Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/trace_events.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
  24#include <linux/file.h>
  25#include <linux/fs.h>
  26#include <linux/sysfs.h>
  27#include <linux/kernel.h>
  28#include <linux/slab.h>
  29#include <linux/vmalloc.h>
  30#include <linux/elf.h>
  31#include <linux/proc_fs.h>
  32#include <linux/security.h>
  33#include <linux/seq_file.h>
  34#include <linux/syscalls.h>
  35#include <linux/fcntl.h>
  36#include <linux/rcupdate.h>
  37#include <linux/capability.h>
  38#include <linux/cpu.h>
  39#include <linux/moduleparam.h>
  40#include <linux/errno.h>
  41#include <linux/err.h>
  42#include <linux/vermagic.h>
  43#include <linux/notifier.h>
  44#include <linux/sched.h>
 
  45#include <linux/device.h>
  46#include <linux/string.h>
  47#include <linux/mutex.h>
  48#include <linux/rculist.h>
  49#include <linux/uaccess.h>
  50#include <asm/cacheflush.h>
  51#include <asm/mmu_context.h>
  52#include <linux/license.h>
  53#include <asm/sections.h>
  54#include <linux/tracepoint.h>
  55#include <linux/ftrace.h>
  56#include <linux/livepatch.h>
  57#include <linux/async.h>
  58#include <linux/percpu.h>
  59#include <linux/kmemleak.h>
  60#include <linux/jump_label.h>
  61#include <linux/pfn.h>
  62#include <linux/bsearch.h>
  63#include <linux/dynamic_debug.h>
  64#include <uapi/linux/module.h>
  65#include "module-internal.h"
  66
  67#define CREATE_TRACE_POINTS
  68#include <trace/events/module.h>
  69
  70#ifndef ARCH_SHF_SMALL
  71#define ARCH_SHF_SMALL 0
  72#endif
  73
  74/*
  75 * Modules' sections will be aligned on page boundaries
  76 * to ensure complete separation of code and data, but
  77 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  78 */
  79#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  80# define debug_align(X) ALIGN(X, PAGE_SIZE)
  81#else
  82# define debug_align(X) (X)
  83#endif
  84
 
 
 
 
 
 
 
 
 
  85/* If this is set, the section belongs in the init part of the module */
  86#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  87
  88/*
  89 * Mutex protects:
  90 * 1) List of modules (also safely readable with preempt_disable),
  91 * 2) module_use links,
  92 * 3) module_addr_min/module_addr_max.
  93 * (delete and add uses RCU list operations). */
  94DEFINE_MUTEX(module_mutex);
  95EXPORT_SYMBOL_GPL(module_mutex);
  96static LIST_HEAD(modules);
  97
  98#ifdef CONFIG_MODULES_TREE_LOOKUP
  99
 100/*
 101 * Use a latched RB-tree for __module_address(); this allows us to use
 102 * RCU-sched lookups of the address from any context.
 103 *
 104 * This is conditional on PERF_EVENTS || TRACING because those can really hit
 105 * __module_address() hard by doing a lot of stack unwinding; potentially from
 106 * NMI context.
 107 */
 108
 109static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
 110{
 111	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 112
 113	return (unsigned long)layout->base;
 114}
 115
 116static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
 117{
 118	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
 119
 120	return (unsigned long)layout->size;
 121}
 122
 123static __always_inline bool
 124mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
 125{
 126	return __mod_tree_val(a) < __mod_tree_val(b);
 127}
 128
 129static __always_inline int
 130mod_tree_comp(void *key, struct latch_tree_node *n)
 131{
 132	unsigned long val = (unsigned long)key;
 133	unsigned long start, end;
 134
 135	start = __mod_tree_val(n);
 136	if (val < start)
 137		return -1;
 138
 139	end = start + __mod_tree_size(n);
 140	if (val >= end)
 141		return 1;
 142
 143	return 0;
 144}
 145
 146static const struct latch_tree_ops mod_tree_ops = {
 147	.less = mod_tree_less,
 148	.comp = mod_tree_comp,
 149};
 150
 151static struct mod_tree_root {
 152	struct latch_tree_root root;
 153	unsigned long addr_min;
 154	unsigned long addr_max;
 155} mod_tree __cacheline_aligned = {
 156	.addr_min = -1UL,
 157};
 158
 159#define module_addr_min mod_tree.addr_min
 160#define module_addr_max mod_tree.addr_max
 161
 162static noinline void __mod_tree_insert(struct mod_tree_node *node)
 163{
 164	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
 165}
 166
 167static void __mod_tree_remove(struct mod_tree_node *node)
 168{
 169	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
 170}
 171
 172/*
 173 * These modifications: insert, remove_init and remove; are serialized by the
 174 * module_mutex.
 175 */
 176static void mod_tree_insert(struct module *mod)
 177{
 178	mod->core_layout.mtn.mod = mod;
 179	mod->init_layout.mtn.mod = mod;
 180
 181	__mod_tree_insert(&mod->core_layout.mtn);
 182	if (mod->init_layout.size)
 183		__mod_tree_insert(&mod->init_layout.mtn);
 184}
 185
 186static void mod_tree_remove_init(struct module *mod)
 187{
 188	if (mod->init_layout.size)
 189		__mod_tree_remove(&mod->init_layout.mtn);
 190}
 191
 192static void mod_tree_remove(struct module *mod)
 193{
 194	__mod_tree_remove(&mod->core_layout.mtn);
 195	mod_tree_remove_init(mod);
 196}
 197
 198static struct module *mod_find(unsigned long addr)
 199{
 200	struct latch_tree_node *ltn;
 201
 202	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
 203	if (!ltn)
 204		return NULL;
 205
 206	return container_of(ltn, struct mod_tree_node, node)->mod;
 207}
 208
 209#else /* MODULES_TREE_LOOKUP */
 210
 211static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 212
 213static void mod_tree_insert(struct module *mod) { }
 214static void mod_tree_remove_init(struct module *mod) { }
 215static void mod_tree_remove(struct module *mod) { }
 216
 217static struct module *mod_find(unsigned long addr)
 218{
 219	struct module *mod;
 220
 221	list_for_each_entry_rcu(mod, &modules, list) {
 222		if (within_module(addr, mod))
 223			return mod;
 224	}
 225
 226	return NULL;
 227}
 228
 229#endif /* MODULES_TREE_LOOKUP */
 230
 231/*
 232 * Bounds of module text, for speeding up __module_address.
 233 * Protected by module_mutex.
 234 */
 235static void __mod_update_bounds(void *base, unsigned int size)
 236{
 237	unsigned long min = (unsigned long)base;
 238	unsigned long max = min + size;
 239
 240	if (min < module_addr_min)
 241		module_addr_min = min;
 242	if (max > module_addr_max)
 243		module_addr_max = max;
 244}
 245
 246static void mod_update_bounds(struct module *mod)
 247{
 248	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
 249	if (mod->init_layout.size)
 250		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
 251}
 252
 253#ifdef CONFIG_KGDB_KDB
 254struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 255#endif /* CONFIG_KGDB_KDB */
 256
 257static void module_assert_mutex(void)
 258{
 259	lockdep_assert_held(&module_mutex);
 260}
 261
 262static void module_assert_mutex_or_preempt(void)
 263{
 264#ifdef CONFIG_LOCKDEP
 265	if (unlikely(!debug_locks))
 266		return;
 267
 268	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
 269		!lockdep_is_held(&module_mutex));
 270#endif
 271}
 272
 273static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
 274#ifndef CONFIG_MODULE_SIG_FORCE
 275module_param(sig_enforce, bool_enable_only, 0644);
 276#endif /* !CONFIG_MODULE_SIG_FORCE */
 277
 278/* Block module loading/unloading? */
 279int modules_disabled = 0;
 280core_param(nomodule, modules_disabled, bint, 0);
 281
 282/* Waiting for a module to finish initializing? */
 283static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 284
 285static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 286
 287int register_module_notifier(struct notifier_block *nb)
 
 
 
 
 288{
 289	return blocking_notifier_chain_register(&module_notify_list, nb);
 290}
 291EXPORT_SYMBOL(register_module_notifier);
 292
 293int unregister_module_notifier(struct notifier_block *nb)
 294{
 295	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 296}
 297EXPORT_SYMBOL(unregister_module_notifier);
 298
 299struct load_info {
 300	Elf_Ehdr *hdr;
 301	unsigned long len;
 302	Elf_Shdr *sechdrs;
 303	char *secstrings, *strtab;
 304	unsigned long symoffs, stroffs;
 305	struct _ddebug *debug;
 306	unsigned int num_debug;
 307	bool sig_ok;
 308#ifdef CONFIG_KALLSYMS
 309	unsigned long mod_kallsyms_init_off;
 310#endif
 311	struct {
 312		unsigned int sym, str, mod, vers, info, pcpu;
 313	} index;
 314};
 315
 316/*
 317 * We require a truly strong try_module_get(): 0 means success.
 318 * Otherwise an error is returned due to ongoing or failed
 319 * initialization etc.
 320 */
 321static inline int strong_try_module_get(struct module *mod)
 322{
 323	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
 324	if (mod && mod->state == MODULE_STATE_COMING)
 325		return -EBUSY;
 326	if (try_module_get(mod))
 327		return 0;
 328	else
 329		return -ENOENT;
 330}
 331
 332static inline void add_taint_module(struct module *mod, unsigned flag,
 333				    enum lockdep_ok lockdep_ok)
 334{
 335	add_taint(flag, lockdep_ok);
 336	set_bit(flag, &mod->taints);
 337}
 338
 339/*
 340 * A thread that wants to hold a reference to a module only while it
 341 * is running can call this to safely exit.  nfsd and lockd use this.
 342 */
 343void __noreturn __module_put_and_exit(struct module *mod, long code)
 344{
 345	module_put(mod);
 346	do_exit(code);
 347}
 348EXPORT_SYMBOL(__module_put_and_exit);
 349
 350/* Find a module section: 0 means not found. */
 351static unsigned int find_sec(const struct load_info *info, const char *name)
 352{
 353	unsigned int i;
 354
 355	for (i = 1; i < info->hdr->e_shnum; i++) {
 356		Elf_Shdr *shdr = &info->sechdrs[i];
 357		/* Alloc bit cleared means "ignore it." */
 358		if ((shdr->sh_flags & SHF_ALLOC)
 359		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 360			return i;
 361	}
 362	return 0;
 363}
 364
 365/* Find a module section, or NULL. */
 366static void *section_addr(const struct load_info *info, const char *name)
 367{
 368	/* Section 0 has sh_addr 0. */
 369	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 370}
 371
 372/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 373static void *section_objs(const struct load_info *info,
 374			  const char *name,
 375			  size_t object_size,
 376			  unsigned int *num)
 377{
 378	unsigned int sec = find_sec(info, name);
 379
 380	/* Section 0 has sh_addr 0 and sh_size 0. */
 381	*num = info->sechdrs[sec].sh_size / object_size;
 382	return (void *)info->sechdrs[sec].sh_addr;
 383}
 384
 385/* Provided by the linker */
 386extern const struct kernel_symbol __start___ksymtab[];
 387extern const struct kernel_symbol __stop___ksymtab[];
 388extern const struct kernel_symbol __start___ksymtab_gpl[];
 389extern const struct kernel_symbol __stop___ksymtab_gpl[];
 390extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 391extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 392extern const s32 __start___kcrctab[];
 393extern const s32 __start___kcrctab_gpl[];
 394extern const s32 __start___kcrctab_gpl_future[];
 395#ifdef CONFIG_UNUSED_SYMBOLS
 396extern const struct kernel_symbol __start___ksymtab_unused[];
 397extern const struct kernel_symbol __stop___ksymtab_unused[];
 398extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 399extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 400extern const s32 __start___kcrctab_unused[];
 401extern const s32 __start___kcrctab_unused_gpl[];
 402#endif
 403
 404#ifndef CONFIG_MODVERSIONS
 405#define symversion(base, idx) NULL
 406#else
 407#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 408#endif
 409
 410static bool each_symbol_in_section(const struct symsearch *arr,
 411				   unsigned int arrsize,
 412				   struct module *owner,
 413				   bool (*fn)(const struct symsearch *syms,
 414					      struct module *owner,
 415					      void *data),
 416				   void *data)
 417{
 418	unsigned int j;
 419
 420	for (j = 0; j < arrsize; j++) {
 421		if (fn(&arr[j], owner, data))
 422			return true;
 423	}
 424
 425	return false;
 426}
 427
 428/* Returns true as soon as fn returns true, otherwise false. */
 429bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 430				    struct module *owner,
 431				    void *data),
 432			 void *data)
 433{
 434	struct module *mod;
 435	static const struct symsearch arr[] = {
 436		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 437		  NOT_GPL_ONLY, false },
 438		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 439		  __start___kcrctab_gpl,
 440		  GPL_ONLY, false },
 441		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 442		  __start___kcrctab_gpl_future,
 443		  WILL_BE_GPL_ONLY, false },
 444#ifdef CONFIG_UNUSED_SYMBOLS
 445		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 446		  __start___kcrctab_unused,
 447		  NOT_GPL_ONLY, true },
 448		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 449		  __start___kcrctab_unused_gpl,
 450		  GPL_ONLY, true },
 451#endif
 452	};
 453
 454	module_assert_mutex_or_preempt();
 455
 456	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 457		return true;
 458
 459	list_for_each_entry_rcu(mod, &modules, list) {
 460		struct symsearch arr[] = {
 461			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 462			  NOT_GPL_ONLY, false },
 463			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 464			  mod->gpl_crcs,
 465			  GPL_ONLY, false },
 466			{ mod->gpl_future_syms,
 467			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 468			  mod->gpl_future_crcs,
 469			  WILL_BE_GPL_ONLY, false },
 470#ifdef CONFIG_UNUSED_SYMBOLS
 471			{ mod->unused_syms,
 472			  mod->unused_syms + mod->num_unused_syms,
 473			  mod->unused_crcs,
 474			  NOT_GPL_ONLY, true },
 475			{ mod->unused_gpl_syms,
 476			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 477			  mod->unused_gpl_crcs,
 478			  GPL_ONLY, true },
 479#endif
 480		};
 481
 482		if (mod->state == MODULE_STATE_UNFORMED)
 483			continue;
 484
 485		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 486			return true;
 487	}
 488	return false;
 489}
 490EXPORT_SYMBOL_GPL(each_symbol_section);
 491
 492struct find_symbol_arg {
 493	/* Input */
 494	const char *name;
 495	bool gplok;
 496	bool warn;
 497
 498	/* Output */
 499	struct module *owner;
 500	const s32 *crc;
 501	const struct kernel_symbol *sym;
 502};
 503
 504static bool check_symbol(const struct symsearch *syms,
 505				 struct module *owner,
 506				 unsigned int symnum, void *data)
 507{
 508	struct find_symbol_arg *fsa = data;
 509
 510	if (!fsa->gplok) {
 511		if (syms->licence == GPL_ONLY)
 512			return false;
 513		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 514			pr_warn("Symbol %s is being used by a non-GPL module, "
 515				"which will not be allowed in the future\n",
 516				fsa->name);
 
 
 
 517		}
 518	}
 519
 520#ifdef CONFIG_UNUSED_SYMBOLS
 521	if (syms->unused && fsa->warn) {
 522		pr_warn("Symbol %s is marked as UNUSED, however this module is "
 523			"using it.\n", fsa->name);
 524		pr_warn("This symbol will go away in the future.\n");
 525		pr_warn("Please evaluate if this is the right api to use and "
 526			"if it really is, submit a report to the linux kernel "
 527			"mailing list together with submitting your code for "
 528			"inclusion.\n");
 
 
 529	}
 530#endif
 531
 532	fsa->owner = owner;
 533	fsa->crc = symversion(syms->crcs, symnum);
 534	fsa->sym = &syms->start[symnum];
 535	return true;
 536}
 537
 538static int cmp_name(const void *va, const void *vb)
 539{
 540	const char *a;
 541	const struct kernel_symbol *b;
 542	a = va; b = vb;
 543	return strcmp(a, b->name);
 544}
 545
 546static bool find_symbol_in_section(const struct symsearch *syms,
 547				   struct module *owner,
 548				   void *data)
 549{
 550	struct find_symbol_arg *fsa = data;
 551	struct kernel_symbol *sym;
 552
 553	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 554			sizeof(struct kernel_symbol), cmp_name);
 555
 556	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 557		return true;
 558
 559	return false;
 560}
 561
 562/* Find a symbol and return it, along with, (optional) crc and
 563 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 564const struct kernel_symbol *find_symbol(const char *name,
 565					struct module **owner,
 566					const s32 **crc,
 567					bool gplok,
 568					bool warn)
 569{
 570	struct find_symbol_arg fsa;
 571
 572	fsa.name = name;
 573	fsa.gplok = gplok;
 574	fsa.warn = warn;
 575
 576	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 577		if (owner)
 578			*owner = fsa.owner;
 579		if (crc)
 580			*crc = fsa.crc;
 581		return fsa.sym;
 582	}
 583
 584	pr_debug("Failed to find symbol %s\n", name);
 585	return NULL;
 586}
 587EXPORT_SYMBOL_GPL(find_symbol);
 588
 589/*
 590 * Search for module by name: must hold module_mutex (or preempt disabled
 591 * for read-only access).
 592 */
 593static struct module *find_module_all(const char *name, size_t len,
 594				      bool even_unformed)
 595{
 596	struct module *mod;
 597
 598	module_assert_mutex_or_preempt();
 599
 600	list_for_each_entry(mod, &modules, list) {
 601		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
 602			continue;
 603		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
 604			return mod;
 605	}
 606	return NULL;
 607}
 608
 609struct module *find_module(const char *name)
 610{
 611	module_assert_mutex();
 612	return find_module_all(name, strlen(name), false);
 613}
 614EXPORT_SYMBOL_GPL(find_module);
 615
 616#ifdef CONFIG_SMP
 617
 618static inline void __percpu *mod_percpu(struct module *mod)
 619{
 620	return mod->percpu;
 621}
 622
 623static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 624{
 625	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
 626	unsigned long align = pcpusec->sh_addralign;
 627
 628	if (!pcpusec->sh_size)
 629		return 0;
 630
 631	if (align > PAGE_SIZE) {
 632		pr_warn("%s: per-cpu alignment %li > %li\n",
 633			mod->name, align, PAGE_SIZE);
 634		align = PAGE_SIZE;
 635	}
 636
 637	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
 638	if (!mod->percpu) {
 639		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
 640			mod->name, (unsigned long)pcpusec->sh_size);
 
 641		return -ENOMEM;
 642	}
 643	mod->percpu_size = pcpusec->sh_size;
 644	return 0;
 645}
 646
 647static void percpu_modfree(struct module *mod)
 648{
 649	free_percpu(mod->percpu);
 650}
 651
 652static unsigned int find_pcpusec(struct load_info *info)
 653{
 654	return find_sec(info, ".data..percpu");
 655}
 656
 657static void percpu_modcopy(struct module *mod,
 658			   const void *from, unsigned long size)
 659{
 660	int cpu;
 661
 662	for_each_possible_cpu(cpu)
 663		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 664}
 665
 666/**
 667 * is_module_percpu_address - test whether address is from module static percpu
 668 * @addr: address to test
 669 *
 670 * Test whether @addr belongs to module static percpu area.
 671 *
 672 * RETURNS:
 673 * %true if @addr is from module static percpu area
 674 */
 675bool is_module_percpu_address(unsigned long addr)
 676{
 677	struct module *mod;
 678	unsigned int cpu;
 679
 680	preempt_disable();
 681
 682	list_for_each_entry_rcu(mod, &modules, list) {
 683		if (mod->state == MODULE_STATE_UNFORMED)
 684			continue;
 685		if (!mod->percpu_size)
 686			continue;
 687		for_each_possible_cpu(cpu) {
 688			void *start = per_cpu_ptr(mod->percpu, cpu);
 689
 690			if ((void *)addr >= start &&
 691			    (void *)addr < start + mod->percpu_size) {
 692				preempt_enable();
 693				return true;
 694			}
 695		}
 696	}
 697
 698	preempt_enable();
 699	return false;
 700}
 701
 702#else /* ... !CONFIG_SMP */
 703
 704static inline void __percpu *mod_percpu(struct module *mod)
 705{
 706	return NULL;
 707}
 708static int percpu_modalloc(struct module *mod, struct load_info *info)
 
 709{
 710	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
 711	if (info->sechdrs[info->index.pcpu].sh_size != 0)
 712		return -ENOMEM;
 713	return 0;
 714}
 715static inline void percpu_modfree(struct module *mod)
 716{
 717}
 718static unsigned int find_pcpusec(struct load_info *info)
 719{
 720	return 0;
 721}
 722static inline void percpu_modcopy(struct module *mod,
 723				  const void *from, unsigned long size)
 724{
 725	/* pcpusec should be 0, and size of that section should be 0. */
 726	BUG_ON(size != 0);
 727}
 728bool is_module_percpu_address(unsigned long addr)
 729{
 730	return false;
 731}
 732
 733#endif /* CONFIG_SMP */
 734
 735#define MODINFO_ATTR(field)	\
 736static void setup_modinfo_##field(struct module *mod, const char *s)  \
 737{                                                                     \
 738	mod->field = kstrdup(s, GFP_KERNEL);                          \
 739}                                                                     \
 740static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 741			struct module_kobject *mk, char *buffer)      \
 742{                                                                     \
 743	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
 744}                                                                     \
 745static int modinfo_##field##_exists(struct module *mod)               \
 746{                                                                     \
 747	return mod->field != NULL;                                    \
 748}                                                                     \
 749static void free_modinfo_##field(struct module *mod)                  \
 750{                                                                     \
 751	kfree(mod->field);                                            \
 752	mod->field = NULL;                                            \
 753}                                                                     \
 754static struct module_attribute modinfo_##field = {                    \
 755	.attr = { .name = __stringify(field), .mode = 0444 },         \
 756	.show = show_modinfo_##field,                                 \
 757	.setup = setup_modinfo_##field,                               \
 758	.test = modinfo_##field##_exists,                             \
 759	.free = free_modinfo_##field,                                 \
 760};
 761
 762MODINFO_ATTR(version);
 763MODINFO_ATTR(srcversion);
 764
 765static char last_unloaded_module[MODULE_NAME_LEN+1];
 766
 767#ifdef CONFIG_MODULE_UNLOAD
 768
 769EXPORT_TRACEPOINT_SYMBOL(module_get);
 770
 771/* MODULE_REF_BASE is the base reference count by kmodule loader. */
 772#define MODULE_REF_BASE	1
 773
 774/* Init the unload section of the module. */
 775static int module_unload_init(struct module *mod)
 776{
 777	/*
 778	 * Initialize reference counter to MODULE_REF_BASE.
 779	 * refcnt == 0 means module is going.
 780	 */
 781	atomic_set(&mod->refcnt, MODULE_REF_BASE);
 782
 783	INIT_LIST_HEAD(&mod->source_list);
 784	INIT_LIST_HEAD(&mod->target_list);
 785
 786	/* Hold reference count during initialization. */
 787	atomic_inc(&mod->refcnt);
 
 
 788
 789	return 0;
 790}
 791
 792/* Does a already use b? */
 793static int already_uses(struct module *a, struct module *b)
 794{
 795	struct module_use *use;
 796
 797	list_for_each_entry(use, &b->source_list, source_list) {
 798		if (use->source == a) {
 799			pr_debug("%s uses %s!\n", a->name, b->name);
 800			return 1;
 801		}
 802	}
 803	pr_debug("%s does not use %s!\n", a->name, b->name);
 804	return 0;
 805}
 806
 807/*
 808 * Module a uses b
 809 *  - we add 'a' as a "source", 'b' as a "target" of module use
 810 *  - the module_use is added to the list of 'b' sources (so
 811 *    'b' can walk the list to see who sourced them), and of 'a'
 812 *    targets (so 'a' can see what modules it targets).
 813 */
 814static int add_module_usage(struct module *a, struct module *b)
 815{
 816	struct module_use *use;
 817
 818	pr_debug("Allocating new usage for %s.\n", a->name);
 819	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 820	if (!use) {
 821		pr_warn("%s: out of memory loading\n", a->name);
 822		return -ENOMEM;
 823	}
 824
 825	use->source = a;
 826	use->target = b;
 827	list_add(&use->source_list, &b->source_list);
 828	list_add(&use->target_list, &a->target_list);
 829	return 0;
 830}
 831
 832/* Module a uses b: caller needs module_mutex() */
 833int ref_module(struct module *a, struct module *b)
 834{
 835	int err;
 836
 837	if (b == NULL || already_uses(a, b))
 838		return 0;
 839
 840	/* If module isn't available, we fail. */
 841	err = strong_try_module_get(b);
 842	if (err)
 843		return err;
 844
 845	err = add_module_usage(a, b);
 846	if (err) {
 847		module_put(b);
 848		return err;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL_GPL(ref_module);
 853
 854/* Clear the unload stuff of the module. */
 855static void module_unload_free(struct module *mod)
 856{
 857	struct module_use *use, *tmp;
 858
 859	mutex_lock(&module_mutex);
 860	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 861		struct module *i = use->target;
 862		pr_debug("%s unusing %s\n", mod->name, i->name);
 863		module_put(i);
 864		list_del(&use->source_list);
 865		list_del(&use->target_list);
 866		kfree(use);
 867	}
 868	mutex_unlock(&module_mutex);
 
 
 869}
 870
 871#ifdef CONFIG_MODULE_FORCE_UNLOAD
 872static inline int try_force_unload(unsigned int flags)
 873{
 874	int ret = (flags & O_TRUNC);
 875	if (ret)
 876		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
 877	return ret;
 878}
 879#else
 880static inline int try_force_unload(unsigned int flags)
 881{
 882	return 0;
 883}
 884#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 885
 886/* Try to release refcount of module, 0 means success. */
 887static int try_release_module_ref(struct module *mod)
 888{
 889	int ret;
 890
 891	/* Try to decrement refcnt which we set at loading */
 892	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
 893	BUG_ON(ret < 0);
 894	if (ret)
 895		/* Someone can put this right now, recover with checking */
 896		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
 897
 898	return ret;
 899}
 900
 901static int try_stop_module(struct module *mod, int flags, int *forced)
 
 902{
 
 
 903	/* If it's not unused, quit unless we're forcing. */
 904	if (try_release_module_ref(mod) != 0) {
 905		*forced = try_force_unload(flags);
 906		if (!(*forced))
 907			return -EWOULDBLOCK;
 908	}
 909
 910	/* Mark it as dying. */
 911	mod->state = MODULE_STATE_GOING;
 912
 913	return 0;
 914}
 915
 916/**
 917 * module_refcount - return the refcount or -1 if unloading
 918 *
 919 * @mod:	the module we're checking
 920 *
 921 * Returns:
 922 *	-1 if the module is in the process of unloading
 923 *	otherwise the number of references in the kernel to the module
 924 */
 925int module_refcount(struct module *mod)
 926{
 927	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928}
 929EXPORT_SYMBOL(module_refcount);
 930
 931/* This exists whether we can unload or not */
 932static void free_module(struct module *mod);
 933
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 934SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 935		unsigned int, flags)
 936{
 937	struct module *mod;
 938	char name[MODULE_NAME_LEN];
 939	int ret, forced = 0;
 940
 941	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 942		return -EPERM;
 943
 944	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 945		return -EFAULT;
 946	name[MODULE_NAME_LEN-1] = '\0';
 947
 948	if (mutex_lock_interruptible(&module_mutex) != 0)
 949		return -EINTR;
 950
 951	mod = find_module(name);
 952	if (!mod) {
 953		ret = -ENOENT;
 954		goto out;
 955	}
 956
 957	if (!list_empty(&mod->source_list)) {
 958		/* Other modules depend on us: get rid of them first. */
 959		ret = -EWOULDBLOCK;
 960		goto out;
 961	}
 962
 963	/* Doing init or already dying? */
 964	if (mod->state != MODULE_STATE_LIVE) {
 965		/* FIXME: if (force), slam module count damn the torpedoes */
 
 966		pr_debug("%s already dying\n", mod->name);
 967		ret = -EBUSY;
 968		goto out;
 969	}
 970
 971	/* If it has an init func, it must have an exit func to unload */
 972	if (mod->init && !mod->exit) {
 973		forced = try_force_unload(flags);
 974		if (!forced) {
 975			/* This module can't be removed */
 976			ret = -EBUSY;
 977			goto out;
 978		}
 979	}
 980
 
 
 
 981	/* Stop the machine so refcounts can't move and disable module. */
 982	ret = try_stop_module(mod, flags, &forced);
 983	if (ret != 0)
 984		goto out;
 985
 
 
 
 
 986	mutex_unlock(&module_mutex);
 987	/* Final destruction now no one is using it. */
 988	if (mod->exit != NULL)
 989		mod->exit();
 990	blocking_notifier_call_chain(&module_notify_list,
 991				     MODULE_STATE_GOING, mod);
 992	klp_module_going(mod);
 993	ftrace_release_mod(mod);
 994
 995	async_synchronize_full();
 996
 997	/* Store the name of the last unloaded module for diagnostic purposes */
 998	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 999
1000	free_module(mod);
1001	return 0;
1002out:
1003	mutex_unlock(&module_mutex);
1004	return ret;
1005}
1006
1007static inline void print_unload_info(struct seq_file *m, struct module *mod)
1008{
1009	struct module_use *use;
1010	int printed_something = 0;
1011
1012	seq_printf(m, " %i ", module_refcount(mod));
1013
1014	/*
1015	 * Always include a trailing , so userspace can differentiate
1016	 * between this and the old multi-field proc format.
1017	 */
1018	list_for_each_entry(use, &mod->source_list, source_list) {
1019		printed_something = 1;
1020		seq_printf(m, "%s,", use->source->name);
1021	}
1022
1023	if (mod->init != NULL && mod->exit == NULL) {
1024		printed_something = 1;
1025		seq_puts(m, "[permanent],");
1026	}
1027
1028	if (!printed_something)
1029		seq_puts(m, "-");
1030}
1031
1032void __symbol_put(const char *symbol)
1033{
1034	struct module *owner;
1035
1036	preempt_disable();
1037	if (!find_symbol(symbol, &owner, NULL, true, false))
1038		BUG();
1039	module_put(owner);
1040	preempt_enable();
1041}
1042EXPORT_SYMBOL(__symbol_put);
1043
1044/* Note this assumes addr is a function, which it currently always is. */
1045void symbol_put_addr(void *addr)
1046{
1047	struct module *modaddr;
1048	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1049
1050	if (core_kernel_text(a))
1051		return;
1052
1053	/*
1054	 * Even though we hold a reference on the module; we still need to
1055	 * disable preemption in order to safely traverse the data structure.
1056	 */
1057	preempt_disable();
1058	modaddr = __module_text_address(a);
1059	BUG_ON(!modaddr);
1060	module_put(modaddr);
1061	preempt_enable();
1062}
1063EXPORT_SYMBOL_GPL(symbol_put_addr);
1064
1065static ssize_t show_refcnt(struct module_attribute *mattr,
1066			   struct module_kobject *mk, char *buffer)
1067{
1068	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1069}
1070
1071static struct module_attribute modinfo_refcnt =
1072	__ATTR(refcnt, 0444, show_refcnt, NULL);
1073
1074void __module_get(struct module *module)
1075{
1076	if (module) {
1077		preempt_disable();
1078		atomic_inc(&module->refcnt);
1079		trace_module_get(module, _RET_IP_);
1080		preempt_enable();
1081	}
1082}
1083EXPORT_SYMBOL(__module_get);
1084
1085bool try_module_get(struct module *module)
1086{
1087	bool ret = true;
1088
1089	if (module) {
1090		preempt_disable();
1091		/* Note: here, we can fail to get a reference */
1092		if (likely(module_is_live(module) &&
1093			   atomic_inc_not_zero(&module->refcnt) != 0))
1094			trace_module_get(module, _RET_IP_);
1095		else
1096			ret = false;
1097
1098		preempt_enable();
1099	}
1100	return ret;
1101}
1102EXPORT_SYMBOL(try_module_get);
1103
1104void module_put(struct module *module)
1105{
1106	int ret;
1107
1108	if (module) {
1109		preempt_disable();
1110		ret = atomic_dec_if_positive(&module->refcnt);
1111		WARN_ON(ret < 0);	/* Failed to put refcount */
 
