Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40#include <linux/iomap.h>
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "truncate.h"
  46
  47#include <trace/events/ext4.h>
  48
  49#define MPAGE_DA_EXTENT_TAIL 0x01
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52			      struct ext4_inode_info *ei)
  53{
  54	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  55	__u32 csum;
  56	__u16 dummy_csum = 0;
  57	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58	unsigned int csum_size = sizeof(dummy_csum);
  59
  60	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62	offset += csum_size;
  63	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67		offset = offsetof(struct ext4_inode, i_checksum_hi);
  68		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69				   EXT4_GOOD_OLD_INODE_SIZE,
  70				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73					   csum_size);
  74			offset += csum_size;
  75		}
  76		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78	}
  79
  80	return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84				  struct ext4_inode_info *ei)
  85{
  86	__u32 provided, calculated;
  87
  88	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89	    cpu_to_le32(EXT4_OS_LINUX) ||
  90	    !ext4_has_metadata_csum(inode->i_sb))
  91		return 1;
  92
  93	provided = le16_to_cpu(raw->i_checksum_lo);
  94	calculated = ext4_inode_csum(inode, raw, ei);
  95	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98	else
  99		calculated &= 0xFFFF;
 100
 101	return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105				struct ext4_inode_info *ei)
 106{
 107	__u32 csum;
 108
 109	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110	    cpu_to_le32(EXT4_OS_LINUX) ||
 111	    !ext4_has_metadata_csum(inode->i_sb))
 112		return;
 113
 114	csum = ext4_inode_csum(inode, raw, ei);
 115	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122					      loff_t new_size)
 123{
 124	trace_ext4_begin_ordered_truncate(inode, new_size);
 125	/*
 126	 * If jinode is zero, then we never opened the file for
 127	 * writing, so there's no need to call
 128	 * jbd2_journal_begin_ordered_truncate() since there's no
 129	 * outstanding writes we need to flush.
 130	 */
 131	if (!EXT4_I(inode)->jinode)
 132		return 0;
 133	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134						   EXT4_I(inode)->jinode,
 135						   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139				unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143				  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 
 147 */
 148int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 
 152
 153	if (ext4_has_inline_data(inode))
 154		return 0;
 155
 156	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 
 
 
 157}
 158
 159/*
 160 * Restart the transaction associated with *handle.  This does a commit,
 161 * so before we call here everything must be consistently dirtied against
 162 * this transaction.
 163 */
 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 165				 int nblocks)
 166{
 167	int ret;
 168
 169	/*
 170	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 171	 * moment, get_block can be called only for blocks inside i_size since
 172	 * page cache has been already dropped and writes are blocked by
 173	 * i_mutex. So we can safely drop the i_data_sem here.
 174	 */
 175	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 176	jbd_debug(2, "restarting handle %p\n", handle);
 177	up_write(&EXT4_I(inode)->i_data_sem);
 178	ret = ext4_journal_restart(handle, nblocks);
 179	down_write(&EXT4_I(inode)->i_data_sem);
 180	ext4_discard_preallocations(inode);
 181
 182	return ret;
 183}
 184
 185/*
 186 * Called at the last iput() if i_nlink is zero.
 187 */
 188void ext4_evict_inode(struct inode *inode)
 189{
 190	handle_t *handle;
 191	int err;
 
 
 192
 193	trace_ext4_evict_inode(inode);
 194
 195	if (inode->i_nlink) {
 196		/*
 197		 * When journalling data dirty buffers are tracked only in the
 198		 * journal. So although mm thinks everything is clean and
 199		 * ready for reaping the inode might still have some pages to
 200		 * write in the running transaction or waiting to be
 201		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 202		 * (via truncate_inode_pages()) to discard these buffers can
 203		 * cause data loss. Also even if we did not discard these
 204		 * buffers, we would have no way to find them after the inode
 205		 * is reaped and thus user could see stale data if he tries to
 206		 * read them before the transaction is checkpointed. So be
 207		 * careful and force everything to disk here... We use
 208		 * ei->i_datasync_tid to store the newest transaction
 209		 * containing inode's data.
 210		 *
 211		 * Note that directories do not have this problem because they
 212		 * don't use page cache.
 213		 */
 214		if (inode->i_ino != EXT4_JOURNAL_INO &&
 215		    ext4_should_journal_data(inode) &&
 216		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 
 217			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 218			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 219
 220			jbd2_complete_transaction(journal, commit_tid);
 221			filemap_write_and_wait(&inode->i_data);
 222		}
 223		truncate_inode_pages_final(&inode->i_data);
 224
 225		goto no_delete;
 226	}
 227
 228	if (is_bad_inode(inode))
 229		goto no_delete;
 230	dquot_initialize(inode);
 231
 232	if (ext4_should_order_data(inode))
 233		ext4_begin_ordered_truncate(inode, 0);
 234	truncate_inode_pages_final(&inode->i_data);
 235
 236	/*
 237	 * Protect us against freezing - iput() caller didn't have to have any
 238	 * protection against it
 239	 */
 240	sb_start_intwrite(inode->i_sb);
 
 
 
 
 241	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 242				    ext4_blocks_for_truncate(inode)+3);
 243	if (IS_ERR(handle)) {
 244		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 245		/*
 246		 * If we're going to skip the normal cleanup, we still need to
 247		 * make sure that the in-core orphan linked list is properly
 248		 * cleaned up.
 249		 */
 250		ext4_orphan_del(NULL, inode);
 251		sb_end_intwrite(inode->i_sb);
 252		goto no_delete;
 253	}
 254
 255	if (IS_SYNC(inode))
 256		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 257	inode->i_size = 0;
 258	err = ext4_mark_inode_dirty(handle, inode);
 259	if (err) {
 260		ext4_warning(inode->i_sb,
 261			     "couldn't mark inode dirty (err %d)", err);
 262		goto stop_handle;
 263	}
 264	if (inode->i_blocks) {
 265		err = ext4_truncate(inode);
 266		if (err) {
 267			ext4_error(inode->i_sb,
 268				   "couldn't truncate inode %lu (err %d)",
 269				   inode->i_ino, err);
 270			goto stop_handle;
 271		}
 272	}
 273
 274	/*
 275	 * ext4_ext_truncate() doesn't reserve any slop when it
 276	 * restarts journal transactions; therefore there may not be
 277	 * enough credits left in the handle to remove the inode from
 278	 * the orphan list and set the dtime field.
 279	 */
 280	if (!ext4_handle_has_enough_credits(handle, 3)) {
 281		err = ext4_journal_extend(handle, 3);
 282		if (err > 0)
 283			err = ext4_journal_restart(handle, 3);
 284		if (err != 0) {
 285			ext4_warning(inode->i_sb,
 286				     "couldn't extend journal (err %d)", err);
 287		stop_handle:
 288			ext4_journal_stop(handle);
 289			ext4_orphan_del(NULL, inode);
 290			sb_end_intwrite(inode->i_sb);
 291			goto no_delete;
 292		}
 293	}
 294
 295	/*
 296	 * Kill off the orphan record which ext4_truncate created.
 297	 * AKPM: I think this can be inside the above `if'.
 298	 * Note that ext4_orphan_del() has to be able to cope with the
 299	 * deletion of a non-existent orphan - this is because we don't
 300	 * know if ext4_truncate() actually created an orphan record.
 301	 * (Well, we could do this if we need to, but heck - it works)
 302	 */
 303	ext4_orphan_del(handle, inode);
 304	EXT4_I(inode)->i_dtime	= get_seconds();
 305
 306	/*
 307	 * One subtle ordering requirement: if anything has gone wrong
 308	 * (transaction abort, IO errors, whatever), then we can still
 309	 * do these next steps (the fs will already have been marked as
 310	 * having errors), but we can't free the inode if the mark_dirty
 311	 * fails.
 312	 */
 313	if (ext4_mark_inode_dirty(handle, inode))
 314		/* If that failed, just do the required in-core inode clear. */
 315		ext4_clear_inode(inode);
 316	else
 317		ext4_free_inode(handle, inode);
 318	ext4_journal_stop(handle);
 319	sb_end_intwrite(inode->i_sb);
 
 320	return;
 321no_delete:
 322	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 323}
 324
 325#ifdef CONFIG_QUOTA
 326qsize_t *ext4_get_reserved_space(struct inode *inode)
 327{
 328	return &EXT4_I(inode)->i_reserved_quota;
 329}
 330#endif
 331
 332/*
 333 * Called with i_data_sem down, which is important since we can call
 334 * ext4_discard_preallocations() from here.
 335 */
 336void ext4_da_update_reserve_space(struct inode *inode,
 337					int used, int quota_claim)
 338{
 339	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 340	struct ext4_inode_info *ei = EXT4_I(inode);
 341
 342	spin_lock(&ei->i_block_reservation_lock);
 343	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 344	if (unlikely(used > ei->i_reserved_data_blocks)) {
 345		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 346			 "with only %d reserved data blocks",
 347			 __func__, inode->i_ino, used,
 348			 ei->i_reserved_data_blocks);
 349		WARN_ON(1);
 350		used = ei->i_reserved_data_blocks;
 351	}
 352
 353	/* Update per-inode reservations */
 354	ei->i_reserved_data_blocks -= used;
 355	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 356
 357	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 358
 359	/* Update quota subsystem for data blocks */
 360	if (quota_claim)
 361		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 362	else {
 363		/*
 364		 * We did fallocate with an offset that is already delayed
 365		 * allocated. So on delayed allocated writeback we should
 366		 * not re-claim the quota for fallocated blocks.
 367		 */
 368		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 369	}
 370
 371	/*
 372	 * If we have done all the pending block allocations and if
 373	 * there aren't any writers on the inode, we can discard the
 374	 * inode's preallocations.
 375	 */
 376	if ((ei->i_reserved_data_blocks == 0) &&
 377	    (atomic_read(&inode->i_writecount) == 0))
 378		ext4_discard_preallocations(inode);
 379}
 380
 381static int __check_block_validity(struct inode *inode, const char *func,
 382				unsigned int line,
 383				struct ext4_map_blocks *map)
 384{
 
 
 
 
 385	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 386				   map->m_len)) {
 387		ext4_error_inode(inode, func, line, map->m_pblk,
 388				 "lblock %lu mapped to illegal pblock "
 389				 "(length %d)", (unsigned long) map->m_lblk,
 390				 map->m_len);
 391		return -EFSCORRUPTED;
 392	}
 393	return 0;
 394}
 395
 396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 397		       ext4_lblk_t len)
 398{
 399	int ret;
 400
 401	if (ext4_encrypted_inode(inode))
 402		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 403
 404	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 405	if (ret > 0)
 406		ret = 0;
 407
 408	return ret;
 409}
 410
 411#define check_block_validity(inode, map)	\
 412	__check_block_validity((inode), __func__, __LINE__, (map))
 413
 414#ifdef ES_AGGRESSIVE_TEST
 415static void ext4_map_blocks_es_recheck(handle_t *handle,
 416				       struct inode *inode,
 417				       struct ext4_map_blocks *es_map,
 418				       struct ext4_map_blocks *map,
 419				       int flags)
 420{
 421	int retval;
 422
 423	map->m_flags = 0;
 424	/*
 425	 * There is a race window that the result is not the same.
 426	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 427	 * is that we lookup a block mapping in extent status tree with
 428	 * out taking i_data_sem.  So at the time the unwritten extent
 429	 * could be converted.
 430	 */
 431	down_read(&EXT4_I(inode)->i_data_sem);
 432	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 433		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 434					     EXT4_GET_BLOCKS_KEEP_SIZE);
 435	} else {
 436		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 437					     EXT4_GET_BLOCKS_KEEP_SIZE);
 438	}
 439	up_read((&EXT4_I(inode)->i_data_sem));
 440
 441	/*
 442	 * We don't check m_len because extent will be collpased in status
 443	 * tree.  So the m_len might not equal.
 444	 */
 445	if (es_map->m_lblk != map->m_lblk ||
 446	    es_map->m_flags != map->m_flags ||
 447	    es_map->m_pblk != map->m_pblk) {
 448		printk("ES cache assertion failed for inode: %lu "
 449		       "es_cached ex [%d/%d/%llu/%x] != "
 450		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 451		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 452		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 453		       map->m_len, map->m_pblk, map->m_flags,
 454		       retval, flags);
 455	}
 456}
 457#endif /* ES_AGGRESSIVE_TEST */
 458
 459/*
 460 * The ext4_map_blocks() function tries to look up the requested blocks,
 461 * and returns if the blocks are already mapped.
 462 *
 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 464 * and store the allocated blocks in the result buffer head and mark it
 465 * mapped.
 466 *
 467 * If file type is extents based, it will call ext4_ext_map_blocks(),
 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 469 * based files
 470 *
 471 * On success, it returns the number of blocks being mapped or allocated.  if
 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 474 *
 475 * It returns 0 if plain look up failed (blocks have not been allocated), in
 476 * that case, @map is returned as unmapped but we still do fill map->m_len to
 477 * indicate the length of a hole starting at map->m_lblk.
 478 *
 479 * It returns the error in case of allocation failure.
 480 */
 481int ext4_map_blocks(handle_t *handle, struct inode *inode,
 482		    struct ext4_map_blocks *map, int flags)
 483{
 484	struct extent_status es;
 485	int retval;
 486	int ret = 0;
 487#ifdef ES_AGGRESSIVE_TEST
 488	struct ext4_map_blocks orig_map;
 489
 490	memcpy(&orig_map, map, sizeof(*map));
 491#endif
 492
 493	map->m_flags = 0;
 494	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 495		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 496		  (unsigned long) map->m_lblk);
 497
 498	/*
 499	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 500	 */
 501	if (unlikely(map->m_len > INT_MAX))
 502		map->m_len = INT_MAX;
 503
 504	/* We can handle the block number less than EXT_MAX_BLOCKS */
 505	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 506		return -EFSCORRUPTED;
 507
 508	/* Lookup extent status tree firstly */
 509	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 510		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 511			map->m_pblk = ext4_es_pblock(&es) +
 512					map->m_lblk - es.es_lblk;
 513			map->m_flags |= ext4_es_is_written(&es) ?
 514					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 515			retval = es.es_len - (map->m_lblk - es.es_lblk);
 516			if (retval > map->m_len)
 517				retval = map->m_len;
 518			map->m_len = retval;
 519		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 520			map->m_pblk = 0;
 521			retval = es.es_len - (map->m_lblk - es.es_lblk);
 522			if (retval > map->m_len)
 523				retval = map->m_len;
 524			map->m_len = retval;
 525			retval = 0;
 526		} else {
 527			BUG_ON(1);
 528		}
 529#ifdef ES_AGGRESSIVE_TEST
 530		ext4_map_blocks_es_recheck(handle, inode, map,
 531					   &orig_map, flags);
 532#endif
 533		goto found;
 534	}
 535
 536	/*
 537	 * Try to see if we can get the block without requesting a new
 538	 * file system block.
 539	 */
 540	down_read(&EXT4_I(inode)->i_data_sem);
 541	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 542		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 543					     EXT4_GET_BLOCKS_KEEP_SIZE);
 544	} else {
 545		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 546					     EXT4_GET_BLOCKS_KEEP_SIZE);
 547	}
 548	if (retval > 0) {
 549		unsigned int status;
 550
 551		if (unlikely(retval != map->m_len)) {
 552			ext4_warning(inode->i_sb,
 553				     "ES len assertion failed for inode "
 554				     "%lu: retval %d != map->m_len %d",
 555				     inode->i_ino, retval, map->m_len);
 556			WARN_ON(1);
 557		}
 558
 559		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 560				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 561		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 562		    !(status & EXTENT_STATUS_WRITTEN) &&
 563		    ext4_find_delalloc_range(inode, map->m_lblk,
 564					     map->m_lblk + map->m_len - 1))
 565			status |= EXTENT_STATUS_DELAYED;
 566		ret = ext4_es_insert_extent(inode, map->m_lblk,
 567					    map->m_len, map->m_pblk, status);
 568		if (ret < 0)
 569			retval = ret;
 570	}
 571	up_read((&EXT4_I(inode)->i_data_sem));
 572
 573found:
 574	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 575		ret = check_block_validity(inode, map);
 576		if (ret != 0)
 577			return ret;
 578	}
 579
 580	/* If it is only a block(s) look up */
 581	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 582		return retval;
 583
 584	/*
 585	 * Returns if the blocks have already allocated
 586	 *
 587	 * Note that if blocks have been preallocated
 588	 * ext4_ext_get_block() returns the create = 0
 589	 * with buffer head unmapped.
 590	 */
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 592		/*
 593		 * If we need to convert extent to unwritten
 594		 * we continue and do the actual work in
 595		 * ext4_ext_map_blocks()
 596		 */
 597		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 598			return retval;
 599
 600	/*
 601	 * Here we clear m_flags because after allocating an new extent,
 602	 * it will be set again.
 603	 */
 604	map->m_flags &= ~EXT4_MAP_FLAGS;
 605
 606	/*
 607	 * New blocks allocate and/or writing to unwritten extent
 608	 * will possibly result in updating i_data, so we take
 609	 * the write lock of i_data_sem, and call get_block()
 610	 * with create == 1 flag.
 611	 */
 612	down_write(&EXT4_I(inode)->i_data_sem);
 613
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642
 643	if (retval > 0) {
 644		unsigned int status;
 645
 646		if (unlikely(retval != map->m_len)) {
 647			ext4_warning(inode->i_sb,
 648				     "ES len assertion failed for inode "
 649				     "%lu: retval %d != map->m_len %d",
 650				     inode->i_ino, retval, map->m_len);
 651			WARN_ON(1);
 652		}
 653
 654		/*
 655		 * We have to zeroout blocks before inserting them into extent
 656		 * status tree. Otherwise someone could look them up there and
 657		 * use them before they are really zeroed. We also have to
 658		 * unmap metadata before zeroing as otherwise writeback can
 659		 * overwrite zeros with stale data from block device.
 660		 */
 661		if (flags & EXT4_GET_BLOCKS_ZERO &&
 662		    map->m_flags & EXT4_MAP_MAPPED &&
 663		    map->m_flags & EXT4_MAP_NEW) {
 664			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 665					   map->m_len);
 666			ret = ext4_issue_zeroout(inode, map->m_lblk,
 667						 map->m_pblk, map->m_len);
 668			if (ret) {
 669				retval = ret;
 670				goto out_sem;
 671			}
 672		}
 673
 674		/*
 675		 * If the extent has been zeroed out, we don't need to update
 676		 * extent status tree.
 677		 */
 678		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 679		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 680			if (ext4_es_is_written(&es))
 681				goto out_sem;
 682		}
 683		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 684				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 685		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 686		    !(status & EXTENT_STATUS_WRITTEN) &&
 687		    ext4_find_delalloc_range(inode, map->m_lblk,
 688					     map->m_lblk + map->m_len - 1))
 689			status |= EXTENT_STATUS_DELAYED;
 690		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 691					    map->m_pblk, status);
 692		if (ret < 0) {
 693			retval = ret;
 694			goto out_sem;
 695		}
 696	}
 697
 698out_sem:
 699	up_write((&EXT4_I(inode)->i_data_sem));
 700	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 701		ret = check_block_validity(inode, map);
 702		if (ret != 0)
 703			return ret;
 704
 705		/*
 706		 * Inodes with freshly allocated blocks where contents will be
 707		 * visible after transaction commit must be on transaction's
 708		 * ordered data list.
 709		 */
 710		if (map->m_flags & EXT4_MAP_NEW &&
 711		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 712		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 713		    !IS_NOQUOTA(inode) &&
 714		    ext4_should_order_data(inode)) {
 
 
 
 
 715			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 716				ret = ext4_jbd2_inode_add_wait(handle, inode);
 
 717			else
 718				ret = ext4_jbd2_inode_add_write(handle, inode);
 
 719			if (ret)
 720				return ret;
 721		}
 722	}
 723	return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732	unsigned long old_state;
 733	unsigned long new_state;
 734
 735	flags &= EXT4_MAP_FLAGS;
 736
 737	/* Dummy buffer_head? Set non-atomically. */
 738	if (!bh->b_page) {
 739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740		return;
 741	}
 742	/*
 743	 * Someone else may be modifying b_state. Be careful! This is ugly but
 744	 * once we get rid of using bh as a container for mapping information
 745	 * to pass to / from get_block functions, this can go away.
 746	 */
 747	do {
 748		old_state = READ_ONCE(bh->b_state);
 749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750	} while (unlikely(
 751		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 752}
 753
 754static int _ext4_get_block(struct inode *inode, sector_t iblock,
 755			   struct buffer_head *bh, int flags)
 756{
 757	struct ext4_map_blocks map;
 758	int ret = 0;
 759
 760	if (ext4_has_inline_data(inode))
 761		return -ERANGE;
 762
 763	map.m_lblk = iblock;
 764	map.m_len = bh->b_size >> inode->i_blkbits;
 765
 766	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 767			      flags);
 768	if (ret > 0) {
 769		map_bh(bh, inode->i_sb, map.m_pblk);
 770		ext4_update_bh_state(bh, map.m_flags);
 771		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 772		ret = 0;
 773	} else if (ret == 0) {
 774		/* hole case, need to fill in bh->b_size */
 775		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 776	}
 777	return ret;
 778}
 779
 780int ext4_get_block(struct inode *inode, sector_t iblock,
 781		   struct buffer_head *bh, int create)
 782{
 783	return _ext4_get_block(inode, iblock, bh,
 784			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 785}
 786
 787/*
 788 * Get block function used when preparing for buffered write if we require
 789 * creating an unwritten extent if blocks haven't been allocated.  The extent
 790 * will be converted to written after the IO is complete.
 791 */
 792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 793			     struct buffer_head *bh_result, int create)
 794{
 795	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 796		   inode->i_ino, create);
 797	return _ext4_get_block(inode, iblock, bh_result,
 798			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 799}
 800
 801/* Maximum number of blocks we map for direct IO at once. */
 802#define DIO_MAX_BLOCKS 4096
 803
 804/*
 805 * Get blocks function for the cases that need to start a transaction -
 806 * generally difference cases of direct IO and DAX IO. It also handles retries
 807 * in case of ENOSPC.
 808 */
 809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 810				struct buffer_head *bh_result, int flags)
 811{
 812	int dio_credits;
 813	handle_t *handle;
 814	int retries = 0;
 815	int ret;
 816
 817	/* Trim mapping request to maximum we can map at once for DIO */
 818	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 819		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 820	dio_credits = ext4_chunk_trans_blocks(inode,
 821				      bh_result->b_size >> inode->i_blkbits);
 822retry:
 823	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 824	if (IS_ERR(handle))
 825		return PTR_ERR(handle);
 826
 827	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 828	ext4_journal_stop(handle);
 829
 830	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 831		goto retry;
 832	return ret;
 833}
 834
 835/* Get block function for DIO reads and writes to inodes without extents */
 836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 837		       struct buffer_head *bh, int create)
 838{
 839	/* We don't expect handle for direct IO */
 840	WARN_ON_ONCE(ext4_journal_current_handle());
 841
 842	if (!create)
 843		return _ext4_get_block(inode, iblock, bh, 0);
 844	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 845}
 846
 847/*
 848 * Get block function for AIO DIO writes when we create unwritten extent if
 849 * blocks are not allocated yet. The extent will be converted to written
 850 * after IO is complete.
 851 */
 852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 853		sector_t iblock, struct buffer_head *bh_result,	int create)
 854{
 855	int ret;
 856
 857	/* We don't expect handle for direct IO */
 858	WARN_ON_ONCE(ext4_journal_current_handle());
 859
 860	ret = ext4_get_block_trans(inode, iblock, bh_result,
 861				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 862
 863	/*
 864	 * When doing DIO using unwritten extents, we need io_end to convert
 865	 * unwritten extents to written on IO completion. We allocate io_end
 866	 * once we spot unwritten extent and store it in b_private. Generic
 867	 * DIO code keeps b_private set and furthermore passes the value to
 868	 * our completion callback in 'private' argument.
 869	 */
 870	if (!ret && buffer_unwritten(bh_result)) {
 871		if (!bh_result->b_private) {
 872			ext4_io_end_t *io_end;
 873
 874			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 875			if (!io_end)
 876				return -ENOMEM;
 877			bh_result->b_private = io_end;
 878			ext4_set_io_unwritten_flag(inode, io_end);
 879		}
 880		set_buffer_defer_completion(bh_result);
 881	}
 882
 883	return ret;
 884}
 885
 886/*
 887 * Get block function for non-AIO DIO writes when we create unwritten extent if
 888 * blocks are not allocated yet. The extent will be converted to written
 889 * after IO is complete from ext4_ext_direct_IO() function.
 890 */
 891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 892		sector_t iblock, struct buffer_head *bh_result,	int create)
 893{
 894	int ret;
 895
 896	/* We don't expect handle for direct IO */
 897	WARN_ON_ONCE(ext4_journal_current_handle());
 898
 899	ret = ext4_get_block_trans(inode, iblock, bh_result,
 900				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 901
 902	/*
 903	 * Mark inode as having pending DIO writes to unwritten extents.
 904	 * ext4_ext_direct_IO() checks this flag and converts extents to
 905	 * written.
 906	 */
 907	if (!ret && buffer_unwritten(bh_result))
 908		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 909
 910	return ret;
 911}
 912
 913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 914		   struct buffer_head *bh_result, int create)
 915{
 916	int ret;
 917
 918	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 919		   inode->i_ino, create);
 920	/* We don't expect handle for direct IO */
 921	WARN_ON_ONCE(ext4_journal_current_handle());
 922
 923	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 924	/*
 925	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 926	 * that.
 927	 */
 928	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 929
 930	return ret;
 931}
 932
 933
 934/*
 935 * `handle' can be NULL if create is zero
 936 */
 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 938				ext4_lblk_t block, int map_flags)
 939{
 940	struct ext4_map_blocks map;
 941	struct buffer_head *bh;
 942	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 943	int err;
 944
 945	J_ASSERT(handle != NULL || create == 0);
 946
 947	map.m_lblk = block;
 948	map.m_len = 1;
 949	err = ext4_map_blocks(handle, inode, &map, map_flags);
 950
 951	if (err == 0)
 952		return create ? ERR_PTR(-ENOSPC) : NULL;
 953	if (err < 0)
 954		return ERR_PTR(err);
 955
 956	bh = sb_getblk(inode->i_sb, map.m_pblk);
 957	if (unlikely(!bh))
 958		return ERR_PTR(-ENOMEM);
 959	if (map.m_flags & EXT4_MAP_NEW) {
 960		J_ASSERT(create != 0);
 961		J_ASSERT(handle != NULL);
 962
 963		/*
 964		 * Now that we do not always journal data, we should
 965		 * keep in mind whether this should always journal the
 966		 * new buffer as metadata.  For now, regular file
 967		 * writes use ext4_get_block instead, so it's not a
 968		 * problem.
 969		 */
 970		lock_buffer(bh);
 971		BUFFER_TRACE(bh, "call get_create_access");
 972		err = ext4_journal_get_create_access(handle, bh);
 973		if (unlikely(err)) {
 974			unlock_buffer(bh);
 975			goto errout;
 976		}
 977		if (!buffer_uptodate(bh)) {
 978			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 979			set_buffer_uptodate(bh);
 980		}
 981		unlock_buffer(bh);
 982		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 983		err = ext4_handle_dirty_metadata(handle, inode, bh);
 984		if (unlikely(err))
 985			goto errout;
 986	} else
 987		BUFFER_TRACE(bh, "not a new buffer");
 988	return bh;
 989errout:
 990	brelse(bh);
 991	return ERR_PTR(err);
 992}
 993
 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 995			       ext4_lblk_t block, int map_flags)
 996{
 997	struct buffer_head *bh;
 998
 999	bh = ext4_getblk(handle, inode, block, map_flags);
1000	if (IS_ERR(bh))
1001		return bh;
1002	if (!bh || buffer_uptodate(bh))
1003		return bh;
1004	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005	wait_on_buffer(bh);
1006	if (buffer_uptodate(bh))
1007		return bh;
1008	put_bh(bh);
1009	return ERR_PTR(-EIO);
1010}
1011
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1012int ext4_walk_page_buffers(handle_t *handle,
1013			   struct buffer_head *head,
1014			   unsigned from,
1015			   unsigned to,
1016			   int *partial,
1017			   int (*fn)(handle_t *handle,
1018				     struct buffer_head *bh))
1019{
1020	struct buffer_head *bh;
1021	unsigned block_start, block_end;
1022	unsigned blocksize = head->b_size;
1023	int err, ret = 0;
1024	struct buffer_head *next;
1025
1026	for (bh = head, block_start = 0;
1027	     ret == 0 && (bh != head || !block_start);
1028	     block_start = block_end, bh = next) {
1029		next = bh->b_this_page;
1030		block_end = block_start + blocksize;
1031		if (block_end <= from || block_start >= to) {
1032			if (partial && !buffer_uptodate(bh))
1033				*partial = 1;
1034			continue;
1035		}
1036		err = (*fn)(handle, bh);
1037		if (!ret)
1038			ret = err;
1039	}
1040	return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction.  We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write().  So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage().  In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page.  So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes.  If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated.  We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067int do_journal_get_write_access(handle_t *handle,
1068				struct buffer_head *bh)
1069{
1070	int dirty = buffer_dirty(bh);
1071	int ret;
1072
1073	if (!buffer_mapped(bh) || buffer_freed(bh))
1074		return 0;
1075	/*
1076	 * __block_write_begin() could have dirtied some buffers. Clean
1077	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078	 * otherwise about fs integrity issues. Setting of the dirty bit
1079	 * by __block_write_begin() isn't a real problem here as we clear
1080	 * the bit before releasing a page lock and thus writeback cannot
1081	 * ever write the buffer.
1082	 */
1083	if (dirty)
1084		clear_buffer_dirty(bh);
1085	BUFFER_TRACE(bh, "get write access");
1086	ret = ext4_journal_get_write_access(handle, bh);
1087	if (!ret && dirty)
1088		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089	return ret;
1090}
1091
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094				  get_block_t *get_block)
1095{
1096	unsigned from = pos & (PAGE_SIZE - 1);
1097	unsigned to = from + len;
1098	struct inode *inode = page->mapping->host;
1099	unsigned block_start, block_end;
1100	sector_t block;
1101	int err = 0;
1102	unsigned blocksize = inode->i_sb->s_blocksize;
1103	unsigned bbits;
1104	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105	bool decrypt = false;
 
1106
1107	BUG_ON(!PageLocked(page));
1108	BUG_ON(from > PAGE_SIZE);
1109	BUG_ON(to > PAGE_SIZE);
1110	BUG_ON(from > to);
1111
1112	if (!page_has_buffers(page))
1113		create_empty_buffers(page, blocksize, 0);
1114	head = page_buffers(page);
1115	bbits = ilog2(blocksize);
1116	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118	for (bh = head, block_start = 0; bh != head || !block_start;
1119	    block++, block_start = block_end, bh = bh->b_this_page) {
1120		block_end = block_start + blocksize;
1121		if (block_end <= from || block_start >= to) {
1122			if (PageUptodate(page)) {
1123				if (!buffer_uptodate(bh))
1124					set_buffer_uptodate(bh);
1125			}
1126			continue;
1127		}
1128		if (buffer_new(bh))
1129			clear_buffer_new(bh);
1130		if (!buffer_mapped(bh)) {
1131			WARN_ON(bh->b_size != blocksize);
1132			err = get_block(inode, block, bh, 1);
1133			if (err)
1134				break;
1135			if (buffer_new(bh)) {
1136				clean_bdev_bh_alias(bh);
1137				if (PageUptodate(page)) {
1138					clear_buffer_new(bh);
1139					set_buffer_uptodate(bh);
1140					mark_buffer_dirty(bh);
1141					continue;
1142				}
1143				if (block_end > to || block_start < from)
1144					zero_user_segments(page, to, block_end,
1145							   block_start, from);
1146				continue;
1147			}
1148		}
1149		if (PageUptodate(page)) {
1150			if (!buffer_uptodate(bh))
1151				set_buffer_uptodate(bh);
1152			continue;
1153		}
1154		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155		    !buffer_unwritten(bh) &&
1156		    (block_start < from || block_end > to)) {
1157			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158			*wait_bh++ = bh;
1159			decrypt = ext4_encrypted_inode(inode) &&
1160				S_ISREG(inode->i_mode);
1161		}
1162	}
1163	/*
1164	 * If we issued read requests, let them complete.
1165	 */
1166	while (wait_bh > wait) {
1167		wait_on_buffer(*--wait_bh);
1168		if (!buffer_uptodate(*wait_bh))
1169			err = -EIO;
1170	}
1171	if (unlikely(err))
1172		page_zero_new_buffers(page, from, to);
1173	else if (decrypt)
1174		err = fscrypt_decrypt_page(page->mapping->host, page,
1175				PAGE_SIZE, 0, page->index);
 
 
 
 
 
 
 
 
 
 
1176	return err;
1177}
1178#endif
1179
1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181			    loff_t pos, unsigned len, unsigned flags,
1182			    struct page **pagep, void **fsdata)
1183{
1184	struct inode *inode = mapping->host;
1185	int ret, needed_blocks;
1186	handle_t *handle;
1187	int retries = 0;
1188	struct page *page;
1189	pgoff_t index;
1190	unsigned from, to;
1191
 
 
 
1192	trace_ext4_write_begin(inode, pos, len, flags);
1193	/*
1194	 * Reserve one block more for addition to orphan list in case
1195	 * we allocate blocks but write fails for some reason
1196	 */
1197	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198	index = pos >> PAGE_SHIFT;
1199	from = pos & (PAGE_SIZE - 1);
1200	to = from + len;
1201
1202	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204						    flags, pagep);
1205		if (ret < 0)
1206			return ret;
1207		if (ret == 1)
1208			return 0;
1209	}
1210
1211	/*
1212	 * grab_cache_page_write_begin() can take a long time if the
1213	 * system is thrashing due to memory pressure, or if the page
1214	 * is being written back.  So grab it first before we start
1215	 * the transaction handle.  This also allows us to allocate
1216	 * the page (if needed) without using GFP_NOFS.
1217	 */
1218retry_grab:
1219	page = grab_cache_page_write_begin(mapping, index, flags);
1220	if (!page)
1221		return -ENOMEM;
1222	unlock_page(page);
1223
1224retry_journal:
1225	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226	if (IS_ERR(handle)) {
1227		put_page(page);
1228		return PTR_ERR(handle);
1229	}
1230
1231	lock_page(page);
1232	if (page->mapping != mapping) {
1233		/* The page got truncated from under us */
1234		unlock_page(page);
1235		put_page(page);
1236		ext4_journal_stop(handle);
1237		goto retry_grab;
1238	}
1239	/* In case writeback began while the page was unlocked */
1240	wait_for_stable_page(page);
1241
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243	if (ext4_should_dioread_nolock(inode))
1244		ret = ext4_block_write_begin(page, pos, len,
1245					     ext4_get_block_unwritten);
1246	else
1247		ret = ext4_block_write_begin(page, pos, len,
1248					     ext4_get_block);
1249#else
1250	if (ext4_should_dioread_nolock(inode))
1251		ret = __block_write_begin(page, pos, len,
1252					  ext4_get_block_unwritten);
1253	else
1254		ret = __block_write_begin(page, pos, len, ext4_get_block);
1255#endif
1256	if (!ret && ext4_should_journal_data(inode)) {
1257		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258					     from, to, NULL,
1259					     do_journal_get_write_access);
1260	}
1261
1262	if (ret) {
 
 
 
1263		unlock_page(page);
1264		/*
1265		 * __block_write_begin may have instantiated a few blocks
1266		 * outside i_size.  Trim these off again. Don't need
1267		 * i_size_read because we hold i_mutex.
1268		 *
1269		 * Add inode to orphan list in case we crash before
1270		 * truncate finishes
1271		 */
1272		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273			ext4_orphan_add(handle, inode);
1274
1275		ext4_journal_stop(handle);
1276		if (pos + len > inode->i_size) {
1277			ext4_truncate_failed_write(inode);
1278			/*
1279			 * If truncate failed early the inode might
1280			 * still be on the orphan list; we need to
1281			 * make sure the inode is removed from the
1282			 * orphan list in that case.
1283			 */
1284			if (inode->i_nlink)
1285				ext4_orphan_del(NULL, inode);
1286		}
1287
1288		if (ret == -ENOSPC &&
1289		    ext4_should_retry_alloc(inode->i_sb, &retries))
1290			goto retry_journal;
1291		put_page(page);
1292		return ret;
1293	}
1294	*pagep = page;
1295	return ret;
1296}
1297
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1300{
1301	int ret;
1302	if (!buffer_mapped(bh) || buffer_freed(bh))
1303		return 0;
1304	set_buffer_uptodate(bh);
1305	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306	clear_buffer_meta(bh);
1307	clear_buffer_prio(bh);
1308	return ret;
1309}
1310
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319			  struct address_space *mapping,
1320			  loff_t pos, unsigned len, unsigned copied,
1321			  struct page *page, void *fsdata)
1322{
1323	handle_t *handle = ext4_journal_current_handle();
1324	struct inode *inode = mapping->host;
1325	loff_t old_size = inode->i_size;
1326	int ret = 0, ret2;
1327	int i_size_changed = 0;
 
 
1328
1329	trace_ext4_write_end(inode, pos, len, copied);
1330	if (ext4_has_inline_data(inode)) {
1331		ret = ext4_write_inline_data_end(inode, pos, len,
1332						 copied, page);
1333		if (ret < 0) {
1334			unlock_page(page);
1335			put_page(page);
1336			goto errout;
1337		}
1338		copied = ret;
1339	} else
1340		copied = block_write_end(file, mapping, pos,
1341					 len, copied, page, fsdata);
1342	/*
1343	 * it's important to update i_size while still holding page lock:
1344	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
1345	 */
1346	i_size_changed = ext4_update_inode_size(inode, pos + copied);
 
1347	unlock_page(page);
1348	put_page(page);
1349
1350	if (old_size < pos)
1351		pagecache_isize_extended(inode, old_size, pos);
1352	/*
1353	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1354	 * makes the holding time of page lock longer. Second, it forces lock
1355	 * ordering of page lock and transaction start for journaling
1356	 * filesystems.
1357	 */
1358	if (i_size_changed)
1359		ext4_mark_inode_dirty(handle, inode);
1360
1361	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1362		/* if we have allocated more blocks and copied
1363		 * less. We will have blocks allocated outside
1364		 * inode->i_size. So truncate them
1365		 */
1366		ext4_orphan_add(handle, inode);
1367errout:
1368	ret2 = ext4_journal_stop(handle);
1369	if (!ret)
1370		ret = ret2;
1371
1372	if (pos + len > inode->i_size) {
1373		ext4_truncate_failed_write(inode);
1374		/*
1375		 * If truncate failed early the inode might still be
1376		 * on the orphan list; we need to make sure the inode
1377		 * is removed from the orphan list in that case.
1378		 */
1379		if (inode->i_nlink)
1380			ext4_orphan_del(NULL, inode);
1381	}
1382
1383	return ret ? ret : copied;
1384}
1385
1386/*
1387 * This is a private version of page_zero_new_buffers() which doesn't
1388 * set the buffer to be dirty, since in data=journalled mode we need
1389 * to call ext4_handle_dirty_metadata() instead.
1390 */
1391static void ext4_journalled_zero_new_buffers(handle_t *handle,
1392					    struct page *page,
1393					    unsigned from, unsigned to)
1394{
1395	unsigned int block_start = 0, block_end;
1396	struct buffer_head *head, *bh;
1397
1398	bh = head = page_buffers(page);
1399	do {
1400		block_end = block_start + bh->b_size;
1401		if (buffer_new(bh)) {
1402			if (block_end > from && block_start < to) {
1403				if (!PageUptodate(page)) {
1404					unsigned start, size;
1405
1406					start = max(from, block_start);
1407					size = min(to, block_end) - start;
1408
1409					zero_user(page, start, size);
1410					write_end_fn(handle, bh);
1411				}
1412				clear_buffer_new(bh);
1413			}
1414		}
1415		block_start = block_end;
1416		bh = bh->b_this_page;
1417	} while (bh != head);
1418}
1419
1420static int ext4_journalled_write_end(struct file *file,
1421				     struct address_space *mapping,
1422				     loff_t pos, unsigned len, unsigned copied,
1423				     struct page *page, void *fsdata)
1424{
1425	handle_t *handle = ext4_journal_current_handle();
1426	struct inode *inode = mapping->host;
1427	loff_t old_size = inode->i_size;
1428	int ret = 0, ret2;
1429	int partial = 0;
1430	unsigned from, to;
1431	int size_changed = 0;
 
 
1432
1433	trace_ext4_journalled_write_end(inode, pos, len, copied);
1434	from = pos & (PAGE_SIZE - 1);
1435	to = from + len;
1436
1437	BUG_ON(!ext4_handle_valid(handle));
1438
1439	if (ext4_has_inline_data(inode)) {
1440		ret = ext4_write_inline_data_end(inode, pos, len,
1441						 copied, page);
1442		if (ret < 0) {
1443			unlock_page(page);
1444			put_page(page);
1445			goto errout;
1446		}
1447		copied = ret;
1448	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1449		copied = 0;
1450		ext4_journalled_zero_new_buffers(handle, page, from, to);
1451	} else {
1452		if (unlikely(copied < len))
1453			ext4_journalled_zero_new_buffers(handle, page,
1454							 from + copied, to);
1455		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1456					     from + copied, &partial,
1457					     write_end_fn);
1458		if (!partial)
1459			SetPageUptodate(page);
1460	}
1461	size_changed = ext4_update_inode_size(inode, pos + copied);
 
1462	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1463	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1464	unlock_page(page);
1465	put_page(page);
1466
1467	if (old_size < pos)
1468		pagecache_isize_extended(inode, old_size, pos);
1469
1470	if (size_changed) {
1471		ret2 = ext4_mark_inode_dirty(handle, inode);
1472		if (!ret)
1473			ret = ret2;
1474	}
1475
1476	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1477		/* if we have allocated more blocks and copied
1478		 * less. We will have blocks allocated outside
1479		 * inode->i_size. So truncate them
1480		 */
1481		ext4_orphan_add(handle, inode);
1482
1483errout:
1484	ret2 = ext4_journal_stop(handle);
1485	if (!ret)
1486		ret = ret2;
1487	if (pos + len > inode->i_size) {
1488		ext4_truncate_failed_write(inode);
1489		/*
1490		 * If truncate failed early the inode might still be
1491		 * on the orphan list; we need to make sure the inode
1492		 * is removed from the orphan list in that case.
1493		 */
1494		if (inode->i_nlink)
1495			ext4_orphan_del(NULL, inode);
1496	}
1497
1498	return ret ? ret : copied;
1499}
1500
1501/*
1502 * Reserve space for a single cluster
1503 */
1504static int ext4_da_reserve_space(struct inode *inode)
1505{
1506	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507	struct ext4_inode_info *ei = EXT4_I(inode);
1508	int ret;
1509
1510	/*
1511	 * We will charge metadata quota at writeout time; this saves
1512	 * us from metadata over-estimation, though we may go over by
1513	 * a small amount in the end.  Here we just reserve for data.
1514	 */
1515	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1516	if (ret)
1517		return ret;
1518
1519	spin_lock(&ei->i_block_reservation_lock);
1520	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1521		spin_unlock(&ei->i_block_reservation_lock);
1522		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1523		return -ENOSPC;
1524	}
1525	ei->i_reserved_data_blocks++;
1526	trace_ext4_da_reserve_space(inode);
1527	spin_unlock(&ei->i_block_reservation_lock);
1528
1529	return 0;       /* success */
1530}
1531
1532static void ext4_da_release_space(struct inode *inode, int to_free)
1533{
1534	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535	struct ext4_inode_info *ei = EXT4_I(inode);
1536
1537	if (!to_free)
1538		return;		/* Nothing to release, exit */
1539
1540	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1541
1542	trace_ext4_da_release_space(inode, to_free);
1543	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1544		/*
1545		 * if there aren't enough reserved blocks, then the
1546		 * counter is messed up somewhere.  Since this
1547		 * function is called from invalidate page, it's
1548		 * harmless to return without any action.
1549		 */
1550		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1551			 "ino %lu, to_free %d with only %d reserved "
1552			 "data blocks", inode->i_ino, to_free,
1553			 ei->i_reserved_data_blocks);
1554		WARN_ON(1);
1555		to_free = ei->i_reserved_data_blocks;
1556	}
1557	ei->i_reserved_data_blocks -= to_free;
1558
1559	/* update fs dirty data blocks counter */
1560	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1561
1562	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563
1564	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1565}
1566
1567static void ext4_da_page_release_reservation(struct page *page,
1568					     unsigned int offset,
1569					     unsigned int length)
1570{
1571	int to_release = 0, contiguous_blks = 0;
1572	struct buffer_head *head, *bh;
1573	unsigned int curr_off = 0;
1574	struct inode *inode = page->mapping->host;
1575	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1576	unsigned int stop = offset + length;
1577	int num_clusters;
1578	ext4_fsblk_t lblk;
1579
1580	BUG_ON(stop > PAGE_SIZE || stop < length);
1581
1582	head = page_buffers(page);
1583	bh = head;
1584	do {
1585		unsigned int next_off = curr_off + bh->b_size;
1586
1587		if (next_off > stop)
1588			break;
1589
1590		if ((offset <= curr_off) && (buffer_delay(bh))) {
1591			to_release++;
1592			contiguous_blks++;
1593			clear_buffer_delay(bh);
1594		} else if (contiguous_blks) {
1595			lblk = page->index <<
1596			       (PAGE_SHIFT - inode->i_blkbits);
1597			lblk += (curr_off >> inode->i_blkbits) -
1598				contiguous_blks;
1599			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1600			contiguous_blks = 0;
1601		}
1602		curr_off = next_off;
1603	} while ((bh = bh->b_this_page) != head);
1604
1605	if (contiguous_blks) {
1606		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1607		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1608		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609	}
1610
1611	/* If we have released all the blocks belonging to a cluster, then we
1612	 * need to release the reserved space for that cluster. */
1613	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1614	while (num_clusters > 0) {
1615		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1616			((num_clusters - 1) << sbi->s_cluster_bits);
1617		if (sbi->s_cluster_ratio == 1 ||
1618		    !ext4_find_delalloc_cluster(inode, lblk))
1619			ext4_da_release_space(inode, 1);
1620
1621		num_clusters--;
1622	}
1623}
1624
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
1630	struct inode *inode;
1631	struct writeback_control *wbc;
1632
1633	pgoff_t first_page;	/* The first page to write */
1634	pgoff_t next_page;	/* Current page to examine */
1635	pgoff_t last_page;	/* Last page to examine */
1636	/*
1637	 * Extent to map - this can be after first_page because that can be
1638	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1639	 * is delalloc or unwritten.
1640	 */
1641	struct ext4_map_blocks map;
1642	struct ext4_io_submit io_submit;	/* IO submission data */
 
