Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/cpu.h>
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 
 
 20#include <linux/fs.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/elfcore.h>
 24#include <linux/smp.h>
 25#include <linux/slab.h>
 26#include <linux/user.h>
 27#include <linux/interrupt.h>
 28#include <linux/delay.h>
 29#include <linux/export.h>
 30#include <linux/ptrace.h>
 31#include <linux/notifier.h>
 32#include <linux/kprobes.h>
 33#include <linux/kdebug.h>
 34#include <linux/prctl.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/ftrace.h>
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/processor.h>
 41#include <asm/fpu/internal.h>
 42#include <asm/mmu_context.h>
 43#include <asm/prctl.h>
 44#include <asm/desc.h>
 45#include <asm/proto.h>
 46#include <asm/ia32.h>
 47#include <asm/syscalls.h>
 48#include <asm/debugreg.h>
 49#include <asm/switch_to.h>
 50#include <asm/xen/hypervisor.h>
 51#include <asm/vdso.h>
 52#include <asm/intel_rdt.h>
 
 
 
 
 
 
 53
 54__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
 55
 56/* Prints also some state that isn't saved in the pt_regs */
 57void __show_regs(struct pt_regs *regs, int all)
 
 58{
 59	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 60	unsigned long d0, d1, d2, d3, d6, d7;
 61	unsigned int fsindex, gsindex;
 62	unsigned int ds, cs, es;
 
 
 63
 64	printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
 65		(void *)regs->ip);
 66	printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
 67		regs->sp, regs->flags);
 68	if (regs->orig_ax != -1)
 69		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 70	else
 71		pr_cont("\n");
 72
 73	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 74	       regs->ax, regs->bx, regs->cx);
 75	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 76	       regs->dx, regs->si, regs->di);
 77	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 78	       regs->bp, regs->r8, regs->r9);
 79	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 80	       regs->r10, regs->r11, regs->r12);
 81	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 82	       regs->r13, regs->r14, regs->r15);
 
 
 
 
 
 
 
 
 
 
 
 83
 84	asm("movl %%ds,%0" : "=r" (ds));
 85	asm("movl %%cs,%0" : "=r" (cs));
 86	asm("movl %%es,%0" : "=r" (es));
 87	asm("movl %%fs,%0" : "=r" (fsindex));
 88	asm("movl %%gs,%0" : "=r" (gsindex));
 89
 90	rdmsrl(MSR_FS_BASE, fs);
 91	rdmsrl(MSR_GS_BASE, gs);
 92	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 93
 94	if (!all)
 95		return;
 96
 97	cr0 = read_cr0();
 98	cr2 = read_cr2();
 99	cr3 = read_cr3();
100	cr4 = __read_cr4();
101
102	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
103	       fs, fsindex, gs, gsindex, shadowgs);
104	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
105			es, cr0);
106	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
107			cr4);
108
109	get_debugreg(d0, 0);
110	get_debugreg(d1, 1);
111	get_debugreg(d2, 2);
112	get_debugreg(d3, 3);
113	get_debugreg(d6, 6);
114	get_debugreg(d7, 7);
115
116	/* Only print out debug registers if they are in their non-default state. */
117	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
118	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
119		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
120		       d0, d1, d2);
121		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
122		       d3, d6, d7);
123	}
124
125	if (boot_cpu_has(X86_FEATURE_OSPKE))
126		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
127}
128
129void release_thread(struct task_struct *dead_task)
130{
131	if (dead_task->mm) {
132#ifdef CONFIG_MODIFY_LDT_SYSCALL
133		if (dead_task->mm->context.ldt) {
134			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
135				dead_task->comm,
136				dead_task->mm->context.ldt->entries,
137				dead_task->mm->context.ldt->size);
138			BUG();
139		}
140#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141	}
142}
143
144int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
145		unsigned long arg, struct task_struct *p, unsigned long tls)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
146{
147	int err;
148	struct pt_regs *childregs;
149	struct fork_frame *fork_frame;
150	struct inactive_task_frame *frame;
151	struct task_struct *me = current;
152
153	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
154	childregs = task_pt_regs(p);
155	fork_frame = container_of(childregs, struct fork_frame, regs);
156	frame = &fork_frame->frame;
157	frame->bp = 0;
158	frame->ret_addr = (unsigned long) ret_from_fork;
159	p->thread.sp = (unsigned long) fork_frame;
160	p->thread.io_bitmap_ptr = NULL;
161
162	savesegment(gs, p->thread.gsindex);
163	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
164	savesegment(fs, p->thread.fsindex);
165	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
166	savesegment(es, p->thread.es);
167	savesegment(ds, p->thread.ds);
168	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
169
170	if (unlikely(p->flags & PF_KTHREAD)) {
171		/* kernel thread */
172		memset(childregs, 0, sizeof(struct pt_regs));
173		frame->bx = sp;		/* function */
174		frame->r12 = arg;
175		return 0;
176	}
177	frame->bx = 0;
178	*childregs = *current_pt_regs();
179
180	childregs->ax = 0;
181	if (sp)
182		childregs->sp = sp;
183
184	err = -ENOMEM;
185	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
186		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
187						  IO_BITMAP_BYTES, GFP_KERNEL);
188		if (!p->thread.io_bitmap_ptr) {
189			p->thread.io_bitmap_max = 0;
190			return -ENOMEM;
191		}
192		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 
 
 
 
