inode;
4575
4576 ei = EXT4_I(inode);
4577 iloc.bh = NULL;
4578
4579 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4580 if (ret < 0)
4581 goto bad_inode;
4582 raw_inode = ext4_raw_inode(&iloc);
4583
4584 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4585 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4586 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4587 EXT4_INODE_SIZE(inode->i_sb) ||
4588 (ei->i_extra_isize & 3)) {
4589 EXT4_ERROR_INODE(inode,
4590 "bad extra_isize %u (inode size %u)",
4591 ei->i_extra_isize,
4592 EXT4_INODE_SIZE(inode->i_sb));
4593 ret = -EFSCORRUPTED;
4594 goto bad_inode;
4595 }
4596 } else
4597 ei->i_extra_isize = 0;
4598
4599 /* Precompute checksum seed for inode metadata */
4600 if (ext4_has_metadata_csum(sb)) {
4601 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602 __u32 csum;
4603 __le32 inum = cpu_to_le32(inode->i_ino);
4604 __le32 gen = raw_inode->i_generation;
4605 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4606 sizeof(inum));
4607 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4608 sizeof(gen));
4609 }
4610
4611 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4612 EXT4_ERROR_INODE(inode, "checksum invalid");
4613 ret = -EFSBADCRC;
4614 goto bad_inode;
4615 }
4616
4617 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4618 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4619 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4620 if (ext4_has_feature_project(sb) &&
4621 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4622 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4623 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4624 else
4625 i_projid = EXT4_DEF_PROJID;
4626
4627 if (!(test_opt(inode->i_sb, NO_UID32))) {
4628 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4629 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4630 }
4631 i_uid_write(inode, i_uid);
4632 i_gid_write(inode, i_gid);
4633 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4634 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4635
4636 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4637 ei->i_inline_off = 0;
4638 ei->i_dir_start_lookup = 0;
4639 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4640 /* We now have enough fields to check if the inode was active or not.
4641 * This is needed because nfsd might try to access dead inodes
4642 * the test is that same one that e2fsck uses
4643 * NeilBrown 1999oct15
4644 */
4645 if (inode->i_nlink == 0) {
4646 if ((inode->i_mode == 0 ||
4647 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4648 ino != EXT4_BOOT_LOADER_INO) {
4649 /* this inode is deleted */
4650 ret = -ESTALE;
4651 goto bad_inode;
4652 }
4653 /* The only unlinked inodes we let through here have
4654 * valid i_mode and are being read by the orphan
4655 * recovery code: that's fine, we're about to complete
4656 * the process of deleting those.
4657 * OR it is the EXT4_BOOT_LOADER_INO which is
4658 * not initialized on a new filesystem. */
4659 }
4660 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4661 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4662 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4663 if (ext4_has_feature_64bit(sb))
4664 ei->i_file_acl |=
4665 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4666 inode->i_size = ext4_isize(raw_inode);
4667 if ((size = i_size_read(inode)) < 0) {
4668 EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
4669 ret = -EFSCORRUPTED;
4670 goto bad_inode;
4671 }
4672 ei->i_disksize = inode->i_size;
4673#ifdef CONFIG_QUOTA
4674 ei->i_reserved_quota = 0;
4675#endif
4676 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4677 ei->i_block_group = iloc.block_group;
4678 ei->i_last_alloc_group = ~0;
4679 /*
4680 * NOTE! The in-memory inode i_data array is in little-endian order
4681 * even on big-endian machines: we do NOT byteswap the block numbers!
4682 */
4683 for (block = 0; block < EXT4_N_BLOCKS; block++)
4684 ei->i_data[block] = raw_inode->i_block[block];
4685 INIT_LIST_HEAD(&ei->i_orphan);
4686
4687 /*
4688 * Set transaction id's of transactions that have to be committed
4689 * to finish f[data]sync. We set them to currently running transaction
4690 * as we cannot be sure that the inode or some of its metadata isn't
4691 * part of the transaction - the inode could have been reclaimed and
4692 * now it is reread from disk.
4693 */
4694 if (journal) {
4695 transaction_t *transaction;
4696 tid_t tid;
4697
4698 read_lock(&journal->j_state_lock);
4699 if (journal->j_running_transaction)
4700 transaction = journal->j_running_transaction;
4701 else
4702 transaction = journal->j_committing_transaction;
4703 if (transaction)
4704 tid = transaction->t_tid;
4705 else
4706 tid = journal->j_commit_sequence;
4707 read_unlock(&journal->j_state_lock);
4708 ei->i_sync_tid = tid;
4709 ei->i_datasync_tid = tid;
4710 }
4711
4712 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713 if (ei->i_extra_isize == 0) {
4714 /* The extra space is currently unused. Use it. */
4715 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4716 ei->i_extra_isize = sizeof(struct ext4_inode) -
4717 EXT4_GOOD_OLD_INODE_SIZE;
4718 } else {
4719 ext4_iget_extra_inode(inode, raw_inode, ei);
4720 }
4721 }
4722
4723 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4724 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4725 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4726 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4727
4728 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4729 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4730 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732 inode->i_version |=
4733 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4734 }
4735 }
4736
4737 ret = 0;
4738 if (ei->i_file_acl &&
4739 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4740 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4741 ei->i_file_acl);
4742 ret = -EFSCORRUPTED;
4743 goto bad_inode;
4744 } else if (!ext4_has_inline_data(inode)) {
4745 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4746 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4747 (S_ISLNK(inode->i_mode) &&
4748 !ext4_inode_is_fast_symlink(inode))))
4749 /* Validate extent which is part of inode */
4750 ret = ext4_ext_check_inode(inode);
4751 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4752 (S_ISLNK(inode->i_mode) &&
4753 !ext4_inode_is_fast_symlink(inode))) {
4754 /* Validate block references which are part of inode */
4755 ret = ext4_ind_check_inode(inode);
4756 }
4757 }
4758 if (ret)
4759 goto bad_inode;
4760
4761 if (S_ISREG(inode->i_mode)) {
4762 inode->i_op = &ext4_file_inode_operations;
4763 inode->i_fop = &ext4_file_operations;
4764 ext4_set_aops(inode);
4765 } else if (S_ISDIR(inode->i_mode)) {
4766 inode->i_op = &ext4_dir_inode_operations;
4767 inode->i_fop = &ext4_dir_operations;
4768 } else if (S_ISLNK(inode->i_mode)) {
4769 if (ext4_encrypted_inode(inode)) {
4770 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4771 ext4_set_aops(inode);
4772 } else if (ext4_inode_is_fast_symlink(inode)) {
4773 inode->i_link = (char *)ei->i_data;
4774 inode->i_op = &ext4_fast_symlink_inode_operations;
4775 nd_terminate_link(ei->i_data, inode->i_size,
4776 sizeof(ei->i_data) - 1);
4777 } else {
4778 inode->i_op = &ext4_symlink_inode_operations;
4779 ext4_set_aops(inode);
4780 }
4781 inode_nohighmem(inode);
4782 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4783 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4784 inode->i_op = &ext4_special_inode_operations;
4785 if (raw_inode->i_block[0])
4786 init_special_inode(inode, inode->i_mode,
4787 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4788 else
4789 init_special_inode(inode, inode->i_mode,
4790 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4791 } else if (ino == EXT4_BOOT_LOADER_INO) {
4792 make_bad_inode(inode);
4793 } else {
4794 ret = -EFSCORRUPTED;
4795 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4796 goto bad_inode;
4797 }
4798 brelse(iloc.bh);
4799 ext4_set_inode_flags(inode);
4800 unlock_new_inode(inode);
4801 return inode;
4802
4803bad_inode:
4804 brelse(iloc.bh);
4805 iget_failed(inode);
4806 return ERR_PTR(ret);
4807}
4808
4809struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4810{
4811 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4812 return ERR_PTR(-EFSCORRUPTED);
4813 return ext4_iget(sb, ino);
4814}
4815
4816static int ext4_inode_blocks_set(handle_t *handle,
4817 struct ext4_inode *raw_inode,
4818 struct ext4_inode_info *ei)
4819{
4820 struct inode *inode = &(ei->vfs_inode);
4821 u64 i_blocks = inode->i_blocks;
4822 struct super_block *sb = inode->i_sb;
4823
4824 if (i_blocks <= ~0U) {
4825 /*
4826 * i_blocks can be represented in a 32 bit variable
4827 * as multiple of 512 bytes
4828 */
4829 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4830 raw_inode->i_blocks_high = 0;
4831 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4832 return 0;
4833 }
4834 if (!ext4_has_feature_huge_file(sb))
4835 return -EFBIG;
4836
4837 if (i_blocks <= 0xffffffffffffULL) {
4838 /*
4839 * i_blocks can be represented in a 48 bit variable
4840 * as multiple of 512 bytes
4841 */
4842 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4843 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4844 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4845 } else {
4846 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4847 /* i_block is stored in file system block size */
4848 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4849 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4850 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4851 }
4852 return 0;
4853}
4854
4855struct other_inode {
4856 unsigned long orig_ino;
4857 struct ext4_inode *raw_inode;
4858};
4859
4860static int other_inode_match(struct inode * inode, unsigned long ino,
4861 void *data)
4862{
4863 struct other_inode *oi = (struct other_inode *) data;
4864
4865 if ((inode->i_ino != ino) ||
4866 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4867 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4868 ((inode->i_state & I_DIRTY_TIME) == 0))
4869 return 0;
4870 spin_lock(&inode->i_lock);
4871 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4872 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4873 (inode->i_state & I_DIRTY_TIME)) {
4874 struct ext4_inode_info *ei = EXT4_I(inode);
4875
4876 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4877 spin_unlock(&inode->i_lock);
4878
4879 spin_lock(&ei->i_raw_lock);
4880 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4881 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4882 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4883 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4884 spin_unlock(&ei->i_raw_lock);
4885 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4886 return -1;
4887 }
4888 spin_unlock(&inode->i_lock);
4889 return -1;
4890}
4891
4892/*
4893 * Opportunistically update the other time fields for other inodes in
4894 * the same inode table block.
4895 */
4896static void ext4_update_other_inodes_time(struct super_block *sb,
4897 unsigned long orig_ino, char *buf)
4898{
4899 struct other_inode oi;
4900 unsigned long ino;
4901 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4902 int inode_size = EXT4_INODE_SIZE(sb);
4903
4904 oi.orig_ino = orig_ino;
4905 /*
4906 * Calculate the first inode in the inode table block. Inode
4907 * numbers are one-based. That is, the first inode in a block
4908 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4909 */
4910 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4911 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4912 if (ino == orig_ino)
4913 continue;
4914 oi.raw_inode = (struct ext4_inode *) buf;
4915 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4916 }
4917}
4918
4919/*
4920 * Post the struct inode info into an on-disk inode location in the
4921 * buffer-cache. This gobbles the caller's reference to the
4922 * buffer_head in the inode location struct.
4923 *
4924 * The caller must have write access to iloc->bh.
4925 */
4926static int ext4_do_update_inode(handle_t *handle,
4927 struct inode *inode,
4928 struct ext4_iloc *iloc)
4929{
4930 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4931 struct ext4_inode_info *ei = EXT4_I(inode);
4932 struct buffer_head *bh = iloc->bh;
4933 struct super_block *sb = inode->i_sb;
4934 int err = 0, rc, block;
4935 int need_datasync = 0, set_large_file = 0;
4936 uid_t i_uid;
4937 gid_t i_gid;
4938 projid_t i_projid;
4939
4940 spin_lock(&ei->i_raw_lock);
4941
4942 /* For fields not tracked in the in-memory inode,
4943 * initialise them to zero for new inodes. */
4944 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4945 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4946
4947 ext4_get_inode_flags(ei);
4948 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4949 i_uid = i_uid_read(inode);
4950 i_gid = i_gid_read(inode);
4951 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4952 if (!(test_opt(inode->i_sb, NO_UID32))) {
4953 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4954 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4955/*
4956 * Fix up interoperability with old kernels. Otherwise, old inodes get
4957 * re-used with the upper 16 bits of the uid/gid intact
4958 */
4959 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4960 raw_inode->i_uid_high = 0;
4961 raw_inode->i_gid_high = 0;
4962 } else {
4963 raw_inode->i_uid_high =
4964 cpu_to_le16(high_16_bits(i_uid));
4965 raw_inode->i_gid_high =
4966 cpu_to_le16(high_16_bits(i_gid));
4967 }
4968 } else {
4969 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4970 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4971 raw_inode->i_uid_high = 0;
4972 raw_inode->i_gid_high = 0;
4973 }
4974 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4975
4976 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4980
4981 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4982 if (err) {
4983 spin_unlock(&ei->i_raw_lock);
4984 goto out_brelse;
4985 }
4986 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4987 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4988 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4989 raw_inode->i_file_acl_high =
4990 cpu_to_le16(ei->i_file_acl >> 32);
4991 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4992 if (ei->i_disksize != ext4_isize(raw_inode)) {
4993 ext4_isize_set(raw_inode, ei->i_disksize);
4994 need_datasync = 1;
4995 }
4996 if (ei->i_disksize > 0x7fffffffULL) {
4997 if (!ext4_has_feature_large_file(sb) ||
4998 EXT4_SB(sb)->s_es->s_rev_level ==
4999 cpu_to_le32(EXT4_GOOD_OLD_REV))
5000 set_large_file = 1;
5001 }
5002 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5003 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5004 if (old_valid_dev(inode->i_rdev)) {
5005 raw_inode->i_block[0] =
5006 cpu_to_le32(old_encode_dev(inode->i_rdev));
5007 raw_inode->i_block[1] = 0;
5008 } else {
5009 raw_inode->i_block[0] = 0;
5010 raw_inode->i_block[1] =
5011 cpu_to_le32(new_encode_dev(inode->i_rdev));
5012 raw_inode->i_block[2] = 0;
5013 }
5014 } else if (!ext4_has_inline_data(inode)) {
5015 for (block = 0; block < EXT4_N_BLOCKS; block++)
5016 raw_inode->i_block[block] = ei->i_data[block];
5017 }
5018
5019 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5021 if (ei->i_extra_isize) {
5022 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023 raw_inode->i_version_hi =
5024 cpu_to_le32(inode->i_version >> 32);
5025 raw_inode->i_extra_isize =
5026 cpu_to_le16(ei->i_extra_isize);
5027 }
5028 }
5029
5030 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5031 i_projid != EXT4_DEF_PROJID);
5032
5033 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5034 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5035 raw_inode->i_projid = cpu_to_le32(i_projid);
5036
5037 ext4_inode_csum_set(inode, raw_inode, ei);
5038 spin_unlock(&ei->i_raw_lock);
5039 if (inode->i_sb->s_flags & MS_LAZYTIME)
5040 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5041 bh->b_data);
5042
5043 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5045 if (!err)
5046 err = rc;
5047 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5048 if (set_large_file) {
5049 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5050 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5051 if (err)
5052 goto out_brelse;
5053 ext4_update_dynamic_rev(sb);
5054 ext4_set_feature_large_file(sb);
5055 ext4_handle_sync(handle);
5056 err = ext4_handle_dirty_super(handle, sb);
5057 }
5058 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5059out_brelse:
5060 brelse(bh);
5061 ext4_std_error(inode->i_sb, err);
5062 return err;
5063}
5064
5065/*
5066 * ext4_write_inode()
5067 *
5068 * We are called from a few places:
5069 *
5070 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5071 * Here, there will be no transaction running. We wait for any running
5072 * transaction to commit.
5073 *
5074 * - Within flush work (sys_sync(), kupdate and such).
5075 * We wait on commit, if told to.
5076 *
5077 * - Within iput_final() -> write_inode_now()
5078 * We wait on commit, if told to.
5079 *
5080 * In all cases it is actually safe for us to return without doing anything,
5081 * because the inode has been copied into a raw inode buffer in
5082 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5083 * writeback.
5084 *
5085 * Note that we are absolutely dependent upon all inode dirtiers doing the
5086 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5087 * which we are interested.
5088 *
5089 * It would be a bug for them to not do this. The code:
5090 *
5091 * mark_inode_dirty(inode)
5092 * stuff();
5093 * inode->i_size = expr;
5094 *
5095 * is in error because write_inode() could occur while `stuff()' is running,
5096 * and the new i_size will be lost. Plus the inode will no longer be on the
5097 * superblock's dirty inode list.
5098 */
5099int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5100{
5101 int err;
5102
5103 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5104 return 0;
5105
5106 if (EXT4_SB(inode->i_sb)->s_journal) {
5107 if (ext4_journal_current_handle()) {
5108 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5109 dump_stack();
5110 return -EIO;
5111 }
5112
5113 /*
5114 * No need to force transaction in WB_SYNC_NONE mode. Also
5115 * ext4_sync_fs() will force the commit after everything is
5116 * written.
5117 */
5118 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5119 return 0;
5120
5121 err = ext4_force_commit(inode->i_sb);
5122 } else {
5123 struct ext4_iloc iloc;
5124
5125 err = __ext4_get_inode_loc(inode, &iloc, 0);
5126 if (err)
5127 return err;
5128 /*
5129 * sync(2) will flush the whole buffer cache. No need to do
5130 * it here separately for each inode.
5131 */
5132 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5133 sync_dirty_buffer(iloc.bh);
5134 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5135 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5136 "IO error syncing inode");
5137 err = -EIO;
5138 }
5139 brelse(iloc.bh);
5140 }
5141 return err;
5142}
5143
5144/*
5145 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5146 * buffers that are attached to a page stradding i_size and are undergoing
5147 * commit. In that case we have to wait for commit to finish and try again.
5148 */
5149static void ext4_wait_for_tail_page_commit(struct inode *inode)
5150{
5151 struct page *page;
5152 unsigned offset;
5153 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5154 tid_t commit_tid = 0;
5155 int ret;
5156
5157 offset = inode->i_size & (PAGE_SIZE - 1);
5158 /*
5159 * All buffers in the last page remain valid? Then there's nothing to
5160 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5161 * blocksize case
5162 */
5163 if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5164 return;
5165 while (1) {
5166 page = find_lock_page(inode->i_mapping,
5167 inode->i_size >> PAGE_SHIFT);
5168 if (!page)
5169 return;
5170 ret = __ext4_journalled_invalidatepage(page, offset,
5171 PAGE_SIZE - offset);
5172 unlock_page(page);
5173 put_page(page);
5174 if (ret != -EBUSY)
5175 return;
5176 commit_tid = 0;
5177 read_lock(&journal->j_state_lock);
5178 if (journal->j_committing_transaction)
5179 commit_tid = journal->j_committing_transaction->t_tid;
5180 read_unlock(&journal->j_state_lock);
5181 if (commit_tid)
5182 jbd2_log_wait_commit(journal, commit_tid);
5183 }
5184}
5185
5186/*
5187 * ext4_setattr()
5188 *
5189 * Called from notify_change.
5190 *
5191 * We want to trap VFS attempts to truncate the file as soon as
5192 * possible. In particular, we want to make sure that when the VFS
5193 * shrinks i_size, we put the inode on the orphan list and modify
5194 * i_disksize immediately, so that during the subsequent flushing of
5195 * dirty pages and freeing of disk blocks, we can guarantee that any
5196 * commit will leave the blocks being flushed in an unused state on
5197 * disk. (On recovery, the inode will get truncated and the blocks will
5198 * be freed, so we have a strong guarantee that no future commit will
5199 * leave these blocks visible to the user.)
5200 *
5201 * Another thing we have to assure is that if we are in ordered mode
5202 * and inode is still attached to the committing transaction, we must
5203 * we start writeout of all the dirty pages which are being truncated.
5204 * This way we are sure that all the data written in the previous
5205 * transaction are already on disk (truncate waits for pages under
5206 * writeback).
5207 *
5208 * Called with inode->i_mutex down.
5209 */
5210int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211{
5212 struct inode *inode = d_inode(dentry);
5213 int error, rc = 0;
5214 int orphan = 0;
5215 const unsigned int ia_valid = attr->ia_valid;
5216
5217 error = setattr_prepare(dentry, attr);
5218 if (error)
5219 return error;
5220
5221 if (is_quota_modification(inode, attr)) {
5222 error = dquot_initialize(inode);
5223 if (error)
5224 return error;
5225 }
5226 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5227 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5228 handle_t *handle;
5229
5230 /* (user+group)*(old+new) structure, inode write (sb,
5231 * inode block, ? - but truncate inode update has it) */
5232 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5234 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5235 if (IS_ERR(handle)) {
5236 error = PTR_ERR(handle);
5237 goto err_out;
5238 }
5239 error = dquot_transfer(inode, attr);
5240 if (error) {
5241 ext4_journal_stop(handle);
5242 return error;
5243 }
5244 /* Update corresponding info in inode so that everything is in
5245 * one transaction */
5246 if (attr->ia_valid & ATTR_UID)
5247 inode->i_uid = attr->ia_uid;
5248 if (attr->ia_valid & ATTR_GID)
5249 inode->i_gid = attr->ia_gid;
5250 error = ext4_mark_inode_dirty(handle, inode);
5251 ext4_journal_stop(handle);
5252 }
5253
5254 if (attr->ia_valid & ATTR_SIZE) {
5255 handle_t *handle;
5256 loff_t oldsize = inode->i_size;
5257 int shrink = (attr->ia_size <= inode->i_size);
5258
5259 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5260 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261
5262 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5263 return -EFBIG;
5264 }
5265 if (!S_ISREG(inode->i_mode))
5266 return -EINVAL;
5267
5268 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5269 inode_inc_iversion(inode);
5270
5271 if (ext4_should_order_data(inode) &&
5272 (attr->ia_size < inode->i_size)) {
5273 error = ext4_begin_ordered_truncate(inode,
5274 attr->ia_size);
5275 if (error)
5276 goto err_out;
5277 }
5278 if (attr->ia_size != inode->i_size) {
5279 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5280 if (IS_ERR(handle)) {
5281 error = PTR_ERR(handle);
5282 goto err_out;
5283 }
5284 if (ext4_handle_valid(handle) && shrink) {
5285 error = ext4_orphan_add(handle, inode);
5286 orphan = 1;
5287 }
5288 /*
5289 * Update c/mtime on truncate up, ext4_truncate() will
5290 * update c/mtime in shrink case below
5291 */
5292 if (!shrink) {
5293 inode->i_mtime = current_time(inode);
5294 inode->i_ctime = inode->i_mtime;
5295 }
5296 down_write(&EXT4_I(inode)->i_data_sem);
5297 EXT4_I(inode)->i_disksize = attr->ia_size;
5298 rc = ext4_mark_inode_dirty(handle, inode);
5299 if (!error)
5300 error = rc;
5301 /*
5302 * We have to update i_size under i_data_sem together
5303 * with i_disksize to avoid races with writeback code
5304 * running ext4_wb_update_i_disksize().
5305 */
5306 if (!error)
5307 i_size_write(inode, attr->ia_size);
5308 up_write(&EXT4_I(inode)->i_data_sem);
5309 ext4_journal_stop(handle);
5310 if (error) {
5311 if (orphan)
5312 ext4_orphan_del(NULL, inode);
5313 goto err_out;
5314 }
5315 }
5316 if (!shrink)
5317 pagecache_isize_extended(inode, oldsize, inode->i_size);
5318
5319 /*
5320 * Blocks are going to be removed from the inode. Wait
5321 * for dio in flight. Temporarily disable
5322 * dioread_nolock to prevent livelock.
5323 */
5324 if (orphan) {
5325 if (!ext4_should_journal_data(inode)) {
5326 ext4_inode_block_unlocked_dio(inode);
5327 inode_dio_wait(inode);
5328 ext4_inode_resume_unlocked_dio(inode);
5329 } else
5330 ext4_wait_for_tail_page_commit(inode);
5331 }
5332 down_write(&EXT4_I(inode)->i_mmap_sem);
5333 /*
5334 * Truncate pagecache after we've waited for commit
5335 * in data=journal mode to make pages freeable.
5336 */
5337 truncate_pagecache(inode, inode->i_size);
5338 if (shrink) {
5339 rc = ext4_truncate(inode);
5340 if (rc)
5341 error = rc;
5342 }
5343 up_write(&EXT4_I(inode)->i_mmap_sem);
5344 }
5345
5346 if (!error) {
5347 setattr_copy(inode, attr);
5348 mark_inode_dirty(inode);
5349 }
5350
5351 /*
5352 * If the call to ext4_truncate failed to get a transaction handle at
5353 * all, we need to clean up the in-core orphan list manually.
5354 */
5355 if (orphan && inode->i_nlink)
5356 ext4_orphan_del(NULL, inode);
5357
5358 if (!error && (ia_valid & ATTR_MODE))
5359 rc = posix_acl_chmod(inode, inode->i_mode);
5360
5361err_out:
5362 ext4_std_error(inode->i_sb, error);
5363 if (!error)
5364 error = rc;
5365 return error;
5366}
5367
5368int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5369 struct kstat *stat)
5370{
5371 struct inode *inode;
5372 unsigned long long delalloc_blocks;
5373
5374 inode = d_inode(dentry);
5375 generic_fillattr(inode, stat);
5376
5377 /*
5378 * If there is inline data in the inode, the inode will normally not
5379 * have data blocks allocated (it may have an external xattr block).
5380 * Report at least one sector for such files, so tools like tar, rsync,
5381 * others doen't incorrectly think the file is completely sparse.
5382 */
5383 if (unlikely(ext4_has_inline_data(inode)))
5384 stat->blocks += (stat->size + 511) >> 9;
5385
5386 /*
5387 * We can't update i_blocks if the block allocation is delayed
5388 * otherwise in the case of system crash before the real block
5389 * allocation is done, we will have i_blocks inconsistent with
5390 * on-disk file blocks.
5391 * We always keep i_blocks updated together with real
5392 * allocation. But to not confuse with user, stat
5393 * will return the blocks that include the delayed allocation
5394 * blocks for this file.
5395 */
5396 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5397 EXT4_I(inode)->i_reserved_data_blocks);
5398 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5399 return 0;
5400}
5401
5402static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5403 int pextents)
5404{
5405 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5406 return ext4_ind_trans_blocks(inode, lblocks);
5407 return ext4_ext_index_trans_blocks(inode, pextents);
5408}
5409
5410/*
5411 * Account for index blocks, block groups bitmaps and block group
5412 * descriptor blocks if modify datablocks and index blocks
5413 * worse case, the indexs blocks spread over different block groups
5414 *
5415 * If datablocks are discontiguous, they are possible to spread over
5416 * different block groups too. If they are contiguous, with flexbg,
5417 * they could still across block group boundary.
5418 *
5419 * Also account for superblock, inode, quota and xattr blocks
5420 */
5421static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5422 int pextents)
5423{
5424 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5425 int gdpblocks;
5426 int idxblocks;
5427 int ret = 0;
5428
5429 /*
5430 * How many index blocks need to touch to map @lblocks logical blocks
5431 * to @pextents physical extents?
5432 */
5433 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5434
5435 ret = idxblocks;
5436
5437 /*
5438 * Now let's see how many group bitmaps and group descriptors need
5439 * to account
5440 */
5441 groups = idxblocks + pextents;
5442 gdpblocks = groups;
5443 if (groups > ngroups)
5444 groups = ngroups;
5445 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5446 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5447
5448 /* bitmaps and block group descriptor blocks */
5449 ret += groups + gdpblocks;
5450
5451 /* Blocks for super block, inode, quota and xattr blocks */
5452 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5453
5454 return ret;
5455}
5456
5457/*
5458 * Calculate the total number of credits to reserve to fit
5459 * the modification of a single pages into a single transaction,
5460 * which may include multiple chunks of block allocations.
5461 *
5462 * This could be called via ext4_write_begin()
5463 *
5464 * We need to consider the worse case, when
5465 * one new block per extent.
5466 */
5467int ext4_writepage_trans_blocks(struct inode *inode)
5468{
5469 int bpp = ext4_journal_blocks_per_page(inode);
5470 int ret;
5471
5472 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5473
5474 /* Account for data blocks for journalled mode */
5475 if (ext4_should_journal_data(inode))
5476 ret += bpp;
5477 return ret;
5478}
5479
5480/*
5481 * Calculate the journal credits for a chunk of data modification.
5482 *
5483 * This is called from DIO, fallocate or whoever calling
5484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5485 *
5486 * journal buffers for data blocks are not included here, as DIO
5487 * and fallocate do no need to journal data buffers.
5488 */
5489int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5490{
5491 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5492}
5493
5494/*
5495 * The caller must have previously called ext4_reserve_inode_write().
5496 * Give this, we know that the caller already has write access to iloc->bh.
5497 */
5498int ext4_mark_iloc_dirty(handle_t *handle,
5499 struct inode *inode, struct ext4_iloc *iloc)
5500{
5501 int err = 0;
5502
5503 if (IS_I_VERSION(inode))
5504 inode_inc_iversion(inode);
5505
5506 /* the do_update_inode consumes one bh->b_count */
5507 get_bh(iloc->bh);
5508
5509 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5510 err = ext4_do_update_inode(handle, inode, iloc);
5511 put_bh(iloc->bh);
5512 return err;
5513}
5514
5515/*
5516 * On success, We end up with an outstanding reference count against
5517 * iloc->bh. This _must_ be cleaned up later.
5518 */
5519
5520int
5521ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5522 struct ext4_iloc *iloc)
5523{
5524 int err;
5525
5526 err = ext4_get_inode_loc(inode, iloc);
5527 if (!err) {
5528 BUFFER_TRACE(iloc->bh, "get_write_access");
5529 err = ext4_journal_get_write_access(handle, iloc->bh);
5530 if (err) {
5531 brelse(iloc->bh);
5532 iloc->bh = NULL;
5533 }
5534 }
5535 ext4_std_error(inode->i_sb, err);
5536 return err;
5537}
5538
5539/*
5540 * Expand an inode by new_extra_isize bytes.
