Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * RocketPort device driver for Linux
   3 *
   4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   5 * 
   6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   7 * 
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of the
  11 * License, or (at your option) any later version.
  12 * 
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 * 
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Kernel Synchronization:
  25 *
  26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  27 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  28 * are not used.
  29 *
  30 * Critical data: 
  31 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  32 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  33 *    a per port spinlock.
  34 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  35 *    is data to be transmitted.  Protected by atomic bit operations.
  36 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  37 * 
  38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  39 * simultaneous access to the same port by more than one process.
  40 */
  41
  42/****** Defines ******/
  43#define ROCKET_PARANOIA_CHECK
  44#define ROCKET_DISABLE_SIMUSAGE
  45
  46#undef ROCKET_SOFT_FLOW
  47#undef ROCKET_DEBUG_OPEN
  48#undef ROCKET_DEBUG_INTR
  49#undef ROCKET_DEBUG_WRITE
  50#undef ROCKET_DEBUG_FLOW
  51#undef ROCKET_DEBUG_THROTTLE
  52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  53#undef ROCKET_DEBUG_RECEIVE
  54#undef ROCKET_DEBUG_HANGUP
  55#undef REV_PCI_ORDER
  56#undef ROCKET_DEBUG_IO
  57
  58#define POLL_PERIOD (HZ/100)	/*  Polling period .01 seconds (10ms) */
  59
  60/****** Kernel includes ******/
  61
  62#include <linux/module.h>
  63#include <linux/errno.h>
  64#include <linux/major.h>
  65#include <linux/kernel.h>
  66#include <linux/signal.h>
  67#include <linux/slab.h>
  68#include <linux/mm.h>
  69#include <linux/sched.h>
  70#include <linux/timer.h>
  71#include <linux/interrupt.h>
  72#include <linux/tty.h>
  73#include <linux/tty_driver.h>
  74#include <linux/tty_flip.h>
  75#include <linux/serial.h>
  76#include <linux/string.h>
  77#include <linux/fcntl.h>
  78#include <linux/ptrace.h>
  79#include <linux/mutex.h>
  80#include <linux/ioport.h>
  81#include <linux/delay.h>
  82#include <linux/completion.h>
  83#include <linux/wait.h>
  84#include <linux/pci.h>
  85#include <linux/uaccess.h>
  86#include <linux/atomic.h>
  87#include <asm/unaligned.h>
  88#include <linux/bitops.h>
  89#include <linux/spinlock.h>
  90#include <linux/init.h>
  91
  92/****** RocketPort includes ******/
  93
  94#include "rocket_int.h"
  95#include "rocket.h"
  96
  97#define ROCKET_VERSION "2.09"
  98#define ROCKET_DATE "12-June-2003"
  99
 100/****** RocketPort Local Variables ******/
 101
 102static void rp_do_poll(unsigned long dummy);
 103
 104static struct tty_driver *rocket_driver;
 105
 106static struct rocket_version driver_version = {	
 107	ROCKET_VERSION, ROCKET_DATE
 108};
 109
 110static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
 111static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
 112						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 113static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
 115
 116static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 117static unsigned long board2;
 118static unsigned long board3;
 119static unsigned long board4;
 120static unsigned long controller;
 121static bool support_low_speed;
 122static unsigned long modem1;
 123static unsigned long modem2;
 124static unsigned long modem3;
 125static unsigned long modem4;
 126static unsigned long pc104_1[8];
 127static unsigned long pc104_2[8];
 128static unsigned long pc104_3[8];
 129static unsigned long pc104_4[8];
 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 131
 132static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 133static unsigned long rcktpt_io_addr[NUM_BOARDS];
 134static int rcktpt_type[NUM_BOARDS];
 135static int is_PCI[NUM_BOARDS];
 136static rocketModel_t rocketModel[NUM_BOARDS];
 137static int max_board;
 138static const struct tty_port_operations rocket_port_ops;
 139
 140/*
 141 * The following arrays define the interrupt bits corresponding to each AIOP.
 142 * These bits are different between the ISA and regular PCI boards and the
 143 * Universal PCI boards.
 144 */
 145
 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 147	AIOP_INTR_BIT_0,
 148	AIOP_INTR_BIT_1,
 149	AIOP_INTR_BIT_2,
 150	AIOP_INTR_BIT_3
 151};
 152
 153#ifdef CONFIG_PCI
 154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 155	UPCI_AIOP_INTR_BIT_0,
 156	UPCI_AIOP_INTR_BIT_1,
 157	UPCI_AIOP_INTR_BIT_2,
 158	UPCI_AIOP_INTR_BIT_3
 159};
 160#endif
 161
 162static Byte_t RData[RDATASIZE] = {
 163	0x00, 0x09, 0xf6, 0x82,
 164	0x02, 0x09, 0x86, 0xfb,
 165	0x04, 0x09, 0x00, 0x0a,
 166	0x06, 0x09, 0x01, 0x0a,
 167	0x08, 0x09, 0x8a, 0x13,
 168	0x0a, 0x09, 0xc5, 0x11,
 169	0x0c, 0x09, 0x86, 0x85,
 170	0x0e, 0x09, 0x20, 0x0a,
 171	0x10, 0x09, 0x21, 0x0a,
 172	0x12, 0x09, 0x41, 0xff,
 173	0x14, 0x09, 0x82, 0x00,
 174	0x16, 0x09, 0x82, 0x7b,
 175	0x18, 0x09, 0x8a, 0x7d,
 176	0x1a, 0x09, 0x88, 0x81,
 177	0x1c, 0x09, 0x86, 0x7a,
 178	0x1e, 0x09, 0x84, 0x81,
 179	0x20, 0x09, 0x82, 0x7c,
 180	0x22, 0x09, 0x0a, 0x0a
 181};
 182
 183static Byte_t RRegData[RREGDATASIZE] = {
 184	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 185	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 186	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 187	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 188	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 189	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 190	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 191	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 192	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 193	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 194	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 195	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 196	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 197};
 198
 199static CONTROLLER_T sController[CTL_SIZE] = {
 200	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 201	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 202	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 203	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 204	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 205	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 206	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 207	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 208};
 209
 210static Byte_t sBitMapClrTbl[8] = {
 211	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 212};
 213
 214static Byte_t sBitMapSetTbl[8] = {
 215	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 216};
 217
 218static int sClockPrescale = 0x14;
 219
 220/*
 221 *  Line number is the ttySIx number (x), the Minor number.  We 
 222 *  assign them sequentially, starting at zero.  The following 
 223 *  array keeps track of the line number assigned to a given board/aiop/channel.
 224 */
 225static unsigned char lineNumbers[MAX_RP_PORTS];
 226static unsigned long nextLineNumber;
 227
 228/*****  RocketPort Static Prototypes   *********/
 229static int __init init_ISA(int i);
 230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 231static void rp_flush_buffer(struct tty_struct *tty);
 
