Linux Audio

Check our new training course

Loading...
v4.10.11
 
  1/*
  2 *  Copyright (C) 1995  Linus Torvalds
  3 *
  4 *  Pentium III FXSR, SSE support
  5 *	Gareth Hughes <gareth@valinux.com>, May 2000
  6 *
  7 *  X86-64 port
  8 *	Andi Kleen.
  9 *
 10 *	CPU hotplug support - ashok.raj@intel.com
 11 */
 12
 13/*
 14 * This file handles the architecture-dependent parts of process handling..
 15 */
 16
 17#include <linux/cpu.h>
 18#include <linux/errno.h>
 19#include <linux/sched.h>
 
 
 20#include <linux/fs.h>
 21#include <linux/kernel.h>
 22#include <linux/mm.h>
 23#include <linux/elfcore.h>
 24#include <linux/smp.h>
 25#include <linux/slab.h>
 26#include <linux/user.h>
 27#include <linux/interrupt.h>
 28#include <linux/delay.h>
 29#include <linux/export.h>
 30#include <linux/ptrace.h>
 31#include <linux/notifier.h>
 32#include <linux/kprobes.h>
 33#include <linux/kdebug.h>
 34#include <linux/prctl.h>
 35#include <linux/uaccess.h>
 36#include <linux/io.h>
 37#include <linux/ftrace.h>
 
 38
 39#include <asm/pgtable.h>
 40#include <asm/processor.h>
 41#include <asm/fpu/internal.h>
 
 42#include <asm/mmu_context.h>
 43#include <asm/prctl.h>
 44#include <asm/desc.h>
 45#include <asm/proto.h>
 46#include <asm/ia32.h>
 47#include <asm/syscalls.h>
 48#include <asm/debugreg.h>
 49#include <asm/switch_to.h>
 50#include <asm/xen/hypervisor.h>
 51#include <asm/vdso.h>
 52#include <asm/intel_rdt.h>
 
 
 
 
 
 
 53
 54__visible DEFINE_PER_CPU(unsigned long, rsp_scratch);
 55
 56/* Prints also some state that isn't saved in the pt_regs */
 57void __show_regs(struct pt_regs *regs, int all)
 
 58{
 59	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 60	unsigned long d0, d1, d2, d3, d6, d7;
 61	unsigned int fsindex, gsindex;
 62	unsigned int ds, cs, es;
 
 
 63
 64	printk(KERN_DEFAULT "RIP: %04lx:%pS\n", regs->cs & 0xffff,
 65		(void *)regs->ip);
 66	printk(KERN_DEFAULT "RSP: %04lx:%016lx EFLAGS: %08lx", regs->ss,
 67		regs->sp, regs->flags);
 68	if (regs->orig_ax != -1)
 69		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 70	else
 71		pr_cont("\n");
 72
 73	printk(KERN_DEFAULT "RAX: %016lx RBX: %016lx RCX: %016lx\n",
 74	       regs->ax, regs->bx, regs->cx);
 75	printk(KERN_DEFAULT "RDX: %016lx RSI: %016lx RDI: %016lx\n",
 76	       regs->dx, regs->si, regs->di);
 77	printk(KERN_DEFAULT "RBP: %016lx R08: %016lx R09: %016lx\n",
 78	       regs->bp, regs->r8, regs->r9);
 79	printk(KERN_DEFAULT "R10: %016lx R11: %016lx R12: %016lx\n",
 80	       regs->r10, regs->r11, regs->r12);
 81	printk(KERN_DEFAULT "R13: %016lx R14: %016lx R15: %016lx\n",
 82	       regs->r13, regs->r14, regs->r15);
 
 
 
 
 
 
 
 
 
 
 
 83
 84	asm("movl %%ds,%0" : "=r" (ds));
 85	asm("movl %%cs,%0" : "=r" (cs));
 86	asm("movl %%es,%0" : "=r" (es));
 87	asm("movl %%fs,%0" : "=r" (fsindex));
 88	asm("movl %%gs,%0" : "=r" (gsindex));
 89
 90	rdmsrl(MSR_FS_BASE, fs);
 91	rdmsrl(MSR_GS_BASE, gs);
 92	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 93
 94	if (!all)
 95		return;
 96
 97	cr0 = read_cr0();
 98	cr2 = read_cr2();
 99	cr3 = read_cr3();
100	cr4 = __read_cr4();
101
102	printk(KERN_DEFAULT "FS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
103	       fs, fsindex, gs, gsindex, shadowgs);
104	printk(KERN_DEFAULT "CS:  %04x DS: %04x ES: %04x CR0: %016lx\n", cs, ds,
105			es, cr0);
106	printk(KERN_DEFAULT "CR2: %016lx CR3: %016lx CR4: %016lx\n", cr2, cr3,
107			cr4);
108
109	get_debugreg(d0, 0);
110	get_debugreg(d1, 1);
111	get_debugreg(d2, 2);
112	get_debugreg(d3, 3);
113	get_debugreg(d6, 6);
114	get_debugreg(d7, 7);
115
116	/* Only print out debug registers if they are in their non-default state. */
117	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
118	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
119		printk(KERN_DEFAULT "DR0: %016lx DR1: %016lx DR2: %016lx\n",
120		       d0, d1, d2);
121		printk(KERN_DEFAULT "DR3: %016lx DR6: %016lx DR7: %016lx\n",
122		       d3, d6, d7);
123	}
124
125	if (boot_cpu_has(X86_FEATURE_OSPKE))
126		printk(KERN_DEFAULT "PKRU: %08x\n", read_pkru());
127}
128
129void release_thread(struct task_struct *dead_task)
130{
131	if (dead_task->mm) {
132#ifdef CONFIG_MODIFY_LDT_SYSCALL
133		if (dead_task->mm->context.ldt) {
134			pr_warn("WARNING: dead process %s still has LDT? <%p/%d>\n",
135				dead_task->comm,
136				dead_task->mm->context.ldt->entries,
137				dead_task->mm->context.ldt->size);
138			BUG();
139		}
140#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141	}
142}
143
144int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
145		unsigned long arg, struct task_struct *p, unsigned long tls)
 
 
 
 
 
 
 