5541 * Returns 0 on success or negative error number on failure.
5542 */
5543static int ext4_expand_extra_isize(struct inode *inode,
5544 unsigned int new_extra_isize,
5545 struct ext4_iloc iloc,
5546 handle_t *handle)
5547{
5548 struct ext4_inode *raw_inode;
5549 struct ext4_xattr_ibody_header *header;
5550
5551 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5552 return 0;
5553
5554 raw_inode = ext4_raw_inode(&iloc);
5555
5556 header = IHDR(inode, raw_inode);
5557
5558 /* No extended attributes present */
5559 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5560 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5561 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5562 new_extra_isize);
5563 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5564 return 0;
5565 }
5566
5567 /* try to expand with EAs present */
5568 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5569 raw_inode, handle);
5570}
5571
5572/*
5573 * What we do here is to mark the in-core inode as clean with respect to inode
5574 * dirtiness (it may still be data-dirty).
5575 * This means that the in-core inode may be reaped by prune_icache
5576 * without having to perform any I/O. This is a very good thing,
5577 * because *any* task may call prune_icache - even ones which
5578 * have a transaction open against a different journal.
5579 *
5580 * Is this cheating? Not really. Sure, we haven't written the
5581 * inode out, but prune_icache isn't a user-visible syncing function.
5582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5583 * we start and wait on commits.
5584 */
5585int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5586{
5587 struct ext4_iloc iloc;
5588 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5589 static unsigned int mnt_count;
5590 int err, ret;
5591
5592 might_sleep();
5593 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5594 err = ext4_reserve_inode_write(handle, inode, &iloc);
5595 if (err)
5596 return err;
5597 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5598 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5599 /*
5600 * In nojournal mode, we can immediately attempt to expand
5601 * the inode. When journaled, we first need to obtain extra
5602 * buffer credits since we may write into the EA block
5603 * with this same handle. If journal_extend fails, then it will
5604 * only result in a minor loss of functionality for that inode.
5605 * If this is felt to be critical, then e2fsck should be run to
5606 * force a large enough s_min_extra_isize.
5607 */
5608 if (!ext4_handle_valid(handle) ||
5609 jbd2_journal_extend(handle,
5610 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5611 ret = ext4_expand_extra_isize(inode,
5612 sbi->s_want_extra_isize,
5613 iloc, handle);
5614 if (ret) {
5615 if (mnt_count !=
5616 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5617 ext4_warning(inode->i_sb,
5618 "Unable to expand inode %lu. Delete"
5619 " some EAs or run e2fsck.",
5620 inode->i_ino);
5621 mnt_count =
5622 le16_to_cpu(sbi->s_es->s_mnt_count);
5623 }
5624 }
5625 }
5626 }
5627 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5628}
5629
5630/*
5631 * ext4_dirty_inode() is called from __mark_inode_dirty()
5632 *
5633 * We're really interested in the case where a file is being extended.
5634 * i_size has been changed by generic_commit_write() and we thus need
5635 * to include the updated inode in the current transaction.
5636 *
5637 * Also, dquot_alloc_block() will always dirty the inode when blocks
5638 * are allocated to the file.
5639 *
5640 * If the inode is marked synchronous, we don't honour that here - doing
5641 * so would cause a commit on atime updates, which we don't bother doing.
5642 * We handle synchronous inodes at the highest possible level.
5643 *
5644 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5645 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5646 * to copy into the on-disk inode structure are the timestamp files.
5647 */
5648void ext4_dirty_inode(struct inode *inode, int flags)
5649{
5650 handle_t *handle;
5651
5652 if (flags == I_DIRTY_TIME)
5653 return;
5654 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5655 if (IS_ERR(handle))
5656 goto out;
5657
5658 ext4_mark_inode_dirty(handle, inode);
5659
5660 ext4_journal_stop(handle);
5661out:
5662 return;
5663}
5664
5665#if 0
5666/*
5667 * Bind an inode's backing buffer_head into this transaction, to prevent
5668 * it from being flushed to disk early. Unlike
5669 * ext4_reserve_inode_write, this leaves behind no bh reference and
5670 * returns no iloc structure, so the caller needs to repeat the iloc
5671 * lookup to mark the inode dirty later.
5672 */
5673static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5674{
5675 struct ext4_iloc iloc;
5676
5677 int err = 0;
5678 if (handle) {
5679 err = ext4_get_inode_loc(inode, &iloc);
5680 if (!err) {
5681 BUFFER_TRACE(iloc.bh, "get_write_access");
5682 err = jbd2_journal_get_write_access(handle, iloc.bh);
5683 if (!err)
5684 err = ext4_handle_dirty_metadata(handle,
5685 NULL,
5686 iloc.bh);
5687 brelse(iloc.bh);
5688 }
5689 }
5690 ext4_std_error(inode->i_sb, err);
5691 return err;
5692}
5693#endif
5694
5695int ext4_change_inode_journal_flag(struct inode *inode, int val)
5696{
5697 journal_t *journal;
5698 handle_t *handle;
5699 int err;
5700 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5701
5702 /*
5703 * We have to be very careful here: changing a data block's
5704 * journaling status dynamically is dangerous. If we write a
5705 * data block to the journal, change the status and then delete
5706 * that block, we risk forgetting to revoke the old log record
5707 * from the journal and so a subsequent replay can corrupt data.
5708 * So, first we make sure that the journal is empty and that
5709 * nobody is changing anything.
5710 */
5711
5712 journal = EXT4_JOURNAL(inode);
5713 if (!journal)
5714 return 0;
5715 if (is_journal_aborted(journal))
5716 return -EROFS;
5717
5718 /* Wait for all existing dio workers */
5719 ext4_inode_block_unlocked_dio(inode);
5720 inode_dio_wait(inode);
5721
5722 /*
5723 * Before flushing the journal and switching inode's aops, we have
5724 * to flush all dirty data the inode has. There can be outstanding
5725 * delayed allocations, there can be unwritten extents created by
5726 * fallocate or buffered writes in dioread_nolock mode covered by
5727 * dirty data which can be converted only after flushing the dirty
5728 * data (and journalled aops don't know how to handle these cases).
5729 */
5730 if (val) {
5731 down_write(&EXT4_I(inode)->i_mmap_sem);
5732 err = filemap_write_and_wait(inode->i_mapping);
5733 if (err < 0) {
5734 up_write(&EXT4_I(inode)->i_mmap_sem);
5735 ext4_inode_resume_unlocked_dio(inode);
5736 return err;
5737 }
5738 }
5739
5740 percpu_down_write(&sbi->s_journal_flag_rwsem);
5741 jbd2_journal_lock_updates(journal);
5742
5743 /*
5744 * OK, there are no updates running now, and all cached data is
5745 * synced to disk. We are now in a completely consistent state
5746 * which doesn't have anything in the journal, and we know that
5747 * no filesystem updates are running, so it is safe to modify
5748 * the inode's in-core data-journaling state flag now.
5749 */
5750
5751 if (val)
5752 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753 else {
5754 err = jbd2_journal_flush(journal);
5755 if (err < 0) {
5756 jbd2_journal_unlock_updates(journal);
5757 percpu_up_write(&sbi->s_journal_flag_rwsem);
5758 ext4_inode_resume_unlocked_dio(inode);
5759 return err;
5760 }
5761 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5762 }
5763 ext4_set_aops(inode);
5764 /*
5765 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5766 * E.g. S_DAX may get cleared / set.
5767 */
5768 ext4_set_inode_flags(inode);
5769
5770 jbd2_journal_unlock_updates(journal);
5771 percpu_up_write(&sbi->s_journal_flag_rwsem);
5772
5773 if (val)
5774 up_write(&EXT4_I(inode)->i_mmap_sem);
5775 ext4_inode_resume_unlocked_dio(inode);
5776
5777 /* Finally we can mark the inode as dirty. */
5778
5779 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5780 if (IS_ERR(handle))
5781 return PTR_ERR(handle);
5782
5783 err = ext4_mark_inode_dirty(handle, inode);
5784 ext4_handle_sync(handle);
5785 ext4_journal_stop(handle);
5786 ext4_std_error(inode->i_sb, err);
5787
5788 return err;
5789}
5790
5791static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5792{
5793 return !buffer_mapped(bh);
5794}
5795
5796int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5797{
5798 struct page *page = vmf->page;
5799 loff_t size;
5800 unsigned long len;
5801 int ret;
5802 struct file *file = vma->vm_file;
5803 struct inode *inode = file_inode(file);
5804 struct address_space *mapping = inode->i_mapping;
5805 handle_t *handle;
5806 get_block_t *get_block;
5807 int retries = 0;
5808
5809 sb_start_pagefault(inode->i_sb);
5810 file_update_time(vma->vm_file);
5811
5812 down_read(&EXT4_I(inode)->i_mmap_sem);
5813 /* Delalloc case is easy... */
5814 if (test_opt(inode->i_sb, DELALLOC) &&
5815 !ext4_should_journal_data(inode) &&
5816 !ext4_nonda_switch(inode->i_sb)) {
5817 do {
5818 ret = block_page_mkwrite(vma, vmf,
5819 ext4_da_get_block_prep);
5820 } while (ret == -ENOSPC &&
5821 ext4_should_retry_alloc(inode->i_sb, &retries));
5822 goto out_ret;
5823 }
5824
5825 lock_page(page);
5826 size = i_size_read(inode);
5827 /* Page got truncated from under us? */
5828 if (page->mapping != mapping || page_offset(page) > size) {
5829 unlock_page(page);
5830 ret = VM_FAULT_NOPAGE;
5831 goto out;
5832 }
5833
5834 if (page->index == size >> PAGE_SHIFT)
5835 len = size & ~PAGE_MASK;
5836 else
5837 len = PAGE_SIZE;
5838 /*
5839 * Return if we have all the buffers mapped. This avoids the need to do
5840 * journal_start/journal_stop which can block and take a long time
5841 */
5842 if (page_has_buffers(page)) {
5843 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5844 0, len, NULL,
5845 ext4_bh_unmapped)) {
5846 /* Wait so that we don't change page under IO */
5847 wait_for_stable_page(page);
5848 ret = VM_FAULT_LOCKED;
5849 goto out;
5850 }
5851 }
5852 unlock_page(page);
5853 /* OK, we need to fill the hole... */
5854 if (ext4_should_dioread_nolock(inode))
5855 get_block = ext4_get_block_unwritten;
5856 else
5857 get_block = ext4_get_block;
5858retry_alloc:
5859 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5860 ext4_writepage_trans_blocks(inode));
5861 if (IS_ERR(handle)) {
5862 ret = VM_FAULT_SIGBUS;
5863 goto out;
5864 }
5865 ret = block_page_mkwrite(vma, vmf, get_block);
5866 if (!ret && ext4_should_journal_data(inode)) {
5867 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5868 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5869 unlock_page(page);
5870 ret = VM_FAULT_SIGBUS;
5871 ext4_journal_stop(handle);
5872 goto out;
5873 }
5874 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5875 }
5876 ext4_journal_stop(handle);
5877 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5878 goto retry_alloc;
5879out_ret:
5880 ret = block_page_mkwrite_return(ret);
5881out:
5882 up_read(&EXT4_I(inode)->i_mmap_sem);
5883 sb_end_pagefault(inode->i_sb);
5884 return ret;
5885}
5886
5887int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5888{
5889 struct inode *inode = file_inode(vma->vm_file);
5890 int err;
5891
5892 down_read(&EXT4_I(inode)->i_mmap_sem);
5893 err = filemap_fault(vma, vmf);
5894 up_read(&EXT4_I(inode)->i_mmap_sem);
5895
5896 return err;
5897}
5898
5899/*
5900 * Find the first extent at or after @lblk in an inode that is not a hole.
5901 * Search for @map_len blocks at most. The extent is returned in @result.
5902 *
5903 * The function returns 1 if we found an extent. The function returns 0 in
5904 * case there is no extent at or after @lblk and in that case also sets
5905 * @result->es_len to 0. In case of error, the error code is returned.
5906 */
5907int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5908 unsigned int map_len, struct extent_status *result)
5909{
5910 struct ext4_map_blocks map;
5911 struct extent_status es = {};
5912 int ret;
5913
5914 map.m_lblk = lblk;
5915 map.m_len = map_len;
5916
5917 /*
5918 * For non-extent based files this loop may iterate several times since
5919 * we do not determine full hole size.
5920 */
5921 while (map.m_len > 0) {
5922 ret = ext4_map_blocks(NULL, inode, &map, 0);
5923 if (ret < 0)
5924 return ret;
5925 /* There's extent covering m_lblk? Just return it. */
5926 if (ret > 0) {
5927 int status;
5928
5929 ext4_es_store_pblock(result, map.m_pblk);
5930 result->es_lblk = map.m_lblk;
5931 result->es_len = map.m_len;
5932 if (map.m_flags & EXT4_MAP_UNWRITTEN)
5933 status = EXTENT_STATUS_UNWRITTEN;
5934 else
5935 status = EXTENT_STATUS_WRITTEN;
5936 ext4_es_store_status(result, status);
5937 return 1;
5938 }
5939 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5940 map.m_lblk + map.m_len - 1,
5941 &es);
5942 /* Is delalloc data before next block in extent tree? */
5943 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5944 ext4_lblk_t offset = 0;
5945
5946 if (es.es_lblk < lblk)
5947 offset = lblk - es.es_lblk;
5948 result->es_lblk = es.es_lblk + offset;
5949 ext4_es_store_pblock(result,
5950 ext4_es_pblock(&es) + offset);
5951 result->es_len = es.es_len - offset;
5952 ext4_es_store_status(result, ext4_es_status(&es));
5953
5954 return 1;
5955 }
5956 /* There's a hole at m_lblk, advance us after it */
5957 map.m_lblk += map.m_len;
5958 map_len -= map.m_len;
5959 map.m_len = map_len;
5960 cond_resched();
5961 }
5962 result->es_len = 0;
5963 return 0;
5964}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/inode.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
18 *
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
20 */
21
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/highuid.h>
25#include <linux/pagemap.h>
26#include <linux/dax.h>
27#include <linux/quotaops.h>
28#include <linux/string.h>
29#include <linux/buffer_head.h>
30#include <linux/writeback.h>
31#include <linux/pagevec.h>
32#include <linux/mpage.h>
33#include <linux/namei.h>
34#include <linux/uio.h>
35#include <linux/bio.h>
36#include <linux/workqueue.h>
37#include <linux/kernel.h>
38#include <linux/printk.h>
39#include <linux/slab.h>
40#include <linux/bitops.h>
41#include <linux/iomap.h>
42#include <linux/iversion.h>
43
44#include "ext4_jbd2.h"
45#include "xattr.h"
46#include "acl.h"
47#include "truncate.h"
48
49#include <trace/events/ext4.h>
50
51#define MPAGE_DA_EXTENT_TAIL 0x01
52
53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
55{
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
61
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
67
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
77 }
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
80 }
81
82 return csum;
83}
84
85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
87{
88 __u32 provided, calculated;
89
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
94
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
102
103 return provided == calculated;
104}
105
106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
108{
109 __u32 csum;
110
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
115
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
121}
122
123static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
125{
126 trace_ext4_begin_ordered_truncate(inode, new_size);
127 /*
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
132 */
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
138}
139
140static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
146
147/*
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
150 */
151int ext4_inode_is_fast_symlink(struct inode *inode)
152{
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
156
157 if (ext4_has_inline_data(inode))
158 return 0;
159
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
161 }
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
164}
165
166/*
167 * Restart the transaction associated with *handle. This does a commit,
168 * so before we call here everything must be consistently dirtied against
169 * this transaction.
170 */
171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
172 int nblocks)
173{
174 int ret;
175
176 /*
177 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
178 * moment, get_block can be called only for blocks inside i_size since
179 * page cache has been already dropped and writes are blocked by
180 * i_mutex. So we can safely drop the i_data_sem here.
181 */
182 BUG_ON(EXT4_JOURNAL(inode) == NULL);
183 jbd_debug(2, "restarting handle %p\n", handle);
184 up_write(&EXT4_I(inode)->i_data_sem);
185 ret = ext4_journal_restart(handle, nblocks);
186 down_write(&EXT4_I(inode)->i_data_sem);
187 ext4_discard_preallocations(inode);
188
189 return ret;
190}
191
192/*
193 * Called at the last iput() if i_nlink is zero.
194 */
195void ext4_evict_inode(struct inode *inode)
196{
197 handle_t *handle;
198 int err;
199 int extra_credits = 3;
200 struct ext4_xattr_inode_array *ea_inode_array = NULL;
201
202 trace_ext4_evict_inode(inode);
203
204 if (inode->i_nlink) {
205 /*
206 * When journalling data dirty buffers are tracked only in the
207 * journal. So although mm thinks everything is clean and
208 * ready for reaping the inode might still have some pages to
209 * write in the running transaction or waiting to be
210 * checkpointed. Thus calling jbd2_journal_invalidatepage()
211 * (via truncate_inode_pages()) to discard these buffers can
212 * cause data loss. Also even if we did not discard these
213 * buffers, we would have no way to find them after the inode
214 * is reaped and thus user could see stale data if he tries to
215 * read them before the transaction is checkpointed. So be
216 * careful and force everything to disk here... We use
217 * ei->i_datasync_tid to store the newest transaction
218 * containing inode's data.
219 *
220 * Note that directories do not have this problem because they
221 * don't use page cache.
222 */
223 if (inode->i_ino != EXT4_JOURNAL_INO &&
224 ext4_should_journal_data(inode) &&
225 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
226 inode->i_data.nrpages) {
227 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
228 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
229
230 jbd2_complete_transaction(journal, commit_tid);
231 filemap_write_and_wait(&inode->i_data);
232 }
233 truncate_inode_pages_final(&inode->i_data);
234
235 goto no_delete;
236 }
237
238 if (is_bad_inode(inode))
239 goto no_delete;
240 dquot_initialize(inode);
241
242 if (ext4_should_order_data(inode))
243 ext4_begin_ordered_truncate(inode, 0);
244 truncate_inode_pages_final(&inode->i_data);
245
246 /*
247 * Protect us against freezing - iput() caller didn't have to have any
248 * protection against it
249 */
250 sb_start_intwrite(inode->i_sb);
251
252 if (!IS_NOQUOTA(inode))
253 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
254
255 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
256 ext4_blocks_for_truncate(inode)+extra_credits);
257 if (IS_ERR(handle)) {
258 ext4_std_error(inode->i_sb, PTR_ERR(handle));
259 /*
260 * If we're going to skip the normal cleanup, we still need to
261 * make sure that the in-core orphan linked list is properly
262 * cleaned up.
263 */
264 ext4_orphan_del(NULL, inode);
265 sb_end_intwrite(inode->i_sb);
266 goto no_delete;
267 }
268
269 if (IS_SYNC(inode))
270 ext4_handle_sync(handle);
271
272 /*
273 * Set inode->i_size to 0 before calling ext4_truncate(). We need
274 * special handling of symlinks here because i_size is used to
275 * determine whether ext4_inode_info->i_data contains symlink data or
276 * block mappings. Setting i_size to 0 will remove its fast symlink
277 * status. Erase i_data so that it becomes a valid empty block map.
278 */
279 if (ext4_inode_is_fast_symlink(inode))
280 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
281 inode->i_size = 0;
282 err = ext4_mark_inode_dirty(handle, inode);
283 if (err) {
284 ext4_warning(inode->i_sb,
285 "couldn't mark inode dirty (err %d)", err);
286 goto stop_handle;
287 }
288 if (inode->i_blocks) {
289 err = ext4_truncate(inode);
290 if (err) {
291 ext4_error(inode->i_sb,
292 "couldn't truncate inode %lu (err %d)",
293 inode->i_ino, err);
294 goto stop_handle;
295 }
296 }
297
298 /* Remove xattr references. */
299 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
300 extra_credits);
301 if (err) {
302 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
303stop_handle:
304 ext4_journal_stop(handle);
305 ext4_orphan_del(NULL, inode);
306 sb_end_intwrite(inode->i_sb);
307 ext4_xattr_inode_array_free(ea_inode_array);
308 goto no_delete;
309 }
310
311 /*
312 * Kill off the orphan record which ext4_truncate created.
313 * AKPM: I think this can be inside the above `if'.
314 * Note that ext4_orphan_del() has to be able to cope with the
315 * deletion of a non-existent orphan - this is because we don't
316 * know if ext4_truncate() actually created an orphan record.
317 * (Well, we could do this if we need to, but heck - it works)
318 */
319 ext4_orphan_del(handle, inode);
320 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
321
322 /*
323 * One subtle ordering requirement: if anything has gone wrong
324 * (transaction abort, IO errors, whatever), then we can still
325 * do these next steps (the fs will already have been marked as
326 * having errors), but we can't free the inode if the mark_dirty
327 * fails.
328 */
329 if (ext4_mark_inode_dirty(handle, inode))
330 /* If that failed, just do the required in-core inode clear. */
331 ext4_clear_inode(inode);
332 else
333 ext4_free_inode(handle, inode);
334 ext4_journal_stop(handle);
335 sb_end_intwrite(inode->i_sb);
336 ext4_xattr_inode_array_free(ea_inode_array);
337 return;
338no_delete:
339 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
340}
341
342#ifdef CONFIG_QUOTA
343qsize_t *ext4_get_reserved_space(struct inode *inode)
344{
345 return &EXT4_I(inode)->i_reserved_quota;
346}
347#endif
348
349/*
350 * Called with i_data_sem down, which is important since we can call
351 * ext4_discard_preallocations() from here.
352 */
353void ext4_da_update_reserve_space(struct inode *inode,
354 int used, int quota_claim)
355{
356 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
357 struct ext4_inode_info *ei = EXT4_I(inode);
358
359 spin_lock(&ei->i_block_reservation_lock);
360 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
361 if (unlikely(used > ei->i_reserved_data_blocks)) {
362 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
363 "with only %d reserved data blocks",
364 __func__, inode->i_ino, used,
365 ei->i_reserved_data_blocks);
366 WARN_ON(1);
367 used = ei->i_reserved_data_blocks;
368 }
369
370 /* Update per-inode reservations */
371 ei->i_reserved_data_blocks -= used;
372 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
373
374 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
375
376 /* Update quota subsystem for data blocks */
377 if (quota_claim)
378 dquot_claim_block(inode, EXT4_C2B(sbi, used));
379 else {
380 /*
381 * We did fallocate with an offset that is already delayed
382 * allocated. So on delayed allocated writeback we should
383 * not re-claim the quota for fallocated blocks.
384 */
385 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
386 }
387
388 /*
389 * If we have done all the pending block allocations and if
390 * there aren't any writers on the inode, we can discard the
391 * inode's preallocations.
392 */
393 if ((ei->i_reserved_data_blocks == 0) &&
394 !inode_is_open_for_write(inode))
395 ext4_discard_preallocations(inode);
396}
397
398static int __check_block_validity(struct inode *inode, const char *func,
399 unsigned int line,
400 struct ext4_map_blocks *map)
401{
402 if (ext4_has_feature_journal(inode->i_sb) &&
403 (inode->i_ino ==
404 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
405 return 0;
406 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
407 map->m_len)) {
408 ext4_error_inode(inode, func, line, map->m_pblk,
409 "lblock %lu mapped to illegal pblock %llu "
410 "(length %d)", (unsigned long) map->m_lblk,
411 map->m_pblk, map->m_len);
412 return -EFSCORRUPTED;
413 }
414 return 0;
415}
416
417int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
418 ext4_lblk_t len)
419{
420 int ret;
421
422 if (IS_ENCRYPTED(inode))
423 return fscrypt_zeroout_range(inode, lblk, pblk, len);
424
425 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
426 if (ret > 0)
427 ret = 0;
428
429 return ret;
430}
431
432#define check_block_validity(inode, map) \
433 __check_block_validity((inode), __func__, __LINE__, (map))
434
435#ifdef ES_AGGRESSIVE_TEST
436static void ext4_map_blocks_es_recheck(handle_t *handle,
437 struct inode *inode,
438 struct ext4_map_blocks *es_map,
439 struct ext4_map_blocks *map,
440 int flags)
441{
442 int retval;
443
444 map->m_flags = 0;
445 /*
446 * There is a race window that the result is not the same.
447 * e.g. xfstests #223 when dioread_nolock enables. The reason
448 * is that we lookup a block mapping in extent status tree with
449 * out taking i_data_sem. So at the time the unwritten extent
450 * could be converted.
451 */
452 down_read(&EXT4_I(inode)->i_data_sem);
453 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
454 retval = ext4_ext_map_blocks(handle, inode, map, flags &
455 EXT4_GET_BLOCKS_KEEP_SIZE);
456 } else {
457 retval = ext4_ind_map_blocks(handle, inode, map, flags &
458 EXT4_GET_BLOCKS_KEEP_SIZE);
459 }
460 up_read((&EXT4_I(inode)->i_data_sem));
461
462 /*
463 * We don't check m_len because extent will be collpased in status
464 * tree. So the m_len might not equal.
465 */
466 if (es_map->m_lblk != map->m_lblk ||
467 es_map->m_flags != map->m_flags ||
468 es_map->m_pblk != map->m_pblk) {
469 printk("ES cache assertion failed for inode: %lu "
470 "es_cached ex [%d/%d/%llu/%x] != "
471 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
472 inode->i_ino, es_map->m_lblk, es_map->m_len,
473 es_map->m_pblk, es_map->m_flags, map->m_lblk,
474 map->m_len, map->m_pblk, map->m_flags,
475 retval, flags);
476 }
477}
478#endif /* ES_AGGRESSIVE_TEST */
479
480/*
481 * The ext4_map_blocks() function tries to look up the requested blocks,
482 * and returns if the blocks are already mapped.
483 *
484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
485 * and store the allocated blocks in the result buffer head and mark it
486 * mapped.
487 *
488 * If file type is extents based, it will call ext4_ext_map_blocks(),
489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
490 * based files
491 *
492 * On success, it returns the number of blocks being mapped or allocated. if
493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
495 *
496 * It returns 0 if plain look up failed (blocks have not been allocated), in
497 * that case, @map is returned as unmapped but we still do fill map->m_len to
498 * indicate the length of a hole starting at map->m_lblk.
499 *
500 * It returns the error in case of allocation failure.
501 */
502int ext4_map_blocks(handle_t *handle, struct inode *inode,
503 struct ext4_map_blocks *map, int flags)
504{
505 struct extent_status es;
506 int retval;
507 int ret = 0;
508#ifdef ES_AGGRESSIVE_TEST
509 struct ext4_map_blocks orig_map;
510
511 memcpy(&orig_map, map, sizeof(*map));
512#endif
513
514 map->m_flags = 0;
515 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
516 "logical block %lu\n", inode->i_ino, flags, map->m_len,
517 (unsigned long) map->m_lblk);
518
519 /*
520 * ext4_map_blocks returns an int, and m_len is an unsigned int
521 */
522 if (unlikely(map->m_len > INT_MAX))
523 map->m_len = INT_MAX;
524
525 /* We can handle the block number less than EXT_MAX_BLOCKS */
526 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
527 return -EFSCORRUPTED;
528
529 /* Lookup extent status tree firstly */
530 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
531 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
532 map->m_pblk = ext4_es_pblock(&es) +
533 map->m_lblk - es.es_lblk;
534 map->m_flags |= ext4_es_is_written(&es) ?
535 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
536 retval = es.es_len - (map->m_lblk - es.es_lblk);
537 if (retval > map->m_len)
538 retval = map->m_len;
539 map->m_len = retval;
540 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
541 map->m_pblk = 0;
542 retval = es.es_len - (map->m_lblk - es.es_lblk);
543 if (retval > map->m_len)
544 retval = map->m_len;
545 map->m_len = retval;
546 retval = 0;
547 } else {
548 BUG();
549 }
550#ifdef ES_AGGRESSIVE_TEST
551 ext4_map_blocks_es_recheck(handle, inode, map,
552 &orig_map, flags);
553#endif
554 goto found;
555 }
556
557 /*
558 * Try to see if we can get the block without requesting a new
559 * file system block.
560 */
561 down_read(&EXT4_I(inode)->i_data_sem);
562 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
563 retval = ext4_ext_map_blocks(handle, inode, map, flags &
564 EXT4_GET_BLOCKS_KEEP_SIZE);
565 } else {
566 retval = ext4_ind_map_blocks(handle, inode, map, flags &
567 EXT4_GET_BLOCKS_KEEP_SIZE);
568 }
569 if (retval > 0) {
570 unsigned int status;
571
572 if (unlikely(retval != map->m_len)) {
573 ext4_warning(inode->i_sb,
574 "ES len assertion failed for inode "
575 "%lu: retval %d != map->m_len %d",
576 inode->i_ino, retval, map->m_len);
577 WARN_ON(1);
578 }
579
580 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
581 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
582 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
583 !(status & EXTENT_STATUS_WRITTEN) &&
584 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
585 map->m_lblk + map->m_len - 1))
586 status |= EXTENT_STATUS_DELAYED;
587 ret = ext4_es_insert_extent(inode, map->m_lblk,
588 map->m_len, map->m_pblk, status);
589 if (ret < 0)
590 retval = ret;
591 }
592 up_read((&EXT4_I(inode)->i_data_sem));
593
594found:
595 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
596 ret = check_block_validity(inode, map);
597 if (ret != 0)
598 return ret;
599 }
600
601 /* If it is only a block(s) look up */
602 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
603 return retval;
604
605 /*
606 * Returns if the blocks have already allocated
607 *
608 * Note that if blocks have been preallocated
609 * ext4_ext_get_block() returns the create = 0
610 * with buffer head unmapped.