1112		trace_module_put(module, _RET_IP_);
 
 
 
1113		preempt_enable();
1114	}
1115}
1116EXPORT_SYMBOL(module_put);
1117
1118#else /* !CONFIG_MODULE_UNLOAD */
1119static inline void print_unload_info(struct seq_file *m, struct module *mod)
1120{
1121	/* We don't know the usage count, or what modules are using. */
1122	seq_puts(m, " - -");
1123}
1124
1125static inline void module_unload_free(struct module *mod)
1126{
1127}
1128
1129int ref_module(struct module *a, struct module *b)
1130{
1131	return strong_try_module_get(b);
1132}
1133EXPORT_SYMBOL_GPL(ref_module);
1134
1135static inline int module_unload_init(struct module *mod)
1136{
1137	return 0;
1138}
1139#endif /* CONFIG_MODULE_UNLOAD */
1140
1141static size_t module_flags_taint(struct module *mod, char *buf)
1142{
1143	size_t l = 0;
1144	int i;
1145
1146	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1147		if (taint_flags[i].module && test_bit(i, &mod->taints))
1148			buf[l++] = taint_flags[i].c_true;
1149	}
1150
 
 
 
 
 
 
 
 
 
 
 
 
 
1151	return l;
1152}
1153
1154static ssize_t show_initstate(struct module_attribute *mattr,
1155			      struct module_kobject *mk, char *buffer)
1156{
1157	const char *state = "unknown";
1158
1159	switch (mk->mod->state) {
1160	case MODULE_STATE_LIVE:
1161		state = "live";
1162		break;
1163	case MODULE_STATE_COMING:
1164		state = "coming";
1165		break;
1166	case MODULE_STATE_GOING:
1167		state = "going";
1168		break;
1169	default:
1170		BUG();
1171	}
1172	return sprintf(buffer, "%s\n", state);
1173}
1174
1175static struct module_attribute modinfo_initstate =
1176	__ATTR(initstate, 0444, show_initstate, NULL);
1177
1178static ssize_t store_uevent(struct module_attribute *mattr,
1179			    struct module_kobject *mk,
1180			    const char *buffer, size_t count)
1181{
1182	enum kobject_action action;
1183
1184	if (kobject_action_type(buffer, count, &action) == 0)
1185		kobject_uevent(&mk->kobj, action);
1186	return count;
1187}
1188
1189struct module_attribute module_uevent =
1190	__ATTR(uevent, 0200, NULL, store_uevent);
1191
1192static ssize_t show_coresize(struct module_attribute *mattr,
1193			     struct module_kobject *mk, char *buffer)
1194{
1195	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1196}
1197
1198static struct module_attribute modinfo_coresize =
1199	__ATTR(coresize, 0444, show_coresize, NULL);
1200
1201static ssize_t show_initsize(struct module_attribute *mattr,
1202			     struct module_kobject *mk, char *buffer)
1203{
1204	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1205}
1206
1207static struct module_attribute modinfo_initsize =
1208	__ATTR(initsize, 0444, show_initsize, NULL);
1209
1210static ssize_t show_taint(struct module_attribute *mattr,
1211			  struct module_kobject *mk, char *buffer)
1212{
1213	size_t l;
1214
1215	l = module_flags_taint(mk->mod, buffer);
1216	buffer[l++] = '\n';
1217	return l;
1218}
1219
1220static struct module_attribute modinfo_taint =
1221	__ATTR(taint, 0444, show_taint, NULL);
1222
1223static struct module_attribute *modinfo_attrs[] = {
1224	&module_uevent,
1225	&modinfo_version,
1226	&modinfo_srcversion,
1227	&modinfo_initstate,
1228	&modinfo_coresize,
1229	&modinfo_initsize,
1230	&modinfo_taint,
1231#ifdef CONFIG_MODULE_UNLOAD
1232	&modinfo_refcnt,
1233#endif
1234	NULL,
1235};
1236
1237static const char vermagic[] = VERMAGIC_STRING;
1238
1239static int try_to_force_load(struct module *mod, const char *reason)
1240{
1241#ifdef CONFIG_MODULE_FORCE_LOAD
1242	if (!test_taint(TAINT_FORCED_MODULE))
1243		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1244	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
 
1245	return 0;
1246#else
1247	return -ENOEXEC;
1248#endif
1249}
1250
1251#ifdef CONFIG_MODVERSIONS
1252
1253static u32 resolve_rel_crc(const s32 *crc)
1254{
1255	return *(u32 *)((void *)crc + *crc);
 
 
 
 
 
1256}
1257
1258static int check_version(Elf_Shdr *sechdrs,
1259			 unsigned int versindex,
1260			 const char *symname,
1261			 struct module *mod,
1262			 const s32 *crc)
 
1263{
1264	unsigned int i, num_versions;
1265	struct modversion_info *versions;
1266
1267	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1268	if (!crc)
1269		return 1;
1270
1271	/* No versions at all?  modprobe --force does this. */
1272	if (versindex == 0)
1273		return try_to_force_load(mod, symname) == 0;
1274
1275	versions = (void *) sechdrs[versindex].sh_addr;
1276	num_versions = sechdrs[versindex].sh_size
1277		/ sizeof(struct modversion_info);
1278
1279	for (i = 0; i < num_versions; i++) {
1280		u32 crcval;
1281
1282		if (strcmp(versions[i].name, symname) != 0)
1283			continue;
1284
1285		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1286			crcval = resolve_rel_crc(crc);
1287		else
1288			crcval = *crc;
1289		if (versions[i].crc == crcval)
1290			return 1;
1291		pr_debug("Found checksum %X vs module %lX\n",
1292			 crcval, versions[i].crc);
1293		goto bad_version;
1294	}
1295
1296	/* Broken toolchain. Warn once, then let it go.. */
1297	pr_warn_once("%s: no symbol version for %s\n", mod->name, symname);
1298	return 1;
1299
1300bad_version:
1301	pr_warn("%s: disagrees about version of symbol %s\n",
1302	       mod->name, symname);
1303	return 0;
1304}
1305
1306static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1307					  unsigned int versindex,
1308					  struct module *mod)
1309{
1310	const s32 *crc;
1311
1312	/*
1313	 * Since this should be found in kernel (which can't be removed), no
1314	 * locking is necessary -- use preempt_disable() to placate lockdep.
1315	 */
1316	preempt_disable();
1317	if (!find_symbol(VMLINUX_SYMBOL_STR(module_layout), NULL,
1318			 &crc, true, false)) {
1319		preempt_enable();
1320		BUG();
1321	}
1322	preempt_enable();
1323	return check_version(sechdrs, versindex,
1324			     VMLINUX_SYMBOL_STR(module_layout), mod, crc);
1325}
1326
1327/* First part is kernel version, which we ignore if module has crcs. */
1328static inline int same_magic(const char *amagic, const char *bmagic,
1329			     bool has_crcs)
1330{
1331	if (has_crcs) {
1332		amagic += strcspn(amagic, " ");
1333		bmagic += strcspn(bmagic, " ");
1334	}
1335	return strcmp(amagic, bmagic) == 0;
1336}
1337#else
1338static inline int check_version(Elf_Shdr *sechdrs,
1339				unsigned int versindex,
1340				const char *symname,
1341				struct module *mod,
1342				const s32 *crc)
 
1343{
1344	return 1;
1345}
1346
1347static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1348					  unsigned int versindex,
1349					  struct module *mod)
1350{
1351	return 1;
1352}
1353
1354static inline int same_magic(const char *amagic, const char *bmagic,
1355			     bool has_crcs)
1356{
1357	return strcmp(amagic, bmagic) == 0;
1358}
1359#endif /* CONFIG_MODVERSIONS */
1360
1361/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1362static const struct kernel_symbol *resolve_symbol(struct module *mod,
1363						  const struct load_info *info,
1364						  const char *name,
1365						  char ownername[])
1366{
1367	struct module *owner;
1368	const struct kernel_symbol *sym;
1369	const s32 *crc;
1370	int err;
1371
1372	/*
1373	 * The module_mutex should not be a heavily contended lock;
1374	 * if we get the occasional sleep here, we'll go an extra iteration
1375	 * in the wait_event_interruptible(), which is harmless.
1376	 */
1377	sched_annotate_sleep();
1378	mutex_lock(&module_mutex);
1379	sym = find_symbol(name, &owner, &crc,
1380			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1381	if (!sym)
1382		goto unlock;
1383
1384	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc)) {
 
1385		sym = ERR_PTR(-EINVAL);
1386		goto getname;
1387	}
1388
1389	err = ref_module(mod, owner);
1390	if (err) {
1391		sym = ERR_PTR(err);
1392		goto getname;
1393	}
1394
1395getname:
1396	/* We must make copy under the lock if we failed to get ref. */
1397	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1398unlock:
1399	mutex_unlock(&module_mutex);
1400	return sym;
1401}
1402
1403static const struct kernel_symbol *
1404resolve_symbol_wait(struct module *mod,
1405		    const struct load_info *info,
1406		    const char *name)
1407{
1408	const struct kernel_symbol *ksym;
1409	char owner[MODULE_NAME_LEN];
1410
1411	if (wait_event_interruptible_timeout(module_wq,
1412			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1413			|| PTR_ERR(ksym) != -EBUSY,
1414					     30 * HZ) <= 0) {
1415		pr_warn("%s: gave up waiting for init of module %s.\n",
1416			mod->name, owner);
1417	}
1418	return ksym;
1419}
1420
1421/*
1422 * /sys/module/foo/sections stuff
1423 * J. Corbet <corbet@lwn.net>
1424 */
1425#ifdef CONFIG_SYSFS
1426
1427#ifdef CONFIG_KALLSYMS
1428static inline bool sect_empty(const Elf_Shdr *sect)
1429{
1430	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1431}
1432
1433struct module_sect_attr {
 
1434	struct module_attribute mattr;
1435	char *name;
1436	unsigned long address;
1437};
1438
1439struct module_sect_attrs {
 
1440	struct attribute_group grp;
1441	unsigned int nsections;
1442	struct module_sect_attr attrs[0];
1443};
1444
1445static ssize_t module_sect_show(struct module_attribute *mattr,
1446				struct module_kobject *mk, char *buf)
1447{
1448	struct module_sect_attr *sattr =
1449		container_of(mattr, struct module_sect_attr, mattr);
1450	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1451}
1452
1453static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1454{
1455	unsigned int section;
1456
1457	for (section = 0; section < sect_attrs->nsections; section++)
1458		kfree(sect_attrs->attrs[section].name);
1459	kfree(sect_attrs);
1460}
1461
1462static void add_sect_attrs(struct module *mod, const struct load_info *info)
1463{
1464	unsigned int nloaded = 0, i, size[2];
1465	struct module_sect_attrs *sect_attrs;
1466	struct module_sect_attr *sattr;
1467	struct attribute **gattr;
1468
1469	/* Count loaded sections and allocate structures */
1470	for (i = 0; i < info->hdr->e_shnum; i++)
1471		if (!sect_empty(&info->sechdrs[i]))
1472			nloaded++;
1473	size[0] = ALIGN(sizeof(*sect_attrs)
1474			+ nloaded * sizeof(sect_attrs->attrs[0]),
1475			sizeof(sect_attrs->grp.attrs[0]));
1476	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1477	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1478	if (sect_attrs == NULL)
1479		return;
1480
1481	/* Setup section attributes. */
1482	sect_attrs->grp.name = "sections";
1483	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1484
1485	sect_attrs->nsections = 0;
1486	sattr = &sect_attrs->attrs[0];
1487	gattr = &sect_attrs->grp.attrs[0];
1488	for (i = 0; i < info->hdr->e_shnum; i++) {
1489		Elf_Shdr *sec = &info->sechdrs[i];
1490		if (sect_empty(sec))
1491			continue;
1492		sattr->address = sec->sh_addr;
1493		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1494					GFP_KERNEL);
1495		if (sattr->name == NULL)
1496			goto out;
1497		sect_attrs->nsections++;
1498		sysfs_attr_init(&sattr->mattr.attr);
1499		sattr->mattr.show = module_sect_show;
1500		sattr->mattr.store = NULL;
1501		sattr->mattr.attr.name = sattr->name;
1502		sattr->mattr.attr.mode = S_IRUGO;
1503		*(gattr++) = &(sattr++)->mattr.attr;
1504	}
1505	*gattr = NULL;
1506
1507	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1508		goto out;
1509
1510	mod->sect_attrs = sect_attrs;
1511	return;
1512  out:
1513	free_sect_attrs(sect_attrs);
1514}
1515
1516static void remove_sect_attrs(struct module *mod)
1517{
1518	if (mod->sect_attrs) {
1519		sysfs_remove_group(&mod->mkobj.kobj,
1520				   &mod->sect_attrs->grp);
1521		/* We are positive that no one is using any sect attrs
1522		 * at this point.  Deallocate immediately. */
1523		free_sect_attrs(mod->sect_attrs);
1524		mod->sect_attrs = NULL;
1525	}
1526}
1527
1528/*
1529 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1530 */
1531
1532struct module_notes_attrs {
1533	struct kobject *dir;
1534	unsigned int notes;
1535	struct bin_attribute attrs[0];
1536};
1537
1538static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1539				 struct bin_attribute *bin_attr,
1540				 char *buf, loff_t pos, size_t count)
1541{
1542	/*
1543	 * The caller checked the pos and count against our size.
1544	 */
1545	memcpy(buf, bin_attr->private + pos, count);
1546	return count;
1547}
1548
1549static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1550			     unsigned int i)
1551{
1552	if (notes_attrs->dir) {
1553		while (i-- > 0)
1554			sysfs_remove_bin_file(notes_attrs->dir,
1555					      &notes_attrs->attrs[i]);
1556		kobject_put(notes_attrs->dir);
1557	}
1558	kfree(notes_attrs);
1559}
1560
1561static void add_notes_attrs(struct module *mod, const struct load_info *info)
1562{
1563	unsigned int notes, loaded, i;
1564	struct module_notes_attrs *notes_attrs;
1565	struct bin_attribute *nattr;
1566
1567	/* failed to create section attributes, so can't create notes */
1568	if (!mod->sect_attrs)
1569		return;
1570
1571	/* Count notes sections and allocate structures.  */
1572	notes = 0;
1573	for (i = 0; i < info->hdr->e_shnum; i++)
1574		if (!sect_empty(&info->sechdrs[i]) &&
1575		    (info->sechdrs[i].sh_type == SHT_NOTE))
1576			++notes;
1577
1578	if (notes == 0)
1579		return;
1580
1581	notes_attrs = kzalloc(sizeof(*notes_attrs)
1582			      + notes * sizeof(notes_attrs->attrs[0]),
1583			      GFP_KERNEL);
1584	if (notes_attrs == NULL)
1585		return;
1586
1587	notes_attrs->notes = notes;
1588	nattr = &notes_attrs->attrs[0];
1589	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1590		if (sect_empty(&info->sechdrs[i]))
1591			continue;
1592		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1593			sysfs_bin_attr_init(nattr);
1594			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1595			nattr->attr.mode = S_IRUGO;
1596			nattr->size = info->sechdrs[i].sh_size;
1597			nattr->private = (void *) info->sechdrs[i].sh_addr;
1598			nattr->read = module_notes_read;
1599			++nattr;
1600		}
1601		++loaded;
1602	}
1603
1604	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1605	if (!notes_attrs->dir)
1606		goto out;
1607
1608	for (i = 0; i < notes; ++i)
1609		if (sysfs_create_bin_file(notes_attrs->dir,
1610					  &notes_attrs->attrs[i]))
1611			goto out;
1612
1613	mod->notes_attrs = notes_attrs;
1614	return;
1615
1616  out:
1617	free_notes_attrs(notes_attrs, i);
1618}
1619
1620static void remove_notes_attrs(struct module *mod)
1621{
1622	if (mod->notes_attrs)
1623		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1624}
1625
1626#else
1627
1628static inline void add_sect_attrs(struct module *mod,
1629				  const struct load_info *info)
1630{
1631}
1632
1633static inline void remove_sect_attrs(struct module *mod)
1634{
1635}
1636
1637static inline void add_notes_attrs(struct module *mod,
1638				   const struct load_info *info)
1639{
1640}
1641
1642static inline void remove_notes_attrs(struct module *mod)
1643{
1644}
1645#endif /* CONFIG_KALLSYMS */
1646
1647static void add_usage_links(struct module *mod)
1648{
1649#ifdef CONFIG_MODULE_UNLOAD
1650	struct module_use *use;
1651	int nowarn;
1652
1653	mutex_lock(&module_mutex);
1654	list_for_each_entry(use, &mod->target_list, target_list) {
1655		nowarn = sysfs_create_link(use->target->holders_dir,
1656					   &mod->mkobj.kobj, mod->name);
1657	}
1658	mutex_unlock(&module_mutex);
1659#endif
1660}
1661
1662static void del_usage_links(struct module *mod)
1663{
1664#ifdef CONFIG_MODULE_UNLOAD
1665	struct module_use *use;
1666
1667	mutex_lock(&module_mutex);
1668	list_for_each_entry(use, &mod->target_list, target_list)
1669		sysfs_remove_link(use->target->holders_dir, mod->name);
1670	mutex_unlock(&module_mutex);
1671#endif
1672}
1673
1674static int module_add_modinfo_attrs(struct module *mod)
1675{
1676	struct module_attribute *attr;
1677	struct module_attribute *temp_attr;
1678	int error = 0;
1679	int i;
1680
1681	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1682					(ARRAY_SIZE(modinfo_attrs) + 1)),
1683					GFP_KERNEL);
1684	if (!mod->modinfo_attrs)
1685		return -ENOMEM;
1686
1687	temp_attr = mod->modinfo_attrs;
1688	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1689		if (!attr->test || attr->test(mod)) {
 
1690			memcpy(temp_attr, attr, sizeof(*temp_attr));
1691			sysfs_attr_init(&temp_attr->attr);
1692			error = sysfs_create_file(&mod->mkobj.kobj,
1693					&temp_attr->attr);
1694			++temp_attr;
1695		}
1696	}
1697	return error;
1698}
1699
1700static void module_remove_modinfo_attrs(struct module *mod)
1701{
1702	struct module_attribute *attr;
1703	int i;
1704
1705	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1706		/* pick a field to test for end of list */
1707		if (!attr->attr.name)
1708			break;
1709		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1710		if (attr->free)
1711			attr->free(mod);
1712	}
1713	kfree(mod->modinfo_attrs);
1714}
1715
1716static void mod_kobject_put(struct module *mod)
1717{
1718	DECLARE_COMPLETION_ONSTACK(c);
1719	mod->mkobj.kobj_completion = &c;
1720	kobject_put(&mod->mkobj.kobj);
1721	wait_for_completion(&c);
1722}
1723
1724static int mod_sysfs_init(struct module *mod)
1725{
1726	int err;
1727	struct kobject *kobj;
1728
1729	if (!module_sysfs_initialized) {
1730		pr_err("%s: module sysfs not initialized\n", mod->name);
 
1731		err = -EINVAL;
1732		goto out;
1733	}
1734
1735	kobj = kset_find_obj(module_kset, mod->name);
1736	if (kobj) {
1737		pr_err("%s: module is already loaded\n", mod->name);
1738		kobject_put(kobj);
1739		err = -EINVAL;
1740		goto out;
1741	}
1742
1743	mod->mkobj.mod = mod;
1744
1745	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1746	mod->mkobj.kobj.kset = module_kset;
1747	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1748				   "%s", mod->name);
1749	if (err)
1750		mod_kobject_put(mod);
1751
1752	/* delay uevent until full sysfs population */
1753out:
1754	return err;
1755}
1756
1757static int mod_sysfs_setup(struct module *mod,
1758			   const struct load_info *info,
1759			   struct kernel_param *kparam,
1760			   unsigned int num_params)
1761{
1762	int err;
1763
1764	err = mod_sysfs_init(mod);
1765	if (err)
1766		goto out;
1767
1768	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1769	if (!mod->holders_dir) {
1770		err = -ENOMEM;
1771		goto out_unreg;
1772	}
1773
1774	err = module_param_sysfs_setup(mod, kparam, num_params);
1775	if (err)
1776		goto out_unreg_holders;
1777
1778	err = module_add_modinfo_attrs(mod);
1779	if (err)
1780		goto out_unreg_param;
1781
1782	add_usage_links(mod);
1783	add_sect_attrs(mod, info);
1784	add_notes_attrs(mod, info);
1785
1786	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1787	return 0;
1788
1789out_unreg_param:
1790	module_param_sysfs_remove(mod);
1791out_unreg_holders:
1792	kobject_put(mod->holders_dir);
1793out_unreg:
1794	mod_kobject_put(mod);
1795out:
1796	return err;
1797}
1798
1799static void mod_sysfs_fini(struct module *mod)
1800{
1801	remove_notes_attrs(mod);
1802	remove_sect_attrs(mod);
1803	mod_kobject_put(mod);
1804}
1805
1806static void init_param_lock(struct module *mod)
1807{
1808	mutex_init(&mod->param_lock);
1809}
1810#else /* !CONFIG_SYSFS */
1811
1812static int mod_sysfs_setup(struct module *mod,
1813			   const struct load_info *info,
1814			   struct kernel_param *kparam,
1815			   unsigned int num_params)
1816{
1817	return 0;
1818}
1819
1820static void mod_sysfs_fini(struct module *mod)
1821{
1822}
1823
1824static void module_remove_modinfo_attrs(struct module *mod)
1825{
1826}
1827
1828static void del_usage_links(struct module *mod)
1829{
1830}
1831
1832static void init_param_lock(struct module *mod)
1833{
1834}
1835#endif /* CONFIG_SYSFS */
1836
1837static void mod_sysfs_teardown(struct module *mod)
1838{
1839	del_usage_links(mod);
1840	module_remove_modinfo_attrs(mod);
1841	module_param_sysfs_remove(mod);
1842	kobject_put(mod->mkobj.drivers_dir);
1843	kobject_put(mod->holders_dir);
1844	mod_sysfs_fini(mod);
1845}
1846
1847#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1848/*
1849 * LKM RO/NX protection: protect module's text/ro-data
1850 * from modification and any data from execution.
1851 *
1852 * General layout of module is:
1853 *          [text] [read-only-data] [ro-after-init] [writable data]
1854 * text_size -----^                ^               ^               ^
1855 * ro_size ------------------------|               |               |
1856 * ro_after_init_size -----------------------------|               |
1857 * size -----------------------------------------------------------|
1858 *
1859 * These values are always page-aligned (as is base)
1860 */
1861static void frob_text(const struct module_layout *layout,
1862		      int (*set_memory)(unsigned long start, int num_pages))
1863{
1864	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1865	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1866	set_memory((unsigned long)layout->base,
1867		   layout->text_size >> PAGE_SHIFT);
1868}
1869
1870static void frob_rodata(const struct module_layout *layout,
1871			int (*set_memory)(unsigned long start, int num_pages))
1872{
1873	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1874	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1875	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1876	set_memory((unsigned long)layout->base + layout->text_size,
1877		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1878}
1879
1880static void frob_ro_after_init(const struct module_layout *layout,
1881				int (*set_memory)(unsigned long start, int num_pages))
1882{
1883	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1884	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1885	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1886	set_memory((unsigned long)layout->base + layout->ro_size,
1887		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1888}
1889
1890static void frob_writable_data(const struct module_layout *layout,
1891			       int (*set_memory)(unsigned long start, int num_pages))
1892{
1893	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1894	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1895	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
1896	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
1897		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
1898}
1899
1900/* livepatching wants to disable read-only so it can frob module. */
1901void module_disable_ro(const struct module *mod)
 
 
 
 
1902{
1903	if (!rodata_enabled)
1904		return;
1905
1906	frob_text(&mod->core_layout, set_memory_rw);
1907	frob_rodata(&mod->core_layout, set_memory_rw);
1908	frob_ro_after_init(&mod->core_layout, set_memory_rw);
1909	frob_text(&mod->init_layout, set_memory_rw);
1910	frob_rodata(&mod->init_layout, set_memory_rw);
1911}
1912
1913void module_enable_ro(const struct module *mod, bool after_init)
 
 
 
1914{
1915	if (!rodata_enabled)
1916		return;
 
1917
1918	frob_text(&mod->core_layout, set_memory_ro);
1919	frob_rodata(&mod->core_layout, set_memory_ro);
1920	frob_text(&mod->init_layout, set_memory_ro);
1921	frob_rodata(&mod->init_layout, set_memory_ro);
 
 
 
1922
1923	if (after_init)
1924		frob_ro_after_init(&mod->core_layout, set_memory_ro);
 
 
 
 
 
 
 
 
 
1925}
1926
1927static void module_enable_nx(const struct module *mod)
1928{
1929	frob_rodata(&mod->core_layout, set_memory_nx);
1930	frob_ro_after_init(&mod->core_layout, set_memory_nx);
1931	frob_writable_data(&mod->core_layout, set_memory_nx);
1932	frob_rodata(&mod->init_layout, set_memory_nx);
1933	frob_writable_data(&mod->init_layout, set_memory_nx);
 
1934}
1935
1936static void module_disable_nx(const struct module *mod)
1937{
1938	frob_rodata(&mod->core_layout, set_memory_x);
1939	frob_ro_after_init(&mod->core_layout, set_memory_x);
1940	frob_writable_data(&mod->core_layout, set_memory_x);
1941	frob_rodata(&mod->init_layout, set_memory_x);
1942	frob_writable_data(&mod->init_layout, set_memory_x);
 
1943}
1944
1945/* Iterate through all modules and set each module's text as RW */
1946void set_all_modules_text_rw(void)
1947{
1948	struct module *mod;
1949
1950	if (!rodata_enabled)
1951		return;
1952
1953	mutex_lock(&module_mutex);
1954	list_for_each_entry_rcu(mod, &modules, list) {
1955		if (mod->state == MODULE_STATE_UNFORMED)
1956			continue;
1957
1958		frob_text(&mod->core_layout, set_memory_rw);
1959		frob_text(&mod->init_layout, set_memory_rw);
 
 
 
 
 
1960	}
1961	mutex_unlock(&module_mutex);
1962}
1963
1964/* Iterate through all modules and set each module's text as RO */
1965void set_all_modules_text_ro(void)
1966{
1967	struct module *mod;
1968
1969	if (!rodata_enabled)
1970		return;
1971
1972	mutex_lock(&module_mutex);
1973	list_for_each_entry_rcu(mod, &modules, list) {
1974		/*
1975		 * Ignore going modules since it's possible that ro
1976		 * protection has already been disabled, otherwise we'll
1977		 * run into protection faults at module deallocation.
1978		 */
1979		if (mod->state == MODULE_STATE_UNFORMED ||
1980			mod->state == MODULE_STATE_GOING)
1981			continue;
1982
1983		frob_text(&mod->core_layout, set_memory_ro);
1984		frob_text(&mod->init_layout, set_memory_ro);
1985	}
1986	mutex_unlock(&module_mutex);
1987}
1988
1989static void disable_ro_nx(const struct module_layout *layout)
1990{
1991	if (rodata_enabled) {
1992		frob_text(layout, set_memory_rw);
1993		frob_rodata(layout, set_memory_rw);
1994		frob_ro_after_init(layout, set_memory_rw);
1995	}
1996	frob_rodata(layout, set_memory_x);
1997	frob_ro_after_init(layout, set_memory_x);
1998	frob_writable_data(layout, set_memory_x);
1999}
2000
2001#else
2002static void disable_ro_nx(const struct module_layout *layout) { }
2003static void module_enable_nx(const struct module *mod) { }
2004static void module_disable_nx(const struct module *mod) { }
2005#endif
2006
2007#ifdef CONFIG_LIVEPATCH
2008/*
2009 * Persist Elf information about a module. Copy the Elf header,
2010 * section header table, section string table, and symtab section
2011 * index from info to mod->klp_info.
2012 */
2013static int copy_module_elf(struct module *mod, struct load_info *info)
2014{
2015	unsigned int size, symndx;
2016	int ret;
2017
2018	size = sizeof(*mod->klp_info);
2019	mod->klp_info = kmalloc(size, GFP_KERNEL);
2020	if (mod->klp_info == NULL)
2021		return -ENOMEM;
2022
2023	/* Elf header */
2024	size = sizeof(mod->klp_info->hdr);
2025	memcpy(&mod->klp_info->hdr, info->hdr, size);
2026
2027	/* Elf section header table */
2028	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2029	mod->klp_info->sechdrs = kmalloc(size, GFP_KERNEL);
2030	if (mod->klp_info->sechdrs == NULL) {
2031		ret = -ENOMEM;
2032		goto free_info;
2033	}
2034	memcpy(mod->klp_info->sechdrs, info->sechdrs, size);
2035
2036	/* Elf section name string table */
2037	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2038	mod->klp_info->secstrings = kmalloc(size, GFP_KERNEL);
2039	if (mod->klp_info->secstrings == NULL) {
2040		ret = -ENOMEM;
2041		goto free_sechdrs;
2042	}
2043	memcpy(mod->klp_info->secstrings, info->secstrings, size);
2044
2045	/* Elf symbol section index */
2046	symndx = info->index.sym;
2047	mod->klp_info->symndx = symndx;
2048
2049	/*
2050	 * For livepatch modules, core_kallsyms.symtab is a complete
2051	 * copy of the original symbol table. Adjust sh_addr to point
2052	 * to core_kallsyms.symtab since the copy of the symtab in module
2053	 * init memory is freed at the end of do_init_module().
2054	 */
2055	mod->klp_info->sechdrs[symndx].sh_addr = \
2056		(unsigned long) mod->core_kallsyms.symtab;
2057
2058	return 0;
2059
2060free_sechdrs:
2061	kfree(mod->klp_info->sechdrs);
2062free_info:
2063	kfree(mod->klp_info);
2064	return ret;
2065}
2066
2067static void free_module_elf(struct module *mod)
2068{
2069	kfree(mod->klp_info->sechdrs);
2070	kfree(mod->klp_info->secstrings);
2071	kfree(mod->klp_info);
2072}
2073#else /* !CONFIG_LIVEPATCH */
2074static int copy_module_elf(struct module *mod, struct load_info *info)
2075{
2076	return 0;
2077}
2078
2079static void free_module_elf(struct module *mod)
2080{
2081}
2082#endif /* CONFIG_LIVEPATCH */
2083
2084void __weak module_memfree(void *module_region)
2085{
2086	vfree(module_region);
2087}
2088
2089void __weak module_arch_cleanup(struct module *mod)
2090{
2091}
2092
2093void __weak module_arch_freeing_init(struct module *mod)
2094{
2095}
2096
2097/* Free a module, remove from lists, etc. */
2098static void free_module(struct module *mod)
2099{
2100	trace_module_free(mod);
2101
2102	mod_sysfs_teardown(mod);
2103
2104	/* We leave it in list to prevent duplicate loads, but make sure
2105	 * that noone uses it while it's being deconstructed. */
2106	mutex_lock(&module_mutex);
2107	mod->state = MODULE_STATE_UNFORMED;
2108	mutex_unlock(&module_mutex);
 
