Linux Audio

Check our new training course

Loading...
v4.10.11
 
   1/*
   2 *  linux/fs/ext4/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  16 *	(jj@sunsite.ms.mff.cuni.cz)
  17 *
  18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  19 */
  20
  21#include <linux/fs.h>
 
  22#include <linux/time.h>
  23#include <linux/highuid.h>
  24#include <linux/pagemap.h>
  25#include <linux/dax.h>
  26#include <linux/quotaops.h>
  27#include <linux/string.h>
  28#include <linux/buffer_head.h>
  29#include <linux/writeback.h>
  30#include <linux/pagevec.h>
  31#include <linux/mpage.h>
  32#include <linux/namei.h>
  33#include <linux/uio.h>
  34#include <linux/bio.h>
  35#include <linux/workqueue.h>
  36#include <linux/kernel.h>
  37#include <linux/printk.h>
  38#include <linux/slab.h>
  39#include <linux/bitops.h>
  40#include <linux/iomap.h>
 
  41
  42#include "ext4_jbd2.h"
  43#include "xattr.h"
  44#include "acl.h"
  45#include "truncate.h"
  46
  47#include <trace/events/ext4.h>
  48
  49#define MPAGE_DA_EXTENT_TAIL 0x01
 
 
 
  50
  51static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  52			      struct ext4_inode_info *ei)
  53{
  54	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  55	__u32 csum;
  56	__u16 dummy_csum = 0;
  57	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  58	unsigned int csum_size = sizeof(dummy_csum);
  59
  60	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  61	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  62	offset += csum_size;
  63	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  64			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  65
  66	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  67		offset = offsetof(struct ext4_inode, i_checksum_hi);
  68		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  69				   EXT4_GOOD_OLD_INODE_SIZE,
  70				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  71		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  72			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  73					   csum_size);
  74			offset += csum_size;
  75		}
  76		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  77				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  78	}
  79
  80	return csum;
  81}
  82
  83static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  84				  struct ext4_inode_info *ei)
  85{
  86	__u32 provided, calculated;
  87
  88	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  89	    cpu_to_le32(EXT4_OS_LINUX) ||
  90	    !ext4_has_metadata_csum(inode->i_sb))
  91		return 1;
  92
  93	provided = le16_to_cpu(raw->i_checksum_lo);
  94	calculated = ext4_inode_csum(inode, raw, ei);
  95	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
  96	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
  97		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
  98	else
  99		calculated &= 0xFFFF;
 100
 101	return provided == calculated;
 102}
 103
 104static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 105				struct ext4_inode_info *ei)
 106{
 107	__u32 csum;
 108
 109	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 110	    cpu_to_le32(EXT4_OS_LINUX) ||
 111	    !ext4_has_metadata_csum(inode->i_sb))
 112		return;
 113
 114	csum = ext4_inode_csum(inode, raw, ei);
 115	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 116	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 117	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 118		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 119}
 120
 121static inline int ext4_begin_ordered_truncate(struct inode *inode,
 122					      loff_t new_size)
 123{
 124	trace_ext4_begin_ordered_truncate(inode, new_size);
 125	/*
 126	 * If jinode is zero, then we never opened the file for
 127	 * writing, so there's no need to call
 128	 * jbd2_journal_begin_ordered_truncate() since there's no
 129	 * outstanding writes we need to flush.
 130	 */
 131	if (!EXT4_I(inode)->jinode)
 132		return 0;
 133	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 134						   EXT4_I(inode)->jinode,
 135						   new_size);
 136}
 137
 138static void ext4_invalidatepage(struct page *page, unsigned int offset,
 139				unsigned int length);
 140static int __ext4_journalled_writepage(struct page *page, unsigned int len);
 141static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
 142static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 143				  int pextents);
 144
 145/*
 146 * Test whether an inode is a fast symlink.
 
 147 */
 148int ext4_inode_is_fast_symlink(struct inode *inode)
 149{
 150        int ea_blocks = EXT4_I(inode)->i_file_acl ?
 151		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 152
 153	if (ext4_has_inline_data(inode))
 154		return 0;
 155
 156	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 157}
 158
 159/*
 160 * Restart the transaction associated with *handle.  This does a commit,
 161 * so before we call here everything must be consistently dirtied against
 162 * this transaction.
 163 */
 164int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
 165				 int nblocks)
 166{
 167	int ret;
 168
 169	/*
 170	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
 171	 * moment, get_block can be called only for blocks inside i_size since
 172	 * page cache has been already dropped and writes are blocked by
 173	 * i_mutex. So we can safely drop the i_data_sem here.
 174	 */
 175	BUG_ON(EXT4_JOURNAL(inode) == NULL);
 176	jbd_debug(2, "restarting handle %p\n", handle);
 177	up_write(&EXT4_I(inode)->i_data_sem);
 178	ret = ext4_journal_restart(handle, nblocks);
 179	down_write(&EXT4_I(inode)->i_data_sem);
 180	ext4_discard_preallocations(inode);
 181
 182	return ret;
 
 
 
 183}
 184
 185/*
 186 * Called at the last iput() if i_nlink is zero.
 187 */
 188void ext4_evict_inode(struct inode *inode)
 189{
 190	handle_t *handle;
 191	int err;
 
 
 
 
 
 
 
 
 192
 193	trace_ext4_evict_inode(inode);
 194
 
 
 195	if (inode->i_nlink) {
 196		/*
 197		 * When journalling data dirty buffers are tracked only in the
 198		 * journal. So although mm thinks everything is clean and
 199		 * ready for reaping the inode might still have some pages to
 200		 * write in the running transaction or waiting to be
 201		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
 202		 * (via truncate_inode_pages()) to discard these buffers can
 203		 * cause data loss. Also even if we did not discard these
 204		 * buffers, we would have no way to find them after the inode
 205		 * is reaped and thus user could see stale data if he tries to
 206		 * read them before the transaction is checkpointed. So be
 207		 * careful and force everything to disk here... We use
 208		 * ei->i_datasync_tid to store the newest transaction
 209		 * containing inode's data.
 210		 *
 211		 * Note that directories do not have this problem because they
 212		 * don't use page cache.
 213		 */
 214		if (inode->i_ino != EXT4_JOURNAL_INO &&
 215		    ext4_should_journal_data(inode) &&
 216		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 217			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 218			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
 219
 220			jbd2_complete_transaction(journal, commit_tid);
 221			filemap_write_and_wait(&inode->i_data);
 222		}
 223		truncate_inode_pages_final(&inode->i_data);
 224
 225		goto no_delete;
 226	}
 227
 228	if (is_bad_inode(inode))
 229		goto no_delete;
 230	dquot_initialize(inode);
 231
 232	if (ext4_should_order_data(inode))
 233		ext4_begin_ordered_truncate(inode, 0);
 234	truncate_inode_pages_final(&inode->i_data);
 235
 236	/*
 
 
 
 
 
 
 
 
 
 
 237	 * Protect us against freezing - iput() caller didn't have to have any
 238	 * protection against it
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239	 */
 240	sb_start_intwrite(inode->i_sb);
 241	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 242				    ext4_blocks_for_truncate(inode)+3);
 243	if (IS_ERR(handle)) {
 244		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 245		/*
 246		 * If we're going to skip the normal cleanup, we still need to
 247		 * make sure that the in-core orphan linked list is properly
 248		 * cleaned up.
 249		 */
 250		ext4_orphan_del(NULL, inode);
 251		sb_end_intwrite(inode->i_sb);
 
 252		goto no_delete;
 253	}
 254
 255	if (IS_SYNC(inode))
 256		ext4_handle_sync(handle);
 
 
 
 
 
 
 
 
 
 
 257	inode->i_size = 0;
 258	err = ext4_mark_inode_dirty(handle, inode);
 259	if (err) {
 260		ext4_warning(inode->i_sb,
 261			     "couldn't mark inode dirty (err %d)", err);
 262		goto stop_handle;
 263	}
 264	if (inode->i_blocks) {
 265		err = ext4_truncate(inode);
 266		if (err) {
 267			ext4_error(inode->i_sb,
 268				   "couldn't truncate inode %lu (err %d)",
 269				   inode->i_ino, err);
 270			goto stop_handle;
 271		}
 272	}
 273
 274	/*
 275	 * ext4_ext_truncate() doesn't reserve any slop when it
 276	 * restarts journal transactions; therefore there may not be
 277	 * enough credits left in the handle to remove the inode from
 278	 * the orphan list and set the dtime field.
 279	 */
 280	if (!ext4_handle_has_enough_credits(handle, 3)) {
 281		err = ext4_journal_extend(handle, 3);
 282		if (err > 0)
 283			err = ext4_journal_restart(handle, 3);
 284		if (err != 0) {
 285			ext4_warning(inode->i_sb,
 286				     "couldn't extend journal (err %d)", err);
 287		stop_handle:
 288			ext4_journal_stop(handle);
 289			ext4_orphan_del(NULL, inode);
 290			sb_end_intwrite(inode->i_sb);
 291			goto no_delete;
 292		}
 293	}
 294
 295	/*
 296	 * Kill off the orphan record which ext4_truncate created.
 297	 * AKPM: I think this can be inside the above `if'.
 298	 * Note that ext4_orphan_del() has to be able to cope with the
 299	 * deletion of a non-existent orphan - this is because we don't
 300	 * know if ext4_truncate() actually created an orphan record.
 301	 * (Well, we could do this if we need to, but heck - it works)
 302	 */
 303	ext4_orphan_del(handle, inode);
 304	EXT4_I(inode)->i_dtime	= get_seconds();
 305
 306	/*
 307	 * One subtle ordering requirement: if anything has gone wrong
 308	 * (transaction abort, IO errors, whatever), then we can still
 309	 * do these next steps (the fs will already have been marked as
 310	 * having errors), but we can't free the inode if the mark_dirty
 311	 * fails.
 312	 */
 313	if (ext4_mark_inode_dirty(handle, inode))
 314		/* If that failed, just do the required in-core inode clear. */
 315		ext4_clear_inode(inode);
 316	else
 317		ext4_free_inode(handle, inode);
 318	ext4_journal_stop(handle);
 319	sb_end_intwrite(inode->i_sb);
 
 
 320	return;
 321no_delete:
 
 
 
 
 
 
 
 
 322	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 323}
 324
 325#ifdef CONFIG_QUOTA
 326qsize_t *ext4_get_reserved_space(struct inode *inode)
 327{
 328	return &EXT4_I(inode)->i_reserved_quota;
 329}
 330#endif
 331
 332/*
 333 * Called with i_data_sem down, which is important since we can call
 334 * ext4_discard_preallocations() from here.
 335 */
 336void ext4_da_update_reserve_space(struct inode *inode,
 337					int used, int quota_claim)
 338{
 339	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 340	struct ext4_inode_info *ei = EXT4_I(inode);
 341
 342	spin_lock(&ei->i_block_reservation_lock);
 343	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 344	if (unlikely(used > ei->i_reserved_data_blocks)) {
 345		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 346			 "with only %d reserved data blocks",
 347			 __func__, inode->i_ino, used,
 348			 ei->i_reserved_data_blocks);
 349		WARN_ON(1);
 350		used = ei->i_reserved_data_blocks;
 351	}
 352
 353	/* Update per-inode reservations */
 354	ei->i_reserved_data_blocks -= used;
 355	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 356
 357	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
 358
 359	/* Update quota subsystem for data blocks */
 360	if (quota_claim)
 361		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 362	else {
 363		/*
 364		 * We did fallocate with an offset that is already delayed
 365		 * allocated. So on delayed allocated writeback we should
 366		 * not re-claim the quota for fallocated blocks.
 367		 */
 368		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 369	}
 370
 371	/*
 372	 * If we have done all the pending block allocations and if
 373	 * there aren't any writers on the inode, we can discard the
 374	 * inode's preallocations.
 375	 */
 376	if ((ei->i_reserved_data_blocks == 0) &&
 377	    (atomic_read(&inode->i_writecount) == 0))
 378		ext4_discard_preallocations(inode);
 379}
 380
 381static int __check_block_validity(struct inode *inode, const char *func,
 382				unsigned int line,
 383				struct ext4_map_blocks *map)
 384{
 385	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
 386				   map->m_len)) {
 
 
 
 387		ext4_error_inode(inode, func, line, map->m_pblk,
 388				 "lblock %lu mapped to illegal pblock "
 389				 "(length %d)", (unsigned long) map->m_lblk,
 390				 map->m_len);
 391		return -EFSCORRUPTED;
 392	}
 393	return 0;
 394}
 395
 396int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 397		       ext4_lblk_t len)
 398{
 399	int ret;
 400
 401	if (ext4_encrypted_inode(inode))
 402		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 403
 404	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 405	if (ret > 0)
 406		ret = 0;
 407
 408	return ret;
 409}
 410
 411#define check_block_validity(inode, map)	\
 412	__check_block_validity((inode), __func__, __LINE__, (map))
 413
 414#ifdef ES_AGGRESSIVE_TEST
 415static void ext4_map_blocks_es_recheck(handle_t *handle,
 416				       struct inode *inode,
 417				       struct ext4_map_blocks *es_map,
 418				       struct ext4_map_blocks *map,
 419				       int flags)
 420{
 421	int retval;
 422
 423	map->m_flags = 0;
 424	/*
 425	 * There is a race window that the result is not the same.
 426	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 427	 * is that we lookup a block mapping in extent status tree with
 428	 * out taking i_data_sem.  So at the time the unwritten extent
 429	 * could be converted.
 430	 */
 431	down_read(&EXT4_I(inode)->i_data_sem);
 432	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 433		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 434					     EXT4_GET_BLOCKS_KEEP_SIZE);
 435	} else {
 436		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 437					     EXT4_GET_BLOCKS_KEEP_SIZE);
 438	}
 439	up_read((&EXT4_I(inode)->i_data_sem));
 440
 441	/*
 442	 * We don't check m_len because extent will be collpased in status
 443	 * tree.  So the m_len might not equal.
 444	 */
 445	if (es_map->m_lblk != map->m_lblk ||
 446	    es_map->m_flags != map->m_flags ||
 447	    es_map->m_pblk != map->m_pblk) {
 448		printk("ES cache assertion failed for inode: %lu "
 449		       "es_cached ex [%d/%d/%llu/%x] != "
 450		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 451		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 452		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 453		       map->m_len, map->m_pblk, map->m_flags,
 454		       retval, flags);
 455	}
 456}
 457#endif /* ES_AGGRESSIVE_TEST */
 458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 459/*
 460 * The ext4_map_blocks() function tries to look up the requested blocks,
 461 * and returns if the blocks are already mapped.
 462 *
 463 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 464 * and store the allocated blocks in the result buffer head and mark it
 465 * mapped.
 466 *
 467 * If file type is extents based, it will call ext4_ext_map_blocks(),
 468 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 469 * based files
 470 *
 471 * On success, it returns the number of blocks being mapped or allocated.  if
 472 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
 473 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
 
 474 *
 475 * It returns 0 if plain look up failed (blocks have not been allocated), in
 476 * that case, @map is returned as unmapped but we still do fill map->m_len to
 477 * indicate the length of a hole starting at map->m_lblk.
 478 *
 479 * It returns the error in case of allocation failure.
 480 */
 481int ext4_map_blocks(handle_t *handle, struct inode *inode,
 482		    struct ext4_map_blocks *map, int flags)
 483{
 484	struct extent_status es;
 485	int retval;
 486	int ret = 0;
 487#ifdef ES_AGGRESSIVE_TEST
 488	struct ext4_map_blocks orig_map;
 489
 490	memcpy(&orig_map, map, sizeof(*map));
 491#endif
 492
 493	map->m_flags = 0;
 494	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
 495		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
 496		  (unsigned long) map->m_lblk);
 497
 498	/*
 499	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 500	 */
 501	if (unlikely(map->m_len > INT_MAX))
 502		map->m_len = INT_MAX;
 503
 504	/* We can handle the block number less than EXT_MAX_BLOCKS */
 505	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 506		return -EFSCORRUPTED;
 507
 508	/* Lookup extent status tree firstly */
 509	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 
 510		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 511			map->m_pblk = ext4_es_pblock(&es) +
 512					map->m_lblk - es.es_lblk;
 513			map->m_flags |= ext4_es_is_written(&es) ?
 514					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 515			retval = es.es_len - (map->m_lblk - es.es_lblk);
 516			if (retval > map->m_len)
 517				retval = map->m_len;
 518			map->m_len = retval;
 519		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 520			map->m_pblk = 0;
 
 
 521			retval = es.es_len - (map->m_lblk - es.es_lblk);
 522			if (retval > map->m_len)
 523				retval = map->m_len;
 524			map->m_len = retval;
 525			retval = 0;
 526		} else {
 527			BUG_ON(1);
 528		}
 
 
 
 529#ifdef ES_AGGRESSIVE_TEST
 530		ext4_map_blocks_es_recheck(handle, inode, map,
 531					   &orig_map, flags);
 532#endif
 533		goto found;
 534	}
 
 
 
 
 
 
 535
 536	/*
 537	 * Try to see if we can get the block without requesting a new
 538	 * file system block.
 539	 */
 540	down_read(&EXT4_I(inode)->i_data_sem);
 541	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 542		retval = ext4_ext_map_blocks(handle, inode, map, flags &
 543					     EXT4_GET_BLOCKS_KEEP_SIZE);
 544	} else {
 545		retval = ext4_ind_map_blocks(handle, inode, map, flags &
 546					     EXT4_GET_BLOCKS_KEEP_SIZE);
 547	}
 548	if (retval > 0) {
 549		unsigned int status;
 550
 551		if (unlikely(retval != map->m_len)) {
 552			ext4_warning(inode->i_sb,
 553				     "ES len assertion failed for inode "
 554				     "%lu: retval %d != map->m_len %d",
 555				     inode->i_ino, retval, map->m_len);
 556			WARN_ON(1);
 557		}
 558
 559		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 560				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 561		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 562		    !(status & EXTENT_STATUS_WRITTEN) &&
 563		    ext4_find_delalloc_range(inode, map->m_lblk,
 564					     map->m_lblk + map->m_len - 1))
 565			status |= EXTENT_STATUS_DELAYED;
 566		ret = ext4_es_insert_extent(inode, map->m_lblk,
 567					    map->m_len, map->m_pblk, status);
 568		if (ret < 0)
 569			retval = ret;
 570	}
 571	up_read((&EXT4_I(inode)->i_data_sem));
 572
 573found:
 574	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 575		ret = check_block_validity(inode, map);
 576		if (ret != 0)
 577			return ret;
 578	}
 579
 580	/* If it is only a block(s) look up */
 581	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 582		return retval;
 583
 584	/*
 585	 * Returns if the blocks have already allocated
 586	 *
 587	 * Note that if blocks have been preallocated
 588	 * ext4_ext_get_block() returns the create = 0
 589	 * with buffer head unmapped.
 590	 */
 591	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 592		/*
 593		 * If we need to convert extent to unwritten
 594		 * we continue and do the actual work in
 595		 * ext4_ext_map_blocks()
 596		 */
 597		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 598			return retval;
 599
 600	/*
 601	 * Here we clear m_flags because after allocating an new extent,
 602	 * it will be set again.
 603	 */
 604	map->m_flags &= ~EXT4_MAP_FLAGS;
 605
 606	/*
 607	 * New blocks allocate and/or writing to unwritten extent
 608	 * will possibly result in updating i_data, so we take
 609	 * the write lock of i_data_sem, and call get_block()
 610	 * with create == 1 flag.
 611	 */
 612	down_write(&EXT4_I(inode)->i_data_sem);
 613
 614	/*
 615	 * We need to check for EXT4 here because migrate
 616	 * could have changed the inode type in between
 617	 */
 618	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 619		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 620	} else {
 621		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 622
 623		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
 624			/*
 625			 * We allocated new blocks which will result in
 626			 * i_data's format changing.  Force the migrate
 627			 * to fail by clearing migrate flags
 628			 */
 629			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 630		}
 631
 632		/*
 633		 * Update reserved blocks/metadata blocks after successful
 634		 * block allocation which had been deferred till now. We don't
 635		 * support fallocate for non extent files. So we can update
 636		 * reserve space here.
 637		 */
 638		if ((retval > 0) &&
 639			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
 640			ext4_da_update_reserve_space(inode, retval, 1);
 641	}
 642
 643	if (retval > 0) {
 644		unsigned int status;
 645
 646		if (unlikely(retval != map->m_len)) {
 647			ext4_warning(inode->i_sb,
 648				     "ES len assertion failed for inode "
 649				     "%lu: retval %d != map->m_len %d",
 650				     inode->i_ino, retval, map->m_len);
 651			WARN_ON(1);
 652		}
 653
 654		/*
 655		 * We have to zeroout blocks before inserting them into extent
 656		 * status tree. Otherwise someone could look them up there and
 657		 * use them before they are really zeroed. We also have to
 658		 * unmap metadata before zeroing as otherwise writeback can
 659		 * overwrite zeros with stale data from block device.
 660		 */
 661		if (flags & EXT4_GET_BLOCKS_ZERO &&
 662		    map->m_flags & EXT4_MAP_MAPPED &&
 663		    map->m_flags & EXT4_MAP_NEW) {
 664			clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
 665					   map->m_len);
 666			ret = ext4_issue_zeroout(inode, map->m_lblk,
 667						 map->m_pblk, map->m_len);
 668			if (ret) {
 669				retval = ret;
 670				goto out_sem;
 671			}
 672		}
 673
 674		/*
 675		 * If the extent has been zeroed out, we don't need to update
 676		 * extent status tree.
 677		 */
 678		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
 679		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
 680			if (ext4_es_is_written(&es))
 681				goto out_sem;
 682		}
 683		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 684				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 685		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
 686		    !(status & EXTENT_STATUS_WRITTEN) &&
 687		    ext4_find_delalloc_range(inode, map->m_lblk,
 688					     map->m_lblk + map->m_len - 1))
 689			status |= EXTENT_STATUS_DELAYED;
 690		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 691					    map->m_pblk, status);
 692		if (ret < 0) {
 693			retval = ret;
 694			goto out_sem;
 695		}
 696	}
 697
 698out_sem:
 699	up_write((&EXT4_I(inode)->i_data_sem));
 700	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 701		ret = check_block_validity(inode, map);
 702		if (ret != 0)
 703			return ret;
 704
 705		/*
 706		 * Inodes with freshly allocated blocks where contents will be
 707		 * visible after transaction commit must be on transaction's
 708		 * ordered data list.
 709		 */
 710		if (map->m_flags & EXT4_MAP_NEW &&
 711		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 712		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 713		    !IS_NOQUOTA(inode) &&
 714		    ext4_should_order_data(inode)) {
 
 
 
 
 715			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 716				ret = ext4_jbd2_inode_add_wait(handle, inode);
 
 717			else
 718				ret = ext4_jbd2_inode_add_write(handle, inode);
 
 719			if (ret)
 720				return ret;
 721		}
 722	}
 
 
 
 
 
 
 723	return retval;
 724}
 725
 726/*
 727 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 728 * we have to be careful as someone else may be manipulating b_state as well.
 729 */
 730static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 731{
 732	unsigned long old_state;
 733	unsigned long new_state;
 734
 735	flags &= EXT4_MAP_FLAGS;
 736
 737	/* Dummy buffer_head? Set non-atomically. */
 738	if (!bh->b_page) {
 739		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 740		return;
 741	}
 742	/*
 743	 * Someone else may be modifying b_state. Be careful! This is ugly but
 744	 * once we get rid of using bh as a container for mapping information
 745	 * to pass to / from get_block functions, this can go away.
 746	 */
 
 747	do {
 748		old_state = READ_ONCE(bh->b_state);
 749		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 750	} while (unlikely(
 751		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
 752}
 753
 754static int _ext4_get_block(struct inode *inode, sector_t iblock,
 755			   struct buffer_head *bh, int flags)
 756{
 757	struct ext4_map_blocks map;
 758	int ret = 0;
 759
 760	if (ext4_has_inline_data(inode))
 761		return -ERANGE;
 762
 763	map.m_lblk = iblock;
 764	map.m_len = bh->b_size >> inode->i_blkbits;
 765
 766	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 767			      flags);
 768	if (ret > 0) {
 769		map_bh(bh, inode->i_sb, map.m_pblk);
 770		ext4_update_bh_state(bh, map.m_flags);
 771		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 772		ret = 0;
 773	} else if (ret == 0) {
 774		/* hole case, need to fill in bh->b_size */
 775		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 776	}
 777	return ret;
 778}
 779
 780int ext4_get_block(struct inode *inode, sector_t iblock,
 781		   struct buffer_head *bh, int create)
 782{
 783	return _ext4_get_block(inode, iblock, bh,
 784			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 785}
 786
 787/*
 788 * Get block function used when preparing for buffered write if we require
 789 * creating an unwritten extent if blocks haven't been allocated.  The extent
 790 * will be converted to written after the IO is complete.
 791 */
 792int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 793			     struct buffer_head *bh_result, int create)
 794{
 795	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 796		   inode->i_ino, create);
 797	return _ext4_get_block(inode, iblock, bh_result,
 798			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
 799}
 800
 801/* Maximum number of blocks we map for direct IO at once. */
 802#define DIO_MAX_BLOCKS 4096
 803
 804/*
 805 * Get blocks function for the cases that need to start a transaction -
 806 * generally difference cases of direct IO and DAX IO. It also handles retries
 807 * in case of ENOSPC.
 808 */
 809static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
 810				struct buffer_head *bh_result, int flags)
 811{
 812	int dio_credits;
 813	handle_t *handle;
 814	int retries = 0;
 815	int ret;
 816
 817	/* Trim mapping request to maximum we can map at once for DIO */
 818	if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
 819		bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
 820	dio_credits = ext4_chunk_trans_blocks(inode,
 821				      bh_result->b_size >> inode->i_blkbits);
 822retry:
 823	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
 824	if (IS_ERR(handle))
 825		return PTR_ERR(handle);
 826
 827	ret = _ext4_get_block(inode, iblock, bh_result, flags);
 828	ext4_journal_stop(handle);
 829
 830	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
 831		goto retry;
 832	return ret;
 833}
 834
 835/* Get block function for DIO reads and writes to inodes without extents */
 836int ext4_dio_get_block(struct inode *inode, sector_t iblock,
 837		       struct buffer_head *bh, int create)
 838{
 839	/* We don't expect handle for direct IO */
 840	WARN_ON_ONCE(ext4_journal_current_handle());
 841
 842	if (!create)
 843		return _ext4_get_block(inode, iblock, bh, 0);
 844	return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
 845}
 846
 847/*
 848 * Get block function for AIO DIO writes when we create unwritten extent if
 849 * blocks are not allocated yet. The extent will be converted to written
 850 * after IO is complete.
 851 */
 852static int ext4_dio_get_block_unwritten_async(struct inode *inode,
 853		sector_t iblock, struct buffer_head *bh_result,	int create)
 854{
 855	int ret;
 856
 857	/* We don't expect handle for direct IO */
 858	WARN_ON_ONCE(ext4_journal_current_handle());
 859
 860	ret = ext4_get_block_trans(inode, iblock, bh_result,
 861				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 862
 863	/*
 864	 * When doing DIO using unwritten extents, we need io_end to convert
 865	 * unwritten extents to written on IO completion. We allocate io_end
 866	 * once we spot unwritten extent and store it in b_private. Generic
 867	 * DIO code keeps b_private set and furthermore passes the value to
 868	 * our completion callback in 'private' argument.
 869	 */
 870	if (!ret && buffer_unwritten(bh_result)) {
 871		if (!bh_result->b_private) {
 872			ext4_io_end_t *io_end;
 873
 874			io_end = ext4_init_io_end(inode, GFP_KERNEL);
 875			if (!io_end)
 876				return -ENOMEM;
 877			bh_result->b_private = io_end;
 878			ext4_set_io_unwritten_flag(inode, io_end);
 879		}
 880		set_buffer_defer_completion(bh_result);
 881	}
 882
 883	return ret;
 884}
 885
 886/*
 887 * Get block function for non-AIO DIO writes when we create unwritten extent if
 888 * blocks are not allocated yet. The extent will be converted to written
 889 * after IO is complete from ext4_ext_direct_IO() function.
 890 */
 891static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
 892		sector_t iblock, struct buffer_head *bh_result,	int create)
 893{
 894	int ret;
 895
 896	/* We don't expect handle for direct IO */
 897	WARN_ON_ONCE(ext4_journal_current_handle());
 898
 899	ret = ext4_get_block_trans(inode, iblock, bh_result,
 900				   EXT4_GET_BLOCKS_IO_CREATE_EXT);
 901
 902	/*
 903	 * Mark inode as having pending DIO writes to unwritten extents.
 904	 * ext4_ext_direct_IO() checks this flag and converts extents to
 905	 * written.
 906	 */
 907	if (!ret && buffer_unwritten(bh_result))
 908		ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
 909
 910	return ret;
 911}
 912
 913static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
 914		   struct buffer_head *bh_result, int create)
 915{
 916	int ret;
 917
 918	ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
 919		   inode->i_ino, create);
 920	/* We don't expect handle for direct IO */
 921	WARN_ON_ONCE(ext4_journal_current_handle());
 922
 923	ret = _ext4_get_block(inode, iblock, bh_result, 0);
 924	/*
 925	 * Blocks should have been preallocated! ext4_file_write_iter() checks
 926	 * that.
 
 927	 */
 928	WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
 
 929
 930	return ret;
 931}
 932
 
 
 933
 934/*
 935 * `handle' can be NULL if create is zero
 936 */
 937struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 938				ext4_lblk_t block, int map_flags)
 939{
 940	struct ext4_map_blocks map;
 941	struct buffer_head *bh;
 942	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 
 943	int err;
 944
 945	J_ASSERT(handle != NULL || create == 0);
 
 
 946
 947	map.m_lblk = block;
 948	map.m_len = 1;
 949	err = ext4_map_blocks(handle, inode, &map, map_flags);
 950
 951	if (err == 0)
 952		return create ? ERR_PTR(-ENOSPC) : NULL;
 953	if (err < 0)
 954		return ERR_PTR(err);
 955
 956	bh = sb_getblk(inode->i_sb, map.m_pblk);
 
 
 
 
 
 
 
 
 
 
 957	if (unlikely(!bh))
 958		return ERR_PTR(-ENOMEM);
 959	if (map.m_flags & EXT4_MAP_NEW) {
 960		J_ASSERT(create != 0);
 961		J_ASSERT(handle != NULL);
 
 962
 963		/*
 964		 * Now that we do not always journal data, we should
 965		 * keep in mind whether this should always journal the
 966		 * new buffer as metadata.  For now, regular file
 967		 * writes use ext4_get_block instead, so it's not a
 968		 * problem.
 969		 */
 970		lock_buffer(bh);
 971		BUFFER_TRACE(bh, "call get_create_access");
 972		err = ext4_journal_get_create_access(handle, bh);
 
 973		if (unlikely(err)) {
 974			unlock_buffer(bh);
 975			goto errout;
 976		}
 977		if (!buffer_uptodate(bh)) {
 978			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 979			set_buffer_uptodate(bh);
 980		}
 981		unlock_buffer(bh);
 982		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 983		err = ext4_handle_dirty_metadata(handle, inode, bh);
 984		if (unlikely(err))
 985			goto errout;
 986	} else
 987		BUFFER_TRACE(bh, "not a new buffer");
 988	return bh;
 989errout:
 990	brelse(bh);
 991	return ERR_PTR(err);
 992}
 993
 994struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 995			       ext4_lblk_t block, int map_flags)
 996{
 997	struct buffer_head *bh;
 
 998
 999	bh = ext4_getblk(handle, inode, block, map_flags);
1000	if (IS_ERR(bh))
1001		return bh;
1002	if (!bh || buffer_uptodate(bh))
1003		return bh;
1004	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1005	wait_on_buffer(bh);
1006	if (buffer_uptodate(bh))
1007		return bh;
1008	put_bh(bh);
1009	return ERR_PTR(-EIO);
 
 
 
 
 
1010}
1011
1012int ext4_walk_page_buffers(handle_t *handle,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1013			   struct buffer_head *head,
1014			   unsigned from,
1015			   unsigned to,
1016			   int *partial,
1017			   int (*fn)(handle_t *handle,
1018				     struct buffer_head *bh))
1019{
1020	struct buffer_head *bh;
1021	unsigned block_start, block_end;
1022	unsigned blocksize = head->b_size;
1023	int err, ret = 0;
1024	struct buffer_head *next;
1025
1026	for (bh = head, block_start = 0;
1027	     ret == 0 && (bh != head || !block_start);
1028	     block_start = block_end, bh = next) {
1029		next = bh->b_this_page;
1030		block_end = block_start + blocksize;
1031		if (block_end <= from || block_start >= to) {
1032			if (partial && !buffer_uptodate(bh))
1033				*partial = 1;
1034			continue;
1035		}
1036		err = (*fn)(handle, bh);
1037		if (!ret)
1038			ret = err;
1039	}
1040	return ret;
1041}
1042
1043/*
1044 * To preserve ordering, it is essential that the hole instantiation and
1045 * the data write be encapsulated in a single transaction.  We cannot
1046 * close off a transaction and start a new one between the ext4_get_block()
1047 * and the commit_write().  So doing the jbd2_journal_start at the start of
1048 * prepare_write() is the right place.
1049 *
1050 * Also, this function can nest inside ext4_writepage().  In that case, we
1051 * *know* that ext4_writepage() has generated enough buffer credits to do the
1052 * whole page.  So we won't block on the journal in that case, which is good,
1053 * because the caller may be PF_MEMALLOC.
1054 *
1055 * By accident, ext4 can be reentered when a transaction is open via
1056 * quota file writes.  If we were to commit the transaction while thus
1057 * reentered, there can be a deadlock - we would be holding a quota
1058 * lock, and the commit would never complete if another thread had a
1059 * transaction open and was blocking on the quota lock - a ranking
1060 * violation.
1061 *
1062 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1063 * will _not_ run commit under these circumstances because handle->h_ref
1064 * is elevated.  We'll still have enough credits for the tiny quotafile
1065 * write.
1066 */
1067int do_journal_get_write_access(handle_t *handle,
1068				struct buffer_head *bh)
1069{
1070	int dirty = buffer_dirty(bh);
1071	int ret;
 
1072
 
 
 
1073	if (!buffer_mapped(bh) || buffer_freed(bh))
1074		return 0;
1075	/*
1076	 * __block_write_begin() could have dirtied some buffers. Clean
1077	 * the dirty bit as jbd2_journal_get_write_access() could complain
1078	 * otherwise about fs integrity issues. Setting of the dirty bit
1079	 * by __block_write_begin() isn't a real problem here as we clear
1080	 * the bit before releasing a page lock and thus writeback cannot
1081	 * ever write the buffer.
1082	 */
1083	if (dirty)
1084		clear_buffer_dirty(bh);
1085	BUFFER_TRACE(bh, "get write access");
1086	ret = ext4_journal_get_write_access(handle, bh);
1087	if (!ret && dirty)
1088		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1089	return ret;
1090}
1091
1092#ifdef CONFIG_EXT4_FS_ENCRYPTION
1093static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1094				  get_block_t *get_block)
1095{
1096	unsigned from = pos & (PAGE_SIZE - 1);
1097	unsigned to = from + len;
1098	struct inode *inode = page->mapping->host;
1099	unsigned block_start, block_end;
1100	sector_t block;
1101	int err = 0;
1102	unsigned blocksize = inode->i_sb->s_blocksize;
1103	unsigned bbits;
1104	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1105	bool decrypt = false;
 
 
1106
1107	BUG_ON(!PageLocked(page));
1108	BUG_ON(from > PAGE_SIZE);
1109	BUG_ON(to > PAGE_SIZE);
1110	BUG_ON(from > to);
1111
1112	if (!page_has_buffers(page))
1113		create_empty_buffers(page, blocksize, 0);
1114	head = page_buffers(page);
1115	bbits = ilog2(blocksize);
1116	block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1117
1118	for (bh = head, block_start = 0; bh != head || !block_start;
1119	    block++, block_start = block_end, bh = bh->b_this_page) {
1120		block_end = block_start + blocksize;
1121		if (block_end <= from || block_start >= to) {
1122			if (PageUptodate(page)) {
1123				if (!buffer_uptodate(bh))
1124					set_buffer_uptodate(bh);
1125			}
1126			continue;
1127		}
1128		if (buffer_new(bh))
1129			clear_buffer_new(bh);
1130		if (!buffer_mapped(bh)) {
1131			WARN_ON(bh->b_size != blocksize);
1132			err = get_block(inode, block, bh, 1);
1133			if (err)
1134				break;
1135			if (buffer_new(bh)) {
1136				clean_bdev_bh_alias(bh);
1137				if (PageUptodate(page)) {
1138					clear_buffer_new(bh);
 
 
 
 
 
 
 
 
 
 
 
 
1139					set_buffer_uptodate(bh);
1140					mark_buffer_dirty(bh);
1141					continue;
1142				}
1143				if (block_end > to || block_start < from)
1144					zero_user_segments(page, to, block_end,
1145							   block_start, from);
 
1146				continue;
1147			}
1148		}
1149		if (PageUptodate(page)) {
1150			if (!buffer_uptodate(bh))
1151				set_buffer_uptodate(bh);
1152			continue;
1153		}
1154		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1155		    !buffer_unwritten(bh) &&
1156		    (block_start < from || block_end > to)) {
1157			ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1158			*wait_bh++ = bh;
1159			decrypt = ext4_encrypted_inode(inode) &&
1160				S_ISREG(inode->i_mode);
1161		}
1162	}
1163	/*
1164	 * If we issued read requests, let them complete.
1165	 */
1166	while (wait_bh > wait) {
1167		wait_on_buffer(*--wait_bh);
1168		if (!buffer_uptodate(*wait_bh))
1169			err = -EIO;
1170	}
1171	if (unlikely(err))
1172		page_zero_new_buffers(page, from, to);
1173	else if (decrypt)
1174		err = fscrypt_decrypt_page(page->mapping->host, page,
1175				PAGE_SIZE, 0, page->index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176	return err;
1177}
1178#endif
1179
 
 
 
 
 
 
 
1180static int ext4_write_begin(struct file *file, struct address_space *mapping,
1181			    loff_t pos, unsigned len, unsigned flags,
1182			    struct page **pagep, void **fsdata)
1183{
1184	struct inode *inode = mapping->host;
1185	int ret, needed_blocks;
1186	handle_t *handle;
1187	int retries = 0;
1188	struct page *page;
1189	pgoff_t index;
1190	unsigned from, to;
1191
1192	trace_ext4_write_begin(inode, pos, len, flags);
 
 
 
1193	/*
1194	 * Reserve one block more for addition to orphan list in case
1195	 * we allocate blocks but write fails for some reason
1196	 */
1197	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1198	index = pos >> PAGE_SHIFT;
1199	from = pos & (PAGE_SIZE - 1);
1200	to = from + len;
1201
1202	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1203		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1204						    flags, pagep);
1205		if (ret < 0)
1206			return ret;
1207		if (ret == 1)
1208			return 0;
1209	}
1210
1211	/*
1212	 * grab_cache_page_write_begin() can take a long time if the
1213	 * system is thrashing due to memory pressure, or if the page
1214	 * is being written back.  So grab it first before we start
1215	 * the transaction handle.  This also allows us to allocate
1216	 * the page (if needed) without using GFP_NOFS.
1217	 */
1218retry_grab:
1219	page = grab_cache_page_write_begin(mapping, index, flags);
1220	if (!page)
1221		return -ENOMEM;
1222	unlock_page(page);
 
 
 
 
 
 
 
 
1223
1224retry_journal:
1225	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1226	if (IS_ERR(handle)) {
1227		put_page(page);
1228		return PTR_ERR(handle);
1229	}
1230
1231	lock_page(page);
1232	if (page->mapping != mapping) {
1233		/* The page got truncated from under us */
1234		unlock_page(page);
1235		put_page(page);
1236		ext4_journal_stop(handle);
1237		goto retry_grab;
1238	}
1239	/* In case writeback began while the page was unlocked */
1240	wait_for_stable_page(page);
1241
1242#ifdef CONFIG_EXT4_FS_ENCRYPTION
1243	if (ext4_should_dioread_nolock(inode))
1244		ret = ext4_block_write_begin(page, pos, len,
1245					     ext4_get_block_unwritten);
1246	else
1247		ret = ext4_block_write_begin(page, pos, len,
1248					     ext4_get_block);
1249#else
1250	if (ext4_should_dioread_nolock(inode))
1251		ret = __block_write_begin(page, pos, len,
1252					  ext4_get_block_unwritten);
1253	else
1254		ret = __block_write_begin(page, pos, len, ext4_get_block);
1255#endif
1256	if (!ret && ext4_should_journal_data(inode)) {
1257		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1258					     from, to, NULL,
1259					     do_journal_get_write_access);
1260	}
1261
1262	if (ret) {
1263		unlock_page(page);
 
 
 
1264		/*
1265		 * __block_write_begin may have instantiated a few blocks
1266		 * outside i_size.  Trim these off again. Don't need
1267		 * i_size_read because we hold i_mutex.
1268		 *
1269		 * Add inode to orphan list in case we crash before
1270		 * truncate finishes
1271		 */
1272		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1273			ext4_orphan_add(handle, inode);
1274
1275		ext4_journal_stop(handle);
1276		if (pos + len > inode->i_size) {
1277			ext4_truncate_failed_write(inode);
1278			/*
1279			 * If truncate failed early the inode might
1280			 * still be on the orphan list; we need to
1281			 * make sure the inode is removed from the
1282			 * orphan list in that case.
1283			 */
1284			if (inode->i_nlink)
1285				ext4_orphan_del(NULL, inode);
1286		}
1287
1288		if (ret == -ENOSPC &&
1289		    ext4_should_retry_alloc(inode->i_sb, &retries))
1290			goto retry_journal;
1291		put_page(page);
1292		return ret;
1293	}
1294	*pagep = page;
1295	return ret;
1296}
1297
1298/* For write_end() in data=journal mode */
1299static int write_end_fn(handle_t *handle, struct buffer_head *bh)
 
1300{
1301	int ret;
1302	if (!buffer_mapped(bh) || buffer_freed(bh))
1303		return 0;
1304	set_buffer_uptodate(bh);
1305	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1306	clear_buffer_meta(bh);
1307	clear_buffer_prio(bh);
1308	return ret;
1309}
1310
1311/*
1312 * We need to pick up the new inode size which generic_commit_write gave us
1313 * `file' can be NULL - eg, when called from page_symlink().
1314 *
1315 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1316 * buffers are managed internally.
1317 */
1318static int ext4_write_end(struct file *file,
1319			  struct address_space *mapping,
1320			  loff_t pos, unsigned len, unsigned copied,
1321			  struct page *page, void *fsdata)
1322{
1323	handle_t *handle = ext4_journal_current_handle();
1324	struct inode *inode = mapping->host;
1325	loff_t old_size = inode->i_size;
1326	int ret = 0, ret2;
1327	int i_size_changed = 0;
 
1328
1329	trace_ext4_write_end(inode, pos, len, copied);
1330	if (ext4_has_inline_data(inode)) {
1331		ret = ext4_write_inline_data_end(inode, pos, len,
1332						 copied, page);
1333		if (ret < 0) {
1334			unlock_page(page);
1335			put_page(page);
1336			goto errout;
1337		}
1338		copied = ret;
1339	} else
1340		copied = block_write_end(file, mapping, pos,
1341					 len, copied, page, fsdata);
1342	/*
1343	 * it's important to update i_size while still holding page lock:
1344	 * page writeout could otherwise come in and zero beyond i_size.
 
 
 
1345	 */
1346	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1347	unlock_page(page);
1348	put_page(page);
 
1349
1350	if (old_size < pos)
1351		pagecache_isize_extended(inode, old_size, pos);
 
 
1352	/*
1353	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1354	 * makes the holding time of page lock longer. Second, it forces lock
1355	 * ordering of page lock and transaction start for journaling
1356	 * filesystems.
1357	 */
1358	if (i_size_changed)
1359		ext4_mark_inode_dirty(handle, inode);
1360
1361	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1362		/* if we have allocated more blocks and copied
1363		 * less. We will have blocks allocated outside
1364		 * inode->i_size. So truncate them
1365		 */
1366		ext4_orphan_add(handle, inode);
1367errout:
1368	ret2 = ext4_journal_stop(handle);
1369	if (!ret)
1370		ret = ret2;
1371
1372	if (pos + len > inode->i_size) {
1373		ext4_truncate_failed_write(inode);
1374		/*
1375		 * If truncate failed early the inode might still be
1376		 * on the orphan list; we need to make sure the inode
1377		 * is removed from the orphan list in that case.
1378		 */
1379		if (inode->i_nlink)
1380			ext4_orphan_del(NULL, inode);
1381	}
1382
1383	return ret ? ret : copied;
1384}
1385
1386/*
1387 * This is a private version of page_zero_new_buffers() which doesn't
1388 * set the buffer to be dirty, since in data=journalled mode we need
1389 * to call ext4_handle_dirty_metadata() instead.
1390 */
1391static void ext4_journalled_zero_new_buffers(handle_t *handle,
1392					    struct page *page,
 
1393					    unsigned from, unsigned to)
1394{
1395	unsigned int block_start = 0, block_end;
1396	struct buffer_head *head, *bh;
1397
1398	bh = head = page_buffers(page);
1399	do {
1400		block_end = block_start + bh->b_size;
1401		if (buffer_new(bh)) {
1402			if (block_end > from && block_start < to) {
1403				if (!PageUptodate(page)) {
1404					unsigned start, size;
1405
1406					start = max(from, block_start);
1407					size = min(to, block_end) - start;
1408
1409					zero_user(page, start, size);
1410					write_end_fn(handle, bh);
1411				}
1412				clear_buffer_new(bh);
 
1413			}
1414		}
1415		block_start = block_end;
1416		bh = bh->b_this_page;
1417	} while (bh != head);
1418}
1419
1420static int ext4_journalled_write_end(struct file *file,
1421				     struct address_space *mapping,
1422				     loff_t pos, unsigned len, unsigned copied,
1423				     struct page *page, void *fsdata)
1424{
1425	handle_t *handle = ext4_journal_current_handle();
1426	struct inode *inode = mapping->host;
1427	loff_t old_size = inode->i_size;
1428	int ret = 0, ret2;
1429	int partial = 0;
1430	unsigned from, to;
1431	int size_changed = 0;
 
1432
1433	trace_ext4_journalled_write_end(inode, pos, len, copied);
1434	from = pos & (PAGE_SIZE - 1);
1435	to = from + len;
1436
1437	BUG_ON(!ext4_handle_valid(handle));
1438
1439	if (ext4_has_inline_data(inode)) {
1440		ret = ext4_write_inline_data_end(inode, pos, len,
1441						 copied, page);
1442		if (ret < 0) {
1443			unlock_page(page);
1444			put_page(page);
1445			goto errout;
1446		}
1447		copied = ret;
1448	} else if (unlikely(copied < len) && !PageUptodate(page)) {
1449		copied = 0;
1450		ext4_journalled_zero_new_buffers(handle, page, from, to);
 
1451	} else {
1452		if (unlikely(copied < len))
1453			ext4_journalled_zero_new_buffers(handle, page,
1454							 from + copied, to);
1455		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1456					     from + copied, &partial,
 
1457					     write_end_fn);
1458		if (!partial)
1459			SetPageUptodate(page);
1460	}
1461	size_changed = ext4_update_inode_size(inode, pos + copied);
1462	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1463	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1464	unlock_page(page);
1465	put_page(page);
1466
1467	if (old_size < pos)
1468		pagecache_isize_extended(inode, old_size, pos);
 
 
1469
1470	if (size_changed) {
1471		ret2 = ext4_mark_inode_dirty(handle, inode);
1472		if (!ret)
1473			ret = ret2;
1474	}
1475
1476	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1477		/* if we have allocated more blocks and copied
1478		 * less. We will have blocks allocated outside
1479		 * inode->i_size. So truncate them
1480		 */
1481		ext4_orphan_add(handle, inode);
1482
1483errout:
1484	ret2 = ext4_journal_stop(handle);
1485	if (!ret)
1486		ret = ret2;
1487	if (pos + len > inode->i_size) {
1488		ext4_truncate_failed_write(inode);
1489		/*
1490		 * If truncate failed early the inode might still be
1491		 * on the orphan list; we need to make sure the inode
1492		 * is removed from the orphan list in that case.
1493		 */
1494		if (inode->i_nlink)
1495			ext4_orphan_del(NULL, inode);
1496	}
1497
1498	return ret ? ret : copied;
1499}
1500
1501/*
1502 * Reserve space for a single cluster
1503 */
1504static int ext4_da_reserve_space(struct inode *inode)
1505{
1506	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1507	struct ext4_inode_info *ei = EXT4_I(inode);
1508	int ret;
1509
1510	/*
1511	 * We will charge metadata quota at writeout time; this saves
1512	 * us from metadata over-estimation, though we may go over by
1513	 * a small amount in the end.  Here we just reserve for data.
1514	 */
1515	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1516	if (ret)
1517		return ret;
1518
1519	spin_lock(&ei->i_block_reservation_lock);
1520	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1521		spin_unlock(&ei->i_block_reservation_lock);
1522		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1523		return -ENOSPC;
1524	}
1525	ei->i_reserved_data_blocks++;
1526	trace_ext4_da_reserve_space(inode);
1527	spin_unlock(&ei->i_block_reservation_lock);
1528
1529	return 0;       /* success */
1530}
1531
1532static void ext4_da_release_space(struct inode *inode, int to_free)
1533{
1534	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1535	struct ext4_inode_info *ei = EXT4_I(inode);
1536
1537	if (!to_free)
1538		return;		/* Nothing to release, exit */
1539
1540	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1541
1542	trace_ext4_da_release_space(inode, to_free);
1543	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1544		/*
1545		 * if there aren't enough reserved blocks, then the
1546		 * counter is messed up somewhere.  Since this
1547		 * function is called from invalidate page, it's
1548		 * harmless to return without any action.
1549		 */
1550		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1551			 "ino %lu, to_free %d with only %d reserved "
1552			 "data blocks", inode->i_ino, to_free,
1553			 ei->i_reserved_data_blocks);
1554		WARN_ON(1);
1555		to_free = ei->i_reserved_data_blocks;
1556	}
1557	ei->i_reserved_data_blocks -= to_free;
1558
1559	/* update fs dirty data blocks counter */
1560	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1561
1562	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1563
1564	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1565}
1566
1567static void ext4_da_page_release_reservation(struct page *page,
1568					     unsigned int offset,
1569					     unsigned int length)
1570{
1571	int to_release = 0, contiguous_blks = 0;
1572	struct buffer_head *head, *bh;
1573	unsigned int curr_off = 0;
1574	struct inode *inode = page->mapping->host;
1575	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1576	unsigned int stop = offset + length;
1577	int num_clusters;
1578	ext4_fsblk_t lblk;
1579
1580	BUG_ON(stop > PAGE_SIZE || stop < length);
1581
1582	head = page_buffers(page);
1583	bh = head;
1584	do {
1585		unsigned int next_off = curr_off + bh->b_size;
1586
1587		if (next_off > stop)
1588			break;
1589
1590		if ((offset <= curr_off) && (buffer_delay(bh))) {
1591			to_release++;
1592			contiguous_blks++;
1593			clear_buffer_delay(bh);
1594		} else if (contiguous_blks) {
1595			lblk = page->index <<
1596			       (PAGE_SHIFT - inode->i_blkbits);
1597			lblk += (curr_off >> inode->i_blkbits) -
1598				contiguous_blks;
1599			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1600			contiguous_blks = 0;
1601		}
1602		curr_off = next_off;
1603	} while ((bh = bh->b_this_page) != head);
1604
1605	if (contiguous_blks) {
1606		lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1607		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1608		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1609	}
1610
1611	/* If we have released all the blocks belonging to a cluster, then we
1612	 * need to release the reserved space for that cluster. */
1613	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1614	while (num_clusters > 0) {
1615		lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1616			((num_clusters - 1) << sbi->s_cluster_bits);
1617		if (sbi->s_cluster_ratio == 1 ||
1618		    !ext4_find_delalloc_cluster(inode, lblk))
1619			ext4_da_release_space(inode, 1);
1620
1621		num_clusters--;
1622	}
1623}
1624
1625/*
1626 * Delayed allocation stuff
1627 */
1628
1629struct mpage_da_data {
 
1630	struct inode *inode;
1631	struct writeback_control *wbc;
 
1632
 
1633	pgoff_t first_page;	/* The first page to write */
1634	pgoff_t next_page;	/* Current page to examine */
1635	pgoff_t last_page;	/* Last page to examine */
1636	/*
1637	 * Extent to map - this can be after first_page because that can be
1638	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1639	 * is delalloc or unwritten.
1640	 */
1641	struct ext4_map_blocks map;
1642	struct ext4_io_submit io_submit;	/* IO submission data */
 
 
 
1643};
1644
1645static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1646				       bool invalidate)
1647{
1648	int nr_pages, i;
1649	pgoff_t index, end;
1650	struct pagevec pvec;
1651	struct inode *inode = mpd->inode;
1652	struct address_space *mapping = inode->i_mapping;
1653
1654	/* This is necessary when next_page == 0. */
1655	if (mpd->first_page >= mpd->next_page)
1656		return;
1657
 
1658	index = mpd->first_page;
1659	end   = mpd->next_page - 1;
1660	if (invalidate) {
1661		ext4_lblk_t start, last;
1662		start = index << (PAGE_SHIFT - inode->i_blkbits);
1663		last = end << (PAGE_SHIFT - inode->i_blkbits);
 
 
 
 
 
 
1664		ext4_es_remove_extent(inode, start, last - start + 1);
 
1665	}
1666
1667	pagevec_init(&pvec, 0);
1668	while (index <= end) {
1669		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1670		if (nr_pages == 0)
1671			break;
1672		for (i = 0; i < nr_pages; i++) {
1673			struct page *page = pvec.pages[i];
1674			if (page->index > end)
1675				break;
1676			BUG_ON(!PageLocked(page));
1677			BUG_ON(PageWriteback(page));
 
 
 
1678			if (invalidate) {
1679				if (page_mapped(page))
1680					clear_page_dirty_for_io(page);
1681				block_invalidatepage(page, 0, PAGE_SIZE);
1682				ClearPageUptodate(page);
 
1683			}
1684			unlock_page(page);
1685		}
1686		index = pvec.pages[nr_pages - 1]->index + 1;
1687		pagevec_release(&pvec);
1688	}
1689}
1690
1691static void ext4_print_free_blocks(struct inode *inode)
1692{
1693	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1694	struct super_block *sb = inode->i_sb;
1695	struct ext4_inode_info *ei = EXT4_I(inode);
1696
1697	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1698	       EXT4_C2B(EXT4_SB(inode->i_sb),
1699			ext4_count_free_clusters(sb)));
1700	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1701	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1702	       (long long) EXT4_C2B(EXT4_SB(sb),
1703		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1704	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1705	       (long long) EXT4_C2B(EXT4_SB(sb),
1706		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1707	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1708	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1709		 ei->i_reserved_data_blocks);
1710	return;
1711}
1712
1713static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
 
 
 
 
 
 
 
 
1714{
1715	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716}
1717
1718/*
1719 * This function is grabs code from the very beginning of
1720 * ext4_map_blocks, but assumes that the caller is from delayed write
1721 * time. This function looks up the requested blocks and sets the
1722 * buffer delay bit under the protection of i_data_sem.
 