611 */
612 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
613 /*
614 * If we need to convert extent to unwritten
615 * we continue and do the actual work in
616 * ext4_ext_map_blocks()
617 */
618 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
619 return retval;
620
621 /*
622 * Here we clear m_flags because after allocating an new extent,
623 * it will be set again.
624 */
625 map->m_flags &= ~EXT4_MAP_FLAGS;
626
627 /*
628 * New blocks allocate and/or writing to unwritten extent
629 * will possibly result in updating i_data, so we take
630 * the write lock of i_data_sem, and call get_block()
631 * with create == 1 flag.
632 */
633 down_write(&EXT4_I(inode)->i_data_sem);
634
635 /*
636 * We need to check for EXT4 here because migrate
637 * could have changed the inode type in between
638 */
639 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
640 retval = ext4_ext_map_blocks(handle, inode, map, flags);
641 } else {
642 retval = ext4_ind_map_blocks(handle, inode, map, flags);
643
644 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
645 /*
646 * We allocated new blocks which will result in
647 * i_data's format changing. Force the migrate
648 * to fail by clearing migrate flags
649 */
650 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
651 }
652
653 /*
654 * Update reserved blocks/metadata blocks after successful
655 * block allocation which had been deferred till now. We don't
656 * support fallocate for non extent files. So we can update
657 * reserve space here.
658 */
659 if ((retval > 0) &&
660 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
661 ext4_da_update_reserve_space(inode, retval, 1);
662 }
663
664 if (retval > 0) {
665 unsigned int status;
666
667 if (unlikely(retval != map->m_len)) {
668 ext4_warning(inode->i_sb,
669 "ES len assertion failed for inode "
670 "%lu: retval %d != map->m_len %d",
671 inode->i_ino, retval, map->m_len);
672 WARN_ON(1);
673 }
674
675 /*
676 * We have to zeroout blocks before inserting them into extent
677 * status tree. Otherwise someone could look them up there and
678 * use them before they are really zeroed. We also have to
679 * unmap metadata before zeroing as otherwise writeback can
680 * overwrite zeros with stale data from block device.
681 */
682 if (flags & EXT4_GET_BLOCKS_ZERO &&
683 map->m_flags & EXT4_MAP_MAPPED &&
684 map->m_flags & EXT4_MAP_NEW) {
685 ret = ext4_issue_zeroout(inode, map->m_lblk,
686 map->m_pblk, map->m_len);
687 if (ret) {
688 retval = ret;
689 goto out_sem;
690 }
691 }
692
693 /*
694 * If the extent has been zeroed out, we don't need to update
695 * extent status tree.
696 */
697 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
698 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
699 if (ext4_es_is_written(&es))
700 goto out_sem;
701 }
702 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
703 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
704 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
705 !(status & EXTENT_STATUS_WRITTEN) &&
706 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
707 map->m_lblk + map->m_len - 1))
708 status |= EXTENT_STATUS_DELAYED;
709 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
710 map->m_pblk, status);
711 if (ret < 0) {
712 retval = ret;
713 goto out_sem;
714 }
715 }
716
717out_sem:
718 up_write((&EXT4_I(inode)->i_data_sem));
719 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
720 ret = check_block_validity(inode, map);
721 if (ret != 0)
722 return ret;
723
724 /*
725 * Inodes with freshly allocated blocks where contents will be
726 * visible after transaction commit must be on transaction's
727 * ordered data list.
728 */
729 if (map->m_flags & EXT4_MAP_NEW &&
730 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
731 !(flags & EXT4_GET_BLOCKS_ZERO) &&
732 !ext4_is_quota_file(inode) &&
733 ext4_should_order_data(inode)) {
734 loff_t start_byte =
735 (loff_t)map->m_lblk << inode->i_blkbits;
736 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
737
738 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
739 ret = ext4_jbd2_inode_add_wait(handle, inode,
740 start_byte, length);
741 else
742 ret = ext4_jbd2_inode_add_write(handle, inode,
743 start_byte, length);
744 if (ret)
745 return ret;
746 }
747 }
748 return retval;
749}
750
751/*
752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
753 * we have to be careful as someone else may be manipulating b_state as well.
754 */
755static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
756{
757 unsigned long old_state;
758 unsigned long new_state;
759
760 flags &= EXT4_MAP_FLAGS;
761
762 /* Dummy buffer_head? Set non-atomically. */
763 if (!bh->b_page) {
764 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
765 return;
766 }
767 /*
768 * Someone else may be modifying b_state. Be careful! This is ugly but
769 * once we get rid of using bh as a container for mapping information
770 * to pass to / from get_block functions, this can go away.
771 */
772 do {
773 old_state = READ_ONCE(bh->b_state);
774 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
775 } while (unlikely(
776 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
777}
778
779static int _ext4_get_block(struct inode *inode, sector_t iblock,
780 struct buffer_head *bh, int flags)
781{
782 struct ext4_map_blocks map;
783 int ret = 0;
784
785 if (ext4_has_inline_data(inode))
786 return -ERANGE;
787
788 map.m_lblk = iblock;
789 map.m_len = bh->b_size >> inode->i_blkbits;
790
791 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
792 flags);
793 if (ret > 0) {
794 map_bh(bh, inode->i_sb, map.m_pblk);
795 ext4_update_bh_state(bh, map.m_flags);
796 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
797 ret = 0;
798 } else if (ret == 0) {
799 /* hole case, need to fill in bh->b_size */
800 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
801 }
802 return ret;
803}
804
805int ext4_get_block(struct inode *inode, sector_t iblock,
806 struct buffer_head *bh, int create)
807{
808 return _ext4_get_block(inode, iblock, bh,
809 create ? EXT4_GET_BLOCKS_CREATE : 0);
810}
811
812/*
813 * Get block function used when preparing for buffered write if we require
814 * creating an unwritten extent if blocks haven't been allocated. The extent
815 * will be converted to written after the IO is complete.
816 */
817int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
818 struct buffer_head *bh_result, int create)
819{
820 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
821 inode->i_ino, create);
822 return _ext4_get_block(inode, iblock, bh_result,
823 EXT4_GET_BLOCKS_IO_CREATE_EXT);
824}
825
826/* Maximum number of blocks we map for direct IO at once. */
827#define DIO_MAX_BLOCKS 4096
828
829/*
830 * Get blocks function for the cases that need to start a transaction -
831 * generally difference cases of direct IO and DAX IO. It also handles retries
832 * in case of ENOSPC.
833 */
834static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
835 struct buffer_head *bh_result, int flags)
836{
837 int dio_credits;
838 handle_t *handle;
839 int retries = 0;
840 int ret;
841
842 /* Trim mapping request to maximum we can map at once for DIO */
843 if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
844 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
845 dio_credits = ext4_chunk_trans_blocks(inode,
846 bh_result->b_size >> inode->i_blkbits);
847retry:
848 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
849 if (IS_ERR(handle))
850 return PTR_ERR(handle);
851
852 ret = _ext4_get_block(inode, iblock, bh_result, flags);
853 ext4_journal_stop(handle);
854
855 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
856 goto retry;
857 return ret;
858}
859
860/* Get block function for DIO reads and writes to inodes without extents */
861int ext4_dio_get_block(struct inode *inode, sector_t iblock,
862 struct buffer_head *bh, int create)
863{
864 /* We don't expect handle for direct IO */
865 WARN_ON_ONCE(ext4_journal_current_handle());
866
867 if (!create)
868 return _ext4_get_block(inode, iblock, bh, 0);
869 return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
870}
871
872/*
873 * Get block function for AIO DIO writes when we create unwritten extent if
874 * blocks are not allocated yet. The extent will be converted to written
875 * after IO is complete.
876 */
877static int ext4_dio_get_block_unwritten_async(struct inode *inode,
878 sector_t iblock, struct buffer_head *bh_result, int create)
879{
880 int ret;
881
882 /* We don't expect handle for direct IO */
883 WARN_ON_ONCE(ext4_journal_current_handle());
884
885 ret = ext4_get_block_trans(inode, iblock, bh_result,
886 EXT4_GET_BLOCKS_IO_CREATE_EXT);
887
888 /*
889 * When doing DIO using unwritten extents, we need io_end to convert
890 * unwritten extents to written on IO completion. We allocate io_end
891 * once we spot unwritten extent and store it in b_private. Generic
892 * DIO code keeps b_private set and furthermore passes the value to
893 * our completion callback in 'private' argument.
894 */
895 if (!ret && buffer_unwritten(bh_result)) {
896 if (!bh_result->b_private) {
897 ext4_io_end_t *io_end;
898
899 io_end = ext4_init_io_end(inode, GFP_KERNEL);
900 if (!io_end)
901 return -ENOMEM;
902 bh_result->b_private = io_end;
903 ext4_set_io_unwritten_flag(inode, io_end);
904 }
905 set_buffer_defer_completion(bh_result);
906 }
907
908 return ret;
909}
910
911/*
912 * Get block function for non-AIO DIO writes when we create unwritten extent if
913 * blocks are not allocated yet. The extent will be converted to written
914 * after IO is complete by ext4_direct_IO_write().
915 */
916static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
917 sector_t iblock, struct buffer_head *bh_result, int create)
918{
919 int ret;
920
921 /* We don't expect handle for direct IO */
922 WARN_ON_ONCE(ext4_journal_current_handle());
923
924 ret = ext4_get_block_trans(inode, iblock, bh_result,
925 EXT4_GET_BLOCKS_IO_CREATE_EXT);
926
927 /*
928 * Mark inode as having pending DIO writes to unwritten extents.
929 * ext4_direct_IO_write() checks this flag and converts extents to
930 * written.
931 */
932 if (!ret && buffer_unwritten(bh_result))
933 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
934
935 return ret;
936}
937
938static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
939 struct buffer_head *bh_result, int create)
940{
941 int ret;
942
943 ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
944 inode->i_ino, create);
945 /* We don't expect handle for direct IO */
946 WARN_ON_ONCE(ext4_journal_current_handle());
947
948 ret = _ext4_get_block(inode, iblock, bh_result, 0);
949 /*
950 * Blocks should have been preallocated! ext4_file_write_iter() checks
951 * that.
952 */
953 WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
954
955 return ret;
956}
957
958
959/*
960 * `handle' can be NULL if create is zero
961 */
962struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
963 ext4_lblk_t block, int map_flags)
964{
965 struct ext4_map_blocks map;
966 struct buffer_head *bh;
967 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
968 int err;
969
970 J_ASSERT(handle != NULL || create == 0);
971
972 map.m_lblk = block;
973 map.m_len = 1;
974 err = ext4_map_blocks(handle, inode, &map, map_flags);
975
976 if (err == 0)
977 return create ? ERR_PTR(-ENOSPC) : NULL;
978 if (err < 0)
979 return ERR_PTR(err);
980
981 bh = sb_getblk(inode->i_sb, map.m_pblk);
982 if (unlikely(!bh))
983 return ERR_PTR(-ENOMEM);
984 if (map.m_flags & EXT4_MAP_NEW) {
985 J_ASSERT(create != 0);
986 J_ASSERT(handle != NULL);
987
988 /*
989 * Now that we do not always journal data, we should
990 * keep in mind whether this should always journal the
991 * new buffer as metadata. For now, regular file
992 * writes use ext4_get_block instead, so it's not a
993 * problem.
994 */
995 lock_buffer(bh);
996 BUFFER_TRACE(bh, "call get_create_access");
997 err = ext4_journal_get_create_access(handle, bh);
998 if (unlikely(err)) {
999 unlock_buffer(bh);
1000 goto errout;
1001 }
1002 if (!buffer_uptodate(bh)) {
1003 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004 set_buffer_uptodate(bh);
1005 }
1006 unlock_buffer(bh);
1007 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008 err = ext4_handle_dirty_metadata(handle, inode, bh);
1009 if (unlikely(err))
1010 goto errout;
1011 } else
1012 BUFFER_TRACE(bh, "not a new buffer");
1013 return bh;
1014errout:
1015 brelse(bh);
1016 return ERR_PTR(err);
1017}
1018
1019struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020 ext4_lblk_t block, int map_flags)
1021{
1022 struct buffer_head *bh;
1023
1024 bh = ext4_getblk(handle, inode, block, map_flags);
1025 if (IS_ERR(bh))
1026 return bh;
1027 if (!bh || ext4_buffer_uptodate(bh))
1028 return bh;
1029 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030 wait_on_buffer(bh);
1031 if (buffer_uptodate(bh))
1032 return bh;
1033 put_bh(bh);
1034 return ERR_PTR(-EIO);
1035}
1036
1037/* Read a contiguous batch of blocks. */
1038int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039 bool wait, struct buffer_head **bhs)
1040{
1041 int i, err;
1042
1043 for (i = 0; i < bh_count; i++) {
1044 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045 if (IS_ERR(bhs[i])) {
1046 err = PTR_ERR(bhs[i]);
1047 bh_count = i;
1048 goto out_brelse;
1049 }
1050 }
1051
1052 for (i = 0; i < bh_count; i++)
1053 /* Note that NULL bhs[i] is valid because of holes. */
1054 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056 &bhs[i]);
1057
1058 if (!wait)
1059 return 0;
1060
1061 for (i = 0; i < bh_count; i++)
1062 if (bhs[i])
1063 wait_on_buffer(bhs[i]);
1064
1065 for (i = 0; i < bh_count; i++) {
1066 if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067 err = -EIO;
1068 goto out_brelse;
1069 }
1070 }
1071 return 0;
1072
1073out_brelse:
1074 for (i = 0; i < bh_count; i++) {
1075 brelse(bhs[i]);
1076 bhs[i] = NULL;
1077 }
1078 return err;
1079}
1080
1081int ext4_walk_page_buffers(handle_t *handle,
1082 struct buffer_head *head,
1083 unsigned from,
1084 unsigned to,
1085 int *partial,
1086 int (*fn)(handle_t *handle,
1087 struct buffer_head *bh))
1088{
1089 struct buffer_head *bh;
1090 unsigned block_start, block_end;
1091 unsigned blocksize = head->b_size;
1092 int err, ret = 0;
1093 struct buffer_head *next;
1094
1095 for (bh = head, block_start = 0;
1096 ret == 0 && (bh != head || !block_start);
1097 block_start = block_end, bh = next) {
1098 next = bh->b_this_page;
1099 block_end = block_start + blocksize;
1100 if (block_end <= from || block_start >= to) {
1101 if (partial && !buffer_uptodate(bh))
1102 *partial = 1;
1103 continue;
1104 }
1105 err = (*fn)(handle, bh);
1106 if (!ret)
1107 ret = err;
1108 }
1109 return ret;
1110}
1111
1112/*
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction. We cannot
1115 * close off a transaction and start a new one between the ext4_get_block()
1116 * and the commit_write(). So doing the jbd2_journal_start at the start of
1117 * prepare_write() is the right place.
1118 *
1119 * Also, this function can nest inside ext4_writepage(). In that case, we
1120 * *know* that ext4_writepage() has generated enough buffer credits to do the
1121 * whole page. So we won't block on the journal in that case, which is good,
1122 * because the caller may be PF_MEMALLOC.
1123 *
1124 * By accident, ext4 can be reentered when a transaction is open via
1125 * quota file writes. If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated. We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
1136int do_journal_get_write_access(handle_t *handle,
1137 struct buffer_head *bh)
1138{
1139 int dirty = buffer_dirty(bh);
1140 int ret;
1141
1142 if (!buffer_mapped(bh) || buffer_freed(bh))
1143 return 0;
1144 /*
1145 * __block_write_begin() could have dirtied some buffers. Clean
1146 * the dirty bit as jbd2_journal_get_write_access() could complain
1147 * otherwise about fs integrity issues. Setting of the dirty bit
1148 * by __block_write_begin() isn't a real problem here as we clear
1149 * the bit before releasing a page lock and thus writeback cannot
1150 * ever write the buffer.
1151 */
1152 if (dirty)
1153 clear_buffer_dirty(bh);
1154 BUFFER_TRACE(bh, "get write access");
1155 ret = ext4_journal_get_write_access(handle, bh);
1156 if (!ret && dirty)
1157 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158 return ret;
1159}
1160
1161#ifdef CONFIG_FS_ENCRYPTION
1162static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163 get_block_t *get_block)
1164{
1165 unsigned from = pos & (PAGE_SIZE - 1);
1166 unsigned to = from + len;
1167 struct inode *inode = page->mapping->host;
1168 unsigned block_start, block_end;
1169 sector_t block;
1170 int err = 0;
1171 unsigned blocksize = inode->i_sb->s_blocksize;
1172 unsigned bbits;
1173 struct buffer_head *bh, *head, *wait[2];
1174 int nr_wait = 0;
1175 int i;
1176
1177 BUG_ON(!PageLocked(page));
1178 BUG_ON(from > PAGE_SIZE);
1179 BUG_ON(to > PAGE_SIZE);
1180 BUG_ON(from > to);
1181
1182 if (!page_has_buffers(page))
1183 create_empty_buffers(page, blocksize, 0);
1184 head = page_buffers(page);
1185 bbits = ilog2(blocksize);
1186 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188 for (bh = head, block_start = 0; bh != head || !block_start;
1189 block++, block_start = block_end, bh = bh->b_this_page) {
1190 block_end = block_start + blocksize;
1191 if (block_end <= from || block_start >= to) {
1192 if (PageUptodate(page)) {
1193 if (!buffer_uptodate(bh))
1194 set_buffer_uptodate(bh);
1195 }
1196 continue;
1197 }
1198 if (buffer_new(bh))
1199 clear_buffer_new(bh);
1200 if (!buffer_mapped(bh)) {
1201 WARN_ON(bh->b_size != blocksize);
1202 err = get_block(inode, block, bh, 1);
1203 if (err)
1204 break;
1205 if (buffer_new(bh)) {
1206 if (PageUptodate(page)) {
1207 clear_buffer_new(bh);
1208 set_buffer_uptodate(bh);
1209 mark_buffer_dirty(bh);
1210 continue;
1211 }
1212 if (block_end > to || block_start < from)
1213 zero_user_segments(page, to, block_end,
1214 block_start, from);
1215 continue;
1216 }
1217 }
1218 if (PageUptodate(page)) {
1219 if (!buffer_uptodate(bh))
1220 set_buffer_uptodate(bh);
1221 continue;
1222 }
1223 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224 !buffer_unwritten(bh) &&
1225 (block_start < from || block_end > to)) {
1226 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227 wait[nr_wait++] = bh;
1228 }
1229 }
1230 /*
1231 * If we issued read requests, let them complete.
1232 */
1233 for (i = 0; i < nr_wait; i++) {
1234 wait_on_buffer(wait[i]);
1235 if (!buffer_uptodate(wait[i]))
1236 err = -EIO;
1237 }
1238 if (unlikely(err)) {
1239 page_zero_new_buffers(page, from, to);
1240 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241 for (i = 0; i < nr_wait; i++) {
1242 int err2;
1243
1244 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245 bh_offset(wait[i]));
1246 if (err2) {
1247 clear_buffer_uptodate(wait[i]);
1248 err = err2;
1249 }
1250 }
1251 }
1252
1253 return err;
1254}
1255#endif
1256
1257static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258 loff_t pos, unsigned len, unsigned flags,
1259 struct page **pagep, void **fsdata)
1260{
1261 struct inode *inode = mapping->host;
1262 int ret, needed_blocks;
1263 handle_t *handle;
1264 int retries = 0;
1265 struct page *page;
1266 pgoff_t index;
1267 unsigned from, to;
1268
1269 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270 return -EIO;
1271
1272 trace_ext4_write_begin(inode, pos, len, flags);
1273 /*
1274 * Reserve one block more for addition to orphan list in case
1275 * we allocate blocks but write fails for some reason
1276 */
1277 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278 index = pos >> PAGE_SHIFT;
1279 from = pos & (PAGE_SIZE - 1);
1280 to = from + len;
1281
1282 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284 flags, pagep);
1285 if (ret < 0)
1286 return ret;
1287 if (ret == 1)
1288 return 0;
1289 }
1290
1291 /*
1292 * grab_cache_page_write_begin() can take a long time if the
1293 * system is thrashing due to memory pressure, or if the page
1294 * is being written back. So grab it first before we start
1295 * the transaction handle. This also allows us to allocate
1296 * the page (if needed) without using GFP_NOFS.
1297 */
1298retry_grab:
1299 page = grab_cache_page_write_begin(mapping, index, flags);
1300 if (!page)
1301 return -ENOMEM;
1302 unlock_page(page);
1303
1304retry_journal:
1305 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306 if (IS_ERR(handle)) {
1307 put_page(page);
1308 return PTR_ERR(handle);
1309 }
1310
1311 lock_page(page);
1312 if (page->mapping != mapping) {
1313 /* The page got truncated from under us */
1314 unlock_page(page);
1315 put_page(page);
1316 ext4_journal_stop(handle);
1317 goto retry_grab;
1318 }
1319 /* In case writeback began while the page was unlocked */
1320 wait_for_stable_page(page);
1321
1322#ifdef CONFIG_FS_ENCRYPTION
1323 if (ext4_should_dioread_nolock(inode))
1324 ret = ext4_block_write_begin(page, pos, len,
1325 ext4_get_block_unwritten);
1326 else
1327 ret = ext4_block_write_begin(page, pos, len,
1328 ext4_get_block);
1329#else
1330 if (ext4_should_dioread_nolock(inode))
1331 ret = __block_write_begin(page, pos, len,
1332 ext4_get_block_unwritten);
1333 else
1334 ret = __block_write_begin(page, pos, len, ext4_get_block);
1335#endif
1336 if (!ret && ext4_should_journal_data(inode)) {
1337 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338 from, to, NULL,
1339 do_journal_get_write_access);
1340 }
1341
1342 if (ret) {
1343 bool extended = (pos + len > inode->i_size) &&
1344 !ext4_verity_in_progress(inode);
1345
1346 unlock_page(page);
1347 /*
1348 * __block_write_begin may have instantiated a few blocks
1349 * outside i_size. Trim these off again. Don't need
1350 * i_size_read because we hold i_mutex.
1351 *
1352 * Add inode to orphan list in case we crash before
1353 * truncate finishes
1354 */
1355 if (extended && ext4_can_truncate(inode))
1356 ext4_orphan_add(handle, inode);
1357
1358 ext4_journal_stop(handle);
1359 if (extended) {
1360 ext4_truncate_failed_write(inode);
1361 /*
1362 * If truncate failed early the inode might
1363 * still be on the orphan list; we need to
1364 * make sure the inode is removed from the
1365 * orphan list in that case.
1366 */
1367 if (inode->i_nlink)
1368 ext4_orphan_del(NULL, inode);
1369 }
1370
1371 if (ret == -ENOSPC &&
1372 ext4_should_retry_alloc(inode->i_sb, &retries))
1373 goto retry_journal;
1374 put_page(page);
1375 return ret;
1376 }
1377 *pagep = page;
1378 return ret;
1379}
1380
1381/* For write_end() in data=journal mode */
1382static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383{
1384 int ret;
1385 if (!buffer_mapped(bh) || buffer_freed(bh))
1386 return 0;
1387 set_buffer_uptodate(bh);
1388 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389 clear_buffer_meta(bh);
1390 clear_buffer_prio(bh);
1391 return ret;
1392}
1393
1394/*
1395 * We need to pick up the new inode size which generic_commit_write gave us
1396 * `file' can be NULL - eg, when called from page_symlink().
1397 *
1398 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1399 * buffers are managed internally.
1400 */
1401static int ext4_write_end(struct file *file,
1402 struct address_space *mapping,
1403 loff_t pos, unsigned len, unsigned copied,
1404 struct page *page, void *fsdata)
1405{
1406 handle_t *handle = ext4_journal_current_handle();
1407 struct inode *inode = mapping->host;
1408 loff_t old_size = inode->i_size;
1409 int ret = 0, ret2;
1410 int i_size_changed = 0;
1411 int inline_data = ext4_has_inline_data(inode);
1412 bool verity = ext4_verity_in_progress(inode);
1413
1414 trace_ext4_write_end(inode, pos, len, copied);
1415 if (inline_data) {
1416 ret = ext4_write_inline_data_end(inode, pos, len,
1417 copied, page);
1418 if (ret < 0) {
1419 unlock_page(page);
1420 put_page(page);
1421 goto errout;
1422 }
1423 copied = ret;
1424 } else
1425 copied = block_write_end(file, mapping, pos,
1426 len, copied, page, fsdata);
1427 /*
1428 * it's important to update i_size while still holding page lock:
1429 * page writeout could otherwise come in and zero beyond i_size.
1430 *
1431 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432 * blocks are being written past EOF, so skip the i_size update.
1433 */
1434 if (!verity)
1435 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436 unlock_page(page);
1437 put_page(page);
1438
1439 if (old_size < pos && !verity)
1440 pagecache_isize_extended(inode, old_size, pos);
1441 /*
1442 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443 * makes the holding time of page lock longer. Second, it forces lock
1444 * ordering of page lock and transaction start for journaling
1445 * filesystems.
1446 */
1447 if (i_size_changed || inline_data)
1448 ext4_mark_inode_dirty(handle, inode);
1449
1450 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451 /* if we have allocated more blocks and copied
1452 * less. We will have blocks allocated outside
1453 * inode->i_size. So truncate them
1454 */
1455 ext4_orphan_add(handle, inode);
1456errout:
1457 ret2 = ext4_journal_stop(handle);
1458 if (!ret)
1459 ret = ret2;
1460
1461 if (pos + len > inode->i_size && !verity) {
1462 ext4_truncate_failed_write(inode);
1463 /*
1464 * If truncate failed early the inode might still be
1465 * on the orphan list; we need to make sure the inode
1466 * is removed from the orphan list in that case.
1467 */
1468 if (inode->i_nlink)
1469 ext4_orphan_del(NULL, inode);
1470 }
1471
1472 return ret ? ret : copied;
1473}
1474
1475/*
1476 * This is a private version of page_zero_new_buffers() which doesn't
1477 * set the buffer to be dirty, since in data=journalled mode we need
1478 * to call ext4_handle_dirty_metadata() instead.
1479 */
1480static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481 struct page *page,
1482 unsigned from, unsigned to)
1483{
1484 unsigned int block_start = 0, block_end;
1485 struct buffer_head *head, *bh;
1486
1487 bh = head = page_buffers(page);
1488 do {
1489 block_end = block_start + bh->b_size;
1490 if (buffer_new(bh)) {
1491 if (block_end > from && block_start < to) {
1492 if (!PageUptodate(page)) {
1493 unsigned start, size;
1494
1495 start = max(from, block_start);
1496 size = min(to, block_end) - start;
1497
1498 zero_user(page, start, size);
1499 write_end_fn(handle, bh);
1500 }
1501 clear_buffer_new(bh);
1502 }
1503 }
1504 block_start = block_end;
1505 bh = bh->b_this_page;
1506 } while (bh != head);
1507}
1508
1509static int ext4_journalled_write_end(struct file *file,
1510 struct address_space *mapping,
1511 loff_t pos, unsigned len, unsigned copied,
1512 struct page *page, void *fsdata)
1513{
1514 handle_t *handle = ext4_journal_current_handle();
1515 struct inode *inode = mapping->host;
1516 loff_t old_size = inode->i_size;
1517 int ret = 0, ret2;
1518 int partial = 0;
1519 unsigned from, to;
1520 int size_changed = 0;
1521 int inline_data = ext4_has_inline_data(inode);
1522 bool verity = ext4_verity_in_progress(inode);
1523
1524 trace_ext4_journalled_write_end(inode, pos, len, copied);
1525 from = pos & (PAGE_SIZE - 1);
1526 to = from + len;
1527
1528 BUG_ON(!ext4_handle_valid(handle));
1529
1530 if (inline_data) {
1531 ret = ext4_write_inline_data_end(inode, pos, len,
1532 copied, page);
1533 if (ret < 0) {
1534 unlock_page(page);
1535 put_page(page);
1536 goto errout;
1537 }
1538 copied = ret;
1539 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1540 copied = 0;
1541 ext4_journalled_zero_new_buffers(handle, page, from, to);
1542 } else {
1543 if (unlikely(copied < len))
1544 ext4_journalled_zero_new_buffers(handle, page,
1545 from + copied, to);
1546 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547 from + copied, &partial,
1548 write_end_fn);
1549 if (!partial)
1550 SetPageUptodate(page);
1551 }
1552 if (!verity)
1553 size_changed = ext4_update_inode_size(inode, pos + copied);
1554 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556 unlock_page(page);
1557 put_page(page);
1558
1559 if (old_size < pos && !verity)
1560 pagecache_isize_extended(inode, old_size, pos);
1561
1562 if (size_changed || inline_data) {
1563 ret2 = ext4_mark_inode_dirty(handle, inode);
1564 if (!ret)
1565 ret = ret2;
1566 }
1567
1568 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569 /* if we have allocated more blocks and copied
1570 * less. We will have blocks allocated outside
1571 * inode->i_size. So truncate them
1572 */
1573 ext4_orphan_add(handle, inode);
1574
1575errout:
1576 ret2 = ext4_journal_stop(handle);
1577 if (!ret)
1578 ret = ret2;
1579 if (pos + len > inode->i_size && !verity) {
1580 ext4_truncate_failed_write(inode);
1581 /*
1582 * If truncate failed early the inode might still be
1583 * on the orphan list; we need to make sure the inode
1584 * is removed from the orphan list in that case.