 
193	}
 
194
195	/*
196	 * Set a new TLS for the child thread?
197	 */
198	if (clone_flags & CLONE_SETTLS) {
199#ifdef CONFIG_IA32_EMULATION
200		if (in_ia32_syscall())
201			err = do_set_thread_area(p, -1,
202				(struct user_desc __user *)tls, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203		else
 
 
 
 
204#endif
205			err = do_arch_prctl(p, ARCH_SET_FS, tls);
206		if (err)
207			goto out;
208	}
209	err = 0;
210out:
211	if (err && p->thread.io_bitmap_ptr) {
212		kfree(p->thread.io_bitmap_ptr);
213		p->thread.io_bitmap_max = 0;
214	}
215
216	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
218
219static void
220start_thread_common(struct pt_regs *regs, unsigned long new_ip,
221		    unsigned long new_sp,
222		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
223{
 
 
 
 
 
 
 
 
224	loadsegment(fs, 0);
225	loadsegment(es, _ds);
226	loadsegment(ds, _ds);
227	load_gs_index(0);
 
228	regs->ip		= new_ip;
229	regs->sp		= new_sp;
230	regs->cs		= _cs;
231	regs->ss		= _ss;
232	regs->flags		= X86_EFLAGS_IF;
233	force_iret();
234}
235
236void
237start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
238{
239	start_thread_common(regs, new_ip, new_sp,
240			    __USER_CS, __USER_DS, 0);
241}
 
242
243#ifdef CONFIG_COMPAT
244void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
245{
246	start_thread_common(regs, new_ip, new_sp,
247			    test_thread_flag(TIF_X32)
248			    ? __USER_CS : __USER32_CS,
249			    __USER_DS, __USER_DS);
250}
251#endif
252
253/*
254 *	switch_to(x,y) should switch tasks from x to y.
255 *
256 * This could still be optimized:
257 * - fold all the options into a flag word and test it with a single test.
258 * - could test fs/gs bitsliced
259 *
260 * Kprobes not supported here. Set the probe on schedule instead.
261 * Function graph tracer not supported too.
262 */
263__visible __notrace_funcgraph struct task_struct *
264__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
265{
266	struct thread_struct *prev = &prev_p->thread;
267	struct thread_struct *next = &next_p->thread;
268	struct fpu *prev_fpu = &prev->fpu;
269	struct fpu *next_fpu = &next->fpu;
270	int cpu = smp_processor_id();
271	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
272	unsigned prev_fsindex, prev_gsindex;
273
274	switch_fpu_prepare(prev_fpu, cpu);
 
 
 
 
275
276	/* We must save %fs and %gs before load_TLS() because
277	 * %fs and %gs may be cleared by load_TLS().
278	 *
279	 * (e.g. xen_load_tls())
280	 */
281	savesegment(fs, prev_fsindex);
282	savesegment(gs, prev_gsindex);
283
284	/*
285	 * Load TLS before restoring any segments so that segment loads
286	 * reference the correct GDT entries.
287	 */
288	load_TLS(next, cpu);
289
290	/*
291	 * Leave lazy mode, flushing any hypercalls made here.  This
292	 * must be done after loading TLS entries in the GDT but before
293	 * loading segments that might reference them, and and it must
294	 * be done before fpu__restore(), so the TS bit is up to
295	 * date.
296	 */
297	arch_end_context_switch(next_p);
298
299	/* Switch DS and ES.
300	 *
301	 * Reading them only returns the selectors, but writing them (if
302	 * nonzero) loads the full descriptor from the GDT or LDT.  The
303	 * LDT for next is loaded in switch_mm, and the GDT is loaded
304	 * above.
305	 *
306	 * We therefore need to write new values to the segment
307	 * registers on every context switch unless both the new and old
308	 * values are zero.
309	 *
310	 * Note that we don't need to do anything for CS and SS, as
311	 * those are saved and restored as part of pt_regs.
312	 */
313	savesegment(es, prev->es);
314	if (unlikely(next->es | prev->es))
315		loadsegment(es, next->es);
316
317	savesegment(ds, prev->ds);
318	if (unlikely(next->ds | prev->ds))
319		loadsegment(ds, next->ds);
320
321	/*
322	 * Switch FS and GS.
323	 *
324	 * These are even more complicated than DS and ES: they have
325	 * 64-bit bases are that controlled by arch_prctl.  The bases
326	 * don't necessarily match the selectors, as user code can do
327	 * any number of things to cause them to be inconsistent.
328	 *
329	 * We don't promise to preserve the bases if the selectors are
330	 * nonzero.  We also don't promise to preserve the base if the
331	 * selector is zero and the base doesn't match whatever was
332	 * most recently passed to ARCH_SET_FS/GS.  (If/when the
333	 * FSGSBASE instructions are enabled, we'll need to offer
334	 * stronger guarantees.)
335	 *
336	 * As an invariant,
337	 * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
338	 * impossible.
339	 */
340	if (next->fsindex) {
341		/* Loading a nonzero value into FS sets the index and base. */
342		loadsegment(fs, next->fsindex);
343	} else {
344		if (next->fsbase) {
345			/* Next index is zero but next base is nonzero. */
346			if (prev_fsindex)
347				loadsegment(fs, 0);
348			wrmsrl(MSR_FS_BASE, next->fsbase);
349		} else {
350			/* Next base and index are both zero. */
351			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
352				/*
353				 * We don't know the previous base and can't
354				 * find out without RDMSR.  Forcibly clear it.
355				 */
356				loadsegment(fs, __USER_DS);
357				loadsegment(fs, 0);
358			} else {
359				/*
360				 * If the previous index is zero and ARCH_SET_FS
361				 * didn't change the base, then the base is
362				 * also zero and we don't need to do anything.
363				 */
364				if (prev->fsbase || prev_fsindex)
365					loadsegment(fs, 0);
366			}
367		}
368	}
369	/*
370	 * Save the old state and preserve the invariant.
371	 * NB: if prev_fsindex == 0, then we can't reliably learn the base
372	 * without RDMSR because Intel user code can zero it without telling
373	 * us and AMD user code can program any 32-bit value without telling
374	 * us.
375	 */
376	if (prev_fsindex)
377		prev->fsbase = 0;
378	prev->fsindex = prev_fsindex;
379
380	if (next->gsindex) {
381		/* Loading a nonzero value into GS sets the index and base. */
382		load_gs_index(next->gsindex);
383	} else {
384		if (next->gsbase) {
385			/* Next index is zero but next base is nonzero. */
386			if (prev_gsindex)
387				load_gs_index(0);
388			wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
389		} else {
390			/* Next base and index are both zero. */
391			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
392				/*
393				 * We don't know the previous base and can't
394				 * find out without RDMSR.  Forcibly clear it.
395				 *
396				 * This contains a pointless SWAPGS pair.
397				 * Fixing it would involve an explicit check
398				 * for Xen or a new pvop.
399				 */
400				load_gs_index(__USER_DS);
401				load_gs_index(0);
402			} else {
403				/*
404				 * If the previous index is zero and ARCH_SET_GS
405				 * didn't change the base, then the base is
406				 * also zero and we don't need to do anything.
407				 */
408				if (prev->gsbase || prev_gsindex)
409					load_gs_index(0);
410			}
411		}
412	}
413	/*
414	 * Save the old state and preserve the invariant.
415	 * NB: if prev_gsindex == 0, then we can't reliably learn the base
416	 * without RDMSR because Intel user code can zero it without telling
417	 * us and AMD user code can program any 32-bit value without telling
418	 * us.
419	 */
420	if (prev_gsindex)
421		prev->gsbase = 0;
422	prev->gsindex = prev_gsindex;
423
424	switch_fpu_finish(next_fpu, cpu);
425
426	/*
427	 * Switch the PDA and FPU contexts.
428	 */
429	this_cpu_write(current_task, next_p);
 