 
 
 
 
 
1723 */
1724static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1725			      struct ext4_map_blocks *map,
1726			      struct buffer_head *bh)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1727{
1728	struct extent_status es;
1729	int retval;
1730	sector_t invalid_block = ~((sector_t) 0xffff);
1731#ifdef ES_AGGRESSIVE_TEST
1732	struct ext4_map_blocks orig_map;
1733
1734	memcpy(&orig_map, map, sizeof(*map));
1735#endif
1736
1737	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1738		invalid_block = ~0;
1739
1740	map->m_flags = 0;
1741	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1742		  "logical block %lu\n", inode->i_ino, map->m_len,
1743		  (unsigned long) map->m_lblk);
1744
1745	/* Lookup extent status tree firstly */
1746	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1747		if (ext4_es_is_hole(&es)) {
1748			retval = 0;
1749			down_read(&EXT4_I(inode)->i_data_sem);
 
1750			goto add_delayed;
1751		}
1752
 
1753		/*
1754		 * Delayed extent could be allocated by fallocate.
1755		 * So we need to check it.
1756		 */
1757		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1758			map_bh(bh, inode->i_sb, invalid_block);
1759			set_buffer_new(bh);
1760			set_buffer_delay(bh);
1761			return 0;
1762		}
1763
1764		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1765		retval = es.es_len - (iblock - es.es_lblk);
1766		if (retval > map->m_len)
1767			retval = map->m_len;
1768		map->m_len = retval;
1769		if (ext4_es_is_written(&es))
1770			map->m_flags |= EXT4_MAP_MAPPED;
1771		else if (ext4_es_is_unwritten(&es))
1772			map->m_flags |= EXT4_MAP_UNWRITTEN;
1773		else
1774			BUG_ON(1);
1775
1776#ifdef ES_AGGRESSIVE_TEST
1777		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1778#endif
1779		return retval;
1780	}
1781
1782	/*
1783	 * Try to see if we can get the block without requesting a new
1784	 * file system block.
1785	 */
1786	down_read(&EXT4_I(inode)->i_data_sem);
1787	if (ext4_has_inline_data(inode))
1788		retval = 0;
1789	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1790		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1791	else
1792		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
 
 
 
1793
1794add_delayed:
1795	if (retval == 0) {
1796		int ret;
1797		/*
1798		 * XXX: __block_prepare_write() unmaps passed block,
1799		 * is it OK?
1800		 */
1801		/*
1802		 * If the block was allocated from previously allocated cluster,
1803		 * then we don't need to reserve it again. However we still need
1804		 * to reserve metadata for every block we're going to write.
1805		 */
1806		if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1807		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1808			ret = ext4_da_reserve_space(inode);
1809			if (ret) {
1810				/* not enough space to reserve */
1811				retval = ret;
1812				goto out_unlock;
1813			}
1814		}
1815
1816		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1817					    ~0, EXTENT_STATUS_DELAYED);
1818		if (ret) {
1819			retval = ret;
1820			goto out_unlock;
 
 
 
 
1821		}
1822
1823		map_bh(bh, inode->i_sb, invalid_block);
1824		set_buffer_new(bh);
1825		set_buffer_delay(bh);
1826	} else if (retval > 0) {
1827		int ret;
1828		unsigned int status;
1829
1830		if (unlikely(retval != map->m_len)) {
1831			ext4_warning(inode->i_sb,
1832				     "ES len assertion failed for inode "
1833				     "%lu: retval %d != map->m_len %d",
1834				     inode->i_ino, retval, map->m_len);
1835			WARN_ON(1);
1836		}
1837
1838		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1839				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1840		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1841					    map->m_pblk, status);
1842		if (ret != 0)
1843			retval = ret;
1844	}
1845
1846out_unlock:
1847	up_read((&EXT4_I(inode)->i_data_sem));
 
1848
1849	return retval;
1850}
1851
1852/*
1853 * This is a special get_block_t callback which is used by
1854 * ext4_da_write_begin().  It will either return mapped block or
1855 * reserve space for a single block.
1856 *
1857 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1858 * We also have b_blocknr = -1 and b_bdev initialized properly
1859 *
1860 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1861 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1862 * initialized properly.
1863 */
1864int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1865			   struct buffer_head *bh, int create)
1866{
1867	struct ext4_map_blocks map;
 
1868	int ret = 0;
1869
1870	BUG_ON(create == 0);
1871	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1872
 
 
 
1873	map.m_lblk = iblock;
1874	map.m_len = 1;
1875
1876	/*
1877	 * first, we need to know whether the block is allocated already
1878	 * preallocated blocks are unmapped but should treated
1879	 * the same as allocated blocks.
1880	 */
1881	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1882	if (ret <= 0)
1883		return ret;
1884
 
 
 
 
 
 
 
1885	map_bh(bh, inode->i_sb, map.m_pblk);
1886	ext4_update_bh_state(bh, map.m_flags);
1887
1888	if (buffer_unwritten(bh)) {
1889		/* A delayed write to unwritten bh should be marked
1890		 * new and mapped.  Mapped ensures that we don't do
1891		 * get_block multiple times when we write to the same
1892		 * offset and new ensures that we do proper zero out
1893		 * for partial write.
1894		 */
1895		set_buffer_new(bh);
1896		set_buffer_mapped(bh);
1897	}
1898	return 0;
1899}
1900
1901static int bget_one(handle_t *handle, struct buffer_head *bh)
1902{
1903	get_bh(bh);
1904	return 0;
1905}
1906
1907static int bput_one(handle_t *handle, struct buffer_head *bh)
1908{
1909	put_bh(bh);
1910	return 0;
1911}
1912
1913static int __ext4_journalled_writepage(struct page *page,
1914				       unsigned int len)
1915{
1916	struct address_space *mapping = page->mapping;
1917	struct inode *inode = mapping->host;
1918	struct buffer_head *page_bufs = NULL;
1919	handle_t *handle = NULL;
1920	int ret = 0, err = 0;
1921	int inline_data = ext4_has_inline_data(inode);
1922	struct buffer_head *inode_bh = NULL;
1923
1924	ClearPageChecked(page);
1925
1926	if (inline_data) {
1927		BUG_ON(page->index != 0);
1928		BUG_ON(len > ext4_get_max_inline_size(inode));
1929		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1930		if (inode_bh == NULL)
1931			goto out;
1932	} else {
1933		page_bufs = page_buffers(page);
1934		if (!page_bufs) {
1935			BUG();
1936			goto out;
1937		}
1938		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1939				       NULL, bget_one);
1940	}
1941	/*
1942	 * We need to release the page lock before we start the
1943	 * journal, so grab a reference so the page won't disappear
1944	 * out from under us.
1945	 */
1946	get_page(page);
1947	unlock_page(page);
1948
1949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1950				    ext4_writepage_trans_blocks(inode));
1951	if (IS_ERR(handle)) {
1952		ret = PTR_ERR(handle);
1953		put_page(page);
1954		goto out_no_pagelock;
1955	}
1956	BUG_ON(!ext4_handle_valid(handle));
1957
1958	lock_page(page);
1959	put_page(page);
1960	if (page->mapping != mapping) {
1961		/* The page got truncated from under us */
1962		ext4_journal_stop(handle);
1963		ret = 0;
1964		goto out;
1965	}
1966
1967	if (inline_data) {
1968		BUFFER_TRACE(inode_bh, "get write access");
1969		ret = ext4_journal_get_write_access(handle, inode_bh);
1970
1971		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1972
1973	} else {
1974		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1975					     do_journal_get_write_access);
1976
1977		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1978					     write_end_fn);
1979	}
1980	if (ret == 0)
1981		ret = err;
1982	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1983	err = ext4_journal_stop(handle);
1984	if (!ret)
1985		ret = err;
1986
1987	if (!ext4_has_inline_data(inode))
1988		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1989				       NULL, bput_one);
1990	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1991out:
1992	unlock_page(page);
1993out_no_pagelock:
1994	brelse(inode_bh);
1995	return ret;
1996}
1997
1998/*
1999 * Note that we don't need to start a transaction unless we're journaling data
2000 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2001 * need to file the inode to the transaction's list in ordered mode because if
2002 * we are writing back data added by write(), the inode is already there and if
2003 * we are writing back data modified via mmap(), no one guarantees in which
2004 * transaction the data will hit the disk. In case we are journaling data, we
2005 * cannot start transaction directly because transaction start ranks above page
2006 * lock so we have to do some magic.
2007 *
2008 * This function can get called via...
2009 *   - ext4_writepages after taking page lock (have journal handle)
2010 *   - journal_submit_inode_data_buffers (no journal handle)
2011 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2012 *   - grab_page_cache when doing write_begin (have journal handle)
2013 *
2014 * We don't do any block allocation in this function. If we have page with
2015 * multiple blocks we need to write those buffer_heads that are mapped. This
2016 * is important for mmaped based write. So if we do with blocksize 1K
2017 * truncate(f, 1024);
2018 * a = mmap(f, 0, 4096);
2019 * a[0] = 'a';
2020 * truncate(f, 4096);
2021 * we have in the page first buffer_head mapped via page_mkwrite call back
2022 * but other buffer_heads would be unmapped but dirty (dirty done via the
2023 * do_wp_page). So writepage should write the first block. If we modify
2024 * the mmap area beyond 1024 we will again get a page_fault and the
2025 * page_mkwrite callback will do the block allocation and mark the
2026 * buffer_heads mapped.
2027 *
2028 * We redirty the page if we have any buffer_heads that is either delay or
2029 * unwritten in the page.
2030 *
2031 * We can get recursively called as show below.
2032 *
2033 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2034 *		ext4_writepage()
2035 *
2036 * But since we don't do any block allocation we should not deadlock.
2037 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2038 */
2039static int ext4_writepage(struct page *page,
2040			  struct writeback_control *wbc)
2041{
2042	int ret = 0;
2043	loff_t size;
2044	unsigned int len;
2045	struct buffer_head *page_bufs = NULL;
2046	struct inode *inode = page->mapping->host;
2047	struct ext4_io_submit io_submit;
2048	bool keep_towrite = false;
2049
2050	trace_ext4_writepage(page);
2051	size = i_size_read(inode);
2052	if (page->index == size >> PAGE_SHIFT)
2053		len = size & ~PAGE_MASK;
2054	else
2055		len = PAGE_SIZE;
2056
2057	page_bufs = page_buffers(page);
2058	/*
2059	 * We cannot do block allocation or other extent handling in this
2060	 * function. If there are buffers needing that, we have to redirty
2061	 * the page. But we may reach here when we do a journal commit via
2062	 * journal_submit_inode_data_buffers() and in that case we must write
2063	 * allocated buffers to achieve data=ordered mode guarantees.
2064	 *
2065	 * Also, if there is only one buffer per page (the fs block
2066	 * size == the page size), if one buffer needs block
2067	 * allocation or needs to modify the extent tree to clear the
2068	 * unwritten flag, we know that the page can't be written at
2069	 * all, so we might as well refuse the write immediately.
2070	 * Unfortunately if the block size != page size, we can't as
2071	 * easily detect this case using ext4_walk_page_buffers(), but
2072	 * for the extremely common case, this is an optimization that
2073	 * skips a useless round trip through ext4_bio_write_page().
2074	 */
2075	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2076				   ext4_bh_delay_or_unwritten)) {
2077		redirty_page_for_writepage(wbc, page);
2078		if ((current->flags & PF_MEMALLOC) ||
2079		    (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2080			/*
2081			 * For memory cleaning there's no point in writing only
2082			 * some buffers. So just bail out. Warn if we came here
2083			 * from direct reclaim.
2084			 */
2085			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2086							== PF_MEMALLOC);
2087			unlock_page(page);
2088			return 0;
2089		}
2090		keep_towrite = true;
2091	}
2092
2093	if (PageChecked(page) && ext4_should_journal_data(inode))
2094		/*
2095		 * It's mmapped pagecache.  Add buffers and journal it.  There
2096		 * doesn't seem much point in redirtying the page here.
2097		 */
2098		return __ext4_journalled_writepage(page, len);
2099
2100	ext4_io_submit_init(&io_submit, wbc);
2101	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2102	if (!io_submit.io_end) {
2103		redirty_page_for_writepage(wbc, page);
2104		unlock_page(page);
2105		return -ENOMEM;
2106	}
2107	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2108	ext4_io_submit(&io_submit);
2109	/* Drop io_end reference we got from init */
2110	ext4_put_io_end_defer(io_submit.io_end);
2111	return ret;
2112}
2113
2114static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2115{
2116	int len;
2117	loff_t size = i_size_read(mpd->inode);
2118	int err;
2119
2120	BUG_ON(page->index != mpd->first_page);
2121	if (page->index == size >> PAGE_SHIFT)
2122		len = size & ~PAGE_MASK;
2123	else
2124		len = PAGE_SIZE;
2125	clear_page_dirty_for_io(page);
2126	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127	if (!err)
2128		mpd->wbc->nr_to_write--;
2129	mpd->first_page++;
2130
2131	return err;
2132}
2133
2134#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2135
2136/*
2137 * mballoc gives us at most this number of blocks...
2138 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2139 * The rest of mballoc seems to handle chunks up to full group size.
2140 */
2141#define MAX_WRITEPAGES_EXTENT_LEN 2048
2142
2143/*
2144 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2145 *
2146 * @mpd - extent of blocks
2147 * @lblk - logical number of the block in the file
2148 * @bh - buffer head we want to add to the extent
2149 *
2150 * The function is used to collect contig. blocks in the same state. If the
2151 * buffer doesn't require mapping for writeback and we haven't started the
2152 * extent of buffers to map yet, the function returns 'true' immediately - the
2153 * caller can write the buffer right away. Otherwise the function returns true
2154 * if the block has been added to the extent, false if the block couldn't be
2155 * added.
2156 */
2157static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2158				   struct buffer_head *bh)
2159{
2160	struct ext4_map_blocks *map = &mpd->map;
2161
2162	/* Buffer that doesn't need mapping for writeback? */
2163	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2164	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2165		/* So far no extent to map => we write the buffer right away */
2166		if (map->m_len == 0)
2167			return true;
2168		return false;
2169	}
2170
2171	/* First block in the extent? */
2172	if (map->m_len == 0) {
 
 
 
2173		map->m_lblk = lblk;
2174		map->m_len = 1;
2175		map->m_flags = bh->b_state & BH_FLAGS;
2176		return true;
2177	}
2178
2179	/* Don't go larger than mballoc is willing to allocate */
2180	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2181		return false;
2182
2183	/* Can we merge the block to our big extent? */
2184	if (lblk == map->m_lblk + map->m_len &&
2185	    (bh->b_state & BH_FLAGS) == map->m_flags) {
2186		map->m_len++;
2187		return true;
2188	}
2189	return false;
2190}
2191
2192/*
2193 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2194 *
2195 * @mpd - extent of blocks for mapping
2196 * @head - the first buffer in the page
2197 * @bh - buffer we should start processing from
2198 * @lblk - logical number of the block in the file corresponding to @bh
2199 *
2200 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2201 * the page for IO if all buffers in this page were mapped and there's no
2202 * accumulated extent of buffers to map or add buffers in the page to the
2203 * extent of buffers to map. The function returns 1 if the caller can continue
2204 * by processing the next page, 0 if it should stop adding buffers to the
2205 * extent to map because we cannot extend it anymore. It can also return value
2206 * < 0 in case of error during IO submission.
2207 */
2208static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2209				   struct buffer_head *head,
2210				   struct buffer_head *bh,
2211				   ext4_lblk_t lblk)
2212{
2213	struct inode *inode = mpd->inode;
2214	int err;
2215	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
2216							>> inode->i_blkbits;
2217
 
 
 
2218	do {
2219		BUG_ON(buffer_locked(bh));
2220
2221		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2222			/* Found extent to map? */
2223			if (mpd->map.m_len)
2224				return 0;
 
 
 
2225			/* Everything mapped so far and we hit EOF */
2226			break;
2227		}
2228	} while (lblk++, (bh = bh->b_this_page) != head);
2229	/* So far everything mapped? Submit the page for IO. */
2230	if (mpd->map.m_len == 0) {
2231		err = mpage_submit_page(mpd, head->b_page);
2232		if (err < 0)
2233			return err;
 
2234	}
2235	return lblk < blocks;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2236}
2237
2238/*
2239 * mpage_map_buffers - update buffers corresponding to changed extent and
2240 *		       submit fully mapped pages for IO
2241 *
2242 * @mpd - description of extent to map, on return next extent to map
2243 *
2244 * Scan buffers corresponding to changed extent (we expect corresponding pages
2245 * to be already locked) and update buffer state according to new extent state.
2246 * We map delalloc buffers to their physical location, clear unwritten bits,
2247 * and mark buffers as uninit when we perform writes to unwritten extents
2248 * and do extent conversion after IO is finished. If the last page is not fully
2249 * mapped, we update @map to the next extent in the last page that needs
2250 * mapping. Otherwise we submit the page for IO.
2251 */
2252static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2253{
2254	struct pagevec pvec;
2255	int nr_pages, i;
2256	struct inode *inode = mpd->inode;
2257	struct buffer_head *head, *bh;
2258	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2259	pgoff_t start, end;
2260	ext4_lblk_t lblk;
2261	sector_t pblock;
2262	int err;
 
2263
2264	start = mpd->map.m_lblk >> bpp_bits;
2265	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2266	lblk = start << bpp_bits;
2267	pblock = mpd->map.m_pblk;
2268
2269	pagevec_init(&pvec, 0);
2270	while (start <= end) {
2271		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2272					  PAGEVEC_SIZE);
2273		if (nr_pages == 0)
2274			break;
2275		for (i = 0; i < nr_pages; i++) {
2276			struct page *page = pvec.pages[i];
2277
2278			if (page->index > end)
2279				break;
2280			/* Up to 'end' pages must be contiguous */
2281			BUG_ON(page->index != start);
2282			bh = head = page_buffers(page);
2283			do {
2284				if (lblk < mpd->map.m_lblk)
2285					continue;
2286				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2287					/*
2288					 * Buffer after end of mapped extent.
2289					 * Find next buffer in the page to map.
2290					 */
2291					mpd->map.m_len = 0;
2292					mpd->map.m_flags = 0;
2293					/*
2294					 * FIXME: If dioread_nolock supports
2295					 * blocksize < pagesize, we need to make
2296					 * sure we add size mapped so far to
2297					 * io_end->size as the following call
2298					 * can submit the page for IO.
2299					 */
2300					err = mpage_process_page_bufs(mpd, head,
2301								      bh, lblk);
2302					pagevec_release(&pvec);
2303					if (err > 0)
2304						err = 0;
2305					return err;
2306				}
2307				if (buffer_delay(bh)) {
2308					clear_buffer_delay(bh);
2309					bh->b_blocknr = pblock++;
2310				}
2311				clear_buffer_unwritten(bh);
2312			} while (lblk++, (bh = bh->b_this_page) != head);
2313
 
 
2314			/*
2315			 * FIXME: This is going to break if dioread_nolock
2316			 * supports blocksize < pagesize as we will try to
2317			 * convert potentially unmapped parts of inode.
2318			 */
2319			mpd->io_submit.io_end->size += PAGE_SIZE;
 
2320			/* Page fully mapped - let IO run! */
2321			err = mpage_submit_page(mpd, page);
2322			if (err < 0) {
2323				pagevec_release(&pvec);
2324				return err;
2325			}
2326			start++;
2327		}
2328		pagevec_release(&pvec);
2329	}
2330	/* Extent fully mapped and matches with page boundary. We are done. */
2331	mpd->map.m_len = 0;
2332	mpd->map.m_flags = 0;
2333	return 0;
 
 
 
2334}
2335
2336static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337{
2338	struct inode *inode = mpd->inode;
2339	struct ext4_map_blocks *map = &mpd->map;
2340	int get_blocks_flags;
2341	int err, dioread_nolock;
2342
2343	trace_ext4_da_write_pages_extent(inode, map);
2344	/*
2345	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2346	 * to convert an unwritten extent to be initialized (in the case
2347	 * where we have written into one or more preallocated blocks).  It is
2348	 * possible that we're going to need more metadata blocks than
2349	 * previously reserved. However we must not fail because we're in
2350	 * writeback and there is nothing we can do about it so it might result
2351	 * in data loss.  So use reserved blocks to allocate metadata if
2352	 * possible.
2353	 *
2354	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2355	 * the blocks in question are delalloc blocks.  This indicates
2356	 * that the blocks and quotas has already been checked when
2357	 * the data was copied into the page cache.
2358	 */
2359	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2360			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2361			   EXT4_GET_BLOCKS_IO_SUBMIT;
2362	dioread_nolock = ext4_should_dioread_nolock(inode);
2363	if (dioread_nolock)
2364		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2365	if (map->m_flags & (1 << BH_Delay))
2366		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367
2368	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2369	if (err < 0)
2370		return err;
2371	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2372		if (!mpd->io_submit.io_end->handle &&
2373		    ext4_handle_valid(handle)) {
2374			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2375			handle->h_rsv_handle = NULL;
2376		}
2377		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2378	}
2379
2380	BUG_ON(map->m_len == 0);
2381	if (map->m_flags & EXT4_MAP_NEW) {
2382		clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
2383				   map->m_len);
2384	}
2385	return 0;
2386}
2387
2388/*
2389 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2390 *				 mpd->len and submit pages underlying it for IO
2391 *
2392 * @handle - handle for journal operations
2393 * @mpd - extent to map
2394 * @give_up_on_write - we set this to true iff there is a fatal error and there
2395 *                     is no hope of writing the data. The caller should discard
2396 *                     dirty pages to avoid infinite loops.
2397 *
2398 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2399 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2400 * them to initialized or split the described range from larger unwritten
2401 * extent. Note that we need not map all the described range since allocation
2402 * can return less blocks or the range is covered by more unwritten extents. We
2403 * cannot map more because we are limited by reserved transaction credits. On
2404 * the other hand we always make sure that the last touched page is fully
2405 * mapped so that it can be written out (and thus forward progress is
2406 * guaranteed). After mapping we submit all mapped pages for IO.
2407 */
2408static int mpage_map_and_submit_extent(handle_t *handle,
2409				       struct mpage_da_data *mpd,
2410				       bool *give_up_on_write)
2411{
2412	struct inode *inode = mpd->inode;
2413	struct ext4_map_blocks *map = &mpd->map;
2414	int err;
2415	loff_t disksize;
2416	int progress = 0;
 
 
2417
2418	mpd->io_submit.io_end->offset =
2419				((loff_t)map->m_lblk) << inode->i_blkbits;
 
 
2420	do {
2421		err = mpage_map_one_extent(handle, mpd);
2422		if (err < 0) {
2423			struct super_block *sb = inode->i_sb;
2424
2425			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2426				goto invalidate_dirty_pages;
2427			/*
2428			 * Let the uper layers retry transient errors.
2429			 * In the case of ENOSPC, if ext4_count_free_blocks()
2430			 * is non-zero, a commit should free up blocks.
2431			 */
2432			if ((err == -ENOMEM) ||
2433			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434				if (progress)
2435					goto update_disksize;
2436				return err;
2437			}
2438			ext4_msg(sb, KERN_CRIT,
2439				 "Delayed block allocation failed for "
2440				 "inode %lu at logical offset %llu with"
2441				 " max blocks %u with error %d",
2442				 inode->i_ino,
2443				 (unsigned long long)map->m_lblk,
2444				 (unsigned)map->m_len, -err);
2445			ext4_msg(sb, KERN_CRIT,
2446				 "This should not happen!! Data will "
2447				 "be lost\n");
2448			if (err == -ENOSPC)
2449				ext4_print_free_blocks(inode);
2450		invalidate_dirty_pages:
2451			*give_up_on_write = true;
2452			return err;
2453		}
2454		progress = 1;
2455		/*
2456		 * Update buffer state, submit mapped pages, and get us new
2457		 * extent to map
2458		 */
2459		err = mpage_map_and_submit_buffers(mpd);
2460		if (err < 0)
2461			goto update_disksize;
2462	} while (map->m_len);
2463
2464update_disksize:
2465	/*
2466	 * Update on-disk size after IO is submitted.  Races with
2467	 * truncate are avoided by checking i_size under i_data_sem.
2468	 */
2469	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2470	if (disksize > EXT4_I(inode)->i_disksize) {
2471		int err2;
2472		loff_t i_size;
2473
2474		down_write(&EXT4_I(inode)->i_data_sem);
2475		i_size = i_size_read(inode);
2476		if (disksize > i_size)
2477			disksize = i_size;
2478		if (disksize > EXT4_I(inode)->i_disksize)
2479			EXT4_I(inode)->i_disksize = disksize;
2480		err2 = ext4_mark_inode_dirty(handle, inode);
2481		up_write(&EXT4_I(inode)->i_data_sem);
2482		if (err2)
2483			ext4_error(inode->i_sb,
2484				   "Failed to mark inode %lu dirty",
2485				   inode->i_ino);
 
 
2486		if (!err)
2487			err = err2;
2488	}
2489	return err;
2490}
2491
2492/*
2493 * Calculate the total number of credits to reserve for one writepages
2494 * iteration. This is called from ext4_writepages(). We map an extent of
2495 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2496 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2497 * bpp - 1 blocks in bpp different extents.
2498 */
2499static int ext4_da_writepages_trans_blocks(struct inode *inode)
2500{
2501	int bpp = ext4_journal_blocks_per_page(inode);
2502
2503	return ext4_meta_trans_blocks(inode,
2504				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2505}
2506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2507/*
2508 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2509 * 				 and underlying extent to map
2510 *
2511 * @mpd - where to look for pages
2512 *
2513 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2514 * IO immediately. When we find a page which isn't mapped we start accumulating
2515 * extent of buffers underlying these pages that needs mapping (formed by
2516 * either delayed or unwritten buffers). We also lock the pages containing
2517 * these buffers. The extent found is returned in @mpd structure (starting at
2518 * mpd->lblk with length mpd->len blocks).
 
 
2519 *
2520 * Note that this function can attach bios to one io_end structure which are
2521 * neither logically nor physically contiguous. Although it may seem as an
2522 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2523 * case as we need to track IO to all buffers underlying a page in one io_end.
2524 */
2525static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2526{
2527	struct address_space *mapping = mpd->inode->i_mapping;
2528	struct pagevec pvec;
2529	unsigned int nr_pages;
2530	long left = mpd->wbc->nr_to_write;
2531	pgoff_t index = mpd->first_page;
2532	pgoff_t end = mpd->last_page;
2533	int tag;
2534	int i, err = 0;
2535	int blkbits = mpd->inode->i_blkbits;
2536	ext4_lblk_t lblk;
2537	struct buffer_head *head;
 
 
2538
2539	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2540		tag = PAGECACHE_TAG_TOWRITE;
2541	else
2542		tag = PAGECACHE_TAG_DIRTY;
2543
2544	pagevec_init(&pvec, 0);
2545	mpd->map.m_len = 0;
2546	mpd->next_page = index;
 
 
 
 
 
 
 
2547	while (index <= end) {
2548		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2549			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2550		if (nr_pages == 0)
2551			goto out;
2552
2553		for (i = 0; i < nr_pages; i++) {
2554			struct page *page = pvec.pages[i];
2555
2556			/*
2557			 * At this point, the page may be truncated or
2558			 * invalidated (changing page->mapping to NULL), or
2559			 * even swizzled back from swapper_space to tmpfs file
2560			 * mapping. However, page->index will not change
2561			 * because we have a reference on the page.
2562			 */
2563			if (page->index > end)
2564				goto out;
2565
2566			/*
2567			 * Accumulated enough dirty pages? This doesn't apply
2568			 * to WB_SYNC_ALL mode. For integrity sync we have to
2569			 * keep going because someone may be concurrently
2570			 * dirtying pages, and we might have synced a lot of
2571			 * newly appeared dirty pages, but have not synced all
2572			 * of the old dirty pages.
2573			 */
2574			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
 
 
2575				goto out;
2576
2577			/* If we can't merge this page, we are done. */
2578			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2579				goto out;
2580
2581			lock_page(page);
 
 
 
 
 
 
 
2582			/*
2583			 * If the page is no longer dirty, or its mapping no
2584			 * longer corresponds to inode we are writing (which
2585			 * means it has been truncated or invalidated), or the
2586			 * page is already under writeback and we are not doing
2587			 * a data integrity writeback, skip the page
2588			 */
2589			if (!PageDirty(page) ||
2590			    (PageWriteback(page) &&
2591			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2592			    unlikely(page->mapping != mapping)) {
2593				unlock_page(page);
2594				continue;
2595			}
2596
2597			wait_on_page_writeback(page);
2598			BUG_ON(PageWriteback(page));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2599
2600			if (mpd->map.m_len == 0)
2601				mpd->first_page = page->index;
2602			mpd->next_page = page->index + 1;
2603			/* Add all dirty buffers to mpd */
2604			lblk = ((ext4_lblk_t)page->index) <<
2605				(PAGE_SHIFT - blkbits);
2606			head = page_buffers(page);
2607			err = mpage_process_page_bufs(mpd, head, head, lblk);
2608			if (err <= 0)
2609				goto out;
2610			err = 0;
2611			left--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612		}
2613		pagevec_release(&pvec);
2614		cond_resched();
2615	}
 
 
 
2616	return 0;
2617out:
2618	pagevec_release(&pvec);
 
 
2619	return err;
2620}
2621
2622static int __writepage(struct page *page, struct writeback_control *wbc,
2623		       void *data)
2624{
2625	struct address_space *mapping = data;
2626	int ret = ext4_writepage(page, wbc);
2627	mapping_set_error(mapping, ret);
2628	return ret;
2629}
2630
2631static int ext4_writepages(struct address_space *mapping,
2632			   struct writeback_control *wbc)
2633{
 
2634	pgoff_t	writeback_index = 0;
2635	long nr_to_write = wbc->nr_to_write;
2636	int range_whole = 0;
2637	int cycled = 1;
2638	handle_t *handle = NULL;
2639	struct mpage_da_data mpd;
2640	struct inode *inode = mapping->host;
2641	int needed_blocks, rsv_blocks = 0, ret = 0;
2642	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2643	bool done;
2644	struct blk_plug plug;
2645	bool give_up_on_write = false;
2646
2647	percpu_down_read(&sbi->s_journal_flag_rwsem);
2648	trace_ext4_writepages(inode, wbc);
2649
2650	if (dax_mapping(mapping)) {
2651		ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2652						  wbc);
2653		goto out_writepages;
2654	}
2655
2656	/*
2657	 * No pages to write? This is mainly a kludge to avoid starting
2658	 * a transaction for special inodes like journal inode on last iput()
2659	 * because that could violate lock ordering on umount
2660	 */
2661	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2662		goto out_writepages;
2663
2664	if (ext4_should_journal_data(inode)) {
2665		struct blk_plug plug;
2666
2667		blk_start_plug(&plug);
2668		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2669		blk_finish_plug(&plug);
2670		goto out_writepages;
2671	}
2672
2673	/*
2674	 * If the filesystem has aborted, it is read-only, so return
2675	 * right away instead of dumping stack traces later on that
2676	 * will obscure the real source of the problem.  We test
2677	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2678	 * the latter could be true if the filesystem is mounted
2679	 * read-only, and in that case, ext4_writepages should
2680	 * *never* be called, so if that ever happens, we would want
2681	 * the stack trace.
2682	 */
2683	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2684		ret = -EROFS;
2685		goto out_writepages;
2686	}
2687
2688	if (ext4_should_dioread_nolock(inode)) {
2689		/*
2690		 * We may need to convert up to one extent per block in
2691		 * the page and we may dirty the inode.
2692		 */
2693		rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
2694	}
2695
2696	/*
2697	 * If we have inline data and arrive here, it means that
2698	 * we will soon create the block for the 1st page, so
2699	 * we'd better clear the inline data here.
2700	 */
2701	if (ext4_has_inline_data(inode)) {
2702		/* Just inode will be modified... */
2703		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2704		if (IS_ERR(handle)) {
2705			ret = PTR_ERR(handle);
2706			goto out_writepages;
2707		}
2708		BUG_ON(ext4_test_inode_state(inode,
2709				EXT4_STATE_MAY_INLINE_DATA));
2710		ext4_destroy_inline_data(handle, inode);
2711		ext4_journal_stop(handle);
2712	}
2713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2714	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2715		range_whole = 1;
2716
2717	if (wbc->range_cyclic) {
2718		writeback_index = mapping->writeback_index;
2719		if (writeback_index)
2720			cycled = 0;
2721		mpd.first_page = writeback_index;
2722		mpd.last_page = -1;
2723	} else {
2724		mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2725		mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2726	}
2727
2728	mpd.inode = inode;
2729	mpd.wbc = wbc;
2730	ext4_io_submit_init(&mpd.io_submit, wbc);
2731retry:
2732	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2733		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2734	done = false;
2735	blk_start_plug(&plug);
2736	while (!done && mpd.first_page <= mpd.last_page) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2737		/* For each extent of pages we use new io_end */
2738		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2739		if (!mpd.io_submit.io_end) {
2740			ret = -ENOMEM;
2741			break;
2742		}
2743
 
2744		/*
2745		 * We have two constraints: We find one extent to map and we
2746		 * must always write out whole page (makes a difference when
2747		 * blocksize < pagesize) so that we don't block on IO when we
2748		 * try to write out the rest of the page. Journalled mode is
2749		 * not supported by delalloc.
2750		 */
2751		BUG_ON(ext4_should_journal_data(inode));
2752		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2753
2754		/* start a new transaction */
2755		handle = ext4_journal_start_with_reserve(inode,
2756				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2757		if (IS_ERR(handle)) {
2758			ret = PTR_ERR(handle);
2759			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2760			       "%ld pages, ino %lu; err %d", __func__,
2761				wbc->nr_to_write, inode->i_ino, ret);
2762			/* Release allocated io_end */
2763			ext4_put_io_end(mpd.io_submit.io_end);
 
2764			break;
2765		}
 
2766
2767		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2768		ret = mpage_prepare_extent_to_map(&mpd);
2769		if (!ret) {
2770			if (mpd.map.m_len)
2771				ret = mpage_map_and_submit_extent(handle, &mpd,
2772					&give_up_on_write);
2773			else {
2774				/*
2775				 * We scanned the whole range (or exhausted
2776				 * nr_to_write), submitted what was mapped and
2777				 * didn't find anything needing mapping. We are
2778				 * done.
2779				 */
2780				done = true;
2781			}
2782		}
2783		/*
2784		 * Caution: If the handle is synchronous,
2785		 * ext4_journal_stop() can wait for transaction commit
2786		 * to finish which may depend on writeback of pages to
2787		 * complete or on page lock to be released.  In that
2788		 * case, we have to wait until after after we have
2789		 * submitted all the IO, released page locks we hold,
2790		 * and dropped io_end reference (for extent conversion
2791		 * to be able to complete) before stopping the handle.
2792		 */
2793		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2794			ext4_journal_stop(handle);
2795			handle = NULL;
 
2796		}
2797		/* Submit prepared bio */
2798		ext4_io_submit(&mpd.io_submit);
2799		/* Unlock pages we didn't use */
2800		mpage_release_unused_pages(&mpd, give_up_on_write);
 
 
 
2801		/*
2802		 * Drop our io_end reference we got from init. We have
2803		 * to be careful and use deferred io_end finishing if
2804		 * we are still holding the transaction as we can
2805		 * release the last reference to io_end which may end
2806		 * up doing unwritten extent conversion.
2807		 */
2808		if (handle) {
2809			ext4_put_io_end_defer(mpd.io_submit.io_end);
2810			ext4_journal_stop(handle);
2811		} else
2812			ext4_put_io_end(mpd.io_submit.io_end);
 
2813
2814		if (ret == -ENOSPC && sbi->s_journal) {
2815			/*
2816			 * Commit the transaction which would
2817			 * free blocks released in the transaction
2818			 * and try again
2819			 */
2820			jbd2_journal_force_commit_nested(sbi->s_journal);
2821			ret = 0;
2822			continue;
2823		}
2824		/* Fatal error - ENOMEM, EIO... */
2825		if (ret)
2826			break;
2827	}
 
2828	blk_finish_plug(&plug);
2829	if (!ret && !cycled && wbc->nr_to_write > 0) {
2830		cycled = 1;
2831		mpd.last_page = writeback_index - 1;
2832		mpd.first_page = 0;
2833		goto retry;
2834	}
2835
2836	/* Update index */
2837	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2838		/*
2839		 * Set the writeback_index so that range_cyclic
2840		 * mode will write it back later
2841		 */
2842		mapping->writeback_index = mpd.first_page;
2843
2844out_writepages:
2845	trace_ext4_writepages_result(inode, wbc, ret,
2846				     nr_to_write - wbc->nr_to_write);
2847	percpu_up_read(&sbi->s_journal_flag_rwsem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848	return ret;
2849}
2850
2851static int ext4_nonda_switch(struct super_block *sb)
2852{
2853	s64 free_clusters, dirty_clusters;
2854	struct ext4_sb_info *sbi = EXT4_SB(sb);
2855
2856	/*
2857	 * switch to non delalloc mode if we are running low
2858	 * on free block. The free block accounting via percpu
2859	 * counters can get slightly wrong with percpu_counter_batch getting
2860	 * accumulated on each CPU without updating global counters
2861	 * Delalloc need an accurate free block accounting. So switch
2862	 * to non delalloc when we are near to error range.
2863	 */
2864	free_clusters =
2865		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2866	dirty_clusters =
2867		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2868	/*
2869	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2870	 */
2871	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2872		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2873
2874	if (2 * free_clusters < 3 * dirty_clusters ||
2875	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2876		/*
2877		 * free block count is less than 150% of dirty blocks
2878		 * or free blocks is less than watermark
2879		 */
2880		return 1;
2881	}
2882	return 0;
2883}
2884
2885/* We always reserve for an inode update; the superblock could be there too */
2886static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2887{
2888	if (likely(ext4_has_feature_large_file(inode->i_sb)))
2889		return 1;
2890
2891	if (pos + len <= 0x7fffffffULL)
2892		return 1;
2893
2894	/* We might need to update the superblock to set LARGE_FILE */
2895	return 2;
2896}
2897
2898static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2899			       loff_t pos, unsigned len, unsigned flags,
2900			       struct page **pagep, void **fsdata)
2901{
2902	int ret, retries = 0;
2903	struct page *page;
2904	pgoff_t index;
2905	struct inode *inode = mapping->host;
2906	handle_t *handle;
 
 
2907
2908	index = pos >> PAGE_SHIFT;
2909
2910	if (ext4_nonda_switch(inode->i_sb) ||
2911	    S_ISLNK(inode->i_mode)) {
2912		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2913		return ext4_write_begin(file, mapping, pos,
2914					len, flags, pagep, fsdata);
2915	}
2916	*fsdata = (void *)0;
2917	trace_ext4_da_write_begin(inode, pos, len, flags);
2918
2919	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2920		ret = ext4_da_write_inline_data_begin(mapping, inode,
2921						      pos, len, flags,
2922						      pagep, fsdata);
2923		if (ret < 0)
2924			return ret;
2925		if (ret == 1)
2926			return 0;
2927	}
2928
2929	/*
2930	 * grab_cache_page_write_begin() can take a long time if the
2931	 * system is thrashing due to memory pressure, or if the page
2932	 * is being written back.  So grab it first before we start
2933	 * the transaction handle.  This also allows us to allocate
2934	 * the page (if needed) without using GFP_NOFS.
2935	 */
2936retry_grab:
2937	page = grab_cache_page_write_begin(mapping, index, flags);
2938	if (!page)
2939		return -ENOMEM;
2940	unlock_page(page);
2941
2942	/*
2943	 * With delayed allocation, we don't log the i_disksize update
2944	 * if there is delayed block allocation. But we still need
2945	 * to journalling the i_disksize update if writes to the end
2946	 * of file which has an already mapped buffer.
2947	 */
2948retry_journal:
2949	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2950				ext4_da_write_credits(inode, pos, len));
2951	if (IS_ERR(handle)) {
2952		put_page(page);
2953		return PTR_ERR(handle);
2954	}
2955
2956	lock_page(page);
2957	if (page->mapping != mapping) {
2958		/* The page got truncated from under us */
2959		unlock_page(page);
2960		put_page(page);
2961		ext4_journal_stop(handle);
2962		goto retry_grab;
2963	}
2964	/* In case writeback began while the page was unlocked */
2965	wait_for_stable_page(page);
2966
2967#ifdef CONFIG_EXT4_FS_ENCRYPTION
2968	ret = ext4_block_write_begin(page, pos, len,
2969				     ext4_da_get_block_prep);
2970#else
2971	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2972#endif
2973	if (ret < 0) {
2974		unlock_page(page);
2975		ext4_journal_stop(handle);
2976		/*
2977		 * block_write_begin may have instantiated a few blocks
2978		 * outside i_size.  Trim these off again. Don't need
2979		 * i_size_read because we hold i_mutex.
2980		 */
2981		if (pos + len > inode->i_size)
2982			ext4_truncate_failed_write(inode);
2983
2984		if (ret == -ENOSPC &&
2985		    ext4_should_retry_alloc(inode->i_sb, &retries))
2986			goto retry_journal;
2987
2988		put_page(page);
2989		return ret;
2990	}
2991
2992	*pagep = page;
2993	return ret;
2994}
2995
2996/*
2997 * Check if we should update i_disksize
2998 * when write to the end of file but not require block allocation
2999 */
3000static int ext4_da_should_update_i_disksize(struct page *page,
3001					    unsigned long offset)
3002{
3003	struct buffer_head *bh;
3004	struct inode *inode = page->mapping->host;
3005	unsigned int idx;
3006	int i;
3007
3008	bh = page_buffers(page);
3009	idx = offset >> inode->i_blkbits;
3010
3011	for (i = 0; i < idx; i++)
3012		bh = bh->b_this_page;
3013
3014	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3015		return 0;
3016	return 1;
3017}
3018
3019static int ext4_da_write_end(struct file *file,
3020			     struct address_space *mapping,
3021			     loff_t pos, unsigned len, unsigned copied,
3022			     struct page *page, void *fsdata)
3023{
3024	struct inode *inode = mapping->host;
3025	int ret = 0, ret2;
3026	handle_t *handle = ext4_journal_current_handle();
3027	loff_t new_i_size;
3028	unsigned long start, end;
3029	int write_mode = (int)(unsigned long)fsdata;
3030
3031	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3032		return ext4_write_end(file, mapping, pos,
3033				      len, copied, page, fsdata);
3034
3035	trace_ext4_da_write_end(inode, pos, len, copied);
3036	start = pos & (PAGE_SIZE - 1);
3037	end = start + copied - 1;
3038
 
 
 
 
 
3039	/*
3040	 * generic_write_end() will run mark_inode_dirty() if i_size
3041	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
3042	 * into that.
3043	 */
 
 
3044	new_i_size = pos + copied;
3045	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3046		if (ext4_has_inline_data(inode) ||
3047		    ext4_da_should_update_i_disksize(page, end)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3048			ext4_update_i_disksize(inode, new_i_size);
3049			/* We need to mark inode dirty even if
3050			 * new_i_size is less that inode->i_size
3051			 * bu greater than i_disksize.(hint delalloc)
3052			 */
3053			ext4_mark_inode_dirty(handle, inode);
3054		}
3055	}
3056
3057	if (write_mode != CONVERT_INLINE_DATA &&
3058	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3059	    ext4_has_inline_data(inode))
3060		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3061						     page);
3062	else
3063		ret2 = generic_write_end(file, mapping, pos, len, copied,
3064							page, fsdata);
3065
3066	copied = ret2;
3067	if (ret2 < 0)
3068		ret = ret2;
3069	ret2 = ext4_journal_stop(handle);
3070	if (!ret)
3071		ret = ret2;
3072
3073	return ret ? ret : copied;
 
 
 
 
 
 
 
 
 
 
 
3074}
3075
3076static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3077				   unsigned int length)
 
 
3078{
3079	/*
3080	 * Drop reserved blocks
3081	 */
3082	BUG_ON(!PageLocked(page));
3083	if (!page_has_buffers(page))
3084		goto out;
3085
3086	ext4_da_page_release_reservation(page, offset, length);
 
 
3087
3088out:
3089	ext4_invalidatepage(page, offset, length);
3090
3091	return;
 
 
 
 
 
 
 
 
 
3092}
3093
3094/*
3095 * Force all delayed allocation blocks to be allocated for a given inode.
3096 */
3097int ext4_alloc_da_blocks(struct inode *inode)
3098{
3099	trace_ext4_alloc_da_blocks(inode);
3100
3101	if (!EXT4_I(inode)->i_reserved_data_blocks)
3102		return 0;
3103
3104	/*
3105	 * We do something simple for now.  The filemap_flush() will
3106	 * also start triggering a write of the data blocks, which is
3107	 * not strictly speaking necessary (and for users of
3108	 * laptop_mode, not even desirable).  However, to do otherwise
3109	 * would require replicating code paths in:
3110	 *
3111	 * ext4_writepages() ->
3112	 *    write_cache_pages() ---> (via passed in callback function)
3113	 *        __mpage_da_writepage() -->
3114	 *           mpage_add_bh_to_extent()
3115	 *           mpage_da_map_blocks()
3116	 *
3117	 * The problem is that write_cache_pages(), located in
3118	 * mm/page-writeback.c, marks pages clean in preparation for
3119	 * doing I/O, which is not desirable if we're not planning on
3120	 * doing I/O at all.
3121	 *
3122	 * We could call write_cache_pages(), and then redirty all of
3123	 * the pages by calling redirty_page_for_writepage() but that
3124	 * would be ugly in the extreme.  So instead we would need to
3125	 * replicate parts of the code in the above functions,
3126	 * simplifying them because we wouldn't actually intend to
3127	 * write out the pages, but rather only collect contiguous
3128	 * logical block extents, call the multi-block allocator, and
3129	 * then update the buffer heads with the block allocations.
3130	 *
3131	 * For now, though, we'll cheat by calling filemap_flush(),
3132	 * which will map the blocks, and start the I/O, but not
3133	 * actually wait for the I/O to complete.
3134	 */
3135	return filemap_flush(inode->i_mapping);
3136}
3137
3138/*
3139 * bmap() is special.  It gets used by applications such as lilo and by
3140 * the swapper to find the on-disk block of a specific piece of data.
3141 *
3142 * Naturally, this is dangerous if the block concerned is still in the
3143 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3144 * filesystem and enables swap, then they may get a nasty shock when the
3145 * data getting swapped to that swapfile suddenly gets overwritten by
3146 * the original zero's written out previously to the journal and
3147 * awaiting writeback in the kernel's buffer cache.
3148 *
3149 * So, if we see any bmap calls here on a modified, data-journaled file,
3150 * take extra steps to flush any blocks which might be in the cache.
3151 */
3152static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3153{
3154	struct inode *inode = mapping->host;
3155	journal_t *journal;
3156	int err;
3157
 
3158	/*
3159	 * We can get here for an inline file via the FIBMAP ioctl
3160	 */
3161	if (ext4_has_inline_data(inode))
3162		return 0;
3163
3164	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3165			test_opt(inode->i_sb, DELALLOC)) {
 
3166		/*
3167		 * With delalloc we want to sync the file
3168		 * so that we can make sure we allocate
3169		 * blocks for file
3170		 */
3171		filemap_write_and_wait(mapping);
3172	}
3173
3174	if (EXT4_JOURNAL(inode) &&
3175	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3176		/*
3177		 * This is a REALLY heavyweight approach, but the use of
3178		 * bmap on dirty files is expected to be extremely rare:
3179		 * only if we run lilo or swapon on a freshly made file
3180		 * do we expect this to happen.
3181		 *
3182		 * (bmap requires CAP_SYS_RAWIO so this does not
3183		 * represent an unprivileged user DOS attack --- we'd be
3184		 * in trouble if mortal users could trigger this path at
3185		 * will.)
3186		 *
3187		 * NB. EXT4_STATE_JDATA is not set on files other than
3188		 * regular files.  If somebody wants to bmap a directory
3189		 * or symlink and gets confused because the buffer
3190		 * hasn't yet been flushed to disk, they deserve
3191		 * everything they get.
3192		 */
3193
3194		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3195		journal = EXT4_JOURNAL(inode);
3196		jbd2_journal_lock_updates(journal);
3197		err = jbd2_journal_flush(journal);
3198		jbd2_journal_unlock_updates(journal);
3199
3200		if (err)
3201			return 0;
3202	}
3203
3204	return generic_block_bmap(mapping, block, ext4_get_block);
 
 
3205}
3206
3207static int ext4_readpage(struct file *file, struct page *page)
3208{
3209	int ret = -EAGAIN;
3210	struct inode *inode = page->mapping->host;
3211
3212	trace_ext4_readpage(page);
3213
3214	if (ext4_has_inline_data(inode))
3215		ret = ext4_readpage_inline(inode, page);
3216
3217	if (ret == -EAGAIN)
3218		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3219
3220	return ret;
3221}
3222
3223static int
3224ext4_readpages(struct file *file, struct address_space *mapping,
3225		struct list_head *pages, unsigned nr_pages)
3226{
3227	struct inode *inode = mapping->host;
3228
3229	/* If the file has inline data, no need to do readpages. */
3230	if (ext4_has_inline_data(inode))
3231		return 0;
3232
3233	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3234}
3235
3236static void ext4_invalidatepage(struct page *page, unsigned int offset,
3237				unsigned int length)
3238{
3239	trace_ext4_invalidatepage(page, offset, length);
3240
3241	/* No journalling happens on data buffers when this function is used */
3242	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3243
3244	block_invalidatepage(page, offset, length);
3245}
3246
3247static int __ext4_journalled_invalidatepage(struct page *page,
3248					    unsigned int offset,
3249					    unsigned int length)
3250{
3251	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3252
3253	trace_ext4_journalled_invalidatepage(page, offset, length);
3254
3255	/*
3256	 * If it's a full truncate we just forget about the pending dirtying
3257	 */
3258	if (offset == 0 && length == PAGE_SIZE)
3259		ClearPageChecked(page);
3260
3261	return jbd2_journal_invalidatepage(journal, page, offset, length);
3262}
3263
3264/* Wrapper for aops... */
3265static void ext4_journalled_invalidatepage(struct page *page,
3266					   unsigned int offset,
3267					   unsigned int length)
3268{
3269	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3270}
3271
3272static int ext4_releasepage(struct page *page, gfp_t wait)
3273{
3274	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
 
3275
3276	trace_ext4_releasepage(page);
3277
3278	/* Page has dirty journalled data -> cannot release */
3279	if (PageChecked(page))
3280		return 0;
3281	if (journal)
3282		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3283	else
3284		return try_to_free_buffers(page);
3285}
3286
3287#ifdef CONFIG_FS_DAX
3288static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3289			    unsigned flags, struct iomap *iomap)
3290{
3291	unsigned int blkbits = inode->i_blkbits;
3292	unsigned long first_block = offset >> blkbits;
3293	unsigned long last_block = (offset + length - 1) >> blkbits;
3294	struct ext4_map_blocks map;
3295	int ret;
3296
3297	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3298		return -ERANGE;
3299
3300	map.m_lblk = first_block;
3301	map.m_len = last_block - first_block + 1;
3302
3303	if (!(flags & IOMAP_WRITE)) {
3304		ret = ext4_map_blocks(NULL, inode, &map, 0);
3305	} else {
3306		int dio_credits;
3307		handle_t *handle;
3308		int retries = 0;
3309
3310		/* Trim mapping request to maximum we can map at once for DIO */
3311		if (map.m_len > DIO_MAX_BLOCKS)
3312			map.m_len = DIO_MAX_BLOCKS;
3313		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
3314retry:
3315		/*
3316		 * Either we allocate blocks and then we don't get unwritten
3317		 * extent so we have reserved enough credits, or the blocks
3318		 * are already allocated and unwritten and in that case
3319		 * extent conversion fits in the credits as well.
3320		 */
3321		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
3322					    dio_credits);
3323		if (IS_ERR(handle))
3324			return PTR_ERR(handle);
3325
3326		ret = ext4_map_blocks(handle, inode, &map,
3327				      EXT4_GET_BLOCKS_CREATE_ZERO);
3328		if (ret < 0) {
3329			ext4_journal_stop(handle);
3330			if (ret == -ENOSPC &&
3331			    ext4_should_retry_alloc(inode->i_sb, &retries))
3332				goto retry;
3333			return ret;
3334		}
3335
3336		/*
3337		 * If we added blocks beyond i_size, we need to make sure they
3338		 * will get truncated if we crash before updating i_size in
3339		 * ext4_iomap_end(). For faults we don't need to do that (and
3340		 * even cannot because for orphan list operations inode_lock is
3341		 * required) - if we happen to instantiate block beyond i_size,
3342		 * it is because we race with truncate which has already added
3343		 * the inode to the orphan list.
3344		 */
3345		if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
3346		    (i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
3347			int err;
3348
3349			err = ext4_orphan_add(handle, inode);
3350			if (err < 0) {
3351				ext4_journal_stop(handle);
3352				return err;
3353			}
3354		}
3355		ext4_journal_stop(handle);
3356	}
3357
 
 
 
 
 
3358	iomap->flags = 0;
3359	iomap->bdev = inode->i_sb->s_bdev;
3360	iomap->offset = first_block << blkbits;
 
3361
3362	if (ret == 0) {
3363		iomap->type = IOMAP_HOLE;
3364		iomap->blkno = IOMAP_NULL_BLOCK;
3365		iomap->length = (u64)map.m_len << blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366	} else {
3367		if (map.m_flags & EXT4_MAP_MAPPED) {
3368			iomap->type = IOMAP_MAPPED;
3369		} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
3370			iomap->type = IOMAP_UNWRITTEN;
3371		} else {
3372			WARN_ON_ONCE(1);
3373			return -EIO;
3374		}
3375		iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
3376		iomap->length = (u64)map.m_len << blkbits;
3377	}
3378
3379	if (map.m_flags & EXT4_MAP_NEW)
3380		iomap->flags |= IOMAP_F_NEW;
3381	return 0;
3382}
3383
3384static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3385			  ssize_t written, unsigned flags, struct iomap *iomap)
3386{
3387	int ret = 0;
3388	handle_t *handle;
3389	int blkbits = inode->i_blkbits;
3390	bool truncate = false;
3391
3392	if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
3393		return 0;
 
 
 
 
 
3394
3395	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3396	if (IS_ERR(handle)) {
3397		ret = PTR_ERR(handle);
3398		goto orphan_del;
3399	}
3400	if (ext4_update_inode_size(inode, offset + written))
3401		ext4_mark_inode_dirty(handle, inode);
3402	/*
3403	 * We may need to truncate allocated but not written blocks beyond EOF.
 