1585 */
1586 if (inode->i_nlink)
1587 ext4_orphan_del(NULL, inode);
1588 }
1589
1590 return ret ? ret : copied;
1591}
1592
1593/*
1594 * Reserve space for a single cluster
1595 */
1596static int ext4_da_reserve_space(struct inode *inode)
1597{
1598 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599 struct ext4_inode_info *ei = EXT4_I(inode);
1600 int ret;
1601
1602 /*
1603 * We will charge metadata quota at writeout time; this saves
1604 * us from metadata over-estimation, though we may go over by
1605 * a small amount in the end. Here we just reserve for data.
1606 */
1607 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608 if (ret)
1609 return ret;
1610
1611 spin_lock(&ei->i_block_reservation_lock);
1612 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613 spin_unlock(&ei->i_block_reservation_lock);
1614 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615 return -ENOSPC;
1616 }
1617 ei->i_reserved_data_blocks++;
1618 trace_ext4_da_reserve_space(inode);
1619 spin_unlock(&ei->i_block_reservation_lock);
1620
1621 return 0; /* success */
1622}
1623
1624void ext4_da_release_space(struct inode *inode, int to_free)
1625{
1626 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627 struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629 if (!to_free)
1630 return; /* Nothing to release, exit */
1631
1632 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634 trace_ext4_da_release_space(inode, to_free);
1635 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636 /*
1637 * if there aren't enough reserved blocks, then the
1638 * counter is messed up somewhere. Since this
1639 * function is called from invalidate page, it's
1640 * harmless to return without any action.
1641 */
1642 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643 "ino %lu, to_free %d with only %d reserved "
1644 "data blocks", inode->i_ino, to_free,
1645 ei->i_reserved_data_blocks);
1646 WARN_ON(1);
1647 to_free = ei->i_reserved_data_blocks;
1648 }
1649 ei->i_reserved_data_blocks -= to_free;
1650
1651 /* update fs dirty data blocks counter */
1652 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657}
1658
1659/*
1660 * Delayed allocation stuff
1661 */
1662
1663struct mpage_da_data {
1664 struct inode *inode;
1665 struct writeback_control *wbc;
1666
1667 pgoff_t first_page; /* The first page to write */
1668 pgoff_t next_page; /* Current page to examine */
1669 pgoff_t last_page; /* Last page to examine */
1670 /*
1671 * Extent to map - this can be after first_page because that can be
1672 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673 * is delalloc or unwritten.
1674 */
1675 struct ext4_map_blocks map;
1676 struct ext4_io_submit io_submit; /* IO submission data */
1677 unsigned int do_map:1;
1678};
1679
1680static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681 bool invalidate)
1682{
1683 int nr_pages, i;
1684 pgoff_t index, end;
1685 struct pagevec pvec;
1686 struct inode *inode = mpd->inode;
1687 struct address_space *mapping = inode->i_mapping;
1688
1689 /* This is necessary when next_page == 0. */
1690 if (mpd->first_page >= mpd->next_page)
1691 return;
1692
1693 index = mpd->first_page;
1694 end = mpd->next_page - 1;
1695 if (invalidate) {
1696 ext4_lblk_t start, last;
1697 start = index << (PAGE_SHIFT - inode->i_blkbits);
1698 last = end << (PAGE_SHIFT - inode->i_blkbits);
1699 ext4_es_remove_extent(inode, start, last - start + 1);
1700 }
1701
1702 pagevec_init(&pvec);
1703 while (index <= end) {
1704 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705 if (nr_pages == 0)
1706 break;
1707 for (i = 0; i < nr_pages; i++) {
1708 struct page *page = pvec.pages[i];
1709
1710 BUG_ON(!PageLocked(page));
1711 BUG_ON(PageWriteback(page));
1712 if (invalidate) {
1713 if (page_mapped(page))
1714 clear_page_dirty_for_io(page);
1715 block_invalidatepage(page, 0, PAGE_SIZE);
1716 ClearPageUptodate(page);
1717 }
1718 unlock_page(page);
1719 }
1720 pagevec_release(&pvec);
1721 }
1722}
1723
1724static void ext4_print_free_blocks(struct inode *inode)
1725{
1726 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727 struct super_block *sb = inode->i_sb;
1728 struct ext4_inode_info *ei = EXT4_I(inode);
1729
1730 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731 EXT4_C2B(EXT4_SB(inode->i_sb),
1732 ext4_count_free_clusters(sb)));
1733 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735 (long long) EXT4_C2B(EXT4_SB(sb),
1736 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738 (long long) EXT4_C2B(EXT4_SB(sb),
1739 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742 ei->i_reserved_data_blocks);
1743 return;
1744}
1745
1746static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747{
1748 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749}
1750
1751/*
1752 * ext4_insert_delayed_block - adds a delayed block to the extents status
1753 * tree, incrementing the reserved cluster/block
1754 * count or making a pending reservation
1755 * where needed
1756 *
1757 * @inode - file containing the newly added block
1758 * @lblk - logical block to be added
1759 *
1760 * Returns 0 on success, negative error code on failure.
1761 */
1762static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763{
1764 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765 int ret;
1766 bool allocated = false;
1767
1768 /*
1769 * If the cluster containing lblk is shared with a delayed,
1770 * written, or unwritten extent in a bigalloc file system, it's
1771 * already been accounted for and does not need to be reserved.
1772 * A pending reservation must be made for the cluster if it's
1773 * shared with a written or unwritten extent and doesn't already
1774 * have one. Written and unwritten extents can be purged from the
1775 * extents status tree if the system is under memory pressure, so
1776 * it's necessary to examine the extent tree if a search of the
1777 * extents status tree doesn't get a match.
1778 */
1779 if (sbi->s_cluster_ratio == 1) {
1780 ret = ext4_da_reserve_space(inode);
1781 if (ret != 0) /* ENOSPC */
1782 goto errout;
1783 } else { /* bigalloc */
1784 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785 if (!ext4_es_scan_clu(inode,
1786 &ext4_es_is_mapped, lblk)) {
1787 ret = ext4_clu_mapped(inode,
1788 EXT4_B2C(sbi, lblk));
1789 if (ret < 0)
1790 goto errout;
1791 if (ret == 0) {
1792 ret = ext4_da_reserve_space(inode);
1793 if (ret != 0) /* ENOSPC */
1794 goto errout;
1795 } else {
1796 allocated = true;
1797 }
1798 } else {
1799 allocated = true;
1800 }
1801 }
1802 }
1803
1804 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805
1806errout:
1807 return ret;
1808}
1809
1810/*
1811 * This function is grabs code from the very beginning of
1812 * ext4_map_blocks, but assumes that the caller is from delayed write
1813 * time. This function looks up the requested blocks and sets the
1814 * buffer delay bit under the protection of i_data_sem.
1815 */
1816static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817 struct ext4_map_blocks *map,
1818 struct buffer_head *bh)
1819{
1820 struct extent_status es;
1821 int retval;
1822 sector_t invalid_block = ~((sector_t) 0xffff);
1823#ifdef ES_AGGRESSIVE_TEST
1824 struct ext4_map_blocks orig_map;
1825
1826 memcpy(&orig_map, map, sizeof(*map));
1827#endif
1828
1829 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830 invalid_block = ~0;
1831
1832 map->m_flags = 0;
1833 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834 "logical block %lu\n", inode->i_ino, map->m_len,
1835 (unsigned long) map->m_lblk);
1836
1837 /* Lookup extent status tree firstly */
1838 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839 if (ext4_es_is_hole(&es)) {
1840 retval = 0;
1841 down_read(&EXT4_I(inode)->i_data_sem);
1842 goto add_delayed;
1843 }
1844
1845 /*
1846 * Delayed extent could be allocated by fallocate.
1847 * So we need to check it.
1848 */
1849 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850 map_bh(bh, inode->i_sb, invalid_block);
1851 set_buffer_new(bh);
1852 set_buffer_delay(bh);
1853 return 0;
1854 }
1855
1856 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857 retval = es.es_len - (iblock - es.es_lblk);
1858 if (retval > map->m_len)
1859 retval = map->m_len;
1860 map->m_len = retval;
1861 if (ext4_es_is_written(&es))
1862 map->m_flags |= EXT4_MAP_MAPPED;
1863 else if (ext4_es_is_unwritten(&es))
1864 map->m_flags |= EXT4_MAP_UNWRITTEN;
1865 else
1866 BUG();
1867
1868#ifdef ES_AGGRESSIVE_TEST
1869 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870#endif
1871 return retval;
1872 }
1873
1874 /*
1875 * Try to see if we can get the block without requesting a new
1876 * file system block.
1877 */
1878 down_read(&EXT4_I(inode)->i_data_sem);
1879 if (ext4_has_inline_data(inode))
1880 retval = 0;
1881 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883 else
1884 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885
1886add_delayed:
1887 if (retval == 0) {
1888 int ret;
1889
1890 /*
1891 * XXX: __block_prepare_write() unmaps passed block,
1892 * is it OK?
1893 */
1894
1895 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896 if (ret != 0) {
1897 retval = ret;
1898 goto out_unlock;
1899 }
1900
1901 map_bh(bh, inode->i_sb, invalid_block);
1902 set_buffer_new(bh);
1903 set_buffer_delay(bh);
1904 } else if (retval > 0) {
1905 int ret;
1906 unsigned int status;
1907
1908 if (unlikely(retval != map->m_len)) {
1909 ext4_warning(inode->i_sb,
1910 "ES len assertion failed for inode "
1911 "%lu: retval %d != map->m_len %d",
1912 inode->i_ino, retval, map->m_len);
1913 WARN_ON(1);
1914 }
1915
1916 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919 map->m_pblk, status);
1920 if (ret != 0)
1921 retval = ret;
1922 }
1923
1924out_unlock:
1925 up_read((&EXT4_I(inode)->i_data_sem));
1926
1927 return retval;
1928}
1929
1930/*
1931 * This is a special get_block_t callback which is used by
1932 * ext4_da_write_begin(). It will either return mapped block or
1933 * reserve space for a single block.
1934 *
1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936 * We also have b_blocknr = -1 and b_bdev initialized properly
1937 *
1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940 * initialized properly.
1941 */
1942int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943 struct buffer_head *bh, int create)
1944{
1945 struct ext4_map_blocks map;
1946 int ret = 0;
1947
1948 BUG_ON(create == 0);
1949 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950
1951 map.m_lblk = iblock;
1952 map.m_len = 1;
1953
1954 /*
1955 * first, we need to know whether the block is allocated already
1956 * preallocated blocks are unmapped but should treated
1957 * the same as allocated blocks.
1958 */
1959 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960 if (ret <= 0)
1961 return ret;
1962
1963 map_bh(bh, inode->i_sb, map.m_pblk);
1964 ext4_update_bh_state(bh, map.m_flags);
1965
1966 if (buffer_unwritten(bh)) {
1967 /* A delayed write to unwritten bh should be marked
1968 * new and mapped. Mapped ensures that we don't do
1969 * get_block multiple times when we write to the same
1970 * offset and new ensures that we do proper zero out
1971 * for partial write.
1972 */
1973 set_buffer_new(bh);
1974 set_buffer_mapped(bh);
1975 }
1976 return 0;
1977}
1978
1979static int bget_one(handle_t *handle, struct buffer_head *bh)
1980{
1981 get_bh(bh);
1982 return 0;
1983}
1984
1985static int bput_one(handle_t *handle, struct buffer_head *bh)
1986{
1987 put_bh(bh);
1988 return 0;
1989}
1990
1991static int __ext4_journalled_writepage(struct page *page,
1992 unsigned int len)
1993{
1994 struct address_space *mapping = page->mapping;
1995 struct inode *inode = mapping->host;
1996 struct buffer_head *page_bufs = NULL;
1997 handle_t *handle = NULL;
1998 int ret = 0, err = 0;
1999 int inline_data = ext4_has_inline_data(inode);
2000 struct buffer_head *inode_bh = NULL;
2001
2002 ClearPageChecked(page);
2003
2004 if (inline_data) {
2005 BUG_ON(page->index != 0);
2006 BUG_ON(len > ext4_get_max_inline_size(inode));
2007 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008 if (inode_bh == NULL)
2009 goto out;
2010 } else {
2011 page_bufs = page_buffers(page);
2012 if (!page_bufs) {
2013 BUG();
2014 goto out;
2015 }
2016 ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017 NULL, bget_one);
2018 }
2019 /*
2020 * We need to release the page lock before we start the
2021 * journal, so grab a reference so the page won't disappear
2022 * out from under us.
2023 */
2024 get_page(page);
2025 unlock_page(page);
2026
2027 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028 ext4_writepage_trans_blocks(inode));
2029 if (IS_ERR(handle)) {
2030 ret = PTR_ERR(handle);
2031 put_page(page);
2032 goto out_no_pagelock;
2033 }
2034 BUG_ON(!ext4_handle_valid(handle));
2035
2036 lock_page(page);
2037 put_page(page);
2038 if (page->mapping != mapping) {
2039 /* The page got truncated from under us */
2040 ext4_journal_stop(handle);
2041 ret = 0;
2042 goto out;
2043 }
2044
2045 if (inline_data) {
2046 ret = ext4_mark_inode_dirty(handle, inode);
2047 } else {
2048 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049 do_journal_get_write_access);
2050
2051 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052 write_end_fn);
2053 }
2054 if (ret == 0)
2055 ret = err;
2056 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057 err = ext4_journal_stop(handle);
2058 if (!ret)
2059 ret = err;
2060
2061 if (!ext4_has_inline_data(inode))
2062 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063 NULL, bput_one);
2064 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065out:
2066 unlock_page(page);
2067out_no_pagelock:
2068 brelse(inode_bh);
2069 return ret;
2070}
2071
2072/*
2073 * Note that we don't need to start a transaction unless we're journaling data
2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075 * need to file the inode to the transaction's list in ordered mode because if
2076 * we are writing back data added by write(), the inode is already there and if
2077 * we are writing back data modified via mmap(), no one guarantees in which
2078 * transaction the data will hit the disk. In case we are journaling data, we
2079 * cannot start transaction directly because transaction start ranks above page
2080 * lock so we have to do some magic.
2081 *
2082 * This function can get called via...
2083 * - ext4_writepages after taking page lock (have journal handle)
2084 * - journal_submit_inode_data_buffers (no journal handle)
2085 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086 * - grab_page_cache when doing write_begin (have journal handle)
2087 *
2088 * We don't do any block allocation in this function. If we have page with
2089 * multiple blocks we need to write those buffer_heads that are mapped. This
2090 * is important for mmaped based write. So if we do with blocksize 1K
2091 * truncate(f, 1024);
2092 * a = mmap(f, 0, 4096);
2093 * a[0] = 'a';
2094 * truncate(f, 4096);
2095 * we have in the page first buffer_head mapped via page_mkwrite call back
2096 * but other buffer_heads would be unmapped but dirty (dirty done via the
2097 * do_wp_page). So writepage should write the first block. If we modify
2098 * the mmap area beyond 1024 we will again get a page_fault and the
2099 * page_mkwrite callback will do the block allocation and mark the
2100 * buffer_heads mapped.
2101 *
2102 * We redirty the page if we have any buffer_heads that is either delay or
2103 * unwritten in the page.
2104 *
2105 * We can get recursively called as show below.
2106 *
2107 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108 * ext4_writepage()
2109 *
2110 * But since we don't do any block allocation we should not deadlock.
2111 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112 */
2113static int ext4_writepage(struct page *page,
2114 struct writeback_control *wbc)
2115{
2116 int ret = 0;
2117 loff_t size;
2118 unsigned int len;
2119 struct buffer_head *page_bufs = NULL;
2120 struct inode *inode = page->mapping->host;
2121 struct ext4_io_submit io_submit;
2122 bool keep_towrite = false;
2123
2124 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125 ext4_invalidatepage(page, 0, PAGE_SIZE);
2126 unlock_page(page);
2127 return -EIO;
2128 }
2129
2130 trace_ext4_writepage(page);
2131 size = i_size_read(inode);
2132 if (page->index == size >> PAGE_SHIFT &&
2133 !ext4_verity_in_progress(inode))
2134 len = size & ~PAGE_MASK;
2135 else
2136 len = PAGE_SIZE;
2137
2138 page_bufs = page_buffers(page);
2139 /*
2140 * We cannot do block allocation or other extent handling in this
2141 * function. If there are buffers needing that, we have to redirty
2142 * the page. But we may reach here when we do a journal commit via
2143 * journal_submit_inode_data_buffers() and in that case we must write
2144 * allocated buffers to achieve data=ordered mode guarantees.
2145 *
2146 * Also, if there is only one buffer per page (the fs block
2147 * size == the page size), if one buffer needs block
2148 * allocation or needs to modify the extent tree to clear the
2149 * unwritten flag, we know that the page can't be written at
2150 * all, so we might as well refuse the write immediately.
2151 * Unfortunately if the block size != page size, we can't as
2152 * easily detect this case using ext4_walk_page_buffers(), but
2153 * for the extremely common case, this is an optimization that
2154 * skips a useless round trip through ext4_bio_write_page().
2155 */
2156 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157 ext4_bh_delay_or_unwritten)) {
2158 redirty_page_for_writepage(wbc, page);
2159 if ((current->flags & PF_MEMALLOC) ||
2160 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161 /*
2162 * For memory cleaning there's no point in writing only
2163 * some buffers. So just bail out. Warn if we came here
2164 * from direct reclaim.
2165 */
2166 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167 == PF_MEMALLOC);
2168 unlock_page(page);
2169 return 0;
2170 }
2171 keep_towrite = true;
2172 }
2173
2174 if (PageChecked(page) && ext4_should_journal_data(inode))
2175 /*
2176 * It's mmapped pagecache. Add buffers and journal it. There
2177 * doesn't seem much point in redirtying the page here.
2178 */
2179 return __ext4_journalled_writepage(page, len);
2180
2181 ext4_io_submit_init(&io_submit, wbc);
2182 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183 if (!io_submit.io_end) {
2184 redirty_page_for_writepage(wbc, page);
2185 unlock_page(page);
2186 return -ENOMEM;
2187 }
2188 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189 ext4_io_submit(&io_submit);
2190 /* Drop io_end reference we got from init */
2191 ext4_put_io_end_defer(io_submit.io_end);
2192 return ret;
2193}
2194
2195static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196{
2197 int len;
2198 loff_t size;
2199 int err;
2200
2201 BUG_ON(page->index != mpd->first_page);
2202 clear_page_dirty_for_io(page);
2203 /*
2204 * We have to be very careful here! Nothing protects writeback path
2205 * against i_size changes and the page can be writeably mapped into
2206 * page tables. So an application can be growing i_size and writing
2207 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208 * write-protects our page in page tables and the page cannot get
2209 * written to again until we release page lock. So only after
2210 * clear_page_dirty_for_io() we are safe to sample i_size for
2211 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212 * on the barrier provided by TestClearPageDirty in
2213 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214 * after page tables are updated.
2215 */
2216 size = i_size_read(mpd->inode);
2217 if (page->index == size >> PAGE_SHIFT &&
2218 !ext4_verity_in_progress(mpd->inode))
2219 len = size & ~PAGE_MASK;
2220 else
2221 len = PAGE_SIZE;
2222 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223 if (!err)
2224 mpd->wbc->nr_to_write--;
2225 mpd->first_page++;
2226
2227 return err;
2228}
2229
2230#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231
2232/*
2233 * mballoc gives us at most this number of blocks...
2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235 * The rest of mballoc seems to handle chunks up to full group size.
2236 */
2237#define MAX_WRITEPAGES_EXTENT_LEN 2048
2238
2239/*
2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241 *
2242 * @mpd - extent of blocks
2243 * @lblk - logical number of the block in the file
2244 * @bh - buffer head we want to add to the extent
2245 *
2246 * The function is used to collect contig. blocks in the same state. If the
2247 * buffer doesn't require mapping for writeback and we haven't started the
2248 * extent of buffers to map yet, the function returns 'true' immediately - the
2249 * caller can write the buffer right away. Otherwise the function returns true
2250 * if the block has been added to the extent, false if the block couldn't be
2251 * added.
2252 */
2253static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254 struct buffer_head *bh)
2255{
2256 struct ext4_map_blocks *map = &mpd->map;
2257
2258 /* Buffer that doesn't need mapping for writeback? */
2259 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261 /* So far no extent to map => we write the buffer right away */
2262 if (map->m_len == 0)
2263 return true;
2264 return false;
2265 }
2266
2267 /* First block in the extent? */
2268 if (map->m_len == 0) {
2269 /* We cannot map unless handle is started... */
2270 if (!mpd->do_map)
2271 return false;
2272 map->m_lblk = lblk;
2273 map->m_len = 1;
2274 map->m_flags = bh->b_state & BH_FLAGS;
2275 return true;
2276 }
2277
2278 /* Don't go larger than mballoc is willing to allocate */
2279 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280 return false;
2281
2282 /* Can we merge the block to our big extent? */
2283 if (lblk == map->m_lblk + map->m_len &&
2284 (bh->b_state & BH_FLAGS) == map->m_flags) {
2285 map->m_len++;
2286 return true;
2287 }
2288 return false;
2289}
2290
2291/*
2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293 *
2294 * @mpd - extent of blocks for mapping
2295 * @head - the first buffer in the page
2296 * @bh - buffer we should start processing from
2297 * @lblk - logical number of the block in the file corresponding to @bh
2298 *
2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300 * the page for IO if all buffers in this page were mapped and there's no
2301 * accumulated extent of buffers to map or add buffers in the page to the
2302 * extent of buffers to map. The function returns 1 if the caller can continue
2303 * by processing the next page, 0 if it should stop adding buffers to the
2304 * extent to map because we cannot extend it anymore. It can also return value
2305 * < 0 in case of error during IO submission.
2306 */
2307static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308 struct buffer_head *head,
2309 struct buffer_head *bh,
2310 ext4_lblk_t lblk)
2311{
2312 struct inode *inode = mpd->inode;
2313 int err;
2314 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315 >> inode->i_blkbits;
2316
2317 if (ext4_verity_in_progress(inode))
2318 blocks = EXT_MAX_BLOCKS;
2319
2320 do {
2321 BUG_ON(buffer_locked(bh));
2322
2323 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324 /* Found extent to map? */
2325 if (mpd->map.m_len)
2326 return 0;
2327 /* Buffer needs mapping and handle is not started? */
2328 if (!mpd->do_map)
2329 return 0;
2330 /* Everything mapped so far and we hit EOF */
2331 break;
2332 }
2333 } while (lblk++, (bh = bh->b_this_page) != head);
2334 /* So far everything mapped? Submit the page for IO. */
2335 if (mpd->map.m_len == 0) {
2336 err = mpage_submit_page(mpd, head->b_page);
2337 if (err < 0)
2338 return err;
2339 }
2340 return lblk < blocks;
2341}
2342
2343/*
2344 * mpage_map_buffers - update buffers corresponding to changed extent and
2345 * submit fully mapped pages for IO
2346 *
2347 * @mpd - description of extent to map, on return next extent to map
2348 *
2349 * Scan buffers corresponding to changed extent (we expect corresponding pages
2350 * to be already locked) and update buffer state according to new extent state.
2351 * We map delalloc buffers to their physical location, clear unwritten bits,
2352 * and mark buffers as uninit when we perform writes to unwritten extents
2353 * and do extent conversion after IO is finished. If the last page is not fully
2354 * mapped, we update @map to the next extent in the last page that needs
2355 * mapping. Otherwise we submit the page for IO.
2356 */
2357static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358{
2359 struct pagevec pvec;
2360 int nr_pages, i;
2361 struct inode *inode = mpd->inode;
2362 struct buffer_head *head, *bh;
2363 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364 pgoff_t start, end;
2365 ext4_lblk_t lblk;
2366 sector_t pblock;
2367 int err;
2368
2369 start = mpd->map.m_lblk >> bpp_bits;
2370 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371 lblk = start << bpp_bits;
2372 pblock = mpd->map.m_pblk;
2373
2374 pagevec_init(&pvec);
2375 while (start <= end) {
2376 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377 &start, end);
2378 if (nr_pages == 0)
2379 break;
2380 for (i = 0; i < nr_pages; i++) {
2381 struct page *page = pvec.pages[i];
2382
2383 bh = head = page_buffers(page);
2384 do {
2385 if (lblk < mpd->map.m_lblk)
2386 continue;
2387 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388 /*
2389 * Buffer after end of mapped extent.
2390 * Find next buffer in the page to map.
2391 */
2392 mpd->map.m_len = 0;
2393 mpd->map.m_flags = 0;
2394 /*
2395 * FIXME: If dioread_nolock supports
2396 * blocksize < pagesize, we need to make
2397 * sure we add size mapped so far to
2398 * io_end->size as the following call
2399 * can submit the page for IO.
2400 */
2401 err = mpage_process_page_bufs(mpd, head,
2402 bh, lblk);
2403 pagevec_release(&pvec);
2404 if (err > 0)
2405 err = 0;
2406 return err;
2407 }
2408 if (buffer_delay(bh)) {
2409 clear_buffer_delay(bh);
2410 bh->b_blocknr = pblock++;
2411 }
2412 clear_buffer_unwritten(bh);
2413 } while (lblk++, (bh = bh->b_this_page) != head);
2414
2415 /*
2416 * FIXME: This is going to break if dioread_nolock
2417 * supports blocksize < pagesize as we will try to
2418 * convert potentially unmapped parts of inode.
2419 */
2420 mpd->io_submit.io_end->size += PAGE_SIZE;
2421 /* Page fully mapped - let IO run! */
2422 err = mpage_submit_page(mpd, page);
2423 if (err < 0) {
2424 pagevec_release(&pvec);
2425 return err;
2426 }
2427 }
2428 pagevec_release(&pvec);
2429 }
2430 /* Extent fully mapped and matches with page boundary. We are done. */
2431 mpd->map.m_len = 0;
2432 mpd->map.m_flags = 0;
2433 return 0;
2434}
2435
2436static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437{
2438 struct inode *inode = mpd->inode;
2439 struct ext4_map_blocks *map = &mpd->map;
2440 int get_blocks_flags;
2441 int err, dioread_nolock;
2442
2443 trace_ext4_da_write_pages_extent(inode, map);
2444 /*
2445 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446 * to convert an unwritten extent to be initialized (in the case
2447 * where we have written into one or more preallocated blocks). It is
2448 * possible that we're going to need more metadata blocks than
2449 * previously reserved. However we must not fail because we're in
2450 * writeback and there is nothing we can do about it so it might result
2451 * in data loss. So use reserved blocks to allocate metadata if
2452 * possible.
2453 *
2454 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455 * the blocks in question are delalloc blocks. This indicates
2456 * that the blocks and quotas has already been checked when
2457 * the data was copied into the page cache.
2458 */
2459 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461 EXT4_GET_BLOCKS_IO_SUBMIT;
2462 dioread_nolock = ext4_should_dioread_nolock(inode);
2463 if (dioread_nolock)
2464 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465 if (map->m_flags & (1 << BH_Delay))
2466 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469 if (err < 0)
2470 return err;
2471 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472 if (!mpd->io_submit.io_end->handle &&
2473 ext4_handle_valid(handle)) {
2474 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475 handle->h_rsv_handle = NULL;
2476 }
2477 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478 }
2479
2480 BUG_ON(map->m_len == 0);
2481 return 0;
2482}
2483
2484/*
2485 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486 * mpd->len and submit pages underlying it for IO
2487 *
2488 * @handle - handle for journal operations
2489 * @mpd - extent to map
2490 * @give_up_on_write - we set this to true iff there is a fatal error and there
2491 * is no hope of writing the data. The caller should discard
2492 * dirty pages to avoid infinite loops.
2493 *
2494 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496 * them to initialized or split the described range from larger unwritten
2497 * extent. Note that we need not map all the described range since allocation
2498 * can return less blocks or the range is covered by more unwritten extents. We
2499 * cannot map more because we are limited by reserved transaction credits. On
2500 * the other hand we always make sure that the last touched page is fully
2501 * mapped so that it can be written out (and thus forward progress is
2502 * guaranteed). After mapping we submit all mapped pages for IO.
2503 */
2504static int mpage_map_and_submit_extent(handle_t *handle,
2505 struct mpage_da_data *mpd,
2506 bool *give_up_on_write)
2507{
2508 struct inode *inode = mpd->inode;
2509 struct ext4_map_blocks *map = &mpd->map;
2510 int err;
2511 loff_t disksize;
2512 int progress = 0;
2513
2514 mpd->io_submit.io_end->offset =
2515 ((loff_t)map->m_lblk) << inode->i_blkbits;
2516 do {
2517 err = mpage_map_one_extent(handle, mpd);
2518 if (err < 0) {
2519 struct super_block *sb = inode->i_sb;
2520
2521 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2523 goto invalidate_dirty_pages;
2524 /*
2525 * Let the uper layers retry transient errors.
2526 * In the case of ENOSPC, if ext4_count_free_blocks()
2527 * is non-zero, a commit should free up blocks.
2528 */
2529 if ((err == -ENOMEM) ||
2530 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531 if (progress)
2532 goto update_disksize;
2533 return err;
2534 }
2535 ext4_msg(sb, KERN_CRIT,
2536 "Delayed block allocation failed for "
2537 "inode %lu at logical offset %llu with"
2538 " max blocks %u with error %d",
2539 inode->i_ino,
2540 (unsigned long long)map->m_lblk,
2541 (unsigned)map->m_len, -err);
2542 ext4_msg(sb, KERN_CRIT,
2543 "This should not happen!! Data will "
2544 "be lost\n");
2545 if (err == -ENOSPC)
2546 ext4_print_free_blocks(inode);
2547 invalidate_dirty_pages:
2548 *give_up_on_write = true;
2549 return err;
2550 }
2551 progress = 1;
2552 /*
2553 * Update buffer state, submit mapped pages, and get us new
2554 * extent to map
2555 */
2556 err = mpage_map_and_submit_buffers(mpd);
2557 if (err < 0)
2558 goto update_disksize;
2559 } while (map->m_len);
2560
2561update_disksize:
2562 /*
2563 * Update on-disk size after IO is submitted. Races with
2564 * truncate are avoided by checking i_size under i_data_sem.
