Loading...
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static bool support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153#ifdef CONFIG_PCI
154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155 UPCI_AIOP_INTR_BIT_0,
156 UPCI_AIOP_INTR_BIT_1,
157 UPCI_AIOP_INTR_BIT_2,
158 UPCI_AIOP_INTR_BIT_3
159};
160#endif
161
162static Byte_t RData[RDATASIZE] = {
163 0x00, 0x09, 0xf6, 0x82,
164 0x02, 0x09, 0x86, 0xfb,
165 0x04, 0x09, 0x00, 0x0a,
166 0x06, 0x09, 0x01, 0x0a,
167 0x08, 0x09, 0x8a, 0x13,
168 0x0a, 0x09, 0xc5, 0x11,
169 0x0c, 0x09, 0x86, 0x85,
170 0x0e, 0x09, 0x20, 0x0a,
171 0x10, 0x09, 0x21, 0x0a,
172 0x12, 0x09, 0x41, 0xff,
173 0x14, 0x09, 0x82, 0x00,
174 0x16, 0x09, 0x82, 0x7b,
175 0x18, 0x09, 0x8a, 0x7d,
176 0x1a, 0x09, 0x88, 0x81,
177 0x1c, 0x09, 0x86, 0x7a,
178 0x1e, 0x09, 0x84, 0x81,
179 0x20, 0x09, 0x82, 0x7c,
180 0x22, 0x09, 0x0a, 0x0a
181};
182
183static Byte_t RRegData[RREGDATASIZE] = {
184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
197};
198
199static CONTROLLER_T sController[CTL_SIZE] = {
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208};
209
210static Byte_t sBitMapClrTbl[8] = {
211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212};
213
214static Byte_t sBitMapSetTbl[8] = {
215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216};
217
218static int sClockPrescale = 0x14;
219
220/*
221 * Line number is the ttySIx number (x), the Minor number. We
222 * assign them sequentially, starting at zero. The following
223 * array keeps track of the line number assigned to a given board/aiop/channel.
224 */
225static unsigned char lineNumbers[MAX_RP_PORTS];
226static unsigned long nextLineNumber;
227
228/***** RocketPort Static Prototypes *********/
229static int __init init_ISA(int i);
230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231static void rp_flush_buffer(struct tty_struct *tty);
232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234static void rp_start(struct tty_struct *tty);
235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236 int ChanNum);
237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238static void sFlushRxFIFO(CHANNEL_T * ChP);
239static void sFlushTxFIFO(CHANNEL_T * ChP);
240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246 ByteIO_t * AiopIOList, int AiopIOListSize,
247 int IRQNum, Byte_t Frequency, int PeriodicOnly);
248static int sReadAiopID(ByteIO_t io);
249static int sReadAiopNumChan(WordIO_t io);
250
251MODULE_AUTHOR("Theodore Ts'o");
252MODULE_DESCRIPTION("Comtrol RocketPort driver");
253module_param(board1, ulong, 0);
254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255module_param(board2, ulong, 0);
256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257module_param(board3, ulong, 0);
258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259module_param(board4, ulong, 0);
260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261module_param(controller, ulong, 0);
262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263module_param(support_low_speed, bool, 0);
264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265module_param(modem1, ulong, 0);
266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267module_param(modem2, ulong, 0);
268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269module_param(modem3, ulong, 0);
270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271module_param(modem4, ulong, 0);
272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273module_param_array(pc104_1, ulong, NULL, 0);
274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275module_param_array(pc104_2, ulong, NULL, 0);
276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277module_param_array(pc104_3, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279module_param_array(pc104_4, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282static int rp_init(void);
283static void rp_cleanup_module(void);
284
285module_init(rp_init);
286module_exit(rp_cleanup_module);
287
288
289MODULE_LICENSE("Dual BSD/GPL");
290
291/*************************************************************************/
292/* Module code starts here */
293
294static inline int rocket_paranoia_check(struct r_port *info,
295 const char *routine)
296{
297#ifdef ROCKET_PARANOIA_CHECK
298 if (!info)
299 return 1;
300 if (info->magic != RPORT_MAGIC) {
301 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302 "struct in %s\n", routine);
303 return 1;
304 }
305#endif
306 return 0;
307}
308
309
310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
312 * tty layer.
313 */
314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315 unsigned int ChanStatus)
316{
317 unsigned int CharNStat;
318 int ToRecv, wRecv, space;
319 unsigned char *cbuf;
320
321 ToRecv = sGetRxCnt(cp);
322#ifdef ROCKET_DEBUG_INTR
323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324#endif
325 if (ToRecv == 0)
326 return;
327
328 /*
329 * if status indicates there are errored characters in the
330 * FIFO, then enter status mode (a word in FIFO holds
331 * character and status).
332 */
333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334 if (!(ChanStatus & STATMODE)) {
335#ifdef ROCKET_DEBUG_RECEIVE
336 printk(KERN_INFO "Entering STATMODE...\n");
337#endif
338 ChanStatus |= STATMODE;
339 sEnRxStatusMode(cp);
340 }
341 }
342
343 /*
344 * if we previously entered status mode, then read down the
345 * FIFO one word at a time, pulling apart the character and
346 * the status. Update error counters depending on status
347 */
348 if (ChanStatus & STATMODE) {
349#ifdef ROCKET_DEBUG_RECEIVE
350 printk(KERN_INFO "Ignore %x, read %x...\n",
351 info->ignore_status_mask, info->read_status_mask);
352#endif
353 while (ToRecv) {
354 char flag;
355
356 CharNStat = sInW(sGetTxRxDataIO(cp));
357#ifdef ROCKET_DEBUG_RECEIVE
358 printk(KERN_INFO "%x...\n", CharNStat);
359#endif
360 if (CharNStat & STMBREAKH)
361 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362 if (CharNStat & info->ignore_status_mask) {
363 ToRecv--;
364 continue;
365 }
366 CharNStat &= info->read_status_mask;
367 if (CharNStat & STMBREAKH)
368 flag = TTY_BREAK;
369 else if (CharNStat & STMPARITYH)
370 flag = TTY_PARITY;
371 else if (CharNStat & STMFRAMEH)
372 flag = TTY_FRAME;
373 else if (CharNStat & STMRCVROVRH)
374 flag = TTY_OVERRUN;
375 else
376 flag = TTY_NORMAL;
377 tty_insert_flip_char(&info->port, CharNStat & 0xff,
378 flag);
379 ToRecv--;
380 }
381
382 /*
383 * after we've emptied the FIFO in status mode, turn
384 * status mode back off
385 */
386 if (sGetRxCnt(cp) == 0) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "Status mode off.\n");
389#endif
390 sDisRxStatusMode(cp);
391 }
392 } else {
393 /*
394 * we aren't in status mode, so read down the FIFO two
395 * characters at time by doing repeated word IO
396 * transfer.
397 */
398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399 if (space < ToRecv) {
400#ifdef ROCKET_DEBUG_RECEIVE
401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402#endif
403 if (space <= 0)
404 return;
405 ToRecv = space;
406 }
407 wRecv = ToRecv >> 1;
408 if (wRecv)
409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410 if (ToRecv & 1)
411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412 }
413 /* Push the data up to the tty layer */
414 tty_flip_buffer_push(&info->port);
415}
416
417/*
418 * Serial port transmit data function. Called from the timer polling loop as a
419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
422 */
423static void rp_do_transmit(struct r_port *info)
424{
425 int c;
426 CHANNEL_t *cp = &info->channel;
427 struct tty_struct *tty;
428 unsigned long flags;
429
430#ifdef ROCKET_DEBUG_INTR
431 printk(KERN_DEBUG "%s\n", __func__);
432#endif
433 if (!info)
434 return;
435 tty = tty_port_tty_get(&info->port);
436
437 if (tty == NULL) {
438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446 /* Loop sending data to FIFO until done or FIFO full */
447 while (1) {
448 if (tty->stopped)
449 break;
450 c = min(info->xmit_fifo_room, info->xmit_cnt);
451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461#ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463#endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471#ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473#endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477 tty_kref_put(tty);
478
479#ifdef ROCKET_DEBUG_INTR
480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481 info->xmit_tail, info->xmit_fifo_room);
482#endif
483}
484
485/*
486 * Called when a serial port signals it has read data in it's RX FIFO.
487 * It checks what interrupts are pending and services them, including
488 * receiving serial data.
489 */
490static void rp_handle_port(struct r_port *info)
491{
492 CHANNEL_t *cp;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if (!tty_port_initialized(&info->port)) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503
504 cp = &info->channel;
505
506 IntMask = sGetChanIntID(cp) & info->intmask;
507#ifdef ROCKET_DEBUG_INTR
508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509#endif
510 ChanStatus = sGetChanStatus(cp);
511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
512 rp_do_receive(info, cp, ChanStatus);
513 }
514 if (IntMask & DELTA_CD) { /* CD change */
515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517 (ChanStatus & CD_ACT) ? "on" : "off");
518#endif
519 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520#ifdef ROCKET_DEBUG_HANGUP
521 printk(KERN_INFO "CD drop, calling hangup.\n");
522#endif
523 tty_port_tty_hangup(&info->port, false);
524 }
525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526 wake_up_interruptible(&info->port.open_wait);
527 }
528#ifdef ROCKET_DEBUG_INTR
529 if (IntMask & DELTA_CTS) { /* CTS change */
530 printk(KERN_INFO "CTS change...\n");
531 }
532 if (IntMask & DELTA_DSR) { /* DSR change */
533 printk(KERN_INFO "DSR change...\n");
534 }
535#endif
536}
537
538/*
539 * The top level polling routine. Repeats every 1/100 HZ (10ms).
540 */
541static void rp_do_poll(unsigned long dummy)
542{
543 CONTROLLER_t *ctlp;
544 int ctrl, aiop, ch, line;
545 unsigned int xmitmask, i;
546 unsigned int CtlMask;
547 unsigned char AiopMask;
548 Word_t bit;
549
550 /* Walk through all the boards (ctrl's) */
551 for (ctrl = 0; ctrl < max_board; ctrl++) {
552 if (rcktpt_io_addr[ctrl] <= 0)
553 continue;
554
555 /* Get a ptr to the board's control struct */
556 ctlp = sCtlNumToCtlPtr(ctrl);
557
558 /* Get the interrupt status from the board */
559#ifdef CONFIG_PCI
560 if (ctlp->BusType == isPCI)
561 CtlMask = sPCIGetControllerIntStatus(ctlp);
562 else
563#endif
564 CtlMask = sGetControllerIntStatus(ctlp);
565
566 /* Check if any AIOP read bits are set */
567 for (aiop = 0; CtlMask; aiop++) {
568 bit = ctlp->AiopIntrBits[aiop];
569 if (CtlMask & bit) {
570 CtlMask &= ~bit;
571 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573 /* Check if any port read bits are set */
574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
575 if (AiopMask & 1) {
576
577 /* Get the line number (/dev/ttyRx number). */
578 /* Read the data from the port. */
579 line = GetLineNumber(ctrl, aiop, ch);
580 rp_handle_port(rp_table[line]);
581 }
582 }
583 }
584 }
585
586 xmitmask = xmit_flags[ctrl];
587
588 /*
589 * xmit_flags contains bit-significant flags, indicating there is data
590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
591 * 1, ... (32 total possible). The variable i has the aiop and ch
592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593 */
594 if (xmitmask) {
595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596 if (xmitmask & (1 << i)) {
597 aiop = (i & 0x18) >> 3;
598 ch = i & 0x07;
599 line = GetLineNumber(ctrl, aiop, ch);
600 rp_do_transmit(rp_table[line]);
601 }
602 }
603 }
604 }
605
606 /*
607 * Reset the timer so we get called at the next clock tick (10ms).
608 */
609 if (atomic_read(&rp_num_ports_open))
610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611}
612
613/*
614 * Initializes the r_port structure for a port, as well as enabling the port on
615 * the board.
616 * Inputs: board, aiop, chan numbers
617 */
618static void __init
619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
620{
621 unsigned rocketMode;
622 struct r_port *info;
623 int line;
624 CONTROLLER_T *ctlp;
625
626 /* Get the next available line number */
627 line = SetLineNumber(board, aiop, chan);
628
629 ctlp = sCtlNumToCtlPtr(board);
630
631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
633 if (!info) {
634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
635 line);
636 return;
637 }
638
639 info->magic = RPORT_MAGIC;
640 info->line = line;
641 info->ctlp = ctlp;
642 info->board = board;
643 info->aiop = aiop;
644 info->chan = chan;
645 tty_port_init(&info->port);
646 info->port.ops = &rocket_port_ops;
647 info->flags &= ~ROCKET_MODE_MASK;
648 switch (pc104[board][line]) {
649 case 422:
650 info->flags |= ROCKET_MODE_RS422;
651 break;
652 case 485:
653 info->flags |= ROCKET_MODE_RS485;
654 break;
655 case 232:
656 default:
657 info->flags |= ROCKET_MODE_RS232;
658 break;
659 }
660
661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
664 board, aiop, chan);
665 tty_port_destroy(&info->port);
666 kfree(info);
667 return;
668 }
669
670 rocketMode = info->flags & ROCKET_MODE_MASK;
671
672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
673 sEnRTSToggle(&info->channel);
674 else
675 sDisRTSToggle(&info->channel);
676
677 if (ctlp->boardType == ROCKET_TYPE_PC104) {
678 switch (rocketMode) {
679 case ROCKET_MODE_RS485:
680 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
681 break;
682 case ROCKET_MODE_RS422:
683 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
684 break;
685 case ROCKET_MODE_RS232:
686 default:
687 if (info->flags & ROCKET_RTS_TOGGLE)
688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
689 else
690 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
691 break;
692 }
693 }
694 spin_lock_init(&info->slock);
695 mutex_init(&info->write_mtx);
696 rp_table[line] = info;
697 tty_port_register_device(&info->port, rocket_driver, line,
698 pci_dev ? &pci_dev->dev : NULL);
699}
700
701/*
702 * Configures a rocketport port according to its termio settings. Called from
703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
704 */
705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
706 struct ktermios *old_termios)
707{
708 unsigned cflag;
709 unsigned long flags;
710 unsigned rocketMode;
711 int bits, baud, divisor;
712 CHANNEL_t *cp;
713 struct ktermios *t = &tty->termios;
714
715 cp = &info->channel;
716 cflag = t->c_cflag;
717
718 /* Byte size and parity */
719 if ((cflag & CSIZE) == CS8) {
720 sSetData8(cp);
721 bits = 10;
722 } else {
723 sSetData7(cp);
724 bits = 9;
725 }
726 if (cflag & CSTOPB) {
727 sSetStop2(cp);
728 bits++;
729 } else {
730 sSetStop1(cp);
731 }
732
733 if (cflag & PARENB) {
734 sEnParity(cp);
735 bits++;
736 if (cflag & PARODD) {
737 sSetOddParity(cp);
738 } else {
739 sSetEvenParity(cp);
740 }
741 } else {
742 sDisParity(cp);
743 }
744
745 /* baud rate */
746 baud = tty_get_baud_rate(tty);
747 if (!baud)
748 baud = 9600;
749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
750 if ((divisor >= 8192 || divisor < 0) && old_termios) {
751 baud = tty_termios_baud_rate(old_termios);
752 if (!baud)
753 baud = 9600;
754 divisor = (rp_baud_base[info->board] / baud) - 1;
755 }
756 if (divisor >= 8192 || divisor < 0) {
757 baud = 9600;
758 divisor = (rp_baud_base[info->board] / baud) - 1;
759 }
760 info->cps = baud / bits;
761 sSetBaud(cp, divisor);
762
763 /* FIXME: Should really back compute a baud rate from the divisor */
764 tty_encode_baud_rate(tty, baud, baud);
765
766 if (cflag & CRTSCTS) {
767 info->intmask |= DELTA_CTS;
768 sEnCTSFlowCtl(cp);
769 } else {
770 info->intmask &= ~DELTA_CTS;
771 sDisCTSFlowCtl(cp);
772 }
773 if (cflag & CLOCAL) {
774 info->intmask &= ~DELTA_CD;
775 } else {
776 spin_lock_irqsave(&info->slock, flags);
777 if (sGetChanStatus(cp) & CD_ACT)
778 info->cd_status = 1;
779 else
780 info->cd_status = 0;
781 info->intmask |= DELTA_CD;
782 spin_unlock_irqrestore(&info->slock, flags);
783 }
784
785 /*
786 * Handle software flow control in the board
787 */
788#ifdef ROCKET_SOFT_FLOW
789 if (I_IXON(tty)) {
790 sEnTxSoftFlowCtl(cp);
791 if (I_IXANY(tty)) {
792 sEnIXANY(cp);
793 } else {
794 sDisIXANY(cp);
795 }
796 sSetTxXONChar(cp, START_CHAR(tty));
797 sSetTxXOFFChar(cp, STOP_CHAR(tty));
798 } else {
799 sDisTxSoftFlowCtl(cp);
800 sDisIXANY(cp);
801 sClrTxXOFF(cp);
802 }
803#endif
804
805 /*
806 * Set up ignore/read mask words
807 */
808 info->read_status_mask = STMRCVROVRH | 0xFF;
809 if (I_INPCK(tty))
810 info->read_status_mask |= STMFRAMEH | STMPARITYH;
811 if (I_BRKINT(tty) || I_PARMRK(tty))
812 info->read_status_mask |= STMBREAKH;
813
814 /*
815 * Characters to ignore
816 */
817 info->ignore_status_mask = 0;
818 if (I_IGNPAR(tty))
819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
820 if (I_IGNBRK(tty)) {
821 info->ignore_status_mask |= STMBREAKH;
822 /*
823 * If we're ignoring parity and break indicators,
824 * ignore overruns too. (For real raw support).
825 */
826 if (I_IGNPAR(tty))
827 info->ignore_status_mask |= STMRCVROVRH;
828 }
829
830 rocketMode = info->flags & ROCKET_MODE_MASK;
831
832 if ((info->flags & ROCKET_RTS_TOGGLE)
833 || (rocketMode == ROCKET_MODE_RS485))
834 sEnRTSToggle(cp);
835 else
836 sDisRTSToggle(cp);
837
838 sSetRTS(&info->channel);
839
840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
841 switch (rocketMode) {
842 case ROCKET_MODE_RS485:
843 sSetInterfaceMode(cp, InterfaceModeRS485);
844 break;
845 case ROCKET_MODE_RS422:
846 sSetInterfaceMode(cp, InterfaceModeRS422);
847 break;
848 case ROCKET_MODE_RS232:
849 default:
850 if (info->flags & ROCKET_RTS_TOGGLE)
851 sSetInterfaceMode(cp, InterfaceModeRS232T);
852 else
853 sSetInterfaceMode(cp, InterfaceModeRS232);
854 break;
855 }
856 }
857}
858
859static int carrier_raised(struct tty_port *port)
860{
861 struct r_port *info = container_of(port, struct r_port, port);
862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
863}
864
865static void dtr_rts(struct tty_port *port, int on)
866{
867 struct r_port *info = container_of(port, struct r_port, port);
868 if (on) {
869 sSetDTR(&info->channel);
870 sSetRTS(&info->channel);
871 } else {
872 sClrDTR(&info->channel);
873 sClrRTS(&info->channel);
874 }
875}
876
877/*
878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
879 * port's r_port struct. Initializes the port hardware.
880 */
881static int rp_open(struct tty_struct *tty, struct file *filp)
882{
883 struct r_port *info;
884 struct tty_port *port;
885 int retval;
886 CHANNEL_t *cp;
887 unsigned long page;
888
889 info = rp_table[tty->index];
890 if (info == NULL)
891 return -ENXIO;
892 port = &info->port;
893
894 page = __get_free_page(GFP_KERNEL);
895 if (!page)
896 return -ENOMEM;
897
898 /*
899 * We must not sleep from here until the port is marked fully in use.
900 */
901 if (info->xmit_buf)
902 free_page(page);
903 else
904 info->xmit_buf = (unsigned char *) page;
905
906 tty->driver_data = info;
907 tty_port_tty_set(port, tty);
908
909 if (port->count++ == 0) {
910 atomic_inc(&rp_num_ports_open);
911
912#ifdef ROCKET_DEBUG_OPEN
913 printk(KERN_INFO "rocket mod++ = %d...\n",
914 atomic_read(&rp_num_ports_open));
915#endif
916 }
917#ifdef ROCKET_DEBUG_OPEN
918 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
919#endif
920
921 /*
922 * Info->count is now 1; so it's safe to sleep now.
923 */
924 if (!tty_port_initialized(port)) {
925 cp = &info->channel;
926 sSetRxTrigger(cp, TRIG_1);
927 if (sGetChanStatus(cp) & CD_ACT)
928 info->cd_status = 1;
929 else
930 info->cd_status = 0;
931 sDisRxStatusMode(cp);
932 sFlushRxFIFO(cp);
933 sFlushTxFIFO(cp);
934
935 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
936 sSetRxTrigger(cp, TRIG_1);
937
938 sGetChanStatus(cp);
939 sDisRxStatusMode(cp);
940 sClrTxXOFF(cp);
941
942 sDisCTSFlowCtl(cp);
943 sDisTxSoftFlowCtl(cp);
944
945 sEnRxFIFO(cp);
946 sEnTransmit(cp);
947
948 tty_port_set_initialized(&info->port, 1);
949
950 /*
951 * Set up the tty->alt_speed kludge
952 */
953 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
954 tty->alt_speed = 57600;
955 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
956 tty->alt_speed = 115200;
957 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
958 tty->alt_speed = 230400;
959 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
960 tty->alt_speed = 460800;
961
962 configure_r_port(tty, info, NULL);
963 if (C_BAUD(tty)) {
964 sSetDTR(cp);
965 sSetRTS(cp);
966 }
967 }
968 /* Starts (or resets) the maint polling loop */
969 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
970
971 retval = tty_port_block_til_ready(port, tty, filp);
972 if (retval) {
973#ifdef ROCKET_DEBUG_OPEN
974 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
975#endif
976 return retval;
977 }
978 return 0;
979}
980
981/*
982 * Exception handler that closes a serial port. info->port.count is considered critical.