1643};
1644
1645static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1646				       bool invalidate)
1647{
1648	int nr_pages, i;
1649	pgoff_t index, end;
1650	struct pagevec pvec;
1651	struct inode *inode = mpd->inode;
1652	struct address_space *mapping = inode->i_mapping;
1653
1654	/* This is necessary when next_page == 0. */
1655	if (mpd->first_page >= mpd->next_page)
1656		return;
1657
1658	index = mpd->first_page;
1659	end   = mpd->next_page - 1;
1660	if (invalidate) {
1661		ext4_lblk_t start, last;
1662		start = index << (PAGE_SHIFT - inode->i_blkbits);
1663		last = end << (PAGE_SHIFT - inode->i_blkbits);
1664		ext4_es_remove_extent(inode, start, last - start + 1);
1665	}
1666
1667	pagevec_init(&pvec, 0);
1668	while (index <= end) {
1669		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1670		if (nr_pages == 0)
1671			break;
1672		for (i = 0; i < nr_pages; i++) {
1673			struct page *page = pvec.pages[i];
1674			if (page->index > end)
1675				break;
1676			BUG_ON(!PageLocked(page));
1677			BUG_ON(PageWriteback(page));
1678			if (invalidate) {
1679				if (page_mapped(page))
1680					clear_page_dirty_for_io(page);
1681				block_invalidatepage(page, 0, PAGE_SIZE);
1682				ClearPageUptodate(page);
1683			}
1684			unlock_page(page);
1685		}
1686		index = pvec.pages[nr_pages - 1]->index + 1;
1687		pagevec_release(&pvec);
1688	}
1689}
1690
1691static void ext4_print_free_blocks(struct inode *inode)
1692{
1693	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1694	struct super_block *sb = inode->i_sb;
1695	struct ext4_inode_info *ei = EXT4_I(inode);
1696
1697	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1698	       EXT4_C2B(EXT4_SB(inode->i_sb),
1699			ext4_count_free_clusters(sb)));
1700	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1701	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1702	       (long long) EXT4_C2B(EXT4_SB(sb),
1703		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1704	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1705	       (long long) EXT4_C2B(EXT4_SB(sb),
1706		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1707	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1708	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1709		 ei->i_reserved_data_blocks);
1710	return;
1711}
1712
1713static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1714{
1715	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1716}
1717
1718/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725			      struct ext4_map_blocks *map,
1726			      struct buffer_head *bh)
1727{
1728	struct extent_status es;
1729	int retval;
1730	sector_t invalid_block = ~((sector_t) 0xffff);
1731#ifdef ES_AGGRESSIVE_TEST
1732	struct ext4_map_blocks orig_map;
1733
1734	memcpy(&orig_map, map, sizeof(*map));
1735#endif
1736
1737	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738		invalid_block = ~0;
1739
1740	map->m_flags = 0;
1741	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1742		  "logical block %lu\n", inode->i_ino, map->m_len,
1743		  (unsigned long) map->m_lblk);
1744
1745	/* Lookup extent status tree firstly */
1746	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1747		if (ext4_es_is_hole(&es)) {
1748			retval = 0;
1749			down_read(&EXT4_I(inode)->i_data_sem);
1750			goto add_delayed;
1751		}
1752
1753		/*
1754		 * Delayed extent could be allocated by fallocate.
1755		 * So we need to check it.
1756		 */
1757		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758			map_bh(bh, inode->i_sb, invalid_block);
1759			set_buffer_new(bh);
1760			set_buffer_delay(bh);
1761			return 0;
1762		}
1763
1764		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765		retval = es.es_len - (iblock - es.es_lblk);
1766		if (retval > map->m_len)
1767			retval = map->m_len;
1768		map->m_len = retval;
1769		if (ext4_es_is_written(&es))
1770			map->m_flags |= EXT4_MAP_MAPPED;
1771		else if (ext4_es_is_unwritten(&es))
1772			map->m_flags |= EXT4_MAP_UNWRITTEN;
1773		else
1774			BUG_ON(1);
1775
1776#ifdef ES_AGGRESSIVE_TEST
1777		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778#endif
1779		return retval;
1780	}
1781
1782	/*
1783	 * Try to see if we can get the block without requesting a new
1784	 * file system block.
1785	 */
1786	down_read(&EXT4_I(inode)->i_data_sem);
1787	if (ext4_has_inline_data(inode))
1788		retval = 0;
1789	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791	else
1792		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1793
1794add_delayed:
1795	if (retval == 0) {
1796		int ret;
 
1797		/*
1798		 * XXX: __block_prepare_write() unmaps passed block,
1799		 * is it OK?
1800		 */
1801		/*
1802		 * If the block was allocated from previously allocated cluster,
1803		 * then we don't need to reserve it again. However we still need
1804		 * to reserve metadata for every block we're going to write.
1805		 */
1806		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1807		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1808			ret = ext4_da_reserve_space(inode);
1809			if (ret) {
1810				/* not enough space to reserve */
1811				retval = ret;
1812				goto out_unlock;
1813			}
1814		}
1815
1816		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1817					    ~0, EXTENT_STATUS_DELAYED);
1818		if (ret) {
1819			retval = ret;
1820			goto out_unlock;
1821		}
1822
1823		map_bh(bh, inode->i_sb, invalid_block);
1824		set_buffer_new(bh);
1825		set_buffer_delay(bh);
1826	} else if (retval > 0) {
1827		int ret;
1828		unsigned int status;
1829
1830		if (unlikely(retval != map->m_len)) {
1831			ext4_warning(inode->i_sb,
1832				     "ES len assertion failed for inode "
1833				     "%lu: retval %d != map->m_len %d",
1834				     inode->i_ino, retval, map->m_len);
1835			WARN_ON(1);
1836		}
1837
1838		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1839				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1840		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1841					    map->m_pblk, status);
1842		if (ret != 0)
1843			retval = ret;
1844	}
1845
1846out_unlock:
1847	up_read((&EXT4_I(inode)->i_data_sem));
1848
1849	return retval;
1850}
1851
1852/*
1853 * This is a special get_block_t callback which is used by
1854 * ext4_da_write_begin().  It will either return mapped block or
1855 * reserve space for a single block.
1856 *
1857 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1858 * We also have b_blocknr = -1 and b_bdev initialized properly
1859 *
1860 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1861 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1862 * initialized properly.
1863 */
1864int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1865			   struct buffer_head *bh, int create)
1866{
1867	struct ext4_map_blocks map;
1868	int ret = 0;
1869
1870	BUG_ON(create == 0);
1871	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872
1873	map.m_lblk = iblock;
1874	map.m_len = 1;
1875
1876	/*
1877	 * first, we need to know whether the block is allocated already
1878	 * preallocated blocks are unmapped but should treated
1879	 * the same as allocated blocks.
1880	 */
1881	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1882	if (ret <= 0)
1883		return ret;
1884
1885	map_bh(bh, inode->i_sb, map.m_pblk);
1886	ext4_update_bh_state(bh, map.m_flags);
1887
1888	if (buffer_unwritten(bh)) {
1889		/* A delayed write to unwritten bh should be marked
1890		 * new and mapped.  Mapped ensures that we don't do
1891		 * get_block multiple times when we write to the same
1892		 * offset and new ensures that we do proper zero out
1893		 * for partial write.
1894		 */
1895		set_buffer_new(bh);
1896		set_buffer_mapped(bh);
1897	}
1898	return 0;
1899}
1900
1901static int bget_one(handle_t *handle, struct buffer_head *bh)
1902{
1903	get_bh(bh);
1904	return 0;
1905}
1906
1907static int bput_one(handle_t *handle, struct buffer_head *bh)
1908{
1909	put_bh(bh);
1910	return 0;
1911}
1912
1913static int __ext4_journalled_writepage(struct page *page,
1914				       unsigned int len)
1915{
1916	struct address_space *mapping = page->mapping;
1917	struct inode *inode = mapping->host;
1918	struct buffer_head *page_bufs = NULL;
1919	handle_t *handle = NULL;
1920	int ret = 0, err = 0;
1921	int inline_data = ext4_has_inline_data(inode);
1922	struct buffer_head *inode_bh = NULL;
1923
1924	ClearPageChecked(page);
1925
1926	if (inline_data) {
1927		BUG_ON(page->index != 0);
1928		BUG_ON(len > ext4_get_max_inline_size(inode));
1929		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1930		if (inode_bh == NULL)
1931			goto out;
1932	} else {
1933		page_bufs = page_buffers(page);
1934		if (!page_bufs) {
1935			BUG();
1936			goto out;
1937		}
1938		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1939				       NULL, bget_one);
1940	}
1941	/*
1942	 * We need to release the page lock before we start the
1943	 * journal, so grab a reference so the page won't disappear
1944	 * out from under us.
1945	 */
1946	get_page(page);
1947	unlock_page(page);
1948
1949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1950				    ext4_writepage_trans_blocks(inode));
1951	if (IS_ERR(handle)) {
1952		ret = PTR_ERR(handle);
1953		put_page(page);
1954		goto out_no_pagelock;
1955	}
1956	BUG_ON(!ext4_handle_valid(handle));
1957
1958	lock_page(page);
1959	put_page(page);
1960	if (page->mapping != mapping) {
1961		/* The page got truncated from under us */
1962		ext4_journal_stop(handle);
1963		ret = 0;
1964		goto out;
1965	}
1966
1967	if (inline_data) {
1968		BUFFER_TRACE(inode_bh, "get write access");
1969		ret = ext4_journal_get_write_access(handle, inode_bh);
1970
1971		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1972
1973	} else {
1974		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1975					     do_journal_get_write_access);
1976
1977		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978					     write_end_fn);
1979	}
1980	if (ret == 0)
1981		ret = err;
1982	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1983	err = ext4_journal_stop(handle);
1984	if (!ret)
1985		ret = err;
1986
1987	if (!ext4_has_inline_data(inode))
1988		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1989				       NULL, bput_one);
1990	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1991out:
1992	unlock_page(page);
1993out_no_pagelock:
1994	brelse(inode_bh);
1995	return ret;
1996}
1997
1998/*
1999 * Note that we don't need to start a transaction unless we're journaling data
2000 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2001 * need to file the inode to the transaction's list in ordered mode because if
2002 * we are writing back data added by write(), the inode is already there and if
2003 * we are writing back data modified via mmap(), no one guarantees in which
2004 * transaction the data will hit the disk. In case we are journaling data, we
2005 * cannot start transaction directly because transaction start ranks above page
2006 * lock so we have to do some magic.
2007 *
2008 * This function can get called via...
2009 *   - ext4_writepages after taking page lock (have journal handle)
2010 *   - journal_submit_inode_data_buffers (no journal handle)
2011 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2012 *   - grab_page_cache when doing write_begin (have journal handle)
2013 *
2014 * We don't do any block allocation in this function. If we have page with
2015 * multiple blocks we need to write those buffer_heads that are mapped. This
2016 * is important for mmaped based write. So if we do with blocksize 1K
2017 * truncate(f, 1024);
2018 * a = mmap(f, 0, 4096);
2019 * a[0] = 'a';
2020 * truncate(f, 4096);
2021 * we have in the page first buffer_head mapped via page_mkwrite call back
2022 * but other buffer_heads would be unmapped but dirty (dirty done via the
2023 * do_wp_page). So writepage should write the first block. If we modify
2024 * the mmap area beyond 1024 we will again get a page_fault and the
2025 * page_mkwrite callback will do the block allocation and mark the
2026 * buffer_heads mapped.
2027 *
2028 * We redirty the page if we have any buffer_heads that is either delay or
2029 * unwritten in the page.
2030 *
2031 * We can get recursively called as show below.
2032 *
2033 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2034 *		ext4_writepage()
2035 *
2036 * But since we don't do any block allocation we should not deadlock.
2037 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2038 */
2039static int ext4_writepage(struct page *page,
2040			  struct writeback_control *wbc)
2041{
2042	int ret = 0;
2043	loff_t size;
2044	unsigned int len;
2045	struct buffer_head *page_bufs = NULL;
2046	struct inode *inode = page->mapping->host;
2047	struct ext4_io_submit io_submit;
2048	bool keep_towrite = false;
2049
 
 
 
 
 
 
2050	trace_ext4_writepage(page);
2051	size = i_size_read(inode);
2052	if (page->index == size >> PAGE_SHIFT)
 
2053		len = size & ~PAGE_MASK;
2054	else
2055		len = PAGE_SIZE;
2056
2057	page_bufs = page_buffers(page);
2058	/*
2059	 * We cannot do block allocation or other extent handling in this
2060	 * function. If there are buffers needing that, we have to redirty
2061	 * the page. But we may reach here when we do a journal commit via
2062	 * journal_submit_inode_data_buffers() and in that case we must write
2063	 * allocated buffers to achieve data=ordered mode guarantees.
2064	 *
2065	 * Also, if there is only one buffer per page (the fs block
2066	 * size == the page size), if one buffer needs block
2067	 * allocation or needs to modify the extent tree to clear the
2068	 * unwritten flag, we know that the page can't be written at
2069	 * all, so we might as well refuse the write immediately.
2070	 * Unfortunately if the block size != page size, we can't as
2071	 * easily detect this case using ext4_walk_page_buffers(), but
2072	 * for the extremely common case, this is an optimization that
2073	 * skips a useless round trip through ext4_bio_write_page().
2074	 */
2075	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2076				   ext4_bh_delay_or_unwritten)) {
2077		redirty_page_for_writepage(wbc, page);
2078		if ((current->flags & PF_MEMALLOC) ||
2079		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2080			/*
2081			 * For memory cleaning there's no point in writing only
2082			 * some buffers. So just bail out. Warn if we came here
2083			 * from direct reclaim.
2084			 */
2085			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2086							== PF_MEMALLOC);
2087			unlock_page(page);
2088			return 0;
2089		}
2090		keep_towrite = true;
2091	}
2092
2093	if (PageChecked(page) && ext4_should_journal_data(inode))
2094		/*
2095		 * It's mmapped pagecache.  Add buffers and journal it.  There
2096		 * doesn't seem much point in redirtying the page here.
2097		 */
2098		return __ext4_journalled_writepage(page, len);
2099
2100	ext4_io_submit_init(&io_submit, wbc);
2101	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2102	if (!io_submit.io_end) {
2103		redirty_page_for_writepage(wbc, page);
2104		unlock_page(page);
2105		return -ENOMEM;
2106	}
2107	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2108	ext4_io_submit(&io_submit);
2109	/* Drop io_end reference we got from init */
2110	ext4_put_io_end_defer(io_submit.io_end);
2111	return ret;
2112}
2113
2114static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2115{
2116	int len;
2117	loff_t size = i_size_read(mpd->inode);
2118	int err;
2119
2120	BUG_ON(page->index != mpd->first_page);
2121	if (page->index == size >> PAGE_SHIFT)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125	clear_page_dirty_for_io(page);
2126	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2127	if (!err)
2128		mpd->wbc->nr_to_write--;
2129	mpd->first_page++;
2130
2131	return err;
2132}
2133
2134#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2135
2136/*
2137 * mballoc gives us at most this number of blocks...
2138 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2139 * The rest of mballoc seems to handle chunks up to full group size.
2140 */
2141#define MAX_WRITEPAGES_EXTENT_LEN 2048
2142
2143/*
2144 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2145 *
2146 * @mpd - extent of blocks
2147 * @lblk - logical number of the block in the file
2148 * @bh - buffer head we want to add to the extent
2149 *
2150 * The function is used to collect contig. blocks in the same state. If the
2151 * buffer doesn't require mapping for writeback and we haven't started the
2152 * extent of buffers to map yet, the function returns 'true' immediately - the
2153 * caller can write the buffer right away. Otherwise the function returns true
2154 * if the block has been added to the extent, false if the block couldn't be
2155 * added.
2156 */
2157static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2158				   struct buffer_head *bh)
2159{
2160	struct ext4_map_blocks *map = &mpd->map;
2161
2162	/* Buffer that doesn't need mapping for writeback? */
2163	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2164	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2165		/* So far no extent to map => we write the buffer right away */
2166		if (map->m_len == 0)
2167			return true;
2168		return false;
2169	}
2170
2171	/* First block in the extent? */
2172	if (map->m_len == 0) {
 
 
 
2173		map->m_lblk = lblk;
2174		map->m_len = 1;
2175		map->m_flags = bh->b_state & BH_FLAGS;
2176		return true;
2177	}
2178
2179	/* Don't go larger than mballoc is willing to allocate */
2180	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2181		return false;
2182
2183	/* Can we merge the block to our big extent? */
2184	if (lblk == map->m_lblk + map->m_len &&
2185	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2186		map->m_len++;
2187		return true;
2188	}
2189	return false;
2190}
2191
2192/*
2193 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2194 *
2195 * @mpd - extent of blocks for mapping
2196 * @head - the first buffer in the page
2197 * @bh - buffer we should start processing from
2198 * @lblk - logical number of the block in the file corresponding to @bh
2199 *
2200 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2201 * the page for IO if all buffers in this page were mapped and there's no
2202 * accumulated extent of buffers to map or add buffers in the page to the
2203 * extent of buffers to map. The function returns 1 if the caller can continue
2204 * by processing the next page, 0 if it should stop adding buffers to the
2205 * extent to map because we cannot extend it anymore. It can also return value
2206 * < 0 in case of error during IO submission.
2207 */
2208static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2209				   struct buffer_head *head,
2210				   struct buffer_head *bh,
2211				   ext4_lblk_t lblk)
2212{
2213	struct inode *inode = mpd->inode;
2214	int err;
2215	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2216							>> inode->i_blkbits;
2217
 
 
 
2218	do {
2219		BUG_ON(buffer_locked(bh));
2220
2221		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2222			/* Found extent to map? */
2223			if (mpd->map.m_len)
2224				return 0;
 
 
 
2225			/* Everything mapped so far and we hit EOF */
2226			break;
2227		}
2228	} while (lblk++, (bh = bh->b_this_page) != head);
2229	/* So far everything mapped? Submit the page for IO. */
2230	if (mpd->map.m_len == 0) {
2231		err = mpage_submit_page(mpd, head->b_page);
2232		if (err < 0)
2233			return err;
2234	}
2235	return lblk < blocks;
2236}
2237
2238/*
2239 * mpage_map_buffers - update buffers corresponding to changed extent and
2240 *		       submit fully mapped pages for IO
2241 *
2242 * @mpd - description of extent to map, on return next extent to map
2243 *
2244 * Scan buffers corresponding to changed extent (we expect corresponding pages
2245 * to be already locked) and update buffer state according to new extent state.
2246 * We map delalloc buffers to their physical location, clear unwritten bits,
2247 * and mark buffers as uninit when we perform writes to unwritten extents
2248 * and do extent conversion after IO is finished. If the last page is not fully
2249 * mapped, we update @map to the next extent in the last page that needs
2250 * mapping. Otherwise we submit the page for IO.
2251 */
2252static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2253{
2254	struct pagevec pvec;
2255	int nr_pages, i;
2256	struct inode *inode = mpd->inode;
2257	struct buffer_head *head, *bh;
2258	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2259	pgoff_t start, end;
2260	ext4_lblk_t lblk;
2261	sector_t pblock;
2262	int err;
2263
2264	start = mpd->map.m_lblk >> bpp_bits;
2265	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2266	lblk = start << bpp_bits;
2267	pblock = mpd->map.m_pblk;
2268
2269	pagevec_init(&pvec, 0);
2270	while (start <= end) {
2271		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2272					  PAGEVEC_SIZE);
2273		if (nr_pages == 0)
2274			break;
2275		for (i = 0; i < nr_pages; i++) {
2276			struct page *page = pvec.pages[i];
2277
2278			if (page->index > end)
2279				break;
2280			/* Up to 'end' pages must be contiguous */
2281			BUG_ON(page->index != start);
2282			bh = head = page_buffers(page);
2283			do {
2284				if (lblk < mpd->map.m_lblk)
2285					continue;
2286				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287					/*
2288					 * Buffer after end of mapped extent.
2289					 * Find next buffer in the page to map.
2290					 */
2291					mpd->map.m_len = 0;
2292					mpd->map.m_flags = 0;
2293					/*
2294					 * FIXME: If dioread_nolock supports
2295					 * blocksize < pagesize, we need to make
2296					 * sure we add size mapped so far to
2297					 * io_end->size as the following call
2298					 * can submit the page for IO.
2299					 */
2300					err = mpage_process_page_bufs(mpd, head,
2301								      bh, lblk);
2302					pagevec_release(&pvec);
2303					if (err > 0)
2304						err = 0;
2305					return err;
2306				}
2307				if (buffer_delay(bh)) {
2308					clear_buffer_delay(bh);
2309					bh->b_blocknr = pblock++;
2310				}
2311				clear_buffer_unwritten(bh);
2312			} while (lblk++, (bh = bh->b_this_page) != head);
2313
2314			/*
2315			 * FIXME: This is going to break if dioread_nolock
2316			 * supports blocksize < pagesize as we will try to
2317			 * convert potentially unmapped parts of inode.
2318			 */
2319			mpd->io_submit.io_end->size += PAGE_SIZE;
2320			/* Page fully mapped - let IO run! */
2321			err = mpage_submit_page(mpd, page);
2322			if (err < 0) {
2323				pagevec_release(&pvec);
2324				return err;
2325			}
2326			start++;
2327		}
2328		pagevec_release(&pvec);
2329	}
2330	/* Extent fully mapped and matches with page boundary. We are done. */
2331	mpd->map.m_len = 0;
2332	mpd->map.m_flags = 0;
2333	return 0;
2334}
2335
2336static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337{
2338	struct inode *inode = mpd->inode;
2339	struct ext4_map_blocks *map = &mpd->map;
2340	int get_blocks_flags;
2341	int err, dioread_nolock;
2342
2343	trace_ext4_da_write_pages_extent(inode, map);
2344	/*
2345	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2346	 * to convert an unwritten extent to be initialized (in the case
2347	 * where we have written into one or more preallocated blocks).  It is
2348	 * possible that we're going to need more metadata blocks than
2349	 * previously reserved. However we must not fail because we're in
2350	 * writeback and there is nothing we can do about it so it might result
2351	 * in data loss.  So use reserved blocks to allocate metadata if
2352	 * possible.
2353	 *
2354	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2355	 * the blocks in question are delalloc blocks.  This indicates
2356	 * that the blocks and quotas has already been checked when
2357	 * the data was copied into the page cache.
2358	 */
2359	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2360			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2361			   EXT4_GET_BLOCKS_IO_SUBMIT;
2362	dioread_nolock = ext4_should_dioread_nolock(inode);
2363	if (dioread_nolock)
2364		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2365	if (map->m_flags & (1 << BH_Delay))
2366		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367
2368	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369	if (err < 0)
2370		return err;
2371	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2372		if (!mpd->io_submit.io_end->handle &&
2373		    ext4_handle_valid(handle)) {
2374			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2375			handle->h_rsv_handle = NULL;
2376		}
2377		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2378	}
2379
2380	BUG_ON(map->m_len == 0);
2381	if (map->m_flags & EXT4_MAP_NEW) {
2382		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2383				   map->m_len);
2384	}
2385	return 0;
2386}
2387
2388/*
2389 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2390 *				 mpd->len and submit pages underlying it for IO
2391 *
2392 * @handle - handle for journal operations
2393 * @mpd - extent to map
2394 * @give_up_on_write - we set this to true iff there is a fatal error and there
2395 *                     is no hope of writing the data. The caller should discard
2396 *                     dirty pages to avoid infinite loops.
2397 *
2398 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2399 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2400 * them to initialized or split the described range from larger unwritten
2401 * extent. Note that we need not map all the described range since allocation
2402 * can return less blocks or the range is covered by more unwritten extents. We
2403 * cannot map more because we are limited by reserved transaction credits. On
2404 * the other hand we always make sure that the last touched page is fully
2405 * mapped so that it can be written out (and thus forward progress is
2406 * guaranteed). After mapping we submit all mapped pages for IO.
2407 */
2408static int mpage_map_and_submit_extent(handle_t *handle,
2409				       struct mpage_da_data *mpd,
2410				       bool *give_up_on_write)
2411{
2412	struct inode *inode = mpd->inode;
2413	struct ext4_map_blocks *map = &mpd->map;
2414	int err;
2415	loff_t disksize;
2416	int progress = 0;
2417
2418	mpd->io_submit.io_end->offset =
2419				((loff_t)map->m_lblk) << inode->i_blkbits;
2420	do {
2421		err = mpage_map_one_extent(handle, mpd);
2422		if (err < 0) {
2423			struct super_block *sb = inode->i_sb;
2424
2425			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
 
2426				goto invalidate_dirty_pages;
2427			/*
2428			 * Let the uper layers retry transient errors.
2429			 * In the case of ENOSPC, if ext4_count_free_blocks()
2430			 * is non-zero, a commit should free up blocks.
2431			 */
2432			if ((err == -ENOMEM) ||
2433			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434				if (progress)
2435					goto update_disksize;
2436				return err;
2437			}
2438			ext4_msg(sb, KERN_CRIT,
2439				 "Delayed block allocation failed for "
2440				 "inode %lu at logical offset %llu with"
2441				 " max blocks %u with error %d",
2442				 inode->i_ino,
2443				 (unsigned long long)map->m_lblk,
2444				 (unsigned)map->m_len, -err);
2445			ext4_msg(sb, KERN_CRIT,
2446				 "This should not happen!! Data will "
2447				 "be lost\n");
2448			if (err == -ENOSPC)
2449				ext4_print_free_blocks(inode);
2450		invalidate_dirty_pages:
2451			*give_up_on_write = true;
2452			return err;
2453		}
2454		progress = 1;
2455		/*
2456		 * Update buffer state, submit mapped pages, and get us new
2457		 * extent to map
2458		 */
2459		err = mpage_map_and_submit_buffers(mpd);
2460		if (err < 0)
2461			goto update_disksize;
2462	} while (map->m_len);
2463
2464update_disksize:
2465	/*
2466	 * Update on-disk size after IO is submitted.  Races with
2467	 * truncate are avoided by checking i_size under i_data_sem.
2468	 */
2469	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2470	if (disksize > EXT4_I(inode)->i_disksize) {
2471		int err2;
2472		loff_t i_size;
2473
2474		down_write(&EXT4_I(inode)->i_data_sem);
2475		i_size = i_size_read(inode);
2476		if (disksize > i_size)
2477			disksize = i_size;
2478		if (disksize > EXT4_I(inode)->i_disksize)
2479			EXT4_I(inode)->i_disksize = disksize;
2480		err2 = ext4_mark_inode_dirty(handle, inode);
2481		up_write(&EXT4_I(inode)->i_data_sem);
 
2482		if (err2)
2483			ext4_error(inode->i_sb,
2484				   "Failed to mark inode %lu dirty",
2485				   inode->i_ino);
2486		if (!err)
2487			err = err2;
2488	}
2489	return err;
2490}
2491
2492/*
2493 * Calculate the total number of credits to reserve for one writepages
2494 * iteration. This is called from ext4_writepages(). We map an extent of
2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497 * bpp - 1 blocks in bpp different extents.
2498 */
2499static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500{
2501	int bpp = ext4_journal_blocks_per_page(inode);
2502
2503	return ext4_meta_trans_blocks(inode,
2504				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505}
2506
2507/*
2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509 * 				 and underlying extent to map
2510 *
2511 * @mpd - where to look for pages
2512 *
2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514 * IO immediately. When we find a page which isn't mapped we start accumulating
2515 * extent of buffers underlying these pages that needs mapping (formed by
2516 * either delayed or unwritten buffers). We also lock the pages containing
2517 * these buffers. The extent found is returned in @mpd structure (starting at
2518 * mpd->lblk with length mpd->len blocks).
2519 *
2520 * Note that this function can attach bios to one io_end structure which are
2521 * neither logically nor physically contiguous. Although it may seem as an
2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523 * case as we need to track IO to all buffers underlying a page in one io_end.
2524 */
2525static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526{
2527	struct address_space *mapping = mpd->inode->i_mapping;
2528	struct pagevec pvec;
2529	unsigned int nr_pages;
2530	long left = mpd->wbc->nr_to_write;
2531	pgoff_t index = mpd->first_page;
2532	pgoff_t end = mpd->last_page;
2533	int tag;
2534	int i, err = 0;
2535	int blkbits = mpd->inode->i_blkbits;
2536	ext4_lblk_t lblk;
2537	struct buffer_head *head;
2538
2539	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540		tag = PAGECACHE_TAG_TOWRITE;
2541	else
2542		tag = PAGECACHE_TAG_DIRTY;
2543
2544	pagevec_init(&pvec, 0);
2545	mpd->map.m_len = 0;
2546	mpd->next_page = index;
2547	while (index <= end) {
2548		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2549			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2550		if (nr_pages == 0)
2551			goto out;
2552
2553		for (i = 0; i < nr_pages; i++) {
2554			struct page *page = pvec.pages[i];
2555
2556			/*
2557			 * At this point, the page may be truncated or
2558			 * invalidated (changing page->mapping to NULL), or
2559			 * even swizzled back from swapper_space to tmpfs file
2560			 * mapping. However, page->index will not change
2561			 * because we have a reference on the page.
2562			 */
2563			if (page->index > end)
2564				goto out;
2565
2566			/*
2567			 * Accumulated enough dirty pages? This doesn't apply
2568			 * to WB_SYNC_ALL mode. For integrity sync we have to
2569			 * keep going because someone may be concurrently
2570			 * dirtying pages, and we might have synced a lot of
2571			 * newly appeared dirty pages, but have not synced all
2572			 * of the old dirty pages.
2573			 */
2574			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2575				goto out;
2576
2577			/* If we can't merge this page, we are done. */
2578			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579				goto out;
2580
2581			lock_page(page);
2582			/*
2583			 * If the page is no longer dirty, or its mapping no
2584			 * longer corresponds to inode we are writing (which
2585			 * means it has been truncated or invalidated), or the
2586			 * page is already under writeback and we are not doing
2587			 * a data integrity writeback, skip the page
2588			 */
2589			if (!PageDirty(page) ||
2590			    (PageWriteback(page) &&
2591			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592			    unlikely(page->mapping != mapping)) {
2593				unlock_page(page);
2594				continue;
2595			}
2596
2597			wait_on_page_writeback(page);
2598			BUG_ON(PageWriteback(page));
2599
2600			if (mpd->map.m_len == 0)
2601				mpd->first_page = page->index;
2602			mpd->next_page = page->index + 1;
2603			/* Add all dirty buffers to mpd */
2604			lblk = ((ext4_lblk_t)page->index) <<
2605				(PAGE_SHIFT - blkbits);
2606			head = page_buffers(page);
2607			err = mpage_process_page_bufs(mpd, head, head, lblk);
2608			if (err <= 0)
2609				goto out;
2610			err = 0;
2611			left--;
2612		}
2613		pagevec_release(&pvec);
2614		cond_resched();
2615	}
2616	return 0;
2617out:
2618	pagevec_release(&pvec);
2619	return err;
2620}
2621
2622static int __writepage(struct page *page, struct writeback_control *wbc,
2623		       void *data)
2624{
2625	struct address_space *mapping = data;
2626	int ret = ext4_writepage(page, wbc);
2627	mapping_set_error(mapping, ret);
2628	return ret;
2629}
2630
2631static int ext4_writepages(struct address_space *mapping,
2632			   struct writeback_control *wbc)
2633{
2634	pgoff_t	writeback_index = 0;
2635	long nr_to_write = wbc->nr_to_write;
2636	int range_whole = 0;
2637	int cycled = 1;
2638	handle_t *handle = NULL;
2639	struct mpage_da_data mpd;
2640	struct inode *inode = mapping->host;
2641	int needed_blocks, rsv_blocks = 0, ret = 0;
2642	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2643	bool done;
2644	struct blk_plug plug;
2645	bool give_up_on_write = false;
2646
 
 
 
2647	percpu_down_read(&sbi->s_journal_flag_rwsem);
2648	trace_ext4_writepages(inode, wbc);
2649
2650	if (dax_mapping(mapping)) {
2651		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2652						  wbc);
2653		goto out_writepages;
2654	}
2655
2656	/*
2657	 * No pages to write? This is mainly a kludge to avoid starting
2658	 * a transaction for special inodes like journal inode on last iput()
2659	 * because that could violate lock ordering on umount
2660	 */
2661	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2662		goto out_writepages;
2663
2664	if (ext4_should_journal_data(inode)) {
2665		struct blk_plug plug;
2666
2667		blk_start_plug(&plug);
2668		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2669		blk_finish_plug(&plug);
2670		goto out_writepages;
2671	}
2672
2673	/*
2674	 * If the filesystem has aborted, it is read-only, so return
2675	 * right away instead of dumping stack traces later on that
2676	 * will obscure the real source of the problem.  We test
2677	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2678	 * the latter could be true if the filesystem is mounted
2679	 * read-only, and in that case, ext4_writepages should
2680	 * *never* be called, so if that ever happens, we would want
2681	 * the stack trace.
2682	 */
2683	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
 
2684		ret = -EROFS;
2685		goto out_writepages;
2686	}
2687
2688	if (ext4_should_dioread_nolock(inode)) {
2689		/*
2690		 * We may need to convert up to one extent per block in
2691		 * the page and we may dirty the inode.
2692		 */
2693		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2694	}
2695
2696	/*
2697	 * If we have inline data and arrive here, it means that
2698	 * we will soon create the block for the 1st page, so
2699	 * we'd better clear the inline data here.
2700	 */
2701	if (ext4_has_inline_data(inode)) {
2702		/* Just inode will be modified... */
2703		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704		if (IS_ERR(handle)) {
2705			ret = PTR_ERR(handle);
2706			goto out_writepages;
2707		}
2708		BUG_ON(ext4_test_inode_state(inode,
2709				EXT4_STATE_MAY_INLINE_DATA));
2710		ext4_destroy_inline_data(handle, inode);
2711		ext4_journal_stop(handle);
2712	}
2713
 
 
 
 
 
 
 
 
 
2714	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715		range_whole = 1;
2716
2717	if (wbc->range_cyclic) {
2718		writeback_index = mapping->writeback_index;
2719		if (writeback_index)
2720			cycled = 0;
2721		mpd.first_page = writeback_index;
2722		mpd.last_page = -1;
2723	} else {
2724		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726	}
2727
2728	mpd.inode = inode;
2729	mpd.wbc = wbc;
2730	ext4_io_submit_init(&mpd.io_submit, wbc);
2731retry:
2732	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734	done = false;
2735	blk_start_plug(&plug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2736	while (!done && mpd.first_page <= mpd.last_page) {
2737		/* For each extent of pages we use new io_end */
2738		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2739		if (!mpd.io_submit.io_end) {
2740			ret = -ENOMEM;
2741			break;
2742		}
2743
2744		/*
2745		 * We have two constraints: We find one extent to map and we
2746		 * must always write out whole page (makes a difference when
2747		 * blocksize < pagesize) so that we don't block on IO when we
2748		 * try to write out the rest of the page. Journalled mode is
2749		 * not supported by delalloc.
2750		 */
2751		BUG_ON(ext4_should_journal_data(inode));
2752		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2753
2754		/* start a new transaction */
2755		handle = ext4_journal_start_with_reserve(inode,
2756				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2757		if (IS_ERR(handle)) {
2758			ret = PTR_ERR(handle);
2759			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2760			       "%ld pages, ino %lu; err %d", __func__,
2761				wbc->nr_to_write, inode->i_ino, ret);
2762			/* Release allocated io_end */
2763			ext4_put_io_end(mpd.io_submit.io_end);
 
2764			break;
2765		}
 
2766
2767		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768		ret = mpage_prepare_extent_to_map(&mpd);
2769		if (!ret) {
2770			if (mpd.map.m_len)
2771				ret = mpage_map_and_submit_extent(handle, &mpd,
2772					&give_up_on_write);
2773			else {
2774				/*
2775				 * We scanned the whole range (or exhausted
2776				 * nr_to_write), submitted what was mapped and
2777				 * didn't find anything needing mapping. We are
2778				 * done.
2779				 */
2780				done = true;
2781			}
2782		}
2783		/*
2784		 * Caution: If the handle is synchronous,
2785		 * ext4_journal_stop() can wait for transaction commit
2786		 * to finish which may depend on writeback of pages to
2787		 * complete or on page lock to be released.  In that
2788		 * case, we have to wait until after after we have
2789		 * submitted all the IO, released page locks we hold,
2790		 * and dropped io_end reference (for extent conversion
2791		 * to be able to complete) before stopping the handle.
2792		 */
2793		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794			ext4_journal_stop(handle);
2795			handle = NULL;
 
2796		}
2797		/* Submit prepared bio */
2798		ext4_io_submit(&mpd.io_submit);
2799		/* Unlock pages we didn't use */
2800		mpage_release_unused_pages(&mpd, give_up_on_write);
 
 
 
2801		/*
2802		 * Drop our io_end reference we got from init. We have
2803		 * to be careful and use deferred io_end finishing if
2804		 * we are still holding the transaction as we can
2805		 * release the last reference to io_end which may end
2806		 * up doing unwritten extent conversion.
2807		 */
2808		if (handle) {
2809			ext4_put_io_end_defer(mpd.io_submit.io_end);
2810			ext4_journal_stop(handle);
2811		} else
2812			ext4_put_io_end(mpd.io_submit.io_end);
 
2813
2814		if (ret == -ENOSPC && sbi->s_journal) {
2815			/*
2816			 * Commit the transaction which would
2817			 * free blocks released in the transaction
2818			 * and try again
2819			 */
2820			jbd2_journal_force_commit_nested(sbi->s_journal);
2821			ret = 0;
2822			continue;
2823		}
2824		/* Fatal error - ENOMEM, EIO... */
2825		if (ret)
2826			break;
2827	}
 
2828	blk_finish_plug(&plug);
2829	if (!ret && !cycled && wbc->nr_to_write > 0) {
2830		cycled = 1;
2831		mpd.last_page = writeback_index - 1;
2832		mpd.first_page = 0;
2833		goto retry;
2834	}
2835
2836	/* Update index */
2837	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838		/*
2839		 * Set the writeback_index so that range_cyclic
2840		 * mode will write it back later
2841		 */
2842		mapping->writeback_index = mpd.first_page;
2843
2844out_writepages:
2845	trace_ext4_writepages_result(inode, wbc, ret,
2846				     nr_to_write - wbc->nr_to_write);
2847	percpu_up_read(&sbi->s_journal_flag_rwsem);
2848	return ret;
2849}
2850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2851static int ext4_nonda_switch(struct super_block *sb)
2852{
2853	s64 free_clusters, dirty_clusters;
2854	struct ext4_sb_info *sbi = EXT4_SB(sb);
2855
2856	/*
2857	 * switch to non delalloc mode if we are running low
2858	 * on free block. The free block accounting via percpu
2859	 * counters can get slightly wrong with percpu_counter_batch getting
2860	 * accumulated on each CPU without updating global counters
2861	 * Delalloc need an accurate free block accounting. So switch
2862	 * to non delalloc when we are near to error range.
2863	 */
2864	free_clusters =
2865		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866	dirty_clusters =
2867		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2868	/*
2869	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870	 */
2871	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2872		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2873
2874	if (2 * free_clusters < 3 * dirty_clusters ||
2875	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2876		/*
2877		 * free block count is less than 150% of dirty blocks
2878		 * or free blocks is less than watermark
2879		 */
2880		return 1;
2881	}
2882	return 0;
2883}
2884
2885/* We always reserve for an inode update; the superblock could be there too */
2886static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2887{
2888	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2889		return 1;
2890
2891	if (pos + len <= 0x7fffffffULL)
2892		return 1;
2893
2894	/* We might need to update the superblock to set LARGE_FILE */
2895	return 2;
2896}
2897
2898static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899			       loff_t pos, unsigned len, unsigned flags,
2900			       struct page **pagep, void **fsdata)
2901{
2902	int ret, retries = 0;
2903	struct page *page;
2904	pgoff_t index;
2905	struct inode *inode = mapping->host;
2906	handle_t *handle;
2907
 
 
 
2908	index = pos >> PAGE_SHIFT;
2909
2910	if (ext4_nonda_switch(inode->i_sb) ||
2911	    S_ISLNK(inode->i_mode)) {
2912		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2913		return ext4_write_begin(file, mapping, pos,
2914					len, flags, pagep, fsdata);
2915	}
2916	*fsdata = (void *)0;
2917	trace_ext4_da_write_begin(inode, pos, len, flags);
2918
2919	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2920		ret = ext4_da_write_inline_data_begin(mapping, inode,
2921						      pos, len, flags,
2922						      pagep, fsdata);
2923		if (ret < 0)
2924			return ret;
2925		if (ret == 1)
2926			return 0;
2927	}
2928
2929	/*
2930	 * grab_cache_page_write_begin() can take a long time if the
2931	 * system is thrashing due to memory pressure, or if the page
2932	 * is being written back.  So grab it first before we start
2933	 * the transaction handle.  This also allows us to allocate
2934	 * the page (if needed) without using GFP_NOFS.
2935	 */
2936retry_grab:
2937	page = grab_cache_page_write_begin(mapping, index, flags);
2938	if (!page)
2939		return -ENOMEM;
2940	unlock_page(page);
2941
2942	/*
2943	 * With delayed allocation, we don't log the i_disksize update
2944	 * if there is delayed block allocation. But we still need
2945	 * to journalling the i_disksize update if writes to the end
2946	 * of file which has an already mapped buffer.
2947	 */
2948retry_journal:
2949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2950				ext4_da_write_credits(inode, pos, len));
2951	if (IS_ERR(handle)) {
2952		put_page(page);
2953		return PTR_ERR(handle);
2954	}
2955
2956	lock_page(page);
2957	if (page->mapping != mapping) {
2958		/* The page got truncated from under us */
2959		unlock_page(page);
2960		put_page(page);
2961		ext4_journal_stop(handle);
2962		goto retry_grab;
2963	}
2964	/* In case writeback began while the page was unlocked */
2965	wait_for_stable_page(page);
2966
2967#ifdef CONFIG_EXT4_FS_ENCRYPTION
2968	ret = ext4_block_write_begin(page, pos, len,
2969				     ext4_da_get_block_prep);
2970#else
2971	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2972#endif
2973	if (ret < 0) {
2974		unlock_page(page);
2975		ext4_journal_stop(handle);
2976		/*
2977		 * block_write_begin may have instantiated a few blocks
2978		 * outside i_size.  Trim these off again. Don't need
2979		 * i_size_read because we hold i_mutex.
2980		 */
2981		if (pos + len > inode->i_size)
2982			ext4_truncate_failed_write(inode);
2983
2984		if (ret == -ENOSPC &&
2985		    ext4_should_retry_alloc(inode->i_sb, &retries))
2986			goto retry_journal;
2987
2988		put_page(page);
2989		return ret;
2990	}
2991
2992	*pagep = page;
2993	return ret;
2994}
2995
2996/*
2997 * Check if we should update i_disksize
2998 * when write to the end of file but not require block allocation
2999 */
3000static int ext4_da_should_update_i_disksize(struct page *page,
3001					    unsigned long offset)
3002{
3003	struct buffer_head *bh;
3004	struct inode *inode = page->mapping->host;
3005	unsigned int idx;
3006	int i;
3007
3008	bh = page_buffers(page);
3009	idx = offset >> inode->i_blkbits;
3010
3011	for (i = 0; i < idx; i++)
3012		bh = bh->b_this_page;
3013
3014	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3015		return 0;
3016	return 1;
3017}
3018
3019static int ext4_da_write_end(struct file *file,
3020			     struct address_space *mapping,
3021			     loff_t pos, unsigned len, unsigned copied,
3022			     struct page *page, void *fsdata)
3023{
3024	struct inode *inode = mapping->host;
3025	int ret = 0, ret2;
3026	handle_t *handle = ext4_journal_current_handle();
3027	loff_t new_i_size;
3028	unsigned long start, end;
3029	int write_mode = (int)(unsigned long)fsdata;
3030
3031	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3032		return ext4_write_end(file, mapping, pos,
3033				      len, copied, page, fsdata);
3034
3035	trace_ext4_da_write_end(inode, pos, len, copied);
3036	start = pos & (PAGE_SIZE - 1);
3037	end = start + copied - 1;
3038
3039	/*
3040	 * generic_write_end() will run mark_inode_dirty() if i_size
3041	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3042	 * into that.
3043	 */
3044	new_i_size = pos + copied;
3045	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3046		if (ext4_has_inline_data(inode) ||
3047		    ext4_da_should_update_i_disksize(page, end)) {
3048			ext4_update_i_disksize(inode, new_i_size);
3049			/* We need to mark inode dirty even if
3050			 * new_i_size is less that inode->i_size
3051			 * bu greater than i_disksize.(hint delalloc)
3052			 */
3053			ext4_mark_inode_dirty(handle, inode);
3054		}
3055	}
3056
3057	if (write_mode != CONVERT_INLINE_DATA &&
3058	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059	    ext4_has_inline_data(inode))
3060		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3061						     page);
3062	else
3063		ret2 = generic_write_end(file, mapping, pos, len, copied,
3064							page, fsdata);
3065
3066	copied = ret2;
3067	if (ret2 < 0)
3068		ret = ret2;
3069	ret2 = ext4_journal_stop(handle);
3070	if (!ret)
3071		ret = ret2;
3072
3073	return ret ? ret : copied;
3074}
3075
3076static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3077				   unsigned int length)
3078{
3079	/*
3080	 * Drop reserved blocks
3081	 */
3082	BUG_ON(!PageLocked(page));
3083	if (!page_has_buffers(page))
3084		goto out;
3085
3086	ext4_da_page_release_reservation(page, offset, length);
3087
3088out:
3089	ext4_invalidatepage(page, offset, length);
3090
3091	return;
3092}
3093
3094/*
3095 * Force all delayed allocation blocks to be allocated for a given inode.
3096 */
3097int ext4_alloc_da_blocks(struct inode *inode)
3098{
3099	trace_ext4_alloc_da_blocks(inode);
3100
3101	if (!EXT4_I(inode)->i_reserved_data_blocks)
3102		return 0;
3103
3104	/*
3105	 * We do something simple for now.  The filemap_flush() will
3106	 * also start triggering a write of the data blocks, which is
3107	 * not strictly speaking necessary (and for users of
3108	 * laptop_mode, not even desirable).  However, to do otherwise
3109	 * would require replicating code paths in:
3110	 *
3111	 * ext4_writepages() ->
3112	 *    write_cache_pages() ---> (via passed in callback function)
3113	 *        __mpage_da_writepage() -->
3114	 *           mpage_add_bh_to_extent()
3115	 *           mpage_da_map_blocks()
3116	 *
3117	 * The problem is that write_cache_pages(), located in
3118	 * mm/page-writeback.c, marks pages clean in preparation for
3119	 * doing I/O, which is not desirable if we're not planning on
3120	 * doing I/O at all.
3121	 *
3122	 * We could call write_cache_pages(), and then redirty all of
3123	 * the pages by calling redirty_page_for_writepage() but that
3124	 * would be ugly in the extreme.  So instead we would need to
3125	 * replicate parts of the code in the above functions,
3126	 * simplifying them because we wouldn't actually intend to
3127	 * write out the pages, but rather only collect contiguous
3128	 * logical block extents, call the multi-block allocator, and
3129	 * then update the buffer heads with the block allocations.
3130	 *
3131	 * For now, though, we'll cheat by calling filemap_flush(),
3132	 * which will map the blocks, and start the I/O, but not
3133	 * actually wait for the I/O to complete.
3134	 */
3135	return filemap_flush(inode->i_mapping);
3136}
3137
3138/*
3139 * bmap() is special.  It gets used by applications such as lilo and by
3140 * the swapper to find the on-disk block of a specific piece of data.
3141 *
3142 * Naturally, this is dangerous if the block concerned is still in the
3143 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3144 * filesystem and enables swap, then they may get a nasty shock when the
3145 * data getting swapped to that swapfile suddenly gets overwritten by
3146 * the original zero's written out previously to the journal and
3147 * awaiting writeback in the kernel's buffer cache.
3148 *
3149 * So, if we see any bmap calls here on a modified, data-journaled file,
3150 * take extra steps to flush any blocks which might be in the cache.
3151 */
3152static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3153{
3154	struct inode *inode = mapping->host;
3155	journal_t *journal;
3156	int err;
3157
3158	/*
3159	 * We can get here for an inline file via the FIBMAP ioctl
3160	 */
3161	if (ext4_has_inline_data(inode))
3162		return 0;
3163
3164	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165			test_opt(inode->i_sb, DELALLOC)) {
3166		/*
3167		 * With delalloc we want to sync the file
3168		 * so that we can make sure we allocate
3169		 * blocks for file
3170		 */
3171		filemap_write_and_wait(mapping);
3172	}
3173
3174	if (EXT4_JOURNAL(inode) &&
3175	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176		/*
3177		 * This is a REALLY heavyweight approach, but the use of
3178		 * bmap on dirty files is expected to be extremely rare:
3179		 * only if we run lilo or swapon on a freshly made file
3180		 * do we expect this to happen.
3181		 *
3182		 * (bmap requires CAP_SYS_RAWIO so this does not
3183		 * represent an unprivileged user DOS attack --- we'd be
3184		 * in trouble if mortal users could trigger this path at
3185		 * will.)
3186		 *
3187		 * NB. EXT4_STATE_JDATA is not set on files other than
3188		 * regular files.  If somebody wants to bmap a directory
3189		 * or symlink and gets confused because the buffer
3190		 * hasn't yet been flushed to disk, they deserve
3191		 * everything they get.
3192		 */
3193
3194		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195		journal = EXT4_JOURNAL(inode);
3196		jbd2_journal_lock_updates(journal);
3197		err = jbd2_journal_flush(journal);
3198		jbd2_journal_unlock_updates(journal);
3199
3200		if (err)
3201			return 0;
3202	}
3203
3204	return generic_block_bmap(mapping, block, ext4_get_block);
3205}
3206
3207static int ext4_readpage(struct file *file, struct page *page)
3208{
3209	int ret = -EAGAIN;
3210	struct inode *inode = page->mapping->host;
3211
3212	trace_ext4_readpage(page);
3213
3214	if (ext4_has_inline_data(inode))
3215		ret = ext4_readpage_inline(inode, page);
3216
3217	if (ret == -EAGAIN)
3218		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
 