 
 
3404	 */
3405	if (iomap->offset + iomap->length > 
3406	    ALIGN(inode->i_size, 1 << blkbits)) {
3407		ext4_lblk_t written_blk, end_blk;
3408
3409		written_blk = (offset + written) >> blkbits;
3410		end_blk = (offset + length) >> blkbits;
3411		if (written_blk < end_blk && ext4_can_truncate(inode))
3412			truncate = true;
3413	}
3414	/*
3415	 * Remove inode from orphan list if we were extending a inode and
3416	 * everything went fine.
3417	 */
3418	if (!truncate && inode->i_nlink &&
3419	    !list_empty(&EXT4_I(inode)->i_orphan))
3420		ext4_orphan_del(handle, inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3421	ext4_journal_stop(handle);
3422	if (truncate) {
3423		ext4_truncate_failed_write(inode);
3424orphan_del:
3425		/*
3426		 * If truncate failed early the inode might still be on the
3427		 * orphan list; we need to make sure the inode is removed from
3428		 * the orphan list in that case.
3429		 */
3430		if (inode->i_nlink)
3431			ext4_orphan_del(NULL, inode);
3432	}
3433	return ret;
3434}
3435
3436struct iomap_ops ext4_iomap_ops = {
3437	.iomap_begin		= ext4_iomap_begin,
3438	.iomap_end		= ext4_iomap_end,
3439};
3440
3441#endif
3442
3443static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3444			    ssize_t size, void *private)
3445{
3446        ext4_io_end_t *io_end = private;
 
 
3447
3448	/* if not async direct IO just return */
3449	if (!io_end)
3450		return 0;
3451
3452	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3453		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3454		  io_end, io_end->inode->i_ino, iocb, offset, size);
3455
3456	/*
3457	 * Error during AIO DIO. We cannot convert unwritten extents as the
3458	 * data was not written. Just clear the unwritten flag and drop io_end.
3459	 */
3460	if (size <= 0) {
3461		ext4_clear_io_unwritten_flag(io_end);
3462		size = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3463	}
3464	io_end->offset = offset;
3465	io_end->size = size;
3466	ext4_put_io_end(io_end);
 
 
 
 
 
 
 
 
 
3467
3468	return 0;
3469}
3470
3471/*
3472 * Handling of direct IO writes.
3473 *
3474 * For ext4 extent files, ext4 will do direct-io write even to holes,
3475 * preallocated extents, and those write extend the file, no need to
3476 * fall back to buffered IO.
3477 *
3478 * For holes, we fallocate those blocks, mark them as unwritten
3479 * If those blocks were preallocated, we mark sure they are split, but
3480 * still keep the range to write as unwritten.
3481 *
3482 * The unwritten extents will be converted to written when DIO is completed.
3483 * For async direct IO, since the IO may still pending when return, we
3484 * set up an end_io call back function, which will do the conversion
3485 * when async direct IO completed.
3486 *
3487 * If the O_DIRECT write will extend the file then add this inode to the
3488 * orphan list.  So recovery will truncate it back to the original size
3489 * if the machine crashes during the write.
3490 *
3491 */
3492static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3493{
3494	struct file *file = iocb->ki_filp;
3495	struct inode *inode = file->f_mapping->host;
3496	struct ext4_inode_info *ei = EXT4_I(inode);
3497	ssize_t ret;
3498	loff_t offset = iocb->ki_pos;
3499	size_t count = iov_iter_count(iter);
3500	int overwrite = 0;
3501	get_block_t *get_block_func = NULL;
3502	int dio_flags = 0;
3503	loff_t final_size = offset + count;
3504	int orphan = 0;
3505	handle_t *handle;
3506
3507	if (final_size > inode->i_size) {
3508		/* Credits for sb + inode write */
3509		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3510		if (IS_ERR(handle)) {
3511			ret = PTR_ERR(handle);
3512			goto out;
3513		}
3514		ret = ext4_orphan_add(handle, inode);
3515		if (ret) {
3516			ext4_journal_stop(handle);
3517			goto out;
3518		}
3519		orphan = 1;
3520		ei->i_disksize = inode->i_size;
3521		ext4_journal_stop(handle);
3522	}
3523
3524	BUG_ON(iocb->private == NULL);
3525
3526	/*
3527	 * Make all waiters for direct IO properly wait also for extent
3528	 * conversion. This also disallows race between truncate() and
3529	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3530	 */
3531	inode_dio_begin(inode);
 
 
 
 
3532
3533	/* If we do a overwrite dio, i_mutex locking can be released */
3534	overwrite = *((int *)iocb->private);
 
 
 
 
3535
3536	if (overwrite)
3537		inode_unlock(inode);
 
3538
 
 
 
 
 
 
 
3539	/*
3540	 * For extent mapped files we could direct write to holes and fallocate.
3541	 *
3542	 * Allocated blocks to fill the hole are marked as unwritten to prevent
3543	 * parallel buffered read to expose the stale data before DIO complete
3544	 * the data IO.
3545	 *
3546	 * As to previously fallocated extents, ext4 get_block will just simply
3547	 * mark the buffer mapped but still keep the extents unwritten.
3548	 *
3549	 * For non AIO case, we will convert those unwritten extents to written
3550	 * after return back from blockdev_direct_IO. That way we save us from
3551	 * allocating io_end structure and also the overhead of offloading
3552	 * the extent convertion to a workqueue.
3553	 *
3554	 * For async DIO, the conversion needs to be deferred when the
3555	 * IO is completed. The ext4 end_io callback function will be
3556	 * called to take care of the conversion work.  Here for async
3557	 * case, we allocate an io_end structure to hook to the iocb.
3558	 */
3559	iocb->private = NULL;
3560	if (overwrite)
3561		get_block_func = ext4_dio_get_block_overwrite;
3562	else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3563		   round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
3564		get_block_func = ext4_dio_get_block;
3565		dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3566	} else if (is_sync_kiocb(iocb)) {
3567		get_block_func = ext4_dio_get_block_unwritten_sync;
3568		dio_flags = DIO_LOCKING;
3569	} else {
3570		get_block_func = ext4_dio_get_block_unwritten_async;
3571		dio_flags = DIO_LOCKING;
3572	}
3573#ifdef CONFIG_EXT4_FS_ENCRYPTION
3574	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3575#endif
3576	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
3577				   get_block_func, ext4_end_io_dio, NULL,
3578				   dio_flags);
3579
3580	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3581						EXT4_STATE_DIO_UNWRITTEN)) {
3582		int err;
3583		/*
3584		 * for non AIO case, since the IO is already
3585		 * completed, we could do the conversion right here
3586		 */
3587		err = ext4_convert_unwritten_extents(NULL, inode,
3588						     offset, ret);
3589		if (err < 0)
3590			ret = err;
3591		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3592	}
3593
3594	inode_dio_end(inode);
3595	/* take i_mutex locking again if we do a ovewrite dio */
3596	if (overwrite)
3597		inode_lock(inode);
3598
3599	if (ret < 0 && final_size > inode->i_size)
3600		ext4_truncate_failed_write(inode);
 
 
3601
3602	/* Handle extending of i_size after direct IO write */
3603	if (orphan) {
3604		int err;
 
 
 
 
3605
3606		/* Credits for sb + inode write */
3607		handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3608		if (IS_ERR(handle)) {
3609			/* This is really bad luck. We've written the data
3610			 * but cannot extend i_size. Bail out and pretend
3611			 * the write failed... */
3612			ret = PTR_ERR(handle);
3613			if (inode->i_nlink)
3614				ext4_orphan_del(NULL, inode);
3615
3616			goto out;
3617		}
3618		if (inode->i_nlink)
3619			ext4_orphan_del(handle, inode);
3620		if (ret > 0) {
3621			loff_t end = offset + ret;
3622			if (end > inode->i_size) {
3623				ei->i_disksize = end;
3624				i_size_write(inode, end);
3625				/*
3626				 * We're going to return a positive `ret'
3627				 * here due to non-zero-length I/O, so there's
3628				 * no way of reporting error returns from
3629				 * ext4_mark_inode_dirty() to userspace.  So
3630				 * ignore it.
3631				 */
3632				ext4_mark_inode_dirty(handle, inode);
3633			}
3634		}
3635		err = ext4_journal_stop(handle);
3636		if (ret == 0)
3637			ret = err;
3638	}
3639out:
3640	return ret;
3641}
3642
3643static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3644{
3645	struct address_space *mapping = iocb->ki_filp->f_mapping;
3646	struct inode *inode = mapping->host;
3647	size_t count = iov_iter_count(iter);
3648	ssize_t ret;
3649
3650	/*
3651	 * Shared inode_lock is enough for us - it protects against concurrent
3652	 * writes & truncates and since we take care of writing back page cache,
3653	 * we are protected against page writeback as well.
3654	 */
3655	inode_lock_shared(inode);
3656	ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3657					   iocb->ki_pos + count);
3658	if (ret)
3659		goto out_unlock;
3660	ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3661				   iter, ext4_dio_get_block, NULL, NULL, 0);
3662out_unlock:
3663	inode_unlock_shared(inode);
3664	return ret;
3665}
3666
3667static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3668{
3669	struct file *file = iocb->ki_filp;
3670	struct inode *inode = file->f_mapping->host;
3671	size_t count = iov_iter_count(iter);
3672	loff_t offset = iocb->ki_pos;
3673	ssize_t ret;
3674
3675#ifdef CONFIG_EXT4_FS_ENCRYPTION
3676	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3677		return 0;
3678#endif
3679
3680	/*
3681	 * If we are doing data journalling we don't support O_DIRECT
 
 
 
3682	 */
3683	if (ext4_should_journal_data(inode))
3684		return 0;
3685
3686	/* Let buffer I/O handle the inline data case. */
3687	if (ext4_has_inline_data(inode))
3688		return 0;
 
 
3689
3690	/* DAX uses iomap path now */
3691	if (WARN_ON_ONCE(IS_DAX(inode)))
3692		return 0;
 
 
3693
3694	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3695	if (iov_iter_rw(iter) == READ)
3696		ret = ext4_direct_IO_read(iocb, iter);
3697	else
3698		ret = ext4_direct_IO_write(iocb, iter);
3699	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3700	return ret;
3701}
3702
 
 
 
 
3703/*
3704 * Pages can be marked dirty completely asynchronously from ext4's journalling
3705 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3706 * much here because ->set_page_dirty is called under VFS locks.  The page is
3707 * not necessarily locked.
3708 *
3709 * We cannot just dirty the page and leave attached buffers clean, because the
3710 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3711 * or jbddirty because all the journalling code will explode.
3712 *
3713 * So what we do is to mark the page "pending dirty" and next time writepage
3714 * is called, propagate that into the buffers appropriately.
3715 */
3716static int ext4_journalled_set_page_dirty(struct page *page)
3717{
3718	SetPageChecked(page);
3719	return __set_page_dirty_nobuffers(page);
 
 
 
 
 
 
 
 
 
 
 
 
3720}
3721
3722static int ext4_set_page_dirty(struct page *page)
 
3723{
3724	WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3725	WARN_ON_ONCE(!page_has_buffers(page));
3726	return __set_page_dirty_buffers(page);
3727}
3728
3729static const struct address_space_operations ext4_aops = {
3730	.readpage		= ext4_readpage,
3731	.readpages		= ext4_readpages,
3732	.writepage		= ext4_writepage,
3733	.writepages		= ext4_writepages,
3734	.write_begin		= ext4_write_begin,
3735	.write_end		= ext4_write_end,
3736	.set_page_dirty		= ext4_set_page_dirty,
3737	.bmap			= ext4_bmap,
3738	.invalidatepage		= ext4_invalidatepage,
3739	.releasepage		= ext4_releasepage,
3740	.direct_IO		= ext4_direct_IO,
3741	.migratepage		= buffer_migrate_page,
3742	.is_partially_uptodate  = block_is_partially_uptodate,
3743	.error_remove_page	= generic_error_remove_page,
 
3744};
3745
3746static const struct address_space_operations ext4_journalled_aops = {
3747	.readpage		= ext4_readpage,
3748	.readpages		= ext4_readpages,
3749	.writepage		= ext4_writepage,
3750	.writepages		= ext4_writepages,
3751	.write_begin		= ext4_write_begin,
3752	.write_end		= ext4_journalled_write_end,
3753	.set_page_dirty		= ext4_journalled_set_page_dirty,
3754	.bmap			= ext4_bmap,
3755	.invalidatepage		= ext4_journalled_invalidatepage,
3756	.releasepage		= ext4_releasepage,
3757	.direct_IO		= ext4_direct_IO,
3758	.is_partially_uptodate  = block_is_partially_uptodate,
3759	.error_remove_page	= generic_error_remove_page,
 
3760};
3761
3762static const struct address_space_operations ext4_da_aops = {
3763	.readpage		= ext4_readpage,
3764	.readpages		= ext4_readpages,
3765	.writepage		= ext4_writepage,
3766	.writepages		= ext4_writepages,
3767	.write_begin		= ext4_da_write_begin,
3768	.write_end		= ext4_da_write_end,
3769	.set_page_dirty		= ext4_set_page_dirty,
3770	.bmap			= ext4_bmap,
3771	.invalidatepage		= ext4_da_invalidatepage,
3772	.releasepage		= ext4_releasepage,
3773	.direct_IO		= ext4_direct_IO,
3774	.migratepage		= buffer_migrate_page,
3775	.is_partially_uptodate  = block_is_partially_uptodate,
3776	.error_remove_page	= generic_error_remove_page,
 
 
 
 
 
 
 
 
3777};
3778
3779void ext4_set_aops(struct inode *inode)
3780{
3781	switch (ext4_inode_journal_mode(inode)) {
3782	case EXT4_INODE_ORDERED_DATA_MODE:
3783	case EXT4_INODE_WRITEBACK_DATA_MODE:
3784		break;
3785	case EXT4_INODE_JOURNAL_DATA_MODE:
3786		inode->i_mapping->a_ops = &ext4_journalled_aops;
3787		return;
3788	default:
3789		BUG();
3790	}
3791	if (test_opt(inode->i_sb, DELALLOC))
 
 
3792		inode->i_mapping->a_ops = &ext4_da_aops;
3793	else
3794		inode->i_mapping->a_ops = &ext4_aops;
3795}
3796
 
 
 
 
 
 
3797static int __ext4_block_zero_page_range(handle_t *handle,
3798		struct address_space *mapping, loff_t from, loff_t length)
3799{
3800	ext4_fsblk_t index = from >> PAGE_SHIFT;
3801	unsigned offset = from & (PAGE_SIZE-1);
3802	unsigned blocksize, pos;
3803	ext4_lblk_t iblock;
3804	struct inode *inode = mapping->host;
3805	struct buffer_head *bh;
3806	struct page *page;
3807	int err = 0;
3808
3809	page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3810				   mapping_gfp_constraint(mapping, ~__GFP_FS));
3811	if (!page)
3812		return -ENOMEM;
 
3813
3814	blocksize = inode->i_sb->s_blocksize;
3815
3816	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3817
3818	if (!page_has_buffers(page))
3819		create_empty_buffers(page, blocksize, 0);
 
3820
3821	/* Find the buffer that contains "offset" */
3822	bh = page_buffers(page);
3823	pos = blocksize;
3824	while (offset >= pos) {
3825		bh = bh->b_this_page;
3826		iblock++;
3827		pos += blocksize;
3828	}
3829	if (buffer_freed(bh)) {
3830		BUFFER_TRACE(bh, "freed: skip");
3831		goto unlock;
3832	}
3833	if (!buffer_mapped(bh)) {
3834		BUFFER_TRACE(bh, "unmapped");
3835		ext4_get_block(inode, iblock, bh, 0);
3836		/* unmapped? It's a hole - nothing to do */
3837		if (!buffer_mapped(bh)) {
3838			BUFFER_TRACE(bh, "still unmapped");
3839			goto unlock;
3840		}
3841	}
3842
3843	/* Ok, it's mapped. Make sure it's up-to-date */
3844	if (PageUptodate(page))
3845		set_buffer_uptodate(bh);
3846
3847	if (!buffer_uptodate(bh)) {
3848		err = -EIO;
3849		ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3850		wait_on_buffer(bh);
3851		/* Uhhuh. Read error. Complain and punt. */
3852		if (!buffer_uptodate(bh))
3853			goto unlock;
3854		if (S_ISREG(inode->i_mode) &&
3855		    ext4_encrypted_inode(inode)) {
3856			/* We expect the key to be set. */
3857			BUG_ON(!fscrypt_has_encryption_key(inode));
3858			BUG_ON(blocksize != PAGE_SIZE);
3859			WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
3860						page, PAGE_SIZE, 0, page->index));
 
 
 
 
3861		}
3862	}
3863	if (ext4_should_journal_data(inode)) {
3864		BUFFER_TRACE(bh, "get write access");
3865		err = ext4_journal_get_write_access(handle, bh);
 
3866		if (err)
3867			goto unlock;
3868	}
3869	zero_user(page, offset, length);
3870	BUFFER_TRACE(bh, "zeroed end of block");
3871
3872	if (ext4_should_journal_data(inode)) {
3873		err = ext4_handle_dirty_metadata(handle, inode, bh);
3874	} else {
3875		err = 0;
3876		mark_buffer_dirty(bh);
3877		if (ext4_should_order_data(inode))
3878			err = ext4_jbd2_inode_add_write(handle, inode);
 
3879	}
3880
3881unlock:
3882	unlock_page(page);
3883	put_page(page);
3884	return err;
3885}
3886
3887/*
3888 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3889 * starting from file offset 'from'.  The range to be zero'd must
3890 * be contained with in one block.  If the specified range exceeds
3891 * the end of the block it will be shortened to end of the block
3892 * that cooresponds to 'from'
3893 */
3894static int ext4_block_zero_page_range(handle_t *handle,
3895		struct address_space *mapping, loff_t from, loff_t length)
3896{
3897	struct inode *inode = mapping->host;
3898	unsigned offset = from & (PAGE_SIZE-1);
3899	unsigned blocksize = inode->i_sb->s_blocksize;
3900	unsigned max = blocksize - (offset & (blocksize - 1));
3901
3902	/*
3903	 * correct length if it does not fall between
3904	 * 'from' and the end of the block
3905	 */
3906	if (length > max || length < 0)
3907		length = max;
3908
3909	if (IS_DAX(inode)) {
3910		return iomap_zero_range(inode, from, length, NULL,
3911					&ext4_iomap_ops);
3912	}
3913	return __ext4_block_zero_page_range(handle, mapping, from, length);
3914}
3915
3916/*
3917 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3918 * up to the end of the block which corresponds to `from'.
3919 * This required during truncate. We need to physically zero the tail end
3920 * of that block so it doesn't yield old data if the file is later grown.
3921 */
3922static int ext4_block_truncate_page(handle_t *handle,
3923		struct address_space *mapping, loff_t from)
3924{
3925	unsigned offset = from & (PAGE_SIZE-1);
3926	unsigned length;
3927	unsigned blocksize;
3928	struct inode *inode = mapping->host;
3929
3930	/* If we are processing an encrypted inode during orphan list handling */
3931	if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3932		return 0;
3933
3934	blocksize = inode->i_sb->s_blocksize;
3935	length = blocksize - (offset & (blocksize - 1));
3936
3937	return ext4_block_zero_page_range(handle, mapping, from, length);
3938}
3939
3940int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3941			     loff_t lstart, loff_t length)
3942{
3943	struct super_block *sb = inode->i_sb;
3944	struct address_space *mapping = inode->i_mapping;
3945	unsigned partial_start, partial_end;
3946	ext4_fsblk_t start, end;
3947	loff_t byte_end = (lstart + length - 1);
3948	int err = 0;
3949
3950	partial_start = lstart & (sb->s_blocksize - 1);
3951	partial_end = byte_end & (sb->s_blocksize - 1);
3952
3953	start = lstart >> sb->s_blocksize_bits;
3954	end = byte_end >> sb->s_blocksize_bits;
3955
3956	/* Handle partial zero within the single block */
3957	if (start == end &&
3958	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3959		err = ext4_block_zero_page_range(handle, mapping,
3960						 lstart, length);
3961		return err;
3962	}
3963	/* Handle partial zero out on the start of the range */
3964	if (partial_start) {
3965		err = ext4_block_zero_page_range(handle, mapping,
3966						 lstart, sb->s_blocksize);
3967		if (err)
3968			return err;
3969	}
3970	/* Handle partial zero out on the end of the range */
3971	if (partial_end != sb->s_blocksize - 1)
3972		err = ext4_block_zero_page_range(handle, mapping,
3973						 byte_end - partial_end,
3974						 partial_end + 1);
3975	return err;
3976}
3977
3978int ext4_can_truncate(struct inode *inode)
3979{
3980	if (S_ISREG(inode->i_mode))
3981		return 1;
3982	if (S_ISDIR(inode->i_mode))
3983		return 1;
3984	if (S_ISLNK(inode->i_mode))
3985		return !ext4_inode_is_fast_symlink(inode);
3986	return 0;
3987}
3988
3989/*
3990 * We have to make sure i_disksize gets properly updated before we truncate
3991 * page cache due to hole punching or zero range. Otherwise i_disksize update
3992 * can get lost as it may have been postponed to submission of writeback but
3993 * that will never happen after we truncate page cache.
3994 */
3995int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3996				      loff_t len)
3997{
3998	handle_t *handle;
 
 
3999	loff_t size = i_size_read(inode);
4000
4001	WARN_ON(!inode_is_locked(inode));
4002	if (offset > size || offset + len < size)
4003		return 0;
4004
4005	if (EXT4_I(inode)->i_disksize >= size)
4006		return 0;
4007
4008	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
4009	if (IS_ERR(handle))
4010		return PTR_ERR(handle);
4011	ext4_update_i_disksize(inode, size);
4012	ext4_mark_inode_dirty(handle, inode);
4013	ext4_journal_stop(handle);
4014
4015	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4016}
4017
4018/*
4019 * ext4_punch_hole: punches a hole in a file by releasing the blocks
4020 * associated with the given offset and length
4021 *
4022 * @inode:  File inode
4023 * @offset: The offset where the hole will begin
4024 * @len:    The length of the hole
4025 *
4026 * Returns: 0 on success or negative on failure
4027 */
4028
4029int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
4030{
 
4031	struct super_block *sb = inode->i_sb;
4032	ext4_lblk_t first_block, stop_block;
4033	struct address_space *mapping = inode->i_mapping;
4034	loff_t first_block_offset, last_block_offset;
 
4035	handle_t *handle;
4036	unsigned int credits;
4037	int ret = 0;
4038
4039	if (!S_ISREG(inode->i_mode))
4040		return -EOPNOTSUPP;
4041
4042	trace_ext4_punch_hole(inode, offset, length, 0);
4043
4044	/*
4045	 * Write out all dirty pages to avoid race conditions
4046	 * Then release them.
4047	 */
4048	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
4049		ret = filemap_write_and_wait_range(mapping, offset,
4050						   offset + length - 1);
4051		if (ret)
4052			return ret;
4053	}
4054
4055	inode_lock(inode);
4056
4057	/* No need to punch hole beyond i_size */
4058	if (offset >= inode->i_size)
4059		goto out_mutex;
4060
4061	/*
4062	 * If the hole extends beyond i_size, set the hole
4063	 * to end after the page that contains i_size
4064	 */
4065	if (offset + length > inode->i_size) {
4066		length = inode->i_size +
4067		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4068		   offset;
4069	}
4070
 
 
 
 
 
 
 
 
4071	if (offset & (sb->s_blocksize - 1) ||
4072	    (offset + length) & (sb->s_blocksize - 1)) {
4073		/*
4074		 * Attach jinode to inode for jbd2 if we do any zeroing of
4075		 * partial block
4076		 */
4077		ret = ext4_inode_attach_jinode(inode);
4078		if (ret < 0)
4079			goto out_mutex;
4080
4081	}
4082
4083	/* Wait all existing dio workers, newcomers will block on i_mutex */
4084	ext4_inode_block_unlocked_dio(inode);
4085	inode_dio_wait(inode);
4086
 
 
 
 
4087	/*
4088	 * Prevent page faults from reinstantiating pages we have released from
4089	 * page cache.
4090	 */
4091	down_write(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
4092	first_block_offset = round_up(offset, sb->s_blocksize);
4093	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4094
4095	/* Now release the pages and zero block aligned part of pages*/
4096	if (last_block_offset > first_block_offset) {
4097		ret = ext4_update_disksize_before_punch(inode, offset, length);
4098		if (ret)
4099			goto out_dio;
4100		truncate_pagecache_range(inode, first_block_offset,
4101					 last_block_offset);
4102	}
4103
4104	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4105		credits = ext4_writepage_trans_blocks(inode);
4106	else
4107		credits = ext4_blocks_for_truncate(inode);
4108	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4109	if (IS_ERR(handle)) {
4110		ret = PTR_ERR(handle);
4111		ext4_std_error(sb, ret);
4112		goto out_dio;
4113	}
4114
4115	ret = ext4_zero_partial_blocks(handle, inode, offset,
4116				       length);
4117	if (ret)
4118		goto out_stop;
4119
4120	first_block = (offset + sb->s_blocksize - 1) >>
4121		EXT4_BLOCK_SIZE_BITS(sb);
4122	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4123
4124	/* If there are no blocks to remove, return now */
4125	if (first_block >= stop_block)
4126		goto out_stop;
4127
4128	down_write(&EXT4_I(inode)->i_data_sem);
4129	ext4_discard_preallocations(inode);
4130
4131	ret = ext4_es_remove_extent(inode, first_block,
4132				    stop_block - first_block);
4133	if (ret) {
4134		up_write(&EXT4_I(inode)->i_data_sem);
4135		goto out_stop;
4136	}
4137
4138	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4139		ret = ext4_ext_remove_space(inode, first_block,
4140					    stop_block - 1);
4141	else
4142		ret = ext4_ind_remove_space(handle, inode, first_block,
4143					    stop_block);
4144
4145	up_write(&EXT4_I(inode)->i_data_sem);
 
 
 
 
4146	if (IS_SYNC(inode))
4147		ext4_handle_sync(handle);
4148
4149	inode->i_mtime = inode->i_ctime = current_time(inode);
4150	ext4_mark_inode_dirty(handle, inode);
 
 
 
 
4151out_stop:
4152	ext4_journal_stop(handle);
4153out_dio:
4154	up_write(&EXT4_I(inode)->i_mmap_sem);
4155	ext4_inode_resume_unlocked_dio(inode);
4156out_mutex:
4157	inode_unlock(inode);
4158	return ret;
4159}
4160
4161int ext4_inode_attach_jinode(struct inode *inode)
4162{
4163	struct ext4_inode_info *ei = EXT4_I(inode);
4164	struct jbd2_inode *jinode;
4165
4166	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4167		return 0;
4168
4169	jinode = jbd2_alloc_inode(GFP_KERNEL);
4170	spin_lock(&inode->i_lock);
4171	if (!ei->jinode) {
4172		if (!jinode) {
4173			spin_unlock(&inode->i_lock);
4174			return -ENOMEM;
4175		}
4176		ei->jinode = jinode;
4177		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4178		jinode = NULL;
4179	}
4180	spin_unlock(&inode->i_lock);
4181	if (unlikely(jinode != NULL))
4182		jbd2_free_inode(jinode);
4183	return 0;
4184}
4185
4186/*
4187 * ext4_truncate()
4188 *
4189 * We block out ext4_get_block() block instantiations across the entire
4190 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4191 * simultaneously on behalf of the same inode.
4192 *
4193 * As we work through the truncate and commit bits of it to the journal there
4194 * is one core, guiding principle: the file's tree must always be consistent on
4195 * disk.  We must be able to restart the truncate after a crash.
4196 *
4197 * The file's tree may be transiently inconsistent in memory (although it
4198 * probably isn't), but whenever we close off and commit a journal transaction,
4199 * the contents of (the filesystem + the journal) must be consistent and
4200 * restartable.  It's pretty simple, really: bottom up, right to left (although
4201 * left-to-right works OK too).
4202 *
4203 * Note that at recovery time, journal replay occurs *before* the restart of
4204 * truncate against the orphan inode list.
4205 *
4206 * The committed inode has the new, desired i_size (which is the same as
4207 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4208 * that this inode's truncate did not complete and it will again call
4209 * ext4_truncate() to have another go.  So there will be instantiated blocks
4210 * to the right of the truncation point in a crashed ext4 filesystem.  But
4211 * that's fine - as long as they are linked from the inode, the post-crash
4212 * ext4_truncate() run will find them and release them.
4213 */
4214int ext4_truncate(struct inode *inode)
4215{
4216	struct ext4_inode_info *ei = EXT4_I(inode);
4217	unsigned int credits;
4218	int err = 0;
4219	handle_t *handle;
4220	struct address_space *mapping = inode->i_mapping;
4221
4222	/*
4223	 * There is a possibility that we're either freeing the inode
4224	 * or it's a completely new inode. In those cases we might not
4225	 * have i_mutex locked because it's not necessary.
4226	 */
4227	if (!(inode->i_state & (I_NEW|I_FREEING)))
4228		WARN_ON(!inode_is_locked(inode));
4229	trace_ext4_truncate_enter(inode);
4230
4231	if (!ext4_can_truncate(inode))
4232		return 0;
4233
4234	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4235
4236	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4237		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4238
4239	if (ext4_has_inline_data(inode)) {
4240		int has_inline = 1;
4241
4242		ext4_inline_data_truncate(inode, &has_inline);
4243		if (has_inline)
4244			return 0;
4245	}
4246
4247	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4248	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4249		if (ext4_inode_attach_jinode(inode) < 0)
4250			return 0;
 
4251	}
4252
4253	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4254		credits = ext4_writepage_trans_blocks(inode);
4255	else
4256		credits = ext4_blocks_for_truncate(inode);
4257
4258	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4259	if (IS_ERR(handle))
4260		return PTR_ERR(handle);
 
 
4261
4262	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4263		ext4_block_truncate_page(handle, mapping, inode->i_size);
4264
4265	/*
4266	 * We add the inode to the orphan list, so that if this
4267	 * truncate spans multiple transactions, and we crash, we will
4268	 * resume the truncate when the filesystem recovers.  It also
4269	 * marks the inode dirty, to catch the new size.
4270	 *
4271	 * Implication: the file must always be in a sane, consistent
4272	 * truncatable state while each transaction commits.
4273	 */
4274	err = ext4_orphan_add(handle, inode);
4275	if (err)
4276		goto out_stop;
4277
4278	down_write(&EXT4_I(inode)->i_data_sem);
4279
4280	ext4_discard_preallocations(inode);
4281
4282	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4283		err = ext4_ext_truncate(handle, inode);
4284	else
4285		ext4_ind_truncate(handle, inode);
4286
4287	up_write(&ei->i_data_sem);
4288	if (err)
4289		goto out_stop;
4290
4291	if (IS_SYNC(inode))
4292		ext4_handle_sync(handle);
4293
4294out_stop:
4295	/*
4296	 * If this was a simple ftruncate() and the file will remain alive,
4297	 * then we need to clear up the orphan record which we created above.
4298	 * However, if this was a real unlink then we were called by
4299	 * ext4_evict_inode(), and we allow that function to clean up the
4300	 * orphan info for us.
4301	 */
4302	if (inode->i_nlink)
4303		ext4_orphan_del(handle, inode);
4304
4305	inode->i_mtime = inode->i_ctime = current_time(inode);
4306	ext4_mark_inode_dirty(handle, inode);
 
 
4307	ext4_journal_stop(handle);
4308
 
4309	trace_ext4_truncate_exit(inode);
4310	return err;
4311}
4312
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4313/*
4314 * ext4_get_inode_loc returns with an extra refcount against the inode's
4315 * underlying buffer_head on success. If 'in_mem' is true, we have all
4316 * data in memory that is needed to recreate the on-disk version of this
4317 * inode.
4318 */
4319static int __ext4_get_inode_loc(struct inode *inode,
4320				struct ext4_iloc *iloc, int in_mem)
 
4321{
4322	struct ext4_group_desc	*gdp;
4323	struct buffer_head	*bh;
4324	struct super_block	*sb = inode->i_sb;
4325	ext4_fsblk_t		block;
 
4326	int			inodes_per_block, inode_offset;
4327
4328	iloc->bh = NULL;
4329	if (!ext4_valid_inum(sb, inode->i_ino))
 
4330		return -EFSCORRUPTED;
4331
4332	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4333	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4334	if (!gdp)
4335		return -EIO;
4336
4337	/*
4338	 * Figure out the offset within the block group inode table
4339	 */
4340	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4341	inode_offset = ((inode->i_ino - 1) %
4342			EXT4_INODES_PER_GROUP(sb));
4343	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4344	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4345
 
 
 
 
 
 
 
 
 
4346	bh = sb_getblk(sb, block);
4347	if (unlikely(!bh))
4348		return -ENOMEM;
4349	if (!buffer_uptodate(bh)) {
4350		lock_buffer(bh);
4351
4352		/*
4353		 * If the buffer has the write error flag, we have failed
4354		 * to write out another inode in the same block.  In this
4355		 * case, we don't have to read the block because we may
4356		 * read the old inode data successfully.
4357		 */
4358		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4359			set_buffer_uptodate(bh);
4360
4361		if (buffer_uptodate(bh)) {
4362			/* someone brought it uptodate while we waited */
4363			unlock_buffer(bh);
4364			goto has_buffer;
4365		}
 
 
 
 
 
 
 
 
 
 
4366
4367		/*
4368		 * If we have all information of the inode in memory and this
4369		 * is the only valid inode in the block, we need not read the
4370		 * block.
4371		 */
4372		if (in_mem) {
4373			struct buffer_head *bitmap_bh;
4374			int i, start;
4375
4376			start = inode_offset & ~(inodes_per_block - 1);
4377
4378			/* Is the inode bitmap in cache? */
4379			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4380			if (unlikely(!bitmap_bh))
4381				goto make_io;
4382
4383			/*
4384			 * If the inode bitmap isn't in cache then the
4385			 * optimisation may end up performing two reads instead
4386			 * of one, so skip it.
4387			 */
4388			if (!buffer_uptodate(bitmap_bh)) {
4389				brelse(bitmap_bh);
4390				goto make_io;
4391			}
4392			for (i = start; i < start + inodes_per_block; i++) {
4393				if (i == inode_offset)
4394					continue;
4395				if (ext4_test_bit(i, bitmap_bh->b_data))
4396					break;
4397			}
4398			brelse(bitmap_bh);
4399			if (i == start + inodes_per_block) {
4400				/* all other inodes are free, so skip I/O */
4401				memset(bh->b_data, 0, bh->b_size);
4402				set_buffer_uptodate(bh);
4403				unlock_buffer(bh);
4404				goto has_buffer;
4405			}
 
 
 
 
 
 
 
 
 
 
 
 
 
4406		}
 
4407
4408make_io:
4409		/*
4410		 * If we need to do any I/O, try to pre-readahead extra
4411		 * blocks from the inode table.
4412		 */
4413		if (EXT4_SB(sb)->s_inode_readahead_blks) {
4414			ext4_fsblk_t b, end, table;
4415			unsigned num;
4416			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4417
4418			table = ext4_inode_table(sb, gdp);
4419			/* s_inode_readahead_blks is always a power of 2 */
4420			b = block & ~((ext4_fsblk_t) ra_blks - 1);
4421			if (table > b)
4422				b = table;
4423			end = b + ra_blks;
4424			num = EXT4_INODES_PER_GROUP(sb);
4425			if (ext4_has_group_desc_csum(sb))
4426				num -= ext4_itable_unused_count(sb, gdp);
4427			table += num / inodes_per_block;
4428			if (end > table)
4429				end = table;
4430			while (b <= end)
4431				sb_breadahead(sb, b++);
4432		}
 
4433
4434		/*
4435		 * There are other valid inodes in the buffer, this inode
4436		 * has in-inode xattrs, or we don't have this inode in memory.
4437		 * Read the block from disk.
4438		 */
4439		trace_ext4_load_inode(inode);
4440		get_bh(bh);
4441		bh->b_end_io = end_buffer_read_sync;
4442		submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4443		wait_on_buffer(bh);
4444		if (!buffer_uptodate(bh)) {
4445			EXT4_ERROR_INODE_BLOCK(inode, block,
4446					       "unable to read itable block");
4447			brelse(bh);
4448			return -EIO;
4449		}
4450	}
4451has_buffer:
4452	iloc->bh = bh;
4453	return 0;
4454}
4455
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4456int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4457{
4458	/* We have all inode data except xattrs in memory here. */
4459	return __ext4_get_inode_loc(inode, iloc,
4460		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4461}
4462
4463void ext4_set_inode_flags(struct inode *inode)
4464{
4465	unsigned int flags = EXT4_I(inode)->i_flags;
4466	unsigned int new_fl = 0;
4467
 
 
4468	if (flags & EXT4_SYNC_FL)
4469		new_fl |= S_SYNC;
4470	if (flags & EXT4_APPEND_FL)
4471		new_fl |= S_APPEND;
4472	if (flags & EXT4_IMMUTABLE_FL)
4473		new_fl |= S_IMMUTABLE;
4474	if (flags & EXT4_NOATIME_FL)
4475		new_fl |= S_NOATIME;
4476	if (flags & EXT4_DIRSYNC_FL)
4477		new_fl |= S_DIRSYNC;
4478	if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
4479	    !ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
4480	    !ext4_encrypted_inode(inode))
4481		new_fl |= S_DAX;
4482	inode_set_flags(inode, new_fl,
4483			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4484}
4485
4486/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4487void ext4_get_inode_flags(struct ext4_inode_info *ei)
4488{
4489	unsigned int vfs_fl;
4490	unsigned long old_fl, new_fl;
4491
4492	do {
4493		vfs_fl = ei->vfs_inode.i_flags;
4494		old_fl = ei->i_flags;
4495		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4496				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4497				EXT4_DIRSYNC_FL);
4498		if (vfs_fl & S_SYNC)
4499			new_fl |= EXT4_SYNC_FL;
4500		if (vfs_fl & S_APPEND)
4501			new_fl |= EXT4_APPEND_FL;
4502		if (vfs_fl & S_IMMUTABLE)
4503			new_fl |= EXT4_IMMUTABLE_FL;
4504		if (vfs_fl & S_NOATIME)
4505			new_fl |= EXT4_NOATIME_FL;
4506		if (vfs_fl & S_DIRSYNC)
4507			new_fl |= EXT4_DIRSYNC_FL;
4508	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4509}
4510
4511static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4512				  struct ext4_inode_info *ei)
4513{
4514	blkcnt_t i_blocks ;
4515	struct inode *inode = &(ei->vfs_inode);
4516	struct super_block *sb = inode->i_sb;
4517
4518	if (ext4_has_feature_huge_file(sb)) {
4519		/* we are using combined 48 bit field */
4520		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4521					le32_to_cpu(raw_inode->i_blocks_lo);
4522		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4523			/* i_blocks represent file system block size */
4524			return i_blocks  << (inode->i_blkbits - 9);
4525		} else {
4526			return i_blocks;
4527		}
4528	} else {
4529		return le32_to_cpu(raw_inode->i_blocks_lo);
4530	}
4531}
4532
4533static inline void ext4_iget_extra_inode(struct inode *inode,
4534					 struct ext4_inode *raw_inode,
4535					 struct ext4_inode_info *ei)
4536{
4537	__le32 *magic = (void *)raw_inode +
4538			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4539	if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4540	    EXT4_INODE_SIZE(inode->i_sb) &&
4541	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
 
 
4542		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4543		ext4_find_inline_data_nolock(inode);
 
 
 
4544	} else
4545		EXT4_I(inode)->i_inline_off = 0;
 
4546}
4547
4548int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4549{
4550	if (!ext4_has_feature_project(inode->i_sb))
4551		return -EOPNOTSUPP;
4552	*projid = EXT4_I(inode)->i_projid;
4553	return 0;
4554}
4555
4556struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4557{
4558	struct ext4_iloc iloc;
4559	struct ext4_inode *raw_inode;
4560	struct ext4_inode_info *ei;
 
4561	struct inode *inode;
 
4562	journal_t *journal = EXT4_SB(sb)->s_journal;
4563	long ret;
4564	loff_t size;
4565	int block;
4566	uid_t i_uid;
4567	gid_t i_gid;
4568	projid_t i_projid;
4569
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4570	inode = iget_locked(sb, ino);
4571	if (!inode)
4572		return ERR_PTR(-ENOMEM);
4573	if (!(inode->i_state & I_NEW))
 
 
 
 
 
4574		return inode;
 
4575
4576	ei = EXT4_I(inode);
4577	iloc.bh = NULL;
4578
4579	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4580	if (ret < 0)
4581		goto bad_inode;
4582	raw_inode = ext4_raw_inode(&iloc);
4583
 
 
 
 
 
 
4584	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4585		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4586		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4587			EXT4_INODE_SIZE(inode->i_sb) ||
4588		    (ei->i_extra_isize & 3)) {
4589			EXT4_ERROR_INODE(inode,
4590					 "bad extra_isize %u (inode size %u)",
 
4591					 ei->i_extra_isize,
4592					 EXT4_INODE_SIZE(inode->i_sb));
4593			ret = -EFSCORRUPTED;
4594			goto bad_inode;
4595		}
4596	} else
4597		ei->i_extra_isize = 0;
4598
4599	/* Precompute checksum seed for inode metadata */
4600	if (ext4_has_metadata_csum(sb)) {
4601		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4602		__u32 csum;
4603		__le32 inum = cpu_to_le32(inode->i_ino);
4604		__le32 gen = raw_inode->i_generation;
4605		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4606				   sizeof(inum));
4607		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4608					      sizeof(gen));
4609	}
4610
4611	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4612		EXT4_ERROR_INODE(inode, "checksum invalid");
 
 
 
4613		ret = -EFSBADCRC;
4614		goto bad_inode;
4615	}
4616
4617	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4618	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4619	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4620	if (ext4_has_feature_project(sb) &&
4621	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4622	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4623		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4624	else
4625		i_projid = EXT4_DEF_PROJID;
4626
4627	if (!(test_opt(inode->i_sb, NO_UID32))) {
4628		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4629		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4630	}
4631	i_uid_write(inode, i_uid);
4632	i_gid_write(inode, i_gid);
4633	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4634	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4635
4636	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4637	ei->i_inline_off = 0;
4638	ei->i_dir_start_lookup = 0;
4639	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4640	/* We now have enough fields to check if the inode was active or not.
4641	 * This is needed because nfsd might try to access dead inodes
4642	 * the test is that same one that e2fsck uses
4643	 * NeilBrown 1999oct15
4644	 */
4645	if (inode->i_nlink == 0) {
4646		if ((inode->i_mode == 0 ||
4647		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4648		    ino != EXT4_BOOT_LOADER_INO) {
4649			/* this inode is deleted */
4650			ret = -ESTALE;
 
 
 
 
 
4651			goto bad_inode;
4652		}
4653		/* The only unlinked inodes we let through here have
4654		 * valid i_mode and are being read by the orphan
4655		 * recovery code: that's fine, we're about to complete
4656		 * the process of deleting those.
4657		 * OR it is the EXT4_BOOT_LOADER_INO which is
4658		 * not initialized on a new filesystem. */
4659	}
4660	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
 
4661	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4662	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4663	if (ext4_has_feature_64bit(sb))
4664		ei->i_file_acl |=
4665			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4666	inode->i_size = ext4_isize(raw_inode);
4667	if ((size = i_size_read(inode)) < 0) {
4668		EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
 
 
 
 
 
 
 
 
 
 
 
 
 
4669		ret = -EFSCORRUPTED;
4670		goto bad_inode;
4671	}
4672	ei->i_disksize = inode->i_size;
4673#ifdef CONFIG_QUOTA
4674	ei->i_reserved_quota = 0;
4675#endif
4676	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4677	ei->i_block_group = iloc.block_group;
4678	ei->i_last_alloc_group = ~0;
4679	/*
4680	 * NOTE! The in-memory inode i_data array is in little-endian order
4681	 * even on big-endian machines: we do NOT byteswap the block numbers!
4682	 */
4683	for (block = 0; block < EXT4_N_BLOCKS; block++)
4684		ei->i_data[block] = raw_inode->i_block[block];
4685	INIT_LIST_HEAD(&ei->i_orphan);
 
4686
4687	/*
4688	 * Set transaction id's of transactions that have to be committed
4689	 * to finish f[data]sync. We set them to currently running transaction
4690	 * as we cannot be sure that the inode or some of its metadata isn't
4691	 * part of the transaction - the inode could have been reclaimed and
4692	 * now it is reread from disk.
4693	 */
4694	if (journal) {
4695		transaction_t *transaction;
4696		tid_t tid;
4697
4698		read_lock(&journal->j_state_lock);
4699		if (journal->j_running_transaction)
4700			transaction = journal->j_running_transaction;
4701		else
4702			transaction = journal->j_committing_transaction;
4703		if (transaction)
4704			tid = transaction->t_tid;
4705		else
4706			tid = journal->j_commit_sequence;
4707		read_unlock(&journal->j_state_lock);
4708		ei->i_sync_tid = tid;
4709		ei->i_datasync_tid = tid;
4710	}
4711
4712	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4713		if (ei->i_extra_isize == 0) {
4714			/* The extra space is currently unused. Use it. */
4715			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4716			ei->i_extra_isize = sizeof(struct ext4_inode) -
4717					    EXT4_GOOD_OLD_INODE_SIZE;
4718		} else {
4719			ext4_iget_extra_inode(inode, raw_inode, ei);
 