2109
2110	/* Remove dynamic debug info */
2111	ddebug_remove_module(mod->name);
2112
2113	/* Arch-specific cleanup. */
2114	module_arch_cleanup(mod);
2115
2116	/* Module unload stuff */
2117	module_unload_free(mod);
2118
2119	/* Free any allocated parameters. */
2120	destroy_params(mod->kp, mod->num_kp);
2121
2122	if (is_livepatch_module(mod))
2123		free_module_elf(mod);
2124
2125	/* Now we can delete it from the lists */
2126	mutex_lock(&module_mutex);
2127	/* Unlink carefully: kallsyms could be walking list. */
2128	list_del_rcu(&mod->list);
2129	mod_tree_remove(mod);
2130	/* Remove this module from bug list, this uses list_del_rcu */
2131	module_bug_cleanup(mod);
2132	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2133	synchronize_sched();
2134	mutex_unlock(&module_mutex);
2135
2136	/* This may be empty, but that's OK */
2137	disable_ro_nx(&mod->init_layout);
2138	module_arch_freeing_init(mod);
2139	module_memfree(mod->init_layout.base);
2140	kfree(mod->args);
2141	percpu_modfree(mod);
2142
2143	/* Free lock-classes; relies on the preceding sync_rcu(). */
2144	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2145
2146	/* Finally, free the core (containing the module structure) */
2147	disable_ro_nx(&mod->core_layout);
2148	module_memfree(mod->core_layout.base);
2149
2150#ifdef CONFIG_MPU
2151	update_protections(current->mm);
2152#endif
2153}
2154
2155void *__symbol_get(const char *symbol)
2156{
2157	struct module *owner;
2158	const struct kernel_symbol *sym;
2159
2160	preempt_disable();
2161	sym = find_symbol(symbol, &owner, NULL, true, true);
2162	if (sym && strong_try_module_get(owner))
2163		sym = NULL;
2164	preempt_enable();
2165
2166	return sym ? (void *)sym->value : NULL;
2167}
2168EXPORT_SYMBOL_GPL(__symbol_get);
2169
2170/*
2171 * Ensure that an exported symbol [global namespace] does not already exist
2172 * in the kernel or in some other module's exported symbol table.
2173 *
2174 * You must hold the module_mutex.
2175 */
2176static int verify_export_symbols(struct module *mod)
2177{
2178	unsigned int i;
2179	struct module *owner;
2180	const struct kernel_symbol *s;
2181	struct {
2182		const struct kernel_symbol *sym;
2183		unsigned int num;
2184	} arr[] = {
2185		{ mod->syms, mod->num_syms },
2186		{ mod->gpl_syms, mod->num_gpl_syms },
2187		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
2188#ifdef CONFIG_UNUSED_SYMBOLS
2189		{ mod->unused_syms, mod->num_unused_syms },
2190		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
2191#endif
2192	};
2193
2194	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2195		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2196			if (find_symbol(s->name, &owner, NULL, true, false)) {
2197				pr_err("%s: exports duplicate symbol %s"
 
2198				       " (owned by %s)\n",
2199				       mod->name, s->name, module_name(owner));
2200				return -ENOEXEC;
2201			}
2202		}
2203	}
2204	return 0;
2205}
2206
2207/* Change all symbols so that st_value encodes the pointer directly. */
2208static int simplify_symbols(struct module *mod, const struct load_info *info)
2209{
2210	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2211	Elf_Sym *sym = (void *)symsec->sh_addr;
2212	unsigned long secbase;
2213	unsigned int i;
2214	int ret = 0;
2215	const struct kernel_symbol *ksym;
2216
2217	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2218		const char *name = info->strtab + sym[i].st_name;
2219
2220		switch (sym[i].st_shndx) {
2221		case SHN_COMMON:
2222			/* Ignore common symbols */
2223			if (!strncmp(name, "__gnu_lto", 9))
2224				break;
2225
2226			/* We compiled with -fno-common.  These are not
2227			   supposed to happen.  */
2228			pr_debug("Common symbol: %s\n", name);
2229			pr_warn("%s: please compile with -fno-common\n",
2230			       mod->name);
2231			ret = -ENOEXEC;
2232			break;
2233
2234		case SHN_ABS:
2235			/* Don't need to do anything */
2236			pr_debug("Absolute symbol: 0x%08lx\n",
2237			       (long)sym[i].st_value);
2238			break;
2239
2240		case SHN_LIVEPATCH:
2241			/* Livepatch symbols are resolved by livepatch */
2242			break;
2243
2244		case SHN_UNDEF:
2245			ksym = resolve_symbol_wait(mod, info, name);
2246			/* Ok if resolved.  */
2247			if (ksym && !IS_ERR(ksym)) {
2248				sym[i].st_value = ksym->value;
2249				break;
2250			}
2251
2252			/* Ok if weak.  */
2253			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
2254				break;
2255
2256			pr_warn("%s: Unknown symbol %s (err %li)\n",
2257				mod->name, name, PTR_ERR(ksym));
2258			ret = PTR_ERR(ksym) ?: -ENOENT;
2259			break;
2260
2261		default:
2262			/* Divert to percpu allocation if a percpu var. */
2263			if (sym[i].st_shndx == info->index.pcpu)
2264				secbase = (unsigned long)mod_percpu(mod);
2265			else
2266				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2267			sym[i].st_value += secbase;
2268			break;
2269		}
2270	}
2271
2272	return ret;
2273}
2274
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2275static int apply_relocations(struct module *mod, const struct load_info *info)
2276{
2277	unsigned int i;
2278	int err = 0;
2279
2280	/* Now do relocations. */
2281	for (i = 1; i < info->hdr->e_shnum; i++) {
2282		unsigned int infosec = info->sechdrs[i].sh_info;
2283
2284		/* Not a valid relocation section? */
2285		if (infosec >= info->hdr->e_shnum)
2286			continue;
2287
2288		/* Don't bother with non-allocated sections */
2289		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2290			continue;
2291
2292		/* Livepatch relocation sections are applied by livepatch */
2293		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2294			continue;
2295
2296		if (info->sechdrs[i].sh_type == SHT_REL)
2297			err = apply_relocate(info->sechdrs, info->strtab,
2298					     info->index.sym, i, mod);
2299		else if (info->sechdrs[i].sh_type == SHT_RELA)
2300			err = apply_relocate_add(info->sechdrs, info->strtab,
2301						 info->index.sym, i, mod);
2302		if (err < 0)
2303			break;
2304	}
2305	return err;
2306}
2307
2308/* Additional bytes needed by arch in front of individual sections */
2309unsigned int __weak arch_mod_section_prepend(struct module *mod,
2310					     unsigned int section)
2311{
2312	/* default implementation just returns zero */
2313	return 0;
2314}
2315
2316/* Update size with this section: return offset. */
2317static long get_offset(struct module *mod, unsigned int *size,
2318		       Elf_Shdr *sechdr, unsigned int section)
2319{
2320	long ret;
2321
2322	*size += arch_mod_section_prepend(mod, section);
2323	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2324	*size = ret + sechdr->sh_size;
2325	return ret;
2326}
2327
2328/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2329   might -- code, read-only data, read-write data, small data.  Tally
2330   sizes, and place the offsets into sh_entsize fields: high bit means it
2331   belongs in init. */
2332static void layout_sections(struct module *mod, struct load_info *info)
2333{
2334	static unsigned long const masks[][2] = {
2335		/* NOTE: all executable code must be the first section
2336		 * in this array; otherwise modify the text_size
2337		 * finder in the two loops below */
2338		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2339		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2340		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2341		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2342		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2343	};
2344	unsigned int m, i;
2345
2346	for (i = 0; i < info->hdr->e_shnum; i++)
2347		info->sechdrs[i].sh_entsize = ~0UL;
2348
2349	pr_debug("Core section allocation order:\n");
2350	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2351		for (i = 0; i < info->hdr->e_shnum; ++i) {
2352			Elf_Shdr *s = &info->sechdrs[i];
2353			const char *sname = info->secstrings + s->sh_name;
2354
2355			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2356			    || (s->sh_flags & masks[m][1])
2357			    || s->sh_entsize != ~0UL
2358			    || strstarts(sname, ".init"))
2359				continue;
2360			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2361			pr_debug("\t%s\n", sname);
2362		}
2363		switch (m) {
2364		case 0: /* executable */
2365			mod->core_layout.size = debug_align(mod->core_layout.size);
2366			mod->core_layout.text_size = mod->core_layout.size;
2367			break;
2368		case 1: /* RO: text and ro-data */
2369			mod->core_layout.size = debug_align(mod->core_layout.size);
2370			mod->core_layout.ro_size = mod->core_layout.size;
2371			break;
2372		case 2: /* RO after init */
2373			mod->core_layout.size = debug_align(mod->core_layout.size);
2374			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2375			break;
2376		case 4: /* whole core */
2377			mod->core_layout.size = debug_align(mod->core_layout.size);
2378			break;
2379		}
2380	}
2381
2382	pr_debug("Init section allocation order:\n");
2383	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2384		for (i = 0; i < info->hdr->e_shnum; ++i) {
2385			Elf_Shdr *s = &info->sechdrs[i];
2386			const char *sname = info->secstrings + s->sh_name;
2387
2388			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2389			    || (s->sh_flags & masks[m][1])
2390			    || s->sh_entsize != ~0UL
2391			    || !strstarts(sname, ".init"))
2392				continue;
2393			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2394					 | INIT_OFFSET_MASK);
2395			pr_debug("\t%s\n", sname);
2396		}
2397		switch (m) {
2398		case 0: /* executable */
2399			mod->init_layout.size = debug_align(mod->init_layout.size);
2400			mod->init_layout.text_size = mod->init_layout.size;
2401			break;
2402		case 1: /* RO: text and ro-data */
2403			mod->init_layout.size = debug_align(mod->init_layout.size);
2404			mod->init_layout.ro_size = mod->init_layout.size;
2405			break;
2406		case 2:
2407			/*
2408			 * RO after init doesn't apply to init_layout (only
2409			 * core_layout), so it just takes the value of ro_size.
2410			 */
2411			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2412			break;
2413		case 4: /* whole init */
2414			mod->init_layout.size = debug_align(mod->init_layout.size);
2415			break;
2416		}
2417	}
2418}
2419
2420static void set_license(struct module *mod, const char *license)
2421{
2422	if (!license)
2423		license = "unspecified";
2424
2425	if (!license_is_gpl_compatible(license)) {
2426		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2427			pr_warn("%s: module license '%s' taints kernel.\n",
2428				mod->name, license);
2429		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2430				 LOCKDEP_NOW_UNRELIABLE);
2431	}
2432}
2433
2434/* Parse tag=value strings from .modinfo section */
2435static char *next_string(char *string, unsigned long *secsize)
2436{
2437	/* Skip non-zero chars */
2438	while (string[0]) {
2439		string++;
2440		if ((*secsize)-- <= 1)
2441			return NULL;
2442	}
2443
2444	/* Skip any zero padding. */
2445	while (!string[0]) {
2446		string++;
2447		if ((*secsize)-- <= 1)
2448			return NULL;
2449	}
2450	return string;
2451}
2452
2453static char *get_modinfo(struct load_info *info, const char *tag)
2454{
2455	char *p;
2456	unsigned int taglen = strlen(tag);
2457	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2458	unsigned long size = infosec->sh_size;
2459
2460	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2461		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2462			return p + taglen + 1;
2463	}
2464	return NULL;
2465}
2466
2467static void setup_modinfo(struct module *mod, struct load_info *info)
2468{
2469	struct module_attribute *attr;
2470	int i;
2471
2472	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2473		if (attr->setup)
2474			attr->setup(mod, get_modinfo(info, attr->attr.name));
2475	}
2476}
2477
2478static void free_modinfo(struct module *mod)
2479{
2480	struct module_attribute *attr;
2481	int i;
2482
2483	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2484		if (attr->free)
2485			attr->free(mod);
2486	}
2487}
2488
2489#ifdef CONFIG_KALLSYMS
2490
2491/* lookup symbol in given range of kernel_symbols */
2492static const struct kernel_symbol *lookup_symbol(const char *name,
2493	const struct kernel_symbol *start,
2494	const struct kernel_symbol *stop)
2495{
2496	return bsearch(name, start, stop - start,
2497			sizeof(struct kernel_symbol), cmp_name);
2498}
2499
2500static int is_exported(const char *name, unsigned long value,
2501		       const struct module *mod)
2502{
2503	const struct kernel_symbol *ks;
2504	if (!mod)
2505		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2506	else
2507		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2508	return ks != NULL && ks->value == value;
2509}
2510
2511/* As per nm */
2512static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2513{
2514	const Elf_Shdr *sechdrs = info->sechdrs;
2515
2516	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2517		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2518			return 'v';
2519		else
2520			return 'w';
2521	}
2522	if (sym->st_shndx == SHN_UNDEF)
2523		return 'U';
2524	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2525		return 'a';
2526	if (sym->st_shndx >= SHN_LORESERVE)
2527		return '?';
2528	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2529		return 't';
2530	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2531	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2532		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2533			return 'r';
2534		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2535			return 'g';
2536		else
2537			return 'd';
2538	}
2539	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2540		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2541			return 's';
2542		else
2543			return 'b';
2544	}
2545	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2546		      ".debug")) {
2547		return 'n';
2548	}
2549	return '?';
2550}
2551
2552static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2553			unsigned int shnum, unsigned int pcpundx)
2554{
2555	const Elf_Shdr *sec;
2556
2557	if (src->st_shndx == SHN_UNDEF
2558	    || src->st_shndx >= shnum
2559	    || !src->st_name)
2560		return false;
2561
2562#ifdef CONFIG_KALLSYMS_ALL
2563	if (src->st_shndx == pcpundx)
2564		return true;
2565#endif
2566
2567	sec = sechdrs + src->st_shndx;
2568	if (!(sec->sh_flags & SHF_ALLOC)
2569#ifndef CONFIG_KALLSYMS_ALL
2570	    || !(sec->sh_flags & SHF_EXECINSTR)
2571#endif
2572	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2573		return false;
2574
2575	return true;
2576}
2577
2578/*
2579 * We only allocate and copy the strings needed by the parts of symtab
2580 * we keep.  This is simple, but has the effect of making multiple
2581 * copies of duplicates.  We could be more sophisticated, see
2582 * linux-kernel thread starting with
2583 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2584 */
2585static void layout_symtab(struct module *mod, struct load_info *info)
2586{
2587	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2588	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2589	const Elf_Sym *src;
2590	unsigned int i, nsrc, ndst, strtab_size = 0;
2591
2592	/* Put symbol section at end of init part of module. */
2593	symsect->sh_flags |= SHF_ALLOC;
2594	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2595					 info->index.sym) | INIT_OFFSET_MASK;
2596	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2597
2598	src = (void *)info->hdr + symsect->sh_offset;
2599	nsrc = symsect->sh_size / sizeof(*src);
2600
2601	/* Compute total space required for the core symbols' strtab. */
2602	for (ndst = i = 0; i < nsrc; i++) {
2603		if (i == 0 || is_livepatch_module(mod) ||
2604		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2605				   info->index.pcpu)) {
2606			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2607			ndst++;
2608		}
2609	}
2610
2611	/* Append room for core symbols at end of core part. */
2612	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2613	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2614	mod->core_layout.size += strtab_size;
2615	mod->core_layout.size = debug_align(mod->core_layout.size);
2616
2617	/* Put string table section at end of init part of module. */
2618	strsect->sh_flags |= SHF_ALLOC;
2619	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2620					 info->index.str) | INIT_OFFSET_MASK;
2621	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2622
2623	/* We'll tack temporary mod_kallsyms on the end. */
2624	mod->init_layout.size = ALIGN(mod->init_layout.size,
2625				      __alignof__(struct mod_kallsyms));
2626	info->mod_kallsyms_init_off = mod->init_layout.size;
2627	mod->init_layout.size += sizeof(struct mod_kallsyms);
2628	mod->init_layout.size = debug_align(mod->init_layout.size);
2629}
2630
2631/*
2632 * We use the full symtab and strtab which layout_symtab arranged to
2633 * be appended to the init section.  Later we switch to the cut-down
2634 * core-only ones.
2635 */
2636static void add_kallsyms(struct module *mod, const struct load_info *info)
2637{
2638	unsigned int i, ndst;
2639	const Elf_Sym *src;
2640	Elf_Sym *dst;
2641	char *s;
2642	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2643
2644	/* Set up to point into init section. */
2645	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2646
2647	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2648	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2649	/* Make sure we get permanent strtab: don't use info->strtab. */
2650	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2651
2652	/* Set types up while we still have access to sections. */
2653	for (i = 0; i < mod->kallsyms->num_symtab; i++)
2654		mod->kallsyms->symtab[i].st_info
2655			= elf_type(&mod->kallsyms->symtab[i], info);
2656
2657	/* Now populate the cut down core kallsyms for after init. */
2658	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2659	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2660	src = mod->kallsyms->symtab;
2661	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2662		if (i == 0 || is_livepatch_module(mod) ||
2663		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2664				   info->index.pcpu)) {
2665			dst[ndst] = src[i];
2666			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2667			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2668				     KSYM_NAME_LEN) + 1;
2669		}
2670	}
2671	mod->core_kallsyms.num_symtab = ndst;
2672}
2673#else
2674static inline void layout_symtab(struct module *mod, struct load_info *info)
2675{
2676}
2677
2678static void add_kallsyms(struct module *mod, const struct load_info *info)
2679{
2680}
2681#endif /* CONFIG_KALLSYMS */
2682
2683static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2684{
2685	if (!debug)
2686		return;
2687#ifdef CONFIG_DYNAMIC_DEBUG
2688	if (ddebug_add_module(debug, num, debug->modname))
2689		pr_err("dynamic debug error adding module: %s\n",
2690			debug->modname);
2691#endif
2692}
2693
2694static void dynamic_debug_remove(struct _ddebug *debug)
2695{
2696	if (debug)
2697		ddebug_remove_module(debug->modname);
2698}
2699
2700void * __weak module_alloc(unsigned long size)
2701{
2702	return vmalloc_exec(size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2703}
2704
2705#ifdef CONFIG_DEBUG_KMEMLEAK
2706static void kmemleak_load_module(const struct module *mod,
2707				 const struct load_info *info)
2708{
2709	unsigned int i;
2710
2711	/* only scan the sections containing data */
2712	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2713
2714	for (i = 1; i < info->hdr->e_shnum; i++) {
2715		/* Scan all writable sections that's not executable */
2716		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2717		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2718		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2719			continue;
2720
2721		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2722				   info->sechdrs[i].sh_size, GFP_KERNEL);
2723	}
2724}
2725#else
2726static inline void kmemleak_load_module(const struct module *mod,
2727					const struct load_info *info)
2728{
2729}
2730#endif
2731
2732#ifdef CONFIG_MODULE_SIG
2733static int module_sig_check(struct load_info *info, int flags)
2734{
2735	int err = -ENOKEY;
2736	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2737	const void *mod = info->hdr;
2738
2739	/*
2740	 * Require flags == 0, as a module with version information
2741	 * removed is no longer the module that was signed
2742	 */
2743	if (flags == 0 &&
2744	    info->len > markerlen &&
2745	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2746		/* We truncate the module to discard the signature */
2747		info->len -= markerlen;
2748		err = mod_verify_sig(mod, &info->len);
2749	}
2750
2751	if (!err) {
2752		info->sig_ok = true;
2753		return 0;
2754	}
2755
2756	/* Not having a signature is only an error if we're strict. */
2757	if (err == -ENOKEY && !sig_enforce)
2758		err = 0;
2759
2760	return err;
2761}
2762#else /* !CONFIG_MODULE_SIG */
2763static int module_sig_check(struct load_info *info, int flags)
2764{
2765	return 0;
2766}
2767#endif /* !CONFIG_MODULE_SIG */
2768
2769/* Sanity checks against invalid binaries, wrong arch, weird elf version. */
2770static int elf_header_check(struct load_info *info)
2771{
2772	if (info->len < sizeof(*(info->hdr)))
2773		return -ENOEXEC;
2774
2775	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2776	    || info->hdr->e_type != ET_REL
2777	    || !elf_check_arch(info->hdr)
2778	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2779		return -ENOEXEC;
2780
2781	if (info->hdr->e_shoff >= info->len
2782	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2783		info->len - info->hdr->e_shoff))
2784		return -ENOEXEC;
2785
2786	return 0;
2787}
2788
2789#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2790
2791static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2792{
2793	do {
2794		unsigned long n = min(len, COPY_CHUNK_SIZE);
2795
2796		if (copy_from_user(dst, usrc, n) != 0)
2797			return -EFAULT;
2798		cond_resched();
2799		dst += n;
2800		usrc += n;
2801		len -= n;
2802	} while (len);
2803	return 0;
2804}
2805
2806#ifdef CONFIG_LIVEPATCH
2807static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2808{
2809	if (get_modinfo(info, "livepatch")) {
2810		mod->klp = true;
2811		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2812	}
2813
2814	return 0;
2815}
2816#else /* !CONFIG_LIVEPATCH */
2817static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2818{
2819	if (get_modinfo(info, "livepatch")) {
2820		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2821		       mod->name);
2822		return -ENOEXEC;
2823	}
2824
2825	return 0;
2826}
2827#endif /* CONFIG_LIVEPATCH */
2828
2829/* Sets info->hdr and info->len. */
2830static int copy_module_from_user(const void __user *umod, unsigned long len,
2831				  struct load_info *info)
 
2832{
2833	int err;
 
2834
2835	info->len = len;
2836	if (info->len < sizeof(*(info->hdr)))
2837		return -ENOEXEC;
2838
2839	err = security_kernel_read_file(NULL, READING_MODULE);
2840	if (err)
2841		return err;
2842
2843	/* Suck in entire file: we'll want most of it. */
2844	info->hdr = __vmalloc(info->len,
2845			GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, PAGE_KERNEL);
2846	if (!info->hdr)
2847		return -ENOMEM;
2848
2849	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2850		vfree(info->hdr);
2851		return -EFAULT;
2852	}
2853
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2854	return 0;
 
 
 
 
2855}
2856
2857static void free_copy(struct load_info *info)
2858{
2859	vfree(info->hdr);
2860}
2861
2862static int rewrite_section_headers(struct load_info *info, int flags)
2863{
2864	unsigned int i;
2865
2866	/* This should always be true, but let's be sure. */
2867	info->sechdrs[0].sh_addr = 0;
2868
2869	for (i = 1; i < info->hdr->e_shnum; i++) {
2870		Elf_Shdr *shdr = &info->sechdrs[i];
2871		if (shdr->sh_type != SHT_NOBITS
2872		    && info->len < shdr->sh_offset + shdr->sh_size) {
2873			pr_err("Module len %lu truncated\n", info->len);
 
2874			return -ENOEXEC;
2875		}
2876
2877		/* Mark all sections sh_addr with their address in the
2878		   temporary image. */
2879		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2880
2881#ifndef CONFIG_MODULE_UNLOAD
2882		/* Don't load .exit sections */
2883		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2884			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2885#endif
2886	}
2887
2888	/* Track but don't keep modinfo and version sections. */
2889	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
2890		info->index.vers = 0; /* Pretend no __versions section! */
2891	else
2892		info->index.vers = find_sec(info, "__versions");
2893	info->index.info = find_sec(info, ".modinfo");
2894	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2895	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2896	return 0;
2897}
2898
2899/*
2900 * Set up our basic convenience variables (pointers to section headers,
2901 * search for module section index etc), and do some basic section
2902 * verification.
2903 *
2904 * Return the temporary module pointer (we'll replace it with the final
2905 * one when we move the module sections around).
2906 */
2907static struct module *setup_load_info(struct load_info *info, int flags)
2908{
2909	unsigned int i;
2910	int err;
2911	struct module *mod;
2912
2913	/* Set up the convenience variables */
2914	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2915	info->secstrings = (void *)info->hdr
2916		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2917
2918	err = rewrite_section_headers(info, flags);
2919	if (err)
2920		return ERR_PTR(err);
2921
2922	/* Find internal symbols and strings. */
2923	for (i = 1; i < info->hdr->e_shnum; i++) {
2924		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2925			info->index.sym = i;
2926			info->index.str = info->sechdrs[i].sh_link;
2927			info->strtab = (char *)info->hdr
2928				+ info->sechdrs[info->index.str].sh_offset;
2929			break;
2930		}
2931	}
2932
2933	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2934	if (!info->index.mod) {
2935		pr_warn("No module found in object\n");
2936		return ERR_PTR(-ENOEXEC);
2937	}
2938	/* This is temporary: point mod into copy of data. */
2939	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2940
2941	if (info->index.sym == 0) {
2942		pr_warn("%s: module has no symbols (stripped?)\n", mod->name);
 
2943		return ERR_PTR(-ENOEXEC);
2944	}
2945
2946	info->index.pcpu = find_pcpusec(info);
2947
2948	/* Check module struct version now, before we try to use module. */
2949	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2950		return ERR_PTR(-ENOEXEC);
2951
2952	return mod;
2953}
2954
2955static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2956{
2957	const char *modmagic = get_modinfo(info, "vermagic");
2958	int err;
2959
2960	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2961		modmagic = NULL;
2962
2963	/* This is allowed: modprobe --force will invalidate it. */
2964	if (!modmagic) {
2965		err = try_to_force_load(mod, "bad vermagic");
2966		if (err)
2967			return err;
2968	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2969		pr_err("%s: version magic '%s' should be '%s'\n",
2970		       mod->name, modmagic, vermagic);
2971		return -ENOEXEC;
2972	}
2973
2974	if (!get_modinfo(info, "intree")) {
2975		if (!test_taint(TAINT_OOT_MODULE))
2976			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2977				mod->name);
2978		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2979	}
2980
2981	if (get_modinfo(info, "staging")) {
2982		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2983		pr_warn("%s: module is from the staging directory, the quality "
2984			"is unknown, you have been warned.\n", mod->name);
 
2985	}
2986
2987	err = check_modinfo_livepatch(mod, info);
2988	if (err)
2989		return err;
2990
2991	/* Set up license info based on the info section */
2992	set_license(mod, get_modinfo(info, "license"));
2993
2994	return 0;
2995}
2996
2997static int find_module_sections(struct module *mod, struct load_info *info)
2998{
2999	mod->kp = section_objs(info, "__param",
3000			       sizeof(*mod->kp), &mod->num_kp);
3001	mod->syms = section_objs(info, "__ksymtab",
3002				 sizeof(*mod->syms), &mod->num_syms);
3003	mod->crcs = section_addr(info, "__kcrctab");
3004	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3005				     sizeof(*mod->gpl_syms),
3006				     &mod->num_gpl_syms);
3007	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3008	mod->gpl_future_syms = section_objs(info,
3009					    "__ksymtab_gpl_future",
3010					    sizeof(*mod->gpl_future_syms),
3011					    &mod->num_gpl_future_syms);
3012	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
3013
3014#ifdef CONFIG_UNUSED_SYMBOLS
3015	mod->unused_syms = section_objs(info, "__ksymtab_unused",
3016					sizeof(*mod->unused_syms),
3017					&mod->num_unused_syms);
3018	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
3019	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
3020					    sizeof(*mod->unused_gpl_syms),
3021					    &mod->num_unused_gpl_syms);
3022	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
3023#endif
3024#ifdef CONFIG_CONSTRUCTORS
3025	mod->ctors = section_objs(info, ".ctors",
3026				  sizeof(*mod->ctors), &mod->num_ctors);
3027	if (!mod->ctors)
3028		mod->ctors = section_objs(info, ".init_array",
3029				sizeof(*mod->ctors), &mod->num_ctors);
3030	else if (find_sec(info, ".init_array")) {
3031		/*
3032		 * This shouldn't happen with same compiler and binutils
3033		 * building all parts of the module.
3034		 */
3035		pr_warn("%s: has both .ctors and .init_array.\n",
3036		       mod->name);
3037		return -EINVAL;
3038	}
3039#endif
3040
3041#ifdef CONFIG_TRACEPOINTS
3042	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3043					     sizeof(*mod->tracepoints_ptrs),
3044					     &mod->num_tracepoints);
3045#endif
3046#ifdef HAVE_JUMP_LABEL
3047	mod->jump_entries = section_objs(info, "__jump_table",
3048					sizeof(*mod->jump_entries),
3049					&mod->num_jump_entries);
3050#endif
3051#ifdef CONFIG_EVENT_TRACING
3052	mod->trace_events = section_objs(info, "_ftrace_events",
3053					 sizeof(*mod->trace_events),
3054					 &mod->num_trace_events);
3055	mod->trace_enums = section_objs(info, "_ftrace_enum_map",
3056					sizeof(*mod->trace_enums),
3057					&mod->num_trace_enums);
 
 
 
3058#endif
3059#ifdef CONFIG_TRACING
3060	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3061					 sizeof(*mod->trace_bprintk_fmt_start),
3062					 &mod->num_trace_bprintk_fmt);
 
 
 
 
 
 
 
3063#endif
3064#ifdef CONFIG_FTRACE_MCOUNT_RECORD
3065	/* sechdrs[0].sh_size is always zero */
3066	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
3067					     sizeof(*mod->ftrace_callsites),
3068					     &mod->num_ftrace_callsites);
3069#endif
3070
3071	mod->extable = section_objs(info, "__ex_table",
3072				    sizeof(*mod->extable), &mod->num_exentries);
3073
3074	if (section_addr(info, "__obsparm"))
3075		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
 