3219
3220	return ret;
3221}
3222
3223static int
3224ext4_readpages(struct file *file, struct address_space *mapping,
3225		struct list_head *pages, unsigned nr_pages)
3226{
3227	struct inode *inode = mapping->host;
3228
3229	/* If the file has inline data, no need to do readpages. */
3230	if (ext4_has_inline_data(inode))
3231		return 0;
3232
3233	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3234}
3235
3236static void ext4_invalidatepage(struct page *page, unsigned int offset,
3237				unsigned int length)
3238{
3239	trace_ext4_invalidatepage(page, offset, length);
3240
3241	/* No journalling happens on data buffers when this function is used */
3242	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3243
3244	block_invalidatepage(page, offset, length);
3245}
3246
3247static int __ext4_journalled_invalidatepage(struct page *page,
3248					    unsigned int offset,
3249					    unsigned int length)
3250{
3251	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
3253	trace_ext4_journalled_invalidatepage(page, offset, length);
3254
3255	/*
3256	 * If it's a full truncate we just forget about the pending dirtying
3257	 */
3258	if (offset == 0 && length == PAGE_SIZE)
3259		ClearPageChecked(page);
3260
3261	return jbd2_journal_invalidatepage(journal, page, offset, length);
3262}
3263
3264/* Wrapper for aops... */
3265static void ext4_journalled_invalidatepage(struct page *page,
3266					   unsigned int offset,
3267					   unsigned int length)
3268{
3269	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3270}
3271
3272static int ext4_releasepage(struct page *page, gfp_t wait)
3273{
3274	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3275
3276	trace_ext4_releasepage(page);
3277
3278	/* Page has dirty journalled data -> cannot release */
3279	if (PageChecked(page))
3280		return 0;
3281	if (journal)
3282		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3283	else
3284		return try_to_free_buffers(page);
3285}
3286
3287#ifdef CONFIG_FS_DAX
 
 
 
 
 
 
 
 
 
 
 
 
3288static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3289			    unsigned flags, struct iomap *iomap)
3290{
 
3291	unsigned int blkbits = inode->i_blkbits;
3292	unsigned long first_block = offset >> blkbits;
3293	unsigned long last_block = (offset + length - 1) >> blkbits;
3294	struct ext4_map_blocks map;
 
3295	int ret;
3296
3297	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3298		return -ERANGE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3299
3300	map.m_lblk = first_block;
3301	map.m_len = last_block - first_block + 1;
3302
3303	if (!(flags & IOMAP_WRITE)) {
3304		ret = ext4_map_blocks(NULL, inode, &map, 0);
3305	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3306		int dio_credits;
3307		handle_t *handle;
3308		int retries = 0;
3309
3310		/* Trim mapping request to maximum we can map at once for DIO */
3311		if (map.m_len > DIO_MAX_BLOCKS)
3312			map.m_len = DIO_MAX_BLOCKS;
3313		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3314retry:
3315		/*
3316		 * Either we allocate blocks and then we don't get unwritten
3317		 * extent so we have reserved enough credits, or the blocks
3318		 * are already allocated and unwritten and in that case
3319		 * extent conversion fits in the credits as well.
3320		 */
3321		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3322					    dio_credits);
3323		if (IS_ERR(handle))
3324			return PTR_ERR(handle);
3325
3326		ret = ext4_map_blocks(handle, inode, &map,
3327				      EXT4_GET_BLOCKS_CREATE_ZERO);
3328		if (ret < 0) {
3329			ext4_journal_stop(handle);
3330			if (ret == -ENOSPC &&
3331			    ext4_should_retry_alloc(inode->i_sb, &retries))
3332				goto retry;
3333			return ret;
3334		}
3335
3336		/*
3337		 * If we added blocks beyond i_size, we need to make sure they
3338		 * will get truncated if we crash before updating i_size in
3339		 * ext4_iomap_end(). For faults we don't need to do that (and
3340		 * even cannot because for orphan list operations inode_lock is
3341		 * required) - if we happen to instantiate block beyond i_size,
3342		 * it is because we race with truncate which has already added
3343		 * the inode to the orphan list.
3344		 */
3345		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3346		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3347			int err;
3348
3349			err = ext4_orphan_add(handle, inode);
3350			if (err < 0) {
3351				ext4_journal_stop(handle);
3352				return err;
3353			}
3354		}
3355		ext4_journal_stop(handle);
 
 
 
 
3356	}
3357
3358	iomap->flags = 0;
 
 
3359	iomap->bdev = inode->i_sb->s_bdev;
3360	iomap->offset = first_block << blkbits;
 
 
3361
3362	if (ret == 0) {
3363		iomap->type = IOMAP_HOLE;
3364		iomap->blkno = IOMAP_NULL_BLOCK;
3365		iomap->length = (u64)map.m_len << blkbits;
3366	} else {
3367		if (map.m_flags & EXT4_MAP_MAPPED) {
3368			iomap->type = IOMAP_MAPPED;
3369		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3370			iomap->type = IOMAP_UNWRITTEN;
3371		} else {
3372			WARN_ON_ONCE(1);
3373			return -EIO;
3374		}
3375		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3376		iomap->length = (u64)map.m_len << blkbits;
3377	}
3378
3379	if (map.m_flags & EXT4_MAP_NEW)
3380		iomap->flags |= IOMAP_F_NEW;
 
3381	return 0;
3382}
3383
3384static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385			  ssize_t written, unsigned flags, struct iomap *iomap)
3386{
3387	int ret = 0;
3388	handle_t *handle;
3389	int blkbits = inode->i_blkbits;
3390	bool truncate = false;
3391
3392	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3393		return 0;
3394
3395	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3396	if (IS_ERR(handle)) {
3397		ret = PTR_ERR(handle);
3398		goto orphan_del;
3399	}
3400	if (ext4_update_inode_size(inode, offset + written))
3401		ext4_mark_inode_dirty(handle, inode);
3402	/*
3403	 * We may need to truncate allocated but not written blocks beyond EOF.
3404	 */
3405	if (iomap->offset + iomap->length > 
3406	    ALIGN(inode->i_size, 1 << blkbits)) {
3407		ext4_lblk_t written_blk, end_blk;
3408
3409		written_blk = (offset + written) >> blkbits;
3410		end_blk = (offset + length) >> blkbits;
3411		if (written_blk < end_blk && ext4_can_truncate(inode))
3412			truncate = true;
3413	}
3414	/*
3415	 * Remove inode from orphan list if we were extending a inode and
3416	 * everything went fine.
3417	 */
3418	if (!truncate && inode->i_nlink &&
3419	    !list_empty(&EXT4_I(inode)->i_orphan))
3420		ext4_orphan_del(handle, inode);
3421	ext4_journal_stop(handle);
3422	if (truncate) {
3423		ext4_truncate_failed_write(inode);
3424orphan_del:
3425		/*
3426		 * If truncate failed early the inode might still be on the
3427		 * orphan list; we need to make sure the inode is removed from
3428		 * the orphan list in that case.
3429		 */
3430		if (inode->i_nlink)
3431			ext4_orphan_del(NULL, inode);
3432	}
3433	return ret;
3434}
3435
3436struct iomap_ops ext4_iomap_ops = {
3437	.iomap_begin		= ext4_iomap_begin,
3438	.iomap_end		= ext4_iomap_end,
3439};
3440
3441#endif
3442
3443static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3444			    ssize_t size, void *private)
3445{
3446        ext4_io_end_t *io_end = private;
3447
3448	/* if not async direct IO just return */
3449	if (!io_end)
3450		return 0;
3451
3452	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3453		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3454		  io_end, io_end->inode->i_ino, iocb, offset, size);
3455
3456	/*
3457	 * Error during AIO DIO. We cannot convert unwritten extents as the
3458	 * data was not written. Just clear the unwritten flag and drop io_end.
3459	 */
3460	if (size <= 0) {
3461		ext4_clear_io_unwritten_flag(io_end);
3462		size = 0;
3463	}
3464	io_end->offset = offset;
3465	io_end->size = size;
3466	ext4_put_io_end(io_end);
3467
3468	return 0;
3469}
3470
3471/*
3472 * Handling of direct IO writes.
3473 *
3474 * For ext4 extent files, ext4 will do direct-io write even to holes,
3475 * preallocated extents, and those write extend the file, no need to
3476 * fall back to buffered IO.
3477 *
3478 * For holes, we fallocate those blocks, mark them as unwritten
3479 * If those blocks were preallocated, we mark sure they are split, but
3480 * still keep the range to write as unwritten.
3481 *
3482 * The unwritten extents will be converted to written when DIO is completed.
3483 * For async direct IO, since the IO may still pending when return, we
3484 * set up an end_io call back function, which will do the conversion
3485 * when async direct IO completed.
3486 *
3487 * If the O_DIRECT write will extend the file then add this inode to the
3488 * orphan list.  So recovery will truncate it back to the original size
3489 * if the machine crashes during the write.
3490 *
3491 */
3492static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3493{
3494	struct file *file = iocb->ki_filp;
3495	struct inode *inode = file->f_mapping->host;
3496	struct ext4_inode_info *ei = EXT4_I(inode);
3497	ssize_t ret;
3498	loff_t offset = iocb->ki_pos;
3499	size_t count = iov_iter_count(iter);
3500	int overwrite = 0;
3501	get_block_t *get_block_func = NULL;
3502	int dio_flags = 0;
3503	loff_t final_size = offset + count;
3504	int orphan = 0;
3505	handle_t *handle;
3506
3507	if (final_size > inode->i_size) {
3508		/* Credits for sb + inode write */
3509		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3510		if (IS_ERR(handle)) {
3511			ret = PTR_ERR(handle);
3512			goto out;
3513		}
3514		ret = ext4_orphan_add(handle, inode);
3515		if (ret) {
3516			ext4_journal_stop(handle);
3517			goto out;
3518		}
3519		orphan = 1;
3520		ei->i_disksize = inode->i_size;
3521		ext4_journal_stop(handle);
3522	}
3523
3524	BUG_ON(iocb->private == NULL);
3525
3526	/*
3527	 * Make all waiters for direct IO properly wait also for extent
3528	 * conversion. This also disallows race between truncate() and
3529	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3530	 */
3531	inode_dio_begin(inode);
3532
3533	/* If we do a overwrite dio, i_mutex locking can be released */
3534	overwrite = *((int *)iocb->private);
3535
3536	if (overwrite)
3537		inode_unlock(inode);
3538
3539	/*
3540	 * For extent mapped files we could direct write to holes and fallocate.
3541	 *
3542	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3543	 * parallel buffered read to expose the stale data before DIO complete
3544	 * the data IO.
3545	 *
3546	 * As to previously fallocated extents, ext4 get_block will just simply
3547	 * mark the buffer mapped but still keep the extents unwritten.
3548	 *
3549	 * For non AIO case, we will convert those unwritten extents to written
3550	 * after return back from blockdev_direct_IO. That way we save us from
3551	 * allocating io_end structure and also the overhead of offloading
3552	 * the extent convertion to a workqueue.
3553	 *
3554	 * For async DIO, the conversion needs to be deferred when the
3555	 * IO is completed. The ext4 end_io callback function will be
3556	 * called to take care of the conversion work.  Here for async
3557	 * case, we allocate an io_end structure to hook to the iocb.
3558	 */
3559	iocb->private = NULL;
3560	if (overwrite)
3561		get_block_func = ext4_dio_get_block_overwrite;
3562	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3563		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3564		get_block_func = ext4_dio_get_block;
3565		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3566	} else if (is_sync_kiocb(iocb)) {
3567		get_block_func = ext4_dio_get_block_unwritten_sync;
3568		dio_flags = DIO_LOCKING;
3569	} else {
3570		get_block_func = ext4_dio_get_block_unwritten_async;
3571		dio_flags = DIO_LOCKING;
3572	}
3573#ifdef CONFIG_EXT4_FS_ENCRYPTION
3574	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3575#endif
3576	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3577				   get_block_func, ext4_end_io_dio, NULL,
3578				   dio_flags);
3579
3580	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3581						EXT4_STATE_DIO_UNWRITTEN)) {
3582		int err;
3583		/*
3584		 * for non AIO case, since the IO is already
3585		 * completed, we could do the conversion right here
3586		 */
3587		err = ext4_convert_unwritten_extents(NULL, inode,
3588						     offset, ret);
3589		if (err < 0)
3590			ret = err;
3591		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592	}
3593
3594	inode_dio_end(inode);
3595	/* take i_mutex locking again if we do a ovewrite dio */
3596	if (overwrite)
3597		inode_lock(inode);
3598
3599	if (ret < 0 && final_size > inode->i_size)
3600		ext4_truncate_failed_write(inode);
3601
3602	/* Handle extending of i_size after direct IO write */
3603	if (orphan) {
3604		int err;
3605
3606		/* Credits for sb + inode write */
3607		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3608		if (IS_ERR(handle)) {
3609			/* This is really bad luck. We've written the data
3610			 * but cannot extend i_size. Bail out and pretend
3611			 * the write failed... */
3612			ret = PTR_ERR(handle);
 
 
 
 
 
 
 
 
3613			if (inode->i_nlink)
3614				ext4_orphan_del(NULL, inode);
3615
3616			goto out;
3617		}
3618		if (inode->i_nlink)
3619			ext4_orphan_del(handle, inode);
3620		if (ret > 0) {
3621			loff_t end = offset + ret;
3622			if (end > inode->i_size) {
3623				ei->i_disksize = end;
3624				i_size_write(inode, end);
 
3625				/*
3626				 * We're going to return a positive `ret'
3627				 * here due to non-zero-length I/O, so there's
3628				 * no way of reporting error returns from
3629				 * ext4_mark_inode_dirty() to userspace.  So
3630				 * ignore it.
3631				 */
3632				ext4_mark_inode_dirty(handle, inode);
3633			}
3634		}
3635		err = ext4_journal_stop(handle);
3636		if (ret == 0)
3637			ret = err;
3638	}
3639out:
3640	return ret;
3641}
3642
3643static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3644{
3645	struct address_space *mapping = iocb->ki_filp->f_mapping;
3646	struct inode *inode = mapping->host;
3647	size_t count = iov_iter_count(iter);
3648	ssize_t ret;
3649
3650	/*
3651	 * Shared inode_lock is enough for us - it protects against concurrent
3652	 * writes & truncates and since we take care of writing back page cache,
3653	 * we are protected against page writeback as well.
3654	 */
3655	inode_lock_shared(inode);
3656	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3657					   iocb->ki_pos + count);
3658	if (ret)
3659		goto out_unlock;
3660	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3661				   iter, ext4_dio_get_block, NULL, NULL, 0);
3662out_unlock:
3663	inode_unlock_shared(inode);
3664	return ret;
3665}
3666
3667static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3668{
3669	struct file *file = iocb->ki_filp;
3670	struct inode *inode = file->f_mapping->host;
3671	size_t count = iov_iter_count(iter);
3672	loff_t offset = iocb->ki_pos;
3673	ssize_t ret;
3674
3675#ifdef CONFIG_EXT4_FS_ENCRYPTION
3676	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3677		return 0;
3678#endif
 
 
3679
3680	/*
3681	 * If we are doing data journalling we don't support O_DIRECT
3682	 */
3683	if (ext4_should_journal_data(inode))
3684		return 0;
3685
3686	/* Let buffer I/O handle the inline data case. */
3687	if (ext4_has_inline_data(inode))
3688		return 0;
3689
3690	/* DAX uses iomap path now */
3691	if (WARN_ON_ONCE(IS_DAX(inode)))
3692		return 0;
3693
3694	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3695	if (iov_iter_rw(iter) == READ)
3696		ret = ext4_direct_IO_read(iocb, iter);
3697	else
3698		ret = ext4_direct_IO_write(iocb, iter);
3699	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3700	return ret;
3701}
3702
3703/*
3704 * Pages can be marked dirty completely asynchronously from ext4's journalling
3705 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3706 * much here because ->set_page_dirty is called under VFS locks.  The page is
3707 * not necessarily locked.
3708 *
3709 * We cannot just dirty the page and leave attached buffers clean, because the
3710 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3711 * or jbddirty because all the journalling code will explode.
3712 *
3713 * So what we do is to mark the page "pending dirty" and next time writepage
3714 * is called, propagate that into the buffers appropriately.
3715 */
3716static int ext4_journalled_set_page_dirty(struct page *page)
3717{
3718	SetPageChecked(page);
3719	return __set_page_dirty_nobuffers(page);
3720}
3721
3722static int ext4_set_page_dirty(struct page *page)
3723{
3724	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3725	WARN_ON_ONCE(!page_has_buffers(page));
3726	return __set_page_dirty_buffers(page);
3727}
3728
3729static const struct address_space_operations ext4_aops = {
3730	.readpage		= ext4_readpage,
3731	.readpages		= ext4_readpages,
3732	.writepage		= ext4_writepage,
3733	.writepages		= ext4_writepages,
3734	.write_begin		= ext4_write_begin,
3735	.write_end		= ext4_write_end,
3736	.set_page_dirty		= ext4_set_page_dirty,
3737	.bmap			= ext4_bmap,
3738	.invalidatepage		= ext4_invalidatepage,
3739	.releasepage		= ext4_releasepage,
3740	.direct_IO		= ext4_direct_IO,
3741	.migratepage		= buffer_migrate_page,
3742	.is_partially_uptodate  = block_is_partially_uptodate,
3743	.error_remove_page	= generic_error_remove_page,
3744};
3745
3746static const struct address_space_operations ext4_journalled_aops = {
3747	.readpage		= ext4_readpage,
3748	.readpages		= ext4_readpages,
3749	.writepage		= ext4_writepage,
3750	.writepages		= ext4_writepages,
3751	.write_begin		= ext4_write_begin,
3752	.write_end		= ext4_journalled_write_end,
3753	.set_page_dirty		= ext4_journalled_set_page_dirty,
3754	.bmap			= ext4_bmap,
3755	.invalidatepage		= ext4_journalled_invalidatepage,
3756	.releasepage		= ext4_releasepage,
3757	.direct_IO		= ext4_direct_IO,
3758	.is_partially_uptodate  = block_is_partially_uptodate,
3759	.error_remove_page	= generic_error_remove_page,
3760};
3761
3762static const struct address_space_operations ext4_da_aops = {
3763	.readpage		= ext4_readpage,
3764	.readpages		= ext4_readpages,
3765	.writepage		= ext4_writepage,
3766	.writepages		= ext4_writepages,
3767	.write_begin		= ext4_da_write_begin,
3768	.write_end		= ext4_da_write_end,
3769	.set_page_dirty		= ext4_set_page_dirty,
3770	.bmap			= ext4_bmap,
3771	.invalidatepage		= ext4_da_invalidatepage,
3772	.releasepage		= ext4_releasepage,
3773	.direct_IO		= ext4_direct_IO,
3774	.migratepage		= buffer_migrate_page,
3775	.is_partially_uptodate  = block_is_partially_uptodate,
3776	.error_remove_page	= generic_error_remove_page,
3777};
3778
 
 
 
 
 
 
 
 
3779void ext4_set_aops(struct inode *inode)
3780{
3781	switch (ext4_inode_journal_mode(inode)) {
3782	case EXT4_INODE_ORDERED_DATA_MODE:
3783	case EXT4_INODE_WRITEBACK_DATA_MODE:
3784		break;
3785	case EXT4_INODE_JOURNAL_DATA_MODE:
3786		inode->i_mapping->a_ops = &ext4_journalled_aops;
3787		return;
3788	default:
3789		BUG();
3790	}
3791	if (test_opt(inode->i_sb, DELALLOC))
 
 
3792		inode->i_mapping->a_ops = &ext4_da_aops;
3793	else
3794		inode->i_mapping->a_ops = &ext4_aops;
3795}
3796
3797static int __ext4_block_zero_page_range(handle_t *handle,
3798		struct address_space *mapping, loff_t from, loff_t length)
3799{
3800	ext4_fsblk_t index = from >> PAGE_SHIFT;
3801	unsigned offset = from & (PAGE_SIZE-1);
3802	unsigned blocksize, pos;
3803	ext4_lblk_t iblock;
3804	struct inode *inode = mapping->host;
3805	struct buffer_head *bh;
3806	struct page *page;
3807	int err = 0;
3808
3809	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3810				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3811	if (!page)
3812		return -ENOMEM;
3813
3814	blocksize = inode->i_sb->s_blocksize;
3815
3816	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3817
3818	if (!page_has_buffers(page))
3819		create_empty_buffers(page, blocksize, 0);
3820
3821	/* Find the buffer that contains "offset" */
3822	bh = page_buffers(page);
3823	pos = blocksize;
3824	while (offset >= pos) {
3825		bh = bh->b_this_page;
3826		iblock++;
3827		pos += blocksize;
3828	}
3829	if (buffer_freed(bh)) {
3830		BUFFER_TRACE(bh, "freed: skip");
3831		goto unlock;
3832	}
3833	if (!buffer_mapped(bh)) {
3834		BUFFER_TRACE(bh, "unmapped");
3835		ext4_get_block(inode, iblock, bh, 0);
3836		/* unmapped? It's a hole - nothing to do */
3837		if (!buffer_mapped(bh)) {
3838			BUFFER_TRACE(bh, "still unmapped");
3839			goto unlock;
3840		}
3841	}
3842
3843	/* Ok, it's mapped. Make sure it's up-to-date */
3844	if (PageUptodate(page))
3845		set_buffer_uptodate(bh);
3846
3847	if (!buffer_uptodate(bh)) {
3848		err = -EIO;
3849		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3850		wait_on_buffer(bh);
3851		/* Uhhuh. Read error. Complain and punt. */
3852		if (!buffer_uptodate(bh))
3853			goto unlock;
3854		if (S_ISREG(inode->i_mode) &&
3855		    ext4_encrypted_inode(inode)) {
3856			/* We expect the key to be set. */
3857			BUG_ON(!fscrypt_has_encryption_key(inode));
3858			BUG_ON(blocksize != PAGE_SIZE);
3859			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3860						page, PAGE_SIZE, 0, page->index));
3861		}
3862	}
3863	if (ext4_should_journal_data(inode)) {
3864		BUFFER_TRACE(bh, "get write access");
3865		err = ext4_journal_get_write_access(handle, bh);
3866		if (err)
3867			goto unlock;
3868	}
3869	zero_user(page, offset, length);
3870	BUFFER_TRACE(bh, "zeroed end of block");
3871
3872	if (ext4_should_journal_data(inode)) {
3873		err = ext4_handle_dirty_metadata(handle, inode, bh);
3874	} else {
3875		err = 0;
3876		mark_buffer_dirty(bh);
3877		if (ext4_should_order_data(inode))
3878			err = ext4_jbd2_inode_add_write(handle, inode);
 
3879	}
3880
3881unlock:
3882	unlock_page(page);
3883	put_page(page);
3884	return err;
3885}
3886
3887/*
3888 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3889 * starting from file offset 'from'.  The range to be zero'd must
3890 * be contained with in one block.  If the specified range exceeds
3891 * the end of the block it will be shortened to end of the block
3892 * that cooresponds to 'from'
3893 */
3894static int ext4_block_zero_page_range(handle_t *handle,
3895		struct address_space *mapping, loff_t from, loff_t length)
3896{
3897	struct inode *inode = mapping->host;
3898	unsigned offset = from & (PAGE_SIZE-1);
3899	unsigned blocksize = inode->i_sb->s_blocksize;
3900	unsigned max = blocksize - (offset & (blocksize - 1));
3901
3902	/*
3903	 * correct length if it does not fall between
3904	 * 'from' and the end of the block
3905	 */
3906	if (length > max || length < 0)
3907		length = max;
3908
3909	if (IS_DAX(inode)) {
3910		return iomap_zero_range(inode, from, length, NULL,
3911					&ext4_iomap_ops);
3912	}
3913	return __ext4_block_zero_page_range(handle, mapping, from, length);
3914}
3915
3916/*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
3922static int ext4_block_truncate_page(handle_t *handle,
3923		struct address_space *mapping, loff_t from)
3924{
3925	unsigned offset = from & (PAGE_SIZE-1);
3926	unsigned length;
3927	unsigned blocksize;
3928	struct inode *inode = mapping->host;
3929
3930	/* If we are processing an encrypted inode during orphan list handling */
3931	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3932		return 0;
3933
3934	blocksize = inode->i_sb->s_blocksize;
3935	length = blocksize - (offset & (blocksize - 1));
3936
3937	return ext4_block_zero_page_range(handle, mapping, from, length);
3938}
3939
3940int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3941			     loff_t lstart, loff_t length)
3942{
3943	struct super_block *sb = inode->i_sb;
3944	struct address_space *mapping = inode->i_mapping;
3945	unsigned partial_start, partial_end;
3946	ext4_fsblk_t start, end;
3947	loff_t byte_end = (lstart + length - 1);
3948	int err = 0;
3949
3950	partial_start = lstart & (sb->s_blocksize - 1);
3951	partial_end = byte_end & (sb->s_blocksize - 1);
3952
3953	start = lstart >> sb->s_blocksize_bits;
3954	end = byte_end >> sb->s_blocksize_bits;
3955
3956	/* Handle partial zero within the single block */
3957	if (start == end &&
3958	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3959		err = ext4_block_zero_page_range(handle, mapping,
3960						 lstart, length);
3961		return err;
3962	}
3963	/* Handle partial zero out on the start of the range */
3964	if (partial_start) {
3965		err = ext4_block_zero_page_range(handle, mapping,
3966						 lstart, sb->s_blocksize);
3967		if (err)
3968			return err;
3969	}
3970	/* Handle partial zero out on the end of the range */
3971	if (partial_end != sb->s_blocksize - 1)
3972		err = ext4_block_zero_page_range(handle, mapping,
3973						 byte_end - partial_end,
3974						 partial_end + 1);
3975	return err;
3976}
3977
3978int ext4_can_truncate(struct inode *inode)
3979{
3980	if (S_ISREG(inode->i_mode))
3981		return 1;
3982	if (S_ISDIR(inode->i_mode))
3983		return 1;
3984	if (S_ISLNK(inode->i_mode))
3985		return !ext4_inode_is_fast_symlink(inode);
3986	return 0;
3987}
3988
3989/*
3990 * We have to make sure i_disksize gets properly updated before we truncate
3991 * page cache due to hole punching or zero range. Otherwise i_disksize update
3992 * can get lost as it may have been postponed to submission of writeback but
3993 * that will never happen after we truncate page cache.
3994 */
3995int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3996				      loff_t len)
3997{
3998	handle_t *handle;
3999	loff_t size = i_size_read(inode);
4000
4001	WARN_ON(!inode_is_locked(inode));
4002	if (offset > size || offset + len < size)
4003		return 0;
4004
4005	if (EXT4_I(inode)->i_disksize >= size)
4006		return 0;
4007
4008	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4009	if (IS_ERR(handle))
4010		return PTR_ERR(handle);
4011	ext4_update_i_disksize(inode, size);
4012	ext4_mark_inode_dirty(handle, inode);
4013	ext4_journal_stop(handle);
4014
4015	return 0;
4016}
4017
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4018/*
4019 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4020 * associated with the given offset and length
4021 *
4022 * @inode:  File inode
4023 * @offset: The offset where the hole will begin
4024 * @len:    The length of the hole
4025 *
4026 * Returns: 0 on success or negative on failure
4027 */
4028
4029int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4030{
4031	struct super_block *sb = inode->i_sb;
4032	ext4_lblk_t first_block, stop_block;
4033	struct address_space *mapping = inode->i_mapping;
4034	loff_t first_block_offset, last_block_offset;
4035	handle_t *handle;
4036	unsigned int credits;
4037	int ret = 0;
4038
4039	if (!S_ISREG(inode->i_mode))
4040		return -EOPNOTSUPP;
4041
4042	trace_ext4_punch_hole(inode, offset, length, 0);
4043
 
 
 
 
 
 
 
 
 
4044	/*
4045	 * Write out all dirty pages to avoid race conditions
4046	 * Then release them.
4047	 */
4048	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4049		ret = filemap_write_and_wait_range(mapping, offset,
4050						   offset + length - 1);
4051		if (ret)
4052			return ret;
4053	}
4054
4055	inode_lock(inode);
4056
4057	/* No need to punch hole beyond i_size */
4058	if (offset >= inode->i_size)
4059		goto out_mutex;
4060
4061	/*
4062	 * If the hole extends beyond i_size, set the hole
4063	 * to end after the page that contains i_size
4064	 */
4065	if (offset + length > inode->i_size) {
4066		length = inode->i_size +
4067		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4068		   offset;
4069	}
4070
4071	if (offset & (sb->s_blocksize - 1) ||
4072	    (offset + length) & (sb->s_blocksize - 1)) {
4073		/*
4074		 * Attach jinode to inode for jbd2 if we do any zeroing of
4075		 * partial block
4076		 */
4077		ret = ext4_inode_attach_jinode(inode);
4078		if (ret < 0)
4079			goto out_mutex;
4080
4081	}
4082
4083	/* Wait all existing dio workers, newcomers will block on i_mutex */
4084	ext4_inode_block_unlocked_dio(inode);
4085	inode_dio_wait(inode);
4086
4087	/*
4088	 * Prevent page faults from reinstantiating pages we have released from
4089	 * page cache.
4090	 */
4091	down_write(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
4092	first_block_offset = round_up(offset, sb->s_blocksize);
4093	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4094
4095	/* Now release the pages and zero block aligned part of pages*/
4096	if (last_block_offset > first_block_offset) {
4097		ret = ext4_update_disksize_before_punch(inode, offset, length);
4098		if (ret)
4099			goto out_dio;
4100		truncate_pagecache_range(inode, first_block_offset,
4101					 last_block_offset);
4102	}
4103
4104	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4105		credits = ext4_writepage_trans_blocks(inode);
4106	else
4107		credits = ext4_blocks_for_truncate(inode);
4108	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4109	if (IS_ERR(handle)) {
4110		ret = PTR_ERR(handle);
4111		ext4_std_error(sb, ret);
4112		goto out_dio;
4113	}
4114
4115	ret = ext4_zero_partial_blocks(handle, inode, offset,
4116				       length);
4117	if (ret)
4118		goto out_stop;
4119
4120	first_block = (offset + sb->s_blocksize - 1) >>
4121		EXT4_BLOCK_SIZE_BITS(sb);
4122	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4123
4124	/* If there are no blocks to remove, return now */
4125	if (first_block >= stop_block)
4126		goto out_stop;
4127
4128	down_write(&EXT4_I(inode)->i_data_sem);
4129	ext4_discard_preallocations(inode);
4130
4131	ret = ext4_es_remove_extent(inode, first_block,
4132				    stop_block - first_block);
4133	if (ret) {
4134		up_write(&EXT4_I(inode)->i_data_sem);
4135		goto out_stop;
4136	}
4137
4138	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139		ret = ext4_ext_remove_space(inode, first_block,
4140					    stop_block - 1);
4141	else
4142		ret = ext4_ind_remove_space(handle, inode, first_block,
4143					    stop_block);
4144
4145	up_write(&EXT4_I(inode)->i_data_sem);
 
4146	if (IS_SYNC(inode))
4147		ext4_handle_sync(handle);
4148
4149	inode->i_mtime = inode->i_ctime = current_time(inode);
4150	ext4_mark_inode_dirty(handle, inode);
 
 
4151out_stop:
4152	ext4_journal_stop(handle);
4153out_dio:
4154	up_write(&EXT4_I(inode)->i_mmap_sem);
4155	ext4_inode_resume_unlocked_dio(inode);
4156out_mutex:
4157	inode_unlock(inode);
4158	return ret;
4159}
4160
4161int ext4_inode_attach_jinode(struct inode *inode)
4162{
4163	struct ext4_inode_info *ei = EXT4_I(inode);
4164	struct jbd2_inode *jinode;
4165
4166	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4167		return 0;
4168
4169	jinode = jbd2_alloc_inode(GFP_KERNEL);
4170	spin_lock(&inode->i_lock);
4171	if (!ei->jinode) {
4172		if (!jinode) {
4173			spin_unlock(&inode->i_lock);
4174			return -ENOMEM;
4175		}
4176		ei->jinode = jinode;
4177		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4178		jinode = NULL;
4179	}
4180	spin_unlock(&inode->i_lock);
4181	if (unlikely(jinode != NULL))
4182		jbd2_free_inode(jinode);
4183	return 0;
4184}
4185
4186/*
4187 * ext4_truncate()
4188 *
4189 * We block out ext4_get_block() block instantiations across the entire
4190 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4191 * simultaneously on behalf of the same inode.
4192 *
4193 * As we work through the truncate and commit bits of it to the journal there
4194 * is one core, guiding principle: the file's tree must always be consistent on
4195 * disk.  We must be able to restart the truncate after a crash.
4196 *
4197 * The file's tree may be transiently inconsistent in memory (although it
4198 * probably isn't), but whenever we close off and commit a journal transaction,
4199 * the contents of (the filesystem + the journal) must be consistent and
4200 * restartable.  It's pretty simple, really: bottom up, right to left (although
4201 * left-to-right works OK too).
4202 *
4203 * Note that at recovery time, journal replay occurs *before* the restart of
4204 * truncate against the orphan inode list.
4205 *
4206 * The committed inode has the new, desired i_size (which is the same as
4207 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4208 * that this inode's truncate did not complete and it will again call
4209 * ext4_truncate() to have another go.  So there will be instantiated blocks
4210 * to the right of the truncation point in a crashed ext4 filesystem.  But
4211 * that's fine - as long as they are linked from the inode, the post-crash
4212 * ext4_truncate() run will find them and release them.
4213 */
4214int ext4_truncate(struct inode *inode)
4215{
4216	struct ext4_inode_info *ei = EXT4_I(inode);
4217	unsigned int credits;
4218	int err = 0;
4219	handle_t *handle;
4220	struct address_space *mapping = inode->i_mapping;
4221
4222	/*
4223	 * There is a possibility that we're either freeing the inode
4224	 * or it's a completely new inode. In those cases we might not
4225	 * have i_mutex locked because it's not necessary.
4226	 */
4227	if (!(inode->i_state & (I_NEW|I_FREEING)))
4228		WARN_ON(!inode_is_locked(inode));
4229	trace_ext4_truncate_enter(inode);
4230
4231	if (!ext4_can_truncate(inode))
4232		return 0;
4233
4234	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4235
4236	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4237		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4238
4239	if (ext4_has_inline_data(inode)) {
4240		int has_inline = 1;
4241
4242		ext4_inline_data_truncate(inode, &has_inline);
 
 
4243		if (has_inline)
4244			return 0;
4245	}
4246
4247	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4248	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4249		if (ext4_inode_attach_jinode(inode) < 0)
4250			return 0;
4251	}
4252
4253	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4254		credits = ext4_writepage_trans_blocks(inode);
4255	else
4256		credits = ext4_blocks_for_truncate(inode);
4257
4258	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4259	if (IS_ERR(handle))
4260		return PTR_ERR(handle);
4261
4262	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4263		ext4_block_truncate_page(handle, mapping, inode->i_size);
4264
4265	/*
4266	 * We add the inode to the orphan list, so that if this
4267	 * truncate spans multiple transactions, and we crash, we will
4268	 * resume the truncate when the filesystem recovers.  It also
4269	 * marks the inode dirty, to catch the new size.
4270	 *
4271	 * Implication: the file must always be in a sane, consistent
4272	 * truncatable state while each transaction commits.
4273	 */
4274	err = ext4_orphan_add(handle, inode);
4275	if (err)
4276		goto out_stop;
4277
4278	down_write(&EXT4_I(inode)->i_data_sem);
4279
4280	ext4_discard_preallocations(inode);
4281
4282	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4283		err = ext4_ext_truncate(handle, inode);
4284	else
4285		ext4_ind_truncate(handle, inode);
4286
4287	up_write(&ei->i_data_sem);
4288	if (err)
4289		goto out_stop;
4290
4291	if (IS_SYNC(inode))
4292		ext4_handle_sync(handle);
4293
4294out_stop:
4295	/*
4296	 * If this was a simple ftruncate() and the file will remain alive,
4297	 * then we need to clear up the orphan record which we created above.
4298	 * However, if this was a real unlink then we were called by
4299	 * ext4_evict_inode(), and we allow that function to clean up the
4300	 * orphan info for us.
4301	 */
4302	if (inode->i_nlink)
4303		ext4_orphan_del(handle, inode);
4304
4305	inode->i_mtime = inode->i_ctime = current_time(inode);
4306	ext4_mark_inode_dirty(handle, inode);
4307	ext4_journal_stop(handle);
4308
4309	trace_ext4_truncate_exit(inode);
4310	return err;
4311}
4312
4313/*
4314 * ext4_get_inode_loc returns with an extra refcount against the inode's
4315 * underlying buffer_head on success. If 'in_mem' is true, we have all
4316 * data in memory that is needed to recreate the on-disk version of this
4317 * inode.
4318 */
4319static int __ext4_get_inode_loc(struct inode *inode,
4320				struct ext4_iloc *iloc, int in_mem)
4321{
4322	struct ext4_group_desc	*gdp;
4323	struct buffer_head	*bh;
4324	struct super_block	*sb = inode->i_sb;
4325	ext4_fsblk_t		block;
 
4326	int			inodes_per_block, inode_offset;
4327
4328	iloc->bh = NULL;
4329	if (!ext4_valid_inum(sb, inode->i_ino))
 
4330		return -EFSCORRUPTED;
4331
4332	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4333	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4334	if (!gdp)
4335		return -EIO;
4336
4337	/*
4338	 * Figure out the offset within the block group inode table
4339	 */
4340	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4341	inode_offset = ((inode->i_ino - 1) %
4342			EXT4_INODES_PER_GROUP(sb));
4343	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4344	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4345
4346	bh = sb_getblk(sb, block);
4347	if (unlikely(!bh))
4348		return -ENOMEM;
4349	if (!buffer_uptodate(bh)) {
4350		lock_buffer(bh);
4351
4352		/*
4353		 * If the buffer has the write error flag, we have failed
4354		 * to write out another inode in the same block.  In this
4355		 * case, we don't have to read the block because we may
4356		 * read the old inode data successfully.
4357		 */
4358		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4359			set_buffer_uptodate(bh);
4360
4361		if (buffer_uptodate(bh)) {
4362			/* someone brought it uptodate while we waited */
4363			unlock_buffer(bh);
4364			goto has_buffer;
4365		}
4366
4367		/*
4368		 * If we have all information of the inode in memory and this
4369		 * is the only valid inode in the block, we need not read the
4370		 * block.
4371		 */
4372		if (in_mem) {
4373			struct buffer_head *bitmap_bh;
4374			int i, start;
4375
4376			start = inode_offset & ~(inodes_per_block - 1);
4377
4378			/* Is the inode bitmap in cache? */
4379			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4380			if (unlikely(!bitmap_bh))
4381				goto make_io;
4382
4383			/*
4384			 * If the inode bitmap isn't in cache then the
4385			 * optimisation may end up performing two reads instead
4386			 * of one, so skip it.
4387			 */
4388			if (!buffer_uptodate(bitmap_bh)) {
4389				brelse(bitmap_bh);
4390				goto make_io;
4391			}
4392			for (i = start; i < start + inodes_per_block; i++) {
4393				if (i == inode_offset)
4394					continue;
4395				if (ext4_test_bit(i, bitmap_bh->b_data))
4396					break;
4397			}
4398			brelse(bitmap_bh);
4399			if (i == start + inodes_per_block) {
4400				/* all other inodes are free, so skip I/O */
4401				memset(bh->b_data, 0, bh->b_size);
4402				set_buffer_uptodate(bh);
4403				unlock_buffer(bh);
4404				goto has_buffer;
4405			}
4406		}
4407
4408make_io:
4409		/*
4410		 * If we need to do any I/O, try to pre-readahead extra
4411		 * blocks from the inode table.
4412		 */
 
4413		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4414			ext4_fsblk_t b, end, table;
4415			unsigned num;
4416			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4417
4418			table = ext4_inode_table(sb, gdp);
4419			/* s_inode_readahead_blks is always a power of 2 */
4420			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4421			if (table > b)
4422				b = table;
4423			end = b + ra_blks;
4424			num = EXT4_INODES_PER_GROUP(sb);
4425			if (ext4_has_group_desc_csum(sb))
4426				num -= ext4_itable_unused_count(sb, gdp);
4427			table += num / inodes_per_block;
4428			if (end > table)
4429				end = table;
4430			while (b <= end)
4431				sb_breadahead(sb, b++);
4432		}
4433
4434		/*
4435		 * There are other valid inodes in the buffer, this inode
4436		 * has in-inode xattrs, or we don't have this inode in memory.
4437		 * Read the block from disk.
4438		 */
4439		trace_ext4_load_inode(inode);
4440		get_bh(bh);
4441		bh->b_end_io = end_buffer_read_sync;
4442		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
 
4443		wait_on_buffer(bh);
4444		if (!buffer_uptodate(bh)) {
4445			EXT4_ERROR_INODE_BLOCK(inode, block,
4446					       "unable to read itable block");
4447			brelse(bh);
4448			return -EIO;
4449		}
4450	}
4451has_buffer:
4452	iloc->bh = bh;
4453	return 0;
4454}
4455
4456int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4457{
4458	/* We have all inode data except xattrs in memory here. */
4459	return __ext4_get_inode_loc(inode, iloc,
4460		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4461}
4462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4463void ext4_set_inode_flags(struct inode *inode)
4464{
4465	unsigned int flags = EXT4_I(inode)->i_flags;
4466	unsigned int new_fl = 0;
4467
4468	if (flags & EXT4_SYNC_FL)
4469		new_fl |= S_SYNC;
4470	if (flags & EXT4_APPEND_FL)
4471		new_fl |= S_APPEND;
4472	if (flags & EXT4_IMMUTABLE_FL)
4473		new_fl |= S_IMMUTABLE;
4474	if (flags & EXT4_NOATIME_FL)
4475		new_fl |= S_NOATIME;
4476	if (flags & EXT4_DIRSYNC_FL)
4477		new_fl |= S_DIRSYNC;
4478	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4479	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4480	    !ext4_encrypted_inode(inode))
4481		new_fl |= S_DAX;
 
 
 
 
 
 
4482	inode_set_flags(inode, new_fl,
4483			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4484}
4485
4486/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4487void ext4_get_inode_flags(struct ext4_inode_info *ei)
4488{
4489	unsigned int vfs_fl;
4490	unsigned long old_fl, new_fl;
4491
4492	do {
4493		vfs_fl = ei->vfs_inode.i_flags;
4494		old_fl = ei->i_flags;
4495		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4496				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4497				EXT4_DIRSYNC_FL);
4498		if (vfs_fl & S_SYNC)
4499			new_fl |= EXT4_SYNC_FL;
4500		if (vfs_fl & S_APPEND)
4501			new_fl |= EXT4_APPEND_FL;
4502		if (vfs_fl & S_IMMUTABLE)
4503			new_fl |= EXT4_IMMUTABLE_FL;
4504		if (vfs_fl & S_NOATIME)
4505			new_fl |= EXT4_NOATIME_FL;
4506		if (vfs_fl & S_DIRSYNC)
4507			new_fl |= EXT4_DIRSYNC_FL;
4508	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4509}
4510
4511static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4512				  struct ext4_inode_info *ei)
4513{
4514	blkcnt_t i_blocks ;
4515	struct inode *inode = &(ei->vfs_inode);
4516	struct super_block *sb = inode->i_sb;
4517
4518	if (ext4_has_feature_huge_file(sb)) {
4519		/* we are using combined 48 bit field */
4520		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4521					le32_to_cpu(raw_inode->i_blocks_lo);
4522		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4523			/* i_blocks represent file system block size */
4524			return i_blocks  << (inode->i_blkbits - 9);
4525		} else {
4526			return i_blocks;
4527		}
4528	} else {
4529		return le32_to_cpu(raw_inode->i_blocks_lo);
4530	}
4531}
4532
4533static inline void ext4_iget_extra_inode(struct inode *inode,
4534					 struct ext4_inode *raw_inode,
4535					 struct ext4_inode_info *ei)
4536{
4537	__le32 *magic = (void *)raw_inode +
4538			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
 
4539	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4540	    EXT4_INODE_SIZE(inode->i_sb) &&
4541	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4542		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4543		ext4_find_inline_data_nolock(inode);
4544	} else
4545		EXT4_I(inode)->i_inline_off = 0;
 
4546}
4547
4548int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4549{
4550	if (!ext4_has_feature_project(inode->i_sb))
4551		return -EOPNOTSUPP;
4552	*projid = EXT4_I(inode)->i_projid;
4553	return 0;
4554}
4555
4556struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557{
4558	struct ext4_iloc iloc;
4559	struct ext4_inode *raw_inode;
4560	struct ext4_inode_info *ei;
4561	struct inode *inode;
4562	journal_t *journal = EXT4_SB(sb)->s_journal;
4563	long ret;
4564	loff_t size;
4565	int block;
4566	uid_t i_uid;
4567	gid_t i_gid;
4568	projid_t i_projid;
4569
 
 
 
 
 
 
 
 
 
 
 
 
4570	inode = iget_locked(sb, ino);
4571	if (!inode)
4572		return ERR_PTR(-ENOMEM);
4573	if (!(inode->i_state & I_NEW))
4574		return inode;
4575
4576	ei = EXT4_I(inode);
4577	iloc.bh = NULL;
4578
4579	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4580	if (ret < 0)
4581		goto bad_inode;
4582	raw_inode = ext4_raw_inode(&iloc);
4583
 
 
 
 
 
 
 
 
 
 
 
 
 
4584	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4585		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4586		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4587			EXT4_INODE_SIZE(inode->i_sb) ||
4588		    (ei->i_extra_isize & 3)) {
4589			EXT4_ERROR_INODE(inode,
4590					 "bad extra_isize %u (inode size %u)",
 
4591					 ei->i_extra_isize,
4592					 EXT4_INODE_SIZE(inode->i_sb));
4593			ret = -EFSCORRUPTED;
4594			goto bad_inode;
4595		}
4596	} else
4597		ei->i_extra_isize = 0;
4598
4599	/* Precompute checksum seed for inode metadata */
4600	if (ext4_has_metadata_csum(sb)) {
4601		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602		__u32 csum;
4603		__le32 inum = cpu_to_le32(inode->i_ino);
4604		__le32 gen = raw_inode->i_generation;
4605		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4606				   sizeof(inum));
4607		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4608					      sizeof(gen));
4609	}
4610
4611	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4612		EXT4_ERROR_INODE(inode, "checksum invalid");
 
4613		ret = -EFSBADCRC;
4614		goto bad_inode;
4615	}
4616
4617	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4618	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4619	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4620	if (ext4_has_feature_project(sb) &&
4621	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4622	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4623		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4624	else
4625		i_projid = EXT4_DEF_PROJID;
4626
4627	if (!(test_opt(inode->i_sb, NO_UID32))) {
4628		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4629		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4630	}
4631	i_uid_write(inode, i_uid);
4632	i_gid_write(inode, i_gid);
4633	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4634	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4635
4636	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4637	ei->i_inline_off = 0;
4638	ei->i_dir_start_lookup = 0;
4639	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4640	/* We now have enough fields to check if the inode was active or not.
4641	 * This is needed because nfsd might try to access dead inodes
4642	 * the test is that same one that e2fsck uses
4643	 * NeilBrown 1999oct15
4644	 */
4645	if (inode->i_nlink == 0) {
4646		if ((inode->i_mode == 0 ||
4647		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4648		    ino != EXT4_BOOT_LOADER_INO) {
4649			/* this inode is deleted */
4650			ret = -ESTALE;
4651			goto bad_inode;
4652		}
4653		/* The only unlinked inodes we let through here have
4654		 * valid i_mode and are being read by the orphan
4655		 * recovery code: that's fine, we're about to complete
4656		 * the process of deleting those.
4657		 * OR it is the EXT4_BOOT_LOADER_INO which is
4658		 * not initialized on a new filesystem. */
4659	}
4660	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
4661	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4662	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4663	if (ext4_has_feature_64bit(sb))
4664		ei->i_file_acl |=
4665			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4666	inode->i_size = ext4_isize(raw_inode);
4667	if ((size = i_size_read(inode)) < 0) {
4668		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
 