 
4720		}
4721	}
4722
4723	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4724	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4725	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4726	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4727
4728	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4729		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
 
4730		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4731			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4732				inode->i_version |=
4733		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4734		}
 
4735	}
4736
4737	ret = 0;
4738	if (ei->i_file_acl &&
4739	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4740		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
 
4741				 ei->i_file_acl);
4742		ret = -EFSCORRUPTED;
4743		goto bad_inode;
4744	} else if (!ext4_has_inline_data(inode)) {
4745		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4746			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4747			    (S_ISLNK(inode->i_mode) &&
4748			     !ext4_inode_is_fast_symlink(inode))))
4749				/* Validate extent which is part of inode */
 
4750				ret = ext4_ext_check_inode(inode);
4751		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4752			   (S_ISLNK(inode->i_mode) &&
4753			    !ext4_inode_is_fast_symlink(inode))) {
4754			/* Validate block references which are part of inode */
4755			ret = ext4_ind_check_inode(inode);
4756		}
4757	}
4758	if (ret)
4759		goto bad_inode;
4760
4761	if (S_ISREG(inode->i_mode)) {
4762		inode->i_op = &ext4_file_inode_operations;
4763		inode->i_fop = &ext4_file_operations;
4764		ext4_set_aops(inode);
4765	} else if (S_ISDIR(inode->i_mode)) {
4766		inode->i_op = &ext4_dir_inode_operations;
4767		inode->i_fop = &ext4_dir_operations;
4768	} else if (S_ISLNK(inode->i_mode)) {
4769		if (ext4_encrypted_inode(inode)) {
 
 
 
 
 
 
 
 
4770			inode->i_op = &ext4_encrypted_symlink_inode_operations;
4771			ext4_set_aops(inode);
4772		} else if (ext4_inode_is_fast_symlink(inode)) {
4773			inode->i_link = (char *)ei->i_data;
4774			inode->i_op = &ext4_fast_symlink_inode_operations;
4775			nd_terminate_link(ei->i_data, inode->i_size,
4776				sizeof(ei->i_data) - 1);
4777		} else {
4778			inode->i_op = &ext4_symlink_inode_operations;
4779			ext4_set_aops(inode);
4780		}
4781		inode_nohighmem(inode);
4782	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4783	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4784		inode->i_op = &ext4_special_inode_operations;
4785		if (raw_inode->i_block[0])
4786			init_special_inode(inode, inode->i_mode,
4787			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4788		else
4789			init_special_inode(inode, inode->i_mode,
4790			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4791	} else if (ino == EXT4_BOOT_LOADER_INO) {
4792		make_bad_inode(inode);
4793	} else {
4794		ret = -EFSCORRUPTED;
4795		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
 
 
 
 
 
 
 
4796		goto bad_inode;
4797	}
 
 
 
 
 
 
4798	brelse(iloc.bh);
4799	ext4_set_inode_flags(inode);
4800	unlock_new_inode(inode);
4801	return inode;
4802
4803bad_inode:
4804	brelse(iloc.bh);
4805	iget_failed(inode);
4806	return ERR_PTR(ret);
4807}
4808
4809struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
 
 
 
4810{
4811	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4812		return ERR_PTR(-EFSCORRUPTED);
4813	return ext4_iget(sb, ino);
4814}
4815
4816static int ext4_inode_blocks_set(handle_t *handle,
4817				struct ext4_inode *raw_inode,
4818				struct ext4_inode_info *ei)
4819{
4820	struct inode *inode = &(ei->vfs_inode);
4821	u64 i_blocks = inode->i_blocks;
4822	struct super_block *sb = inode->i_sb;
4823
4824	if (i_blocks <= ~0U) {
4825		/*
4826		 * i_blocks can be represented in a 32 bit variable
4827		 * as multiple of 512 bytes
4828		 */
4829		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4830		raw_inode->i_blocks_high = 0;
4831		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4832		return 0;
4833	}
4834	if (!ext4_has_feature_huge_file(sb))
4835		return -EFBIG;
4836
4837	if (i_blocks <= 0xffffffffffffULL) {
4838		/*
4839		 * i_blocks can be represented in a 48 bit variable
4840		 * as multiple of 512 bytes
4841		 */
4842		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4843		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4844		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4845	} else {
4846		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4847		/* i_block is stored in file system block size */
4848		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4849		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4850		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4851	}
4852	return 0;
4853}
4854
4855struct other_inode {
4856	unsigned long		orig_ino;
4857	struct ext4_inode	*raw_inode;
4858};
4859
4860static int other_inode_match(struct inode * inode, unsigned long ino,
4861			     void *data)
4862{
4863	struct other_inode *oi = (struct other_inode *) data;
4864
4865	if ((inode->i_ino != ino) ||
4866	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4867			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4868	    ((inode->i_state & I_DIRTY_TIME) == 0))
4869		return 0;
4870	spin_lock(&inode->i_lock);
4871	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4872				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4873	    (inode->i_state & I_DIRTY_TIME)) {
4874		struct ext4_inode_info	*ei = EXT4_I(inode);
4875
4876		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4877		spin_unlock(&inode->i_lock);
4878
4879		spin_lock(&ei->i_raw_lock);
4880		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4881		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4882		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4883		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4884		spin_unlock(&ei->i_raw_lock);
4885		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4886		return -1;
4887	}
4888	spin_unlock(&inode->i_lock);
4889	return -1;
4890}
4891
4892/*
4893 * Opportunistically update the other time fields for other inodes in
4894 * the same inode table block.
4895 */
4896static void ext4_update_other_inodes_time(struct super_block *sb,
4897					  unsigned long orig_ino, char *buf)
4898{
4899	struct other_inode oi;
4900	unsigned long ino;
4901	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4902	int inode_size = EXT4_INODE_SIZE(sb);
4903
4904	oi.orig_ino = orig_ino;
4905	/*
4906	 * Calculate the first inode in the inode table block.  Inode
4907	 * numbers are one-based.  That is, the first inode in a block
4908	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4909	 */
4910	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
 
4911	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4912		if (ino == orig_ino)
4913			continue;
4914		oi.raw_inode = (struct ext4_inode *) buf;
4915		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4916	}
 
4917}
4918
4919/*
4920 * Post the struct inode info into an on-disk inode location in the
4921 * buffer-cache.  This gobbles the caller's reference to the
4922 * buffer_head in the inode location struct.
4923 *
4924 * The caller must have write access to iloc->bh.
4925 */
4926static int ext4_do_update_inode(handle_t *handle,
4927				struct inode *inode,
4928				struct ext4_iloc *iloc)
4929{
4930	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4931	struct ext4_inode_info *ei = EXT4_I(inode);
4932	struct buffer_head *bh = iloc->bh;
4933	struct super_block *sb = inode->i_sb;
4934	int err = 0, rc, block;
4935	int need_datasync = 0, set_large_file = 0;
4936	uid_t i_uid;
4937	gid_t i_gid;
4938	projid_t i_projid;
4939
4940	spin_lock(&ei->i_raw_lock);
4941
4942	/* For fields not tracked in the in-memory inode,
4943	 * initialise them to zero for new inodes. */
 
 
4944	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4945		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4946
4947	ext4_get_inode_flags(ei);
4948	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4949	i_uid = i_uid_read(inode);
4950	i_gid = i_gid_read(inode);
4951	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4952	if (!(test_opt(inode->i_sb, NO_UID32))) {
4953		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4954		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4955/*
4956 * Fix up interoperability with old kernels. Otherwise, old inodes get
4957 * re-used with the upper 16 bits of the uid/gid intact
4958 */
4959		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4960			raw_inode->i_uid_high = 0;
4961			raw_inode->i_gid_high = 0;
4962		} else {
4963			raw_inode->i_uid_high =
4964				cpu_to_le16(high_16_bits(i_uid));
4965			raw_inode->i_gid_high =
4966				cpu_to_le16(high_16_bits(i_gid));
4967		}
4968	} else {
4969		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4970		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4971		raw_inode->i_uid_high = 0;
4972		raw_inode->i_gid_high = 0;
4973	}
4974	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4975
4976	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4977	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4978	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4979	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4980
4981	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4982	if (err) {
4983		spin_unlock(&ei->i_raw_lock);
4984		goto out_brelse;
4985	}
4986	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4987	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4988	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4989		raw_inode->i_file_acl_high =
4990			cpu_to_le16(ei->i_file_acl >> 32);
4991	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4992	if (ei->i_disksize != ext4_isize(raw_inode)) {
4993		ext4_isize_set(raw_inode, ei->i_disksize);
4994		need_datasync = 1;
4995	}
4996	if (ei->i_disksize > 0x7fffffffULL) {
4997		if (!ext4_has_feature_large_file(sb) ||
4998				EXT4_SB(sb)->s_es->s_rev_level ==
4999		    cpu_to_le32(EXT4_GOOD_OLD_REV))
5000			set_large_file = 1;
5001	}
5002	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5003	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5004		if (old_valid_dev(inode->i_rdev)) {
5005			raw_inode->i_block[0] =
5006				cpu_to_le32(old_encode_dev(inode->i_rdev));
5007			raw_inode->i_block[1] = 0;
5008		} else {
5009			raw_inode->i_block[0] = 0;
5010			raw_inode->i_block[1] =
5011				cpu_to_le32(new_encode_dev(inode->i_rdev));
5012			raw_inode->i_block[2] = 0;
5013		}
5014	} else if (!ext4_has_inline_data(inode)) {
5015		for (block = 0; block < EXT4_N_BLOCKS; block++)
5016			raw_inode->i_block[block] = ei->i_data[block];
5017	}
5018
5019	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5020		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5021		if (ei->i_extra_isize) {
5022			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5023				raw_inode->i_version_hi =
5024					cpu_to_le32(inode->i_version >> 32);
5025			raw_inode->i_extra_isize =
5026				cpu_to_le16(ei->i_extra_isize);
5027		}
5028	}
5029
5030	BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5031	       i_projid != EXT4_DEF_PROJID);
5032
5033	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5034	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5035		raw_inode->i_projid = cpu_to_le32(i_projid);
5036
5037	ext4_inode_csum_set(inode, raw_inode, ei);
5038	spin_unlock(&ei->i_raw_lock);
5039	if (inode->i_sb->s_flags & MS_LAZYTIME)
5040		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5041					      bh->b_data);
5042
5043	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5044	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5045	if (!err)
5046		err = rc;
5047	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5048	if (set_large_file) {
5049		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5050		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
 
 
5051		if (err)
5052			goto out_brelse;
5053		ext4_update_dynamic_rev(sb);
5054		ext4_set_feature_large_file(sb);
 
 
5055		ext4_handle_sync(handle);
5056		err = ext4_handle_dirty_super(handle, sb);
 
5057	}
5058	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
 
 
5059out_brelse:
5060	brelse(bh);
5061	ext4_std_error(inode->i_sb, err);
5062	return err;
5063}
5064
5065/*
5066 * ext4_write_inode()
5067 *
5068 * We are called from a few places:
5069 *
5070 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5071 *   Here, there will be no transaction running. We wait for any running
5072 *   transaction to commit.
5073 *
5074 * - Within flush work (sys_sync(), kupdate and such).
5075 *   We wait on commit, if told to.
5076 *
5077 * - Within iput_final() -> write_inode_now()
5078 *   We wait on commit, if told to.
5079 *
5080 * In all cases it is actually safe for us to return without doing anything,
5081 * because the inode has been copied into a raw inode buffer in
5082 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5083 * writeback.
5084 *
5085 * Note that we are absolutely dependent upon all inode dirtiers doing the
5086 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5087 * which we are interested.
5088 *
5089 * It would be a bug for them to not do this.  The code:
5090 *
5091 *	mark_inode_dirty(inode)
5092 *	stuff();
5093 *	inode->i_size = expr;
5094 *
5095 * is in error because write_inode() could occur while `stuff()' is running,
5096 * and the new i_size will be lost.  Plus the inode will no longer be on the
5097 * superblock's dirty inode list.
5098 */
5099int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5100{
5101	int err;
5102
5103	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5104		return 0;
5105
 
 
 
5106	if (EXT4_SB(inode->i_sb)->s_journal) {
5107		if (ext4_journal_current_handle()) {
5108			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5109			dump_stack();
5110			return -EIO;
5111		}
5112
5113		/*
5114		 * No need to force transaction in WB_SYNC_NONE mode. Also
5115		 * ext4_sync_fs() will force the commit after everything is
5116		 * written.
5117		 */
5118		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5119			return 0;
5120
5121		err = ext4_force_commit(inode->i_sb);
 
5122	} else {
5123		struct ext4_iloc iloc;
5124
5125		err = __ext4_get_inode_loc(inode, &iloc, 0);
5126		if (err)
5127			return err;
5128		/*
5129		 * sync(2) will flush the whole buffer cache. No need to do
5130		 * it here separately for each inode.
5131		 */
5132		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5133			sync_dirty_buffer(iloc.bh);
5134		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5135			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5136					 "IO error syncing inode");
5137			err = -EIO;
5138		}
5139		brelse(iloc.bh);
5140	}
5141	return err;
5142}
5143
5144/*
5145 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5146 * buffers that are attached to a page stradding i_size and are undergoing
5147 * commit. In that case we have to wait for commit to finish and try again.
5148 */
5149static void ext4_wait_for_tail_page_commit(struct inode *inode)
5150{
5151	struct page *page;
5152	unsigned offset;
5153	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5154	tid_t commit_tid = 0;
5155	int ret;
 
5156
5157	offset = inode->i_size & (PAGE_SIZE - 1);
5158	/*
5159	 * All buffers in the last page remain valid? Then there's nothing to
5160	 * do. We do the check mainly to optimize the common PAGE_SIZE ==
5161	 * blocksize case
 
 
 
 
5162	 */
5163	if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
5164		return;
5165	while (1) {
5166		page = find_lock_page(inode->i_mapping,
5167				      inode->i_size >> PAGE_SHIFT);
5168		if (!page)
5169			return;
5170		ret = __ext4_journalled_invalidatepage(page, offset,
5171						PAGE_SIZE - offset);
5172		unlock_page(page);
5173		put_page(page);
5174		if (ret != -EBUSY)
5175			return;
5176		commit_tid = 0;
5177		read_lock(&journal->j_state_lock);
5178		if (journal->j_committing_transaction)
5179			commit_tid = journal->j_committing_transaction->t_tid;
 
 
5180		read_unlock(&journal->j_state_lock);
5181		if (commit_tid)
5182			jbd2_log_wait_commit(journal, commit_tid);
5183	}
5184}
5185
5186/*
5187 * ext4_setattr()
5188 *
5189 * Called from notify_change.
5190 *
5191 * We want to trap VFS attempts to truncate the file as soon as
5192 * possible.  In particular, we want to make sure that when the VFS
5193 * shrinks i_size, we put the inode on the orphan list and modify
5194 * i_disksize immediately, so that during the subsequent flushing of
5195 * dirty pages and freeing of disk blocks, we can guarantee that any
5196 * commit will leave the blocks being flushed in an unused state on
5197 * disk.  (On recovery, the inode will get truncated and the blocks will
5198 * be freed, so we have a strong guarantee that no future commit will
5199 * leave these blocks visible to the user.)
5200 *
5201 * Another thing we have to assure is that if we are in ordered mode
5202 * and inode is still attached to the committing transaction, we must
5203 * we start writeout of all the dirty pages which are being truncated.
5204 * This way we are sure that all the data written in the previous
5205 * transaction are already on disk (truncate waits for pages under
5206 * writeback).
5207 *
5208 * Called with inode->i_mutex down.
5209 */
5210int ext4_setattr(struct dentry *dentry, struct iattr *attr)
 
5211{
5212	struct inode *inode = d_inode(dentry);
5213	int error, rc = 0;
5214	int orphan = 0;
5215	const unsigned int ia_valid = attr->ia_valid;
 
 
 
 
 
 
 
5216
5217	error = setattr_prepare(dentry, attr);
 
 
 
 
 
5218	if (error)
5219		return error;
5220
5221	if (is_quota_modification(inode, attr)) {
 
 
 
 
 
 
 
 
5222		error = dquot_initialize(inode);
5223		if (error)
5224			return error;
5225	}
5226	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5227	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
 
5228		handle_t *handle;
5229
5230		/* (user+group)*(old+new) structure, inode write (sb,
5231		 * inode block, ? - but truncate inode update has it) */
5232		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5233			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5234			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5235		if (IS_ERR(handle)) {
5236			error = PTR_ERR(handle);
5237			goto err_out;
5238		}
5239		error = dquot_transfer(inode, attr);
 
 
 
 
 
 
 
5240		if (error) {
5241			ext4_journal_stop(handle);
5242			return error;
5243		}
5244		/* Update corresponding info in inode so that everything is in
5245		 * one transaction */
5246		if (attr->ia_valid & ATTR_UID)
5247			inode->i_uid = attr->ia_uid;
5248		if (attr->ia_valid & ATTR_GID)
5249			inode->i_gid = attr->ia_gid;
5250		error = ext4_mark_inode_dirty(handle, inode);
5251		ext4_journal_stop(handle);
 
 
 
5252	}
5253
5254	if (attr->ia_valid & ATTR_SIZE) {
5255		handle_t *handle;
5256		loff_t oldsize = inode->i_size;
5257		int shrink = (attr->ia_size <= inode->i_size);
 
5258
5259		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5260			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5261
5262			if (attr->ia_size > sbi->s_bitmap_maxbytes)
5263				return -EFBIG;
 
5264		}
5265		if (!S_ISREG(inode->i_mode))
5266			return -EINVAL;
 
5267
5268		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5269			inode_inc_iversion(inode);
5270
5271		if (ext4_should_order_data(inode) &&
5272		    (attr->ia_size < inode->i_size)) {
5273			error = ext4_begin_ordered_truncate(inode,
5274							    attr->ia_size);
5275			if (error)
5276				goto err_out;
 
 
 
 
 
 
5277		}
 
 
 
 
 
 
 
 
 
5278		if (attr->ia_size != inode->i_size) {
 
 
 
 
 
 
 
 
5279			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5280			if (IS_ERR(handle)) {
5281				error = PTR_ERR(handle);
5282				goto err_out;
5283			}
5284			if (ext4_handle_valid(handle) && shrink) {
5285				error = ext4_orphan_add(handle, inode);
5286				orphan = 1;
5287			}
5288			/*
5289			 * Update c/mtime on truncate up, ext4_truncate() will
5290			 * update c/mtime in shrink case below
 
5291			 */
5292			if (!shrink) {
5293				inode->i_mtime = current_time(inode);
5294				inode->i_ctime = inode->i_mtime;
 
 
 
5295			}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5296			down_write(&EXT4_I(inode)->i_data_sem);
 
5297			EXT4_I(inode)->i_disksize = attr->ia_size;
5298			rc = ext4_mark_inode_dirty(handle, inode);
5299			if (!error)
5300				error = rc;
5301			/*
5302			 * We have to update i_size under i_data_sem together
5303			 * with i_disksize to avoid races with writeback code
5304			 * running ext4_wb_update_i_disksize().
5305			 */
5306			if (!error)
5307				i_size_write(inode, attr->ia_size);
 
 
5308			up_write(&EXT4_I(inode)->i_data_sem);
5309			ext4_journal_stop(handle);
5310			if (error) {
5311				if (orphan)
5312					ext4_orphan_del(NULL, inode);
5313				goto err_out;
 
 
 
5314			}
5315		}
5316		if (!shrink)
5317			pagecache_isize_extended(inode, oldsize, inode->i_size);
5318
5319		/*
5320		 * Blocks are going to be removed from the inode. Wait
5321		 * for dio in flight.  Temporarily disable
5322		 * dioread_nolock to prevent livelock.
5323		 */
5324		if (orphan) {
5325			if (!ext4_should_journal_data(inode)) {
5326				ext4_inode_block_unlocked_dio(inode);
5327				inode_dio_wait(inode);
5328				ext4_inode_resume_unlocked_dio(inode);
5329			} else
5330				ext4_wait_for_tail_page_commit(inode);
5331		}
5332		down_write(&EXT4_I(inode)->i_mmap_sem);
5333		/*
5334		 * Truncate pagecache after we've waited for commit
5335		 * in data=journal mode to make pages freeable.
5336		 */
5337		truncate_pagecache(inode, inode->i_size);
5338		if (shrink) {
 
 
 
 
5339			rc = ext4_truncate(inode);
5340			if (rc)
5341				error = rc;
5342		}
5343		up_write(&EXT4_I(inode)->i_mmap_sem);
 
5344	}
5345
5346	if (!error) {
5347		setattr_copy(inode, attr);
 
 
5348		mark_inode_dirty(inode);
5349	}
5350
5351	/*
5352	 * If the call to ext4_truncate failed to get a transaction handle at
5353	 * all, we need to clean up the in-core orphan list manually.
5354	 */
5355	if (orphan && inode->i_nlink)
5356		ext4_orphan_del(NULL, inode);
5357
5358	if (!error && (ia_valid & ATTR_MODE))
5359		rc = posix_acl_chmod(inode, inode->i_mode);
5360
5361err_out:
5362	ext4_std_error(inode->i_sb, error);
 
5363	if (!error)
5364		error = rc;
5365	return error;
5366}
5367
5368int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5369		 struct kstat *stat)
5370{
5371	struct inode *inode;
5372	unsigned long long delalloc_blocks;
 
 
 
 
 
 
 
 
 
 
 
5373
5374	inode = d_inode(dentry);
5375	generic_fillattr(inode, stat);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5376
5377	/*
5378	 * If there is inline data in the inode, the inode will normally not
5379	 * have data blocks allocated (it may have an external xattr block).
5380	 * Report at least one sector for such files, so tools like tar, rsync,
5381	 * others doen't incorrectly think the file is completely sparse.
5382	 */
5383	if (unlikely(ext4_has_inline_data(inode)))
5384		stat->blocks += (stat->size + 511) >> 9;
5385
5386	/*
5387	 * We can't update i_blocks if the block allocation is delayed
5388	 * otherwise in the case of system crash before the real block
5389	 * allocation is done, we will have i_blocks inconsistent with
5390	 * on-disk file blocks.
5391	 * We always keep i_blocks updated together with real
5392	 * allocation. But to not confuse with user, stat
5393	 * will return the blocks that include the delayed allocation
5394	 * blocks for this file.
5395	 */
5396	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5397				   EXT4_I(inode)->i_reserved_data_blocks);
5398	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5399	return 0;
5400}
5401
5402static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5403				   int pextents)
5404{
5405	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5406		return ext4_ind_trans_blocks(inode, lblocks);
5407	return ext4_ext_index_trans_blocks(inode, pextents);
5408}
5409
5410/*
5411 * Account for index blocks, block groups bitmaps and block group
5412 * descriptor blocks if modify datablocks and index blocks
5413 * worse case, the indexs blocks spread over different block groups
5414 *
5415 * If datablocks are discontiguous, they are possible to spread over
5416 * different block groups too. If they are contiguous, with flexbg,
5417 * they could still across block group boundary.
5418 *
5419 * Also account for superblock, inode, quota and xattr blocks
5420 */
5421static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5422				  int pextents)
5423{
5424	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5425	int gdpblocks;
5426	int idxblocks;
5427	int ret = 0;
5428
5429	/*
5430	 * How many index blocks need to touch to map @lblocks logical blocks
5431	 * to @pextents physical extents?
5432	 */
5433	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5434
5435	ret = idxblocks;
5436
5437	/*
5438	 * Now let's see how many group bitmaps and group descriptors need
5439	 * to account
5440	 */
5441	groups = idxblocks + pextents;
5442	gdpblocks = groups;
5443	if (groups > ngroups)
5444		groups = ngroups;
5445	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5446		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5447
5448	/* bitmaps and block group descriptor blocks */
5449	ret += groups + gdpblocks;
5450
5451	/* Blocks for super block, inode, quota and xattr blocks */
5452	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5453
5454	return ret;
5455}
5456
5457/*
5458 * Calculate the total number of credits to reserve to fit
5459 * the modification of a single pages into a single transaction,
5460 * which may include multiple chunks of block allocations.
5461 *
5462 * This could be called via ext4_write_begin()
5463 *
5464 * We need to consider the worse case, when
5465 * one new block per extent.
5466 */
5467int ext4_writepage_trans_blocks(struct inode *inode)
5468{
5469	int bpp = ext4_journal_blocks_per_page(inode);
5470	int ret;
5471
5472	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5473
5474	/* Account for data blocks for journalled mode */
5475	if (ext4_should_journal_data(inode))
5476		ret += bpp;
5477	return ret;
5478}
5479
5480/*
5481 * Calculate the journal credits for a chunk of data modification.
5482 *
5483 * This is called from DIO, fallocate or whoever calling
5484 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5485 *
5486 * journal buffers for data blocks are not included here, as DIO
5487 * and fallocate do no need to journal data buffers.
5488 */
5489int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5490{
5491	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5492}
5493
5494/*
5495 * The caller must have previously called ext4_reserve_inode_write().
5496 * Give this, we know that the caller already has write access to iloc->bh.
5497 */
5498int ext4_mark_iloc_dirty(handle_t *handle,
5499			 struct inode *inode, struct ext4_iloc *iloc)
5500{
5501	int err = 0;
5502
5503	if (IS_I_VERSION(inode))
5504		inode_inc_iversion(inode);
 
 
 
5505
5506	/* the do_update_inode consumes one bh->b_count */
5507	get_bh(iloc->bh);
5508
5509	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5510	err = ext4_do_update_inode(handle, inode, iloc);
5511	put_bh(iloc->bh);
5512	return err;
5513}
5514
5515/*
5516 * On success, We end up with an outstanding reference count against
5517 * iloc->bh.  This _must_ be cleaned up later.
5518 */
5519
5520int
5521ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5522			 struct ext4_iloc *iloc)
5523{
5524	int err;
5525
 
 
 
5526	err = ext4_get_inode_loc(inode, iloc);
5527	if (!err) {
5528		BUFFER_TRACE(iloc->bh, "get_write_access");
5529		err = ext4_journal_get_write_access(handle, iloc->bh);
 
5530		if (err) {
5531			brelse(iloc->bh);
5532			iloc->bh = NULL;
5533		}
5534	}
5535	ext4_std_error(inode->i_sb, err);
5536	return err;
5537}
5538
5539/*
5540 * Expand an inode by new_extra_isize bytes.
5541 * Returns 0 on success or negative error number on failure.
5542 */
5543static int ext4_expand_extra_isize(struct inode *inode,
5544				   unsigned int new_extra_isize,
5545				   struct ext4_iloc iloc,
5546				   handle_t *handle)
5547{
5548	struct ext4_inode *raw_inode;
5549	struct ext4_xattr_ibody_header *header;
 
 
 
5550
5551	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5552		return 0;
 
 
 
 
 
 
 
 
 
 
5553
5554	raw_inode = ext4_raw_inode(&iloc);
5555
5556	header = IHDR(inode, raw_inode);
5557
5558	/* No extended attributes present */
5559	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5560	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5561		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5562			new_extra_isize);
 
5563		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5564		return 0;
5565	}
5566
 
 
 
 
 
 
 
 
5567	/* try to expand with EAs present */
5568	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5569					  raw_inode, handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5570}
5571
5572/*
5573 * What we do here is to mark the in-core inode as clean with respect to inode
5574 * dirtiness (it may still be data-dirty).
5575 * This means that the in-core inode may be reaped by prune_icache
5576 * without having to perform any I/O.  This is a very good thing,
5577 * because *any* task may call prune_icache - even ones which
5578 * have a transaction open against a different journal.
5579 *
5580 * Is this cheating?  Not really.  Sure, we haven't written the
5581 * inode out, but prune_icache isn't a user-visible syncing function.
5582 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5583 * we start and wait on commits.
5584 */
5585int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
 
5586{
5587	struct ext4_iloc iloc;
5588	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5589	static unsigned int mnt_count;
5590	int err, ret;
5591
5592	might_sleep();
5593	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5594	err = ext4_reserve_inode_write(handle, inode, &iloc);
5595	if (err)
5596		return err;
5597	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5598	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5599		/*
5600		 * In nojournal mode, we can immediately attempt to expand
5601		 * the inode.  When journaled, we first need to obtain extra
5602		 * buffer credits since we may write into the EA block
5603		 * with this same handle. If journal_extend fails, then it will
5604		 * only result in a minor loss of functionality for that inode.
5605		 * If this is felt to be critical, then e2fsck should be run to
5606		 * force a large enough s_min_extra_isize.
5607		 */
5608		if (!ext4_handle_valid(handle) ||
5609		    jbd2_journal_extend(handle,
5610			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
5611			ret = ext4_expand_extra_isize(inode,
5612						      sbi->s_want_extra_isize,
5613						      iloc, handle);
5614			if (ret) {
5615				if (mnt_count !=
5616					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5617					ext4_warning(inode->i_sb,
5618					"Unable to expand inode %lu. Delete"
5619					" some EAs or run e2fsck.",
5620					inode->i_ino);
5621					mnt_count =
5622					  le16_to_cpu(sbi->s_es->s_mnt_count);
5623				}
5624			}
5625		}
5626	}
5627	return ext4_mark_iloc_dirty(handle, inode, &iloc);
5628}
5629
5630/*
5631 * ext4_dirty_inode() is called from __mark_inode_dirty()
5632 *
5633 * We're really interested in the case where a file is being extended.
5634 * i_size has been changed by generic_commit_write() and we thus need
5635 * to include the updated inode in the current transaction.
5636 *
5637 * Also, dquot_alloc_block() will always dirty the inode when blocks
5638 * are allocated to the file.
5639 *
5640 * If the inode is marked synchronous, we don't honour that here - doing
5641 * so would cause a commit on atime updates, which we don't bother doing.
5642 * We handle synchronous inodes at the highest possible level.
5643 *
5644 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5645 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5646 * to copy into the on-disk inode structure are the timestamp files.
5647 */
5648void ext4_dirty_inode(struct inode *inode, int flags)
5649{
5650	handle_t *handle;
5651
5652	if (flags == I_DIRTY_TIME)
5653		return;
5654	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5655	if (IS_ERR(handle))
5656		goto out;
5657
5658	ext4_mark_inode_dirty(handle, inode);
5659
5660	ext4_journal_stop(handle);
5661out:
5662	return;
5663}
5664
5665#if 0
5666/*
5667 * Bind an inode's backing buffer_head into this transaction, to prevent
5668 * it from being flushed to disk early.  Unlike
5669 * ext4_reserve_inode_write, this leaves behind no bh reference and
5670 * returns no iloc structure, so the caller needs to repeat the iloc
5671 * lookup to mark the inode dirty later.
5672 */
5673static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5674{
5675	struct ext4_iloc iloc;
5676
5677	int err = 0;
5678	if (handle) {
5679		err = ext4_get_inode_loc(inode, &iloc);
5680		if (!err) {
5681			BUFFER_TRACE(iloc.bh, "get_write_access");
5682			err = jbd2_journal_get_write_access(handle, iloc.bh);
5683			if (!err)
5684				err = ext4_handle_dirty_metadata(handle,
5685								 NULL,
5686								 iloc.bh);
5687			brelse(iloc.bh);
5688		}
5689	}
5690	ext4_std_error(inode->i_sb, err);
5691	return err;
5692}
5693#endif
5694
5695int ext4_change_inode_journal_flag(struct inode *inode, int val)
5696{
5697	journal_t *journal;
5698	handle_t *handle;
5699	int err;
5700	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5701
5702	/*
5703	 * We have to be very careful here: changing a data block's
5704	 * journaling status dynamically is dangerous.  If we write a
5705	 * data block to the journal, change the status and then delete
5706	 * that block, we risk forgetting to revoke the old log record
5707	 * from the journal and so a subsequent replay can corrupt data.
5708	 * So, first we make sure that the journal is empty and that
5709	 * nobody is changing anything.
5710	 */
5711
5712	journal = EXT4_JOURNAL(inode);
5713	if (!journal)
5714		return 0;
5715	if (is_journal_aborted(journal))
5716		return -EROFS;
5717
5718	/* Wait for all existing dio workers */
5719	ext4_inode_block_unlocked_dio(inode);
5720	inode_dio_wait(inode);
5721
5722	/*
5723	 * Before flushing the journal and switching inode's aops, we have
5724	 * to flush all dirty data the inode has. There can be outstanding
5725	 * delayed allocations, there can be unwritten extents created by
5726	 * fallocate or buffered writes in dioread_nolock mode covered by
5727	 * dirty data which can be converted only after flushing the dirty
5728	 * data (and journalled aops don't know how to handle these cases).
5729	 */
5730	if (val) {
5731		down_write(&EXT4_I(inode)->i_mmap_sem);
5732		err = filemap_write_and_wait(inode->i_mapping);
5733		if (err < 0) {
5734			up_write(&EXT4_I(inode)->i_mmap_sem);
5735			ext4_inode_resume_unlocked_dio(inode);
5736			return err;
5737		}
5738	}
5739
5740	percpu_down_write(&sbi->s_journal_flag_rwsem);
5741	jbd2_journal_lock_updates(journal);
5742
5743	/*
5744	 * OK, there are no updates running now, and all cached data is
5745	 * synced to disk.  We are now in a completely consistent state
5746	 * which doesn't have anything in the journal, and we know that
5747	 * no filesystem updates are running, so it is safe to modify
5748	 * the inode's in-core data-journaling state flag now.
5749	 */
5750
5751	if (val)
5752		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5753	else {
5754		err = jbd2_journal_flush(journal);
5755		if (err < 0) {
5756			jbd2_journal_unlock_updates(journal);
5757			percpu_up_write(&sbi->s_journal_flag_rwsem);
5758			ext4_inode_resume_unlocked_dio(inode);
5759			return err;
5760		}
5761		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5762	}
5763	ext4_set_aops(inode);
5764	/*
5765	 * Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
5766	 * E.g. S_DAX may get cleared / set.
5767	 */
5768	ext4_set_inode_flags(inode);
5769
5770	jbd2_journal_unlock_updates(journal);
5771	percpu_up_write(&sbi->s_journal_flag_rwsem);
5772
5773	if (val)
5774		up_write(&EXT4_I(inode)->i_mmap_sem);
5775	ext4_inode_resume_unlocked_dio(inode);
5776
5777	/* Finally we can mark the inode as dirty. */
5778
5779	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5780	if (IS_ERR(handle))
5781		return PTR_ERR(handle);
5782
 
 
5783	err = ext4_mark_inode_dirty(handle, inode);
5784	ext4_handle_sync(handle);
5785	ext4_journal_stop(handle);
5786	ext4_std_error(inode->i_sb, err);
5787
5788	return err;
5789}
5790
5791static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
 
5792{
5793	return !buffer_mapped(bh);
5794}
5795
5796int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5797{
5798	struct page *page = vmf->page;
 
5799	loff_t size;
5800	unsigned long len;
5801	int ret;
 
5802	struct file *file = vma->vm_file;
5803	struct inode *inode = file_inode(file);
5804	struct address_space *mapping = inode->i_mapping;
5805	handle_t *handle;
5806	get_block_t *get_block;
5807	int retries = 0;
5808
 
 
 
5809	sb_start_pagefault(inode->i_sb);
5810	file_update_time(vma->vm_file);
5811
5812	down_read(&EXT4_I(inode)->i_mmap_sem);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5813	/* Delalloc case is easy... */
5814	if (test_opt(inode->i_sb, DELALLOC) &&
5815	    !ext4_should_journal_data(inode) &&
5816	    !ext4_nonda_switch(inode->i_sb)) {
5817		do {
5818			ret = block_page_mkwrite(vma, vmf,
5819						   ext4_da_get_block_prep);
5820		} while (ret == -ENOSPC &&
5821		       ext4_should_retry_alloc(inode->i_sb, &retries));
5822		goto out_ret;
5823	}
5824
5825	lock_page(page);
5826	size = i_size_read(inode);
5827	/* Page got truncated from under us? */
5828	if (page->mapping != mapping || page_offset(page) > size) {
5829		unlock_page(page);
5830		ret = VM_FAULT_NOPAGE;
5831		goto out;
5832	}
5833
5834	if (page->index == size >> PAGE_SHIFT)
5835		len = size & ~PAGE_MASK;
5836	else
5837		len = PAGE_SIZE;
5838	/*
5839	 * Return if we have all the buffers mapped. This avoids the need to do
5840	 * journal_start/journal_stop which can block and take a long time
 
 
 
5841	 */
5842	if (page_has_buffers(page)) {
5843		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5844					    0, len, NULL,
5845					    ext4_bh_unmapped)) {
5846			/* Wait so that we don't change page under IO */
5847			wait_for_stable_page(page);
5848			ret = VM_FAULT_LOCKED;
5849			goto out;
5850		}
5851	}
5852	unlock_page(page);
5853	/* OK, we need to fill the hole... */
5854	if (ext4_should_dioread_nolock(inode))
5855		get_block = ext4_get_block_unwritten;
5856	else
5857		get_block = ext4_get_block;
5858retry_alloc:
5859	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5860				    ext4_writepage_trans_blocks(inode));
5861	if (IS_ERR(handle)) {
5862		ret = VM_FAULT_SIGBUS;
5863		goto out;
5864	}
5865	ret = block_page_mkwrite(vma, vmf, get_block);
5866	if (!ret && ext4_should_journal_data(inode)) {
5867		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5868			  PAGE_SIZE, NULL, do_journal_get_write_access)) {
5869			unlock_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5870			ret = VM_FAULT_SIGBUS;
5871			ext4_journal_stop(handle);
5872			goto out;
 
 
5873		}
5874		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5875	}
5876	ext4_journal_stop(handle);
5877	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5878		goto retry_alloc;
5879out_ret:
5880	ret = block_page_mkwrite_return(ret);
5881out:
5882	up_read(&EXT4_I(inode)->i_mmap_sem);
5883	sb_end_pagefault(inode->i_sb);
5884	return ret;
5885}
5886
5887int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5888{
5889	struct inode *inode = file_inode(vma->vm_file);
5890	int err;
5891
5892	down_read(&EXT4_I(inode)->i_mmap_sem);
5893	err = filemap_fault(vma, vmf);
5894	up_read(&EXT4_I(inode)->i_mmap_sem);
5895
5896	return err;
5897}
5898
5899/*
5900 * Find the first extent at or after @lblk in an inode that is not a hole.
5901 * Search for @map_len blocks at most. The extent is returned in @result.
5902 *
5903 * The function returns 1 if we found an extent. The function returns 0 in
5904 * case there is no extent at or after @lblk and in that case also sets
5905 * @result->es_len to 0. In case of error, the error code is returned.
5906 */
5907int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5908			 unsigned int map_len, struct extent_status *result)
5909{
5910	struct ext4_map_blocks map;
5911	struct extent_status es = {};
5912	int ret;
5913
5914	map.m_lblk = lblk;
5915	map.m_len = map_len;
5916
5917	/*
5918	 * For non-extent based files this loop may iterate several times since
5919	 * we do not determine full hole size.
5920	 */
5921	while (map.m_len > 0) {
5922		ret = ext4_map_blocks(NULL, inode, &map, 0);
5923		if (ret < 0)
5924			return ret;
5925		/* There's extent covering m_lblk? Just return it. */
5926		if (ret > 0) {
5927			int status;
5928
5929			ext4_es_store_pblock(result, map.m_pblk);
5930			result->es_lblk = map.m_lblk;
5931			result->es_len = map.m_len;
5932			if (map.m_flags & EXT4_MAP_UNWRITTEN)
5933				status = EXTENT_STATUS_UNWRITTEN;
5934			else
5935				status = EXTENT_STATUS_WRITTEN;
5936			ext4_es_store_status(result, status);
5937			return 1;
5938		}
5939		ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5940						  map.m_lblk + map.m_len - 1,
5941						  &es);
5942		/* Is delalloc data before next block in extent tree? */
5943		if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5944			ext4_lblk_t offset = 0;
5945
5946			if (es.es_lblk < lblk)
5947				offset = lblk - es.es_lblk;
5948			result->es_lblk = es.es_lblk + offset;
5949			ext4_es_store_pblock(result,
5950					     ext4_es_pblock(&es) + offset);
5951			result->es_len = es.es_len - offset;
5952			ext4_es_store_status(result, ext4_es_status(&es));
5953
5954			return 1;
5955		}
5956		/* There's a hole at m_lblk, advance us after it */
5957		map.m_lblk += map.m_len;
5958		map_len -= map.m_len;
5959		map.m_len = map_len;
5960		cond_resched();
5961	}
5962	result->es_len = 0;
5963	return 0;
5964}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/inode.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  17 *	(jj@sunsite.ms.mff.cuni.cz)
  18 *
  19 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
  20 */
  21
  22#include <linux/fs.h>
  23#include <linux/mount.h>
  24#include <linux/time.h>
  25#include <linux/highuid.h>
  26#include <linux/pagemap.h>
  27#include <linux/dax.h>
  28#include <linux/quotaops.h>
  29#include <linux/string.h>
  30#include <linux/buffer_head.h>
  31#include <linux/writeback.h>
  32#include <linux/pagevec.h>
  33#include <linux/mpage.h>
  34#include <linux/namei.h>
  35#include <linux/uio.h>
  36#include <linux/bio.h>
  37#include <linux/workqueue.h>
  38#include <linux/kernel.h>
  39#include <linux/printk.h>
  40#include <linux/slab.h>
  41#include <linux/bitops.h>
  42#include <linux/iomap.h>
  43#include <linux/iversion.h>
  44
  45#include "ext4_jbd2.h"
  46#include "xattr.h"
  47#include "acl.h"
  48#include "truncate.h"
  49
  50#include <trace/events/ext4.h>
  51
  52static void ext4_journalled_zero_new_buffers(handle_t *handle,
  53					    struct inode *inode,
  54					    struct folio *folio,
  55					    unsigned from, unsigned to);
  56
  57static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
  58			      struct ext4_inode_info *ei)
  59{
  60	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
  61	__u32 csum;
  62	__u16 dummy_csum = 0;
  63	int offset = offsetof(struct ext4_inode, i_checksum_lo);
  64	unsigned int csum_size = sizeof(dummy_csum);
  65
  66	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
  67	csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
  68	offset += csum_size;
  69	csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  70			   EXT4_GOOD_OLD_INODE_SIZE - offset);
  71
  72	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
  73		offset = offsetof(struct ext4_inode, i_checksum_hi);
  74		csum = ext4_chksum(sbi, csum, (__u8 *)raw +
  75				   EXT4_GOOD_OLD_INODE_SIZE,
  76				   offset - EXT4_GOOD_OLD_INODE_SIZE);
  77		if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
  78			csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
  79					   csum_size);
  80			offset += csum_size;
  81		}
  82		csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
  83				   EXT4_INODE_SIZE(inode->i_sb) - offset);
  84	}
  85
  86	return csum;
  87}
  88
  89static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
  90				  struct ext4_inode_info *ei)
  91{
  92	__u32 provided, calculated;
  93
  94	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
  95	    cpu_to_le32(EXT4_OS_LINUX) ||
  96	    !ext4_has_metadata_csum(inode->i_sb))
  97		return 1;
  98
  99	provided = le16_to_cpu(raw->i_checksum_lo);
 100	calculated = ext4_inode_csum(inode, raw, ei);
 101	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 102	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 103		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
 104	else
 105		calculated &= 0xFFFF;
 106
 107	return provided == calculated;
 108}
 109
 110void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
 111			 struct ext4_inode_info *ei)
 112{
 113	__u32 csum;
 114
 115	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
 116	    cpu_to_le32(EXT4_OS_LINUX) ||
 117	    !ext4_has_metadata_csum(inode->i_sb))
 118		return;
 119
 120	csum = ext4_inode_csum(inode, raw, ei);
 121	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
 122	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
 123	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
 124		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
 125}
 126
 127static inline int ext4_begin_ordered_truncate(struct inode *inode,
 128					      loff_t new_size)
 129{
 130	trace_ext4_begin_ordered_truncate(inode, new_size);
 131	/*
 132	 * If jinode is zero, then we never opened the file for
 133	 * writing, so there's no need to call
 134	 * jbd2_journal_begin_ordered_truncate() since there's no
 135	 * outstanding writes we need to flush.
 136	 */
 137	if (!EXT4_I(inode)->jinode)
 138		return 0;
 139	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
 140						   EXT4_I(inode)->jinode,
 141						   new_size);
 142}
 143
 
 
 
 
 144static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
 145				  int pextents);
 146
 147/*
 148 * Test whether an inode is a fast symlink.
 149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
 150 */
 151int ext4_inode_is_fast_symlink(struct inode *inode)
 152{
 153	if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
 154		int ea_blocks = EXT4_I(inode)->i_file_acl ?
 155				EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 156
 157		if (ext4_has_inline_data(inode))
 158			return 0;
 
 
 
 
 
 
 
 
 
 
 159
 160		return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
 161	}
 162	return S_ISLNK(inode->i_mode) && inode->i_size &&
 163	       (inode->i_size < EXT4_N_BLOCKS * 4);
 164}
 165
 166/*
 167 * Called at the last iput() if i_nlink is zero.
 168 */
 169void ext4_evict_inode(struct inode *inode)
 170{
 171	handle_t *handle;
 172	int err;
 173	/*
 174	 * Credits for final inode cleanup and freeing:
 175	 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
 176	 * (xattr block freeing), bitmap, group descriptor (inode freeing)
 177	 */
 178	int extra_credits = 6;
 179	struct ext4_xattr_inode_array *ea_inode_array = NULL;
 180	bool freeze_protected = false;
 181
 182	trace_ext4_evict_inode(inode);
 183
 184	if (EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)
 185		ext4_evict_ea_inode(inode);
 186	if (inode->i_nlink) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187		truncate_inode_pages_final(&inode->i_data);
 188
 189		goto no_delete;
 190	}
 191
 192	if (is_bad_inode(inode))
 193		goto no_delete;
 194	dquot_initialize(inode);
 195
 196	if (ext4_should_order_data(inode))
 197		ext4_begin_ordered_truncate(inode, 0);
 198	truncate_inode_pages_final(&inode->i_data);
 199
 200	/*
 201	 * For inodes with journalled data, transaction commit could have
 202	 * dirtied the inode. And for inodes with dioread_nolock, unwritten
 203	 * extents converting worker could merge extents and also have dirtied
 204	 * the inode. Flush worker is ignoring it because of I_FREEING flag but
 205	 * we still need to remove the inode from the writeback lists.
 206	 */
 207	if (!list_empty_careful(&inode->i_io_list))
 208		inode_io_list_del(inode);
 209
 210	/*
 211	 * Protect us against freezing - iput() caller didn't have to have any
 212	 * protection against it. When we are in a running transaction though,
 213	 * we are already protected against freezing and we cannot grab further
 214	 * protection due to lock ordering constraints.
 215	 */
 216	if (!ext4_journal_current_handle()) {
 217		sb_start_intwrite(inode->i_sb);
 218		freeze_protected = true;
 219	}
 220
 221	if (!IS_NOQUOTA(inode))
 222		extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
 223
 224	/*
 225	 * Block bitmap, group descriptor, and inode are accounted in both
 226	 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
 227	 */
 
 228	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
 229			 ext4_blocks_for_truncate(inode) + extra_credits - 3);
 230	if (IS_ERR(handle)) {
 231		ext4_std_error(inode->i_sb, PTR_ERR(handle));
 232		/*
 233		 * If we're going to skip the normal cleanup, we still need to
 234		 * make sure that the in-core orphan linked list is properly
 235		 * cleaned up.
 236		 */
 237		ext4_orphan_del(NULL, inode);
 238		if (freeze_protected)
 239			sb_end_intwrite(inode->i_sb);
 240		goto no_delete;
 241	}
 242
 243	if (IS_SYNC(inode))
 244		ext4_handle_sync(handle);
 245
 246	/*
 247	 * Set inode->i_size to 0 before calling ext4_truncate(). We need
 248	 * special handling of symlinks here because i_size is used to
 249	 * determine whether ext4_inode_info->i_data contains symlink data or
 250	 * block mappings. Setting i_size to 0 will remove its fast symlink
 251	 * status. Erase i_data so that it becomes a valid empty block map.
 252	 */
 253	if (ext4_inode_is_fast_symlink(inode))
 254		memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
 255	inode->i_size = 0;
 256	err = ext4_mark_inode_dirty(handle, inode);
 257	if (err) {
 258		ext4_warning(inode->i_sb,
 259			     "couldn't mark inode dirty (err %d)", err);
 260		goto stop_handle;
 261	}
 262	if (inode->i_blocks) {
 263		err = ext4_truncate(inode);
 264		if (err) {
 265			ext4_error_err(inode->i_sb, -err,
 266				       "couldn't truncate inode %lu (err %d)",
 267				       inode->i_ino, err);
 268			goto stop_handle;
 269		}
 270	}
 271
 272	/* Remove xattr references. */
 273	err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
 274				      extra_credits);
 275	if (err) {
 276		ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
 277stop_handle:
 278		ext4_journal_stop(handle);
 279		ext4_orphan_del(NULL, inode);
 280		if (freeze_protected)
 
 
 
 
 
 
 