3076
3077	info->debug = section_objs(info, "__verbose",
3078				   sizeof(*info->debug), &info->num_debug);
3079
3080	return 0;
3081}
3082
3083static int move_module(struct module *mod, struct load_info *info)
3084{
3085	int i;
3086	void *ptr;
3087
3088	/* Do the allocs. */
3089	ptr = module_alloc(mod->core_layout.size);
3090	/*
3091	 * The pointer to this block is stored in the module structure
3092	 * which is inside the block. Just mark it as not being a
3093	 * leak.
3094	 */
3095	kmemleak_not_leak(ptr);
3096	if (!ptr)
3097		return -ENOMEM;
3098
3099	memset(ptr, 0, mod->core_layout.size);
3100	mod->core_layout.base = ptr;
3101
3102	if (mod->init_layout.size) {
3103		ptr = module_alloc(mod->init_layout.size);
3104		/*
3105		 * The pointer to this block is stored in the module structure
3106		 * which is inside the block. This block doesn't need to be
3107		 * scanned as it contains data and code that will be freed
3108		 * after the module is initialized.
3109		 */
3110		kmemleak_ignore(ptr);
3111		if (!ptr) {
3112			module_memfree(mod->core_layout.base);
3113			return -ENOMEM;
3114		}
3115		memset(ptr, 0, mod->init_layout.size);
3116		mod->init_layout.base = ptr;
3117	} else
3118		mod->init_layout.base = NULL;
3119
3120	/* Transfer each section which specifies SHF_ALLOC */
3121	pr_debug("final section addresses:\n");
3122	for (i = 0; i < info->hdr->e_shnum; i++) {
3123		void *dest;
3124		Elf_Shdr *shdr = &info->sechdrs[i];
3125
3126		if (!(shdr->sh_flags & SHF_ALLOC))
3127			continue;
3128
3129		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3130			dest = mod->init_layout.base
3131				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3132		else
3133			dest = mod->core_layout.base + shdr->sh_entsize;
3134
3135		if (shdr->sh_type != SHT_NOBITS)
3136			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3137		/* Update sh_addr to point to copy in image. */
3138		shdr->sh_addr = (unsigned long)dest;
3139		pr_debug("\t0x%lx %s\n",
3140			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3141	}
3142
3143	return 0;
3144}
3145
3146static int check_module_license_and_versions(struct module *mod)
3147{
3148	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3149
3150	/*
3151	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3152	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3153	 * using GPL-only symbols it needs.
3154	 */
3155	if (strcmp(mod->name, "ndiswrapper") == 0)
3156		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3157
3158	/* driverloader was caught wrongly pretending to be under GPL */
3159	if (strcmp(mod->name, "driverloader") == 0)
3160		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3161				 LOCKDEP_NOW_UNRELIABLE);
3162
3163	/* lve claims to be GPL but upstream won't provide source */
3164	if (strcmp(mod->name, "lve") == 0)
3165		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3166				 LOCKDEP_NOW_UNRELIABLE);
3167
3168	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3169		pr_warn("%s: module license taints kernel.\n", mod->name);
3170
3171#ifdef CONFIG_MODVERSIONS
3172	if ((mod->num_syms && !mod->crcs)
3173	    || (mod->num_gpl_syms && !mod->gpl_crcs)
3174	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
3175#ifdef CONFIG_UNUSED_SYMBOLS
3176	    || (mod->num_unused_syms && !mod->unused_crcs)
3177	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
3178#endif
3179		) {
3180		return try_to_force_load(mod,
3181					 "no versions for exported symbols");
3182	}
3183#endif
3184	return 0;
3185}
3186
3187static void flush_module_icache(const struct module *mod)
3188{
3189	mm_segment_t old_fs;
3190
3191	/* flush the icache in correct context */
3192	old_fs = get_fs();
3193	set_fs(KERNEL_DS);
3194
3195	/*
3196	 * Flush the instruction cache, since we've played with text.
3197	 * Do it before processing of module parameters, so the module
3198	 * can provide parameter accessor functions of its own.
3199	 */
3200	if (mod->init_layout.base)
3201		flush_icache_range((unsigned long)mod->init_layout.base,
3202				   (unsigned long)mod->init_layout.base
3203				   + mod->init_layout.size);
3204	flush_icache_range((unsigned long)mod->core_layout.base,
3205			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3206
3207	set_fs(old_fs);
3208}
3209
3210int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3211				     Elf_Shdr *sechdrs,
3212				     char *secstrings,
3213				     struct module *mod)
3214{
3215	return 0;
3216}
3217
3218/* module_blacklist is a comma-separated list of module names */
3219static char *module_blacklist;
3220static bool blacklisted(char *module_name)
3221{
3222	const char *p;
3223	size_t len;
3224
3225	if (!module_blacklist)
3226		return false;
3227
3228	for (p = module_blacklist; *p; p += len) {
3229		len = strcspn(p, ",");
3230		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3231			return true;
3232		if (p[len] == ',')
3233			len++;
3234	}
3235	return false;
3236}
3237core_param(module_blacklist, module_blacklist, charp, 0400);
3238
3239static struct module *layout_and_allocate(struct load_info *info, int flags)
3240{
3241	/* Module within temporary copy. */
3242	struct module *mod;
3243	unsigned int ndx;
3244	int err;
3245
3246	mod = setup_load_info(info, flags);
3247	if (IS_ERR(mod))
3248		return mod;
3249
3250	if (blacklisted(mod->name))
3251		return ERR_PTR(-EPERM);
3252
3253	err = check_modinfo(mod, info, flags);
3254	if (err)
3255		return ERR_PTR(err);
3256
3257	/* Allow arches to frob section contents and sizes.  */
3258	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3259					info->secstrings, mod);
3260	if (err < 0)
3261		return ERR_PTR(err);
3262
3263	/* We will do a special allocation for per-cpu sections later. */
3264	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3265
3266	/*
3267	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3268	 * layout_sections() can put it in the right place.
3269	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3270	 */
3271	ndx = find_sec(info, ".data..ro_after_init");
3272	if (ndx)
3273		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
 
3274
3275	/* Determine total sizes, and put offsets in sh_entsize.  For now
3276	   this is done generically; there doesn't appear to be any
3277	   special cases for the architectures. */
3278	layout_sections(mod, info);
3279	layout_symtab(mod, info);
3280
3281	/* Allocate and move to the final place */
3282	err = move_module(mod, info);
3283	if (err)
3284		return ERR_PTR(err);
3285
3286	/* Module has been copied to its final place now: return it. */
3287	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3288	kmemleak_load_module(mod, info);
3289	return mod;
 
 
 
 
 
3290}
3291
3292/* mod is no longer valid after this! */
3293static void module_deallocate(struct module *mod, struct load_info *info)
3294{
3295	percpu_modfree(mod);
3296	module_arch_freeing_init(mod);
3297	module_memfree(mod->init_layout.base);
3298	module_memfree(mod->core_layout.base);
3299}
3300
3301int __weak module_finalize(const Elf_Ehdr *hdr,
3302			   const Elf_Shdr *sechdrs,
3303			   struct module *me)
3304{
3305	return 0;
3306}
3307
3308static int post_relocation(struct module *mod, const struct load_info *info)
3309{
3310	/* Sort exception table now relocations are done. */
3311	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3312
3313	/* Copy relocated percpu area over. */
3314	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3315		       info->sechdrs[info->index.pcpu].sh_size);
3316
3317	/* Setup kallsyms-specific fields. */
3318	add_kallsyms(mod, info);
3319
3320	/* Arch-specific module finalizing. */
3321	return module_finalize(info->hdr, info->sechdrs, mod);
3322}
3323
3324/* Is this module of this name done loading?  No locks held. */
3325static bool finished_loading(const char *name)
3326{
3327	struct module *mod;
3328	bool ret;
3329
3330	/*
3331	 * The module_mutex should not be a heavily contended lock;
3332	 * if we get the occasional sleep here, we'll go an extra iteration
3333	 * in the wait_event_interruptible(), which is harmless.
3334	 */
3335	sched_annotate_sleep();
3336	mutex_lock(&module_mutex);
3337	mod = find_module_all(name, strlen(name), true);
3338	ret = !mod || mod->state == MODULE_STATE_LIVE
3339		|| mod->state == MODULE_STATE_GOING;
3340	mutex_unlock(&module_mutex);
3341
3342	return ret;
3343}
3344
3345/* Call module constructors. */
3346static void do_mod_ctors(struct module *mod)
3347{
3348#ifdef CONFIG_CONSTRUCTORS
3349	unsigned long i;
3350
3351	for (i = 0; i < mod->num_ctors; i++)
3352		mod->ctors[i]();
3353#endif
3354}
3355
3356/* For freeing module_init on success, in case kallsyms traversing */
3357struct mod_initfree {
3358	struct rcu_head rcu;
3359	void *module_init;
3360};
3361
3362static void do_free_init(struct rcu_head *head)
3363{
3364	struct mod_initfree *m = container_of(head, struct mod_initfree, rcu);
3365	module_memfree(m->module_init);
3366	kfree(m);
3367}
3368
3369/*
3370 * This is where the real work happens.
3371 *
3372 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3373 * helper command 'lx-symbols'.
3374 */
3375static noinline int do_init_module(struct module *mod)
3376{
3377	int ret = 0;
3378	struct mod_initfree *freeinit;
3379
3380	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3381	if (!freeinit) {
3382		ret = -ENOMEM;
3383		goto fail;
3384	}
3385	freeinit->module_init = mod->init_layout.base;
3386
3387	/*
3388	 * We want to find out whether @mod uses async during init.  Clear
3389	 * PF_USED_ASYNC.  async_schedule*() will set it.
3390	 */
3391	current->flags &= ~PF_USED_ASYNC;
3392
3393	do_mod_ctors(mod);
3394	/* Start the module */
3395	if (mod->init != NULL)
3396		ret = do_one_initcall(mod->init);
3397	if (ret < 0) {
3398		goto fail_free_freeinit;
3399	}
3400	if (ret > 0) {
3401		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3402			"follow 0/-E convention\n"
3403			"%s: loading module anyway...\n",
3404			__func__, mod->name, ret, __func__);
3405		dump_stack();
3406	}
3407
3408	/* Now it's a first class citizen! */
3409	mod->state = MODULE_STATE_LIVE;
3410	blocking_notifier_call_chain(&module_notify_list,
3411				     MODULE_STATE_LIVE, mod);
3412
3413	/*
3414	 * We need to finish all async code before the module init sequence
3415	 * is done.  This has potential to deadlock.  For example, a newly
3416	 * detected block device can trigger request_module() of the
3417	 * default iosched from async probing task.  Once userland helper
3418	 * reaches here, async_synchronize_full() will wait on the async
3419	 * task waiting on request_module() and deadlock.
3420	 *
3421	 * This deadlock is avoided by perfomring async_synchronize_full()
3422	 * iff module init queued any async jobs.  This isn't a full
3423	 * solution as it will deadlock the same if module loading from
3424	 * async jobs nests more than once; however, due to the various
3425	 * constraints, this hack seems to be the best option for now.
3426	 * Please refer to the following thread for details.
3427	 *
3428	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3429	 */
3430	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3431		async_synchronize_full();
3432
3433	mutex_lock(&module_mutex);
3434	/* Drop initial reference. */
3435	module_put(mod);
3436	trim_init_extable(mod);
3437#ifdef CONFIG_KALLSYMS
3438	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3439	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3440#endif
3441	module_enable_ro(mod, true);
3442	mod_tree_remove_init(mod);
3443	disable_ro_nx(&mod->init_layout);
3444	module_arch_freeing_init(mod);
3445	mod->init_layout.base = NULL;
3446	mod->init_layout.size = 0;
3447	mod->init_layout.ro_size = 0;
3448	mod->init_layout.ro_after_init_size = 0;
3449	mod->init_layout.text_size = 0;
3450	/*
3451	 * We want to free module_init, but be aware that kallsyms may be
3452	 * walking this with preempt disabled.  In all the failure paths, we
3453	 * call synchronize_sched(), but we don't want to slow down the success
3454	 * path, so use actual RCU here.
3455	 */
3456	call_rcu_sched(&freeinit->rcu, do_free_init);
3457	mutex_unlock(&module_mutex);
3458	wake_up_all(&module_wq);
3459
3460	return 0;
3461
3462fail_free_freeinit:
3463	kfree(freeinit);
3464fail:
3465	/* Try to protect us from buggy refcounters. */
3466	mod->state = MODULE_STATE_GOING;
3467	synchronize_sched();
3468	module_put(mod);
3469	blocking_notifier_call_chain(&module_notify_list,
3470				     MODULE_STATE_GOING, mod);
3471	klp_module_going(mod);
3472	ftrace_release_mod(mod);
3473	free_module(mod);
3474	wake_up_all(&module_wq);
3475	return ret;
3476}
3477
3478static int may_init_module(void)
3479{
3480	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3481		return -EPERM;
3482
3483	return 0;
3484}
3485
3486/*
3487 * We try to place it in the list now to make sure it's unique before
3488 * we dedicate too many resources.  In particular, temporary percpu
3489 * memory exhaustion.
3490 */
3491static int add_unformed_module(struct module *mod)
3492{
3493	int err;
3494	struct module *old;
3495
3496	mod->state = MODULE_STATE_UNFORMED;
3497
3498again:
3499	mutex_lock(&module_mutex);
3500	old = find_module_all(mod->name, strlen(mod->name), true);
3501	if (old != NULL) {
3502		if (old->state == MODULE_STATE_COMING
3503		    || old->state == MODULE_STATE_UNFORMED) {
3504			/* Wait in case it fails to load. */
3505			mutex_unlock(&module_mutex);
3506			err = wait_event_interruptible(module_wq,
3507					       finished_loading(mod->name));
3508			if (err)
3509				goto out_unlocked;
3510			goto again;
3511		}
3512		err = -EEXIST;
3513		goto out;
3514	}
3515	mod_update_bounds(mod);
3516	list_add_rcu(&mod->list, &modules);
3517	mod_tree_insert(mod);
3518	err = 0;
3519
3520out:
3521	mutex_unlock(&module_mutex);
3522out_unlocked:
3523	return err;
3524}
3525
3526static int complete_formation(struct module *mod, struct load_info *info)
3527{
3528	int err;
3529
3530	mutex_lock(&module_mutex);
3531
3532	/* Find duplicate symbols (must be called under lock). */
3533	err = verify_export_symbols(mod);
3534	if (err < 0)
3535		goto out;
3536
3537	/* This relies on module_mutex for list integrity. */
3538	module_bug_finalize(info->hdr, info->sechdrs, mod);
3539
3540	module_enable_ro(mod, false);
3541	module_enable_nx(mod);
3542
3543	/* Mark state as coming so strong_try_module_get() ignores us,
3544	 * but kallsyms etc. can see us. */
3545	mod->state = MODULE_STATE_COMING;
3546	mutex_unlock(&module_mutex);
3547
3548	return 0;
3549
3550out:
3551	mutex_unlock(&module_mutex);
3552	return err;
3553}
3554
3555static int prepare_coming_module(struct module *mod)
3556{
3557	int err;
3558
3559	ftrace_module_enable(mod);
3560	err = klp_module_coming(mod);
3561	if (err)
3562		return err;
3563
3564	blocking_notifier_call_chain(&module_notify_list,
3565				     MODULE_STATE_COMING, mod);
3566	return 0;
3567}
3568
3569static int unknown_module_param_cb(char *param, char *val, const char *modname,
3570				   void *arg)
3571{
3572	struct module *mod = arg;
3573	int ret;
3574
3575	if (strcmp(param, "async_probe") == 0) {
3576		mod->async_probe_requested = true;
3577		return 0;
3578	}
3579
3580	/* Check for magic 'dyndbg' arg */
3581	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3582	if (ret != 0)
3583		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3584	return 0;
3585}
3586
3587/* Allocate and load the module: note that size of section 0 is always
3588   zero, and we rely on this for optional sections. */
3589static int load_module(struct load_info *info, const char __user *uargs,
3590		       int flags)
 
3591{
 
3592	struct module *mod;
3593	long err;
3594	char *after_dashes;
3595
3596	err = module_sig_check(info, flags);
3597	if (err)
3598		goto free_copy;
3599
3600	err = elf_header_check(info);
 
3601	if (err)
3602		goto free_copy;
3603
3604	/* Figure out module layout, and allocate all the memory. */
3605	mod = layout_and_allocate(info, flags);
3606	if (IS_ERR(mod)) {
3607		err = PTR_ERR(mod);
3608		goto free_copy;
3609	}
3610
3611	/* Reserve our place in the list. */
3612	err = add_unformed_module(mod);
3613	if (err)
3614		goto free_module;
3615
3616#ifdef CONFIG_MODULE_SIG
3617	mod->sig_ok = info->sig_ok;
3618	if (!mod->sig_ok) {
3619		pr_notice_once("%s: module verification failed: signature "
3620			       "and/or required key missing - tainting "
3621			       "kernel\n", mod->name);
3622		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3623	}
3624#endif
3625
3626	/* To avoid stressing percpu allocator, do this once we're unique. */
3627	err = percpu_modalloc(mod, info);
3628	if (err)
3629		goto unlink_mod;
3630
3631	/* Now module is in final location, initialize linked lists, etc. */
3632	err = module_unload_init(mod);
3633	if (err)
3634		goto unlink_mod;
3635
3636	init_param_lock(mod);
3637
3638	/* Now we've got everything in the final locations, we can
3639	 * find optional sections. */
3640	err = find_module_sections(mod, info);
3641	if (err)
3642		goto free_unload;
3643
3644	err = check_module_license_and_versions(mod);
3645	if (err)
3646		goto free_unload;
3647
3648	/* Set up MODINFO_ATTR fields */
3649	setup_modinfo(mod, info);
3650
3651	/* Fix up syms, so that st_value is a pointer to location. */
3652	err = simplify_symbols(mod, info);
3653	if (err < 0)
3654		goto free_modinfo;
3655
3656	err = apply_relocations(mod, info);
3657	if (err < 0)
3658		goto free_modinfo;
3659
3660	err = post_relocation(mod, info);
3661	if (err < 0)
3662		goto free_modinfo;
3663
3664	flush_module_icache(mod);
3665
3666	/* Now copy in args */
3667	mod->args = strndup_user(uargs, ~0UL >> 1);
3668	if (IS_ERR(mod->args)) {
3669		err = PTR_ERR(mod->args);
3670		goto free_arch_cleanup;
3671	}
3672
3673	dynamic_debug_setup(info->debug, info->num_debug);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3674
3675	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3676	ftrace_module_init(mod);
3677
3678	/* Finally it's fully formed, ready to start executing. */
3679	err = complete_formation(mod, info);
3680	if (err)
3681		goto ddebug_cleanup;
3682
3683	err = prepare_coming_module(mod);
3684	if (err)
3685		goto bug_cleanup;
3686
3687	/* Module is ready to execute: parsing args may do that. */
3688	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3689				  -32768, 32767, mod,
3690				  unknown_module_param_cb);
3691	if (IS_ERR(after_dashes)) {
3692		err = PTR_ERR(after_dashes);
3693		goto coming_cleanup;
3694	} else if (after_dashes) {
3695		pr_warn("%s: parameters '%s' after `--' ignored\n",
3696		       mod->name, after_dashes);
3697	}
3698
3699	/* Link in to syfs. */
3700	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3701	if (err < 0)
3702		goto coming_cleanup;
3703
3704	if (is_livepatch_module(mod)) {
3705		err = copy_module_elf(mod, info);
3706		if (err < 0)
3707			goto sysfs_cleanup;
3708	}
3709
3710	/* Get rid of temporary copy. */
3711	free_copy(info);
3712
3713	/* Done! */
3714	trace_module_load(mod);
 
3715
3716	return do_init_module(mod);
3717
3718 sysfs_cleanup:
3719	mod_sysfs_teardown(mod);
3720 coming_cleanup:
3721	mod->state = MODULE_STATE_GOING;
3722	destroy_params(mod->kp, mod->num_kp);
3723	blocking_notifier_call_chain(&module_notify_list,
3724				     MODULE_STATE_GOING, mod);
3725	klp_module_going(mod);
3726 bug_cleanup:
3727	/* module_bug_cleanup needs module_mutex protection */
3728	mutex_lock(&module_mutex);
 
 
3729	module_bug_cleanup(mod);
3730	mutex_unlock(&module_mutex);
3731
3732	/* we can't deallocate the module until we clear memory protection */
3733	module_disable_ro(mod);
3734	module_disable_nx(mod);
3735
3736 ddebug_cleanup:
3737	dynamic_debug_remove(info->debug);
 
 
3738	synchronize_sched();
3739	kfree(mod->args);
3740 free_arch_cleanup:
3741	module_arch_cleanup(mod);
3742 free_modinfo:
3743	free_modinfo(mod);
3744 free_unload:
3745	module_unload_free(mod);
3746 unlink_mod:
3747	mutex_lock(&module_mutex);
3748	/* Unlink carefully: kallsyms could be walking list. */
3749	list_del_rcu(&mod->list);
3750	mod_tree_remove(mod);
3751	wake_up_all(&module_wq);
3752	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3753	synchronize_sched();
3754	mutex_unlock(&module_mutex);
3755 free_module:
3756	/*
3757	 * Ftrace needs to clean up what it initialized.
3758	 * This does nothing if ftrace_module_init() wasn't called,
3759	 * but it must be called outside of module_mutex.
3760	 */
3761	ftrace_release_mod(mod);
3762	/* Free lock-classes; relies on the preceding sync_rcu() */
3763	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
3764
3765	module_deallocate(mod, info);
3766 free_copy:
3767	free_copy(info);
3768	return err;
 
 
 
 
 
 
 
 
 
 
 
3769}
3770
 
3771SYSCALL_DEFINE3(init_module, void __user *, umod,
3772		unsigned long, len, const char __user *, uargs)
3773{
3774	int err;
3775	struct load_info info = { };
3776
3777	err = may_init_module();
3778	if (err)
3779		return err;
3780
3781	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3782	       umod, len, uargs);
 
3783
3784	err = copy_module_from_user(umod, len, &info);
3785	if (err)
3786		return err;
 
3787
3788	return load_module(&info, uargs, 0);
3789}
3790
3791SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3792{
3793	struct load_info info = { };
3794	loff_t size;
3795	void *hdr;
3796	int err;
 
 
 
 
 
3797
3798	err = may_init_module();
3799	if (err)
3800		return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3801
3802	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
 
 
 
 
3803
3804	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3805		      |MODULE_INIT_IGNORE_VERMAGIC))
3806		return -EINVAL;
3807
3808	err = kernel_read_file_from_fd(fd, &hdr, &size, INT_MAX,
3809				       READING_MODULE);
3810	if (err)
3811		return err;
3812	info.hdr = hdr;
3813	info.len = size;
 
 
 
 
 
 
 
 
 
 
3814
3815	return load_module(&info, uargs, flags);
3816}
3817
3818static inline int within(unsigned long addr, void *start, unsigned long size)
3819{
3820	return ((void *)addr >= start && (void *)addr < start + size);
3821}
3822
3823#ifdef CONFIG_KALLSYMS
3824/*
3825 * This ignores the intensely annoying "mapping symbols" found
3826 * in ARM ELF files: $a, $t and $d.
3827 */
3828static inline int is_arm_mapping_symbol(const char *str)
3829{
3830	if (str[0] == '.' && str[1] == 'L')
3831		return true;
3832	return str[0] == '$' && strchr("axtd", str[1])
3833	       && (str[2] == '\0' || str[2] == '.');
3834}
3835
3836static const char *symname(struct mod_kallsyms *kallsyms, unsigned int symnum)
3837{
3838	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
3839}
3840
3841static const char *get_ksymbol(struct module *mod,
3842			       unsigned long addr,
3843			       unsigned long *size,
3844			       unsigned long *offset)
3845{
3846	unsigned int i, best = 0;
3847	unsigned long nextval;
3848	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3849
3850	/* At worse, next value is at end of module */
3851	if (within_module_init(addr, mod))
3852		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
3853	else
3854		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
3855
3856	/* Scan for closest preceding symbol, and next symbol. (ELF
3857	   starts real symbols at 1). */
3858	for (i = 1; i < kallsyms->num_symtab; i++) {
3859		if (kallsyms->symtab[i].st_shndx == SHN_UNDEF)
3860			continue;
3861
3862		/* We ignore unnamed symbols: they're uninformative
3863		 * and inserted at a whim. */
3864		if (*symname(kallsyms, i) == '\0'
3865		    || is_arm_mapping_symbol(symname(kallsyms, i)))
3866			continue;
3867
3868		if (kallsyms->symtab[i].st_value <= addr
3869		    && kallsyms->symtab[i].st_value > kallsyms->symtab[best].st_value)
3870			best = i;
3871		if (kallsyms->symtab[i].st_value > addr
3872		    && kallsyms->symtab[i].st_value < nextval)
3873			nextval = kallsyms->symtab[i].st_value;
 
 
3874	}
3875
3876	if (!best)
3877		return NULL;
3878
3879	if (size)
3880		*size = nextval - kallsyms->symtab[best].st_value;
3881	if (offset)
3882		*offset = addr - kallsyms->symtab[best].st_value;
3883	return symname(kallsyms, best);
3884}
3885
3886/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3887 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3888const char *module_address_lookup(unsigned long addr,
3889			    unsigned long *size,
3890			    unsigned long *offset,
3891			    char **modname,
3892			    char *namebuf)
3893{
3894	const char *ret = NULL;
3895	struct module *mod;
 
3896
3897	preempt_disable();
3898	mod = __module_address(addr);
3899	if (mod) {
3900		if (modname)
3901			*modname = mod->name;
3902		ret = get_ksymbol(mod, addr, size, offset);
 
 
 
3903	}
3904	/* Make a copy in here where it's safe */
3905	if (ret) {
3906		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3907		ret = namebuf;
3908	}
3909	preempt_enable();
3910
3911	return ret;
3912}
3913
3914int lookup_module_symbol_name(unsigned long addr, char *symname)
3915{
3916	struct module *mod;
3917
3918	preempt_disable();
3919	list_for_each_entry_rcu(mod, &modules, list) {
3920		if (mod->state == MODULE_STATE_UNFORMED)
3921			continue;
3922		if (within_module(addr, mod)) {
3923			const char *sym;
3924
3925			sym = get_ksymbol(mod, addr, NULL, NULL);
3926			if (!sym)
3927				goto out;
3928			strlcpy(symname, sym, KSYM_NAME_LEN);
3929			preempt_enable();
3930			return 0;
3931		}
3932	}
3933out:
3934	preempt_enable();
3935	return -ERANGE;
3936}
3937
3938int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3939			unsigned long *offset, char *modname, char *name)
3940{
3941	struct module *mod;
3942
3943	preempt_disable();
3944	list_for_each_entry_rcu(mod, &modules, list) {
3945		if (mod->state == MODULE_STATE_UNFORMED)
3946			continue;
3947		if (within_module(addr, mod)) {
3948			const char *sym;
3949
3950			sym = get_ksymbol(mod, addr, size, offset);
3951			if (!sym)
3952				goto out;
3953			if (modname)
3954				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3955			if (name)
3956				strlcpy(name, sym, KSYM_NAME_LEN);
3957			preempt_enable();
3958			return 0;
3959		}
3960	}
3961out:
3962	preempt_enable();
3963	return -ERANGE;
3964}
3965
3966int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3967			char *name, char *module_name, int *exported)
3968{
3969	struct module *mod;
3970
3971	preempt_disable();
3972	list_for_each_entry_rcu(mod, &modules, list) {
3973		struct mod_kallsyms *kallsyms;
3974
3975		if (mod->state == MODULE_STATE_UNFORMED)
3976			continue;
3977		kallsyms = rcu_dereference_sched(mod->kallsyms);
3978		if (symnum < kallsyms->num_symtab) {
3979			*value = kallsyms->symtab[symnum].st_value;
3980			*type = kallsyms->symtab[symnum].st_info;
3981			strlcpy(name, symname(kallsyms, symnum), KSYM_NAME_LEN);
3982			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3983			*exported = is_exported(name, *value, mod);
3984			preempt_enable();
3985			return 0;
3986		}
3987		symnum -= kallsyms->num_symtab;
3988	}
3989	preempt_enable();
3990	return -ERANGE;
3991}
3992
3993static unsigned long mod_find_symname(struct module *mod, const char *name)
3994{
3995	unsigned int i;
3996	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
3997
3998	for (i = 0; i < kallsyms->num_symtab; i++)
3999		if (strcmp(name, symname(kallsyms, i)) == 0 &&
4000		    kallsyms->symtab[i].st_info != 'U')
4001			return kallsyms->symtab[i].st_value;
4002	return 0;
4003}
4004
4005/* Look for this name: can be of form module:name. */
4006unsigned long module_kallsyms_lookup_name(const char *name)
4007{
4008	struct module *mod;
4009	char *colon;
4010	unsigned long ret = 0;
4011
4012	/* Don't lock: we're in enough trouble already. */
4013	preempt_disable();
4014	if ((colon = strchr(name, ':')) != NULL) {
4015		if ((mod = find_module_all(name, colon - name, false)) != NULL)
 
4016			ret = mod_find_symname(mod, colon+1);
 