4669		ret = -EFSCORRUPTED;
4670		goto bad_inode;
4671	}
4672	ei->i_disksize = inode->i_size;
4673#ifdef CONFIG_QUOTA
4674	ei->i_reserved_quota = 0;
4675#endif
4676	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4677	ei->i_block_group = iloc.block_group;
4678	ei->i_last_alloc_group = ~0;
4679	/*
4680	 * NOTE! The in-memory inode i_data array is in little-endian order
4681	 * even on big-endian machines: we do NOT byteswap the block numbers!
4682	 */
4683	for (block = 0; block < EXT4_N_BLOCKS; block++)
4684		ei->i_data[block] = raw_inode->i_block[block];
4685	INIT_LIST_HEAD(&ei->i_orphan);
4686
4687	/*
4688	 * Set transaction id's of transactions that have to be committed
4689	 * to finish f[data]sync. We set them to currently running transaction
4690	 * as we cannot be sure that the inode or some of its metadata isn't
4691	 * part of the transaction - the inode could have been reclaimed and
4692	 * now it is reread from disk.
4693	 */
4694	if (journal) {
4695		transaction_t *transaction;
4696		tid_t tid;
4697
4698		read_lock(&journal->j_state_lock);
4699		if (journal->j_running_transaction)
4700			transaction = journal->j_running_transaction;
4701		else
4702			transaction = journal->j_committing_transaction;
4703		if (transaction)
4704			tid = transaction->t_tid;
4705		else
4706			tid = journal->j_commit_sequence;
4707		read_unlock(&journal->j_state_lock);
4708		ei->i_sync_tid = tid;
4709		ei->i_datasync_tid = tid;
4710	}
4711
4712	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713		if (ei->i_extra_isize == 0) {
4714			/* The extra space is currently unused. Use it. */
4715			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4716			ei->i_extra_isize = sizeof(struct ext4_inode) -
4717					    EXT4_GOOD_OLD_INODE_SIZE;
4718		} else {
4719			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
4720		}
4721	}
4722
4723	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4724	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4725	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4726	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4727
4728	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4729		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
 
4730		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732				inode->i_version |=
4733		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4734		}
 
4735	}
4736
4737	ret = 0;
4738	if (ei->i_file_acl &&
4739	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4740		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
4741				 ei->i_file_acl);
4742		ret = -EFSCORRUPTED;
4743		goto bad_inode;
4744	} else if (!ext4_has_inline_data(inode)) {
4745		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4746			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4747			    (S_ISLNK(inode->i_mode) &&
4748			     !ext4_inode_is_fast_symlink(inode))))
4749				/* Validate extent which is part of inode */
4750				ret = ext4_ext_check_inode(inode);
4751		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4752			   (S_ISLNK(inode->i_mode) &&
4753			    !ext4_inode_is_fast_symlink(inode))) {
4754			/* Validate block references which are part of inode */
4755			ret = ext4_ind_check_inode(inode);
4756		}
4757	}
4758	if (ret)
4759		goto bad_inode;
4760
4761	if (S_ISREG(inode->i_mode)) {
4762		inode->i_op = &ext4_file_inode_operations;
4763		inode->i_fop = &ext4_file_operations;
4764		ext4_set_aops(inode);
4765	} else if (S_ISDIR(inode->i_mode)) {
4766		inode->i_op = &ext4_dir_inode_operations;
4767		inode->i_fop = &ext4_dir_operations;
4768	} else if (S_ISLNK(inode->i_mode)) {
4769		if (ext4_encrypted_inode(inode)) {
 
 
 
 
 
 
 
 
4770			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4771			ext4_set_aops(inode);
4772		} else if (ext4_inode_is_fast_symlink(inode)) {
4773			inode->i_link = (char *)ei->i_data;
4774			inode->i_op = &ext4_fast_symlink_inode_operations;
4775			nd_terminate_link(ei->i_data, inode->i_size,
4776				sizeof(ei->i_data) - 1);
4777		} else {
4778			inode->i_op = &ext4_symlink_inode_operations;
4779			ext4_set_aops(inode);
4780		}
4781		inode_nohighmem(inode);
4782	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4783	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4784		inode->i_op = &ext4_special_inode_operations;
4785		if (raw_inode->i_block[0])
4786			init_special_inode(inode, inode->i_mode,
4787			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4788		else
4789			init_special_inode(inode, inode->i_mode,
4790			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4791	} else if (ino == EXT4_BOOT_LOADER_INO) {
4792		make_bad_inode(inode);
4793	} else {
4794		ret = -EFSCORRUPTED;
4795		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
4796		goto bad_inode;
4797	}
 
 
 
4798	brelse(iloc.bh);
4799	ext4_set_inode_flags(inode);
4800	unlock_new_inode(inode);
4801	return inode;
4802
4803bad_inode:
4804	brelse(iloc.bh);
4805	iget_failed(inode);
4806	return ERR_PTR(ret);
4807}
4808
4809struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4810{
4811	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4812		return ERR_PTR(-EFSCORRUPTED);
4813	return ext4_iget(sb, ino);
4814}
4815
4816static int ext4_inode_blocks_set(handle_t *handle,
4817				struct ext4_inode *raw_inode,
4818				struct ext4_inode_info *ei)
4819{
4820	struct inode *inode = &(ei->vfs_inode);
4821	u64 i_blocks = inode->i_blocks;
4822	struct super_block *sb = inode->i_sb;
4823
4824	if (i_blocks <= ~0U) {
4825		/*
4826		 * i_blocks can be represented in a 32 bit variable
4827		 * as multiple of 512 bytes
4828		 */
4829		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4830		raw_inode->i_blocks_high = 0;
4831		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4832		return 0;
4833	}
4834	if (!ext4_has_feature_huge_file(sb))
4835		return -EFBIG;
4836
4837	if (i_blocks <= 0xffffffffffffULL) {
4838		/*
4839		 * i_blocks can be represented in a 48 bit variable
4840		 * as multiple of 512 bytes
4841		 */
4842		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4843		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4844		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4845	} else {
4846		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4847		/* i_block is stored in file system block size */
4848		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4849		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4850		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4851	}
4852	return 0;
4853}
4854
4855struct other_inode {
4856	unsigned long		orig_ino;
4857	struct ext4_inode	*raw_inode;
4858};
4859
4860static int other_inode_match(struct inode * inode, unsigned long ino,
4861			     void *data)
4862{
4863	struct other_inode *oi = (struct other_inode *) data;
4864
4865	if ((inode->i_ino != ino) ||
4866	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4867			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4868	    ((inode->i_state & I_DIRTY_TIME) == 0))
4869		return 0;
4870	spin_lock(&inode->i_lock);
4871	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4872				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4873	    (inode->i_state & I_DIRTY_TIME)) {
4874		struct ext4_inode_info	*ei = EXT4_I(inode);
4875
4876		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4877		spin_unlock(&inode->i_lock);
4878
4879		spin_lock(&ei->i_raw_lock);
4880		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4881		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4882		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4883		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4884		spin_unlock(&ei->i_raw_lock);
4885		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4886		return -1;
4887	}
4888	spin_unlock(&inode->i_lock);
4889	return -1;
4890}
4891
4892/*
4893 * Opportunistically update the other time fields for other inodes in
4894 * the same inode table block.
4895 */
4896static void ext4_update_other_inodes_time(struct super_block *sb,
4897					  unsigned long orig_ino, char *buf)
4898{
4899	struct other_inode oi;
4900	unsigned long ino;
4901	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4902	int inode_size = EXT4_INODE_SIZE(sb);
4903
4904	oi.orig_ino = orig_ino;
4905	/*
4906	 * Calculate the first inode in the inode table block.  Inode
4907	 * numbers are one-based.  That is, the first inode in a block
4908	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4909	 */
4910	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4911	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4912		if (ino == orig_ino)
4913			continue;
4914		oi.raw_inode = (struct ext4_inode *) buf;
4915		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4916	}
4917}
4918
4919/*
4920 * Post the struct inode info into an on-disk inode location in the
4921 * buffer-cache.  This gobbles the caller's reference to the
4922 * buffer_head in the inode location struct.
4923 *
4924 * The caller must have write access to iloc->bh.
4925 */
4926static int ext4_do_update_inode(handle_t *handle,
4927				struct inode *inode,
4928				struct ext4_iloc *iloc)
4929{
4930	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4931	struct ext4_inode_info *ei = EXT4_I(inode);
4932	struct buffer_head *bh = iloc->bh;
4933	struct super_block *sb = inode->i_sb;
4934	int err = 0, rc, block;
4935	int need_datasync = 0, set_large_file = 0;
4936	uid_t i_uid;
4937	gid_t i_gid;
4938	projid_t i_projid;
4939
4940	spin_lock(&ei->i_raw_lock);
4941
4942	/* For fields not tracked in the in-memory inode,
4943	 * initialise them to zero for new inodes. */
4944	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4945		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4946
4947	ext4_get_inode_flags(ei);
4948	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4949	i_uid = i_uid_read(inode);
4950	i_gid = i_gid_read(inode);
4951	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4952	if (!(test_opt(inode->i_sb, NO_UID32))) {
4953		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4954		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4955/*
4956 * Fix up interoperability with old kernels. Otherwise, old inodes get
4957 * re-used with the upper 16 bits of the uid/gid intact
4958 */
4959		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4960			raw_inode->i_uid_high = 0;
4961			raw_inode->i_gid_high = 0;
4962		} else {
4963			raw_inode->i_uid_high =
4964				cpu_to_le16(high_16_bits(i_uid));
4965			raw_inode->i_gid_high =
4966				cpu_to_le16(high_16_bits(i_gid));
4967		}
4968	} else {
4969		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4970		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4971		raw_inode->i_uid_high = 0;
4972		raw_inode->i_gid_high = 0;
4973	}
4974	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4975
4976	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4980
4981	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4982	if (err) {
4983		spin_unlock(&ei->i_raw_lock);
4984		goto out_brelse;
4985	}
4986	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4987	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4988	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4989		raw_inode->i_file_acl_high =
4990			cpu_to_le16(ei->i_file_acl >> 32);
4991	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4992	if (ei->i_disksize != ext4_isize(raw_inode)) {
4993		ext4_isize_set(raw_inode, ei->i_disksize);
4994		need_datasync = 1;
4995	}
4996	if (ei->i_disksize > 0x7fffffffULL) {
4997		if (!ext4_has_feature_large_file(sb) ||
4998				EXT4_SB(sb)->s_es->s_rev_level ==
4999		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5000			set_large_file = 1;
5001	}
5002	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5003	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5004		if (old_valid_dev(inode->i_rdev)) {
5005			raw_inode->i_block[0] =
5006				cpu_to_le32(old_encode_dev(inode->i_rdev));
5007			raw_inode->i_block[1] = 0;
5008		} else {
5009			raw_inode->i_block[0] = 0;
5010			raw_inode->i_block[1] =
5011				cpu_to_le32(new_encode_dev(inode->i_rdev));
5012			raw_inode->i_block[2] = 0;
5013		}
5014	} else if (!ext4_has_inline_data(inode)) {
5015		for (block = 0; block < EXT4_N_BLOCKS; block++)
5016			raw_inode->i_block[block] = ei->i_data[block];
5017	}
5018
5019	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
 
 
5021		if (ei->i_extra_isize) {
5022			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023				raw_inode->i_version_hi =
5024					cpu_to_le32(inode->i_version >> 32);
5025			raw_inode->i_extra_isize =
5026				cpu_to_le16(ei->i_extra_isize);
5027		}
5028	}
5029
5030	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5031	       i_projid != EXT4_DEF_PROJID);
5032
5033	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5034	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5035		raw_inode->i_projid = cpu_to_le32(i_projid);
5036
5037	ext4_inode_csum_set(inode, raw_inode, ei);
5038	spin_unlock(&ei->i_raw_lock);
5039	if (inode->i_sb->s_flags & MS_LAZYTIME)
5040		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5041					      bh->b_data);
5042
5043	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5045	if (!err)
5046		err = rc;
5047	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5048	if (set_large_file) {
5049		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5050		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5051		if (err)
5052			goto out_brelse;
5053		ext4_update_dynamic_rev(sb);
5054		ext4_set_feature_large_file(sb);
5055		ext4_handle_sync(handle);
5056		err = ext4_handle_dirty_super(handle, sb);
5057	}
5058	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5059out_brelse:
5060	brelse(bh);
5061	ext4_std_error(inode->i_sb, err);
5062	return err;
5063}
5064
5065/*
5066 * ext4_write_inode()
5067 *
5068 * We are called from a few places:
5069 *
5070 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5071 *   Here, there will be no transaction running. We wait for any running
5072 *   transaction to commit.
5073 *
5074 * - Within flush work (sys_sync(), kupdate and such).
5075 *   We wait on commit, if told to.
5076 *
5077 * - Within iput_final() -> write_inode_now()
5078 *   We wait on commit, if told to.
5079 *
5080 * In all cases it is actually safe for us to return without doing anything,
5081 * because the inode has been copied into a raw inode buffer in
5082 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5083 * writeback.
5084 *
5085 * Note that we are absolutely dependent upon all inode dirtiers doing the
5086 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5087 * which we are interested.
5088 *
5089 * It would be a bug for them to not do this.  The code:
5090 *
5091 *	mark_inode_dirty(inode)
5092 *	stuff();
5093 *	inode->i_size = expr;
5094 *
5095 * is in error because write_inode() could occur while `stuff()' is running,
5096 * and the new i_size will be lost.  Plus the inode will no longer be on the
5097 * superblock's dirty inode list.
5098 */
5099int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5100{
5101	int err;
5102
5103	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
 
5104		return 0;
5105
 
 
 
5106	if (EXT4_SB(inode->i_sb)->s_journal) {
5107		if (ext4_journal_current_handle()) {
5108			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5109			dump_stack();
5110			return -EIO;
5111		}
5112
5113		/*
5114		 * No need to force transaction in WB_SYNC_NONE mode. Also
5115		 * ext4_sync_fs() will force the commit after everything is
5116		 * written.
5117		 */
5118		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5119			return 0;
5120
5121		err = ext4_force_commit(inode->i_sb);
 
5122	} else {
5123		struct ext4_iloc iloc;
5124
5125		err = __ext4_get_inode_loc(inode, &iloc, 0);
5126		if (err)
5127			return err;
5128		/*
5129		 * sync(2) will flush the whole buffer cache. No need to do
5130		 * it here separately for each inode.
5131		 */
5132		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5133			sync_dirty_buffer(iloc.bh);
5134		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5135			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5136					 "IO error syncing inode");
5137			err = -EIO;
5138		}
5139		brelse(iloc.bh);
5140	}
5141	return err;
5142}
5143
5144/*
5145 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5146 * buffers that are attached to a page stradding i_size and are undergoing
5147 * commit. In that case we have to wait for commit to finish and try again.
5148 */
5149static void ext4_wait_for_tail_page_commit(struct inode *inode)
5150{
5151	struct page *page;
5152	unsigned offset;
5153	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5154	tid_t commit_tid = 0;
5155	int ret;
5156
5157	offset = inode->i_size & (PAGE_SIZE - 1);
5158	/*
5159	 * All buffers in the last page remain valid? Then there's nothing to
5160	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5161	 * blocksize case
5162	 */
5163	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5164		return;
5165	while (1) {
5166		page = find_lock_page(inode->i_mapping,
5167				      inode->i_size >> PAGE_SHIFT);
5168		if (!page)
5169			return;
5170		ret = __ext4_journalled_invalidatepage(page, offset,
5171						PAGE_SIZE - offset);
5172		unlock_page(page);
5173		put_page(page);
5174		if (ret != -EBUSY)
5175			return;
5176		commit_tid = 0;
5177		read_lock(&journal->j_state_lock);
5178		if (journal->j_committing_transaction)
5179			commit_tid = journal->j_committing_transaction->t_tid;
5180		read_unlock(&journal->j_state_lock);
5181		if (commit_tid)
5182			jbd2_log_wait_commit(journal, commit_tid);
5183	}
5184}
5185
5186/*
5187 * ext4_setattr()
5188 *
5189 * Called from notify_change.
5190 *
5191 * We want to trap VFS attempts to truncate the file as soon as
5192 * possible.  In particular, we want to make sure that when the VFS
5193 * shrinks i_size, we put the inode on the orphan list and modify
5194 * i_disksize immediately, so that during the subsequent flushing of
5195 * dirty pages and freeing of disk blocks, we can guarantee that any
5196 * commit will leave the blocks being flushed in an unused state on
5197 * disk.  (On recovery, the inode will get truncated and the blocks will
5198 * be freed, so we have a strong guarantee that no future commit will
5199 * leave these blocks visible to the user.)
5200 *
5201 * Another thing we have to assure is that if we are in ordered mode
5202 * and inode is still attached to the committing transaction, we must
5203 * we start writeout of all the dirty pages which are being truncated.
5204 * This way we are sure that all the data written in the previous
5205 * transaction are already on disk (truncate waits for pages under
5206 * writeback).
5207 *
5208 * Called with inode->i_mutex down.
5209 */
5210int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5211{
5212	struct inode *inode = d_inode(dentry);
5213	int error, rc = 0;
5214	int orphan = 0;
5215	const unsigned int ia_valid = attr->ia_valid;
5216
 
 
 
 
 
 
 
 
 
 
 
5217	error = setattr_prepare(dentry, attr);
5218	if (error)
5219		return error;
5220
 
 
 
 
 
 
 
 
5221	if (is_quota_modification(inode, attr)) {
5222		error = dquot_initialize(inode);
5223		if (error)
5224			return error;
5225	}
5226	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5227	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5228		handle_t *handle;
5229
5230		/* (user+group)*(old+new) structure, inode write (sb,
5231		 * inode block, ? - but truncate inode update has it) */
5232		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5234			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5235		if (IS_ERR(handle)) {
5236			error = PTR_ERR(handle);
5237			goto err_out;
5238		}
 
 
 
 
 
5239		error = dquot_transfer(inode, attr);
 
 
5240		if (error) {
5241			ext4_journal_stop(handle);
5242			return error;
5243		}
5244		/* Update corresponding info in inode so that everything is in
5245		 * one transaction */
5246		if (attr->ia_valid & ATTR_UID)
5247			inode->i_uid = attr->ia_uid;
5248		if (attr->ia_valid & ATTR_GID)
5249			inode->i_gid = attr->ia_gid;
5250		error = ext4_mark_inode_dirty(handle, inode);
5251		ext4_journal_stop(handle);
5252	}
5253
5254	if (attr->ia_valid & ATTR_SIZE) {
5255		handle_t *handle;
5256		loff_t oldsize = inode->i_size;
5257		int shrink = (attr->ia_size <= inode->i_size);
5258
5259		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5260			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261
5262			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5263				return -EFBIG;
5264		}
5265		if (!S_ISREG(inode->i_mode))
5266			return -EINVAL;
5267
5268		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5269			inode_inc_iversion(inode);
5270
5271		if (ext4_should_order_data(inode) &&
5272		    (attr->ia_size < inode->i_size)) {
5273			error = ext4_begin_ordered_truncate(inode,
5274							    attr->ia_size);
5275			if (error)
5276				goto err_out;
 
 
 
 
 
 
5277		}
 
 
 
 
 
 
 
 
 
5278		if (attr->ia_size != inode->i_size) {
5279			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5280			if (IS_ERR(handle)) {
5281				error = PTR_ERR(handle);
5282				goto err_out;
5283			}
5284			if (ext4_handle_valid(handle) && shrink) {
5285				error = ext4_orphan_add(handle, inode);
5286				orphan = 1;
5287			}
5288			/*
5289			 * Update c/mtime on truncate up, ext4_truncate() will
5290			 * update c/mtime in shrink case below
5291			 */
5292			if (!shrink) {
5293				inode->i_mtime = current_time(inode);
5294				inode->i_ctime = inode->i_mtime;
5295			}
5296			down_write(&EXT4_I(inode)->i_data_sem);
5297			EXT4_I(inode)->i_disksize = attr->ia_size;
5298			rc = ext4_mark_inode_dirty(handle, inode);
5299			if (!error)
5300				error = rc;
5301			/*
5302			 * We have to update i_size under i_data_sem together
5303			 * with i_disksize to avoid races with writeback code
5304			 * running ext4_wb_update_i_disksize().
5305			 */
5306			if (!error)
5307				i_size_write(inode, attr->ia_size);
5308			up_write(&EXT4_I(inode)->i_data_sem);
5309			ext4_journal_stop(handle);
5310			if (error) {
5311				if (orphan)
5312					ext4_orphan_del(NULL, inode);
5313				goto err_out;
 
 
 
5314			}
5315		}
5316		if (!shrink)
5317			pagecache_isize_extended(inode, oldsize, inode->i_size);
5318
5319		/*
5320		 * Blocks are going to be removed from the inode. Wait
5321		 * for dio in flight.  Temporarily disable
5322		 * dioread_nolock to prevent livelock.
5323		 */
5324		if (orphan) {
5325			if (!ext4_should_journal_data(inode)) {
5326				ext4_inode_block_unlocked_dio(inode);
5327				inode_dio_wait(inode);
5328				ext4_inode_resume_unlocked_dio(inode);
5329			} else
5330				ext4_wait_for_tail_page_commit(inode);
5331		}
5332		down_write(&EXT4_I(inode)->i_mmap_sem);
5333		/*
5334		 * Truncate pagecache after we've waited for commit
5335		 * in data=journal mode to make pages freeable.
5336		 */
5337		truncate_pagecache(inode, inode->i_size);
5338		if (shrink) {
 
 
 
 
5339			rc = ext4_truncate(inode);
5340			if (rc)
5341				error = rc;
5342		}
 
5343		up_write(&EXT4_I(inode)->i_mmap_sem);
5344	}
5345
5346	if (!error) {
5347		setattr_copy(inode, attr);
5348		mark_inode_dirty(inode);
5349	}
5350
5351	/*
5352	 * If the call to ext4_truncate failed to get a transaction handle at
5353	 * all, we need to clean up the in-core orphan list manually.
5354	 */
5355	if (orphan && inode->i_nlink)
5356		ext4_orphan_del(NULL, inode);
5357
5358	if (!error && (ia_valid & ATTR_MODE))
5359		rc = posix_acl_chmod(inode, inode->i_mode);
5360
5361err_out:
5362	ext4_std_error(inode->i_sb, error);
5363	if (!error)
5364		error = rc;
5365	return error;
5366}
5367
5368int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5369		 struct kstat *stat)
5370{
5371	struct inode *inode;
5372	unsigned long long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5373
5374	inode = d_inode(dentry);
5375	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
5376
5377	/*
5378	 * If there is inline data in the inode, the inode will normally not
5379	 * have data blocks allocated (it may have an external xattr block).
5380	 * Report at least one sector for such files, so tools like tar, rsync,
5381	 * others doen't incorrectly think the file is completely sparse.
5382	 */
5383	if (unlikely(ext4_has_inline_data(inode)))
5384		stat->blocks += (stat->size + 511) >> 9;
5385
5386	/*
5387	 * We can't update i_blocks if the block allocation is delayed
5388	 * otherwise in the case of system crash before the real block
5389	 * allocation is done, we will have i_blocks inconsistent with
5390	 * on-disk file blocks.
5391	 * We always keep i_blocks updated together with real
5392	 * allocation. But to not confuse with user, stat
5393	 * will return the blocks that include the delayed allocation
5394	 * blocks for this file.
5395	 */
5396	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5397				   EXT4_I(inode)->i_reserved_data_blocks);
5398	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5399	return 0;
5400}
5401
5402static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5403				   int pextents)
5404{
5405	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5406		return ext4_ind_trans_blocks(inode, lblocks);
5407	return ext4_ext_index_trans_blocks(inode, pextents);
5408}
5409
5410/*
5411 * Account for index blocks, block groups bitmaps and block group
5412 * descriptor blocks if modify datablocks and index blocks
5413 * worse case, the indexs blocks spread over different block groups
5414 *
5415 * If datablocks are discontiguous, they are possible to spread over
5416 * different block groups too. If they are contiguous, with flexbg,
5417 * they could still across block group boundary.
5418 *
5419 * Also account for superblock, inode, quota and xattr blocks
5420 */
5421static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5422				  int pextents)
5423{
5424	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5425	int gdpblocks;
5426	int idxblocks;
5427	int ret = 0;
5428
5429	/*
5430	 * How many index blocks need to touch to map @lblocks logical blocks
5431	 * to @pextents physical extents?
5432	 */
5433	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5434
5435	ret = idxblocks;
5436
5437	/*
5438	 * Now let's see how many group bitmaps and group descriptors need
5439	 * to account
5440	 */
5441	groups = idxblocks + pextents;
5442	gdpblocks = groups;
5443	if (groups > ngroups)
5444		groups = ngroups;
5445	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5446		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5447
5448	/* bitmaps and block group descriptor blocks */
5449	ret += groups + gdpblocks;
5450
5451	/* Blocks for super block, inode, quota and xattr blocks */
5452	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5453
5454	return ret;
5455}
5456
5457/*
5458 * Calculate the total number of credits to reserve to fit
5459 * the modification of a single pages into a single transaction,
5460 * which may include multiple chunks of block allocations.
5461 *
5462 * This could be called via ext4_write_begin()
5463 *
5464 * We need to consider the worse case, when
5465 * one new block per extent.
5466 */
5467int ext4_writepage_trans_blocks(struct inode *inode)
5468{
5469	int bpp = ext4_journal_blocks_per_page(inode);
5470	int ret;
5471
5472	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5473
5474	/* Account for data blocks for journalled mode */
5475	if (ext4_should_journal_data(inode))
5476		ret += bpp;
5477	return ret;
5478}
5479
5480/*
5481 * Calculate the journal credits for a chunk of data modification.
5482 *
5483 * This is called from DIO, fallocate or whoever calling
5484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5485 *
5486 * journal buffers for data blocks are not included here, as DIO
5487 * and fallocate do no need to journal data buffers.
5488 */
5489int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5490{
5491	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5492}
5493
5494/*
5495 * The caller must have previously called ext4_reserve_inode_write().
5496 * Give this, we know that the caller already has write access to iloc->bh.
5497 */
5498int ext4_mark_iloc_dirty(handle_t *handle,
5499			 struct inode *inode, struct ext4_iloc *iloc)
5500{
5501	int err = 0;
5502
 
 
 
 
5503	if (IS_I_VERSION(inode))
5504		inode_inc_iversion(inode);
5505
5506	/* the do_update_inode consumes one bh->b_count */
5507	get_bh(iloc->bh);
5508
5509	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5510	err = ext4_do_update_inode(handle, inode, iloc);
5511	put_bh(iloc->bh);
5512	return err;
5513}
5514
5515/*
5516 * On success, We end up with an outstanding reference count against
5517 * iloc->bh.  This _must_ be cleaned up later.
5518 */
5519
5520int
5521ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5522			 struct ext4_iloc *iloc)
5523{
5524	int err;
5525
 
 
 
5526	err = ext4_get_inode_loc(inode, iloc);
5527	if (!err) {
5528		BUFFER_TRACE(iloc->bh, "get_write_access");
5529		err = ext4_journal_get_write_access(handle, iloc->bh);
5530		if (err) {
5531			brelse(iloc->bh);
5532			iloc->bh = NULL;
5533		}
5534	}
5535	ext4_std_error(inode->i_sb, err);
5536	return err;
5537}
5538
5539/*
5540 * Expand an inode by new_extra_isize bytes.
5541 * Returns 0 on success or negative error number on failure.
5542 */
5543static int ext4_expand_extra_isize(struct inode *inode,
5544				   unsigned int new_extra_isize,
5545				   struct ext4_iloc iloc,
5546				   handle_t *handle)
5547{
5548	struct ext4_inode *raw_inode;
5549	struct ext4_xattr_ibody_header *header;
 
5550
5551	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5552		return 0;
5553
5554	raw_inode = ext4_raw_inode(&iloc);
5555
5556	header = IHDR(inode, raw_inode);
5557
5558	/* No extended attributes present */
5559	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5560	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5561		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5562			new_extra_isize);
 
5563		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5564		return 0;
5565	}
5566
5567	/* try to expand with EAs present */
5568	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5569					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570}
5571
5572/*
5573 * What we do here is to mark the in-core inode as clean with respect to inode
5574 * dirtiness (it may still be data-dirty).
5575 * This means that the in-core inode may be reaped by prune_icache
5576 * without having to perform any I/O.  This is a very good thing,
5577 * because *any* task may call prune_icache - even ones which
5578 * have a transaction open against a different journal.
5579 *
5580 * Is this cheating?  Not really.  Sure, we haven't written the
5581 * inode out, but prune_icache isn't a user-visible syncing function.
5582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5583 * we start and wait on commits.
5584 */
5585int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5586{
5587	struct ext4_iloc iloc;
5588	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5589	static unsigned int mnt_count;
5590	int err, ret;
5591
5592	might_sleep();
5593	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5594	err = ext4_reserve_inode_write(handle, inode, &iloc);
5595	if (err)
5596		return err;
5597	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5598	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5599		/*
5600		 * In nojournal mode, we can immediately attempt to expand
5601		 * the inode.  When journaled, we first need to obtain extra
5602		 * buffer credits since we may write into the EA block
5603		 * with this same handle. If journal_extend fails, then it will
5604		 * only result in a minor loss of functionality for that inode.
5605		 * If this is felt to be critical, then e2fsck should be run to
5606		 * force a large enough s_min_extra_isize.
5607		 */
5608		if (!ext4_handle_valid(handle) ||
5609		    jbd2_journal_extend(handle,
5610			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5611			ret = ext4_expand_extra_isize(inode,
5612						      sbi->s_want_extra_isize,
5613						      iloc, handle);
5614			if (ret) {
5615				if (mnt_count !=
5616					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5617					ext4_warning(inode->i_sb,
5618					"Unable to expand inode %lu. Delete"
5619					" some EAs or run e2fsck.",
5620					inode->i_ino);
5621					mnt_count =
5622					  le16_to_cpu(sbi->s_es->s_mnt_count);
5623				}
5624			}
5625		}
5626	}
5627	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5628}
5629
5630/*
5631 * ext4_dirty_inode() is called from __mark_inode_dirty()
5632 *
5633 * We're really interested in the case where a file is being extended.
5634 * i_size has been changed by generic_commit_write() and we thus need
5635 * to include the updated inode in the current transaction.
5636 *
5637 * Also, dquot_alloc_block() will always dirty the inode when blocks
5638 * are allocated to the file.
5639 *
5640 * If the inode is marked synchronous, we don't honour that here - doing
5641 * so would cause a commit on atime updates, which we don't bother doing.
5642 * We handle synchronous inodes at the highest possible level.
5643 *
5644 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5645 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5646 * to copy into the on-disk inode structure are the timestamp files.
5647 */
5648void ext4_dirty_inode(struct inode *inode, int flags)
5649{
5650	handle_t *handle;
5651
5652	if (flags == I_DIRTY_TIME)
5653		return;
5654	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5655	if (IS_ERR(handle))
5656		goto out;
5657
5658	ext4_mark_inode_dirty(handle, inode);
5659
5660	ext4_journal_stop(handle);
5661out:
5662	return;
5663}
5664
5665#if 0
5666/*
5667 * Bind an inode's backing buffer_head into this transaction, to prevent
5668 * it from being flushed to disk early.  Unlike
5669 * ext4_reserve_inode_write, this leaves behind no bh reference and
5670 * returns no iloc structure, so the caller needs to repeat the iloc
5671 * lookup to mark the inode dirty later.
5672 */
5673static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5674{
5675	struct ext4_iloc iloc;
5676
5677	int err = 0;
5678	if (handle) {
5679		err = ext4_get_inode_loc(inode, &iloc);
5680		if (!err) {
5681			BUFFER_TRACE(iloc.bh, "get_write_access");
5682			err = jbd2_journal_get_write_access(handle, iloc.bh);
5683			if (!err)
5684				err = ext4_handle_dirty_metadata(handle,
5685								 NULL,
5686								 iloc.bh);
5687			brelse(iloc.bh);
5688		}
5689	}
5690	ext4_std_error(inode->i_sb, err);
5691	return err;
5692}
5693#endif
5694
5695int ext4_change_inode_journal_flag(struct inode *inode, int val)
5696{
5697	journal_t *journal;
5698	handle_t *handle;
5699	int err;
5700	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5701
5702	/*
5703	 * We have to be very careful here: changing a data block's
5704	 * journaling status dynamically is dangerous.  If we write a
5705	 * data block to the journal, change the status and then delete
5706	 * that block, we risk forgetting to revoke the old log record
5707	 * from the journal and so a subsequent replay can corrupt data.
5708	 * So, first we make sure that the journal is empty and that
5709	 * nobody is changing anything.
5710	 */
5711
5712	journal = EXT4_JOURNAL(inode);
5713	if (!journal)
5714		return 0;
5715	if (is_journal_aborted(journal))
5716		return -EROFS;
5717
5718	/* Wait for all existing dio workers */
5719	ext4_inode_block_unlocked_dio(inode);
5720	inode_dio_wait(inode);
5721
5722	/*
5723	 * Before flushing the journal and switching inode's aops, we have
5724	 * to flush all dirty data the inode has. There can be outstanding
5725	 * delayed allocations, there can be unwritten extents created by
5726	 * fallocate or buffered writes in dioread_nolock mode covered by
5727	 * dirty data which can be converted only after flushing the dirty
5728	 * data (and journalled aops don't know how to handle these cases).
5729	 */
5730	if (val) {
5731		down_write(&EXT4_I(inode)->i_mmap_sem);
5732		err = filemap_write_and_wait(inode->i_mapping);
5733		if (err < 0) {
5734			up_write(&EXT4_I(inode)->i_mmap_sem);
5735			ext4_inode_resume_unlocked_dio(inode);
5736			return err;
5737		}
5738	}
5739
5740	percpu_down_write(&sbi->s_journal_flag_rwsem);
5741	jbd2_journal_lock_updates(journal);
5742
5743	/*
5744	 * OK, there are no updates running now, and all cached data is
5745	 * synced to disk.  We are now in a completely consistent state
5746	 * which doesn't have anything in the journal, and we know that
5747	 * no filesystem updates are running, so it is safe to modify
5748	 * the inode's in-core data-journaling state flag now.
5749	 */
5750
5751	if (val)
5752		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753	else {
5754		err = jbd2_journal_flush(journal);
5755		if (err < 0) {
5756			jbd2_journal_unlock_updates(journal);
5757			percpu_up_write(&sbi->s_journal_flag_rwsem);
5758			ext4_inode_resume_unlocked_dio(inode);
5759			return err;
5760		}
5761		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5762	}
5763	ext4_set_aops(inode);
5764	/*
5765	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5766	 * E.g. S_DAX may get cleared / set.
5767	 */
5768	ext4_set_inode_flags(inode);
5769
5770	jbd2_journal_unlock_updates(journal);
5771	percpu_up_write(&sbi->s_journal_flag_rwsem);
5772
5773	if (val)
5774		up_write(&EXT4_I(inode)->i_mmap_sem);
5775	ext4_inode_resume_unlocked_dio(inode);
5776
5777	/* Finally we can mark the inode as dirty. */
5778
5779	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5780	if (IS_ERR(handle))
5781		return PTR_ERR(handle);
5782
5783	err = ext4_mark_inode_dirty(handle, inode);
5784	ext4_handle_sync(handle);
5785	ext4_journal_stop(handle);
5786	ext4_std_error(inode->i_sb, err);
5787
5788	return err;
5789}
5790
5791static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5792{
5793	return !buffer_mapped(bh);
5794}
5795
5796int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5797{
 
5798	struct page *page = vmf->page;
5799	loff_t size;
5800	unsigned long len;
5801	int ret;
 
5802	struct file *file = vma->vm_file;
5803	struct inode *inode = file_inode(file);
5804	struct address_space *mapping = inode->i_mapping;
5805	handle_t *handle;
5806	get_block_t *get_block;
5807	int retries = 0;
5808
 
 
 
5809	sb_start_pagefault(inode->i_sb);
5810	file_update_time(vma->vm_file);
5811
5812	down_read(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
5813	/* Delalloc case is easy... */
5814	if (test_opt(inode->i_sb, DELALLOC) &&
5815	    !ext4_should_journal_data(inode) &&
5816	    !ext4_nonda_switch(inode->i_sb)) {
5817		do {
5818			ret = block_page_mkwrite(vma, vmf,
5819						   ext4_da_get_block_prep);
5820		} while (ret == -ENOSPC &&
5821		       ext4_should_retry_alloc(inode->i_sb, &retries));
5822		goto out_ret;
5823	}
5824
5825	lock_page(page);
5826	size = i_size_read(inode);
5827	/* Page got truncated from under us? */
5828	if (page->mapping != mapping || page_offset(page) > size) {
5829		unlock_page(page);
5830		ret = VM_FAULT_NOPAGE;
5831		goto out;
5832	}
5833
5834	if (page->index == size >> PAGE_SHIFT)
5835		len = size & ~PAGE_MASK;
5836	else
5837		len = PAGE_SIZE;
5838	/*
5839	 * Return if we have all the buffers mapped. This avoids the need to do
5840	 * journal_start/journal_stop which can block and take a long time
5841	 */
5842	if (page_has_buffers(page)) {
5843		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5844					    0, len, NULL,
5845					    ext4_bh_unmapped)) {
5846			/* Wait so that we don't change page under IO */
5847			wait_for_stable_page(page);
5848			ret = VM_FAULT_LOCKED;
5849			goto out;
5850		}
5851	}
5852	unlock_page(page);
5853	/* OK, we need to fill the hole... */
5854	if (ext4_should_dioread_nolock(inode))
5855		get_block = ext4_get_block_unwritten;
5856	else
5857		get_block = ext4_get_block;
5858retry_alloc:
5859	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5860				    ext4_writepage_trans_blocks(inode));
5861	if (IS_ERR(handle)) {
5862		ret = VM_FAULT_SIGBUS;
5863		goto out;
5864	}
5865	ret = block_page_mkwrite(vma, vmf, get_block);
5866	if (!ret && ext4_should_journal_data(inode)) {
5867		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5868			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5869			unlock_page(page);
5870			ret = VM_FAULT_SIGBUS;
5871			ext4_journal_stop(handle);
5872			goto out;
5873		}
5874		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5875	}
5876	ext4_journal_stop(handle);
5877	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5878		goto retry_alloc;
5879out_ret:
5880	ret = block_page_mkwrite_return(ret);
5881out:
5882	up_read(&EXT4_I(inode)->i_mmap_sem);
5883	sb_end_pagefault(inode->i_sb);
5884	return ret;
5885}
5886
5887int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5888{
5889	struct inode *inode = file_inode(vma->vm_file);
5890	int err;
5891
5892	down_read(&EXT4_I(inode)->i_mmap_sem);
5893	err = filemap_fault(vma, vmf);
5894	up_read(&EXT4_I(inode)->i_mmap_sem);
5895
5896	return err;
5897}
5898
5899/*
5900 * Find the first extent at or after @lblk in an inode that is not a hole.
5901 * Search for @map_len blocks at most. The extent is returned in @result.
5902 *
5903 * The function returns 1 if we found an extent. The function returns 0 in
5904 * case there is no extent at or after @lblk and in that case also sets
5905 * @result->es_len to 0. In case of error, the error code is returned.
5906 */
5907int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5908			 unsigned int map_len, struct extent_status *result)
5909{
5910	struct ext4_map_blocks map;
5911	struct extent_status es = {};
5912	int ret;
5913
5914	map.m_lblk = lblk;
5915	map.m_len = map_len;
5916
5917	/*
5918	 * For non-extent based files this loop may iterate several times since
5919	 * we do not determine full hole size.
5920	 */
5921	while (map.m_len > 0) {
5922		ret = ext4_map_blocks(NULL, inode, &map, 0);
5923		if (ret < 0)
5924			return ret;
5925		/* There's extent covering m_lblk? Just return it. */
5926		if (ret > 0) {
5927			int status;
5928
5929			ext4_es_store_pblock(result, map.m_pblk);
5930			result->es_lblk = map.m_lblk;
5931			result->es_len = map.m_len;
5932			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5933				status = EXTENT_STATUS_UNWRITTEN;
5934			else
5935				status = EXTENT_STATUS_WRITTEN;
5936			ext4_es_store_status(result, status);
5937			return 1;
5938		}
5939		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5940						  map.m_lblk + map.m_len - 1,
5941						  &es);
5942		/* Is delalloc data before next block in extent tree? */
5943		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5944			ext4_lblk_t offset = 0;
5945
5946			if (es.es_lblk < lblk)
5947				offset = lblk - es.es_lblk;
5948			result->es_lblk = es.es_lblk + offset;
5949			ext4_es_store_pblock(result,
5950					     ext4_es_pblock(&es) + offset);
5951			result->es_len = es.es_len - offset;
5952			ext4_es_store_status(result, ext4_es_status(&es));
5953
5954			return 1;
5955		}
5956		/* There's a hole at m_lblk, advance us after it */
5957		map.m_lblk += map.m_len;
5958		map_len -= map.m_len;
5959		map.m_len = map_len;
5960		cond_resched();
5961	}
5962	result->es_len = 0;
5963	return 0;
5964}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/highuid.h>
  25#include <linux/pagemap.h>
  26#include <linux/dax.h>
  27#include <linux/quotaops.h>
  28#include <linux/string.h>
  29#include <linux/buffer_head.h>
  30#include <linux/writeback.h>
  31#include <linux/pagevec.h>
  32#include <linux/mpage.h>
  33#include <linux/namei.h>
  34#include <linux/uio.h>
  35#include <linux/bio.h>
  36#include <linux/workqueue.h>
  37#include <linux/kernel.h>
  38#include <linux/printk.h>
  39#include <linux/slab.h>
  40#include <linux/bitops.h>
  41#include <linux/iomap.h>
  42#include <linux/iversion.h>
  43
  44#include "ext4_jbd2.h"
  45#include "xattr.h"
  46#include "acl.h"
  47#include "truncate.h"
  48
  49#include <trace/events/ext4.h>
  50
  51#define MPAGE_DA_EXTENT_TAIL 0x01
  52
  53static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  54			      struct ext4_inode_info *ei)
  55{
  56	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  57	__u32 csum;
  58	__u16 dummy_csum = 0;
  59	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  60	unsigned int csum_size = sizeof(dummy_csum);
  61
  62	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  63	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  64	offset += csum_size;
  65	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  66			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  67
  68	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  69		offset = offsetof(struct ext4_inode, i_checksum_hi);
  70		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  71				   EXT4_GOOD_OLD_INODE_SIZE,
  72				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  73		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  74			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  75					   csum_size);
  76			offset += csum_size;
  77		}
  78		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  79				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  80	}
  81
  82	return csum;
  83}
  84
  85static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  86				  struct ext4_inode_info *ei)
  87{
  88	__u32 provided, calculated;
  89
  90	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  91	    cpu_to_le32(EXT4_OS_LINUX) ||
  92	    !ext4_has_metadata_csum(inode->i_sb))
  93		return 1;
  94
  95	provided = le16_to_cpu(raw->i_checksum_lo);
  96	calculated = ext4_inode_csum(inode, raw, ei);
  97	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  98	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  99		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 100	else
 101		calculated &= 0xFFFF;
 102
 103	return provided == calculated;
 104}
 105
 106static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 107				struct ext4_inode_info *ei)
 108{
 109	__u32 csum;
 110
 111	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 112	    cpu_to_le32(EXT4_OS_LINUX) ||
 113	    !ext4_has_metadata_csum(inode->i_sb))
 114		return;
 115
 116	csum = ext4_inode_csum(inode, raw, ei);
 117	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 118	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 119	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 120		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 121}
 122
 123static inline int ext4_begin_ordered_truncate(struct inode *inode,
 124					      loff_t new_size)
 125{
 126	trace_ext4_begin_ordered_truncate(inode, new_size);
 127	/*
 128	 * If jinode is zero, then we never opened the file for
 129	 * writing, so there's no need to call
 130	 * jbd2_journal_begin_ordered_truncate() since there's no
 131	 * outstanding writes we need to flush.
 132	 */
 133	if (!EXT4_I(inode)->jinode)
 134		return 0;
 135	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 136						   EXT4_I(inode)->jinode,
 137						   new_size);
 138}
 139
 140static void ext4_invalidatepage(struct page *page, unsigned int offset,
 141				unsigned int length);
 142static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 143static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Restart the transaction associated with *handle.  This does a commit,
 168 * so before we call here everything must be consistently dirtied against
 169 * this transaction.
 170 */
 171int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 172				 int nblocks)
 173{
 174	int ret;
 175
 176	/*
 177	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 178	 * moment, get_block can be called only for blocks inside i_size since
 179	 * page cache has been already dropped and writes are blocked by
 180	 * i_mutex. So we can safely drop the i_data_sem here.
 181	 */
 182	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 183	jbd_debug(2, "restarting handle %p\n", handle);
 184	up_write(&EXT4_I(inode)->i_data_sem);
 185	ret = ext4_journal_restart(handle, nblocks);
 186	down_write(&EXT4_I(inode)->i_data_sem);
 187	ext4_discard_preallocations(inode);
 188
 189	return ret;
 190}
 191
 192/*
 193 * Called at the last iput() if i_nlink is zero.
 194 */
 195void ext4_evict_inode(struct inode *inode)
 196{
 197	handle_t *handle;
 198	int err;
 199	int extra_credits = 3;
 200	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 201
 202	trace_ext4_evict_inode(inode);
 203
 204	if (inode->i_nlink) {
 205		/*
 206		 * When journalling data dirty buffers are tracked only in the
 207		 * journal. So although mm thinks everything is clean and
 208		 * ready for reaping the inode might still have some pages to
 209		 * write in the running transaction or waiting to be
 210		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 211		 * (via truncate_inode_pages()) to discard these buffers can
 212		 * cause data loss. Also even if we did not discard these
 213		 * buffers, we would have no way to find them after the inode
 214		 * is reaped and thus user could see stale data if he tries to
 215		 * read them before the transaction is checkpointed. So be
 216		 * careful and force everything to disk here... We use
 217		 * ei->i_datasync_tid to store the newest transaction
 218		 * containing inode's data.
 219		 *
 220		 * Note that directories do not have this problem because they
 221		 * don't use page cache.
 222		 */
 223		if (inode->i_ino != EXT4_JOURNAL_INO &&
 224		    ext4_should_journal_data(inode) &&
 225		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
 226		    inode->i_data.nrpages) {
 227			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 228			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 229
 230			jbd2_complete_transaction(journal, commit_tid);
 231			filemap_write_and_wait(&inode->i_data);
 232		}
 233		truncate_inode_pages_final(&inode->i_data);
 234
 235		goto no_delete;
 236	}
 237
 238	if (is_bad_inode(inode))
 239		goto no_delete;
 240	dquot_initialize(inode);
 241
 242	if (ext4_should_order_data(inode))
 243		ext4_begin_ordered_truncate(inode, 0);
 244	truncate_inode_pages_final(&inode->i_data);
 245
 246	/*
 247	 * Protect us against freezing - iput() caller didn't have to have any
 248	 * protection against it
 249	 */
 250	sb_start_intwrite(inode->i_sb);
 251
 252	if (!IS_NOQUOTA(inode))
 253		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 254
 255	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 256				 ext4_blocks_for_truncate(inode)+extra_credits);
 257	if (IS_ERR(handle)) {
 258		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 259		/*
 260		 * If we're going to skip the normal cleanup, we still need to
 261		 * make sure that the in-core orphan linked list is properly
 262		 * cleaned up.
 263		 */
 264		ext4_orphan_del(NULL, inode);
 265		sb_end_intwrite(inode->i_sb);
 266		goto no_delete;
 267	}
 268
 269	if (IS_SYNC(inode))
 270		ext4_handle_sync(handle);
 271
 272	/*
 273	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 274	 * special handling of symlinks here because i_size is used to
 275	 * determine whether ext4_inode_info->i_data contains symlink data or
 276	 * block mappings. Setting i_size to 0 will remove its fast symlink
 277	 * status. Erase i_data so that it becomes a valid empty block map.
 278	 */
 279	if (ext4_inode_is_fast_symlink(inode))
 280		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 281	inode->i_size = 0;
 282	err = ext4_mark_inode_dirty(handle, inode);
 283	if (err) {
 284		ext4_warning(inode->i_sb,
 285			     "couldn't mark inode dirty (err %d)", err);
 286		goto stop_handle;
 287	}
 288	if (inode->i_blocks) {
 289		err = ext4_truncate(inode);
 290		if (err) {
 291			ext4_error(inode->i_sb,
 292				   "couldn't truncate inode %lu (err %d)",
 293				   inode->i_ino, err);
 294			goto stop_handle;
 295		}
 296	}
 297
 298	/* Remove xattr references. */
 299	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 300				      extra_credits);
 301	if (err) {
 302		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 303stop_handle:
 304		ext4_journal_stop(handle);
 305		ext4_orphan_del(NULL, inode);
 306		sb_end_intwrite(inode->i_sb);
 307		ext4_xattr_inode_array_free(ea_inode_array);
 308		goto no_delete;
 
