Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13/*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17#include <linux/cpu.h>
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/elfcore.h>
24#include <linux/smp.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/interrupt.h>
28#include <linux/delay.h>
29#include <linux/export.h>
30#include <linux/ptrace.h>
31#include <linux/notifier.h>
32#include <linux/kprobes.h>
33#include <linux/kdebug.h>
34#include <linux/prctl.h>
35#include <linux/uaccess.h>
36#include <linux/io.h>
37#include <linux/ftrace.h>
38
39#include <asm/pgtable.h>
40#include <asm/processor.h>
41#include <asm/fpu/internal.h>
42#include <asm/mmu_context.h>
43#include <asm/prctl.h>
44#include <asm/desc.h>
45#include <asm/proto.h>
46#include <asm/ia32.h>
47#include <asm/syscalls.h>
48#include <asm/debugreg.h>
49#include <asm/switch_to.h>
50#include <asm/xen/hypervisor.h>
51#include <asm/vdso.h>
52#include <asm/intel_rdt.h>
53
54__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
55
56/* Prints also some state that isn't saved in the pt_regs */
57void __show_regs(struct pt_regs *regs, int all)
58{
59 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
60 unsigned long d0, d1, d2, d3, d6, d7;
61 unsigned int fsindex, gsindex;
62 unsigned int ds, cs, es;
63
64 printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
65 (void *)regs->ip);
66 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
67 regs->sp, regs->flags);
68 if (regs->orig_ax != -1)
69 pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
70 else
71 pr_cont("\n");
72
73 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
74 regs->ax, regs->bx, regs->cx);
75 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
76 regs->dx, regs->si, regs->di);
77 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
78 regs->bp, regs->r8, regs->r9);
79 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
80 regs->r10, regs->r11, regs->r12);
81 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
82 regs->r13, regs->r14, regs->r15);
83
84 asm("movl %%ds,%0" : "=r" (ds));
85 asm("movl %%cs,%0" : "=r" (cs));
86 asm("movl %%es,%0" : "=r" (es));
87 asm("movl %%fs,%0" : "=r" (fsindex));
88 asm("movl %%gs,%0" : "=r" (gsindex));
89
90 rdmsrl(MSR_FS_BASE, fs);
91 rdmsrl(MSR_GS_BASE, gs);
92 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
93
94 if (!all)
95 return;
96
97 cr0 = read_cr0();
98 cr2 = read_cr2();
99 cr3 = read_cr3();
100 cr4 = __read_cr4();
101
102 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
103 fs, fsindex, gs, gsindex, shadowgs);
104 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
105 es, cr0);
106 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
107 cr4);
108
109 get_debugreg(d0, 0);
110 get_debugreg(d1, 1);
111 get_debugreg(d2, 2);
112 get_debugreg(d3, 3);
113 get_debugreg(d6, 6);
114 get_debugreg(d7, 7);
115
116 /* Only print out debug registers if they are in their non-default state. */
117 if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
118 (d6 == DR6_RESERVED) && (d7 == 0x400))) {
119 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
120 d0, d1, d2);
121 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
122 d3, d6, d7);
123 }
124
125 if (boot_cpu_has(X86_FEATURE_OSPKE))
126 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
127}
128
129void release_thread(struct task_struct *dead_task)
130{
131 if (dead_task->mm) {
132#ifdef CONFIG_MODIFY_LDT_SYSCALL
133 if (dead_task->mm->context.ldt) {
134 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
135 dead_task->comm,
136 dead_task->mm->context.ldt->entries,
137 dead_task->mm->context.ldt->size);
138 BUG();
139 }
140#endif
141 }
142}
143
144int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
145 unsigned long arg, struct task_struct *p, unsigned long tls)
146{
147 int err;
148 struct pt_regs *childregs;
149 struct fork_frame *fork_frame;
150 struct inactive_task_frame *frame;
151 struct task_struct *me = current;
152
153 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
154 childregs = task_pt_regs(p);
155 fork_frame = container_of(childregs, struct fork_frame, regs);
156 frame = &fork_frame->frame;
157 frame->bp = 0;
158 frame->ret_addr = (unsigned long) ret_from_fork;
159 p->thread.sp = (unsigned long) fork_frame;
160 p->thread.io_bitmap_ptr = NULL;
161
162 savesegment(gs, p->thread.gsindex);
163 p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
164 savesegment(fs, p->thread.fsindex);
165 p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
166 savesegment(es, p->thread.es);
167 savesegment(ds, p->thread.ds);
168 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
169
170 if (unlikely(p->flags & PF_KTHREAD)) {
171 /* kernel thread */
172 memset(childregs, 0, sizeof(struct pt_regs));
173 frame->bx = sp; /* function */
174 frame->r12 = arg;
175 return 0;
176 }
177 frame->bx = 0;
178 *childregs = *current_pt_regs();
179
180 childregs->ax = 0;
181 if (sp)
182 childregs->sp = sp;
183
184 err = -ENOMEM;
185 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
186 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
187 IO_BITMAP_BYTES, GFP_KERNEL);
188 if (!p->thread.io_bitmap_ptr) {
189 p->thread.io_bitmap_max = 0;
190 return -ENOMEM;
191 }
192 set_tsk_thread_flag(p, TIF_IO_BITMAP);
193 }
194
195 /*
196 * Set a new TLS for the child thread?