 232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 234static void rp_start(struct tty_struct *tty);
 235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 236		     int ChanNum);
 237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 238static void sFlushRxFIFO(CHANNEL_T * ChP);
 239static void sFlushTxFIFO(CHANNEL_T * ChP);
 240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 
 
 
 
 
 245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 246			   ByteIO_t * AiopIOList, int AiopIOListSize,
 247			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 248static int sReadAiopID(ByteIO_t io);
 249static int sReadAiopNumChan(WordIO_t io);
 250
 251MODULE_AUTHOR("Theodore Ts'o");
 252MODULE_DESCRIPTION("Comtrol RocketPort driver");
 253module_param(board1, ulong, 0);
 254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 255module_param(board2, ulong, 0);
 256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 257module_param(board3, ulong, 0);
 258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 259module_param(board4, ulong, 0);
 260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 261module_param(controller, ulong, 0);
 262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 263module_param(support_low_speed, bool, 0);
 264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 265module_param(modem1, ulong, 0);
 266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 267module_param(modem2, ulong, 0);
 268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 269module_param(modem3, ulong, 0);
 270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 271module_param(modem4, ulong, 0);
 272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 273module_param_array(pc104_1, ulong, NULL, 0);
 274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 275module_param_array(pc104_2, ulong, NULL, 0);
 276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 277module_param_array(pc104_3, ulong, NULL, 0);
 278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 279module_param_array(pc104_4, ulong, NULL, 0);
 280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 281
 282static int rp_init(void);
 283static void rp_cleanup_module(void);
 284
 285module_init(rp_init);
 286module_exit(rp_cleanup_module);
 287
 288
 289MODULE_LICENSE("Dual BSD/GPL");
 290
 291/*************************************************************************/
 292/*                     Module code starts here                           */
 293
 294static inline int rocket_paranoia_check(struct r_port *info,
 295					const char *routine)
 296{
 297#ifdef ROCKET_PARANOIA_CHECK
 298	if (!info)
 299		return 1;
 300	if (info->magic != RPORT_MAGIC) {
 301		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 302				"struct in %s\n", routine);
 303		return 1;
 304	}
 305#endif
 306	return 0;
 307}
 308
 309
 310/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 311 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 312 *  tty layer.  
 313 */
 314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
 315		unsigned int ChanStatus)
 
 316{
 317	unsigned int CharNStat;
 318	int ToRecv, wRecv, space;
 319	unsigned char *cbuf;
 320
 321	ToRecv = sGetRxCnt(cp);
 322#ifdef ROCKET_DEBUG_INTR
 323	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 324#endif
 325	if (ToRecv == 0)
 326		return;
 327
 328	/*
 329	 * if status indicates there are errored characters in the
 330	 * FIFO, then enter status mode (a word in FIFO holds
 331	 * character and status).
 332	 */
 333	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 334		if (!(ChanStatus & STATMODE)) {
 335#ifdef ROCKET_DEBUG_RECEIVE
 336			printk(KERN_INFO "Entering STATMODE...\n");
 337#endif
 338			ChanStatus |= STATMODE;
 339			sEnRxStatusMode(cp);
 340		}
 341	}
 342
 343	/* 
 344	 * if we previously entered status mode, then read down the
 345	 * FIFO one word at a time, pulling apart the character and
 346	 * the status.  Update error counters depending on status
 347	 */
 348	if (ChanStatus & STATMODE) {
 349#ifdef ROCKET_DEBUG_RECEIVE
 350		printk(KERN_INFO "Ignore %x, read %x...\n",
 351			info->ignore_status_mask, info->read_status_mask);
 352#endif
 353		while (ToRecv) {
 354			char flag;
 355
 356			CharNStat = sInW(sGetTxRxDataIO(cp));
 357#ifdef ROCKET_DEBUG_RECEIVE
 358			printk(KERN_INFO "%x...\n", CharNStat);
 359#endif
 360			if (CharNStat & STMBREAKH)
 361				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 362			if (CharNStat & info->ignore_status_mask) {
 363				ToRecv--;
 364				continue;
 365			}
 366			CharNStat &= info->read_status_mask;
 367			if (CharNStat & STMBREAKH)
 368				flag = TTY_BREAK;
 369			else if (CharNStat & STMPARITYH)
 370				flag = TTY_PARITY;
 371			else if (CharNStat & STMFRAMEH)
 372				flag = TTY_FRAME;
 373			else if (CharNStat & STMRCVROVRH)
 374				flag = TTY_OVERRUN;
 375			else
 376				flag = TTY_NORMAL;
 377			tty_insert_flip_char(&info->port, CharNStat & 0xff,
 378					flag);
 379			ToRecv--;
 380		}
 381
 382		/*
 383		 * after we've emptied the FIFO in status mode, turn
 384		 * status mode back off
 385		 */
 386		if (sGetRxCnt(cp) == 0) {
 387#ifdef ROCKET_DEBUG_RECEIVE
 388			printk(KERN_INFO "Status mode off.\n");
 389#endif
 390			sDisRxStatusMode(cp);
 391		}
 392	} else {
 393		/*
 394		 * we aren't in status mode, so read down the FIFO two
 395		 * characters at time by doing repeated word IO
 396		 * transfer.
 397		 */
 398		space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
 399		if (space < ToRecv) {
 400#ifdef ROCKET_DEBUG_RECEIVE
 401			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 402#endif
 403			if (space <= 0)
 404				return;
 405			ToRecv = space;
 406		}
 407		wRecv = ToRecv >> 1;
 408		if (wRecv)
 409			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 410		if (ToRecv & 1)
 411			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 412	}
 413	/*  Push the data up to the tty layer */
 414	tty_flip_buffer_push(&info->port);
 415}
 416
 417/*
 418 *  Serial port transmit data function.  Called from the timer polling loop as a 
 419 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 420 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 421 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 422 */
 423static void rp_do_transmit(struct r_port *info)
 424{
 425	int c;
 426	CHANNEL_t *cp = &info->channel;
 427	struct tty_struct *tty;
 428	unsigned long flags;
 429
 430#ifdef ROCKET_DEBUG_INTR
 431	printk(KERN_DEBUG "%s\n", __func__);
 432#endif
 433	if (!info)
 434		return;
 435	tty = tty_port_tty_get(&info->port);
 436
 437	if (tty == NULL) {
 438		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 439		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 440		return;
 441	}
 442
 443	spin_lock_irqsave(&info->slock, flags);
 444	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 445
 446	/*  Loop sending data to FIFO until done or FIFO full */
 447	while (1) {
 448		if (tty->stopped)
 449			break;
 450		c = min(info->xmit_fifo_room, info->xmit_cnt);
 451		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 452		if (c <= 0 || info->xmit_fifo_room <= 0)
 453			break;
 454		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 455		if (c & 1)
 456			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 457		info->xmit_tail += c;
 458		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 459		info->xmit_cnt -= c;
 460		info->xmit_fifo_room -= c;
 461#ifdef ROCKET_DEBUG_INTR
 462		printk(KERN_INFO "tx %d chars...\n", c);
 463#endif
 464	}
 465
 466	if (info->xmit_cnt == 0)
 467		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 468
 469	if (info->xmit_cnt < WAKEUP_CHARS) {
 470		tty_wakeup(tty);
 471#ifdef ROCKETPORT_HAVE_POLL_WAIT
 472		wake_up_interruptible(&tty->poll_wait);
 473#endif
 474	}
 475
 476	spin_unlock_irqrestore(&info->slock, flags);
 477	tty_kref_put(tty);
 478
 479#ifdef ROCKET_DEBUG_INTR
 480	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 481	       info->xmit_tail, info->xmit_fifo_room);
 482#endif
 483}
 484
 485/*
 486 *  Called when a serial port signals it has read data in it's RX FIFO.
 487 *  It checks what interrupts are pending and services them, including
 488 *  receiving serial data.  
 489 */
 490static void rp_handle_port(struct r_port *info)
 491{
 492	CHANNEL_t *cp;
 