146{
147	int err;
148	struct pt_regs *childregs;
149	struct fork_frame *fork_frame;
150	struct inactive_task_frame *frame;
151	struct task_struct *me = current;
152
153	p->thread.sp0 = (unsigned long)task_stack_page(p) + THREAD_SIZE;
154	childregs = task_pt_regs(p);
155	fork_frame = container_of(childregs, struct fork_frame, regs);
156	frame = &fork_frame->frame;
157	frame->bp = 0;
158	frame->ret_addr = (unsigned long) ret_from_fork;
159	p->thread.sp = (unsigned long) fork_frame;
160	p->thread.io_bitmap_ptr = NULL;
161
162	savesegment(gs, p->thread.gsindex);
163	p->thread.gsbase = p->thread.gsindex ? 0 : me->thread.gsbase;
164	savesegment(fs, p->thread.fsindex);
165	p->thread.fsbase = p->thread.fsindex ? 0 : me->thread.fsbase;
166	savesegment(es, p->thread.es);
167	savesegment(ds, p->thread.ds);
168	memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
169
170	if (unlikely(p->flags & PF_KTHREAD)) {
171		/* kernel thread */
172		memset(childregs, 0, sizeof(struct pt_regs));
173		frame->bx = sp;		/* function */
174		frame->r12 = arg;
175		return 0;
176	}
177	frame->bx = 0;
178	*childregs = *current_pt_regs();
179
180	childregs->ax = 0;
181	if (sp)
182		childregs->sp = sp;
183
184	err = -ENOMEM;
185	if (unlikely(test_tsk_thread_flag(me, TIF_IO_BITMAP))) {
186		p->thread.io_bitmap_ptr = kmemdup(me->thread.io_bitmap_ptr,
187						  IO_BITMAP_BYTES, GFP_KERNEL);
188		if (!p->thread.io_bitmap_ptr) {
189			p->thread.io_bitmap_max = 0;
190			return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
191		}
192		set_tsk_thread_flag(p, TIF_IO_BITMAP);
 
 
 
 
 
193	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
194
195	/*
196	 * Set a new TLS for the child thread?
 
197	 */
198	if (clone_flags & CLONE_SETTLS) {
199#ifdef CONFIG_IA32_EMULATION
200		if (in_ia32_syscall())
201			err = do_set_thread_area(p, -1,
202				(struct user_desc __user *)tls, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203		else
 
 
 
 
204#endif
205			err = do_arch_prctl(p, ARCH_SET_FS, tls);
206		if (err)
207			goto out;
208	}
209	err = 0;
210out:
211	if (err && p->thread.io_bitmap_ptr) {
212		kfree(p->thread.io_bitmap_ptr);
213		p->thread.io_bitmap_max = 0;
214	}
215
216	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
218
219static void
220start_thread_common(struct pt_regs *regs, unsigned long new_ip,
221		    unsigned long new_sp,
222		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
223{
 
 
 
 
 
 
 
 
224	loadsegment(fs, 0);
225	loadsegment(es, _ds);
226	loadsegment(ds, _ds);
227	load_gs_index(0);
 
228	regs->ip		= new_ip;
229	regs->sp		= new_sp;
230	regs->cs		= _cs;
231	regs->ss		= _ss;
232	regs->flags		= X86_EFLAGS_IF;
233	force_iret();
234}
235
236void
237start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
238{
239	start_thread_common(regs, new_ip, new_sp,
240			    __USER_CS, __USER_DS, 0);
241}
 
242
243#ifdef CONFIG_COMPAT
244void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp)
245{
246	start_thread_common(regs, new_ip, new_sp,
247			    test_thread_flag(TIF_X32)
248			    ? __USER_CS : __USER32_CS,
249			    __USER_DS, __USER_DS);
250}
251#endif
252
253/*
254 *	switch_to(x,y) should switch tasks from x to y.
255 *
256 * This could still be optimized:
257 * - fold all the options into a flag word and test it with a single test.
258 * - could test fs/gs bitsliced
259 *
260 * Kprobes not supported here. Set the probe on schedule instead.
261 * Function graph tracer not supported too.
262 */
 
263__visible __notrace_funcgraph struct task_struct *
264__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
265{
266	struct thread_struct *prev = &prev_p->thread;
267	struct thread_struct *next = &next_p->thread;
268	struct fpu *prev_fpu = &prev->fpu;
269	struct fpu *next_fpu = &next->fpu;
270	int cpu = smp_processor_id();
271	struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
272	unsigned prev_fsindex, prev_gsindex;
273
274	switch_fpu_prepare(prev_fpu, cpu);
 
 
 