 281			sb_end_intwrite(inode->i_sb);
 282		ext4_xattr_inode_array_free(ea_inode_array);
 283		goto no_delete;
 284	}
 285
 286	/*
 287	 * Kill off the orphan record which ext4_truncate created.
 288	 * AKPM: I think this can be inside the above `if'.
 289	 * Note that ext4_orphan_del() has to be able to cope with the
 290	 * deletion of a non-existent orphan - this is because we don't
 291	 * know if ext4_truncate() actually created an orphan record.
 292	 * (Well, we could do this if we need to, but heck - it works)
 293	 */
 294	ext4_orphan_del(handle, inode);
 295	EXT4_I(inode)->i_dtime	= (__u32)ktime_get_real_seconds();
 296
 297	/*
 298	 * One subtle ordering requirement: if anything has gone wrong
 299	 * (transaction abort, IO errors, whatever), then we can still
 300	 * do these next steps (the fs will already have been marked as
 301	 * having errors), but we can't free the inode if the mark_dirty
 302	 * fails.
 303	 */
 304	if (ext4_mark_inode_dirty(handle, inode))
 305		/* If that failed, just do the required in-core inode clear. */
 306		ext4_clear_inode(inode);
 307	else
 308		ext4_free_inode(handle, inode);
 309	ext4_journal_stop(handle);
 310	if (freeze_protected)
 311		sb_end_intwrite(inode->i_sb);
 312	ext4_xattr_inode_array_free(ea_inode_array);
 313	return;
 314no_delete:
 315	/*
 316	 * Check out some where else accidentally dirty the evicting inode,
 317	 * which may probably cause inode use-after-free issues later.
 318	 */
 319	WARN_ON_ONCE(!list_empty_careful(&inode->i_io_list));
 320
 321	if (!list_empty(&EXT4_I(inode)->i_fc_list))
 322		ext4_fc_mark_ineligible(inode->i_sb, EXT4_FC_REASON_NOMEM, NULL);
 323	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
 324}
 325
 326#ifdef CONFIG_QUOTA
 327qsize_t *ext4_get_reserved_space(struct inode *inode)
 328{
 329	return &EXT4_I(inode)->i_reserved_quota;
 330}
 331#endif
 332
 333/*
 334 * Called with i_data_sem down, which is important since we can call
 335 * ext4_discard_preallocations() from here.
 336 */
 337void ext4_da_update_reserve_space(struct inode *inode,
 338					int used, int quota_claim)
 339{
 340	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
 341	struct ext4_inode_info *ei = EXT4_I(inode);
 342
 343	spin_lock(&ei->i_block_reservation_lock);
 344	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
 345	if (unlikely(used > ei->i_reserved_data_blocks)) {
 346		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
 347			 "with only %d reserved data blocks",
 348			 __func__, inode->i_ino, used,
 349			 ei->i_reserved_data_blocks);
 350		WARN_ON(1);
 351		used = ei->i_reserved_data_blocks;
 352	}
 353
 354	/* Update per-inode reservations */
 355	ei->i_reserved_data_blocks -= used;
 356	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
 357
 358	spin_unlock(&ei->i_block_reservation_lock);
 359
 360	/* Update quota subsystem for data blocks */
 361	if (quota_claim)
 362		dquot_claim_block(inode, EXT4_C2B(sbi, used));
 363	else {
 364		/*
 365		 * We did fallocate with an offset that is already delayed
 366		 * allocated. So on delayed allocated writeback we should
 367		 * not re-claim the quota for fallocated blocks.
 368		 */
 369		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
 370	}
 371
 372	/*
 373	 * If we have done all the pending block allocations and if
 374	 * there aren't any writers on the inode, we can discard the
 375	 * inode's preallocations.
 376	 */
 377	if ((ei->i_reserved_data_blocks == 0) &&
 378	    !inode_is_open_for_write(inode))
 379		ext4_discard_preallocations(inode);
 380}
 381
 382static int __check_block_validity(struct inode *inode, const char *func,
 383				unsigned int line,
 384				struct ext4_map_blocks *map)
 385{
 386	if (ext4_has_feature_journal(inode->i_sb) &&
 387	    (inode->i_ino ==
 388	     le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
 389		return 0;
 390	if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
 391		ext4_error_inode(inode, func, line, map->m_pblk,
 392				 "lblock %lu mapped to illegal pblock %llu "
 393				 "(length %d)", (unsigned long) map->m_lblk,
 394				 map->m_pblk, map->m_len);
 395		return -EFSCORRUPTED;
 396	}
 397	return 0;
 398}
 399
 400int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
 401		       ext4_lblk_t len)
 402{
 403	int ret;
 404
 405	if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode))
 406		return fscrypt_zeroout_range(inode, lblk, pblk, len);
 407
 408	ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
 409	if (ret > 0)
 410		ret = 0;
 411
 412	return ret;
 413}
 414
 415#define check_block_validity(inode, map)	\
 416	__check_block_validity((inode), __func__, __LINE__, (map))
 417
 418#ifdef ES_AGGRESSIVE_TEST
 419static void ext4_map_blocks_es_recheck(handle_t *handle,
 420				       struct inode *inode,
 421				       struct ext4_map_blocks *es_map,
 422				       struct ext4_map_blocks *map,
 423				       int flags)
 424{
 425	int retval;
 426
 427	map->m_flags = 0;
 428	/*
 429	 * There is a race window that the result is not the same.
 430	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
 431	 * is that we lookup a block mapping in extent status tree with
 432	 * out taking i_data_sem.  So at the time the unwritten extent
 433	 * could be converted.
 434	 */
 435	down_read(&EXT4_I(inode)->i_data_sem);
 436	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 437		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 
 438	} else {
 439		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 
 440	}
 441	up_read((&EXT4_I(inode)->i_data_sem));
 442
 443	/*
 444	 * We don't check m_len because extent will be collpased in status
 445	 * tree.  So the m_len might not equal.
 446	 */
 447	if (es_map->m_lblk != map->m_lblk ||
 448	    es_map->m_flags != map->m_flags ||
 449	    es_map->m_pblk != map->m_pblk) {
 450		printk("ES cache assertion failed for inode: %lu "
 451		       "es_cached ex [%d/%d/%llu/%x] != "
 452		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
 453		       inode->i_ino, es_map->m_lblk, es_map->m_len,
 454		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
 455		       map->m_len, map->m_pblk, map->m_flags,
 456		       retval, flags);
 457	}
 458}
 459#endif /* ES_AGGRESSIVE_TEST */
 460
 461static int ext4_map_query_blocks(handle_t *handle, struct inode *inode,
 462				 struct ext4_map_blocks *map)
 463{
 464	unsigned int status;
 465	int retval;
 466
 467	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
 468		retval = ext4_ext_map_blocks(handle, inode, map, 0);
 469	else
 470		retval = ext4_ind_map_blocks(handle, inode, map, 0);
 471
 472	if (retval <= 0)
 473		return retval;
 474
 475	if (unlikely(retval != map->m_len)) {
 476		ext4_warning(inode->i_sb,
 477			     "ES len assertion failed for inode "
 478			     "%lu: retval %d != map->m_len %d",
 479			     inode->i_ino, retval, map->m_len);
 480		WARN_ON(1);
 481	}
 482
 483	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 484			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 485	ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
 486			      map->m_pblk, status, false);
 487	return retval;
 488}
 489
 490static int ext4_map_create_blocks(handle_t *handle, struct inode *inode,
 491				  struct ext4_map_blocks *map, int flags)
 492{
 493	struct extent_status es;
 494	unsigned int status;
 495	int err, retval = 0;
 496
 497	/*
 498	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE
 499	 * indicates that the blocks and quotas has already been
 500	 * checked when the data was copied into the page cache.
 501	 */
 502	if (map->m_flags & EXT4_MAP_DELAYED)
 503		flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
 504
 505	/*
 506	 * Here we clear m_flags because after allocating an new extent,
 507	 * it will be set again.
 508	 */
 509	map->m_flags &= ~EXT4_MAP_FLAGS;
 510
 511	/*
 512	 * We need to check for EXT4 here because migrate could have
 513	 * changed the inode type in between.
 514	 */
 515	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
 516		retval = ext4_ext_map_blocks(handle, inode, map, flags);
 517	} else {
 518		retval = ext4_ind_map_blocks(handle, inode, map, flags);
 519
 520		/*
 521		 * We allocated new blocks which will result in i_data's
 522		 * format changing. Force the migrate to fail by clearing
 523		 * migrate flags.
 524		 */
 525		if (retval > 0 && map->m_flags & EXT4_MAP_NEW)
 526			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
 527	}
 528	if (retval <= 0)
 529		return retval;
 530
 531	if (unlikely(retval != map->m_len)) {
 532		ext4_warning(inode->i_sb,
 533			     "ES len assertion failed for inode %lu: "
 534			     "retval %d != map->m_len %d",
 535			     inode->i_ino, retval, map->m_len);
 536		WARN_ON(1);
 537	}
 538
 539	/*
 540	 * We have to zeroout blocks before inserting them into extent
 541	 * status tree. Otherwise someone could look them up there and
 542	 * use them before they are really zeroed. We also have to
 543	 * unmap metadata before zeroing as otherwise writeback can
 544	 * overwrite zeros with stale data from block device.
 545	 */
 546	if (flags & EXT4_GET_BLOCKS_ZERO &&
 547	    map->m_flags & EXT4_MAP_MAPPED && map->m_flags & EXT4_MAP_NEW) {
 548		err = ext4_issue_zeroout(inode, map->m_lblk, map->m_pblk,
 549					 map->m_len);
 550		if (err)
 551			return err;
 552	}
 553
 554	/*
 555	 * If the extent has been zeroed out, we don't need to update
 556	 * extent status tree.
 557	 */
 558	if (flags & EXT4_GET_BLOCKS_PRE_IO &&
 559	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 560		if (ext4_es_is_written(&es))
 561			return retval;
 562	}
 563
 564	status = map->m_flags & EXT4_MAP_UNWRITTEN ?
 565			EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
 566	ext4_es_insert_extent(inode, map->m_lblk, map->m_len, map->m_pblk,
 567			      status, flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE);
 568
 569	return retval;
 570}
 571
 572/*
 573 * The ext4_map_blocks() function tries to look up the requested blocks,
 574 * and returns if the blocks are already mapped.
 575 *
 576 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
 577 * and store the allocated blocks in the result buffer head and mark it
 578 * mapped.
 579 *
 580 * If file type is extents based, it will call ext4_ext_map_blocks(),
 581 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
 582 * based files
 583 *
 584 * On success, it returns the number of blocks being mapped or allocated.
 585 * If flags doesn't contain EXT4_GET_BLOCKS_CREATE the blocks are
 586 * pre-allocated and unwritten, the resulting @map is marked as unwritten.
 587 * If the flags contain EXT4_GET_BLOCKS_CREATE, it will mark @map as mapped.
 588 *
 589 * It returns 0 if plain look up failed (blocks have not been allocated), in
 590 * that case, @map is returned as unmapped but we still do fill map->m_len to
 591 * indicate the length of a hole starting at map->m_lblk.
 592 *
 593 * It returns the error in case of allocation failure.
 594 */
 595int ext4_map_blocks(handle_t *handle, struct inode *inode,
 596		    struct ext4_map_blocks *map, int flags)
 597{
 598	struct extent_status es;
 599	int retval;
 600	int ret = 0;
 601#ifdef ES_AGGRESSIVE_TEST
 602	struct ext4_map_blocks orig_map;
 603
 604	memcpy(&orig_map, map, sizeof(*map));
 605#endif
 606
 607	map->m_flags = 0;
 608	ext_debug(inode, "flag 0x%x, max_blocks %u, logical block %lu\n",
 609		  flags, map->m_len, (unsigned long) map->m_lblk);
 
 610
 611	/*
 612	 * ext4_map_blocks returns an int, and m_len is an unsigned int
 613	 */
 614	if (unlikely(map->m_len > INT_MAX))
 615		map->m_len = INT_MAX;
 616
 617	/* We can handle the block number less than EXT_MAX_BLOCKS */
 618	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
 619		return -EFSCORRUPTED;
 620
 621	/* Lookup extent status tree firstly */
 622	if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY) &&
 623	    ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
 624		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
 625			map->m_pblk = ext4_es_pblock(&es) +
 626					map->m_lblk - es.es_lblk;
 627			map->m_flags |= ext4_es_is_written(&es) ?
 628					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
 629			retval = es.es_len - (map->m_lblk - es.es_lblk);
 630			if (retval > map->m_len)
 631				retval = map->m_len;
 632			map->m_len = retval;
 633		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
 634			map->m_pblk = 0;
 635			map->m_flags |= ext4_es_is_delayed(&es) ?
 636					EXT4_MAP_DELAYED : 0;
 637			retval = es.es_len - (map->m_lblk - es.es_lblk);
 638			if (retval > map->m_len)
 639				retval = map->m_len;
 640			map->m_len = retval;
 641			retval = 0;
 642		} else {
 643			BUG();
 644		}
 645
 646		if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 647			return retval;
 648#ifdef ES_AGGRESSIVE_TEST
 649		ext4_map_blocks_es_recheck(handle, inode, map,
 650					   &orig_map, flags);
 651#endif
 652		goto found;
 653	}
 654	/*
 655	 * In the query cache no-wait mode, nothing we can do more if we
 656	 * cannot find extent in the cache.
 657	 */
 658	if (flags & EXT4_GET_BLOCKS_CACHED_NOWAIT)
 659		return 0;
 660
 661	/*
 662	 * Try to see if we can get the block without requesting a new
 663	 * file system block.
 664	 */
 665	down_read(&EXT4_I(inode)->i_data_sem);
 666	retval = ext4_map_query_blocks(handle, inode, map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 667	up_read((&EXT4_I(inode)->i_data_sem));
 668
 669found:
 670	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 671		ret = check_block_validity(inode, map);
 672		if (ret != 0)
 673			return ret;
 674	}
 675
 676	/* If it is only a block(s) look up */
 677	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
 678		return retval;
 679
 680	/*
 681	 * Returns if the blocks have already allocated
 682	 *
 683	 * Note that if blocks have been preallocated
 684	 * ext4_ext_map_blocks() returns with buffer head unmapped
 
 685	 */
 686	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
 687		/*
 688		 * If we need to convert extent to unwritten
 689		 * we continue and do the actual work in
 690		 * ext4_ext_map_blocks()
 691		 */
 692		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
 693			return retval;
 694
 695	/*
 
 
 
 
 
 
 696	 * New blocks allocate and/or writing to unwritten extent
 697	 * will possibly result in updating i_data, so we take
 698	 * the write lock of i_data_sem, and call get_block()
 699	 * with create == 1 flag.
 700	 */
 701	down_write(&EXT4_I(inode)->i_data_sem);
 702	retval = ext4_map_create_blocks(handle, inode, map, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 703	up_write((&EXT4_I(inode)->i_data_sem));
 704	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
 705		ret = check_block_validity(inode, map);
 706		if (ret != 0)
 707			return ret;
 708
 709		/*
 710		 * Inodes with freshly allocated blocks where contents will be
 711		 * visible after transaction commit must be on transaction's
 712		 * ordered data list.
 713		 */
 714		if (map->m_flags & EXT4_MAP_NEW &&
 715		    !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
 716		    !(flags & EXT4_GET_BLOCKS_ZERO) &&
 717		    !ext4_is_quota_file(inode) &&
 718		    ext4_should_order_data(inode)) {
 719			loff_t start_byte =
 720				(loff_t)map->m_lblk << inode->i_blkbits;
 721			loff_t length = (loff_t)map->m_len << inode->i_blkbits;
 722
 723			if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
 724				ret = ext4_jbd2_inode_add_wait(handle, inode,
 725						start_byte, length);
 726			else
 727				ret = ext4_jbd2_inode_add_write(handle, inode,
 728						start_byte, length);
 729			if (ret)
 730				return ret;
 731		}
 732	}
 733	if (retval > 0 && (map->m_flags & EXT4_MAP_UNWRITTEN ||
 734				map->m_flags & EXT4_MAP_MAPPED))
 735		ext4_fc_track_range(handle, inode, map->m_lblk,
 736					map->m_lblk + map->m_len - 1);
 737	if (retval < 0)
 738		ext_debug(inode, "failed with err %d\n", retval);
 739	return retval;
 740}
 741
 742/*
 743 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
 744 * we have to be careful as someone else may be manipulating b_state as well.
 745 */
 746static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
 747{
 748	unsigned long old_state;
 749	unsigned long new_state;
 750
 751	flags &= EXT4_MAP_FLAGS;
 752
 753	/* Dummy buffer_head? Set non-atomically. */
 754	if (!bh->b_page) {
 755		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
 756		return;
 757	}
 758	/*
 759	 * Someone else may be modifying b_state. Be careful! This is ugly but
 760	 * once we get rid of using bh as a container for mapping information
 761	 * to pass to / from get_block functions, this can go away.
 762	 */
 763	old_state = READ_ONCE(bh->b_state);
 764	do {
 
 765		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
 766	} while (unlikely(!try_cmpxchg(&bh->b_state, &old_state, new_state)));
 
 767}
 768
 769static int _ext4_get_block(struct inode *inode, sector_t iblock,
 770			   struct buffer_head *bh, int flags)
 771{
 772	struct ext4_map_blocks map;
 773	int ret = 0;
 774
 775	if (ext4_has_inline_data(inode))
 776		return -ERANGE;
 777
 778	map.m_lblk = iblock;
 779	map.m_len = bh->b_size >> inode->i_blkbits;
 780
 781	ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
 782			      flags);
 783	if (ret > 0) {
 784		map_bh(bh, inode->i_sb, map.m_pblk);
 785		ext4_update_bh_state(bh, map.m_flags);
 786		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 787		ret = 0;
 788	} else if (ret == 0) {
 789		/* hole case, need to fill in bh->b_size */
 790		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
 791	}
 792	return ret;
 793}
 794
 795int ext4_get_block(struct inode *inode, sector_t iblock,
 796		   struct buffer_head *bh, int create)
 797{
 798	return _ext4_get_block(inode, iblock, bh,
 799			       create ? EXT4_GET_BLOCKS_CREATE : 0);
 800}
 801
 802/*
 803 * Get block function used when preparing for buffered write if we require
 804 * creating an unwritten extent if blocks haven't been allocated.  The extent
 805 * will be converted to written after the IO is complete.
 806 */
 807int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
 808			     struct buffer_head *bh_result, int create)
 809{
 810	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811
 812	ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
 813		   inode->i_ino, create);
 814	ret = _ext4_get_block(inode, iblock, bh_result,
 815			       EXT4_GET_BLOCKS_CREATE_UNWRIT_EXT);
 816
 
 817	/*
 818	 * If the buffer is marked unwritten, mark it as new to make sure it is
 819	 * zeroed out correctly in case of partial writes. Otherwise, there is
 820	 * a chance of stale data getting exposed.
 821	 */
 822	if (ret == 0 && buffer_unwritten(bh_result))
 823		set_buffer_new(bh_result);
 824
 825	return ret;
 826}
 827
 828/* Maximum number of blocks we map for direct IO at once. */
 829#define DIO_MAX_BLOCKS 4096
 830
 831/*
 832 * `handle' can be NULL if create is zero
 833 */
 834struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
 835				ext4_lblk_t block, int map_flags)
 836{
 837	struct ext4_map_blocks map;
 838	struct buffer_head *bh;
 839	int create = map_flags & EXT4_GET_BLOCKS_CREATE;
 840	bool nowait = map_flags & EXT4_GET_BLOCKS_CACHED_NOWAIT;
 841	int err;
 842
 843	ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 844		    || handle != NULL || create == 0);
 845	ASSERT(create == 0 || !nowait);
 846
 847	map.m_lblk = block;
 848	map.m_len = 1;
 849	err = ext4_map_blocks(handle, inode, &map, map_flags);
 850
 851	if (err == 0)
 852		return create ? ERR_PTR(-ENOSPC) : NULL;
 853	if (err < 0)
 854		return ERR_PTR(err);
 855
 856	if (nowait)
 857		return sb_find_get_block(inode->i_sb, map.m_pblk);
 858
 859	/*
 860	 * Since bh could introduce extra ref count such as referred by
 861	 * journal_head etc. Try to avoid using __GFP_MOVABLE here
 862	 * as it may fail the migration when journal_head remains.
 863	 */
 864	bh = getblk_unmovable(inode->i_sb->s_bdev, map.m_pblk,
 865				inode->i_sb->s_blocksize);
 866
 867	if (unlikely(!bh))
 868		return ERR_PTR(-ENOMEM);
 869	if (map.m_flags & EXT4_MAP_NEW) {
 870		ASSERT(create != 0);
 871		ASSERT((EXT4_SB(inode->i_sb)->s_mount_state & EXT4_FC_REPLAY)
 872			    || (handle != NULL));
 873
 874		/*
 875		 * Now that we do not always journal data, we should
 876		 * keep in mind whether this should always journal the
 877		 * new buffer as metadata.  For now, regular file
 878		 * writes use ext4_get_block instead, so it's not a
 879		 * problem.
 880		 */
 881		lock_buffer(bh);
 882		BUFFER_TRACE(bh, "call get_create_access");
 883		err = ext4_journal_get_create_access(handle, inode->i_sb, bh,
 884						     EXT4_JTR_NONE);
 885		if (unlikely(err)) {
 886			unlock_buffer(bh);
 887			goto errout;
 888		}
 889		if (!buffer_uptodate(bh)) {
 890			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
 891			set_buffer_uptodate(bh);
 892		}
 893		unlock_buffer(bh);
 894		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
 895		err = ext4_handle_dirty_metadata(handle, inode, bh);
 896		if (unlikely(err))
 897			goto errout;
 898	} else
 899		BUFFER_TRACE(bh, "not a new buffer");
 900	return bh;
 901errout:
 902	brelse(bh);
 903	return ERR_PTR(err);
 904}
 905
 906struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
 907			       ext4_lblk_t block, int map_flags)
 908{
 909	struct buffer_head *bh;
 910	int ret;
 911
 912	bh = ext4_getblk(handle, inode, block, map_flags);
 913	if (IS_ERR(bh))
 914		return bh;
 915	if (!bh || ext4_buffer_uptodate(bh))
 
 
 
 
 916		return bh;
 917
 918	ret = ext4_read_bh_lock(bh, REQ_META | REQ_PRIO, true);
 919	if (ret) {
 920		put_bh(bh);
 921		return ERR_PTR(ret);
 922	}
 923	return bh;
 924}
 925
 926/* Read a contiguous batch of blocks. */
 927int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
 928		     bool wait, struct buffer_head **bhs)
 929{
 930	int i, err;
 931
 932	for (i = 0; i < bh_count; i++) {
 933		bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
 934		if (IS_ERR(bhs[i])) {
 935			err = PTR_ERR(bhs[i]);
 936			bh_count = i;
 937			goto out_brelse;
 938		}
 939	}
 940
 941	for (i = 0; i < bh_count; i++)
 942		/* Note that NULL bhs[i] is valid because of holes. */
 943		if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
 944			ext4_read_bh_lock(bhs[i], REQ_META | REQ_PRIO, false);
 945
 946	if (!wait)
 947		return 0;
 948
 949	for (i = 0; i < bh_count; i++)
 950		if (bhs[i])
 951			wait_on_buffer(bhs[i]);
 952
 953	for (i = 0; i < bh_count; i++) {
 954		if (bhs[i] && !buffer_uptodate(bhs[i])) {
 955			err = -EIO;
 956			goto out_brelse;
 957		}
 958	}
 959	return 0;
 960
 961out_brelse:
 962	for (i = 0; i < bh_count; i++) {
 963		brelse(bhs[i]);
 964		bhs[i] = NULL;
 965	}
 966	return err;
 967}
 968
 969int ext4_walk_page_buffers(handle_t *handle, struct inode *inode,
 970			   struct buffer_head *head,
 971			   unsigned from,
 972			   unsigned to,
 973			   int *partial,
 974			   int (*fn)(handle_t *handle, struct inode *inode,
 975				     struct buffer_head *bh))
 976{
 977	struct buffer_head *bh;
 978	unsigned block_start, block_end;
 979	unsigned blocksize = head->b_size;
 980	int err, ret = 0;
 981	struct buffer_head *next;
 982
 983	for (bh = head, block_start = 0;
 984	     ret == 0 && (bh != head || !block_start);
 985	     block_start = block_end, bh = next) {
 986		next = bh->b_this_page;
 987		block_end = block_start + blocksize;
 988		if (block_end <= from || block_start >= to) {
 989			if (partial && !buffer_uptodate(bh))
 990				*partial = 1;
 991			continue;
 992		}
 993		err = (*fn)(handle, inode, bh);
 994		if (!ret)
 995			ret = err;
 996	}
 997	return ret;
 998}
 999
1000/*
1001 * Helper for handling dirtying of journalled data. We also mark the folio as
1002 * dirty so that writeback code knows about this page (and inode) contains
1003 * dirty data. ext4_writepages() then commits appropriate transaction to
1004 * make data stable.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1005 */
1006static int ext4_dirty_journalled_data(handle_t *handle, struct buffer_head *bh)
 
1007{
1008	folio_mark_dirty(bh->b_folio);
1009	return ext4_handle_dirty_metadata(handle, NULL, bh);
1010}
1011
1012int do_journal_get_write_access(handle_t *handle, struct inode *inode,
1013				struct buffer_head *bh)
1014{
1015	if (!buffer_mapped(bh) || buffer_freed(bh))
1016		return 0;
 
 
 
 
 
 
 
 
 
 
1017	BUFFER_TRACE(bh, "get write access");
1018	return ext4_journal_get_write_access(handle, inode->i_sb, bh,
1019					    EXT4_JTR_NONE);
 
 
1020}
1021
1022int ext4_block_write_begin(handle_t *handle, struct folio *folio,
1023			   loff_t pos, unsigned len,
1024			   get_block_t *get_block)
1025{
1026	unsigned from = pos & (PAGE_SIZE - 1);
1027	unsigned to = from + len;
1028	struct inode *inode = folio->mapping->host;
1029	unsigned block_start, block_end;
1030	sector_t block;
1031	int err = 0;
1032	unsigned blocksize = inode->i_sb->s_blocksize;
1033	unsigned bbits;
1034	struct buffer_head *bh, *head, *wait[2];
1035	int nr_wait = 0;
1036	int i;
1037	bool should_journal_data = ext4_should_journal_data(inode);
1038
1039	BUG_ON(!folio_test_locked(folio));
1040	BUG_ON(from > PAGE_SIZE);
1041	BUG_ON(to > PAGE_SIZE);
1042	BUG_ON(from > to);
1043
1044	head = folio_buffers(folio);
1045	if (!head)
1046		head = create_empty_buffers(folio, blocksize, 0);
1047	bbits = ilog2(blocksize);
1048	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1049
1050	for (bh = head, block_start = 0; bh != head || !block_start;
1051	    block++, block_start = block_end, bh = bh->b_this_page) {
1052		block_end = block_start + blocksize;
1053		if (block_end <= from || block_start >= to) {
1054			if (folio_test_uptodate(folio)) {
1055				set_buffer_uptodate(bh);
 
1056			}
1057			continue;
1058		}
1059		if (buffer_new(bh))
1060			clear_buffer_new(bh);
1061		if (!buffer_mapped(bh)) {
1062			WARN_ON(bh->b_size != blocksize);
1063			err = get_block(inode, block, bh, 1);
1064			if (err)
1065				break;
1066			if (buffer_new(bh)) {
1067				/*
1068				 * We may be zeroing partial buffers or all new
1069				 * buffers in case of failure. Prepare JBD2 for
1070				 * that.
1071				 */
1072				if (should_journal_data)
1073					do_journal_get_write_access(handle,
1074								    inode, bh);
1075				if (folio_test_uptodate(folio)) {
1076					/*
1077					 * Unlike __block_write_begin() we leave
1078					 * dirtying of new uptodate buffers to
1079					 * ->write_end() time or
1080					 * folio_zero_new_buffers().
1081					 */
1082					set_buffer_uptodate(bh);
 
1083					continue;
1084				}
1085				if (block_end > to || block_start < from)
1086					folio_zero_segments(folio, to,
1087							    block_end,
1088							    block_start, from);
1089				continue;
1090			}
1091		}
1092		if (folio_test_uptodate(folio)) {
1093			set_buffer_uptodate(bh);
 
1094			continue;
1095		}
1096		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1097		    !buffer_unwritten(bh) &&
1098		    (block_start < from || block_end > to)) {
1099			ext4_read_bh_lock(bh, 0, false);
1100			wait[nr_wait++] = bh;
 
 
1101		}
1102	}
1103	/*
1104	 * If we issued read requests, let them complete.
1105	 */
1106	for (i = 0; i < nr_wait; i++) {
1107		wait_on_buffer(wait[i]);
1108		if (!buffer_uptodate(wait[i]))
1109			err = -EIO;
1110	}
1111	if (unlikely(err)) {
1112		if (should_journal_data)
1113			ext4_journalled_zero_new_buffers(handle, inode, folio,
1114							 from, to);
1115		else
1116			folio_zero_new_buffers(folio, from, to);
1117	} else if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
1118		for (i = 0; i < nr_wait; i++) {
1119			int err2;
1120
1121			err2 = fscrypt_decrypt_pagecache_blocks(folio,
1122						blocksize, bh_offset(wait[i]));
1123			if (err2) {
1124				clear_buffer_uptodate(wait[i]);
1125				err = err2;
1126			}
1127		}
1128	}
1129
1130	return err;
1131}
 
1132
1133/*
1134 * To preserve ordering, it is essential that the hole instantiation and
1135 * the data write be encapsulated in a single transaction.  We cannot
1136 * close off a transaction and start a new one between the ext4_get_block()
1137 * and the ext4_write_end().  So doing the jbd2_journal_start at the start of
1138 * ext4_write_begin() is the right place.
1139 */
1140static int ext4_write_begin(struct file *file, struct address_space *mapping,
1141			    loff_t pos, unsigned len,
1142			    struct folio **foliop, void **fsdata)
1143{
1144	struct inode *inode = mapping->host;
1145	int ret, needed_blocks;
1146	handle_t *handle;
1147	int retries = 0;
1148	struct folio *folio;
1149	pgoff_t index;
1150	unsigned from, to;
1151
1152	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
1153		return -EIO;
1154
1155	trace_ext4_write_begin(inode, pos, len);
1156	/*
1157	 * Reserve one block more for addition to orphan list in case
1158	 * we allocate blocks but write fails for some reason
1159	 */
1160	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1161	index = pos >> PAGE_SHIFT;
1162	from = pos & (PAGE_SIZE - 1);
1163	to = from + len;
1164
1165	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1166		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1167						    foliop);
1168		if (ret < 0)
1169			return ret;
1170		if (ret == 1)
1171			return 0;
1172	}
1173
1174	/*
1175	 * __filemap_get_folio() can take a long time if the
1176	 * system is thrashing due to memory pressure, or if the folio
1177	 * is being written back.  So grab it first before we start
1178	 * the transaction handle.  This also allows us to allocate
1179	 * the folio (if needed) without using GFP_NOFS.
1180	 */
1181retry_grab:
1182	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
1183					mapping_gfp_mask(mapping));
1184	if (IS_ERR(folio))
1185		return PTR_ERR(folio);
1186	/*
1187	 * The same as page allocation, we prealloc buffer heads before
1188	 * starting the handle.
1189	 */
1190	if (!folio_buffers(folio))
1191		create_empty_buffers(folio, inode->i_sb->s_blocksize, 0);
1192
1193	folio_unlock(folio);
1194
1195retry_journal:
1196	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1197	if (IS_ERR(handle)) {
1198		folio_put(folio);
1199		return PTR_ERR(handle);
1200	}
1201
1202	folio_lock(folio);
1203	if (folio->mapping != mapping) {
1204		/* The folio got truncated from under us */
1205		folio_unlock(folio);
1206		folio_put(folio);
1207		ext4_journal_stop(handle);
1208		goto retry_grab;
1209	}
1210	/* In case writeback began while the folio was unlocked */
1211	folio_wait_stable(folio);
1212
 
1213	if (ext4_should_dioread_nolock(inode))
1214		ret = ext4_block_write_begin(handle, folio, pos, len,
1215					     ext4_get_block_unwritten);
1216	else
1217		ret = ext4_block_write_begin(handle, folio, pos, len,
1218					     ext4_get_block);
 
 
 
 
 
 
 
1219	if (!ret && ext4_should_journal_data(inode)) {
1220		ret = ext4_walk_page_buffers(handle, inode,
1221					     folio_buffers(folio), from, to,
1222					     NULL, do_journal_get_write_access);
1223	}
1224
1225	if (ret) {
1226		bool extended = (pos + len > inode->i_size) &&
1227				!ext4_verity_in_progress(inode);
1228
1229		folio_unlock(folio);
1230		/*
1231		 * ext4_block_write_begin may have instantiated a few blocks
1232		 * outside i_size.  Trim these off again. Don't need
1233		 * i_size_read because we hold i_rwsem.
1234		 *
1235		 * Add inode to orphan list in case we crash before
1236		 * truncate finishes
1237		 */
1238		if (extended && ext4_can_truncate(inode))
1239			ext4_orphan_add(handle, inode);
1240
1241		ext4_journal_stop(handle);
1242		if (extended) {
1243			ext4_truncate_failed_write(inode);
1244			/*
1245			 * If truncate failed early the inode might
1246			 * still be on the orphan list; we need to
1247			 * make sure the inode is removed from the
1248			 * orphan list in that case.
1249			 */
1250			if (inode->i_nlink)
1251				ext4_orphan_del(NULL, inode);
1252		}
1253
1254		if (ret == -ENOSPC &&
1255		    ext4_should_retry_alloc(inode->i_sb, &retries))
1256			goto retry_journal;
1257		folio_put(folio);
1258		return ret;
1259	}
1260	*foliop = folio;
1261	return ret;
1262}
1263
1264/* For write_end() in data=journal mode */
1265static int write_end_fn(handle_t *handle, struct inode *inode,
1266			struct buffer_head *bh)
1267{
1268	int ret;
1269	if (!buffer_mapped(bh) || buffer_freed(bh))
1270		return 0;
1271	set_buffer_uptodate(bh);
1272	ret = ext4_dirty_journalled_data(handle, bh);
1273	clear_buffer_meta(bh);
1274	clear_buffer_prio(bh);
1275	return ret;
1276}
1277
1278/*
1279 * We need to pick up the new inode size which generic_commit_write gave us
1280 * `file' can be NULL - eg, when called from page_symlink().
1281 *
1282 * ext4 never places buffers on inode->i_mapping->i_private_list.  metadata
1283 * buffers are managed internally.
1284 */
1285static int ext4_write_end(struct file *file,
1286			  struct address_space *mapping,
1287			  loff_t pos, unsigned len, unsigned copied,
1288			  struct folio *folio, void *fsdata)
1289{
1290	handle_t *handle = ext4_journal_current_handle();
1291	struct inode *inode = mapping->host;
1292	loff_t old_size = inode->i_size;
1293	int ret = 0, ret2;
1294	int i_size_changed = 0;
1295	bool verity = ext4_verity_in_progress(inode);
1296
1297	trace_ext4_write_end(inode, pos, len, copied);
1298
1299	if (ext4_has_inline_data(inode) &&
1300	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA))
1301		return ext4_write_inline_data_end(inode, pos, len, copied,
1302						  folio);
1303
1304	copied = block_write_end(file, mapping, pos, len, copied, folio, fsdata);
 
 
 
 
 
1305	/*
1306	 * it's important to update i_size while still holding folio lock:
1307	 * page writeout could otherwise come in and zero beyond i_size.
1308	 *
1309	 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1310	 * blocks are being written past EOF, so skip the i_size update.
1311	 */
1312	if (!verity)
1313		i_size_changed = ext4_update_inode_size(inode, pos + copied);
1314	folio_unlock(folio);
1315	folio_put(folio);
1316
1317	if (old_size < pos && !verity) {
1318		pagecache_isize_extended(inode, old_size, pos);
1319		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1320	}
1321	/*
1322	 * Don't mark the inode dirty under folio lock. First, it unnecessarily
1323	 * makes the holding time of folio lock longer. Second, it forces lock
1324	 * ordering of folio lock and transaction start for journaling
1325	 * filesystems.
1326	 */
1327	if (i_size_changed)
1328		ret = ext4_mark_inode_dirty(handle, inode);
1329
1330	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1331		/* if we have allocated more blocks and copied
1332		 * less. We will have blocks allocated outside
1333		 * inode->i_size. So truncate them
1334		 */
1335		ext4_orphan_add(handle, inode);
1336
1337	ret2 = ext4_journal_stop(handle);
1338	if (!ret)
1339		ret = ret2;
1340
1341	if (pos + len > inode->i_size && !verity) {
1342		ext4_truncate_failed_write(inode);
1343		/*
1344		 * If truncate failed early the inode might still be
1345		 * on the orphan list; we need to make sure the inode
1346		 * is removed from the orphan list in that case.
1347		 */
1348		if (inode->i_nlink)
1349			ext4_orphan_del(NULL, inode);
1350	}
1351
1352	return ret ? ret : copied;
1353}
1354
1355/*
1356 * This is a private version of folio_zero_new_buffers() which doesn't
1357 * set the buffer to be dirty, since in data=journalled mode we need
1358 * to call ext4_dirty_journalled_data() instead.
1359 */
1360static void ext4_journalled_zero_new_buffers(handle_t *handle,
1361					    struct inode *inode,
1362					    struct folio *folio,
1363					    unsigned from, unsigned to)
1364{
1365	unsigned int block_start = 0, block_end;
1366	struct buffer_head *head, *bh;
1367
1368	bh = head = folio_buffers(folio);
1369	do {
1370		block_end = block_start + bh->b_size;
1371		if (buffer_new(bh)) {
1372			if (block_end > from && block_start < to) {
1373				if (!folio_test_uptodate(folio)) {
1374					unsigned start, size;
1375
1376					start = max(from, block_start);
1377					size = min(to, block_end) - start;
1378
1379					folio_zero_range(folio, start, size);
 
1380				}
1381				clear_buffer_new(bh);
1382				write_end_fn(handle, inode, bh);
1383			}
1384		}
1385		block_start = block_end;
1386		bh = bh->b_this_page;
1387	} while (bh != head);
1388}
1389
1390static int ext4_journalled_write_end(struct file *file,
1391				     struct address_space *mapping,
1392				     loff_t pos, unsigned len, unsigned copied,
1393				     struct folio *folio, void *fsdata)
1394{
1395	handle_t *handle = ext4_journal_current_handle();
1396	struct inode *inode = mapping->host;
1397	loff_t old_size = inode->i_size;
1398	int ret = 0, ret2;
1399	int partial = 0;
1400	unsigned from, to;
1401	int size_changed = 0;
1402	bool verity = ext4_verity_in_progress(inode);
1403
1404	trace_ext4_journalled_write_end(inode, pos, len, copied);
1405	from = pos & (PAGE_SIZE - 1);
1406	to = from + len;
1407
1408	BUG_ON(!ext4_handle_valid(handle));
1409
1410	if (ext4_has_inline_data(inode))
1411		return ext4_write_inline_data_end(inode, pos, len, copied,
1412						  folio);
1413
1414	if (unlikely(copied < len) && !folio_test_uptodate(folio)) {
 
 
 
 
 
1415		copied = 0;
1416		ext4_journalled_zero_new_buffers(handle, inode, folio,
1417						 from, to);
1418	} else {
1419		if (unlikely(copied < len))
1420			ext4_journalled_zero_new_buffers(handle, inode, folio,
1421							 from + copied, to);
1422		ret = ext4_walk_page_buffers(handle, inode,
1423					     folio_buffers(folio),
1424					     from, from + copied, &partial,
1425					     write_end_fn);
1426		if (!partial)
1427			folio_mark_uptodate(folio);
1428	}
1429	if (!verity)
1430		size_changed = ext4_update_inode_size(inode, pos + copied);
1431	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1432	folio_unlock(folio);
1433	folio_put(folio);
1434
1435	if (old_size < pos && !verity) {
1436		pagecache_isize_extended(inode, old_size, pos);
1437		ext4_zero_partial_blocks(handle, inode, old_size, pos - old_size);
1438	}
1439
1440	if (size_changed) {
1441		ret2 = ext4_mark_inode_dirty(handle, inode);
1442		if (!ret)
1443			ret = ret2;
1444	}
1445
1446	if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1447		/* if we have allocated more blocks and copied
1448		 * less. We will have blocks allocated outside
1449		 * inode->i_size. So truncate them
1450		 */
1451		ext4_orphan_add(handle, inode);
1452
 
1453	ret2 = ext4_journal_stop(handle);
1454	if (!ret)
1455		ret = ret2;
1456	if (pos + len > inode->i_size && !verity) {
1457		ext4_truncate_failed_write(inode);
1458		/*
1459		 * If truncate failed early the inode might still be
1460		 * on the orphan list; we need to make sure the inode
1461		 * is removed from the orphan list in that case.
1462		 */
1463		if (inode->i_nlink)
1464			ext4_orphan_del(NULL, inode);
1465	}
1466
1467	return ret ? ret : copied;
1468}
1469
1470/*
1471 * Reserve space for 'nr_resv' clusters
1472 */
1473static int ext4_da_reserve_space(struct inode *inode, int nr_resv)
1474{
1475	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1476	struct ext4_inode_info *ei = EXT4_I(inode);
1477	int ret;
1478
1479	/*
1480	 * We will charge metadata quota at writeout time; this saves
1481	 * us from metadata over-estimation, though we may go over by
1482	 * a small amount in the end.  Here we just reserve for data.
1483	 */
1484	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, nr_resv));
1485	if (ret)
1486		return ret;
1487
1488	spin_lock(&ei->i_block_reservation_lock);
1489	if (ext4_claim_free_clusters(sbi, nr_resv, 0)) {
1490		spin_unlock(&ei->i_block_reservation_lock);
1491		dquot_release_reservation_block(inode, EXT4_C2B(sbi, nr_resv));
1492		return -ENOSPC;
1493	}
1494	ei->i_reserved_data_blocks += nr_resv;
1495	trace_ext4_da_reserve_space(inode, nr_resv);
1496	spin_unlock(&ei->i_block_reservation_lock);
1497
1498	return 0;       /* success */
1499}
1500
1501void ext4_da_release_space(struct inode *inode, int to_free)
1502{
1503	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1504	struct ext4_inode_info *ei = EXT4_I(inode);
1505
1506	if (!to_free)
1507		return;		/* Nothing to release, exit */
1508
1509	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1510
1511	trace_ext4_da_release_space(inode, to_free);
1512	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1513		/*
1514		 * if there aren't enough reserved blocks, then the
1515		 * counter is messed up somewhere.  Since this
1516		 * function is called from invalidate page, it's
1517		 * harmless to return without any action.
1518		 */
1519		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1520			 "ino %lu, to_free %d with only %d reserved "
1521			 "data blocks", inode->i_ino, to_free,
1522			 ei->i_reserved_data_blocks);
1523		WARN_ON(1);
1524		to_free = ei->i_reserved_data_blocks;
1525	}
1526	ei->i_reserved_data_blocks -= to_free;
1527
1528	/* update fs dirty data blocks counter */
1529	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1530
1531	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1532
1533	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/*
1537 * Delayed allocation stuff
1538 */
1539
1540struct mpage_da_data {
1541	/* These are input fields for ext4_do_writepages() */
1542	struct inode *inode;
1543	struct writeback_control *wbc;
1544	unsigned int can_map:1;	/* Can writepages call map blocks? */
1545
1546	/* These are internal state of ext4_do_writepages() */
1547	pgoff_t first_page;	/* The first page to write */
1548	pgoff_t next_page;	/* Current page to examine */
1549	pgoff_t last_page;	/* Last page to examine */
1550	/*
1551	 * Extent to map - this can be after first_page because that can be
1552	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1553	 * is delalloc or unwritten.
1554	 */
1555	struct ext4_map_blocks map;
1556	struct ext4_io_submit io_submit;	/* IO submission data */
1557	unsigned int do_map:1;
1558	unsigned int scanned_until_end:1;
1559	unsigned int journalled_more_data:1;
1560};
1561
1562static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1563				       bool invalidate)
1564{
1565	unsigned nr, i;
1566	pgoff_t index, end;
1567	struct folio_batch fbatch;
1568	struct inode *inode = mpd->inode;
1569	struct address_space *mapping = inode->i_mapping;
1570
1571	/* This is necessary when next_page == 0. */
1572	if (mpd->first_page >= mpd->next_page)
1573		return;
1574
1575	mpd->scanned_until_end = 0;
1576	index = mpd->first_page;
1577	end   = mpd->next_page - 1;
1578	if (invalidate) {
1579		ext4_lblk_t start, last;
1580		start = index << (PAGE_SHIFT - inode->i_blkbits);
1581		last = end << (PAGE_SHIFT - inode->i_blkbits);
1582
1583		/*
1584		 * avoid racing with extent status tree scans made by
1585		 * ext4_insert_delayed_block()
1586		 */
1587		down_write(&EXT4_I(inode)->i_data_sem);
1588		ext4_es_remove_extent(inode, start, last - start + 1);
1589		up_write(&EXT4_I(inode)->i_data_sem);
1590	}
1591
1592	folio_batch_init(&fbatch);
1593	while (index <= end) {
1594		nr = filemap_get_folios(mapping, &index, end, &fbatch);
1595		if (nr == 0)
1596			break;
1597		for (i = 0; i < nr; i++) {
1598			struct folio *folio = fbatch.folios[i];
1599
1600			if (folio->index < mpd->first_page)
1601				continue;
1602			if (folio_next_index(folio) - 1 > end)
1603				continue;
1604			BUG_ON(!folio_test_locked(folio));
1605			BUG_ON(folio_test_writeback(folio));
1606			if (invalidate) {
1607				if (folio_mapped(folio))
1608					folio_clear_dirty_for_io(folio);
1609				block_invalidate_folio(folio, 0,
1610						folio_size(folio));
1611				folio_clear_uptodate(folio);
1612			}
1613			folio_unlock(folio);
1614		}
1615		folio_batch_release(&fbatch);
 
1616	}
1617}
1618
1619static void ext4_print_free_blocks(struct inode *inode)
1620{
1621	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1622	struct super_block *sb = inode->i_sb;
1623	struct ext4_inode_info *ei = EXT4_I(inode);
1624
1625	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1626	       EXT4_C2B(EXT4_SB(inode->i_sb),
1627			ext4_count_free_clusters(sb)));
1628	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1629	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1630	       (long long) EXT4_C2B(EXT4_SB(sb),
1631		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1632	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1633	       (long long) EXT4_C2B(EXT4_SB(sb),
1634		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1635	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1636	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1637		 ei->i_reserved_data_blocks);
1638	return;
1639}
1640
1641/*
1642 * Check whether the cluster containing lblk has been allocated or has
1643 * delalloc reservation.
1644 *
1645 * Returns 0 if the cluster doesn't have either, 1 if it has delalloc
1646 * reservation, 2 if it's already been allocated, negative error code on
1647 * failure.
1648 */
1649static int ext4_clu_alloc_state(struct inode *inode, ext4_lblk_t lblk)
1650{
1651	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1652	int ret;
1653
1654	/* Has delalloc reservation? */
1655	if (ext4_es_scan_clu(inode, &ext4_es_is_delayed, lblk))
1656		return 1;
1657
1658	/* Already been allocated? */
1659	if (ext4_es_scan_clu(inode, &ext4_es_is_mapped, lblk))
1660		return 2;
1661	ret = ext4_clu_mapped(inode, EXT4_B2C(sbi, lblk));
1662	if (ret < 0)
1663		return ret;
1664	if (ret > 0)
1665		return 2;
1666
1667	return 0;
1668}
1669
1670/*
1671 * ext4_insert_delayed_blocks - adds a multiple delayed blocks to the extents
1672 *                              status tree, incrementing the reserved
1673 *                              cluster/block count or making pending
1674 *                              reservations where needed
1675 *
1676 * @inode - file containing the newly added block
1677 * @lblk - start logical block to be added
1678 * @len - length of blocks to be added
1679 *
1680 * Returns 0 on success, negative error code on failure.
1681 */
1682static int ext4_insert_delayed_blocks(struct inode *inode, ext4_lblk_t lblk,
1683				      ext4_lblk_t len)
1684{
1685	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1686	int ret;
1687	bool lclu_allocated = false;
1688	bool end_allocated = false;
1689	ext4_lblk_t resv_clu;
1690	ext4_lblk_t end = lblk + len - 1;
1691
1692	/*
1693	 * If the cluster containing lblk or end is shared with a delayed,
1694	 * written, or unwritten extent in a bigalloc file system, it's
1695	 * already been accounted for and does not need to be reserved.
1696	 * A pending reservation must be made for the cluster if it's
1697	 * shared with a written or unwritten extent and doesn't already
1698	 * have one.  Written and unwritten extents can be purged from the
1699	 * extents status tree if the system is under memory pressure, so
1700	 * it's necessary to examine the extent tree if a search of the
1701	 * extents status tree doesn't get a match.
1702	 */
1703	if (sbi->s_cluster_ratio == 1) {
1704		ret = ext4_da_reserve_space(inode, len);
1705		if (ret != 0)   /* ENOSPC */
1706			return ret;
1707	} else {   /* bigalloc */
1708		resv_clu = EXT4_B2C(sbi, end) - EXT4_B2C(sbi, lblk) + 1;
1709
1710		ret = ext4_clu_alloc_state(inode, lblk);
1711		if (ret < 0)
1712			return ret;
1713		if (ret > 0) {
1714			resv_clu--;
1715			lclu_allocated = (ret == 2);
1716		}
1717
1718		if (EXT4_B2C(sbi, lblk) != EXT4_B2C(sbi, end)) {
1719			ret = ext4_clu_alloc_state(inode, end);
1720			if (ret < 0)
1721				return ret;
1722			if (ret > 0) {
1723				resv_clu--;
1724				end_allocated = (ret == 2);
1725			}
1726		}
1727
1728		if (resv_clu) {
1729			ret = ext4_da_reserve_space(inode, resv_clu);
1730			if (ret != 0)   /* ENOSPC */
1731				return ret;
1732		}
1733	}
1734
1735	ext4_es_insert_delayed_extent(inode, lblk, len, lclu_allocated,
1736				      end_allocated);
1737	return 0;
1738}
1739
1740/*
1741 * Looks up the requested blocks and sets the delalloc extent map.
1742 * First try to look up for the extent entry that contains the requested
1743 * blocks in the extent status tree without i_data_sem, then try to look
1744 * up for the ondisk extent mapping with i_data_sem in read mode,
1745 * finally hold i_data_sem in write mode, looks up again and add a
1746 * delalloc extent entry if it still couldn't find any extent. Pass out
1747 * the mapped extent through @map and return 0 on success.
1748 */
1749static int ext4_da_map_blocks(struct inode *inode, struct ext4_map_blocks *map)
1750{
1751	struct extent_status es;
1752	int retval;
 
1753#ifdef ES_AGGRESSIVE_TEST
1754	struct ext4_map_blocks orig_map;
1755
1756	memcpy(&orig_map, map, sizeof(*map));
1757#endif
1758
 
 
 
1759	map->m_flags = 0;
1760	ext_debug(inode, "max_blocks %u, logical block %lu\n", map->m_len,
 
1761		  (unsigned long) map->m_lblk);
1762
1763	/* Lookup extent status tree firstly */
1764	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1765		map->m_len = min_t(unsigned int, map->m_len,
1766				   es.es_len - (map->m_lblk - es.es_lblk));
1767
1768		if (ext4_es_is_hole(&es))
1769			goto add_delayed;
 
1770
1771found:
1772		/*
1773		 * Delayed extent could be allocated by fallocate.
1774		 * So we need to check it.
1775		 */
1776		if (ext4_es_is_delayed(&es)) {
1777			map->m_flags |= EXT4_MAP_DELAYED;
 
 
1778			return 0;
1779		}
1780
1781		map->m_pblk = ext4_es_pblock(&es) + map->m_lblk - es.es_lblk;
 
 
 
 
1782		if (ext4_es_is_written(&es))
1783			map->m_flags |= EXT4_MAP_MAPPED;
1784		else if (ext4_es_is_unwritten(&es))
1785			map->m_flags |= EXT4_MAP_UNWRITTEN;
1786		else
1787			BUG();
1788
1789#ifdef ES_AGGRESSIVE_TEST
1790		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1791#endif
1792		return 0;
1793	}
1794
1795	/*
1796	 * Try to see if we can get the block without requesting a new
1797	 * file system block.
1798	 */
1799	down_read(&EXT4_I(inode)->i_data_sem);
1800	if (ext4_has_inline_data(inode))
1801		retval = 0;
 
 
1802	else
1803		retval = ext4_map_query_blocks(NULL, inode, map);
1804	up_read(&EXT4_I(inode)->i_data_sem);
1805	if (retval)
1806		return retval < 0 ? retval : 0;
1807
1808add_delayed:
1809	down_write(&EXT4_I(inode)->i_data_sem);
1810	/*
1811	 * Page fault path (ext4_page_mkwrite does not take i_rwsem)
1812	 * and fallocate path (no folio lock) can race. Make sure we
1813	 * lookup the extent status tree here again while i_data_sem
1814	 * is held in write mode, before inserting a new da entry in
1815	 * the extent status tree.
1816	 */
1817	if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
1818		map->m_len = min_t(unsigned int, map->m_len,
1819				   es.es_len - (map->m_lblk - es.es_lblk));
 
 
 
 
 
 
 
 
 