 493	unsigned int IntMask, ChanStatus;
 494
 495	if (!info)
 496		return;
 497
 498	if (!tty_port_initialized(&info->port)) {
 499		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 500				"info->flags & NOT_INIT\n");
 501		return;
 502	}
 503
 
 
 
 
 
 504	cp = &info->channel;
 505
 506	IntMask = sGetChanIntID(cp) & info->intmask;
 507#ifdef ROCKET_DEBUG_INTR
 508	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 509#endif
 510	ChanStatus = sGetChanStatus(cp);
 511	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 512		rp_do_receive(info, cp, ChanStatus);
 513	}
 514	if (IntMask & DELTA_CD) {	/* CD change  */
 515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 516		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 517		       (ChanStatus & CD_ACT) ? "on" : "off");
 518#endif
 519		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 520#ifdef ROCKET_DEBUG_HANGUP
 521			printk(KERN_INFO "CD drop, calling hangup.\n");
 522#endif
 523			tty_port_tty_hangup(&info->port, false);
 524		}
 525		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 526		wake_up_interruptible(&info->port.open_wait);
 527	}
 528#ifdef ROCKET_DEBUG_INTR
 529	if (IntMask & DELTA_CTS) {	/* CTS change */
 530		printk(KERN_INFO "CTS change...\n");
 531	}
 532	if (IntMask & DELTA_DSR) {	/* DSR change */
 533		printk(KERN_INFO "DSR change...\n");
 534	}
 535#endif
 
 536}
 537
 538/*
 539 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 540 */
 541static void rp_do_poll(unsigned long dummy)
 542{
 543	CONTROLLER_t *ctlp;
 544	int ctrl, aiop, ch, line;
 545	unsigned int xmitmask, i;
 546	unsigned int CtlMask;
 547	unsigned char AiopMask;
 548	Word_t bit;
 549
 550	/*  Walk through all the boards (ctrl's) */
 551	for (ctrl = 0; ctrl < max_board; ctrl++) {
 552		if (rcktpt_io_addr[ctrl] <= 0)
 553			continue;
 554
 555		/*  Get a ptr to the board's control struct */
 556		ctlp = sCtlNumToCtlPtr(ctrl);
 557
 558		/*  Get the interrupt status from the board */
 559#ifdef CONFIG_PCI
 560		if (ctlp->BusType == isPCI)
 561			CtlMask = sPCIGetControllerIntStatus(ctlp);
 562		else
 563#endif
 564			CtlMask = sGetControllerIntStatus(ctlp);
 565
 566		/*  Check if any AIOP read bits are set */
 567		for (aiop = 0; CtlMask; aiop++) {
 568			bit = ctlp->AiopIntrBits[aiop];
 569			if (CtlMask & bit) {
 570				CtlMask &= ~bit;
 571				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 572
 573				/*  Check if any port read bits are set */
 574				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 575					if (AiopMask & 1) {
 576
 577						/*  Get the line number (/dev/ttyRx number). */
 578						/*  Read the data from the port. */
 579						line = GetLineNumber(ctrl, aiop, ch);
 580						rp_handle_port(rp_table[line]);
 581					}
 582				}
 583			}
 584		}
 585
 586		xmitmask = xmit_flags[ctrl];
 587
 588		/*
 589		 *  xmit_flags contains bit-significant flags, indicating there is data
 590		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 591		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 592		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 593		 */
 594		if (xmitmask) {
 595			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 596				if (xmitmask & (1 << i)) {
 597					aiop = (i & 0x18) >> 3;
 598					ch = i & 0x07;
 599					line = GetLineNumber(ctrl, aiop, ch);
 600					rp_do_transmit(rp_table[line]);
 601				}
 602			}
 603		}
 604	}
 605
 606	/*
 607	 * Reset the timer so we get called at the next clock tick (10ms).
 608	 */
 609	if (atomic_read(&rp_num_ports_open))
 610		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 611}
 612
 613/*
 614 *  Initializes the r_port structure for a port, as well as enabling the port on 
 615 *  the board.  
 616 *  Inputs:  board, aiop, chan numbers
 617 */
 618static void __init
 619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 620{
 621	unsigned rocketMode;
 622	struct r_port *info;
 623	int line;
 624	CONTROLLER_T *ctlp;
 625
 626	/*  Get the next available line number */
 627	line = SetLineNumber(board, aiop, chan);
 628
 629	ctlp = sCtlNumToCtlPtr(board);
 630
 631	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 632	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 633	if (!info) {
 634		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 635				line);
 636		return;
 637	}
 638
 639	info->magic = RPORT_MAGIC;
 640	info->line = line;
 641	info->ctlp = ctlp;
 642	info->board = board;
 643	info->aiop = aiop;
 644	info->chan = chan;
 645	tty_port_init(&info->port);
 646	info->port.ops = &rocket_port_ops;
 