197 */
198 if (clone_flags & CLONE_SETTLS) {
199#ifdef CONFIG_IA32_EMULATION
200 if (in_ia32_syscall())
201 err = do_set_thread_area(p, -1,
202 (struct user_desc __user *)tls, 0);
203 else
204#endif
205 err = do_arch_prctl(p, ARCH_SET_FS, tls);
206 if (err)
207 goto out;
208 }
209 err = 0;
210out:
211 if (err && p->thread.io_bitmap_ptr) {
212 kfree(p->thread.io_bitmap_ptr);
213 p->thread.io_bitmap_max = 0;
214 }
215
216 return err;
217}
218
219static void
220start_thread_common(struct pt_regs *regs, unsigned long new_ip,
221 unsigned long new_sp,
222 unsigned int _cs, unsigned int _ss, unsigned int _ds)
223{
224 loadsegment(fs, 0);
225 loadsegment(es, _ds);
226 loadsegment(ds, _ds);
227 load_gs_index(0);
228 regs->ip = new_ip;
229 regs->sp = new_sp;
230 regs->cs = _cs;
231 regs->ss = _ss;
232 regs->flags = X86_EFLAGS_IF;
233 force_iret();
234}
235
236void
237start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
238{
239 start_thread_common(regs, new_ip, new_sp,
240 __USER_CS, __USER_DS, 0);
241}
242
243#ifdef CONFIG_COMPAT
244void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
245{
246 start_thread_common(regs, new_ip, new_sp,
247 test_thread_flag(TIF_X32)
248 ? __USER_CS : __USER32_CS,
249 __USER_DS, __USER_DS);
250}
251#endif
252
253/*
254 * switch_to(x,y) should switch tasks from x to y.
255 *
256 * This could still be optimized:
257 * - fold all the options into a flag word and test it with a single test.
258 * - could test fs/gs bitsliced
259 *
260 * Kprobes not supported here. Set the probe on schedule instead.
261 * Function graph tracer not supported too.
262 */
263__visible __notrace_funcgraph struct task_struct *
264__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
265{
266 struct thread_struct *prev = &prev_p->thread;
267 struct thread_struct *next = &next_p->thread;
268 struct fpu *prev_fpu = &prev->fpu;
269 struct fpu *next_fpu = &next->fpu;
270 int cpu = smp_processor_id();
271 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
272 unsigned prev_fsindex, prev_gsindex;
273
274 switch_fpu_prepare(prev_fpu, cpu);
275
276 /* We must save %fs and %gs before load_TLS() because
277 * %fs and %gs may be cleared by load_TLS().
278 *
279 * (e.g. xen_load_tls())
280 */
281 savesegment(fs, prev_fsindex);
282 savesegment(gs, prev_gsindex);
283
284 /*
285 * Load TLS before restoring any segments so that segment loads
286 * reference the correct GDT entries.
287 */
288 load_TLS(next, cpu);
289
290 /*
291 * Leave lazy mode, flushing any hypercalls made here. This
292 * must be done after loading TLS entries in the GDT but before
293 * loading segments that might reference them, and and it must
294 * be done before fpu__restore(), so the TS bit is up to
295 * date.
296 */
297 arch_end_context_switch(next_p);
298
299 /* Switch DS and ES.
300 *
301 * Reading them only returns the selectors, but writing them (if
302 * nonzero) loads the full descriptor from the GDT or LDT. The
303 * LDT for next is loaded in switch_mm, and the GDT is loaded
304 * above.
305 *
306 * We therefore need to write new values to the segment
307 * registers on every context switch unless both the new and old
308 * values are zero.
309 *
310 * Note that we don't need to do anything for CS and SS, as
311 * those are saved and restored as part of pt_regs.
312 */
313 savesegment(es, prev->es);
314 if (unlikely(next->es | prev->es))
315 loadsegment(es, next->es);
316
317 savesegment(ds, prev->ds);
318 if (unlikely(next->ds | prev->ds))
319 loadsegment(ds, next->ds);
320
321 /*
322 * Switch FS and GS.
323 *
324 * These are even more complicated than DS and ES: they have
325 * 64-bit bases are that controlled by arch_prctl. The bases
326 * don't necessarily match the selectors, as user code can do
327 * any number of things to cause them to be inconsistent.
328 *
329 * We don't promise to preserve the bases if the selectors are
330 * nonzero. We also don't promise to preserve the base if the
331 * selector is zero and the base doesn't match whatever was
332 * most recently passed to ARCH_SET_FS/GS. (If/when the
333 * FSGSBASE instructions are enabled, we'll need to offer
334 * stronger guarantees.)