2565 */
2566 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2567 if (disksize > EXT4_I(inode)->i_disksize) {
2568 int err2;
2569 loff_t i_size;
2570
2571 down_write(&EXT4_I(inode)->i_data_sem);
2572 i_size = i_size_read(inode);
2573 if (disksize > i_size)
2574 disksize = i_size;
2575 if (disksize > EXT4_I(inode)->i_disksize)
2576 EXT4_I(inode)->i_disksize = disksize;
2577 up_write(&EXT4_I(inode)->i_data_sem);
2578 err2 = ext4_mark_inode_dirty(handle, inode);
2579 if (err2)
2580 ext4_error(inode->i_sb,
2581 "Failed to mark inode %lu dirty",
2582 inode->i_ino);
2583 if (!err)
2584 err = err2;
2585 }
2586 return err;
2587}
2588
2589/*
2590 * Calculate the total number of credits to reserve for one writepages
2591 * iteration. This is called from ext4_writepages(). We map an extent of
2592 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2593 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594 * bpp - 1 blocks in bpp different extents.
2595 */
2596static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597{
2598 int bpp = ext4_journal_blocks_per_page(inode);
2599
2600 return ext4_meta_trans_blocks(inode,
2601 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2602}
2603
2604/*
2605 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606 * and underlying extent to map
2607 *
2608 * @mpd - where to look for pages
2609 *
2610 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611 * IO immediately. When we find a page which isn't mapped we start accumulating
2612 * extent of buffers underlying these pages that needs mapping (formed by
2613 * either delayed or unwritten buffers). We also lock the pages containing
2614 * these buffers. The extent found is returned in @mpd structure (starting at
2615 * mpd->lblk with length mpd->len blocks).
2616 *
2617 * Note that this function can attach bios to one io_end structure which are
2618 * neither logically nor physically contiguous. Although it may seem as an
2619 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620 * case as we need to track IO to all buffers underlying a page in one io_end.
2621 */
2622static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2623{
2624 struct address_space *mapping = mpd->inode->i_mapping;
2625 struct pagevec pvec;
2626 unsigned int nr_pages;
2627 long left = mpd->wbc->nr_to_write;
2628 pgoff_t index = mpd->first_page;
2629 pgoff_t end = mpd->last_page;
2630 xa_mark_t tag;
2631 int i, err = 0;
2632 int blkbits = mpd->inode->i_blkbits;
2633 ext4_lblk_t lblk;
2634 struct buffer_head *head;
2635
2636 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2637 tag = PAGECACHE_TAG_TOWRITE;
2638 else
2639 tag = PAGECACHE_TAG_DIRTY;
2640
2641 pagevec_init(&pvec);
2642 mpd->map.m_len = 0;
2643 mpd->next_page = index;
2644 while (index <= end) {
2645 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2646 tag);
2647 if (nr_pages == 0)
2648 goto out;
2649
2650 for (i = 0; i < nr_pages; i++) {
2651 struct page *page = pvec.pages[i];
2652
2653 /*
2654 * Accumulated enough dirty pages? This doesn't apply
2655 * to WB_SYNC_ALL mode. For integrity sync we have to
2656 * keep going because someone may be concurrently
2657 * dirtying pages, and we might have synced a lot of
2658 * newly appeared dirty pages, but have not synced all
2659 * of the old dirty pages.
2660 */
2661 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662 goto out;
2663
2664 /* If we can't merge this page, we are done. */
2665 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666 goto out;
2667
2668 lock_page(page);
2669 /*
2670 * If the page is no longer dirty, or its mapping no
2671 * longer corresponds to inode we are writing (which
2672 * means it has been truncated or invalidated), or the
2673 * page is already under writeback and we are not doing
2674 * a data integrity writeback, skip the page
2675 */
2676 if (!PageDirty(page) ||
2677 (PageWriteback(page) &&
2678 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2679 unlikely(page->mapping != mapping)) {
2680 unlock_page(page);
2681 continue;
2682 }
2683
2684 wait_on_page_writeback(page);
2685 BUG_ON(PageWriteback(page));
2686
2687 if (mpd->map.m_len == 0)
2688 mpd->first_page = page->index;
2689 mpd->next_page = page->index + 1;
2690 /* Add all dirty buffers to mpd */
2691 lblk = ((ext4_lblk_t)page->index) <<
2692 (PAGE_SHIFT - blkbits);
2693 head = page_buffers(page);
2694 err = mpage_process_page_bufs(mpd, head, head, lblk);
2695 if (err <= 0)
2696 goto out;
2697 err = 0;
2698 left--;
2699 }
2700 pagevec_release(&pvec);
2701 cond_resched();
2702 }
2703 return 0;
2704out:
2705 pagevec_release(&pvec);
2706 return err;
2707}
2708
2709static int ext4_writepages(struct address_space *mapping,
2710 struct writeback_control *wbc)
2711{
2712 pgoff_t writeback_index = 0;
2713 long nr_to_write = wbc->nr_to_write;
2714 int range_whole = 0;
2715 int cycled = 1;
2716 handle_t *handle = NULL;
2717 struct mpage_da_data mpd;
2718 struct inode *inode = mapping->host;
2719 int needed_blocks, rsv_blocks = 0, ret = 0;
2720 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721 bool done;
2722 struct blk_plug plug;
2723 bool give_up_on_write = false;
2724
2725 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726 return -EIO;
2727
2728 percpu_down_read(&sbi->s_journal_flag_rwsem);
2729 trace_ext4_writepages(inode, wbc);
2730
2731 /*
2732 * No pages to write? This is mainly a kludge to avoid starting
2733 * a transaction for special inodes like journal inode on last iput()
2734 * because that could violate lock ordering on umount
2735 */
2736 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2737 goto out_writepages;
2738
2739 if (ext4_should_journal_data(inode)) {
2740 ret = generic_writepages(mapping, wbc);
2741 goto out_writepages;
2742 }
2743
2744 /*
2745 * If the filesystem has aborted, it is read-only, so return
2746 * right away instead of dumping stack traces later on that
2747 * will obscure the real source of the problem. We test
2748 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2749 * the latter could be true if the filesystem is mounted
2750 * read-only, and in that case, ext4_writepages should
2751 * *never* be called, so if that ever happens, we would want
2752 * the stack trace.
2753 */
2754 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2756 ret = -EROFS;
2757 goto out_writepages;
2758 }
2759
2760 /*
2761 * If we have inline data and arrive here, it means that
2762 * we will soon create the block for the 1st page, so
2763 * we'd better clear the inline data here.
2764 */
2765 if (ext4_has_inline_data(inode)) {
2766 /* Just inode will be modified... */
2767 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768 if (IS_ERR(handle)) {
2769 ret = PTR_ERR(handle);
2770 goto out_writepages;
2771 }
2772 BUG_ON(ext4_test_inode_state(inode,
2773 EXT4_STATE_MAY_INLINE_DATA));
2774 ext4_destroy_inline_data(handle, inode);
2775 ext4_journal_stop(handle);
2776 }
2777
2778 if (ext4_should_dioread_nolock(inode)) {
2779 /*
2780 * We may need to convert up to one extent per block in
2781 * the page and we may dirty the inode.
2782 */
2783 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784 PAGE_SIZE >> inode->i_blkbits);
2785 }
2786
2787 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788 range_whole = 1;
2789
2790 if (wbc->range_cyclic) {
2791 writeback_index = mapping->writeback_index;
2792 if (writeback_index)
2793 cycled = 0;
2794 mpd.first_page = writeback_index;
2795 mpd.last_page = -1;
2796 } else {
2797 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2799 }
2800
2801 mpd.inode = inode;
2802 mpd.wbc = wbc;
2803 ext4_io_submit_init(&mpd.io_submit, wbc);
2804retry:
2805 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2806 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807 done = false;
2808 blk_start_plug(&plug);
2809
2810 /*
2811 * First writeback pages that don't need mapping - we can avoid
2812 * starting a transaction unnecessarily and also avoid being blocked
2813 * in the block layer on device congestion while having transaction
2814 * started.
2815 */
2816 mpd.do_map = 0;
2817 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818 if (!mpd.io_submit.io_end) {
2819 ret = -ENOMEM;
2820 goto unplug;
2821 }
2822 ret = mpage_prepare_extent_to_map(&mpd);
2823 /* Unlock pages we didn't use */
2824 mpage_release_unused_pages(&mpd, false);
2825 /* Submit prepared bio */
2826 ext4_io_submit(&mpd.io_submit);
2827 ext4_put_io_end_defer(mpd.io_submit.io_end);
2828 mpd.io_submit.io_end = NULL;
2829 if (ret < 0)
2830 goto unplug;
2831
2832 while (!done && mpd.first_page <= mpd.last_page) {
2833 /* For each extent of pages we use new io_end */
2834 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835 if (!mpd.io_submit.io_end) {
2836 ret = -ENOMEM;
2837 break;
2838 }
2839
2840 /*
2841 * We have two constraints: We find one extent to map and we
2842 * must always write out whole page (makes a difference when
2843 * blocksize < pagesize) so that we don't block on IO when we
2844 * try to write out the rest of the page. Journalled mode is
2845 * not supported by delalloc.
2846 */
2847 BUG_ON(ext4_should_journal_data(inode));
2848 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2849
2850 /* start a new transaction */
2851 handle = ext4_journal_start_with_reserve(inode,
2852 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2853 if (IS_ERR(handle)) {
2854 ret = PTR_ERR(handle);
2855 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2856 "%ld pages, ino %lu; err %d", __func__,
2857 wbc->nr_to_write, inode->i_ino, ret);
2858 /* Release allocated io_end */
2859 ext4_put_io_end(mpd.io_submit.io_end);
2860 mpd.io_submit.io_end = NULL;
2861 break;
2862 }
2863 mpd.do_map = 1;
2864
2865 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866 ret = mpage_prepare_extent_to_map(&mpd);
2867 if (!ret) {
2868 if (mpd.map.m_len)
2869 ret = mpage_map_and_submit_extent(handle, &mpd,
2870 &give_up_on_write);
2871 else {
2872 /*
2873 * We scanned the whole range (or exhausted
2874 * nr_to_write), submitted what was mapped and
2875 * didn't find anything needing mapping. We are
2876 * done.
2877 */
2878 done = true;
2879 }
2880 }
2881 /*
2882 * Caution: If the handle is synchronous,
2883 * ext4_journal_stop() can wait for transaction commit
2884 * to finish which may depend on writeback of pages to
2885 * complete or on page lock to be released. In that
2886 * case, we have to wait until after after we have
2887 * submitted all the IO, released page locks we hold,
2888 * and dropped io_end reference (for extent conversion
2889 * to be able to complete) before stopping the handle.
2890 */
2891 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892 ext4_journal_stop(handle);
2893 handle = NULL;
2894 mpd.do_map = 0;
2895 }
2896 /* Unlock pages we didn't use */
2897 mpage_release_unused_pages(&mpd, give_up_on_write);
2898 /* Submit prepared bio */
2899 ext4_io_submit(&mpd.io_submit);
2900
2901 /*
2902 * Drop our io_end reference we got from init. We have
2903 * to be careful and use deferred io_end finishing if
2904 * we are still holding the transaction as we can
2905 * release the last reference to io_end which may end
2906 * up doing unwritten extent conversion.
2907 */
2908 if (handle) {
2909 ext4_put_io_end_defer(mpd.io_submit.io_end);
2910 ext4_journal_stop(handle);
2911 } else
2912 ext4_put_io_end(mpd.io_submit.io_end);
2913 mpd.io_submit.io_end = NULL;
2914
2915 if (ret == -ENOSPC && sbi->s_journal) {
2916 /*
2917 * Commit the transaction which would
2918 * free blocks released in the transaction
2919 * and try again
2920 */
2921 jbd2_journal_force_commit_nested(sbi->s_journal);
2922 ret = 0;
2923 continue;
2924 }
2925 /* Fatal error - ENOMEM, EIO... */
2926 if (ret)
2927 break;
2928 }
2929unplug:
2930 blk_finish_plug(&plug);
2931 if (!ret && !cycled && wbc->nr_to_write > 0) {
2932 cycled = 1;
2933 mpd.last_page = writeback_index - 1;
2934 mpd.first_page = 0;
2935 goto retry;
2936 }
2937
2938 /* Update index */
2939 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940 /*
2941 * Set the writeback_index so that range_cyclic
2942 * mode will write it back later
2943 */
2944 mapping->writeback_index = mpd.first_page;
2945
2946out_writepages:
2947 trace_ext4_writepages_result(inode, wbc, ret,
2948 nr_to_write - wbc->nr_to_write);
2949 percpu_up_read(&sbi->s_journal_flag_rwsem);
2950 return ret;
2951}
2952
2953static int ext4_dax_writepages(struct address_space *mapping,
2954 struct writeback_control *wbc)
2955{
2956 int ret;
2957 long nr_to_write = wbc->nr_to_write;
2958 struct inode *inode = mapping->host;
2959 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960
2961 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962 return -EIO;
2963
2964 percpu_down_read(&sbi->s_journal_flag_rwsem);
2965 trace_ext4_writepages(inode, wbc);
2966
2967 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968 trace_ext4_writepages_result(inode, wbc, ret,
2969 nr_to_write - wbc->nr_to_write);
2970 percpu_up_read(&sbi->s_journal_flag_rwsem);
2971 return ret;
2972}
2973
2974static int ext4_nonda_switch(struct super_block *sb)
2975{
2976 s64 free_clusters, dirty_clusters;
2977 struct ext4_sb_info *sbi = EXT4_SB(sb);
2978
2979 /*
2980 * switch to non delalloc mode if we are running low
2981 * on free block. The free block accounting via percpu
2982 * counters can get slightly wrong with percpu_counter_batch getting
2983 * accumulated on each CPU without updating global counters
2984 * Delalloc need an accurate free block accounting. So switch
2985 * to non delalloc when we are near to error range.
2986 */
2987 free_clusters =
2988 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989 dirty_clusters =
2990 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2991 /*
2992 * Start pushing delalloc when 1/2 of free blocks are dirty.
2993 */
2994 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2995 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2996
2997 if (2 * free_clusters < 3 * dirty_clusters ||
2998 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2999 /*
3000 * free block count is less than 150% of dirty blocks
3001 * or free blocks is less than watermark
3002 */
3003 return 1;
3004 }
3005 return 0;
3006}
3007
3008/* We always reserve for an inode update; the superblock could be there too */
3009static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010{
3011 if (likely(ext4_has_feature_large_file(inode->i_sb)))
3012 return 1;
3013
3014 if (pos + len <= 0x7fffffffULL)
3015 return 1;
3016
3017 /* We might need to update the superblock to set LARGE_FILE */
3018 return 2;
3019}
3020
3021static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3022 loff_t pos, unsigned len, unsigned flags,
3023 struct page **pagep, void **fsdata)
3024{
3025 int ret, retries = 0;
3026 struct page *page;
3027 pgoff_t index;
3028 struct inode *inode = mapping->host;
3029 handle_t *handle;
3030
3031 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032 return -EIO;
3033
3034 index = pos >> PAGE_SHIFT;
3035
3036 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037 ext4_verity_in_progress(inode)) {
3038 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039 return ext4_write_begin(file, mapping, pos,
3040 len, flags, pagep, fsdata);
3041 }
3042 *fsdata = (void *)0;
3043 trace_ext4_da_write_begin(inode, pos, len, flags);
3044
3045 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046 ret = ext4_da_write_inline_data_begin(mapping, inode,
3047 pos, len, flags,
3048 pagep, fsdata);
3049 if (ret < 0)
3050 return ret;
3051 if (ret == 1)
3052 return 0;
3053 }
3054
3055 /*
3056 * grab_cache_page_write_begin() can take a long time if the
3057 * system is thrashing due to memory pressure, or if the page
3058 * is being written back. So grab it first before we start
3059 * the transaction handle. This also allows us to allocate
3060 * the page (if needed) without using GFP_NOFS.
3061 */
3062retry_grab:
3063 page = grab_cache_page_write_begin(mapping, index, flags);
3064 if (!page)
3065 return -ENOMEM;
3066 unlock_page(page);
3067
3068 /*
3069 * With delayed allocation, we don't log the i_disksize update
3070 * if there is delayed block allocation. But we still need
3071 * to journalling the i_disksize update if writes to the end
3072 * of file which has an already mapped buffer.
3073 */
3074retry_journal:
3075 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076 ext4_da_write_credits(inode, pos, len));
3077 if (IS_ERR(handle)) {
3078 put_page(page);
3079 return PTR_ERR(handle);
3080 }
3081
3082 lock_page(page);
3083 if (page->mapping != mapping) {
3084 /* The page got truncated from under us */
3085 unlock_page(page);
3086 put_page(page);
3087 ext4_journal_stop(handle);
3088 goto retry_grab;
3089 }
3090 /* In case writeback began while the page was unlocked */
3091 wait_for_stable_page(page);
3092
3093#ifdef CONFIG_FS_ENCRYPTION
3094 ret = ext4_block_write_begin(page, pos, len,
3095 ext4_da_get_block_prep);
3096#else
3097 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3098#endif
3099 if (ret < 0) {
3100 unlock_page(page);
3101 ext4_journal_stop(handle);
3102 /*
3103 * block_write_begin may have instantiated a few blocks
3104 * outside i_size. Trim these off again. Don't need
3105 * i_size_read because we hold i_mutex.
3106 */
3107 if (pos + len > inode->i_size)
3108 ext4_truncate_failed_write(inode);
3109
3110 if (ret == -ENOSPC &&
3111 ext4_should_retry_alloc(inode->i_sb, &retries))
3112 goto retry_journal;
3113
3114 put_page(page);
3115 return ret;
3116 }
3117
3118 *pagep = page;
3119 return ret;
3120}
3121
3122/*
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3125 */
3126static int ext4_da_should_update_i_disksize(struct page *page,
3127 unsigned long offset)
3128{
3129 struct buffer_head *bh;
3130 struct inode *inode = page->mapping->host;
3131 unsigned int idx;
3132 int i;
3133
3134 bh = page_buffers(page);
3135 idx = offset >> inode->i_blkbits;
3136
3137 for (i = 0; i < idx; i++)
3138 bh = bh->b_this_page;
3139
3140 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141 return 0;
3142 return 1;
3143}
3144
3145static int ext4_da_write_end(struct file *file,
3146 struct address_space *mapping,
3147 loff_t pos, unsigned len, unsigned copied,
3148 struct page *page, void *fsdata)
3149{
3150 struct inode *inode = mapping->host;
3151 int ret = 0, ret2;
3152 handle_t *handle = ext4_journal_current_handle();
3153 loff_t new_i_size;
3154 unsigned long start, end;
3155 int write_mode = (int)(unsigned long)fsdata;
3156
3157 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158 return ext4_write_end(file, mapping, pos,
3159 len, copied, page, fsdata);
3160
3161 trace_ext4_da_write_end(inode, pos, len, copied);
3162 start = pos & (PAGE_SIZE - 1);
3163 end = start + copied - 1;
3164
3165 /*
3166 * generic_write_end() will run mark_inode_dirty() if i_size
3167 * changes. So let's piggyback the i_disksize mark_inode_dirty
3168 * into that.
3169 */
3170 new_i_size = pos + copied;
3171 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3172 if (ext4_has_inline_data(inode) ||
3173 ext4_da_should_update_i_disksize(page, end)) {
3174 ext4_update_i_disksize(inode, new_i_size);
3175 /* We need to mark inode dirty even if
3176 * new_i_size is less that inode->i_size
3177 * bu greater than i_disksize.(hint delalloc)
3178 */
3179 ext4_mark_inode_dirty(handle, inode);
3180 }
3181 }
3182
3183 if (write_mode != CONVERT_INLINE_DATA &&
3184 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185 ext4_has_inline_data(inode))
3186 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187 page);
3188 else
3189 ret2 = generic_write_end(file, mapping, pos, len, copied,
3190 page, fsdata);
3191
3192 copied = ret2;
3193 if (ret2 < 0)
3194 ret = ret2;
3195 ret2 = ext4_journal_stop(handle);
3196 if (!ret)
3197 ret = ret2;
3198
3199 return ret ? ret : copied;
3200}
3201
3202/*
3203 * Force all delayed allocation blocks to be allocated for a given inode.
3204 */
3205int ext4_alloc_da_blocks(struct inode *inode)
3206{
3207 trace_ext4_alloc_da_blocks(inode);
3208
3209 if (!EXT4_I(inode)->i_reserved_data_blocks)
3210 return 0;
3211
3212 /*
3213 * We do something simple for now. The filemap_flush() will
3214 * also start triggering a write of the data blocks, which is
3215 * not strictly speaking necessary (and for users of
3216 * laptop_mode, not even desirable). However, to do otherwise
3217 * would require replicating code paths in:
3218 *
3219 * ext4_writepages() ->
3220 * write_cache_pages() ---> (via passed in callback function)
3221 * __mpage_da_writepage() -->
3222 * mpage_add_bh_to_extent()
3223 * mpage_da_map_blocks()
3224 *
3225 * The problem is that write_cache_pages(), located in
3226 * mm/page-writeback.c, marks pages clean in preparation for
3227 * doing I/O, which is not desirable if we're not planning on
3228 * doing I/O at all.
3229 *
3230 * We could call write_cache_pages(), and then redirty all of
3231 * the pages by calling redirty_page_for_writepage() but that
3232 * would be ugly in the extreme. So instead we would need to
3233 * replicate parts of the code in the above functions,
3234 * simplifying them because we wouldn't actually intend to
3235 * write out the pages, but rather only collect contiguous
3236 * logical block extents, call the multi-block allocator, and
3237 * then update the buffer heads with the block allocations.
3238 *
3239 * For now, though, we'll cheat by calling filemap_flush(),
3240 * which will map the blocks, and start the I/O, but not
3241 * actually wait for the I/O to complete.
3242 */
3243 return filemap_flush(inode->i_mapping);
3244}
3245
3246/*
3247 * bmap() is special. It gets used by applications such as lilo and by
3248 * the swapper to find the on-disk block of a specific piece of data.
3249 *
3250 * Naturally, this is dangerous if the block concerned is still in the
3251 * journal. If somebody makes a swapfile on an ext4 data-journaling
3252 * filesystem and enables swap, then they may get a nasty shock when the
3253 * data getting swapped to that swapfile suddenly gets overwritten by
3254 * the original zero's written out previously to the journal and
3255 * awaiting writeback in the kernel's buffer cache.
3256 *
3257 * So, if we see any bmap calls here on a modified, data-journaled file,
3258 * take extra steps to flush any blocks which might be in the cache.
3259 */
3260static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3261{
3262 struct inode *inode = mapping->host;
3263 journal_t *journal;
3264 int err;
3265
3266 /*
3267 * We can get here for an inline file via the FIBMAP ioctl
3268 */
3269 if (ext4_has_inline_data(inode))
3270 return 0;
3271
3272 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273 test_opt(inode->i_sb, DELALLOC)) {
3274 /*
3275 * With delalloc we want to sync the file
3276 * so that we can make sure we allocate
3277 * blocks for file
3278 */
3279 filemap_write_and_wait(mapping);
3280 }
3281
3282 if (EXT4_JOURNAL(inode) &&
3283 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3284 /*
3285 * This is a REALLY heavyweight approach, but the use of
3286 * bmap on dirty files is expected to be extremely rare:
3287 * only if we run lilo or swapon on a freshly made file
3288 * do we expect this to happen.
3289 *
3290 * (bmap requires CAP_SYS_RAWIO so this does not
3291 * represent an unprivileged user DOS attack --- we'd be
3292 * in trouble if mortal users could trigger this path at
3293 * will.)
3294 *
3295 * NB. EXT4_STATE_JDATA is not set on files other than
3296 * regular files. If somebody wants to bmap a directory
3297 * or symlink and gets confused because the buffer
3298 * hasn't yet been flushed to disk, they deserve
3299 * everything they get.
3300 */
3301
3302 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3303 journal = EXT4_JOURNAL(inode);
3304 jbd2_journal_lock_updates(journal);
3305 err = jbd2_journal_flush(journal);
3306 jbd2_journal_unlock_updates(journal);
3307
3308 if (err)
3309 return 0;
3310 }
3311
3312 return generic_block_bmap(mapping, block, ext4_get_block);
3313}
3314
3315static int ext4_readpage(struct file *file, struct page *page)
3316{
3317 int ret = -EAGAIN;
3318 struct inode *inode = page->mapping->host;
3319
3320 trace_ext4_readpage(page);
3321
3322 if (ext4_has_inline_data(inode))
3323 ret = ext4_readpage_inline(inode, page);
3324
3325 if (ret == -EAGAIN)
3326 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327 false);
3328
3329 return ret;
3330}
3331
3332static int
3333ext4_readpages(struct file *file, struct address_space *mapping,
3334 struct list_head *pages, unsigned nr_pages)
3335{
3336 struct inode *inode = mapping->host;
3337
3338 /* If the file has inline data, no need to do readpages. */
3339 if (ext4_has_inline_data(inode))
3340 return 0;
3341
3342 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3343}
3344
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346 unsigned int length)
3347{
3348 trace_ext4_invalidatepage(page, offset, length);
3349
3350 /* No journalling happens on data buffers when this function is used */
3351 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353 block_invalidatepage(page, offset, length);
3354}
3355
3356static int __ext4_journalled_invalidatepage(struct page *page,
3357 unsigned int offset,
3358 unsigned int length)
3359{
3360 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362 trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364 /*
3365 * If it's a full truncate we just forget about the pending dirtying
3366 */
3367 if (offset == 0 && length == PAGE_SIZE)
3368 ClearPageChecked(page);
3369
3370 return jbd2_journal_invalidatepage(journal, page, offset, length);
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
3375 unsigned int offset,
3376 unsigned int length)
3377{
3378 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379}
3380
3381static int ext4_releasepage(struct page *page, gfp_t wait)
3382{
3383 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385 trace_ext4_releasepage(page);
3386
3387 /* Page has dirty journalled data -> cannot release */
3388 if (PageChecked(page))
3389 return 0;
3390 if (journal)
3391 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392 else
3393 return try_to_free_buffers(page);
3394}
3395
3396static bool ext4_inode_datasync_dirty(struct inode *inode)
3397{
3398 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400 if (journal)
3401 return !jbd2_transaction_committed(journal,
3402 EXT4_I(inode)->i_datasync_tid);
3403 /* Any metadata buffers to write? */
3404 if (!list_empty(&inode->i_mapping->private_list))
3405 return true;
3406 return inode->i_state & I_DIRTY_DATASYNC;
3407}
3408
3409static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410 unsigned flags, struct iomap *iomap)
3411{
3412 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413 unsigned int blkbits = inode->i_blkbits;
3414 unsigned long first_block, last_block;
3415 struct ext4_map_blocks map;
3416 bool delalloc = false;
3417 int ret;
3418
3419 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420 return -EINVAL;
3421 first_block = offset >> blkbits;
3422 last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423 EXT4_MAX_LOGICAL_BLOCK);
3424
3425 if (flags & IOMAP_REPORT) {
3426 if (ext4_has_inline_data(inode)) {
3427 ret = ext4_inline_data_iomap(inode, iomap);
3428 if (ret != -EAGAIN) {
3429 if (ret == 0 && offset >= iomap->length)
3430 ret = -ENOENT;
3431 return ret;
3432 }
3433 }
3434 } else {
3435 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436 return -ERANGE;
3437 }
3438
3439 map.m_lblk = first_block;
3440 map.m_len = last_block - first_block + 1;
3441
3442 if (flags & IOMAP_REPORT) {
3443 ret = ext4_map_blocks(NULL, inode, &map, 0);
3444 if (ret < 0)
3445 return ret;
3446
3447 if (ret == 0) {
3448 ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449 struct extent_status es;
3450
3451 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452 map.m_lblk, end, &es);
3453
3454 if (!es.es_len || es.es_lblk > end) {
3455 /* entire range is a hole */
3456 } else if (es.es_lblk > map.m_lblk) {
3457 /* range starts with a hole */
3458 map.m_len = es.es_lblk - map.m_lblk;
3459 } else {
3460 ext4_lblk_t offs = 0;
3461
3462 if (es.es_lblk < map.m_lblk)
3463 offs = map.m_lblk - es.es_lblk;
3464 map.m_lblk = es.es_lblk + offs;
3465 map.m_len = es.es_len - offs;
3466 delalloc = true;
3467 }
3468 }
3469 } else if (flags & IOMAP_WRITE) {
3470 int dio_credits;
3471 handle_t *handle;
3472 int retries = 0;
3473
3474 /* Trim mapping request to maximum we can map at once for DIO */
3475 if (map.m_len > DIO_MAX_BLOCKS)
3476 map.m_len = DIO_MAX_BLOCKS;
3477 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478retry:
3479 /*
3480 * Either we allocate blocks and then we don't get unwritten
3481 * extent so we have reserved enough credits, or the blocks
3482 * are already allocated and unwritten and in that case
3483 * extent conversion fits in the credits as well.