430
431	/* Reload esp0 and ss1.  This changes current_thread_info(). */
432	load_sp0(tss, next);
433
434	/*
435	 * Now maybe reload the debug registers and handle I/O bitmaps
436	 */
437	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
438		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
439		__switch_to_xtra(prev_p, next_p, tss);
440
441#ifdef CONFIG_XEN
442	/*
443	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
444	 * current_pt_regs()->flags may not match the current task's
445	 * intended IOPL.  We need to switch it manually.
446	 */
447	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
448		     prev->iopl != next->iopl))
449		xen_set_iopl_mask(next->iopl);
450#endif
451
452	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
453		/*
454		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
455		 * does not update the cached descriptor.  As a result, if we
456		 * do SYSRET while SS is NULL, we'll end up in user mode with
457		 * SS apparently equal to __USER_DS but actually unusable.
458		 *
459		 * The straightforward workaround would be to fix it up just
460		 * before SYSRET, but that would slow down the system call
461		 * fast paths.  Instead, we ensure that SS is never NULL in
462		 * system call context.  We do this by replacing NULL SS
463		 * selectors at every context switch.  SYSCALL sets up a valid
464		 * SS, so the only way to get NULL is to re-enter the kernel
465		 * from CPL 3 through an interrupt.  Since that can't happen
466		 * in the same task as a running syscall, we are guaranteed to
467		 * context switch between every interrupt vector entry and a
468		 * subsequent SYSRET.
469		 *
470		 * We read SS first because SS reads are much faster than
471		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
472		 * it previously had a different non-NULL value.
473		 */
474		unsigned short ss_sel;
475		savesegment(ss, ss_sel);
476		if (ss_sel != __KERNEL_DS)
477			loadsegment(ss, __KERNEL_DS);
478	}
479
480	/* Load the Intel cache allocation PQR MSR. */
481	intel_rdt_sched_in();
482
483	return prev_p;
484}
485
486void set_personality_64bit(void)
487{
488	/* inherit personality from parent */
489
490	/* Make sure to be in 64bit mode */
491	clear_thread_flag(TIF_IA32);
492	clear_thread_flag(TIF_ADDR32);
493	clear_thread_flag(TIF_X32);
 
 
 
494
495	/* Ensure the corresponding mm is not marked. */
496	if (current->mm)
497		current->mm->context.ia32_compat = 0;
498
499	/* TBD: overwrites user setup. Should have two bits.
500	   But 64bit processes have always behaved this way,
501	   so it's not too bad. The main problem is just that
502	   32bit childs are affected again. */
503	current->personality &= ~READ_IMPLIES_EXEC;
504}
505
506void set_personality_ia32(bool x32)
507{
508	/* inherit personality from parent */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
509
 