 647	info->flags &= ~ROCKET_MODE_MASK;
 648	switch (pc104[board][line]) {
 649	case 422:
 650		info->flags |= ROCKET_MODE_RS422;
 651		break;
 652	case 485:
 653		info->flags |= ROCKET_MODE_RS485;
 654		break;
 655	case 232:
 656	default:
 657		info->flags |= ROCKET_MODE_RS232;
 658		break;
 659	}
 660
 661	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 662	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 663		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 664				board, aiop, chan);
 665		tty_port_destroy(&info->port);
 666		kfree(info);
 667		return;
 668	}
 669
 670	rocketMode = info->flags & ROCKET_MODE_MASK;
 671
 672	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 673		sEnRTSToggle(&info->channel);
 674	else
 675		sDisRTSToggle(&info->channel);
 676
 677	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 678		switch (rocketMode) {
 679		case ROCKET_MODE_RS485:
 680			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 681			break;
 682		case ROCKET_MODE_RS422:
 683			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 684			break;
 685		case ROCKET_MODE_RS232:
 686		default:
 687			if (info->flags & ROCKET_RTS_TOGGLE)
 688				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 689			else
 690				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 691			break;
 692		}
 693	}
 694	spin_lock_init(&info->slock);
 695	mutex_init(&info->write_mtx);
 696	rp_table[line] = info;
 697	tty_port_register_device(&info->port, rocket_driver, line,
 698			pci_dev ? &pci_dev->dev : NULL);
 699}
 700
 701/*
 702 *  Configures a rocketport port according to its termio settings.  Called from 
 703 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 704 */
 705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 706			     struct ktermios *old_termios)
 707{
 708	unsigned cflag;
 709	unsigned long flags;
 710	unsigned rocketMode;
 711	int bits, baud, divisor;
 712	CHANNEL_t *cp;
 713	struct ktermios *t = &tty->termios;
 714
 715	cp = &info->channel;
 716	cflag = t->c_cflag;
 717
 718	/* Byte size and parity */
 719	if ((cflag & CSIZE) == CS8) {
 720		sSetData8(cp);
 721		bits = 10;
 722	} else {
 723		sSetData7(cp);
 724		bits = 9;
 725	}
 726	if (cflag & CSTOPB) {
 727		sSetStop2(cp);
 728		bits++;
 729	} else {
 730		sSetStop1(cp);
 731	}
 732
 733	if (cflag & PARENB) {
 734		sEnParity(cp);
 735		bits++;
 736		if (cflag & PARODD) {
 737			sSetOddParity(cp);
 738		} else {
 739			sSetEvenParity(cp);
 740		}
 741	} else {
 742		sDisParity(cp);
 743	}
 744
 745	/* baud rate */
 746	baud = tty_get_baud_rate(tty);
 747	if (!baud)
 748		baud = 9600;
 749	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 750	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 751		baud = tty_termios_baud_rate(old_termios);
 752		if (!baud)
 753			baud = 9600;
 754		divisor = (rp_baud_base[info->board] / baud) - 1;
 755	}
 756	if (divisor >= 8192 || divisor < 0) {
 757		baud = 9600;
 758		divisor = (rp_baud_base[info->board] / baud) - 1;
 759	}
 760	info->cps = baud / bits;
 761	sSetBaud(cp, divisor);
 762
 763	/* FIXME: Should really back compute a baud rate from the divisor */
 764	tty_encode_baud_rate(tty, baud, baud);
 765
 766	if (cflag & CRTSCTS) {
 767		info->intmask |= DELTA_CTS;
 768		sEnCTSFlowCtl(cp);
 769	} else {
 770		info->intmask &= ~DELTA_CTS;
 771		sDisCTSFlowCtl(cp);
 772	}
 773	if (cflag & CLOCAL) {
 774		info->intmask &= ~DELTA_CD;
 775	} else {
 776		spin_lock_irqsave(&info->slock, flags);
 777		if (sGetChanStatus(cp) & CD_ACT)
 778			info->cd_status = 1;
 779		else
 780			info->cd_status = 0;
 781		info->intmask |= DELTA_CD;
 782		spin_unlock_irqrestore(&info->slock, flags);
 783	}
 784
 785	/*
 786	 * Handle software flow control in the board
 787	 */
 788#ifdef ROCKET_SOFT_FLOW
 789	if (I_IXON(tty)) {
 790		sEnTxSoftFlowCtl(cp);
 791		if (I_IXANY(tty)) {
 792			sEnIXANY(cp);
 793		} else {
 794			sDisIXANY(cp);
 795		}
 796		sSetTxXONChar(cp, START_CHAR(tty));
 797		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 798	} else {
 799		sDisTxSoftFlowCtl(cp);
 800		sDisIXANY(cp);
 801		sClrTxXOFF(cp);
 802	}
 803#endif
 804
 805	/*
 806	 * Set up ignore/read mask words
 807	 */
 808	info->read_status_mask = STMRCVROVRH | 0xFF;
 809	if (I_INPCK(tty))
 810		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 811	if (I_BRKINT(tty) || I_PARMRK(tty))
 812		info->read_status_mask |= STMBREAKH;
 813
 814	/*
 815	 * Characters to ignore
 816	 */
 817	info->ignore_status_mask = 0;
 818	if (I_IGNPAR(tty))
 819		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 820	if (I_IGNBRK(tty)) {
 821		info->ignore_status_mask |= STMBREAKH;
 822		/*
 823		 * If we're ignoring parity and break indicators,
 824		 * ignore overruns too.  (For real raw support).
 825		 */
 826		if (I_IGNPAR(tty))
 827			info->ignore_status_mask |= STMRCVROVRH;
 828	}
 829
 830	rocketMode = info->flags & ROCKET_MODE_MASK;
 831
 832	if ((info->flags & ROCKET_RTS_TOGGLE)
 833	    || (rocketMode == ROCKET_MODE_RS485))
 834		sEnRTSToggle(cp);
 835	else
 836		sDisRTSToggle(cp);
 837
 838	sSetRTS(&info->channel);
 839
 840	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 841		switch (rocketMode) {
 842		case ROCKET_MODE_RS485:
 843			sSetInterfaceMode(cp, InterfaceModeRS485);
 844			break;
 845		case ROCKET_MODE_RS422:
 846			sSetInterfaceMode(cp, InterfaceModeRS422);
 847			break;
 848		case ROCKET_MODE_RS232:
 849		default:
 850			if (info->flags & ROCKET_RTS_TOGGLE)
 851				sSetInterfaceMode(cp, InterfaceModeRS232T);
 852			else
 853				sSetInterfaceMode(cp, InterfaceModeRS232);
 854			break;
 855		}
 856	}
 857}
 858
 859static int carrier_raised(struct tty_port *port)
 860{
 861	struct r_port *info = container_of(port, struct r_port, port);
 862	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 863}
 864
 865static void dtr_rts(struct tty_port *port, int on)
 866{
 867	struct r_port *info = container_of(port, struct r_port, port);
 868	if (on) {
 869		sSetDTR(&info->channel);
 870		sSetRTS(&info->channel);
 871	} else {
 872		sClrDTR(&info->channel);
 873		sClrRTS(&info->channel);
 874	}
 875}
 876
 877/*
 878 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 879 *  port's r_port struct.  Initializes the port hardware.  
 880 */
 881static int rp_open(struct tty_struct *tty, struct file *filp)
 882{
 883	struct r_port *info;
 884	struct tty_port *port;
 885	int retval;
 886	CHANNEL_t *cp;
 887	unsigned long page;
 888
 889	info = rp_table[tty->index];
 890	if (info == NULL)
 891		return -ENXIO;
 892	port = &info->port;
 893	
 894	page = __get_free_page(GFP_KERNEL);
 895	if (!page)
 896		return -ENOMEM;
 897
 