 
275
276	/* We must save %fs and %gs before load_TLS() because
277	 * %fs and %gs may be cleared by load_TLS().
278	 *
279	 * (e.g. xen_load_tls())
280	 */
281	savesegment(fs, prev_fsindex);
282	savesegment(gs, prev_gsindex);
283
284	/*
285	 * Load TLS before restoring any segments so that segment loads
286	 * reference the correct GDT entries.
287	 */
288	load_TLS(next, cpu);
289
290	/*
291	 * Leave lazy mode, flushing any hypercalls made here.  This
292	 * must be done after loading TLS entries in the GDT but before
293	 * loading segments that might reference them, and and it must
294	 * be done before fpu__restore(), so the TS bit is up to
295	 * date.
296	 */
297	arch_end_context_switch(next_p);
298
299	/* Switch DS and ES.
300	 *
301	 * Reading them only returns the selectors, but writing them (if
302	 * nonzero) loads the full descriptor from the GDT or LDT.  The
303	 * LDT for next is loaded in switch_mm, and the GDT is loaded
304	 * above.
305	 *
306	 * We therefore need to write new values to the segment
307	 * registers on every context switch unless both the new and old
308	 * values are zero.
309	 *
310	 * Note that we don't need to do anything for CS and SS, as
311	 * those are saved and restored as part of pt_regs.
312	 */
313	savesegment(es, prev->es);
314	if (unlikely(next->es | prev->es))
315		loadsegment(es, next->es);
316
317	savesegment(ds, prev->ds);
318	if (unlikely(next->ds | prev->ds))
319		loadsegment(ds, next->ds);
320
321	/*
322	 * Switch FS and GS.
323	 *
324	 * These are even more complicated than DS and ES: they have
325	 * 64-bit bases are that controlled by arch_prctl.  The bases
326	 * don't necessarily match the selectors, as user code can do
327	 * any number of things to cause them to be inconsistent.
328	 *
329	 * We don't promise to preserve the bases if the selectors are
330	 * nonzero.  We also don't promise to preserve the base if the
331	 * selector is zero and the base doesn't match whatever was
332	 * most recently passed to ARCH_SET_FS/GS.  (If/when the
333	 * FSGSBASE instructions are enabled, we'll need to offer
334	 * stronger guarantees.)
335	 *
336	 * As an invariant,
337	 * (fsbase != 0 && fsindex != 0) || (gsbase != 0 && gsindex != 0) is
338	 * impossible.
339	 */
340	if (next->fsindex) {
341		/* Loading a nonzero value into FS sets the index and base. */
342		loadsegment(fs, next->fsindex);
343	} else {
344		if (next->fsbase) {
345			/* Next index is zero but next base is nonzero. */
346			if (prev_fsindex)
347				loadsegment(fs, 0);
348			wrmsrl(MSR_FS_BASE, next->fsbase);
349		} else {
350			/* Next base and index are both zero. */
351			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
352				/*
353				 * We don't know the previous base and can't
354				 * find out without RDMSR.  Forcibly clear it.
355				 */
356				loadsegment(fs, __USER_DS);
357				loadsegment(fs, 0);
358			} else {
359				/*
360				 * If the previous index is zero and ARCH_SET_FS
361				 * didn't change the base, then the base is
362				 * also zero and we don't need to do anything.
363				 */
364				if (prev->fsbase || prev_fsindex)
365					loadsegment(fs, 0);
366			}
367		}
368	}
369	/*
370	 * Save the old state and preserve the invariant.
371	 * NB: if prev_fsindex == 0, then we can't reliably learn the base
372	 * without RDMSR because Intel user code can zero it without telling
373	 * us and AMD user code can program any 32-bit value without telling
374	 * us.
375	 */
376	if (prev_fsindex)
377		prev->fsbase = 0;
378	prev->fsindex = prev_fsindex;
379
380	if (next->gsindex) {
381		/* Loading a nonzero value into GS sets the index and base. */
382		load_gs_index(next->gsindex);
383	} else {
384		if (next->gsbase) {
385			/* Next index is zero but next base is nonzero. */
386			if (prev_gsindex)
387				load_gs_index(0);
388			wrmsrl(MSR_KERNEL_GS_BASE, next->gsbase);
389		} else {
390			/* Next base and index are both zero. */
391			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
392				/*
393				 * We don't know the previous base and can't
394				 * find out without RDMSR.  Forcibly clear it.
395				 *
396				 * This contains a pointless SWAPGS pair.
397				 * Fixing it would involve an explicit check
398				 * for Xen or a new pvop.
399				 */
400				load_gs_index(__USER_DS);
401				load_gs_index(0);
402			} else {
403				/*
404				 * If the previous index is zero and ARCH_SET_GS
405				 * didn't change the base, then the base is
406				 * also zero and we don't need to do anything.
407				 */
408				if (prev->gsbase || prev_gsindex)
409					load_gs_index(0);
410			}
411		}
412	}
413	/*
414	 * Save the old state and preserve the invariant.
415	 * NB: if prev_gsindex == 0, then we can't reliably learn the base
416	 * without RDMSR because Intel user code can zero it without telling
417	 * us and AMD user code can program any 32-bit value without telling
418	 * us.
419	 */
420	if (prev_gsindex)
421		prev->gsbase = 0;
422	prev->gsindex = prev_gsindex;
423
424	switch_fpu_finish(next_fpu, cpu);
425
426	/*
427	 * Switch the PDA and FPU contexts.
428	 */
429	this_cpu_write(current_task, next_p);
 
430
431	/* Reload esp0 and ss1.  This changes current_thread_info(). */
432	load_sp0(tss, next);
433
434	/*
435	 * Now maybe reload the debug registers and handle I/O bitmaps
436	 */
437	if (unlikely(task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT ||
438		     task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV))
439		__switch_to_xtra(prev_p, next_p, tss);
440
441#ifdef CONFIG_XEN
442	/*
443	 * On Xen PV, IOPL bits in pt_regs->flags have no effect, and
444	 * current_pt_regs()->flags may not match the current task's
445	 * intended IOPL.  We need to switch it manually.
446	 */
447	if (unlikely(static_cpu_has(X86_FEATURE_XENPV) &&
448		     prev->iopl != next->iopl))
449		xen_set_iopl_mask(next->iopl);
450#endif
451
452	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
453		/*
454		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
455		 * does not update the cached descriptor.  As a result, if we
456		 * do SYSRET while SS is NULL, we'll end up in user mode with
457		 * SS apparently equal to __USER_DS but actually unusable.
458		 *
459		 * The straightforward workaround would be to fix it up just
460		 * before SYSRET, but that would slow down the system call
461		 * fast paths.  Instead, we ensure that SS is never NULL in
462		 * system call context.  We do this by replacing NULL SS
463		 * selectors at every context switch.  SYSCALL sets up a valid
464		 * SS, so the only way to get NULL is to re-enter the kernel
465		 * from CPL 3 through an interrupt.  Since that can't happen
466		 * in the same task as a running syscall, we are guaranteed to
467		 * context switch between every interrupt vector entry and a
468		 * subsequent SYSRET.
469		 *
470		 * We read SS first because SS reads are much faster than
471		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
472		 * it previously had a different non-NULL value.
473		 */
474		unsigned short ss_sel;
475		savesegment(ss, ss_sel);
476		if (ss_sel != __KERNEL_DS)
477			loadsegment(ss, __KERNEL_DS);
478	}
479
480	/* Load the Intel cache allocation PQR MSR. */
481	intel_rdt_sched_in();
482
483	return prev_p;
484}
485
486void set_personality_64bit(void)
487{
488	/* inherit personality from parent */
489
490	/* Make sure to be in 64bit mode */
491	clear_thread_flag(TIF_IA32);
492	clear_thread_flag(TIF_ADDR32);
493	clear_thread_flag(TIF_X32);
494
495	/* Ensure the corresponding mm is not marked. */
496	if (current->mm)
497		current->mm->context.ia32_compat = 0;
498
499	/* TBD: overwrites user setup. Should have two bits.
500	   But 64bit processes have always behaved this way,
501	   so it's not too bad. The main problem is just that
502	   32bit childs are affected again. */
503	current->personality &= ~READ_IMPLIES_EXEC;
504}
505
506void set_personality_ia32(bool x32)
507{
508	/* inherit personality from parent */
 