 
510	/* Make sure to be in 32bit mode */
511	set_thread_flag(TIF_ADDR32);
512
513	/* Mark the associated mm as containing 32-bit tasks. */
514	if (x32) {
515		clear_thread_flag(TIF_IA32);
516		set_thread_flag(TIF_X32);
517		if (current->mm)
518			current->mm->context.ia32_compat = TIF_X32;
519		current->personality &= ~READ_IMPLIES_EXEC;
520		/* in_compat_syscall() uses the presence of the x32
521		   syscall bit flag to determine compat status */
522		current->thread.status &= ~TS_COMPAT;
523	} else {
524		set_thread_flag(TIF_IA32);
525		clear_thread_flag(TIF_X32);
526		if (current->mm)
527			current->mm->context.ia32_compat = TIF_IA32;
528		current->personality |= force_personality32;
529		/* Prepare the first "return" to user space */
530		current->thread.status |= TS_COMPAT;
531	}
532}
533EXPORT_SYMBOL_GPL(set_personality_ia32);
534
535#ifdef CONFIG_CHECKPOINT_RESTORE
536static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
537{
538	int ret;
539
540	ret = map_vdso_once(image, addr);
541	if (ret)
542		return ret;
543
544	return (long)image->size;
545}
546#endif
547
548long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
549{
550	int ret = 0;
551	int doit = task == current;
552	int cpu;
553
554	switch (code) {
555	case ARCH_SET_GS:
556		if (addr >= TASK_SIZE_MAX)
557			return -EPERM;
558		cpu = get_cpu();
559		task->thread.gsindex = 0;
560		task->thread.gsbase = addr;
561		if (doit) {
562			load_gs_index(0);
563			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564		}
565		put_cpu();
566		break;
567	case ARCH_SET_FS:
568		/* Not strictly needed for fs, but do it for symmetry
569		   with gs */
570		if (addr >= TASK_SIZE_MAX)
 
 
 
571			return -EPERM;
572		cpu = get_cpu();
573		task->thread.fsindex = 0;
574		task->thread.fsbase = addr;
575		if (doit) {
576			/* set the selector to 0 to not confuse __switch_to */
577			loadsegment(fs, 0);
578			ret = wrmsrl_safe(MSR_FS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
579		}
580		put_cpu();
581		break;
 
582	case ARCH_GET_FS: {
583		unsigned long base;
584		if (doit)
585			rdmsrl(MSR_FS_BASE, base);
586		else
587			base = task->thread.fsbase;
588		ret = put_user(base, (unsigned long __user *)addr);
589		break;
590	}
591	case ARCH_GET_GS: {
592		unsigned long base;
593		if (doit)
594			rdmsrl(MSR_KERNEL_GS_BASE, base);
595		else
596			base = task->thread.gsbase;
597		ret = put_user(base, (unsigned long __user *)addr);
598		break;
599	}
600
601#ifdef CONFIG_CHECKPOINT_RESTORE
602# ifdef CONFIG_X86_X32_ABI
603	case ARCH_MAP_VDSO_X32:
604		return prctl_map_vdso(&vdso_image_x32, addr);
605# endif
606# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
607	case ARCH_MAP_VDSO_32:
608		return prctl_map_vdso(&vdso_image_32, addr);
609# endif
610	case ARCH_MAP_VDSO_64:
611		return prctl_map_vdso(&vdso_image_64, addr);
612#endif
613
614	default:
615		ret = -EINVAL;
616		break;
617	}
618
619	return ret;
620}
621
622long sys_arch_prctl(int code, unsigned long addr)
623{
624	return do_arch_prctl(current, code, addr);
 
 
 
 
 
 
 
 
 
 
 
 
625}
 
626
627unsigned long KSTK_ESP(struct task_struct *task)
628{
629	return task_pt_regs(task)->sp;
630}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 
 43#include <asm/processor.h>
 44#include <asm/fpu/internal.h>
 45#include <asm/mmu_context.h>
 46#include <asm/prctl.h>
 47#include <asm/desc.h>
 48#include <asm/proto.h>
 49#include <asm/ia32.h>
 
 50#include <asm/debugreg.h>
 51#include <asm/switch_to.h>
 52#include <asm/xen/hypervisor.h>
 53#include <asm/vdso.h>
 54#include <asm/resctrl.h>
 55#include <asm/unistd.h>
 56#include <asm/fsgsbase.h>
 57#ifdef CONFIG_IA32_EMULATION
 58/* Not included via unistd.h */
 59#include <asm/unistd_32_ia32.h>
 60#endif
 61
 62#include "process.h"
 63
 64/* Prints also some state that isn't saved in the pt_regs */
 65void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 66		 const char *log_lvl)
 67{
 68	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 69	unsigned long d0, d1, d2, d3, d6, d7;
 70	unsigned int fsindex, gsindex;
 71	unsigned int ds, es;
 72
 73	show_iret_regs(regs, log_lvl);
 74
 
 
 
 
 75	if (regs->orig_ax != -1)
 76		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 77	else
 78		pr_cont("\n");
 79
 80	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 81	       log_lvl, regs->ax, regs->bx, regs->cx);
 82	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 83	       log_lvl, regs->dx, regs->si, regs->di);
 84	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 85	       log_lvl, regs->bp, regs->r8, regs->r9);
 86	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 87	       log_lvl, regs->r10, regs->r11, regs->r12);
 88	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 89	       log_lvl, regs->r13, regs->r14, regs->r15);
 90
 91	if (mode == SHOW_REGS_SHORT)
 92		return;
 93
 94	if (mode == SHOW_REGS_USER) {
 95		rdmsrl(MSR_FS_BASE, fs);
 96		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 97		printk("%sFS:  %016lx GS:  %016lx\n",
 98		       log_lvl, fs, shadowgs);
 99		return;
100	}
101
102	asm("movl %%ds,%0" : "=r" (ds));
 
103	asm("movl %%es,%0" : "=r" (es));
104	asm("movl %%fs,%0" : "=r" (fsindex));
105	asm("movl %%gs,%0" : "=r" (gsindex));
106
107	rdmsrl(MSR_FS_BASE, fs);
108	rdmsrl(MSR_GS_BASE, gs);
109	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
110
 