335 *
336 * As an invariant,
337 * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
338 * impossible.
339 */
340 if (next->fsindex) {
341 /* Loading a nonzero value into FS sets the index and base. */
342 loadsegment(fs, next->fsindex);
343 } else {
344 if (next->fsbase) {
345 /* Next index is zero but next base is nonzero. */
346 if (prev_fsindex)
347 loadsegment(fs, 0);
348 wrmsrl(MSR_FS_BASE, next->fsbase);
349 } else {
350 /* Next base and index are both zero. */
351 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
352 /*
353 * We don't know the previous base and can't
354 * find out without RDMSR. Forcibly clear it.
355 */
356 loadsegment(fs, __USER_DS);
357 loadsegment(fs, 0);
358 } else {
359 /*
360 * If the previous index is zero and ARCH_SET_FS
361 * didn't change the base, then the base is
362 * also zero and we don't need to do anything.
363 */
364 if (prev->fsbase || prev_fsindex)
365 loadsegment(fs, 0);
366 }
367 }
368 }
369 /*
370 * Save the old state and preserve the invariant.
371 * NB: if prev_fsindex == 0, then we can't reliably learn the base
372 * without RDMSR because Intel user code can zero it without telling
373 * us and AMD user code can program any 32-bit value without telling
374 * us.
375 */
376 if (prev_fsindex)
377 prev->fsbase = 0;
378 prev->fsindex = prev_fsindex;
379
380 if (next->gsindex) {
381 /* Loading a nonzero value into GS sets the index and base. */
382 load_gs_index(next->gsindex);
383 } else {
384 if (next->gsbase) {
385 /* Next index is zero but next base is nonzero. */
386 if (prev_gsindex)
387 load_gs_index(0);
388 wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
389 } else {
390 /* Next base and index are both zero. */
391 if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
392 /*
393 * We don't know the previous base and can't
394 * find out without RDMSR. Forcibly clear it.
395 *
396 * This contains a pointless SWAPGS pair.
397 * Fixing it would involve an explicit check
398 * for Xen or a new pvop.
399 */
400 load_gs_index(__USER_DS);
401 load_gs_index(0);
402 } else {
403 /*
404 * If the previous index is zero and ARCH_SET_GS
405 * didn't change the base, then the base is
406 * also zero and we don't need to do anything.
407 */
408 if (prev->gsbase || prev_gsindex)
409 load_gs_index(0);
410 }
411 }
412 }
413 /*
414 * Save the old state and preserve the invariant.
415 * NB: if prev_gsindex == 0, then we can't reliably learn the base
416 * without RDMSR because Intel user code can zero it without telling
417 * us and AMD user code can program any 32-bit value without telling
418 * us.
419 */
420 if (prev_gsindex)
421 prev->gsbase = 0;
422 prev->gsindex = prev_gsindex;
423
424 switch_fpu_finish(next_fpu, cpu);
425
426 /*
427 * Switch the PDA and FPU contexts.
428 */
429 this_cpu_write(current_task, next_p);
430
431 /* Reload esp0 and ss1. This changes current_thread_info(). */
432 load_sp0(tss, next);
433
434 /*
435 * Now maybe reload the debug registers and handle I/O bitmaps
436 */
437 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
438 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
439 __switch_to_xtra(prev_p, next_p, tss);
440
441#ifdef CONFIG_XEN
442 /*
443 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
444 * current_pt_regs()->flags may not match the current task's
445 * intended IOPL. We need to switch it manually.
446 */
447 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
448 prev->iopl != next->iopl))
449 xen_set_iopl_mask(next->iopl);
450#endif
451
452 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
453 /*
454 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
455 * does not update the cached descriptor. As a result, if we
456 * do SYSRET while SS is NULL, we'll end up in user mode with
457 * SS apparently equal to __USER_DS but actually unusable.
458 *
459 * The straightforward workaround would be to fix it up just
460 * before SYSRET, but that would slow down the system call
461 * fast paths. Instead, we ensure that SS is never NULL in
462 * system call context. We do this by replacing NULL SS
463 * selectors at every context switch. SYSCALL sets up a valid
464 * SS, so the only way to get NULL is to re-enter the kernel
465 * from CPL 3 through an interrupt. Since that can't happen
466 * in the same task as a running syscall, we are guaranteed to
467 * context switch between every interrupt vector entry and a
468 * subsequent SYSRET.
469 *
470 * We read SS first because SS reads are much faster than
471 * writes. Out of caution, we force SS to __KERNEL_DS even if
472 * it previously had a different non-NULL value.