 
509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510	/* Make sure to be in 32bit mode */
511	set_thread_flag(TIF_ADDR32);
512
513	/* Mark the associated mm as containing 32-bit tasks. */
514	if (x32) {
515		clear_thread_flag(TIF_IA32);
516		set_thread_flag(TIF_X32);
517		if (current->mm)
518			current->mm->context.ia32_compat = TIF_X32;
519		current->personality &= ~READ_IMPLIES_EXEC;
520		/* in_compat_syscall() uses the presence of the x32
521		   syscall bit flag to determine compat status */
522		current->thread.status &= ~TS_COMPAT;
523	} else {
524		set_thread_flag(TIF_IA32);
525		clear_thread_flag(TIF_X32);
526		if (current->mm)
527			current->mm->context.ia32_compat = TIF_IA32;
528		current->personality |= force_personality32;
529		/* Prepare the first "return" to user space */
530		current->thread.status |= TS_COMPAT;
531	}
532}
533EXPORT_SYMBOL_GPL(set_personality_ia32);
534
535#ifdef CONFIG_CHECKPOINT_RESTORE
536static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
537{
538	int ret;
539
540	ret = map_vdso_once(image, addr);
541	if (ret)
542		return ret;
543
544	return (long)image->size;
545}
546#endif
547
548long do_arch_prctl(struct task_struct *task, int code, unsigned long addr)
549{
550	int ret = 0;
551	int doit = task == current;
552	int cpu;
553
554	switch (code) {
555	case ARCH_SET_GS:
556		if (addr >= TASK_SIZE_MAX)
557			return -EPERM;
558		cpu = get_cpu();
559		task->thread.gsindex = 0;
560		task->thread.gsbase = addr;
561		if (doit) {
562			load_gs_index(0);
563			ret = wrmsrl_safe(MSR_KERNEL_GS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
564		}
565		put_cpu();
566		break;
567	case ARCH_SET_FS:
568		/* Not strictly needed for fs, but do it for symmetry
569		   with gs */
570		if (addr >= TASK_SIZE_MAX)
 
 
 
571			return -EPERM;
572		cpu = get_cpu();
573		task->thread.fsindex = 0;
574		task->thread.fsbase = addr;
575		if (doit) {
576			/* set the selector to 0 to not confuse __switch_to */
577			loadsegment(fs, 0);
578			ret = wrmsrl_safe(MSR_FS_BASE, addr);
 
 
 
 
 
 
 
 
 
 
 
579		}
580		put_cpu();
581		break;
 
582	case ARCH_GET_FS: {
583		unsigned long base;
584		if (doit)
585			rdmsrl(MSR_FS_BASE, base);
586		else
587			base = task->thread.fsbase;
588		ret = put_user(base, (unsigned long __user *)addr);
589		break;
590	}
591	case ARCH_GET_GS: {
592		unsigned long base;
593		if (doit)
594			rdmsrl(MSR_KERNEL_GS_BASE, base);
595		else
596			base = task->thread.gsbase;
597		ret = put_user(base, (unsigned long __user *)addr);
598		break;
599	}
600
601#ifdef CONFIG_CHECKPOINT_RESTORE
602# ifdef CONFIG_X86_X32_ABI
603	case ARCH_MAP_VDSO_X32:
604		return prctl_map_vdso(&vdso_image_x32, addr);
605# endif
606# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
607	case ARCH_MAP_VDSO_32:
608		return prctl_map_vdso(&vdso_image_32, addr);
609# endif
610	case ARCH_MAP_VDSO_64:
611		return prctl_map_vdso(&vdso_image_64, addr);
612#endif
613
614	default:
615		ret = -EINVAL;
616		break;
617	}
618
619	return ret;
620}
621
622long sys_arch_prctl(int code, unsigned long addr)
 
 
 
 
 
 
 
 
 
 
 
 
623{
624	return do_arch_prctl(current, code, addr);
625}
 
626
627unsigned long KSTK_ESP(struct task_struct *task)
628{
629	return task_pt_regs(task)->sp;
630}
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 *  Copyright (C) 1995  Linus Torvalds
  4 *
  5 *  Pentium III FXSR, SSE support
  6 *	Gareth Hughes <gareth@valinux.com>, May 2000
  7 *
  8 *  X86-64 port
  9 *	Andi Kleen.
 10 *
 11 *	CPU hotplug support - ashok.raj@intel.com
 12 */
 13
 14/*
 15 * This file handles the architecture-dependent parts of process handling..
 16 */
 17
 18#include <linux/cpu.h>
 19#include <linux/errno.h>
 20#include <linux/sched.h>
 21#include <linux/sched/task.h>
 22#include <linux/sched/task_stack.h>
 23#include <linux/fs.h>
 24#include <linux/kernel.h>
 25#include <linux/mm.h>
 26#include <linux/elfcore.h>
 27#include <linux/smp.h>
 28#include <linux/slab.h>
 29#include <linux/user.h>
 30#include <linux/interrupt.h>
 31#include <linux/delay.h>
 32#include <linux/export.h>
 33#include <linux/ptrace.h>
 34#include <linux/notifier.h>
 35#include <linux/kprobes.h>
 36#include <linux/kdebug.h>
 37#include <linux/prctl.h>
 38#include <linux/uaccess.h>
 39#include <linux/io.h>
 40#include <linux/ftrace.h>
 41#include <linux/syscalls.h>
 42
 
 43#include <asm/processor.h>
 44#include <asm/pkru.h>
 45#include <asm/fpu/sched.h>
 46#include <asm/mmu_context.h>
 47#include <asm/prctl.h>
 48#include <asm/desc.h>
 49#include <asm/proto.h>
 50#include <asm/ia32.h>
 
 51#include <asm/debugreg.h>
 52#include <asm/switch_to.h>
 53#include <asm/xen/hypervisor.h>
 54#include <asm/vdso.h>
 55#include <asm/resctrl.h>
 56#include <asm/unistd.h>
 57#include <asm/fsgsbase.h>
 58#ifdef CONFIG_IA32_EMULATION
 59/* Not included via unistd.h */
 60#include <asm/unistd_32_ia32.h>
 61#endif
 62
 63#include "process.h"
 64
 65/* Prints also some state that isn't saved in the pt_regs */
 66void __show_regs(struct pt_regs *regs, enum show_regs_mode mode,
 67		 const char *log_lvl)
 68{
 69	unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L, fs, gs, shadowgs;
 70	unsigned long d0, d1, d2, d3, d6, d7;
 71	unsigned int fsindex, gsindex;
 72	unsigned int ds, es;
 73
 74	show_iret_regs(regs, log_lvl);
 75
 
 
 