 
 
 
 
 
 
 
 309	}
 310
 311	/*
 312	 * Kill off the orphan record which ext4_truncate created.
 313	 * AKPM: I think this can be inside the above `if'.
 314	 * Note that ext4_orphan_del() has to be able to cope with the
 315	 * deletion of a non-existent orphan - this is because we don't
 316	 * know if ext4_truncate() actually created an orphan record.
 317	 * (Well, we could do this if we need to, but heck - it works)
 318	 */
 319	ext4_orphan_del(handle, inode);
 320	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 321
 322	/*
 323	 * One subtle ordering requirement: if anything has gone wrong
 324	 * (transaction abort, IO errors, whatever), then we can still
 325	 * do these next steps (the fs will already have been marked as
 326	 * having errors), but we can't free the inode if the mark_dirty
 327	 * fails.
 328	 */
 329	if (ext4_mark_inode_dirty(handle, inode))
 330		/* If that failed, just do the required in-core inode clear. */
 331		ext4_clear_inode(inode);
 332	else
 333		ext4_free_inode(handle, inode);
 334	ext4_journal_stop(handle);
 335	sb_end_intwrite(inode->i_sb);
 336	ext4_xattr_inode_array_free(ea_inode_array);
 337	return;
 338no_delete:
 339	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 340}
 341
 342#ifdef CONFIG_QUOTA
 343qsize_t *ext4_get_reserved_space(struct inode *inode)
 344{
 345	return &EXT4_I(inode)->i_reserved_quota;
 346}
 347#endif
 348
 349/*
 350 * Called with i_data_sem down, which is important since we can call
 351 * ext4_discard_preallocations() from here.
 352 */
 353void ext4_da_update_reserve_space(struct inode *inode,
 354					int used, int quota_claim)
 355{
 356	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 357	struct ext4_inode_info *ei = EXT4_I(inode);
 358
 359	spin_lock(&ei->i_block_reservation_lock);
 360	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 361	if (unlikely(used > ei->i_reserved_data_blocks)) {
 362		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 363			 "with only %d reserved data blocks",
 364			 __func__, inode->i_ino, used,
 365			 ei->i_reserved_data_blocks);
 366		WARN_ON(1);
 367		used = ei->i_reserved_data_blocks;
 368	}
 369
 370	/* Update per-inode reservations */
 371	ei->i_reserved_data_blocks -= used;
 372	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 373
 374	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 375
 376	/* Update quota subsystem for data blocks */
 377	if (quota_claim)
 378		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 379	else {
 380		/*
 381		 * We did fallocate with an offset that is already delayed
 382		 * allocated. So on delayed allocated writeback we should
 383		 * not re-claim the quota for fallocated blocks.
 384		 */
 385		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 386	}
 387
 388	/*
 389	 * If we have done all the pending block allocations and if
 390	 * there aren't any writers on the inode, we can discard the
 391	 * inode's preallocations.
 392	 */
 393	if ((ei->i_reserved_data_blocks == 0) &&
 394	    !inode_is_open_for_write(inode))
 395		ext4_discard_preallocations(inode);
 396}
 397
 398static int __check_block_validity(struct inode *inode, const char *func,
 399				unsigned int line,
 400				struct ext4_map_blocks *map)
 401{
 402	if (ext4_has_feature_journal(inode->i_sb) &&
 403	    (inode->i_ino ==
 404	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 405		return 0;
 406	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 407				   map->m_len)) {
 408		ext4_error_inode(inode, func, line, map->m_pblk,
 409				 "lblock %lu mapped to illegal pblock %llu "
 410				 "(length %d)", (unsigned long) map->m_lblk,
 411				 map->m_pblk, map->m_len);
 412		return -EFSCORRUPTED;
 413	}
 414	return 0;
 415}
 416
 417int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 418		       ext4_lblk_t len)
 419{
 420	int ret;
 421
 422	if (IS_ENCRYPTED(inode))
 423		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 424
 425	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 426	if (ret > 0)
 427		ret = 0;
 428
 429	return ret;
 430}
 431
 432#define check_block_validity(inode, map)	\
 433	__check_block_validity((inode), __func__, __LINE__, (map))
 434
 435#ifdef ES_AGGRESSIVE_TEST
 436static void ext4_map_blocks_es_recheck(handle_t *handle,
 437				       struct inode *inode,
 438				       struct ext4_map_blocks *es_map,
 439				       struct ext4_map_blocks *map,
 440				       int flags)
 441{
 442	int retval;
 443
 444	map->m_flags = 0;
 445	/*
 446	 * There is a race window that the result is not the same.
 447	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 448	 * is that we lookup a block mapping in extent status tree with
 449	 * out taking i_data_sem.  So at the time the unwritten extent
 450	 * could be converted.
 451	 */
 452	down_read(&EXT4_I(inode)->i_data_sem);
 453	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 454		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 455					     EXT4_GET_BLOCKS_KEEP_SIZE);
 456	} else {
 457		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 458					     EXT4_GET_BLOCKS_KEEP_SIZE);
 459	}
 460	up_read((&EXT4_I(inode)->i_data_sem));
 461
 462	/*
 463	 * We don't check m_len because extent will be collpased in status
 464	 * tree.  So the m_len might not equal.
 465	 */
 466	if (es_map->m_lblk != map->m_lblk ||
 467	    es_map->m_flags != map->m_flags ||
 468	    es_map->m_pblk != map->m_pblk) {
 469		printk("ES cache assertion failed for inode: %lu "
 470		       "es_cached ex [%d/%d/%llu/%x] != "
 471		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 472		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 473		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 474		       map->m_len, map->m_pblk, map->m_flags,
 475		       retval, flags);
 476	}
 477}
 478#endif /* ES_AGGRESSIVE_TEST */
 479
 480/*
 481 * The ext4_map_blocks() function tries to look up the requested blocks,
 482 * and returns if the blocks are already mapped.
 483 *
 484 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 485 * and store the allocated blocks in the result buffer head and mark it
 486 * mapped.
 487 *
 488 * If file type is extents based, it will call ext4_ext_map_blocks(),
 489 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 490 * based files
 491 *
 492 * On success, it returns the number of blocks being mapped or allocated.  if
 493 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 494 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 495 *
 496 * It returns 0 if plain look up failed (blocks have not been allocated), in
 497 * that case, @map is returned as unmapped but we still do fill map->m_len to
 498 * indicate the length of a hole starting at map->m_lblk.
 499 *
 500 * It returns the error in case of allocation failure.
 501 */
 502int ext4_map_blocks(handle_t *handle, struct inode *inode,
 503		    struct ext4_map_blocks *map, int flags)
 504{
 505	struct extent_status es;
 506	int retval;
 507	int ret = 0;
 508#ifdef ES_AGGRESSIVE_TEST
 509	struct ext4_map_blocks orig_map;
 510
 511	memcpy(&orig_map, map, sizeof(*map));
 512#endif
 513
 514	map->m_flags = 0;
 515	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 516		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 517		  (unsigned long) map->m_lblk);
 518
 519	/*
 520	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 521	 */
 522	if (unlikely(map->m_len > INT_MAX))
 523		map->m_len = INT_MAX;
 524
 525	/* We can handle the block number less than EXT_MAX_BLOCKS */
 526	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 527		return -EFSCORRUPTED;
 528
 529	/* Lookup extent status tree firstly */
 530	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 531		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 532			map->m_pblk = ext4_es_pblock(&es) +
 533					map->m_lblk - es.es_lblk;
 534			map->m_flags |= ext4_es_is_written(&es) ?
 535					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 536			retval = es.es_len - (map->m_lblk - es.es_lblk);
 537			if (retval > map->m_len)
 538				retval = map->m_len;
 539			map->m_len = retval;
 540		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 541			map->m_pblk = 0;
 542			retval = es.es_len - (map->m_lblk - es.es_lblk);
 543			if (retval > map->m_len)
 544				retval = map->m_len;
 545			map->m_len = retval;
 546			retval = 0;
 547		} else {
 548			BUG();
 549		}
 550#ifdef ES_AGGRESSIVE_TEST
 551		ext4_map_blocks_es_recheck(handle, inode, map,
 552					   &orig_map, flags);
 553#endif
 554		goto found;
 555	}
 556
 557	/*
 558	 * Try to see if we can get the block without requesting a new
 559	 * file system block.
 560	 */
 561	down_read(&EXT4_I(inode)->i_data_sem);
 562	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 563		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 564					     EXT4_GET_BLOCKS_KEEP_SIZE);
 565	} else {
 566		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 567					     EXT4_GET_BLOCKS_KEEP_SIZE);
 568	}
 569	if (retval > 0) {
 570		unsigned int status;
 571
 572		if (unlikely(retval != map->m_len)) {
 573			ext4_warning(inode->i_sb,
 574				     "ES len assertion failed for inode "
 575				     "%lu: retval %d != map->m_len %d",
 576				     inode->i_ino, retval, map->m_len);
 577			WARN_ON(1);
 578		}
 579
 580		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 581				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 582		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 583		    !(status & EXTENT_STATUS_WRITTEN) &&
 584		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 585				       map->m_lblk + map->m_len - 1))
 586			status |= EXTENT_STATUS_DELAYED;
 587		ret = ext4_es_insert_extent(inode, map->m_lblk,
 588					    map->m_len, map->m_pblk, status);
 589		if (ret < 0)
 590			retval = ret;
 591	}
 592	up_read((&EXT4_I(inode)->i_data_sem));
 593
 594found:
 595	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 596		ret = check_block_validity(inode, map);
 597		if (ret != 0)
 598			return ret;
 599	}
 600
 601	/* If it is only a block(s) look up */
 602	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 603		return retval;
 604
 605	/*
 606	 * Returns if the blocks have already allocated
 607	 *
 608	 * Note that if blocks have been preallocated
 609	 * ext4_ext_get_block() returns the create = 0
 610	 * with buffer head unmapped.
 611	 */
 612	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 613		/*
 614		 * If we need to convert extent to unwritten
 615		 * we continue and do the actual work in
 616		 * ext4_ext_map_blocks()
 617		 */
 618		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 619			return retval;
 620
 621	/*
 622	 * Here we clear m_flags because after allocating an new extent,
 623	 * it will be set again.
 624	 */
 625	map->m_flags &= ~EXT4_MAP_FLAGS;
 626
 627	/*
 628	 * New blocks allocate and/or writing to unwritten extent
 629	 * will possibly result in updating i_data, so we take
 630	 * the write lock of i_data_sem, and call get_block()
 631	 * with create == 1 flag.
 632	 */
 633	down_write(&EXT4_I(inode)->i_data_sem);
 634
 635	/*
 636	 * We need to check for EXT4 here because migrate
 637	 * could have changed the inode type in between
 638	 */
 639	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 640		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 641	} else {
 642		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 643
 644		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 645			/*
 646			 * We allocated new blocks which will result in
 647			 * i_data's format changing.  Force the migrate
 648			 * to fail by clearing migrate flags
 649			 */
 650			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 651		}
 652
 653		/*
 654		 * Update reserved blocks/metadata blocks after successful
 655		 * block allocation which had been deferred till now. We don't
 656		 * support fallocate for non extent files. So we can update
 657		 * reserve space here.
 658		 */
 659		if ((retval > 0) &&
 660			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 661			ext4_da_update_reserve_space(inode, retval, 1);
 662	}
 663
 664	if (retval > 0) {
 665		unsigned int status;
 666
 667		if (unlikely(retval != map->m_len)) {
 668			ext4_warning(inode->i_sb,
 669				     "ES len assertion failed for inode "
 670				     "%lu: retval %d != map->m_len %d",
 671				     inode->i_ino, retval, map->m_len);
 672			WARN_ON(1);
 673		}
 674
 675		/*
 676		 * We have to zeroout blocks before inserting them into extent
 677		 * status tree. Otherwise someone could look them up there and
 678		 * use them before they are really zeroed. We also have to
 679		 * unmap metadata before zeroing as otherwise writeback can
 680		 * overwrite zeros with stale data from block device.
 681		 */
 682		if (flags & EXT4_GET_BLOCKS_ZERO &&
 683		    map->m_flags & EXT4_MAP_MAPPED &&
 684		    map->m_flags & EXT4_MAP_NEW) {
 
 
 685			ret = ext4_issue_zeroout(inode, map->m_lblk,
 686						 map->m_pblk, map->m_len);
 687			if (ret) {
 688				retval = ret;
 689				goto out_sem;
 690			}
 691		}
 692
 693		/*
 694		 * If the extent has been zeroed out, we don't need to update
 695		 * extent status tree.
 696		 */
 697		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 698		    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 699			if (ext4_es_is_written(&es))
 700				goto out_sem;
 701		}
 702		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 703				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 704		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 705		    !(status & EXTENT_STATUS_WRITTEN) &&
 706		    ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
 707				       map->m_lblk + map->m_len - 1))
 708			status |= EXTENT_STATUS_DELAYED;
 709		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 710					    map->m_pblk, status);
 711		if (ret < 0) {
 712			retval = ret;
 713			goto out_sem;
 714		}
 715	}
 716
 717out_sem:
 718	up_write((&EXT4_I(inode)->i_data_sem));
 719	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 720		ret = check_block_validity(inode, map);
 721		if (ret != 0)
 722			return ret;
 723
 724		/*
 725		 * Inodes with freshly allocated blocks where contents will be
 726		 * visible after transaction commit must be on transaction's
 727		 * ordered data list.
 728		 */
 729		if (map->m_flags & EXT4_MAP_NEW &&
 730		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 731		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 732		    !ext4_is_quota_file(inode) &&
 733		    ext4_should_order_data(inode)) {
 734			loff_t start_byte =
 735				(loff_t)map->m_lblk << inode->i_blkbits;
 736			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 737
 738			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 739				ret = ext4_jbd2_inode_add_wait(handle, inode,
 740						start_byte, length);
 741			else
 742				ret = ext4_jbd2_inode_add_write(handle, inode,
 743						start_byte, length);
 744			if (ret)
 745				return ret;
 746		}
 747	}
 748	return retval;
 749}
 750
 751/*
 752 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 753 * we have to be careful as someone else may be manipulating b_state as well.
 754 */
 755static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 756{
 757	unsigned long old_state;
 758	unsigned long new_state;
 759
 760	flags &= EXT4_MAP_FLAGS;
 761
 762	/* Dummy buffer_head? Set non-atomically. */
 763	if (!bh->b_page) {
 764		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 765		return;
 766	}
 767	/*
 768	 * Someone else may be modifying b_state. Be careful! This is ugly but
 769	 * once we get rid of using bh as a container for mapping information
 770	 * to pass to / from get_block functions, this can go away.
 771	 */
 772	do {
 773		old_state = READ_ONCE(bh->b_state);
 774		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 775	} while (unlikely(
 776		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 777}
 778
 779static int _ext4_get_block(struct inode *inode, sector_t iblock,
 780			   struct buffer_head *bh, int flags)
 781{
 782	struct ext4_map_blocks map;
 783	int ret = 0;
 784
 785	if (ext4_has_inline_data(inode))
 786		return -ERANGE;
 787
 788	map.m_lblk = iblock;
 789	map.m_len = bh->b_size >> inode->i_blkbits;
 790
 791	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 792			      flags);
 793	if (ret > 0) {
 794		map_bh(bh, inode->i_sb, map.m_pblk);
 795		ext4_update_bh_state(bh, map.m_flags);
 796		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 797		ret = 0;
 798	} else if (ret == 0) {
 799		/* hole case, need to fill in bh->b_size */
 800		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 801	}
 802	return ret;
 803}
 804
 805int ext4_get_block(struct inode *inode, sector_t iblock,
 806		   struct buffer_head *bh, int create)
 807{
 808	return _ext4_get_block(inode, iblock, bh,
 809			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 810}
 811
 812/*
 813 * Get block function used when preparing for buffered write if we require
 814 * creating an unwritten extent if blocks haven't been allocated.  The extent
 815 * will be converted to written after the IO is complete.
 816 */
 817int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 818			     struct buffer_head *bh_result, int create)
 819{
 820	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 821		   inode->i_ino, create);
 822	return _ext4_get_block(inode, iblock, bh_result,
 823			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 824}
 825
 826/* Maximum number of blocks we map for direct IO at once. */
 827#define DIO_MAX_BLOCKS 4096
 828
 829/*
 830 * Get blocks function for the cases that need to start a transaction -
 831 * generally difference cases of direct IO and DAX IO. It also handles retries
 832 * in case of ENOSPC.
 833 */
 834static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 835				struct buffer_head *bh_result, int flags)
 836{
 837	int dio_credits;
 838	handle_t *handle;
 839	int retries = 0;
 840	int ret;
 841
 842	/* Trim mapping request to maximum we can map at once for DIO */
 843	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 844		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 845	dio_credits = ext4_chunk_trans_blocks(inode,
 846				      bh_result->b_size >> inode->i_blkbits);
 847retry:
 848	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 849	if (IS_ERR(handle))
 850		return PTR_ERR(handle);
 851
 852	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 853	ext4_journal_stop(handle);
 854
 855	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 856		goto retry;
 857	return ret;
 858}
 859
 860/* Get block function for DIO reads and writes to inodes without extents */
 861int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 862		       struct buffer_head *bh, int create)
 863{
 864	/* We don't expect handle for direct IO */
 865	WARN_ON_ONCE(ext4_journal_current_handle());
 866
 867	if (!create)
 868		return _ext4_get_block(inode, iblock, bh, 0);
 869	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 870}
 871
 872/*
 873 * Get block function for AIO DIO writes when we create unwritten extent if
 874 * blocks are not allocated yet. The extent will be converted to written
 875 * after IO is complete.
 876 */
 877static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 878		sector_t iblock, struct buffer_head *bh_result,	int create)
 879{
 880	int ret;
 881
 882	/* We don't expect handle for direct IO */
 883	WARN_ON_ONCE(ext4_journal_current_handle());
 884
 885	ret = ext4_get_block_trans(inode, iblock, bh_result,
 886				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 887
 888	/*
 889	 * When doing DIO using unwritten extents, we need io_end to convert
 890	 * unwritten extents to written on IO completion. We allocate io_end
 891	 * once we spot unwritten extent and store it in b_private. Generic
 892	 * DIO code keeps b_private set and furthermore passes the value to
 893	 * our completion callback in 'private' argument.
 894	 */
 895	if (!ret && buffer_unwritten(bh_result)) {
 896		if (!bh_result->b_private) {
 897			ext4_io_end_t *io_end;
 898
 899			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 900			if (!io_end)
 901				return -ENOMEM;
 902			bh_result->b_private = io_end;
 903			ext4_set_io_unwritten_flag(inode, io_end);
 904		}
 905		set_buffer_defer_completion(bh_result);
 906	}
 907
 908	return ret;
 909}
 910
 911/*
 912 * Get block function for non-AIO DIO writes when we create unwritten extent if
 913 * blocks are not allocated yet. The extent will be converted to written
 914 * after IO is complete by ext4_direct_IO_write().
 915 */
 916static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 917		sector_t iblock, struct buffer_head *bh_result,	int create)
 918{
 919	int ret;
 920
 921	/* We don't expect handle for direct IO */
 922	WARN_ON_ONCE(ext4_journal_current_handle());
 923
 924	ret = ext4_get_block_trans(inode, iblock, bh_result,
 925				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 926
 927	/*
 928	 * Mark inode as having pending DIO writes to unwritten extents.
 929	 * ext4_direct_IO_write() checks this flag and converts extents to
 930	 * written.
 931	 */
 932	if (!ret && buffer_unwritten(bh_result))
 933		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 934
 935	return ret;
 936}
 937
 938static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 939		   struct buffer_head *bh_result, int create)
 940{
 941	int ret;
 942
 943	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 944		   inode->i_ino, create);
 945	/* We don't expect handle for direct IO */
 946	WARN_ON_ONCE(ext4_journal_current_handle());
 947
 948	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 949	/*
 950	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 951	 * that.
 952	 */
 953	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 954
 955	return ret;
 956}
 957
 958
 959/*
 960 * `handle' can be NULL if create is zero
 961 */
 962struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 963				ext4_lblk_t block, int map_flags)
 964{
 965	struct ext4_map_blocks map;
 966	struct buffer_head *bh;
 967	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 968	int err;
 969
 970	J_ASSERT(handle != NULL || create == 0);
 971
 972	map.m_lblk = block;
 973	map.m_len = 1;
 974	err = ext4_map_blocks(handle, inode, &map, map_flags);
 975
 976	if (err == 0)
 977		return create ? ERR_PTR(-ENOSPC) : NULL;
 978	if (err < 0)
 979		return ERR_PTR(err);
 980
 981	bh = sb_getblk(inode->i_sb, map.m_pblk);
 982	if (unlikely(!bh))
 983		return ERR_PTR(-ENOMEM);
 984	if (map.m_flags & EXT4_MAP_NEW) {
 985		J_ASSERT(create != 0);
 986		J_ASSERT(handle != NULL);
 987
 988		/*
 989		 * Now that we do not always journal data, we should
 990		 * keep in mind whether this should always journal the
 991		 * new buffer as metadata.  For now, regular file
 992		 * writes use ext4_get_block instead, so it's not a
 993		 * problem.
 994		 */
 995		lock_buffer(bh);
 996		BUFFER_TRACE(bh, "call get_create_access");
 997		err = ext4_journal_get_create_access(handle, bh);
 998		if (unlikely(err)) {
 999			unlock_buffer(bh);
1000			goto errout;
1001		}
1002		if (!buffer_uptodate(bh)) {
1003			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1004			set_buffer_uptodate(bh);
1005		}
1006		unlock_buffer(bh);
1007		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1008		err = ext4_handle_dirty_metadata(handle, inode, bh);
1009		if (unlikely(err))
1010			goto errout;
1011	} else
1012		BUFFER_TRACE(bh, "not a new buffer");
1013	return bh;
1014errout:
1015	brelse(bh);
1016	return ERR_PTR(err);
1017}
1018
1019struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1020			       ext4_lblk_t block, int map_flags)
1021{
1022	struct buffer_head *bh;
1023
1024	bh = ext4_getblk(handle, inode, block, map_flags);
1025	if (IS_ERR(bh))
1026		return bh;
1027	if (!bh || ext4_buffer_uptodate(bh))
1028		return bh;
1029	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1030	wait_on_buffer(bh);
1031	if (buffer_uptodate(bh))
1032		return bh;
1033	put_bh(bh);
1034	return ERR_PTR(-EIO);
1035}
1036
1037/* Read a contiguous batch of blocks. */
1038int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
1039		     bool wait, struct buffer_head **bhs)
1040{
1041	int i, err;
1042
1043	for (i = 0; i < bh_count; i++) {
1044		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
1045		if (IS_ERR(bhs[i])) {
1046			err = PTR_ERR(bhs[i]);
1047			bh_count = i;
1048			goto out_brelse;
1049		}
1050	}
1051
1052	for (i = 0; i < bh_count; i++)
1053		/* Note that NULL bhs[i] is valid because of holes. */
1054		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
1055			ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
1056				    &bhs[i]);
1057
1058	if (!wait)
1059		return 0;
1060
1061	for (i = 0; i < bh_count; i++)
1062		if (bhs[i])
1063			wait_on_buffer(bhs[i]);
1064
1065	for (i = 0; i < bh_count; i++) {
1066		if (bhs[i] && !buffer_uptodate(bhs[i])) {
1067			err = -EIO;
1068			goto out_brelse;
1069		}
1070	}
1071	return 0;
1072
1073out_brelse:
1074	for (i = 0; i < bh_count; i++) {
1075		brelse(bhs[i]);
1076		bhs[i] = NULL;
1077	}
1078	return err;
1079}
1080
1081int ext4_walk_page_buffers(handle_t *handle,
1082			   struct buffer_head *head,
1083			   unsigned from,
1084			   unsigned to,
1085			   int *partial,
1086			   int (*fn)(handle_t *handle,
1087				     struct buffer_head *bh))
1088{
1089	struct buffer_head *bh;
1090	unsigned block_start, block_end;
1091	unsigned blocksize = head->b_size;
1092	int err, ret = 0;
1093	struct buffer_head *next;
1094
1095	for (bh = head, block_start = 0;
1096	     ret == 0 && (bh != head || !block_start);
1097	     block_start = block_end, bh = next) {
1098		next = bh->b_this_page;
1099		block_end = block_start + blocksize;
1100		if (block_end <= from || block_start >= to) {
1101			if (partial && !buffer_uptodate(bh))
1102				*partial = 1;
1103			continue;
1104		}
1105		err = (*fn)(handle, bh);
1106		if (!ret)
1107			ret = err;
1108	}
1109	return ret;
1110}
1111
1112/*
1113 * To preserve ordering, it is essential that the hole instantiation and
1114 * the data write be encapsulated in a single transaction.  We cannot
1115 * close off a transaction and start a new one between the ext4_get_block()
1116 * and the commit_write().  So doing the jbd2_journal_start at the start of
1117 * prepare_write() is the right place.
1118 *
1119 * Also, this function can nest inside ext4_writepage().  In that case, we
1120 * *know* that ext4_writepage() has generated enough buffer credits to do the
1121 * whole page.  So we won't block on the journal in that case, which is good,
1122 * because the caller may be PF_MEMALLOC.
1123 *
1124 * By accident, ext4 can be reentered when a transaction is open via
1125 * quota file writes.  If we were to commit the transaction while thus
1126 * reentered, there can be a deadlock - we would be holding a quota
1127 * lock, and the commit would never complete if another thread had a
1128 * transaction open and was blocking on the quota lock - a ranking
1129 * violation.
1130 *
1131 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1132 * will _not_ run commit under these circumstances because handle->h_ref
1133 * is elevated.  We'll still have enough credits for the tiny quotafile
1134 * write.
1135 */
1136int do_journal_get_write_access(handle_t *handle,
1137				struct buffer_head *bh)
1138{
1139	int dirty = buffer_dirty(bh);
1140	int ret;
1141
1142	if (!buffer_mapped(bh) || buffer_freed(bh))
1143		return 0;
1144	/*
1145	 * __block_write_begin() could have dirtied some buffers. Clean
1146	 * the dirty bit as jbd2_journal_get_write_access() could complain
1147	 * otherwise about fs integrity issues. Setting of the dirty bit
1148	 * by __block_write_begin() isn't a real problem here as we clear
1149	 * the bit before releasing a page lock and thus writeback cannot
1150	 * ever write the buffer.
1151	 */
1152	if (dirty)
1153		clear_buffer_dirty(bh);
1154	BUFFER_TRACE(bh, "get write access");
1155	ret = ext4_journal_get_write_access(handle, bh);
1156	if (!ret && dirty)
1157		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1158	return ret;
1159}
1160
1161#ifdef CONFIG_FS_ENCRYPTION
1162static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1163				  get_block_t *get_block)
1164{
1165	unsigned from = pos & (PAGE_SIZE - 1);
1166	unsigned to = from + len;
1167	struct inode *inode = page->mapping->host;
1168	unsigned block_start, block_end;
1169	sector_t block;
1170	int err = 0;
1171	unsigned blocksize = inode->i_sb->s_blocksize;
1172	unsigned bbits;
1173	struct buffer_head *bh, *head, *wait[2];
1174	int nr_wait = 0;
1175	int i;
1176
1177	BUG_ON(!PageLocked(page));
1178	BUG_ON(from > PAGE_SIZE);
1179	BUG_ON(to > PAGE_SIZE);
1180	BUG_ON(from > to);
1181
1182	if (!page_has_buffers(page))
1183		create_empty_buffers(page, blocksize, 0);
1184	head = page_buffers(page);
1185	bbits = ilog2(blocksize);
1186	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1187
1188	for (bh = head, block_start = 0; bh != head || !block_start;
1189	    block++, block_start = block_end, bh = bh->b_this_page) {
1190		block_end = block_start + blocksize;
1191		if (block_end <= from || block_start >= to) {
1192			if (PageUptodate(page)) {
1193				if (!buffer_uptodate(bh))
1194					set_buffer_uptodate(bh);
1195			}
1196			continue;
1197		}
1198		if (buffer_new(bh))
1199			clear_buffer_new(bh);
1200		if (!buffer_mapped(bh)) {
1201			WARN_ON(bh->b_size != blocksize);
1202			err = get_block(inode, block, bh, 1);
1203			if (err)
1204				break;
1205			if (buffer_new(bh)) {
 
1206				if (PageUptodate(page)) {
1207					clear_buffer_new(bh);
1208					set_buffer_uptodate(bh);
1209					mark_buffer_dirty(bh);
1210					continue;
1211				}
1212				if (block_end > to || block_start < from)
1213					zero_user_segments(page, to, block_end,
1214							   block_start, from);
1215				continue;
1216			}
1217		}
1218		if (PageUptodate(page)) {
1219			if (!buffer_uptodate(bh))
1220				set_buffer_uptodate(bh);
1221			continue;
1222		}
1223		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1224		    !buffer_unwritten(bh) &&
1225		    (block_start < from || block_end > to)) {
1226			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1227			wait[nr_wait++] = bh;
 
 
1228		}
1229	}
1230	/*
1231	 * If we issued read requests, let them complete.
1232	 */
1233	for (i = 0; i < nr_wait; i++) {
1234		wait_on_buffer(wait[i]);
1235		if (!buffer_uptodate(wait[i]))
1236			err = -EIO;
1237	}
1238	if (unlikely(err)) {
1239		page_zero_new_buffers(page, from, to);
1240	} else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1241		for (i = 0; i < nr_wait; i++) {
1242			int err2;
1243
1244			err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1245								bh_offset(wait[i]));
1246			if (err2) {
1247				clear_buffer_uptodate(wait[i]);
1248				err = err2;
1249			}
1250		}
1251	}
1252
1253	return err;
1254}
1255#endif
1256
1257static int ext4_write_begin(struct file *file, struct address_space *mapping,
1258			    loff_t pos, unsigned len, unsigned flags,
1259			    struct page **pagep, void **fsdata)
1260{
1261	struct inode *inode = mapping->host;
1262	int ret, needed_blocks;
1263	handle_t *handle;
1264	int retries = 0;
1265	struct page *page;
1266	pgoff_t index;
1267	unsigned from, to;
1268
1269	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1270		return -EIO;
1271
1272	trace_ext4_write_begin(inode, pos, len, flags);
1273	/*
1274	 * Reserve one block more for addition to orphan list in case
1275	 * we allocate blocks but write fails for some reason
1276	 */
1277	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1278	index = pos >> PAGE_SHIFT;
1279	from = pos & (PAGE_SIZE - 1);
1280	to = from + len;
1281
1282	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1283		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1284						    flags, pagep);
1285		if (ret < 0)
1286			return ret;
1287		if (ret == 1)
1288			return 0;
1289	}
1290
1291	/*
1292	 * grab_cache_page_write_begin() can take a long time if the
1293	 * system is thrashing due to memory pressure, or if the page
1294	 * is being written back.  So grab it first before we start
1295	 * the transaction handle.  This also allows us to allocate
1296	 * the page (if needed) without using GFP_NOFS.
1297	 */
1298retry_grab:
1299	page = grab_cache_page_write_begin(mapping, index, flags);
1300	if (!page)
1301		return -ENOMEM;
1302	unlock_page(page);
1303
1304retry_journal:
1305	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1306	if (IS_ERR(handle)) {
1307		put_page(page);
1308		return PTR_ERR(handle);
1309	}
1310
1311	lock_page(page);
1312	if (page->mapping != mapping) {
1313		/* The page got truncated from under us */
1314		unlock_page(page);
1315		put_page(page);
1316		ext4_journal_stop(handle);
1317		goto retry_grab;
1318	}
1319	/* In case writeback began while the page was unlocked */
1320	wait_for_stable_page(page);
1321
1322#ifdef CONFIG_FS_ENCRYPTION
1323	if (ext4_should_dioread_nolock(inode))
1324		ret = ext4_block_write_begin(page, pos, len,
1325					     ext4_get_block_unwritten);
1326	else
1327		ret = ext4_block_write_begin(page, pos, len,
1328					     ext4_get_block);
1329#else
1330	if (ext4_should_dioread_nolock(inode))
1331		ret = __block_write_begin(page, pos, len,
1332					  ext4_get_block_unwritten);
1333	else
1334		ret = __block_write_begin(page, pos, len, ext4_get_block);
1335#endif
1336	if (!ret && ext4_should_journal_data(inode)) {
1337		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1338					     from, to, NULL,
1339					     do_journal_get_write_access);
1340	}
1341
1342	if (ret) {
1343		bool extended = (pos + len > inode->i_size) &&
1344				!ext4_verity_in_progress(inode);
1345
1346		unlock_page(page);
1347		/*
1348		 * __block_write_begin may have instantiated a few blocks
1349		 * outside i_size.  Trim these off again. Don't need
1350		 * i_size_read because we hold i_mutex.
1351		 *
1352		 * Add inode to orphan list in case we crash before
1353		 * truncate finishes
1354		 */
1355		if (extended && ext4_can_truncate(inode))
1356			ext4_orphan_add(handle, inode);
1357
1358		ext4_journal_stop(handle);
1359		if (extended) {
1360			ext4_truncate_failed_write(inode);
1361			/*
1362			 * If truncate failed early the inode might
1363			 * still be on the orphan list; we need to
1364			 * make sure the inode is removed from the
1365			 * orphan list in that case.
1366			 */
1367			if (inode->i_nlink)
1368				ext4_orphan_del(NULL, inode);
1369		}
1370
1371		if (ret == -ENOSPC &&
1372		    ext4_should_retry_alloc(inode->i_sb, &retries))
1373			goto retry_journal;
1374		put_page(page);
1375		return ret;
1376	}
1377	*pagep = page;
1378	return ret;
1379}
1380
1381/* For write_end() in data=journal mode */
1382static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1383{
1384	int ret;
1385	if (!buffer_mapped(bh) || buffer_freed(bh))
1386		return 0;
1387	set_buffer_uptodate(bh);
1388	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1389	clear_buffer_meta(bh);
1390	clear_buffer_prio(bh);
1391	return ret;
1392}
1393
1394/*
1395 * We need to pick up the new inode size which generic_commit_write gave us
1396 * `file' can be NULL - eg, when called from page_symlink().
1397 *
1398 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1399 * buffers are managed internally.
1400 */
1401static int ext4_write_end(struct file *file,
1402			  struct address_space *mapping,
1403			  loff_t pos, unsigned len, unsigned copied,
1404			  struct page *page, void *fsdata)
1405{
1406	handle_t *handle = ext4_journal_current_handle();
1407	struct inode *inode = mapping->host;
1408	loff_t old_size = inode->i_size;
1409	int ret = 0, ret2;
1410	int i_size_changed = 0;
1411	int inline_data = ext4_has_inline_data(inode);
1412	bool verity = ext4_verity_in_progress(inode);
1413
1414	trace_ext4_write_end(inode, pos, len, copied);
1415	if (inline_data) {
1416		ret = ext4_write_inline_data_end(inode, pos, len,
1417						 copied, page);
1418		if (ret < 0) {
1419			unlock_page(page);
1420			put_page(page);
1421			goto errout;
1422		}
1423		copied = ret;
1424	} else
1425		copied = block_write_end(file, mapping, pos,
1426					 len, copied, page, fsdata);
1427	/*
1428	 * it's important to update i_size while still holding page lock:
1429	 * page writeout could otherwise come in and zero beyond i_size.
1430	 *
1431	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1432	 * blocks are being written past EOF, so skip the i_size update.
1433	 */
1434	if (!verity)
1435		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1436	unlock_page(page);
1437	put_page(page);
1438
1439	if (old_size < pos && !verity)
1440		pagecache_isize_extended(inode, old_size, pos);
1441	/*
1442	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1443	 * makes the holding time of page lock longer. Second, it forces lock
1444	 * ordering of page lock and transaction start for journaling
1445	 * filesystems.
1446	 */
1447	if (i_size_changed || inline_data)
1448		ext4_mark_inode_dirty(handle, inode);
1449
1450	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1451		/* if we have allocated more blocks and copied
1452		 * less. We will have blocks allocated outside
1453		 * inode->i_size. So truncate them
1454		 */
1455		ext4_orphan_add(handle, inode);
1456errout:
1457	ret2 = ext4_journal_stop(handle);
1458	if (!ret)
1459		ret = ret2;
1460
1461	if (pos + len > inode->i_size && !verity) {
1462		ext4_truncate_failed_write(inode);
1463		/*
1464		 * If truncate failed early the inode might still be
1465		 * on the orphan list; we need to make sure the inode
1466		 * is removed from the orphan list in that case.
1467		 */
1468		if (inode->i_nlink)
1469			ext4_orphan_del(NULL, inode);
1470	}
1471
1472	return ret ? ret : copied;
1473}
1474
1475/*
1476 * This is a private version of page_zero_new_buffers() which doesn't
1477 * set the buffer to be dirty, since in data=journalled mode we need
1478 * to call ext4_handle_dirty_metadata() instead.
1479 */
1480static void ext4_journalled_zero_new_buffers(handle_t *handle,
1481					    struct page *page,
1482					    unsigned from, unsigned to)
1483{
1484	unsigned int block_start = 0, block_end;
1485	struct buffer_head *head, *bh;
1486
1487	bh = head = page_buffers(page);
1488	do {
1489		block_end = block_start + bh->b_size;
1490		if (buffer_new(bh)) {
1491			if (block_end > from && block_start < to) {
1492				if (!PageUptodate(page)) {
1493					unsigned start, size;
1494
1495					start = max(from, block_start);
1496					size = min(to, block_end) - start;
1497
1498					zero_user(page, start, size);
1499					write_end_fn(handle, bh);
1500				}
1501				clear_buffer_new(bh);
1502			}
1503		}
1504		block_start = block_end;
1505		bh = bh->b_this_page;
1506	} while (bh != head);
1507}
1508
1509static int ext4_journalled_write_end(struct file *file,
1510				     struct address_space *mapping,
1511				     loff_t pos, unsigned len, unsigned copied,
1512				     struct page *page, void *fsdata)
1513{
1514	handle_t *handle = ext4_journal_current_handle();
1515	struct inode *inode = mapping->host;
1516	loff_t old_size = inode->i_size;
1517	int ret = 0, ret2;
1518	int partial = 0;
1519	unsigned from, to;
1520	int size_changed = 0;
1521	int inline_data = ext4_has_inline_data(inode);
1522	bool verity = ext4_verity_in_progress(inode);
1523
1524	trace_ext4_journalled_write_end(inode, pos, len, copied);
1525	from = pos & (PAGE_SIZE - 1);
1526	to = from + len;
1527
1528	BUG_ON(!ext4_handle_valid(handle));
1529
1530	if (inline_data) {
1531		ret = ext4_write_inline_data_end(inode, pos, len,
1532						 copied, page);
1533		if (ret < 0) {
1534			unlock_page(page);
1535			put_page(page);
1536			goto errout;
1537		}
1538		copied = ret;
1539	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1540		copied = 0;
1541		ext4_journalled_zero_new_buffers(handle, page, from, to);
1542	} else {
1543		if (unlikely(copied < len))
1544			ext4_journalled_zero_new_buffers(handle, page,
1545							 from + copied, to);
1546		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1547					     from + copied, &partial,
1548					     write_end_fn);
1549		if (!partial)
1550			SetPageUptodate(page);
1551	}
1552	if (!verity)
1553		size_changed = ext4_update_inode_size(inode, pos + copied);
1554	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1555	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1556	unlock_page(page);
1557	put_page(page);
1558
1559	if (old_size < pos && !verity)
1560		pagecache_isize_extended(inode, old_size, pos);
1561
1562	if (size_changed || inline_data) {
1563		ret2 = ext4_mark_inode_dirty(handle, inode);
1564		if (!ret)
1565			ret = ret2;
1566	}
1567
1568	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1569		/* if we have allocated more blocks and copied
1570		 * less. We will have blocks allocated outside
1571		 * inode->i_size. So truncate them
1572		 */
1573		ext4_orphan_add(handle, inode);
1574
1575errout:
1576	ret2 = ext4_journal_stop(handle);
1577	if (!ret)
1578		ret = ret2;
1579	if (pos + len > inode->i_size && !verity) {
1580		ext4_truncate_failed_write(inode);
1581		/*
1582		 * If truncate failed early the inode might still be
1583		 * on the orphan list; we need to make sure the inode
1584		 * is removed from the orphan list in that case.
1585		 */
1586		if (inode->i_nlink)
1587			ext4_orphan_del(NULL, inode);
1588	}
1589
1590	return ret ? ret : copied;
1591}
1592
1593/*
1594 * Reserve space for a single cluster
1595 */
1596static int ext4_da_reserve_space(struct inode *inode)
1597{
1598	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1599	struct ext4_inode_info *ei = EXT4_I(inode);
1600	int ret;
1601
1602	/*
1603	 * We will charge metadata quota at writeout time; this saves
1604	 * us from metadata over-estimation, though we may go over by
1605	 * a small amount in the end.  Here we just reserve for data.
1606	 */
1607	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1608	if (ret)
1609		return ret;
1610
1611	spin_lock(&ei->i_block_reservation_lock);
1612	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1613		spin_unlock(&ei->i_block_reservation_lock);
1614		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1615		return -ENOSPC;
1616	}
1617	ei->i_reserved_data_blocks++;
1618	trace_ext4_da_reserve_space(inode);
1619	spin_unlock(&ei->i_block_reservation_lock);
1620
1621	return 0;       /* success */
1622}
1623
1624void ext4_da_release_space(struct inode *inode, int to_free)
1625{
1626	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1627	struct ext4_inode_info *ei = EXT4_I(inode);
1628
1629	if (!to_free)
1630		return;		/* Nothing to release, exit */
1631
1632	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1633
1634	trace_ext4_da_release_space(inode, to_free);
1635	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1636		/*
1637		 * if there aren't enough reserved blocks, then the
1638		 * counter is messed up somewhere.  Since this
1639		 * function is called from invalidate page, it's
1640		 * harmless to return without any action.
1641		 */
1642		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1643			 "ino %lu, to_free %d with only %d reserved "
1644			 "data blocks", inode->i_ino, to_free,
1645			 ei->i_reserved_data_blocks);
1646		WARN_ON(1);
1647		to_free = ei->i_reserved_data_blocks;
1648	}
1649	ei->i_reserved_data_blocks -= to_free;
1650
1651	/* update fs dirty data blocks counter */
1652	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1653
1654	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1655
1656	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1657}
1658
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1659/*
1660 * Delayed allocation stuff
1661 */
1662
1663struct mpage_da_data {
1664	struct inode *inode;
1665	struct writeback_control *wbc;
1666
1667	pgoff_t first_page;	/* The first page to write */
1668	pgoff_t next_page;	/* Current page to examine */
1669	pgoff_t last_page;	/* Last page to examine */
1670	/*
1671	 * Extent to map - this can be after first_page because that can be
1672	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1673	 * is delalloc or unwritten.
1674	 */
1675	struct ext4_map_blocks map;
1676	struct ext4_io_submit io_submit;	/* IO submission data */
1677	unsigned int do_map:1;
1678};
1679
1680static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1681				       bool invalidate)
1682{
1683	int nr_pages, i;
1684	pgoff_t index, end;
1685	struct pagevec pvec;
1686	struct inode *inode = mpd->inode;
1687	struct address_space *mapping = inode->i_mapping;
1688
1689	/* This is necessary when next_page == 0. */
1690	if (mpd->first_page >= mpd->next_page)
1691		return;
1692
1693	index = mpd->first_page;
1694	end   = mpd->next_page - 1;
1695	if (invalidate) {
1696		ext4_lblk_t start, last;
1697		start = index << (PAGE_SHIFT - inode->i_blkbits);
1698		last = end << (PAGE_SHIFT - inode->i_blkbits);
1699		ext4_es_remove_extent(inode, start, last - start + 1);
1700	}
1701
1702	pagevec_init(&pvec);
1703	while (index <= end) {
1704		nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1705		if (nr_pages == 0)
1706			break;
1707		for (i = 0; i < nr_pages; i++) {
1708			struct page *page = pvec.pages[i];
1709
 
1710			BUG_ON(!PageLocked(page));
1711			BUG_ON(PageWriteback(page));
1712			if (invalidate) {
1713				if (page_mapped(page))
1714					clear_page_dirty_for_io(page);
1715				block_invalidatepage(page, 0, PAGE_SIZE);
1716				ClearPageUptodate(page);
1717			}
1718			unlock_page(page);
1719		}
 
1720		pagevec_release(&pvec);
1721	}
1722}
1723
1724static void ext4_print_free_blocks(struct inode *inode)
1725{
1726	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1727	struct super_block *sb = inode->i_sb;
1728	struct ext4_inode_info *ei = EXT4_I(inode);
1729
1730	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1731	       EXT4_C2B(EXT4_SB(inode->i_sb),
1732			ext4_count_free_clusters(sb)));
1733	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1734	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1735	       (long long) EXT4_C2B(EXT4_SB(sb),
1736		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1737	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1738	       (long long) EXT4_C2B(EXT4_SB(sb),
1739		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1740	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1741	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1742		 ei->i_reserved_data_blocks);
1743	return;
1744}
1745
1746static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1747{
1748	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1749}
1750
1751/*
1752 * ext4_insert_delayed_block - adds a delayed block to the extents status
1753 *                             tree, incrementing the reserved cluster/block
1754 *                             count or making a pending reservation
1755 *                             where needed
1756 *
1757 * @inode - file containing the newly added block
1758 * @lblk - logical block to be added
1759 *
1760 * Returns 0 on success, negative error code on failure.
1761 */
1762static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1763{
1764	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1765	int ret;
1766	bool allocated = false;
1767
1768	/*
1769	 * If the cluster containing lblk is shared with a delayed,
1770	 * written, or unwritten extent in a bigalloc file system, it's
1771	 * already been accounted for and does not need to be reserved.
1772	 * A pending reservation must be made for the cluster if it's
1773	 * shared with a written or unwritten extent and doesn't already
1774	 * have one.  Written and unwritten extents can be purged from the
1775	 * extents status tree if the system is under memory pressure, so
1776	 * it's necessary to examine the extent tree if a search of the
1777	 * extents status tree doesn't get a match.
1778	 */
1779	if (sbi->s_cluster_ratio == 1) {
1780		ret = ext4_da_reserve_space(inode);
1781		if (ret != 0)   /* ENOSPC */
1782			goto errout;
1783	} else {   /* bigalloc */
1784		if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1785			if (!ext4_es_scan_clu(inode,
1786					      &ext4_es_is_mapped, lblk)) {
1787				ret = ext4_clu_mapped(inode,
1788						      EXT4_B2C(sbi, lblk));
1789				if (ret < 0)
1790					goto errout;
1791				if (ret == 0) {
1792					ret = ext4_da_reserve_space(inode);
1793					if (ret != 0)   /* ENOSPC */
1794						goto errout;
1795				} else {
1796					allocated = true;
1797				}
1798			} else {
1799				allocated = true;
1800			}
1801		}
1802	}
1803
1804	ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1805
1806errout:
1807	return ret;
1808}
1809
1810/*
1811 * This function is grabs code from the very beginning of
1812 * ext4_map_blocks, but assumes that the caller is from delayed write
1813 * time. This function looks up the requested blocks and sets the
1814 * buffer delay bit under the protection of i_data_sem.
1815 */
1816static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1817			      struct ext4_map_blocks *map,
1818			      struct buffer_head *bh)
1819{
1820	struct extent_status es;
1821	int retval;
1822	sector_t invalid_block = ~((sector_t) 0xffff);
1823#ifdef ES_AGGRESSIVE_TEST
1824	struct ext4_map_blocks orig_map;
1825
1826	memcpy(&orig_map, map, sizeof(*map));
1827#endif
1828
1829	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1830		invalid_block = ~0;
1831
1832	map->m_flags = 0;
1833	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1834		  "logical block %lu\n", inode->i_ino, map->m_len,
1835		  (unsigned long) map->m_lblk);
1836
1837	/* Lookup extent status tree firstly */
1838	if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1839		if (ext4_es_is_hole(&es)) {
1840			retval = 0;
1841			down_read(&EXT4_I(inode)->i_data_sem);
1842			goto add_delayed;
1843		}
1844
1845		/*
1846		 * Delayed extent could be allocated by fallocate.
1847		 * So we need to check it.
1848		 */
1849		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1850			map_bh(bh, inode->i_sb, invalid_block);
1851			set_buffer_new(bh);
1852			set_buffer_delay(bh);
1853			return 0;
1854		}
1855
1856		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1857		retval = es.es_len - (iblock - es.es_lblk);
1858		if (retval > map->m_len)
1859			retval = map->m_len;
1860		map->m_len = retval;
1861		if (ext4_es_is_written(&es))
1862			map->m_flags |= EXT4_MAP_MAPPED;
1863		else if (ext4_es_is_unwritten(&es))
1864			map->m_flags |= EXT4_MAP_UNWRITTEN;
1865		else
1866			BUG();
1867
1868#ifdef ES_AGGRESSIVE_TEST
1869		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1870#endif
1871		return retval;
1872	}
1873
1874	/*
1875	 * Try to see if we can get the block without requesting a new
1876	 * file system block.
1877	 */
1878	down_read(&EXT4_I(inode)->i_data_sem);
1879	if (ext4_has_inline_data(inode))
1880		retval = 0;
1881	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1882		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1883	else
1884		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1885
1886add_delayed:
1887	if (retval == 0) {
1888		int ret;
1889
1890		/*
1891		 * XXX: __block_prepare_write() unmaps passed block,
1892		 * is it OK?
1893		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894
1895		ret = ext4_insert_delayed_block(inode, map->m_lblk);
1896		if (ret != 0) {
 