473 */
474 unsigned short ss_sel;
475 savesegment(ss, ss_sel);
476 if (ss_sel != __KERNEL_DS)
477 loadsegment(ss, __KERNEL_DS);
478 }
479
480 /* Load the Intel cache allocation PQR MSR. */
481 intel_rdt_sched_in();
482
483 return prev_p;
484}
485
486void set_personality_64bit(void)
487{
488 /* inherit personality from parent */
489
490 /* Make sure to be in 64bit mode */
491 clear_thread_flag(TIF_IA32);
492 clear_thread_flag(TIF_ADDR32);
493 clear_thread_flag(TIF_X32);
494
495 /* Ensure the corresponding mm is not marked. */
496 if (current->mm)
497 current->mm->context.ia32_compat = 0;
498
499 /* TBD: overwrites user setup. Should have two bits.
500 But 64bit processes have always behaved this way,
501 so it's not too bad. The main problem is just that
502 32bit childs are affected again. */
503 current->personality &= ~READ_IMPLIES_EXEC;
504}
505
506void set_personality_ia32(bool x32)
507{
508 /* inherit personality from parent */
509
510 /* Make sure to be in 32bit mode */
511 set_thread_flag(TIF_ADDR32);
512
513 /* Mark the associated mm as containing 32-bit tasks. */
514 if (x32) {
515 clear_thread_flag(TIF_IA32);
516 set_thread_flag(TIF_X32);
517 if (current->mm)
518 current->mm->context.ia32_compat = TIF_X32;
519 current->personality &= ~READ_IMPLIES_EXEC;
520 /* in_compat_syscall() uses the presence of the x32
521 syscall bit flag to determine compat status */
522 current->thread.status &= ~TS_COMPAT;
523 } else {
524 set_thread_flag(TIF_IA32);
525 clear_thread_flag(TIF_X32);
526 if (current->mm)
527 current->mm->context.ia32_compat = TIF_IA32;
528 current->personality |= force_personality32;
529 /* Prepare the first "return" to user space */
530 current->thread.status |= TS_COMPAT;
531 }
532}
533EXPORT_SYMBOL_GPL(set_personality_ia32);
534
535#ifdef CONFIG_CHECKPOINT_RESTORE
536static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
537{
538 int ret;
539
540 ret = map_vdso_once(image, addr);
541 if (ret)
542 return ret;
543
544 return (long)image->size;
545}
546#endif
547
548long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
549{
550 int ret = 0;
551 int doit = task == current;
552 int cpu;
553
554 switch (code) {
555 case ARCH_SET_GS:
556 if (addr >= TASK_SIZE_MAX)
557 return -EPERM;
558 cpu = get_cpu();
559 task->thread.gsindex = 0;
560 task->thread.gsbase = addr;
561 if (doit) {
562 load_gs_index(0);
563 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
564 }
565 put_cpu();
566 break;
567 case ARCH_SET_FS:
568 /* Not strictly needed for fs, but do it for symmetry
569 with gs */
570 if (addr >= TASK_SIZE_MAX)
571 return -EPERM;
572 cpu = get_cpu();
573 task->thread.fsindex = 0;
574 task->thread.fsbase = addr;
575 if (doit) {
576 /* set the selector to 0 to not confuse __switch_to */
577 loadsegment(fs, 0);
578 ret = wrmsrl_safe(MSR_FS_BASE, addr);
579 }
580 put_cpu();
581 break;
582 case ARCH_GET_FS: {
583 unsigned long base;
584 if (doit)
585 rdmsrl(MSR_FS_BASE, base);
586 else
587 base = task->thread.fsbase;
588 ret = put_user(base, (unsigned long __user *)addr);
589 break;
590 }
591 case ARCH_GET_GS: {
592 unsigned long base;
593 if (doit)
594 rdmsrl(MSR_KERNEL_GS_BASE, base);
595 else
596 base = task->thread.gsbase;
597 ret = put_user(base, (unsigned long __user *)addr);
598 break;
599 }
600
601#ifdef CONFIG_CHECKPOINT_RESTORE
602# ifdef CONFIG_X86_X32_ABI
603 case ARCH_MAP_VDSO_X32:
604 return prctl_map_vdso(&vdso_image_x32, addr);
605# endif
606# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
607 case ARCH_MAP_VDSO_32:
608 return prctl_map_vdso(&vdso_image_32, addr);
609# endif
610 case ARCH_MAP_VDSO_64:
611 return prctl_map_vdso(&vdso_image_64, addr);
612#endif
613
614 default:
615 ret = -EINVAL;
616 break;
617 }
618
619 return ret;
620}
621
622long sys_arch_prctl(int code, unsigned long addr)
623{
624 return do_arch_prctl(current, code, addr);
625}
626
627unsigned long KSTK_ESP(struct task_struct *task)
628{
629 return task_pt_regs(task)->sp;
630}
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Pentium III FXSR, SSE support
5 * Gareth Hughes <gareth@valinux.com>, May 2000
6 *
7 * X86-64 port
8 * Andi Kleen.
9 *
10 * CPU hotplug support - ashok.raj@intel.com
11 */
12
13/*
14 * This file handles the architecture-dependent parts of process handling..