 
 
111	cr0 = read_cr0();
112	cr2 = read_cr2();
113	cr3 = __read_cr3();
114	cr4 = __read_cr4();
115
116	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
117	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
118	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
119		log_lvl, regs->cs, ds, es, cr0);
120	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
121		log_lvl, cr2, cr3, cr4);
122
123	get_debugreg(d0, 0);
124	get_debugreg(d1, 1);
125	get_debugreg(d2, 2);
126	get_debugreg(d3, 3);
127	get_debugreg(d6, 6);
128	get_debugreg(d7, 7);
129
130	/* Only print out debug registers if they are in their non-default state. */
131	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
132	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
133		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
134		       log_lvl, d0, d1, d2);
135		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
136		       log_lvl, d3, d6, d7);
137	}
138
139	if (boot_cpu_has(X86_FEATURE_OSPKE))
140		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
141}
142
143void release_thread(struct task_struct *dead_task)
144{
145	WARN_ON(dead_task->mm);
146}
147
148enum which_selector {
149	FS,
150	GS
151};
152
153/*
154 * Out of line to be protected from kprobes and tracing. If this would be
155 * traced or probed than any access to a per CPU variable happens with
156 * the wrong GS.
157 *
158 * It is not used on Xen paravirt. When paravirt support is needed, it
159 * needs to be renamed with native_ prefix.
160 */
161static noinstr unsigned long __rdgsbase_inactive(void)
162{
163	unsigned long gsbase;
164
165	lockdep_assert_irqs_disabled();
166
167	if (!static_cpu_has(X86_FEATURE_XENPV)) {
168		native_swapgs();
169		gsbase = rdgsbase();
170		native_swapgs();
171	} else {
172		instrumentation_begin();
173		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
174		instrumentation_end();
175	}
176
177	return gsbase;
178}
179
180/*
181 * Out of line to be protected from kprobes and tracing. If this would be
182 * traced or probed than any access to a per CPU variable happens with
183 * the wrong GS.
184 *
185 * It is not used on Xen paravirt. When paravirt support is needed, it
186 * needs to be renamed with native_ prefix.
187 */
188static noinstr void __wrgsbase_inactive(unsigned long gsbase)
189{
190	lockdep_assert_irqs_disabled();
191
192	if (!static_cpu_has(X86_FEATURE_XENPV)) {
193		native_swapgs();
194		wrgsbase(gsbase);
195		native_swapgs();
196	} else {
197		instrumentation_begin();
198		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
199		instrumentation_end();
200	}
201}
202
203/*
204 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
205 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
206 * It's forcibly inlined because it'll generate better code and this function
207 * is hot.
208 */
209static __always_inline void save_base_legacy(struct task_struct *prev_p,
210					     unsigned short selector,
211					     enum which_selector which)
212{
213	if (likely(selector == 0)) {
214		/*
215		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
216		 * be the pre-existing saved base or it could be zero.  On AMD
217		 * (with X86_BUG_NULL_SEG), the segment base could be almost
218		 * anything.
219		 *
220		 * This branch is very hot (it's hit twice on almost every
221		 * context switch between 64-bit programs), and avoiding
222		 * the RDMSR helps a lot, so we just assume that whatever
223		 * value is already saved is correct.  This matches historical
224		 * Linux behavior, so it won't break existing applications.
225		 *
226		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
227		 * report that the base is zero, it needs to actually be zero:
228		 * see the corresponding logic in load_seg_legacy.
229		 */
230	} else {
231		/*
232		 * If the selector is 1, 2, or 3, then the base is zero on
233		 * !X86_BUG_NULL_SEG CPUs and could be anything on
234		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
235		 * has never attempted to preserve the base across context
236		 * switches.
237		 *
238		 * If selector > 3, then it refers to a real segment, and
239		 * saving the base isn't necessary.
240		 */
241		if (which == FS)
242			prev_p->thread.fsbase = 0;
243		else
244			prev_p->thread.gsbase = 0;
245	}
246}
247
248static __always_inline void save_fsgs(struct task_struct *task)
249{
250	savesegment(fs, task->thread.fsindex);
251	savesegment(gs, task->thread.gsindex);
252	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
253		/*
254		 * If FSGSBASE is enabled, we can't make any useful guesses
255		 * about the base, and user code expects us to save the current
256		 * value.  Fortunately, reading the base directly is efficient.
257		 */
258		task->thread.fsbase = rdfsbase();
259		task->thread.gsbase = __rdgsbase_inactive();
260	} else {
261		save_base_legacy(task, task->thread.fsindex, FS);
262		save_base_legacy(task, task->thread.gsindex, GS);
263	}
264}
265
266/*
267 * While a process is running,current->thread.fsbase and current->thread.gsbase
268 * may not match the corresponding CPU registers (see save_base_legacy()).
269 */
270void current_save_fsgs(void)
271{
272	unsigned long flags;
273
274	/* Interrupts need to be off for FSGSBASE */
275	local_irq_save(flags);
276	save_fsgs(current);
277	local_irq_restore(flags);
278}
279#if IS_ENABLED(CONFIG_KVM)
280EXPORT_SYMBOL_GPL(current_save_fsgs);
281#endif
282
283static __always_inline void loadseg(enum which_selector which,
284				    unsigned short sel)
285{
286	if (which == FS)
287		loadsegment(fs, sel);
288	else
289		load_gs_index(sel);
290}
291
292static __always_inline void load_seg_legacy(unsigned short prev_index,
293					    unsigned long prev_base,
294					    unsigned short next_index,
295					    unsigned long next_base,
296					    enum which_selector which)
297{
298	if (likely(next_index <= 3)) {
299		/*
300		 * The next task is using 64-bit TLS, is not using this
301		 * segment at all, or is having fun with arcane CPU features.
302		 */
303		if (next_base == 0) {
304			/*
305			 * Nasty case: on AMD CPUs, we need to forcibly zero
306			 * the base.
307			 */
308			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
309				loadseg(which, __USER_DS);
310				loadseg(which, next_index);
311			} else {
312				/*
313				 * We could try to exhaustively detect cases
314				 * under which we can skip the segment load,
315				 * but there's really only one case that matters
316				 * for performance: if both the previous and
317				 * next states are fully zeroed, we can skip
318				 * the load.
319				 *
320				 * (This assumes that prev_base == 0 has no
321				 * false positives.  This is the case on
322				 * Intel-style CPUs.)
323				 */
324				if (likely(prev_index | next_index | prev_base))
325					loadseg(which, next_index);
326			}
327		} else {
328			if (prev_index != next_index)
329				loadseg(which, next_index);
330			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
331			       next_base);
 