 
 
 
 
 
 
 
 898	/*
 899	 * We must not sleep from here until the port is marked fully in use.
 900	 */
 901	if (info->xmit_buf)
 902		free_page(page);
 903	else
 904		info->xmit_buf = (unsigned char *) page;
 905
 906	tty->driver_data = info;
 907	tty_port_tty_set(port, tty);
 908
 909	if (port->count++ == 0) {
 910		atomic_inc(&rp_num_ports_open);
 911
 912#ifdef ROCKET_DEBUG_OPEN
 913		printk(KERN_INFO "rocket mod++ = %d...\n",
 914				atomic_read(&rp_num_ports_open));
 915#endif
 916	}
 917#ifdef ROCKET_DEBUG_OPEN
 918	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 919#endif
 920
 921	/*
 922	 * Info->count is now 1; so it's safe to sleep now.
 923	 */
 924	if (!tty_port_initialized(port)) {
 925		cp = &info->channel;
 926		sSetRxTrigger(cp, TRIG_1);
 927		if (sGetChanStatus(cp) & CD_ACT)
 928			info->cd_status = 1;
 929		else
 930			info->cd_status = 0;
 931		sDisRxStatusMode(cp);
 932		sFlushRxFIFO(cp);
 933		sFlushTxFIFO(cp);
 934
 935		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 936		sSetRxTrigger(cp, TRIG_1);
 937
 938		sGetChanStatus(cp);
 939		sDisRxStatusMode(cp);
 940		sClrTxXOFF(cp);
 941
 942		sDisCTSFlowCtl(cp);
 943		sDisTxSoftFlowCtl(cp);
 944
 945		sEnRxFIFO(cp);
 946		sEnTransmit(cp);
 947
 948		tty_port_set_initialized(&info->port, 1);
 949
 950		/*
 951		 * Set up the tty->alt_speed kludge
 952		 */
 953		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
 954			tty->alt_speed = 57600;
 955		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
 956			tty->alt_speed = 115200;
 957		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
 958			tty->alt_speed = 230400;
 959		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
 960			tty->alt_speed = 460800;
 961
 962		configure_r_port(tty, info, NULL);
 963		if (C_BAUD(tty)) {
 964			sSetDTR(cp);
 965			sSetRTS(cp);
 966		}
 967	}
 968	/*  Starts (or resets) the maint polling loop */
 969	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 970
 971	retval = tty_port_block_til_ready(port, tty, filp);
 972	if (retval) {
 973#ifdef ROCKET_DEBUG_OPEN
 974		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 975#endif
 976		return retval;
 977	}
 978	return 0;
 979}
 980
 981/*
 982 *  Exception handler that closes a serial port. info->port.count is considered critical.
 983 */
 984static void rp_close(struct tty_struct *tty, struct file *filp)
 985{
 986	struct r_port *info = tty->driver_data;
 987	struct tty_port *port = &info->port;
 988	int timeout;
 989	CHANNEL_t *cp;
 990	
 991	if (rocket_paranoia_check(info, "rp_close"))
 992		return;
 993
 994#ifdef ROCKET_DEBUG_OPEN
 995	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
 996#endif
 997
 998	if (tty_port_close_start(port, tty, filp) == 0)
 999		return;
1000
1001	mutex_lock(&port->mutex);
1002	cp = &info->channel;
1003	/*
1004	 * Before we drop DTR, make sure the UART transmitter
1005	 * has completely drained; this is especially
1006	 * important if there is a transmit FIFO!
1007	 */
1008	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009	if (timeout == 0)
1010		timeout = 1;
1011	rp_wait_until_sent(tty, timeout);
1012	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014	sDisTransmit(cp);
1015	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016	sDisCTSFlowCtl(cp);
1017	sDisTxSoftFlowCtl(cp);
1018	sClrTxXOFF(cp);
1019	sFlushRxFIFO(cp);
1020	sFlushTxFIFO(cp);
1021	sClrRTS(cp);
1022	if (C_HUPCL(tty))
1023		sClrDTR(cp);
1024
1025	rp_flush_buffer(tty);
1026		
1027	tty_ldisc_flush(tty);
1028
1029	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031	/* We can't yet use tty_port_close_end as the buffer handling in this
1032	   driver is a bit different to the usual */
1033
1034	if (port->blocked_open) {
1035		if (port->close_delay) {
1036			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037		}
1038		wake_up_interruptible(&port->open_wait);
1039	} else {
1040		if (info->xmit_buf) {
1041			free_page((unsigned long) info->xmit_buf);
1042			info->xmit_buf = NULL;
1043		}
1044	}
1045	spin_lock_irq(&port->lock);
 
1046	tty->closing = 0;
1047	spin_unlock_irq(&port->lock);
1048	tty_port_set_initialized(port, 0);
1049	tty_port_set_active(port, 0);
1050	mutex_unlock(&port->mutex);
1051	tty_port_tty_set(port, NULL);
1052
 