15 */
16
17#include <linux/cpu.h>
18#include <linux/errno.h>
19#include <linux/sched.h>
20#include <linux/fs.h>
21#include <linux/kernel.h>
22#include <linux/mm.h>
23#include <linux/elfcore.h>
24#include <linux/smp.h>
25#include <linux/slab.h>
26#include <linux/user.h>
27#include <linux/interrupt.h>
28#include <linux/delay.h>
29#include <linux/module.h>
30#include <linux/ptrace.h>
31#include <linux/notifier.h>
32#include <linux/kprobes.h>
33#include <linux/kdebug.h>
34#include <linux/prctl.h>
35#include <linux/uaccess.h>
36#include <linux/io.h>
37#include <linux/ftrace.h>
38
39#include <asm/pgtable.h>
40#include <asm/processor.h>
41#include <asm/fpu/internal.h>
42#include <asm/mmu_context.h>
43#include <asm/prctl.h>
44#include <asm/desc.h>
45#include <asm/proto.h>
46#include <asm/ia32.h>
47#include <asm/idle.h>
48#include <asm/syscalls.h>
49#include <asm/debugreg.h>
50#include <asm/switch_to.h>
51#include <asm/xen/hypervisor.h>
52
53asmlinkage extern void ret_from_fork(void);
54
55__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
56
57/* Prints also some state that isn't saved in the pt_regs */
58void __show_regs(struct pt_regs *regs, int all)
59{
60 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
61 unsigned long d0, d1, d2, d3, d6, d7;
62 unsigned int fsindex, gsindex;
63 unsigned int ds, cs, es;
64
65 printk(KERN_DEFAULT "RIP: %04lx:[<%016lx>] ", regs->cs & 0xffff, regs->ip);
66 printk_address(regs->ip);
67 printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx\n", regs->ss,
68 regs->sp, regs->flags);
69 printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
70 regs->ax, regs->bx, regs->cx);
71 printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
72 regs->dx, regs->si, regs->di);
73 printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
74 regs->bp, regs->r8, regs->r9);
75 printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
76 regs->r10, regs->r11, regs->r12);
77 printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
78 regs->r13, regs->r14, regs->r15);
79
80 asm("movl %%ds,%0" : "=r" (ds));
81 asm("movl %%cs,%0" : "=r" (cs));
82 asm("movl %%es,%0" : "=r" (es));
83 asm("movl %%fs,%0" : "=r" (fsindex));
84 asm("movl %%gs,%0" : "=r" (gsindex));
85
86 rdmsrl(MSR_FS_BASE, fs);
87 rdmsrl(MSR_GS_BASE, gs);
88 rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
89
90 if (!all)
91 return;
92
93 cr0 = read_cr0();
94 cr2 = read_cr2();
95 cr3 = read_cr3();
96 cr4 = __read_cr4();
97
98 printk(KERN_DEFAULT "FS: %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
99 fs, fsindex, gs, gsindex, shadowgs);
100 printk(KERN_DEFAULT "CS: %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
101 es, cr0);
102 printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
103 cr4);
104
105 get_debugreg(d0, 0);
106 get_debugreg(d1, 1);
107 get_debugreg(d2, 2);
108 get_debugreg(d3, 3);
109 get_debugreg(d6, 6);
110 get_debugreg(d7, 7);
111
112 /* Only print out debug registers if they are in their non-default state. */
113 if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
114 (d6 == DR6_RESERVED) && (d7 == 0x400))
115 return;
116
117 printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n", d0, d1, d2);
118 printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n", d3, d6, d7);
119
120 if (boot_cpu_has(X86_FEATURE_OSPKE))
121 printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
122}
123
124void release_thread(struct task_struct *dead_task)
125{
126 if (dead_task->mm) {
127#ifdef CONFIG_MODIFY_LDT_SYSCALL
128 if (dead_task->mm->context.ldt) {
129 pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
130 dead_task->comm,
131 dead_task->mm->context.ldt->entries,
132 dead_task->mm->context.ldt->size);
133 BUG();
134 }
135#endif
136 }
137}
138
139static inline void set_32bit_tls(struct task_struct *t, int tls, u32 addr)
140{
141 struct user_desc ud = {
142 .base_addr = addr,
143 .limit = 0xfffff,
144 .seg_32bit = 1,
145 .limit_in_pages = 1,
146 .useable = 1,
147 };
148 struct desc_struct *desc = t->thread.tls_array;
149 desc += tls;
150 fill_ldt(desc, &ud);
151}
152
153static inline u32 read_32bit_tls(struct task_struct *t, int tls)
154{
155 return get_desc_base(&t->thread.tls_array[tls]);
156}
157
158int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
159 unsigned long arg, struct task_struct *p, unsigned long tls)
160{
161 int err;
162 struct pt_regs *childregs;
163 struct task_struct *me = current;
164
165 p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
166 childregs = task_pt_regs(p);
167 p->thread.sp = (unsigned long) childregs;
168 set_tsk_thread_flag(p, TIF_FORK);
169 p->thread.io_bitmap_ptr = NULL;
170
171 savesegment(gs, p->thread.gsindex);
172 p->thread.gs = p->thread.gsindex ? 0 : me->thread.gs;
173 savesegment(fs, p->thread.fsindex);
174 p->thread.fs = p->thread.fsindex ? 0 : me->thread.fs;
175 savesegment(es, p->thread.es);
176 savesegment(ds, p->thread.ds);
177 memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
178
179 if (unlikely(p->flags & PF_KTHREAD)) {
180 /* kernel thread */
181 memset(childregs, 0, sizeof(struct pt_regs));
182 childregs->sp = (unsigned long)childregs;
183 childregs->ss = __KERNEL_DS;
184 childregs->bx = sp; /* function */
185 childregs->bp = arg;
186 childregs->orig_ax = -1;
187 childregs->cs = __KERNEL_CS | get_kernel_rpl();
188 childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
189 return 0;
190 }
191 *childregs = *current_pt_regs();
192
193 childregs->ax = 0;
194 if (sp)
195 childregs->sp = sp;
196
197 err = -ENOMEM;
198 if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
199 p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
200 IO_BITMAP_BYTES, GFP_KERNEL);
201 if (!p->thread.io_bitmap_ptr) {
202 p->thread.io_bitmap_max = 0;
203 return -ENOMEM;
204 }
205 set_tsk_thread_flag(p, TIF_IO_BITMAP);
206 }
207
208 /*
209 * Set a new TLS for the child thread?