1897			retval = ret;
1898			goto out_unlock;
1899		}
1900
1901		map_bh(bh, inode->i_sb, invalid_block);
1902		set_buffer_new(bh);
1903		set_buffer_delay(bh);
1904	} else if (retval > 0) {
1905		int ret;
1906		unsigned int status;
1907
1908		if (unlikely(retval != map->m_len)) {
1909			ext4_warning(inode->i_sb,
1910				     "ES len assertion failed for inode "
1911				     "%lu: retval %d != map->m_len %d",
1912				     inode->i_ino, retval, map->m_len);
1913			WARN_ON(1);
1914		}
1915
1916		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1917				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1918		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1919					    map->m_pblk, status);
1920		if (ret != 0)
1921			retval = ret;
1922	}
1923
1924out_unlock:
1925	up_read((&EXT4_I(inode)->i_data_sem));
1926
1927	return retval;
1928}
1929
1930/*
1931 * This is a special get_block_t callback which is used by
1932 * ext4_da_write_begin().  It will either return mapped block or
1933 * reserve space for a single block.
1934 *
1935 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1936 * We also have b_blocknr = -1 and b_bdev initialized properly
1937 *
1938 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1939 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1940 * initialized properly.
1941 */
1942int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1943			   struct buffer_head *bh, int create)
1944{
1945	struct ext4_map_blocks map;
1946	int ret = 0;
1947
1948	BUG_ON(create == 0);
1949	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1950
1951	map.m_lblk = iblock;
1952	map.m_len = 1;
1953
1954	/*
1955	 * first, we need to know whether the block is allocated already
1956	 * preallocated blocks are unmapped but should treated
1957	 * the same as allocated blocks.
1958	 */
1959	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1960	if (ret <= 0)
1961		return ret;
1962
1963	map_bh(bh, inode->i_sb, map.m_pblk);
1964	ext4_update_bh_state(bh, map.m_flags);
1965
1966	if (buffer_unwritten(bh)) {
1967		/* A delayed write to unwritten bh should be marked
1968		 * new and mapped.  Mapped ensures that we don't do
1969		 * get_block multiple times when we write to the same
1970		 * offset and new ensures that we do proper zero out
1971		 * for partial write.
1972		 */
1973		set_buffer_new(bh);
1974		set_buffer_mapped(bh);
1975	}
1976	return 0;
1977}
1978
1979static int bget_one(handle_t *handle, struct buffer_head *bh)
1980{
1981	get_bh(bh);
1982	return 0;
1983}
1984
1985static int bput_one(handle_t *handle, struct buffer_head *bh)
1986{
1987	put_bh(bh);
1988	return 0;
1989}
1990
1991static int __ext4_journalled_writepage(struct page *page,
1992				       unsigned int len)
1993{
1994	struct address_space *mapping = page->mapping;
1995	struct inode *inode = mapping->host;
1996	struct buffer_head *page_bufs = NULL;
1997	handle_t *handle = NULL;
1998	int ret = 0, err = 0;
1999	int inline_data = ext4_has_inline_data(inode);
2000	struct buffer_head *inode_bh = NULL;
2001
2002	ClearPageChecked(page);
2003
2004	if (inline_data) {
2005		BUG_ON(page->index != 0);
2006		BUG_ON(len > ext4_get_max_inline_size(inode));
2007		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
2008		if (inode_bh == NULL)
2009			goto out;
2010	} else {
2011		page_bufs = page_buffers(page);
2012		if (!page_bufs) {
2013			BUG();
2014			goto out;
2015		}
2016		ext4_walk_page_buffers(handle, page_bufs, 0, len,
2017				       NULL, bget_one);
2018	}
2019	/*
2020	 * We need to release the page lock before we start the
2021	 * journal, so grab a reference so the page won't disappear
2022	 * out from under us.
2023	 */
2024	get_page(page);
2025	unlock_page(page);
2026
2027	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2028				    ext4_writepage_trans_blocks(inode));
2029	if (IS_ERR(handle)) {
2030		ret = PTR_ERR(handle);
2031		put_page(page);
2032		goto out_no_pagelock;
2033	}
2034	BUG_ON(!ext4_handle_valid(handle));
2035
2036	lock_page(page);
2037	put_page(page);
2038	if (page->mapping != mapping) {
2039		/* The page got truncated from under us */
2040		ext4_journal_stop(handle);
2041		ret = 0;
2042		goto out;
2043	}
2044
2045	if (inline_data) {
2046		ret = ext4_mark_inode_dirty(handle, inode);
 
 
 
 
2047	} else {
2048		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2049					     do_journal_get_write_access);
2050
2051		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
2052					     write_end_fn);
2053	}
2054	if (ret == 0)
2055		ret = err;
2056	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2057	err = ext4_journal_stop(handle);
2058	if (!ret)
2059		ret = err;
2060
2061	if (!ext4_has_inline_data(inode))
2062		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
2063				       NULL, bput_one);
2064	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2065out:
2066	unlock_page(page);
2067out_no_pagelock:
2068	brelse(inode_bh);
2069	return ret;
2070}
2071
2072/*
2073 * Note that we don't need to start a transaction unless we're journaling data
2074 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2075 * need to file the inode to the transaction's list in ordered mode because if
2076 * we are writing back data added by write(), the inode is already there and if
2077 * we are writing back data modified via mmap(), no one guarantees in which
2078 * transaction the data will hit the disk. In case we are journaling data, we
2079 * cannot start transaction directly because transaction start ranks above page
2080 * lock so we have to do some magic.
2081 *
2082 * This function can get called via...
2083 *   - ext4_writepages after taking page lock (have journal handle)
2084 *   - journal_submit_inode_data_buffers (no journal handle)
2085 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2086 *   - grab_page_cache when doing write_begin (have journal handle)
2087 *
2088 * We don't do any block allocation in this function. If we have page with
2089 * multiple blocks we need to write those buffer_heads that are mapped. This
2090 * is important for mmaped based write. So if we do with blocksize 1K
2091 * truncate(f, 1024);
2092 * a = mmap(f, 0, 4096);
2093 * a[0] = 'a';
2094 * truncate(f, 4096);
2095 * we have in the page first buffer_head mapped via page_mkwrite call back
2096 * but other buffer_heads would be unmapped but dirty (dirty done via the
2097 * do_wp_page). So writepage should write the first block. If we modify
2098 * the mmap area beyond 1024 we will again get a page_fault and the
2099 * page_mkwrite callback will do the block allocation and mark the
2100 * buffer_heads mapped.
2101 *
2102 * We redirty the page if we have any buffer_heads that is either delay or
2103 * unwritten in the page.
2104 *
2105 * We can get recursively called as show below.
2106 *
2107 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2108 *		ext4_writepage()
2109 *
2110 * But since we don't do any block allocation we should not deadlock.
2111 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2112 */
2113static int ext4_writepage(struct page *page,
2114			  struct writeback_control *wbc)
2115{
2116	int ret = 0;
2117	loff_t size;
2118	unsigned int len;
2119	struct buffer_head *page_bufs = NULL;
2120	struct inode *inode = page->mapping->host;
2121	struct ext4_io_submit io_submit;
2122	bool keep_towrite = false;
2123
2124	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
2125		ext4_invalidatepage(page, 0, PAGE_SIZE);
2126		unlock_page(page);
2127		return -EIO;
2128	}
2129
2130	trace_ext4_writepage(page);
2131	size = i_size_read(inode);
2132	if (page->index == size >> PAGE_SHIFT &&
2133	    !ext4_verity_in_progress(inode))
2134		len = size & ~PAGE_MASK;
2135	else
2136		len = PAGE_SIZE;
2137
2138	page_bufs = page_buffers(page);
2139	/*
2140	 * We cannot do block allocation or other extent handling in this
2141	 * function. If there are buffers needing that, we have to redirty
2142	 * the page. But we may reach here when we do a journal commit via
2143	 * journal_submit_inode_data_buffers() and in that case we must write
2144	 * allocated buffers to achieve data=ordered mode guarantees.
2145	 *
2146	 * Also, if there is only one buffer per page (the fs block
2147	 * size == the page size), if one buffer needs block
2148	 * allocation or needs to modify the extent tree to clear the
2149	 * unwritten flag, we know that the page can't be written at
2150	 * all, so we might as well refuse the write immediately.
2151	 * Unfortunately if the block size != page size, we can't as
2152	 * easily detect this case using ext4_walk_page_buffers(), but
2153	 * for the extremely common case, this is an optimization that
2154	 * skips a useless round trip through ext4_bio_write_page().
2155	 */
2156	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2157				   ext4_bh_delay_or_unwritten)) {
2158		redirty_page_for_writepage(wbc, page);
2159		if ((current->flags & PF_MEMALLOC) ||
2160		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2161			/*
2162			 * For memory cleaning there's no point in writing only
2163			 * some buffers. So just bail out. Warn if we came here
2164			 * from direct reclaim.
2165			 */
2166			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2167							== PF_MEMALLOC);
2168			unlock_page(page);
2169			return 0;
2170		}
2171		keep_towrite = true;
2172	}
2173
2174	if (PageChecked(page) && ext4_should_journal_data(inode))
2175		/*
2176		 * It's mmapped pagecache.  Add buffers and journal it.  There
2177		 * doesn't seem much point in redirtying the page here.
2178		 */
2179		return __ext4_journalled_writepage(page, len);
2180
2181	ext4_io_submit_init(&io_submit, wbc);
2182	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2183	if (!io_submit.io_end) {
2184		redirty_page_for_writepage(wbc, page);
2185		unlock_page(page);
2186		return -ENOMEM;
2187	}
2188	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2189	ext4_io_submit(&io_submit);
2190	/* Drop io_end reference we got from init */
2191	ext4_put_io_end_defer(io_submit.io_end);
2192	return ret;
2193}
2194
2195static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2196{
2197	int len;
2198	loff_t size;
2199	int err;
2200
2201	BUG_ON(page->index != mpd->first_page);
2202	clear_page_dirty_for_io(page);
2203	/*
2204	 * We have to be very careful here!  Nothing protects writeback path
2205	 * against i_size changes and the page can be writeably mapped into
2206	 * page tables. So an application can be growing i_size and writing
2207	 * data through mmap while writeback runs. clear_page_dirty_for_io()
2208	 * write-protects our page in page tables and the page cannot get
2209	 * written to again until we release page lock. So only after
2210	 * clear_page_dirty_for_io() we are safe to sample i_size for
2211	 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2212	 * on the barrier provided by TestClearPageDirty in
2213	 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2214	 * after page tables are updated.
2215	 */
2216	size = i_size_read(mpd->inode);
2217	if (page->index == size >> PAGE_SHIFT &&
2218	    !ext4_verity_in_progress(mpd->inode))
2219		len = size & ~PAGE_MASK;
2220	else
2221		len = PAGE_SIZE;
 
2222	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2223	if (!err)
2224		mpd->wbc->nr_to_write--;
2225	mpd->first_page++;
2226
2227	return err;
2228}
2229
2230#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2231
2232/*
2233 * mballoc gives us at most this number of blocks...
2234 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2235 * The rest of mballoc seems to handle chunks up to full group size.
2236 */
2237#define MAX_WRITEPAGES_EXTENT_LEN 2048
2238
2239/*
2240 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2241 *
2242 * @mpd - extent of blocks
2243 * @lblk - logical number of the block in the file
2244 * @bh - buffer head we want to add to the extent
2245 *
2246 * The function is used to collect contig. blocks in the same state. If the
2247 * buffer doesn't require mapping for writeback and we haven't started the
2248 * extent of buffers to map yet, the function returns 'true' immediately - the
2249 * caller can write the buffer right away. Otherwise the function returns true
2250 * if the block has been added to the extent, false if the block couldn't be
2251 * added.
2252 */
2253static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2254				   struct buffer_head *bh)
2255{
2256	struct ext4_map_blocks *map = &mpd->map;
2257
2258	/* Buffer that doesn't need mapping for writeback? */
2259	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2260	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2261		/* So far no extent to map => we write the buffer right away */
2262		if (map->m_len == 0)
2263			return true;
2264		return false;
2265	}
2266
2267	/* First block in the extent? */
2268	if (map->m_len == 0) {
2269		/* We cannot map unless handle is started... */
2270		if (!mpd->do_map)
2271			return false;
2272		map->m_lblk = lblk;
2273		map->m_len = 1;
2274		map->m_flags = bh->b_state & BH_FLAGS;
2275		return true;
2276	}
2277
2278	/* Don't go larger than mballoc is willing to allocate */
2279	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2280		return false;
2281
2282	/* Can we merge the block to our big extent? */
2283	if (lblk == map->m_lblk + map->m_len &&
2284	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2285		map->m_len++;
2286		return true;
2287	}
2288	return false;
2289}
2290
2291/*
2292 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2293 *
2294 * @mpd - extent of blocks for mapping
2295 * @head - the first buffer in the page
2296 * @bh - buffer we should start processing from
2297 * @lblk - logical number of the block in the file corresponding to @bh
2298 *
2299 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2300 * the page for IO if all buffers in this page were mapped and there's no
2301 * accumulated extent of buffers to map or add buffers in the page to the
2302 * extent of buffers to map. The function returns 1 if the caller can continue
2303 * by processing the next page, 0 if it should stop adding buffers to the
2304 * extent to map because we cannot extend it anymore. It can also return value
2305 * < 0 in case of error during IO submission.
2306 */
2307static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2308				   struct buffer_head *head,
2309				   struct buffer_head *bh,
2310				   ext4_lblk_t lblk)
2311{
2312	struct inode *inode = mpd->inode;
2313	int err;
2314	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2315							>> inode->i_blkbits;
2316
2317	if (ext4_verity_in_progress(inode))
2318		blocks = EXT_MAX_BLOCKS;
2319
2320	do {
2321		BUG_ON(buffer_locked(bh));
2322
2323		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2324			/* Found extent to map? */
2325			if (mpd->map.m_len)
2326				return 0;
2327			/* Buffer needs mapping and handle is not started? */
2328			if (!mpd->do_map)
2329				return 0;
2330			/* Everything mapped so far and we hit EOF */
2331			break;
2332		}
2333	} while (lblk++, (bh = bh->b_this_page) != head);
2334	/* So far everything mapped? Submit the page for IO. */
2335	if (mpd->map.m_len == 0) {
2336		err = mpage_submit_page(mpd, head->b_page);
2337		if (err < 0)
2338			return err;
2339	}
2340	return lblk < blocks;
2341}
2342
2343/*
2344 * mpage_map_buffers - update buffers corresponding to changed extent and
2345 *		       submit fully mapped pages for IO
2346 *
2347 * @mpd - description of extent to map, on return next extent to map
2348 *
2349 * Scan buffers corresponding to changed extent (we expect corresponding pages
2350 * to be already locked) and update buffer state according to new extent state.
2351 * We map delalloc buffers to their physical location, clear unwritten bits,
2352 * and mark buffers as uninit when we perform writes to unwritten extents
2353 * and do extent conversion after IO is finished. If the last page is not fully
2354 * mapped, we update @map to the next extent in the last page that needs
2355 * mapping. Otherwise we submit the page for IO.
2356 */
2357static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2358{
2359	struct pagevec pvec;
2360	int nr_pages, i;
2361	struct inode *inode = mpd->inode;
2362	struct buffer_head *head, *bh;
2363	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2364	pgoff_t start, end;
2365	ext4_lblk_t lblk;
2366	sector_t pblock;
2367	int err;
2368
2369	start = mpd->map.m_lblk >> bpp_bits;
2370	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2371	lblk = start << bpp_bits;
2372	pblock = mpd->map.m_pblk;
2373
2374	pagevec_init(&pvec);
2375	while (start <= end) {
2376		nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2377						&start, end);
2378		if (nr_pages == 0)
2379			break;
2380		for (i = 0; i < nr_pages; i++) {
2381			struct page *page = pvec.pages[i];
2382
 
 
 
 
2383			bh = head = page_buffers(page);
2384			do {
2385				if (lblk < mpd->map.m_lblk)
2386					continue;
2387				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2388					/*
2389					 * Buffer after end of mapped extent.
2390					 * Find next buffer in the page to map.
2391					 */
2392					mpd->map.m_len = 0;
2393					mpd->map.m_flags = 0;
2394					/*
2395					 * FIXME: If dioread_nolock supports
2396					 * blocksize < pagesize, we need to make
2397					 * sure we add size mapped so far to
2398					 * io_end->size as the following call
2399					 * can submit the page for IO.
2400					 */
2401					err = mpage_process_page_bufs(mpd, head,
2402								      bh, lblk);
2403					pagevec_release(&pvec);
2404					if (err > 0)
2405						err = 0;
2406					return err;
2407				}
2408				if (buffer_delay(bh)) {
2409					clear_buffer_delay(bh);
2410					bh->b_blocknr = pblock++;
2411				}
2412				clear_buffer_unwritten(bh);
2413			} while (lblk++, (bh = bh->b_this_page) != head);
2414
2415			/*
2416			 * FIXME: This is going to break if dioread_nolock
2417			 * supports blocksize < pagesize as we will try to
2418			 * convert potentially unmapped parts of inode.
2419			 */
2420			mpd->io_submit.io_end->size += PAGE_SIZE;
2421			/* Page fully mapped - let IO run! */
2422			err = mpage_submit_page(mpd, page);
2423			if (err < 0) {
2424				pagevec_release(&pvec);
2425				return err;
2426			}
 
2427		}
2428		pagevec_release(&pvec);
2429	}
2430	/* Extent fully mapped and matches with page boundary. We are done. */
2431	mpd->map.m_len = 0;
2432	mpd->map.m_flags = 0;
2433	return 0;
2434}
2435
2436static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2437{
2438	struct inode *inode = mpd->inode;
2439	struct ext4_map_blocks *map = &mpd->map;
2440	int get_blocks_flags;
2441	int err, dioread_nolock;
2442
2443	trace_ext4_da_write_pages_extent(inode, map);
2444	/*
2445	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2446	 * to convert an unwritten extent to be initialized (in the case
2447	 * where we have written into one or more preallocated blocks).  It is
2448	 * possible that we're going to need more metadata blocks than
2449	 * previously reserved. However we must not fail because we're in
2450	 * writeback and there is nothing we can do about it so it might result
2451	 * in data loss.  So use reserved blocks to allocate metadata if
2452	 * possible.
2453	 *
2454	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2455	 * the blocks in question are delalloc blocks.  This indicates
2456	 * that the blocks and quotas has already been checked when
2457	 * the data was copied into the page cache.
2458	 */
2459	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2460			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2461			   EXT4_GET_BLOCKS_IO_SUBMIT;
2462	dioread_nolock = ext4_should_dioread_nolock(inode);
2463	if (dioread_nolock)
2464		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2465	if (map->m_flags & (1 << BH_Delay))
2466		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2467
2468	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2469	if (err < 0)
2470		return err;
2471	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2472		if (!mpd->io_submit.io_end->handle &&
2473		    ext4_handle_valid(handle)) {
2474			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2475			handle->h_rsv_handle = NULL;
2476		}
2477		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2478	}
2479
2480	BUG_ON(map->m_len == 0);
 
 
 
 
2481	return 0;
2482}
2483
2484/*
2485 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2486 *				 mpd->len and submit pages underlying it for IO
2487 *
2488 * @handle - handle for journal operations
2489 * @mpd - extent to map
2490 * @give_up_on_write - we set this to true iff there is a fatal error and there
2491 *                     is no hope of writing the data. The caller should discard
2492 *                     dirty pages to avoid infinite loops.
2493 *
2494 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2495 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2496 * them to initialized or split the described range from larger unwritten
2497 * extent. Note that we need not map all the described range since allocation
2498 * can return less blocks or the range is covered by more unwritten extents. We
2499 * cannot map more because we are limited by reserved transaction credits. On
2500 * the other hand we always make sure that the last touched page is fully
2501 * mapped so that it can be written out (and thus forward progress is
2502 * guaranteed). After mapping we submit all mapped pages for IO.
2503 */
2504static int mpage_map_and_submit_extent(handle_t *handle,
2505				       struct mpage_da_data *mpd,
2506				       bool *give_up_on_write)
2507{
2508	struct inode *inode = mpd->inode;
2509	struct ext4_map_blocks *map = &mpd->map;
2510	int err;
2511	loff_t disksize;
2512	int progress = 0;
2513
2514	mpd->io_submit.io_end->offset =
2515				((loff_t)map->m_lblk) << inode->i_blkbits;
2516	do {
2517		err = mpage_map_one_extent(handle, mpd);
2518		if (err < 0) {
2519			struct super_block *sb = inode->i_sb;
2520
2521			if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2522			    EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2523				goto invalidate_dirty_pages;
2524			/*
2525			 * Let the uper layers retry transient errors.
2526			 * In the case of ENOSPC, if ext4_count_free_blocks()
2527			 * is non-zero, a commit should free up blocks.
2528			 */
2529			if ((err == -ENOMEM) ||
2530			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2531				if (progress)
2532					goto update_disksize;
2533				return err;
2534			}
2535			ext4_msg(sb, KERN_CRIT,
2536				 "Delayed block allocation failed for "
2537				 "inode %lu at logical offset %llu with"
2538				 " max blocks %u with error %d",
2539				 inode->i_ino,
2540				 (unsigned long long)map->m_lblk,
2541				 (unsigned)map->m_len, -err);
2542			ext4_msg(sb, KERN_CRIT,
2543				 "This should not happen!! Data will "
2544				 "be lost\n");
2545			if (err == -ENOSPC)
2546				ext4_print_free_blocks(inode);
2547		invalidate_dirty_pages:
2548			*give_up_on_write = true;
2549			return err;
2550		}
2551		progress = 1;
2552		/*
2553		 * Update buffer state, submit mapped pages, and get us new
2554		 * extent to map
2555		 */
2556		err = mpage_map_and_submit_buffers(mpd);
2557		if (err < 0)
2558			goto update_disksize;
2559	} while (map->m_len);
2560
2561update_disksize:
2562	/*
2563	 * Update on-disk size after IO is submitted.  Races with
2564	 * truncate are avoided by checking i_size under i_data_sem.
2565	 */
2566	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2567	if (disksize > EXT4_I(inode)->i_disksize) {
2568		int err2;
2569		loff_t i_size;
2570
2571		down_write(&EXT4_I(inode)->i_data_sem);
2572		i_size = i_size_read(inode);
2573		if (disksize > i_size)
2574			disksize = i_size;
2575		if (disksize > EXT4_I(inode)->i_disksize)
2576			EXT4_I(inode)->i_disksize = disksize;
 
2577		up_write(&EXT4_I(inode)->i_data_sem);
2578		err2 = ext4_mark_inode_dirty(handle, inode);
2579		if (err2)
2580			ext4_error(inode->i_sb,
2581				   "Failed to mark inode %lu dirty",
2582				   inode->i_ino);
2583		if (!err)
2584			err = err2;
2585	}
2586	return err;
2587}
2588
2589/*
2590 * Calculate the total number of credits to reserve for one writepages
2591 * iteration. This is called from ext4_writepages(). We map an extent of
2592 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2593 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2594 * bpp - 1 blocks in bpp different extents.
2595 */
2596static int ext4_da_writepages_trans_blocks(struct inode *inode)
2597{
2598	int bpp = ext4_journal_blocks_per_page(inode);
2599
2600	return ext4_meta_trans_blocks(inode,
2601				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2602}
2603
2604/*
2605 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2606 * 				 and underlying extent to map
2607 *
2608 * @mpd - where to look for pages
2609 *
2610 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2611 * IO immediately. When we find a page which isn't mapped we start accumulating
2612 * extent of buffers underlying these pages that needs mapping (formed by
2613 * either delayed or unwritten buffers). We also lock the pages containing
2614 * these buffers. The extent found is returned in @mpd structure (starting at
2615 * mpd->lblk with length mpd->len blocks).
2616 *
2617 * Note that this function can attach bios to one io_end structure which are
2618 * neither logically nor physically contiguous. Although it may seem as an
2619 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2620 * case as we need to track IO to all buffers underlying a page in one io_end.
2621 */
2622static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2623{
2624	struct address_space *mapping = mpd->inode->i_mapping;
2625	struct pagevec pvec;
2626	unsigned int nr_pages;
2627	long left = mpd->wbc->nr_to_write;
2628	pgoff_t index = mpd->first_page;
2629	pgoff_t end = mpd->last_page;
2630	xa_mark_t tag;
2631	int i, err = 0;
2632	int blkbits = mpd->inode->i_blkbits;
2633	ext4_lblk_t lblk;
2634	struct buffer_head *head;
2635
2636	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2637		tag = PAGECACHE_TAG_TOWRITE;
2638	else
2639		tag = PAGECACHE_TAG_DIRTY;
2640
2641	pagevec_init(&pvec);
2642	mpd->map.m_len = 0;
2643	mpd->next_page = index;
2644	while (index <= end) {
2645		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2646				tag);
2647		if (nr_pages == 0)
2648			goto out;
2649
2650		for (i = 0; i < nr_pages; i++) {
2651			struct page *page = pvec.pages[i];
2652
2653			/*
 
 
 
 
 
 
 
 
 
 
2654			 * Accumulated enough dirty pages? This doesn't apply
2655			 * to WB_SYNC_ALL mode. For integrity sync we have to
2656			 * keep going because someone may be concurrently
2657			 * dirtying pages, and we might have synced a lot of
2658			 * newly appeared dirty pages, but have not synced all
2659			 * of the old dirty pages.
2660			 */
2661			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2662				goto out;
2663
2664			/* If we can't merge this page, we are done. */
2665			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2666				goto out;
2667
2668			lock_page(page);
2669			/*
2670			 * If the page is no longer dirty, or its mapping no
2671			 * longer corresponds to inode we are writing (which
2672			 * means it has been truncated or invalidated), or the
2673			 * page is already under writeback and we are not doing
2674			 * a data integrity writeback, skip the page
2675			 */
2676			if (!PageDirty(page) ||
2677			    (PageWriteback(page) &&
2678			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2679			    unlikely(page->mapping != mapping)) {
2680				unlock_page(page);
2681				continue;
2682			}
2683
2684			wait_on_page_writeback(page);
2685			BUG_ON(PageWriteback(page));
2686
2687			if (mpd->map.m_len == 0)
2688				mpd->first_page = page->index;
2689			mpd->next_page = page->index + 1;
2690			/* Add all dirty buffers to mpd */
2691			lblk = ((ext4_lblk_t)page->index) <<
2692				(PAGE_SHIFT - blkbits);
2693			head = page_buffers(page);
2694			err = mpage_process_page_bufs(mpd, head, head, lblk);
2695			if (err <= 0)
2696				goto out;
2697			err = 0;
2698			left--;
2699		}
2700		pagevec_release(&pvec);
2701		cond_resched();
2702	}
2703	return 0;
2704out:
2705	pagevec_release(&pvec);
2706	return err;
2707}
2708
 
 
 
 
 
 
 
 
 
2709static int ext4_writepages(struct address_space *mapping,
2710			   struct writeback_control *wbc)
2711{
2712	pgoff_t	writeback_index = 0;
2713	long nr_to_write = wbc->nr_to_write;
2714	int range_whole = 0;
2715	int cycled = 1;
2716	handle_t *handle = NULL;
2717	struct mpage_da_data mpd;
2718	struct inode *inode = mapping->host;
2719	int needed_blocks, rsv_blocks = 0, ret = 0;
2720	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2721	bool done;
2722	struct blk_plug plug;
2723	bool give_up_on_write = false;
2724
2725	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2726		return -EIO;
2727
2728	percpu_down_read(&sbi->s_journal_flag_rwsem);
2729	trace_ext4_writepages(inode, wbc);
2730
 
 
 
 
 
 
2731	/*
2732	 * No pages to write? This is mainly a kludge to avoid starting
2733	 * a transaction for special inodes like journal inode on last iput()
2734	 * because that could violate lock ordering on umount
2735	 */
2736	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2737		goto out_writepages;
2738
2739	if (ext4_should_journal_data(inode)) {
2740		ret = generic_writepages(mapping, wbc);
 
 
 
 
2741		goto out_writepages;
2742	}
2743
2744	/*
2745	 * If the filesystem has aborted, it is read-only, so return
2746	 * right away instead of dumping stack traces later on that
2747	 * will obscure the real source of the problem.  We test
2748	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2749	 * the latter could be true if the filesystem is mounted
2750	 * read-only, and in that case, ext4_writepages should
2751	 * *never* be called, so if that ever happens, we would want
2752	 * the stack trace.
2753	 */
2754	if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2755		     sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2756		ret = -EROFS;
2757		goto out_writepages;
2758	}
2759
 
 
 
 
 
 
 
 
2760	/*
2761	 * If we have inline data and arrive here, it means that
2762	 * we will soon create the block for the 1st page, so
2763	 * we'd better clear the inline data here.
2764	 */
2765	if (ext4_has_inline_data(inode)) {
2766		/* Just inode will be modified... */
2767		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2768		if (IS_ERR(handle)) {
2769			ret = PTR_ERR(handle);
2770			goto out_writepages;
2771		}
2772		BUG_ON(ext4_test_inode_state(inode,
2773				EXT4_STATE_MAY_INLINE_DATA));
2774		ext4_destroy_inline_data(handle, inode);
2775		ext4_journal_stop(handle);
2776	}
2777
2778	if (ext4_should_dioread_nolock(inode)) {
2779		/*
2780		 * We may need to convert up to one extent per block in
2781		 * the page and we may dirty the inode.
2782		 */
2783		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2784						PAGE_SIZE >> inode->i_blkbits);
2785	}
2786
2787	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2788		range_whole = 1;
2789
2790	if (wbc->range_cyclic) {
2791		writeback_index = mapping->writeback_index;
2792		if (writeback_index)
2793			cycled = 0;
2794		mpd.first_page = writeback_index;
2795		mpd.last_page = -1;
2796	} else {
2797		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2798		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2799	}
2800
2801	mpd.inode = inode;
2802	mpd.wbc = wbc;
2803	ext4_io_submit_init(&mpd.io_submit, wbc);
2804retry:
2805	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2806		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2807	done = false;
2808	blk_start_plug(&plug);
2809
2810	/*
2811	 * First writeback pages that don't need mapping - we can avoid
2812	 * starting a transaction unnecessarily and also avoid being blocked
2813	 * in the block layer on device congestion while having transaction
2814	 * started.
2815	 */
2816	mpd.do_map = 0;
2817	mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2818	if (!mpd.io_submit.io_end) {
2819		ret = -ENOMEM;
2820		goto unplug;
2821	}
2822	ret = mpage_prepare_extent_to_map(&mpd);
2823	/* Unlock pages we didn't use */
2824	mpage_release_unused_pages(&mpd, false);
2825	/* Submit prepared bio */
2826	ext4_io_submit(&mpd.io_submit);
2827	ext4_put_io_end_defer(mpd.io_submit.io_end);
2828	mpd.io_submit.io_end = NULL;
2829	if (ret < 0)
2830		goto unplug;
2831
2832	while (!done && mpd.first_page <= mpd.last_page) {
2833		/* For each extent of pages we use new io_end */
2834		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2835		if (!mpd.io_submit.io_end) {
2836			ret = -ENOMEM;
2837			break;
2838		}
2839
2840		/*
2841		 * We have two constraints: We find one extent to map and we
2842		 * must always write out whole page (makes a difference when
2843		 * blocksize < pagesize) so that we don't block on IO when we
2844		 * try to write out the rest of the page. Journalled mode is
2845		 * not supported by delalloc.
2846		 */
2847		BUG_ON(ext4_should_journal_data(inode));
2848		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2849
2850		/* start a new transaction */
2851		handle = ext4_journal_start_with_reserve(inode,
2852				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2853		if (IS_ERR(handle)) {
2854			ret = PTR_ERR(handle);
2855			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2856			       "%ld pages, ino %lu; err %d", __func__,
2857				wbc->nr_to_write, inode->i_ino, ret);
2858			/* Release allocated io_end */
2859			ext4_put_io_end(mpd.io_submit.io_end);
2860			mpd.io_submit.io_end = NULL;
2861			break;
2862		}
2863		mpd.do_map = 1;
2864
2865		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2866		ret = mpage_prepare_extent_to_map(&mpd);
2867		if (!ret) {
2868			if (mpd.map.m_len)
2869				ret = mpage_map_and_submit_extent(handle, &mpd,
2870					&give_up_on_write);
2871			else {
2872				/*
2873				 * We scanned the whole range (or exhausted
2874				 * nr_to_write), submitted what was mapped and
2875				 * didn't find anything needing mapping. We are
2876				 * done.
2877				 */
2878				done = true;
2879			}
2880		}
2881		/*
2882		 * Caution: If the handle is synchronous,
2883		 * ext4_journal_stop() can wait for transaction commit
2884		 * to finish which may depend on writeback of pages to
2885		 * complete or on page lock to be released.  In that
2886		 * case, we have to wait until after after we have
2887		 * submitted all the IO, released page locks we hold,
2888		 * and dropped io_end reference (for extent conversion
2889		 * to be able to complete) before stopping the handle.
2890		 */
2891		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2892			ext4_journal_stop(handle);
2893			handle = NULL;
2894			mpd.do_map = 0;
2895		}
 
 
2896		/* Unlock pages we didn't use */
2897		mpage_release_unused_pages(&mpd, give_up_on_write);
2898		/* Submit prepared bio */
2899		ext4_io_submit(&mpd.io_submit);
2900
2901		/*
2902		 * Drop our io_end reference we got from init. We have
2903		 * to be careful and use deferred io_end finishing if
2904		 * we are still holding the transaction as we can
2905		 * release the last reference to io_end which may end
2906		 * up doing unwritten extent conversion.
2907		 */
2908		if (handle) {
2909			ext4_put_io_end_defer(mpd.io_submit.io_end);
2910			ext4_journal_stop(handle);
2911		} else
2912			ext4_put_io_end(mpd.io_submit.io_end);
2913		mpd.io_submit.io_end = NULL;
2914
2915		if (ret == -ENOSPC && sbi->s_journal) {
2916			/*
2917			 * Commit the transaction which would
2918			 * free blocks released in the transaction
2919			 * and try again
2920			 */
2921			jbd2_journal_force_commit_nested(sbi->s_journal);
2922			ret = 0;
2923			continue;
2924		}
2925		/* Fatal error - ENOMEM, EIO... */
2926		if (ret)
2927			break;
2928	}
2929unplug:
2930	blk_finish_plug(&plug);
2931	if (!ret && !cycled && wbc->nr_to_write > 0) {
2932		cycled = 1;
2933		mpd.last_page = writeback_index - 1;
2934		mpd.first_page = 0;
2935		goto retry;
2936	}
2937
2938	/* Update index */
2939	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2940		/*
2941		 * Set the writeback_index so that range_cyclic
2942		 * mode will write it back later
2943		 */
2944		mapping->writeback_index = mpd.first_page;
2945
2946out_writepages:
2947	trace_ext4_writepages_result(inode, wbc, ret,
2948				     nr_to_write - wbc->nr_to_write);
2949	percpu_up_read(&sbi->s_journal_flag_rwsem);
2950	return ret;
2951}
2952
2953static int ext4_dax_writepages(struct address_space *mapping,
2954			       struct writeback_control *wbc)
2955{
2956	int ret;
2957	long nr_to_write = wbc->nr_to_write;
2958	struct inode *inode = mapping->host;
2959	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2960
2961	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2962		return -EIO;
2963
2964	percpu_down_read(&sbi->s_journal_flag_rwsem);
2965	trace_ext4_writepages(inode, wbc);
2966
2967	ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2968	trace_ext4_writepages_result(inode, wbc, ret,
2969				     nr_to_write - wbc->nr_to_write);
2970	percpu_up_read(&sbi->s_journal_flag_rwsem);
2971	return ret;
2972}
2973
2974static int ext4_nonda_switch(struct super_block *sb)
2975{
2976	s64 free_clusters, dirty_clusters;
2977	struct ext4_sb_info *sbi = EXT4_SB(sb);
2978
2979	/*
2980	 * switch to non delalloc mode if we are running low
2981	 * on free block. The free block accounting via percpu
2982	 * counters can get slightly wrong with percpu_counter_batch getting
2983	 * accumulated on each CPU without updating global counters
2984	 * Delalloc need an accurate free block accounting. So switch
2985	 * to non delalloc when we are near to error range.
2986	 */
2987	free_clusters =
2988		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2989	dirty_clusters =
2990		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2991	/*
2992	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2993	 */
2994	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2995		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2996
2997	if (2 * free_clusters < 3 * dirty_clusters ||
2998	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2999		/*
3000		 * free block count is less than 150% of dirty blocks
3001		 * or free blocks is less than watermark
3002		 */
3003		return 1;
3004	}
3005	return 0;
3006}
3007
3008/* We always reserve for an inode update; the superblock could be there too */
3009static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
3010{
3011	if (likely(ext4_has_feature_large_file(inode->i_sb)))
3012		return 1;
3013
3014	if (pos + len <= 0x7fffffffULL)
3015		return 1;
3016
3017	/* We might need to update the superblock to set LARGE_FILE */
3018	return 2;
3019}
3020
3021static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3022			       loff_t pos, unsigned len, unsigned flags,
3023			       struct page **pagep, void **fsdata)
3024{
3025	int ret, retries = 0;
3026	struct page *page;
3027	pgoff_t index;
3028	struct inode *inode = mapping->host;
3029	handle_t *handle;
3030
3031	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
3032		return -EIO;
3033
3034	index = pos >> PAGE_SHIFT;
3035
3036	if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
3037	    ext4_verity_in_progress(inode)) {
3038		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3039		return ext4_write_begin(file, mapping, pos,
3040					len, flags, pagep, fsdata);
3041	}
3042	*fsdata = (void *)0;
3043	trace_ext4_da_write_begin(inode, pos, len, flags);
3044
3045	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
3046		ret = ext4_da_write_inline_data_begin(mapping, inode,
3047						      pos, len, flags,
3048						      pagep, fsdata);
3049		if (ret < 0)
3050			return ret;
3051		if (ret == 1)
3052			return 0;
3053	}
3054
3055	/*
3056	 * grab_cache_page_write_begin() can take a long time if the
3057	 * system is thrashing due to memory pressure, or if the page
3058	 * is being written back.  So grab it first before we start
3059	 * the transaction handle.  This also allows us to allocate
3060	 * the page (if needed) without using GFP_NOFS.
3061	 */
3062retry_grab:
3063	page = grab_cache_page_write_begin(mapping, index, flags);
3064	if (!page)
3065		return -ENOMEM;
3066	unlock_page(page);
3067
3068	/*
3069	 * With delayed allocation, we don't log the i_disksize update
3070	 * if there is delayed block allocation. But we still need
3071	 * to journalling the i_disksize update if writes to the end
3072	 * of file which has an already mapped buffer.
3073	 */
3074retry_journal:
3075	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
3076				ext4_da_write_credits(inode, pos, len));
3077	if (IS_ERR(handle)) {
3078		put_page(page);
3079		return PTR_ERR(handle);
3080	}
3081
3082	lock_page(page);
3083	if (page->mapping != mapping) {
3084		/* The page got truncated from under us */
3085		unlock_page(page);
3086		put_page(page);
3087		ext4_journal_stop(handle);
3088		goto retry_grab;
3089	}
3090	/* In case writeback began while the page was unlocked */
3091	wait_for_stable_page(page);
3092
3093#ifdef CONFIG_FS_ENCRYPTION
3094	ret = ext4_block_write_begin(page, pos, len,
3095				     ext4_da_get_block_prep);
3096#else
3097	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3098#endif
3099	if (ret < 0) {
3100		unlock_page(page);
3101		ext4_journal_stop(handle);
3102		/*
3103		 * block_write_begin may have instantiated a few blocks
3104		 * outside i_size.  Trim these off again. Don't need
3105		 * i_size_read because we hold i_mutex.
3106		 */
3107		if (pos + len > inode->i_size)
3108			ext4_truncate_failed_write(inode);
3109
3110		if (ret == -ENOSPC &&
3111		    ext4_should_retry_alloc(inode->i_sb, &retries))
3112			goto retry_journal;
3113
3114		put_page(page);
3115		return ret;
3116	}
3117
3118	*pagep = page;
3119	return ret;
3120}
3121
3122/*
3123 * Check if we should update i_disksize
3124 * when write to the end of file but not require block allocation
3125 */
3126static int ext4_da_should_update_i_disksize(struct page *page,
3127					    unsigned long offset)
3128{
3129	struct buffer_head *bh;
3130	struct inode *inode = page->mapping->host;
3131	unsigned int idx;
3132	int i;
3133
3134	bh = page_buffers(page);
3135	idx = offset >> inode->i_blkbits;
3136
3137	for (i = 0; i < idx; i++)
3138		bh = bh->b_this_page;
3139
3140	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3141		return 0;
3142	return 1;
3143}
3144
3145static int ext4_da_write_end(struct file *file,
3146			     struct address_space *mapping,
3147			     loff_t pos, unsigned len, unsigned copied,
3148			     struct page *page, void *fsdata)
3149{
3150	struct inode *inode = mapping->host;
3151	int ret = 0, ret2;
3152	handle_t *handle = ext4_journal_current_handle();
3153	loff_t new_i_size;
3154	unsigned long start, end;
3155	int write_mode = (int)(unsigned long)fsdata;
3156
3157	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3158		return ext4_write_end(file, mapping, pos,
3159				      len, copied, page, fsdata);
3160
3161	trace_ext4_da_write_end(inode, pos, len, copied);
3162	start = pos & (PAGE_SIZE - 1);
3163	end = start + copied - 1;
3164
3165	/*
3166	 * generic_write_end() will run mark_inode_dirty() if i_size
3167	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3168	 * into that.
3169	 */
3170	new_i_size = pos + copied;
3171	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3172		if (ext4_has_inline_data(inode) ||
3173		    ext4_da_should_update_i_disksize(page, end)) {
3174			ext4_update_i_disksize(inode, new_i_size);
3175			/* We need to mark inode dirty even if
3176			 * new_i_size is less that inode->i_size
3177			 * bu greater than i_disksize.(hint delalloc)
3178			 */
3179			ext4_mark_inode_dirty(handle, inode);
3180		}
3181	}
3182
3183	if (write_mode != CONVERT_INLINE_DATA &&
3184	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3185	    ext4_has_inline_data(inode))
3186		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3187						     page);
3188	else
3189		ret2 = generic_write_end(file, mapping, pos, len, copied,
3190							page, fsdata);
3191
3192	copied = ret2;
3193	if (ret2 < 0)
3194		ret = ret2;
3195	ret2 = ext4_journal_stop(handle);
3196	if (!ret)
3197		ret = ret2;
3198
3199	return ret ? ret : copied;
3200}
3201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3202/*
3203 * Force all delayed allocation blocks to be allocated for a given inode.
3204 */
3205int ext4_alloc_da_blocks(struct inode *inode)
3206{
3207	trace_ext4_alloc_da_blocks(inode);
3208
3209	if (!EXT4_I(inode)->i_reserved_data_blocks)
3210		return 0;
3211
3212	/*
3213	 * We do something simple for now.  The filemap_flush() will
3214	 * also start triggering a write of the data blocks, which is
3215	 * not strictly speaking necessary (and for users of
3216	 * laptop_mode, not even desirable).  However, to do otherwise
3217	 * would require replicating code paths in:
3218	 *
3219	 * ext4_writepages() ->
3220	 *    write_cache_pages() ---> (via passed in callback function)
3221	 *        __mpage_da_writepage() -->
3222	 *           mpage_add_bh_to_extent()
3223	 *           mpage_da_map_blocks()
3224	 *
3225	 * The problem is that write_cache_pages(), located in
3226	 * mm/page-writeback.c, marks pages clean in preparation for
3227	 * doing I/O, which is not desirable if we're not planning on
3228	 * doing I/O at all.
3229	 *
3230	 * We could call write_cache_pages(), and then redirty all of
3231	 * the pages by calling redirty_page_for_writepage() but that
3232	 * would be ugly in the extreme.  So instead we would need to
3233	 * replicate parts of the code in the above functions,
3234	 * simplifying them because we wouldn't actually intend to
3235	 * write out the pages, but rather only collect contiguous
3236	 * logical block extents, call the multi-block allocator, and
3237	 * then update the buffer heads with the block allocations.
3238	 *
3239	 * For now, though, we'll cheat by calling filemap_flush(),
3240	 * which will map the blocks, and start the I/O, but not
3241	 * actually wait for the I/O to complete.
3242	 */
3243	return filemap_flush(inode->i_mapping);
3244}
3245
3246/*
3247 * bmap() is special.  It gets used by applications such as lilo and by
3248 * the swapper to find the on-disk block of a specific piece of data.
3249 *
3250 * Naturally, this is dangerous if the block concerned is still in the
3251 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3252 * filesystem and enables swap, then they may get a nasty shock when the
3253 * data getting swapped to that swapfile suddenly gets overwritten by
3254 * the original zero's written out previously to the journal and
3255 * awaiting writeback in the kernel's buffer cache.
3256 *
3257 * So, if we see any bmap calls here on a modified, data-journaled file,
3258 * take extra steps to flush any blocks which might be in the cache.
3259 */
3260static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3261{
3262	struct inode *inode = mapping->host;
3263	journal_t *journal;
3264	int err;
3265
3266	/*
3267	 * We can get here for an inline file via the FIBMAP ioctl
3268	 */
3269	if (ext4_has_inline_data(inode))
3270		return 0;
3271
3272	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3273			test_opt(inode->i_sb, DELALLOC)) {
3274		/*
3275		 * With delalloc we want to sync the file
3276		 * so that we can make sure we allocate
3277		 * blocks for file
3278		 */
3279		filemap_write_and_wait(mapping);
3280	}
3281
3282	if (EXT4_JOURNAL(inode) &&
3283	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3284		/*
3285		 * This is a REALLY heavyweight approach, but the use of
3286		 * bmap on dirty files is expected to be extremely rare:
3287		 * only if we run lilo or swapon on a freshly made file
3288		 * do we expect this to happen.
3289		 *
3290		 * (bmap requires CAP_SYS_RAWIO so this does not
3291		 * represent an unprivileged user DOS attack --- we'd be
3292		 * in trouble if mortal users could trigger this path at
3293		 * will.)
3294		 *
3295		 * NB. EXT4_STATE_JDATA is not set on files other than
3296		 * regular files.  If somebody wants to bmap a directory
3297		 * or symlink and gets confused because the buffer
3298		 * hasn't yet been flushed to disk, they deserve
3299		 * everything they get.
3300		 */
3301
3302		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3303		journal = EXT4_JOURNAL(inode);
3304		jbd2_journal_lock_updates(journal);
3305		err = jbd2_journal_flush(journal);
3306		jbd2_journal_unlock_updates(journal);
3307
3308		if (err)
3309			return 0;
3310	}
3311
3312	return generic_block_bmap(mapping, block, ext4_get_block);
3313}
3314
3315static int ext4_readpage(struct file *file, struct page *page)
3316{
3317	int ret = -EAGAIN;
3318	struct inode *inode = page->mapping->host;
3319
3320	trace_ext4_readpage(page);
3321
3322	if (ext4_has_inline_data(inode))
3323		ret = ext4_readpage_inline(inode, page);
3324
3325	if (ret == -EAGAIN)
3326		return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3327						false);
3328
3329	return ret;
3330}
3331
3332static int
3333ext4_readpages(struct file *file, struct address_space *mapping,
3334		struct list_head *pages, unsigned nr_pages)
3335{
3336	struct inode *inode = mapping->host;
3337
3338	/* If the file has inline data, no need to do readpages. */
3339	if (ext4_has_inline_data(inode))
3340		return 0;
3341
3342	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3343}
3344
3345static void ext4_invalidatepage(struct page *page, unsigned int offset,
3346				unsigned int length)
3347{
3348	trace_ext4_invalidatepage(page, offset, length);
3349
3350	/* No journalling happens on data buffers when this function is used */
3351	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3352
3353	block_invalidatepage(page, offset, length);
3354}
3355
3356static int __ext4_journalled_invalidatepage(struct page *page,
3357					    unsigned int offset,
3358					    unsigned int length)
3359{
3360	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3361
3362	trace_ext4_journalled_invalidatepage(page, offset, length);
3363
3364	/*
3365	 * If it's a full truncate we just forget about the pending dirtying
3366	 */
3367	if (offset == 0 && length == PAGE_SIZE)
3368		ClearPageChecked(page);
3369
3370	return jbd2_journal_invalidatepage(journal, page, offset, length);
3371}
3372
3373/* Wrapper for aops... */
3374static void ext4_journalled_invalidatepage(struct page *page,
3375					   unsigned int offset,
3376					   unsigned int length)
3377{
3378	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3379}
3380
3381static int ext4_releasepage(struct page *page, gfp_t wait)
3382{
3383	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3384
3385	trace_ext4_releasepage(page);
3386
3387	/* Page has dirty journalled data -> cannot release */
3388	if (PageChecked(page))
3389		return 0;
3390	if (journal)
3391		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3392	else
3393		return try_to_free_buffers(page);
3394}
3395
3396static bool ext4_inode_datasync_dirty(struct inode *inode)
3397{
3398	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3399
3400	if (journal)
3401		return !jbd2_transaction_committed(journal,
3402					EXT4_I(inode)->i_datasync_tid);
3403	/* Any metadata buffers to write? */
3404	if (!list_empty(&inode->i_mapping->private_list))
3405		return true;
3406	return inode->i_state & I_DIRTY_DATASYNC;
3407}
3408
3409static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3410			    unsigned flags, struct iomap *iomap)
3411{
3412	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3413	unsigned int blkbits = inode->i_blkbits;
3414	unsigned long first_block, last_block;
 