1820
1821		if (!ext4_es_is_hole(&es)) {
1822			up_write(&EXT4_I(inode)->i_data_sem);
1823			goto found;
1824		}
1825	} else if (!ext4_has_inline_data(inode)) {
1826		retval = ext4_map_query_blocks(NULL, inode, map);
1827		if (retval) {
1828			up_write(&EXT4_I(inode)->i_data_sem);
1829			return retval < 0 ? retval : 0;
1830		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1831	}
1832
1833	map->m_flags |= EXT4_MAP_DELAYED;
1834	retval = ext4_insert_delayed_blocks(inode, map->m_lblk, map->m_len);
1835	up_write(&EXT4_I(inode)->i_data_sem);
1836
1837	return retval;
1838}
1839
1840/*
1841 * This is a special get_block_t callback which is used by
1842 * ext4_da_write_begin().  It will either return mapped block or
1843 * reserve space for a single block.
1844 *
1845 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1846 * We also have b_blocknr = -1 and b_bdev initialized properly
1847 *
1848 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1849 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1850 * initialized properly.
1851 */
1852int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1853			   struct buffer_head *bh, int create)
1854{
1855	struct ext4_map_blocks map;
1856	sector_t invalid_block = ~((sector_t) 0xffff);
1857	int ret = 0;
1858
1859	BUG_ON(create == 0);
1860	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1861
1862	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1863		invalid_block = ~0;
1864
1865	map.m_lblk = iblock;
1866	map.m_len = 1;
1867
1868	/*
1869	 * first, we need to know whether the block is allocated already
1870	 * preallocated blocks are unmapped but should treated
1871	 * the same as allocated blocks.
1872	 */
1873	ret = ext4_da_map_blocks(inode, &map);
1874	if (ret < 0)
1875		return ret;
1876
1877	if (map.m_flags & EXT4_MAP_DELAYED) {
1878		map_bh(bh, inode->i_sb, invalid_block);
1879		set_buffer_new(bh);
1880		set_buffer_delay(bh);
1881		return 0;
1882	}
1883
1884	map_bh(bh, inode->i_sb, map.m_pblk);
1885	ext4_update_bh_state(bh, map.m_flags);
1886
1887	if (buffer_unwritten(bh)) {
1888		/* A delayed write to unwritten bh should be marked
1889		 * new and mapped.  Mapped ensures that we don't do
1890		 * get_block multiple times when we write to the same
1891		 * offset and new ensures that we do proper zero out
1892		 * for partial write.
1893		 */
1894		set_buffer_new(bh);
1895		set_buffer_mapped(bh);
1896	}
1897	return 0;
1898}
1899
1900static void mpage_folio_done(struct mpage_da_data *mpd, struct folio *folio)
1901{
1902	mpd->first_page += folio_nr_pages(folio);
1903	folio_unlock(folio);
1904}
1905
1906static int mpage_submit_folio(struct mpage_da_data *mpd, struct folio *folio)
1907{
1908	size_t len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1909	loff_t size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1910	int err;
1911
1912	BUG_ON(folio->index != mpd->first_page);
1913	folio_clear_dirty_for_io(folio);
1914	/*
1915	 * We have to be very careful here!  Nothing protects writeback path
1916	 * against i_size changes and the page can be writeably mapped into
1917	 * page tables. So an application can be growing i_size and writing
1918	 * data through mmap while writeback runs. folio_clear_dirty_for_io()
1919	 * write-protects our page in page tables and the page cannot get
1920	 * written to again until we release folio lock. So only after
1921	 * folio_clear_dirty_for_io() we are safe to sample i_size for
1922	 * ext4_bio_write_folio() to zero-out tail of the written page. We rely
1923	 * on the barrier provided by folio_test_clear_dirty() in
1924	 * folio_clear_dirty_for_io() to make sure i_size is really sampled only
1925	 * after page tables are updated.
1926	 */
1927	size = i_size_read(mpd->inode);
1928	len = folio_size(folio);
1929	if (folio_pos(folio) + len > size &&
1930	    !ext4_verity_in_progress(mpd->inode))
1931		len = size & (len - 1);
1932	err = ext4_bio_write_folio(&mpd->io_submit, folio, len);
1933	if (!err)
1934		mpd->wbc->nr_to_write--;
 
1935
1936	return err;
1937}
1938
1939#define BH_FLAGS (BIT(BH_Unwritten) | BIT(BH_Delay))
1940
1941/*
1942 * mballoc gives us at most this number of blocks...
1943 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1944 * The rest of mballoc seems to handle chunks up to full group size.
1945 */
1946#define MAX_WRITEPAGES_EXTENT_LEN 2048
1947
1948/*
1949 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1950 *
1951 * @mpd - extent of blocks
1952 * @lblk - logical number of the block in the file
1953 * @bh - buffer head we want to add to the extent
1954 *
1955 * The function is used to collect contig. blocks in the same state. If the
1956 * buffer doesn't require mapping for writeback and we haven't started the
1957 * extent of buffers to map yet, the function returns 'true' immediately - the
1958 * caller can write the buffer right away. Otherwise the function returns true
1959 * if the block has been added to the extent, false if the block couldn't be
1960 * added.
1961 */
1962static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1963				   struct buffer_head *bh)
1964{
1965	struct ext4_map_blocks *map = &mpd->map;
1966
1967	/* Buffer that doesn't need mapping for writeback? */
1968	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1969	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1970		/* So far no extent to map => we write the buffer right away */
1971		if (map->m_len == 0)
1972			return true;
1973		return false;
1974	}
1975
1976	/* First block in the extent? */
1977	if (map->m_len == 0) {
1978		/* We cannot map unless handle is started... */
1979		if (!mpd->do_map)
1980			return false;
1981		map->m_lblk = lblk;
1982		map->m_len = 1;
1983		map->m_flags = bh->b_state & BH_FLAGS;
1984		return true;
1985	}
1986
1987	/* Don't go larger than mballoc is willing to allocate */
1988	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1989		return false;
1990
1991	/* Can we merge the block to our big extent? */
1992	if (lblk == map->m_lblk + map->m_len &&
1993	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1994		map->m_len++;
1995		return true;
1996	}
1997	return false;
1998}
1999
2000/*
2001 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2002 *
2003 * @mpd - extent of blocks for mapping
2004 * @head - the first buffer in the page
2005 * @bh - buffer we should start processing from
2006 * @lblk - logical number of the block in the file corresponding to @bh
2007 *
2008 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2009 * the page for IO if all buffers in this page were mapped and there's no
2010 * accumulated extent of buffers to map or add buffers in the page to the
2011 * extent of buffers to map. The function returns 1 if the caller can continue
2012 * by processing the next page, 0 if it should stop adding buffers to the
2013 * extent to map because we cannot extend it anymore. It can also return value
2014 * < 0 in case of error during IO submission.
2015 */
2016static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2017				   struct buffer_head *head,
2018				   struct buffer_head *bh,
2019				   ext4_lblk_t lblk)
2020{
2021	struct inode *inode = mpd->inode;
2022	int err;
2023	ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2024							>> inode->i_blkbits;
2025
2026	if (ext4_verity_in_progress(inode))
2027		blocks = EXT_MAX_BLOCKS;
2028
2029	do {
2030		BUG_ON(buffer_locked(bh));
2031
2032		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2033			/* Found extent to map? */
2034			if (mpd->map.m_len)
2035				return 0;
2036			/* Buffer needs mapping and handle is not started? */
2037			if (!mpd->do_map)
2038				return 0;
2039			/* Everything mapped so far and we hit EOF */
2040			break;
2041		}
2042	} while (lblk++, (bh = bh->b_this_page) != head);
2043	/* So far everything mapped? Submit the page for IO. */
2044	if (mpd->map.m_len == 0) {
2045		err = mpage_submit_folio(mpd, head->b_folio);
2046		if (err < 0)
2047			return err;
2048		mpage_folio_done(mpd, head->b_folio);
2049	}
2050	if (lblk >= blocks) {
2051		mpd->scanned_until_end = 1;
2052		return 0;
2053	}
2054	return 1;
2055}
2056
2057/*
2058 * mpage_process_folio - update folio buffers corresponding to changed extent
2059 *			 and may submit fully mapped page for IO
2060 * @mpd: description of extent to map, on return next extent to map
2061 * @folio: Contains these buffers.
2062 * @m_lblk: logical block mapping.
2063 * @m_pblk: corresponding physical mapping.
2064 * @map_bh: determines on return whether this page requires any further
2065 *		  mapping or not.
2066 *
2067 * Scan given folio buffers corresponding to changed extent and update buffer
2068 * state according to new extent state.
2069 * We map delalloc buffers to their physical location, clear unwritten bits.
2070 * If the given folio is not fully mapped, we update @mpd to the next extent in
2071 * the given folio that needs mapping & return @map_bh as true.
2072 */
2073static int mpage_process_folio(struct mpage_da_data *mpd, struct folio *folio,
2074			      ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2075			      bool *map_bh)
2076{
2077	struct buffer_head *head, *bh;
2078	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2079	ext4_lblk_t lblk = *m_lblk;
2080	ext4_fsblk_t pblock = *m_pblk;
2081	int err = 0;
2082	int blkbits = mpd->inode->i_blkbits;
2083	ssize_t io_end_size = 0;
2084	struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2085
2086	bh = head = folio_buffers(folio);
2087	do {
2088		if (lblk < mpd->map.m_lblk)
2089			continue;
2090		if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2091			/*
2092			 * Buffer after end of mapped extent.
2093			 * Find next buffer in the folio to map.
2094			 */
2095			mpd->map.m_len = 0;
2096			mpd->map.m_flags = 0;
2097			io_end_vec->size += io_end_size;
2098
2099			err = mpage_process_page_bufs(mpd, head, bh, lblk);
2100			if (err > 0)
2101				err = 0;
2102			if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2103				io_end_vec = ext4_alloc_io_end_vec(io_end);
2104				if (IS_ERR(io_end_vec)) {
2105					err = PTR_ERR(io_end_vec);
2106					goto out;
2107				}
2108				io_end_vec->offset = (loff_t)mpd->map.m_lblk << blkbits;
2109			}
2110			*map_bh = true;
2111			goto out;
2112		}
2113		if (buffer_delay(bh)) {
2114			clear_buffer_delay(bh);
2115			bh->b_blocknr = pblock++;
2116		}
2117		clear_buffer_unwritten(bh);
2118		io_end_size += (1 << blkbits);
2119	} while (lblk++, (bh = bh->b_this_page) != head);
2120
2121	io_end_vec->size += io_end_size;
2122	*map_bh = false;
2123out:
2124	*m_lblk = lblk;
2125	*m_pblk = pblock;
2126	return err;
2127}
2128
2129/*
2130 * mpage_map_buffers - update buffers corresponding to changed extent and
2131 *		       submit fully mapped pages for IO
2132 *
2133 * @mpd - description of extent to map, on return next extent to map
2134 *
2135 * Scan buffers corresponding to changed extent (we expect corresponding pages
2136 * to be already locked) and update buffer state according to new extent state.
2137 * We map delalloc buffers to their physical location, clear unwritten bits,
2138 * and mark buffers as uninit when we perform writes to unwritten extents
2139 * and do extent conversion after IO is finished. If the last page is not fully
2140 * mapped, we update @map to the next extent in the last page that needs
2141 * mapping. Otherwise we submit the page for IO.
2142 */
2143static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2144{
2145	struct folio_batch fbatch;
2146	unsigned nr, i;
2147	struct inode *inode = mpd->inode;
 
2148	int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2149	pgoff_t start, end;
2150	ext4_lblk_t lblk;
2151	ext4_fsblk_t pblock;
2152	int err;
2153	bool map_bh = false;
2154
2155	start = mpd->map.m_lblk >> bpp_bits;
2156	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2157	lblk = start << bpp_bits;
2158	pblock = mpd->map.m_pblk;
2159
2160	folio_batch_init(&fbatch);
2161	while (start <= end) {
2162		nr = filemap_get_folios(inode->i_mapping, &start, end, &fbatch);
2163		if (nr == 0)
 
2164			break;
2165		for (i = 0; i < nr; i++) {
2166			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2167
2168			err = mpage_process_folio(mpd, folio, &lblk, &pblock,
2169						 &map_bh);
2170			/*
2171			 * If map_bh is true, means page may require further bh
2172			 * mapping, or maybe the page was submitted for IO.
2173			 * So we return to call further extent mapping.
2174			 */
2175			if (err < 0 || map_bh)
2176				goto out;
2177			/* Page fully mapped - let IO run! */
2178			err = mpage_submit_folio(mpd, folio);
2179			if (err < 0)
2180				goto out;
2181			mpage_folio_done(mpd, folio);
 
 
2182		}
2183		folio_batch_release(&fbatch);
2184	}
2185	/* Extent fully mapped and matches with page boundary. We are done. */
2186	mpd->map.m_len = 0;
2187	mpd->map.m_flags = 0;
2188	return 0;
2189out:
2190	folio_batch_release(&fbatch);
2191	return err;
2192}
2193
2194static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int get_blocks_flags;
2199	int err, dioread_nolock;
2200
2201	trace_ext4_da_write_pages_extent(inode, map);
2202	/*
2203	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2204	 * to convert an unwritten extent to be initialized (in the case
2205	 * where we have written into one or more preallocated blocks).  It is
2206	 * possible that we're going to need more metadata blocks than
2207	 * previously reserved. However we must not fail because we're in
2208	 * writeback and there is nothing we can do about it so it might result
2209	 * in data loss.  So use reserved blocks to allocate metadata if
2210	 * possible.
 
 
 
 
 
2211	 */
2212	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2213			   EXT4_GET_BLOCKS_METADATA_NOFAIL |
2214			   EXT4_GET_BLOCKS_IO_SUBMIT;
2215	dioread_nolock = ext4_should_dioread_nolock(inode);
2216	if (dioread_nolock)
2217		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
 
 
2218
2219	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2220	if (err < 0)
2221		return err;
2222	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2223		if (!mpd->io_submit.io_end->handle &&
2224		    ext4_handle_valid(handle)) {
2225			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2226			handle->h_rsv_handle = NULL;
2227		}
2228		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2229	}
2230
2231	BUG_ON(map->m_len == 0);
 
 
 
 
2232	return 0;
2233}
2234
2235/*
2236 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2237 *				 mpd->len and submit pages underlying it for IO
2238 *
2239 * @handle - handle for journal operations
2240 * @mpd - extent to map
2241 * @give_up_on_write - we set this to true iff there is a fatal error and there
2242 *                     is no hope of writing the data. The caller should discard
2243 *                     dirty pages to avoid infinite loops.
2244 *
2245 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2246 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2247 * them to initialized or split the described range from larger unwritten
2248 * extent. Note that we need not map all the described range since allocation
2249 * can return less blocks or the range is covered by more unwritten extents. We
2250 * cannot map more because we are limited by reserved transaction credits. On
2251 * the other hand we always make sure that the last touched page is fully
2252 * mapped so that it can be written out (and thus forward progress is
2253 * guaranteed). After mapping we submit all mapped pages for IO.
2254 */
2255static int mpage_map_and_submit_extent(handle_t *handle,
2256				       struct mpage_da_data *mpd,
2257				       bool *give_up_on_write)
2258{
2259	struct inode *inode = mpd->inode;
2260	struct ext4_map_blocks *map = &mpd->map;
2261	int err;
2262	loff_t disksize;
2263	int progress = 0;
2264	ext4_io_end_t *io_end = mpd->io_submit.io_end;
2265	struct ext4_io_end_vec *io_end_vec;
2266
2267	io_end_vec = ext4_alloc_io_end_vec(io_end);
2268	if (IS_ERR(io_end_vec))
2269		return PTR_ERR(io_end_vec);
2270	io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2271	do {
2272		err = mpage_map_one_extent(handle, mpd);
2273		if (err < 0) {
2274			struct super_block *sb = inode->i_sb;
2275
2276			if (ext4_forced_shutdown(sb))
2277				goto invalidate_dirty_pages;
2278			/*
2279			 * Let the uper layers retry transient errors.
2280			 * In the case of ENOSPC, if ext4_count_free_blocks()
2281			 * is non-zero, a commit should free up blocks.
2282			 */
2283			if ((err == -ENOMEM) ||
2284			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2285				if (progress)
2286					goto update_disksize;
2287				return err;
2288			}
2289			ext4_msg(sb, KERN_CRIT,
2290				 "Delayed block allocation failed for "
2291				 "inode %lu at logical offset %llu with"
2292				 " max blocks %u with error %d",
2293				 inode->i_ino,
2294				 (unsigned long long)map->m_lblk,
2295				 (unsigned)map->m_len, -err);
2296			ext4_msg(sb, KERN_CRIT,
2297				 "This should not happen!! Data will "
2298				 "be lost\n");
2299			if (err == -ENOSPC)
2300				ext4_print_free_blocks(inode);
2301		invalidate_dirty_pages:
2302			*give_up_on_write = true;
2303			return err;
2304		}
2305		progress = 1;
2306		/*
2307		 * Update buffer state, submit mapped pages, and get us new
2308		 * extent to map
2309		 */
2310		err = mpage_map_and_submit_buffers(mpd);
2311		if (err < 0)
2312			goto update_disksize;
2313	} while (map->m_len);
2314
2315update_disksize:
2316	/*
2317	 * Update on-disk size after IO is submitted.  Races with
2318	 * truncate are avoided by checking i_size under i_data_sem.
2319	 */
2320	disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2321	if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2322		int err2;
2323		loff_t i_size;
2324
2325		down_write(&EXT4_I(inode)->i_data_sem);
2326		i_size = i_size_read(inode);
2327		if (disksize > i_size)
2328			disksize = i_size;
2329		if (disksize > EXT4_I(inode)->i_disksize)
2330			EXT4_I(inode)->i_disksize = disksize;
 
2331		up_write(&EXT4_I(inode)->i_data_sem);
2332		err2 = ext4_mark_inode_dirty(handle, inode);
2333		if (err2) {
2334			ext4_error_err(inode->i_sb, -err2,
2335				       "Failed to mark inode %lu dirty",
2336				       inode->i_ino);
2337		}
2338		if (!err)
2339			err = err2;
2340	}
2341	return err;
2342}
2343
2344/*
2345 * Calculate the total number of credits to reserve for one writepages
2346 * iteration. This is called from ext4_writepages(). We map an extent of
2347 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2348 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2349 * bpp - 1 blocks in bpp different extents.
2350 */
2351static int ext4_da_writepages_trans_blocks(struct inode *inode)
2352{
2353	int bpp = ext4_journal_blocks_per_page(inode);
2354
2355	return ext4_meta_trans_blocks(inode,
2356				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2357}
2358
2359static int ext4_journal_folio_buffers(handle_t *handle, struct folio *folio,
2360				     size_t len)
2361{
2362	struct buffer_head *page_bufs = folio_buffers(folio);
2363	struct inode *inode = folio->mapping->host;
2364	int ret, err;
2365
2366	ret = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2367				     NULL, do_journal_get_write_access);
2368	err = ext4_walk_page_buffers(handle, inode, page_bufs, 0, len,
2369				     NULL, write_end_fn);
2370	if (ret == 0)
2371		ret = err;
2372	err = ext4_jbd2_inode_add_write(handle, inode, folio_pos(folio), len);
2373	if (ret == 0)
2374		ret = err;
2375	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
2376
2377	return ret;
2378}
2379
2380static int mpage_journal_page_buffers(handle_t *handle,
2381				      struct mpage_da_data *mpd,
2382				      struct folio *folio)
2383{
2384	struct inode *inode = mpd->inode;
2385	loff_t size = i_size_read(inode);
2386	size_t len = folio_size(folio);
2387
2388	folio_clear_checked(folio);
2389	mpd->wbc->nr_to_write--;
2390
2391	if (folio_pos(folio) + len > size &&
2392	    !ext4_verity_in_progress(inode))
2393		len = size & (len - 1);
2394
2395	return ext4_journal_folio_buffers(handle, folio, len);
2396}
2397
2398/*
2399 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2400 * 				 needing mapping, submit mapped pages
2401 *
2402 * @mpd - where to look for pages
2403 *
2404 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2405 * IO immediately. If we cannot map blocks, we submit just already mapped
2406 * buffers in the page for IO and keep page dirty. When we can map blocks and
2407 * we find a page which isn't mapped we start accumulating extent of buffers
2408 * underlying these pages that needs mapping (formed by either delayed or
2409 * unwritten buffers). We also lock the pages containing these buffers. The
2410 * extent found is returned in @mpd structure (starting at mpd->lblk with
2411 * length mpd->len blocks).
2412 *
2413 * Note that this function can attach bios to one io_end structure which are
2414 * neither logically nor physically contiguous. Although it may seem as an
2415 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2416 * case as we need to track IO to all buffers underlying a page in one io_end.
2417 */
2418static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2419{
2420	struct address_space *mapping = mpd->inode->i_mapping;
2421	struct folio_batch fbatch;
2422	unsigned int nr_folios;
 
2423	pgoff_t index = mpd->first_page;
2424	pgoff_t end = mpd->last_page;
2425	xa_mark_t tag;
2426	int i, err = 0;
2427	int blkbits = mpd->inode->i_blkbits;
2428	ext4_lblk_t lblk;
2429	struct buffer_head *head;
2430	handle_t *handle = NULL;
2431	int bpp = ext4_journal_blocks_per_page(mpd->inode);
2432
2433	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2434		tag = PAGECACHE_TAG_TOWRITE;
2435	else
2436		tag = PAGECACHE_TAG_DIRTY;
2437
 
2438	mpd->map.m_len = 0;
2439	mpd->next_page = index;
2440	if (ext4_should_journal_data(mpd->inode)) {
2441		handle = ext4_journal_start(mpd->inode, EXT4_HT_WRITE_PAGE,
2442					    bpp);
2443		if (IS_ERR(handle))
2444			return PTR_ERR(handle);
2445	}
2446	folio_batch_init(&fbatch);
2447	while (index <= end) {
2448		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2449				tag, &fbatch);
2450		if (nr_folios == 0)
2451			break;
 
 
 
2452
2453		for (i = 0; i < nr_folios; i++) {
2454			struct folio *folio = fbatch.folios[i];
 
 
 
 
 
 
 
2455
2456			/*
2457			 * Accumulated enough dirty pages? This doesn't apply
2458			 * to WB_SYNC_ALL mode. For integrity sync we have to
2459			 * keep going because someone may be concurrently
2460			 * dirtying pages, and we might have synced a lot of
2461			 * newly appeared dirty pages, but have not synced all
2462			 * of the old dirty pages.
2463			 */
2464			if (mpd->wbc->sync_mode == WB_SYNC_NONE &&
2465			    mpd->wbc->nr_to_write <=
2466			    mpd->map.m_len >> (PAGE_SHIFT - blkbits))
2467				goto out;
2468
2469			/* If we can't merge this page, we are done. */
2470			if (mpd->map.m_len > 0 && mpd->next_page != folio->index)
2471				goto out;
2472
2473			if (handle) {
2474				err = ext4_journal_ensure_credits(handle, bpp,
2475								  0);
2476				if (err < 0)
2477					goto out;
2478			}
2479
2480			folio_lock(folio);
2481			/*
2482			 * If the page is no longer dirty, or its mapping no
2483			 * longer corresponds to inode we are writing (which
2484			 * means it has been truncated or invalidated), or the
2485			 * page is already under writeback and we are not doing
2486			 * a data integrity writeback, skip the page
2487			 */
2488			if (!folio_test_dirty(folio) ||
2489			    (folio_test_writeback(folio) &&
2490			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2491			    unlikely(folio->mapping != mapping)) {
2492				folio_unlock(folio);
2493				continue;
2494			}
2495
2496			folio_wait_writeback(folio);
2497			BUG_ON(folio_test_writeback(folio));
2498
2499			/*
2500			 * Should never happen but for buggy code in
2501			 * other subsystems that call
2502			 * set_page_dirty() without properly warning
2503			 * the file system first.  See [1] for more
2504			 * information.
2505			 *
2506			 * [1] https://lore.kernel.org/linux-mm/20180103100430.GE4911@quack2.suse.cz
2507			 */
2508			if (!folio_buffers(folio)) {
2509				ext4_warning_inode(mpd->inode, "page %lu does not have buffers attached", folio->index);
2510				folio_clear_dirty(folio);
2511				folio_unlock(folio);
2512				continue;
2513			}
2514
2515			if (mpd->map.m_len == 0)
2516				mpd->first_page = folio->index;
2517			mpd->next_page = folio_next_index(folio);
2518			/*
2519			 * Writeout when we cannot modify metadata is simple.
2520			 * Just submit the page. For data=journal mode we
2521			 * first handle writeout of the page for checkpoint and
2522			 * only after that handle delayed page dirtying. This
2523			 * makes sure current data is checkpointed to the final
2524			 * location before possibly journalling it again which
2525			 * is desirable when the page is frequently dirtied
2526			 * through a pin.
2527			 */
2528			if (!mpd->can_map) {
2529				err = mpage_submit_folio(mpd, folio);
2530				if (err < 0)
2531					goto out;
2532				/* Pending dirtying of journalled data? */
2533				if (folio_test_checked(folio)) {
2534					err = mpage_journal_page_buffers(handle,
2535						mpd, folio);
2536					if (err < 0)
2537						goto out;
2538					mpd->journalled_more_data = 1;
2539				}
2540				mpage_folio_done(mpd, folio);
2541			} else {
2542				/* Add all dirty buffers to mpd */
2543				lblk = ((ext4_lblk_t)folio->index) <<
2544					(PAGE_SHIFT - blkbits);
2545				head = folio_buffers(folio);
2546				err = mpage_process_page_bufs(mpd, head, head,
2547						lblk);
2548				if (err <= 0)
2549					goto out;
2550				err = 0;
2551			}
2552		}
2553		folio_batch_release(&fbatch);
2554		cond_resched();
2555	}
2556	mpd->scanned_until_end = 1;
2557	if (handle)
2558		ext4_journal_stop(handle);
2559	return 0;
2560out:
2561	folio_batch_release(&fbatch);
2562	if (handle)
2563		ext4_journal_stop(handle);
2564	return err;
2565}
2566
2567static int ext4_do_writepages(struct mpage_da_data *mpd)
 
 
 
 
 
 
 
 
 
 
2568{
2569	struct writeback_control *wbc = mpd->wbc;
2570	pgoff_t	writeback_index = 0;
2571	long nr_to_write = wbc->nr_to_write;
2572	int range_whole = 0;
2573	int cycled = 1;
2574	handle_t *handle = NULL;
2575	struct inode *inode = mpd->inode;
2576	struct address_space *mapping = inode->i_mapping;
2577	int needed_blocks, rsv_blocks = 0, ret = 0;
2578	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
 
2579	struct blk_plug plug;
2580	bool give_up_on_write = false;
2581
 
2582	trace_ext4_writepages(inode, wbc);
2583
 
 
 
 
 
 
2584	/*
2585	 * No pages to write? This is mainly a kludge to avoid starting
2586	 * a transaction for special inodes like journal inode on last iput()
2587	 * because that could violate lock ordering on umount
2588	 */
2589	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2590		goto out_writepages;
2591
 
 
 
 
 
 
 
 
 
2592	/*
2593	 * If the filesystem has aborted, it is read-only, so return
2594	 * right away instead of dumping stack traces later on that
2595	 * will obscure the real source of the problem.  We test
2596	 * fs shutdown state instead of sb->s_flag's SB_RDONLY because
2597	 * the latter could be true if the filesystem is mounted
2598	 * read-only, and in that case, ext4_writepages should
2599	 * *never* be called, so if that ever happens, we would want
2600	 * the stack trace.
2601	 */
2602	if (unlikely(ext4_forced_shutdown(mapping->host->i_sb))) {
2603		ret = -EROFS;
2604		goto out_writepages;
2605	}
2606
 
 
 
 
 
 
 
 
2607	/*
2608	 * If we have inline data and arrive here, it means that
2609	 * we will soon create the block for the 1st page, so
2610	 * we'd better clear the inline data here.
2611	 */
2612	if (ext4_has_inline_data(inode)) {
2613		/* Just inode will be modified... */
2614		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2615		if (IS_ERR(handle)) {
2616			ret = PTR_ERR(handle);
2617			goto out_writepages;
2618		}
2619		BUG_ON(ext4_test_inode_state(inode,
2620				EXT4_STATE_MAY_INLINE_DATA));
2621		ext4_destroy_inline_data(handle, inode);
2622		ext4_journal_stop(handle);
2623	}
2624
2625	/*
2626	 * data=journal mode does not do delalloc so we just need to writeout /
2627	 * journal already mapped buffers. On the other hand we need to commit
2628	 * transaction to make data stable. We expect all the data to be
2629	 * already in the journal (the only exception are DMA pinned pages
2630	 * dirtied behind our back) so we commit transaction here and run the
2631	 * writeback loop to checkpoint them. The checkpointing is not actually
2632	 * necessary to make data persistent *but* quite a few places (extent
2633	 * shifting operations, fsverity, ...) depend on being able to drop
2634	 * pagecache pages after calling filemap_write_and_wait() and for that
2635	 * checkpointing needs to happen.
2636	 */
2637	if (ext4_should_journal_data(inode)) {
2638		mpd->can_map = 0;
2639		if (wbc->sync_mode == WB_SYNC_ALL)
2640			ext4_fc_commit(sbi->s_journal,
2641				       EXT4_I(inode)->i_datasync_tid);
2642	}
2643	mpd->journalled_more_data = 0;
2644
2645	if (ext4_should_dioread_nolock(inode)) {
2646		/*
2647		 * We may need to convert up to one extent per block in
2648		 * the page and we may dirty the inode.
2649		 */
2650		rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2651						PAGE_SIZE >> inode->i_blkbits);
2652	}
2653
2654	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2655		range_whole = 1;
2656
2657	if (wbc->range_cyclic) {
2658		writeback_index = mapping->writeback_index;
2659		if (writeback_index)
2660			cycled = 0;
2661		mpd->first_page = writeback_index;
2662		mpd->last_page = -1;
2663	} else {
2664		mpd->first_page = wbc->range_start >> PAGE_SHIFT;
2665		mpd->last_page = wbc->range_end >> PAGE_SHIFT;
2666	}
2667
2668	ext4_io_submit_init(&mpd->io_submit, wbc);
 
 
2669retry:
2670	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2671		tag_pages_for_writeback(mapping, mpd->first_page,
2672					mpd->last_page);
2673	blk_start_plug(&plug);
2674
2675	/*
2676	 * First writeback pages that don't need mapping - we can avoid
2677	 * starting a transaction unnecessarily and also avoid being blocked
2678	 * in the block layer on device congestion while having transaction
2679	 * started.
2680	 */
2681	mpd->do_map = 0;
2682	mpd->scanned_until_end = 0;
2683	mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2684	if (!mpd->io_submit.io_end) {
2685		ret = -ENOMEM;
2686		goto unplug;
2687	}
2688	ret = mpage_prepare_extent_to_map(mpd);
2689	/* Unlock pages we didn't use */
2690	mpage_release_unused_pages(mpd, false);
2691	/* Submit prepared bio */
2692	ext4_io_submit(&mpd->io_submit);
2693	ext4_put_io_end_defer(mpd->io_submit.io_end);
2694	mpd->io_submit.io_end = NULL;
2695	if (ret < 0)
2696		goto unplug;
2697
2698	while (!mpd->scanned_until_end && wbc->nr_to_write > 0) {
2699		/* For each extent of pages we use new io_end */
2700		mpd->io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2701		if (!mpd->io_submit.io_end) {
2702			ret = -ENOMEM;
2703			break;
2704		}
2705
2706		WARN_ON_ONCE(!mpd->can_map);
2707		/*
2708		 * We have two constraints: We find one extent to map and we
2709		 * must always write out whole page (makes a difference when
2710		 * blocksize < pagesize) so that we don't block on IO when we
2711		 * try to write out the rest of the page. Journalled mode is
2712		 * not supported by delalloc.
2713		 */
2714		BUG_ON(ext4_should_journal_data(inode));
2715		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2716
2717		/* start a new transaction */
2718		handle = ext4_journal_start_with_reserve(inode,
2719				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2720		if (IS_ERR(handle)) {
2721			ret = PTR_ERR(handle);
2722			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2723			       "%ld pages, ino %lu; err %d", __func__,
2724				wbc->nr_to_write, inode->i_ino, ret);
2725			/* Release allocated io_end */
2726			ext4_put_io_end(mpd->io_submit.io_end);
2727			mpd->io_submit.io_end = NULL;
2728			break;
2729		}
2730		mpd->do_map = 1;
2731
2732		trace_ext4_da_write_pages(inode, mpd->first_page, wbc);
2733		ret = mpage_prepare_extent_to_map(mpd);
2734		if (!ret && mpd->map.m_len)
2735			ret = mpage_map_and_submit_extent(handle, mpd,
 
2736					&give_up_on_write);
 
 
 
 
 
 
 
 
 
 
2737		/*
2738		 * Caution: If the handle is synchronous,
2739		 * ext4_journal_stop() can wait for transaction commit
2740		 * to finish which may depend on writeback of pages to
2741		 * complete or on page lock to be released.  In that
2742		 * case, we have to wait until after we have
2743		 * submitted all the IO, released page locks we hold,
2744		 * and dropped io_end reference (for extent conversion
2745		 * to be able to complete) before stopping the handle.
2746		 */
2747		if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2748			ext4_journal_stop(handle);
2749			handle = NULL;
2750			mpd->do_map = 0;
2751		}
 
 
2752		/* Unlock pages we didn't use */
2753		mpage_release_unused_pages(mpd, give_up_on_write);
2754		/* Submit prepared bio */
2755		ext4_io_submit(&mpd->io_submit);
2756
2757		/*
2758		 * Drop our io_end reference we got from init. We have
2759		 * to be careful and use deferred io_end finishing if
2760		 * we are still holding the transaction as we can
2761		 * release the last reference to io_end which may end
2762		 * up doing unwritten extent conversion.
2763		 */
2764		if (handle) {
2765			ext4_put_io_end_defer(mpd->io_submit.io_end);
2766			ext4_journal_stop(handle);
2767		} else
2768			ext4_put_io_end(mpd->io_submit.io_end);
2769		mpd->io_submit.io_end = NULL;
2770
2771		if (ret == -ENOSPC && sbi->s_journal) {
2772			/*
2773			 * Commit the transaction which would
2774			 * free blocks released in the transaction
2775			 * and try again
2776			 */
2777			jbd2_journal_force_commit_nested(sbi->s_journal);
2778			ret = 0;
2779			continue;
2780		}
2781		/* Fatal error - ENOMEM, EIO... */
2782		if (ret)
2783			break;
2784	}
2785unplug:
2786	blk_finish_plug(&plug);
2787	if (!ret && !cycled && wbc->nr_to_write > 0) {
2788		cycled = 1;
2789		mpd->last_page = writeback_index - 1;
2790		mpd->first_page = 0;
2791		goto retry;
2792	}
2793
2794	/* Update index */
2795	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2796		/*
2797		 * Set the writeback_index so that range_cyclic
2798		 * mode will write it back later
2799		 */
2800		mapping->writeback_index = mpd->first_page;
2801
2802out_writepages:
2803	trace_ext4_writepages_result(inode, wbc, ret,
2804				     nr_to_write - wbc->nr_to_write);
2805	return ret;
2806}
2807
2808static int ext4_writepages(struct address_space *mapping,
2809			   struct writeback_control *wbc)
2810{
2811	struct super_block *sb = mapping->host->i_sb;
2812	struct mpage_da_data mpd = {
2813		.inode = mapping->host,
2814		.wbc = wbc,
2815		.can_map = 1,
2816	};
2817	int ret;
2818	int alloc_ctx;
2819
2820	if (unlikely(ext4_forced_shutdown(sb)))
2821		return -EIO;
2822
2823	alloc_ctx = ext4_writepages_down_read(sb);
2824	ret = ext4_do_writepages(&mpd);
2825	/*
2826	 * For data=journal writeback we could have come across pages marked
2827	 * for delayed dirtying (PageChecked) which were just added to the
2828	 * running transaction. Try once more to get them to stable storage.
2829	 */
2830	if (!ret && mpd.journalled_more_data)
2831		ret = ext4_do_writepages(&mpd);
2832	ext4_writepages_up_read(sb, alloc_ctx);
2833
2834	return ret;
2835}
2836
2837int ext4_normal_submit_inode_data_buffers(struct jbd2_inode *jinode)
2838{
2839	struct writeback_control wbc = {
2840		.sync_mode = WB_SYNC_ALL,
2841		.nr_to_write = LONG_MAX,
2842		.range_start = jinode->i_dirty_start,
2843		.range_end = jinode->i_dirty_end,
2844	};
2845	struct mpage_da_data mpd = {
2846		.inode = jinode->i_vfs_inode,
2847		.wbc = &wbc,
2848		.can_map = 0,
2849	};
2850	return ext4_do_writepages(&mpd);
2851}
2852
2853static int ext4_dax_writepages(struct address_space *mapping,
2854			       struct writeback_control *wbc)
2855{
2856	int ret;
2857	long nr_to_write = wbc->nr_to_write;
2858	struct inode *inode = mapping->host;
2859	int alloc_ctx;
2860
2861	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2862		return -EIO;
2863
2864	alloc_ctx = ext4_writepages_down_read(inode->i_sb);
2865	trace_ext4_writepages(inode, wbc);
2866
2867	ret = dax_writeback_mapping_range(mapping,
2868					  EXT4_SB(inode->i_sb)->s_daxdev, wbc);
2869	trace_ext4_writepages_result(inode, wbc, ret,
2870				     nr_to_write - wbc->nr_to_write);
2871	ext4_writepages_up_read(inode->i_sb, alloc_ctx);
2872	return ret;
2873}
2874
2875static int ext4_nonda_switch(struct super_block *sb)
2876{
2877	s64 free_clusters, dirty_clusters;
2878	struct ext4_sb_info *sbi = EXT4_SB(sb);
2879
2880	/*
2881	 * switch to non delalloc mode if we are running low
2882	 * on free block. The free block accounting via percpu
2883	 * counters can get slightly wrong with percpu_counter_batch getting
2884	 * accumulated on each CPU without updating global counters
2885	 * Delalloc need an accurate free block accounting. So switch
2886	 * to non delalloc when we are near to error range.
2887	 */
2888	free_clusters =
2889		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2890	dirty_clusters =
2891		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2892	/*
2893	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2894	 */
2895	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2896		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2897
2898	if (2 * free_clusters < 3 * dirty_clusters ||
2899	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2900		/*
2901		 * free block count is less than 150% of dirty blocks
2902		 * or free blocks is less than watermark
2903		 */
2904		return 1;
2905	}
2906	return 0;
2907}
2908
 
 
 
 
 
 
 
 
 
 
 
 
 
2909static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2910			       loff_t pos, unsigned len,
2911			       struct folio **foliop, void **fsdata)
2912{
2913	int ret, retries = 0;
2914	struct folio *folio;
2915	pgoff_t index;
2916	struct inode *inode = mapping->host;
2917
2918	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
2919		return -EIO;
2920
2921	index = pos >> PAGE_SHIFT;
2922
2923	if (ext4_nonda_switch(inode->i_sb) || ext4_verity_in_progress(inode)) {
 
2924		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2925		return ext4_write_begin(file, mapping, pos,
2926					len, foliop, fsdata);
2927	}
2928	*fsdata = (void *)0;
2929	trace_ext4_da_write_begin(inode, pos, len);
2930
2931	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2932		ret = ext4_da_write_inline_data_begin(mapping, inode, pos, len,
2933						      foliop, fsdata);
 
2934		if (ret < 0)
2935			return ret;
2936		if (ret == 1)
2937			return 0;
2938	}
2939
2940retry:
2941	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
2942			mapping_gfp_mask(mapping));
2943	if (IS_ERR(folio))
2944		return PTR_ERR(folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2945
2946	ret = ext4_block_write_begin(NULL, folio, pos, len,
 
2947				     ext4_da_get_block_prep);
 
 
 
2948	if (ret < 0) {
2949		folio_unlock(folio);
2950		folio_put(folio);
2951		/*
2952		 * block_write_begin may have instantiated a few blocks
2953		 * outside i_size.  Trim these off again. Don't need
2954		 * i_size_read because we hold inode lock.
2955		 */
2956		if (pos + len > inode->i_size)
2957			ext4_truncate_failed_write(inode);
2958
2959		if (ret == -ENOSPC &&
2960		    ext4_should_retry_alloc(inode->i_sb, &retries))
2961			goto retry;
 
 
2962		return ret;
2963	}
2964
2965	*foliop = folio;
2966	return ret;
2967}
2968
2969/*
2970 * Check if we should update i_disksize
2971 * when write to the end of file but not require block allocation
2972 */
2973static int ext4_da_should_update_i_disksize(struct folio *folio,
2974					    unsigned long offset)
2975{
2976	struct buffer_head *bh;
2977	struct inode *inode = folio->mapping->host;
2978	unsigned int idx;
2979	int i;
2980
2981	bh = folio_buffers(folio);
2982	idx = offset >> inode->i_blkbits;
2983
2984	for (i = 0; i < idx; i++)
2985		bh = bh->b_this_page;
2986
2987	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2988		return 0;
2989	return 1;
2990}
2991
2992static int ext4_da_do_write_end(struct address_space *mapping,
2993			loff_t pos, unsigned len, unsigned copied,
2994			struct folio *folio)
 
2995{
2996	struct inode *inode = mapping->host;
2997	loff_t old_size = inode->i_size;
2998	bool disksize_changed = false;
2999	loff_t new_i_size, zero_len = 0;
3000	handle_t *handle;
 
 
 
 
 
 
 
 
 
3001
3002	if (unlikely(!folio_buffers(folio))) {
3003		folio_unlock(folio);
3004		folio_put(folio);
3005		return -EIO;
3006	}
3007	/*
3008	 * block_write_end() will mark the inode as dirty with I_DIRTY_PAGES
3009	 * flag, which all that's needed to trigger page writeback.
 
3010	 */
3011	copied = block_write_end(NULL, mapping, pos, len, copied,
3012			folio, NULL);
3013	new_i_size = pos + copied;
3014
3015	/*
3016	 * It's important to update i_size while still holding folio lock,
3017	 * because folio writeout could otherwise come in and zero beyond
3018	 * i_size.
3019	 *
3020	 * Since we are holding inode lock, we are sure i_disksize <=
3021	 * i_size. We also know that if i_disksize < i_size, there are
3022	 * delalloc writes pending in the range up to i_size. If the end of
3023	 * the current write is <= i_size, there's no need to touch
3024	 * i_disksize since writeback will push i_disksize up to i_size
3025	 * eventually. If the end of the current write is > i_size and
3026	 * inside an allocated block which ext4_da_should_update_i_disksize()
3027	 * checked, we need to update i_disksize here as certain
3028	 * ext4_writepages() paths not allocating blocks and update i_disksize.
3029	 */
3030	if (new_i_size > inode->i_size) {
3031		unsigned long end;
3032
3033		i_size_write(inode, new_i_size);
3034		end = (new_i_size - 1) & (PAGE_SIZE - 1);
3035		if (copied && ext4_da_should_update_i_disksize(folio, end)) {
3036			ext4_update_i_disksize(inode, new_i_size);
3037			disksize_changed = true;
 
 
 
 
3038		}
3039	}
3040
3041	folio_unlock(folio);
3042	folio_put(folio);
 
 
 
 
 
 
3043
3044	if (pos > old_size) {
3045		pagecache_isize_extended(inode, old_size, pos);
3046		zero_len = pos - old_size;
3047	}
 
 
3048
3049	if (!disksize_changed && !zero_len)
3050		return copied;
3051
3052	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3053	if (IS_ERR(handle))
3054		return PTR_ERR(handle);
3055	if (zero_len)
3056		ext4_zero_partial_blocks(handle, inode, old_size, zero_len);
3057	ext4_mark_inode_dirty(handle, inode);
3058	ext4_journal_stop(handle);
3059
3060	return copied;
3061}
3062
3063static int ext4_da_write_end(struct file *file,
3064			     struct address_space *mapping,
3065			     loff_t pos, unsigned len, unsigned copied,
3066			     struct folio *folio, void *fsdata)
3067{
3068	struct inode *inode = mapping->host;
3069	int write_mode = (int)(unsigned long)fsdata;
 
 
 
 
3070
3071	if (write_mode == FALL_BACK_TO_NONDELALLOC)
3072		return ext4_write_end(file, mapping, pos,
3073				      len, copied, folio, fsdata);
3074
3075	trace_ext4_da_write_end(inode, pos, len, copied);
 
3076
3077	if (write_mode != CONVERT_INLINE_DATA &&
3078	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3079	    ext4_has_inline_data(inode))
3080		return ext4_write_inline_data_end(inode, pos, len, copied,
3081						  folio);
3082
3083	if (unlikely(copied < len) && !folio_test_uptodate(folio))
3084		copied = 0;
3085
3086	return ext4_da_do_write_end(mapping, pos, len, copied, folio);
3087}
3088
3089/*
3090 * Force all delayed allocation blocks to be allocated for a given inode.
3091 */
3092int ext4_alloc_da_blocks(struct inode *inode)
3093{
3094	trace_ext4_alloc_da_blocks(inode);
3095
3096	if (!EXT4_I(inode)->i_reserved_data_blocks)
3097		return 0;
3098
3099	/*
3100	 * We do something simple for now.  The filemap_flush() will
3101	 * also start triggering a write of the data blocks, which is
3102	 * not strictly speaking necessary (and for users of
3103	 * laptop_mode, not even desirable).  However, to do otherwise
3104	 * would require replicating code paths in:
3105	 *
3106	 * ext4_writepages() ->
3107	 *    write_cache_pages() ---> (via passed in callback function)
3108	 *        __mpage_da_writepage() -->
3109	 *           mpage_add_bh_to_extent()
3110	 *           mpage_da_map_blocks()
3111	 *
3112	 * The problem is that write_cache_pages(), located in
3113	 * mm/page-writeback.c, marks pages clean in preparation for
3114	 * doing I/O, which is not desirable if we're not planning on
3115	 * doing I/O at all.
3116	 *
3117	 * We could call write_cache_pages(), and then redirty all of
3118	 * the pages by calling redirty_page_for_writepage() but that
3119	 * would be ugly in the extreme.  So instead we would need to
3120	 * replicate parts of the code in the above functions,
3121	 * simplifying them because we wouldn't actually intend to
3122	 * write out the pages, but rather only collect contiguous
3123	 * logical block extents, call the multi-block allocator, and
3124	 * then update the buffer heads with the block allocations.
3125	 *
3126	 * For now, though, we'll cheat by calling filemap_flush(),
3127	 * which will map the blocks, and start the I/O, but not
3128	 * actually wait for the I/O to complete.
3129	 */
3130	return filemap_flush(inode->i_mapping);
3131}
3132
3133/*
3134 * bmap() is special.  It gets used by applications such as lilo and by
3135 * the swapper to find the on-disk block of a specific piece of data.
3136 *
3137 * Naturally, this is dangerous if the block concerned is still in the
3138 * journal.  If somebody makes a swapfile on an ext4 data-journaling
3139 * filesystem and enables swap, then they may get a nasty shock when the
3140 * data getting swapped to that swapfile suddenly gets overwritten by
3141 * the original zero's written out previously to the journal and
3142 * awaiting writeback in the kernel's buffer cache.
3143 *
3144 * So, if we see any bmap calls here on a modified, data-journaled file,
3145 * take extra steps to flush any blocks which might be in the cache.
3146 */
3147static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3148{
3149	struct inode *inode = mapping->host;
3150	sector_t ret = 0;
 
3151
3152	inode_lock_shared(inode);
3153	/*
3154	 * We can get here for an inline file via the FIBMAP ioctl
3155	 */
3156	if (ext4_has_inline_data(inode))
3157		goto out;
3158
3159	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3160	    (test_opt(inode->i_sb, DELALLOC) ||
3161	     ext4_should_journal_data(inode))) {
3162		/*
3163		 * With delalloc or journalled data we want to sync the file so
3164		 * that we can make sure we allocate blocks for file and data
3165		 * is in place for the user to see it
3166		 */
3167		filemap_write_and_wait(mapping);
3168	}
3169
3170	ret = iomap_bmap(mapping, block, &ext4_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3171
3172out:
3173	inode_unlock_shared(inode);
3174	return ret;
3175}
3176
3177static int ext4_read_folio(struct file *file, struct folio *folio)
3178{
3179	int ret = -EAGAIN;
3180	struct inode *inode = folio->mapping->host;
3181
3182	trace_ext4_read_folio(inode, folio);
3183
3184	if (ext4_has_inline_data(inode))
3185		ret = ext4_readpage_inline(inode, folio);
3186
3187	if (ret == -EAGAIN)
3188		return ext4_mpage_readpages(inode, NULL, folio);
3189
3190	return ret;
3191}
3192
3193static void ext4_readahead(struct readahead_control *rac)
 
 
3194{
3195	struct inode *inode = rac->mapping->host;
3196
3197	/* If the file has inline data, no need to do readahead. */
3198	if (ext4_has_inline_data(inode))
3199		return;
3200
3201	ext4_mpage_readpages(inode, rac, NULL);
3202}
3203
3204static void ext4_invalidate_folio(struct folio *folio, size_t offset,
3205				size_t length)
3206{
3207	trace_ext4_invalidate_folio(folio, offset, length);
3208
3209	/* No journalling happens on data buffers when this function is used */
3210	WARN_ON(folio_buffers(folio) && buffer_jbd(folio_buffers(folio)));
3211
3212	block_invalidate_folio(folio, offset, length);
3213}
3214
3215static int __ext4_journalled_invalidate_folio(struct folio *folio,
3216					    size_t offset, size_t length)
 
3217{
3218	journal_t *journal = EXT4_JOURNAL(folio->mapping->host);
3219
3220	trace_ext4_journalled_invalidate_folio(folio, offset, length);
3221
3222	/*
3223	 * If it's a full truncate we just forget about the pending dirtying
3224	 */
3225	if (offset == 0 && length == folio_size(folio))
3226		folio_clear_checked(folio);
3227
3228	return jbd2_journal_invalidate_folio(journal, folio, offset, length);
3229}
3230
3231/* Wrapper for aops... */
3232static void ext4_journalled_invalidate_folio(struct folio *folio,
3233					   size_t offset,
3234					   size_t length)
3235{
3236	WARN_ON(__ext4_journalled_invalidate_folio(folio, offset, length) < 0);
3237}
3238
3239static bool ext4_release_folio(struct folio *folio, gfp_t wait)
3240{
3241	struct inode *inode = folio->mapping->host;
3242	journal_t *journal = EXT4_JOURNAL(inode);
3243
3244	trace_ext4_release_folio(inode, folio);
3245
3246	/* Page has dirty journalled data -> cannot release */
3247	if (folio_test_checked(folio))
3248		return false;
3249	if (journal)
3250		return jbd2_journal_try_to_free_buffers(journal, folio);
3251	else
3252		return try_to_free_buffers(folio);
3253}
3254
3255static bool ext4_inode_datasync_dirty(struct inode *inode)
 
 
3256{
3257	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3258
3259	if (journal) {
3260		if (jbd2_transaction_committed(journal,
3261			EXT4_I(inode)->i_datasync_tid))
3262			return false;
3263		if (test_opt2(inode->i_sb, JOURNAL_FAST_COMMIT))
3264			return !list_empty(&EXT4_I(inode)->i_fc_list);
3265		return true;
3266	}
 
 
 
 
 
 
 
3267
3268	/* Any metadata buffers to write? */
3269	if (!list_empty(&inode->i_mapping->i_private_list))
3270		return true;
3271	return inode->i_state & I_DIRTY_DATASYNC;
3272}
 
 
 
 
3273
3274static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3275			   struct ext4_map_blocks *map, loff_t offset,
3276			   loff_t length, unsigned int flags)
3277{
3278	u8 blkbits = inode->i_blkbits;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3279
3280	/*
3281	 * Writes that span EOF might trigger an I/O size update on completion,
3282	 * so consider them to be dirty for the purpose of O_DSYNC, even if
3283	 * there is no other metadata changes being made or are pending.
3284	 */
3285	iomap->flags = 0;
3286	if (ext4_inode_datasync_dirty(inode) ||
3287	    offset + length > i_size_read(inode))
3288		iomap->flags |= IOMAP_F_DIRTY;
3289
3290	if (map->m_flags & EXT4_MAP_NEW)
3291		iomap->flags |= IOMAP_F_NEW;
3292
3293	if (flags & IOMAP_DAX)
3294		iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3295	else
3296		iomap->bdev = inode->i_sb->s_bdev;
3297	iomap->offset = (u64) map->m_lblk << blkbits;
3298	iomap->length = (u64) map->m_len << blkbits;
3299
3300	if ((map->m_flags & EXT4_MAP_MAPPED) &&
3301	    !ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3302		iomap->flags |= IOMAP_F_MERGED;
3303
3304	/*
3305	 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3306	 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3307	 * set. In order for any allocated unwritten extents to be converted
3308	 * into written extents correctly within the ->end_io() handler, we
3309	 * need to ensure that the iomap->type is set appropriately. Hence, the
3310	 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3311	 * been set first.
3312	 */
3313	if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3314		iomap->type = IOMAP_UNWRITTEN;
3315		iomap->addr = (u64) map->m_pblk << blkbits;
3316		if (flags & IOMAP_DAX)
3317			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3318	} else if (map->m_flags & EXT4_MAP_MAPPED) {
3319		iomap->type = IOMAP_MAPPED;
3320		iomap->addr = (u64) map->m_pblk << blkbits;
3321		if (flags & IOMAP_DAX)
3322			iomap->addr += EXT4_SB(inode->i_sb)->s_dax_part_off;
3323	} else if (map->m_flags & EXT4_MAP_DELAYED) {
3324		iomap->type = IOMAP_DELALLOC;
3325		iomap->addr = IOMAP_NULL_ADDR;
3326	} else {
3327		iomap->type = IOMAP_HOLE;
3328		iomap->addr = IOMAP_NULL_ADDR;
 
 
 
 
 
 
 
 
3329	}
 
 
 
 
3330}
3331
3332static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3333			    unsigned int flags)
3334{
 
3335	handle_t *handle;
3336	u8 blkbits = inode->i_blkbits;
3337	int ret, dio_credits, m_flags = 0, retries = 0;
3338
3339	/*
3340	 * Trim the mapping request to the maximum value that we can map at
3341	 * once for direct I/O.
3342	 */
3343	if (map->m_len > DIO_MAX_BLOCKS)
3344		map->m_len = DIO_MAX_BLOCKS;
3345	dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3346
3347retry:
 
 
 
 
 
 
3348	/*
3349	 * Either we allocate blocks and then don't get an unwritten extent, so
3350	 * in that case we have reserved enough credits. Or, the blocks are
3351	 * already allocated and unwritten. In that case, the extent conversion
3352	 * fits into the credits as well.
3353	 */
3354	handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3355	if (IS_ERR(handle))
3356		return PTR_ERR(handle);
3357
 
 
 
 
 
3358	/*
3359	 * DAX and direct I/O are the only two operations that are currently
3360	 * supported with IOMAP_WRITE.
3361	 */
3362	WARN_ON(!(flags & (IOMAP_DAX | IOMAP_DIRECT)));
3363	if (flags & IOMAP_DAX)
3364		m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3365	/*
3366	 * We use i_size instead of i_disksize here because delalloc writeback
3367	 * can complete at any point during the I/O and subsequently push the
3368	 * i_disksize out to i_size. This could be beyond where direct I/O is
3369	 * happening and thus expose allocated blocks to direct I/O reads.
3370	 */
3371	else if (((loff_t)map->m_lblk << blkbits) >= i_size_read(inode))
3372		m_flags = EXT4_GET_BLOCKS_CREATE;
3373	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3374		m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3375
3376	ret = ext4_map_blocks(handle, inode, map, m_flags);
3377
3378	/*
3379	 * We cannot fill holes in indirect tree based inodes as that could
3380	 * expose stale data in the case of a crash. Use the magic error code
3381	 * to fallback to buffered I/O.
3382	 */
3383	if (!m_flags && !ret)
3384		ret = -ENOTBLK;
3385
3386	ext4_journal_stop(handle);
3387	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3388		goto retry;
3389
 
 
 
 
 
 
 
 
3390	return ret;
3391}
3392
 
 
 
 
3393
3394static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3395		unsigned flags, struct iomap *iomap, struct iomap *srcmap)
 
 
3396{
3397	int ret;
3398	struct ext4_map_blocks map;
3399	u8 blkbits = inode->i_blkbits;
3400
3401	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3402		return -EINVAL;
 
3403
3404	if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3405		return -ERANGE;
 
3406
3407	/*
3408	 * Calculate the first and last logical blocks respectively.
 