4017	} else {
4018		list_for_each_entry_rcu(mod, &modules, list) {
4019			if (mod->state == MODULE_STATE_UNFORMED)
4020				continue;
4021			if ((ret = mod_find_symname(mod, name)) != 0)
4022				break;
4023		}
4024	}
4025	preempt_enable();
4026	return ret;
4027}
4028
4029int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4030					     struct module *, unsigned long),
4031				   void *data)
4032{
4033	struct module *mod;
4034	unsigned int i;
4035	int ret;
4036
4037	module_assert_mutex();
4038
4039	list_for_each_entry(mod, &modules, list) {
4040		/* We hold module_mutex: no need for rcu_dereference_sched */
4041		struct mod_kallsyms *kallsyms = mod->kallsyms;
4042
4043		if (mod->state == MODULE_STATE_UNFORMED)
4044			continue;
4045		for (i = 0; i < kallsyms->num_symtab; i++) {
4046			ret = fn(data, symname(kallsyms, i),
4047				 mod, kallsyms->symtab[i].st_value);
4048			if (ret != 0)
4049				return ret;
4050		}
4051	}
4052	return 0;
4053}
4054#endif /* CONFIG_KALLSYMS */
4055
4056/* Maximum number of characters written by module_flags() */
4057#define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4058
4059/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
4060static char *module_flags(struct module *mod, char *buf)
4061{
4062	int bx = 0;
4063
4064	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4065	if (mod->taints ||
4066	    mod->state == MODULE_STATE_GOING ||
4067	    mod->state == MODULE_STATE_COMING) {
4068		buf[bx++] = '(';
4069		bx += module_flags_taint(mod, buf + bx);
4070		/* Show a - for module-is-being-unloaded */
4071		if (mod->state == MODULE_STATE_GOING)
4072			buf[bx++] = '-';
4073		/* Show a + for module-is-being-loaded */
4074		if (mod->state == MODULE_STATE_COMING)
4075			buf[bx++] = '+';
4076		buf[bx++] = ')';
4077	}
4078	buf[bx] = '\0';
4079
4080	return buf;
4081}
4082
4083#ifdef CONFIG_PROC_FS
4084/* Called by the /proc file system to return a list of modules. */
4085static void *m_start(struct seq_file *m, loff_t *pos)
4086{
4087	mutex_lock(&module_mutex);
4088	return seq_list_start(&modules, *pos);
4089}
4090
4091static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4092{
4093	return seq_list_next(p, &modules, pos);
4094}
4095
4096static void m_stop(struct seq_file *m, void *p)
4097{
4098	mutex_unlock(&module_mutex);
4099}
4100
4101static int m_show(struct seq_file *m, void *p)
4102{
4103	struct module *mod = list_entry(p, struct module, list);
4104	char buf[MODULE_FLAGS_BUF_SIZE];
4105
4106	/* We always ignore unformed modules. */
4107	if (mod->state == MODULE_STATE_UNFORMED)
4108		return 0;
4109
4110	seq_printf(m, "%s %u",
4111		   mod->name, mod->init_layout.size + mod->core_layout.size);
4112	print_unload_info(m, mod);
4113
4114	/* Informative for users. */
4115	seq_printf(m, " %s",
4116		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4117		   mod->state == MODULE_STATE_COMING ? "Loading" :
4118		   "Live");
4119	/* Used by oprofile and other similar tools. */
4120	seq_printf(m, " 0x%pK", mod->core_layout.base);
4121
4122	/* Taints info */
4123	if (mod->taints)
4124		seq_printf(m, " %s", module_flags(mod, buf));
4125
4126	seq_puts(m, "\n");
4127	return 0;
4128}
4129
4130/* Format: modulename size refcount deps address
4131
4132   Where refcount is a number or -, and deps is a comma-separated list
4133   of depends or -.
4134*/
4135static const struct seq_operations modules_op = {
4136	.start	= m_start,
4137	.next	= m_next,
4138	.stop	= m_stop,
4139	.show	= m_show
4140};
4141
4142static int modules_open(struct inode *inode, struct file *file)
4143{
4144	return seq_open(file, &modules_op);
4145}
4146
4147static const struct file_operations proc_modules_operations = {
4148	.open		= modules_open,
4149	.read		= seq_read,
4150	.llseek		= seq_lseek,
4151	.release	= seq_release,
4152};
4153
4154static int __init proc_modules_init(void)
4155{
4156	proc_create("modules", 0, NULL, &proc_modules_operations);
4157	return 0;
4158}
4159module_init(proc_modules_init);
4160#endif
4161
4162/* Given an address, look for it in the module exception tables. */
4163const struct exception_table_entry *search_module_extables(unsigned long addr)
4164{
4165	const struct exception_table_entry *e = NULL;
4166	struct module *mod;
4167
4168	preempt_disable();
4169	list_for_each_entry_rcu(mod, &modules, list) {
4170		if (mod->state == MODULE_STATE_UNFORMED)
4171			continue;
4172		if (mod->num_exentries == 0)
4173			continue;
4174
4175		e = search_extable(mod->extable,
4176				   mod->extable + mod->num_exentries - 1,
4177				   addr);
4178		if (e)
4179			break;
4180	}
4181	preempt_enable();
4182
4183	/* Now, if we found one, we are running inside it now, hence
4184	   we cannot unload the module, hence no refcnt needed. */
4185	return e;
4186}
4187
4188/*
4189 * is_module_address - is this address inside a module?
4190 * @addr: the address to check.
4191 *
4192 * See is_module_text_address() if you simply want to see if the address
4193 * is code (not data).
4194 */
4195bool is_module_address(unsigned long addr)
4196{
4197	bool ret;
4198
4199	preempt_disable();
4200	ret = __module_address(addr) != NULL;
4201	preempt_enable();
4202
4203	return ret;
4204}
4205
4206/*
4207 * __module_address - get the module which contains an address.
4208 * @addr: the address.
4209 *
4210 * Must be called with preempt disabled or module mutex held so that
4211 * module doesn't get freed during this.
4212 */
4213struct module *__module_address(unsigned long addr)
4214{
4215	struct module *mod;
4216
4217	if (addr < module_addr_min || addr > module_addr_max)
4218		return NULL;
4219
4220	module_assert_mutex_or_preempt();
4221
4222	mod = mod_find(addr);
4223	if (mod) {
4224		BUG_ON(!within_module(addr, mod));
4225		if (mod->state == MODULE_STATE_UNFORMED)
4226			mod = NULL;
4227	}
4228	return mod;
4229}
4230EXPORT_SYMBOL_GPL(__module_address);
4231
4232/*
4233 * is_module_text_address - is this address inside module code?
4234 * @addr: the address to check.
4235 *
4236 * See is_module_address() if you simply want to see if the address is
4237 * anywhere in a module.  See kernel_text_address() for testing if an
4238 * address corresponds to kernel or module code.
4239 */
4240bool is_module_text_address(unsigned long addr)
4241{
4242	bool ret;
4243
4244	preempt_disable();
4245	ret = __module_text_address(addr) != NULL;
4246	preempt_enable();
4247
4248	return ret;
4249}
4250
4251/*
4252 * __module_text_address - get the module whose code contains an address.
4253 * @addr: the address.
4254 *
4255 * Must be called with preempt disabled or module mutex held so that
4256 * module doesn't get freed during this.
4257 */
4258struct module *__module_text_address(unsigned long addr)
4259{
4260	struct module *mod = __module_address(addr);
4261	if (mod) {
4262		/* Make sure it's within the text section. */
4263		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4264		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4265			mod = NULL;
4266	}
4267	return mod;
4268}
4269EXPORT_SYMBOL_GPL(__module_text_address);
4270
4271/* Don't grab lock, we're oopsing. */
4272void print_modules(void)
4273{
4274	struct module *mod;
4275	char buf[MODULE_FLAGS_BUF_SIZE];
4276
4277	printk(KERN_DEFAULT "Modules linked in:");
4278	/* Most callers should already have preempt disabled, but make sure */
4279	preempt_disable();
4280	list_for_each_entry_rcu(mod, &modules, list) {
4281		if (mod->state == MODULE_STATE_UNFORMED)
4282			continue;
4283		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4284	}
4285	preempt_enable();
4286	if (last_unloaded_module[0])
4287		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4288	pr_cont("\n");
4289}
4290
4291#ifdef CONFIG_MODVERSIONS
4292/* Generate the signature for all relevant module structures here.
4293 * If these change, we don't want to try to parse the module. */
4294void module_layout(struct module *mod,
4295		   struct modversion_info *ver,
4296		   struct kernel_param *kp,
4297		   struct kernel_symbol *ks,
4298		   struct tracepoint * const *tp)
4299{
4300}
4301EXPORT_SYMBOL(module_layout);
4302#endif
v3.5.6
   1/*
   2   Copyright (C) 2002 Richard Henderson
   3   Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
   4
   5    This program is free software; you can redistribute it and/or modify
   6    it under the terms of the GNU General Public License as published by
   7    the Free Software Foundation; either version 2 of the License, or
   8    (at your option) any later version.
   9
  10    This program is distributed in the hope that it will be useful,
  11    but WITHOUT ANY WARRANTY; without even the implied warranty of
  12    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13    GNU General Public License for more details.
  14
  15    You should have received a copy of the GNU General Public License
  16    along with this program; if not, write to the Free Software
  17    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  18*/
  19#include <linux/export.h>
  20#include <linux/moduleloader.h>
  21#include <linux/ftrace_event.h>
  22#include <linux/init.h>
  23#include <linux/kallsyms.h>
 
  24#include <linux/fs.h>
  25#include <linux/sysfs.h>
  26#include <linux/kernel.h>
  27#include <linux/slab.h>
  28#include <linux/vmalloc.h>
  29#include <linux/elf.h>
  30#include <linux/proc_fs.h>
 
  31#include <linux/seq_file.h>
  32#include <linux/syscalls.h>
  33#include <linux/fcntl.h>
  34#include <linux/rcupdate.h>
  35#include <linux/capability.h>
  36#include <linux/cpu.h>
  37#include <linux/moduleparam.h>
  38#include <linux/errno.h>
  39#include <linux/err.h>
  40#include <linux/vermagic.h>
  41#include <linux/notifier.h>
  42#include <linux/sched.h>
  43#include <linux/stop_machine.h>
  44#include <linux/device.h>
  45#include <linux/string.h>
  46#include <linux/mutex.h>
  47#include <linux/rculist.h>
  48#include <asm/uaccess.h>
  49#include <asm/cacheflush.h>
  50#include <asm/mmu_context.h>
  51#include <linux/license.h>
  52#include <asm/sections.h>
  53#include <linux/tracepoint.h>
  54#include <linux/ftrace.h>
 
  55#include <linux/async.h>
  56#include <linux/percpu.h>
  57#include <linux/kmemleak.h>
  58#include <linux/jump_label.h>
  59#include <linux/pfn.h>
  60#include <linux/bsearch.h>
 
 
 
  61
  62#define CREATE_TRACE_POINTS
  63#include <trace/events/module.h>
  64
  65#ifndef ARCH_SHF_SMALL
  66#define ARCH_SHF_SMALL 0
  67#endif
  68
  69/*
  70 * Modules' sections will be aligned on page boundaries
  71 * to ensure complete separation of code and data, but
  72 * only when CONFIG_DEBUG_SET_MODULE_RONX=y
  73 */
  74#ifdef CONFIG_DEBUG_SET_MODULE_RONX
  75# define debug_align(X) ALIGN(X, PAGE_SIZE)
  76#else
  77# define debug_align(X) (X)
  78#endif
  79
  80/*
  81 * Given BASE and SIZE this macro calculates the number of pages the
  82 * memory regions occupies
  83 */
  84#define MOD_NUMBER_OF_PAGES(BASE, SIZE) (((SIZE) > 0) ?		\
  85		(PFN_DOWN((unsigned long)(BASE) + (SIZE) - 1) -	\
  86			 PFN_DOWN((unsigned long)BASE) + 1)	\
  87		: (0UL))
  88
  89/* If this is set, the section belongs in the init part of the module */
  90#define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
  91
  92/*
  93 * Mutex protects:
  94 * 1) List of modules (also safely readable with preempt_disable),
  95 * 2) module_use links,
  96 * 3) module_addr_min/module_addr_max.
  97 * (delete uses stop_machine/add uses RCU list operations). */
  98DEFINE_MUTEX(module_mutex);
  99EXPORT_SYMBOL_GPL(module_mutex);
 100static LIST_HEAD(modules);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 101#ifdef CONFIG_KGDB_KDB
 102struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
 103#endif /* CONFIG_KGDB_KDB */
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 105
 106/* Block module loading/unloading? */
 107int modules_disabled = 0;
 108core_param(nomodule, modules_disabled, bint, 0);
 109
 110/* Waiting for a module to finish initializing? */
 111static DECLARE_WAIT_QUEUE_HEAD(module_wq);
 112
 113static BLOCKING_NOTIFIER_HEAD(module_notify_list);
 114
 115/* Bounds of module allocation, for speeding __module_address.
 116 * Protected by module_mutex. */
 117static unsigned long module_addr_min = -1UL, module_addr_max = 0;
 118
 119int register_module_notifier(struct notifier_block * nb)
 120{
 121	return blocking_notifier_chain_register(&module_notify_list, nb);
 122}
 123EXPORT_SYMBOL(register_module_notifier);
 124
 125int unregister_module_notifier(struct notifier_block * nb)
 126{
 127	return blocking_notifier_chain_unregister(&module_notify_list, nb);
 128}
 129EXPORT_SYMBOL(unregister_module_notifier);
 130
 131struct load_info {
 132	Elf_Ehdr *hdr;
 133	unsigned long len;
 134	Elf_Shdr *sechdrs;
 135	char *secstrings, *strtab;
 136	unsigned long symoffs, stroffs;
 137	struct _ddebug *debug;
 138	unsigned int num_debug;
 
 
 
 
 139	struct {
 140		unsigned int sym, str, mod, vers, info, pcpu;
 141	} index;
 142};
 143
 144/* We require a truly strong try_module_get(): 0 means failure due to
 145   ongoing or failed initialization etc. */
 
 
 
 146static inline int strong_try_module_get(struct module *mod)
 147{
 
 148	if (mod && mod->state == MODULE_STATE_COMING)
 149		return -EBUSY;
 150	if (try_module_get(mod))
 151		return 0;
 152	else
 153		return -ENOENT;
 154}
 155
 156static inline void add_taint_module(struct module *mod, unsigned flag)
 
 157{
 158	add_taint(flag);
 159	mod->taints |= (1U << flag);
 160}
 161
 162/*
 163 * A thread that wants to hold a reference to a module only while it
 164 * is running can call this to safely exit.  nfsd and lockd use this.
 165 */
 166void __module_put_and_exit(struct module *mod, long code)
 167{
 168	module_put(mod);
 169	do_exit(code);
 170}
 171EXPORT_SYMBOL(__module_put_and_exit);
 172
 173/* Find a module section: 0 means not found. */
 174static unsigned int find_sec(const struct load_info *info, const char *name)
 175{
 176	unsigned int i;
 177
 178	for (i = 1; i < info->hdr->e_shnum; i++) {
 179		Elf_Shdr *shdr = &info->sechdrs[i];
 180		/* Alloc bit cleared means "ignore it." */
 181		if ((shdr->sh_flags & SHF_ALLOC)
 182		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
 183			return i;
 184	}
 185	return 0;
 186}
 187
 188/* Find a module section, or NULL. */
 189static void *section_addr(const struct load_info *info, const char *name)
 190{
 191	/* Section 0 has sh_addr 0. */
 192	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
 193}
 194
 195/* Find a module section, or NULL.  Fill in number of "objects" in section. */
 196static void *section_objs(const struct load_info *info,
 197			  const char *name,
 198			  size_t object_size,
 199			  unsigned int *num)
 200{
 201	unsigned int sec = find_sec(info, name);
 202
 203	/* Section 0 has sh_addr 0 and sh_size 0. */
 204	*num = info->sechdrs[sec].sh_size / object_size;
 205	return (void *)info->sechdrs[sec].sh_addr;
 206}
 207
 208/* Provided by the linker */
 209extern const struct kernel_symbol __start___ksymtab[];
 210extern const struct kernel_symbol __stop___ksymtab[];
 211extern const struct kernel_symbol __start___ksymtab_gpl[];
 212extern const struct kernel_symbol __stop___ksymtab_gpl[];
 213extern const struct kernel_symbol __start___ksymtab_gpl_future[];
 214extern const struct kernel_symbol __stop___ksymtab_gpl_future[];
 215extern const unsigned long __start___kcrctab[];
 216extern const unsigned long __start___kcrctab_gpl[];
 217extern const unsigned long __start___kcrctab_gpl_future[];
 218#ifdef CONFIG_UNUSED_SYMBOLS
 219extern const struct kernel_symbol __start___ksymtab_unused[];
 220extern const struct kernel_symbol __stop___ksymtab_unused[];
 221extern const struct kernel_symbol __start___ksymtab_unused_gpl[];
 222extern const struct kernel_symbol __stop___ksymtab_unused_gpl[];
 223extern const unsigned long __start___kcrctab_unused[];
 224extern const unsigned long __start___kcrctab_unused_gpl[];
 225#endif
 226
 227#ifndef CONFIG_MODVERSIONS
 228#define symversion(base, idx) NULL
 229#else
 230#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
 231#endif
 232
 233static bool each_symbol_in_section(const struct symsearch *arr,
 234				   unsigned int arrsize,
 235				   struct module *owner,
 236				   bool (*fn)(const struct symsearch *syms,
 237					      struct module *owner,
 238					      void *data),
 239				   void *data)
 240{
 241	unsigned int j;
 242
 243	for (j = 0; j < arrsize; j++) {
 244		if (fn(&arr[j], owner, data))
 245			return true;
 246	}
 247
 248	return false;
 249}
 250
 251/* Returns true as soon as fn returns true, otherwise false. */
 252bool each_symbol_section(bool (*fn)(const struct symsearch *arr,
 253				    struct module *owner,
 254				    void *data),
 255			 void *data)
 256{
 257	struct module *mod;
 258	static const struct symsearch arr[] = {
 259		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
 260		  NOT_GPL_ONLY, false },
 261		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
 262		  __start___kcrctab_gpl,
 263		  GPL_ONLY, false },
 264		{ __start___ksymtab_gpl_future, __stop___ksymtab_gpl_future,
 265		  __start___kcrctab_gpl_future,
 266		  WILL_BE_GPL_ONLY, false },
 267#ifdef CONFIG_UNUSED_SYMBOLS
 268		{ __start___ksymtab_unused, __stop___ksymtab_unused,
 269		  __start___kcrctab_unused,
 270		  NOT_GPL_ONLY, true },
 271		{ __start___ksymtab_unused_gpl, __stop___ksymtab_unused_gpl,
 272		  __start___kcrctab_unused_gpl,
 273		  GPL_ONLY, true },
 274#endif
 275	};
 276
 
 
 277	if (each_symbol_in_section(arr, ARRAY_SIZE(arr), NULL, fn, data))
 278		return true;
 279
 280	list_for_each_entry_rcu(mod, &modules, list) {
 281		struct symsearch arr[] = {
 282			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
 283			  NOT_GPL_ONLY, false },
 284			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
 285			  mod->gpl_crcs,
 286			  GPL_ONLY, false },
 287			{ mod->gpl_future_syms,
 288			  mod->gpl_future_syms + mod->num_gpl_future_syms,
 289			  mod->gpl_future_crcs,
 290			  WILL_BE_GPL_ONLY, false },
 291#ifdef CONFIG_UNUSED_SYMBOLS
 292			{ mod->unused_syms,
 293			  mod->unused_syms + mod->num_unused_syms,
 294			  mod->unused_crcs,
 295			  NOT_GPL_ONLY, true },
 296			{ mod->unused_gpl_syms,
 297			  mod->unused_gpl_syms + mod->num_unused_gpl_syms,
 298			  mod->unused_gpl_crcs,
 299			  GPL_ONLY, true },
 300#endif
 301		};
 302
 
 
 
 303		if (each_symbol_in_section(arr, ARRAY_SIZE(arr), mod, fn, data))
 304			return true;
 305	}
 306	return false;
 307}
 308EXPORT_SYMBOL_GPL(each_symbol_section);
 309
 310struct find_symbol_arg {
 311	/* Input */
 312	const char *name;
 313	bool gplok;
 314	bool warn;
 315
 316	/* Output */
 317	struct module *owner;
 318	const unsigned long *crc;
 319	const struct kernel_symbol *sym;
 320};
 321
 322static bool check_symbol(const struct symsearch *syms,
 323				 struct module *owner,
 324				 unsigned int symnum, void *data)
 325{
 326	struct find_symbol_arg *fsa = data;
 327
 328	if (!fsa->gplok) {
 329		if (syms->licence == GPL_ONLY)
 330			return false;
 331		if (syms->licence == WILL_BE_GPL_ONLY && fsa->warn) {
 332			printk(KERN_WARNING "Symbol %s is being used "
 333			       "by a non-GPL module, which will not "
 334			       "be allowed in the future\n", fsa->name);
 335			printk(KERN_WARNING "Please see the file "
 336			       "Documentation/feature-removal-schedule.txt "
 337			       "in the kernel source tree for more details.\n");
 338		}
 339	}
 340
 341#ifdef CONFIG_UNUSED_SYMBOLS
 342	if (syms->unused && fsa->warn) {
 343		printk(KERN_WARNING "Symbol %s is marked as UNUSED, "
 344		       "however this module is using it.\n", fsa->name);
 345		printk(KERN_WARNING
 346		       "This symbol will go away in the future.\n");
 347		printk(KERN_WARNING
 348		       "Please evalute if this is the right api to use and if "
 349		       "it really is, submit a report the linux kernel "
 350		       "mailinglist together with submitting your code for "
 351		       "inclusion.\n");
 352	}
 353#endif
 354
 355	fsa->owner = owner;
 356	fsa->crc = symversion(syms->crcs, symnum);
 357	fsa->sym = &syms->start[symnum];
 358	return true;
 359}
 360
 361static int cmp_name(const void *va, const void *vb)
 362{
 363	const char *a;
 364	const struct kernel_symbol *b;
 365	a = va; b = vb;
 366	return strcmp(a, b->name);
 367}
 368
 369static bool find_symbol_in_section(const struct symsearch *syms,
 370				   struct module *owner,
 371				   void *data)
 372{
 373	struct find_symbol_arg *fsa = data;
 374	struct kernel_symbol *sym;
 375
 376	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
 377			sizeof(struct kernel_symbol), cmp_name);
 378
 379	if (sym != NULL && check_symbol(syms, owner, sym - syms->start, data))
 380		return true;
 381
 382	return false;
 383}
 384
 385/* Find a symbol and return it, along with, (optional) crc and
 386 * (optional) module which owns it.  Needs preempt disabled or module_mutex. */
 387const struct kernel_symbol *find_symbol(const char *name,
 388					struct module **owner,
 389					const unsigned long **crc,
 390					bool gplok,
 391					bool warn)
 392{
 393	struct find_symbol_arg fsa;
 394
 395	fsa.name = name;
 396	fsa.gplok = gplok;
 397	fsa.warn = warn;
 398
 399	if (each_symbol_section(find_symbol_in_section, &fsa)) {
 400		if (owner)
 401			*owner = fsa.owner;
 402		if (crc)
 403			*crc = fsa.crc;
 404		return fsa.sym;
 405	}
 406
 407	pr_debug("Failed to find symbol %s\n", name);
 408	return NULL;
 409}
 410EXPORT_SYMBOL_GPL(find_symbol);
 411
 412/* Search for module by name: must hold module_mutex. */
 413struct module *find_module(const char *name)
 
 
 
 
 414{
 415	struct module *mod;
 416
 
 
 417	list_for_each_entry(mod, &modules, list) {
 418		if (strcmp(mod->name, name) == 0)
 
 
 419			return mod;
 420	}
 421	return NULL;
 422}
 
 
 
 
 
 
 423EXPORT_SYMBOL_GPL(find_module);
 424
 425#ifdef CONFIG_SMP
 426
 427static inline void __percpu *mod_percpu(struct module *mod)
 428{
 429	return mod->percpu;
 430}
 431
 432static int percpu_modalloc(struct module *mod,
 433			   unsigned long size, unsigned long align)
 434{
 
 
 
 
 
 
 435	if (align > PAGE_SIZE) {
 436		printk(KERN_WARNING "%s: per-cpu alignment %li > %li\n",
 437		       mod->name, align, PAGE_SIZE);
 438		align = PAGE_SIZE;
 439	}
 440
 441	mod->percpu = __alloc_reserved_percpu(size, align);
 442	if (!mod->percpu) {
 443		printk(KERN_WARNING
 444		       "%s: Could not allocate %lu bytes percpu data\n",
 445		       mod->name, size);
 446		return -ENOMEM;
 447	}
 448	mod->percpu_size = size;
 449	return 0;
 450}
 451
 452static void percpu_modfree(struct module *mod)
 453{
 454	free_percpu(mod->percpu);
 455}
 456
 457static unsigned int find_pcpusec(struct load_info *info)
 458{
 459	return find_sec(info, ".data..percpu");
 460}
 461
 462static void percpu_modcopy(struct module *mod,
 463			   const void *from, unsigned long size)
 464{
 465	int cpu;
 466
 467	for_each_possible_cpu(cpu)
 468		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
 469}
 470
 471/**
 472 * is_module_percpu_address - test whether address is from module static percpu
 473 * @addr: address to test
 474 *
 475 * Test whether @addr belongs to module static percpu area.
 476 *
 477 * RETURNS:
 478 * %true if @addr is from module static percpu area
 479 */
 480bool is_module_percpu_address(unsigned long addr)
 481{
 482	struct module *mod;
 483	unsigned int cpu;
 484
 485	preempt_disable();
 486
 487	list_for_each_entry_rcu(mod, &modules, list) {
 
 
 488		if (!mod->percpu_size)
 489			continue;
 490		for_each_possible_cpu(cpu) {
 491			void *start = per_cpu_ptr(mod->percpu, cpu);
 492
 493			if ((void *)addr >= start &&
 494			    (void *)addr < start + mod->percpu_size) {
 495				preempt_enable();
 496				return true;
 497			}
 498		}
 499	}
 500
 501	preempt_enable();
 502	return false;
 503}
 504
 505#else /* ... !CONFIG_SMP */
 506
 507static inline void __percpu *mod_percpu(struct module *mod)
 508{
 509	return NULL;
 510}
 511static inline int percpu_modalloc(struct module *mod,
 512				  unsigned long size, unsigned long align)
 513{
 514	return -ENOMEM;
 
 
 
 515}
 516static inline void percpu_modfree(struct module *mod)
 517{
 518}
 519static unsigned int find_pcpusec(struct load_info *info)
 520{
 521	return 0;
 522}
 523static inline void percpu_modcopy(struct module *mod,
 524				  const void *from, unsigned long size)
 525{
 526	/* pcpusec should be 0, and size of that section should be 0. */
 527	BUG_ON(size != 0);
 528}
 529bool is_module_percpu_address(unsigned long addr)
 530{
 531	return false;
 532}
 533
 534#endif /* CONFIG_SMP */
 535
 536#define MODINFO_ATTR(field)	\
 537static void setup_modinfo_##field(struct module *mod, const char *s)  \
 538{                                                                     \
 539	mod->field = kstrdup(s, GFP_KERNEL);                          \
 540}                                                                     \
 541static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
 542			struct module_kobject *mk, char *buffer)      \
 543{                                                                     \
 544	return sprintf(buffer, "%s\n", mk->mod->field);               \
 545}                                                                     \
 546static int modinfo_##field##_exists(struct module *mod)               \
 547{                                                                     \
 548	return mod->field != NULL;                                    \
 549}                                                                     \
 550static void free_modinfo_##field(struct module *mod)                  \
 551{                                                                     \
 552	kfree(mod->field);                                            \
 553	mod->field = NULL;                                            \
 554}                                                                     \
 555static struct module_attribute modinfo_##field = {                    \
 556	.attr = { .name = __stringify(field), .mode = 0444 },         \
 557	.show = show_modinfo_##field,                                 \
 558	.setup = setup_modinfo_##field,                               \
 559	.test = modinfo_##field##_exists,                             \
 560	.free = free_modinfo_##field,                                 \
 561};
 562
 563MODINFO_ATTR(version);
 564MODINFO_ATTR(srcversion);
 565
 566static char last_unloaded_module[MODULE_NAME_LEN+1];
 567
 568#ifdef CONFIG_MODULE_UNLOAD
 569
 570EXPORT_TRACEPOINT_SYMBOL(module_get);
 571
 
 
 
 572/* Init the unload section of the module. */
 573static int module_unload_init(struct module *mod)
 574{
 575	mod->refptr = alloc_percpu(struct module_ref);
 576	if (!mod->refptr)
 577		return -ENOMEM;
 
 
 578
 579	INIT_LIST_HEAD(&mod->source_list);
 580	INIT_LIST_HEAD(&mod->target_list);
 581
 582	/* Hold reference count during initialization. */
 583	__this_cpu_write(mod->refptr->incs, 1);
 584	/* Backwards compatibility macros put refcount during init. */
 585	mod->waiter = current;
 586
 587	return 0;
 588}
 589
 590/* Does a already use b? */
 591static int already_uses(struct module *a, struct module *b)
 592{
 593	struct module_use *use;
 594
 595	list_for_each_entry(use, &b->source_list, source_list) {
 596		if (use->source == a) {
 597			pr_debug("%s uses %s!\n", a->name, b->name);
 598			return 1;
 599		}
 600	}
 601	pr_debug("%s does not use %s!\n", a->name, b->name);
 602	return 0;
 603}
 604
 605/*
 606 * Module a uses b
 607 *  - we add 'a' as a "source", 'b' as a "target" of module use
 608 *  - the module_use is added to the list of 'b' sources (so
 609 *    'b' can walk the list to see who sourced them), and of 'a'
 610 *    targets (so 'a' can see what modules it targets).
 611 */
 612static int add_module_usage(struct module *a, struct module *b)
 613{
 614	struct module_use *use;
 615
 616	pr_debug("Allocating new usage for %s.\n", a->name);
 617	use = kmalloc(sizeof(*use), GFP_ATOMIC);
 618	if (!use) {
 619		printk(KERN_WARNING "%s: out of memory loading\n", a->name);
 620		return -ENOMEM;
 621	}
 622
 623	use->source = a;
 624	use->target = b;
 625	list_add(&use->source_list, &b->source_list);
 626	list_add(&use->target_list, &a->target_list);
 627	return 0;
 628}
 629
 630/* Module a uses b: caller needs module_mutex() */
 631int ref_module(struct module *a, struct module *b)
 632{
 633	int err;
 634
 635	if (b == NULL || already_uses(a, b))
 636		return 0;
 637
 638	/* If module isn't available, we fail. */
 639	err = strong_try_module_get(b);
 640	if (err)
 641		return err;
 642
 643	err = add_module_usage(a, b);
 644	if (err) {
 645		module_put(b);
 646		return err;
 647	}
 648	return 0;
 649}
 650EXPORT_SYMBOL_GPL(ref_module);
 651
 652/* Clear the unload stuff of the module. */
 653static void module_unload_free(struct module *mod)
 654{
 655	struct module_use *use, *tmp;
 656
 657	mutex_lock(&module_mutex);
 658	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
 659		struct module *i = use->target;
 660		pr_debug("%s unusing %s\n", mod->name, i->name);
 661		module_put(i);
 662		list_del(&use->source_list);
 663		list_del(&use->target_list);
 664		kfree(use);
 665	}
 666	mutex_unlock(&module_mutex);
 667
 668	free_percpu(mod->refptr);
 669}
 670
 671#ifdef CONFIG_MODULE_FORCE_UNLOAD
 672static inline int try_force_unload(unsigned int flags)
 673{
 674	int ret = (flags & O_TRUNC);
 675	if (ret)
 676		add_taint(TAINT_FORCED_RMMOD);
 677	return ret;
 678}
 679#else
 680static inline int try_force_unload(unsigned int flags)
 681{
 682	return 0;
 683}
 684#endif /* CONFIG_MODULE_FORCE_UNLOAD */
 685
 686struct stopref
 
 687{
 688	struct module *mod;
 689	int flags;
 690	int *forced;
 691};
 
 
 
 
 
 
 
 692
 693/* Whole machine is stopped with interrupts off when this runs. */
 694static int __try_stop_module(void *_sref)
 695{
 696	struct stopref *sref = _sref;
 697
 698	/* If it's not unused, quit unless we're forcing. */
 699	if (module_refcount(sref->mod) != 0) {
 700		if (!(*sref->forced = try_force_unload(sref->flags)))
 
 701			return -EWOULDBLOCK;
 702	}
 703
 704	/* Mark it as dying. */
 705	sref->mod->state = MODULE_STATE_GOING;
 
 706	return 0;
 707}
 708
 709static int try_stop_module(struct module *mod, int flags, int *forced)
 
 
 
 
 
 
 
 
 