 
 76	if (regs->orig_ax != -1)
 77		pr_cont(" ORIG_RAX: %016lx\n", regs->orig_ax);
 78	else
 79		pr_cont("\n");
 80
 81	printk("%sRAX: %016lx RBX: %016lx RCX: %016lx\n",
 82	       log_lvl, regs->ax, regs->bx, regs->cx);
 83	printk("%sRDX: %016lx RSI: %016lx RDI: %016lx\n",
 84	       log_lvl, regs->dx, regs->si, regs->di);
 85	printk("%sRBP: %016lx R08: %016lx R09: %016lx\n",
 86	       log_lvl, regs->bp, regs->r8, regs->r9);
 87	printk("%sR10: %016lx R11: %016lx R12: %016lx\n",
 88	       log_lvl, regs->r10, regs->r11, regs->r12);
 89	printk("%sR13: %016lx R14: %016lx R15: %016lx\n",
 90	       log_lvl, regs->r13, regs->r14, regs->r15);
 91
 92	if (mode == SHOW_REGS_SHORT)
 93		return;
 94
 95	if (mode == SHOW_REGS_USER) {
 96		rdmsrl(MSR_FS_BASE, fs);
 97		rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
 98		printk("%sFS:  %016lx GS:  %016lx\n",
 99		       log_lvl, fs, shadowgs);
100		return;
101	}
102
103	asm("movl %%ds,%0" : "=r" (ds));
 
104	asm("movl %%es,%0" : "=r" (es));
105	asm("movl %%fs,%0" : "=r" (fsindex));
106	asm("movl %%gs,%0" : "=r" (gsindex));
107
108	rdmsrl(MSR_FS_BASE, fs);
109	rdmsrl(MSR_GS_BASE, gs);
110	rdmsrl(MSR_KERNEL_GS_BASE, shadowgs);
111
 
 
 
112	cr0 = read_cr0();
113	cr2 = read_cr2();
114	cr3 = __read_cr3();
115	cr4 = __read_cr4();
116
117	printk("%sFS:  %016lx(%04x) GS:%016lx(%04x) knlGS:%016lx\n",
118	       log_lvl, fs, fsindex, gs, gsindex, shadowgs);
119	printk("%sCS:  %04lx DS: %04x ES: %04x CR0: %016lx\n",
120		log_lvl, regs->cs, ds, es, cr0);
121	printk("%sCR2: %016lx CR3: %016lx CR4: %016lx\n",
122		log_lvl, cr2, cr3, cr4);
123
124	get_debugreg(d0, 0);
125	get_debugreg(d1, 1);
126	get_debugreg(d2, 2);
127	get_debugreg(d3, 3);
128	get_debugreg(d6, 6);
129	get_debugreg(d7, 7);
130
131	/* Only print out debug registers if they are in their non-default state. */
132	if (!((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
133	    (d6 == DR6_RESERVED) && (d7 == 0x400))) {
134		printk("%sDR0: %016lx DR1: %016lx DR2: %016lx\n",
135		       log_lvl, d0, d1, d2);
136		printk("%sDR3: %016lx DR6: %016lx DR7: %016lx\n",
137		       log_lvl, d3, d6, d7);
138	}
139
140	if (cpu_feature_enabled(X86_FEATURE_OSPKE))
141		printk("%sPKRU: %08x\n", log_lvl, read_pkru());
142}
143
144void release_thread(struct task_struct *dead_task)
145{
146	WARN_ON(dead_task->mm);
147}
148
149enum which_selector {
150	FS,
151	GS
152};
153
154/*
155 * Out of line to be protected from kprobes and tracing. If this would be
156 * traced or probed than any access to a per CPU variable happens with
157 * the wrong GS.
158 *
159 * It is not used on Xen paravirt. When paravirt support is needed, it
160 * needs to be renamed with native_ prefix.
161 */
162static noinstr unsigned long __rdgsbase_inactive(void)
163{
164	unsigned long gsbase;
165
166	lockdep_assert_irqs_disabled();
167
168	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
169		native_swapgs();
170		gsbase = rdgsbase();
171		native_swapgs();
172	} else {
173		instrumentation_begin();
174		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
175		instrumentation_end();
176	}
177
178	return gsbase;
179}
180
181/*
182 * Out of line to be protected from kprobes and tracing. If this would be
183 * traced or probed than any access to a per CPU variable happens with
184 * the wrong GS.
185 *
186 * It is not used on Xen paravirt. When paravirt support is needed, it
187 * needs to be renamed with native_ prefix.
188 */
189static noinstr void __wrgsbase_inactive(unsigned long gsbase)
190{
191	lockdep_assert_irqs_disabled();
192
193	if (!cpu_feature_enabled(X86_FEATURE_XENPV)) {
194		native_swapgs();
195		wrgsbase(gsbase);
196		native_swapgs();
197	} else {
198		instrumentation_begin();
199		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
200		instrumentation_end();
201	}
202}
203
204/*
205 * Saves the FS or GS base for an outgoing thread if FSGSBASE extensions are
206 * not available.  The goal is to be reasonably fast on non-FSGSBASE systems.
207 * It's forcibly inlined because it'll generate better code and this function
208 * is hot.
209 */
210static __always_inline void save_base_legacy(struct task_struct *prev_p,
211					     unsigned short selector,
212					     enum which_selector which)
213{
214	if (likely(selector == 0)) {
215		/*
216		 * On Intel (without X86_BUG_NULL_SEG), the segment base could
217		 * be the pre-existing saved base or it could be zero.  On AMD
218		 * (with X86_BUG_NULL_SEG), the segment base could be almost
219		 * anything.
220		 *
221		 * This branch is very hot (it's hit twice on almost every
222		 * context switch between 64-bit programs), and avoiding
223		 * the RDMSR helps a lot, so we just assume that whatever
224		 * value is already saved is correct.  This matches historical
225		 * Linux behavior, so it won't break existing applications.
226		 *
227		 * To avoid leaking state, on non-X86_BUG_NULL_SEG CPUs, if we
228		 * report that the base is zero, it needs to actually be zero:
229		 * see the corresponding logic in load_seg_legacy.
230		 */
231	} else {
232		/*
233		 * If the selector is 1, 2, or 3, then the base is zero on
234		 * !X86_BUG_NULL_SEG CPUs and could be anything on
235		 * X86_BUG_NULL_SEG CPUs.  In the latter case, Linux
236		 * has never attempted to preserve the base across context
237		 * switches.
238		 *
239		 * If selector > 3, then it refers to a real segment, and
240		 * saving the base isn't necessary.
241		 */
242		if (which == FS)