983 */
984static void rp_close(struct tty_struct *tty, struct file *filp)
985{
986 struct r_port *info = tty->driver_data;
987 struct tty_port *port = &info->port;
988 int timeout;
989 CHANNEL_t *cp;
990
991 if (rocket_paranoia_check(info, "rp_close"))
992 return;
993
994#ifdef ROCKET_DEBUG_OPEN
995 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
996#endif
997
998 if (tty_port_close_start(port, tty, filp) == 0)
999 return;
1000
1001 mutex_lock(&port->mutex);
1002 cp = &info->channel;
1003 /*
1004 * Before we drop DTR, make sure the UART transmitter
1005 * has completely drained; this is especially
1006 * important if there is a transmit FIFO!
1007 */
1008 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009 if (timeout == 0)
1010 timeout = 1;
1011 rp_wait_until_sent(tty, timeout);
1012 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014 sDisTransmit(cp);
1015 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016 sDisCTSFlowCtl(cp);
1017 sDisTxSoftFlowCtl(cp);
1018 sClrTxXOFF(cp);
1019 sFlushRxFIFO(cp);
1020 sFlushTxFIFO(cp);
1021 sClrRTS(cp);
1022 if (C_HUPCL(tty))
1023 sClrDTR(cp);
1024
1025 rp_flush_buffer(tty);
1026
1027 tty_ldisc_flush(tty);
1028
1029 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031 /* We can't yet use tty_port_close_end as the buffer handling in this
1032 driver is a bit different to the usual */
1033
1034 if (port->blocked_open) {
1035 if (port->close_delay) {
1036 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037 }
1038 wake_up_interruptible(&port->open_wait);
1039 } else {
1040 if (info->xmit_buf) {
1041 free_page((unsigned long) info->xmit_buf);
1042 info->xmit_buf = NULL;
1043 }
1044 }
1045 spin_lock_irq(&port->lock);
1046 tty->closing = 0;
1047 spin_unlock_irq(&port->lock);
1048 tty_port_set_initialized(port, 0);
1049 tty_port_set_active(port, 0);
1050 mutex_unlock(&port->mutex);
1051 tty_port_tty_set(port, NULL);
1052
1053 atomic_dec(&rp_num_ports_open);
1054
1055#ifdef ROCKET_DEBUG_OPEN
1056 printk(KERN_INFO "rocket mod-- = %d...\n",
1057 atomic_read(&rp_num_ports_open));
1058 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059#endif
1060
1061}
1062
1063static void rp_set_termios(struct tty_struct *tty,
1064 struct ktermios *old_termios)
1065{
1066 struct r_port *info = tty->driver_data;
1067 CHANNEL_t *cp;
1068 unsigned cflag;
1069
1070 if (rocket_paranoia_check(info, "rp_set_termios"))
1071 return;
1072
1073 cflag = tty->termios.c_cflag;
1074
1075 /*
1076 * This driver doesn't support CS5 or CS6
1077 */
1078 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079 tty->termios.c_cflag =
1080 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081 /* Or CMSPAR */
1082 tty->termios.c_cflag &= ~CMSPAR;
1083
1084 configure_r_port(tty, info, old_termios);
1085
1086 cp = &info->channel;
1087
1088 /* Handle transition to B0 status */
1089 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090 sClrDTR(cp);
1091 sClrRTS(cp);
1092 }
1093
1094 /* Handle transition away from B0 status */
1095 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096 sSetRTS(cp);
1097 sSetDTR(cp);
1098 }
1099
1100 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1101 rp_start(tty);
1102}
1103
1104static int rp_break(struct tty_struct *tty, int break_state)
1105{
1106 struct r_port *info = tty->driver_data;
1107 unsigned long flags;
1108
1109 if (rocket_paranoia_check(info, "rp_break"))
1110 return -EINVAL;
1111
1112 spin_lock_irqsave(&info->slock, flags);
1113 if (break_state == -1)
1114 sSendBreak(&info->channel);
1115 else
1116 sClrBreak(&info->channel);
1117 spin_unlock_irqrestore(&info->slock, flags);
1118 return 0;
1119}
1120
1121/*
1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123 * the UPCI boards was added, it was decided to make this a function because
1124 * the macro was getting too complicated. All cases except the first one
1125 * (UPCIRingInd) are taken directly from the original macro.
1126 */
1127static int sGetChanRI(CHANNEL_T * ChP)
1128{
1129 CONTROLLER_t *CtlP = ChP->CtlP;
1130 int ChanNum = ChP->ChanNum;
1131 int RingInd = 0;
1132
1133 if (CtlP->UPCIRingInd)
1134 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135 else if (CtlP->AltChanRingIndicator)
1136 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140 return RingInd;
1141}
1142
1143/********************************************************************************************/
1144/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1145
1146/*
1147 * Returns the state of the serial modem control lines. These next 2 functions
1148 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149 */
1150static int rp_tiocmget(struct tty_struct *tty)
1151{
1152 struct r_port *info = tty->driver_data;
1153 unsigned int control, result, ChanStatus;
1154
1155 ChanStatus = sGetChanStatusLo(&info->channel);
1156 control = info->channel.TxControl[3];
1157 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1158 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1159 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164 return result;
1165}
1166
1167/*
1168 * Sets the modem control lines
1169 */
1170static int rp_tiocmset(struct tty_struct *tty,
1171 unsigned int set, unsigned int clear)
1172{
1173 struct r_port *info = tty->driver_data;
1174
1175 if (set & TIOCM_RTS)
1176 info->channel.TxControl[3] |= SET_RTS;
1177 if (set & TIOCM_DTR)
1178 info->channel.TxControl[3] |= SET_DTR;
1179 if (clear & TIOCM_RTS)
1180 info->channel.TxControl[3] &= ~SET_RTS;
1181 if (clear & TIOCM_DTR)
1182 info->channel.TxControl[3] &= ~SET_DTR;
1183
1184 out32(info->channel.IndexAddr, info->channel.TxControl);
1185 return 0;
1186}
1187
1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189{
1190 struct rocket_config tmp;
1191
1192 memset(&tmp, 0, sizeof (tmp));
1193 mutex_lock(&info->port.mutex);
1194 tmp.line = info->line;
1195 tmp.flags = info->flags;
1196 tmp.close_delay = info->port.close_delay;
1197 tmp.closing_wait = info->port.closing_wait;
1198 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199 mutex_unlock(&info->port.mutex);
1200
1201 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202 return -EFAULT;
1203 return 0;
1204}
1205
1206static int set_config(struct tty_struct *tty, struct r_port *info,
1207 struct rocket_config __user *new_info)
1208{
1209 struct rocket_config new_serial;
1210
1211 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212 return -EFAULT;
1213
1214 mutex_lock(&info->port.mutex);
1215 if (!capable(CAP_SYS_ADMIN))
1216 {
1217 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218 mutex_unlock(&info->port.mutex);
1219 return -EPERM;
1220 }
1221 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222 configure_r_port(tty, info, NULL);
1223 mutex_unlock(&info->port.mutex);
1224 return 0;
1225 }
1226
1227 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228 info->port.close_delay = new_serial.close_delay;
1229 info->port.closing_wait = new_serial.closing_wait;
1230
1231 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232 tty->alt_speed = 57600;
1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234 tty->alt_speed = 115200;
1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236 tty->alt_speed = 230400;
1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238 tty->alt_speed = 460800;
1239 mutex_unlock(&info->port.mutex);
1240
1241 configure_r_port(tty, info, NULL);
1242 return 0;
1243}
1244
1245/*
1246 * This function fills in a rocket_ports struct with information
1247 * about what boards/ports are in the system. This info is passed
1248 * to user space. See setrocket.c where the info is used to create
1249 * the /dev/ttyRx ports.
1250 */
1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252{
1253 struct rocket_ports tmp;
1254 int board;
1255
1256 memset(&tmp, 0, sizeof (tmp));
1257 tmp.tty_major = rocket_driver->major;
1258
1259 for (board = 0; board < 4; board++) {
1260 tmp.rocketModel[board].model = rocketModel[board].model;
1261 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1262 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1263 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1264 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1265 }
1266 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1267 return -EFAULT;
1268 return 0;
1269}
1270
1271static int reset_rm2(struct r_port *info, void __user *arg)
1272{
1273 int reset;
1274
1275 if (!capable(CAP_SYS_ADMIN))
1276 return -EPERM;
1277
1278 if (copy_from_user(&reset, arg, sizeof (int)))
1279 return -EFAULT;
1280 if (reset)
1281 reset = 1;
1282
1283 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1284 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1285 return -EINVAL;
1286
1287 if (info->ctlp->BusType == isISA)
1288 sModemReset(info->ctlp, info->chan, reset);
1289 else
1290 sPCIModemReset(info->ctlp, info->chan, reset);
1291
1292 return 0;
1293}
1294
1295static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1296{
1297 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1298 return -EFAULT;
1299 return 0;
1300}
1301
1302/* IOCTL call handler into the driver */
1303static int rp_ioctl(struct tty_struct *tty,
1304 unsigned int cmd, unsigned long arg)
1305{
1306 struct r_port *info = tty->driver_data;
1307 void __user *argp = (void __user *)arg;
1308 int ret = 0;
1309
1310 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1311 return -ENXIO;
1312
1313 switch (cmd) {
1314 case RCKP_GET_STRUCT:
1315 if (copy_to_user(argp, info, sizeof (struct r_port)))
1316 ret = -EFAULT;
1317 break;
1318 case RCKP_GET_CONFIG:
1319 ret = get_config(info, argp);
1320 break;
1321 case RCKP_SET_CONFIG:
1322 ret = set_config(tty, info, argp);
1323 break;
1324 case RCKP_GET_PORTS:
1325 ret = get_ports(info, argp);
1326 break;
1327 case RCKP_RESET_RM2:
1328 ret = reset_rm2(info, argp);
1329 break;
1330 case RCKP_GET_VERSION:
1331 ret = get_version(info, argp);
1332 break;
1333 default:
1334 ret = -ENOIOCTLCMD;
1335 }
1336 return ret;
1337}
1338
1339static void rp_send_xchar(struct tty_struct *tty, char ch)
1340{
1341 struct r_port *info = tty->driver_data;
1342 CHANNEL_t *cp;
1343
1344 if (rocket_paranoia_check(info, "rp_send_xchar"))
1345 return;
1346
1347 cp = &info->channel;
1348 if (sGetTxCnt(cp))
1349 sWriteTxPrioByte(cp, ch);
1350 else
1351 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1352}
1353
1354static void rp_throttle(struct tty_struct *tty)
1355{
1356 struct r_port *info = tty->driver_data;
1357
1358#ifdef ROCKET_DEBUG_THROTTLE
1359 printk(KERN_INFO "throttle %s ....\n", tty->name);
1360#endif
1361
1362 if (rocket_paranoia_check(info, "rp_throttle"))
1363 return;
1364
1365 if (I_IXOFF(tty))
1366 rp_send_xchar(tty, STOP_CHAR(tty));
1367
1368 sClrRTS(&info->channel);
1369}
1370
1371static void rp_unthrottle(struct tty_struct *tty)
1372{
1373 struct r_port *info = tty->driver_data;
1374#ifdef ROCKET_DEBUG_THROTTLE
1375 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1376#endif
1377
1378 if (rocket_paranoia_check(info, "rp_unthrottle"))
1379 return;
1380
1381 if (I_IXOFF(tty))
1382 rp_send_xchar(tty, START_CHAR(tty));
1383
1384 sSetRTS(&info->channel);
1385}
1386
1387/*
1388 * ------------------------------------------------------------
1389 * rp_stop() and rp_start()
1390 *
1391 * This routines are called before setting or resetting tty->stopped.
1392 * They enable or disable transmitter interrupts, as necessary.
1393 * ------------------------------------------------------------
1394 */
1395static void rp_stop(struct tty_struct *tty)
1396{
1397 struct r_port *info = tty->driver_data;
1398
1399#ifdef ROCKET_DEBUG_FLOW
1400 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1401 info->xmit_cnt, info->xmit_fifo_room);
1402#endif
1403
1404 if (rocket_paranoia_check(info, "rp_stop"))
1405 return;
1406
1407 if (sGetTxCnt(&info->channel))
1408 sDisTransmit(&info->channel);
1409}
1410
1411static void rp_start(struct tty_struct *tty)
1412{
1413 struct r_port *info = tty->driver_data;
1414
1415#ifdef ROCKET_DEBUG_FLOW
1416 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1417 info->xmit_cnt, info->xmit_fifo_room);
1418#endif
1419
1420 if (rocket_paranoia_check(info, "rp_stop"))
1421 return;
1422
1423 sEnTransmit(&info->channel);
1424 set_bit((info->aiop * 8) + info->chan,
1425 (void *) &xmit_flags[info->board]);
1426}
1427
1428/*
1429 * rp_wait_until_sent() --- wait until the transmitter is empty
1430 */
1431static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1432{
1433 struct r_port *info = tty->driver_data;
1434 CHANNEL_t *cp;
1435 unsigned long orig_jiffies;
1436 int check_time, exit_time;
1437 int txcnt;
1438
1439 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1440 return;
1441
1442 cp = &info->channel;
1443
1444 orig_jiffies = jiffies;
1445#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1446 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1447 jiffies);
1448 printk(KERN_INFO "cps=%d...\n", info->cps);
1449#endif
1450 while (1) {
1451 txcnt = sGetTxCnt(cp);
1452 if (!txcnt) {
1453 if (sGetChanStatusLo(cp) & TXSHRMT)
1454 break;
1455 check_time = (HZ / info->cps) / 5;
1456 } else {
1457 check_time = HZ * txcnt / info->cps;
1458 }
1459 if (timeout) {
1460 exit_time = orig_jiffies + timeout - jiffies;
1461 if (exit_time <= 0)
1462 break;
1463 if (exit_time < check_time)
1464 check_time = exit_time;
1465 }
1466 if (check_time == 0)
1467 check_time = 1;
1468#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1469 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1470 jiffies, check_time);
1471#endif
1472 msleep_interruptible(jiffies_to_msecs(check_time));
1473 if (signal_pending(current))
1474 break;
1475 }
1476 __set_current_state(TASK_RUNNING);
1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1479#endif
1480}
1481
1482/*
1483 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1484 */
1485static void rp_hangup(struct tty_struct *tty)
1486{
1487 CHANNEL_t *cp;
1488 struct r_port *info = tty->driver_data;
1489 unsigned long flags;
1490
1491 if (rocket_paranoia_check(info, "rp_hangup"))
1492 return;
1493
1494#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1495 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1496#endif
1497 rp_flush_buffer(tty);
1498 spin_lock_irqsave(&info->port.lock, flags);
1499 if (info->port.count)
1500 atomic_dec(&rp_num_ports_open);
1501 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1502 spin_unlock_irqrestore(&info->port.lock, flags);
1503
1504 tty_port_hangup(&info->port);
1505
1506 cp = &info->channel;
1507 sDisRxFIFO(cp);
1508 sDisTransmit(cp);
1509 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1510 sDisCTSFlowCtl(cp);
1511 sDisTxSoftFlowCtl(cp);
1512 sClrTxXOFF(cp);
1513 tty_port_set_initialized(&info->port, 0);
1514
1515 wake_up_interruptible(&info->port.open_wait);
1516}
1517
1518/*
1519 * Exception handler - write char routine. The RocketPort driver uses a
1520 * double-buffering strategy, with the twist that if the in-memory CPU
1521 * buffer is empty, and there's space in the transmit FIFO, the
1522 * writing routines will write directly to transmit FIFO.
1523 * Write buffer and counters protected by spinlocks
1524 */
1525static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1526{
1527 struct r_port *info = tty->driver_data;
1528 CHANNEL_t *cp;
1529 unsigned long flags;
1530
1531 if (rocket_paranoia_check(info, "rp_put_char"))
1532 return 0;
1533
1534 /*
1535 * Grab the port write mutex, locking out other processes that try to
1536 * write to this port
1537 */
1538 mutex_lock(&info->write_mtx);
1539
1540#ifdef ROCKET_DEBUG_WRITE
1541 printk(KERN_INFO "rp_put_char %c...\n", ch);
1542#endif
1543
1544 spin_lock_irqsave(&info->slock, flags);
1545 cp = &info->channel;
1546
1547 if (!tty->stopped && info->xmit_fifo_room == 0)
1548 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1549
1550 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1551 info->xmit_buf[info->xmit_head++] = ch;
1552 info->xmit_head &= XMIT_BUF_SIZE - 1;
1553 info->xmit_cnt++;
1554 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1555 } else {
1556 sOutB(sGetTxRxDataIO(cp), ch);
1557 info->xmit_fifo_room--;
1558 }
1559 spin_unlock_irqrestore(&info->slock, flags);
1560 mutex_unlock(&info->write_mtx);
1561 return 1;
1562}
1563
1564/*
1565 * Exception handler - write routine, called when user app writes to the device.
1566 * A per port write mutex is used to protect from another process writing to
1567 * this port at the same time. This other process could be running on the other CPU
1568 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1569 * Spinlocks protect the info xmit members.
1570 */
1571static int rp_write(struct tty_struct *tty,
1572 const unsigned char *buf, int count)
1573{
1574 struct r_port *info = tty->driver_data;
1575 CHANNEL_t *cp;
1576 const unsigned char *b;
1577 int c, retval = 0;
1578 unsigned long flags;
1579
1580 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1581 return 0;
1582
1583 if (mutex_lock_interruptible(&info->write_mtx))
1584 return -ERESTARTSYS;
1585
1586#ifdef ROCKET_DEBUG_WRITE
1587 printk(KERN_INFO "rp_write %d chars...\n", count);
1588#endif
1589 cp = &info->channel;
1590
1591 if (!tty->stopped && info->xmit_fifo_room < count)
1592 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1593
1594 /*
1595 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1596 * into FIFO. Use the write queue for temp storage.
1597 */
1598 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1599 c = min(count, info->xmit_fifo_room);
1600 b = buf;
1601
1602 /* Push data into FIFO, 2 bytes at a time */
1603 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1604
1605 /* If there is a byte remaining, write it */
1606 if (c & 1)
1607 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1608
1609 retval += c;
1610 buf += c;
1611 count -= c;
1612
1613 spin_lock_irqsave(&info->slock, flags);
1614 info->xmit_fifo_room -= c;
1615 spin_unlock_irqrestore(&info->slock, flags);
1616 }
1617
1618 /* If count is zero, we wrote it all and are done */
1619 if (!count)
1620 goto end;
1621
1622 /* Write remaining data into the port's xmit_buf */
1623 while (1) {
1624 /* Hung up ? */
1625 if (!tty_port_active(&info->port))
1626 goto end;
1627 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1628 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1629 if (c <= 0)
1630 break;
1631
1632 b = buf;
1633 memcpy(info->xmit_buf + info->xmit_head, b, c);
1634
1635 spin_lock_irqsave(&info->slock, flags);
1636 info->xmit_head =
1637 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1638 info->xmit_cnt += c;
1639 spin_unlock_irqrestore(&info->slock, flags);
1640
1641 buf += c;
1642 count -= c;
1643 retval += c;
1644 }
1645
1646 if ((retval > 0) && !tty->stopped)
1647 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1648
1649end:
1650 if (info->xmit_cnt < WAKEUP_CHARS) {
1651 tty_wakeup(tty);
1652#ifdef ROCKETPORT_HAVE_POLL_WAIT
1653 wake_up_interruptible(&tty->poll_wait);
1654#endif
1655 }
1656 mutex_unlock(&info->write_mtx);
1657 return retval;
1658}
1659
1660/*
1661 * Return the number of characters that can be sent. We estimate
1662 * only using the in-memory transmit buffer only, and ignore the
1663 * potential space in the transmit FIFO.
1664 */
1665static int rp_write_room(struct tty_struct *tty)
1666{
1667 struct r_port *info = tty->driver_data;
1668 int ret;
1669
1670 if (rocket_paranoia_check(info, "rp_write_room"))
1671 return 0;
1672
1673 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1674 if (ret < 0)
1675 ret = 0;
1676#ifdef ROCKET_DEBUG_WRITE
1677 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1678#endif
1679 return ret;
1680}
1681
1682/*
1683 * Return the number of characters in the buffer. Again, this only
1684 * counts those characters in the in-memory transmit buffer.
1685 */
1686static int rp_chars_in_buffer(struct tty_struct *tty)
1687{
1688 struct r_port *info = tty->driver_data;
1689
1690 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1691 return 0;
1692
1693#ifdef ROCKET_DEBUG_WRITE
1694 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1695#endif
1696 return info->xmit_cnt;
1697}
1698
1699/*
1700 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1701 * r_port struct for the port. Note that spinlock are used to protect info members,
1702 * do not call this function if the spinlock is already held.
1703 */
1704static void rp_flush_buffer(struct tty_struct *tty)
1705{
1706 struct r_port *info = tty->driver_data;
1707 CHANNEL_t *cp;
1708 unsigned long flags;
1709
1710 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1711 return;
1712
1713 spin_lock_irqsave(&info->slock, flags);
1714 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1715 spin_unlock_irqrestore(&info->slock, flags);
1716
1717#ifdef ROCKETPORT_HAVE_POLL_WAIT
1718 wake_up_interruptible(&tty->poll_wait);
1719#endif
1720 tty_wakeup(tty);
1721
1722 cp = &info->channel;
1723 sFlushTxFIFO(cp);
1724}
1725
1726#ifdef CONFIG_PCI
1727
1728static const struct pci_device_id rocket_pci_ids[] = {
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1751 { }
1752};
1753MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1754
1755/* Resets the speaker controller on RocketModem II and III devices */
1756static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1757{
1758 ByteIO_t addr;
1759
1760 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1761 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1762 addr = CtlP->AiopIO[0] + 0x4F;
1763 sOutB(addr, 0);
1764 }
1765
1766 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1767 if ((model == MODEL_UPCI_RM3_8PORT)
1768 || (model == MODEL_UPCI_RM3_4PORT)) {
1769 addr = CtlP->AiopIO[0] + 0x88;
1770 sOutB(addr, 0);
1771 }
1772}
1773
1774/***************************************************************************
1775Function: sPCIInitController
1776Purpose: Initialization of controller global registers and controller
1777 structure.