3409	 */
3410	map.m_lblk = offset >> blkbits;
3411	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3412			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3413
3414	if (flags & IOMAP_WRITE) {
3415		/*
3416		 * We check here if the blocks are already allocated, then we
3417		 * don't need to start a journal txn and we can directly return
3418		 * the mapping information. This could boost performance
3419		 * especially in multi-threaded overwrite requests.
3420		 */
3421		if (offset + length <= i_size_read(inode)) {
3422			ret = ext4_map_blocks(NULL, inode, &map, 0);
3423			if (ret > 0 && (map.m_flags & EXT4_MAP_MAPPED))
3424				goto out;
3425		}
3426		ret = ext4_iomap_alloc(inode, &map, flags);
3427	} else {
3428		ret = ext4_map_blocks(NULL, inode, &map, 0);
3429	}
3430
3431	if (ret < 0)
3432		return ret;
3433out:
3434	/*
3435	 * When inline encryption is enabled, sometimes I/O to an encrypted file
3436	 * has to be broken up to guarantee DUN contiguity.  Handle this by
3437	 * limiting the length of the mapping returned.
3438	 */
3439	map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
3440
3441	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3442
3443	return 0;
3444}
3445
3446static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3447		loff_t length, unsigned flags, struct iomap *iomap,
3448		struct iomap *srcmap)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3449{
3450	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3451
3452	/*
3453	 * Even for writes we don't need to allocate blocks, so just pretend
3454	 * we are reading to save overhead of starting a transaction.
 
3455	 */
3456	flags &= ~IOMAP_WRITE;
3457	ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3458	WARN_ON_ONCE(!ret && iomap->type != IOMAP_MAPPED);
3459	return ret;
3460}
3461
3462static inline bool ext4_want_directio_fallback(unsigned flags, ssize_t written)
3463{
3464	/* must be a directio to fall back to buffered */
3465	if ((flags & (IOMAP_WRITE | IOMAP_DIRECT)) !=
3466		    (IOMAP_WRITE | IOMAP_DIRECT))
3467		return false;
3468
3469	/* atomic writes are all-or-nothing */
3470	if (flags & IOMAP_ATOMIC)
3471		return false;
3472
3473	/* can only try again if we wrote nothing */
3474	return written == 0;
3475}
3476
3477static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3478			  ssize_t written, unsigned flags, struct iomap *iomap)
3479{
3480	/*
3481	 * Check to see whether an error occurred while writing out the data to
3482	 * the allocated blocks. If so, return the magic error code for
3483	 * non-atomic write so that we fallback to buffered I/O and attempt to
3484	 * complete the remainder of the I/O.
3485	 * For non-atomic writes, any blocks that may have been
3486	 * allocated in preparation for the direct I/O will be reused during
3487	 * buffered I/O. For atomic write, we never fallback to buffered-io.
3488	 */
3489	if (ext4_want_directio_fallback(flags, written))
3490		return -ENOTBLK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3491
3492	return 0;
3493}
 
 
 
 
 
 
 
 
 
 
 
3494
3495const struct iomap_ops ext4_iomap_ops = {
3496	.iomap_begin		= ext4_iomap_begin,
3497	.iomap_end		= ext4_iomap_end,
3498};
3499
3500const struct iomap_ops ext4_iomap_overwrite_ops = {
3501	.iomap_begin		= ext4_iomap_overwrite_begin,
3502	.iomap_end		= ext4_iomap_end,
3503};
3504
3505static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3506				   loff_t length, unsigned int flags,
3507				   struct iomap *iomap, struct iomap *srcmap)
3508{
3509	int ret;
3510	struct ext4_map_blocks map;
3511	u8 blkbits = inode->i_blkbits;
3512
3513	if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3514		return -EINVAL;
 
 
 
 
 
 
 
3515
3516	if (ext4_has_inline_data(inode)) {
3517		ret = ext4_inline_data_iomap(inode, iomap);
3518		if (ret != -EAGAIN) {
3519			if (ret == 0 && offset >= iomap->length)
3520				ret = -ENOENT;
3521			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
3522		}
 
 
 
3523	}
 
 
 
 
 
 
 
 
 
 
3524
3525	/*
3526	 * Calculate the first and last logical block respectively.
 
 
3527	 */
3528	map.m_lblk = offset >> blkbits;
3529	map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3530			  EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531
3532	/*
3533	 * Fiemap callers may call for offset beyond s_bitmap_maxbytes.
3534	 * So handle it here itself instead of querying ext4_map_blocks().
3535	 * Since ext4_map_blocks() will warn about it and will return
3536	 * -EIO error.
3537	 */
3538	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
3539		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3540
3541		if (offset >= sbi->s_bitmap_maxbytes) {
3542			map.m_flags = 0;
3543			goto set_iomap;
3544		}
3545	}
3546
3547	ret = ext4_map_blocks(NULL, inode, &map, 0);
3548	if (ret < 0)
3549		return ret;
3550set_iomap:
3551	ext4_set_iomap(inode, iomap, &map, offset, length, flags);
3552
3553	return 0;
 
 
 
 
 
 
3554}
3555
3556const struct iomap_ops ext4_iomap_report_ops = {
3557	.iomap_begin = ext4_iomap_begin_report,
3558};
3559
3560/*
3561 * For data=journal mode, folio should be marked dirty only when it was
3562 * writeably mapped. When that happens, it was already attached to the
3563 * transaction and marked as jbddirty (we take care of this in
3564 * ext4_page_mkwrite()). On transaction commit, we writeprotect page mappings
3565 * so we should have nothing to do here, except for the case when someone
3566 * had the page pinned and dirtied the page through this pin (e.g. by doing
3567 * direct IO to it). In that case we'd need to attach buffers here to the
3568 * transaction but we cannot due to lock ordering.  We cannot just dirty the
3569 * folio and leave attached buffers clean, because the buffers' dirty state is
3570 * "definitive".  We cannot just set the buffers dirty or jbddirty because all
3571 * the journalling code will explode.  So what we do is to mark the folio
3572 * "pending dirty" and next time ext4_writepages() is called, attach buffers
3573 * to the transaction appropriately.
3574 */
3575static bool ext4_journalled_dirty_folio(struct address_space *mapping,
3576		struct folio *folio)
3577{
3578	WARN_ON_ONCE(!folio_buffers(folio));
3579	if (folio_maybe_dma_pinned(folio))
3580		folio_set_checked(folio);
3581	return filemap_dirty_folio(mapping, folio);
3582}
3583
3584static bool ext4_dirty_folio(struct address_space *mapping, struct folio *folio)
3585{
3586	WARN_ON_ONCE(!folio_test_locked(folio) && !folio_test_dirty(folio));
3587	WARN_ON_ONCE(!folio_buffers(folio));
3588	return block_dirty_folio(mapping, folio);
3589}
3590
3591static int ext4_iomap_swap_activate(struct swap_info_struct *sis,
3592				    struct file *file, sector_t *span)
3593{
3594	return iomap_swapfile_activate(sis, file, span,
3595				       &ext4_iomap_report_ops);
 
3596}
3597
3598static const struct address_space_operations ext4_aops = {
3599	.read_folio		= ext4_read_folio,
3600	.readahead		= ext4_readahead,
 
3601	.writepages		= ext4_writepages,
3602	.write_begin		= ext4_write_begin,
3603	.write_end		= ext4_write_end,
3604	.dirty_folio		= ext4_dirty_folio,
3605	.bmap			= ext4_bmap,
3606	.invalidate_folio	= ext4_invalidate_folio,
3607	.release_folio		= ext4_release_folio,
3608	.migrate_folio		= buffer_migrate_folio,
 
3609	.is_partially_uptodate  = block_is_partially_uptodate,
3610	.error_remove_folio	= generic_error_remove_folio,
3611	.swap_activate		= ext4_iomap_swap_activate,
3612};
3613
3614static const struct address_space_operations ext4_journalled_aops = {
3615	.read_folio		= ext4_read_folio,
3616	.readahead		= ext4_readahead,
 
3617	.writepages		= ext4_writepages,
3618	.write_begin		= ext4_write_begin,
3619	.write_end		= ext4_journalled_write_end,
3620	.dirty_folio		= ext4_journalled_dirty_folio,
3621	.bmap			= ext4_bmap,
3622	.invalidate_folio	= ext4_journalled_invalidate_folio,
3623	.release_folio		= ext4_release_folio,
3624	.migrate_folio		= buffer_migrate_folio_norefs,
3625	.is_partially_uptodate  = block_is_partially_uptodate,
3626	.error_remove_folio	= generic_error_remove_folio,
3627	.swap_activate		= ext4_iomap_swap_activate,
3628};
3629
3630static const struct address_space_operations ext4_da_aops = {
3631	.read_folio		= ext4_read_folio,
3632	.readahead		= ext4_readahead,
 
3633	.writepages		= ext4_writepages,
3634	.write_begin		= ext4_da_write_begin,
3635	.write_end		= ext4_da_write_end,
3636	.dirty_folio		= ext4_dirty_folio,
3637	.bmap			= ext4_bmap,
3638	.invalidate_folio	= ext4_invalidate_folio,
3639	.release_folio		= ext4_release_folio,
3640	.migrate_folio		= buffer_migrate_folio,
 
3641	.is_partially_uptodate  = block_is_partially_uptodate,
3642	.error_remove_folio	= generic_error_remove_folio,
3643	.swap_activate		= ext4_iomap_swap_activate,
3644};
3645
3646static const struct address_space_operations ext4_dax_aops = {
3647	.writepages		= ext4_dax_writepages,
3648	.dirty_folio		= noop_dirty_folio,
3649	.bmap			= ext4_bmap,
3650	.swap_activate		= ext4_iomap_swap_activate,
3651};
3652
3653void ext4_set_aops(struct inode *inode)
3654{
3655	switch (ext4_inode_journal_mode(inode)) {
3656	case EXT4_INODE_ORDERED_DATA_MODE:
3657	case EXT4_INODE_WRITEBACK_DATA_MODE:
3658		break;
3659	case EXT4_INODE_JOURNAL_DATA_MODE:
3660		inode->i_mapping->a_ops = &ext4_journalled_aops;
3661		return;
3662	default:
3663		BUG();
3664	}
3665	if (IS_DAX(inode))
3666		inode->i_mapping->a_ops = &ext4_dax_aops;
3667	else if (test_opt(inode->i_sb, DELALLOC))
3668		inode->i_mapping->a_ops = &ext4_da_aops;
3669	else
3670		inode->i_mapping->a_ops = &ext4_aops;
3671}
3672
3673/*
3674 * Here we can't skip an unwritten buffer even though it usually reads zero
3675 * because it might have data in pagecache (eg, if called from ext4_zero_range,
3676 * ext4_punch_hole, etc) which needs to be properly zeroed out. Otherwise a
3677 * racing writeback can come later and flush the stale pagecache to disk.
3678 */
3679static int __ext4_block_zero_page_range(handle_t *handle,
3680		struct address_space *mapping, loff_t from, loff_t length)
3681{
3682	ext4_fsblk_t index = from >> PAGE_SHIFT;
3683	unsigned offset = from & (PAGE_SIZE-1);
3684	unsigned blocksize, pos;
3685	ext4_lblk_t iblock;
3686	struct inode *inode = mapping->host;
3687	struct buffer_head *bh;
3688	struct folio *folio;
3689	int err = 0;
3690
3691	folio = __filemap_get_folio(mapping, from >> PAGE_SHIFT,
3692				    FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
3693				    mapping_gfp_constraint(mapping, ~__GFP_FS));
3694	if (IS_ERR(folio))
3695		return PTR_ERR(folio);
3696
3697	blocksize = inode->i_sb->s_blocksize;
3698
3699	iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3700
3701	bh = folio_buffers(folio);
3702	if (!bh)
3703		bh = create_empty_buffers(folio, blocksize, 0);
3704
3705	/* Find the buffer that contains "offset" */
 
3706	pos = blocksize;
3707	while (offset >= pos) {
3708		bh = bh->b_this_page;
3709		iblock++;
3710		pos += blocksize;
3711	}
3712	if (buffer_freed(bh)) {
3713		BUFFER_TRACE(bh, "freed: skip");
3714		goto unlock;
3715	}
3716	if (!buffer_mapped(bh)) {
3717		BUFFER_TRACE(bh, "unmapped");
3718		ext4_get_block(inode, iblock, bh, 0);
3719		/* unmapped? It's a hole - nothing to do */
3720		if (!buffer_mapped(bh)) {
3721			BUFFER_TRACE(bh, "still unmapped");
3722			goto unlock;
3723		}
3724	}
3725
3726	/* Ok, it's mapped. Make sure it's up-to-date */
3727	if (folio_test_uptodate(folio))
3728		set_buffer_uptodate(bh);
3729
3730	if (!buffer_uptodate(bh)) {
3731		err = ext4_read_bh_lock(bh, 0, true);
3732		if (err)
 
 
 
3733			goto unlock;
3734		if (fscrypt_inode_uses_fs_layer_crypto(inode)) {
 
3735			/* We expect the key to be set. */
3736			BUG_ON(!fscrypt_has_encryption_key(inode));
3737			err = fscrypt_decrypt_pagecache_blocks(folio,
3738							       blocksize,
3739							       bh_offset(bh));
3740			if (err) {
3741				clear_buffer_uptodate(bh);
3742				goto unlock;
3743			}
3744		}
3745	}
3746	if (ext4_should_journal_data(inode)) {
3747		BUFFER_TRACE(bh, "get write access");
3748		err = ext4_journal_get_write_access(handle, inode->i_sb, bh,
3749						    EXT4_JTR_NONE);
3750		if (err)
3751			goto unlock;
3752	}
3753	folio_zero_range(folio, offset, length);
3754	BUFFER_TRACE(bh, "zeroed end of block");
3755
3756	if (ext4_should_journal_data(inode)) {
3757		err = ext4_dirty_journalled_data(handle, bh);
3758	} else {
3759		err = 0;
3760		mark_buffer_dirty(bh);
3761		if (ext4_should_order_data(inode))
3762			err = ext4_jbd2_inode_add_write(handle, inode, from,
3763					length);
3764	}
3765
3766unlock:
3767	folio_unlock(folio);
3768	folio_put(folio);
3769	return err;
3770}
3771
3772/*
3773 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3774 * starting from file offset 'from'.  The range to be zero'd must
3775 * be contained with in one block.  If the specified range exceeds
3776 * the end of the block it will be shortened to end of the block
3777 * that corresponds to 'from'
3778 */
3779static int ext4_block_zero_page_range(handle_t *handle,
3780		struct address_space *mapping, loff_t from, loff_t length)
3781{
3782	struct inode *inode = mapping->host;
3783	unsigned offset = from & (PAGE_SIZE-1);
3784	unsigned blocksize = inode->i_sb->s_blocksize;
3785	unsigned max = blocksize - (offset & (blocksize - 1));
3786
3787	/*
3788	 * correct length if it does not fall between
3789	 * 'from' and the end of the block
3790	 */
3791	if (length > max || length < 0)
3792		length = max;
3793
3794	if (IS_DAX(inode)) {
3795		return dax_zero_range(inode, from, length, NULL,
3796				      &ext4_iomap_ops);
3797	}
3798	return __ext4_block_zero_page_range(handle, mapping, from, length);
3799}
3800
3801/*
3802 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3803 * up to the end of the block which corresponds to `from'.
3804 * This required during truncate. We need to physically zero the tail end
3805 * of that block so it doesn't yield old data if the file is later grown.
3806 */
3807static int ext4_block_truncate_page(handle_t *handle,
3808		struct address_space *mapping, loff_t from)
3809{
3810	unsigned offset = from & (PAGE_SIZE-1);
3811	unsigned length;
3812	unsigned blocksize;
3813	struct inode *inode = mapping->host;
3814
3815	/* If we are processing an encrypted inode during orphan list handling */
3816	if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3817		return 0;
3818
3819	blocksize = inode->i_sb->s_blocksize;
3820	length = blocksize - (offset & (blocksize - 1));
3821
3822	return ext4_block_zero_page_range(handle, mapping, from, length);
3823}
3824
3825int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3826			     loff_t lstart, loff_t length)
3827{
3828	struct super_block *sb = inode->i_sb;
3829	struct address_space *mapping = inode->i_mapping;
3830	unsigned partial_start, partial_end;
3831	ext4_fsblk_t start, end;
3832	loff_t byte_end = (lstart + length - 1);
3833	int err = 0;
3834
3835	partial_start = lstart & (sb->s_blocksize - 1);
3836	partial_end = byte_end & (sb->s_blocksize - 1);
3837
3838	start = lstart >> sb->s_blocksize_bits;
3839	end = byte_end >> sb->s_blocksize_bits;
3840
3841	/* Handle partial zero within the single block */
3842	if (start == end &&
3843	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3844		err = ext4_block_zero_page_range(handle, mapping,
3845						 lstart, length);
3846		return err;
3847	}
3848	/* Handle partial zero out on the start of the range */
3849	if (partial_start) {
3850		err = ext4_block_zero_page_range(handle, mapping,
3851						 lstart, sb->s_blocksize);
3852		if (err)
3853			return err;
3854	}
3855	/* Handle partial zero out on the end of the range */
3856	if (partial_end != sb->s_blocksize - 1)
3857		err = ext4_block_zero_page_range(handle, mapping,
3858						 byte_end - partial_end,
3859						 partial_end + 1);
3860	return err;
3861}
3862
3863int ext4_can_truncate(struct inode *inode)
3864{
3865	if (S_ISREG(inode->i_mode))
3866		return 1;
3867	if (S_ISDIR(inode->i_mode))
3868		return 1;
3869	if (S_ISLNK(inode->i_mode))
3870		return !ext4_inode_is_fast_symlink(inode);
3871	return 0;
3872}
3873
3874/*
3875 * We have to make sure i_disksize gets properly updated before we truncate
3876 * page cache due to hole punching or zero range. Otherwise i_disksize update
3877 * can get lost as it may have been postponed to submission of writeback but
3878 * that will never happen after we truncate page cache.
3879 */
3880int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3881				      loff_t len)
3882{
3883	handle_t *handle;
3884	int ret;
3885
3886	loff_t size = i_size_read(inode);
3887
3888	WARN_ON(!inode_is_locked(inode));
3889	if (offset > size || offset + len < size)
3890		return 0;
3891
3892	if (EXT4_I(inode)->i_disksize >= size)
3893		return 0;
3894
3895	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3896	if (IS_ERR(handle))
3897		return PTR_ERR(handle);
3898	ext4_update_i_disksize(inode, size);
3899	ret = ext4_mark_inode_dirty(handle, inode);
3900	ext4_journal_stop(handle);
3901
3902	return ret;
3903}
3904
3905static void ext4_wait_dax_page(struct inode *inode)
3906{
3907	filemap_invalidate_unlock(inode->i_mapping);
3908	schedule();
3909	filemap_invalidate_lock(inode->i_mapping);
3910}
3911
3912int ext4_break_layouts(struct inode *inode)
3913{
3914	struct page *page;
3915	int error;
3916
3917	if (WARN_ON_ONCE(!rwsem_is_locked(&inode->i_mapping->invalidate_lock)))
3918		return -EINVAL;
3919
3920	do {
3921		page = dax_layout_busy_page(inode->i_mapping);
3922		if (!page)
3923			return 0;
3924
3925		error = ___wait_var_event(&page->_refcount,
3926				atomic_read(&page->_refcount) == 1,
3927				TASK_INTERRUPTIBLE, 0, 0,
3928				ext4_wait_dax_page(inode));
3929	} while (error == 0);
3930
3931	return error;
3932}
3933
3934/*
3935 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3936 * associated with the given offset and length
3937 *
3938 * @inode:  File inode
3939 * @offset: The offset where the hole will begin
3940 * @len:    The length of the hole
3941 *
3942 * Returns: 0 on success or negative on failure
3943 */
3944
3945int ext4_punch_hole(struct file *file, loff_t offset, loff_t length)
3946{
3947	struct inode *inode = file_inode(file);
3948	struct super_block *sb = inode->i_sb;
3949	ext4_lblk_t first_block, stop_block;
3950	struct address_space *mapping = inode->i_mapping;
3951	loff_t first_block_offset, last_block_offset, max_length;
3952	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
3953	handle_t *handle;
3954	unsigned int credits;
3955	int ret = 0, ret2 = 0;
 
 
 
3956
3957	trace_ext4_punch_hole(inode, offset, length, 0);
3958
3959	/*
3960	 * Write out all dirty pages to avoid race conditions
3961	 * Then release them.
3962	 */
3963	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3964		ret = filemap_write_and_wait_range(mapping, offset,
3965						   offset + length - 1);
3966		if (ret)
3967			return ret;
3968	}
3969
3970	inode_lock(inode);
3971
3972	/* No need to punch hole beyond i_size */
3973	if (offset >= inode->i_size)
3974		goto out_mutex;
3975
3976	/*
3977	 * If the hole extends beyond i_size, set the hole
3978	 * to end after the page that contains i_size
3979	 */
3980	if (offset + length > inode->i_size) {
3981		length = inode->i_size +
3982		   PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3983		   offset;
3984	}
3985
3986	/*
3987	 * For punch hole the length + offset needs to be within one block
3988	 * before last range. Adjust the length if it goes beyond that limit.
3989	 */
3990	max_length = sbi->s_bitmap_maxbytes - inode->i_sb->s_blocksize;
3991	if (offset + length > max_length)
3992		length = max_length - offset;
3993
3994	if (offset & (sb->s_blocksize - 1) ||
3995	    (offset + length) & (sb->s_blocksize - 1)) {
3996		/*
3997		 * Attach jinode to inode for jbd2 if we do any zeroing of
3998		 * partial block
3999		 */
4000		ret = ext4_inode_attach_jinode(inode);
4001		if (ret < 0)
4002			goto out_mutex;
4003
4004	}
4005
4006	/* Wait all existing dio workers, newcomers will block on i_rwsem */
 
4007	inode_dio_wait(inode);
4008
4009	ret = file_modified(file);
4010	if (ret)
4011		goto out_mutex;
4012
4013	/*
4014	 * Prevent page faults from reinstantiating pages we have released from
4015	 * page cache.
4016	 */
4017	filemap_invalidate_lock(mapping);
4018
4019	ret = ext4_break_layouts(inode);
4020	if (ret)
4021		goto out_dio;
4022
4023	first_block_offset = round_up(offset, sb->s_blocksize);
4024	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4025
4026	/* Now release the pages and zero block aligned part of pages*/
4027	if (last_block_offset > first_block_offset) {
4028		ret = ext4_update_disksize_before_punch(inode, offset, length);
4029		if (ret)
4030			goto out_dio;
4031		truncate_pagecache_range(inode, first_block_offset,
4032					 last_block_offset);
4033	}
4034
4035	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4036		credits = ext4_writepage_trans_blocks(inode);
4037	else
4038		credits = ext4_blocks_for_truncate(inode);
4039	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4040	if (IS_ERR(handle)) {
4041		ret = PTR_ERR(handle);
4042		ext4_std_error(sb, ret);
4043		goto out_dio;
4044	}
4045
4046	ret = ext4_zero_partial_blocks(handle, inode, offset,
4047				       length);
4048	if (ret)
4049		goto out_stop;
4050
4051	first_block = (offset + sb->s_blocksize - 1) >>
4052		EXT4_BLOCK_SIZE_BITS(sb);
4053	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4054
4055	/* If there are blocks to remove, do it */
4056	if (stop_block > first_block) {
4057		ext4_lblk_t hole_len = stop_block - first_block;
4058
4059		down_write(&EXT4_I(inode)->i_data_sem);
4060		ext4_discard_preallocations(inode);
4061
4062		ext4_es_remove_extent(inode, first_block, hole_len);
 
 
 
 
 
4063
4064		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4065			ret = ext4_ext_remove_space(inode, first_block,
4066						    stop_block - 1);
4067		else
4068			ret = ext4_ind_remove_space(handle, inode, first_block,
4069						    stop_block);
4070
4071		ext4_es_insert_extent(inode, first_block, hole_len, ~0,
4072				      EXTENT_STATUS_HOLE, 0);
4073		up_write(&EXT4_I(inode)->i_data_sem);
4074	}
4075	ext4_fc_track_range(handle, inode, first_block, stop_block);
4076	if (IS_SYNC(inode))
4077		ext4_handle_sync(handle);
4078
4079	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4080	ret2 = ext4_mark_inode_dirty(handle, inode);
4081	if (unlikely(ret2))
4082		ret = ret2;
4083	if (ret >= 0)
4084		ext4_update_inode_fsync_trans(handle, inode, 1);
4085out_stop:
4086	ext4_journal_stop(handle);
4087out_dio:
4088	filemap_invalidate_unlock(mapping);
 
4089out_mutex:
4090	inode_unlock(inode);
4091	return ret;
4092}
4093
4094int ext4_inode_attach_jinode(struct inode *inode)
4095{
4096	struct ext4_inode_info *ei = EXT4_I(inode);
4097	struct jbd2_inode *jinode;
4098
4099	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4100		return 0;
4101
4102	jinode = jbd2_alloc_inode(GFP_KERNEL);
4103	spin_lock(&inode->i_lock);
4104	if (!ei->jinode) {
4105		if (!jinode) {
4106			spin_unlock(&inode->i_lock);
4107			return -ENOMEM;
4108		}
4109		ei->jinode = jinode;
4110		jbd2_journal_init_jbd_inode(ei->jinode, inode);
4111		jinode = NULL;
4112	}
4113	spin_unlock(&inode->i_lock);
4114	if (unlikely(jinode != NULL))
4115		jbd2_free_inode(jinode);
4116	return 0;
4117}
4118
4119/*
4120 * ext4_truncate()
4121 *
4122 * We block out ext4_get_block() block instantiations across the entire
4123 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4124 * simultaneously on behalf of the same inode.
4125 *
4126 * As we work through the truncate and commit bits of it to the journal there
4127 * is one core, guiding principle: the file's tree must always be consistent on
4128 * disk.  We must be able to restart the truncate after a crash.
4129 *
4130 * The file's tree may be transiently inconsistent in memory (although it
4131 * probably isn't), but whenever we close off and commit a journal transaction,
4132 * the contents of (the filesystem + the journal) must be consistent and
4133 * restartable.  It's pretty simple, really: bottom up, right to left (although
4134 * left-to-right works OK too).
4135 *
4136 * Note that at recovery time, journal replay occurs *before* the restart of
4137 * truncate against the orphan inode list.
4138 *
4139 * The committed inode has the new, desired i_size (which is the same as
4140 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4141 * that this inode's truncate did not complete and it will again call
4142 * ext4_truncate() to have another go.  So there will be instantiated blocks
4143 * to the right of the truncation point in a crashed ext4 filesystem.  But
4144 * that's fine - as long as they are linked from the inode, the post-crash
4145 * ext4_truncate() run will find them and release them.
4146 */
4147int ext4_truncate(struct inode *inode)
4148{
4149	struct ext4_inode_info *ei = EXT4_I(inode);
4150	unsigned int credits;
4151	int err = 0, err2;
4152	handle_t *handle;
4153	struct address_space *mapping = inode->i_mapping;
4154
4155	/*
4156	 * There is a possibility that we're either freeing the inode
4157	 * or it's a completely new inode. In those cases we might not
4158	 * have i_rwsem locked because it's not necessary.
4159	 */
4160	if (!(inode->i_state & (I_NEW|I_FREEING)))
4161		WARN_ON(!inode_is_locked(inode));
4162	trace_ext4_truncate_enter(inode);
4163
4164	if (!ext4_can_truncate(inode))
4165		goto out_trace;
 
 
4166
4167	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4168		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4169
4170	if (ext4_has_inline_data(inode)) {
4171		int has_inline = 1;
4172
4173		err = ext4_inline_data_truncate(inode, &has_inline);
4174		if (err || has_inline)
4175			goto out_trace;
4176	}
4177
4178	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
4179	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4180		err = ext4_inode_attach_jinode(inode);
4181		if (err)
4182			goto out_trace;
4183	}
4184
4185	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4186		credits = ext4_writepage_trans_blocks(inode);
4187	else
4188		credits = ext4_blocks_for_truncate(inode);
4189
4190	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4191	if (IS_ERR(handle)) {
4192		err = PTR_ERR(handle);
4193		goto out_trace;
4194	}
4195
4196	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4197		ext4_block_truncate_page(handle, mapping, inode->i_size);
4198
4199	/*
4200	 * We add the inode to the orphan list, so that if this
4201	 * truncate spans multiple transactions, and we crash, we will
4202	 * resume the truncate when the filesystem recovers.  It also
4203	 * marks the inode dirty, to catch the new size.
4204	 *
4205	 * Implication: the file must always be in a sane, consistent
4206	 * truncatable state while each transaction commits.
4207	 */
4208	err = ext4_orphan_add(handle, inode);
4209	if (err)
4210		goto out_stop;
4211
4212	down_write(&EXT4_I(inode)->i_data_sem);
4213
4214	ext4_discard_preallocations(inode);
4215
4216	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4217		err = ext4_ext_truncate(handle, inode);
4218	else
4219		ext4_ind_truncate(handle, inode);
4220
4221	up_write(&ei->i_data_sem);
4222	if (err)
4223		goto out_stop;
4224
4225	if (IS_SYNC(inode))
4226		ext4_handle_sync(handle);
4227
4228out_stop:
4229	/*
4230	 * If this was a simple ftruncate() and the file will remain alive,
4231	 * then we need to clear up the orphan record which we created above.
4232	 * However, if this was a real unlink then we were called by
4233	 * ext4_evict_inode(), and we allow that function to clean up the
4234	 * orphan info for us.
4235	 */
4236	if (inode->i_nlink)
4237		ext4_orphan_del(handle, inode);
4238
4239	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
4240	err2 = ext4_mark_inode_dirty(handle, inode);
4241	if (unlikely(err2 && !err))
4242		err = err2;
4243	ext4_journal_stop(handle);
4244
4245out_trace:
4246	trace_ext4_truncate_exit(inode);
4247	return err;
4248}
4249
4250static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4251{
4252	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4253		return inode_peek_iversion_raw(inode);
4254	else
4255		return inode_peek_iversion(inode);
4256}
4257
4258static int ext4_inode_blocks_set(struct ext4_inode *raw_inode,
4259				 struct ext4_inode_info *ei)
4260{
4261	struct inode *inode = &(ei->vfs_inode);
4262	u64 i_blocks = READ_ONCE(inode->i_blocks);
4263	struct super_block *sb = inode->i_sb;
4264
4265	if (i_blocks <= ~0U) {
4266		/*
4267		 * i_blocks can be represented in a 32 bit variable
4268		 * as multiple of 512 bytes
4269		 */
4270		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4271		raw_inode->i_blocks_high = 0;
4272		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4273		return 0;
4274	}
4275
4276	/*
4277	 * This should never happen since sb->s_maxbytes should not have
4278	 * allowed this, sb->s_maxbytes was set according to the huge_file
4279	 * feature in ext4_fill_super().
4280	 */
4281	if (!ext4_has_feature_huge_file(sb))
4282		return -EFSCORRUPTED;
4283
4284	if (i_blocks <= 0xffffffffffffULL) {
4285		/*
4286		 * i_blocks can be represented in a 48 bit variable
4287		 * as multiple of 512 bytes
4288		 */
4289		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4290		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4291		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4292	} else {
4293		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4294		/* i_block is stored in file system block size */
4295		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4296		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4297		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4298	}
4299	return 0;
4300}
4301
4302static int ext4_fill_raw_inode(struct inode *inode, struct ext4_inode *raw_inode)
4303{
4304	struct ext4_inode_info *ei = EXT4_I(inode);
4305	uid_t i_uid;
4306	gid_t i_gid;
4307	projid_t i_projid;
4308	int block;
4309	int err;
4310
4311	err = ext4_inode_blocks_set(raw_inode, ei);
4312
4313	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4314	i_uid = i_uid_read(inode);
4315	i_gid = i_gid_read(inode);
4316	i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4317	if (!(test_opt(inode->i_sb, NO_UID32))) {
4318		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4319		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4320		/*
4321		 * Fix up interoperability with old kernels. Otherwise,
4322		 * old inodes get re-used with the upper 16 bits of the
4323		 * uid/gid intact.
4324		 */
4325		if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4326			raw_inode->i_uid_high = 0;
4327			raw_inode->i_gid_high = 0;
4328		} else {
4329			raw_inode->i_uid_high =
4330				cpu_to_le16(high_16_bits(i_uid));
4331			raw_inode->i_gid_high =
4332				cpu_to_le16(high_16_bits(i_gid));
4333		}
4334	} else {
4335		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4336		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4337		raw_inode->i_uid_high = 0;
4338		raw_inode->i_gid_high = 0;
4339	}
4340	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4341
4342	EXT4_INODE_SET_CTIME(inode, raw_inode);
4343	EXT4_INODE_SET_MTIME(inode, raw_inode);
4344	EXT4_INODE_SET_ATIME(inode, raw_inode);
4345	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4346
4347	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4348	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4349	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4350		raw_inode->i_file_acl_high =
4351			cpu_to_le16(ei->i_file_acl >> 32);
4352	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4353	ext4_isize_set(raw_inode, ei->i_disksize);
4354
4355	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4356	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4357		if (old_valid_dev(inode->i_rdev)) {
4358			raw_inode->i_block[0] =
4359				cpu_to_le32(old_encode_dev(inode->i_rdev));
4360			raw_inode->i_block[1] = 0;
4361		} else {
4362			raw_inode->i_block[0] = 0;
4363			raw_inode->i_block[1] =
4364				cpu_to_le32(new_encode_dev(inode->i_rdev));
4365			raw_inode->i_block[2] = 0;
4366		}
4367	} else if (!ext4_has_inline_data(inode)) {
4368		for (block = 0; block < EXT4_N_BLOCKS; block++)
4369			raw_inode->i_block[block] = ei->i_data[block];
4370	}
4371
4372	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4373		u64 ivers = ext4_inode_peek_iversion(inode);
4374
4375		raw_inode->i_disk_version = cpu_to_le32(ivers);
4376		if (ei->i_extra_isize) {
4377			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4378				raw_inode->i_version_hi =
4379					cpu_to_le32(ivers >> 32);
4380			raw_inode->i_extra_isize =
4381				cpu_to_le16(ei->i_extra_isize);
4382		}
4383	}
4384
4385	if (i_projid != EXT4_DEF_PROJID &&
4386	    !ext4_has_feature_project(inode->i_sb))
4387		err = err ?: -EFSCORRUPTED;
4388
4389	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4390	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4391		raw_inode->i_projid = cpu_to_le32(i_projid);
4392
4393	ext4_inode_csum_set(inode, raw_inode, ei);
4394	return err;
4395}
4396
4397/*
4398 * ext4_get_inode_loc returns with an extra refcount against the inode's
4399 * underlying buffer_head on success. If we pass 'inode' and it does not
4400 * have in-inode xattr, we have all inode data in memory that is needed
4401 * to recreate the on-disk version of this inode.
4402 */
4403static int __ext4_get_inode_loc(struct super_block *sb, unsigned long ino,
4404				struct inode *inode, struct ext4_iloc *iloc,
4405				ext4_fsblk_t *ret_block)
4406{
4407	struct ext4_group_desc	*gdp;
4408	struct buffer_head	*bh;
 
4409	ext4_fsblk_t		block;
4410	struct blk_plug		plug;
4411	int			inodes_per_block, inode_offset;
4412
4413	iloc->bh = NULL;
4414	if (ino < EXT4_ROOT_INO ||
4415	    ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4416		return -EFSCORRUPTED;
4417
4418	iloc->block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb);
4419	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4420	if (!gdp)
4421		return -EIO;
4422
4423	/*
4424	 * Figure out the offset within the block group inode table
4425	 */
4426	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4427	inode_offset = ((ino - 1) %
4428			EXT4_INODES_PER_GROUP(sb));
 
4429	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4430
4431	block = ext4_inode_table(sb, gdp);
4432	if ((block <= le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block)) ||
4433	    (block >= ext4_blocks_count(EXT4_SB(sb)->s_es))) {
4434		ext4_error(sb, "Invalid inode table block %llu in "
4435			   "block_group %u", block, iloc->block_group);
4436		return -EFSCORRUPTED;
4437	}
4438	block += (inode_offset / inodes_per_block);
4439
4440	bh = sb_getblk(sb, block);
4441	if (unlikely(!bh))
4442		return -ENOMEM;
4443	if (ext4_buffer_uptodate(bh))
4444		goto has_buffer;
4445
4446	lock_buffer(bh);
4447	if (ext4_buffer_uptodate(bh)) {
4448		/* Someone brought it uptodate while we waited */
4449		unlock_buffer(bh);
4450		goto has_buffer;
4451	}
 
 
4452
4453	/*
4454	 * If we have all information of the inode in memory and this
4455	 * is the only valid inode in the block, we need not read the
4456	 * block.
4457	 */
4458	if (inode && !ext4_test_inode_state(inode, EXT4_STATE_XATTR)) {
4459		struct buffer_head *bitmap_bh;
4460		int i, start;
4461
4462		start = inode_offset & ~(inodes_per_block - 1);
4463
4464		/* Is the inode bitmap in cache? */
4465		bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4466		if (unlikely(!bitmap_bh))
4467			goto make_io;
4468
4469		/*
4470		 * If the inode bitmap isn't in cache then the
4471		 * optimisation may end up performing two reads instead
4472		 * of one, so skip it.
4473		 */
4474		if (!buffer_uptodate(bitmap_bh)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4475			brelse(bitmap_bh);
4476			goto make_io;
4477		}
4478		for (i = start; i < start + inodes_per_block; i++) {
4479			if (i == inode_offset)
4480				continue;
4481			if (ext4_test_bit(i, bitmap_bh->b_data))
4482				break;
4483		}
4484		brelse(bitmap_bh);
4485		if (i == start + inodes_per_block) {
4486			struct ext4_inode *raw_inode =
4487				(struct ext4_inode *) (bh->b_data + iloc->offset);
4488
4489			/* all other inodes are free, so skip I/O */
4490			memset(bh->b_data, 0, bh->b_size);
4491			if (!ext4_test_inode_state(inode, EXT4_STATE_NEW))
4492				ext4_fill_raw_inode(inode, raw_inode);
4493			set_buffer_uptodate(bh);
4494			unlock_buffer(bh);
4495			goto has_buffer;
4496		}
4497	}
4498
4499make_io:
4500	/*
4501	 * If we need to do any I/O, try to pre-readahead extra
4502	 * blocks from the inode table.
4503	 */
4504	blk_start_plug(&plug);
4505	if (EXT4_SB(sb)->s_inode_readahead_blks) {
4506		ext4_fsblk_t b, end, table;
4507		unsigned num;
4508		__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4509
4510		table = ext4_inode_table(sb, gdp);
4511		/* s_inode_readahead_blks is always a power of 2 */
4512		b = block & ~((ext4_fsblk_t) ra_blks - 1);
4513		if (table > b)
4514			b = table;
4515		end = b + ra_blks;
4516		num = EXT4_INODES_PER_GROUP(sb);
4517		if (ext4_has_group_desc_csum(sb))
4518			num -= ext4_itable_unused_count(sb, gdp);
4519		table += num / inodes_per_block;
4520		if (end > table)
4521			end = table;
4522		while (b <= end)
4523			ext4_sb_breadahead_unmovable(sb, b++);
4524	}
4525
4526	/*
4527	 * There are other valid inodes in the buffer, this inode
4528	 * has in-inode xattrs, or we don't have this inode in memory.
4529	 * Read the block from disk.
4530	 */
4531	trace_ext4_load_inode(sb, ino);
4532	ext4_read_bh_nowait(bh, REQ_META | REQ_PRIO, NULL,
4533			    ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO));
4534	blk_finish_plug(&plug);
4535	wait_on_buffer(bh);
4536	if (!buffer_uptodate(bh)) {
4537		if (ret_block)
4538			*ret_block = block;
4539		brelse(bh);
4540		return -EIO;
 
4541	}
4542has_buffer:
4543	iloc->bh = bh;
4544	return 0;
4545}
4546
4547static int __ext4_get_inode_loc_noinmem(struct inode *inode,
4548					struct ext4_iloc *iloc)
4549{
4550	ext4_fsblk_t err_blk = 0;
4551	int ret;
4552
4553	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, NULL, iloc,
4554					&err_blk);
4555
4556	if (ret == -EIO)
4557		ext4_error_inode_block(inode, err_blk, EIO,
4558					"unable to read itable block");
4559
4560	return ret;
4561}
4562
4563int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4564{
4565	ext4_fsblk_t err_blk = 0;
4566	int ret;
4567
4568	ret = __ext4_get_inode_loc(inode->i_sb, inode->i_ino, inode, iloc,
4569					&err_blk);
4570
4571	if (ret == -EIO)
4572		ext4_error_inode_block(inode, err_blk, EIO,
4573					"unable to read itable block");
4574
4575	return ret;
4576}
4577
4578
4579int ext4_get_fc_inode_loc(struct super_block *sb, unsigned long ino,
4580			  struct ext4_iloc *iloc)
4581{
4582	return __ext4_get_inode_loc(sb, ino, NULL, iloc, NULL);
4583}
4584
4585static bool ext4_should_enable_dax(struct inode *inode)
4586{
4587	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4588
4589	if (test_opt2(inode->i_sb, DAX_NEVER))
4590		return false;
4591	if (!S_ISREG(inode->i_mode))
4592		return false;
4593	if (ext4_should_journal_data(inode))
4594		return false;
4595	if (ext4_has_inline_data(inode))
4596		return false;
4597	if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4598		return false;
4599	if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4600		return false;
4601	if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags))
4602		return false;
4603	if (test_opt(inode->i_sb, DAX_ALWAYS))
4604		return true;
4605
4606	return ext4_test_inode_flag(inode, EXT4_INODE_DAX);
4607}
4608
4609void ext4_set_inode_flags(struct inode *inode, bool init)
4610{
4611	unsigned int flags = EXT4_I(inode)->i_flags;
4612	unsigned int new_fl = 0;
4613
4614	WARN_ON_ONCE(IS_DAX(inode) && init);
4615
4616	if (flags & EXT4_SYNC_FL)
4617		new_fl |= S_SYNC;
4618	if (flags & EXT4_APPEND_FL)
4619		new_fl |= S_APPEND;
4620	if (flags & EXT4_IMMUTABLE_FL)
4621		new_fl |= S_IMMUTABLE;
4622	if (flags & EXT4_NOATIME_FL)
4623		new_fl |= S_NOATIME;
4624	if (flags & EXT4_DIRSYNC_FL)
4625		new_fl |= S_DIRSYNC;
 
 
 
 
 
 
 
4626
4627	/* Because of the way inode_set_flags() works we must preserve S_DAX
4628	 * here if already set. */
4629	new_fl |= (inode->i_flags & S_DAX);
4630	if (init && ext4_should_enable_dax(inode))
4631		new_fl |= S_DAX;
4632
4633	if (flags & EXT4_ENCRYPT_FL)
4634		new_fl |= S_ENCRYPTED;
4635	if (flags & EXT4_CASEFOLD_FL)
4636		new_fl |= S_CASEFOLD;
4637	if (flags & EXT4_VERITY_FL)
4638		new_fl |= S_VERITY;
4639	inode_set_flags(inode, new_fl,
4640			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4641			S_ENCRYPTED|S_CASEFOLD|S_VERITY);
 
 
 
 
 
 
 