243			prev_p->thread.fsbase = 0;
244		else
245			prev_p->thread.gsbase = 0;
246	}
247}
248
249static __always_inline void save_fsgs(struct task_struct *task)
250{
251	savesegment(fs, task->thread.fsindex);
252	savesegment(gs, task->thread.gsindex);
253	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
254		/*
255		 * If FSGSBASE is enabled, we can't make any useful guesses
256		 * about the base, and user code expects us to save the current
257		 * value.  Fortunately, reading the base directly is efficient.
258		 */
259		task->thread.fsbase = rdfsbase();
260		task->thread.gsbase = __rdgsbase_inactive();
261	} else {
262		save_base_legacy(task, task->thread.fsindex, FS);
263		save_base_legacy(task, task->thread.gsindex, GS);
264	}
265}
266
267/*
268 * While a process is running,current->thread.fsbase and current->thread.gsbase
269 * may not match the corresponding CPU registers (see save_base_legacy()).
270 */
271void current_save_fsgs(void)
272{
273	unsigned long flags;
274
275	/* Interrupts need to be off for FSGSBASE */
276	local_irq_save(flags);
277	save_fsgs(current);
278	local_irq_restore(flags);
279}
280#if IS_ENABLED(CONFIG_KVM)
281EXPORT_SYMBOL_GPL(current_save_fsgs);
282#endif
283
284static __always_inline void loadseg(enum which_selector which,
285				    unsigned short sel)
286{
287	if (which == FS)
288		loadsegment(fs, sel);
289	else
290		load_gs_index(sel);
291}
292
293static __always_inline void load_seg_legacy(unsigned short prev_index,
294					    unsigned long prev_base,
295					    unsigned short next_index,
296					    unsigned long next_base,
297					    enum which_selector which)
298{
299	if (likely(next_index <= 3)) {
300		/*
301		 * The next task is using 64-bit TLS, is not using this
302		 * segment at all, or is having fun with arcane CPU features.
303		 */
304		if (next_base == 0) {
305			/*
306			 * Nasty case: on AMD CPUs, we need to forcibly zero
307			 * the base.
308			 */
309			if (static_cpu_has_bug(X86_BUG_NULL_SEG)) {
310				loadseg(which, __USER_DS);
311				loadseg(which, next_index);
312			} else {
313				/*
314				 * We could try to exhaustively detect cases
315				 * under which we can skip the segment load,
316				 * but there's really only one case that matters
317				 * for performance: if both the previous and
318				 * next states are fully zeroed, we can skip
319				 * the load.
320				 *
321				 * (This assumes that prev_base == 0 has no
322				 * false positives.  This is the case on
323				 * Intel-style CPUs.)
324				 */
325				if (likely(prev_index | next_index | prev_base))
326					loadseg(which, next_index);
327			}
328		} else {
329			if (prev_index != next_index)
330				loadseg(which, next_index);
331			wrmsrl(which == FS ? MSR_FS_BASE : MSR_KERNEL_GS_BASE,
332			       next_base);
333		}
334	} else {
335		/*
336		 * The next task is using a real segment.  Loading the selector
337		 * is sufficient.
338		 */
339		loadseg(which, next_index);
340	}
341}
342
343/*
344 * Store prev's PKRU value and load next's PKRU value if they differ. PKRU
345 * is not XSTATE managed on context switch because that would require a
346 * lookup in the task's FPU xsave buffer and require to keep that updated
347 * in various places.
348 */
349static __always_inline void x86_pkru_load(struct thread_struct *prev,
350					  struct thread_struct *next)
351{
352	if (!cpu_feature_enabled(X86_FEATURE_OSPKE))
353		return;
354
355	/* Stash the prev task's value: */
356	prev->pkru = rdpkru();
357
358	/*
359	 * PKRU writes are slightly expensive.  Avoid them when not
360	 * strictly necessary:
361	 */
362	if (prev->pkru != next->pkru)
363		wrpkru(next->pkru);
364}
365
366static __always_inline void x86_fsgsbase_load(struct thread_struct *prev,
367					      struct thread_struct *next)
368{
369	if (static_cpu_has(X86_FEATURE_FSGSBASE)) {
370		/* Update the FS and GS selectors if they could have changed. */
371		if (unlikely(prev->fsindex || next->fsindex))
372			loadseg(FS, next->fsindex);
373		if (unlikely(prev->gsindex || next->gsindex))
374			loadseg(GS, next->gsindex);
375
376		/* Update the bases. */
377		wrfsbase(next->fsbase);
378		__wrgsbase_inactive(next->gsbase);
379	} else {
380		load_seg_legacy(prev->fsindex, prev->fsbase,
381				next->fsindex, next->fsbase, FS);
382		load_seg_legacy(prev->gsindex, prev->gsbase,
383				next->gsindex, next->gsbase, GS);
384	}
385}
386
387unsigned long x86_fsgsbase_read_task(struct task_struct *task,
388				     unsigned short selector)
389{
390	unsigned short idx = selector >> 3;
391	unsigned long base;
392
393	if (likely((selector & SEGMENT_TI_MASK) == 0)) {
394		if (unlikely(idx >= GDT_ENTRIES))
395			return 0;
396
397		/*
398		 * There are no user segments in the GDT with nonzero bases
399		 * other than the TLS segments.
400		 */
401		if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
402			return 0;
403
404		idx -= GDT_ENTRY_TLS_MIN;
405		base = get_desc_base(&task->thread.tls_array[idx]);
406	} else {
407#ifdef CONFIG_MODIFY_LDT_SYSCALL
408		struct ldt_struct *ldt;
409
410		/*
411		 * If performance here mattered, we could protect the LDT
412		 * with RCU.  This is a slow path, though, so we can just
413		 * take the mutex.
414		 */
415		mutex_lock(&task->mm->context.lock);
416		ldt = task->mm->context.ldt;
417		if (unlikely(!ldt || idx >= ldt->nr_entries))
418			base = 0;
419		else
420			base = get_desc_base(ldt->entries + idx);
421		mutex_unlock(&task->mm->context.lock);
422#else
423		base = 0;
424#endif
 