3415	struct ext4_map_blocks map;
3416	bool delalloc = false;
3417	int ret;
3418
3419	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3420		return -EINVAL;
3421	first_block = offset >> blkbits;
3422	last_block = min_t(loff_t, (offset + length - 1) >> blkbits,
3423			   EXT4_MAX_LOGICAL_BLOCK);
3424
3425	if (flags & IOMAP_REPORT) {
3426		if (ext4_has_inline_data(inode)) {
3427			ret = ext4_inline_data_iomap(inode, iomap);
3428			if (ret != -EAGAIN) {
3429				if (ret == 0 && offset >= iomap->length)
3430					ret = -ENOENT;
3431				return ret;
3432			}
3433		}
3434	} else {
3435		if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3436			return -ERANGE;
3437	}
3438
3439	map.m_lblk = first_block;
3440	map.m_len = last_block - first_block + 1;
3441
3442	if (flags & IOMAP_REPORT) {
3443		ret = ext4_map_blocks(NULL, inode, &map, 0);
3444		if (ret < 0)
3445			return ret;
3446
3447		if (ret == 0) {
3448			ext4_lblk_t end = map.m_lblk + map.m_len - 1;
3449			struct extent_status es;
3450
3451			ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3452						  map.m_lblk, end, &es);
3453
3454			if (!es.es_len || es.es_lblk > end) {
3455				/* entire range is a hole */
3456			} else if (es.es_lblk > map.m_lblk) {
3457				/* range starts with a hole */
3458				map.m_len = es.es_lblk - map.m_lblk;
3459			} else {
3460				ext4_lblk_t offs = 0;
3461
3462				if (es.es_lblk < map.m_lblk)
3463					offs = map.m_lblk - es.es_lblk;
3464				map.m_lblk = es.es_lblk + offs;
3465				map.m_len = es.es_len - offs;
3466				delalloc = true;
3467			}
3468		}
3469	} else if (flags & IOMAP_WRITE) {
3470		int dio_credits;
3471		handle_t *handle;
3472		int retries = 0;
3473
3474		/* Trim mapping request to maximum we can map at once for DIO */
3475		if (map.m_len > DIO_MAX_BLOCKS)
3476			map.m_len = DIO_MAX_BLOCKS;
3477		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3478retry:
3479		/*
3480		 * Either we allocate blocks and then we don't get unwritten
3481		 * extent so we have reserved enough credits, or the blocks
3482		 * are already allocated and unwritten and in that case
3483		 * extent conversion fits in the credits as well.
3484		 */
3485		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3486					    dio_credits);
3487		if (IS_ERR(handle))
3488			return PTR_ERR(handle);
3489
3490		ret = ext4_map_blocks(handle, inode, &map,
3491				      EXT4_GET_BLOCKS_CREATE_ZERO);
3492		if (ret < 0) {
3493			ext4_journal_stop(handle);
3494			if (ret == -ENOSPC &&
3495			    ext4_should_retry_alloc(inode->i_sb, &retries))
3496				goto retry;
3497			return ret;
3498		}
3499
3500		/*
3501		 * If we added blocks beyond i_size, we need to make sure they
3502		 * will get truncated if we crash before updating i_size in
3503		 * ext4_iomap_end(). For faults we don't need to do that (and
3504		 * even cannot because for orphan list operations inode_lock is
3505		 * required) - if we happen to instantiate block beyond i_size,
3506		 * it is because we race with truncate which has already added
3507		 * the inode to the orphan list.
3508		 */
3509		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3510		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3511			int err;
3512
3513			err = ext4_orphan_add(handle, inode);
3514			if (err < 0) {
3515				ext4_journal_stop(handle);
3516				return err;
3517			}
3518		}
3519		ext4_journal_stop(handle);
3520	} else {
3521		ret = ext4_map_blocks(NULL, inode, &map, 0);
3522		if (ret < 0)
3523			return ret;
3524	}
3525
3526	iomap->flags = 0;
3527	if (ext4_inode_datasync_dirty(inode))
3528		iomap->flags |= IOMAP_F_DIRTY;
3529	iomap->bdev = inode->i_sb->s_bdev;
3530	iomap->dax_dev = sbi->s_daxdev;
3531	iomap->offset = (u64)first_block << blkbits;
3532	iomap->length = (u64)map.m_len << blkbits;
3533
3534	if (ret == 0) {
3535		iomap->type = delalloc ? IOMAP_DELALLOC : IOMAP_HOLE;
3536		iomap->addr = IOMAP_NULL_ADDR;
 
3537	} else {
3538		if (map.m_flags & EXT4_MAP_MAPPED) {
3539			iomap->type = IOMAP_MAPPED;
3540		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3541			iomap->type = IOMAP_UNWRITTEN;
3542		} else {
3543			WARN_ON_ONCE(1);
3544			return -EIO;
3545		}
3546		iomap->addr = (u64)map.m_pblk << blkbits;
 
3547	}
3548
3549	if (map.m_flags & EXT4_MAP_NEW)
3550		iomap->flags |= IOMAP_F_NEW;
3551
3552	return 0;
3553}
3554
3555static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3556			  ssize_t written, unsigned flags, struct iomap *iomap)
3557{
3558	int ret = 0;
3559	handle_t *handle;
3560	int blkbits = inode->i_blkbits;
3561	bool truncate = false;
3562
3563	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3564		return 0;
3565
3566	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3567	if (IS_ERR(handle)) {
3568		ret = PTR_ERR(handle);
3569		goto orphan_del;
3570	}
3571	if (ext4_update_inode_size(inode, offset + written))
3572		ext4_mark_inode_dirty(handle, inode);
3573	/*
3574	 * We may need to truncate allocated but not written blocks beyond EOF.
3575	 */
3576	if (iomap->offset + iomap->length > 
3577	    ALIGN(inode->i_size, 1 << blkbits)) {
3578		ext4_lblk_t written_blk, end_blk;
3579
3580		written_blk = (offset + written) >> blkbits;
3581		end_blk = (offset + length) >> blkbits;
3582		if (written_blk < end_blk && ext4_can_truncate(inode))
3583			truncate = true;
3584	}
3585	/*
3586	 * Remove inode from orphan list if we were extending a inode and
3587	 * everything went fine.
3588	 */
3589	if (!truncate && inode->i_nlink &&
3590	    !list_empty(&EXT4_I(inode)->i_orphan))
3591		ext4_orphan_del(handle, inode);
3592	ext4_journal_stop(handle);
3593	if (truncate) {
3594		ext4_truncate_failed_write(inode);
3595orphan_del:
3596		/*
3597		 * If truncate failed early the inode might still be on the
3598		 * orphan list; we need to make sure the inode is removed from
3599		 * the orphan list in that case.
3600		 */
3601		if (inode->i_nlink)
3602			ext4_orphan_del(NULL, inode);
3603	}
3604	return ret;
3605}
3606
3607const struct iomap_ops ext4_iomap_ops = {
3608	.iomap_begin		= ext4_iomap_begin,
3609	.iomap_end		= ext4_iomap_end,
3610};
3611
 
 
3612static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3613			    ssize_t size, void *private)
3614{
3615        ext4_io_end_t *io_end = private;
3616
3617	/* if not async direct IO just return */
3618	if (!io_end)
3619		return 0;
3620
3621	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3622		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3623		  io_end, io_end->inode->i_ino, iocb, offset, size);
3624
3625	/*
3626	 * Error during AIO DIO. We cannot convert unwritten extents as the
3627	 * data was not written. Just clear the unwritten flag and drop io_end.
3628	 */
3629	if (size <= 0) {
3630		ext4_clear_io_unwritten_flag(io_end);
3631		size = 0;
3632	}
3633	io_end->offset = offset;
3634	io_end->size = size;
3635	ext4_put_io_end(io_end);
3636
3637	return 0;
3638}
3639
3640/*
3641 * Handling of direct IO writes.
3642 *
3643 * For ext4 extent files, ext4 will do direct-io write even to holes,
3644 * preallocated extents, and those write extend the file, no need to
3645 * fall back to buffered IO.
3646 *
3647 * For holes, we fallocate those blocks, mark them as unwritten
3648 * If those blocks were preallocated, we mark sure they are split, but
3649 * still keep the range to write as unwritten.
3650 *
3651 * The unwritten extents will be converted to written when DIO is completed.
3652 * For async direct IO, since the IO may still pending when return, we
3653 * set up an end_io call back function, which will do the conversion
3654 * when async direct IO completed.
3655 *
3656 * If the O_DIRECT write will extend the file then add this inode to the
3657 * orphan list.  So recovery will truncate it back to the original size
3658 * if the machine crashes during the write.
3659 *
3660 */
3661static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3662{
3663	struct file *file = iocb->ki_filp;
3664	struct inode *inode = file->f_mapping->host;
3665	struct ext4_inode_info *ei = EXT4_I(inode);
3666	ssize_t ret;
3667	loff_t offset = iocb->ki_pos;
3668	size_t count = iov_iter_count(iter);
3669	int overwrite = 0;
3670	get_block_t *get_block_func = NULL;
3671	int dio_flags = 0;
3672	loff_t final_size = offset + count;
3673	int orphan = 0;
3674	handle_t *handle;
3675
3676	if (final_size > inode->i_size || final_size > ei->i_disksize) {
3677		/* Credits for sb + inode write */
3678		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3679		if (IS_ERR(handle)) {
3680			ret = PTR_ERR(handle);
3681			goto out;
3682		}
3683		ret = ext4_orphan_add(handle, inode);
3684		if (ret) {
3685			ext4_journal_stop(handle);
3686			goto out;
3687		}
3688		orphan = 1;
3689		ext4_update_i_disksize(inode, inode->i_size);
3690		ext4_journal_stop(handle);
3691	}
3692
3693	BUG_ON(iocb->private == NULL);
3694
3695	/*
3696	 * Make all waiters for direct IO properly wait also for extent
3697	 * conversion. This also disallows race between truncate() and
3698	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3699	 */
3700	inode_dio_begin(inode);
3701
3702	/* If we do a overwrite dio, i_mutex locking can be released */
3703	overwrite = *((int *)iocb->private);
3704
3705	if (overwrite)
3706		inode_unlock(inode);
3707
3708	/*
3709	 * For extent mapped files we could direct write to holes and fallocate.
3710	 *
3711	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3712	 * parallel buffered read to expose the stale data before DIO complete
3713	 * the data IO.
3714	 *
3715	 * As to previously fallocated extents, ext4 get_block will just simply
3716	 * mark the buffer mapped but still keep the extents unwritten.
3717	 *
3718	 * For non AIO case, we will convert those unwritten extents to written
3719	 * after return back from blockdev_direct_IO. That way we save us from
3720	 * allocating io_end structure and also the overhead of offloading
3721	 * the extent convertion to a workqueue.
3722	 *
3723	 * For async DIO, the conversion needs to be deferred when the
3724	 * IO is completed. The ext4 end_io callback function will be
3725	 * called to take care of the conversion work.  Here for async
3726	 * case, we allocate an io_end structure to hook to the iocb.
3727	 */
3728	iocb->private = NULL;
3729	if (overwrite)
3730		get_block_func = ext4_dio_get_block_overwrite;
3731	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3732		   round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3733		get_block_func = ext4_dio_get_block;
3734		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3735	} else if (is_sync_kiocb(iocb)) {
3736		get_block_func = ext4_dio_get_block_unwritten_sync;
3737		dio_flags = DIO_LOCKING;
3738	} else {
3739		get_block_func = ext4_dio_get_block_unwritten_async;
3740		dio_flags = DIO_LOCKING;
3741	}
 
 
 
3742	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3743				   get_block_func, ext4_end_io_dio, NULL,
3744				   dio_flags);
3745
3746	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3747						EXT4_STATE_DIO_UNWRITTEN)) {
3748		int err;
3749		/*
3750		 * for non AIO case, since the IO is already
3751		 * completed, we could do the conversion right here
3752		 */
3753		err = ext4_convert_unwritten_extents(NULL, inode,
3754						     offset, ret);
3755		if (err < 0)
3756			ret = err;
3757		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3758	}
3759
3760	inode_dio_end(inode);
3761	/* take i_mutex locking again if we do a ovewrite dio */
3762	if (overwrite)
3763		inode_lock(inode);
3764
3765	if (ret < 0 && final_size > inode->i_size)
3766		ext4_truncate_failed_write(inode);
3767
3768	/* Handle extending of i_size after direct IO write */
3769	if (orphan) {
3770		int err;
3771
3772		/* Credits for sb + inode write */
3773		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3774		if (IS_ERR(handle)) {
3775			/*
3776			 * We wrote the data but cannot extend
3777			 * i_size. Bail out. In async io case, we do
3778			 * not return error here because we have
3779			 * already submmitted the corresponding
3780			 * bio. Returning error here makes the caller
3781			 * think that this IO is done and failed
3782			 * resulting in race with bio's completion
3783			 * handler.
3784			 */
3785			if (!ret)
3786				ret = PTR_ERR(handle);
3787			if (inode->i_nlink)
3788				ext4_orphan_del(NULL, inode);
3789
3790			goto out;
3791		}
3792		if (inode->i_nlink)
3793			ext4_orphan_del(handle, inode);
3794		if (ret > 0) {
3795			loff_t end = offset + ret;
3796			if (end > inode->i_size || end > ei->i_disksize) {
3797				ext4_update_i_disksize(inode, end);
3798				if (end > inode->i_size)
3799					i_size_write(inode, end);
3800				/*
3801				 * We're going to return a positive `ret'
3802				 * here due to non-zero-length I/O, so there's
3803				 * no way of reporting error returns from
3804				 * ext4_mark_inode_dirty() to userspace.  So
3805				 * ignore it.
3806				 */
3807				ext4_mark_inode_dirty(handle, inode);
3808			}
3809		}
3810		err = ext4_journal_stop(handle);
3811		if (ret == 0)
3812			ret = err;
3813	}
3814out:
3815	return ret;
3816}
3817
3818static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3819{
3820	struct address_space *mapping = iocb->ki_filp->f_mapping;
3821	struct inode *inode = mapping->host;
3822	size_t count = iov_iter_count(iter);
3823	ssize_t ret;
3824
3825	/*
3826	 * Shared inode_lock is enough for us - it protects against concurrent
3827	 * writes & truncates and since we take care of writing back page cache,
3828	 * we are protected against page writeback as well.
3829	 */
3830	inode_lock_shared(inode);
3831	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3832					   iocb->ki_pos + count - 1);
3833	if (ret)
3834		goto out_unlock;
3835	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3836				   iter, ext4_dio_get_block, NULL, NULL, 0);
3837out_unlock:
3838	inode_unlock_shared(inode);
3839	return ret;
3840}
3841
3842static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3843{
3844	struct file *file = iocb->ki_filp;
3845	struct inode *inode = file->f_mapping->host;
3846	size_t count = iov_iter_count(iter);
3847	loff_t offset = iocb->ki_pos;
3848	ssize_t ret;
3849
3850#ifdef CONFIG_FS_ENCRYPTION
3851	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
3852		return 0;
3853#endif
3854	if (fsverity_active(inode))
3855		return 0;
3856
3857	/*
3858	 * If we are doing data journalling we don't support O_DIRECT
3859	 */
3860	if (ext4_should_journal_data(inode))
3861		return 0;
3862
3863	/* Let buffer I/O handle the inline data case. */
3864	if (ext4_has_inline_data(inode))
3865		return 0;
3866
 
 
 
 
3867	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3868	if (iov_iter_rw(iter) == READ)
3869		ret = ext4_direct_IO_read(iocb, iter);
3870	else
3871		ret = ext4_direct_IO_write(iocb, iter);
3872	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3873	return ret;
3874}
3875
3876/*
3877 * Pages can be marked dirty completely asynchronously from ext4's journalling
3878 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3879 * much here because ->set_page_dirty is called under VFS locks.  The page is
3880 * not necessarily locked.
3881 *
3882 * We cannot just dirty the page and leave attached buffers clean, because the
3883 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3884 * or jbddirty because all the journalling code will explode.
3885 *
3886 * So what we do is to mark the page "pending dirty" and next time writepage
3887 * is called, propagate that into the buffers appropriately.
3888 */
3889static int ext4_journalled_set_page_dirty(struct page *page)
3890{
3891	SetPageChecked(page);
3892	return __set_page_dirty_nobuffers(page);
3893}
3894
3895static int ext4_set_page_dirty(struct page *page)
3896{
3897	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3898	WARN_ON_ONCE(!page_has_buffers(page));
3899	return __set_page_dirty_buffers(page);
3900}
3901
3902static const struct address_space_operations ext4_aops = {
3903	.readpage		= ext4_readpage,
3904	.readpages		= ext4_readpages,
3905	.writepage		= ext4_writepage,
3906	.writepages		= ext4_writepages,
3907	.write_begin		= ext4_write_begin,
3908	.write_end		= ext4_write_end,
3909	.set_page_dirty		= ext4_set_page_dirty,
3910	.bmap			= ext4_bmap,
3911	.invalidatepage		= ext4_invalidatepage,
3912	.releasepage		= ext4_releasepage,
3913	.direct_IO		= ext4_direct_IO,
3914	.migratepage		= buffer_migrate_page,
3915	.is_partially_uptodate  = block_is_partially_uptodate,
3916	.error_remove_page	= generic_error_remove_page,
3917};
3918
3919static const struct address_space_operations ext4_journalled_aops = {
3920	.readpage		= ext4_readpage,
3921	.readpages		= ext4_readpages,
3922	.writepage		= ext4_writepage,
3923	.writepages		= ext4_writepages,
3924	.write_begin		= ext4_write_begin,
3925	.write_end		= ext4_journalled_write_end,
3926	.set_page_dirty		= ext4_journalled_set_page_dirty,
3927	.bmap			= ext4_bmap,
3928	.invalidatepage		= ext4_journalled_invalidatepage,
3929	.releasepage		= ext4_releasepage,
3930	.direct_IO		= ext4_direct_IO,
3931	.is_partially_uptodate  = block_is_partially_uptodate,
3932	.error_remove_page	= generic_error_remove_page,
3933};
3934
3935static const struct address_space_operations ext4_da_aops = {
3936	.readpage		= ext4_readpage,
3937	.readpages		= ext4_readpages,
3938	.writepage		= ext4_writepage,
3939	.writepages		= ext4_writepages,
3940	.write_begin		= ext4_da_write_begin,
3941	.write_end		= ext4_da_write_end,
3942	.set_page_dirty		= ext4_set_page_dirty,
3943	.bmap			= ext4_bmap,
3944	.invalidatepage		= ext4_invalidatepage,
3945	.releasepage		= ext4_releasepage,
3946	.direct_IO		= ext4_direct_IO,
3947	.migratepage		= buffer_migrate_page,
3948	.is_partially_uptodate  = block_is_partially_uptodate,
3949	.error_remove_page	= generic_error_remove_page,
3950};
3951
3952static const struct address_space_operations ext4_dax_aops = {
3953	.writepages		= ext4_dax_writepages,
3954	.direct_IO		= noop_direct_IO,
3955	.set_page_dirty		= noop_set_page_dirty,
3956	.bmap			= ext4_bmap,
3957	.invalidatepage		= noop_invalidatepage,
3958};
3959
3960void ext4_set_aops(struct inode *inode)
3961{
3962	switch (ext4_inode_journal_mode(inode)) {
3963	case EXT4_INODE_ORDERED_DATA_MODE:
3964	case EXT4_INODE_WRITEBACK_DATA_MODE:
3965		break;
3966	case EXT4_INODE_JOURNAL_DATA_MODE:
3967		inode->i_mapping->a_ops = &ext4_journalled_aops;
3968		return;
3969	default:
3970		BUG();
3971	}
3972	if (IS_DAX(inode))
3973		inode->i_mapping->a_ops = &ext4_dax_aops;
3974	else if (test_opt(inode->i_sb, DELALLOC))
3975		inode->i_mapping->a_ops = &ext4_da_aops;
3976	else
3977		inode->i_mapping->a_ops = &ext4_aops;
3978}
3979
3980static int __ext4_block_zero_page_range(handle_t *handle,
3981		struct address_space *mapping, loff_t from, loff_t length)
3982{
3983	ext4_fsblk_t index = from >> PAGE_SHIFT;
3984	unsigned offset = from & (PAGE_SIZE-1);
3985	unsigned blocksize, pos;
3986	ext4_lblk_t iblock;
3987	struct inode *inode = mapping->host;
3988	struct buffer_head *bh;
3989	struct page *page;
3990	int err = 0;
3991
3992	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3993				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3994	if (!page)
3995		return -ENOMEM;
3996
3997	blocksize = inode->i_sb->s_blocksize;
3998
3999	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
4000
4001	if (!page_has_buffers(page))
4002		create_empty_buffers(page, blocksize, 0);
4003
4004	/* Find the buffer that contains "offset" */
4005	bh = page_buffers(page);
4006	pos = blocksize;
4007	while (offset >= pos) {
4008		bh = bh->b_this_page;
4009		iblock++;
4010		pos += blocksize;
4011	}
4012	if (buffer_freed(bh)) {
4013		BUFFER_TRACE(bh, "freed: skip");
4014		goto unlock;
4015	}
4016	if (!buffer_mapped(bh)) {
4017		BUFFER_TRACE(bh, "unmapped");
4018		ext4_get_block(inode, iblock, bh, 0);
4019		/* unmapped? It's a hole - nothing to do */
4020		if (!buffer_mapped(bh)) {
4021			BUFFER_TRACE(bh, "still unmapped");
4022			goto unlock;
4023		}
4024	}
4025
4026	/* Ok, it's mapped. Make sure it's up-to-date */
4027	if (PageUptodate(page))
4028		set_buffer_uptodate(bh);
4029
4030	if (!buffer_uptodate(bh)) {
4031		err = -EIO;
4032		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
4033		wait_on_buffer(bh);
4034		/* Uhhuh. Read error. Complain and punt. */
4035		if (!buffer_uptodate(bh))
4036			goto unlock;
4037		if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
 
4038			/* We expect the key to be set. */
4039			BUG_ON(!fscrypt_has_encryption_key(inode));
4040			WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
4041					page, blocksize, bh_offset(bh)));
 
4042		}
4043	}
4044	if (ext4_should_journal_data(inode)) {
4045		BUFFER_TRACE(bh, "get write access");
4046		err = ext4_journal_get_write_access(handle, bh);
4047		if (err)
4048			goto unlock;
4049	}
4050	zero_user(page, offset, length);
4051	BUFFER_TRACE(bh, "zeroed end of block");
4052
4053	if (ext4_should_journal_data(inode)) {
4054		err = ext4_handle_dirty_metadata(handle, inode, bh);
4055	} else {
4056		err = 0;
4057		mark_buffer_dirty(bh);
4058		if (ext4_should_order_data(inode))
4059			err = ext4_jbd2_inode_add_write(handle, inode, from,
4060					length);
4061	}
4062
4063unlock:
4064	unlock_page(page);
4065	put_page(page);
4066	return err;
4067}
4068
4069/*
4070 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
4071 * starting from file offset 'from'.  The range to be zero'd must
4072 * be contained with in one block.  If the specified range exceeds
4073 * the end of the block it will be shortened to end of the block
4074 * that cooresponds to 'from'
4075 */
4076static int ext4_block_zero_page_range(handle_t *handle,
4077		struct address_space *mapping, loff_t from, loff_t length)
4078{
4079	struct inode *inode = mapping->host;
4080	unsigned offset = from & (PAGE_SIZE-1);
4081	unsigned blocksize = inode->i_sb->s_blocksize;
4082	unsigned max = blocksize - (offset & (blocksize - 1));
4083
4084	/*
4085	 * correct length if it does not fall between
4086	 * 'from' and the end of the block
4087	 */
4088	if (length > max || length < 0)
4089		length = max;
4090
4091	if (IS_DAX(inode)) {
4092		return iomap_zero_range(inode, from, length, NULL,
4093					&ext4_iomap_ops);
4094	}
4095	return __ext4_block_zero_page_range(handle, mapping, from, length);
4096}
4097
4098/*
4099 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4100 * up to the end of the block which corresponds to `from'.
4101 * This required during truncate. We need to physically zero the tail end
4102 * of that block so it doesn't yield old data if the file is later grown.
4103 */
4104static int ext4_block_truncate_page(handle_t *handle,
4105		struct address_space *mapping, loff_t from)
4106{
4107	unsigned offset = from & (PAGE_SIZE-1);
4108	unsigned length;
4109	unsigned blocksize;
4110	struct inode *inode = mapping->host;
4111
4112	/* If we are processing an encrypted inode during orphan list handling */
4113	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
4114		return 0;
4115
4116	blocksize = inode->i_sb->s_blocksize;
4117	length = blocksize - (offset & (blocksize - 1));
4118
4119	return ext4_block_zero_page_range(handle, mapping, from, length);
4120}
4121
4122int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
4123			     loff_t lstart, loff_t length)
4124{
4125	struct super_block *sb = inode->i_sb;
4126	struct address_space *mapping = inode->i_mapping;
4127	unsigned partial_start, partial_end;
4128	ext4_fsblk_t start, end;
4129	loff_t byte_end = (lstart + length - 1);
4130	int err = 0;
4131
4132	partial_start = lstart & (sb->s_blocksize - 1);
4133	partial_end = byte_end & (sb->s_blocksize - 1);
4134
4135	start = lstart >> sb->s_blocksize_bits;
4136	end = byte_end >> sb->s_blocksize_bits;
4137
4138	/* Handle partial zero within the single block */
4139	if (start == end &&
4140	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
4141		err = ext4_block_zero_page_range(handle, mapping,
4142						 lstart, length);
4143		return err;
4144	}
4145	/* Handle partial zero out on the start of the range */
4146	if (partial_start) {
4147		err = ext4_block_zero_page_range(handle, mapping,
4148						 lstart, sb->s_blocksize);
4149		if (err)
4150			return err;
4151	}
4152	/* Handle partial zero out on the end of the range */
4153	if (partial_end != sb->s_blocksize - 1)
4154		err = ext4_block_zero_page_range(handle, mapping,
4155						 byte_end - partial_end,
4156						 partial_end + 1);
4157	return err;
4158}
4159
4160int ext4_can_truncate(struct inode *inode)
4161{
4162	if (S_ISREG(inode->i_mode))
4163		return 1;
4164	if (S_ISDIR(inode->i_mode))
4165		return 1;
4166	if (S_ISLNK(inode->i_mode))
4167		return !ext4_inode_is_fast_symlink(inode);
4168	return 0;
4169}
4170
4171/*
4172 * We have to make sure i_disksize gets properly updated before we truncate
4173 * page cache due to hole punching or zero range. Otherwise i_disksize update
4174 * can get lost as it may have been postponed to submission of writeback but
4175 * that will never happen after we truncate page cache.
4176 */
4177int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
4178				      loff_t len)
4179{
4180	handle_t *handle;
4181	loff_t size = i_size_read(inode);
4182
4183	WARN_ON(!inode_is_locked(inode));
4184	if (offset > size || offset + len < size)
4185		return 0;
4186
4187	if (EXT4_I(inode)->i_disksize >= size)
4188		return 0;
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4191	if (IS_ERR(handle))
4192		return PTR_ERR(handle);
4193	ext4_update_i_disksize(inode, size);
4194	ext4_mark_inode_dirty(handle, inode);
4195	ext4_journal_stop(handle);
4196
4197	return 0;
4198}
4199
4200static void ext4_wait_dax_page(struct ext4_inode_info *ei)
4201{
4202	up_write(&ei->i_mmap_sem);
4203	schedule();
4204	down_write(&ei->i_mmap_sem);
4205}
4206
4207int ext4_break_layouts(struct inode *inode)
4208{
4209	struct ext4_inode_info *ei = EXT4_I(inode);
4210	struct page *page;
4211	int error;
4212
4213	if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
4214		return -EINVAL;
4215
4216	do {
4217		page = dax_layout_busy_page(inode->i_mapping);
4218		if (!page)
4219			return 0;
4220
4221		error = ___wait_var_event(&page->_refcount,
4222				atomic_read(&page->_refcount) == 1,
4223				TASK_INTERRUPTIBLE, 0, 0,
4224				ext4_wait_dax_page(ei));
4225	} while (error == 0);
4226
4227	return error;
4228}
4229
4230/*
4231 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4232 * associated with the given offset and length
4233 *
4234 * @inode:  File inode
4235 * @offset: The offset where the hole will begin
4236 * @len:    The length of the hole
4237 *
4238 * Returns: 0 on success or negative on failure
4239 */
4240
4241int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4242{
4243	struct super_block *sb = inode->i_sb;
4244	ext4_lblk_t first_block, stop_block;
4245	struct address_space *mapping = inode->i_mapping;
4246	loff_t first_block_offset, last_block_offset;
4247	handle_t *handle;
4248	unsigned int credits;
4249	int ret = 0;
4250
4251	if (!S_ISREG(inode->i_mode))
4252		return -EOPNOTSUPP;
4253
4254	trace_ext4_punch_hole(inode, offset, length, 0);
4255
4256	ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4257	if (ext4_has_inline_data(inode)) {
4258		down_write(&EXT4_I(inode)->i_mmap_sem);
4259		ret = ext4_convert_inline_data(inode);
4260		up_write(&EXT4_I(inode)->i_mmap_sem);
4261		if (ret)
4262			return ret;
4263	}
4264
4265	/*
4266	 * Write out all dirty pages to avoid race conditions
4267	 * Then release them.
4268	 */
4269	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4270		ret = filemap_write_and_wait_range(mapping, offset,
4271						   offset + length - 1);
4272		if (ret)
4273			return ret;
4274	}
4275
4276	inode_lock(inode);
4277
4278	/* No need to punch hole beyond i_size */
4279	if (offset >= inode->i_size)
4280		goto out_mutex;
4281
4282	/*
4283	 * If the hole extends beyond i_size, set the hole
4284	 * to end after the page that contains i_size
4285	 */
4286	if (offset + length > inode->i_size) {
4287		length = inode->i_size +
4288		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4289		   offset;
4290	}
4291
4292	if (offset & (sb->s_blocksize - 1) ||
4293	    (offset + length) & (sb->s_blocksize - 1)) {
4294		/*
4295		 * Attach jinode to inode for jbd2 if we do any zeroing of
4296		 * partial block
4297		 */
4298		ret = ext4_inode_attach_jinode(inode);
4299		if (ret < 0)
4300			goto out_mutex;
4301
4302	}
4303
4304	/* Wait all existing dio workers, newcomers will block on i_mutex */
 
4305	inode_dio_wait(inode);
4306
4307	/*
4308	 * Prevent page faults from reinstantiating pages we have released from
4309	 * page cache.
4310	 */
4311	down_write(&EXT4_I(inode)->i_mmap_sem);
4312
4313	ret = ext4_break_layouts(inode);
4314	if (ret)
4315		goto out_dio;
4316
4317	first_block_offset = round_up(offset, sb->s_blocksize);
4318	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4319
4320	/* Now release the pages and zero block aligned part of pages*/
4321	if (last_block_offset > first_block_offset) {
4322		ret = ext4_update_disksize_before_punch(inode, offset, length);
4323		if (ret)
4324			goto out_dio;
4325		truncate_pagecache_range(inode, first_block_offset,
4326					 last_block_offset);
4327	}
4328
4329	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4330		credits = ext4_writepage_trans_blocks(inode);
4331	else
4332		credits = ext4_blocks_for_truncate(inode);
4333	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4334	if (IS_ERR(handle)) {
4335		ret = PTR_ERR(handle);
4336		ext4_std_error(sb, ret);
4337		goto out_dio;
4338	}
4339
4340	ret = ext4_zero_partial_blocks(handle, inode, offset,
4341				       length);
4342	if (ret)
4343		goto out_stop;
4344
4345	first_block = (offset + sb->s_blocksize - 1) >>
4346		EXT4_BLOCK_SIZE_BITS(sb);
4347	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4348
4349	/* If there are blocks to remove, do it */
4350	if (stop_block > first_block) {
 
4351
4352		down_write(&EXT4_I(inode)->i_data_sem);
4353		ext4_discard_preallocations(inode);
4354
4355		ret = ext4_es_remove_extent(inode, first_block,
4356					    stop_block - first_block);
4357		if (ret) {
4358			up_write(&EXT4_I(inode)->i_data_sem);
4359			goto out_stop;
4360		}
4361
4362		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4363			ret = ext4_ext_remove_space(inode, first_block,
4364						    stop_block - 1);
4365		else
4366			ret = ext4_ind_remove_space(handle, inode, first_block,
4367						    stop_block);
4368
4369		up_write(&EXT4_I(inode)->i_data_sem);
4370	}
4371	if (IS_SYNC(inode))
4372		ext4_handle_sync(handle);
4373
4374	inode->i_mtime = inode->i_ctime = current_time(inode);
4375	ext4_mark_inode_dirty(handle, inode);
4376	if (ret >= 0)
4377		ext4_update_inode_fsync_trans(handle, inode, 1);
4378out_stop:
4379	ext4_journal_stop(handle);
4380out_dio:
4381	up_write(&EXT4_I(inode)->i_mmap_sem);
 
4382out_mutex:
4383	inode_unlock(inode);
4384	return ret;
4385}
4386
4387int ext4_inode_attach_jinode(struct inode *inode)
4388{
4389	struct ext4_inode_info *ei = EXT4_I(inode);
4390	struct jbd2_inode *jinode;
4391
4392	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4393		return 0;
4394
4395	jinode = jbd2_alloc_inode(GFP_KERNEL);
4396	spin_lock(&inode->i_lock);
4397	if (!ei->jinode) {
4398		if (!jinode) {
4399			spin_unlock(&inode->i_lock);
4400			return -ENOMEM;
4401		}
4402		ei->jinode = jinode;
4403		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4404		jinode = NULL;
4405	}
4406	spin_unlock(&inode->i_lock);
4407	if (unlikely(jinode != NULL))
4408		jbd2_free_inode(jinode);
4409	return 0;
4410}
4411
4412/*
4413 * ext4_truncate()
4414 *
4415 * We block out ext4_get_block() block instantiations across the entire
4416 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4417 * simultaneously on behalf of the same inode.
4418 *
4419 * As we work through the truncate and commit bits of it to the journal there
4420 * is one core, guiding principle: the file's tree must always be consistent on
4421 * disk.  We must be able to restart the truncate after a crash.
4422 *
4423 * The file's tree may be transiently inconsistent in memory (although it
4424 * probably isn't), but whenever we close off and commit a journal transaction,
4425 * the contents of (the filesystem + the journal) must be consistent and
4426 * restartable.  It's pretty simple, really: bottom up, right to left (although
4427 * left-to-right works OK too).
4428 *
4429 * Note that at recovery time, journal replay occurs *before* the restart of
4430 * truncate against the orphan inode list.
4431 *
4432 * The committed inode has the new, desired i_size (which is the same as
4433 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4434 * that this inode's truncate did not complete and it will again call
4435 * ext4_truncate() to have another go.  So there will be instantiated blocks
4436 * to the right of the truncation point in a crashed ext4 filesystem.  But
4437 * that's fine - as long as they are linked from the inode, the post-crash
4438 * ext4_truncate() run will find them and release them.
4439 */
4440int ext4_truncate(struct inode *inode)
4441{
4442	struct ext4_inode_info *ei = EXT4_I(inode);
4443	unsigned int credits;
4444	int err = 0;
4445	handle_t *handle;
4446	struct address_space *mapping = inode->i_mapping;
4447
4448	/*
4449	 * There is a possibility that we're either freeing the inode
4450	 * or it's a completely new inode. In those cases we might not
4451	 * have i_mutex locked because it's not necessary.
4452	 */
4453	if (!(inode->i_state & (I_NEW|I_FREEING)))
4454		WARN_ON(!inode_is_locked(inode));
4455	trace_ext4_truncate_enter(inode);
4456
4457	if (!ext4_can_truncate(inode))
4458		return 0;
4459
4460	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4461
4462	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4463		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4464
4465	if (ext4_has_inline_data(inode)) {
4466		int has_inline = 1;
4467
4468		err = ext4_inline_data_truncate(inode, &has_inline);
4469		if (err)
4470			return err;
4471		if (has_inline)
4472			return 0;
4473	}
4474
4475	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4476	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4477		if (ext4_inode_attach_jinode(inode) < 0)
4478			return 0;
4479	}
4480
4481	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4482		credits = ext4_writepage_trans_blocks(inode);
4483	else
4484		credits = ext4_blocks_for_truncate(inode);
4485
4486	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4487	if (IS_ERR(handle))
4488		return PTR_ERR(handle);
4489
4490	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4491		ext4_block_truncate_page(handle, mapping, inode->i_size);
4492
4493	/*
4494	 * We add the inode to the orphan list, so that if this
4495	 * truncate spans multiple transactions, and we crash, we will
4496	 * resume the truncate when the filesystem recovers.  It also
4497	 * marks the inode dirty, to catch the new size.
4498	 *
4499	 * Implication: the file must always be in a sane, consistent
4500	 * truncatable state while each transaction commits.
4501	 */
4502	err = ext4_orphan_add(handle, inode);
4503	if (err)
4504		goto out_stop;
4505
4506	down_write(&EXT4_I(inode)->i_data_sem);
4507
4508	ext4_discard_preallocations(inode);
4509
4510	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4511		err = ext4_ext_truncate(handle, inode);
4512	else
4513		ext4_ind_truncate(handle, inode);
4514
4515	up_write(&ei->i_data_sem);
4516	if (err)
4517		goto out_stop;
4518
4519	if (IS_SYNC(inode))
4520		ext4_handle_sync(handle);
4521
4522out_stop:
4523	/*
4524	 * If this was a simple ftruncate() and the file will remain alive,
4525	 * then we need to clear up the orphan record which we created above.
4526	 * However, if this was a real unlink then we were called by
4527	 * ext4_evict_inode(), and we allow that function to clean up the
4528	 * orphan info for us.
4529	 */
4530	if (inode->i_nlink)
4531		ext4_orphan_del(handle, inode);
4532
4533	inode->i_mtime = inode->i_ctime = current_time(inode);
4534	ext4_mark_inode_dirty(handle, inode);
4535	ext4_journal_stop(handle);
4536
4537	trace_ext4_truncate_exit(inode);
4538	return err;
4539}
4540
4541/*
4542 * ext4_get_inode_loc returns with an extra refcount against the inode's
4543 * underlying buffer_head on success. If 'in_mem' is true, we have all
4544 * data in memory that is needed to recreate the on-disk version of this
4545 * inode.
4546 */
4547static int __ext4_get_inode_loc(struct inode *inode,
4548				struct ext4_iloc *iloc, int in_mem)
4549{
4550	struct ext4_group_desc	*gdp;
4551	struct buffer_head	*bh;
4552	struct super_block	*sb = inode->i_sb;
4553	ext4_fsblk_t		block;
4554	struct blk_plug		plug;
4555	int			inodes_per_block, inode_offset;
4556
4557	iloc->bh = NULL;
4558	if (inode->i_ino < EXT4_ROOT_INO ||
4559	    inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4560		return -EFSCORRUPTED;
4561
4562	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4563	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4564	if (!gdp)
4565		return -EIO;
4566
4567	/*
4568	 * Figure out the offset within the block group inode table
4569	 */
4570	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4571	inode_offset = ((inode->i_ino - 1) %
4572			EXT4_INODES_PER_GROUP(sb));
4573	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4574	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4575
4576	bh = sb_getblk(sb, block);
4577	if (unlikely(!bh))
4578		return -ENOMEM;
4579	if (!buffer_uptodate(bh)) {
4580		lock_buffer(bh);
4581
4582		/*
4583		 * If the buffer has the write error flag, we have failed
4584		 * to write out another inode in the same block.  In this
4585		 * case, we don't have to read the block because we may
4586		 * read the old inode data successfully.
4587		 */
4588		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4589			set_buffer_uptodate(bh);
4590
4591		if (buffer_uptodate(bh)) {
4592			/* someone brought it uptodate while we waited */
4593			unlock_buffer(bh);
4594			goto has_buffer;
4595		}
4596
4597		/*
4598		 * If we have all information of the inode in memory and this
4599		 * is the only valid inode in the block, we need not read the
4600		 * block.
4601		 */
4602		if (in_mem) {
4603			struct buffer_head *bitmap_bh;
4604			int i, start;
4605
4606			start = inode_offset & ~(inodes_per_block - 1);
4607
4608			/* Is the inode bitmap in cache? */
4609			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4610			if (unlikely(!bitmap_bh))
4611				goto make_io;
4612
4613			/*
4614			 * If the inode bitmap isn't in cache then the
4615			 * optimisation may end up performing two reads instead
4616			 * of one, so skip it.
4617			 */
4618			if (!buffer_uptodate(bitmap_bh)) {
4619				brelse(bitmap_bh);
4620				goto make_io;
4621			}
4622			for (i = start; i < start + inodes_per_block; i++) {
4623				if (i == inode_offset)
4624					continue;
4625				if (ext4_test_bit(i, bitmap_bh->b_data))
4626					break;
4627			}
4628			brelse(bitmap_bh);
4629			if (i == start + inodes_per_block) {
4630				/* all other inodes are free, so skip I/O */
4631				memset(bh->b_data, 0, bh->b_size);
4632				set_buffer_uptodate(bh);
4633				unlock_buffer(bh);
4634				goto has_buffer;
4635			}
4636		}
4637
4638make_io:
4639		/*
4640		 * If we need to do any I/O, try to pre-readahead extra
4641		 * blocks from the inode table.
4642		 */
4643		blk_start_plug(&plug);
4644		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4645			ext4_fsblk_t b, end, table;
4646			unsigned num;
4647			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4648
4649			table = ext4_inode_table(sb, gdp);
4650			/* s_inode_readahead_blks is always a power of 2 */
4651			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4652			if (table > b)
4653				b = table;
4654			end = b + ra_blks;
4655			num = EXT4_INODES_PER_GROUP(sb);
4656			if (ext4_has_group_desc_csum(sb))
4657				num -= ext4_itable_unused_count(sb, gdp);
4658			table += num / inodes_per_block;
4659			if (end > table)
4660				end = table;
4661			while (b <= end)
4662				sb_breadahead(sb, b++);
4663		}
4664
4665		/*
4666		 * There are other valid inodes in the buffer, this inode
4667		 * has in-inode xattrs, or we don't have this inode in memory.
4668		 * Read the block from disk.
4669		 */
4670		trace_ext4_load_inode(inode);
4671		get_bh(bh);
4672		bh->b_end_io = end_buffer_read_sync;
4673		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4674		blk_finish_plug(&plug);
4675		wait_on_buffer(bh);
4676		if (!buffer_uptodate(bh)) {
4677			EXT4_ERROR_INODE_BLOCK(inode, block,
4678					       "unable to read itable block");
4679			brelse(bh);
4680			return -EIO;
4681		}
4682	}
4683has_buffer:
4684	iloc->bh = bh;
4685	return 0;
4686}
4687
4688int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4689{
4690	/* We have all inode data except xattrs in memory here. */
4691	return __ext4_get_inode_loc(inode, iloc,
4692		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4693}
4694
4695static bool ext4_should_use_dax(struct inode *inode)
4696{
4697	if (!test_opt(inode->i_sb, DAX))
4698		return false;
4699	if (!S_ISREG(inode->i_mode))
4700		return false;
4701	if (ext4_should_journal_data(inode))
4702		return false;
4703	if (ext4_has_inline_data(inode))
4704		return false;
4705	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4706		return false;
4707	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4708		return false;
4709	return true;
4710}
4711
4712void ext4_set_inode_flags(struct inode *inode)
4713{
4714	unsigned int flags = EXT4_I(inode)->i_flags;
4715	unsigned int new_fl = 0;
4716
4717	if (flags & EXT4_SYNC_FL)
4718		new_fl |= S_SYNC;
4719	if (flags & EXT4_APPEND_FL)
4720		new_fl |= S_APPEND;
4721	if (flags & EXT4_IMMUTABLE_FL)
4722		new_fl |= S_IMMUTABLE;
4723	if (flags & EXT4_NOATIME_FL)
4724		new_fl |= S_NOATIME;
4725	if (flags & EXT4_DIRSYNC_FL)
4726		new_fl |= S_DIRSYNC;
4727	if (ext4_should_use_dax(inode))
 