 710{
 711	if (flags & O_NONBLOCK) {
 712		struct stopref sref = { mod, flags, forced };
 713
 714		return stop_machine(__try_stop_module, &sref, NULL);
 715	} else {
 716		/* We don't need to stop the machine for this. */
 717		mod->state = MODULE_STATE_GOING;
 718		synchronize_sched();
 719		return 0;
 720	}
 721}
 722
 723unsigned long module_refcount(struct module *mod)
 724{
 725	unsigned long incs = 0, decs = 0;
 726	int cpu;
 727
 728	for_each_possible_cpu(cpu)
 729		decs += per_cpu_ptr(mod->refptr, cpu)->decs;
 730	/*
 731	 * ensure the incs are added up after the decs.
 732	 * module_put ensures incs are visible before decs with smp_wmb.
 733	 *
 734	 * This 2-count scheme avoids the situation where the refcount
 735	 * for CPU0 is read, then CPU0 increments the module refcount,
 736	 * then CPU1 drops that refcount, then the refcount for CPU1 is
 737	 * read. We would record a decrement but not its corresponding
 738	 * increment so we would see a low count (disaster).
 739	 *
 740	 * Rare situation? But module_refcount can be preempted, and we
 741	 * might be tallying up 4096+ CPUs. So it is not impossible.
 742	 */
 743	smp_rmb();
 744	for_each_possible_cpu(cpu)
 745		incs += per_cpu_ptr(mod->refptr, cpu)->incs;
 746	return incs - decs;
 747}
 748EXPORT_SYMBOL(module_refcount);
 749
 750/* This exists whether we can unload or not */
 751static void free_module(struct module *mod);
 752
 753static void wait_for_zero_refcount(struct module *mod)
 754{
 755	/* Since we might sleep for some time, release the mutex first */
 756	mutex_unlock(&module_mutex);
 757	for (;;) {
 758		pr_debug("Looking at refcount...\n");
 759		set_current_state(TASK_UNINTERRUPTIBLE);
 760		if (module_refcount(mod) == 0)
 761			break;
 762		schedule();
 763	}
 764	current->state = TASK_RUNNING;
 765	mutex_lock(&module_mutex);
 766}
 767
 768SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
 769		unsigned int, flags)
 770{
 771	struct module *mod;
 772	char name[MODULE_NAME_LEN];
 773	int ret, forced = 0;
 774
 775	if (!capable(CAP_SYS_MODULE) || modules_disabled)
 776		return -EPERM;
 777
 778	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
 779		return -EFAULT;
 780	name[MODULE_NAME_LEN-1] = '\0';
 781
 782	if (mutex_lock_interruptible(&module_mutex) != 0)
 783		return -EINTR;
 784
 785	mod = find_module(name);
 786	if (!mod) {
 787		ret = -ENOENT;
 788		goto out;
 789	}
 790
 791	if (!list_empty(&mod->source_list)) {
 792		/* Other modules depend on us: get rid of them first. */
 793		ret = -EWOULDBLOCK;
 794		goto out;
 795	}
 796
 797	/* Doing init or already dying? */
 798	if (mod->state != MODULE_STATE_LIVE) {
 799		/* FIXME: if (force), slam module count and wake up
 800                   waiter --RR */
 801		pr_debug("%s already dying\n", mod->name);
 802		ret = -EBUSY;
 803		goto out;
 804	}
 805
 806	/* If it has an init func, it must have an exit func to unload */
 807	if (mod->init && !mod->exit) {
 808		forced = try_force_unload(flags);
 809		if (!forced) {
 810			/* This module can't be removed */
 811			ret = -EBUSY;
 812			goto out;
 813		}
 814	}
 815
 816	/* Set this up before setting mod->state */
 817	mod->waiter = current;
 818
 819	/* Stop the machine so refcounts can't move and disable module. */
 820	ret = try_stop_module(mod, flags, &forced);
 821	if (ret != 0)
 822		goto out;
 823
 824	/* Never wait if forced. */
 825	if (!forced && module_refcount(mod) != 0)
 826		wait_for_zero_refcount(mod);
 827
 828	mutex_unlock(&module_mutex);
 829	/* Final destruction now no one is using it. */
 830	if (mod->exit != NULL)
 831		mod->exit();
 832	blocking_notifier_call_chain(&module_notify_list,
 833				     MODULE_STATE_GOING, mod);
 
 
 
 834	async_synchronize_full();
 835
 836	/* Store the name of the last unloaded module for diagnostic purposes */
 837	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
 838
 839	free_module(mod);
 840	return 0;
 841out:
 842	mutex_unlock(&module_mutex);
 843	return ret;
 844}
 845
 846static inline void print_unload_info(struct seq_file *m, struct module *mod)
 847{
 848	struct module_use *use;
 849	int printed_something = 0;
 850
 851	seq_printf(m, " %lu ", module_refcount(mod));
 852
 853	/* Always include a trailing , so userspace can differentiate
 854           between this and the old multi-field proc format. */
 
 
 855	list_for_each_entry(use, &mod->source_list, source_list) {
 856		printed_something = 1;
 857		seq_printf(m, "%s,", use->source->name);
 858	}
 859
 860	if (mod->init != NULL && mod->exit == NULL) {
 861		printed_something = 1;
 862		seq_printf(m, "[permanent],");
 863	}
 864
 865	if (!printed_something)
 866		seq_printf(m, "-");
 867}
 868
 869void __symbol_put(const char *symbol)
 870{
 871	struct module *owner;
 872
 873	preempt_disable();
 874	if (!find_symbol(symbol, &owner, NULL, true, false))
 875		BUG();
 876	module_put(owner);
 877	preempt_enable();
 878}
 879EXPORT_SYMBOL(__symbol_put);
 880
 881/* Note this assumes addr is a function, which it currently always is. */
 882void symbol_put_addr(void *addr)
 883{
 884	struct module *modaddr;
 885	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
 886
 887	if (core_kernel_text(a))
 888		return;
 889
 890	/* module_text_address is safe here: we're supposed to have reference
 891	 * to module from symbol_get, so it can't go away. */
 
 
 
 892	modaddr = __module_text_address(a);
 893	BUG_ON(!modaddr);
 894	module_put(modaddr);
 
 895}
 896EXPORT_SYMBOL_GPL(symbol_put_addr);
 897
 898static ssize_t show_refcnt(struct module_attribute *mattr,
 899			   struct module_kobject *mk, char *buffer)
 900{
 901	return sprintf(buffer, "%lu\n", module_refcount(mk->mod));
 902}
 903
 904static struct module_attribute modinfo_refcnt =
 905	__ATTR(refcnt, 0444, show_refcnt, NULL);
 906
 907void __module_get(struct module *module)
 908{
 909	if (module) {
 910		preempt_disable();
 911		__this_cpu_inc(module->refptr->incs);
 912		trace_module_get(module, _RET_IP_);
 913		preempt_enable();
 914	}
 915}
 916EXPORT_SYMBOL(__module_get);
 917
 918bool try_module_get(struct module *module)
 919{
 920	bool ret = true;
 921
 922	if (module) {
 923		preempt_disable();
 924
 925		if (likely(module_is_live(module))) {
 926			__this_cpu_inc(module->refptr->incs);
 927			trace_module_get(module, _RET_IP_);
 928		} else
 929			ret = false;
 930
 931		preempt_enable();
 932	}
 933	return ret;
 934}
 935EXPORT_SYMBOL(try_module_get);
 936
 937void module_put(struct module *module)
 938{
 
 
 939	if (module) {
 940		preempt_disable();
 941		smp_wmb(); /* see comment in module_refcount */
 942		__this_cpu_inc(module->refptr->decs);
 943
 944		trace_module_put(module, _RET_IP_);
 945		/* Maybe they're waiting for us to drop reference? */
 946		if (unlikely(!module_is_live(module)))
 947			wake_up_process(module->waiter);
 948		preempt_enable();
 949	}
 950}
 951EXPORT_SYMBOL(module_put);
 952
 953#else /* !CONFIG_MODULE_UNLOAD */
 954static inline void print_unload_info(struct seq_file *m, struct module *mod)
 955{
 956	/* We don't know the usage count, or what modules are using. */
 957	seq_printf(m, " - -");
 958}
 959
 960static inline void module_unload_free(struct module *mod)
 961{
 962}
 963
 964int ref_module(struct module *a, struct module *b)
 965{
 966	return strong_try_module_get(b);
 967}
 968EXPORT_SYMBOL_GPL(ref_module);
 969
 970static inline int module_unload_init(struct module *mod)
 971{
 972	return 0;
 973}
 974#endif /* CONFIG_MODULE_UNLOAD */
 975
 976static size_t module_flags_taint(struct module *mod, char *buf)
 977{
 978	size_t l = 0;
 
 
 
 
 
 
 979
 980	if (mod->taints & (1 << TAINT_PROPRIETARY_MODULE))
 981		buf[l++] = 'P';
 982	if (mod->taints & (1 << TAINT_OOT_MODULE))
 983		buf[l++] = 'O';
 984	if (mod->taints & (1 << TAINT_FORCED_MODULE))
 985		buf[l++] = 'F';
 986	if (mod->taints & (1 << TAINT_CRAP))
 987		buf[l++] = 'C';
 988	/*
 989	 * TAINT_FORCED_RMMOD: could be added.
 990	 * TAINT_UNSAFE_SMP, TAINT_MACHINE_CHECK, TAINT_BAD_PAGE don't
 991	 * apply to modules.
 992	 */
 993	return l;
 994}
 995
 996static ssize_t show_initstate(struct module_attribute *mattr,
 997			      struct module_kobject *mk, char *buffer)
 998{
 999	const char *state = "unknown";
1000
1001	switch (mk->mod->state) {
1002	case MODULE_STATE_LIVE:
1003		state = "live";
1004		break;
1005	case MODULE_STATE_COMING:
1006		state = "coming";
1007		break;
1008	case MODULE_STATE_GOING:
1009		state = "going";
1010		break;
 
 
1011	}
1012	return sprintf(buffer, "%s\n", state);
1013}
1014
1015static struct module_attribute modinfo_initstate =
1016	__ATTR(initstate, 0444, show_initstate, NULL);
1017
1018static ssize_t store_uevent(struct module_attribute *mattr,
1019			    struct module_kobject *mk,
1020			    const char *buffer, size_t count)
1021{
1022	enum kobject_action action;
1023
1024	if (kobject_action_type(buffer, count, &action) == 0)
1025		kobject_uevent(&mk->kobj, action);
1026	return count;
1027}
1028
1029struct module_attribute module_uevent =
1030	__ATTR(uevent, 0200, NULL, store_uevent);
1031
1032static ssize_t show_coresize(struct module_attribute *mattr,
1033			     struct module_kobject *mk, char *buffer)
1034{
1035	return sprintf(buffer, "%u\n", mk->mod->core_size);
1036}
1037
1038static struct module_attribute modinfo_coresize =
1039	__ATTR(coresize, 0444, show_coresize, NULL);
1040
1041static ssize_t show_initsize(struct module_attribute *mattr,
1042			     struct module_kobject *mk, char *buffer)
1043{
1044	return sprintf(buffer, "%u\n", mk->mod->init_size);
1045}
1046
1047static struct module_attribute modinfo_initsize =
1048	__ATTR(initsize, 0444, show_initsize, NULL);
1049
1050static ssize_t show_taint(struct module_attribute *mattr,
1051			  struct module_kobject *mk, char *buffer)
1052{
1053	size_t l;
1054
1055	l = module_flags_taint(mk->mod, buffer);
1056	buffer[l++] = '\n';
1057	return l;
1058}
1059
1060static struct module_attribute modinfo_taint =
1061	__ATTR(taint, 0444, show_taint, NULL);
1062
1063static struct module_attribute *modinfo_attrs[] = {
1064	&module_uevent,
1065	&modinfo_version,
1066	&modinfo_srcversion,
1067	&modinfo_initstate,
1068	&modinfo_coresize,
1069	&modinfo_initsize,
1070	&modinfo_taint,
1071#ifdef CONFIG_MODULE_UNLOAD
1072	&modinfo_refcnt,
1073#endif
1074	NULL,
1075};
1076
1077static const char vermagic[] = VERMAGIC_STRING;
1078
1079static int try_to_force_load(struct module *mod, const char *reason)
1080{
1081#ifdef CONFIG_MODULE_FORCE_LOAD
1082	if (!test_taint(TAINT_FORCED_MODULE))
1083		printk(KERN_WARNING "%s: %s: kernel tainted.\n",
1084		       mod->name, reason);
1085	add_taint_module(mod, TAINT_FORCED_MODULE);
1086	return 0;
1087#else
1088	return -ENOEXEC;
1089#endif
1090}
1091
1092#ifdef CONFIG_MODVERSIONS
1093/* If the arch applies (non-zero) relocations to kernel kcrctab, unapply it. */
1094static unsigned long maybe_relocated(unsigned long crc,
1095				     const struct module *crc_owner)
1096{
1097#ifdef ARCH_RELOCATES_KCRCTAB
1098	if (crc_owner == NULL)
1099		return crc - (unsigned long)reloc_start;
1100#endif
1101	return crc;
1102}
1103
1104static int check_version(Elf_Shdr *sechdrs,
1105			 unsigned int versindex,
1106			 const char *symname,
1107			 struct module *mod, 
1108			 const unsigned long *crc,
1109			 const struct module *crc_owner)
1110{
1111	unsigned int i, num_versions;
1112	struct modversion_info *versions;
1113
1114	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1115	if (!crc)
1116		return 1;
1117
1118	/* No versions at all?  modprobe --force does this. */
1119	if (versindex == 0)
1120		return try_to_force_load(mod, symname) == 0;
1121
1122	versions = (void *) sechdrs[versindex].sh_addr;
1123	num_versions = sechdrs[versindex].sh_size
1124		/ sizeof(struct modversion_info);
1125
1126	for (i = 0; i < num_versions; i++) {
 
 
1127		if (strcmp(versions[i].name, symname) != 0)
1128			continue;
1129
1130		if (versions[i].crc == maybe_relocated(*crc, crc_owner))
 
 
 
 
1131			return 1;
1132		pr_debug("Found checksum %lX vs module %lX\n",
1133		       maybe_relocated(*crc, crc_owner), versions[i].crc);
1134		goto bad_version;
1135	}
1136
1137	printk(KERN_WARNING "%s: no symbol version for %s\n",
1138	       mod->name, symname);
1139	return 0;
1140
1141bad_version:
1142	printk("%s: disagrees about version of symbol %s\n",
1143	       mod->name, symname);
1144	return 0;
1145}
1146
1147static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1148					  unsigned int versindex,
1149					  struct module *mod)
1150{
1151	const unsigned long *crc;
1152
1153	/* Since this should be found in kernel (which can't be removed),
1154	 * no locking is necessary. */
1155	if (!find_symbol(MODULE_SYMBOL_PREFIX "module_layout", NULL,
1156			 &crc, true, false))
 
 
 
 
1157		BUG();
1158	return check_version(sechdrs, versindex, "module_layout", mod, crc,
1159			     NULL);
 
 
1160}
1161
1162/* First part is kernel version, which we ignore if module has crcs. */
1163static inline int same_magic(const char *amagic, const char *bmagic,
1164			     bool has_crcs)
1165{
1166	if (has_crcs) {
1167		amagic += strcspn(amagic, " ");
1168		bmagic += strcspn(bmagic, " ");
1169	}
1170	return strcmp(amagic, bmagic) == 0;
1171}
1172#else
1173static inline int check_version(Elf_Shdr *sechdrs,
1174				unsigned int versindex,
1175				const char *symname,
1176				struct module *mod, 
1177				const unsigned long *crc,
1178				const struct module *crc_owner)
1179{
1180	return 1;
1181}
1182
1183static inline int check_modstruct_version(Elf_Shdr *sechdrs,
1184					  unsigned int versindex,
1185					  struct module *mod)
1186{
1187	return 1;
1188}
1189
1190static inline int same_magic(const char *amagic, const char *bmagic,
1191			     bool has_crcs)
1192{
1193	return strcmp(amagic, bmagic) == 0;
1194}
1195#endif /* CONFIG_MODVERSIONS */
1196
1197/* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1198static const struct kernel_symbol *resolve_symbol(struct module *mod,
1199						  const struct load_info *info,
1200						  const char *name,
1201						  char ownername[])
1202{
1203	struct module *owner;
1204	const struct kernel_symbol *sym;
1205	const unsigned long *crc;
1206	int err;
1207
 
 
 
 
 
 
1208	mutex_lock(&module_mutex);
1209	sym = find_symbol(name, &owner, &crc,
1210			  !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), true);
1211	if (!sym)
1212		goto unlock;
1213
1214	if (!check_version(info->sechdrs, info->index.vers, name, mod, crc,
1215			   owner)) {
1216		sym = ERR_PTR(-EINVAL);
1217		goto getname;
1218	}
1219
1220	err = ref_module(mod, owner);
1221	if (err) {
1222		sym = ERR_PTR(err);
1223		goto getname;
1224	}
1225
1226getname:
1227	/* We must make copy under the lock if we failed to get ref. */
1228	strncpy(ownername, module_name(owner), MODULE_NAME_LEN);
1229unlock:
1230	mutex_unlock(&module_mutex);
1231	return sym;
1232}
1233
1234static const struct kernel_symbol *
1235resolve_symbol_wait(struct module *mod,
1236		    const struct load_info *info,
1237		    const char *name)
1238{
1239	const struct kernel_symbol *ksym;
1240	char owner[MODULE_NAME_LEN];
1241
1242	if (wait_event_interruptible_timeout(module_wq,
1243			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1244			|| PTR_ERR(ksym) != -EBUSY,
1245					     30 * HZ) <= 0) {
1246		printk(KERN_WARNING "%s: gave up waiting for init of module %s.\n",
1247		       mod->name, owner);
1248	}
1249	return ksym;
1250}
1251
1252/*
1253 * /sys/module/foo/sections stuff
1254 * J. Corbet <corbet@lwn.net>
1255 */
1256#ifdef CONFIG_SYSFS
1257
1258#ifdef CONFIG_KALLSYMS
1259static inline bool sect_empty(const Elf_Shdr *sect)
1260{
1261	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1262}
1263
1264struct module_sect_attr
1265{
1266	struct module_attribute mattr;
1267	char *name;
1268	unsigned long address;
1269};
1270
1271struct module_sect_attrs
1272{
1273	struct attribute_group grp;
1274	unsigned int nsections;
1275	struct module_sect_attr attrs[0];
1276};
1277
1278static ssize_t module_sect_show(struct module_attribute *mattr,
1279				struct module_kobject *mk, char *buf)
1280{
1281	struct module_sect_attr *sattr =
1282		container_of(mattr, struct module_sect_attr, mattr);
1283	return sprintf(buf, "0x%pK\n", (void *)sattr->address);
1284}
1285
1286static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1287{
1288	unsigned int section;
1289
1290	for (section = 0; section < sect_attrs->nsections; section++)
1291		kfree(sect_attrs->attrs[section].name);
1292	kfree(sect_attrs);
1293}
1294
1295static void add_sect_attrs(struct module *mod, const struct load_info *info)
1296{
1297	unsigned int nloaded = 0, i, size[2];
1298	struct module_sect_attrs *sect_attrs;
1299	struct module_sect_attr *sattr;
1300	struct attribute **gattr;
1301
1302	/* Count loaded sections and allocate structures */
1303	for (i = 0; i < info->hdr->e_shnum; i++)
1304		if (!sect_empty(&info->sechdrs[i]))
1305			nloaded++;
1306	size[0] = ALIGN(sizeof(*sect_attrs)
1307			+ nloaded * sizeof(sect_attrs->attrs[0]),
1308			sizeof(sect_attrs->grp.attrs[0]));
1309	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.attrs[0]);
1310	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1311	if (sect_attrs == NULL)
1312		return;
1313
1314	/* Setup section attributes. */
1315	sect_attrs->grp.name = "sections";
1316	sect_attrs->grp.attrs = (void *)sect_attrs + size[0];
1317
1318	sect_attrs->nsections = 0;
1319	sattr = &sect_attrs->attrs[0];
1320	gattr = &sect_attrs->grp.attrs[0];
1321	for (i = 0; i < info->hdr->e_shnum; i++) {
1322		Elf_Shdr *sec = &info->sechdrs[i];
1323		if (sect_empty(sec))
1324			continue;
1325		sattr->address = sec->sh_addr;
1326		sattr->name = kstrdup(info->secstrings + sec->sh_name,
1327					GFP_KERNEL);
1328		if (sattr->name == NULL)
1329			goto out;
1330		sect_attrs->nsections++;
1331		sysfs_attr_init(&sattr->mattr.attr);
1332		sattr->mattr.show = module_sect_show;
1333		sattr->mattr.store = NULL;
1334		sattr->mattr.attr.name = sattr->name;
1335		sattr->mattr.attr.mode = S_IRUGO;
1336		*(gattr++) = &(sattr++)->mattr.attr;
1337	}
1338	*gattr = NULL;
1339
1340	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1341		goto out;
1342
1343	mod->sect_attrs = sect_attrs;
1344	return;
1345  out:
1346	free_sect_attrs(sect_attrs);
1347}
1348
1349static void remove_sect_attrs(struct module *mod)
1350{
1351	if (mod->sect_attrs) {
1352		sysfs_remove_group(&mod->mkobj.kobj,
1353				   &mod->sect_attrs->grp);
1354		/* We are positive that no one is using any sect attrs
1355		 * at this point.  Deallocate immediately. */
1356		free_sect_attrs(mod->sect_attrs);
1357		mod->sect_attrs = NULL;
1358	}
1359}
1360
1361/*
1362 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1363 */
1364
1365struct module_notes_attrs {
1366	struct kobject *dir;
1367	unsigned int notes;
1368	struct bin_attribute attrs[0];
1369};
1370
1371static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1372				 struct bin_attribute *bin_attr,
1373				 char *buf, loff_t pos, size_t count)
1374{
1375	/*
1376	 * The caller checked the pos and count against our size.
1377	 */
1378	memcpy(buf, bin_attr->private + pos, count);
1379	return count;
1380}
1381
1382static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1383			     unsigned int i)
1384{
1385	if (notes_attrs->dir) {
1386		while (i-- > 0)
1387			sysfs_remove_bin_file(notes_attrs->dir,
1388					      &notes_attrs->attrs[i]);
1389		kobject_put(notes_attrs->dir);
1390	}
1391	kfree(notes_attrs);
1392}
1393
1394static void add_notes_attrs(struct module *mod, const struct load_info *info)
1395{
1396	unsigned int notes, loaded, i;
1397	struct module_notes_attrs *notes_attrs;
1398	struct bin_attribute *nattr;
1399
1400	/* failed to create section attributes, so can't create notes */
1401	if (!mod->sect_attrs)
1402		return;
1403
1404	/* Count notes sections and allocate structures.  */
1405	notes = 0;
1406	for (i = 0; i < info->hdr->e_shnum; i++)
1407		if (!sect_empty(&info->sechdrs[i]) &&
1408		    (info->sechdrs[i].sh_type == SHT_NOTE))
1409			++notes;
1410
1411	if (notes == 0)
1412		return;
1413
1414	notes_attrs = kzalloc(sizeof(*notes_attrs)
1415			      + notes * sizeof(notes_attrs->attrs[0]),
1416			      GFP_KERNEL);
1417	if (notes_attrs == NULL)
1418		return;
1419
1420	notes_attrs->notes = notes;
1421	nattr = &notes_attrs->attrs[0];
1422	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1423		if (sect_empty(&info->sechdrs[i]))
1424			continue;
1425		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1426			sysfs_bin_attr_init(nattr);
1427			nattr->attr.name = mod->sect_attrs->attrs[loaded].name;
1428			nattr->attr.mode = S_IRUGO;
1429			nattr->size = info->sechdrs[i].sh_size;
1430			nattr->private = (void *) info->sechdrs[i].sh_addr;
1431			nattr->read = module_notes_read;
1432			++nattr;
1433		}
1434		++loaded;
1435	}
1436
1437	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1438	if (!notes_attrs->dir)
1439		goto out;
1440
1441	for (i = 0; i < notes; ++i)
1442		if (sysfs_create_bin_file(notes_attrs->dir,
1443					  &notes_attrs->attrs[i]))
1444			goto out;
1445
1446	mod->notes_attrs = notes_attrs;
1447	return;
1448
1449  out:
1450	free_notes_attrs(notes_attrs, i);
1451}
1452
1453static void remove_notes_attrs(struct module *mod)
1454{
1455	if (mod->notes_attrs)
1456		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1457}
1458
1459#else
1460
1461static inline void add_sect_attrs(struct module *mod,
1462				  const struct load_info *info)
1463{
1464}
1465
1466static inline void remove_sect_attrs(struct module *mod)
1467{
1468}
1469
1470static inline void add_notes_attrs(struct module *mod,
1471				   const struct load_info *info)
1472{
1473}
1474
1475static inline void remove_notes_attrs(struct module *mod)
1476{
1477}
1478#endif /* CONFIG_KALLSYMS */
1479
1480static void add_usage_links(struct module *mod)
1481{
1482#ifdef CONFIG_MODULE_UNLOAD
1483	struct module_use *use;
1484	int nowarn;
1485
1486	mutex_lock(&module_mutex);
1487	list_for_each_entry(use, &mod->target_list, target_list) {
1488		nowarn = sysfs_create_link(use->target->holders_dir,
1489					   &mod->mkobj.kobj, mod->name);
1490	}
1491	mutex_unlock(&module_mutex);
1492#endif
1493}
1494
1495static void del_usage_links(struct module *mod)
1496{
1497#ifdef CONFIG_MODULE_UNLOAD
1498	struct module_use *use;
1499
1500	mutex_lock(&module_mutex);
1501	list_for_each_entry(use, &mod->target_list, target_list)
1502		sysfs_remove_link(use->target->holders_dir, mod->name);
1503	mutex_unlock(&module_mutex);
1504#endif
1505}
1506
1507static int module_add_modinfo_attrs(struct module *mod)
1508{
1509	struct module_attribute *attr;
1510	struct module_attribute *temp_attr;
1511	int error = 0;
1512	int i;
1513
1514	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1515					(ARRAY_SIZE(modinfo_attrs) + 1)),
1516					GFP_KERNEL);
1517	if (!mod->modinfo_attrs)
1518		return -ENOMEM;
1519
1520	temp_attr = mod->modinfo_attrs;
1521	for (i = 0; (attr = modinfo_attrs[i]) && !error; i++) {
1522		if (!attr->test ||
1523		    (attr->test && attr->test(mod))) {
1524			memcpy(temp_attr, attr, sizeof(*temp_attr));
1525			sysfs_attr_init(&temp_attr->attr);
1526			error = sysfs_create_file(&mod->mkobj.kobj,&temp_attr->attr);
 
1527			++temp_attr;
1528		}
1529	}
1530	return error;
1531}
1532
1533static void module_remove_modinfo_attrs(struct module *mod)
1534{
1535	struct module_attribute *attr;
1536	int i;
1537
1538	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1539		/* pick a field to test for end of list */
1540		if (!attr->attr.name)
1541			break;
1542		sysfs_remove_file(&mod->mkobj.kobj,&attr->attr);
1543		if (attr->free)
1544			attr->free(mod);
1545	}
1546	kfree(mod->modinfo_attrs);
1547}
1548
 
 
 
 
 
 
 
 
1549static int mod_sysfs_init(struct module *mod)
1550{
1551	int err;
1552	struct kobject *kobj;
1553
1554	if (!module_sysfs_initialized) {
1555		printk(KERN_ERR "%s: module sysfs not initialized\n",
1556		       mod->name);
1557		err = -EINVAL;
1558		goto out;
1559	}
1560
1561	kobj = kset_find_obj(module_kset, mod->name);
1562	if (kobj) {
1563		printk(KERN_ERR "%s: module is already loaded\n", mod->name);
1564		kobject_put(kobj);
1565		err = -EINVAL;
1566		goto out;
1567	}
1568
1569	mod->mkobj.mod = mod;
1570
1571	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1572	mod->mkobj.kobj.kset = module_kset;
1573	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1574				   "%s", mod->name);
1575	if (err)
1576		kobject_put(&mod->mkobj.kobj);
1577
1578	/* delay uevent until full sysfs population */
1579out:
1580	return err;
1581}
1582
1583static int mod_sysfs_setup(struct module *mod,
1584			   const struct load_info *info,
1585			   struct kernel_param *kparam,
1586			   unsigned int num_params)
1587{
1588	int err;
1589
1590	err = mod_sysfs_init(mod);
1591	if (err)
1592		goto out;
1593
1594	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1595	if (!mod->holders_dir) {
1596		err = -ENOMEM;
1597		goto out_unreg;
1598	}
1599
1600	err = module_param_sysfs_setup(mod, kparam, num_params);
1601	if (err)
1602		goto out_unreg_holders;
1603
1604	err = module_add_modinfo_attrs(mod);
1605	if (err)
1606		goto out_unreg_param;
1607
1608	add_usage_links(mod);
1609	add_sect_attrs(mod, info);
1610	add_notes_attrs(mod, info);
1611
1612	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
1613	return 0;
1614
1615out_unreg_param:
1616	module_param_sysfs_remove(mod);
1617out_unreg_holders:
1618	kobject_put(mod->holders_dir);
1619out_unreg:
1620	kobject_put(&mod->mkobj.kobj);
1621out:
1622	return err;
1623}
1624
1625static void mod_sysfs_fini(struct module *mod)
1626{
1627	remove_notes_attrs(mod);
1628	remove_sect_attrs(mod);
1629	kobject_put(&mod->mkobj.kobj);
1630}
1631
 
 
 
 
1632#else /* !CONFIG_SYSFS */
1633
1634static int mod_sysfs_setup(struct module *mod,
1635			   const struct load_info *info,
1636			   struct kernel_param *kparam,
1637			   unsigned int num_params)
1638{
1639	return 0;
1640}
1641
1642static void mod_sysfs_fini(struct module *mod)
1643{
1644}
1645
1646static void module_remove_modinfo_attrs(struct module *mod)
1647{
1648}
1649
1650static void del_usage_links(struct module *mod)
1651{
1652}
1653
 
 
 
1654#endif /* CONFIG_SYSFS */
1655
1656static void mod_sysfs_teardown(struct module *mod)
1657{
1658	del_usage_links(mod);
1659	module_remove_modinfo_attrs(mod);
1660	module_param_sysfs_remove(mod);
1661	kobject_put(mod->mkobj.drivers_dir);
1662	kobject_put(mod->holders_dir);
1663	mod_sysfs_fini(mod);
1664}
1665
 
1666/*
1667 * unlink the module with the whole machine is stopped with interrupts off
1668 * - this defends against kallsyms not taking locks
 
 
 
 
 
 
 
 
 
1669 */
1670static int __unlink_module(void *_mod)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671{
1672	struct module *mod = _mod;
1673	list_del(&mod->list);
1674	module_bug_cleanup(mod);
1675	return 0;
 
 
 
 
 
 
 
 
 
 
 
1676}
1677
1678#ifdef CONFIG_DEBUG_SET_MODULE_RONX
1679/*
1680 * LKM RO/NX protection: protect module's text/ro-data
1681 * from modification and any data from execution.
1682 */
1683void set_page_attributes(void *start, void *end, int (*set)(unsigned long start, int num_pages))
1684{
1685	unsigned long begin_pfn = PFN_DOWN((unsigned long)start);
1686	unsigned long end_pfn = PFN_DOWN((unsigned long)end);
1687
1688	if (end_pfn > begin_pfn)
1689		set(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
 
 
 