 
 
 
 
 
 
 
 
425	}
426
427	return base;
428}
429
430unsigned long x86_gsbase_read_cpu_inactive(void)
431{
432	unsigned long gsbase;
433
434	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
435		unsigned long flags;
436
437		local_irq_save(flags);
438		gsbase = __rdgsbase_inactive();
439		local_irq_restore(flags);
440	} else {
441		rdmsrl(MSR_KERNEL_GS_BASE, gsbase);
442	}
443
444	return gsbase;
445}
446
447void x86_gsbase_write_cpu_inactive(unsigned long gsbase)
448{
449	if (boot_cpu_has(X86_FEATURE_FSGSBASE)) {
450		unsigned long flags;
451
452		local_irq_save(flags);
453		__wrgsbase_inactive(gsbase);
454		local_irq_restore(flags);
455	} else {
456		wrmsrl(MSR_KERNEL_GS_BASE, gsbase);
457	}
458}
459
460unsigned long x86_fsbase_read_task(struct task_struct *task)
461{
462	unsigned long fsbase;
463
464	if (task == current)
465		fsbase = x86_fsbase_read_cpu();
466	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
467		 (task->thread.fsindex == 0))
468		fsbase = task->thread.fsbase;
469	else
470		fsbase = x86_fsgsbase_read_task(task, task->thread.fsindex);
471
472	return fsbase;
473}
474
475unsigned long x86_gsbase_read_task(struct task_struct *task)
476{
477	unsigned long gsbase;
478
479	if (task == current)
480		gsbase = x86_gsbase_read_cpu_inactive();
481	else if (boot_cpu_has(X86_FEATURE_FSGSBASE) ||
482		 (task->thread.gsindex == 0))
483		gsbase = task->thread.gsbase;
484	else
485		gsbase = x86_fsgsbase_read_task(task, task->thread.gsindex);
486
487	return gsbase;
488}
489
490void x86_fsbase_write_task(struct task_struct *task, unsigned long fsbase)
491{
492	WARN_ON_ONCE(task == current);
493
494	task->thread.fsbase = fsbase;
495}
496
497void x86_gsbase_write_task(struct task_struct *task, unsigned long gsbase)
498{
499	WARN_ON_ONCE(task == current);
500
501	task->thread.gsbase = gsbase;
502}
503
504static void
505start_thread_common(struct pt_regs *regs, unsigned long new_ip,
506		    unsigned long new_sp,
507		    unsigned int _cs, unsigned int _ss, unsigned int _ds)
508{
509	WARN_ON_ONCE(regs != current_pt_regs());
510
511	if (static_cpu_has(X86_BUG_NULL_SEG)) {
512		/* Loading zero below won't clear the base. */
513		loadsegment(fs, __USER_DS);
514		load_gs_index(__USER_DS);
515	}
516
517	loadsegment(fs, 0);
518	loadsegment(es, _ds);
519	loadsegment(ds, _ds);
520	load_gs_index(0);
521
522	regs->ip		= new_ip;
523	regs->sp		= new_sp;
524	regs->cs		= _cs;
525	regs->ss		= _ss;
526	regs->flags		= X86_EFLAGS_IF;
 
527}
528
529void
530start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
531{
532	start_thread_common(regs, new_ip, new_sp,
533			    __USER_CS, __USER_DS, 0);
534}
535EXPORT_SYMBOL_GPL(start_thread);
536
537#ifdef CONFIG_COMPAT
538void compat_start_thread(struct pt_regs *regs, u32 new_ip, u32 new_sp, bool x32)
539{
540	start_thread_common(regs, new_ip, new_sp,
541			    x32 ? __USER_CS : __USER32_CS,
 
542			    __USER_DS, __USER_DS);
543}
544#endif
545
546/*
547 *	switch_to(x,y) should switch tasks from x to y.
548 *
549 * This could still be optimized:
550 * - fold all the options into a flag word and test it with a single test.
551 * - could test fs/gs bitsliced
552 *
553 * Kprobes not supported here. Set the probe on schedule instead.
554 * Function graph tracer not supported too.
555 */
556__no_kmsan_checks
557__visible __notrace_funcgraph struct task_struct *
558__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
559{
560	struct thread_struct *prev = &prev_p->thread;
561	struct thread_struct *next = &next_p->thread;
562	struct fpu *prev_fpu = &prev->fpu;
 
563	int cpu = smp_processor_id();
 
 
564
565	WARN_ON_ONCE(IS_ENABLED(CONFIG_DEBUG_ENTRY) &&
566		     this_cpu_read(pcpu_hot.hardirq_stack_inuse));
567
568	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
569		switch_fpu_prepare(prev_fpu, cpu);
570
571	/* We must save %fs and %gs before load_TLS() because
572	 * %fs and %gs may be cleared by load_TLS().
573	 *
574	 * (e.g. xen_load_tls())
575	 */
576	save_fsgs(prev_p);
 
577
578	/*
579	 * Load TLS before restoring any segments so that segment loads
580	 * reference the correct GDT entries.
581	 */
582	load_TLS(next, cpu);
583
584	/*
585	 * Leave lazy mode, flushing any hypercalls made here.  This
586	 * must be done after loading TLS entries in the GDT but before
587	 * loading segments that might reference them.
 
 
588	 */
589	arch_end_context_switch(next_p);
590
591	/* Switch DS and ES.
592	 *
593	 * Reading them only returns the selectors, but writing them (if
594	 * nonzero) loads the full descriptor from the GDT or LDT.  The
595	 * LDT for next is loaded in switch_mm, and the GDT is loaded
596	 * above.
597	 *
598	 * We therefore need to write new values to the segment
599	 * registers on every context switch unless both the new and old
600	 * values are zero.
601	 *
602	 * Note that we don't need to do anything for CS and SS, as
603	 * those are saved and restored as part of pt_regs.
604	 */
605	savesegment(es, prev->es);
606	if (unlikely(next->es | prev->es))
607		loadsegment(es, next->es);
608
609	savesegment(ds, prev->ds);
610	if (unlikely(next->ds | prev->ds))
611		loadsegment(ds, next->ds);
612
613	x86_fsgsbase_load(prev, next);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
614
615	x86_pkru_load(prev, next);
616
617	/*
618	 * Switch the PDA and FPU contexts.
619	 */
620	raw_cpu_write(pcpu_hot.current_task, next_p);
621	raw_cpu_write(pcpu_hot.top_of_stack, task_top_of_stack(next_p));
622
623	switch_fpu_finish();
 
624
625	/* Reload sp0. */
626	update_task_stack(next_p);
 
 
 
 
627
628	switch_to_extra(prev_p, next_p);
 
 
 
 
 
 
 
 
 
629
630	if (static_cpu_has_bug(X86_BUG_SYSRET_SS_ATTRS)) {
631		/*
632		 * AMD CPUs have a misfeature: SYSRET sets the SS selector but
633		 * does not update the cached descriptor.  As a result, if we
634		 * do SYSRET while SS is NULL, we'll end up in user mode with
635		 * SS apparently equal to __USER_DS but actually unusable.
636		 *
637		 * The straightforward workaround would be to fix it up just
638		 * before SYSRET, but that would slow down the system call
639		 * fast paths.  Instead, we ensure that SS is never NULL in
640		 * system call context.  We do this by replacing NULL SS
641		 * selectors at every context switch.  SYSCALL sets up a valid
642		 * SS, so the only way to get NULL is to re-enter the kernel
643		 * from CPL 3 through an interrupt.  Since that can't happen
644		 * in the same task as a running syscall, we are guaranteed to
645		 * context switch between every interrupt vector entry and a
646		 * subsequent SYSRET.
647		 *
648		 * We read SS first because SS reads are much faster than
649		 * writes.  Out of caution, we force SS to __KERNEL_DS even if
650		 * it previously had a different non-NULL value.
651		 */
652		unsigned short ss_sel;
653		savesegment(ss, ss_sel);
654		if (ss_sel != __KERNEL_DS)
655			loadsegment(ss, __KERNEL_DS);
656	}
657
658	/* Load the Intel cache allocation PQR MSR. */
659	resctrl_sched_in();
660
661	return prev_p;
662}
663
664void set_personality_64bit(void)
665{
666	/* inherit personality from parent */
667
668	/* Make sure to be in 64bit mode */
 