 
 
 
 
 
 
 
 
 
332		}
333	} else {
334		/*
335		 * The next task is using a real segment.  Loading the selector
336		 * is sufficient.
337		 */
338		loadseg(which, next_index);
339	}
340}
341
342static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
343					      struct thread_struct *next)
344{
345	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
346		/* Update the FS and GS selectors if they could have changed. */
347		if (unlikely(prev->fsindex || next->fsindex))
348			loadseg(FS, next->fsindex);
349		if (unlikely(prev->gsindex || next->gsindex))
350			loadseg(GS, next->gsindex);
351
352		/* Update the bases. */
353		wrfsbase(next->fsbase);
354		__wrgsbase_inactive(next->gsbase);
355	} else {
356		load_seg_legacy(prev->fsindex, prev->fsbase,
357				next->fsindex, next->fsbase, FS);
358		load_seg_legacy(prev->gsindex, prev->gsbase,
359				next->gsindex, next->gsbase, GS);
360	}
361}
362
363unsigned long x86_fsgsbase_read_task(struct task_struct *task,
364				     unsigned short selector)
365{
366	unsigned short idx = selector >> 3;
367	unsigned long base;
368
369	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
370		if (unlikely(idx >= GDT_ENTRIES))
371			return 0;
372
373		/*
374		 * There are no user segments in the GDT with nonzero bases
375		 * other than the TLS segments.
376		 */
377		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
378			return 0;
379
380		idx -= GDT_ENTRY_TLS_MIN;
381		base = get_desc_base(&task->thread.tls_array[idx]);
382	} else {
383#ifdef CONFIG_MODIFY_LDT_SYSCALL
384		struct ldt_struct *ldt;
385
386		/*
387		 * If performance here mattered, we could protect the LDT
388		 * with RCU.  This is a slow path, though, so we can just
389		 * take the mutex.
390		 */
391		mutex_lock(&task->mm->context.lock);
392		ldt = task->mm->context.ldt;
393		if (unlikely(!ldt || idx >= ldt->nr_entries))
394			base = 0;
395		else
396			base = get_desc_base(ldt->entries + idx);
397		mutex_unlock(&task->mm->context.lock);
398#else
399		base = 0;
400#endif
 
 
 
 
 
 
 
 
 
401	}
402
403	return base;
404}
405
406unsigned long x86_gsbase_read_cpu_inactive(void)
407{
408	unsigned long gsbase;
409
410	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
411		unsigned long flags;
412
413		local_irq_save(flags);
414		gsbase = __rdgsbase_inactive();
415		local_irq_restore(flags);
416	} else {
417		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
418	}
419
420	return gsbase;
421}
422
423void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
424{
425	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
426		unsigned long flags;
427
428		local_irq_save(flags);
429		__wrgsbase_inactive(gsbase);
430		local_irq_restore(flags);
431	} else {
432		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
433	}
434}
435
436unsigned long x86_fsbase_read_task(struct task_struct *task)
437{
438	unsigned long fsbase;
439
440	if (task == current)
441		fsbase = x86_fsbase_read_cpu();
442	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
443		 (task->thread.fsindex == 0))
444		fsbase = task->thread.fsbase;
445	else
446		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
447
448	return fsbase;
449}
450
451unsigned long x86_gsbase_read_task(struct task_struct *task)
452{
453	unsigned long gsbase;
454
455	if (task == current)
456		gsbase = x86_gsbase_read_cpu_inactive();
457	else if (static_cpu_has(X86_FEATURE_FSGSBASE) ||
458		 (task->thread.gsindex == 0))
459		gsbase = task->thread.gsbase;
460	else
461		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
462
463	return gsbase;
464}
465
466void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
467{
468	WARN_ON_ONCE(task == current);
469
470	task->thread.fsbase = fsbase;
471}
472
473void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
474{
475	WARN_ON_ONCE(task == current);
476
477	task->thread.gsbase = gsbase;
478}
479
480static void
481start_thread_common(struct pt_regs *regs, unsigned long new_ip,
482		    unsigned long new_sp,
483		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
484{
485	WARN_ON_ONCE(regs != current_pt_regs());
486
487	if (static_cpu_has(X86_BUG_NULL_SEG)) {
488		/* Loading zero below won't clear the base. */
489		loadsegment(fs, __USER_DS);
490		load_gs_index(__USER_DS);
491	}
492
493	loadsegment(fs, 0);
494	loadsegment(es, _ds);
495	loadsegment(ds, _ds);
496	load_gs_index(0);
497
498	regs->ip		= new_ip;
499	regs->sp		= new_sp;
500	regs->cs		= _cs;
501	regs->ss		= _ss;
502	regs->flags		= X86_EFLAGS_IF;
 