1778Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1779 IRQNum,Frequency,PeriodicOnly)
1780 CONTROLLER_T *CtlP; Ptr to controller structure
1781 int CtlNum; Controller number
1782 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1783 This list must be in the order the AIOPs will be found on the
1784 controller. Once an AIOP in the list is not found, it is
1785 assumed that there are no more AIOPs on the controller.
1786 int AiopIOListSize; Number of addresses in AiopIOList
1787 int IRQNum; Interrupt Request number. Can be any of the following:
1788 0: Disable global interrupts
1789 3: IRQ 3
1790 4: IRQ 4
1791 5: IRQ 5
1792 9: IRQ 9
1793 10: IRQ 10
1794 11: IRQ 11
1795 12: IRQ 12
1796 15: IRQ 15
1797 Byte_t Frequency: A flag identifying the frequency
1798 of the periodic interrupt, can be any one of the following:
1799 FREQ_DIS - periodic interrupt disabled
1800 FREQ_137HZ - 137 Hertz
1801 FREQ_69HZ - 69 Hertz
1802 FREQ_34HZ - 34 Hertz
1803 FREQ_17HZ - 17 Hertz
1804 FREQ_9HZ - 9 Hertz
1805 FREQ_4HZ - 4 Hertz
1806 If IRQNum is set to 0 the Frequency parameter is
1807 overidden, it is forced to a value of FREQ_DIS.
1808 int PeriodicOnly: 1 if all interrupts except the periodic
1809 interrupt are to be blocked.
1810 0 is both the periodic interrupt and
1811 other channel interrupts are allowed.
1812 If IRQNum is set to 0 the PeriodicOnly parameter is
1813 overidden, it is forced to a value of 0.
1814Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1815 initialization failed.
1816
1817Comments:
1818 If periodic interrupts are to be disabled but AIOP interrupts
1819 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1820
1821 If interrupts are to be completely disabled set IRQNum to 0.
1822
1823 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1824 invalid combination.
1825
1826 This function performs initialization of global interrupt modes,
1827 but it does not actually enable global interrupts. To enable
1828 and disable global interrupts use functions sEnGlobalInt() and
1829 sDisGlobalInt(). Enabling of global interrupts is normally not
1830 done until all other initializations are complete.
1831
1832 Even if interrupts are globally enabled, they must also be
1833 individually enabled for each channel that is to generate
1834 interrupts.
1835
1836Warnings: No range checking on any of the parameters is done.
1837
1838 No context switches are allowed while executing this function.
1839
1840 After this function all AIOPs on the controller are disabled,
1841 they can be enabled with sEnAiop().
1842*/
1843static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1844 ByteIO_t * AiopIOList, int AiopIOListSize,
1845 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1846 int PeriodicOnly, int altChanRingIndicator,
1847 int UPCIRingInd)
1848{
1849 int i;
1850 ByteIO_t io;
1851
1852 CtlP->AltChanRingIndicator = altChanRingIndicator;
1853 CtlP->UPCIRingInd = UPCIRingInd;
1854 CtlP->CtlNum = CtlNum;
1855 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1856 CtlP->BusType = isPCI; /* controller release 1 */
1857
1858 if (ConfigIO) {
1859 CtlP->isUPCI = 1;
1860 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1861 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1862 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1863 } else {
1864 CtlP->isUPCI = 0;
1865 CtlP->PCIIO =
1866 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1867 CtlP->AiopIntrBits = aiop_intr_bits;
1868 }
1869
1870 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1871 /* Init AIOPs */
1872 CtlP->NumAiop = 0;
1873 for (i = 0; i < AiopIOListSize; i++) {
1874 io = AiopIOList[i];
1875 CtlP->AiopIO[i] = (WordIO_t) io;
1876 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1877
1878 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1879 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1880 break; /* done looking for AIOPs */
1881
1882 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1883 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1884 sOutB(io + _INDX_DATA, sClockPrescale);
1885 CtlP->NumAiop++; /* bump count of AIOPs */
1886 }
1887
1888 if (CtlP->NumAiop == 0)
1889 return (-1);
1890 else
1891 return (CtlP->NumAiop);
1892}
1893
1894/*
1895 * Called when a PCI card is found. Retrieves and stores model information,
1896 * init's aiopic and serial port hardware.
1897 * Inputs: i is the board number (0-n)
1898 */
1899static __init int register_PCI(int i, struct pci_dev *dev)
1900{
1901 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1902 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1903 CONTROLLER_t *ctlp;
1904
1905 int fast_clock = 0;
1906 int altChanRingIndicator = 0;
1907 int ports_per_aiop = 8;
1908 WordIO_t ConfigIO = 0;
1909 ByteIO_t UPCIRingInd = 0;
1910
1911 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1912 pci_enable_device(dev))
1913 return 0;
1914
1915 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1916
1917 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1918 rocketModel[i].loadrm2 = 0;
1919 rocketModel[i].startingPortNumber = nextLineNumber;
1920
1921 /* Depending on the model, set up some config variables */
1922 switch (dev->device) {
1923 case PCI_DEVICE_ID_RP4QUAD:
1924 max_num_aiops = 1;
1925 ports_per_aiop = 4;
1926 rocketModel[i].model = MODEL_RP4QUAD;
1927 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1928 rocketModel[i].numPorts = 4;
1929 break;
1930 case PCI_DEVICE_ID_RP8OCTA:
1931 max_num_aiops = 1;
1932 rocketModel[i].model = MODEL_RP8OCTA;
1933 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1934 rocketModel[i].numPorts = 8;
1935 break;
1936 case PCI_DEVICE_ID_URP8OCTA:
1937 max_num_aiops = 1;
1938 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1939 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1940 rocketModel[i].numPorts = 8;
1941 break;
1942 case PCI_DEVICE_ID_RP8INTF:
1943 max_num_aiops = 1;
1944 rocketModel[i].model = MODEL_RP8INTF;
1945 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1946 rocketModel[i].numPorts = 8;
1947 break;
1948 case PCI_DEVICE_ID_URP8INTF:
1949 max_num_aiops = 1;
1950 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1951 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1952 rocketModel[i].numPorts = 8;
1953 break;
1954 case PCI_DEVICE_ID_RP8J:
1955 max_num_aiops = 1;
1956 rocketModel[i].model = MODEL_RP8J;
1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1958 rocketModel[i].numPorts = 8;
1959 break;
1960 case PCI_DEVICE_ID_RP4J:
1961 max_num_aiops = 1;
1962 ports_per_aiop = 4;
1963 rocketModel[i].model = MODEL_RP4J;
1964 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1965 rocketModel[i].numPorts = 4;
1966 break;
1967 case PCI_DEVICE_ID_RP8SNI:
1968 max_num_aiops = 1;
1969 rocketModel[i].model = MODEL_RP8SNI;
1970 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1971 rocketModel[i].numPorts = 8;
1972 break;
1973 case PCI_DEVICE_ID_RP16SNI:
1974 max_num_aiops = 2;
1975 rocketModel[i].model = MODEL_RP16SNI;
1976 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1977 rocketModel[i].numPorts = 16;
1978 break;
1979 case PCI_DEVICE_ID_RP16INTF:
1980 max_num_aiops = 2;
1981 rocketModel[i].model = MODEL_RP16INTF;
1982 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1983 rocketModel[i].numPorts = 16;
1984 break;
1985 case PCI_DEVICE_ID_URP16INTF:
1986 max_num_aiops = 2;
1987 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1988 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1989 rocketModel[i].numPorts = 16;
1990 break;
1991 case PCI_DEVICE_ID_CRP16INTF:
1992 max_num_aiops = 2;
1993 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1994 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1995 rocketModel[i].numPorts = 16;
1996 break;
1997 case PCI_DEVICE_ID_RP32INTF:
1998 max_num_aiops = 4;
1999 rocketModel[i].model = MODEL_RP32INTF;
2000 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2001 rocketModel[i].numPorts = 32;
2002 break;
2003 case PCI_DEVICE_ID_URP32INTF:
2004 max_num_aiops = 4;
2005 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2006 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2007 rocketModel[i].numPorts = 32;
2008 break;
2009 case PCI_DEVICE_ID_RPP4:
2010 max_num_aiops = 1;
2011 ports_per_aiop = 4;
2012 altChanRingIndicator++;
2013 fast_clock++;
2014 rocketModel[i].model = MODEL_RPP4;
2015 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2016 rocketModel[i].numPorts = 4;
2017 break;
2018 case PCI_DEVICE_ID_RPP8:
2019 max_num_aiops = 2;
2020 ports_per_aiop = 4;
2021 altChanRingIndicator++;
2022 fast_clock++;
2023 rocketModel[i].model = MODEL_RPP8;
2024 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025 rocketModel[i].numPorts = 8;
2026 break;
2027 case PCI_DEVICE_ID_RP2_232:
2028 max_num_aiops = 1;
2029 ports_per_aiop = 2;
2030 altChanRingIndicator++;
2031 fast_clock++;
2032 rocketModel[i].model = MODEL_RP2_232;
2033 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2034 rocketModel[i].numPorts = 2;
2035 break;
2036 case PCI_DEVICE_ID_RP2_422:
2037 max_num_aiops = 1;
2038 ports_per_aiop = 2;
2039 altChanRingIndicator++;
2040 fast_clock++;
2041 rocketModel[i].model = MODEL_RP2_422;
2042 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2043 rocketModel[i].numPorts = 2;
2044 break;
2045 case PCI_DEVICE_ID_RP6M:
2046
2047 max_num_aiops = 1;
2048 ports_per_aiop = 6;
2049
2050 /* If revision is 1, the rocketmodem flash must be loaded.
2051 * If it is 2 it is a "socketed" version. */
2052 if (dev->revision == 1) {
2053 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2054 rocketModel[i].loadrm2 = 1;
2055 } else {
2056 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2057 }
2058
2059 rocketModel[i].model = MODEL_RP6M;
2060 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2061 rocketModel[i].numPorts = 6;
2062 break;
2063 case PCI_DEVICE_ID_RP4M:
2064 max_num_aiops = 1;
2065 ports_per_aiop = 4;
2066 if (dev->revision == 1) {
2067 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2068 rocketModel[i].loadrm2 = 1;
2069 } else {
2070 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2071 }
2072
2073 rocketModel[i].model = MODEL_RP4M;
2074 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2075 rocketModel[i].numPorts = 4;
2076 break;
2077 default:
2078 max_num_aiops = 0;
2079 break;
2080 }
2081
2082 /*
2083 * Check for UPCI boards.
2084 */
2085
2086 switch (dev->device) {
2087 case PCI_DEVICE_ID_URP32INTF:
2088 case PCI_DEVICE_ID_URP8INTF:
2089 case PCI_DEVICE_ID_URP16INTF:
2090 case PCI_DEVICE_ID_CRP16INTF:
2091 case PCI_DEVICE_ID_URP8OCTA:
2092 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2093 ConfigIO = pci_resource_start(dev, 1);
2094 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2095 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096
2097 /*
2098 * Check for octa or quad cable.
2099 */
2100 if (!
2101 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2102 PCI_GPIO_CTRL_8PORT)) {
2103 ports_per_aiop = 4;
2104 rocketModel[i].numPorts = 4;
2105 }
2106 }
2107 break;
2108 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2109 max_num_aiops = 1;
2110 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2111 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2112 rocketModel[i].numPorts = 8;
2113 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2114 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115 ConfigIO = pci_resource_start(dev, 1);
2116 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2117 break;
2118 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2119 max_num_aiops = 1;
2120 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2121 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2122 rocketModel[i].numPorts = 4;
2123 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2124 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2125 ConfigIO = pci_resource_start(dev, 1);
2126 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2127 break;
2128 default:
2129 break;
2130 }
2131
2132 if (fast_clock) {
2133 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2134 rp_baud_base[i] = 921600;
2135 } else {
2136 /*
2137 * If support_low_speed is set, use the slow clock
2138 * prescale, which supports 50 bps
2139 */
2140 if (support_low_speed) {
2141 /* mod 9 (divide by 10) prescale */
2142 sClockPrescale = 0x19;
2143 rp_baud_base[i] = 230400;
2144 } else {
2145 /* mod 4 (divide by 5) prescale */
2146 sClockPrescale = 0x14;
2147 rp_baud_base[i] = 460800;
2148 }
2149 }
2150
2151 for (aiop = 0; aiop < max_num_aiops; aiop++)
2152 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2153 ctlp = sCtlNumToCtlPtr(i);
2154 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2155 for (aiop = 0; aiop < max_num_aiops; aiop++)
2156 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2157
2158 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2159 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2160 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2161 rocketModel[i].startingPortNumber,
2162 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2163
2164 if (num_aiops <= 0) {
2165 rcktpt_io_addr[i] = 0;
2166 return (0);
2167 }
2168 is_PCI[i] = 1;
2169
2170 /* Reset the AIOPIC, init the serial ports */
2171 for (aiop = 0; aiop < num_aiops; aiop++) {
2172 sResetAiopByNum(ctlp, aiop);
2173 num_chan = ports_per_aiop;
2174 for (chan = 0; chan < num_chan; chan++)
2175 init_r_port(i, aiop, chan, dev);
2176 }
2177
2178 /* Rocket modems must be reset */
2179 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2180 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2181 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2182 num_chan = ports_per_aiop;
2183 for (chan = 0; chan < num_chan; chan++)
2184 sPCIModemReset(ctlp, chan, 1);
2185 msleep(500);
2186 for (chan = 0; chan < num_chan; chan++)
2187 sPCIModemReset(ctlp, chan, 0);
2188 msleep(500);
2189 rmSpeakerReset(ctlp, rocketModel[i].model);
2190 }
2191 return (1);
2192}
2193
2194/*
2195 * Probes for PCI cards, inits them if found
2196 * Input: board_found = number of ISA boards already found, or the
2197 * starting board number
2198 * Returns: Number of PCI boards found
2199 */
2200static int __init init_PCI(int boards_found)
2201{
2202 struct pci_dev *dev = NULL;
2203 int count = 0;
2204
2205 /* Work through the PCI device list, pulling out ours */
2206 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2207 if (register_PCI(count + boards_found, dev))
2208 count++;
2209 }
2210 return (count);
2211}
2212
2213#endif /* CONFIG_PCI */
2214
2215/*
2216 * Probes for ISA cards
2217 * Input: i = the board number to look for
2218 * Returns: 1 if board found, 0 else
2219 */
2220static int __init init_ISA(int i)
2221{
2222 int num_aiops, num_chan = 0, total_num_chan = 0;
2223 int aiop, chan;
2224 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2225 CONTROLLER_t *ctlp;
2226 char *type_string;
2227
2228 /* If io_addr is zero, no board configured */
2229 if (rcktpt_io_addr[i] == 0)
2230 return (0);
2231
2232 /* Reserve the IO region */
2233 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2234 printk(KERN_ERR "Unable to reserve IO region for configured "
2235 "ISA RocketPort at address 0x%lx, board not "
2236 "installed...\n", rcktpt_io_addr[i]);
2237 rcktpt_io_addr[i] = 0;
2238 return (0);
2239 }
2240
2241 ctlp = sCtlNumToCtlPtr(i);
2242
2243 ctlp->boardType = rcktpt_type[i];
2244
2245 switch (rcktpt_type[i]) {
2246 case ROCKET_TYPE_PC104:
2247 type_string = "(PC104)";
2248 break;
2249 case ROCKET_TYPE_MODEM:
2250 type_string = "(RocketModem)";
2251 break;
2252 case ROCKET_TYPE_MODEMII:
2253 type_string = "(RocketModem II)";
2254 break;
2255 default:
2256 type_string = "";
2257 break;
2258 }
2259
2260 /*
2261 * If support_low_speed is set, use the slow clock prescale,
2262 * which supports 50 bps
2263 */
2264 if (support_low_speed) {
2265 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2266 rp_baud_base[i] = 230400;
2267 } else {
2268 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2269 rp_baud_base[i] = 460800;
2270 }
2271
2272 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2273 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2274
2275 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2276
2277 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2278 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2279 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2280 }
2281
2282 /* If something went wrong initing the AIOP's release the ISA IO memory */
2283 if (num_aiops <= 0) {
2284 release_region(rcktpt_io_addr[i], 64);
2285 rcktpt_io_addr[i] = 0;
2286 return (0);
2287 }
2288
2289 rocketModel[i].startingPortNumber = nextLineNumber;
2290
2291 for (aiop = 0; aiop < num_aiops; aiop++) {
2292 sResetAiopByNum(ctlp, aiop);
2293 sEnAiop(ctlp, aiop);
2294 num_chan = sGetAiopNumChan(ctlp, aiop);
2295 total_num_chan += num_chan;
2296 for (chan = 0; chan < num_chan; chan++)
2297 init_r_port(i, aiop, chan, NULL);
2298 }
2299 is_PCI[i] = 0;
2300 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2301 num_chan = sGetAiopNumChan(ctlp, 0);
2302 total_num_chan = num_chan;
2303 for (chan = 0; chan < num_chan; chan++)
2304 sModemReset(ctlp, chan, 1);
2305 msleep(500);
2306 for (chan = 0; chan < num_chan; chan++)
2307 sModemReset(ctlp, chan, 0);
2308 msleep(500);
2309 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2310 } else {
2311 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2312 }
2313 rocketModel[i].numPorts = total_num_chan;
2314 rocketModel[i].model = MODEL_ISA;
2315
2316 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2317 i, rcktpt_io_addr[i], num_aiops, type_string);
2318
2319 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2320 rocketModel[i].modelString,
2321 rocketModel[i].startingPortNumber,
2322 rocketModel[i].startingPortNumber +
2323 rocketModel[i].numPorts - 1);
2324
2325 return (1);
2326}
2327
2328static const struct tty_operations rocket_ops = {
2329 .open = rp_open,
2330 .close = rp_close,
2331 .write = rp_write,
2332 .put_char = rp_put_char,
2333 .write_room = rp_write_room,
2334 .chars_in_buffer = rp_chars_in_buffer,
2335 .flush_buffer = rp_flush_buffer,
2336 .ioctl = rp_ioctl,
2337 .throttle = rp_throttle,
2338 .unthrottle = rp_unthrottle,
2339 .set_termios = rp_set_termios,
2340 .stop = rp_stop,
2341 .start = rp_start,
2342 .hangup = rp_hangup,
2343 .break_ctl = rp_break,
2344 .send_xchar = rp_send_xchar,
2345 .wait_until_sent = rp_wait_until_sent,
2346 .tiocmget = rp_tiocmget,
2347 .tiocmset = rp_tiocmset,
2348};
2349
2350static const struct tty_port_operations rocket_port_ops = {
2351 .carrier_raised = carrier_raised,
2352 .dtr_rts = dtr_rts,
2353};
2354
2355/*
2356 * The module "startup" routine; it's run when the module is loaded.
2357 */
2358static int __init rp_init(void)
2359{
2360 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2361
2362 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2363 ROCKET_VERSION, ROCKET_DATE);
2364
2365 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2366 if (!rocket_driver)
2367 goto err;
2368
2369 /*
2370 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2371 * zero, use the default controller IO address of board1 + 0x40.
2372 */
2373 if (board1) {
2374 if (controller == 0)
2375 controller = board1 + 0x40;
2376 } else {
2377 controller = 0; /* Used as a flag, meaning no ISA boards */
2378 }
2379
2380 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2381 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2382 printk(KERN_ERR "Unable to reserve IO region for first "
2383 "configured ISA RocketPort controller 0x%lx. "
2384 "Driver exiting\n", controller);
2385 ret = -EBUSY;
2386 goto err_tty;
2387 }
2388
2389 /* Store ISA variable retrieved from command line or .conf file. */
2390 rcktpt_io_addr[0] = board1;
2391 rcktpt_io_addr[1] = board2;
2392 rcktpt_io_addr[2] = board3;
2393 rcktpt_io_addr[3] = board4;
2394
2395 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2396 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2397 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2399 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2401 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2403
2404 /*
2405 * Set up the tty driver structure and then register this
2406 * driver with the tty layer.
2407 */
2408
2409 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2410 rocket_driver->name = "ttyR";
2411 rocket_driver->driver_name = "Comtrol RocketPort";
2412 rocket_driver->major = TTY_ROCKET_MAJOR;
2413 rocket_driver->minor_start = 0;
2414 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2415 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2416 rocket_driver->init_termios = tty_std_termios;
2417 rocket_driver->init_termios.c_cflag =
2418 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2419 rocket_driver->init_termios.c_ispeed = 9600;
2420 rocket_driver->init_termios.c_ospeed = 9600;
2421#ifdef ROCKET_SOFT_FLOW
2422 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2423#endif
2424 tty_set_operations(rocket_driver, &rocket_ops);
2425
2426 ret = tty_register_driver(rocket_driver);
2427 if (ret < 0) {
2428 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2429 goto err_controller;
2430 }
2431
2432#ifdef ROCKET_DEBUG_OPEN
2433 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2434#endif
2435
2436 /*
2437 * OK, let's probe each of the controllers looking for boards. Any boards found
2438 * will be initialized here.
2439 */
2440 isa_boards_found = 0;
2441 pci_boards_found = 0;
2442
2443 for (i = 0; i < NUM_BOARDS; i++) {
2444 if (init_ISA(i))
2445 isa_boards_found++;
2446 }
2447
2448#ifdef CONFIG_PCI
2449 if (isa_boards_found < NUM_BOARDS)
2450 pci_boards_found = init_PCI(isa_boards_found);
2451#endif
2452
2453 max_board = pci_boards_found + isa_boards_found;
2454
2455 if (max_board == 0) {
2456 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2457 ret = -ENXIO;
2458 goto err_ttyu;
2459 }
2460
2461 return 0;
2462err_ttyu:
2463 tty_unregister_driver(rocket_driver);
2464err_controller:
2465 if (controller)
2466 release_region(controller, 4);
2467err_tty:
2468 put_tty_driver(rocket_driver);
2469err:
2470 return ret;
2471}
2472
2473
2474static void rp_cleanup_module(void)
2475{
2476 int retval;
2477 int i;
2478
2479 del_timer_sync(&rocket_timer);
2480
2481 retval = tty_unregister_driver(rocket_driver);
2482 if (retval)
2483 printk(KERN_ERR "Error %d while trying to unregister "
2484 "rocketport driver\n", -retval);
2485
2486 for (i = 0; i < MAX_RP_PORTS; i++)
2487 if (rp_table[i]) {
2488 tty_unregister_device(rocket_driver, i);
2489 tty_port_destroy(&rp_table[i]->port);
2490 kfree(rp_table[i]);
2491 }
2492
2493 put_tty_driver(rocket_driver);
2494
2495 for (i = 0; i < NUM_BOARDS; i++) {
2496 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497 continue;
2498 release_region(rcktpt_io_addr[i], 64);
2499 }
2500 if (controller)
2501 release_region(controller, 4);
2502}
2503
2504/***************************************************************************
2505Function: sInitController
2506Purpose: Initialization of controller global registers and controller
2507 structure.