210 */
211 if (clone_flags & CLONE_SETTLS) {
212#ifdef CONFIG_IA32_EMULATION
213 if (is_ia32_task())
214 err = do_set_thread_area(p, -1,
215 (struct user_desc __user *)tls, 0);
216 else
217#endif
218 err = do_arch_prctl(p, ARCH_SET_FS, tls);
219 if (err)
220 goto out;
221 }
222 err = 0;
223out:
224 if (err && p->thread.io_bitmap_ptr) {
225 kfree(p->thread.io_bitmap_ptr);
226 p->thread.io_bitmap_max = 0;
227 }
228
229 return err;
230}
231
232static void
233start_thread_common(struct pt_regs *regs, unsigned long new_ip,
234 unsigned long new_sp,
235 unsigned int _cs, unsigned int _ss, unsigned int _ds)
236{
237 loadsegment(fs, 0);
238 loadsegment(es, _ds);
239 loadsegment(ds, _ds);
240 load_gs_index(0);
241 regs->ip = new_ip;
242 regs->sp = new_sp;
243 regs->cs = _cs;
244 regs->ss = _ss;
245 regs->flags = X86_EFLAGS_IF;
246 force_iret();
247}
248
249void
250start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
251{
252 start_thread_common(regs, new_ip, new_sp,
253 __USER_CS, __USER_DS, 0);
254}
255
256#ifdef CONFIG_COMPAT
257void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
258{
259 start_thread_common(regs, new_ip, new_sp,
260 test_thread_flag(TIF_X32)
261 ? __USER_CS : __USER32_CS,
262 __USER_DS, __USER_DS);
263}
264#endif
265
266/*
267 * switch_to(x,y) should switch tasks from x to y.
268 *
269 * This could still be optimized:
270 * - fold all the options into a flag word and test it with a single test.
271 * - could test fs/gs bitsliced
272 *
273 * Kprobes not supported here. Set the probe on schedule instead.
274 * Function graph tracer not supported too.
275 */
276__visible __notrace_funcgraph struct task_struct *
277__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
278{
279 struct thread_struct *prev = &prev_p->thread;
280 struct thread_struct *next = &next_p->thread;
281 struct fpu *prev_fpu = &prev->fpu;
282 struct fpu *next_fpu = &next->fpu;
283 int cpu = smp_processor_id();
284 struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
285 unsigned fsindex, gsindex;
286 fpu_switch_t fpu_switch;
287
288 fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
289
290 /* We must save %fs and %gs before load_TLS() because
291 * %fs and %gs may be cleared by load_TLS().
292 *
293 * (e.g. xen_load_tls())
294 */
295 savesegment(fs, fsindex);
296 savesegment(gs, gsindex);
297
298 /*
299 * Load TLS before restoring any segments so that segment loads
300 * reference the correct GDT entries.
301 */
302 load_TLS(next, cpu);
303
304 /*
305 * Leave lazy mode, flushing any hypercalls made here. This
306 * must be done after loading TLS entries in the GDT but before
307 * loading segments that might reference them, and and it must
308 * be done before fpu__restore(), so the TS bit is up to
309 * date.
310 */
311 arch_end_context_switch(next_p);
312
313 /* Switch DS and ES.
314 *
315 * Reading them only returns the selectors, but writing them (if
316 * nonzero) loads the full descriptor from the GDT or LDT. The
317 * LDT for next is loaded in switch_mm, and the GDT is loaded
318 * above.
319 *
320 * We therefore need to write new values to the segment
321 * registers on every context switch unless both the new and old
322 * values are zero.