3484 */
3485 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486 dio_credits);
3487 if (IS_ERR(handle))
3488 return PTR_ERR(handle);
3489
3490 ret = ext4_map_blocks(handle, inode, &map,
3491 EXT4_GET_BLOCKS_CREATE_ZERO);
3492 if (ret < 0) {
3493 ext4_journal_stop(handle);
3494 if (ret == -ENOSPC &&
3495 ext4_should_retry_alloc(inode->i_sb, &retries))
3496 goto retry;
3497 return ret;
3498 }
3499
3500 /*
3501 * If we added blocks beyond i_size, we need to make sure they
3502 * will get truncated if we crash before updating i_size in
3503 * ext4_iomap_end(). For faults we don't need to do that (and
3504 * even cannot because for orphan list operations inode_lock is
3505 * required) - if we happen to instantiate block beyond i_size,
3506 * it is because we race with truncate which has already added
3507 * the inode to the orphan list.
3508 */
3509 if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510 (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3511 int err;
3512
3513 err = ext4_orphan_add(handle, inode);
3514 if (err < 0) {
3515 ext4_journal_stop(handle);
3516 return err;
3517 }
3518 }
3519 ext4_journal_stop(handle);
3520 } else {
3521 ret = ext4_map_blocks(NULL, inode, &map, 0);
3522 if (ret < 0)
3523 return ret;
3524 }
3525
3526 iomap->flags = 0;
3527 if (ext4_inode_datasync_dirty(inode))
3528 iomap->flags |= IOMAP_F_DIRTY;
3529 iomap->bdev = inode->i_sb->s_bdev;
3530 iomap->dax_dev = sbi->s_daxdev;
3531 iomap->offset = (u64)first_block << blkbits;
3532 iomap->length = (u64)map.m_len << blkbits;
3533
3534 if (ret == 0) {
3535 iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3536 iomap->addr = IOMAP_NULL_ADDR;
3537 } else {
3538 if (map.m_flags & EXT4_MAP_MAPPED) {
3539 iomap->type = IOMAP_MAPPED;
3540 } else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541 iomap->type = IOMAP_UNWRITTEN;
3542 } else {
3543 WARN_ON_ONCE(1);
3544 return -EIO;
3545 }
3546 iomap->addr = (u64)map.m_pblk << blkbits;
3547 }
3548
3549 if (map.m_flags & EXT4_MAP_NEW)
3550 iomap->flags |= IOMAP_F_NEW;
3551
3552 return 0;
3553}
3554
3555static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556 ssize_t written, unsigned flags, struct iomap *iomap)
3557{
3558 int ret = 0;
3559 handle_t *handle;
3560 int blkbits = inode->i_blkbits;
3561 bool truncate = false;
3562
3563 if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3564 return 0;
3565
3566 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567 if (IS_ERR(handle)) {
3568 ret = PTR_ERR(handle);
3569 goto orphan_del;
3570 }
3571 if (ext4_update_inode_size(inode, offset + written))
3572 ext4_mark_inode_dirty(handle, inode);
3573 /*
3574 * We may need to truncate allocated but not written blocks beyond EOF.
3575 */
3576 if (iomap->offset + iomap->length >
3577 ALIGN(inode->i_size, 1 << blkbits)) {
3578 ext4_lblk_t written_blk, end_blk;
3579
3580 written_blk = (offset + written) >> blkbits;
3581 end_blk = (offset + length) >> blkbits;
3582 if (written_blk < end_blk && ext4_can_truncate(inode))
3583 truncate = true;
3584 }
3585 /*
3586 * Remove inode from orphan list if we were extending a inode and
3587 * everything went fine.
3588 */
3589 if (!truncate && inode->i_nlink &&
3590 !list_empty(&EXT4_I(inode)->i_orphan))
3591 ext4_orphan_del(handle, inode);
3592 ext4_journal_stop(handle);
3593 if (truncate) {
3594 ext4_truncate_failed_write(inode);
3595orphan_del:
3596 /*
3597 * If truncate failed early the inode might still be on the
3598 * orphan list; we need to make sure the inode is removed from
3599 * the orphan list in that case.
3600 */
3601 if (inode->i_nlink)
3602 ext4_orphan_del(NULL, inode);
3603 }
3604 return ret;
3605}
3606
3607const struct iomap_ops ext4_iomap_ops = {
3608 .iomap_begin = ext4_iomap_begin,
3609 .iomap_end = ext4_iomap_end,
3610};
3611
3612static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3613 ssize_t size, void *private)
3614{
3615 ext4_io_end_t *io_end = private;
3616
3617 /* if not async direct IO just return */
3618 if (!io_end)
3619 return 0;
3620
3621 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3622 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3623 io_end, io_end->inode->i_ino, iocb, offset, size);
3624
3625 /*
3626 * Error during AIO DIO. We cannot convert unwritten extents as the
3627 * data was not written. Just clear the unwritten flag and drop io_end.
3628 */
3629 if (size <= 0) {
3630 ext4_clear_io_unwritten_flag(io_end);
3631 size = 0;
3632 }
3633 io_end->offset = offset;
3634 io_end->size = size;
3635 ext4_put_io_end(io_end);
3636
3637 return 0;
3638}
3639
3640/*
3641 * Handling of direct IO writes.
3642 *
3643 * For ext4 extent files, ext4 will do direct-io write even to holes,
3644 * preallocated extents, and those write extend the file, no need to
3645 * fall back to buffered IO.
3646 *
3647 * For holes, we fallocate those blocks, mark them as unwritten
3648 * If those blocks were preallocated, we mark sure they are split, but
3649 * still keep the range to write as unwritten.
3650 *
3651 * The unwritten extents will be converted to written when DIO is completed.
3652 * For async direct IO, since the IO may still pending when return, we
3653 * set up an end_io call back function, which will do the conversion
3654 * when async direct IO completed.
3655 *
3656 * If the O_DIRECT write will extend the file then add this inode to the
3657 * orphan list. So recovery will truncate it back to the original size
3658 * if the machine crashes during the write.
3659 *
3660 */
3661static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3662{
3663 struct file *file = iocb->ki_filp;
3664 struct inode *inode = file->f_mapping->host;
3665 struct ext4_inode_info *ei = EXT4_I(inode);
3666 ssize_t ret;
3667 loff_t offset = iocb->ki_pos;
3668 size_t count = iov_iter_count(iter);
3669 int overwrite = 0;
3670 get_block_t *get_block_func = NULL;
3671 int dio_flags = 0;
3672 loff_t final_size = offset + count;
3673 int orphan = 0;
3674 handle_t *handle;
3675
3676 if (final_size > inode->i_size || final_size > ei->i_disksize) {
3677 /* Credits for sb + inode write */
3678 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679 if (IS_ERR(handle)) {
3680 ret = PTR_ERR(handle);
3681 goto out;
3682 }
3683 ret = ext4_orphan_add(handle, inode);
3684 if (ret) {
3685 ext4_journal_stop(handle);
3686 goto out;
3687 }
3688 orphan = 1;
3689 ext4_update_i_disksize(inode, inode->i_size);
3690 ext4_journal_stop(handle);
3691 }
3692
3693 BUG_ON(iocb->private == NULL);
3694
3695 /*
3696 * Make all waiters for direct IO properly wait also for extent
3697 * conversion. This also disallows race between truncate() and
3698 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699 */
3700 inode_dio_begin(inode);
3701
3702 /* If we do a overwrite dio, i_mutex locking can be released */
3703 overwrite = *((int *)iocb->private);
3704
3705 if (overwrite)
3706 inode_unlock(inode);
3707
3708 /*
3709 * For extent mapped files we could direct write to holes and fallocate.
3710 *
3711 * Allocated blocks to fill the hole are marked as unwritten to prevent
3712 * parallel buffered read to expose the stale data before DIO complete
3713 * the data IO.
3714 *
3715 * As to previously fallocated extents, ext4 get_block will just simply
3716 * mark the buffer mapped but still keep the extents unwritten.
3717 *
3718 * For non AIO case, we will convert those unwritten extents to written
3719 * after return back from blockdev_direct_IO. That way we save us from
3720 * allocating io_end structure and also the overhead of offloading
3721 * the extent convertion to a workqueue.
3722 *
3723 * For async DIO, the conversion needs to be deferred when the
3724 * IO is completed. The ext4 end_io callback function will be
3725 * called to take care of the conversion work. Here for async
3726 * case, we allocate an io_end structure to hook to the iocb.
3727 */
3728 iocb->private = NULL;
3729 if (overwrite)
3730 get_block_func = ext4_dio_get_block_overwrite;
3731 else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3732 round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3733 get_block_func = ext4_dio_get_block;
3734 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735 } else if (is_sync_kiocb(iocb)) {
3736 get_block_func = ext4_dio_get_block_unwritten_sync;
3737 dio_flags = DIO_LOCKING;
3738 } else {
3739 get_block_func = ext4_dio_get_block_unwritten_async;
3740 dio_flags = DIO_LOCKING;
3741 }
3742 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743 get_block_func, ext4_end_io_dio, NULL,
3744 dio_flags);
3745
3746 if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3747 EXT4_STATE_DIO_UNWRITTEN)) {
3748 int err;
3749 /*
3750 * for non AIO case, since the IO is already
3751 * completed, we could do the conversion right here
3752 */
3753 err = ext4_convert_unwritten_extents(NULL, inode,
3754 offset, ret);
3755 if (err < 0)
3756 ret = err;
3757 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758 }
3759
3760 inode_dio_end(inode);
3761 /* take i_mutex locking again if we do a ovewrite dio */
3762 if (overwrite)
3763 inode_lock(inode);
3764
3765 if (ret < 0 && final_size > inode->i_size)
3766 ext4_truncate_failed_write(inode);
3767
3768 /* Handle extending of i_size after direct IO write */
3769 if (orphan) {
3770 int err;
3771
3772 /* Credits for sb + inode write */
3773 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774 if (IS_ERR(handle)) {
3775 /*
3776 * We wrote the data but cannot extend
3777 * i_size. Bail out. In async io case, we do
3778 * not return error here because we have
3779 * already submmitted the corresponding
3780 * bio. Returning error here makes the caller
3781 * think that this IO is done and failed
3782 * resulting in race with bio's completion
3783 * handler.
3784 */
3785 if (!ret)
3786 ret = PTR_ERR(handle);
3787 if (inode->i_nlink)
3788 ext4_orphan_del(NULL, inode);
3789
3790 goto out;
3791 }
3792 if (inode->i_nlink)
3793 ext4_orphan_del(handle, inode);
3794 if (ret > 0) {
3795 loff_t end = offset + ret;
3796 if (end > inode->i_size || end > ei->i_disksize) {
3797 ext4_update_i_disksize(inode, end);
3798 if (end > inode->i_size)
3799 i_size_write(inode, end);
3800 /*
3801 * We're going to return a positive `ret'
3802 * here due to non-zero-length I/O, so there's
3803 * no way of reporting error returns from
3804 * ext4_mark_inode_dirty() to userspace. So
3805 * ignore it.
3806 */
3807 ext4_mark_inode_dirty(handle, inode);
3808 }
3809 }
3810 err = ext4_journal_stop(handle);
3811 if (ret == 0)
3812 ret = err;
3813 }
3814out:
3815 return ret;
3816}
3817
3818static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3819{
3820 struct address_space *mapping = iocb->ki_filp->f_mapping;
3821 struct inode *inode = mapping->host;
3822 size_t count = iov_iter_count(iter);
3823 ssize_t ret;
3824
3825 /*
3826 * Shared inode_lock is enough for us - it protects against concurrent
3827 * writes & truncates and since we take care of writing back page cache,
3828 * we are protected against page writeback as well.
3829 */
3830 inode_lock_shared(inode);
3831 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3832 iocb->ki_pos + count - 1);
3833 if (ret)
3834 goto out_unlock;
3835 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836 iter, ext4_dio_get_block, NULL, NULL, 0);
3837out_unlock:
3838 inode_unlock_shared(inode);
3839 return ret;
3840}
3841
3842static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3843{
3844 struct file *file = iocb->ki_filp;
3845 struct inode *inode = file->f_mapping->host;
3846 size_t count = iov_iter_count(iter);
3847 loff_t offset = iocb->ki_pos;
3848 ssize_t ret;
3849
3850#ifdef CONFIG_FS_ENCRYPTION
3851 if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3852 return 0;
3853#endif
3854 if (fsverity_active(inode))
3855 return 0;
3856
3857 /*
3858 * If we are doing data journalling we don't support O_DIRECT
3859 */
3860 if (ext4_should_journal_data(inode))
3861 return 0;
3862
3863 /* Let buffer I/O handle the inline data case. */
3864 if (ext4_has_inline_data(inode))
3865 return 0;
3866
3867 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3868 if (iov_iter_rw(iter) == READ)
3869 ret = ext4_direct_IO_read(iocb, iter);
3870 else
3871 ret = ext4_direct_IO_write(iocb, iter);
3872 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3873 return ret;
3874}
3875
3876/*
3877 * Pages can be marked dirty completely asynchronously from ext4's journalling
3878 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3879 * much here because ->set_page_dirty is called under VFS locks. The page is
3880 * not necessarily locked.
3881 *
3882 * We cannot just dirty the page and leave attached buffers clean, because the
3883 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3884 * or jbddirty because all the journalling code will explode.
3885 *
3886 * So what we do is to mark the page "pending dirty" and next time writepage
3887 * is called, propagate that into the buffers appropriately.
3888 */
3889static int ext4_journalled_set_page_dirty(struct page *page)
3890{
3891 SetPageChecked(page);
3892 return __set_page_dirty_nobuffers(page);
3893}
3894
3895static int ext4_set_page_dirty(struct page *page)
3896{
3897 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898 WARN_ON_ONCE(!page_has_buffers(page));
3899 return __set_page_dirty_buffers(page);
3900}
3901
3902static const struct address_space_operations ext4_aops = {
3903 .readpage = ext4_readpage,
3904 .readpages = ext4_readpages,
3905 .writepage = ext4_writepage,
3906 .writepages = ext4_writepages,
3907 .write_begin = ext4_write_begin,
3908 .write_end = ext4_write_end,
3909 .set_page_dirty = ext4_set_page_dirty,
3910 .bmap = ext4_bmap,
3911 .invalidatepage = ext4_invalidatepage,
3912 .releasepage = ext4_releasepage,
3913 .direct_IO = ext4_direct_IO,
3914 .migratepage = buffer_migrate_page,
3915 .is_partially_uptodate = block_is_partially_uptodate,
3916 .error_remove_page = generic_error_remove_page,
3917};
3918
3919static const struct address_space_operations ext4_journalled_aops = {
3920 .readpage = ext4_readpage,
3921 .readpages = ext4_readpages,
3922 .writepage = ext4_writepage,
3923 .writepages = ext4_writepages,
3924 .write_begin = ext4_write_begin,
3925 .write_end = ext4_journalled_write_end,
3926 .set_page_dirty = ext4_journalled_set_page_dirty,
3927 .bmap = ext4_bmap,
3928 .invalidatepage = ext4_journalled_invalidatepage,
3929 .releasepage = ext4_releasepage,
3930 .direct_IO = ext4_direct_IO,
3931 .is_partially_uptodate = block_is_partially_uptodate,
3932 .error_remove_page = generic_error_remove_page,
3933};
3934
3935static const struct address_space_operations ext4_da_aops = {
3936 .readpage = ext4_readpage,
3937 .readpages = ext4_readpages,
3938 .writepage = ext4_writepage,
3939 .writepages = ext4_writepages,
3940 .write_begin = ext4_da_write_begin,
3941 .write_end = ext4_da_write_end,
3942 .set_page_dirty = ext4_set_page_dirty,
3943 .bmap = ext4_bmap,
3944 .invalidatepage = ext4_invalidatepage,
3945 .releasepage = ext4_releasepage,
3946 .direct_IO = ext4_direct_IO,
3947 .migratepage = buffer_migrate_page,
3948 .is_partially_uptodate = block_is_partially_uptodate,
3949 .error_remove_page = generic_error_remove_page,
3950};
3951
3952static const struct address_space_operations ext4_dax_aops = {
3953 .writepages = ext4_dax_writepages,
3954 .direct_IO = noop_direct_IO,
3955 .set_page_dirty = noop_set_page_dirty,
3956 .bmap = ext4_bmap,
3957 .invalidatepage = noop_invalidatepage,
3958};
3959
3960void ext4_set_aops(struct inode *inode)
3961{
3962 switch (ext4_inode_journal_mode(inode)) {
3963 case EXT4_INODE_ORDERED_DATA_MODE:
3964 case EXT4_INODE_WRITEBACK_DATA_MODE:
3965 break;
3966 case EXT4_INODE_JOURNAL_DATA_MODE:
3967 inode->i_mapping->a_ops = &ext4_journalled_aops;
3968 return;
3969 default:
3970 BUG();
3971 }
3972 if (IS_DAX(inode))
3973 inode->i_mapping->a_ops = &ext4_dax_aops;
3974 else if (test_opt(inode->i_sb, DELALLOC))
3975 inode->i_mapping->a_ops = &ext4_da_aops;
3976 else
3977 inode->i_mapping->a_ops = &ext4_aops;
3978}
3979
3980static int __ext4_block_zero_page_range(handle_t *handle,
3981 struct address_space *mapping, loff_t from, loff_t length)
3982{
3983 ext4_fsblk_t index = from >> PAGE_SHIFT;
3984 unsigned offset = from & (PAGE_SIZE-1);
3985 unsigned blocksize, pos;
3986 ext4_lblk_t iblock;
3987 struct inode *inode = mapping->host;
3988 struct buffer_head *bh;
3989 struct page *page;
3990 int err = 0;
3991
3992 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3993 mapping_gfp_constraint(mapping, ~__GFP_FS));
3994 if (!page)
3995 return -ENOMEM;
3996
3997 blocksize = inode->i_sb->s_blocksize;
3998
3999 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4000
4001 if (!page_has_buffers(page))
4002 create_empty_buffers(page, blocksize, 0);
4003
4004 /* Find the buffer that contains "offset" */
4005 bh = page_buffers(page);
4006 pos = blocksize;
4007 while (offset >= pos) {
4008 bh = bh->b_this_page;
4009 iblock++;
4010 pos += blocksize;
4011 }
4012 if (buffer_freed(bh)) {
4013 BUFFER_TRACE(bh, "freed: skip");
4014 goto unlock;
4015 }
4016 if (!buffer_mapped(bh)) {
4017 BUFFER_TRACE(bh, "unmapped");
4018 ext4_get_block(inode, iblock, bh, 0);
4019 /* unmapped? It's a hole - nothing to do */
4020 if (!buffer_mapped(bh)) {
4021 BUFFER_TRACE(bh, "still unmapped");
4022 goto unlock;
4023 }
4024 }
4025
4026 /* Ok, it's mapped. Make sure it's up-to-date */
4027 if (PageUptodate(page))
4028 set_buffer_uptodate(bh);
4029
4030 if (!buffer_uptodate(bh)) {
4031 err = -EIO;
4032 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4033 wait_on_buffer(bh);
4034 /* Uhhuh. Read error. Complain and punt. */
4035 if (!buffer_uptodate(bh))
4036 goto unlock;
4037 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
4038 /* We expect the key to be set. */
4039 BUG_ON(!fscrypt_has_encryption_key(inode));
4040 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4041 page, blocksize, bh_offset(bh)));
4042 }
4043 }
4044 if (ext4_should_journal_data(inode)) {
4045 BUFFER_TRACE(bh, "get write access");
4046 err = ext4_journal_get_write_access(handle, bh);
4047 if (err)
4048 goto unlock;
4049 }
4050 zero_user(page, offset, length);
4051 BUFFER_TRACE(bh, "zeroed end of block");
4052
4053 if (ext4_should_journal_data(inode)) {
4054 err = ext4_handle_dirty_metadata(handle, inode, bh);
4055 } else {
4056 err = 0;
4057 mark_buffer_dirty(bh);
4058 if (ext4_should_order_data(inode))
4059 err = ext4_jbd2_inode_add_write(handle, inode, from,
4060 length);
4061 }
4062
4063unlock:
4064 unlock_page(page);
4065 put_page(page);
4066 return err;
4067}
4068
4069/*
4070 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071 * starting from file offset 'from'. The range to be zero'd must
4072 * be contained with in one block. If the specified range exceeds
4073 * the end of the block it will be shortened to end of the block
4074 * that cooresponds to 'from'
4075 */
4076static int ext4_block_zero_page_range(handle_t *handle,
4077 struct address_space *mapping, loff_t from, loff_t length)
4078{
4079 struct inode *inode = mapping->host;
4080 unsigned offset = from & (PAGE_SIZE-1);
4081 unsigned blocksize = inode->i_sb->s_blocksize;
4082 unsigned max = blocksize - (offset & (blocksize - 1));
4083
4084 /*
4085 * correct length if it does not fall between
4086 * 'from' and the end of the block
4087 */
4088 if (length > max || length < 0)
4089 length = max;
4090
4091 if (IS_DAX(inode)) {
4092 return iomap_zero_range(inode, from, length, NULL,
4093 &ext4_iomap_ops);
4094 }
4095 return __ext4_block_zero_page_range(handle, mapping, from, length);
4096}
4097
4098/*
4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100 * up to the end of the block which corresponds to `from'.
4101 * This required during truncate. We need to physically zero the tail end
4102 * of that block so it doesn't yield old data if the file is later grown.
4103 */
4104static int ext4_block_truncate_page(handle_t *handle,
4105 struct address_space *mapping, loff_t from)
4106{
4107 unsigned offset = from & (PAGE_SIZE-1);
4108 unsigned length;
4109 unsigned blocksize;
4110 struct inode *inode = mapping->host;
4111
4112 /* If we are processing an encrypted inode during orphan list handling */
4113 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4114 return 0;
4115
4116 blocksize = inode->i_sb->s_blocksize;
4117 length = blocksize - (offset & (blocksize - 1));
4118
4119 return ext4_block_zero_page_range(handle, mapping, from, length);
4120}
4121
4122int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123 loff_t lstart, loff_t length)
4124{
4125 struct super_block *sb = inode->i_sb;
4126 struct address_space *mapping = inode->i_mapping;
4127 unsigned partial_start, partial_end;
4128 ext4_fsblk_t start, end;
4129 loff_t byte_end = (lstart + length - 1);
4130 int err = 0;
4131
4132 partial_start = lstart & (sb->s_blocksize - 1);
4133 partial_end = byte_end & (sb->s_blocksize - 1);
4134
4135 start = lstart >> sb->s_blocksize_bits;
4136 end = byte_end >> sb->s_blocksize_bits;
4137
4138 /* Handle partial zero within the single block */
4139 if (start == end &&
4140 (partial_start || (partial_end != sb->s_blocksize - 1))) {
4141 err = ext4_block_zero_page_range(handle, mapping,
4142 lstart, length);
4143 return err;
4144 }
4145 /* Handle partial zero out on the start of the range */
4146 if (partial_start) {
4147 err = ext4_block_zero_page_range(handle, mapping,
4148 lstart, sb->s_blocksize);
4149 if (err)
4150 return err;
4151 }
4152 /* Handle partial zero out on the end of the range */
4153 if (partial_end != sb->s_blocksize - 1)
4154 err = ext4_block_zero_page_range(handle, mapping,
4155 byte_end - partial_end,
4156 partial_end + 1);
4157 return err;
4158}
4159
4160int ext4_can_truncate(struct inode *inode)
4161{
4162 if (S_ISREG(inode->i_mode))
4163 return 1;
4164 if (S_ISDIR(inode->i_mode))
4165 return 1;
4166 if (S_ISLNK(inode->i_mode))
4167 return !ext4_inode_is_fast_symlink(inode);
4168 return 0;
4169}
4170
4171/*
4172 * We have to make sure i_disksize gets properly updated before we truncate
4173 * page cache due to hole punching or zero range. Otherwise i_disksize update
4174 * can get lost as it may have been postponed to submission of writeback but
4175 * that will never happen after we truncate page cache.
4176 */
4177int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178 loff_t len)
4179{
4180 handle_t *handle;
4181 loff_t size = i_size_read(inode);
4182
4183 WARN_ON(!inode_is_locked(inode));
4184 if (offset > size || offset + len < size)
4185 return 0;
4186
4187 if (EXT4_I(inode)->i_disksize >= size)
4188 return 0;
4189
4190 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191 if (IS_ERR(handle))
4192 return PTR_ERR(handle);
4193 ext4_update_i_disksize(inode, size);
4194 ext4_mark_inode_dirty(handle, inode);
4195 ext4_journal_stop(handle);
4196
4197 return 0;
4198}
4199
4200static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4201{
4202 up_write(&ei->i_mmap_sem);
4203 schedule();
4204 down_write(&ei->i_mmap_sem);
4205}
4206
4207int ext4_break_layouts(struct inode *inode)
4208{
4209 struct ext4_inode_info *ei = EXT4_I(inode);
4210 struct page *page;
4211 int error;
4212
4213 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214 return -EINVAL;
4215
4216 do {
4217 page = dax_layout_busy_page(inode->i_mapping);
4218 if (!page)
4219 return 0;
4220
4221 error = ___wait_var_event(&page->_refcount,
4222 atomic_read(&page->_refcount) == 1,
4223 TASK_INTERRUPTIBLE, 0, 0,
4224 ext4_wait_dax_page(ei));
4225 } while (error == 0);
4226
4227 return error;
4228}
4229
4230/*
4231 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4232 * associated with the given offset and length
4233 *
4234 * @inode: File inode
4235 * @offset: The offset where the hole will begin
4236 * @len: The length of the hole
4237 *
4238 * Returns: 0 on success or negative on failure
4239 */
4240
4241int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4242{
4243 struct super_block *sb = inode->i_sb;
4244 ext4_lblk_t first_block, stop_block;
4245 struct address_space *mapping = inode->i_mapping;
4246 loff_t first_block_offset, last_block_offset;
4247 handle_t *handle;
4248 unsigned int credits;
4249 int ret = 0;
4250
4251 if (!S_ISREG(inode->i_mode))
4252 return -EOPNOTSUPP;
4253
4254 trace_ext4_punch_hole(inode, offset, length, 0);
4255
4256 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257 if (ext4_has_inline_data(inode)) {
4258 down_write(&EXT4_I(inode)->i_mmap_sem);
4259 ret = ext4_convert_inline_data(inode);
4260 up_write(&EXT4_I(inode)->i_mmap_sem);
4261 if (ret)
4262 return ret;
4263 }
4264
4265 /*
4266 * Write out all dirty pages to avoid race conditions
4267 * Then release them.
4268 */
4269 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4270 ret = filemap_write_and_wait_range(mapping, offset,
4271 offset + length - 1);
4272 if (ret)
4273 return ret;
4274 }
4275
4276 inode_lock(inode);
4277
4278 /* No need to punch hole beyond i_size */
4279 if (offset >= inode->i_size)
4280 goto out_mutex;
4281
4282 /*
4283 * If the hole extends beyond i_size, set the hole
4284 * to end after the page that contains i_size
4285 */
4286 if (offset + length > inode->i_size) {
4287 length = inode->i_size +
4288 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4289 offset;
4290 }
4291
4292 if (offset & (sb->s_blocksize - 1) ||
4293 (offset + length) & (sb->s_blocksize - 1)) {
4294 /*
4295 * Attach jinode to inode for jbd2 if we do any zeroing of
4296 * partial block
4297 */
4298 ret = ext4_inode_attach_jinode(inode);
4299 if (ret < 0)
4300 goto out_mutex;
4301
4302 }
4303
4304 /* Wait all existing dio workers, newcomers will block on i_mutex */
4305 inode_dio_wait(inode);
4306
4307 /*
4308 * Prevent page faults from reinstantiating pages we have released from
4309 * page cache.
4310 */
4311 down_write(&EXT4_I(inode)->i_mmap_sem);
4312
4313 ret = ext4_break_layouts(inode);
4314 if (ret)
4315 goto out_dio;
4316
4317 first_block_offset = round_up(offset, sb->s_blocksize);
4318 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319
4320 /* Now release the pages and zero block aligned part of pages*/
4321 if (last_block_offset > first_block_offset) {
4322 ret = ext4_update_disksize_before_punch(inode, offset, length);
4323 if (ret)
4324 goto out_dio;
4325 truncate_pagecache_range(inode, first_block_offset,
4326 last_block_offset);
4327 }
4328
4329 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330 credits = ext4_writepage_trans_blocks(inode);
4331 else
4332 credits = ext4_blocks_for_truncate(inode);
4333 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334 if (IS_ERR(handle)) {
4335 ret = PTR_ERR(handle);
4336 ext4_std_error(sb, ret);
4337 goto out_dio;
4338 }
4339
4340 ret = ext4_zero_partial_blocks(handle, inode, offset,
4341 length);
4342 if (ret)
4343 goto out_stop;
4344
4345 first_block = (offset + sb->s_blocksize - 1) >>
4346 EXT4_BLOCK_SIZE_BITS(sb);
4347 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
4349 /* If there are blocks to remove, do it */
4350 if (stop_block > first_block) {
4351
4352 down_write(&EXT4_I(inode)->i_data_sem);
4353 ext4_discard_preallocations(inode);
4354
4355 ret = ext4_es_remove_extent(inode, first_block,
4356 stop_block - first_block);
4357 if (ret) {
4358 up_write(&EXT4_I(inode)->i_data_sem);
4359 goto out_stop;
4360 }
4361
4362 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363 ret = ext4_ext_remove_space(inode, first_block,
4364 stop_block - 1);
4365 else
4366 ret = ext4_ind_remove_space(handle, inode, first_block,
4367 stop_block);
4368
4369 up_write(&EXT4_I(inode)->i_data_sem);
4370 }
4371 if (IS_SYNC(inode))
4372 ext4_handle_sync(handle);
4373
4374 inode->i_mtime = inode->i_ctime = current_time(inode);
4375 ext4_mark_inode_dirty(handle, inode);
4376 if (ret >= 0)
4377 ext4_update_inode_fsync_trans(handle, inode, 1);
4378out_stop:
4379 ext4_journal_stop(handle);
4380out_dio:
4381 up_write(&EXT4_I(inode)->i_mmap_sem);
4382out_mutex:
4383 inode_unlock(inode);
4384 return ret;
4385}
4386
4387int ext4_inode_attach_jinode(struct inode *inode)
4388{
4389 struct ext4_inode_info *ei = EXT4_I(inode);
4390 struct jbd2_inode *jinode;
4391
4392 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393 return 0;
4394
4395 jinode = jbd2_alloc_inode(GFP_KERNEL);
4396 spin_lock(&inode->i_lock);
4397 if (!ei->jinode) {
4398 if (!jinode) {
4399 spin_unlock(&inode->i_lock);
4400 return -ENOMEM;
4401 }
4402 ei->jinode = jinode;
4403 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404 jinode = NULL;
4405 }
4406 spin_unlock(&inode->i_lock);
4407 if (unlikely(jinode != NULL))
4408 jbd2_free_inode(jinode);
4409 return 0;
4410}
4411
4412/*
4413 * ext4_truncate()
4414 *
4415 * We block out ext4_get_block() block instantiations across the entire
4416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4417 * simultaneously on behalf of the same inode.