2508Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509 IRQNum,Frequency,PeriodicOnly)
2510 CONTROLLER_T *CtlP; Ptr to controller structure
2511 int CtlNum; Controller number
2512 ByteIO_t MudbacIO; Mudbac base I/O address.
2513 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514 This list must be in the order the AIOPs will be found on the
2515 controller. Once an AIOP in the list is not found, it is
2516 assumed that there are no more AIOPs on the controller.
2517 int AiopIOListSize; Number of addresses in AiopIOList
2518 int IRQNum; Interrupt Request number. Can be any of the following:
2519 0: Disable global interrupts
2520 3: IRQ 3
2521 4: IRQ 4
2522 5: IRQ 5
2523 9: IRQ 9
2524 10: IRQ 10
2525 11: IRQ 11
2526 12: IRQ 12
2527 15: IRQ 15
2528 Byte_t Frequency: A flag identifying the frequency
2529 of the periodic interrupt, can be any one of the following:
2530 FREQ_DIS - periodic interrupt disabled
2531 FREQ_137HZ - 137 Hertz
2532 FREQ_69HZ - 69 Hertz
2533 FREQ_34HZ - 34 Hertz
2534 FREQ_17HZ - 17 Hertz
2535 FREQ_9HZ - 9 Hertz
2536 FREQ_4HZ - 4 Hertz
2537 If IRQNum is set to 0 the Frequency parameter is
2538 overidden, it is forced to a value of FREQ_DIS.
2539 int PeriodicOnly: 1 if all interrupts except the periodic
2540 interrupt are to be blocked.
2541 0 is both the periodic interrupt and
2542 other channel interrupts are allowed.
2543 If IRQNum is set to 0 the PeriodicOnly parameter is
2544 overidden, it is forced to a value of 0.
2545Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546 initialization failed.
2547
2548Comments:
2549 If periodic interrupts are to be disabled but AIOP interrupts
2550 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552 If interrupts are to be completely disabled set IRQNum to 0.
2553
2554 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555 invalid combination.
2556
2557 This function performs initialization of global interrupt modes,
2558 but it does not actually enable global interrupts. To enable
2559 and disable global interrupts use functions sEnGlobalInt() and
2560 sDisGlobalInt(). Enabling of global interrupts is normally not
2561 done until all other initializations are complete.
2562
2563 Even if interrupts are globally enabled, they must also be
2564 individually enabled for each channel that is to generate
2565 interrupts.
2566
2567Warnings: No range checking on any of the parameters is done.
2568
2569 No context switches are allowed while executing this function.
2570
2571 After this function all AIOPs on the controller are disabled,
2572 they can be enabled with sEnAiop().
2573*/
2574static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575 ByteIO_t * AiopIOList, int AiopIOListSize,
2576 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577{
2578 int i;
2579 ByteIO_t io;
2580 int done;
2581
2582 CtlP->AiopIntrBits = aiop_intr_bits;
2583 CtlP->AltChanRingIndicator = 0;
2584 CtlP->CtlNum = CtlNum;
2585 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2586 CtlP->BusType = isISA;
2587 CtlP->MBaseIO = MudbacIO;
2588 CtlP->MReg1IO = MudbacIO + 1;
2589 CtlP->MReg2IO = MudbacIO + 2;
2590 CtlP->MReg3IO = MudbacIO + 3;
2591#if 1
2592 CtlP->MReg2 = 0; /* interrupt disable */
2593 CtlP->MReg3 = 0; /* no periodic interrupts */
2594#else
2595 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2596 CtlP->MReg2 = 0; /* interrupt disable */
2597 CtlP->MReg3 = 0; /* no periodic interrupts */
2598 } else {
2599 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2600 CtlP->MReg3 = Frequency; /* set frequency */
2601 if (PeriodicOnly) { /* periodic interrupt only */
2602 CtlP->MReg3 |= PERIODIC_ONLY;
2603 }
2604 }
2605#endif
2606 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608 sControllerEOI(CtlP); /* clear EOI if warm init */
2609 /* Init AIOPs */
2610 CtlP->NumAiop = 0;
2611 for (i = done = 0; i < AiopIOListSize; i++) {
2612 io = AiopIOList[i];
2613 CtlP->AiopIO[i] = (WordIO_t) io;
2614 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2616 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2617 if (done)
2618 continue;
2619 sEnAiop(CtlP, i); /* enable the AIOP */
2620 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2621 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2622 done = 1; /* done looking for AIOPs */
2623 else {
2624 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2625 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2626 sOutB(io + _INDX_DATA, sClockPrescale);
2627 CtlP->NumAiop++; /* bump count of AIOPs */
2628 }
2629 sDisAiop(CtlP, i); /* disable AIOP */
2630 }
2631
2632 if (CtlP->NumAiop == 0)
2633 return (-1);
2634 else
2635 return (CtlP->NumAiop);
2636}
2637
2638/***************************************************************************
2639Function: sReadAiopID
2640Purpose: Read the AIOP idenfication number directly from an AIOP.
2641Call: sReadAiopID(io)
2642 ByteIO_t io: AIOP base I/O address
2643Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2644 is replace by an identifying number.
2645 Flag AIOPID_NULL if no valid AIOP is found
2646Warnings: No context switches are allowed while executing this function.
2647
2648*/
2649static int sReadAiopID(ByteIO_t io)
2650{
2651 Byte_t AiopID; /* ID byte from AIOP */
2652
2653 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2654 sOutB(io + _CMD_REG, 0x0);
2655 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2656 if (AiopID == 0x06)
2657 return (1);
2658 else /* AIOP does not exist */
2659 return (-1);
2660}
2661
2662/***************************************************************************
2663Function: sReadAiopNumChan
2664Purpose: Read the number of channels available in an AIOP directly from
2665 an AIOP.
2666Call: sReadAiopNumChan(io)
2667 WordIO_t io: AIOP base I/O address
2668Return: int: The number of channels available
2669Comments: The number of channels is determined by write/reads from identical
2670 offsets within the SRAM address spaces for channels 0 and 4.
2671 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2672 AIOP, otherwise it is an 8 channel.
2673Warnings: No context switches are allowed while executing this function.
2674*/
2675static int sReadAiopNumChan(WordIO_t io)
2676{
2677 Word_t x;
2678 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2679
2680 /* write to chan 0 SRAM */
2681 out32((DWordIO_t) io + _INDX_ADDR, R);
2682 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2683 x = sInW(io + _INDX_DATA);
2684 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2685 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2686 return (8);
2687 else
2688 return (4);
2689}
2690
2691/***************************************************************************
2692Function: sInitChan
2693Purpose: Initialization of a channel and channel structure
2694Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2695 CONTROLLER_T *CtlP; Ptr to controller structure
2696 CHANNEL_T *ChP; Ptr to channel structure
2697 int AiopNum; AIOP number within controller
2698 int ChanNum; Channel number within AIOP
2699Return: int: 1 if initialization succeeded, 0 if it fails because channel
2700 number exceeds number of channels available in AIOP.
2701Comments: This function must be called before a channel can be used.
2702Warnings: No range checking on any of the parameters is done.
2703
2704 No context switches are allowed while executing this function.
2705*/
2706static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2707 int ChanNum)
2708{
2709 int i;
2710 WordIO_t AiopIO;
2711 WordIO_t ChIOOff;
2712 Byte_t *ChR;
2713 Word_t ChOff;
2714 static Byte_t R[4];
2715 int brd9600;
2716
2717 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2718 return 0; /* exceeds num chans in AIOP */
2719
2720 /* Channel, AIOP, and controller identifiers */
2721 ChP->CtlP = CtlP;
2722 ChP->ChanID = CtlP->AiopID[AiopNum];
2723 ChP->AiopNum = AiopNum;
2724 ChP->ChanNum = ChanNum;
2725
2726 /* Global direct addresses */
2727 AiopIO = CtlP->AiopIO[AiopNum];
2728 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2729 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2730 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2731 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2732 ChP->IndexData = AiopIO + _INDX_DATA;
2733
2734 /* Channel direct addresses */
2735 ChIOOff = AiopIO + ChP->ChanNum * 2;
2736 ChP->TxRxData = ChIOOff + _TD0;
2737 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2738 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2739 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2740
2741 /* Initialize the channel from the RData array */
2742 for (i = 0; i < RDATASIZE; i += 4) {
2743 R[0] = RData[i];
2744 R[1] = RData[i + 1] + 0x10 * ChanNum;
2745 R[2] = RData[i + 2];
2746 R[3] = RData[i + 3];
2747 out32(ChP->IndexAddr, R);
2748 }
2749
2750 ChR = ChP->R;
2751 for (i = 0; i < RREGDATASIZE; i += 4) {
2752 ChR[i] = RRegData[i];
2753 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2754 ChR[i + 2] = RRegData[i + 2];
2755 ChR[i + 3] = RRegData[i + 3];
2756 }
2757
2758 /* Indexed registers */
2759 ChOff = (Word_t) ChanNum *0x1000;
2760
2761 if (sClockPrescale == 0x14)
2762 brd9600 = 47;
2763 else
2764 brd9600 = 23;
2765
2766 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2767 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2768 ChP->BaudDiv[2] = (Byte_t) brd9600;
2769 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2770 out32(ChP->IndexAddr, ChP->BaudDiv);
2771
2772 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2773 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2774 ChP->TxControl[2] = 0;
2775 ChP->TxControl[3] = 0;
2776 out32(ChP->IndexAddr, ChP->TxControl);
2777
2778 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2779 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2780 ChP->RxControl[2] = 0;
2781 ChP->RxControl[3] = 0;
2782 out32(ChP->IndexAddr, ChP->RxControl);
2783
2784 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2785 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2786 ChP->TxEnables[2] = 0;
2787 ChP->TxEnables[3] = 0;
2788 out32(ChP->IndexAddr, ChP->TxEnables);
2789
2790 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2791 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2792 ChP->TxCompare[2] = 0;
2793 ChP->TxCompare[3] = 0;
2794 out32(ChP->IndexAddr, ChP->TxCompare);
2795
2796 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2797 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2798 ChP->TxReplace1[2] = 0;
2799 ChP->TxReplace1[3] = 0;
2800 out32(ChP->IndexAddr, ChP->TxReplace1);
2801
2802 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2803 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2804 ChP->TxReplace2[2] = 0;
2805 ChP->TxReplace2[3] = 0;
2806 out32(ChP->IndexAddr, ChP->TxReplace2);
2807
2808 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2809 ChP->TxFIFO = ChOff + _TX_FIFO;
2810
2811 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2812 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2814 sOutW(ChP->IndexData, 0);
2815 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2816 ChP->RxFIFO = ChOff + _RX_FIFO;
2817
2818 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2819 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2820 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2821 sOutW(ChP->IndexData, 0);
2822 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2823 sOutW(ChP->IndexData, 0);
2824 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2825 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2826 sOutB(ChP->IndexData, 0);
2827 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2828 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2829 sOutB(ChP->IndexData, 0);
2830 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2831 sEnRxProcessor(ChP); /* start the Rx processor */
2832
2833 return 1;
2834}
2835
2836/***************************************************************************
2837Function: sStopRxProcessor
2838Purpose: Stop the receive processor from processing a channel.
2839Call: sStopRxProcessor(ChP)
2840 CHANNEL_T *ChP; Ptr to channel structure
2841
2842Comments: The receive processor can be started again with sStartRxProcessor().
2843 This function causes the receive processor to skip over the
2844 stopped channel. It does not stop it from processing other channels.
2845
2846Warnings: No context switches are allowed while executing this function.
2847
2848 Do not leave the receive processor stopped for more than one
2849 character time.
2850
2851 After calling this function a delay of 4 uS is required to ensure
2852 that the receive processor is no longer processing this channel.
2853*/
2854static void sStopRxProcessor(CHANNEL_T * ChP)
2855{
2856 Byte_t R[4];
2857
2858 R[0] = ChP->R[0];
2859 R[1] = ChP->R[1];
2860 R[2] = 0x0a;
2861 R[3] = ChP->R[3];
2862 out32(ChP->IndexAddr, R);
2863}
2864
2865/***************************************************************************
2866Function: sFlushRxFIFO
2867Purpose: Flush the Rx FIFO
2868Call: sFlushRxFIFO(ChP)
2869 CHANNEL_T *ChP; Ptr to channel structure
2870Return: void
2871Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2872 while it is being flushed the receive processor is stopped
2873 and the transmitter is disabled. After these operations a
2874 4 uS delay is done before clearing the pointers to allow
2875 the receive processor to stop. These items are handled inside
2876 this function.
2877Warnings: No context switches are allowed while executing this function.
2878*/
2879static void sFlushRxFIFO(CHANNEL_T * ChP)
2880{
2881 int i;
2882 Byte_t Ch; /* channel number within AIOP */
2883 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2884
2885 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2886 return; /* don't need to flush */
2887
2888 RxFIFOEnabled = 0;
2889 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2890 RxFIFOEnabled = 1;
2891 sDisRxFIFO(ChP); /* disable it */
2892 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2893 sInB(ChP->IntChan); /* depends on bus i/o timing */
2894 }
2895 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2896 Ch = (Byte_t) sGetChanNum(ChP);
2897 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2898 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2899 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2900 sOutW(ChP->IndexData, 0);
2901 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2902 sOutW(ChP->IndexData, 0);
2903 if (RxFIFOEnabled)
2904 sEnRxFIFO(ChP); /* enable Rx FIFO */
2905}
2906
2907/***************************************************************************
2908Function: sFlushTxFIFO
2909Purpose: Flush the Tx FIFO
2910Call: sFlushTxFIFO(ChP)
2911 CHANNEL_T *ChP; Ptr to channel structure
2912Return: void
2913Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2914 while it is being flushed the receive processor is stopped
2915 and the transmitter is disabled. After these operations a
2916 4 uS delay is done before clearing the pointers to allow
2917 the receive processor to stop. These items are handled inside
2918 this function.
2919Warnings: No context switches are allowed while executing this function.
2920*/
2921static void sFlushTxFIFO(CHANNEL_T * ChP)
2922{
2923 int i;
2924 Byte_t Ch; /* channel number within AIOP */
2925 int TxEnabled; /* 1 if transmitter enabled */
2926
2927 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2928 return; /* don't need to flush */
2929
2930 TxEnabled = 0;
2931 if (ChP->TxControl[3] & TX_ENABLE) {
2932 TxEnabled = 1;
2933 sDisTransmit(ChP); /* disable transmitter */
2934 }
2935 sStopRxProcessor(ChP); /* stop Rx processor */
2936 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2937 sInB(ChP->IntChan); /* depends on bus i/o timing */
2938 Ch = (Byte_t) sGetChanNum(ChP);
2939 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2940 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2941 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2942 sOutW(ChP->IndexData, 0);
2943 if (TxEnabled)
2944 sEnTransmit(ChP); /* enable transmitter */
2945 sStartRxProcessor(ChP); /* restart Rx processor */
2946}
2947
2948/***************************************************************************
2949Function: sWriteTxPrioByte
2950Purpose: Write a byte of priority transmit data to a channel
2951Call: sWriteTxPrioByte(ChP,Data)
2952 CHANNEL_T *ChP; Ptr to channel structure
2953 Byte_t Data; The transmit data byte
2954
2955Return: int: 1 if the bytes is successfully written, otherwise 0.
2956
2957Comments: The priority byte is transmitted before any data in the Tx FIFO.
2958
2959Warnings: No context switches are allowed while executing this function.
2960*/
2961static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2962{
2963 Byte_t DWBuf[4]; /* buffer for double word writes */
2964 Word_t *WordPtr; /* must be far because Win SS != DS */
2965 register DWordIO_t IndexAddr;
2966
2967 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2968 IndexAddr = ChP->IndexAddr;
2969 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2970 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2971 return (0); /* nothing sent */
2972
2973 WordPtr = (Word_t *) (&DWBuf[0]);
2974 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2975
2976 DWBuf[2] = Data; /* data byte value */
2977 out32(IndexAddr, DWBuf); /* write it out */
2978
2979 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2980
2981 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2982 DWBuf[3] = 0; /* priority buffer pointer */
2983 out32(IndexAddr, DWBuf); /* write it out */
2984 } else { /* write it to Tx FIFO */
2985
2986 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2987 }
2988 return (1); /* 1 byte sent */
2989}
2990
2991/***************************************************************************
2992Function: sEnInterrupts
2993Purpose: Enable one or more interrupts for a channel
2994Call: sEnInterrupts(ChP,Flags)
2995 CHANNEL_T *ChP; Ptr to channel structure
2996 Word_t Flags: Interrupt enable flags, can be any combination
2997 of the following flags:
2998 TXINT_EN: Interrupt on Tx FIFO empty
2999 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3000 sSetRxTrigger())
3001 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3002 MCINT_EN: Interrupt on modem input change
3003 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3004 Interrupt Channel Register.
3005Return: void
3006Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3007 enabled. If an interrupt enable flag is not set in Flags, that
3008 interrupt will not be changed. Interrupts can be disabled with
3009 function sDisInterrupts().
3010
3011 This function sets the appropriate bit for the channel in the AIOP's
3012 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3013 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3014
3015 Interrupts must also be globally enabled before channel interrupts
3016 will be passed on to the host. This is done with function
3017 sEnGlobalInt().
3018
3019 In some cases it may be desirable to disable interrupts globally but
3020 enable channel interrupts. This would allow the global interrupt
3021 status register to be used to determine which AIOPs need service.
3022*/
3023static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3024{
3025 Byte_t Mask; /* Interrupt Mask Register */
3026
3027 ChP->RxControl[2] |=
3028 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3029
3030 out32(ChP->IndexAddr, ChP->RxControl);
3031
3032 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3033
3034 out32(ChP->IndexAddr, ChP->TxControl);
3035
3036 if (Flags & CHANINT_EN) {
3037 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3038 sOutB(ChP->IntMask, Mask);
3039 }
3040}
3041
3042/***************************************************************************
3043Function: sDisInterrupts
3044Purpose: Disable one or more interrupts for a channel
3045Call: sDisInterrupts(ChP,Flags)
3046 CHANNEL_T *ChP; Ptr to channel structure
3047 Word_t Flags: Interrupt flags, can be any combination
3048 of the following flags:
3049 TXINT_EN: Interrupt on Tx FIFO empty
3050 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3051 sSetRxTrigger())
3052 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3053 MCINT_EN: Interrupt on modem input change
3054 CHANINT_EN: Disable channel interrupt signal to the
3055 AIOP's Interrupt Channel Register.
3056Return: void
3057Comments: If an interrupt flag is set in Flags, that interrupt will be
3058 disabled. If an interrupt flag is not set in Flags, that
3059 interrupt will not be changed. Interrupts can be enabled with
3060 function sEnInterrupts().
3061
3062 This function clears the appropriate bit for the channel in the AIOP's
3063 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3064 this channel's bit from being set in the AIOP's Interrupt Channel
3065 Register.
3066*/
3067static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3068{
3069 Byte_t Mask; /* Interrupt Mask Register */
3070
3071 ChP->RxControl[2] &=
3072 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3073 out32(ChP->IndexAddr, ChP->RxControl);
3074 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3075 out32(ChP->IndexAddr, ChP->TxControl);
3076
3077 if (Flags & CHANINT_EN) {
3078 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3079 sOutB(ChP->IntMask, Mask);
3080 }
3081}
3082
3083static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3084{
3085 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3086}
3087
3088/*
3089 * Not an official SSCI function, but how to reset RocketModems.
3090 * ISA bus version
3091 */
3092static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3093{
3094 ByteIO_t addr;
3095 Byte_t val;
3096
3097 addr = CtlP->AiopIO[0] + 0x400;
3098 val = sInB(CtlP->MReg3IO);
3099 /* if AIOP[1] is not enabled, enable it */
3100 if ((val & 2) == 0) {
3101 val = sInB(CtlP->MReg2IO);
3102 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3103 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3104 }
3105
3106 sEnAiop(CtlP, 1);
3107 if (!on)
3108 addr += 8;
3109 sOutB(addr + chan, 0); /* apply or remove reset */
3110 sDisAiop(CtlP, 1);
3111}
3112
3113/*
3114 * Not an official SSCI function, but how to reset RocketModems.
3115 * PCI bus version
3116 */
3117static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3118{
3119 ByteIO_t addr;
3120
3121 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3122 if (!on)
3123 addr += 8;
3124 sOutB(addr + chan, 0); /* apply or remove reset */
3125}
3126
3127/* Returns the line number given the controller (board), aiop and channel number */
3128static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3129{
3130 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3131}
3132
3133/*
3134 * Stores the line number associated with a given controller (board), aiop
3135 * and channel number.