323 *
324 * Note that we don't need to do anything for CS and SS, as
325 * those are saved and restored as part of pt_regs.
326 */
327 savesegment(es, prev->es);
328 if (unlikely(next->es | prev->es))
329 loadsegment(es, next->es);
330
331 savesegment(ds, prev->ds);
332 if (unlikely(next->ds | prev->ds))
333 loadsegment(ds, next->ds);
334
335 /*
336 * Switch FS and GS.
337 *
338 * These are even more complicated than DS and ES: they have
339 * 64-bit bases are that controlled by arch_prctl. Those bases
340 * only differ from the values in the GDT or LDT if the selector
341 * is 0.
342 *
343 * Loading the segment register resets the hidden base part of
344 * the register to 0 or the value from the GDT / LDT. If the
345 * next base address zero, writing 0 to the segment register is
346 * much faster than using wrmsr to explicitly zero the base.
347 *
348 * The thread_struct.fs and thread_struct.gs values are 0
349 * if the fs and gs bases respectively are not overridden
350 * from the values implied by fsindex and gsindex. They
351 * are nonzero, and store the nonzero base addresses, if
352 * the bases are overridden.
353 *
354 * (fs != 0 && fsindex != 0) || (gs != 0 && gsindex != 0) should
355 * be impossible.
356 *
357 * Therefore we need to reload the segment registers if either
358 * the old or new selector is nonzero, and we need to override
359 * the base address if next thread expects it to be overridden.
360 *
361 * This code is unnecessarily slow in the case where the old and
362 * new indexes are zero and the new base is nonzero -- it will
363 * unnecessarily write 0 to the selector before writing the new
364 * base address.
365 *
366 * Note: This all depends on arch_prctl being the only way that
367 * user code can override the segment base. Once wrfsbase and
368 * wrgsbase are enabled, most of this code will need to change.
369 */
370 if (unlikely(fsindex | next->fsindex | prev->fs)) {
371 loadsegment(fs, next->fsindex);
372
373 /*
374 * If user code wrote a nonzero value to FS, then it also
375 * cleared the overridden base address.
376 *
377 * XXX: if user code wrote 0 to FS and cleared the base
378 * address itself, we won't notice and we'll incorrectly
379 * restore the prior base address next time we reschdule
380 * the process.
381 */
382 if (fsindex)
383 prev->fs = 0;
384 }
385 if (next->fs)
386 wrmsrl(MSR_FS_BASE, next->fs);
387 prev->fsindex = fsindex;
388
389 if (unlikely(gsindex | next->gsindex | prev->gs)) {
390 load_gs_index(next->gsindex);
391
392 /* This works (and fails) the same way as fsindex above. */
393 if (gsindex)
394 prev->gs = 0;
395 }
396 if (next->gs)
397 wrmsrl(MSR_KERNEL_GS_BASE, next->gs);
398 prev->gsindex = gsindex;
399
400 switch_fpu_finish(next_fpu, fpu_switch);
401
402 /*
403 * Switch the PDA and FPU contexts.
404 */
405 this_cpu_write(current_task, next_p);
406
407 /* Reload esp0 and ss1. This changes current_thread_info(). */
408 load_sp0(tss, next);
409
410 /*
411 * Now maybe reload the debug registers and handle I/O bitmaps
412 */
413 if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
414 task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
415 __switch_to_xtra(prev_p, next_p, tss);
416
417#ifdef CONFIG_XEN
418 /*
419 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
420 * current_pt_regs()->flags may not match the current task's
421 * intended IOPL. We need to switch it manually.
422 */
423 if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
424 prev->iopl != next->iopl))
425 xen_set_iopl_mask(next->iopl);
426#endif
427
428 if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
429 /*
430 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
431 * does not update the cached descriptor. As a result, if we
432 * do SYSRET while SS is NULL, we'll end up in user mode with
433 * SS apparently equal to __USER_DS but actually unusable.
434 *
435 * The straightforward workaround would be to fix it up just
436 * before SYSRET, but that would slow down the system call
437 * fast paths. Instead, we ensure that SS is never NULL in
438 * system call context. We do this by replacing NULL SS
439 * selectors at every context switch. SYSCALL sets up a valid
440 * SS, so the only way to get NULL is to re-enter the kernel
441 * from CPL 3 through an interrupt. Since that can't happen
442 * in the same task as a running syscall, we are guaranteed to
443 * context switch between every interrupt vector entry and a
444 * subsequent SYSRET.
445 *
446 * We read SS first because SS reads are much faster than
447 * writes. Out of caution, we force SS to __KERNEL_DS even if
448 * it previously had a different non-NULL value.