 
1053	atomic_dec(&rp_num_ports_open);
1054
1055#ifdef ROCKET_DEBUG_OPEN
1056	printk(KERN_INFO "rocket mod-- = %d...\n",
1057			atomic_read(&rp_num_ports_open));
1058	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059#endif
1060
1061}
1062
1063static void rp_set_termios(struct tty_struct *tty,
1064			   struct ktermios *old_termios)
1065{
1066	struct r_port *info = tty->driver_data;
1067	CHANNEL_t *cp;
1068	unsigned cflag;
1069
1070	if (rocket_paranoia_check(info, "rp_set_termios"))
1071		return;
1072
1073	cflag = tty->termios.c_cflag;
1074
1075	/*
1076	 * This driver doesn't support CS5 or CS6
1077	 */
1078	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079		tty->termios.c_cflag =
1080		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081	/* Or CMSPAR */
1082	tty->termios.c_cflag &= ~CMSPAR;
1083
1084	configure_r_port(tty, info, old_termios);
1085
1086	cp = &info->channel;
1087
1088	/* Handle transition to B0 status */
1089	if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090		sClrDTR(cp);
1091		sClrRTS(cp);
1092	}
1093
1094	/* Handle transition away from B0 status */
1095	if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096		sSetRTS(cp);
 
1097		sSetDTR(cp);
1098	}
1099
1100	if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
 
1101		rp_start(tty);
 
1102}
1103
1104static int rp_break(struct tty_struct *tty, int break_state)
1105{
1106	struct r_port *info = tty->driver_data;
1107	unsigned long flags;
1108
1109	if (rocket_paranoia_check(info, "rp_break"))
1110		return -EINVAL;
1111
1112	spin_lock_irqsave(&info->slock, flags);
1113	if (break_state == -1)
1114		sSendBreak(&info->channel);
1115	else
1116		sClrBreak(&info->channel);
1117	spin_unlock_irqrestore(&info->slock, flags);
1118	return 0;
1119}
1120
1121/*
1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123 * the UPCI boards was added, it was decided to make this a function because
1124 * the macro was getting too complicated. All cases except the first one
1125 * (UPCIRingInd) are taken directly from the original macro.
1126 */
1127static int sGetChanRI(CHANNEL_T * ChP)
1128{
1129	CONTROLLER_t *CtlP = ChP->CtlP;
1130	int ChanNum = ChP->ChanNum;
1131	int RingInd = 0;
1132
1133	if (CtlP->UPCIRingInd)
1134		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135	else if (CtlP->AltChanRingIndicator)
1136		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140	return RingInd;
1141}
1142
1143/********************************************************************************************/
1144/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1145
1146/*
1147 *  Returns the state of the serial modem control lines.  These next 2 functions 
1148 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149 */
1150static int rp_tiocmget(struct tty_struct *tty)
1151{
1152	struct r_port *info = tty->driver_data;
1153	unsigned int control, result, ChanStatus;
1154
1155	ChanStatus = sGetChanStatusLo(&info->channel);
1156	control = info->channel.TxControl[3];
1157	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1158		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1159		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164	return result;
1165}
1166
1167/* 
1168 *  Sets the modem control lines
1169 */
1170static int rp_tiocmset(struct tty_struct *tty,
1171				unsigned int set, unsigned int clear)
1172{
1173	struct r_port *info = tty->driver_data;
1174
1175	if (set & TIOCM_RTS)
1176		info->channel.TxControl[3] |= SET_RTS;
1177	if (set & TIOCM_DTR)
1178		info->channel.TxControl[3] |= SET_DTR;
1179	if (clear & TIOCM_RTS)
1180		info->channel.TxControl[3] &= ~SET_RTS;
1181	if (clear & TIOCM_DTR)
1182		info->channel.TxControl[3] &= ~SET_DTR;
1183
1184	out32(info->channel.IndexAddr, info->channel.TxControl);
1185	return 0;
1186}
1187
1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189{
1190	struct rocket_config tmp;
1191
 
 
1192	memset(&tmp, 0, sizeof (tmp));
1193	mutex_lock(&info->port.mutex);
1194	tmp.line = info->line;
1195	tmp.flags = info->flags;
1196	tmp.close_delay = info->port.close_delay;
1197	tmp.closing_wait = info->port.closing_wait;
1198	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199	mutex_unlock(&info->port.mutex);
1200
1201	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202		return -EFAULT;
1203	return 0;
1204}
1205
1206static int set_config(struct tty_struct *tty, struct r_port *info,
1207					struct rocket_config __user *new_info)
1208{
1209	struct rocket_config new_serial;
1210
1211	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212		return -EFAULT;
1213
1214	mutex_lock(&info->port.mutex);
1215	if (!capable(CAP_SYS_ADMIN))
1216	{
1217		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218			mutex_unlock(&info->port.mutex);
1219			return -EPERM;
1220		}
1221		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222		configure_r_port(tty, info, NULL);
1223		mutex_unlock(&info->port.mutex);
1224		return 0;
1225	}
1226
1227	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228	info->port.close_delay = new_serial.close_delay;
1229	info->port.closing_wait = new_serial.closing_wait;
1230
1231	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232		tty->alt_speed = 57600;
1233	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234		tty->alt_speed = 115200;
1235	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236		tty->alt_speed = 230400;
1237	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238		tty->alt_speed = 460800;
1239	mutex_unlock(&info->port.mutex);
1240
1241	configure_r_port(tty, info, NULL);
1242	return 0;
1243}
1244
1245/*
1246 *  This function fills in a rocket_ports struct with information
1247 *  about what boards/ports are in the system.  This info is passed
1248 *  to user space.  See setrocket.c where the info is used to create
1249 *  the /dev/ttyRx ports.
1250 */
1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252{
1253	struct rocket_ports tmp;
1254	int board;
1255
 