503}
504
505void
506start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
507{
508	start_thread_common(regs, new_ip, new_sp,
509			    __USER_CS, __USER_DS, 0);
510}
511EXPORT_SYMBOL_GPL(start_thread);
512
513#ifdef CONFIG_COMPAT
514void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
515{
516	start_thread_common(regs, new_ip, new_sp,
517			    test_thread_flag(TIF_X32)
518			    ? __USER_CS : __USER32_CS,
519			    __USER_DS, __USER_DS);
520}
521#endif
522
523/*
524 *	switch_to(x,y) should switch tasks from x to y.
525 *
526 * This could still be optimized:
527 * - fold all the options into a flag word and test it with a single test.
528 * - could test fs/gs bitsliced
529 *
530 * Kprobes not supported here. Set the probe on schedule instead.
531 * Function graph tracer not supported too.
532 */
533__visible __notrace_funcgraph struct task_struct *
534__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
535{
536	struct thread_struct *prev = &prev_p->thread;
537	struct thread_struct *next = &next_p->thread;
538	struct fpu *prev_fpu = &prev->fpu;
539	struct fpu *next_fpu = &next->fpu;
540	int cpu = smp_processor_id();
 
 
541
542	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
543		     this_cpu_read(irq_count) != -1);
544
545	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
546		switch_fpu_prepare(prev_fpu, cpu);
547
548	/* We must save %fs and %gs before load_TLS() because
549	 * %fs and %gs may be cleared by load_TLS().
550	 *
551	 * (e.g. xen_load_tls())
552	 */
553	save_fsgs(prev_p);
 
554
555	/*
556	 * Load TLS before restoring any segments so that segment loads
557	 * reference the correct GDT entries.
558	 */
559	load_TLS(next, cpu);
560
561	/*
562	 * Leave lazy mode, flushing any hypercalls made here.  This
563	 * must be done after loading TLS entries in the GDT but before
564	 * loading segments that might reference them.
 
 
565	 */
566	arch_end_context_switch(next_p);
567
568	/* Switch DS and ES.
569	 *
570	 * Reading them only returns the selectors, but writing them (if
571	 * nonzero) loads the full descriptor from the GDT or LDT.  The
572	 * LDT for next is loaded in switch_mm, and the GDT is loaded
573	 * above.
574	 *
575	 * We therefore need to write new values to the segment
576	 * registers on every context switch unless both the new and old
577	 * values are zero.
578	 *
579	 * Note that we don't need to do anything for CS and SS, as
580	 * those are saved and restored as part of pt_regs.
581	 */
582	savesegment(es, prev->es);
583	if (unlikely(next->es | prev->es))
584		loadsegment(es, next->es);
585
586	savesegment(ds, prev->ds);
587	if (unlikely(next->ds | prev->ds))
588		loadsegment(ds, next->ds);
589
590	x86_fsgsbase_load(prev, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
591
592	/*
593	 * Switch the PDA and FPU contexts.
594	 */
595	this_cpu_write(current_task, next_p);
596	this_cpu_write(cpu_current_top_of_stack, task_top_of_stack(next_p));
597
598	switch_fpu_finish(next_fpu);
 
599
600	/* Reload sp0. */
601	update_task_stack(next_p);
 
 
 
 
602
603	switch_to_extra(prev_p, next_p);
 
 
 
 
 
 
 
 
 