4418 *
4419 * As we work through the truncate and commit bits of it to the journal there
4420 * is one core, guiding principle: the file's tree must always be consistent on
4421 * disk. We must be able to restart the truncate after a crash.
4422 *
4423 * The file's tree may be transiently inconsistent in memory (although it
4424 * probably isn't), but whenever we close off and commit a journal transaction,
4425 * the contents of (the filesystem + the journal) must be consistent and
4426 * restartable. It's pretty simple, really: bottom up, right to left (although
4427 * left-to-right works OK too).
4428 *
4429 * Note that at recovery time, journal replay occurs *before* the restart of
4430 * truncate against the orphan inode list.
4431 *
4432 * The committed inode has the new, desired i_size (which is the same as
4433 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4434 * that this inode's truncate did not complete and it will again call
4435 * ext4_truncate() to have another go. So there will be instantiated blocks
4436 * to the right of the truncation point in a crashed ext4 filesystem. But
4437 * that's fine - as long as they are linked from the inode, the post-crash
4438 * ext4_truncate() run will find them and release them.
4439 */
4440int ext4_truncate(struct inode *inode)
4441{
4442 struct ext4_inode_info *ei = EXT4_I(inode);
4443 unsigned int credits;
4444 int err = 0;
4445 handle_t *handle;
4446 struct address_space *mapping = inode->i_mapping;
4447
4448 /*
4449 * There is a possibility that we're either freeing the inode
4450 * or it's a completely new inode. In those cases we might not
4451 * have i_mutex locked because it's not necessary.
4452 */
4453 if (!(inode->i_state & (I_NEW|I_FREEING)))
4454 WARN_ON(!inode_is_locked(inode));
4455 trace_ext4_truncate_enter(inode);
4456
4457 if (!ext4_can_truncate(inode))
4458 return 0;
4459
4460 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4461
4462 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4463 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4464
4465 if (ext4_has_inline_data(inode)) {
4466 int has_inline = 1;
4467
4468 err = ext4_inline_data_truncate(inode, &has_inline);
4469 if (err)
4470 return err;
4471 if (has_inline)
4472 return 0;
4473 }
4474
4475 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477 if (ext4_inode_attach_jinode(inode) < 0)
4478 return 0;
4479 }
4480
4481 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482 credits = ext4_writepage_trans_blocks(inode);
4483 else
4484 credits = ext4_blocks_for_truncate(inode);
4485
4486 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4487 if (IS_ERR(handle))
4488 return PTR_ERR(handle);
4489
4490 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491 ext4_block_truncate_page(handle, mapping, inode->i_size);
4492
4493 /*
4494 * We add the inode to the orphan list, so that if this
4495 * truncate spans multiple transactions, and we crash, we will
4496 * resume the truncate when the filesystem recovers. It also
4497 * marks the inode dirty, to catch the new size.
4498 *
4499 * Implication: the file must always be in a sane, consistent
4500 * truncatable state while each transaction commits.
4501 */
4502 err = ext4_orphan_add(handle, inode);
4503 if (err)
4504 goto out_stop;
4505
4506 down_write(&EXT4_I(inode)->i_data_sem);
4507
4508 ext4_discard_preallocations(inode);
4509
4510 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4511 err = ext4_ext_truncate(handle, inode);
4512 else
4513 ext4_ind_truncate(handle, inode);
4514
4515 up_write(&ei->i_data_sem);
4516 if (err)
4517 goto out_stop;
4518
4519 if (IS_SYNC(inode))
4520 ext4_handle_sync(handle);
4521
4522out_stop:
4523 /*
4524 * If this was a simple ftruncate() and the file will remain alive,
4525 * then we need to clear up the orphan record which we created above.
4526 * However, if this was a real unlink then we were called by
4527 * ext4_evict_inode(), and we allow that function to clean up the
4528 * orphan info for us.
4529 */
4530 if (inode->i_nlink)
4531 ext4_orphan_del(handle, inode);
4532
4533 inode->i_mtime = inode->i_ctime = current_time(inode);
4534 ext4_mark_inode_dirty(handle, inode);
4535 ext4_journal_stop(handle);
4536
4537 trace_ext4_truncate_exit(inode);
4538 return err;
4539}
4540
4541/*
4542 * ext4_get_inode_loc returns with an extra refcount against the inode's
4543 * underlying buffer_head on success. If 'in_mem' is true, we have all
4544 * data in memory that is needed to recreate the on-disk version of this
4545 * inode.
4546 */
4547static int __ext4_get_inode_loc(struct inode *inode,
4548 struct ext4_iloc *iloc, int in_mem)
4549{
4550 struct ext4_group_desc *gdp;
4551 struct buffer_head *bh;
4552 struct super_block *sb = inode->i_sb;
4553 ext4_fsblk_t block;
4554 struct blk_plug plug;
4555 int inodes_per_block, inode_offset;
4556
4557 iloc->bh = NULL;
4558 if (inode->i_ino < EXT4_ROOT_INO ||
4559 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560 return -EFSCORRUPTED;
4561
4562 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564 if (!gdp)
4565 return -EIO;
4566
4567 /*
4568 * Figure out the offset within the block group inode table
4569 */
4570 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571 inode_offset = ((inode->i_ino - 1) %
4572 EXT4_INODES_PER_GROUP(sb));
4573 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575
4576 bh = sb_getblk(sb, block);
4577 if (unlikely(!bh))
4578 return -ENOMEM;
4579 if (!buffer_uptodate(bh)) {
4580 lock_buffer(bh);
4581
4582 /*
4583 * If the buffer has the write error flag, we have failed
4584 * to write out another inode in the same block. In this
4585 * case, we don't have to read the block because we may
4586 * read the old inode data successfully.
4587 */
4588 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589 set_buffer_uptodate(bh);
4590
4591 if (buffer_uptodate(bh)) {
4592 /* someone brought it uptodate while we waited */
4593 unlock_buffer(bh);
4594 goto has_buffer;
4595 }
4596
4597 /*
4598 * If we have all information of the inode in memory and this
4599 * is the only valid inode in the block, we need not read the
4600 * block.
4601 */
4602 if (in_mem) {
4603 struct buffer_head *bitmap_bh;
4604 int i, start;
4605
4606 start = inode_offset & ~(inodes_per_block - 1);
4607
4608 /* Is the inode bitmap in cache? */
4609 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4610 if (unlikely(!bitmap_bh))
4611 goto make_io;
4612
4613 /*
4614 * If the inode bitmap isn't in cache then the
4615 * optimisation may end up performing two reads instead
4616 * of one, so skip it.
4617 */
4618 if (!buffer_uptodate(bitmap_bh)) {
4619 brelse(bitmap_bh);
4620 goto make_io;
4621 }
4622 for (i = start; i < start + inodes_per_block; i++) {
4623 if (i == inode_offset)
4624 continue;
4625 if (ext4_test_bit(i, bitmap_bh->b_data))
4626 break;
4627 }
4628 brelse(bitmap_bh);
4629 if (i == start + inodes_per_block) {
4630 /* all other inodes are free, so skip I/O */
4631 memset(bh->b_data, 0, bh->b_size);
4632 set_buffer_uptodate(bh);
4633 unlock_buffer(bh);
4634 goto has_buffer;
4635 }
4636 }
4637
4638make_io:
4639 /*
4640 * If we need to do any I/O, try to pre-readahead extra
4641 * blocks from the inode table.
4642 */
4643 blk_start_plug(&plug);
4644 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645 ext4_fsblk_t b, end, table;
4646 unsigned num;
4647 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4648
4649 table = ext4_inode_table(sb, gdp);
4650 /* s_inode_readahead_blks is always a power of 2 */
4651 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4652 if (table > b)
4653 b = table;
4654 end = b + ra_blks;
4655 num = EXT4_INODES_PER_GROUP(sb);
4656 if (ext4_has_group_desc_csum(sb))
4657 num -= ext4_itable_unused_count(sb, gdp);
4658 table += num / inodes_per_block;
4659 if (end > table)
4660 end = table;
4661 while (b <= end)
4662 sb_breadahead(sb, b++);
4663 }
4664
4665 /*
4666 * There are other valid inodes in the buffer, this inode
4667 * has in-inode xattrs, or we don't have this inode in memory.
4668 * Read the block from disk.
4669 */
4670 trace_ext4_load_inode(inode);
4671 get_bh(bh);
4672 bh->b_end_io = end_buffer_read_sync;
4673 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4674 blk_finish_plug(&plug);
4675 wait_on_buffer(bh);
4676 if (!buffer_uptodate(bh)) {
4677 EXT4_ERROR_INODE_BLOCK(inode, block,
4678 "unable to read itable block");
4679 brelse(bh);
4680 return -EIO;
4681 }
4682 }
4683has_buffer:
4684 iloc->bh = bh;
4685 return 0;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690 /* We have all inode data except xattrs in memory here. */
4691 return __ext4_get_inode_loc(inode, iloc,
4692 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4693}
4694
4695static bool ext4_should_use_dax(struct inode *inode)
4696{
4697 if (!test_opt(inode->i_sb, DAX))
4698 return false;
4699 if (!S_ISREG(inode->i_mode))
4700 return false;
4701 if (ext4_should_journal_data(inode))
4702 return false;
4703 if (ext4_has_inline_data(inode))
4704 return false;
4705 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4706 return false;
4707 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708 return false;
4709 return true;
4710}
4711
4712void ext4_set_inode_flags(struct inode *inode)
4713{
4714 unsigned int flags = EXT4_I(inode)->i_flags;
4715 unsigned int new_fl = 0;
4716
4717 if (flags & EXT4_SYNC_FL)
4718 new_fl |= S_SYNC;
4719 if (flags & EXT4_APPEND_FL)
4720 new_fl |= S_APPEND;
4721 if (flags & EXT4_IMMUTABLE_FL)
4722 new_fl |= S_IMMUTABLE;
4723 if (flags & EXT4_NOATIME_FL)
4724 new_fl |= S_NOATIME;
4725 if (flags & EXT4_DIRSYNC_FL)
4726 new_fl |= S_DIRSYNC;
4727 if (ext4_should_use_dax(inode))
4728 new_fl |= S_DAX;
4729 if (flags & EXT4_ENCRYPT_FL)
4730 new_fl |= S_ENCRYPTED;
4731 if (flags & EXT4_CASEFOLD_FL)
4732 new_fl |= S_CASEFOLD;
4733 if (flags & EXT4_VERITY_FL)
4734 new_fl |= S_VERITY;
4735 inode_set_flags(inode, new_fl,
4736 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4737 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4738}
4739
4740static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741 struct ext4_inode_info *ei)
4742{
4743 blkcnt_t i_blocks ;
4744 struct inode *inode = &(ei->vfs_inode);
4745 struct super_block *sb = inode->i_sb;
4746
4747 if (ext4_has_feature_huge_file(sb)) {
4748 /* we are using combined 48 bit field */
4749 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750 le32_to_cpu(raw_inode->i_blocks_lo);
4751 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4752 /* i_blocks represent file system block size */
4753 return i_blocks << (inode->i_blkbits - 9);
4754 } else {
4755 return i_blocks;
4756 }
4757 } else {
4758 return le32_to_cpu(raw_inode->i_blocks_lo);
4759 }
4760}
4761
4762static inline int ext4_iget_extra_inode(struct inode *inode,
4763 struct ext4_inode *raw_inode,
4764 struct ext4_inode_info *ei)
4765{
4766 __le32 *magic = (void *)raw_inode +
4767 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4768
4769 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770 EXT4_INODE_SIZE(inode->i_sb) &&
4771 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4772 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4773 return ext4_find_inline_data_nolock(inode);
4774 } else
4775 EXT4_I(inode)->i_inline_off = 0;
4776 return 0;
4777}
4778
4779int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780{
4781 if (!ext4_has_feature_project(inode->i_sb))
4782 return -EOPNOTSUPP;
4783 *projid = EXT4_I(inode)->i_projid;
4784 return 0;
4785}
4786
4787/*
4788 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790 * set.
4791 */
4792static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793{
4794 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795 inode_set_iversion_raw(inode, val);
4796 else
4797 inode_set_iversion_queried(inode, val);
4798}
4799static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800{
4801 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802 return inode_peek_iversion_raw(inode);
4803 else
4804 return inode_peek_iversion(inode);
4805}
4806
4807struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808 ext4_iget_flags flags, const char *function,
4809 unsigned int line)
4810{
4811 struct ext4_iloc iloc;
4812 struct ext4_inode *raw_inode;
4813 struct ext4_inode_info *ei;
4814 struct inode *inode;
4815 journal_t *journal = EXT4_SB(sb)->s_journal;
4816 long ret;
4817 loff_t size;
4818 int block;
4819 uid_t i_uid;
4820 gid_t i_gid;
4821 projid_t i_projid;
4822
4823 if ((!(flags & EXT4_IGET_SPECIAL) &&
4824 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825 (ino < EXT4_ROOT_INO) ||
4826 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827 if (flags & EXT4_IGET_HANDLE)
4828 return ERR_PTR(-ESTALE);
4829 __ext4_error(sb, function, line,
4830 "inode #%lu: comm %s: iget: illegal inode #",
4831 ino, current->comm);
4832 return ERR_PTR(-EFSCORRUPTED);
4833 }
4834
4835 inode = iget_locked(sb, ino);
4836 if (!inode)
4837 return ERR_PTR(-ENOMEM);
4838 if (!(inode->i_state & I_NEW))
4839 return inode;
4840
4841 ei = EXT4_I(inode);
4842 iloc.bh = NULL;
4843
4844 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845 if (ret < 0)
4846 goto bad_inode;
4847 raw_inode = ext4_raw_inode(&iloc);
4848
4849 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4850 ext4_error_inode(inode, function, line, 0,
4851 "iget: root inode unallocated");
4852 ret = -EFSCORRUPTED;
4853 goto bad_inode;
4854 }
4855
4856 if ((flags & EXT4_IGET_HANDLE) &&
4857 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858 ret = -ESTALE;
4859 goto bad_inode;
4860 }
4861
4862 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865 EXT4_INODE_SIZE(inode->i_sb) ||
4866 (ei->i_extra_isize & 3)) {
4867 ext4_error_inode(inode, function, line, 0,
4868 "iget: bad extra_isize %u "
4869 "(inode size %u)",
4870 ei->i_extra_isize,
4871 EXT4_INODE_SIZE(inode->i_sb));
4872 ret = -EFSCORRUPTED;
4873 goto bad_inode;
4874 }
4875 } else
4876 ei->i_extra_isize = 0;
4877
4878 /* Precompute checksum seed for inode metadata */
4879 if (ext4_has_metadata_csum(sb)) {
4880 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881 __u32 csum;
4882 __le32 inum = cpu_to_le32(inode->i_ino);
4883 __le32 gen = raw_inode->i_generation;
4884 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885 sizeof(inum));
4886 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887 sizeof(gen));
4888 }
4889
4890 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4891 ext4_error_inode(inode, function, line, 0,
4892 "iget: checksum invalid");
4893 ret = -EFSBADCRC;
4894 goto bad_inode;
4895 }
4896
4897 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4898 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4900 if (ext4_has_feature_project(sb) &&
4901 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904 else
4905 i_projid = EXT4_DEF_PROJID;
4906
4907 if (!(test_opt(inode->i_sb, NO_UID32))) {
4908 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4910 }
4911 i_uid_write(inode, i_uid);
4912 i_gid_write(inode, i_gid);
4913 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4914 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4915
4916 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4917 ei->i_inline_off = 0;
4918 ei->i_dir_start_lookup = 0;
4919 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920 /* We now have enough fields to check if the inode was active or not.
4921 * This is needed because nfsd might try to access dead inodes
4922 * the test is that same one that e2fsck uses
4923 * NeilBrown 1999oct15
4924 */
4925 if (inode->i_nlink == 0) {
4926 if ((inode->i_mode == 0 ||
4927 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928 ino != EXT4_BOOT_LOADER_INO) {
4929 /* this inode is deleted */
4930 ret = -ESTALE;
4931 goto bad_inode;
4932 }
4933 /* The only unlinked inodes we let through here have
4934 * valid i_mode and are being read by the orphan
4935 * recovery code: that's fine, we're about to complete
4936 * the process of deleting those.
4937 * OR it is the EXT4_BOOT_LOADER_INO which is
4938 * not initialized on a new filesystem. */
4939 }
4940 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4941 ext4_set_inode_flags(inode);
4942 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4943 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4944 if (ext4_has_feature_64bit(sb))
4945 ei->i_file_acl |=
4946 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4947 inode->i_size = ext4_isize(sb, raw_inode);
4948 if ((size = i_size_read(inode)) < 0) {
4949 ext4_error_inode(inode, function, line, 0,
4950 "iget: bad i_size value: %lld", size);
4951 ret = -EFSCORRUPTED;
4952 goto bad_inode;
4953 }
4954 ei->i_disksize = inode->i_size;
4955#ifdef CONFIG_QUOTA
4956 ei->i_reserved_quota = 0;
4957#endif
4958 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959 ei->i_block_group = iloc.block_group;
4960 ei->i_last_alloc_group = ~0;
4961 /*
4962 * NOTE! The in-memory inode i_data array is in little-endian order
4963 * even on big-endian machines: we do NOT byteswap the block numbers!
4964 */
4965 for (block = 0; block < EXT4_N_BLOCKS; block++)
4966 ei->i_data[block] = raw_inode->i_block[block];
4967 INIT_LIST_HEAD(&ei->i_orphan);
4968
4969 /*
4970 * Set transaction id's of transactions that have to be committed
4971 * to finish f[data]sync. We set them to currently running transaction
4972 * as we cannot be sure that the inode or some of its metadata isn't
4973 * part of the transaction - the inode could have been reclaimed and
4974 * now it is reread from disk.
4975 */
4976 if (journal) {
4977 transaction_t *transaction;
4978 tid_t tid;
4979
4980 read_lock(&journal->j_state_lock);
4981 if (journal->j_running_transaction)
4982 transaction = journal->j_running_transaction;
4983 else
4984 transaction = journal->j_committing_transaction;
4985 if (transaction)
4986 tid = transaction->t_tid;
4987 else
4988 tid = journal->j_commit_sequence;
4989 read_unlock(&journal->j_state_lock);
4990 ei->i_sync_tid = tid;
4991 ei->i_datasync_tid = tid;
4992 }
4993
4994 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995 if (ei->i_extra_isize == 0) {
4996 /* The extra space is currently unused. Use it. */
4997 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4998 ei->i_extra_isize = sizeof(struct ext4_inode) -
4999 EXT4_GOOD_OLD_INODE_SIZE;
5000 } else {
5001 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002 if (ret)
5003 goto bad_inode;
5004 }
5005 }
5006
5007 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011
5012 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5013 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014
5015 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5017 ivers |=
5018 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019 }
5020 ext4_inode_set_iversion_queried(inode, ivers);
5021 }
5022
5023 ret = 0;
5024 if (ei->i_file_acl &&
5025 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5026 ext4_error_inode(inode, function, line, 0,
5027 "iget: bad extended attribute block %llu",
5028 ei->i_file_acl);
5029 ret = -EFSCORRUPTED;
5030 goto bad_inode;
5031 } else if (!ext4_has_inline_data(inode)) {
5032 /* validate the block references in the inode */
5033 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034 (S_ISLNK(inode->i_mode) &&
5035 !ext4_inode_is_fast_symlink(inode))) {
5036 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5037 ret = ext4_ext_check_inode(inode);
5038 else
5039 ret = ext4_ind_check_inode(inode);
5040 }
5041 }
5042 if (ret)
5043 goto bad_inode;
5044
5045 if (S_ISREG(inode->i_mode)) {
5046 inode->i_op = &ext4_file_inode_operations;
5047 inode->i_fop = &ext4_file_operations;
5048 ext4_set_aops(inode);
5049 } else if (S_ISDIR(inode->i_mode)) {
5050 inode->i_op = &ext4_dir_inode_operations;
5051 inode->i_fop = &ext4_dir_operations;
5052 } else if (S_ISLNK(inode->i_mode)) {
5053 /* VFS does not allow setting these so must be corruption */
5054 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5055 ext4_error_inode(inode, function, line, 0,
5056 "iget: immutable or append flags "
5057 "not allowed on symlinks");
5058 ret = -EFSCORRUPTED;
5059 goto bad_inode;
5060 }
5061 if (IS_ENCRYPTED(inode)) {
5062 inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063 ext4_set_aops(inode);
5064 } else if (ext4_inode_is_fast_symlink(inode)) {
5065 inode->i_link = (char *)ei->i_data;
5066 inode->i_op = &ext4_fast_symlink_inode_operations;
5067 nd_terminate_link(ei->i_data, inode->i_size,
5068 sizeof(ei->i_data) - 1);
5069 } else {
5070 inode->i_op = &ext4_symlink_inode_operations;
5071 ext4_set_aops(inode);
5072 }
5073 inode_nohighmem(inode);
5074 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5076 inode->i_op = &ext4_special_inode_operations;
5077 if (raw_inode->i_block[0])
5078 init_special_inode(inode, inode->i_mode,
5079 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080 else
5081 init_special_inode(inode, inode->i_mode,
5082 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5083 } else if (ino == EXT4_BOOT_LOADER_INO) {
5084 make_bad_inode(inode);
5085 } else {
5086 ret = -EFSCORRUPTED;
5087 ext4_error_inode(inode, function, line, 0,
5088 "iget: bogus i_mode (%o)", inode->i_mode);
5089 goto bad_inode;
5090 }
5091 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092 ext4_error_inode(inode, function, line, 0,
5093 "casefold flag without casefold feature");
5094 brelse(iloc.bh);
5095
5096 unlock_new_inode(inode);
5097 return inode;
5098
5099bad_inode:
5100 brelse(iloc.bh);
5101 iget_failed(inode);
5102 return ERR_PTR(ret);
5103}
5104
5105static int ext4_inode_blocks_set(handle_t *handle,
5106 struct ext4_inode *raw_inode,
5107 struct ext4_inode_info *ei)
5108{
5109 struct inode *inode = &(ei->vfs_inode);
5110 u64 i_blocks = inode->i_blocks;
5111 struct super_block *sb = inode->i_sb;
5112
5113 if (i_blocks <= ~0U) {
5114 /*
5115 * i_blocks can be represented in a 32 bit variable
5116 * as multiple of 512 bytes
5117 */
5118 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5119 raw_inode->i_blocks_high = 0;
5120 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121 return 0;
5122 }
5123 if (!ext4_has_feature_huge_file(sb))
5124 return -EFBIG;
5125
5126 if (i_blocks <= 0xffffffffffffULL) {
5127 /*
5128 * i_blocks can be represented in a 48 bit variable
5129 * as multiple of 512 bytes
5130 */
5131 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5132 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5133 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5134 } else {
5135 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5136 /* i_block is stored in file system block size */
5137 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5139 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5140 }
5141 return 0;
5142}
5143
5144struct other_inode {
5145 unsigned long orig_ino;
5146 struct ext4_inode *raw_inode;
5147};
5148
5149static int other_inode_match(struct inode * inode, unsigned long ino,
5150 void *data)
5151{
5152 struct other_inode *oi = (struct other_inode *) data;
5153
5154 if ((inode->i_ino != ino) ||
5155 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5156 I_DIRTY_INODE)) ||
5157 ((inode->i_state & I_DIRTY_TIME) == 0))
5158 return 0;
5159 spin_lock(&inode->i_lock);
5160 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161 I_DIRTY_INODE)) == 0) &&
5162 (inode->i_state & I_DIRTY_TIME)) {
5163 struct ext4_inode_info *ei = EXT4_I(inode);
5164
5165 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166 spin_unlock(&inode->i_lock);
5167
5168 spin_lock(&ei->i_raw_lock);
5169 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172 ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173 spin_unlock(&ei->i_raw_lock);
5174 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175 return -1;
5176 }
5177 spin_unlock(&inode->i_lock);
5178 return -1;
5179}
5180
5181/*
5182 * Opportunistically update the other time fields for other inodes in
5183 * the same inode table block.
5184 */
5185static void ext4_update_other_inodes_time(struct super_block *sb,
5186 unsigned long orig_ino, char *buf)
5187{
5188 struct other_inode oi;
5189 unsigned long ino;
5190 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191 int inode_size = EXT4_INODE_SIZE(sb);
5192
5193 oi.orig_ino = orig_ino;
5194 /*
5195 * Calculate the first inode in the inode table block. Inode
5196 * numbers are one-based. That is, the first inode in a block
5197 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198 */
5199 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201 if (ino == orig_ino)
5202 continue;
5203 oi.raw_inode = (struct ext4_inode *) buf;
5204 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205 }
5206}
5207
5208/*
5209 * Post the struct inode info into an on-disk inode location in the
5210 * buffer-cache. This gobbles the caller's reference to the
5211 * buffer_head in the inode location struct.
5212 *
5213 * The caller must have write access to iloc->bh.
5214 */
5215static int ext4_do_update_inode(handle_t *handle,
5216 struct inode *inode,
5217 struct ext4_iloc *iloc)
5218{
5219 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220 struct ext4_inode_info *ei = EXT4_I(inode);
5221 struct buffer_head *bh = iloc->bh;
5222 struct super_block *sb = inode->i_sb;
5223 int err = 0, rc, block;
5224 int need_datasync = 0, set_large_file = 0;
5225 uid_t i_uid;
5226 gid_t i_gid;
5227 projid_t i_projid;
5228
5229 spin_lock(&ei->i_raw_lock);
5230
5231 /* For fields not tracked in the in-memory inode,
5232 * initialise them to zero for new inodes. */
5233 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5234 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5235
5236 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5237 i_uid = i_uid_read(inode);
5238 i_gid = i_gid_read(inode);
5239 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5240 if (!(test_opt(inode->i_sb, NO_UID32))) {
5241 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5243/*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
5247 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248 raw_inode->i_uid_high = 0;
5249 raw_inode->i_gid_high = 0;
5250 } else {
5251 raw_inode->i_uid_high =
5252 cpu_to_le16(high_16_bits(i_uid));
5253 raw_inode->i_gid_high =
5254 cpu_to_le16(high_16_bits(i_gid));
5255 }
5256 } else {
5257 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5259 raw_inode->i_uid_high = 0;
5260 raw_inode->i_gid_high = 0;
5261 }
5262 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5263
5264 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268
5269 err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270 if (err) {
5271 spin_unlock(&ei->i_raw_lock);
5272 goto out_brelse;
5273 }
5274 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5276 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5277 raw_inode->i_file_acl_high =
5278 cpu_to_le16(ei->i_file_acl >> 32);
5279 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5281 ext4_isize_set(raw_inode, ei->i_disksize);
5282 need_datasync = 1;
5283 }
5284 if (ei->i_disksize > 0x7fffffffULL) {
5285 if (!ext4_has_feature_large_file(sb) ||
5286 EXT4_SB(sb)->s_es->s_rev_level ==
5287 cpu_to_le32(EXT4_GOOD_OLD_REV))
5288 set_large_file = 1;
5289 }
5290 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292 if (old_valid_dev(inode->i_rdev)) {
5293 raw_inode->i_block[0] =
5294 cpu_to_le32(old_encode_dev(inode->i_rdev));
5295 raw_inode->i_block[1] = 0;
5296 } else {
5297 raw_inode->i_block[0] = 0;
5298 raw_inode->i_block[1] =
5299 cpu_to_le32(new_encode_dev(inode->i_rdev));
5300 raw_inode->i_block[2] = 0;
5301 }
5302 } else if (!ext4_has_inline_data(inode)) {
5303 for (block = 0; block < EXT4_N_BLOCKS; block++)
5304 raw_inode->i_block[block] = ei->i_data[block];
5305 }
5306
5307 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5308 u64 ivers = ext4_inode_peek_iversion(inode);
5309
5310 raw_inode->i_disk_version = cpu_to_le32(ivers);
5311 if (ei->i_extra_isize) {
5312 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313 raw_inode->i_version_hi =
5314 cpu_to_le32(ivers >> 32);
5315 raw_inode->i_extra_isize =
5316 cpu_to_le16(ei->i_extra_isize);
5317 }
5318 }
5319
5320 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5321 i_projid != EXT4_DEF_PROJID);
5322
5323 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325 raw_inode->i_projid = cpu_to_le32(i_projid);
5326
5327 ext4_inode_csum_set(inode, raw_inode, ei);
5328 spin_unlock(&ei->i_raw_lock);
5329 if (inode->i_sb->s_flags & SB_LAZYTIME)
5330 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331 bh->b_data);
5332
5333 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5334 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5335 if (!err)
5336 err = rc;
5337 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5338 if (set_large_file) {
5339 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5340 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341 if (err)
5342 goto out_brelse;
5343 ext4_set_feature_large_file(sb);
5344 ext4_handle_sync(handle);
5345 err = ext4_handle_dirty_super(handle, sb);
5346 }
5347 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5348out_brelse:
5349 brelse(bh);
5350 ext4_std_error(inode->i_sb, err);
5351 return err;
5352}
5353
5354/*
5355 * ext4_write_inode()
5356 *
5357 * We are called from a few places:
5358 *
5359 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5360 * Here, there will be no transaction running. We wait for any running
5361 * transaction to commit.