1690}
1691
1692static void set_section_ro_nx(void *base,
1693			unsigned long text_size,
1694			unsigned long ro_size,
1695			unsigned long total_size)
1696{
1697	/* begin and end PFNs of the current subsection */
1698	unsigned long begin_pfn;
1699	unsigned long end_pfn;
1700
1701	/*
1702	 * Set RO for module text and RO-data:
1703	 * - Always protect first page.
1704	 * - Do not protect last partial page.
1705	 */
1706	if (ro_size > 0)
1707		set_page_attributes(base, base + ro_size, set_memory_ro);
1708
1709	/*
1710	 * Set NX permissions for module data:
1711	 * - Do not protect first partial page.
1712	 * - Always protect last page.
1713	 */
1714	if (total_size > text_size) {
1715		begin_pfn = PFN_UP((unsigned long)base + text_size);
1716		end_pfn = PFN_UP((unsigned long)base + total_size);
1717		if (end_pfn > begin_pfn)
1718			set_memory_nx(begin_pfn << PAGE_SHIFT, end_pfn - begin_pfn);
1719	}
1720}
1721
1722static void unset_module_core_ro_nx(struct module *mod)
1723{
1724	set_page_attributes(mod->module_core + mod->core_text_size,
1725		mod->module_core + mod->core_size,
1726		set_memory_x);
1727	set_page_attributes(mod->module_core,
1728		mod->module_core + mod->core_ro_size,
1729		set_memory_rw);
1730}
1731
1732static void unset_module_init_ro_nx(struct module *mod)
1733{
1734	set_page_attributes(mod->module_init + mod->init_text_size,
1735		mod->module_init + mod->init_size,
1736		set_memory_x);
1737	set_page_attributes(mod->module_init,
1738		mod->module_init + mod->init_ro_size,
1739		set_memory_rw);
1740}
1741
1742/* Iterate through all modules and set each module's text as RW */
1743void set_all_modules_text_rw(void)
1744{
1745	struct module *mod;
1746
 
 
 
1747	mutex_lock(&module_mutex);
1748	list_for_each_entry_rcu(mod, &modules, list) {
1749		if ((mod->module_core) && (mod->core_text_size)) {
1750			set_page_attributes(mod->module_core,
1751						mod->module_core + mod->core_text_size,
1752						set_memory_rw);
1753		}
1754		if ((mod->module_init) && (mod->init_text_size)) {
1755			set_page_attributes(mod->module_init,
1756						mod->module_init + mod->init_text_size,
1757						set_memory_rw);
1758		}
1759	}
1760	mutex_unlock(&module_mutex);
1761}
1762
1763/* Iterate through all modules and set each module's text as RO */
1764void set_all_modules_text_ro(void)
1765{
1766	struct module *mod;
1767
 
 
 
1768	mutex_lock(&module_mutex);
1769	list_for_each_entry_rcu(mod, &modules, list) {
1770		if ((mod->module_core) && (mod->core_text_size)) {
1771			set_page_attributes(mod->module_core,
1772						mod->module_core + mod->core_text_size,
1773						set_memory_ro);
1774		}
1775		if ((mod->module_init) && (mod->init_text_size)) {
1776			set_page_attributes(mod->module_init,
1777						mod->module_init + mod->init_text_size,
1778						set_memory_ro);
1779		}
 
1780	}
1781	mutex_unlock(&module_mutex);
1782}
 
 
 
 
 
 
 
 
 
 
 
 
 
1783#else
1784static inline void set_section_ro_nx(void *base, unsigned long text_size, unsigned long ro_size, unsigned long total_size) { }
1785static void unset_module_core_ro_nx(struct module *mod) { }
1786static void unset_module_init_ro_nx(struct module *mod) { }
1787#endif
1788
1789void __weak module_free(struct module *mod, void *module_region)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790{
1791	vfree(module_region);
1792}
1793
1794void __weak module_arch_cleanup(struct module *mod)
1795{
1796}
1797
 
 
 
 
1798/* Free a module, remove from lists, etc. */
1799static void free_module(struct module *mod)
1800{
1801	trace_module_free(mod);
1802
1803	/* Delete from various lists */
 
 
 
1804	mutex_lock(&module_mutex);
1805	stop_machine(__unlink_module, mod, NULL);
1806	mutex_unlock(&module_mutex);
1807	mod_sysfs_teardown(mod);
1808
1809	/* Remove dynamic debug info */
1810	ddebug_remove_module(mod->name);
1811
1812	/* Arch-specific cleanup. */
1813	module_arch_cleanup(mod);
1814
1815	/* Module unload stuff */
1816	module_unload_free(mod);
1817
1818	/* Free any allocated parameters. */
1819	destroy_params(mod->kp, mod->num_kp);
1820
1821	/* This may be NULL, but that's OK */
1822	unset_module_init_ro_nx(mod);
1823	module_free(mod, mod->module_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1824	kfree(mod->args);
1825	percpu_modfree(mod);
1826
1827	/* Free lock-classes: */
1828	lockdep_free_key_range(mod->module_core, mod->core_size);
1829
1830	/* Finally, free the core (containing the module structure) */
1831	unset_module_core_ro_nx(mod);
1832	module_free(mod, mod->module_core);
1833
1834#ifdef CONFIG_MPU
1835	update_protections(current->mm);
1836#endif
1837}
1838
1839void *__symbol_get(const char *symbol)
1840{
1841	struct module *owner;
1842	const struct kernel_symbol *sym;
1843
1844	preempt_disable();
1845	sym = find_symbol(symbol, &owner, NULL, true, true);
1846	if (sym && strong_try_module_get(owner))
1847		sym = NULL;
1848	preempt_enable();
1849
1850	return sym ? (void *)sym->value : NULL;
1851}
1852EXPORT_SYMBOL_GPL(__symbol_get);
1853
1854/*
1855 * Ensure that an exported symbol [global namespace] does not already exist
1856 * in the kernel or in some other module's exported symbol table.
1857 *
1858 * You must hold the module_mutex.
1859 */
1860static int verify_export_symbols(struct module *mod)
1861{
1862	unsigned int i;
1863	struct module *owner;
1864	const struct kernel_symbol *s;
1865	struct {
1866		const struct kernel_symbol *sym;
1867		unsigned int num;
1868	} arr[] = {
1869		{ mod->syms, mod->num_syms },
1870		{ mod->gpl_syms, mod->num_gpl_syms },
1871		{ mod->gpl_future_syms, mod->num_gpl_future_syms },
1872#ifdef CONFIG_UNUSED_SYMBOLS
1873		{ mod->unused_syms, mod->num_unused_syms },
1874		{ mod->unused_gpl_syms, mod->num_unused_gpl_syms },
1875#endif
1876	};
1877
1878	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1879		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1880			if (find_symbol(s->name, &owner, NULL, true, false)) {
1881				printk(KERN_ERR
1882				       "%s: exports duplicate symbol %s"
1883				       " (owned by %s)\n",
1884				       mod->name, s->name, module_name(owner));
1885				return -ENOEXEC;
1886			}
1887		}
1888	}
1889	return 0;
1890}
1891
1892/* Change all symbols so that st_value encodes the pointer directly. */
1893static int simplify_symbols(struct module *mod, const struct load_info *info)
1894{
1895	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1896	Elf_Sym *sym = (void *)symsec->sh_addr;
1897	unsigned long secbase;
1898	unsigned int i;
1899	int ret = 0;
1900	const struct kernel_symbol *ksym;
1901
1902	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1903		const char *name = info->strtab + sym[i].st_name;
1904
1905		switch (sym[i].st_shndx) {
1906		case SHN_COMMON:
 
 
 
 
1907			/* We compiled with -fno-common.  These are not
1908			   supposed to happen.  */
1909			pr_debug("Common symbol: %s\n", name);
1910			printk("%s: please compile with -fno-common\n",
1911			       mod->name);
1912			ret = -ENOEXEC;
1913			break;
1914
1915		case SHN_ABS:
1916			/* Don't need to do anything */
1917			pr_debug("Absolute symbol: 0x%08lx\n",
1918			       (long)sym[i].st_value);
1919			break;
1920
 
 
 
 
1921		case SHN_UNDEF:
1922			ksym = resolve_symbol_wait(mod, info, name);
1923			/* Ok if resolved.  */
1924			if (ksym && !IS_ERR(ksym)) {
1925				sym[i].st_value = ksym->value;
1926				break;
1927			}
1928
1929			/* Ok if weak.  */
1930			if (!ksym && ELF_ST_BIND(sym[i].st_info) == STB_WEAK)
1931				break;
1932
1933			printk(KERN_WARNING "%s: Unknown symbol %s (err %li)\n",
1934			       mod->name, name, PTR_ERR(ksym));
1935			ret = PTR_ERR(ksym) ?: -ENOENT;
1936			break;
1937
1938		default:
1939			/* Divert to percpu allocation if a percpu var. */
1940			if (sym[i].st_shndx == info->index.pcpu)
1941				secbase = (unsigned long)mod_percpu(mod);
1942			else
1943				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1944			sym[i].st_value += secbase;
1945			break;
1946		}
1947	}
1948
1949	return ret;
1950}
1951
1952int __weak apply_relocate(Elf_Shdr *sechdrs,
1953			  const char *strtab,
1954			  unsigned int symindex,
1955			  unsigned int relsec,
1956			  struct module *me)
1957{
1958	pr_err("module %s: REL relocation unsupported\n", me->name);
1959	return -ENOEXEC;
1960}
1961
1962int __weak apply_relocate_add(Elf_Shdr *sechdrs,
1963			      const char *strtab,
1964			      unsigned int symindex,
1965			      unsigned int relsec,
1966			      struct module *me)
1967{
1968	pr_err("module %s: RELA relocation unsupported\n", me->name);
1969	return -ENOEXEC;
1970}
1971
1972static int apply_relocations(struct module *mod, const struct load_info *info)
1973{
1974	unsigned int i;
1975	int err = 0;
1976
1977	/* Now do relocations. */
1978	for (i = 1; i < info->hdr->e_shnum; i++) {
1979		unsigned int infosec = info->sechdrs[i].sh_info;
1980
1981		/* Not a valid relocation section? */
1982		if (infosec >= info->hdr->e_shnum)
1983			continue;
1984
1985		/* Don't bother with non-allocated sections */
1986		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1987			continue;
1988
 
 
 
 
1989		if (info->sechdrs[i].sh_type == SHT_REL)
1990			err = apply_relocate(info->sechdrs, info->strtab,
1991					     info->index.sym, i, mod);
1992		else if (info->sechdrs[i].sh_type == SHT_RELA)
1993			err = apply_relocate_add(info->sechdrs, info->strtab,
1994						 info->index.sym, i, mod);
1995		if (err < 0)
1996			break;
1997	}
1998	return err;
1999}
2000
2001/* Additional bytes needed by arch in front of individual sections */
2002unsigned int __weak arch_mod_section_prepend(struct module *mod,
2003					     unsigned int section)
2004{
2005	/* default implementation just returns zero */
2006	return 0;
2007}
2008
2009/* Update size with this section: return offset. */
2010static long get_offset(struct module *mod, unsigned int *size,
2011		       Elf_Shdr *sechdr, unsigned int section)
2012{
2013	long ret;
2014
2015	*size += arch_mod_section_prepend(mod, section);
2016	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2017	*size = ret + sechdr->sh_size;
2018	return ret;
2019}
2020
2021/* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2022   might -- code, read-only data, read-write data, small data.  Tally
2023   sizes, and place the offsets into sh_entsize fields: high bit means it
2024   belongs in init. */
2025static void layout_sections(struct module *mod, struct load_info *info)
2026{
2027	static unsigned long const masks[][2] = {
2028		/* NOTE: all executable code must be the first section
2029		 * in this array; otherwise modify the text_size
2030		 * finder in the two loops below */
2031		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2032		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
 
2033		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2034		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2035	};
2036	unsigned int m, i;
2037
2038	for (i = 0; i < info->hdr->e_shnum; i++)
2039		info->sechdrs[i].sh_entsize = ~0UL;
2040
2041	pr_debug("Core section allocation order:\n");
2042	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2043		for (i = 0; i < info->hdr->e_shnum; ++i) {
2044			Elf_Shdr *s = &info->sechdrs[i];
2045			const char *sname = info->secstrings + s->sh_name;
2046
2047			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2048			    || (s->sh_flags & masks[m][1])
2049			    || s->sh_entsize != ~0UL
2050			    || strstarts(sname, ".init"))
2051				continue;
2052			s->sh_entsize = get_offset(mod, &mod->core_size, s, i);
2053			pr_debug("\t%s\n", sname);
2054		}
2055		switch (m) {
2056		case 0: /* executable */
2057			mod->core_size = debug_align(mod->core_size);
2058			mod->core_text_size = mod->core_size;
2059			break;
2060		case 1: /* RO: text and ro-data */
2061			mod->core_size = debug_align(mod->core_size);
2062			mod->core_ro_size = mod->core_size;
 
 
 
 
2063			break;
2064		case 3: /* whole core */
2065			mod->core_size = debug_align(mod->core_size);
2066			break;
2067		}
2068	}
2069
2070	pr_debug("Init section allocation order:\n");
2071	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2072		for (i = 0; i < info->hdr->e_shnum; ++i) {
2073			Elf_Shdr *s = &info->sechdrs[i];
2074			const char *sname = info->secstrings + s->sh_name;
2075
2076			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2077			    || (s->sh_flags & masks[m][1])
2078			    || s->sh_entsize != ~0UL
2079			    || !strstarts(sname, ".init"))
2080				continue;
2081			s->sh_entsize = (get_offset(mod, &mod->init_size, s, i)
2082					 | INIT_OFFSET_MASK);
2083			pr_debug("\t%s\n", sname);
2084		}
2085		switch (m) {
2086		case 0: /* executable */
2087			mod->init_size = debug_align(mod->init_size);
2088			mod->init_text_size = mod->init_size;
2089			break;
2090		case 1: /* RO: text and ro-data */
2091			mod->init_size = debug_align(mod->init_size);
2092			mod->init_ro_size = mod->init_size;
2093			break;
2094		case 3: /* whole init */
2095			mod->init_size = debug_align(mod->init_size);
 
 
 
 
 
 
 
2096			break;
2097		}
2098	}
2099}
2100
2101static void set_license(struct module *mod, const char *license)
2102{
2103	if (!license)
2104		license = "unspecified";
2105
2106	if (!license_is_gpl_compatible(license)) {
2107		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2108			printk(KERN_WARNING "%s: module license '%s' taints "
2109				"kernel.\n", mod->name, license);
2110		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
2111	}
2112}
2113
2114/* Parse tag=value strings from .modinfo section */
2115static char *next_string(char *string, unsigned long *secsize)
2116{
2117	/* Skip non-zero chars */
2118	while (string[0]) {
2119		string++;
2120		if ((*secsize)-- <= 1)
2121			return NULL;
2122	}
2123
2124	/* Skip any zero padding. */
2125	while (!string[0]) {
2126		string++;
2127		if ((*secsize)-- <= 1)
2128			return NULL;
2129	}
2130	return string;
2131}
2132
2133static char *get_modinfo(struct load_info *info, const char *tag)
2134{
2135	char *p;
2136	unsigned int taglen = strlen(tag);
2137	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2138	unsigned long size = infosec->sh_size;
2139
2140	for (p = (char *)infosec->sh_addr; p; p = next_string(p, &size)) {
2141		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2142			return p + taglen + 1;
2143	}
2144	return NULL;
2145}
2146
2147static void setup_modinfo(struct module *mod, struct load_info *info)
2148{
2149	struct module_attribute *attr;
2150	int i;
2151
2152	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2153		if (attr->setup)
2154			attr->setup(mod, get_modinfo(info, attr->attr.name));
2155	}
2156}
2157
2158static void free_modinfo(struct module *mod)
2159{
2160	struct module_attribute *attr;
2161	int i;
2162
2163	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2164		if (attr->free)
2165			attr->free(mod);
2166	}
2167}
2168
2169#ifdef CONFIG_KALLSYMS
2170
2171/* lookup symbol in given range of kernel_symbols */
2172static const struct kernel_symbol *lookup_symbol(const char *name,
2173	const struct kernel_symbol *start,
2174	const struct kernel_symbol *stop)
2175{
2176	return bsearch(name, start, stop - start,
2177			sizeof(struct kernel_symbol), cmp_name);
2178}
2179
2180static int is_exported(const char *name, unsigned long value,
2181		       const struct module *mod)
2182{
2183	const struct kernel_symbol *ks;
2184	if (!mod)
2185		ks = lookup_symbol(name, __start___ksymtab, __stop___ksymtab);
2186	else
2187		ks = lookup_symbol(name, mod->syms, mod->syms + mod->num_syms);
2188	return ks != NULL && ks->value == value;
2189}
2190
2191/* As per nm */
2192static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2193{
2194	const Elf_Shdr *sechdrs = info->sechdrs;
2195
2196	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2197		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2198			return 'v';
2199		else
2200			return 'w';
2201	}
2202	if (sym->st_shndx == SHN_UNDEF)
2203		return 'U';
2204	if (sym->st_shndx == SHN_ABS)
2205		return 'a';
2206	if (sym->st_shndx >= SHN_LORESERVE)
2207		return '?';
2208	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2209		return 't';
2210	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2211	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2212		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2213			return 'r';
2214		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2215			return 'g';
2216		else
2217			return 'd';
2218	}
2219	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2220		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2221			return 's';
2222		else
2223			return 'b';
2224	}
2225	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2226		      ".debug")) {
2227		return 'n';
2228	}
2229	return '?';
2230}
2231
2232static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2233                           unsigned int shnum)
2234{
2235	const Elf_Shdr *sec;
2236
2237	if (src->st_shndx == SHN_UNDEF
2238	    || src->st_shndx >= shnum
2239	    || !src->st_name)
2240		return false;
2241
 
 
 
 
 
2242	sec = sechdrs + src->st_shndx;
2243	if (!(sec->sh_flags & SHF_ALLOC)
2244#ifndef CONFIG_KALLSYMS_ALL
2245	    || !(sec->sh_flags & SHF_EXECINSTR)
2246#endif
2247	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2248		return false;
2249
2250	return true;
2251}
2252
2253/*
2254 * We only allocate and copy the strings needed by the parts of symtab
2255 * we keep.  This is simple, but has the effect of making multiple
2256 * copies of duplicates.  We could be more sophisticated, see
2257 * linux-kernel thread starting with
2258 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2259 */
2260static void layout_symtab(struct module *mod, struct load_info *info)
2261{
2262	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2263	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2264	const Elf_Sym *src;
2265	unsigned int i, nsrc, ndst, strtab_size;
2266
2267	/* Put symbol section at end of init part of module. */
2268	symsect->sh_flags |= SHF_ALLOC;
2269	symsect->sh_entsize = get_offset(mod, &mod->init_size, symsect,
2270					 info->index.sym) | INIT_OFFSET_MASK;
2271	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2272
2273	src = (void *)info->hdr + symsect->sh_offset;
2274	nsrc = symsect->sh_size / sizeof(*src);
2275
2276	/* Compute total space required for the core symbols' strtab. */
2277	for (ndst = i = strtab_size = 1; i < nsrc; ++i, ++src)
2278		if (is_core_symbol(src, info->sechdrs, info->hdr->e_shnum)) {
2279			strtab_size += strlen(&info->strtab[src->st_name]) + 1;
 
 
2280			ndst++;
2281		}
 
2282
2283	/* Append room for core symbols at end of core part. */
2284	info->symoffs = ALIGN(mod->core_size, symsect->sh_addralign ?: 1);
2285	info->stroffs = mod->core_size = info->symoffs + ndst * sizeof(Elf_Sym);
2286	mod->core_size += strtab_size;
 
2287
2288	/* Put string table section at end of init part of module. */
2289	strsect->sh_flags |= SHF_ALLOC;
2290	strsect->sh_entsize = get_offset(mod, &mod->init_size, strsect,
2291					 info->index.str) | INIT_OFFSET_MASK;
2292	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
 
 
 
 
 
 
 
2293}
2294
 
 
 
 
 
2295static void add_kallsyms(struct module *mod, const struct load_info *info)
2296{
2297	unsigned int i, ndst;
2298	const Elf_Sym *src;
2299	Elf_Sym *dst;
2300	char *s;
2301	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2302
2303	mod->symtab = (void *)symsec->sh_addr;
2304	mod->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
 
 
 
2305	/* Make sure we get permanent strtab: don't use info->strtab. */
2306	mod->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2307
2308	/* Set types up while we still have access to sections. */
2309	for (i = 0; i < mod->num_symtab; i++)
2310		mod->symtab[i].st_info = elf_type(&mod->symtab[i], info);
2311
2312	mod->core_symtab = dst = mod->module_core + info->symoffs;
2313	mod->core_strtab = s = mod->module_core + info->stroffs;
2314	src = mod->symtab;
2315	*dst = *src;
2316	*s++ = 0;
2317	for (ndst = i = 1; i < mod->num_symtab; ++i, ++src) {
2318		if (!is_core_symbol(src, info->sechdrs, info->hdr->e_shnum))
2319			continue;
2320
2321		dst[ndst] = *src;
2322		dst[ndst++].st_name = s - mod->core_strtab;
2323		s += strlcpy(s, &mod->strtab[src->st_name], KSYM_NAME_LEN) + 1;
 
 
2324	}
2325	mod->core_num_syms = ndst;
2326}
2327#else
2328static inline void layout_symtab(struct module *mod, struct load_info *info)
2329{
2330}
2331
2332static void add_kallsyms(struct module *mod, const struct load_info *info)
2333{
2334}
2335#endif /* CONFIG_KALLSYMS */
2336
2337static void dynamic_debug_setup(struct _ddebug *debug, unsigned int num)
2338{
2339	if (!debug)
2340		return;
2341#ifdef CONFIG_DYNAMIC_DEBUG
2342	if (ddebug_add_module(debug, num, debug->modname))
2343		printk(KERN_ERR "dynamic debug error adding module: %s\n",
2344					debug->modname);
2345#endif
2346}
2347
2348static void dynamic_debug_remove(struct _ddebug *debug)
2349{
2350	if (debug)
2351		ddebug_remove_module(debug->modname);
2352}
2353
2354void * __weak module_alloc(unsigned long size)
2355{
2356	return size == 0 ? NULL : vmalloc_exec(size);
2357}
2358
2359static void *module_alloc_update_bounds(unsigned long size)
2360{
2361	void *ret = module_alloc(size);
2362
2363	if (ret) {
2364		mutex_lock(&module_mutex);
2365		/* Update module bounds. */
2366		if ((unsigned long)ret < module_addr_min)
2367			module_addr_min = (unsigned long)ret;
2368		if ((unsigned long)ret + size > module_addr_max)
2369			module_addr_max = (unsigned long)ret + size;
2370		mutex_unlock(&module_mutex);
2371	}
2372	return ret;
2373}
2374
2375#ifdef CONFIG_DEBUG_KMEMLEAK
2376static void kmemleak_load_module(const struct module *mod,
2377				 const struct load_info *info)
2378{
2379	unsigned int i;
2380
2381	/* only scan the sections containing data */
2382	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2383
2384	for (i = 1; i < info->hdr->e_shnum; i++) {
2385		const char *name = info->secstrings + info->sechdrs[i].sh_name;
2386		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC))
2387			continue;
2388		if (!strstarts(name, ".data") && !strstarts(name, ".bss"))
2389			continue;
2390
2391		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2392				   info->sechdrs[i].sh_size, GFP_KERNEL);
2393	}
2394}
2395#else
2396static inline void kmemleak_load_module(const struct module *mod,
2397					const struct load_info *info)
2398{
2399}
2400#endif
2401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2402/* Sets info->hdr and info->len. */
2403static int copy_and_check(struct load_info *info,
2404			  const void __user *umod, unsigned long len,
2405			  const char __user *uargs)
2406{
2407	int err;
2408	Elf_Ehdr *hdr;
2409
2410	if (len < sizeof(*hdr))
 
2411		return -ENOEXEC;
2412
 
 
 
 
2413	/* Suck in entire file: we'll want most of it. */
2414	if ((hdr = vmalloc(len)) == NULL)
 
 
2415		return -ENOMEM;
2416
2417	if (copy_from_user(hdr, umod, len) != 0) {
2418		err = -EFAULT;
2419		goto free_hdr;
2420	}
2421
2422	/* Sanity checks against insmoding binaries or wrong arch,
2423	   weird elf version */
2424	if (memcmp(hdr->e_ident, ELFMAG, SELFMAG) != 0
2425	    || hdr->e_type != ET_REL
2426	    || !elf_check_arch(hdr)
2427	    || hdr->e_shentsize != sizeof(Elf_Shdr)) {
2428		err = -ENOEXEC;
2429		goto free_hdr;
2430	}
2431
2432	if (hdr->e_shoff >= len ||
2433	    hdr->e_shnum * sizeof(Elf_Shdr) > len - hdr->e_shoff) {
2434		err = -ENOEXEC;
2435		goto free_hdr;
2436	}
2437
2438	info->hdr = hdr;
2439	info->len = len;
2440	return 0;
2441
2442free_hdr:
2443	vfree(hdr);
2444	return err;
2445}
2446
2447static void free_copy(struct load_info *info)
2448{
2449	vfree(info->hdr);
2450}
2451
2452static int rewrite_section_headers(struct load_info *info)
2453{
2454	unsigned int i;
2455
2456	/* This should always be true, but let's be sure. */
2457	info->sechdrs[0].sh_addr = 0;
2458
2459	for (i = 1; i < info->hdr->e_shnum; i++) {
2460		Elf_Shdr *shdr = &info->sechdrs[i];
2461		if (shdr->sh_type != SHT_NOBITS
2462		    && info->len < shdr->sh_offset + shdr->sh_size) {
2463			printk(KERN_ERR "Module len %lu truncated\n",
2464			       info->len);
2465			return -ENOEXEC;
2466		}
2467
2468		/* Mark all sections sh_addr with their address in the
2469		   temporary image. */
2470		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2471
2472#ifndef CONFIG_MODULE_UNLOAD
2473		/* Don't load .exit sections */
2474		if (strstarts(info->secstrings+shdr->sh_name, ".exit"))
2475			shdr->sh_flags &= ~(unsigned long)SHF_ALLOC;
2476#endif
2477	}
2478
2479	/* Track but don't keep modinfo and version sections. */
2480	info->index.vers = find_sec(info, "__versions");
 
 
 
2481	info->index.info = find_sec(info, ".modinfo");
2482	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2483	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2484	return 0;
2485}
2486
2487/*
2488 * Set up our basic convenience variables (pointers to section headers,
2489 * search for module section index etc), and do some basic section
2490 * verification.
2491 *
2492 * Return the temporary module pointer (we'll replace it with the final
2493 * one when we move the module sections around).
2494 */
2495static struct module *setup_load_info(struct load_info *info)
2496{
2497	unsigned int i;
2498	int err;
2499	struct module *mod;
2500
2501	/* Set up the convenience variables */
2502	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2503	info->secstrings = (void *)info->hdr
2504		+ info->sechdrs[info->hdr->e_shstrndx].sh_offset;
2505
2506	err = rewrite_section_headers(info);
2507	if (err)
2508		return ERR_PTR(err);
2509
2510	/* Find internal symbols and strings. */
2511	for (i = 1; i < info->hdr->e_shnum; i++) {
2512		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2513			info->index.sym = i;
2514			info->index.str = info->sechdrs[i].sh_link;
2515			info->strtab = (char *)info->hdr
2516				+ info->sechdrs[info->index.str].sh_offset;
2517			break;
2518		}
2519	}
2520
2521	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
2522	if (!info->index.mod) {
2523		printk(KERN_WARNING "No module found in object\n");
2524		return ERR_PTR(-ENOEXEC);
2525	}
2526	/* This is temporary: point mod into copy of data. */
2527	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2528
2529	if (info->index.sym == 0) {
2530		printk(KERN_WARNING "%s: module has no symbols (stripped?)\n",
2531		       mod->name);
2532		return ERR_PTR(-ENOEXEC);
2533	}
2534
2535	info->index.pcpu = find_pcpusec(info);
2536
2537	/* Check module struct version now, before we try to use module. */
2538	if (!check_modstruct_version(info->sechdrs, info->index.vers, mod))
2539		return ERR_PTR(-ENOEXEC);
2540
2541	return mod;
2542}
2543
2544static int check_modinfo(struct module *mod, struct load_info *info)
2545{
2546	const char *modmagic = get_modinfo(info, "vermagic");
2547	int err;
2548
 
 
 
2549	/* This is allowed: modprobe --force will invalidate it. */
2550	if (!modmagic) {
2551		err = try_to_force_load(mod, "bad vermagic");
2552		if (err)
2553			return err;
2554	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2555		printk(KERN_ERR "%s: version magic '%s' should be '%s'\n",
2556		       mod->name, modmagic, vermagic);
2557		return -ENOEXEC;
2558	}
2559
2560	if (!get_modinfo(info, "intree"))
2561		add_taint_module(mod, TAINT_OOT_MODULE);
 
 
 
 
2562
2563	if (get_modinfo(info, "staging")) {
2564		add_taint_module(mod, TAINT_CRAP);
2565		printk(KERN_WARNING "%s: module is from the staging directory,"
2566		       " the quality is unknown, you have been warned.\n",
2567		       mod->name);
2568	}
2569
 
 
 
 
2570	/* Set up license info based on the info section */
2571	set_license(mod, get_modinfo(info, "license"));
2572
2573	return 0;
2574}
2575
2576static void find_module_sections(struct module *mod, struct load_info *info)
2577{
2578	mod->kp = section_objs(info, "__param",
2579			       sizeof(*mod->kp), &mod->num_kp);
2580	mod->syms = section_objs(info, "__ksymtab",
2581				 sizeof(*mod->syms), &mod->num_syms);
2582	mod->crcs = section_addr(info, "__kcrctab");
2583	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2584				     sizeof(*mod->gpl_syms),
2585				     &mod->num_gpl_syms);
2586	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2587	mod->gpl_future_syms = section_objs(info,
2588					    "__ksymtab_gpl_future",
2589					    sizeof(*mod->gpl_future_syms),
2590					    &mod->num_gpl_future_syms);
2591	mod->gpl_future_crcs = section_addr(info, "__kcrctab_gpl_future");
2592
2593#ifdef CONFIG_UNUSED_SYMBOLS
2594	mod->unused_syms = section_objs(info, "__ksymtab_unused",
2595					sizeof(*mod->unused_syms),
2596					&mod->num_unused_syms);
2597	mod->unused_crcs = section_addr(info, "__kcrctab_unused");
2598	mod->unused_gpl_syms = section_objs(info, "__ksymtab_unused_gpl",
2599					    sizeof(*mod->unused_gpl_syms),
2600					    &mod->num_unused_gpl_syms);
2601	mod->unused_gpl_crcs = section_addr(info, "__kcrctab_unused_gpl");
2602#endif
2603#ifdef CONFIG_CONSTRUCTORS
2604	mod->ctors = section_objs(info, ".ctors",
2605				  sizeof(*mod->ctors), &mod->num_ctors);
 
 
 
 
 
 
 
 
 
 
 