3136 * Returns: The line number assigned
3137 */
3138static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3139{
3140 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3141 return (nextLineNumber - 1);
3142}
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static bool support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153#ifdef CONFIG_PCI
154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155 UPCI_AIOP_INTR_BIT_0,
156 UPCI_AIOP_INTR_BIT_1,
157 UPCI_AIOP_INTR_BIT_2,
158 UPCI_AIOP_INTR_BIT_3
159};
160#endif
161
162static Byte_t RData[RDATASIZE] = {
163 0x00, 0x09, 0xf6, 0x82,
164 0x02, 0x09, 0x86, 0xfb,
165 0x04, 0x09, 0x00, 0x0a,
166 0x06, 0x09, 0x01, 0x0a,
167 0x08, 0x09, 0x8a, 0x13,
168 0x0a, 0x09, 0xc5, 0x11,
169 0x0c, 0x09, 0x86, 0x85,
170 0x0e, 0x09, 0x20, 0x0a,
171 0x10, 0x09, 0x21, 0x0a,
172 0x12, 0x09, 0x41, 0xff,
173 0x14, 0x09, 0x82, 0x00,
174 0x16, 0x09, 0x82, 0x7b,
175 0x18, 0x09, 0x8a, 0x7d,
176 0x1a, 0x09, 0x88, 0x81,
177 0x1c, 0x09, 0x86, 0x7a,
178 0x1e, 0x09, 0x84, 0x81,
179 0x20, 0x09, 0x82, 0x7c,
180 0x22, 0x09, 0x0a, 0x0a
181};
182
183static Byte_t RRegData[RREGDATASIZE] = {
184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
197};
198
199static CONTROLLER_T sController[CTL_SIZE] = {
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208};
209
210static Byte_t sBitMapClrTbl[8] = {
211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212};
213
214static Byte_t sBitMapSetTbl[8] = {
215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216};
217
218static int sClockPrescale = 0x14;
219
220/*
221 * Line number is the ttySIx number (x), the Minor number. We
222 * assign them sequentially, starting at zero. The following
223 * array keeps track of the line number assigned to a given board/aiop/channel.
224 */
225static unsigned char lineNumbers[MAX_RP_PORTS];
226static unsigned long nextLineNumber;
227
228/***** RocketPort Static Prototypes *********/
229static int __init init_ISA(int i);
230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231static void rp_flush_buffer(struct tty_struct *tty);
232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234static void rp_start(struct tty_struct *tty);
235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236 int ChanNum);
237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238static void sFlushRxFIFO(CHANNEL_T * ChP);
239static void sFlushTxFIFO(CHANNEL_T * ChP);
240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246 ByteIO_t * AiopIOList, int AiopIOListSize,
247 int IRQNum, Byte_t Frequency, int PeriodicOnly);
248static int sReadAiopID(ByteIO_t io);
249static int sReadAiopNumChan(WordIO_t io);
250
251MODULE_AUTHOR("Theodore Ts'o");
252MODULE_DESCRIPTION("Comtrol RocketPort driver");
253module_param(board1, ulong, 0);
254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255module_param(board2, ulong, 0);
256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257module_param(board3, ulong, 0);
258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259module_param(board4, ulong, 0);
260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261module_param(controller, ulong, 0);
262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263module_param(support_low_speed, bool, 0);
264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265module_param(modem1, ulong, 0);
266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267module_param(modem2, ulong, 0);
268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269module_param(modem3, ulong, 0);
270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271module_param(modem4, ulong, 0);
272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273module_param_array(pc104_1, ulong, NULL, 0);
274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275module_param_array(pc104_2, ulong, NULL, 0);
276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277module_param_array(pc104_3, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279module_param_array(pc104_4, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282static int rp_init(void);
283static void rp_cleanup_module(void);
284
285module_init(rp_init);
286module_exit(rp_cleanup_module);
287
288
289MODULE_LICENSE("Dual BSD/GPL");
290
291/*************************************************************************/
292/* Module code starts here */
293
294static inline int rocket_paranoia_check(struct r_port *info,
295 const char *routine)
296{
297#ifdef ROCKET_PARANOIA_CHECK
298 if (!info)
299 return 1;
300 if (info->magic != RPORT_MAGIC) {
301 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302 "struct in %s\n", routine);
303 return 1;
304 }
305#endif
306 return 0;
307}
308
309
310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
312 * tty layer.
313 */
314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315 unsigned int ChanStatus)
316{
317 unsigned int CharNStat;
318 int ToRecv, wRecv, space;
319 unsigned char *cbuf;
320
321 ToRecv = sGetRxCnt(cp);
322#ifdef ROCKET_DEBUG_INTR
323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324#endif
325 if (ToRecv == 0)
326 return;
327
328 /*
329 * if status indicates there are errored characters in the
330 * FIFO, then enter status mode (a word in FIFO holds
331 * character and status).
332 */
333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334 if (!(ChanStatus & STATMODE)) {
335#ifdef ROCKET_DEBUG_RECEIVE
336 printk(KERN_INFO "Entering STATMODE...\n");
337#endif
338 ChanStatus |= STATMODE;
339 sEnRxStatusMode(cp);
340 }
341 }
342
343 /*
344 * if we previously entered status mode, then read down the
345 * FIFO one word at a time, pulling apart the character and
346 * the status. Update error counters depending on status
347 */
348 if (ChanStatus & STATMODE) {
349#ifdef ROCKET_DEBUG_RECEIVE
350 printk(KERN_INFO "Ignore %x, read %x...\n",
351 info->ignore_status_mask, info->read_status_mask);
352#endif
353 while (ToRecv) {
354 char flag;
355
356 CharNStat = sInW(sGetTxRxDataIO(cp));
357#ifdef ROCKET_DEBUG_RECEIVE
358 printk(KERN_INFO "%x...\n", CharNStat);
359#endif
360 if (CharNStat & STMBREAKH)
361 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362 if (CharNStat & info->ignore_status_mask) {
363 ToRecv--;
364 continue;
365 }
366 CharNStat &= info->read_status_mask;
367 if (CharNStat & STMBREAKH)
368 flag = TTY_BREAK;
369 else if (CharNStat & STMPARITYH)
370 flag = TTY_PARITY;
371 else if (CharNStat & STMFRAMEH)
372 flag = TTY_FRAME;
373 else if (CharNStat & STMRCVROVRH)
374 flag = TTY_OVERRUN;
375 else
376 flag = TTY_NORMAL;
377 tty_insert_flip_char(&info->port, CharNStat & 0xff,
378 flag);
379 ToRecv--;
380 }
381
382 /*
383 * after we've emptied the FIFO in status mode, turn
384 * status mode back off
385 */
386 if (sGetRxCnt(cp) == 0) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "Status mode off.\n");
389#endif
390 sDisRxStatusMode(cp);
391 }
392 } else {
393 /*
394 * we aren't in status mode, so read down the FIFO two
395 * characters at time by doing repeated word IO
396 * transfer.
397 */
398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399 if (space < ToRecv) {
400#ifdef ROCKET_DEBUG_RECEIVE
401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402#endif
403 if (space <= 0)
404 return;
405 ToRecv = space;
406 }
407 wRecv = ToRecv >> 1;
408 if (wRecv)
409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410 if (ToRecv & 1)
411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412 }
413 /* Push the data up to the tty layer */
414 tty_flip_buffer_push(&info->port);
415}
416
417/*
418 * Serial port transmit data function. Called from the timer polling loop as a
419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
422 */
423static void rp_do_transmit(struct r_port *info)
424{
425 int c;
426 CHANNEL_t *cp = &info->channel;
427 struct tty_struct *tty;
428 unsigned long flags;
429
430#ifdef ROCKET_DEBUG_INTR
431 printk(KERN_DEBUG "%s\n", __func__);
432#endif
433 if (!info)
434 return;
435 tty = tty_port_tty_get(&info->port);
436
437 if (tty == NULL) {
438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446 /* Loop sending data to FIFO until done or FIFO full */
447 while (1) {
448 if (tty->stopped)
449 break;
450 c = min(info->xmit_fifo_room, info->xmit_cnt);
451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461#ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463#endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471#ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473#endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477 tty_kref_put(tty);
478
479#ifdef ROCKET_DEBUG_INTR
480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481 info->xmit_tail, info->xmit_fifo_room);
482#endif
483}
484
485/*
486 * Called when a serial port signals it has read data in it's RX FIFO.
487 * It checks what interrupts are pending and services them, including
488 * receiving serial data.
489 */
490static void rp_handle_port(struct r_port *info)
491{
492 CHANNEL_t *cp;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503
504 cp = &info->channel;
505
506 IntMask = sGetChanIntID(cp) & info->intmask;
507#ifdef ROCKET_DEBUG_INTR
508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509#endif
510 ChanStatus = sGetChanStatus(cp);
511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
512 rp_do_receive(info, cp, ChanStatus);
513 }
514 if (IntMask & DELTA_CD) { /* CD change */
515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517 (ChanStatus & CD_ACT) ? "on" : "off");
518#endif
519 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520#ifdef ROCKET_DEBUG_HANGUP
521 printk(KERN_INFO "CD drop, calling hangup.\n");
522#endif
523 tty_port_tty_hangup(&info->port, false);
524 }
525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526 wake_up_interruptible(&info->port.open_wait);
527 }
528#ifdef ROCKET_DEBUG_INTR
529 if (IntMask & DELTA_CTS) { /* CTS change */
530 printk(KERN_INFO "CTS change...\n");
531 }
532 if (IntMask & DELTA_DSR) { /* DSR change */
533 printk(KERN_INFO "DSR change...\n");
534 }
535#endif
536}
537
538/*
539 * The top level polling routine. Repeats every 1/100 HZ (10ms).
540 */
541static void rp_do_poll(unsigned long dummy)
542{
543 CONTROLLER_t *ctlp;
544 int ctrl, aiop, ch, line;
545 unsigned int xmitmask, i;
546 unsigned int CtlMask;
547 unsigned char AiopMask;
548 Word_t bit;
549
550 /* Walk through all the boards (ctrl's) */
551 for (ctrl = 0; ctrl < max_board; ctrl++) {
552 if (rcktpt_io_addr[ctrl] <= 0)
553 continue;
554
555 /* Get a ptr to the board's control struct */
556 ctlp = sCtlNumToCtlPtr(ctrl);
557
558 /* Get the interrupt status from the board */
559#ifdef CONFIG_PCI
560 if (ctlp->BusType == isPCI)
561 CtlMask = sPCIGetControllerIntStatus(ctlp);
562 else
563#endif
564 CtlMask = sGetControllerIntStatus(ctlp);
565
566 /* Check if any AIOP read bits are set */
567 for (aiop = 0; CtlMask; aiop++) {
568 bit = ctlp->AiopIntrBits[aiop];
569 if (CtlMask & bit) {
570 CtlMask &= ~bit;
571 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573 /* Check if any port read bits are set */
574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
575 if (AiopMask & 1) {
576
577 /* Get the line number (/dev/ttyRx number). */
578 /* Read the data from the port. */
579 line = GetLineNumber(ctrl, aiop, ch);
580 rp_handle_port(rp_table[line]);
581 }
582 }
583 }
584 }
585
586 xmitmask = xmit_flags[ctrl];
587
588 /*
589 * xmit_flags contains bit-significant flags, indicating there is data
590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
591 * 1, ... (32 total possible). The variable i has the aiop and ch
592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593 */
594 if (xmitmask) {
595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596 if (xmitmask & (1 << i)) {
597 aiop = (i & 0x18) >> 3;
598 ch = i & 0x07;
599 line = GetLineNumber(ctrl, aiop, ch);
600 rp_do_transmit(rp_table[line]);
601 }
602 }
603 }
604 }
605
606 /*
607 * Reset the timer so we get called at the next clock tick (10ms).
608 */
609 if (atomic_read(&rp_num_ports_open))
610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611}
612
613/*
614 * Initializes the r_port structure for a port, as well as enabling the port on
615 * the board.
616 * Inputs: board, aiop, chan numbers
617 */
618static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
619{
620 unsigned rocketMode;
621 struct r_port *info;
622 int line;
623 CONTROLLER_T *ctlp;
624
625 /* Get the next available line number */
626 line = SetLineNumber(board, aiop, chan);
627
628 ctlp = sCtlNumToCtlPtr(board);
629
630 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
631 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
632 if (!info) {
633 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
634 line);
635 return;
636 }
637
638 info->magic = RPORT_MAGIC;
639 info->line = line;
640 info->ctlp = ctlp;
641 info->board = board;
642 info->aiop = aiop;
643 info->chan = chan;
644 tty_port_init(&info->port);
645 info->port.ops = &rocket_port_ops;
646 init_completion(&info->close_wait);
647 info->flags &= ~ROCKET_MODE_MASK;
648 switch (pc104[board][line]) {
649 case 422:
650 info->flags |= ROCKET_MODE_RS422;
651 break;
652 case 485:
653 info->flags |= ROCKET_MODE_RS485;
654 break;
655 case 232:
656 default:
657 info->flags |= ROCKET_MODE_RS232;
658 break;
659 }
660
661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
664 board, aiop, chan);
665 tty_port_destroy(&info->port);
666 kfree(info);
667 return;
668 }
669
670 rocketMode = info->flags & ROCKET_MODE_MASK;
671
672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
673 sEnRTSToggle(&info->channel);
674 else
675 sDisRTSToggle(&info->channel);
676
677 if (ctlp->boardType == ROCKET_TYPE_PC104) {
678 switch (rocketMode) {
679 case ROCKET_MODE_RS485:
680 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
681 break;
682 case ROCKET_MODE_RS422:
683 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
684 break;
685 case ROCKET_MODE_RS232:
686 default:
687 if (info->flags & ROCKET_RTS_TOGGLE)
688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
689 else
690 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
691 break;
692 }
693 }
694 spin_lock_init(&info->slock);
695 mutex_init(&info->write_mtx);
696 rp_table[line] = info;
697 tty_port_register_device(&info->port, rocket_driver, line,
698 pci_dev ? &pci_dev->dev : NULL);
699}
700
701/*
702 * Configures a rocketport port according to its termio settings. Called from
703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
704 */
705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
706 struct ktermios *old_termios)
707{
708 unsigned cflag;
709 unsigned long flags;
710 unsigned rocketMode;
711 int bits, baud, divisor;
712 CHANNEL_t *cp;
713 struct ktermios *t = &tty->termios;
714
715 cp = &info->channel;
716 cflag = t->c_cflag;
717
718 /* Byte size and parity */
719 if ((cflag & CSIZE) == CS8) {
720 sSetData8(cp);
721 bits = 10;
722 } else {
723 sSetData7(cp);
724 bits = 9;
725 }
726 if (cflag & CSTOPB) {
727 sSetStop2(cp);
728 bits++;
729 } else {
730 sSetStop1(cp);
731 }
732
733 if (cflag & PARENB) {
734 sEnParity(cp);
735 bits++;
736 if (cflag & PARODD) {
737 sSetOddParity(cp);
738 } else {
739 sSetEvenParity(cp);
740 }
741 } else {
742 sDisParity(cp);
743 }
744
745 /* baud rate */
746 baud = tty_get_baud_rate(tty);
747 if (!baud)
748 baud = 9600;
749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
750 if ((divisor >= 8192 || divisor < 0) && old_termios) {
751 baud = tty_termios_baud_rate(old_termios);
752 if (!baud)
753 baud = 9600;
754 divisor = (rp_baud_base[info->board] / baud) - 1;
755 }
756 if (divisor >= 8192 || divisor < 0) {
757 baud = 9600;
758 divisor = (rp_baud_base[info->board] / baud) - 1;
759 }
760 info->cps = baud / bits;
761 sSetBaud(cp, divisor);
762
763 /* FIXME: Should really back compute a baud rate from the divisor */
764 tty_encode_baud_rate(tty, baud, baud);
765
766 if (cflag & CRTSCTS) {
767 info->intmask |= DELTA_CTS;
768 sEnCTSFlowCtl(cp);
769 } else {
770 info->intmask &= ~DELTA_CTS;
771 sDisCTSFlowCtl(cp);
772 }
773 if (cflag & CLOCAL) {
774 info->intmask &= ~DELTA_CD;
775 } else {
776 spin_lock_irqsave(&info->slock, flags);
777 if (sGetChanStatus(cp) & CD_ACT)
778 info->cd_status = 1;
779 else
780 info->cd_status = 0;
781 info->intmask |= DELTA_CD;
782 spin_unlock_irqrestore(&info->slock, flags);
783 }
784
785 /*
786 * Handle software flow control in the board
787 */
788#ifdef ROCKET_SOFT_FLOW
789 if (I_IXON(tty)) {
790 sEnTxSoftFlowCtl(cp);
791 if (I_IXANY(tty)) {
792 sEnIXANY(cp);
793 } else {
794 sDisIXANY(cp);
795 }
796 sSetTxXONChar(cp, START_CHAR(tty));
797 sSetTxXOFFChar(cp, STOP_CHAR(tty));
798 } else {
799 sDisTxSoftFlowCtl(cp);
800 sDisIXANY(cp);
801 sClrTxXOFF(cp);
802 }
803#endif
804
805 /*
806 * Set up ignore/read mask words
807 */
808 info->read_status_mask = STMRCVROVRH | 0xFF;
809 if (I_INPCK(tty))
810 info->read_status_mask |= STMFRAMEH | STMPARITYH;
811 if (I_BRKINT(tty) || I_PARMRK(tty))
812 info->read_status_mask |= STMBREAKH;
813
814 /*
815 * Characters to ignore
816 */
817 info->ignore_status_mask = 0;
818 if (I_IGNPAR(tty))
819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
820 if (I_IGNBRK(tty)) {
821 info->ignore_status_mask |= STMBREAKH;
822 /*
823 * If we're ignoring parity and break indicators,
824 * ignore overruns too. (For real raw support).
825 */
826 if (I_IGNPAR(tty))
827 info->ignore_status_mask |= STMRCVROVRH;
828 }
829
830 rocketMode = info->flags & ROCKET_MODE_MASK;
831
832 if ((info->flags & ROCKET_RTS_TOGGLE)
833 || (rocketMode == ROCKET_MODE_RS485))
834 sEnRTSToggle(cp);
835 else
836 sDisRTSToggle(cp);
837
838 sSetRTS(&info->channel);
839
840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
841 switch (rocketMode) {
842 case ROCKET_MODE_RS485:
843 sSetInterfaceMode(cp, InterfaceModeRS485);
844 break;
845 case ROCKET_MODE_RS422:
846 sSetInterfaceMode(cp, InterfaceModeRS422);
847 break;
848 case ROCKET_MODE_RS232:
849 default:
850 if (info->flags & ROCKET_RTS_TOGGLE)
851 sSetInterfaceMode(cp, InterfaceModeRS232T);
852 else
853 sSetInterfaceMode(cp, InterfaceModeRS232);
854 break;
855 }
856 }
857}
858
859static int carrier_raised(struct tty_port *port)
860{
861 struct r_port *info = container_of(port, struct r_port, port);
862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
863}
864
865static void dtr_rts(struct tty_port *port, int on)
866{
867 struct r_port *info = container_of(port, struct r_port, port);
868 if (on) {
869 sSetDTR(&info->channel);
870 sSetRTS(&info->channel);
871 } else {
872 sClrDTR(&info->channel);
873 sClrRTS(&info->channel);
874 }
875}
876
877/*
878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
879 * port's r_port struct. Initializes the port hardware.
880 */
881static int rp_open(struct tty_struct *tty, struct file *filp)
882{
883 struct r_port *info;
884 struct tty_port *port;
885 int retval;
886 CHANNEL_t *cp;
887 unsigned long page;
888
889 info = rp_table[tty->index];
890 if (info == NULL)
891 return -ENXIO;
892 port = &info->port;
893
894 page = __get_free_page(GFP_KERNEL);
895 if (!page)
896 return -ENOMEM;
897
898 if (port->flags & ASYNC_CLOSING) {
899 retval = wait_for_completion_interruptible(&info->close_wait);
900 free_page(page);
901 if (retval)
902 return retval;
903 return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
904 }
905
906 /*
907 * We must not sleep from here until the port is marked fully in use.
908 */
909 if (info->xmit_buf)
910 free_page(page);
911 else
912 info->xmit_buf = (unsigned char *) page;
913
914 tty->driver_data = info;
915 tty_port_tty_set(port, tty);
916
917 if (port->count++ == 0) {
918 atomic_inc(&rp_num_ports_open);
919
920#ifdef ROCKET_DEBUG_OPEN
921 printk(KERN_INFO "rocket mod++ = %d...\n",
922 atomic_read(&rp_num_ports_open));
923#endif
924 }
925#ifdef ROCKET_DEBUG_OPEN
926 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
927#endif
928
929 /*
930 * Info->count is now 1; so it's safe to sleep now.
931 */
932 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
933 cp = &info->channel;
934 sSetRxTrigger(cp, TRIG_1);
935 if (sGetChanStatus(cp) & CD_ACT)
936 info->cd_status = 1;
937 else
938 info->cd_status = 0;
939 sDisRxStatusMode(cp);
940 sFlushRxFIFO(cp);
941 sFlushTxFIFO(cp);
942
943 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
944 sSetRxTrigger(cp, TRIG_1);
945
946 sGetChanStatus(cp);
947 sDisRxStatusMode(cp);
948 sClrTxXOFF(cp);
949
950 sDisCTSFlowCtl(cp);
951 sDisTxSoftFlowCtl(cp);
952
953 sEnRxFIFO(cp);
954 sEnTransmit(cp);
955
956 set_bit(ASYNCB_INITIALIZED, &info->port.flags);
957
958 /*
959 * Set up the tty->alt_speed kludge
960 */
961 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
962 tty->alt_speed = 57600;
963 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
964 tty->alt_speed = 115200;
965 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
966 tty->alt_speed = 230400;
967 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
968 tty->alt_speed = 460800;
969
970 configure_r_port(tty, info, NULL);
971 if (tty->termios.c_cflag & CBAUD) {
972 sSetDTR(cp);
973 sSetRTS(cp);
974 }
975 }
976 /* Starts (or resets) the maint polling loop */
977 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
978
979 retval = tty_port_block_til_ready(port, tty, filp);
980 if (retval) {
981#ifdef ROCKET_DEBUG_OPEN
982 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
983#endif
984 return retval;
985 }
986 return 0;
987}
988
989/*
990 * Exception handler that closes a serial port. info->port.count is considered critical.
991 */
992static void rp_close(struct tty_struct *tty, struct file *filp)
993{
994 struct r_port *info = tty->driver_data;
995 struct tty_port *port = &info->port;
996 int timeout;
997 CHANNEL_t *cp;
998
999 if (rocket_paranoia_check(info, "rp_close"))
1000 return;
1001
1002#ifdef ROCKET_DEBUG_OPEN
1003 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1004#endif
1005
1006 if (tty_port_close_start(port, tty, filp) == 0)
1007 return;
1008
1009 mutex_lock(&port->mutex);
1010 cp = &info->channel;
1011 /*
1012 * Before we drop DTR, make sure the UART transmitter
1013 * has completely drained; this is especially
1014 * important if there is a transmit FIFO!