669	clear_thread_flag(TIF_ADDR32);
670	/* Pretend that this comes from a 64bit execve */
671	task_pt_regs(current)->orig_ax = __NR_execve;
672	current_thread_info()->status &= ~TS_COMPAT;
673	if (current->mm)
674		current->mm->context.flags = MM_CONTEXT_HAS_VSYSCALL;
675
676	/* TBD: overwrites user setup. Should have two bits.
677	   But 64bit processes have always behaved this way,
678	   so it's not too bad. The main problem is just that
679	   32bit children are affected again. */
680	current->personality &= ~READ_IMPLIES_EXEC;
681}
682
683static void __set_personality_x32(void)
684{
685#ifdef CONFIG_X86_X32_ABI
686	if (current->mm)
687		current->mm->context.flags = 0;
688
689	current->personality &= ~READ_IMPLIES_EXEC;
690	/*
691	 * in_32bit_syscall() uses the presence of the x32 syscall bit
692	 * flag to determine compat status.  The x86 mmap() code relies on
693	 * the syscall bitness so set x32 syscall bit right here to make
694	 * in_32bit_syscall() work during exec().
695	 *
696	 * Pretend to come from a x32 execve.
697	 */
698	task_pt_regs(current)->orig_ax = __NR_x32_execve | __X32_SYSCALL_BIT;
699	current_thread_info()->status &= ~TS_COMPAT;
700#endif
701}
702
703static void __set_personality_ia32(void)
704{
705#ifdef CONFIG_IA32_EMULATION
706	if (current->mm) {
707		/*
708		 * uprobes applied to this MM need to know this and
709		 * cannot use user_64bit_mode() at that time.
710		 */
711		current->mm->context.flags = MM_CONTEXT_UPROBE_IA32;
712	}
713
714	current->personality |= force_personality32;
715	/* Prepare the first "return" to user space */
716	task_pt_regs(current)->orig_ax = __NR_ia32_execve;
717	current_thread_info()->status |= TS_COMPAT;
718#endif
719}
720
721void set_personality_ia32(bool x32)
722{
723	/* Make sure to be in 32bit mode */
724	set_thread_flag(TIF_ADDR32);
725
726	if (x32)
727		__set_personality_x32();
728	else
729		__set_personality_ia32();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
730}
731EXPORT_SYMBOL_GPL(set_personality_ia32);
732
733#ifdef CONFIG_CHECKPOINT_RESTORE
734static long prctl_map_vdso(const struct vdso_image *image, unsigned long addr)
735{
736	int ret;
737
738	ret = map_vdso_once(image, addr);
739	if (ret)
740		return ret;
741
742	return (long)image->size;
743}
744#endif
745
746long do_arch_prctl_64(struct task_struct *task, int option, unsigned long arg2)
747{
748	int ret = 0;
 
 
749
750	switch (option) {
751	case ARCH_SET_GS: {
752		if (unlikely(arg2 >= TASK_SIZE_MAX))
753			return -EPERM;
754
755		preempt_disable();
756		/*
757		 * ARCH_SET_GS has always overwritten the index
758		 * and the base. Zero is the most sensible value
759		 * to put in the index, and is the only value that
760		 * makes any sense if FSGSBASE is unavailable.
761		 */
762		if (task == current) {
763			loadseg(GS, 0);
764			x86_gsbase_write_cpu_inactive(arg2);
765
766			/*
767			 * On non-FSGSBASE systems, save_base_legacy() expects
768			 * that we also fill in thread.gsbase.
769			 */
770			task->thread.gsbase = arg2;
771
772		} else {
773			task->thread.gsindex = 0;
774			x86_gsbase_write_task(task, arg2);
775		}
776		preempt_enable();
777		break;
778	}
779	case ARCH_SET_FS: {
780		/*
781		 * Not strictly needed for %fs, but do it for symmetry
782		 * with %gs
783		 */
784		if (unlikely(arg2 >= TASK_SIZE_MAX))
785			return -EPERM;
786
787		preempt_disable();
788		/*
789		 * Set the selector to 0 for the same reason
790		 * as %gs above.
791		 */
792		if (task == current) {
793			loadseg(FS, 0);
794			x86_fsbase_write_cpu(arg2);
795
796			/*
797			 * On non-FSGSBASE systems, save_base_legacy() expects
798			 * that we also fill in thread.fsbase.
799			 */
800			task->thread.fsbase = arg2;
801		} else {
802			task->thread.fsindex = 0;
803			x86_fsbase_write_task(task, arg2);
804		}
805		preempt_enable();
806		break;
807	}
808	case ARCH_GET_FS: {
809		unsigned long base = x86_fsbase_read_task(task);
810
811		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
812		break;
813	}
814	case ARCH_GET_GS: {
815		unsigned long base = x86_gsbase_read_task(task);
816
817		ret = put_user(base, (unsigned long __user *)arg2);
 
 
 
818		break;
819	}
820
821#ifdef CONFIG_CHECKPOINT_RESTORE
822# ifdef CONFIG_X86_X32_ABI
823	case ARCH_MAP_VDSO_X32:
824		return prctl_map_vdso(&vdso_image_x32, arg2);
825# endif
826# if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
827	case ARCH_MAP_VDSO_32:
828		return prctl_map_vdso(&vdso_image_32, arg2);
829# endif
830	case ARCH_MAP_VDSO_64:
831		return prctl_map_vdso(&vdso_image_64, arg2);
832#endif
833
834	default:
835		ret = -EINVAL;
836		break;
837	}
838
839	return ret;
840}
841
842SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
843{
844	long ret;
845
846	ret = do_arch_prctl_64(current, option, arg2);
847	if (ret == -EINVAL)
848		ret = do_arch_prctl_common(option, arg2);
849
850	return ret;
851}
852
853#ifdef CONFIG_IA32_EMULATION
854COMPAT_SYSCALL_DEFINE2(arch_prctl, int, option, unsigned long, arg2)
855{
856	return do_arch_prctl_common(option, arg2);
857}
858#endif
859
860unsigned long KSTK_ESP(struct task_struct *task)
861{
862	return task_pt_regs(task)->sp;
863}