449 */
450 unsigned short ss_sel;
451 savesegment(ss, ss_sel);
452 if (ss_sel != __KERNEL_DS)
453 loadsegment(ss, __KERNEL_DS);
454 }
455
456 return prev_p;
457}
458
459void set_personality_64bit(void)
460{
461 /* inherit personality from parent */
462
463 /* Make sure to be in 64bit mode */
464 clear_thread_flag(TIF_IA32);
465 clear_thread_flag(TIF_ADDR32);
466 clear_thread_flag(TIF_X32);
467
468 /* Ensure the corresponding mm is not marked. */
469 if (current->mm)
470 current->mm->context.ia32_compat = 0;
471
472 /* TBD: overwrites user setup. Should have two bits.
473 But 64bit processes have always behaved this way,
474 so it's not too bad. The main problem is just that
475 32bit childs are affected again. */
476 current->personality &= ~READ_IMPLIES_EXEC;
477}
478
479void set_personality_ia32(bool x32)
480{
481 /* inherit personality from parent */
482
483 /* Make sure to be in 32bit mode */
484 set_thread_flag(TIF_ADDR32);
485
486 /* Mark the associated mm as containing 32-bit tasks. */
487 if (x32) {
488 clear_thread_flag(TIF_IA32);
489 set_thread_flag(TIF_X32);
490 if (current->mm)
491 current->mm->context.ia32_compat = TIF_X32;
492 current->personality &= ~READ_IMPLIES_EXEC;
493 /* in_compat_syscall() uses the presence of the x32
494 syscall bit flag to determine compat status */
495 current_thread_info()->status &= ~TS_COMPAT;
496 } else {
497 set_thread_flag(TIF_IA32);
498 clear_thread_flag(TIF_X32);
499 if (current->mm)
500 current->mm->context.ia32_compat = TIF_IA32;
501 current->personality |= force_personality32;
502 /* Prepare the first "return" to user space */
503 current_thread_info()->status |= TS_COMPAT;
504 }
505}
506EXPORT_SYMBOL_GPL(set_personality_ia32);
507
508long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
509{
510 int ret = 0;
511 int doit = task == current;
512 int cpu;
513
514 switch (code) {
515 case ARCH_SET_GS:
516 if (addr >= TASK_SIZE_OF(task))
517 return -EPERM;
518 cpu = get_cpu();
519 /* handle small bases via the GDT because that's faster to
520 switch. */
521 if (addr <= 0xffffffff) {
522 set_32bit_tls(task, GS_TLS, addr);
523 if (doit) {
524 load_TLS(&task->thread, cpu);
525 load_gs_index(GS_TLS_SEL);
526 }
527 task->thread.gsindex = GS_TLS_SEL;
528 task->thread.gs = 0;
529 } else {
530 task->thread.gsindex = 0;
531 task->thread.gs = addr;
532 if (doit) {
533 load_gs_index(0);
534 ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
535 }
536 }
537 put_cpu();
538 break;
539 case ARCH_SET_FS:
540 /* Not strictly needed for fs, but do it for symmetry
541 with gs */
542 if (addr >= TASK_SIZE_OF(task))
543 return -EPERM;
544 cpu = get_cpu();
545 /* handle small bases via the GDT because that's faster to
546 switch. */
547 if (addr <= 0xffffffff) {
548 set_32bit_tls(task, FS_TLS, addr);
549 if (doit) {
550 load_TLS(&task->thread, cpu);
551 loadsegment(fs, FS_TLS_SEL);
552 }
553 task->thread.fsindex = FS_TLS_SEL;
554 task->thread.fs = 0;
555 } else {
556 task->thread.fsindex = 0;
557 task->thread.fs = addr;
558 if (doit) {
559 /* set the selector to 0 to not confuse
560 __switch_to */
561 loadsegment(fs, 0);
562 ret = wrmsrl_safe(MSR_FS_BASE, addr);
563 }
564 }
565 put_cpu();
566 break;
567 case ARCH_GET_FS: {
568 unsigned long base;
569 if (task->thread.fsindex == FS_TLS_SEL)
570 base = read_32bit_tls(task, FS_TLS);
571 else if (doit)
572 rdmsrl(MSR_FS_BASE, base);
573 else
574 base = task->thread.fs;
575 ret = put_user(base, (unsigned long __user *)addr);
576 break;
577 }
578 case ARCH_GET_GS: {
579 unsigned long base;
580 unsigned gsindex;
581 if (task->thread.gsindex == GS_TLS_SEL)
582 base = read_32bit_tls(task, GS_TLS);
583 else if (doit) {
584 savesegment(gs, gsindex);
585 if (gsindex)
586 rdmsrl(MSR_KERNEL_GS_BASE, base);
587 else
588 base = task->thread.gs;
589 } else
590 base = task->thread.gs;
591 ret = put_user(base, (unsigned long __user *)addr);
592 break;
593 }
594
595 default:
596 ret = -EINVAL;
597 break;
598 }
599
600 return ret;
601}
602
603long sys_arch_prctl(int code, unsigned long addr)
604{
605 return do_arch_prctl(current, code, addr);
606}
607
608unsigned long KSTK_ESP(struct task_struct *task)
609{
610 return task_pt_regs(task)->sp;
611}