1015 */
1016 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1017 if (timeout == 0)
1018 timeout = 1;
1019 rp_wait_until_sent(tty, timeout);
1020 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1021
1022 sDisTransmit(cp);
1023 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1024 sDisCTSFlowCtl(cp);
1025 sDisTxSoftFlowCtl(cp);
1026 sClrTxXOFF(cp);
1027 sFlushRxFIFO(cp);
1028 sFlushTxFIFO(cp);
1029 sClrRTS(cp);
1030 if (C_HUPCL(tty))
1031 sClrDTR(cp);
1032
1033 rp_flush_buffer(tty);
1034
1035 tty_ldisc_flush(tty);
1036
1037 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1038
1039 /* We can't yet use tty_port_close_end as the buffer handling in this
1040 driver is a bit different to the usual */
1041
1042 if (port->blocked_open) {
1043 if (port->close_delay) {
1044 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1045 }
1046 wake_up_interruptible(&port->open_wait);
1047 } else {
1048 if (info->xmit_buf) {
1049 free_page((unsigned long) info->xmit_buf);
1050 info->xmit_buf = NULL;
1051 }
1052 }
1053 spin_lock_irq(&port->lock);
1054 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1055 tty->closing = 0;
1056 spin_unlock_irq(&port->lock);
1057 mutex_unlock(&port->mutex);
1058 tty_port_tty_set(port, NULL);
1059
1060 wake_up_interruptible(&port->close_wait);
1061 complete_all(&info->close_wait);
1062 atomic_dec(&rp_num_ports_open);
1063
1064#ifdef ROCKET_DEBUG_OPEN
1065 printk(KERN_INFO "rocket mod-- = %d...\n",
1066 atomic_read(&rp_num_ports_open));
1067 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1068#endif
1069
1070}
1071
1072static void rp_set_termios(struct tty_struct *tty,
1073 struct ktermios *old_termios)
1074{
1075 struct r_port *info = tty->driver_data;
1076 CHANNEL_t *cp;
1077 unsigned cflag;
1078
1079 if (rocket_paranoia_check(info, "rp_set_termios"))
1080 return;
1081
1082 cflag = tty->termios.c_cflag;
1083
1084 /*
1085 * This driver doesn't support CS5 or CS6
1086 */
1087 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1088 tty->termios.c_cflag =
1089 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1090 /* Or CMSPAR */
1091 tty->termios.c_cflag &= ~CMSPAR;
1092
1093 configure_r_port(tty, info, old_termios);
1094
1095 cp = &info->channel;
1096
1097 /* Handle transition to B0 status */
1098 if ((old_termios->c_cflag & CBAUD) && !(tty->termios.c_cflag & CBAUD)) {
1099 sClrDTR(cp);
1100 sClrRTS(cp);
1101 }
1102
1103 /* Handle transition away from B0 status */
1104 if (!(old_termios->c_cflag & CBAUD) && (tty->termios.c_cflag & CBAUD)) {
1105 sSetRTS(cp);
1106 sSetDTR(cp);
1107 }
1108
1109 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios.c_cflag & CRTSCTS))
1110 rp_start(tty);
1111}
1112
1113static int rp_break(struct tty_struct *tty, int break_state)
1114{
1115 struct r_port *info = tty->driver_data;
1116 unsigned long flags;
1117
1118 if (rocket_paranoia_check(info, "rp_break"))
1119 return -EINVAL;
1120
1121 spin_lock_irqsave(&info->slock, flags);
1122 if (break_state == -1)
1123 sSendBreak(&info->channel);
1124 else
1125 sClrBreak(&info->channel);
1126 spin_unlock_irqrestore(&info->slock, flags);
1127 return 0;
1128}
1129
1130/*
1131 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1132 * the UPCI boards was added, it was decided to make this a function because
1133 * the macro was getting too complicated. All cases except the first one
1134 * (UPCIRingInd) are taken directly from the original macro.
1135 */
1136static int sGetChanRI(CHANNEL_T * ChP)
1137{
1138 CONTROLLER_t *CtlP = ChP->CtlP;
1139 int ChanNum = ChP->ChanNum;
1140 int RingInd = 0;
1141
1142 if (CtlP->UPCIRingInd)
1143 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1144 else if (CtlP->AltChanRingIndicator)
1145 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1146 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1147 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1148
1149 return RingInd;
1150}
1151
1152/********************************************************************************************/
1153/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1154
1155/*
1156 * Returns the state of the serial modem control lines. These next 2 functions
1157 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1158 */
1159static int rp_tiocmget(struct tty_struct *tty)
1160{
1161 struct r_port *info = tty->driver_data;
1162 unsigned int control, result, ChanStatus;
1163
1164 ChanStatus = sGetChanStatusLo(&info->channel);
1165 control = info->channel.TxControl[3];
1166 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1167 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1168 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1169 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1170 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1171 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1172
1173 return result;
1174}
1175
1176/*
1177 * Sets the modem control lines
1178 */
1179static int rp_tiocmset(struct tty_struct *tty,
1180 unsigned int set, unsigned int clear)
1181{
1182 struct r_port *info = tty->driver_data;
1183
1184 if (set & TIOCM_RTS)
1185 info->channel.TxControl[3] |= SET_RTS;
1186 if (set & TIOCM_DTR)
1187 info->channel.TxControl[3] |= SET_DTR;
1188 if (clear & TIOCM_RTS)
1189 info->channel.TxControl[3] &= ~SET_RTS;
1190 if (clear & TIOCM_DTR)
1191 info->channel.TxControl[3] &= ~SET_DTR;
1192
1193 out32(info->channel.IndexAddr, info->channel.TxControl);
1194 return 0;
1195}
1196
1197static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1198{
1199 struct rocket_config tmp;
1200
1201 if (!retinfo)
1202 return -EFAULT;
1203 memset(&tmp, 0, sizeof (tmp));
1204 mutex_lock(&info->port.mutex);
1205 tmp.line = info->line;
1206 tmp.flags = info->flags;
1207 tmp.close_delay = info->port.close_delay;
1208 tmp.closing_wait = info->port.closing_wait;
1209 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1210 mutex_unlock(&info->port.mutex);
1211
1212 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1213 return -EFAULT;
1214 return 0;
1215}
1216
1217static int set_config(struct tty_struct *tty, struct r_port *info,
1218 struct rocket_config __user *new_info)
1219{
1220 struct rocket_config new_serial;
1221
1222 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1223 return -EFAULT;
1224
1225 mutex_lock(&info->port.mutex);
1226 if (!capable(CAP_SYS_ADMIN))
1227 {
1228 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1229 mutex_unlock(&info->port.mutex);
1230 return -EPERM;
1231 }
1232 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1233 configure_r_port(tty, info, NULL);
1234 mutex_unlock(&info->port.mutex);
1235 return 0;
1236 }
1237
1238 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1239 info->port.close_delay = new_serial.close_delay;
1240 info->port.closing_wait = new_serial.closing_wait;
1241
1242 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1243 tty->alt_speed = 57600;
1244 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1245 tty->alt_speed = 115200;
1246 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1247 tty->alt_speed = 230400;
1248 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1249 tty->alt_speed = 460800;
1250 mutex_unlock(&info->port.mutex);
1251
1252 configure_r_port(tty, info, NULL);
1253 return 0;
1254}
1255
1256/*
1257 * This function fills in a rocket_ports struct with information
1258 * about what boards/ports are in the system. This info is passed
1259 * to user space. See setrocket.c where the info is used to create
1260 * the /dev/ttyRx ports.
1261 */
1262static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1263{
1264 struct rocket_ports tmp;
1265 int board;
1266
1267 if (!retports)
1268 return -EFAULT;
1269 memset(&tmp, 0, sizeof (tmp));
1270 tmp.tty_major = rocket_driver->major;
1271
1272 for (board = 0; board < 4; board++) {
1273 tmp.rocketModel[board].model = rocketModel[board].model;
1274 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1275 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1276 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1277 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1278 }
1279 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1280 return -EFAULT;
1281 return 0;
1282}
1283
1284static int reset_rm2(struct r_port *info, void __user *arg)
1285{
1286 int reset;
1287
1288 if (!capable(CAP_SYS_ADMIN))
1289 return -EPERM;
1290
1291 if (copy_from_user(&reset, arg, sizeof (int)))
1292 return -EFAULT;
1293 if (reset)
1294 reset = 1;
1295
1296 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1297 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1298 return -EINVAL;
1299
1300 if (info->ctlp->BusType == isISA)
1301 sModemReset(info->ctlp, info->chan, reset);
1302 else
1303 sPCIModemReset(info->ctlp, info->chan, reset);
1304
1305 return 0;
1306}
1307
1308static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1309{
1310 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1311 return -EFAULT;
1312 return 0;
1313}
1314
1315/* IOCTL call handler into the driver */
1316static int rp_ioctl(struct tty_struct *tty,
1317 unsigned int cmd, unsigned long arg)
1318{
1319 struct r_port *info = tty->driver_data;
1320 void __user *argp = (void __user *)arg;
1321 int ret = 0;
1322
1323 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1324 return -ENXIO;
1325
1326 switch (cmd) {
1327 case RCKP_GET_STRUCT:
1328 if (copy_to_user(argp, info, sizeof (struct r_port)))
1329 ret = -EFAULT;
1330 break;
1331 case RCKP_GET_CONFIG:
1332 ret = get_config(info, argp);
1333 break;
1334 case RCKP_SET_CONFIG:
1335 ret = set_config(tty, info, argp);
1336 break;
1337 case RCKP_GET_PORTS:
1338 ret = get_ports(info, argp);
1339 break;
1340 case RCKP_RESET_RM2:
1341 ret = reset_rm2(info, argp);
1342 break;
1343 case RCKP_GET_VERSION:
1344 ret = get_version(info, argp);
1345 break;
1346 default:
1347 ret = -ENOIOCTLCMD;
1348 }
1349 return ret;
1350}
1351
1352static void rp_send_xchar(struct tty_struct *tty, char ch)
1353{
1354 struct r_port *info = tty->driver_data;
1355 CHANNEL_t *cp;
1356
1357 if (rocket_paranoia_check(info, "rp_send_xchar"))
1358 return;
1359
1360 cp = &info->channel;
1361 if (sGetTxCnt(cp))
1362 sWriteTxPrioByte(cp, ch);
1363 else
1364 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1365}
1366
1367static void rp_throttle(struct tty_struct *tty)
1368{
1369 struct r_port *info = tty->driver_data;
1370
1371#ifdef ROCKET_DEBUG_THROTTLE
1372 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1373 tty->ldisc.chars_in_buffer(tty));
1374#endif
1375
1376 if (rocket_paranoia_check(info, "rp_throttle"))
1377 return;
1378
1379 if (I_IXOFF(tty))
1380 rp_send_xchar(tty, STOP_CHAR(tty));
1381
1382 sClrRTS(&info->channel);
1383}
1384
1385static void rp_unthrottle(struct tty_struct *tty)
1386{
1387 struct r_port *info = tty->driver_data;
1388#ifdef ROCKET_DEBUG_THROTTLE
1389 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1390 tty->ldisc.chars_in_buffer(tty));
1391#endif
1392
1393 if (rocket_paranoia_check(info, "rp_throttle"))
1394 return;
1395
1396 if (I_IXOFF(tty))
1397 rp_send_xchar(tty, START_CHAR(tty));
1398
1399 sSetRTS(&info->channel);
1400}
1401
1402/*
1403 * ------------------------------------------------------------
1404 * rp_stop() and rp_start()
1405 *
1406 * This routines are called before setting or resetting tty->stopped.
1407 * They enable or disable transmitter interrupts, as necessary.
1408 * ------------------------------------------------------------
1409 */
1410static void rp_stop(struct tty_struct *tty)
1411{
1412 struct r_port *info = tty->driver_data;
1413
1414#ifdef ROCKET_DEBUG_FLOW
1415 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1416 info->xmit_cnt, info->xmit_fifo_room);
1417#endif
1418
1419 if (rocket_paranoia_check(info, "rp_stop"))
1420 return;
1421
1422 if (sGetTxCnt(&info->channel))
1423 sDisTransmit(&info->channel);
1424}
1425
1426static void rp_start(struct tty_struct *tty)
1427{
1428 struct r_port *info = tty->driver_data;
1429
1430#ifdef ROCKET_DEBUG_FLOW
1431 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1432 info->xmit_cnt, info->xmit_fifo_room);
1433#endif
1434
1435 if (rocket_paranoia_check(info, "rp_stop"))
1436 return;
1437
1438 sEnTransmit(&info->channel);
1439 set_bit((info->aiop * 8) + info->chan,
1440 (void *) &xmit_flags[info->board]);
1441}
1442
1443/*
1444 * rp_wait_until_sent() --- wait until the transmitter is empty
1445 */
1446static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1447{
1448 struct r_port *info = tty->driver_data;
1449 CHANNEL_t *cp;
1450 unsigned long orig_jiffies;
1451 int check_time, exit_time;
1452 int txcnt;
1453
1454 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1455 return;
1456
1457 cp = &info->channel;
1458
1459 orig_jiffies = jiffies;
1460#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1461 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1462 jiffies);
1463 printk(KERN_INFO "cps=%d...\n", info->cps);
1464#endif
1465 while (1) {
1466 txcnt = sGetTxCnt(cp);
1467 if (!txcnt) {
1468 if (sGetChanStatusLo(cp) & TXSHRMT)
1469 break;
1470 check_time = (HZ / info->cps) / 5;
1471 } else {
1472 check_time = HZ * txcnt / info->cps;
1473 }
1474 if (timeout) {
1475 exit_time = orig_jiffies + timeout - jiffies;
1476 if (exit_time <= 0)
1477 break;
1478 if (exit_time < check_time)
1479 check_time = exit_time;
1480 }
1481 if (check_time == 0)
1482 check_time = 1;
1483#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1484 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1485 jiffies, check_time);
1486#endif
1487 msleep_interruptible(jiffies_to_msecs(check_time));
1488 if (signal_pending(current))
1489 break;
1490 }
1491 __set_current_state(TASK_RUNNING);
1492#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1493 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1494#endif
1495}
1496
1497/*
1498 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1499 */
1500static void rp_hangup(struct tty_struct *tty)
1501{
1502 CHANNEL_t *cp;
1503 struct r_port *info = tty->driver_data;
1504 unsigned long flags;
1505
1506 if (rocket_paranoia_check(info, "rp_hangup"))
1507 return;
1508
1509#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1510 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1511#endif
1512 rp_flush_buffer(tty);
1513 spin_lock_irqsave(&info->port.lock, flags);
1514 if (info->port.flags & ASYNC_CLOSING) {
1515 spin_unlock_irqrestore(&info->port.lock, flags);
1516 return;
1517 }
1518 if (info->port.count)
1519 atomic_dec(&rp_num_ports_open);
1520 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1521 spin_unlock_irqrestore(&info->port.lock, flags);
1522
1523 tty_port_hangup(&info->port);
1524
1525 cp = &info->channel;
1526 sDisRxFIFO(cp);
1527 sDisTransmit(cp);
1528 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1529 sDisCTSFlowCtl(cp);
1530 sDisTxSoftFlowCtl(cp);
1531 sClrTxXOFF(cp);
1532 clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1533
1534 wake_up_interruptible(&info->port.open_wait);
1535}
1536
1537/*
1538 * Exception handler - write char routine. The RocketPort driver uses a
1539 * double-buffering strategy, with the twist that if the in-memory CPU
1540 * buffer is empty, and there's space in the transmit FIFO, the
1541 * writing routines will write directly to transmit FIFO.
1542 * Write buffer and counters protected by spinlocks
1543 */
1544static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1545{
1546 struct r_port *info = tty->driver_data;
1547 CHANNEL_t *cp;
1548 unsigned long flags;
1549
1550 if (rocket_paranoia_check(info, "rp_put_char"))
1551 return 0;
1552
1553 /*
1554 * Grab the port write mutex, locking out other processes that try to
1555 * write to this port
1556 */
1557 mutex_lock(&info->write_mtx);
1558
1559#ifdef ROCKET_DEBUG_WRITE
1560 printk(KERN_INFO "rp_put_char %c...\n", ch);
1561#endif
1562
1563 spin_lock_irqsave(&info->slock, flags);
1564 cp = &info->channel;
1565
1566 if (!tty->stopped && info->xmit_fifo_room == 0)
1567 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1568
1569 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1570 info->xmit_buf[info->xmit_head++] = ch;
1571 info->xmit_head &= XMIT_BUF_SIZE - 1;
1572 info->xmit_cnt++;
1573 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1574 } else {
1575 sOutB(sGetTxRxDataIO(cp), ch);
1576 info->xmit_fifo_room--;
1577 }
1578 spin_unlock_irqrestore(&info->slock, flags);
1579 mutex_unlock(&info->write_mtx);
1580 return 1;
1581}
1582
1583/*
1584 * Exception handler - write routine, called when user app writes to the device.
1585 * A per port write mutex is used to protect from another process writing to
1586 * this port at the same time. This other process could be running on the other CPU
1587 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1588 * Spinlocks protect the info xmit members.
1589 */
1590static int rp_write(struct tty_struct *tty,
1591 const unsigned char *buf, int count)
1592{
1593 struct r_port *info = tty->driver_data;
1594 CHANNEL_t *cp;
1595 const unsigned char *b;
1596 int c, retval = 0;
1597 unsigned long flags;
1598
1599 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1600 return 0;
1601
1602 if (mutex_lock_interruptible(&info->write_mtx))
1603 return -ERESTARTSYS;
1604
1605#ifdef ROCKET_DEBUG_WRITE
1606 printk(KERN_INFO "rp_write %d chars...\n", count);
1607#endif
1608 cp = &info->channel;
1609
1610 if (!tty->stopped && info->xmit_fifo_room < count)
1611 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1612
1613 /*
1614 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1615 * into FIFO. Use the write queue for temp storage.
1616 */
1617 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1618 c = min(count, info->xmit_fifo_room);
1619 b = buf;
1620
1621 /* Push data into FIFO, 2 bytes at a time */
1622 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1623
1624 /* If there is a byte remaining, write it */
1625 if (c & 1)
1626 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1627
1628 retval += c;
1629 buf += c;
1630 count -= c;
1631
1632 spin_lock_irqsave(&info->slock, flags);
1633 info->xmit_fifo_room -= c;
1634 spin_unlock_irqrestore(&info->slock, flags);
1635 }
1636
1637 /* If count is zero, we wrote it all and are done */
1638 if (!count)
1639 goto end;
1640
1641 /* Write remaining data into the port's xmit_buf */
1642 while (1) {
1643 /* Hung up ? */
1644 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1645 goto end;
1646 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1647 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1648 if (c <= 0)
1649 break;
1650
1651 b = buf;
1652 memcpy(info->xmit_buf + info->xmit_head, b, c);
1653
1654 spin_lock_irqsave(&info->slock, flags);
1655 info->xmit_head =
1656 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1657 info->xmit_cnt += c;
1658 spin_unlock_irqrestore(&info->slock, flags);
1659
1660 buf += c;
1661 count -= c;
1662 retval += c;
1663 }
1664
1665 if ((retval > 0) && !tty->stopped)
1666 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1667
1668end:
1669 if (info->xmit_cnt < WAKEUP_CHARS) {
1670 tty_wakeup(tty);
1671#ifdef ROCKETPORT_HAVE_POLL_WAIT
1672 wake_up_interruptible(&tty->poll_wait);
1673#endif
1674 }
1675 mutex_unlock(&info->write_mtx);
1676 return retval;
1677}
1678
1679/*
1680 * Return the number of characters that can be sent. We estimate
1681 * only using the in-memory transmit buffer only, and ignore the
1682 * potential space in the transmit FIFO.
1683 */
1684static int rp_write_room(struct tty_struct *tty)
1685{
1686 struct r_port *info = tty->driver_data;
1687 int ret;
1688
1689 if (rocket_paranoia_check(info, "rp_write_room"))
1690 return 0;
1691
1692 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1693 if (ret < 0)
1694 ret = 0;
1695#ifdef ROCKET_DEBUG_WRITE
1696 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1697#endif
1698 return ret;
1699}
1700
1701/*
1702 * Return the number of characters in the buffer. Again, this only
1703 * counts those characters in the in-memory transmit buffer.
1704 */
1705static int rp_chars_in_buffer(struct tty_struct *tty)
1706{
1707 struct r_port *info = tty->driver_data;
1708
1709 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1710 return 0;
1711
1712#ifdef ROCKET_DEBUG_WRITE
1713 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1714#endif
1715 return info->xmit_cnt;
1716}
1717
1718/*
1719 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1720 * r_port struct for the port. Note that spinlock are used to protect info members,
1721 * do not call this function if the spinlock is already held.
1722 */
1723static void rp_flush_buffer(struct tty_struct *tty)
1724{
1725 struct r_port *info = tty->driver_data;
1726 CHANNEL_t *cp;
1727 unsigned long flags;
1728
1729 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1730 return;
1731
1732 spin_lock_irqsave(&info->slock, flags);
1733 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1734 spin_unlock_irqrestore(&info->slock, flags);
1735
1736#ifdef ROCKETPORT_HAVE_POLL_WAIT
1737 wake_up_interruptible(&tty->poll_wait);
1738#endif
1739 tty_wakeup(tty);
1740
1741 cp = &info->channel;
1742 sFlushTxFIFO(cp);
1743}
1744
1745#ifdef CONFIG_PCI
1746
1747static const struct pci_device_id rocket_pci_ids[] = {
1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1751 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1752 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1753 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1754 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1755 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1756 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1757 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1758 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1759 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1760 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1761 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1762 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1763 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1764 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1765 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1766 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1767 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1768 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1769 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1770 { }
1771};
1772MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1773
1774/* Resets the speaker controller on RocketModem II and III devices */
1775static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1776{
1777 ByteIO_t addr;
1778
1779 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1780 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1781 addr = CtlP->AiopIO[0] + 0x4F;
1782 sOutB(addr, 0);
1783 }
1784
1785 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1786 if ((model == MODEL_UPCI_RM3_8PORT)
1787 || (model == MODEL_UPCI_RM3_4PORT)) {
1788 addr = CtlP->AiopIO[0] + 0x88;
1789 sOutB(addr, 0);
1790 }
1791}
1792
1793/***************************************************************************
1794Function: sPCIInitController
1795Purpose: Initialization of controller global registers and controller
1796 structure.