 
4642}
4643
4644static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4645				  struct ext4_inode_info *ei)
4646{
4647	blkcnt_t i_blocks ;
4648	struct inode *inode = &(ei->vfs_inode);
4649	struct super_block *sb = inode->i_sb;
4650
4651	if (ext4_has_feature_huge_file(sb)) {
4652		/* we are using combined 48 bit field */
4653		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4654					le32_to_cpu(raw_inode->i_blocks_lo);
4655		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4656			/* i_blocks represent file system block size */
4657			return i_blocks  << (inode->i_blkbits - 9);
4658		} else {
4659			return i_blocks;
4660		}
4661	} else {
4662		return le32_to_cpu(raw_inode->i_blocks_lo);
4663	}
4664}
4665
4666static inline int ext4_iget_extra_inode(struct inode *inode,
4667					 struct ext4_inode *raw_inode,
4668					 struct ext4_inode_info *ei)
4669{
4670	__le32 *magic = (void *)raw_inode +
4671			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4672
4673	if (EXT4_INODE_HAS_XATTR_SPACE(inode)  &&
4674	    *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4675		int err;
4676
4677		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4678		err = ext4_find_inline_data_nolock(inode);
4679		if (!err && ext4_has_inline_data(inode))
4680			ext4_set_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
4681		return err;
4682	} else
4683		EXT4_I(inode)->i_inline_off = 0;
4684	return 0;
4685}
4686
4687int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4688{
4689	if (!ext4_has_feature_project(inode->i_sb))
4690		return -EOPNOTSUPP;
4691	*projid = EXT4_I(inode)->i_projid;
4692	return 0;
4693}
4694
4695/*
4696 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4697 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4698 * set.
4699 */
4700static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4701{
4702	if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4703		inode_set_iversion_raw(inode, val);
4704	else
4705		inode_set_iversion_queried(inode, val);
4706}
4707
4708static const char *check_igot_inode(struct inode *inode, ext4_iget_flags flags)
4709
4710{
4711	if (flags & EXT4_IGET_EA_INODE) {
4712		if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4713			return "missing EA_INODE flag";
4714		if (ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
4715		    EXT4_I(inode)->i_file_acl)
4716			return "ea_inode with extended attributes";
4717	} else {
4718		if ((EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4719			return "unexpected EA_INODE flag";
4720	}
4721	if (is_bad_inode(inode) && !(flags & EXT4_IGET_BAD))
4722		return "unexpected bad inode w/o EXT4_IGET_BAD";
4723	return NULL;
4724}
4725
4726struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4727			  ext4_iget_flags flags, const char *function,
4728			  unsigned int line)
4729{
4730	struct ext4_iloc iloc;
4731	struct ext4_inode *raw_inode;
4732	struct ext4_inode_info *ei;
4733	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4734	struct inode *inode;
4735	const char *err_str;
4736	journal_t *journal = EXT4_SB(sb)->s_journal;
4737	long ret;
4738	loff_t size;
4739	int block;
4740	uid_t i_uid;
4741	gid_t i_gid;
4742	projid_t i_projid;
4743
4744	if ((!(flags & EXT4_IGET_SPECIAL) &&
4745	     ((ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) ||
4746	      ino == le32_to_cpu(es->s_usr_quota_inum) ||
4747	      ino == le32_to_cpu(es->s_grp_quota_inum) ||
4748	      ino == le32_to_cpu(es->s_prj_quota_inum) ||
4749	      ino == le32_to_cpu(es->s_orphan_file_inum))) ||
4750	    (ino < EXT4_ROOT_INO) ||
4751	    (ino > le32_to_cpu(es->s_inodes_count))) {
4752		if (flags & EXT4_IGET_HANDLE)
4753			return ERR_PTR(-ESTALE);
4754		__ext4_error(sb, function, line, false, EFSCORRUPTED, 0,
4755			     "inode #%lu: comm %s: iget: illegal inode #",
4756			     ino, current->comm);
4757		return ERR_PTR(-EFSCORRUPTED);
4758	}
4759
4760	inode = iget_locked(sb, ino);
4761	if (!inode)
4762		return ERR_PTR(-ENOMEM);
4763	if (!(inode->i_state & I_NEW)) {
4764		if ((err_str = check_igot_inode(inode, flags)) != NULL) {
4765			ext4_error_inode(inode, function, line, 0, err_str);
4766			iput(inode);
4767			return ERR_PTR(-EFSCORRUPTED);
4768		}
4769		return inode;
4770	}
4771
4772	ei = EXT4_I(inode);
4773	iloc.bh = NULL;
4774
4775	ret = __ext4_get_inode_loc_noinmem(inode, &iloc);
4776	if (ret < 0)
4777		goto bad_inode;
4778	raw_inode = ext4_raw_inode(&iloc);
4779
4780	if ((flags & EXT4_IGET_HANDLE) &&
4781	    (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4782		ret = -ESTALE;
4783		goto bad_inode;
4784	}
4785
4786	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4787		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4788		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4789			EXT4_INODE_SIZE(inode->i_sb) ||
4790		    (ei->i_extra_isize & 3)) {
4791			ext4_error_inode(inode, function, line, 0,
4792					 "iget: bad extra_isize %u "
4793					 "(inode size %u)",
4794					 ei->i_extra_isize,
4795					 EXT4_INODE_SIZE(inode->i_sb));
4796			ret = -EFSCORRUPTED;
4797			goto bad_inode;
4798		}
4799	} else
4800		ei->i_extra_isize = 0;
4801
4802	/* Precompute checksum seed for inode metadata */
4803	if (ext4_has_metadata_csum(sb)) {
4804		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4805		__u32 csum;
4806		__le32 inum = cpu_to_le32(inode->i_ino);
4807		__le32 gen = raw_inode->i_generation;
4808		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4809				   sizeof(inum));
4810		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4811					      sizeof(gen));
4812	}
4813
4814	if ((!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4815	    ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) &&
4816	     (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY))) {
4817		ext4_error_inode_err(inode, function, line, 0,
4818				EFSBADCRC, "iget: checksum invalid");
4819		ret = -EFSBADCRC;
4820		goto bad_inode;
4821	}
4822
4823	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4824	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4825	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4826	if (ext4_has_feature_project(sb) &&
4827	    EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4828	    EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4829		i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4830	else
4831		i_projid = EXT4_DEF_PROJID;
4832
4833	if (!(test_opt(inode->i_sb, NO_UID32))) {
4834		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4835		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4836	}
4837	i_uid_write(inode, i_uid);
4838	i_gid_write(inode, i_gid);
4839	ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4840	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4841
4842	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4843	ei->i_inline_off = 0;
4844	ei->i_dir_start_lookup = 0;
4845	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4846	/* We now have enough fields to check if the inode was active or not.
4847	 * This is needed because nfsd might try to access dead inodes
4848	 * the test is that same one that e2fsck uses
4849	 * NeilBrown 1999oct15
4850	 */
4851	if (inode->i_nlink == 0) {
4852		if ((inode->i_mode == 0 || flags & EXT4_IGET_SPECIAL ||
4853		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4854		    ino != EXT4_BOOT_LOADER_INO) {
4855			/* this inode is deleted or unallocated */
4856			if (flags & EXT4_IGET_SPECIAL) {
4857				ext4_error_inode(inode, function, line, 0,
4858						 "iget: special inode unallocated");
4859				ret = -EFSCORRUPTED;
4860			} else
4861				ret = -ESTALE;
4862			goto bad_inode;
4863		}
4864		/* The only unlinked inodes we let through here have
4865		 * valid i_mode and are being read by the orphan
4866		 * recovery code: that's fine, we're about to complete
4867		 * the process of deleting those.
4868		 * OR it is the EXT4_BOOT_LOADER_INO which is
4869		 * not initialized on a new filesystem. */
4870	}
4871	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4872	ext4_set_inode_flags(inode, true);
4873	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4874	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4875	if (ext4_has_feature_64bit(sb))
4876		ei->i_file_acl |=
4877			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4878	inode->i_size = ext4_isize(sb, raw_inode);
4879	if ((size = i_size_read(inode)) < 0) {
4880		ext4_error_inode(inode, function, line, 0,
4881				 "iget: bad i_size value: %lld", size);
4882		ret = -EFSCORRUPTED;
4883		goto bad_inode;
4884	}
4885	/*
4886	 * If dir_index is not enabled but there's dir with INDEX flag set,
4887	 * we'd normally treat htree data as empty space. But with metadata
4888	 * checksumming that corrupts checksums so forbid that.
4889	 */
4890	if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4891	    ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4892		ext4_error_inode(inode, function, line, 0,
4893			 "iget: Dir with htree data on filesystem without dir_index feature.");
4894		ret = -EFSCORRUPTED;
4895		goto bad_inode;
4896	}
4897	ei->i_disksize = inode->i_size;
4898#ifdef CONFIG_QUOTA
4899	ei->i_reserved_quota = 0;
4900#endif
4901	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4902	ei->i_block_group = iloc.block_group;
4903	ei->i_last_alloc_group = ~0;
4904	/*
4905	 * NOTE! The in-memory inode i_data array is in little-endian order
4906	 * even on big-endian machines: we do NOT byteswap the block numbers!
4907	 */
4908	for (block = 0; block < EXT4_N_BLOCKS; block++)
4909		ei->i_data[block] = raw_inode->i_block[block];
4910	INIT_LIST_HEAD(&ei->i_orphan);
4911	ext4_fc_init_inode(&ei->vfs_inode);
4912
4913	/*
4914	 * Set transaction id's of transactions that have to be committed
4915	 * to finish f[data]sync. We set them to currently running transaction
4916	 * as we cannot be sure that the inode or some of its metadata isn't
4917	 * part of the transaction - the inode could have been reclaimed and
4918	 * now it is reread from disk.
4919	 */
4920	if (journal) {
4921		transaction_t *transaction;
4922		tid_t tid;
4923
4924		read_lock(&journal->j_state_lock);
4925		if (journal->j_running_transaction)
4926			transaction = journal->j_running_transaction;
4927		else
4928			transaction = journal->j_committing_transaction;
4929		if (transaction)
4930			tid = transaction->t_tid;
4931		else
4932			tid = journal->j_commit_sequence;
4933		read_unlock(&journal->j_state_lock);
4934		ei->i_sync_tid = tid;
4935		ei->i_datasync_tid = tid;
4936	}
4937
4938	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4939		if (ei->i_extra_isize == 0) {
4940			/* The extra space is currently unused. Use it. */
4941			BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4942			ei->i_extra_isize = sizeof(struct ext4_inode) -
4943					    EXT4_GOOD_OLD_INODE_SIZE;
4944		} else {
4945			ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4946			if (ret)
4947				goto bad_inode;
4948		}
4949	}
4950
4951	EXT4_INODE_GET_CTIME(inode, raw_inode);
4952	EXT4_INODE_GET_ATIME(inode, raw_inode);
4953	EXT4_INODE_GET_MTIME(inode, raw_inode);
4954	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4955
4956	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4957		u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4958
4959		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4960			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4961				ivers |=
4962		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4963		}
4964		ext4_inode_set_iversion_queried(inode, ivers);
4965	}
4966
4967	ret = 0;
4968	if (ei->i_file_acl &&
4969	    !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4970		ext4_error_inode(inode, function, line, 0,
4971				 "iget: bad extended attribute block %llu",
4972				 ei->i_file_acl);
4973		ret = -EFSCORRUPTED;
4974		goto bad_inode;
4975	} else if (!ext4_has_inline_data(inode)) {
4976		/* validate the block references in the inode */
4977		if (!(EXT4_SB(sb)->s_mount_state & EXT4_FC_REPLAY) &&
4978			(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4979			(S_ISLNK(inode->i_mode) &&
4980			!ext4_inode_is_fast_symlink(inode)))) {
4981			if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4982				ret = ext4_ext_check_inode(inode);
4983			else
4984				ret = ext4_ind_check_inode(inode);
 
 
 
4985		}
4986	}
4987	if (ret)
4988		goto bad_inode;
4989
4990	if (S_ISREG(inode->i_mode)) {
4991		inode->i_op = &ext4_file_inode_operations;
4992		inode->i_fop = &ext4_file_operations;
4993		ext4_set_aops(inode);
4994	} else if (S_ISDIR(inode->i_mode)) {
4995		inode->i_op = &ext4_dir_inode_operations;
4996		inode->i_fop = &ext4_dir_operations;
4997	} else if (S_ISLNK(inode->i_mode)) {
4998		/* VFS does not allow setting these so must be corruption */
4999		if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
5000			ext4_error_inode(inode, function, line, 0,
5001					 "iget: immutable or append flags "
5002					 "not allowed on symlinks");
5003			ret = -EFSCORRUPTED;
5004			goto bad_inode;
5005		}
5006		if (IS_ENCRYPTED(inode)) {
5007			inode->i_op = &ext4_encrypted_symlink_inode_operations;
 
5008		} else if (ext4_inode_is_fast_symlink(inode)) {
5009			inode->i_link = (char *)ei->i_data;
5010			inode->i_op = &ext4_fast_symlink_inode_operations;
5011			nd_terminate_link(ei->i_data, inode->i_size,
5012				sizeof(ei->i_data) - 1);
5013		} else {
5014			inode->i_op = &ext4_symlink_inode_operations;
 
5015		}
 
5016	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5017	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5018		inode->i_op = &ext4_special_inode_operations;
5019		if (raw_inode->i_block[0])
5020			init_special_inode(inode, inode->i_mode,
5021			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5022		else
5023			init_special_inode(inode, inode->i_mode,
5024			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5025	} else if (ino == EXT4_BOOT_LOADER_INO) {
5026		make_bad_inode(inode);
5027	} else {
5028		ret = -EFSCORRUPTED;
5029		ext4_error_inode(inode, function, line, 0,
5030				 "iget: bogus i_mode (%o)", inode->i_mode);
5031		goto bad_inode;
5032	}
5033	if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb)) {
5034		ext4_error_inode(inode, function, line, 0,
5035				 "casefold flag without casefold feature");
5036		ret = -EFSCORRUPTED;
5037		goto bad_inode;
5038	}
5039	if ((err_str = check_igot_inode(inode, flags)) != NULL) {
5040		ext4_error_inode(inode, function, line, 0, err_str);
5041		ret = -EFSCORRUPTED;
5042		goto bad_inode;
5043	}
5044
5045	brelse(iloc.bh);
 
5046	unlock_new_inode(inode);
5047	return inode;
5048
5049bad_inode:
5050	brelse(iloc.bh);
5051	iget_failed(inode);
5052	return ERR_PTR(ret);
5053}
5054
5055static void __ext4_update_other_inode_time(struct super_block *sb,
5056					   unsigned long orig_ino,
5057					   unsigned long ino,
5058					   struct ext4_inode *raw_inode)
5059{
5060	struct inode *inode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5061
5062	inode = find_inode_by_ino_rcu(sb, ino);
5063	if (!inode)
5064		return;
 
5065
5066	if (!inode_is_dirtytime_only(inode))
5067		return;
 
 
5068
 
 
 
 
 
5069	spin_lock(&inode->i_lock);
5070	if (inode_is_dirtytime_only(inode)) {
 
 
5071		struct ext4_inode_info	*ei = EXT4_I(inode);
5072
5073		inode->i_state &= ~I_DIRTY_TIME;
5074		spin_unlock(&inode->i_lock);
5075
5076		spin_lock(&ei->i_raw_lock);
5077		EXT4_INODE_SET_CTIME(inode, raw_inode);
5078		EXT4_INODE_SET_MTIME(inode, raw_inode);
5079		EXT4_INODE_SET_ATIME(inode, raw_inode);
5080		ext4_inode_csum_set(inode, raw_inode, ei);
5081		spin_unlock(&ei->i_raw_lock);
5082		trace_ext4_other_inode_update_time(inode, orig_ino);
5083		return;
5084	}
5085	spin_unlock(&inode->i_lock);
 
5086}
5087
5088/*
5089 * Opportunistically update the other time fields for other inodes in
5090 * the same inode table block.
5091 */
5092static void ext4_update_other_inodes_time(struct super_block *sb,
5093					  unsigned long orig_ino, char *buf)
5094{
 
5095	unsigned long ino;
5096	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
5097	int inode_size = EXT4_INODE_SIZE(sb);
5098
 
5099	/*
5100	 * Calculate the first inode in the inode table block.  Inode
5101	 * numbers are one-based.  That is, the first inode in a block
5102	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
5103	 */
5104	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
5105	rcu_read_lock();
5106	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
5107		if (ino == orig_ino)
5108			continue;
5109		__ext4_update_other_inode_time(sb, orig_ino, ino,
5110					       (struct ext4_inode *)buf);
5111	}
5112	rcu_read_unlock();
5113}
5114
5115/*
5116 * Post the struct inode info into an on-disk inode location in the
5117 * buffer-cache.  This gobbles the caller's reference to the
5118 * buffer_head in the inode location struct.
5119 *
5120 * The caller must have write access to iloc->bh.
5121 */
5122static int ext4_do_update_inode(handle_t *handle,
5123				struct inode *inode,
5124				struct ext4_iloc *iloc)
5125{
5126	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5127	struct ext4_inode_info *ei = EXT4_I(inode);
5128	struct buffer_head *bh = iloc->bh;
5129	struct super_block *sb = inode->i_sb;
5130	int err;
5131	int need_datasync = 0, set_large_file = 0;
 
 
 
5132
5133	spin_lock(&ei->i_raw_lock);
5134
5135	/*
5136	 * For fields not tracked in the in-memory inode, initialise them
5137	 * to zero for new inodes.
5138	 */
5139	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5140		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5141
5142	if (READ_ONCE(ei->i_disksize) != ext4_isize(inode->i_sb, raw_inode))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5143		need_datasync = 1;
 
5144	if (ei->i_disksize > 0x7fffffffULL) {
5145		if (!ext4_has_feature_large_file(sb) ||
5146		    EXT4_SB(sb)->s_es->s_rev_level == cpu_to_le32(EXT4_GOOD_OLD_REV))
 
5147			set_large_file = 1;
5148	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5149
5150	err = ext4_fill_raw_inode(inode, raw_inode);
5151	spin_unlock(&ei->i_raw_lock);
5152	if (err) {
5153		EXT4_ERROR_INODE(inode, "corrupted inode contents");
5154		goto out_brelse;
 
 
 
 
5155	}
5156
5157	if (inode->i_sb->s_flags & SB_LAZYTIME)
 
 
 
 
 
 
 
 
 
5158		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5159					      bh->b_data);
5160
5161	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5162	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5163	if (err)
5164		goto out_error;
5165	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5166	if (set_large_file) {
5167		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5168		err = ext4_journal_get_write_access(handle, sb,
5169						    EXT4_SB(sb)->s_sbh,
5170						    EXT4_JTR_NONE);
5171		if (err)
5172			goto out_error;
5173		lock_buffer(EXT4_SB(sb)->s_sbh);
5174		ext4_set_feature_large_file(sb);
5175		ext4_superblock_csum_set(sb);
5176		unlock_buffer(EXT4_SB(sb)->s_sbh);
5177		ext4_handle_sync(handle);
5178		err = ext4_handle_dirty_metadata(handle, NULL,
5179						 EXT4_SB(sb)->s_sbh);
5180	}
5181	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5182out_error:
5183	ext4_std_error(inode->i_sb, err);
5184out_brelse:
5185	brelse(bh);
 
5186	return err;
5187}
5188
5189/*
5190 * ext4_write_inode()
5191 *
5192 * We are called from a few places:
5193 *
5194 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5195 *   Here, there will be no transaction running. We wait for any running
5196 *   transaction to commit.
5197 *
5198 * - Within flush work (sys_sync(), kupdate and such).
5199 *   We wait on commit, if told to.
5200 *
5201 * - Within iput_final() -> write_inode_now()
5202 *   We wait on commit, if told to.
5203 *
5204 * In all cases it is actually safe for us to return without doing anything,
5205 * because the inode has been copied into a raw inode buffer in
5206 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5207 * writeback.
5208 *
5209 * Note that we are absolutely dependent upon all inode dirtiers doing the
5210 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5211 * which we are interested.
5212 *
5213 * It would be a bug for them to not do this.  The code:
5214 *
5215 *	mark_inode_dirty(inode)
5216 *	stuff();
5217 *	inode->i_size = expr;
5218 *
5219 * is in error because write_inode() could occur while `stuff()' is running,
5220 * and the new i_size will be lost.  Plus the inode will no longer be on the
5221 * superblock's dirty inode list.
5222 */
5223int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5224{
5225	int err;
5226
5227	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5228		return 0;
5229
5230	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5231		return -EIO;
5232
5233	if (EXT4_SB(inode->i_sb)->s_journal) {
5234		if (ext4_journal_current_handle()) {
5235			ext4_debug("called recursively, non-PF_MEMALLOC!\n");
5236			dump_stack();
5237			return -EIO;
5238		}
5239
5240		/*
5241		 * No need to force transaction in WB_SYNC_NONE mode. Also
5242		 * ext4_sync_fs() will force the commit after everything is
5243		 * written.
5244		 */
5245		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5246			return 0;
5247
5248		err = ext4_fc_commit(EXT4_SB(inode->i_sb)->s_journal,
5249						EXT4_I(inode)->i_sync_tid);
5250	} else {
5251		struct ext4_iloc iloc;
5252
5253		err = __ext4_get_inode_loc_noinmem(inode, &iloc);
5254		if (err)
5255			return err;
5256		/*
5257		 * sync(2) will flush the whole buffer cache. No need to do
5258		 * it here separately for each inode.
5259		 */
5260		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5261			sync_dirty_buffer(iloc.bh);
5262		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5263			ext4_error_inode_block(inode, iloc.bh->b_blocknr, EIO,
5264					       "IO error syncing inode");
5265			err = -EIO;
5266		}
5267		brelse(iloc.bh);
5268	}
5269	return err;
5270}
5271
5272/*
5273 * In data=journal mode ext4_journalled_invalidate_folio() may fail to invalidate
5274 * buffers that are attached to a folio straddling i_size and are undergoing
5275 * commit. In that case we have to wait for commit to finish and try again.
5276 */
5277static void ext4_wait_for_tail_page_commit(struct inode *inode)
5278{
 
5279	unsigned offset;
5280	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5281	tid_t commit_tid;
5282	int ret;
5283	bool has_transaction;
5284
5285	offset = inode->i_size & (PAGE_SIZE - 1);
5286	/*
5287	 * If the folio is fully truncated, we don't need to wait for any commit
5288	 * (and we even should not as __ext4_journalled_invalidate_folio() may
5289	 * strip all buffers from the folio but keep the folio dirty which can then
5290	 * confuse e.g. concurrent ext4_writepages() seeing dirty folio without
5291	 * buffers). Also we don't need to wait for any commit if all buffers in
5292	 * the folio remain valid. This is most beneficial for the common case of
5293	 * blocksize == PAGESIZE.
5294	 */
5295	if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5296		return;
5297	while (1) {
5298		struct folio *folio = filemap_lock_folio(inode->i_mapping,
5299				      inode->i_size >> PAGE_SHIFT);
5300		if (IS_ERR(folio))
5301			return;
5302		ret = __ext4_journalled_invalidate_folio(folio, offset,
5303						folio_size(folio) - offset);
5304		folio_unlock(folio);
5305		folio_put(folio);
5306		if (ret != -EBUSY)
5307			return;
5308		has_transaction = false;
5309		read_lock(&journal->j_state_lock);
5310		if (journal->j_committing_transaction) {
5311			commit_tid = journal->j_committing_transaction->t_tid;
5312			has_transaction = true;
5313		}
5314		read_unlock(&journal->j_state_lock);
5315		if (has_transaction)
5316			jbd2_log_wait_commit(journal, commit_tid);
5317	}
5318}
5319
5320/*
5321 * ext4_setattr()
5322 *
5323 * Called from notify_change.
5324 *
5325 * We want to trap VFS attempts to truncate the file as soon as
5326 * possible.  In particular, we want to make sure that when the VFS
5327 * shrinks i_size, we put the inode on the orphan list and modify
5328 * i_disksize immediately, so that during the subsequent flushing of
5329 * dirty pages and freeing of disk blocks, we can guarantee that any
5330 * commit will leave the blocks being flushed in an unused state on
5331 * disk.  (On recovery, the inode will get truncated and the blocks will
5332 * be freed, so we have a strong guarantee that no future commit will
5333 * leave these blocks visible to the user.)
5334 *
5335 * Another thing we have to assure is that if we are in ordered mode
5336 * and inode is still attached to the committing transaction, we must
5337 * we start writeout of all the dirty pages which are being truncated.
5338 * This way we are sure that all the data written in the previous
5339 * transaction are already on disk (truncate waits for pages under
5340 * writeback).
5341 *
5342 * Called with inode->i_rwsem down.
5343 */
5344int ext4_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
5345		 struct iattr *attr)
5346{
5347	struct inode *inode = d_inode(dentry);
5348	int error, rc = 0;
5349	int orphan = 0;
5350	const unsigned int ia_valid = attr->ia_valid;
5351	bool inc_ivers = true;
5352
5353	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5354		return -EIO;
5355
5356	if (unlikely(IS_IMMUTABLE(inode)))
5357		return -EPERM;
5358
5359	if (unlikely(IS_APPEND(inode) &&
5360		     (ia_valid & (ATTR_MODE | ATTR_UID |
5361				  ATTR_GID | ATTR_TIMES_SET))))
5362		return -EPERM;
5363
5364	error = setattr_prepare(idmap, dentry, attr);
5365	if (error)
5366		return error;
5367
5368	error = fscrypt_prepare_setattr(dentry, attr);
5369	if (error)
5370		return error;
5371
5372	error = fsverity_prepare_setattr(dentry, attr);
5373	if (error)
5374		return error;
5375
5376	if (is_quota_modification(idmap, inode, attr)) {
5377		error = dquot_initialize(inode);
5378		if (error)
5379			return error;
5380	}
5381
5382	if (i_uid_needs_update(idmap, attr, inode) ||
5383	    i_gid_needs_update(idmap, attr, inode)) {
5384		handle_t *handle;
5385
5386		/* (user+group)*(old+new) structure, inode write (sb,
5387		 * inode block, ? - but truncate inode update has it) */
5388		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5389			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5390			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5391		if (IS_ERR(handle)) {
5392			error = PTR_ERR(handle);
5393			goto err_out;
5394		}
5395
5396		/* dquot_transfer() calls back ext4_get_inode_usage() which
5397		 * counts xattr inode references.
5398		 */
5399		down_read(&EXT4_I(inode)->xattr_sem);
5400		error = dquot_transfer(idmap, inode, attr);
5401		up_read(&EXT4_I(inode)->xattr_sem);
5402
5403		if (error) {
5404			ext4_journal_stop(handle);
5405			return error;
5406		}
5407		/* Update corresponding info in inode so that everything is in
5408		 * one transaction */
5409		i_uid_update(idmap, attr, inode);
5410		i_gid_update(idmap, attr, inode);
 
 
5411		error = ext4_mark_inode_dirty(handle, inode);
5412		ext4_journal_stop(handle);
5413		if (unlikely(error)) {
5414			return error;
5415		}
5416	}
5417
5418	if (attr->ia_valid & ATTR_SIZE) {
5419		handle_t *handle;
5420		loff_t oldsize = inode->i_size;
5421		loff_t old_disksize;
5422		int shrink = (attr->ia_size < inode->i_size);
5423
5424		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5425			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5426
5427			if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5428				return -EFBIG;
5429			}
5430		}
5431		if (!S_ISREG(inode->i_mode)) {
5432			return -EINVAL;
5433		}
5434
5435		if (attr->ia_size == inode->i_size)
5436			inc_ivers = false;
5437
5438		if (shrink) {
5439			if (ext4_should_order_data(inode)) {
5440				error = ext4_begin_ordered_truncate(inode,
5441							    attr->ia_size);
5442				if (error)
5443					goto err_out;
5444			}
5445			/*
5446			 * Blocks are going to be removed from the inode. Wait
5447			 * for dio in flight.
5448			 */
5449			inode_dio_wait(inode);
5450		}
5451
5452		filemap_invalidate_lock(inode->i_mapping);
5453
5454		rc = ext4_break_layouts(inode);
5455		if (rc) {
5456			filemap_invalidate_unlock(inode->i_mapping);
5457			goto err_out;
5458		}
5459
5460		if (attr->ia_size != inode->i_size) {
5461			/* attach jbd2 jinode for EOF folio tail zeroing */
5462			if (attr->ia_size & (inode->i_sb->s_blocksize - 1) ||
5463			    oldsize & (inode->i_sb->s_blocksize - 1)) {
5464				error = ext4_inode_attach_jinode(inode);
5465				if (error)
5466					goto err_out;
5467			}
5468
5469			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5470			if (IS_ERR(handle)) {
5471				error = PTR_ERR(handle);
5472				goto out_mmap_sem;
5473			}
5474			if (ext4_handle_valid(handle) && shrink) {
5475				error = ext4_orphan_add(handle, inode);
5476				orphan = 1;
5477			}
5478			/*
5479			 * Update c/mtime and tail zero the EOF folio on
5480			 * truncate up. ext4_truncate() handles the shrink case
5481			 * below.
5482			 */
5483			if (!shrink) {
5484				inode_set_mtime_to_ts(inode,
5485						      inode_set_ctime_current(inode));
5486				if (oldsize & (inode->i_sb->s_blocksize - 1))
5487					ext4_block_truncate_page(handle,
5488							inode->i_mapping, oldsize);
5489			}
5490
5491			if (shrink)
5492				ext4_fc_track_range(handle, inode,
5493					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5494					inode->i_sb->s_blocksize_bits,
5495					EXT_MAX_BLOCKS - 1);
5496			else
5497				ext4_fc_track_range(
5498					handle, inode,
5499					(oldsize > 0 ? oldsize - 1 : oldsize) >>
5500					inode->i_sb->s_blocksize_bits,
5501					(attr->ia_size > 0 ? attr->ia_size - 1 : 0) >>
5502					inode->i_sb->s_blocksize_bits);
5503
5504			down_write(&EXT4_I(inode)->i_data_sem);
5505			old_disksize = EXT4_I(inode)->i_disksize;
5506			EXT4_I(inode)->i_disksize = attr->ia_size;
5507			rc = ext4_mark_inode_dirty(handle, inode);
5508			if (!error)
5509				error = rc;
5510			/*
5511			 * We have to update i_size under i_data_sem together
5512			 * with i_disksize to avoid races with writeback code
5513			 * running ext4_wb_update_i_disksize().
5514			 */
5515			if (!error)
5516				i_size_write(inode, attr->ia_size);
5517			else
5518				EXT4_I(inode)->i_disksize = old_disksize;
5519			up_write(&EXT4_I(inode)->i_data_sem);
5520			ext4_journal_stop(handle);
5521			if (error)
5522				goto out_mmap_sem;
5523			if (!shrink) {
5524				pagecache_isize_extended(inode, oldsize,
5525							 inode->i_size);
5526			} else if (ext4_should_journal_data(inode)) {
5527				ext4_wait_for_tail_page_commit(inode);
5528			}
5529		}
 
 
5530
5531		/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5532		 * Truncate pagecache after we've waited for commit
5533		 * in data=journal mode to make pages freeable.
5534		 */
5535		truncate_pagecache(inode, inode->i_size);
5536		/*
5537		 * Call ext4_truncate() even if i_size didn't change to
5538		 * truncate possible preallocated blocks.
5539		 */
5540		if (attr->ia_size <= oldsize) {
5541			rc = ext4_truncate(inode);
5542			if (rc)
5543				error = rc;
5544		}
5545out_mmap_sem:
5546		filemap_invalidate_unlock(inode->i_mapping);
5547	}
5548
5549	if (!error) {
5550		if (inc_ivers)
5551			inode_inc_iversion(inode);
5552		setattr_copy(idmap, inode, attr);
5553		mark_inode_dirty(inode);
5554	}
5555
5556	/*
5557	 * If the call to ext4_truncate failed to get a transaction handle at
5558	 * all, we need to clean up the in-core orphan list manually.
5559	 */
5560	if (orphan && inode->i_nlink)
5561		ext4_orphan_del(NULL, inode);
5562
5563	if (!error && (ia_valid & ATTR_MODE))
5564		rc = posix_acl_chmod(idmap, dentry, inode->i_mode);
5565
5566err_out:
5567	if  (error)
5568		ext4_std_error(inode->i_sb, error);
5569	if (!error)
5570		error = rc;
5571	return error;
5572}
5573
5574u32 ext4_dio_alignment(struct inode *inode)
 
5575{
5576	if (fsverity_active(inode))
5577		return 0;
5578	if (ext4_should_journal_data(inode))
5579		return 0;
5580	if (ext4_has_inline_data(inode))
5581		return 0;
5582	if (IS_ENCRYPTED(inode)) {
5583		if (!fscrypt_dio_supported(inode))
5584			return 0;
5585		return i_blocksize(inode);
5586	}
5587	return 1; /* use the iomap defaults */
5588}
5589
5590int ext4_getattr(struct mnt_idmap *idmap, const struct path *path,
5591		 struct kstat *stat, u32 request_mask, unsigned int query_flags)
5592{
5593	struct inode *inode = d_inode(path->dentry);
5594	struct ext4_inode *raw_inode;
5595	struct ext4_inode_info *ei = EXT4_I(inode);
5596	unsigned int flags;
5597
5598	if ((request_mask & STATX_BTIME) &&
5599	    EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5600		stat->result_mask |= STATX_BTIME;
5601		stat->btime.tv_sec = ei->i_crtime.tv_sec;
5602		stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5603	}
5604
5605	/*
5606	 * Return the DIO alignment restrictions if requested.  We only return
5607	 * this information when requested, since on encrypted files it might
5608	 * take a fair bit of work to get if the file wasn't opened recently.
5609	 */
5610	if ((request_mask & STATX_DIOALIGN) && S_ISREG(inode->i_mode)) {
5611		u32 dio_align = ext4_dio_alignment(inode);
5612
5613		stat->result_mask |= STATX_DIOALIGN;
5614		if (dio_align == 1) {
5615			struct block_device *bdev = inode->i_sb->s_bdev;
5616
5617			/* iomap defaults */
5618			stat->dio_mem_align = bdev_dma_alignment(bdev) + 1;
5619			stat->dio_offset_align = bdev_logical_block_size(bdev);
5620		} else {
5621			stat->dio_mem_align = dio_align;
5622			stat->dio_offset_align = dio_align;
5623		}
5624	}
5625
5626	if ((request_mask & STATX_WRITE_ATOMIC) && S_ISREG(inode->i_mode)) {
5627		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5628		unsigned int awu_min = 0, awu_max = 0;
5629
5630		if (ext4_inode_can_atomic_write(inode)) {
5631			awu_min = sbi->s_awu_min;
5632			awu_max = sbi->s_awu_max;
5633		}
5634
5635		generic_fill_statx_atomic_writes(stat, awu_min, awu_max);
5636	}
5637
5638	flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5639	if (flags & EXT4_APPEND_FL)
5640		stat->attributes |= STATX_ATTR_APPEND;
5641	if (flags & EXT4_COMPR_FL)
5642		stat->attributes |= STATX_ATTR_COMPRESSED;
5643	if (flags & EXT4_ENCRYPT_FL)
5644		stat->attributes |= STATX_ATTR_ENCRYPTED;
5645	if (flags & EXT4_IMMUTABLE_FL)
5646		stat->attributes |= STATX_ATTR_IMMUTABLE;
5647	if (flags & EXT4_NODUMP_FL)
5648		stat->attributes |= STATX_ATTR_NODUMP;
5649	if (flags & EXT4_VERITY_FL)
5650		stat->attributes |= STATX_ATTR_VERITY;
5651
5652	stat->attributes_mask |= (STATX_ATTR_APPEND |
5653				  STATX_ATTR_COMPRESSED |
5654				  STATX_ATTR_ENCRYPTED |
5655				  STATX_ATTR_IMMUTABLE |
5656				  STATX_ATTR_NODUMP |
5657				  STATX_ATTR_VERITY);
5658
5659	generic_fillattr(idmap, request_mask, inode, stat);
5660	return 0;
5661}
5662
5663int ext4_file_getattr(struct mnt_idmap *idmap,
5664		      const struct path *path, struct kstat *stat,
5665		      u32 request_mask, unsigned int query_flags)
5666{
5667	struct inode *inode = d_inode(path->dentry);
5668	u64 delalloc_blocks;
5669
5670	ext4_getattr(idmap, path, stat, request_mask, query_flags);
5671
5672	/*
5673	 * If there is inline data in the inode, the inode will normally not
5674	 * have data blocks allocated (it may have an external xattr block).
5675	 * Report at least one sector for such files, so tools like tar, rsync,
5676	 * others don't incorrectly think the file is completely sparse.
5677	 */
5678	if (unlikely(ext4_has_inline_data(inode)))
5679		stat->blocks += (stat->size + 511) >> 9;
5680
5681	/*
5682	 * We can't update i_blocks if the block allocation is delayed
5683	 * otherwise in the case of system crash before the real block
5684	 * allocation is done, we will have i_blocks inconsistent with
5685	 * on-disk file blocks.
5686	 * We always keep i_blocks updated together with real
5687	 * allocation. But to not confuse with user, stat
5688	 * will return the blocks that include the delayed allocation
5689	 * blocks for this file.
5690	 */
5691	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5692				   EXT4_I(inode)->i_reserved_data_blocks);
5693	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5694	return 0;
5695}
5696
5697static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5698				   int pextents)
5699{
5700	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5701		return ext4_ind_trans_blocks(inode, lblocks);
5702	return ext4_ext_index_trans_blocks(inode, pextents);
5703}
5704
5705/*
5706 * Account for index blocks, block groups bitmaps and block group
5707 * descriptor blocks if modify datablocks and index blocks
5708 * worse case, the indexs blocks spread over different block groups
5709 *
5710 * If datablocks are discontiguous, they are possible to spread over
5711 * different block groups too. If they are contiguous, with flexbg,
5712 * they could still across block group boundary.
5713 *
5714 * Also account for superblock, inode, quota and xattr blocks
5715 */
5716static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5717				  int pextents)
5718{
5719	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5720	int gdpblocks;
5721	int idxblocks;
5722	int ret;
5723
5724	/*
5725	 * How many index blocks need to touch to map @lblocks logical blocks
5726	 * to @pextents physical extents?
5727	 */
5728	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5729
5730	ret = idxblocks;
5731
5732	/*
5733	 * Now let's see how many group bitmaps and group descriptors need
5734	 * to account
5735	 */
5736	groups = idxblocks + pextents;
5737	gdpblocks = groups;
5738	if (groups > ngroups)
5739		groups = ngroups;
5740	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5741		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5742
5743	/* bitmaps and block group descriptor blocks */
5744	ret += groups + gdpblocks;
5745
5746	/* Blocks for super block, inode, quota and xattr blocks */
5747	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5748
5749	return ret;
5750}
5751
5752/*
5753 * Calculate the total number of credits to reserve to fit
5754 * the modification of a single pages into a single transaction,
5755 * which may include multiple chunks of block allocations.
5756 *
5757 * This could be called via ext4_write_begin()
5758 *
5759 * We need to consider the worse case, when
5760 * one new block per extent.
5761 */
5762int ext4_writepage_trans_blocks(struct inode *inode)
5763{
5764	int bpp = ext4_journal_blocks_per_page(inode);
5765	int ret;
5766
5767	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5768
5769	/* Account for data blocks for journalled mode */
5770	if (ext4_should_journal_data(inode))
5771		ret += bpp;
5772	return ret;
5773}
5774
5775/*
5776 * Calculate the journal credits for a chunk of data modification.
5777 *
5778 * This is called from DIO, fallocate or whoever calling
5779 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5780 *
5781 * journal buffers for data blocks are not included here, as DIO
5782 * and fallocate do no need to journal data buffers.
5783 */
5784int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5785{
5786	return ext4_meta_trans_blocks(inode, nrblocks, 1);
5787}
5788
5789/*
5790 * The caller must have previously called ext4_reserve_inode_write().
5791 * Give this, we know that the caller already has write access to iloc->bh.
5792 */
5793int ext4_mark_iloc_dirty(handle_t *handle,
5794			 struct inode *inode, struct ext4_iloc *iloc)
5795{
5796	int err = 0;
5797
5798	if (unlikely(ext4_forced_shutdown(inode->i_sb))) {
5799		put_bh(iloc->bh);
5800		return -EIO;
5801	}
5802	ext4_fc_track_inode(handle, inode);
5803
5804	/* the do_update_inode consumes one bh->b_count */
5805	get_bh(iloc->bh);
5806
5807	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5808	err = ext4_do_update_inode(handle, inode, iloc);
5809	put_bh(iloc->bh);
5810	return err;
5811}
5812
5813/*
5814 * On success, We end up with an outstanding reference count against
5815 * iloc->bh.  This _must_ be cleaned up later.
5816 */
5817
5818int
5819ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5820			 struct ext4_iloc *iloc)
5821{
5822	int err;
5823
5824	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
5825		return -EIO;
5826
5827	err = ext4_get_inode_loc(inode, iloc);
5828	if (!err) {
5829		BUFFER_TRACE(iloc->bh, "get_write_access");
5830		err = ext4_journal_get_write_access(handle, inode->i_sb,
5831						    iloc->bh, EXT4_JTR_NONE);
5832		if (err) {
5833			brelse(iloc->bh);
5834			iloc->bh = NULL;
5835		}
5836	}
5837	ext4_std_error(inode->i_sb, err);
5838	return err;
5839}
5840
5841static int __ext4_expand_extra_isize(struct inode *inode,
5842				     unsigned int new_extra_isize,
5843				     struct ext4_iloc *iloc,
5844				     handle_t *handle, int *no_expand)
 
 
 
 
5845{
5846	struct ext4_inode *raw_inode;
5847	struct ext4_xattr_ibody_header *header;
5848	unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5849	struct ext4_inode_info *ei = EXT4_I(inode);
5850	int error;
5851
5852	/* this was checked at iget time, but double check for good measure */
5853	if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5854	    (ei->i_extra_isize & 3)) {
5855		EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5856				 ei->i_extra_isize,
5857				 EXT4_INODE_SIZE(inode->i_sb));
5858		return -EFSCORRUPTED;
5859	}
5860	if ((new_extra_isize < ei->i_extra_isize) ||
5861	    (new_extra_isize < 4) ||
5862	    (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5863		return -EINVAL;	/* Should never happen */
5864
5865	raw_inode = ext4_raw_inode(iloc);
5866
5867	header = IHDR(inode, raw_inode);
5868
5869	/* No extended attributes present */
5870	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5871	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5872		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5873		       EXT4_I(inode)->i_extra_isize, 0,
5874		       new_extra_isize - EXT4_I(inode)->i_extra_isize);
5875		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5876		return 0;
5877	}
5878
5879	/*
5880	 * We may need to allocate external xattr block so we need quotas
5881	 * initialized. Here we can be called with various locks held so we
5882	 * cannot affort to initialize quotas ourselves. So just bail.
5883	 */
5884	if (dquot_initialize_needed(inode))
5885		return -EAGAIN;
5886
5887	/* try to expand with EAs present */
5888	error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5889					   raw_inode, handle);
5890	if (error) {
5891		/*
5892		 * Inode size expansion failed; don't try again
5893		 */
5894		*no_expand = 1;
5895	}
5896
5897	return error;
5898}
5899
5900/*
5901 * Expand an inode by new_extra_isize bytes.
5902 * Returns 0 on success or negative error number on failure.
5903 */
5904static int ext4_try_to_expand_extra_isize(struct inode *inode,
5905					  unsigned int new_extra_isize,
5906					  struct ext4_iloc iloc,
5907					  handle_t *handle)
5908{
5909	int no_expand;
5910	int error;
5911
5912	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5913		return -EOVERFLOW;
5914
5915	/*
5916	 * In nojournal mode, we can immediately attempt to expand
5917	 * the inode.  When journaled, we first need to obtain extra
5918	 * buffer credits since we may write into the EA block
5919	 * with this same handle. If journal_extend fails, then it will
5920	 * only result in a minor loss of functionality for that inode.
5921	 * If this is felt to be critical, then e2fsck should be run to
5922	 * force a large enough s_min_extra_isize.
5923	 */
5924	if (ext4_journal_extend(handle,
5925				EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5926		return -ENOSPC;
5927
5928	if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5929		return -EBUSY;
5930
5931	error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5932					  handle, &no_expand);
5933	ext4_write_unlock_xattr(inode, &no_expand);
5934
5935	return error;
5936}
5937
5938int ext4_expand_extra_isize(struct inode *inode,
5939			    unsigned int new_extra_isize,
5940			    struct ext4_iloc *iloc)
5941{
5942	handle_t *handle;
5943	int no_expand;
5944	int error, rc;
5945
5946	if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5947		brelse(iloc->bh);
5948		return -EOVERFLOW;
5949	}
5950
5951	handle = ext4_journal_start(inode, EXT4_HT_INODE,
5952				    EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5953	if (IS_ERR(handle)) {
5954		error = PTR_ERR(handle);
5955		brelse(iloc->bh);
5956		return error;
5957	}
5958
5959	ext4_write_lock_xattr(inode, &no_expand);
5960
5961	BUFFER_TRACE(iloc->bh, "get_write_access");
5962	error = ext4_journal_get_write_access(handle, inode->i_sb, iloc->bh,
5963					      EXT4_JTR_NONE);
5964	if (error) {
5965		brelse(iloc->bh);
5966		goto out_unlock;
5967	}
5968
5969	error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5970					  handle, &no_expand);
5971
5972	rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5973	if (!error)
5974		error = rc;
5975
5976out_unlock:
5977	ext4_write_unlock_xattr(inode, &no_expand);
5978	ext4_journal_stop(handle);
5979	return error;
5980}
5981
5982/*
5983 * What we do here is to mark the in-core inode as clean with respect to inode
5984 * dirtiness (it may still be data-dirty).
5985 * This means that the in-core inode may be reaped by prune_icache
5986 * without having to perform any I/O.  This is a very good thing,
5987 * because *any* task may call prune_icache - even ones which
5988 * have a transaction open against a different journal.
5989 *
5990 * Is this cheating?  Not really.  Sure, we haven't written the
5991 * inode out, but prune_icache isn't a user-visible syncing function.
5992 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5993 * we start and wait on commits.
5994 */
5995int __ext4_mark_inode_dirty(handle_t *handle, struct inode *inode,
5996				const char *func, unsigned int line)
5997{
5998	struct ext4_iloc iloc;
5999	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
6000	int err;
 
6001
6002	might_sleep();
6003	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
6004	err = ext4_reserve_inode_write(handle, inode, &iloc);
6005	if (err)
6006		goto out;
6007
6008	if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
6009		ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
6010					       iloc, handle);
6011
6012	err = ext4_mark_iloc_dirty(handle, inode, &iloc);
6013out:
6014	if (unlikely(err))
6015		ext4_error_inode_err(inode, func, line, 0, err,
6016					"mark_inode_dirty error");
6017	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6018}
6019
6020/*
6021 * ext4_dirty_inode() is called from __mark_inode_dirty()
6022 *
6023 * We're really interested in the case where a file is being extended.
6024 * i_size has been changed by generic_commit_write() and we thus need
6025 * to include the updated inode in the current transaction.
6026 *
6027 * Also, dquot_alloc_block() will always dirty the inode when blocks
6028 * are allocated to the file.
6029 *
6030 * If the inode is marked synchronous, we don't honour that here - doing
6031 * so would cause a commit on atime updates, which we don't bother doing.
6032 * We handle synchronous inodes at the highest possible level.
 
 
 
 
6033 */
6034void ext4_dirty_inode(struct inode *inode, int flags)
6035{
6036	handle_t *handle;
6037
 
 
6038	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
6039	if (IS_ERR(handle))
6040		return;
 
6041	ext4_mark_inode_dirty(handle, inode);
 
6042	ext4_journal_stop(handle);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6043}
 
6044
6045int ext4_change_inode_journal_flag(struct inode *inode, int val)
6046{
6047	journal_t *journal;
6048	handle_t *handle;
6049	int err;
6050	int alloc_ctx;
6051
6052	/*
6053	 * We have to be very careful here: changing a data block's
6054	 * journaling status dynamically is dangerous.  If we write a
6055	 * data block to the journal, change the status and then delete
6056	 * that block, we risk forgetting to revoke the old log record
6057	 * from the journal and so a subsequent replay can corrupt data.
6058	 * So, first we make sure that the journal is empty and that
6059	 * nobody is changing anything.
6060	 */
6061
6062	journal = EXT4_JOURNAL(inode);
6063	if (!journal)
6064		return 0;
6065	if (is_journal_aborted(journal))
6066		return -EROFS;
6067
6068	/* Wait for all existing dio workers */
 
6069	inode_dio_wait(inode);
6070
6071	/*
6072	 * Before flushing the journal and switching inode's aops, we have
6073	 * to flush all dirty data the inode has. There can be outstanding
6074	 * delayed allocations, there can be unwritten extents created by
6075	 * fallocate or buffered writes in dioread_nolock mode covered by
6076	 * dirty data which can be converted only after flushing the dirty
6077	 * data (and journalled aops don't know how to handle these cases).
6078	 */
6079	if (val) {
6080		filemap_invalidate_lock(inode->i_mapping);
6081		err = filemap_write_and_wait(inode->i_mapping);
6082		if (err < 0) {
6083			filemap_invalidate_unlock(inode->i_mapping);
 
6084			return err;
6085		}
6086	}
6087
6088	alloc_ctx = ext4_writepages_down_write(inode->i_sb);
6089	jbd2_journal_lock_updates(journal);
6090
6091	/*
6092	 * OK, there are no updates running now, and all cached data is
6093	 * synced to disk.  We are now in a completely consistent state
6094	 * which doesn't have anything in the journal, and we know that
6095	 * no filesystem updates are running, so it is safe to modify
6096	 * the inode's in-core data-journaling state flag now.
6097	 */
6098
6099	if (val)
6100		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6101	else {
6102		err = jbd2_journal_flush(journal, 0);
6103		if (err < 0) {
6104			jbd2_journal_unlock_updates(journal);
6105			ext4_writepages_up_write(inode->i_sb, alloc_ctx);
 
6106			return err;
6107		}
6108		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
6109	}
6110	ext4_set_aops(inode);
 
 
 
 
 
6111
6112	jbd2_journal_unlock_updates(journal);
6113	ext4_writepages_up_write(inode->i_sb, alloc_ctx);
6114
6115	if (val)
6116		filemap_invalidate_unlock(inode->i_mapping);
 
6117
6118	/* Finally we can mark the inode as dirty. */
6119
6120	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
6121	if (IS_ERR(handle))
6122		return PTR_ERR(handle);
6123
6124	ext4_fc_mark_ineligible(inode->i_sb,
6125		EXT4_FC_REASON_JOURNAL_FLAG_CHANGE, handle);
6126	err = ext4_mark_inode_dirty(handle, inode);
6127	ext4_handle_sync(handle);
6128	ext4_journal_stop(handle);
6129	ext4_std_error(inode->i_sb, err);
6130
6131	return err;
6132}
6133
6134static int ext4_bh_unmapped(handle_t *handle, struct inode *inode,
6135			    struct buffer_head *bh)
6136{
6137	return !buffer_mapped(bh);
6138}
6139
6140vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
6141{
6142	struct vm_area_struct *vma = vmf->vma;
6143	struct folio *folio = page_folio(vmf->page);
6144	loff_t size;
6145	unsigned long len;
6146	int err;
6147	vm_fault_t ret;
6148	struct file *file = vma->vm_file;
6149	struct inode *inode = file_inode(file);
6150	struct address_space *mapping = inode->i_mapping;
6151	handle_t *handle;
6152	get_block_t *get_block;
6153	int retries = 0;
6154
6155	if (unlikely(IS_IMMUTABLE(inode)))
6156		return VM_FAULT_SIGBUS;
6157
6158	sb_start_pagefault(inode->i_sb);
6159	file_update_time(vma->vm_file);
6160
6161	filemap_invalidate_lock_shared(mapping);
6162
6163	err = ext4_convert_inline_data(inode);
6164	if (err)
6165		goto out_ret;
6166
6167	/*
6168	 * On data journalling we skip straight to the transaction handle:
6169	 * there's no delalloc; page truncated will be checked later; the
6170	 * early return w/ all buffers mapped (calculates size/len) can't
6171	 * be used; and there's no dioread_nolock, so only ext4_get_block.
6172	 */
6173	if (ext4_should_journal_data(inode))
6174		goto retry_alloc;
6175
6176	/* Delalloc case is easy... */
6177	if (test_opt(inode->i_sb, DELALLOC) &&
 
6178	    !ext4_nonda_switch(inode->i_sb)) {
6179		do {
6180			err = block_page_mkwrite(vma, vmf,
6181						   ext4_da_get_block_prep);
6182		} while (err == -ENOSPC &&
6183		       ext4_should_retry_alloc(inode->i_sb, &retries));
6184		goto out_ret;
6185	}
6186
6187	folio_lock(folio);
6188	size = i_size_read(inode);
6189	/* Page got truncated from under us? */
6190	if (folio->mapping != mapping || folio_pos(folio) > size) {
6191		folio_unlock(folio);
6192		ret = VM_FAULT_NOPAGE;
6193		goto out;
6194	}
6195
6196	len = folio_size(folio);
6197	if (folio_pos(folio) + len > size)
6198		len = size - folio_pos(folio);
 
6199	/*
6200	 * Return if we have all the buffers mapped. This avoids the need to do
6201	 * journal_start/journal_stop which can block and take a long time
6202	 *
6203	 * This cannot be done for data journalling, as we have to add the
6204	 * inode to the transaction's list to writeprotect pages on commit.
6205	 */
6206	if (folio_buffers(folio)) {
6207		if (!ext4_walk_page_buffers(NULL, inode, folio_buffers(folio),
6208					    0, len, NULL,
6209					    ext4_bh_unmapped)) {
6210			/* Wait so that we don't change page under IO */
6211			folio_wait_stable(folio);
6212			ret = VM_FAULT_LOCKED;
6213			goto out;
6214		}
6215	}
6216	folio_unlock(folio);
6217	/* OK, we need to fill the hole... */
6218	if (ext4_should_dioread_nolock(inode))
6219		get_block = ext4_get_block_unwritten;
6220	else
6221		get_block = ext4_get_block;
6222retry_alloc:
6223	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
6224				    ext4_writepage_trans_blocks(inode));
6225	if (IS_ERR(handle)) {
6226		ret = VM_FAULT_SIGBUS;
6227		goto out;
6228	}
6229	/*
6230	 * Data journalling can't use block_page_mkwrite() because it
6231	 * will set_buffer_dirty() before do_journal_get_write_access()
6232	 * thus might hit warning messages for dirty metadata buffers.
6233	 */
6234	if (!ext4_should_journal_data(inode)) {
6235		err = block_page_mkwrite(vma, vmf, get_block);
6236	} else {
6237		folio_lock(folio);
6238		size = i_size_read(inode);
6239		/* Page got truncated from under us? */
6240		if (folio->mapping != mapping || folio_pos(folio) > size) {
6241			ret = VM_FAULT_NOPAGE;
6242			goto out_error;
6243		}
6244
6245		len = folio_size(folio);
6246		if (folio_pos(folio) + len > size)
6247			len = size - folio_pos(folio);
6248
6249		err = ext4_block_write_begin(handle, folio, 0, len,
6250					     ext4_get_block);
6251		if (!err) {
6252			ret = VM_FAULT_SIGBUS;
6253			if (ext4_journal_folio_buffers(handle, folio, len))
6254				goto out_error;
6255		} else {
6256			folio_unlock(folio);
6257		}
 
6258	}
6259	ext4_journal_stop(handle);
6260	if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
6261		goto retry_alloc;
6262out_ret:
6263	ret = vmf_fs_error(err);
6264out:
6265	filemap_invalidate_unlock_shared(mapping);
6266	sb_end_pagefault(inode->i_sb);
6267	return ret;
6268out_error:
6269	folio_unlock(folio);
6270	ext4_journal_stop(handle);
6271	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6272}