 
4728		new_fl |= S_DAX;
4729	if (flags & EXT4_ENCRYPT_FL)
4730		new_fl |= S_ENCRYPTED;
4731	if (flags & EXT4_CASEFOLD_FL)
4732		new_fl |= S_CASEFOLD;
4733	if (flags & EXT4_VERITY_FL)
4734		new_fl |= S_VERITY;
4735	inode_set_flags(inode, new_fl,
4736			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4737			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4738}
4739
4740static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4741				  struct ext4_inode_info *ei)
4742{
4743	blkcnt_t i_blocks ;
4744	struct inode *inode = &(ei->vfs_inode);
4745	struct super_block *sb = inode->i_sb;
4746
4747	if (ext4_has_feature_huge_file(sb)) {
4748		/* we are using combined 48 bit field */
4749		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4750					le32_to_cpu(raw_inode->i_blocks_lo);
4751		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4752			/* i_blocks represent file system block size */
4753			return i_blocks  << (inode->i_blkbits - 9);
4754		} else {
4755			return i_blocks;
4756		}
4757	} else {
4758		return le32_to_cpu(raw_inode->i_blocks_lo);
4759	}
4760}
4761
4762static inline int ext4_iget_extra_inode(struct inode *inode,
4763					 struct ext4_inode *raw_inode,
4764					 struct ext4_inode_info *ei)
4765{
4766	__le32 *magic = (void *)raw_inode +
4767			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4768
4769	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4770	    EXT4_INODE_SIZE(inode->i_sb) &&
4771	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4772		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4773		return ext4_find_inline_data_nolock(inode);
4774	} else
4775		EXT4_I(inode)->i_inline_off = 0;
4776	return 0;
4777}
4778
4779int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4780{
4781	if (!ext4_has_feature_project(inode->i_sb))
4782		return -EOPNOTSUPP;
4783	*projid = EXT4_I(inode)->i_projid;
4784	return 0;
4785}
4786
4787/*
4788 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4789 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4790 * set.
4791 */
4792static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4793{
4794	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4795		inode_set_iversion_raw(inode, val);
4796	else
4797		inode_set_iversion_queried(inode, val);
4798}
4799static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4800{
4801	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4802		return inode_peek_iversion_raw(inode);
4803	else
4804		return inode_peek_iversion(inode);
4805}
4806
4807struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4808			  ext4_iget_flags flags, const char *function,
4809			  unsigned int line)
4810{
4811	struct ext4_iloc iloc;
4812	struct ext4_inode *raw_inode;
4813	struct ext4_inode_info *ei;
4814	struct inode *inode;
4815	journal_t *journal = EXT4_SB(sb)->s_journal;
4816	long ret;
4817	loff_t size;
4818	int block;
4819	uid_t i_uid;
4820	gid_t i_gid;
4821	projid_t i_projid;
4822
4823	if ((!(flags & EXT4_IGET_SPECIAL) &&
4824	     (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4825	    (ino < EXT4_ROOT_INO) ||
4826	    (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4827		if (flags & EXT4_IGET_HANDLE)
4828			return ERR_PTR(-ESTALE);
4829		__ext4_error(sb, function, line,
4830			     "inode #%lu: comm %s: iget: illegal inode #",
4831			     ino, current->comm);
4832		return ERR_PTR(-EFSCORRUPTED);
4833	}
4834
4835	inode = iget_locked(sb, ino);
4836	if (!inode)
4837		return ERR_PTR(-ENOMEM);
4838	if (!(inode->i_state & I_NEW))
4839		return inode;
4840
4841	ei = EXT4_I(inode);
4842	iloc.bh = NULL;
4843
4844	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4845	if (ret < 0)
4846		goto bad_inode;
4847	raw_inode = ext4_raw_inode(&iloc);
4848
4849	if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4850		ext4_error_inode(inode, function, line, 0,
4851				 "iget: root inode unallocated");
4852		ret = -EFSCORRUPTED;
4853		goto bad_inode;
4854	}
4855
4856	if ((flags & EXT4_IGET_HANDLE) &&
4857	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4858		ret = -ESTALE;
4859		goto bad_inode;
4860	}
4861
4862	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4863		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4864		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4865			EXT4_INODE_SIZE(inode->i_sb) ||
4866		    (ei->i_extra_isize & 3)) {
4867			ext4_error_inode(inode, function, line, 0,
4868					 "iget: bad extra_isize %u "
4869					 "(inode size %u)",
4870					 ei->i_extra_isize,
4871					 EXT4_INODE_SIZE(inode->i_sb));
4872			ret = -EFSCORRUPTED;
4873			goto bad_inode;
4874		}
4875	} else
4876		ei->i_extra_isize = 0;
4877
4878	/* Precompute checksum seed for inode metadata */
4879	if (ext4_has_metadata_csum(sb)) {
4880		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4881		__u32 csum;
4882		__le32 inum = cpu_to_le32(inode->i_ino);
4883		__le32 gen = raw_inode->i_generation;
4884		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4885				   sizeof(inum));
4886		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4887					      sizeof(gen));
4888	}
4889
4890	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4891		ext4_error_inode(inode, function, line, 0,
4892				 "iget: checksum invalid");
4893		ret = -EFSBADCRC;
4894		goto bad_inode;
4895	}
4896
4897	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4898	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4899	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4900	if (ext4_has_feature_project(sb) &&
4901	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4902	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4903		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4904	else
4905		i_projid = EXT4_DEF_PROJID;
4906
4907	if (!(test_opt(inode->i_sb, NO_UID32))) {
4908		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4909		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4910	}
4911	i_uid_write(inode, i_uid);
4912	i_gid_write(inode, i_gid);
4913	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4914	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4915
4916	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4917	ei->i_inline_off = 0;
4918	ei->i_dir_start_lookup = 0;
4919	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4920	/* We now have enough fields to check if the inode was active or not.
4921	 * This is needed because nfsd might try to access dead inodes
4922	 * the test is that same one that e2fsck uses
4923	 * NeilBrown 1999oct15
4924	 */
4925	if (inode->i_nlink == 0) {
4926		if ((inode->i_mode == 0 ||
4927		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4928		    ino != EXT4_BOOT_LOADER_INO) {
4929			/* this inode is deleted */
4930			ret = -ESTALE;
4931			goto bad_inode;
4932		}
4933		/* The only unlinked inodes we let through here have
4934		 * valid i_mode and are being read by the orphan
4935		 * recovery code: that's fine, we're about to complete
4936		 * the process of deleting those.
4937		 * OR it is the EXT4_BOOT_LOADER_INO which is
4938		 * not initialized on a new filesystem. */
4939	}
4940	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4941	ext4_set_inode_flags(inode);
4942	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4943	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4944	if (ext4_has_feature_64bit(sb))
4945		ei->i_file_acl |=
4946			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4947	inode->i_size = ext4_isize(sb, raw_inode);
4948	if ((size = i_size_read(inode)) < 0) {
4949		ext4_error_inode(inode, function, line, 0,
4950				 "iget: bad i_size value: %lld", size);
4951		ret = -EFSCORRUPTED;
4952		goto bad_inode;
4953	}
4954	ei->i_disksize = inode->i_size;
4955#ifdef CONFIG_QUOTA
4956	ei->i_reserved_quota = 0;
4957#endif
4958	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4959	ei->i_block_group = iloc.block_group;
4960	ei->i_last_alloc_group = ~0;
4961	/*
4962	 * NOTE! The in-memory inode i_data array is in little-endian order
4963	 * even on big-endian machines: we do NOT byteswap the block numbers!
4964	 */
4965	for (block = 0; block < EXT4_N_BLOCKS; block++)
4966		ei->i_data[block] = raw_inode->i_block[block];
4967	INIT_LIST_HEAD(&ei->i_orphan);
4968
4969	/*
4970	 * Set transaction id's of transactions that have to be committed
4971	 * to finish f[data]sync. We set them to currently running transaction
4972	 * as we cannot be sure that the inode or some of its metadata isn't
4973	 * part of the transaction - the inode could have been reclaimed and
4974	 * now it is reread from disk.
4975	 */
4976	if (journal) {
4977		transaction_t *transaction;
4978		tid_t tid;
4979
4980		read_lock(&journal->j_state_lock);
4981		if (journal->j_running_transaction)
4982			transaction = journal->j_running_transaction;
4983		else
4984			transaction = journal->j_committing_transaction;
4985		if (transaction)
4986			tid = transaction->t_tid;
4987		else
4988			tid = journal->j_commit_sequence;
4989		read_unlock(&journal->j_state_lock);
4990		ei->i_sync_tid = tid;
4991		ei->i_datasync_tid = tid;
4992	}
4993
4994	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4995		if (ei->i_extra_isize == 0) {
4996			/* The extra space is currently unused. Use it. */
4997			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4998			ei->i_extra_isize = sizeof(struct ext4_inode) -
4999					    EXT4_GOOD_OLD_INODE_SIZE;
5000		} else {
5001			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
5002			if (ret)
5003				goto bad_inode;
5004		}
5005	}
5006
5007	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5008	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5009	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5010	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5011
5012	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5013		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
5014
5015		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5016			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5017				ivers |=
5018		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5019		}
5020		ext4_inode_set_iversion_queried(inode, ivers);
5021	}
5022
5023	ret = 0;
5024	if (ei->i_file_acl &&
5025	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5026		ext4_error_inode(inode, function, line, 0,
5027				 "iget: bad extended attribute block %llu",
5028				 ei->i_file_acl);
5029		ret = -EFSCORRUPTED;
5030		goto bad_inode;
5031	} else if (!ext4_has_inline_data(inode)) {
5032		/* validate the block references in the inode */
5033		if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5034		   (S_ISLNK(inode->i_mode) &&
5035		    !ext4_inode_is_fast_symlink(inode))) {
5036			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
5037				ret = ext4_ext_check_inode(inode);
5038			else
5039				ret = ext4_ind_check_inode(inode);
 
 
 
5040		}
5041	}
5042	if (ret)
5043		goto bad_inode;
5044
5045	if (S_ISREG(inode->i_mode)) {
5046		inode->i_op = &ext4_file_inode_operations;
5047		inode->i_fop = &ext4_file_operations;
5048		ext4_set_aops(inode);
5049	} else if (S_ISDIR(inode->i_mode)) {
5050		inode->i_op = &ext4_dir_inode_operations;
5051		inode->i_fop = &ext4_dir_operations;
5052	} else if (S_ISLNK(inode->i_mode)) {
5053		/* VFS does not allow setting these so must be corruption */
5054		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5055			ext4_error_inode(inode, function, line, 0,
5056					 "iget: immutable or append flags "
5057					 "not allowed on symlinks");
5058			ret = -EFSCORRUPTED;
5059			goto bad_inode;
5060		}
5061		if (IS_ENCRYPTED(inode)) {
5062			inode->i_op = &ext4_encrypted_symlink_inode_operations;
5063			ext4_set_aops(inode);
5064		} else if (ext4_inode_is_fast_symlink(inode)) {
5065			inode->i_link = (char *)ei->i_data;
5066			inode->i_op = &ext4_fast_symlink_inode_operations;
5067			nd_terminate_link(ei->i_data, inode->i_size,
5068				sizeof(ei->i_data) - 1);
5069		} else {
5070			inode->i_op = &ext4_symlink_inode_operations;
5071			ext4_set_aops(inode);
5072		}
5073		inode_nohighmem(inode);
5074	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5075	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5076		inode->i_op = &ext4_special_inode_operations;
5077		if (raw_inode->i_block[0])
5078			init_special_inode(inode, inode->i_mode,
5079			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5080		else
5081			init_special_inode(inode, inode->i_mode,
5082			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5083	} else if (ino == EXT4_BOOT_LOADER_INO) {
5084		make_bad_inode(inode);
5085	} else {
5086		ret = -EFSCORRUPTED;
5087		ext4_error_inode(inode, function, line, 0,
5088				 "iget: bogus i_mode (%o)", inode->i_mode);
5089		goto bad_inode;
5090	}
5091	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
5092		ext4_error_inode(inode, function, line, 0,
5093				 "casefold flag without casefold feature");
5094	brelse(iloc.bh);
5095
5096	unlock_new_inode(inode);
5097	return inode;
5098
5099bad_inode:
5100	brelse(iloc.bh);
5101	iget_failed(inode);
5102	return ERR_PTR(ret);
5103}
5104
 
 
 
 
 
 
 
5105static int ext4_inode_blocks_set(handle_t *handle,
5106				struct ext4_inode *raw_inode,
5107				struct ext4_inode_info *ei)
5108{
5109	struct inode *inode = &(ei->vfs_inode);
5110	u64 i_blocks = inode->i_blocks;
5111	struct super_block *sb = inode->i_sb;
5112
5113	if (i_blocks <= ~0U) {
5114		/*
5115		 * i_blocks can be represented in a 32 bit variable
5116		 * as multiple of 512 bytes
5117		 */
5118		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5119		raw_inode->i_blocks_high = 0;
5120		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5121		return 0;
5122	}
5123	if (!ext4_has_feature_huge_file(sb))
5124		return -EFBIG;
5125
5126	if (i_blocks <= 0xffffffffffffULL) {
5127		/*
5128		 * i_blocks can be represented in a 48 bit variable
5129		 * as multiple of 512 bytes
5130		 */
5131		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5132		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5133		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5134	} else {
5135		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
5136		/* i_block is stored in file system block size */
5137		i_blocks = i_blocks >> (inode->i_blkbits - 9);
5138		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
5139		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5140	}
5141	return 0;
5142}
5143
5144struct other_inode {
5145	unsigned long		orig_ino;
5146	struct ext4_inode	*raw_inode;
5147};
5148
5149static int other_inode_match(struct inode * inode, unsigned long ino,
5150			     void *data)
5151{
5152	struct other_inode *oi = (struct other_inode *) data;
5153
5154	if ((inode->i_ino != ino) ||
5155	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5156			       I_DIRTY_INODE)) ||
5157	    ((inode->i_state & I_DIRTY_TIME) == 0))
5158		return 0;
5159	spin_lock(&inode->i_lock);
5160	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
5161				I_DIRTY_INODE)) == 0) &&
5162	    (inode->i_state & I_DIRTY_TIME)) {
5163		struct ext4_inode_info	*ei = EXT4_I(inode);
5164
5165		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
5166		spin_unlock(&inode->i_lock);
5167
5168		spin_lock(&ei->i_raw_lock);
5169		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
5170		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
5171		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
5172		ext4_inode_csum_set(inode, oi->raw_inode, ei);
5173		spin_unlock(&ei->i_raw_lock);
5174		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
5175		return -1;
5176	}
5177	spin_unlock(&inode->i_lock);
5178	return -1;
5179}
5180
5181/*
5182 * Opportunistically update the other time fields for other inodes in
5183 * the same inode table block.
5184 */
5185static void ext4_update_other_inodes_time(struct super_block *sb,
5186					  unsigned long orig_ino, char *buf)
5187{
5188	struct other_inode oi;
5189	unsigned long ino;
5190	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5191	int inode_size = EXT4_INODE_SIZE(sb);
5192
5193	oi.orig_ino = orig_ino;
5194	/*
5195	 * Calculate the first inode in the inode table block.  Inode
5196	 * numbers are one-based.  That is, the first inode in a block
5197	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5198	 */
5199	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5200	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5201		if (ino == orig_ino)
5202			continue;
5203		oi.raw_inode = (struct ext4_inode *) buf;
5204		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
5205	}
5206}
5207
5208/*
5209 * Post the struct inode info into an on-disk inode location in the
5210 * buffer-cache.  This gobbles the caller's reference to the
5211 * buffer_head in the inode location struct.
5212 *
5213 * The caller must have write access to iloc->bh.
5214 */
5215static int ext4_do_update_inode(handle_t *handle,
5216				struct inode *inode,
5217				struct ext4_iloc *iloc)
5218{
5219	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5220	struct ext4_inode_info *ei = EXT4_I(inode);
5221	struct buffer_head *bh = iloc->bh;
5222	struct super_block *sb = inode->i_sb;
5223	int err = 0, rc, block;
5224	int need_datasync = 0, set_large_file = 0;
5225	uid_t i_uid;
5226	gid_t i_gid;
5227	projid_t i_projid;
5228
5229	spin_lock(&ei->i_raw_lock);
5230
5231	/* For fields not tracked in the in-memory inode,
5232	 * initialise them to zero for new inodes. */
5233	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5234		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5235
 
5236	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5237	i_uid = i_uid_read(inode);
5238	i_gid = i_gid_read(inode);
5239	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
5240	if (!(test_opt(inode->i_sb, NO_UID32))) {
5241		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
5242		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
5243/*
5244 * Fix up interoperability with old kernels. Otherwise, old inodes get
5245 * re-used with the upper 16 bits of the uid/gid intact
5246 */
5247		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
5248			raw_inode->i_uid_high = 0;
5249			raw_inode->i_gid_high = 0;
5250		} else {
5251			raw_inode->i_uid_high =
5252				cpu_to_le16(high_16_bits(i_uid));
5253			raw_inode->i_gid_high =
5254				cpu_to_le16(high_16_bits(i_gid));
5255		}
5256	} else {
5257		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
5258		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
5259		raw_inode->i_uid_high = 0;
5260		raw_inode->i_gid_high = 0;
5261	}
5262	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5263
5264	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5265	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5266	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5267	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5268
5269	err = ext4_inode_blocks_set(handle, raw_inode, ei);
5270	if (err) {
5271		spin_unlock(&ei->i_raw_lock);
5272		goto out_brelse;
5273	}
5274	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5275	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
5276	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
5277		raw_inode->i_file_acl_high =
5278			cpu_to_le16(ei->i_file_acl >> 32);
5279	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5280	if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
5281		ext4_isize_set(raw_inode, ei->i_disksize);
5282		need_datasync = 1;
5283	}
5284	if (ei->i_disksize > 0x7fffffffULL) {
5285		if (!ext4_has_feature_large_file(sb) ||
5286				EXT4_SB(sb)->s_es->s_rev_level ==
5287		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5288			set_large_file = 1;
5289	}
5290	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5291	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5292		if (old_valid_dev(inode->i_rdev)) {
5293			raw_inode->i_block[0] =
5294				cpu_to_le32(old_encode_dev(inode->i_rdev));
5295			raw_inode->i_block[1] = 0;
5296		} else {
5297			raw_inode->i_block[0] = 0;
5298			raw_inode->i_block[1] =
5299				cpu_to_le32(new_encode_dev(inode->i_rdev));
5300			raw_inode->i_block[2] = 0;
5301		}
5302	} else if (!ext4_has_inline_data(inode)) {
5303		for (block = 0; block < EXT4_N_BLOCKS; block++)
5304			raw_inode->i_block[block] = ei->i_data[block];
5305	}
5306
5307	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5308		u64 ivers = ext4_inode_peek_iversion(inode);
5309
5310		raw_inode->i_disk_version = cpu_to_le32(ivers);
5311		if (ei->i_extra_isize) {
5312			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5313				raw_inode->i_version_hi =
5314					cpu_to_le32(ivers >> 32);
5315			raw_inode->i_extra_isize =
5316				cpu_to_le16(ei->i_extra_isize);
5317		}
5318	}
5319
5320	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5321	       i_projid != EXT4_DEF_PROJID);
5322
5323	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5324	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5325		raw_inode->i_projid = cpu_to_le32(i_projid);
5326
5327	ext4_inode_csum_set(inode, raw_inode, ei);
5328	spin_unlock(&ei->i_raw_lock);
5329	if (inode->i_sb->s_flags & SB_LAZYTIME)
5330		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5331					      bh->b_data);
5332
5333	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5334	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5335	if (!err)
5336		err = rc;
5337	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5338	if (set_large_file) {
5339		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5340		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5341		if (err)
5342			goto out_brelse;
 
5343		ext4_set_feature_large_file(sb);
5344		ext4_handle_sync(handle);
5345		err = ext4_handle_dirty_super(handle, sb);
5346	}
5347	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5348out_brelse:
5349	brelse(bh);
5350	ext4_std_error(inode->i_sb, err);
5351	return err;
5352}
5353
5354/*
5355 * ext4_write_inode()
5356 *
5357 * We are called from a few places:
5358 *
5359 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5360 *   Here, there will be no transaction running. We wait for any running
5361 *   transaction to commit.
5362 *
5363 * - Within flush work (sys_sync(), kupdate and such).
5364 *   We wait on commit, if told to.
5365 *
5366 * - Within iput_final() -> write_inode_now()
5367 *   We wait on commit, if told to.
5368 *
5369 * In all cases it is actually safe for us to return without doing anything,
5370 * because the inode has been copied into a raw inode buffer in
5371 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5372 * writeback.
5373 *
5374 * Note that we are absolutely dependent upon all inode dirtiers doing the
5375 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5376 * which we are interested.
5377 *
5378 * It would be a bug for them to not do this.  The code:
5379 *
5380 *	mark_inode_dirty(inode)
5381 *	stuff();
5382 *	inode->i_size = expr;
5383 *
5384 * is in error because write_inode() could occur while `stuff()' is running,
5385 * and the new i_size will be lost.  Plus the inode will no longer be on the
5386 * superblock's dirty inode list.
5387 */
5388int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5389{
5390	int err;
5391
5392	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5393	    sb_rdonly(inode->i_sb))
5394		return 0;
5395
5396	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5397		return -EIO;
5398
5399	if (EXT4_SB(inode->i_sb)->s_journal) {
5400		if (ext4_journal_current_handle()) {
5401			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5402			dump_stack();
5403			return -EIO;
5404		}
5405
5406		/*
5407		 * No need to force transaction in WB_SYNC_NONE mode. Also
5408		 * ext4_sync_fs() will force the commit after everything is
5409		 * written.
5410		 */
5411		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5412			return 0;
5413
5414		err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5415						EXT4_I(inode)->i_sync_tid);
5416	} else {
5417		struct ext4_iloc iloc;
5418
5419		err = __ext4_get_inode_loc(inode, &iloc, 0);
5420		if (err)
5421			return err;
5422		/*
5423		 * sync(2) will flush the whole buffer cache. No need to do
5424		 * it here separately for each inode.
5425		 */
5426		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5427			sync_dirty_buffer(iloc.bh);
5428		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5429			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5430					 "IO error syncing inode");
5431			err = -EIO;
5432		}
5433		brelse(iloc.bh);
5434	}
5435	return err;
5436}
5437
5438/*
5439 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5440 * buffers that are attached to a page stradding i_size and are undergoing
5441 * commit. In that case we have to wait for commit to finish and try again.
5442 */
5443static void ext4_wait_for_tail_page_commit(struct inode *inode)
5444{
5445	struct page *page;
5446	unsigned offset;
5447	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5448	tid_t commit_tid = 0;
5449	int ret;
5450
5451	offset = inode->i_size & (PAGE_SIZE - 1);
5452	/*
5453	 * All buffers in the last page remain valid? Then there's nothing to
5454	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5455	 * blocksize case
5456	 */
5457	if (offset > PAGE_SIZE - i_blocksize(inode))
5458		return;
5459	while (1) {
5460		page = find_lock_page(inode->i_mapping,
5461				      inode->i_size >> PAGE_SHIFT);
5462		if (!page)
5463			return;
5464		ret = __ext4_journalled_invalidatepage(page, offset,
5465						PAGE_SIZE - offset);
5466		unlock_page(page);
5467		put_page(page);
5468		if (ret != -EBUSY)
5469			return;
5470		commit_tid = 0;
5471		read_lock(&journal->j_state_lock);
5472		if (journal->j_committing_transaction)
5473			commit_tid = journal->j_committing_transaction->t_tid;
5474		read_unlock(&journal->j_state_lock);
5475		if (commit_tid)
5476			jbd2_log_wait_commit(journal, commit_tid);
5477	}
5478}
5479
5480/*
5481 * ext4_setattr()
5482 *
5483 * Called from notify_change.
5484 *
5485 * We want to trap VFS attempts to truncate the file as soon as
5486 * possible.  In particular, we want to make sure that when the VFS
5487 * shrinks i_size, we put the inode on the orphan list and modify
5488 * i_disksize immediately, so that during the subsequent flushing of
5489 * dirty pages and freeing of disk blocks, we can guarantee that any
5490 * commit will leave the blocks being flushed in an unused state on
5491 * disk.  (On recovery, the inode will get truncated and the blocks will
5492 * be freed, so we have a strong guarantee that no future commit will
5493 * leave these blocks visible to the user.)
5494 *
5495 * Another thing we have to assure is that if we are in ordered mode
5496 * and inode is still attached to the committing transaction, we must
5497 * we start writeout of all the dirty pages which are being truncated.
5498 * This way we are sure that all the data written in the previous
5499 * transaction are already on disk (truncate waits for pages under
5500 * writeback).
5501 *
5502 * Called with inode->i_mutex down.
5503 */
5504int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5505{
5506	struct inode *inode = d_inode(dentry);
5507	int error, rc = 0;
5508	int orphan = 0;
5509	const unsigned int ia_valid = attr->ia_valid;
5510
5511	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5512		return -EIO;
5513
5514	if (unlikely(IS_IMMUTABLE(inode)))
5515		return -EPERM;
5516
5517	if (unlikely(IS_APPEND(inode) &&
5518		     (ia_valid & (ATTR_MODE | ATTR_UID |
5519				  ATTR_GID | ATTR_TIMES_SET))))
5520		return -EPERM;
5521
5522	error = setattr_prepare(dentry, attr);
5523	if (error)
5524		return error;
5525
5526	error = fscrypt_prepare_setattr(dentry, attr);
5527	if (error)
5528		return error;
5529
5530	error = fsverity_prepare_setattr(dentry, attr);
5531	if (error)
5532		return error;
5533
5534	if (is_quota_modification(inode, attr)) {
5535		error = dquot_initialize(inode);
5536		if (error)
5537			return error;
5538	}
5539	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5540	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5541		handle_t *handle;
5542
5543		/* (user+group)*(old+new) structure, inode write (sb,
5544		 * inode block, ? - but truncate inode update has it) */
5545		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5546			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5547			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5548		if (IS_ERR(handle)) {
5549			error = PTR_ERR(handle);
5550			goto err_out;
5551		}
5552
5553		/* dquot_transfer() calls back ext4_get_inode_usage() which
5554		 * counts xattr inode references.
5555		 */
5556		down_read(&EXT4_I(inode)->xattr_sem);
5557		error = dquot_transfer(inode, attr);
5558		up_read(&EXT4_I(inode)->xattr_sem);
5559
5560		if (error) {
5561			ext4_journal_stop(handle);
5562			return error;
5563		}
5564		/* Update corresponding info in inode so that everything is in
5565		 * one transaction */
5566		if (attr->ia_valid & ATTR_UID)
5567			inode->i_uid = attr->ia_uid;
5568		if (attr->ia_valid & ATTR_GID)
5569			inode->i_gid = attr->ia_gid;
5570		error = ext4_mark_inode_dirty(handle, inode);
5571		ext4_journal_stop(handle);
5572	}
5573
5574	if (attr->ia_valid & ATTR_SIZE) {
5575		handle_t *handle;
5576		loff_t oldsize = inode->i_size;
5577		int shrink = (attr->ia_size < inode->i_size);
5578
5579		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5580			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5581
5582			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5583				return -EFBIG;
5584		}
5585		if (!S_ISREG(inode->i_mode))
5586			return -EINVAL;
5587
5588		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5589			inode_inc_iversion(inode);
5590
5591		if (shrink) {
5592			if (ext4_should_order_data(inode)) {
5593				error = ext4_begin_ordered_truncate(inode,
5594							    attr->ia_size);
5595				if (error)
5596					goto err_out;
5597			}
5598			/*
5599			 * Blocks are going to be removed from the inode. Wait
5600			 * for dio in flight.
5601			 */
5602			inode_dio_wait(inode);
5603		}
5604
5605		down_write(&EXT4_I(inode)->i_mmap_sem);
5606
5607		rc = ext4_break_layouts(inode);
5608		if (rc) {
5609			up_write(&EXT4_I(inode)->i_mmap_sem);
5610			return rc;
5611		}
5612
5613		if (attr->ia_size != inode->i_size) {
5614			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5615			if (IS_ERR(handle)) {
5616				error = PTR_ERR(handle);
5617				goto out_mmap_sem;
5618			}
5619			if (ext4_handle_valid(handle) && shrink) {
5620				error = ext4_orphan_add(handle, inode);
5621				orphan = 1;
5622			}
5623			/*
5624			 * Update c/mtime on truncate up, ext4_truncate() will
5625			 * update c/mtime in shrink case below
5626			 */
5627			if (!shrink) {
5628				inode->i_mtime = current_time(inode);
5629				inode->i_ctime = inode->i_mtime;
5630			}
5631			down_write(&EXT4_I(inode)->i_data_sem);
5632			EXT4_I(inode)->i_disksize = attr->ia_size;
5633			rc = ext4_mark_inode_dirty(handle, inode);
5634			if (!error)
5635				error = rc;
5636			/*
5637			 * We have to update i_size under i_data_sem together
5638			 * with i_disksize to avoid races with writeback code
5639			 * running ext4_wb_update_i_disksize().
5640			 */
5641			if (!error)
5642				i_size_write(inode, attr->ia_size);
5643			up_write(&EXT4_I(inode)->i_data_sem);
5644			ext4_journal_stop(handle);
5645			if (error)
5646				goto out_mmap_sem;
5647			if (!shrink) {
5648				pagecache_isize_extended(inode, oldsize,
5649							 inode->i_size);
5650			} else if (ext4_should_journal_data(inode)) {
5651				ext4_wait_for_tail_page_commit(inode);
5652			}
5653		}
 
 
5654
5655		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5656		 * Truncate pagecache after we've waited for commit
5657		 * in data=journal mode to make pages freeable.
5658		 */
5659		truncate_pagecache(inode, inode->i_size);
5660		/*
5661		 * Call ext4_truncate() even if i_size didn't change to
5662		 * truncate possible preallocated blocks.
5663		 */
5664		if (attr->ia_size <= oldsize) {
5665			rc = ext4_truncate(inode);
5666			if (rc)
5667				error = rc;
5668		}
5669out_mmap_sem:
5670		up_write(&EXT4_I(inode)->i_mmap_sem);
5671	}
5672
5673	if (!error) {
5674		setattr_copy(inode, attr);
5675		mark_inode_dirty(inode);
5676	}
5677
5678	/*
5679	 * If the call to ext4_truncate failed to get a transaction handle at
5680	 * all, we need to clean up the in-core orphan list manually.
5681	 */
5682	if (orphan && inode->i_nlink)
5683		ext4_orphan_del(NULL, inode);
5684
5685	if (!error && (ia_valid & ATTR_MODE))
5686		rc = posix_acl_chmod(inode, inode->i_mode);
5687
5688err_out:
5689	ext4_std_error(inode->i_sb, error);
5690	if (!error)
5691		error = rc;
5692	return error;
5693}
5694
5695int ext4_getattr(const struct path *path, struct kstat *stat,
5696		 u32 request_mask, unsigned int query_flags)
5697{
5698	struct inode *inode = d_inode(path->dentry);
5699	struct ext4_inode *raw_inode;
5700	struct ext4_inode_info *ei = EXT4_I(inode);
5701	unsigned int flags;
5702
5703	if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5704		stat->result_mask |= STATX_BTIME;
5705		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5706		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5707	}
5708
5709	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5710	if (flags & EXT4_APPEND_FL)
5711		stat->attributes |= STATX_ATTR_APPEND;
5712	if (flags & EXT4_COMPR_FL)
5713		stat->attributes |= STATX_ATTR_COMPRESSED;
5714	if (flags & EXT4_ENCRYPT_FL)
5715		stat->attributes |= STATX_ATTR_ENCRYPTED;
5716	if (flags & EXT4_IMMUTABLE_FL)
5717		stat->attributes |= STATX_ATTR_IMMUTABLE;
5718	if (flags & EXT4_NODUMP_FL)
5719		stat->attributes |= STATX_ATTR_NODUMP;
5720
5721	stat->attributes_mask |= (STATX_ATTR_APPEND |
5722				  STATX_ATTR_COMPRESSED |
5723				  STATX_ATTR_ENCRYPTED |
5724				  STATX_ATTR_IMMUTABLE |
5725				  STATX_ATTR_NODUMP);
5726
 
5727	generic_fillattr(inode, stat);
5728	return 0;
5729}
5730
5731int ext4_file_getattr(const struct path *path, struct kstat *stat,
5732		      u32 request_mask, unsigned int query_flags)
5733{
5734	struct inode *inode = d_inode(path->dentry);
5735	u64 delalloc_blocks;
5736
5737	ext4_getattr(path, stat, request_mask, query_flags);
5738
5739	/*
5740	 * If there is inline data in the inode, the inode will normally not
5741	 * have data blocks allocated (it may have an external xattr block).
5742	 * Report at least one sector for such files, so tools like tar, rsync,
5743	 * others don't incorrectly think the file is completely sparse.
5744	 */
5745	if (unlikely(ext4_has_inline_data(inode)))
5746		stat->blocks += (stat->size + 511) >> 9;
5747
5748	/*
5749	 * We can't update i_blocks if the block allocation is delayed
5750	 * otherwise in the case of system crash before the real block
5751	 * allocation is done, we will have i_blocks inconsistent with
5752	 * on-disk file blocks.
5753	 * We always keep i_blocks updated together with real
5754	 * allocation. But to not confuse with user, stat
5755	 * will return the blocks that include the delayed allocation
5756	 * blocks for this file.
5757	 */
5758	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5759				   EXT4_I(inode)->i_reserved_data_blocks);
5760	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5761	return 0;
5762}
5763
5764static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5765				   int pextents)
5766{
5767	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5768		return ext4_ind_trans_blocks(inode, lblocks);
5769	return ext4_ext_index_trans_blocks(inode, pextents);
5770}
5771
5772/*
5773 * Account for index blocks, block groups bitmaps and block group
5774 * descriptor blocks if modify datablocks and index blocks
5775 * worse case, the indexs blocks spread over different block groups
5776 *
5777 * If datablocks are discontiguous, they are possible to spread over
5778 * different block groups too. If they are contiguous, with flexbg,
5779 * they could still across block group boundary.
5780 *
5781 * Also account for superblock, inode, quota and xattr blocks
5782 */
5783static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5784				  int pextents)
5785{
5786	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5787	int gdpblocks;
5788	int idxblocks;
5789	int ret = 0;
5790
5791	/*
5792	 * How many index blocks need to touch to map @lblocks logical blocks
5793	 * to @pextents physical extents?
5794	 */
5795	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5796
5797	ret = idxblocks;
5798
5799	/*
5800	 * Now let's see how many group bitmaps and group descriptors need
5801	 * to account
5802	 */
5803	groups = idxblocks + pextents;
5804	gdpblocks = groups;
5805	if (groups > ngroups)
5806		groups = ngroups;
5807	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5808		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5809
5810	/* bitmaps and block group descriptor blocks */
5811	ret += groups + gdpblocks;
5812
5813	/* Blocks for super block, inode, quota and xattr blocks */
5814	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5815
5816	return ret;
5817}
5818
5819/*
5820 * Calculate the total number of credits to reserve to fit
5821 * the modification of a single pages into a single transaction,
5822 * which may include multiple chunks of block allocations.
5823 *
5824 * This could be called via ext4_write_begin()
5825 *
5826 * We need to consider the worse case, when
5827 * one new block per extent.
5828 */
5829int ext4_writepage_trans_blocks(struct inode *inode)
5830{
5831	int bpp = ext4_journal_blocks_per_page(inode);
5832	int ret;
5833
5834	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5835
5836	/* Account for data blocks for journalled mode */
5837	if (ext4_should_journal_data(inode))
5838		ret += bpp;
5839	return ret;
5840}
5841
5842/*
5843 * Calculate the journal credits for a chunk of data modification.
5844 *
5845 * This is called from DIO, fallocate or whoever calling
5846 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5847 *
5848 * journal buffers for data blocks are not included here, as DIO
5849 * and fallocate do no need to journal data buffers.
5850 */
5851int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5852{
5853	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5854}
5855
5856/*
5857 * The caller must have previously called ext4_reserve_inode_write().
5858 * Give this, we know that the caller already has write access to iloc->bh.
5859 */
5860int ext4_mark_iloc_dirty(handle_t *handle,
5861			 struct inode *inode, struct ext4_iloc *iloc)
5862{
5863	int err = 0;
5864
5865	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5866		put_bh(iloc->bh);
5867		return -EIO;
5868	}
5869	if (IS_I_VERSION(inode))
5870		inode_inc_iversion(inode);
5871
5872	/* the do_update_inode consumes one bh->b_count */
5873	get_bh(iloc->bh);
5874
5875	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5876	err = ext4_do_update_inode(handle, inode, iloc);
5877	put_bh(iloc->bh);
5878	return err;
5879}
5880
5881/*
5882 * On success, We end up with an outstanding reference count against
5883 * iloc->bh.  This _must_ be cleaned up later.
5884 */
5885
5886int
5887ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5888			 struct ext4_iloc *iloc)
5889{
5890	int err;
5891
5892	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5893		return -EIO;
5894
5895	err = ext4_get_inode_loc(inode, iloc);
5896	if (!err) {
5897		BUFFER_TRACE(iloc->bh, "get_write_access");
5898		err = ext4_journal_get_write_access(handle, iloc->bh);
5899		if (err) {
5900			brelse(iloc->bh);
5901			iloc->bh = NULL;
5902		}
5903	}
5904	ext4_std_error(inode->i_sb, err);
5905	return err;
5906}
5907
5908static int __ext4_expand_extra_isize(struct inode *inode,
5909				     unsigned int new_extra_isize,
5910				     struct ext4_iloc *iloc,
5911				     handle_t *handle, int *no_expand)
 
 
 
 
5912{
5913	struct ext4_inode *raw_inode;
5914	struct ext4_xattr_ibody_header *header;
5915	int error;
5916
5917	raw_inode = ext4_raw_inode(iloc);
 
 
 
5918
5919	header = IHDR(inode, raw_inode);
5920
5921	/* No extended attributes present */
5922	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5923	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5924		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5925		       EXT4_I(inode)->i_extra_isize, 0,
5926		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5927		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5928		return 0;
5929	}
5930
5931	/* try to expand with EAs present */
5932	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5933					   raw_inode, handle);
5934	if (error) {
5935		/*
5936		 * Inode size expansion failed; don't try again
5937		 */
5938		*no_expand = 1;
5939	}
5940
5941	return error;
5942}
5943
5944/*
5945 * Expand an inode by new_extra_isize bytes.
5946 * Returns 0 on success or negative error number on failure.
5947 */
5948static int ext4_try_to_expand_extra_isize(struct inode *inode,
5949					  unsigned int new_extra_isize,
5950					  struct ext4_iloc iloc,
5951					  handle_t *handle)
5952{
5953	int no_expand;
5954	int error;
5955
5956	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5957		return -EOVERFLOW;
5958
5959	/*
5960	 * In nojournal mode, we can immediately attempt to expand
5961	 * the inode.  When journaled, we first need to obtain extra
5962	 * buffer credits since we may write into the EA block
5963	 * with this same handle. If journal_extend fails, then it will
5964	 * only result in a minor loss of functionality for that inode.
5965	 * If this is felt to be critical, then e2fsck should be run to
5966	 * force a large enough s_min_extra_isize.
5967	 */
5968	if (ext4_handle_valid(handle) &&
5969	    jbd2_journal_extend(handle,
5970				EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) != 0)
5971		return -ENOSPC;
5972
5973	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5974		return -EBUSY;
5975
5976	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5977					  handle, &no_expand);
5978	ext4_write_unlock_xattr(inode, &no_expand);
5979
5980	return error;
5981}
5982
5983int ext4_expand_extra_isize(struct inode *inode,
5984			    unsigned int new_extra_isize,
5985			    struct ext4_iloc *iloc)
5986{
5987	handle_t *handle;
5988	int no_expand;
5989	int error, rc;
5990
5991	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5992		brelse(iloc->bh);
5993		return -EOVERFLOW;
5994	}
5995
5996	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5997				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5998	if (IS_ERR(handle)) {
5999		error = PTR_ERR(handle);
6000		brelse(iloc->bh);
6001		return error;
6002	}
6003
6004	ext4_write_lock_xattr(inode, &no_expand);
6005
6006	BUFFER_TRACE(iloc->bh, "get_write_access");
6007	error = ext4_journal_get_write_access(handle, iloc->bh);
6008	if (error) {
6009		brelse(iloc->bh);
6010		goto out_stop;
6011	}
6012
6013	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
6014					  handle, &no_expand);
6015
6016	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
6017	if (!error)
6018		error = rc;
6019
6020	ext4_write_unlock_xattr(inode, &no_expand);
6021out_stop:
6022	ext4_journal_stop(handle);
6023	return error;
6024}
6025
6026/*
6027 * What we do here is to mark the in-core inode as clean with respect to inode
6028 * dirtiness (it may still be data-dirty).
6029 * This means that the in-core inode may be reaped by prune_icache
6030 * without having to perform any I/O.  This is a very good thing,
6031 * because *any* task may call prune_icache - even ones which
6032 * have a transaction open against a different journal.
6033 *
6034 * Is this cheating?  Not really.  Sure, we haven't written the
6035 * inode out, but prune_icache isn't a user-visible syncing function.
6036 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
6037 * we start and wait on commits.
6038 */
6039int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
6040{
6041	struct ext4_iloc iloc;
6042	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6043	int err;
 
6044
6045	might_sleep();
6046	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6047	err = ext4_reserve_inode_write(handle, inode, &iloc);
6048	if (err)
6049		return err;
6050
6051	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6052		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6053					       iloc, handle);
6054
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6055	return ext4_mark_iloc_dirty(handle, inode, &iloc);
6056}
6057
6058/*
6059 * ext4_dirty_inode() is called from __mark_inode_dirty()
6060 *
6061 * We're really interested in the case where a file is being extended.
6062 * i_size has been changed by generic_commit_write() and we thus need
6063 * to include the updated inode in the current transaction.
6064 *
6065 * Also, dquot_alloc_block() will always dirty the inode when blocks
6066 * are allocated to the file.
6067 *
6068 * If the inode is marked synchronous, we don't honour that here - doing
6069 * so would cause a commit on atime updates, which we don't bother doing.
6070 * We handle synchronous inodes at the highest possible level.
6071 *
6072 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
6073 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
6074 * to copy into the on-disk inode structure are the timestamp files.
6075 */
6076void ext4_dirty_inode(struct inode *inode, int flags)
6077{
6078	handle_t *handle;
6079
6080	if (flags == I_DIRTY_TIME)
6081		return;
6082	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6083	if (IS_ERR(handle))
6084		goto out;
6085
6086	ext4_mark_inode_dirty(handle, inode);
6087
6088	ext4_journal_stop(handle);
6089out:
6090	return;
6091}
6092
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6093int ext4_change_inode_journal_flag(struct inode *inode, int val)
6094{
6095	journal_t *journal;
6096	handle_t *handle;
6097	int err;
6098	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6099
6100	/*
6101	 * We have to be very careful here: changing a data block's
6102	 * journaling status dynamically is dangerous.  If we write a
6103	 * data block to the journal, change the status and then delete
6104	 * that block, we risk forgetting to revoke the old log record
6105	 * from the journal and so a subsequent replay can corrupt data.
6106	 * So, first we make sure that the journal is empty and that
6107	 * nobody is changing anything.
6108	 */
6109
6110	journal = EXT4_JOURNAL(inode);
6111	if (!journal)
6112		return 0;
6113	if (is_journal_aborted(journal))
6114		return -EROFS;
6115
6116	/* Wait for all existing dio workers */
 
6117	inode_dio_wait(inode);
6118
6119	/*
6120	 * Before flushing the journal and switching inode's aops, we have
6121	 * to flush all dirty data the inode has. There can be outstanding
6122	 * delayed allocations, there can be unwritten extents created by
6123	 * fallocate or buffered writes in dioread_nolock mode covered by
6124	 * dirty data which can be converted only after flushing the dirty
6125	 * data (and journalled aops don't know how to handle these cases).
6126	 */
6127	if (val) {
6128		down_write(&EXT4_I(inode)->i_mmap_sem);
6129		err = filemap_write_and_wait(inode->i_mapping);
6130		if (err < 0) {
6131			up_write(&EXT4_I(inode)->i_mmap_sem);
 
6132			return err;
6133		}
6134	}
6135
6136	percpu_down_write(&sbi->s_journal_flag_rwsem);
6137	jbd2_journal_lock_updates(journal);
6138
6139	/*
6140	 * OK, there are no updates running now, and all cached data is
6141	 * synced to disk.  We are now in a completely consistent state
6142	 * which doesn't have anything in the journal, and we know that
6143	 * no filesystem updates are running, so it is safe to modify
6144	 * the inode's in-core data-journaling state flag now.
6145	 */
6146
6147	if (val)
6148		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6149	else {
6150		err = jbd2_journal_flush(journal);
6151		if (err < 0) {
6152			jbd2_journal_unlock_updates(journal);
6153			percpu_up_write(&sbi->s_journal_flag_rwsem);
 
6154			return err;
6155		}
6156		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6157	}
6158	ext4_set_aops(inode);
 
 
 
 
 
6159
6160	jbd2_journal_unlock_updates(journal);
6161	percpu_up_write(&sbi->s_journal_flag_rwsem);
6162
6163	if (val)
6164		up_write(&EXT4_I(inode)->i_mmap_sem);
 
6165
6166	/* Finally we can mark the inode as dirty. */
6167
6168	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6169	if (IS_ERR(handle))
6170		return PTR_ERR(handle);
6171
6172	err = ext4_mark_inode_dirty(handle, inode);
6173	ext4_handle_sync(handle);
6174	ext4_journal_stop(handle);
6175	ext4_std_error(inode->i_sb, err);
6176
6177	return err;
6178}
6179
6180static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
6181{
6182	return !buffer_mapped(bh);
6183}
6184
6185vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6186{
6187	struct vm_area_struct *vma = vmf->vma;
6188	struct page *page = vmf->page;
6189	loff_t size;
6190	unsigned long len;
6191	int err;
6192	vm_fault_t ret;
6193	struct file *file = vma->vm_file;
6194	struct inode *inode = file_inode(file);
6195	struct address_space *mapping = inode->i_mapping;
6196	handle_t *handle;
6197	get_block_t *get_block;
6198	int retries = 0;
6199
6200	if (unlikely(IS_IMMUTABLE(inode)))
6201		return VM_FAULT_SIGBUS;
6202
6203	sb_start_pagefault(inode->i_sb);
6204	file_update_time(vma->vm_file);
6205
6206	down_read(&EXT4_I(inode)->i_mmap_sem);
6207
6208	err = ext4_convert_inline_data(inode);
6209	if (err)
6210		goto out_ret;
6211
6212	/* Delalloc case is easy... */
6213	if (test_opt(inode->i_sb, DELALLOC) &&
6214	    !ext4_should_journal_data(inode) &&
6215	    !ext4_nonda_switch(inode->i_sb)) {
6216		do {
6217			err = block_page_mkwrite(vma, vmf,
6218						   ext4_da_get_block_prep);
6219		} while (err == -ENOSPC &&
6220		       ext4_should_retry_alloc(inode->i_sb, &retries));
6221		goto out_ret;
6222	}
6223
6224	lock_page(page);
6225	size = i_size_read(inode);
6226	/* Page got truncated from under us? */
6227	if (page->mapping != mapping || page_offset(page) > size) {
6228		unlock_page(page);
6229		ret = VM_FAULT_NOPAGE;
6230		goto out;
6231	}
6232
6233	if (page->index == size >> PAGE_SHIFT)
6234		len = size & ~PAGE_MASK;
6235	else
6236		len = PAGE_SIZE;
6237	/*
6238	 * Return if we have all the buffers mapped. This avoids the need to do
6239	 * journal_start/journal_stop which can block and take a long time
6240	 */
6241	if (page_has_buffers(page)) {
6242		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
6243					    0, len, NULL,
6244					    ext4_bh_unmapped)) {
6245			/* Wait so that we don't change page under IO */
6246			wait_for_stable_page(page);
6247			ret = VM_FAULT_LOCKED;
6248			goto out;
6249		}
6250	}
6251	unlock_page(page);
6252	/* OK, we need to fill the hole... */
6253	if (ext4_should_dioread_nolock(inode))
6254		get_block = ext4_get_block_unwritten;
6255	else
6256		get_block = ext4_get_block;
6257retry_alloc:
6258	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6259				    ext4_writepage_trans_blocks(inode));
6260	if (IS_ERR(handle)) {
6261		ret = VM_FAULT_SIGBUS;
6262		goto out;
6263	}
6264	err = block_page_mkwrite(vma, vmf, get_block);
6265	if (!err && ext4_should_journal_data(inode)) {
6266		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
6267			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
6268			unlock_page(page);
6269			ret = VM_FAULT_SIGBUS;
6270			ext4_journal_stop(handle);
6271			goto out;
6272		}
6273		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
6274	}
6275	ext4_journal_stop(handle);
6276	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6277		goto retry_alloc;
6278out_ret:
6279	ret = block_page_mkwrite_return(err);
6280out:
6281	up_read(&EXT4_I(inode)->i_mmap_sem);
6282	sb_end_pagefault(inode->i_sb);
6283	return ret;
6284}
6285
6286vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6287{
6288	struct inode *inode = file_inode(vmf->vma->vm_file);
6289	vm_fault_t ret;
6290
6291	down_read(&EXT4_I(inode)->i_mmap_sem);
6292	ret = filemap_fault(vmf);
6293	up_read(&EXT4_I(inode)->i_mmap_sem);
6294
6295	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6296}