1797Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1798 IRQNum,Frequency,PeriodicOnly)
1799 CONTROLLER_T *CtlP; Ptr to controller structure
1800 int CtlNum; Controller number
1801 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1802 This list must be in the order the AIOPs will be found on the
1803 controller. Once an AIOP in the list is not found, it is
1804 assumed that there are no more AIOPs on the controller.
1805 int AiopIOListSize; Number of addresses in AiopIOList
1806 int IRQNum; Interrupt Request number. Can be any of the following:
1807 0: Disable global interrupts
1808 3: IRQ 3
1809 4: IRQ 4
1810 5: IRQ 5
1811 9: IRQ 9
1812 10: IRQ 10
1813 11: IRQ 11
1814 12: IRQ 12
1815 15: IRQ 15
1816 Byte_t Frequency: A flag identifying the frequency
1817 of the periodic interrupt, can be any one of the following:
1818 FREQ_DIS - periodic interrupt disabled
1819 FREQ_137HZ - 137 Hertz
1820 FREQ_69HZ - 69 Hertz
1821 FREQ_34HZ - 34 Hertz
1822 FREQ_17HZ - 17 Hertz
1823 FREQ_9HZ - 9 Hertz
1824 FREQ_4HZ - 4 Hertz
1825 If IRQNum is set to 0 the Frequency parameter is
1826 overidden, it is forced to a value of FREQ_DIS.
1827 int PeriodicOnly: 1 if all interrupts except the periodic
1828 interrupt are to be blocked.
1829 0 is both the periodic interrupt and
1830 other channel interrupts are allowed.
1831 If IRQNum is set to 0 the PeriodicOnly parameter is
1832 overidden, it is forced to a value of 0.
1833Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1834 initialization failed.
1835
1836Comments:
1837 If periodic interrupts are to be disabled but AIOP interrupts
1838 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1839
1840 If interrupts are to be completely disabled set IRQNum to 0.
1841
1842 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1843 invalid combination.
1844
1845 This function performs initialization of global interrupt modes,
1846 but it does not actually enable global interrupts. To enable
1847 and disable global interrupts use functions sEnGlobalInt() and
1848 sDisGlobalInt(). Enabling of global interrupts is normally not
1849 done until all other initializations are complete.
1850
1851 Even if interrupts are globally enabled, they must also be
1852 individually enabled for each channel that is to generate
1853 interrupts.
1854
1855Warnings: No range checking on any of the parameters is done.
1856
1857 No context switches are allowed while executing this function.
1858
1859 After this function all AIOPs on the controller are disabled,
1860 they can be enabled with sEnAiop().
1861*/
1862static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1863 ByteIO_t * AiopIOList, int AiopIOListSize,
1864 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1865 int PeriodicOnly, int altChanRingIndicator,
1866 int UPCIRingInd)
1867{
1868 int i;
1869 ByteIO_t io;
1870
1871 CtlP->AltChanRingIndicator = altChanRingIndicator;
1872 CtlP->UPCIRingInd = UPCIRingInd;
1873 CtlP->CtlNum = CtlNum;
1874 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1875 CtlP->BusType = isPCI; /* controller release 1 */
1876
1877 if (ConfigIO) {
1878 CtlP->isUPCI = 1;
1879 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1880 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1881 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1882 } else {
1883 CtlP->isUPCI = 0;
1884 CtlP->PCIIO =
1885 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1886 CtlP->AiopIntrBits = aiop_intr_bits;
1887 }
1888
1889 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1890 /* Init AIOPs */
1891 CtlP->NumAiop = 0;
1892 for (i = 0; i < AiopIOListSize; i++) {
1893 io = AiopIOList[i];
1894 CtlP->AiopIO[i] = (WordIO_t) io;
1895 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1896
1897 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1898 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1899 break; /* done looking for AIOPs */
1900
1901 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1902 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1903 sOutB(io + _INDX_DATA, sClockPrescale);
1904 CtlP->NumAiop++; /* bump count of AIOPs */
1905 }
1906
1907 if (CtlP->NumAiop == 0)
1908 return (-1);
1909 else
1910 return (CtlP->NumAiop);
1911}
1912
1913/*
1914 * Called when a PCI card is found. Retrieves and stores model information,
1915 * init's aiopic and serial port hardware.
1916 * Inputs: i is the board number (0-n)
1917 */
1918static __init int register_PCI(int i, struct pci_dev *dev)
1919{
1920 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1921 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1922 CONTROLLER_t *ctlp;
1923
1924 int fast_clock = 0;
1925 int altChanRingIndicator = 0;
1926 int ports_per_aiop = 8;
1927 WordIO_t ConfigIO = 0;
1928 ByteIO_t UPCIRingInd = 0;
1929
1930 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1931 pci_enable_device(dev))
1932 return 0;
1933
1934 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1935
1936 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1937 rocketModel[i].loadrm2 = 0;
1938 rocketModel[i].startingPortNumber = nextLineNumber;
1939
1940 /* Depending on the model, set up some config variables */
1941 switch (dev->device) {
1942 case PCI_DEVICE_ID_RP4QUAD:
1943 max_num_aiops = 1;
1944 ports_per_aiop = 4;
1945 rocketModel[i].model = MODEL_RP4QUAD;
1946 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1947 rocketModel[i].numPorts = 4;
1948 break;
1949 case PCI_DEVICE_ID_RP8OCTA:
1950 max_num_aiops = 1;
1951 rocketModel[i].model = MODEL_RP8OCTA;
1952 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1953 rocketModel[i].numPorts = 8;
1954 break;
1955 case PCI_DEVICE_ID_URP8OCTA:
1956 max_num_aiops = 1;
1957 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1958 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1959 rocketModel[i].numPorts = 8;
1960 break;
1961 case PCI_DEVICE_ID_RP8INTF:
1962 max_num_aiops = 1;
1963 rocketModel[i].model = MODEL_RP8INTF;
1964 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1965 rocketModel[i].numPorts = 8;
1966 break;
1967 case PCI_DEVICE_ID_URP8INTF:
1968 max_num_aiops = 1;
1969 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1970 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1971 rocketModel[i].numPorts = 8;
1972 break;
1973 case PCI_DEVICE_ID_RP8J:
1974 max_num_aiops = 1;
1975 rocketModel[i].model = MODEL_RP8J;
1976 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1977 rocketModel[i].numPorts = 8;
1978 break;
1979 case PCI_DEVICE_ID_RP4J:
1980 max_num_aiops = 1;
1981 ports_per_aiop = 4;
1982 rocketModel[i].model = MODEL_RP4J;
1983 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1984 rocketModel[i].numPorts = 4;
1985 break;
1986 case PCI_DEVICE_ID_RP8SNI:
1987 max_num_aiops = 1;
1988 rocketModel[i].model = MODEL_RP8SNI;
1989 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1990 rocketModel[i].numPorts = 8;
1991 break;
1992 case PCI_DEVICE_ID_RP16SNI:
1993 max_num_aiops = 2;
1994 rocketModel[i].model = MODEL_RP16SNI;
1995 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1996 rocketModel[i].numPorts = 16;
1997 break;
1998 case PCI_DEVICE_ID_RP16INTF:
1999 max_num_aiops = 2;
2000 rocketModel[i].model = MODEL_RP16INTF;
2001 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
2002 rocketModel[i].numPorts = 16;
2003 break;
2004 case PCI_DEVICE_ID_URP16INTF:
2005 max_num_aiops = 2;
2006 rocketModel[i].model = MODEL_UPCI_RP16INTF;
2007 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
2008 rocketModel[i].numPorts = 16;
2009 break;
2010 case PCI_DEVICE_ID_CRP16INTF:
2011 max_num_aiops = 2;
2012 rocketModel[i].model = MODEL_CPCI_RP16INTF;
2013 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
2014 rocketModel[i].numPorts = 16;
2015 break;
2016 case PCI_DEVICE_ID_RP32INTF:
2017 max_num_aiops = 4;
2018 rocketModel[i].model = MODEL_RP32INTF;
2019 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2020 rocketModel[i].numPorts = 32;
2021 break;
2022 case PCI_DEVICE_ID_URP32INTF:
2023 max_num_aiops = 4;
2024 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2025 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2026 rocketModel[i].numPorts = 32;
2027 break;
2028 case PCI_DEVICE_ID_RPP4:
2029 max_num_aiops = 1;
2030 ports_per_aiop = 4;
2031 altChanRingIndicator++;
2032 fast_clock++;
2033 rocketModel[i].model = MODEL_RPP4;
2034 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2035 rocketModel[i].numPorts = 4;
2036 break;
2037 case PCI_DEVICE_ID_RPP8:
2038 max_num_aiops = 2;
2039 ports_per_aiop = 4;
2040 altChanRingIndicator++;
2041 fast_clock++;
2042 rocketModel[i].model = MODEL_RPP8;
2043 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2044 rocketModel[i].numPorts = 8;
2045 break;
2046 case PCI_DEVICE_ID_RP2_232:
2047 max_num_aiops = 1;
2048 ports_per_aiop = 2;
2049 altChanRingIndicator++;
2050 fast_clock++;
2051 rocketModel[i].model = MODEL_RP2_232;
2052 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2053 rocketModel[i].numPorts = 2;
2054 break;
2055 case PCI_DEVICE_ID_RP2_422:
2056 max_num_aiops = 1;
2057 ports_per_aiop = 2;
2058 altChanRingIndicator++;
2059 fast_clock++;
2060 rocketModel[i].model = MODEL_RP2_422;
2061 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2062 rocketModel[i].numPorts = 2;
2063 break;
2064 case PCI_DEVICE_ID_RP6M:
2065
2066 max_num_aiops = 1;
2067 ports_per_aiop = 6;
2068
2069 /* If revision is 1, the rocketmodem flash must be loaded.
2070 * If it is 2 it is a "socketed" version. */
2071 if (dev->revision == 1) {
2072 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2073 rocketModel[i].loadrm2 = 1;
2074 } else {
2075 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2076 }
2077
2078 rocketModel[i].model = MODEL_RP6M;
2079 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2080 rocketModel[i].numPorts = 6;
2081 break;
2082 case PCI_DEVICE_ID_RP4M:
2083 max_num_aiops = 1;
2084 ports_per_aiop = 4;
2085 if (dev->revision == 1) {
2086 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2087 rocketModel[i].loadrm2 = 1;
2088 } else {
2089 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2090 }
2091
2092 rocketModel[i].model = MODEL_RP4M;
2093 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2094 rocketModel[i].numPorts = 4;
2095 break;
2096 default:
2097 max_num_aiops = 0;
2098 break;
2099 }
2100
2101 /*
2102 * Check for UPCI boards.
2103 */
2104
2105 switch (dev->device) {
2106 case PCI_DEVICE_ID_URP32INTF:
2107 case PCI_DEVICE_ID_URP8INTF:
2108 case PCI_DEVICE_ID_URP16INTF:
2109 case PCI_DEVICE_ID_CRP16INTF:
2110 case PCI_DEVICE_ID_URP8OCTA:
2111 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2112 ConfigIO = pci_resource_start(dev, 1);
2113 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2114 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115
2116 /*
2117 * Check for octa or quad cable.
2118 */
2119 if (!
2120 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2121 PCI_GPIO_CTRL_8PORT)) {
2122 ports_per_aiop = 4;
2123 rocketModel[i].numPorts = 4;
2124 }
2125 }
2126 break;
2127 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2128 max_num_aiops = 1;
2129 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2130 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2131 rocketModel[i].numPorts = 8;
2132 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2133 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2134 ConfigIO = pci_resource_start(dev, 1);
2135 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2136 break;
2137 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2138 max_num_aiops = 1;
2139 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2140 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2141 rocketModel[i].numPorts = 4;
2142 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2143 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2144 ConfigIO = pci_resource_start(dev, 1);
2145 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2146 break;
2147 default:
2148 break;
2149 }
2150
2151 if (fast_clock) {
2152 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2153 rp_baud_base[i] = 921600;
2154 } else {
2155 /*
2156 * If support_low_speed is set, use the slow clock
2157 * prescale, which supports 50 bps
2158 */
2159 if (support_low_speed) {
2160 /* mod 9 (divide by 10) prescale */
2161 sClockPrescale = 0x19;
2162 rp_baud_base[i] = 230400;
2163 } else {
2164 /* mod 4 (divide by 5) prescale */
2165 sClockPrescale = 0x14;
2166 rp_baud_base[i] = 460800;
2167 }
2168 }
2169
2170 for (aiop = 0; aiop < max_num_aiops; aiop++)
2171 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2172 ctlp = sCtlNumToCtlPtr(i);
2173 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2174 for (aiop = 0; aiop < max_num_aiops; aiop++)
2175 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2176
2177 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2178 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2179 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2180 rocketModel[i].startingPortNumber,
2181 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2182
2183 if (num_aiops <= 0) {
2184 rcktpt_io_addr[i] = 0;
2185 return (0);
2186 }
2187 is_PCI[i] = 1;
2188
2189 /* Reset the AIOPIC, init the serial ports */
2190 for (aiop = 0; aiop < num_aiops; aiop++) {
2191 sResetAiopByNum(ctlp, aiop);
2192 num_chan = ports_per_aiop;
2193 for (chan = 0; chan < num_chan; chan++)
2194 init_r_port(i, aiop, chan, dev);
2195 }
2196
2197 /* Rocket modems must be reset */
2198 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2199 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2200 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2201 num_chan = ports_per_aiop;
2202 for (chan = 0; chan < num_chan; chan++)
2203 sPCIModemReset(ctlp, chan, 1);
2204 msleep(500);
2205 for (chan = 0; chan < num_chan; chan++)
2206 sPCIModemReset(ctlp, chan, 0);
2207 msleep(500);
2208 rmSpeakerReset(ctlp, rocketModel[i].model);
2209 }
2210 return (1);
2211}
2212
2213/*
2214 * Probes for PCI cards, inits them if found
2215 * Input: board_found = number of ISA boards already found, or the
2216 * starting board number
2217 * Returns: Number of PCI boards found
2218 */
2219static int __init init_PCI(int boards_found)
2220{
2221 struct pci_dev *dev = NULL;
2222 int count = 0;
2223
2224 /* Work through the PCI device list, pulling out ours */
2225 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2226 if (register_PCI(count + boards_found, dev))
2227 count++;
2228 }
2229 return (count);
2230}
2231
2232#endif /* CONFIG_PCI */
2233
2234/*
2235 * Probes for ISA cards
2236 * Input: i = the board number to look for
2237 * Returns: 1 if board found, 0 else
2238 */
2239static int __init init_ISA(int i)
2240{
2241 int num_aiops, num_chan = 0, total_num_chan = 0;
2242 int aiop, chan;
2243 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2244 CONTROLLER_t *ctlp;
2245 char *type_string;
2246
2247 /* If io_addr is zero, no board configured */
2248 if (rcktpt_io_addr[i] == 0)
2249 return (0);
2250
2251 /* Reserve the IO region */
2252 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2253 printk(KERN_ERR "Unable to reserve IO region for configured "
2254 "ISA RocketPort at address 0x%lx, board not "
2255 "installed...\n", rcktpt_io_addr[i]);
2256 rcktpt_io_addr[i] = 0;
2257 return (0);
2258 }
2259
2260 ctlp = sCtlNumToCtlPtr(i);
2261
2262 ctlp->boardType = rcktpt_type[i];
2263
2264 switch (rcktpt_type[i]) {
2265 case ROCKET_TYPE_PC104:
2266 type_string = "(PC104)";
2267 break;
2268 case ROCKET_TYPE_MODEM:
2269 type_string = "(RocketModem)";
2270 break;
2271 case ROCKET_TYPE_MODEMII:
2272 type_string = "(RocketModem II)";
2273 break;
2274 default:
2275 type_string = "";
2276 break;
2277 }
2278
2279 /*
2280 * If support_low_speed is set, use the slow clock prescale,
2281 * which supports 50 bps
2282 */
2283 if (support_low_speed) {
2284 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2285 rp_baud_base[i] = 230400;
2286 } else {
2287 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2288 rp_baud_base[i] = 460800;
2289 }
2290
2291 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2292 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2293
2294 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2295
2296 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2297 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2298 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2299 }
2300
2301 /* If something went wrong initing the AIOP's release the ISA IO memory */
2302 if (num_aiops <= 0) {
2303 release_region(rcktpt_io_addr[i], 64);
2304 rcktpt_io_addr[i] = 0;
2305 return (0);
2306 }
2307
2308 rocketModel[i].startingPortNumber = nextLineNumber;
2309
2310 for (aiop = 0; aiop < num_aiops; aiop++) {
2311 sResetAiopByNum(ctlp, aiop);
2312 sEnAiop(ctlp, aiop);
2313 num_chan = sGetAiopNumChan(ctlp, aiop);
2314 total_num_chan += num_chan;
2315 for (chan = 0; chan < num_chan; chan++)
2316 init_r_port(i, aiop, chan, NULL);
2317 }
2318 is_PCI[i] = 0;
2319 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2320 num_chan = sGetAiopNumChan(ctlp, 0);
2321 total_num_chan = num_chan;
2322 for (chan = 0; chan < num_chan; chan++)
2323 sModemReset(ctlp, chan, 1);
2324 msleep(500);
2325 for (chan = 0; chan < num_chan; chan++)
2326 sModemReset(ctlp, chan, 0);
2327 msleep(500);
2328 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2329 } else {
2330 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2331 }
2332 rocketModel[i].numPorts = total_num_chan;
2333 rocketModel[i].model = MODEL_ISA;
2334
2335 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2336 i, rcktpt_io_addr[i], num_aiops, type_string);
2337
2338 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2339 rocketModel[i].modelString,
2340 rocketModel[i].startingPortNumber,
2341 rocketModel[i].startingPortNumber +
2342 rocketModel[i].numPorts - 1);
2343
2344 return (1);
2345}
2346
2347static const struct tty_operations rocket_ops = {
2348 .open = rp_open,
2349 .close = rp_close,
2350 .write = rp_write,
2351 .put_char = rp_put_char,
2352 .write_room = rp_write_room,
2353 .chars_in_buffer = rp_chars_in_buffer,
2354 .flush_buffer = rp_flush_buffer,
2355 .ioctl = rp_ioctl,
2356 .throttle = rp_throttle,
2357 .unthrottle = rp_unthrottle,
2358 .set_termios = rp_set_termios,
2359 .stop = rp_stop,
2360 .start = rp_start,
2361 .hangup = rp_hangup,
2362 .break_ctl = rp_break,
2363 .send_xchar = rp_send_xchar,
2364 .wait_until_sent = rp_wait_until_sent,
2365 .tiocmget = rp_tiocmget,
2366 .tiocmset = rp_tiocmset,
2367};
2368
2369static const struct tty_port_operations rocket_port_ops = {
2370 .carrier_raised = carrier_raised,
2371 .dtr_rts = dtr_rts,
2372};
2373
2374/*
2375 * The module "startup" routine; it's run when the module is loaded.
2376 */
2377static int __init rp_init(void)
2378{
2379 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2380
2381 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2382 ROCKET_VERSION, ROCKET_DATE);
2383
2384 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2385 if (!rocket_driver)
2386 goto err;
2387
2388 /*
2389 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2390 * zero, use the default controller IO address of board1 + 0x40.
2391 */
2392 if (board1) {
2393 if (controller == 0)
2394 controller = board1 + 0x40;
2395 } else {
2396 controller = 0; /* Used as a flag, meaning no ISA boards */
2397 }
2398
2399 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2400 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2401 printk(KERN_ERR "Unable to reserve IO region for first "
2402 "configured ISA RocketPort controller 0x%lx. "
2403 "Driver exiting\n", controller);
2404 ret = -EBUSY;
2405 goto err_tty;
2406 }
2407
2408 /* Store ISA variable retrieved from command line or .conf file. */
2409 rcktpt_io_addr[0] = board1;
2410 rcktpt_io_addr[1] = board2;
2411 rcktpt_io_addr[2] = board3;
2412 rcktpt_io_addr[3] = board4;
2413
2414 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2415 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2416 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2417 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2418 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2419 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2420 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2421 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2422
2423 /*
2424 * Set up the tty driver structure and then register this
2425 * driver with the tty layer.
2426 */
2427
2428 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2429 rocket_driver->name = "ttyR";
2430 rocket_driver->driver_name = "Comtrol RocketPort";
2431 rocket_driver->major = TTY_ROCKET_MAJOR;
2432 rocket_driver->minor_start = 0;
2433 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2434 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2435 rocket_driver->init_termios = tty_std_termios;
2436 rocket_driver->init_termios.c_cflag =
2437 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2438 rocket_driver->init_termios.c_ispeed = 9600;
2439 rocket_driver->init_termios.c_ospeed = 9600;
2440#ifdef ROCKET_SOFT_FLOW
2441 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2442#endif
2443 tty_set_operations(rocket_driver, &rocket_ops);
2444
2445 ret = tty_register_driver(rocket_driver);
2446 if (ret < 0) {
2447 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2448 goto err_controller;
2449 }
2450
2451#ifdef ROCKET_DEBUG_OPEN
2452 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2453#endif
2454
2455 /*
2456 * OK, let's probe each of the controllers looking for boards. Any boards found
2457 * will be initialized here.