 
1256	memset(&tmp, 0, sizeof (tmp));
1257	tmp.tty_major = rocket_driver->major;
1258
1259	for (board = 0; board < 4; board++) {
1260		tmp.rocketModel[board].model = rocketModel[board].model;
1261		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1262		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1263		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1264		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1265	}
1266	if (copy_to_user(retports, &tmp, sizeof (*retports)))
1267		return -EFAULT;
1268	return 0;
1269}
1270
1271static int reset_rm2(struct r_port *info, void __user *arg)
1272{
1273	int reset;
1274
1275	if (!capable(CAP_SYS_ADMIN))
1276		return -EPERM;
1277
1278	if (copy_from_user(&reset, arg, sizeof (int)))
1279		return -EFAULT;
1280	if (reset)
1281		reset = 1;
1282
1283	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1284            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1285		return -EINVAL;
1286
1287	if (info->ctlp->BusType == isISA)
1288		sModemReset(info->ctlp, info->chan, reset);
1289	else
1290		sPCIModemReset(info->ctlp, info->chan, reset);
1291
1292	return 0;
1293}
1294
1295static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1296{
1297	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1298		return -EFAULT;
1299	return 0;
1300}
1301
1302/*  IOCTL call handler into the driver */
1303static int rp_ioctl(struct tty_struct *tty,
1304		    unsigned int cmd, unsigned long arg)
1305{
1306	struct r_port *info = tty->driver_data;
1307	void __user *argp = (void __user *)arg;
1308	int ret = 0;
1309
1310	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1311		return -ENXIO;
1312
1313	switch (cmd) {
1314	case RCKP_GET_STRUCT:
1315		if (copy_to_user(argp, info, sizeof (struct r_port)))
1316			ret = -EFAULT;
1317		break;
1318	case RCKP_GET_CONFIG:
1319		ret = get_config(info, argp);
1320		break;
1321	case RCKP_SET_CONFIG:
1322		ret = set_config(tty, info, argp);
1323		break;
1324	case RCKP_GET_PORTS:
1325		ret = get_ports(info, argp);
1326		break;
1327	case RCKP_RESET_RM2:
1328		ret = reset_rm2(info, argp);
1329		break;
1330	case RCKP_GET_VERSION:
1331		ret = get_version(info, argp);
1332		break;
1333	default:
1334		ret = -ENOIOCTLCMD;
1335	}
1336	return ret;
1337}
1338
1339static void rp_send_xchar(struct tty_struct *tty, char ch)
1340{
1341	struct r_port *info = tty->driver_data;
1342	CHANNEL_t *cp;
1343
1344	if (rocket_paranoia_check(info, "rp_send_xchar"))
1345		return;
1346
1347	cp = &info->channel;
1348	if (sGetTxCnt(cp))
1349		sWriteTxPrioByte(cp, ch);
1350	else
1351		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1352}
1353
1354static void rp_throttle(struct tty_struct *tty)
1355{
1356	struct r_port *info = tty->driver_data;
1357
1358#ifdef ROCKET_DEBUG_THROTTLE
1359	printk(KERN_INFO "throttle %s ....\n", tty->name);
 
1360#endif
1361
1362	if (rocket_paranoia_check(info, "rp_throttle"))
1363		return;
1364
1365	if (I_IXOFF(tty))
1366		rp_send_xchar(tty, STOP_CHAR(tty));
1367
1368	sClrRTS(&info->channel);
1369}
1370
1371static void rp_unthrottle(struct tty_struct *tty)
1372{
1373	struct r_port *info = tty->driver_data;
1374#ifdef ROCKET_DEBUG_THROTTLE
1375	printk(KERN_INFO "unthrottle %s ....\n", tty->name);
 
1376#endif
1377
1378	if (rocket_paranoia_check(info, "rp_unthrottle"))
1379		return;
1380
1381	if (I_IXOFF(tty))
1382		rp_send_xchar(tty, START_CHAR(tty));
1383
1384	sSetRTS(&info->channel);
1385}
1386
1387/*
1388 * ------------------------------------------------------------
1389 * rp_stop() and rp_start()
1390 *
1391 * This routines are called before setting or resetting tty->stopped.
1392 * They enable or disable transmitter interrupts, as necessary.
1393 * ------------------------------------------------------------
1394 */
1395static void rp_stop(struct tty_struct *tty)
1396{
1397	struct r_port *info = tty->driver_data;
1398
1399#ifdef ROCKET_DEBUG_FLOW
1400	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1401	       info->xmit_cnt, info->xmit_fifo_room);
1402#endif
1403
1404	if (rocket_paranoia_check(info, "rp_stop"))
1405		return;
1406
1407	if (sGetTxCnt(&info->channel))
1408		sDisTransmit(&info->channel);
1409}
1410
1411static void rp_start(struct tty_struct *tty)
1412{
1413	struct r_port *info = tty->driver_data;
1414
1415#ifdef ROCKET_DEBUG_FLOW
1416	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1417	       info->xmit_cnt, info->xmit_fifo_room);
1418#endif
1419
1420	if (rocket_paranoia_check(info, "rp_stop"))
1421		return;
1422
1423	sEnTransmit(&info->channel);
1424	set_bit((info->aiop * 8) + info->chan,
1425		(void *) &xmit_flags[info->board]);
1426}
1427
1428/*
1429 * rp_wait_until_sent() --- wait until the transmitter is empty
1430 */
1431static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1432{
1433	struct r_port *info = tty->driver_data;
1434	CHANNEL_t *cp;
1435	unsigned long orig_jiffies;
1436	int check_time, exit_time;
1437	int txcnt;
1438
1439	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1440		return;
1441
1442	cp = &info->channel;
1443
1444	orig_jiffies = jiffies;
1445#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1446	printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1447	       jiffies);
1448	printk(KERN_INFO "cps=%d...\n", info->cps);
1449#endif
1450	while (1) {
1451		txcnt = sGetTxCnt(cp);
1452		if (!txcnt) {
1453			if (sGetChanStatusLo(cp) & TXSHRMT)
1454				break;
1455			check_time = (HZ / info->cps) / 5;
1456		} else {
1457			check_time = HZ * txcnt / info->cps;
1458		}
1459		if (timeout) {
1460			exit_time = orig_jiffies + timeout - jiffies;
1461			if (exit_time <= 0)
1462				break;
1463			if (exit_time < check_time)
1464				check_time = exit_time;
1465		}
1466		if (check_time == 0)
1467			check_time = 1;
1468#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1469		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1470				jiffies, check_time);
1471#endif
1472		msleep_interruptible(jiffies_to_msecs(check_time));
1473		if (signal_pending(current))
1474			break;
1475	}
1476	__set_current_state(TASK_RUNNING);
1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1479#endif
1480}
1481
1482/*
1483 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1484 */
1485static void rp_hangup(struct tty_struct *tty)
1486{
1487	CHANNEL_t *cp;
1488	struct r_port *info = tty->driver_data;
1489	unsigned long flags;
1490
1491	if (rocket_paranoia_check(info, "rp_hangup"))
1492		return;
1493
1494#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1495	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1496#endif
1497	rp_flush_buffer(tty);
1498	spin_lock_irqsave(&info->port.lock, flags);
 
 
 