604
605	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
606		/*
607		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
608		 * does not update the cached descriptor.  As a result, if we
609		 * do SYSRET while SS is NULL, we'll end up in user mode with
610		 * SS apparently equal to __USER_DS but actually unusable.
611		 *
612		 * The straightforward workaround would be to fix it up just
613		 * before SYSRET, but that would slow down the system call
614		 * fast paths.  Instead, we ensure that SS is never NULL in
615		 * system call context.  We do this by replacing NULL SS
616		 * selectors at every context switch.  SYSCALL sets up a valid
617		 * SS, so the only way to get NULL is to re-enter the kernel
618		 * from CPL 3 through an interrupt.  Since that can't happen
619		 * in the same task as a running syscall, we are guaranteed to
620		 * context switch between every interrupt vector entry and a
621		 * subsequent SYSRET.
622		 *
623		 * We read SS first because SS reads are much faster than
624		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
625		 * it previously had a different non-NULL value.
626		 */
627		unsigned short ss_sel;
628		savesegment(ss, ss_sel);
629		if (ss_sel != __KERNEL_DS)
630			loadsegment(ss, __KERNEL_DS);
631	}
632
633	/* Load the Intel cache allocation PQR MSR. */
634	resctrl_sched_in();
635
636	return prev_p;
637}
638
639void set_personality_64bit(void)
640{
641	/* inherit personality from parent */
642
643	/* Make sure to be in 64bit mode */
644	clear_thread_flag(TIF_IA32);
645	clear_thread_flag(TIF_ADDR32);
646	clear_thread_flag(TIF_X32);
647	/* Pretend that this comes from a 64bit execve */
648	task_pt_regs(current)->orig_ax = __NR_execve;
649	current_thread_info()->status &= ~TS_COMPAT;
650
651	/* Ensure the corresponding mm is not marked. */
652	if (current->mm)
653		current->mm->context.ia32_compat = 0;
654
655	/* TBD: overwrites user setup. Should have two bits.
656	   But 64bit processes have always behaved this way,
657	   so it's not too bad. The main problem is just that
658	   32bit children are affected again. */
659	current->personality &= ~READ_IMPLIES_EXEC;
660}
661
662static void __set_personality_x32(void)
663{
664#ifdef CONFIG_X86_X32
665	clear_thread_flag(TIF_IA32);
666	set_thread_flag(TIF_X32);
667	if (current->mm)
668		current->mm->context.ia32_compat = TIF_X32;
669	current->personality &= ~READ_IMPLIES_EXEC;
670	/*
671	 * in_32bit_syscall() uses the presence of the x32 syscall bit
672	 * flag to determine compat status.  The x86 mmap() code relies on
673	 * the syscall bitness so set x32 syscall bit right here to make
674	 * in_32bit_syscall() work during exec().
675	 *
676	 * Pretend to come from a x32 execve.
677	 */
678	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
679	current_thread_info()->status &= ~TS_COMPAT;
680#endif
681}
682
683static void __set_personality_ia32(void)
684{
685#ifdef CONFIG_IA32_EMULATION
686	set_thread_flag(TIF_IA32);
687	clear_thread_flag(TIF_X32);
688	if (current->mm)
689		current->mm->context.ia32_compat = TIF_IA32;
690	current->personality |= force_personality32;
691	/* Prepare the first "return" to user space */
692	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
693	current_thread_info()->status |= TS_COMPAT;
694#endif
695}
696
697void set_personality_ia32(bool x32)
698{
699	/* Make sure to be in 32bit mode */
700	set_thread_flag(TIF_ADDR32);
701
702	if (x32)
703		__set_personality_x32();
704	else
705		__set_personality_ia32();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
706}
707EXPORT_SYMBOL_GPL(set_personality_ia32);
708
709#ifdef CONFIG_CHECKPOINT_RESTORE
710static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
711{
712	int ret;
713
714	ret = map_vdso_once(image, addr);
715	if (ret)
716		return ret;
717
718	return (long)image->size;
719}
720#endif
721
722long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
723{
724	int ret = 0;
 
 
725
726	switch (option) {
727	case ARCH_SET_GS: {
728		if (unlikely(arg2 >= TASK_SIZE_MAX))
729			return -EPERM;
730
731		preempt_disable();
732		/*
733		 * ARCH_SET_GS has always overwritten the index
734		 * and the base. Zero is the most sensible value
735		 * to put in the index, and is the only value that
736		 * makes any sense if FSGSBASE is unavailable.
737		 */
738		if (task == current) {
739			loadseg(GS, 0);
740			x86_gsbase_write_cpu_inactive(arg2);
741
742			/*
743			 * On non-FSGSBASE systems, save_base_legacy() expects
744			 * that we also fill in thread.gsbase.
745			 */
746			task->thread.gsbase = arg2;
747
748		} else {
749			task->thread.gsindex = 0;
750			x86_gsbase_write_task(task, arg2);
751		}
752		preempt_enable();
753		break;
754	}
755	case ARCH_SET_FS: {
756		/*
757		 * Not strictly needed for %fs, but do it for symmetry
758		 * with %gs
759		 */
760		if (unlikely(arg2 >= TASK_SIZE_MAX))
761			return -EPERM;
762
763		preempt_disable();
764		/*
765		 * Set the selector to 0 for the same reason
766		 * as %gs above.
767		 */
768		if (task == current) {
769			loadseg(FS, 0);
770			x86_fsbase_write_cpu(arg2);
771
772			/*
773			 * On non-FSGSBASE systems, save_base_legacy() expects
774			 * that we also fill in thread.fsbase.
775			 */
776			task->thread.fsbase = arg2;
777		} else {
778			task->thread.fsindex = 0;
779			x86_fsbase_write_task(task, arg2);
780		}
781		preempt_enable();
782		break;
783	}
784	case ARCH_GET_FS: {
785		unsigned long base = x86_fsbase_read_task(task);
786
787		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
788		break;
789	}
790	case ARCH_GET_GS: {
791		unsigned long base = x86_gsbase_read_task(task);
792
793		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
794		break;
795	}
796
797#ifdef CONFIG_CHECKPOINT_RESTORE
798# ifdef CONFIG_X86_X32_ABI
799	case ARCH_MAP_VDSO_X32:
800		return prctl_map_vdso(&vdso_image_x32, arg2);
801# endif
802# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
803	case ARCH_MAP_VDSO_32:
804		return prctl_map_vdso(&vdso_image_32, arg2);
805# endif
806	case ARCH_MAP_VDSO_64:
807		return prctl_map_vdso(&vdso_image_64, arg2);
808#endif
809
810	default:
811		ret = -EINVAL;
812		break;
813	}
814
815	return ret;
816}
817
818SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
819{
820	long ret;
821
822	ret = do_arch_prctl_64(current, option, arg2);
823	if (ret == -EINVAL)
824		ret = do_arch_prctl_common(current, option, arg2);
825
826	return ret;
827}
828
829#ifdef CONFIG_IA32_EMULATION
830COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
831{
832	return do_arch_prctl_common(current, option, arg2);
833}
834#endif
835
836unsigned long KSTK_ESP(struct task_struct *task)
837{
838	return task_pt_regs(task)->sp;
839}