2458 */
2459 isa_boards_found = 0;
2460 pci_boards_found = 0;
2461
2462 for (i = 0; i < NUM_BOARDS; i++) {
2463 if (init_ISA(i))
2464 isa_boards_found++;
2465 }
2466
2467#ifdef CONFIG_PCI
2468 if (isa_boards_found < NUM_BOARDS)
2469 pci_boards_found = init_PCI(isa_boards_found);
2470#endif
2471
2472 max_board = pci_boards_found + isa_boards_found;
2473
2474 if (max_board == 0) {
2475 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2476 ret = -ENXIO;
2477 goto err_ttyu;
2478 }
2479
2480 return 0;
2481err_ttyu:
2482 tty_unregister_driver(rocket_driver);
2483err_controller:
2484 if (controller)
2485 release_region(controller, 4);
2486err_tty:
2487 put_tty_driver(rocket_driver);
2488err:
2489 return ret;
2490}
2491
2492
2493static void rp_cleanup_module(void)
2494{
2495 int retval;
2496 int i;
2497
2498 del_timer_sync(&rocket_timer);
2499
2500 retval = tty_unregister_driver(rocket_driver);
2501 if (retval)
2502 printk(KERN_ERR "Error %d while trying to unregister "
2503 "rocketport driver\n", -retval);
2504
2505 for (i = 0; i < MAX_RP_PORTS; i++)
2506 if (rp_table[i]) {
2507 tty_unregister_device(rocket_driver, i);
2508 tty_port_destroy(&rp_table[i]->port);
2509 kfree(rp_table[i]);
2510 }
2511
2512 put_tty_driver(rocket_driver);
2513
2514 for (i = 0; i < NUM_BOARDS; i++) {
2515 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2516 continue;
2517 release_region(rcktpt_io_addr[i], 64);
2518 }
2519 if (controller)
2520 release_region(controller, 4);
2521}
2522
2523/***************************************************************************
2524Function: sInitController
2525Purpose: Initialization of controller global registers and controller
2526 structure.
2527Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2528 IRQNum,Frequency,PeriodicOnly)
2529 CONTROLLER_T *CtlP; Ptr to controller structure
2530 int CtlNum; Controller number
2531 ByteIO_t MudbacIO; Mudbac base I/O address.
2532 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2533 This list must be in the order the AIOPs will be found on the
2534 controller. Once an AIOP in the list is not found, it is
2535 assumed that there are no more AIOPs on the controller.
2536 int AiopIOListSize; Number of addresses in AiopIOList
2537 int IRQNum; Interrupt Request number. Can be any of the following:
2538 0: Disable global interrupts
2539 3: IRQ 3
2540 4: IRQ 4
2541 5: IRQ 5
2542 9: IRQ 9
2543 10: IRQ 10
2544 11: IRQ 11
2545 12: IRQ 12
2546 15: IRQ 15
2547 Byte_t Frequency: A flag identifying the frequency
2548 of the periodic interrupt, can be any one of the following:
2549 FREQ_DIS - periodic interrupt disabled
2550 FREQ_137HZ - 137 Hertz
2551 FREQ_69HZ - 69 Hertz
2552 FREQ_34HZ - 34 Hertz
2553 FREQ_17HZ - 17 Hertz
2554 FREQ_9HZ - 9 Hertz
2555 FREQ_4HZ - 4 Hertz
2556 If IRQNum is set to 0 the Frequency parameter is
2557 overidden, it is forced to a value of FREQ_DIS.
2558 int PeriodicOnly: 1 if all interrupts except the periodic
2559 interrupt are to be blocked.
2560 0 is both the periodic interrupt and
2561 other channel interrupts are allowed.
2562 If IRQNum is set to 0 the PeriodicOnly parameter is
2563 overidden, it is forced to a value of 0.
2564Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2565 initialization failed.
2566
2567Comments:
2568 If periodic interrupts are to be disabled but AIOP interrupts
2569 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2570
2571 If interrupts are to be completely disabled set IRQNum to 0.
2572
2573 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2574 invalid combination.
2575
2576 This function performs initialization of global interrupt modes,
2577 but it does not actually enable global interrupts. To enable
2578 and disable global interrupts use functions sEnGlobalInt() and
2579 sDisGlobalInt(). Enabling of global interrupts is normally not
2580 done until all other initializations are complete.
2581
2582 Even if interrupts are globally enabled, they must also be
2583 individually enabled for each channel that is to generate
2584 interrupts.
2585
2586Warnings: No range checking on any of the parameters is done.
2587
2588 No context switches are allowed while executing this function.
2589
2590 After this function all AIOPs on the controller are disabled,
2591 they can be enabled with sEnAiop().
2592*/
2593static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2594 ByteIO_t * AiopIOList, int AiopIOListSize,
2595 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2596{
2597 int i;
2598 ByteIO_t io;
2599 int done;
2600
2601 CtlP->AiopIntrBits = aiop_intr_bits;
2602 CtlP->AltChanRingIndicator = 0;
2603 CtlP->CtlNum = CtlNum;
2604 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2605 CtlP->BusType = isISA;
2606 CtlP->MBaseIO = MudbacIO;
2607 CtlP->MReg1IO = MudbacIO + 1;
2608 CtlP->MReg2IO = MudbacIO + 2;
2609 CtlP->MReg3IO = MudbacIO + 3;
2610#if 1
2611 CtlP->MReg2 = 0; /* interrupt disable */
2612 CtlP->MReg3 = 0; /* no periodic interrupts */
2613#else
2614 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2615 CtlP->MReg2 = 0; /* interrupt disable */
2616 CtlP->MReg3 = 0; /* no periodic interrupts */
2617 } else {
2618 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2619 CtlP->MReg3 = Frequency; /* set frequency */
2620 if (PeriodicOnly) { /* periodic interrupt only */
2621 CtlP->MReg3 |= PERIODIC_ONLY;
2622 }
2623 }
2624#endif
2625 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2626 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2627 sControllerEOI(CtlP); /* clear EOI if warm init */
2628 /* Init AIOPs */
2629 CtlP->NumAiop = 0;
2630 for (i = done = 0; i < AiopIOListSize; i++) {
2631 io = AiopIOList[i];
2632 CtlP->AiopIO[i] = (WordIO_t) io;
2633 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2634 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2635 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2636 if (done)
2637 continue;
2638 sEnAiop(CtlP, i); /* enable the AIOP */
2639 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2640 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2641 done = 1; /* done looking for AIOPs */
2642 else {
2643 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2644 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2645 sOutB(io + _INDX_DATA, sClockPrescale);
2646 CtlP->NumAiop++; /* bump count of AIOPs */
2647 }
2648 sDisAiop(CtlP, i); /* disable AIOP */
2649 }
2650
2651 if (CtlP->NumAiop == 0)
2652 return (-1);
2653 else
2654 return (CtlP->NumAiop);
2655}
2656
2657/***************************************************************************
2658Function: sReadAiopID
2659Purpose: Read the AIOP idenfication number directly from an AIOP.
2660Call: sReadAiopID(io)
2661 ByteIO_t io: AIOP base I/O address
2662Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2663 is replace by an identifying number.
2664 Flag AIOPID_NULL if no valid AIOP is found
2665Warnings: No context switches are allowed while executing this function.
2666
2667*/
2668static int sReadAiopID(ByteIO_t io)
2669{
2670 Byte_t AiopID; /* ID byte from AIOP */
2671
2672 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2673 sOutB(io + _CMD_REG, 0x0);
2674 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2675 if (AiopID == 0x06)
2676 return (1);
2677 else /* AIOP does not exist */
2678 return (-1);
2679}
2680
2681/***************************************************************************
2682Function: sReadAiopNumChan
2683Purpose: Read the number of channels available in an AIOP directly from
2684 an AIOP.
2685Call: sReadAiopNumChan(io)
2686 WordIO_t io: AIOP base I/O address
2687Return: int: The number of channels available
2688Comments: The number of channels is determined by write/reads from identical
2689 offsets within the SRAM address spaces for channels 0 and 4.
2690 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2691 AIOP, otherwise it is an 8 channel.
2692Warnings: No context switches are allowed while executing this function.
2693*/
2694static int sReadAiopNumChan(WordIO_t io)
2695{
2696 Word_t x;
2697 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2698
2699 /* write to chan 0 SRAM */
2700 out32((DWordIO_t) io + _INDX_ADDR, R);
2701 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2702 x = sInW(io + _INDX_DATA);
2703 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2704 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2705 return (8);
2706 else
2707 return (4);
2708}
2709
2710/***************************************************************************
2711Function: sInitChan
2712Purpose: Initialization of a channel and channel structure
2713Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2714 CONTROLLER_T *CtlP; Ptr to controller structure
2715 CHANNEL_T *ChP; Ptr to channel structure
2716 int AiopNum; AIOP number within controller
2717 int ChanNum; Channel number within AIOP
2718Return: int: 1 if initialization succeeded, 0 if it fails because channel
2719 number exceeds number of channels available in AIOP.
2720Comments: This function must be called before a channel can be used.
2721Warnings: No range checking on any of the parameters is done.
2722
2723 No context switches are allowed while executing this function.
2724*/
2725static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2726 int ChanNum)
2727{
2728 int i;
2729 WordIO_t AiopIO;
2730 WordIO_t ChIOOff;
2731 Byte_t *ChR;
2732 Word_t ChOff;
2733 static Byte_t R[4];
2734 int brd9600;
2735
2736 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2737 return 0; /* exceeds num chans in AIOP */
2738
2739 /* Channel, AIOP, and controller identifiers */
2740 ChP->CtlP = CtlP;
2741 ChP->ChanID = CtlP->AiopID[AiopNum];
2742 ChP->AiopNum = AiopNum;
2743 ChP->ChanNum = ChanNum;
2744
2745 /* Global direct addresses */
2746 AiopIO = CtlP->AiopIO[AiopNum];
2747 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2748 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2749 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2750 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2751 ChP->IndexData = AiopIO + _INDX_DATA;
2752
2753 /* Channel direct addresses */
2754 ChIOOff = AiopIO + ChP->ChanNum * 2;
2755 ChP->TxRxData = ChIOOff + _TD0;
2756 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2757 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2758 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2759
2760 /* Initialize the channel from the RData array */
2761 for (i = 0; i < RDATASIZE; i += 4) {
2762 R[0] = RData[i];
2763 R[1] = RData[i + 1] + 0x10 * ChanNum;
2764 R[2] = RData[i + 2];
2765 R[3] = RData[i + 3];
2766 out32(ChP->IndexAddr, R);
2767 }
2768
2769 ChR = ChP->R;
2770 for (i = 0; i < RREGDATASIZE; i += 4) {
2771 ChR[i] = RRegData[i];
2772 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2773 ChR[i + 2] = RRegData[i + 2];
2774 ChR[i + 3] = RRegData[i + 3];
2775 }
2776
2777 /* Indexed registers */
2778 ChOff = (Word_t) ChanNum *0x1000;
2779
2780 if (sClockPrescale == 0x14)
2781 brd9600 = 47;
2782 else
2783 brd9600 = 23;
2784
2785 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2786 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2787 ChP->BaudDiv[2] = (Byte_t) brd9600;
2788 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2789 out32(ChP->IndexAddr, ChP->BaudDiv);
2790
2791 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2792 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2793 ChP->TxControl[2] = 0;
2794 ChP->TxControl[3] = 0;
2795 out32(ChP->IndexAddr, ChP->TxControl);
2796
2797 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2798 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2799 ChP->RxControl[2] = 0;
2800 ChP->RxControl[3] = 0;
2801 out32(ChP->IndexAddr, ChP->RxControl);
2802
2803 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2804 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2805 ChP->TxEnables[2] = 0;
2806 ChP->TxEnables[3] = 0;
2807 out32(ChP->IndexAddr, ChP->TxEnables);
2808
2809 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2810 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2811 ChP->TxCompare[2] = 0;
2812 ChP->TxCompare[3] = 0;
2813 out32(ChP->IndexAddr, ChP->TxCompare);
2814
2815 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2816 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2817 ChP->TxReplace1[2] = 0;
2818 ChP->TxReplace1[3] = 0;
2819 out32(ChP->IndexAddr, ChP->TxReplace1);
2820
2821 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2822 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2823 ChP->TxReplace2[2] = 0;
2824 ChP->TxReplace2[3] = 0;
2825 out32(ChP->IndexAddr, ChP->TxReplace2);
2826
2827 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2828 ChP->TxFIFO = ChOff + _TX_FIFO;
2829
2830 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2831 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2832 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2833 sOutW(ChP->IndexData, 0);
2834 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2835 ChP->RxFIFO = ChOff + _RX_FIFO;
2836
2837 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2838 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2839 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2840 sOutW(ChP->IndexData, 0);
2841 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2842 sOutW(ChP->IndexData, 0);
2843 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2844 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2845 sOutB(ChP->IndexData, 0);
2846 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2847 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2848 sOutB(ChP->IndexData, 0);
2849 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2850 sEnRxProcessor(ChP); /* start the Rx processor */
2851
2852 return 1;
2853}
2854
2855/***************************************************************************
2856Function: sStopRxProcessor
2857Purpose: Stop the receive processor from processing a channel.
2858Call: sStopRxProcessor(ChP)
2859 CHANNEL_T *ChP; Ptr to channel structure
2860
2861Comments: The receive processor can be started again with sStartRxProcessor().
2862 This function causes the receive processor to skip over the
2863 stopped channel. It does not stop it from processing other channels.
2864
2865Warnings: No context switches are allowed while executing this function.
2866
2867 Do not leave the receive processor stopped for more than one
2868 character time.
2869
2870 After calling this function a delay of 4 uS is required to ensure
2871 that the receive processor is no longer processing this channel.
2872*/
2873static void sStopRxProcessor(CHANNEL_T * ChP)
2874{
2875 Byte_t R[4];
2876
2877 R[0] = ChP->R[0];
2878 R[1] = ChP->R[1];
2879 R[2] = 0x0a;
2880 R[3] = ChP->R[3];
2881 out32(ChP->IndexAddr, R);
2882}
2883
2884/***************************************************************************
2885Function: sFlushRxFIFO
2886Purpose: Flush the Rx FIFO
2887Call: sFlushRxFIFO(ChP)
2888 CHANNEL_T *ChP; Ptr to channel structure
2889Return: void
2890Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2891 while it is being flushed the receive processor is stopped
2892 and the transmitter is disabled. After these operations a
2893 4 uS delay is done before clearing the pointers to allow
2894 the receive processor to stop. These items are handled inside
2895 this function.
2896Warnings: No context switches are allowed while executing this function.
2897*/
2898static void sFlushRxFIFO(CHANNEL_T * ChP)
2899{
2900 int i;
2901 Byte_t Ch; /* channel number within AIOP */
2902 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2903
2904 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2905 return; /* don't need to flush */
2906
2907 RxFIFOEnabled = 0;
2908 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2909 RxFIFOEnabled = 1;
2910 sDisRxFIFO(ChP); /* disable it */
2911 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2912 sInB(ChP->IntChan); /* depends on bus i/o timing */
2913 }
2914 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2915 Ch = (Byte_t) sGetChanNum(ChP);
2916 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2917 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2918 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2919 sOutW(ChP->IndexData, 0);
2920 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2921 sOutW(ChP->IndexData, 0);
2922 if (RxFIFOEnabled)
2923 sEnRxFIFO(ChP); /* enable Rx FIFO */
2924}
2925
2926/***************************************************************************
2927Function: sFlushTxFIFO
2928Purpose: Flush the Tx FIFO
2929Call: sFlushTxFIFO(ChP)
2930 CHANNEL_T *ChP; Ptr to channel structure
2931Return: void
2932Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2933 while it is being flushed the receive processor is stopped
2934 and the transmitter is disabled. After these operations a
2935 4 uS delay is done before clearing the pointers to allow
2936 the receive processor to stop. These items are handled inside
2937 this function.
2938Warnings: No context switches are allowed while executing this function.
2939*/
2940static void sFlushTxFIFO(CHANNEL_T * ChP)
2941{
2942 int i;
2943 Byte_t Ch; /* channel number within AIOP */
2944 int TxEnabled; /* 1 if transmitter enabled */
2945
2946 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2947 return; /* don't need to flush */
2948
2949 TxEnabled = 0;
2950 if (ChP->TxControl[3] & TX_ENABLE) {
2951 TxEnabled = 1;
2952 sDisTransmit(ChP); /* disable transmitter */
2953 }
2954 sStopRxProcessor(ChP); /* stop Rx processor */
2955 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2956 sInB(ChP->IntChan); /* depends on bus i/o timing */
2957 Ch = (Byte_t) sGetChanNum(ChP);
2958 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2959 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2960 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2961 sOutW(ChP->IndexData, 0);
2962 if (TxEnabled)
2963 sEnTransmit(ChP); /* enable transmitter */
2964 sStartRxProcessor(ChP); /* restart Rx processor */
2965}
2966
2967/***************************************************************************
2968Function: sWriteTxPrioByte
2969Purpose: Write a byte of priority transmit data to a channel
2970Call: sWriteTxPrioByte(ChP,Data)
2971 CHANNEL_T *ChP; Ptr to channel structure
2972 Byte_t Data; The transmit data byte
2973
2974Return: int: 1 if the bytes is successfully written, otherwise 0.
2975
2976Comments: The priority byte is transmitted before any data in the Tx FIFO.
2977
2978Warnings: No context switches are allowed while executing this function.
2979*/
2980static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2981{
2982 Byte_t DWBuf[4]; /* buffer for double word writes */
2983 Word_t *WordPtr; /* must be far because Win SS != DS */
2984 register DWordIO_t IndexAddr;
2985
2986 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2987 IndexAddr = ChP->IndexAddr;
2988 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2989 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2990 return (0); /* nothing sent */
2991
2992 WordPtr = (Word_t *) (&DWBuf[0]);
2993 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2994
2995 DWBuf[2] = Data; /* data byte value */
2996 out32(IndexAddr, DWBuf); /* write it out */
2997
2998 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2999
3000 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
3001 DWBuf[3] = 0; /* priority buffer pointer */
3002 out32(IndexAddr, DWBuf); /* write it out */
3003 } else { /* write it to Tx FIFO */
3004
3005 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
3006 }
3007 return (1); /* 1 byte sent */
3008}
3009
3010/***************************************************************************
3011Function: sEnInterrupts
3012Purpose: Enable one or more interrupts for a channel
3013Call: sEnInterrupts(ChP,Flags)
3014 CHANNEL_T *ChP; Ptr to channel structure
3015 Word_t Flags: Interrupt enable flags, can be any combination
3016 of the following flags:
3017 TXINT_EN: Interrupt on Tx FIFO empty
3018 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3019 sSetRxTrigger())
3020 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3021 MCINT_EN: Interrupt on modem input change
3022 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3023 Interrupt Channel Register.
3024Return: void
3025Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3026 enabled. If an interrupt enable flag is not set in Flags, that
3027 interrupt will not be changed. Interrupts can be disabled with
3028 function sDisInterrupts().
3029
3030 This function sets the appropriate bit for the channel in the AIOP's
3031 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3032 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3033
3034 Interrupts must also be globally enabled before channel interrupts
3035 will be passed on to the host. This is done with function
3036 sEnGlobalInt().
3037
3038 In some cases it may be desirable to disable interrupts globally but
3039 enable channel interrupts. This would allow the global interrupt
3040 status register to be used to determine which AIOPs need service.
3041*/
3042static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3043{
3044 Byte_t Mask; /* Interrupt Mask Register */
3045
3046 ChP->RxControl[2] |=
3047 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3048
3049 out32(ChP->IndexAddr, ChP->RxControl);
3050
3051 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3052
3053 out32(ChP->IndexAddr, ChP->TxControl);
3054
3055 if (Flags & CHANINT_EN) {
3056 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3057 sOutB(ChP->IntMask, Mask);
3058 }
3059}
3060
3061/***************************************************************************
3062Function: sDisInterrupts
3063Purpose: Disable one or more interrupts for a channel
3064Call: sDisInterrupts(ChP,Flags)
3065 CHANNEL_T *ChP; Ptr to channel structure
3066 Word_t Flags: Interrupt flags, can be any combination
3067 of the following flags:
3068 TXINT_EN: Interrupt on Tx FIFO empty
3069 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3070 sSetRxTrigger())
3071 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3072 MCINT_EN: Interrupt on modem input change
3073 CHANINT_EN: Disable channel interrupt signal to the
3074 AIOP's Interrupt Channel Register.
3075Return: void
3076Comments: If an interrupt flag is set in Flags, that interrupt will be
3077 disabled. If an interrupt flag is not set in Flags, that
3078 interrupt will not be changed. Interrupts can be enabled with
3079 function sEnInterrupts().
3080
3081 This function clears the appropriate bit for the channel in the AIOP's
3082 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3083 this channel's bit from being set in the AIOP's Interrupt Channel
3084 Register.
3085*/
3086static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3087{
3088 Byte_t Mask; /* Interrupt Mask Register */
3089
3090 ChP->RxControl[2] &=
3091 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3092 out32(ChP->IndexAddr, ChP->RxControl);
3093 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3094 out32(ChP->IndexAddr, ChP->TxControl);
3095
3096 if (Flags & CHANINT_EN) {
3097 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3098 sOutB(ChP->IntMask, Mask);
3099 }
3100}
3101
3102static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3103{
3104 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3105}
3106
3107/*
3108 * Not an official SSCI function, but how to reset RocketModems.
3109 * ISA bus version
3110 */
3111static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3112{
3113 ByteIO_t addr;
3114 Byte_t val;
3115
3116 addr = CtlP->AiopIO[0] + 0x400;
3117 val = sInB(CtlP->MReg3IO);
3118 /* if AIOP[1] is not enabled, enable it */
3119 if ((val & 2) == 0) {
3120 val = sInB(CtlP->MReg2IO);
3121 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3122 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3123 }
3124
3125 sEnAiop(CtlP, 1);
3126 if (!on)
3127 addr += 8;
3128 sOutB(addr + chan, 0); /* apply or remove reset */
3129 sDisAiop(CtlP, 1);
3130}
3131
3132/*
3133 * Not an official SSCI function, but how to reset RocketModems.
3134 * PCI bus version
3135 */
3136static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3137{
3138 ByteIO_t addr;
3139
3140 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3141 if (!on)
3142 addr += 8;
3143 sOutB(addr + chan, 0); /* apply or remove reset */
3144}
3145
3146/* Returns the line number given the controller (board), aiop and channel number */
3147static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3148{
3149 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3150}
3151
3152/*
3153 * Stores the line number associated with a given controller (board), aiop
3154 * and channel number.
3155 * Returns: The line number assigned
3156 */
3157static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3158{
3159 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3160 return (nextLineNumber - 1);
3161}