5362 *
5363 * - Within flush work (sys_sync(), kupdate and such).
5364 * We wait on commit, if told to.
5365 *
5366 * - Within iput_final() -> write_inode_now()
5367 * We wait on commit, if told to.
5368 *
5369 * In all cases it is actually safe for us to return without doing anything,
5370 * because the inode has been copied into a raw inode buffer in
5371 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5372 * writeback.
5373 *
5374 * Note that we are absolutely dependent upon all inode dirtiers doing the
5375 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376 * which we are interested.
5377 *
5378 * It would be a bug for them to not do this. The code:
5379 *
5380 * mark_inode_dirty(inode)
5381 * stuff();
5382 * inode->i_size = expr;
5383 *
5384 * is in error because write_inode() could occur while `stuff()' is running,
5385 * and the new i_size will be lost. Plus the inode will no longer be on the
5386 * superblock's dirty inode list.
5387 */
5388int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5389{
5390 int err;
5391
5392 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393 sb_rdonly(inode->i_sb))
5394 return 0;
5395
5396 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397 return -EIO;
5398
5399 if (EXT4_SB(inode->i_sb)->s_journal) {
5400 if (ext4_journal_current_handle()) {
5401 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402 dump_stack();
5403 return -EIO;
5404 }
5405
5406 /*
5407 * No need to force transaction in WB_SYNC_NONE mode. Also
5408 * ext4_sync_fs() will force the commit after everything is
5409 * written.
5410 */
5411 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5412 return 0;
5413
5414 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415 EXT4_I(inode)->i_sync_tid);
5416 } else {
5417 struct ext4_iloc iloc;
5418
5419 err = __ext4_get_inode_loc(inode, &iloc, 0);
5420 if (err)
5421 return err;
5422 /*
5423 * sync(2) will flush the whole buffer cache. No need to do
5424 * it here separately for each inode.
5425 */
5426 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5427 sync_dirty_buffer(iloc.bh);
5428 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5429 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430 "IO error syncing inode");
5431 err = -EIO;
5432 }
5433 brelse(iloc.bh);
5434 }
5435 return err;
5436}
5437
5438/*
5439 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440 * buffers that are attached to a page stradding i_size and are undergoing
5441 * commit. In that case we have to wait for commit to finish and try again.
5442 */
5443static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444{
5445 struct page *page;
5446 unsigned offset;
5447 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448 tid_t commit_tid = 0;
5449 int ret;
5450
5451 offset = inode->i_size & (PAGE_SIZE - 1);
5452 /*
5453 * All buffers in the last page remain valid? Then there's nothing to
5454 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5455 * blocksize case
5456 */
5457 if (offset > PAGE_SIZE - i_blocksize(inode))
5458 return;
5459 while (1) {
5460 page = find_lock_page(inode->i_mapping,
5461 inode->i_size >> PAGE_SHIFT);
5462 if (!page)
5463 return;
5464 ret = __ext4_journalled_invalidatepage(page, offset,
5465 PAGE_SIZE - offset);
5466 unlock_page(page);
5467 put_page(page);
5468 if (ret != -EBUSY)
5469 return;
5470 commit_tid = 0;
5471 read_lock(&journal->j_state_lock);
5472 if (journal->j_committing_transaction)
5473 commit_tid = journal->j_committing_transaction->t_tid;
5474 read_unlock(&journal->j_state_lock);
5475 if (commit_tid)
5476 jbd2_log_wait_commit(journal, commit_tid);
5477 }
5478}
5479
5480/*
5481 * ext4_setattr()
5482 *
5483 * Called from notify_change.
5484 *
5485 * We want to trap VFS attempts to truncate the file as soon as
5486 * possible. In particular, we want to make sure that when the VFS
5487 * shrinks i_size, we put the inode on the orphan list and modify
5488 * i_disksize immediately, so that during the subsequent flushing of
5489 * dirty pages and freeing of disk blocks, we can guarantee that any
5490 * commit will leave the blocks being flushed in an unused state on
5491 * disk. (On recovery, the inode will get truncated and the blocks will
5492 * be freed, so we have a strong guarantee that no future commit will
5493 * leave these blocks visible to the user.)
5494 *
5495 * Another thing we have to assure is that if we are in ordered mode
5496 * and inode is still attached to the committing transaction, we must
5497 * we start writeout of all the dirty pages which are being truncated.
5498 * This way we are sure that all the data written in the previous
5499 * transaction are already on disk (truncate waits for pages under
5500 * writeback).
5501 *
5502 * Called with inode->i_mutex down.
5503 */
5504int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5505{
5506 struct inode *inode = d_inode(dentry);
5507 int error, rc = 0;
5508 int orphan = 0;
5509 const unsigned int ia_valid = attr->ia_valid;
5510
5511 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512 return -EIO;
5513
5514 if (unlikely(IS_IMMUTABLE(inode)))
5515 return -EPERM;
5516
5517 if (unlikely(IS_APPEND(inode) &&
5518 (ia_valid & (ATTR_MODE | ATTR_UID |
5519 ATTR_GID | ATTR_TIMES_SET))))
5520 return -EPERM;
5521
5522 error = setattr_prepare(dentry, attr);
5523 if (error)
5524 return error;
5525
5526 error = fscrypt_prepare_setattr(dentry, attr);
5527 if (error)
5528 return error;
5529
5530 error = fsverity_prepare_setattr(dentry, attr);
5531 if (error)
5532 return error;
5533
5534 if (is_quota_modification(inode, attr)) {
5535 error = dquot_initialize(inode);
5536 if (error)
5537 return error;
5538 }
5539 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541 handle_t *handle;
5542
5543 /* (user+group)*(old+new) structure, inode write (sb,
5544 * inode block, ? - but truncate inode update has it) */
5545 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548 if (IS_ERR(handle)) {
5549 error = PTR_ERR(handle);
5550 goto err_out;
5551 }
5552
5553 /* dquot_transfer() calls back ext4_get_inode_usage() which
5554 * counts xattr inode references.
5555 */
5556 down_read(&EXT4_I(inode)->xattr_sem);
5557 error = dquot_transfer(inode, attr);
5558 up_read(&EXT4_I(inode)->xattr_sem);
5559
5560 if (error) {
5561 ext4_journal_stop(handle);
5562 return error;
5563 }
5564 /* Update corresponding info in inode so that everything is in
5565 * one transaction */
5566 if (attr->ia_valid & ATTR_UID)
5567 inode->i_uid = attr->ia_uid;
5568 if (attr->ia_valid & ATTR_GID)
5569 inode->i_gid = attr->ia_gid;
5570 error = ext4_mark_inode_dirty(handle, inode);
5571 ext4_journal_stop(handle);
5572 }
5573
5574 if (attr->ia_valid & ATTR_SIZE) {
5575 handle_t *handle;
5576 loff_t oldsize = inode->i_size;
5577 int shrink = (attr->ia_size < inode->i_size);
5578
5579 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
5582 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583 return -EFBIG;
5584 }
5585 if (!S_ISREG(inode->i_mode))
5586 return -EINVAL;
5587
5588 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589 inode_inc_iversion(inode);
5590
5591 if (shrink) {
5592 if (ext4_should_order_data(inode)) {
5593 error = ext4_begin_ordered_truncate(inode,
5594 attr->ia_size);
5595 if (error)
5596 goto err_out;
5597 }
5598 /*
5599 * Blocks are going to be removed from the inode. Wait
5600 * for dio in flight.
5601 */
5602 inode_dio_wait(inode);
5603 }
5604
5605 down_write(&EXT4_I(inode)->i_mmap_sem);
5606
5607 rc = ext4_break_layouts(inode);
5608 if (rc) {
5609 up_write(&EXT4_I(inode)->i_mmap_sem);
5610 return rc;
5611 }
5612
5613 if (attr->ia_size != inode->i_size) {
5614 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615 if (IS_ERR(handle)) {
5616 error = PTR_ERR(handle);
5617 goto out_mmap_sem;
5618 }
5619 if (ext4_handle_valid(handle) && shrink) {
5620 error = ext4_orphan_add(handle, inode);
5621 orphan = 1;
5622 }
5623 /*
5624 * Update c/mtime on truncate up, ext4_truncate() will
5625 * update c/mtime in shrink case below
5626 */
5627 if (!shrink) {
5628 inode->i_mtime = current_time(inode);
5629 inode->i_ctime = inode->i_mtime;
5630 }
5631 down_write(&EXT4_I(inode)->i_data_sem);
5632 EXT4_I(inode)->i_disksize = attr->ia_size;
5633 rc = ext4_mark_inode_dirty(handle, inode);
5634 if (!error)
5635 error = rc;
5636 /*
5637 * We have to update i_size under i_data_sem together
5638 * with i_disksize to avoid races with writeback code
5639 * running ext4_wb_update_i_disksize().
5640 */
5641 if (!error)
5642 i_size_write(inode, attr->ia_size);
5643 up_write(&EXT4_I(inode)->i_data_sem);
5644 ext4_journal_stop(handle);
5645 if (error)
5646 goto out_mmap_sem;
5647 if (!shrink) {
5648 pagecache_isize_extended(inode, oldsize,
5649 inode->i_size);
5650 } else if (ext4_should_journal_data(inode)) {
5651 ext4_wait_for_tail_page_commit(inode);
5652 }
5653 }
5654
5655 /*
5656 * Truncate pagecache after we've waited for commit
5657 * in data=journal mode to make pages freeable.
5658 */
5659 truncate_pagecache(inode, inode->i_size);
5660 /*
5661 * Call ext4_truncate() even if i_size didn't change to
5662 * truncate possible preallocated blocks.
5663 */
5664 if (attr->ia_size <= oldsize) {
5665 rc = ext4_truncate(inode);
5666 if (rc)
5667 error = rc;
5668 }
5669out_mmap_sem:
5670 up_write(&EXT4_I(inode)->i_mmap_sem);
5671 }
5672
5673 if (!error) {
5674 setattr_copy(inode, attr);
5675 mark_inode_dirty(inode);
5676 }
5677
5678 /*
5679 * If the call to ext4_truncate failed to get a transaction handle at
5680 * all, we need to clean up the in-core orphan list manually.
5681 */
5682 if (orphan && inode->i_nlink)
5683 ext4_orphan_del(NULL, inode);
5684
5685 if (!error && (ia_valid & ATTR_MODE))
5686 rc = posix_acl_chmod(inode, inode->i_mode);
5687
5688err_out:
5689 ext4_std_error(inode->i_sb, error);
5690 if (!error)
5691 error = rc;
5692 return error;
5693}
5694
5695int ext4_getattr(const struct path *path, struct kstat *stat,
5696 u32 request_mask, unsigned int query_flags)
5697{
5698 struct inode *inode = d_inode(path->dentry);
5699 struct ext4_inode *raw_inode;
5700 struct ext4_inode_info *ei = EXT4_I(inode);
5701 unsigned int flags;
5702
5703 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704 stat->result_mask |= STATX_BTIME;
5705 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707 }
5708
5709 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710 if (flags & EXT4_APPEND_FL)
5711 stat->attributes |= STATX_ATTR_APPEND;
5712 if (flags & EXT4_COMPR_FL)
5713 stat->attributes |= STATX_ATTR_COMPRESSED;
5714 if (flags & EXT4_ENCRYPT_FL)
5715 stat->attributes |= STATX_ATTR_ENCRYPTED;
5716 if (flags & EXT4_IMMUTABLE_FL)
5717 stat->attributes |= STATX_ATTR_IMMUTABLE;
5718 if (flags & EXT4_NODUMP_FL)
5719 stat->attributes |= STATX_ATTR_NODUMP;
5720
5721 stat->attributes_mask |= (STATX_ATTR_APPEND |
5722 STATX_ATTR_COMPRESSED |
5723 STATX_ATTR_ENCRYPTED |
5724 STATX_ATTR_IMMUTABLE |
5725 STATX_ATTR_NODUMP);
5726
5727 generic_fillattr(inode, stat);
5728 return 0;
5729}
5730
5731int ext4_file_getattr(const struct path *path, struct kstat *stat,
5732 u32 request_mask, unsigned int query_flags)
5733{
5734 struct inode *inode = d_inode(path->dentry);
5735 u64 delalloc_blocks;
5736
5737 ext4_getattr(path, stat, request_mask, query_flags);
5738
5739 /*
5740 * If there is inline data in the inode, the inode will normally not
5741 * have data blocks allocated (it may have an external xattr block).
5742 * Report at least one sector for such files, so tools like tar, rsync,
5743 * others don't incorrectly think the file is completely sparse.
5744 */
5745 if (unlikely(ext4_has_inline_data(inode)))
5746 stat->blocks += (stat->size + 511) >> 9;
5747
5748 /*
5749 * We can't update i_blocks if the block allocation is delayed
5750 * otherwise in the case of system crash before the real block
5751 * allocation is done, we will have i_blocks inconsistent with
5752 * on-disk file blocks.
5753 * We always keep i_blocks updated together with real
5754 * allocation. But to not confuse with user, stat
5755 * will return the blocks that include the delayed allocation
5756 * blocks for this file.
5757 */
5758 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5759 EXT4_I(inode)->i_reserved_data_blocks);
5760 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5761 return 0;
5762}
5763
5764static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765 int pextents)
5766{
5767 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5768 return ext4_ind_trans_blocks(inode, lblocks);
5769 return ext4_ext_index_trans_blocks(inode, pextents);
5770}
5771
5772/*
5773 * Account for index blocks, block groups bitmaps and block group
5774 * descriptor blocks if modify datablocks and index blocks
5775 * worse case, the indexs blocks spread over different block groups
5776 *
5777 * If datablocks are discontiguous, they are possible to spread over
5778 * different block groups too. If they are contiguous, with flexbg,
5779 * they could still across block group boundary.
5780 *
5781 * Also account for superblock, inode, quota and xattr blocks
5782 */
5783static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5784 int pextents)
5785{
5786 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787 int gdpblocks;
5788 int idxblocks;
5789 int ret = 0;
5790
5791 /*
5792 * How many index blocks need to touch to map @lblocks logical blocks
5793 * to @pextents physical extents?
5794 */
5795 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5796
5797 ret = idxblocks;
5798
5799 /*
5800 * Now let's see how many group bitmaps and group descriptors need
5801 * to account
5802 */
5803 groups = idxblocks + pextents;
5804 gdpblocks = groups;
5805 if (groups > ngroups)
5806 groups = ngroups;
5807 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809
5810 /* bitmaps and block group descriptor blocks */
5811 ret += groups + gdpblocks;
5812
5813 /* Blocks for super block, inode, quota and xattr blocks */
5814 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815
5816 return ret;
5817}
5818
5819/*
5820 * Calculate the total number of credits to reserve to fit
5821 * the modification of a single pages into a single transaction,
5822 * which may include multiple chunks of block allocations.
5823 *
5824 * This could be called via ext4_write_begin()
5825 *
5826 * We need to consider the worse case, when
5827 * one new block per extent.
5828 */
5829int ext4_writepage_trans_blocks(struct inode *inode)
5830{
5831 int bpp = ext4_journal_blocks_per_page(inode);
5832 int ret;
5833
5834 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5835
5836 /* Account for data blocks for journalled mode */
5837 if (ext4_should_journal_data(inode))
5838 ret += bpp;
5839 return ret;
5840}
5841
5842/*
5843 * Calculate the journal credits for a chunk of data modification.
5844 *
5845 * This is called from DIO, fallocate or whoever calling
5846 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5847 *
5848 * journal buffers for data blocks are not included here, as DIO
5849 * and fallocate do no need to journal data buffers.
5850 */
5851int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852{
5853 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854}
5855
5856/*
5857 * The caller must have previously called ext4_reserve_inode_write().
5858 * Give this, we know that the caller already has write access to iloc->bh.
5859 */
5860int ext4_mark_iloc_dirty(handle_t *handle,
5861 struct inode *inode, struct ext4_iloc *iloc)
5862{
5863 int err = 0;
5864
5865 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866 put_bh(iloc->bh);
5867 return -EIO;
5868 }
5869 if (IS_I_VERSION(inode))
5870 inode_inc_iversion(inode);
5871
5872 /* the do_update_inode consumes one bh->b_count */
5873 get_bh(iloc->bh);
5874
5875 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5876 err = ext4_do_update_inode(handle, inode, iloc);
5877 put_bh(iloc->bh);
5878 return err;
5879}
5880
5881/*
5882 * On success, We end up with an outstanding reference count against
5883 * iloc->bh. This _must_ be cleaned up later.
5884 */
5885
5886int
5887ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5888 struct ext4_iloc *iloc)
5889{
5890 int err;
5891
5892 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5893 return -EIO;
5894
5895 err = ext4_get_inode_loc(inode, iloc);
5896 if (!err) {
5897 BUFFER_TRACE(iloc->bh, "get_write_access");
5898 err = ext4_journal_get_write_access(handle, iloc->bh);
5899 if (err) {
5900 brelse(iloc->bh);
5901 iloc->bh = NULL;
5902 }
5903 }
5904 ext4_std_error(inode->i_sb, err);
5905 return err;
5906}
5907
5908static int __ext4_expand_extra_isize(struct inode *inode,
5909 unsigned int new_extra_isize,
5910 struct ext4_iloc *iloc,
5911 handle_t *handle, int *no_expand)
5912{
5913 struct ext4_inode *raw_inode;
5914 struct ext4_xattr_ibody_header *header;
5915 int error;
5916
5917 raw_inode = ext4_raw_inode(iloc);
5918
5919 header = IHDR(inode, raw_inode);
5920
5921 /* No extended attributes present */
5922 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5923 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5924 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5925 EXT4_I(inode)->i_extra_isize, 0,
5926 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5927 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5928 return 0;
5929 }
5930
5931 /* try to expand with EAs present */
5932 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5933 raw_inode, handle);
5934 if (error) {
5935 /*
5936 * Inode size expansion failed; don't try again
5937 */
5938 *no_expand = 1;
5939 }
5940
5941 return error;
5942}
5943
5944/*
5945 * Expand an inode by new_extra_isize bytes.
5946 * Returns 0 on success or negative error number on failure.
5947 */
5948static int ext4_try_to_expand_extra_isize(struct inode *inode,
5949 unsigned int new_extra_isize,
5950 struct ext4_iloc iloc,
5951 handle_t *handle)
5952{
5953 int no_expand;
5954 int error;
5955
5956 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5957 return -EOVERFLOW;
5958
5959 /*
5960 * In nojournal mode, we can immediately attempt to expand
5961 * the inode. When journaled, we first need to obtain extra
5962 * buffer credits since we may write into the EA block
5963 * with this same handle. If journal_extend fails, then it will
5964 * only result in a minor loss of functionality for that inode.
5965 * If this is felt to be critical, then e2fsck should be run to
5966 * force a large enough s_min_extra_isize.
5967 */
5968 if (ext4_handle_valid(handle) &&
5969 jbd2_journal_extend(handle,
5970 EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5971 return -ENOSPC;
5972
5973 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5974 return -EBUSY;
5975
5976 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977 handle, &no_expand);
5978 ext4_write_unlock_xattr(inode, &no_expand);
5979
5980 return error;
5981}
5982
5983int ext4_expand_extra_isize(struct inode *inode,
5984 unsigned int new_extra_isize,
5985 struct ext4_iloc *iloc)
5986{
5987 handle_t *handle;
5988 int no_expand;
5989 int error, rc;
5990
5991 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992 brelse(iloc->bh);
5993 return -EOVERFLOW;
5994 }
5995
5996 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998 if (IS_ERR(handle)) {
5999 error = PTR_ERR(handle);
6000 brelse(iloc->bh);
6001 return error;
6002 }
6003
6004 ext4_write_lock_xattr(inode, &no_expand);
6005
6006 BUFFER_TRACE(iloc->bh, "get_write_access");
6007 error = ext4_journal_get_write_access(handle, iloc->bh);
6008 if (error) {
6009 brelse(iloc->bh);
6010 goto out_stop;
6011 }
6012
6013 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6014 handle, &no_expand);
6015
6016 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6017 if (!error)
6018 error = rc;
6019
6020 ext4_write_unlock_xattr(inode, &no_expand);
6021out_stop:
6022 ext4_journal_stop(handle);
6023 return error;
6024}
6025
6026/*
6027 * What we do here is to mark the in-core inode as clean with respect to inode
6028 * dirtiness (it may still be data-dirty).
6029 * This means that the in-core inode may be reaped by prune_icache
6030 * without having to perform any I/O. This is a very good thing,
6031 * because *any* task may call prune_icache - even ones which
6032 * have a transaction open against a different journal.
6033 *
6034 * Is this cheating? Not really. Sure, we haven't written the
6035 * inode out, but prune_icache isn't a user-visible syncing function.
6036 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6037 * we start and wait on commits.
6038 */
6039int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6040{
6041 struct ext4_iloc iloc;
6042 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043 int err;
6044
6045 might_sleep();
6046 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6047 err = ext4_reserve_inode_write(handle, inode, &iloc);
6048 if (err)
6049 return err;
6050
6051 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6052 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6053 iloc, handle);
6054
6055 return ext4_mark_iloc_dirty(handle, inode, &iloc);
6056}
6057
6058/*
6059 * ext4_dirty_inode() is called from __mark_inode_dirty()
6060 *
6061 * We're really interested in the case where a file is being extended.
6062 * i_size has been changed by generic_commit_write() and we thus need
6063 * to include the updated inode in the current transaction.
6064 *
6065 * Also, dquot_alloc_block() will always dirty the inode when blocks
6066 * are allocated to the file.
6067 *
6068 * If the inode is marked synchronous, we don't honour that here - doing
6069 * so would cause a commit on atime updates, which we don't bother doing.
6070 * We handle synchronous inodes at the highest possible level.
6071 *
6072 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
6073 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6074 * to copy into the on-disk inode structure are the timestamp files.
6075 */
6076void ext4_dirty_inode(struct inode *inode, int flags)
6077{
6078 handle_t *handle;
6079
6080 if (flags == I_DIRTY_TIME)
6081 return;
6082 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6083 if (IS_ERR(handle))
6084 goto out;
6085
6086 ext4_mark_inode_dirty(handle, inode);
6087
6088 ext4_journal_stop(handle);
6089out:
6090 return;
6091}
6092
6093int ext4_change_inode_journal_flag(struct inode *inode, int val)
6094{
6095 journal_t *journal;
6096 handle_t *handle;
6097 int err;
6098 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6099
6100 /*
6101 * We have to be very careful here: changing a data block's
6102 * journaling status dynamically is dangerous. If we write a
6103 * data block to the journal, change the status and then delete
6104 * that block, we risk forgetting to revoke the old log record
6105 * from the journal and so a subsequent replay can corrupt data.
6106 * So, first we make sure that the journal is empty and that
6107 * nobody is changing anything.
6108 */
6109
6110 journal = EXT4_JOURNAL(inode);
6111 if (!journal)
6112 return 0;
6113 if (is_journal_aborted(journal))
6114 return -EROFS;
6115
6116 /* Wait for all existing dio workers */
6117 inode_dio_wait(inode);
6118
6119 /*
6120 * Before flushing the journal and switching inode's aops, we have
6121 * to flush all dirty data the inode has. There can be outstanding
6122 * delayed allocations, there can be unwritten extents created by
6123 * fallocate or buffered writes in dioread_nolock mode covered by
6124 * dirty data which can be converted only after flushing the dirty
6125 * data (and journalled aops don't know how to handle these cases).
6126 */
6127 if (val) {
6128 down_write(&EXT4_I(inode)->i_mmap_sem);
6129 err = filemap_write_and_wait(inode->i_mapping);
6130 if (err < 0) {
6131 up_write(&EXT4_I(inode)->i_mmap_sem);
6132 return err;
6133 }
6134 }
6135
6136 percpu_down_write(&sbi->s_journal_flag_rwsem);
6137 jbd2_journal_lock_updates(journal);
6138
6139 /*
6140 * OK, there are no updates running now, and all cached data is
6141 * synced to disk. We are now in a completely consistent state
6142 * which doesn't have anything in the journal, and we know that
6143 * no filesystem updates are running, so it is safe to modify
6144 * the inode's in-core data-journaling state flag now.
6145 */
6146
6147 if (val)
6148 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6149 else {
6150 err = jbd2_journal_flush(journal);
6151 if (err < 0) {
6152 jbd2_journal_unlock_updates(journal);
6153 percpu_up_write(&sbi->s_journal_flag_rwsem);
6154 return err;
6155 }
6156 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6157 }
6158 ext4_set_aops(inode);
6159
6160 jbd2_journal_unlock_updates(journal);
6161 percpu_up_write(&sbi->s_journal_flag_rwsem);
6162
6163 if (val)
6164 up_write(&EXT4_I(inode)->i_mmap_sem);
6165
6166 /* Finally we can mark the inode as dirty. */
6167
6168 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6169 if (IS_ERR(handle))
6170 return PTR_ERR(handle);
6171
6172 err = ext4_mark_inode_dirty(handle, inode);
6173 ext4_handle_sync(handle);
6174 ext4_journal_stop(handle);
6175 ext4_std_error(inode->i_sb, err);
6176
6177 return err;
6178}
6179
6180static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6181{
6182 return !buffer_mapped(bh);
6183}
6184
6185vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6186{
6187 struct vm_area_struct *vma = vmf->vma;
6188 struct page *page = vmf->page;
6189 loff_t size;
6190 unsigned long len;
6191 int err;
6192 vm_fault_t ret;
6193 struct file *file = vma->vm_file;
6194 struct inode *inode = file_inode(file);
6195 struct address_space *mapping = inode->i_mapping;
6196 handle_t *handle;
6197 get_block_t *get_block;
6198 int retries = 0;
6199
6200 if (unlikely(IS_IMMUTABLE(inode)))
6201 return VM_FAULT_SIGBUS;
6202
6203 sb_start_pagefault(inode->i_sb);
6204 file_update_time(vma->vm_file);
6205
6206 down_read(&EXT4_I(inode)->i_mmap_sem);
6207
6208 err = ext4_convert_inline_data(inode);
6209 if (err)
6210 goto out_ret;
6211
6212 /* Delalloc case is easy... */
6213 if (test_opt(inode->i_sb, DELALLOC) &&
6214 !ext4_should_journal_data(inode) &&
6215 !ext4_nonda_switch(inode->i_sb)) {
6216 do {
6217 err = block_page_mkwrite(vma, vmf,
6218 ext4_da_get_block_prep);
6219 } while (err == -ENOSPC &&
6220 ext4_should_retry_alloc(inode->i_sb, &retries));
6221 goto out_ret;
6222 }
6223
6224 lock_page(page);
6225 size = i_size_read(inode);
6226 /* Page got truncated from under us? */
6227 if (page->mapping != mapping || page_offset(page) > size) {
6228 unlock_page(page);
6229 ret = VM_FAULT_NOPAGE;
6230 goto out;
6231 }
6232
6233 if (page->index == size >> PAGE_SHIFT)
6234 len = size & ~PAGE_MASK;
6235 else
6236 len = PAGE_SIZE;
6237 /*
6238 * Return if we have all the buffers mapped. This avoids the need to do
6239 * journal_start/journal_stop which can block and take a long time
6240 */
6241 if (page_has_buffers(page)) {
6242 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6243 0, len, NULL,
6244 ext4_bh_unmapped)) {
6245 /* Wait so that we don't change page under IO */
6246 wait_for_stable_page(page);
6247 ret = VM_FAULT_LOCKED;
6248 goto out;
6249 }
6250 }
6251 unlock_page(page);
6252 /* OK, we need to fill the hole... */
6253 if (ext4_should_dioread_nolock(inode))
6254 get_block = ext4_get_block_unwritten;
6255 else
6256 get_block = ext4_get_block;
6257retry_alloc:
6258 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6259 ext4_writepage_trans_blocks(inode));
6260 if (IS_ERR(handle)) {
6261 ret = VM_FAULT_SIGBUS;
6262 goto out;
6263 }
6264 err = block_page_mkwrite(vma, vmf, get_block);
6265 if (!err && ext4_should_journal_data(inode)) {
6266 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6267 PAGE_SIZE, NULL, do_journal_get_write_access)) {
6268 unlock_page(page);
6269 ret = VM_FAULT_SIGBUS;
6270 ext4_journal_stop(handle);
6271 goto out;
6272 }
6273 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274 }
6275 ext4_journal_stop(handle);
6276 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6277 goto retry_alloc;
6278out_ret:
6279 ret = block_page_mkwrite_return(err);
6280out:
6281 up_read(&EXT4_I(inode)->i_mmap_sem);
6282 sb_end_pagefault(inode->i_sb);
6283 return ret;
6284}
6285
6286vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287{
6288 struct inode *inode = file_inode(vmf->vma->vm_file);
6289 vm_fault_t ret;
6290
6291 down_read(&EXT4_I(inode)->i_mmap_sem);
6292 ret = filemap_fault(vmf);
6293 up_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295 return ret;
6296}