 
2606#endif
2607
2608#ifdef CONFIG_TRACEPOINTS
2609	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2610					     sizeof(*mod->tracepoints_ptrs),
2611					     &mod->num_tracepoints);
2612#endif
2613#ifdef HAVE_JUMP_LABEL
2614	mod->jump_entries = section_objs(info, "__jump_table",
2615					sizeof(*mod->jump_entries),
2616					&mod->num_jump_entries);
2617#endif
2618#ifdef CONFIG_EVENT_TRACING
2619	mod->trace_events = section_objs(info, "_ftrace_events",
2620					 sizeof(*mod->trace_events),
2621					 &mod->num_trace_events);
2622	/*
2623	 * This section contains pointers to allocated objects in the trace
2624	 * code and not scanning it leads to false positives.
2625	 */
2626	kmemleak_scan_area(mod->trace_events, sizeof(*mod->trace_events) *
2627			   mod->num_trace_events, GFP_KERNEL);
2628#endif
2629#ifdef CONFIG_TRACING
2630	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2631					 sizeof(*mod->trace_bprintk_fmt_start),
2632					 &mod->num_trace_bprintk_fmt);
2633	/*
2634	 * This section contains pointers to allocated objects in the trace
2635	 * code and not scanning it leads to false positives.
2636	 */
2637	kmemleak_scan_area(mod->trace_bprintk_fmt_start,
2638			   sizeof(*mod->trace_bprintk_fmt_start) *
2639			   mod->num_trace_bprintk_fmt, GFP_KERNEL);
2640#endif
2641#ifdef CONFIG_FTRACE_MCOUNT_RECORD
2642	/* sechdrs[0].sh_size is always zero */
2643	mod->ftrace_callsites = section_objs(info, "__mcount_loc",
2644					     sizeof(*mod->ftrace_callsites),
2645					     &mod->num_ftrace_callsites);
2646#endif
2647
2648	mod->extable = section_objs(info, "__ex_table",
2649				    sizeof(*mod->extable), &mod->num_exentries);
2650
2651	if (section_addr(info, "__obsparm"))
2652		printk(KERN_WARNING "%s: Ignoring obsolete parameters\n",
2653		       mod->name);
2654
2655	info->debug = section_objs(info, "__verbose",
2656				   sizeof(*info->debug), &info->num_debug);
 
 
2657}
2658
2659static int move_module(struct module *mod, struct load_info *info)
2660{
2661	int i;
2662	void *ptr;
2663
2664	/* Do the allocs. */
2665	ptr = module_alloc_update_bounds(mod->core_size);
2666	/*
2667	 * The pointer to this block is stored in the module structure
2668	 * which is inside the block. Just mark it as not being a
2669	 * leak.
2670	 */
2671	kmemleak_not_leak(ptr);
2672	if (!ptr)
2673		return -ENOMEM;
2674
2675	memset(ptr, 0, mod->core_size);
2676	mod->module_core = ptr;
2677
2678	ptr = module_alloc_update_bounds(mod->init_size);
2679	/*
2680	 * The pointer to this block is stored in the module structure
2681	 * which is inside the block. This block doesn't need to be
2682	 * scanned as it contains data and code that will be freed
2683	 * after the module is initialized.
2684	 */
2685	kmemleak_ignore(ptr);
2686	if (!ptr && mod->init_size) {
2687		module_free(mod, mod->module_core);
2688		return -ENOMEM;
2689	}
2690	memset(ptr, 0, mod->init_size);
2691	mod->module_init = ptr;
 
 
 
2692
2693	/* Transfer each section which specifies SHF_ALLOC */
2694	pr_debug("final section addresses:\n");
2695	for (i = 0; i < info->hdr->e_shnum; i++) {
2696		void *dest;
2697		Elf_Shdr *shdr = &info->sechdrs[i];
2698
2699		if (!(shdr->sh_flags & SHF_ALLOC))
2700			continue;
2701
2702		if (shdr->sh_entsize & INIT_OFFSET_MASK)
2703			dest = mod->module_init
2704				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
2705		else
2706			dest = mod->module_core + shdr->sh_entsize;
2707
2708		if (shdr->sh_type != SHT_NOBITS)
2709			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2710		/* Update sh_addr to point to copy in image. */
2711		shdr->sh_addr = (unsigned long)dest;
2712		pr_debug("\t0x%lx %s\n",
2713			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
2714	}
2715
2716	return 0;
2717}
2718
2719static int check_module_license_and_versions(struct module *mod)
2720{
 
 
2721	/*
2722	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2723	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2724	 * using GPL-only symbols it needs.
2725	 */
2726	if (strcmp(mod->name, "ndiswrapper") == 0)
2727		add_taint(TAINT_PROPRIETARY_MODULE);
2728
2729	/* driverloader was caught wrongly pretending to be under GPL */
2730	if (strcmp(mod->name, "driverloader") == 0)
2731		add_taint_module(mod, TAINT_PROPRIETARY_MODULE);
 
 
 
 
 
 
 
 
 
2732
2733#ifdef CONFIG_MODVERSIONS
2734	if ((mod->num_syms && !mod->crcs)
2735	    || (mod->num_gpl_syms && !mod->gpl_crcs)
2736	    || (mod->num_gpl_future_syms && !mod->gpl_future_crcs)
2737#ifdef CONFIG_UNUSED_SYMBOLS
2738	    || (mod->num_unused_syms && !mod->unused_crcs)
2739	    || (mod->num_unused_gpl_syms && !mod->unused_gpl_crcs)
2740#endif
2741		) {
2742		return try_to_force_load(mod,
2743					 "no versions for exported symbols");
2744	}
2745#endif
2746	return 0;
2747}
2748
2749static void flush_module_icache(const struct module *mod)
2750{
2751	mm_segment_t old_fs;
2752
2753	/* flush the icache in correct context */
2754	old_fs = get_fs();
2755	set_fs(KERNEL_DS);
2756
2757	/*
2758	 * Flush the instruction cache, since we've played with text.
2759	 * Do it before processing of module parameters, so the module
2760	 * can provide parameter accessor functions of its own.
2761	 */
2762	if (mod->module_init)
2763		flush_icache_range((unsigned long)mod->module_init,
2764				   (unsigned long)mod->module_init
2765				   + mod->init_size);
2766	flush_icache_range((unsigned long)mod->module_core,
2767			   (unsigned long)mod->module_core + mod->core_size);
2768
2769	set_fs(old_fs);
2770}
2771
2772int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2773				     Elf_Shdr *sechdrs,
2774				     char *secstrings,
2775				     struct module *mod)
2776{
2777	return 0;
2778}
2779
2780static struct module *layout_and_allocate(struct load_info *info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2781{
2782	/* Module within temporary copy. */
2783	struct module *mod;
2784	Elf_Shdr *pcpusec;
2785	int err;
2786
2787	mod = setup_load_info(info);
2788	if (IS_ERR(mod))
2789		return mod;
2790
2791	err = check_modinfo(mod, info);
 
 
 
2792	if (err)
2793		return ERR_PTR(err);
2794
2795	/* Allow arches to frob section contents and sizes.  */
2796	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2797					info->secstrings, mod);
2798	if (err < 0)
2799		goto out;
 
 
 
2800
2801	pcpusec = &info->sechdrs[info->index.pcpu];
2802	if (pcpusec->sh_size) {
2803		/* We have a special allocation for this section. */
2804		err = percpu_modalloc(mod,
2805				      pcpusec->sh_size, pcpusec->sh_addralign);
2806		if (err)
2807			goto out;
2808		pcpusec->sh_flags &= ~(unsigned long)SHF_ALLOC;
2809	}
2810
2811	/* Determine total sizes, and put offsets in sh_entsize.  For now
2812	   this is done generically; there doesn't appear to be any
2813	   special cases for the architectures. */
2814	layout_sections(mod, info);
2815	layout_symtab(mod, info);
2816
2817	/* Allocate and move to the final place */
2818	err = move_module(mod, info);
2819	if (err)
2820		goto free_percpu;
2821
2822	/* Module has been copied to its final place now: return it. */
2823	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2824	kmemleak_load_module(mod, info);
2825	return mod;
2826
2827free_percpu:
2828	percpu_modfree(mod);
2829out:
2830	return ERR_PTR(err);
2831}
2832
2833/* mod is no longer valid after this! */
2834static void module_deallocate(struct module *mod, struct load_info *info)
2835{
2836	percpu_modfree(mod);
2837	module_free(mod, mod->module_init);
2838	module_free(mod, mod->module_core);
 
2839}
2840
2841int __weak module_finalize(const Elf_Ehdr *hdr,
2842			   const Elf_Shdr *sechdrs,
2843			   struct module *me)
2844{
2845	return 0;
2846}
2847
2848static int post_relocation(struct module *mod, const struct load_info *info)
2849{
2850	/* Sort exception table now relocations are done. */
2851	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2852
2853	/* Copy relocated percpu area over. */
2854	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2855		       info->sechdrs[info->index.pcpu].sh_size);
2856
2857	/* Setup kallsyms-specific fields. */
2858	add_kallsyms(mod, info);
2859
2860	/* Arch-specific module finalizing. */
2861	return module_finalize(info->hdr, info->sechdrs, mod);
2862}
2863
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2864/* Allocate and load the module: note that size of section 0 is always
2865   zero, and we rely on this for optional sections. */
2866static struct module *load_module(void __user *umod,
2867				  unsigned long len,
2868				  const char __user *uargs)
2869{
2870	struct load_info info = { NULL, };
2871	struct module *mod;
2872	long err;
 
2873
2874	pr_debug("load_module: umod=%p, len=%lu, uargs=%p\n",
2875	       umod, len, uargs);
 
2876
2877	/* Copy in the blobs from userspace, check they are vaguely sane. */
2878	err = copy_and_check(&info, umod, len, uargs);
2879	if (err)
2880		return ERR_PTR(err);
2881
2882	/* Figure out module layout, and allocate all the memory. */
2883	mod = layout_and_allocate(&info);
2884	if (IS_ERR(mod)) {
2885		err = PTR_ERR(mod);
2886		goto free_copy;
2887	}
2888
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2889	/* Now module is in final location, initialize linked lists, etc. */
2890	err = module_unload_init(mod);
2891	if (err)
2892		goto free_module;
 
 
2893
2894	/* Now we've got everything in the final locations, we can
2895	 * find optional sections. */
2896	find_module_sections(mod, &info);
 
 
2897
2898	err = check_module_license_and_versions(mod);
2899	if (err)
2900		goto free_unload;
2901
2902	/* Set up MODINFO_ATTR fields */
2903	setup_modinfo(mod, &info);
2904
2905	/* Fix up syms, so that st_value is a pointer to location. */
2906	err = simplify_symbols(mod, &info);
2907	if (err < 0)
2908		goto free_modinfo;
2909
2910	err = apply_relocations(mod, &info);
2911	if (err < 0)
2912		goto free_modinfo;
2913
2914	err = post_relocation(mod, &info);
2915	if (err < 0)
2916		goto free_modinfo;
2917
2918	flush_module_icache(mod);
2919
2920	/* Now copy in args */
2921	mod->args = strndup_user(uargs, ~0UL >> 1);
2922	if (IS_ERR(mod->args)) {
2923		err = PTR_ERR(mod->args);
2924		goto free_arch_cleanup;
2925	}
2926
2927	/* Mark state as coming so strong_try_module_get() ignores us. */
2928	mod->state = MODULE_STATE_COMING;
2929
2930	/* Now sew it into the lists so we can get lockdep and oops
2931	 * info during argument parsing.  No one should access us, since
2932	 * strong_try_module_get() will fail.
2933	 * lockdep/oops can run asynchronous, so use the RCU list insertion
2934	 * function to insert in a way safe to concurrent readers.
2935	 * The mutex protects against concurrent writers.
2936	 */
2937	mutex_lock(&module_mutex);
2938	if (find_module(mod->name)) {
2939		err = -EEXIST;
2940		goto unlock;
2941	}
2942
2943	/* This has to be done once we're sure module name is unique. */
2944	dynamic_debug_setup(info.debug, info.num_debug);
2945
2946	/* Find duplicate symbols */
2947	err = verify_export_symbols(mod);
2948	if (err < 0)
2949		goto ddebug;
2950
2951	module_bug_finalize(info.hdr, info.sechdrs, mod);
2952	list_add_rcu(&mod->list, &modules);
2953	mutex_unlock(&module_mutex);
2954
2955	/* Module is ready to execute: parsing args may do that. */
2956	err = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
2957			 -32768, 32767, &ddebug_dyndbg_module_param_cb);
2958	if (err < 0)
2959		goto unlink;
 
 
 
 
 
 
2960
2961	/* Link in to syfs. */
2962	err = mod_sysfs_setup(mod, &info, mod->kp, mod->num_kp);
2963	if (err < 0)
2964		goto unlink;
 
 
 
 
 
 
2965
2966	/* Get rid of temporary copy. */
2967	free_copy(&info);
2968
2969	/* Done! */
2970	trace_module_load(mod);
2971	return mod;
2972
2973 unlink:
 
 
 
 
 
 
 
 
 
 
 
2974	mutex_lock(&module_mutex);
2975	/* Unlink carefully: kallsyms could be walking list. */
2976	list_del_rcu(&mod->list);
2977	module_bug_cleanup(mod);
 
 
 
 
 
2978
2979 ddebug:
2980	dynamic_debug_remove(info.debug);
2981 unlock:
2982	mutex_unlock(&module_mutex);
2983	synchronize_sched();
2984	kfree(mod->args);
2985 free_arch_cleanup:
2986	module_arch_cleanup(mod);
2987 free_modinfo:
2988	free_modinfo(mod);
2989 free_unload:
2990	module_unload_free(mod);
 
 
 
 
 
 
 
 
 
2991 free_module:
2992	module_deallocate(mod, &info);
 
 
 
 
 
 
 
 
 
2993 free_copy:
2994	free_copy(&info);
2995	return ERR_PTR(err);
2996}
2997
2998/* Call module constructors. */
2999static void do_mod_ctors(struct module *mod)
3000{
3001#ifdef CONFIG_CONSTRUCTORS
3002	unsigned long i;
3003
3004	for (i = 0; i < mod->num_ctors; i++)
3005		mod->ctors[i]();
3006#endif
3007}
3008
3009/* This is where the real work happens */
3010SYSCALL_DEFINE3(init_module, void __user *, umod,
3011		unsigned long, len, const char __user *, uargs)
3012{
3013	struct module *mod;
3014	int ret = 0;
 
 
 
 
3015
3016	/* Must have permission */
3017	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3018		return -EPERM;
3019
3020	/* Do all the hard work */
3021	mod = load_module(umod, len, uargs);
3022	if (IS_ERR(mod))
3023		return PTR_ERR(mod);
3024
3025	blocking_notifier_call_chain(&module_notify_list,
3026			MODULE_STATE_COMING, mod);
3027
3028	/* Set RO and NX regions for core */
3029	set_section_ro_nx(mod->module_core,
3030				mod->core_text_size,
3031				mod->core_ro_size,
3032				mod->core_size);
3033
3034	/* Set RO and NX regions for init */
3035	set_section_ro_nx(mod->module_init,
3036				mod->init_text_size,
3037				mod->init_ro_size,
3038				mod->init_size);
3039
3040	do_mod_ctors(mod);
3041	/* Start the module */
3042	if (mod->init != NULL)
3043		ret = do_one_initcall(mod->init);
3044	if (ret < 0) {
3045		/* Init routine failed: abort.  Try to protect us from
3046                   buggy refcounters. */
3047		mod->state = MODULE_STATE_GOING;
3048		synchronize_sched();
3049		module_put(mod);
3050		blocking_notifier_call_chain(&module_notify_list,
3051					     MODULE_STATE_GOING, mod);
3052		free_module(mod);
3053		wake_up(&module_wq);
3054		return ret;
3055	}
3056	if (ret > 0) {
3057		printk(KERN_WARNING
3058"%s: '%s'->init suspiciously returned %d, it should follow 0/-E convention\n"
3059"%s: loading module anyway...\n",
3060		       __func__, mod->name, ret,
3061		       __func__);
3062		dump_stack();
3063	}
3064
3065	/* Now it's a first class citizen!  Wake up anyone waiting for it. */
3066	mod->state = MODULE_STATE_LIVE;
3067	wake_up(&module_wq);
3068	blocking_notifier_call_chain(&module_notify_list,
3069				     MODULE_STATE_LIVE, mod);
3070
3071	/* We need to finish all async code before the module init sequence is done */
3072	async_synchronize_full();
 
3073
3074	mutex_lock(&module_mutex);
3075	/* Drop initial reference. */
3076	module_put(mod);
3077	trim_init_extable(mod);
3078#ifdef CONFIG_KALLSYMS
3079	mod->num_symtab = mod->core_num_syms;
3080	mod->symtab = mod->core_symtab;
3081	mod->strtab = mod->core_strtab;
3082#endif
3083	unset_module_init_ro_nx(mod);
3084	module_free(mod, mod->module_init);
3085	mod->module_init = NULL;
3086	mod->init_size = 0;
3087	mod->init_ro_size = 0;
3088	mod->init_text_size = 0;
3089	mutex_unlock(&module_mutex);
3090
3091	return 0;
3092}
3093
3094static inline int within(unsigned long addr, void *start, unsigned long size)
3095{
3096	return ((void *)addr >= start && (void *)addr < start + size);
3097}
3098
3099#ifdef CONFIG_KALLSYMS
3100/*
3101 * This ignores the intensely annoying "mapping symbols" found
3102 * in ARM ELF files: $a, $t and $d.
3103 */
3104static inline int is_arm_mapping_symbol(const char *str)
3105{
3106	return str[0] == '$' && strchr("atd", str[1])
 
 
3107	       && (str[2] == '\0' || str[2] == '.');
3108}
3109
 
 
 
 
 
3110static const char *get_ksymbol(struct module *mod,
3111			       unsigned long addr,
3112			       unsigned long *size,
3113			       unsigned long *offset)
3114{
3115	unsigned int i, best = 0;
3116	unsigned long nextval;
 
3117
3118	/* At worse, next value is at end of module */
3119	if (within_module_init(addr, mod))
3120		nextval = (unsigned long)mod->module_init+mod->init_text_size;
3121	else
3122		nextval = (unsigned long)mod->module_core+mod->core_text_size;
3123
3124	/* Scan for closest preceding symbol, and next symbol. (ELF
3125	   starts real symbols at 1). */
3126	for (i = 1; i < mod->num_symtab; i++) {
3127		if (mod->symtab[i].st_shndx == SHN_UNDEF)
3128			continue;
3129
3130		/* We ignore unnamed symbols: they're uninformative
3131		 * and inserted at a whim. */
3132		if (mod->symtab[i].st_value <= addr
3133		    && mod->symtab[i].st_value > mod->symtab[best].st_value
3134		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3135		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
 
 
3136			best = i;
3137		if (mod->symtab[i].st_value > addr
3138		    && mod->symtab[i].st_value < nextval
3139		    && *(mod->strtab + mod->symtab[i].st_name) != '\0'
3140		    && !is_arm_mapping_symbol(mod->strtab + mod->symtab[i].st_name))
3141			nextval = mod->symtab[i].st_value;
3142	}
3143
3144	if (!best)
3145		return NULL;
3146
3147	if (size)
3148		*size = nextval - mod->symtab[best].st_value;
3149	if (offset)
3150		*offset = addr - mod->symtab[best].st_value;
3151	return mod->strtab + mod->symtab[best].st_name;
3152}
3153
3154/* For kallsyms to ask for address resolution.  NULL means not found.  Careful
3155 * not to lock to avoid deadlock on oopses, simply disable preemption. */
3156const char *module_address_lookup(unsigned long addr,
3157			    unsigned long *size,
3158			    unsigned long *offset,
3159			    char **modname,
3160			    char *namebuf)
3161{
 
3162	struct module *mod;
3163	const char *ret = NULL;
3164
3165	preempt_disable();
3166	list_for_each_entry_rcu(mod, &modules, list) {
3167		if (within_module_init(addr, mod) ||
3168		    within_module_core(addr, mod)) {
3169			if (modname)
3170				*modname = mod->name;
3171			ret = get_ksymbol(mod, addr, size, offset);
3172			break;
3173		}
3174	}
3175	/* Make a copy in here where it's safe */
3176	if (ret) {
3177		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
3178		ret = namebuf;
3179	}
3180	preempt_enable();
 
3181	return ret;
3182}
3183
3184int lookup_module_symbol_name(unsigned long addr, char *symname)
3185{
3186	struct module *mod;
3187
3188	preempt_disable();
3189	list_for_each_entry_rcu(mod, &modules, list) {
3190		if (within_module_init(addr, mod) ||
3191		    within_module_core(addr, mod)) {
 
3192			const char *sym;
3193
3194			sym = get_ksymbol(mod, addr, NULL, NULL);
3195			if (!sym)
3196				goto out;
3197			strlcpy(symname, sym, KSYM_NAME_LEN);
3198			preempt_enable();
3199			return 0;
3200		}
3201	}
3202out:
3203	preempt_enable();
3204	return -ERANGE;
3205}
3206
3207int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
3208			unsigned long *offset, char *modname, char *name)
3209{
3210	struct module *mod;
3211
3212	preempt_disable();
3213	list_for_each_entry_rcu(mod, &modules, list) {
3214		if (within_module_init(addr, mod) ||
3215		    within_module_core(addr, mod)) {
 
3216			const char *sym;
3217
3218			sym = get_ksymbol(mod, addr, size, offset);
3219			if (!sym)
3220				goto out;
3221			if (modname)
3222				strlcpy(modname, mod->name, MODULE_NAME_LEN);
3223			if (name)
3224				strlcpy(name, sym, KSYM_NAME_LEN);
3225			preempt_enable();
3226			return 0;
3227		}
3228	}
3229out:
3230	preempt_enable();
3231	return -ERANGE;
3232}
3233
3234int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
3235			char *name, char *module_name, int *exported)
3236{
3237	struct module *mod;
3238
3239	preempt_disable();
3240	list_for_each_entry_rcu(mod, &modules, list) {
3241		if (symnum < mod->num_symtab) {
3242			*value = mod->symtab[symnum].st_value;
3243			*type = mod->symtab[symnum].st_info;
3244			strlcpy(name, mod->strtab + mod->symtab[symnum].st_name,
3245				KSYM_NAME_LEN);
 
 
 
 
3246			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
3247			*exported = is_exported(name, *value, mod);
3248			preempt_enable();
3249			return 0;
3250		}
3251		symnum -= mod->num_symtab;
3252	}
3253	preempt_enable();
3254	return -ERANGE;
3255}
3256
3257static unsigned long mod_find_symname(struct module *mod, const char *name)
3258{
3259	unsigned int i;
 
3260
3261	for (i = 0; i < mod->num_symtab; i++)
3262		if (strcmp(name, mod->strtab+mod->symtab[i].st_name) == 0 &&
3263		    mod->symtab[i].st_info != 'U')
3264			return mod->symtab[i].st_value;
3265	return 0;
3266}
3267
3268/* Look for this name: can be of form module:name. */
3269unsigned long module_kallsyms_lookup_name(const char *name)
3270{
3271	struct module *mod;
3272	char *colon;
3273	unsigned long ret = 0;
3274
3275	/* Don't lock: we're in enough trouble already. */
3276	preempt_disable();
3277	if ((colon = strchr(name, ':')) != NULL) {
3278		*colon = '\0';
3279		if ((mod = find_module(name)) != NULL)
3280			ret = mod_find_symname(mod, colon+1);
3281		*colon = ':';
3282	} else {
3283		list_for_each_entry_rcu(mod, &modules, list)
 
 
3284			if ((ret = mod_find_symname(mod, name)) != 0)
3285				break;
 
3286	}
3287	preempt_enable();
3288	return ret;
3289}
3290
3291int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
3292					     struct module *, unsigned long),
3293				   void *data)
3294{
3295	struct module *mod;
3296	unsigned int i;
3297	int ret;
3298
 
 
3299	list_for_each_entry(mod, &modules, list) {
3300		for (i = 0; i < mod->num_symtab; i++) {
3301			ret = fn(data, mod->strtab + mod->symtab[i].st_name,
3302				 mod, mod->symtab[i].st_value);
 
 
 
 
 
3303			if (ret != 0)
3304				return ret;
3305		}
3306	}
3307	return 0;
3308}
3309#endif /* CONFIG_KALLSYMS */
3310
 
 
 
 
3311static char *module_flags(struct module *mod, char *buf)
3312{
3313	int bx = 0;
3314
 
3315	if (mod->taints ||
3316	    mod->state == MODULE_STATE_GOING ||
3317	    mod->state == MODULE_STATE_COMING) {
3318		buf[bx++] = '(';
3319		bx += module_flags_taint(mod, buf + bx);
3320		/* Show a - for module-is-being-unloaded */
3321		if (mod->state == MODULE_STATE_GOING)
3322			buf[bx++] = '-';
3323		/* Show a + for module-is-being-loaded */
3324		if (mod->state == MODULE_STATE_COMING)
3325			buf[bx++] = '+';
3326		buf[bx++] = ')';
3327	}
3328	buf[bx] = '\0';
3329
3330	return buf;
3331}
3332
3333#ifdef CONFIG_PROC_FS
3334/* Called by the /proc file system to return a list of modules. */
3335static void *m_start(struct seq_file *m, loff_t *pos)
3336{
3337	mutex_lock(&module_mutex);
3338	return seq_list_start(&modules, *pos);
3339}
3340
3341static void *m_next(struct seq_file *m, void *p, loff_t *pos)
3342{
3343	return seq_list_next(p, &modules, pos);
3344}
3345
3346static void m_stop(struct seq_file *m, void *p)
3347{
3348	mutex_unlock(&module_mutex);
3349}
3350
3351static int m_show(struct seq_file *m, void *p)
3352{
3353	struct module *mod = list_entry(p, struct module, list);
3354	char buf[8];
 
 
 
 
3355
3356	seq_printf(m, "%s %u",
3357		   mod->name, mod->init_size + mod->core_size);
3358	print_unload_info(m, mod);
3359
3360	/* Informative for users. */
3361	seq_printf(m, " %s",
3362		   mod->state == MODULE_STATE_GOING ? "Unloading":
3363		   mod->state == MODULE_STATE_COMING ? "Loading":
3364		   "Live");
3365	/* Used by oprofile and other similar tools. */
3366	seq_printf(m, " 0x%pK", mod->module_core);
3367
3368	/* Taints info */
3369	if (mod->taints)
3370		seq_printf(m, " %s", module_flags(mod, buf));
3371
3372	seq_printf(m, "\n");
3373	return 0;
3374}
3375
3376/* Format: modulename size refcount deps address
3377
3378   Where refcount is a number or -, and deps is a comma-separated list
3379   of depends or -.
3380*/
3381static const struct seq_operations modules_op = {
3382	.start	= m_start,
3383	.next	= m_next,
3384	.stop	= m_stop,
3385	.show	= m_show
3386};
3387
3388static int modules_open(struct inode *inode, struct file *file)
3389{
3390	return seq_open(file, &modules_op);
3391}
3392
3393static const struct file_operations proc_modules_operations = {
3394	.open		= modules_open,
3395	.read		= seq_read,
3396	.llseek		= seq_lseek,
3397	.release	= seq_release,
3398};
3399
3400static int __init proc_modules_init(void)
3401{
3402	proc_create("modules", 0, NULL, &proc_modules_operations);
3403	return 0;
3404}
3405module_init(proc_modules_init);
3406#endif
3407
3408/* Given an address, look for it in the module exception tables. */
3409const struct exception_table_entry *search_module_extables(unsigned long addr)
3410{
3411	const struct exception_table_entry *e = NULL;
3412	struct module *mod;
3413
3414	preempt_disable();
3415	list_for_each_entry_rcu(mod, &modules, list) {
 
 
3416		if (mod->num_exentries == 0)
3417			continue;
3418
3419		e = search_extable(mod->extable,
3420				   mod->extable + mod->num_exentries - 1,
3421				   addr);
3422		if (e)
3423			break;
3424	}
3425	preempt_enable();
3426
3427	/* Now, if we found one, we are running inside it now, hence
3428	   we cannot unload the module, hence no refcnt needed. */
3429	return e;
3430}
3431
3432/*
3433 * is_module_address - is this address inside a module?
3434 * @addr: the address to check.
3435 *
3436 * See is_module_text_address() if you simply want to see if the address
3437 * is code (not data).
3438 */
3439bool is_module_address(unsigned long addr)
3440{
3441	bool ret;
3442
3443	preempt_disable();
3444	ret = __module_address(addr) != NULL;
3445	preempt_enable();
3446
3447	return ret;
3448}
3449
3450/*
3451 * __module_address - get the module which contains an address.
3452 * @addr: the address.
3453 *
3454 * Must be called with preempt disabled or module mutex held so that
3455 * module doesn't get freed during this.
3456 */
3457struct module *__module_address(unsigned long addr)
3458{
3459	struct module *mod;
3460
3461	if (addr < module_addr_min || addr > module_addr_max)
3462		return NULL;
3463
3464	list_for_each_entry_rcu(mod, &modules, list)
3465		if (within_module_core(addr, mod)
3466		    || within_module_init(addr, mod))
3467			return mod;
3468	return NULL;
 
 
 
 
3469}
3470EXPORT_SYMBOL_GPL(__module_address);
3471
3472/*
3473 * is_module_text_address - is this address inside module code?
3474 * @addr: the address to check.
3475 *
3476 * See is_module_address() if you simply want to see if the address is
3477 * anywhere in a module.  See kernel_text_address() for testing if an
3478 * address corresponds to kernel or module code.
3479 */
3480bool is_module_text_address(unsigned long addr)
3481{
3482	bool ret;
3483
3484	preempt_disable();
3485	ret = __module_text_address(addr) != NULL;
3486	preempt_enable();
3487
3488	return ret;
3489}
3490
3491/*
3492 * __module_text_address - get the module whose code contains an address.
3493 * @addr: the address.
3494 *
3495 * Must be called with preempt disabled or module mutex held so that
3496 * module doesn't get freed during this.
3497 */
3498struct module *__module_text_address(unsigned long addr)
3499{
3500	struct module *mod = __module_address(addr);
3501	if (mod) {
3502		/* Make sure it's within the text section. */
3503		if (!within(addr, mod->module_init, mod->init_text_size)
3504		    && !within(addr, mod->module_core, mod->core_text_size))
3505			mod = NULL;
3506	}
3507	return mod;
3508}
3509EXPORT_SYMBOL_GPL(__module_text_address);
3510
3511/* Don't grab lock, we're oopsing. */
3512void print_modules(void)
3513{
3514	struct module *mod;
3515	char buf[8];
3516
3517	printk(KERN_DEFAULT "Modules linked in:");
3518	/* Most callers should already have preempt disabled, but make sure */
3519	preempt_disable();
3520	list_for_each_entry_rcu(mod, &modules, list)
3521		printk(" %s%s", mod->name, module_flags(mod, buf));
 
 
 
3522	preempt_enable();
3523	if (last_unloaded_module[0])
3524		printk(" [last unloaded: %s]", last_unloaded_module);
3525	printk("\n");
3526}
3527
3528#ifdef CONFIG_MODVERSIONS
3529/* Generate the signature for all relevant module structures here.
3530 * If these change, we don't want to try to parse the module. */
3531void module_layout(struct module *mod,
3532		   struct modversion_info *ver,
3533		   struct kernel_param *kp,
3534		   struct kernel_symbol *ks,
3535		   struct tracepoint * const *tp)
3536{
3537}
3538EXPORT_SYMBOL(module_layout);
3539#endif