 
1499	if (info->port.count)
1500		atomic_dec(&rp_num_ports_open);
1501	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1502	spin_unlock_irqrestore(&info->port.lock, flags);
1503
1504	tty_port_hangup(&info->port);
1505
1506	cp = &info->channel;
1507	sDisRxFIFO(cp);
1508	sDisTransmit(cp);
1509	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1510	sDisCTSFlowCtl(cp);
1511	sDisTxSoftFlowCtl(cp);
1512	sClrTxXOFF(cp);
1513	tty_port_set_initialized(&info->port, 0);
1514
1515	wake_up_interruptible(&info->port.open_wait);
1516}
1517
1518/*
1519 *  Exception handler - write char routine.  The RocketPort driver uses a
1520 *  double-buffering strategy, with the twist that if the in-memory CPU
1521 *  buffer is empty, and there's space in the transmit FIFO, the
1522 *  writing routines will write directly to transmit FIFO.
1523 *  Write buffer and counters protected by spinlocks
1524 */
1525static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1526{
1527	struct r_port *info = tty->driver_data;
1528	CHANNEL_t *cp;
1529	unsigned long flags;
1530
1531	if (rocket_paranoia_check(info, "rp_put_char"))
1532		return 0;
1533
1534	/*
1535	 * Grab the port write mutex, locking out other processes that try to
1536	 * write to this port
1537	 */
1538	mutex_lock(&info->write_mtx);
1539
1540#ifdef ROCKET_DEBUG_WRITE
1541	printk(KERN_INFO "rp_put_char %c...\n", ch);
1542#endif
1543
1544	spin_lock_irqsave(&info->slock, flags);
1545	cp = &info->channel;
1546
1547	if (!tty->stopped && info->xmit_fifo_room == 0)
1548		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1549
1550	if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1551		info->xmit_buf[info->xmit_head++] = ch;
1552		info->xmit_head &= XMIT_BUF_SIZE - 1;
1553		info->xmit_cnt++;
1554		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1555	} else {
1556		sOutB(sGetTxRxDataIO(cp), ch);
1557		info->xmit_fifo_room--;
1558	}
1559	spin_unlock_irqrestore(&info->slock, flags);
1560	mutex_unlock(&info->write_mtx);
1561	return 1;
1562}
1563
1564/*
1565 *  Exception handler - write routine, called when user app writes to the device.
1566 *  A per port write mutex is used to protect from another process writing to
1567 *  this port at the same time.  This other process could be running on the other CPU
1568 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1569 *  Spinlocks protect the info xmit members.
1570 */
1571static int rp_write(struct tty_struct *tty,
1572		    const unsigned char *buf, int count)
1573{
1574	struct r_port *info = tty->driver_data;
1575	CHANNEL_t *cp;
1576	const unsigned char *b;
1577	int c, retval = 0;
1578	unsigned long flags;
1579
1580	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1581		return 0;
1582
1583	if (mutex_lock_interruptible(&info->write_mtx))
1584		return -ERESTARTSYS;
1585
1586#ifdef ROCKET_DEBUG_WRITE
1587	printk(KERN_INFO "rp_write %d chars...\n", count);
1588#endif
1589	cp = &info->channel;
1590
1591	if (!tty->stopped && info->xmit_fifo_room < count)
1592		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1593
1594        /*
1595	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1596	 *  into FIFO.  Use the write queue for temp storage.
1597         */
1598	if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1599		c = min(count, info->xmit_fifo_room);
1600		b = buf;
1601
1602		/*  Push data into FIFO, 2 bytes at a time */
1603		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1604
1605		/*  If there is a byte remaining, write it */
1606		if (c & 1)
1607			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1608
1609		retval += c;
1610		buf += c;
1611		count -= c;
1612
1613		spin_lock_irqsave(&info->slock, flags);
1614		info->xmit_fifo_room -= c;
1615		spin_unlock_irqrestore(&info->slock, flags);
1616	}
1617
1618	/* If count is zero, we wrote it all and are done */
1619	if (!count)
1620		goto end;
1621
1622	/*  Write remaining data into the port's xmit_buf */
1623	while (1) {
1624		/* Hung up ? */
1625		if (!tty_port_active(&info->port))
1626			goto end;
1627		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1628		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1629		if (c <= 0)
1630			break;
1631
1632		b = buf;
1633		memcpy(info->xmit_buf + info->xmit_head, b, c);
1634
1635		spin_lock_irqsave(&info->slock, flags);
1636		info->xmit_head =
1637		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1638		info->xmit_cnt += c;
1639		spin_unlock_irqrestore(&info->slock, flags);
1640
1641		buf += c;
1642		count -= c;
1643		retval += c;
1644	}
1645
1646	if ((retval > 0) && !tty->stopped)
1647		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1648	
1649end:
1650 	if (info->xmit_cnt < WAKEUP_CHARS) {
1651 		tty_wakeup(tty);
1652#ifdef ROCKETPORT_HAVE_POLL_WAIT
1653		wake_up_interruptible(&tty->poll_wait);
1654#endif
1655	}
1656	mutex_unlock(&info->write_mtx);
1657	return retval;
1658}
1659
1660/*
1661 * Return the number of characters that can be sent.  We estimate
1662 * only using the in-memory transmit buffer only, and ignore the
1663 * potential space in the transmit FIFO.
1664 */
1665static int rp_write_room(struct tty_struct *tty)
1666{
1667	struct r_port *info = tty->driver_data;
1668	int ret;
1669
1670	if (rocket_paranoia_check(info, "rp_write_room"))
1671		return 0;
1672
1673	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1674	if (ret < 0)
1675		ret = 0;
1676#ifdef ROCKET_DEBUG_WRITE
1677	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1678#endif
1679	return ret;
1680}
1681
1682/*
1683 * Return the number of characters in the buffer.  Again, this only
1684 * counts those characters in the in-memory transmit buffer.
1685 */
1686static int rp_chars_in_buffer(struct tty_struct *tty)
1687{
1688	struct r_port *info = tty->driver_data;
1689
1690	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1691		return 0;
1692
1693#ifdef ROCKET_DEBUG_WRITE
1694	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1695#endif
1696	return info->xmit_cnt;
1697}
1698
1699/*
1700 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1701 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1702 *  do not call this function if the spinlock is already held.
1703 */
1704static void rp_flush_buffer(struct tty_struct *tty)
1705{
1706	struct r_port *info = tty->driver_data;
1707	CHANNEL_t *cp;
1708	unsigned long flags;
1709
1710	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1711		return;
1712
1713	spin_lock_irqsave(&info->slock, flags);
1714	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1715	spin_unlock_irqrestore(&info->slock, flags);
1716
1717#ifdef ROCKETPORT_HAVE_POLL_WAIT
1718	wake_up_interruptible(&tty->poll_wait);
1719#endif
1720	tty_wakeup(tty);
1721
1722	cp = &info->channel;
1723	sFlushTxFIFO(cp);
1724}
1725
1726#ifdef CONFIG_PCI
1727
1728static const struct pci_device_id rocket_pci_ids[] = {
1729	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1730	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1731	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1732	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1733	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1734	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1735	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1736	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1737	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1738	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1739	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1740	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1741	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1742	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1743	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1744	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1745	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1746	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1747	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1748	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1749	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1750	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1751	{ }
1752};
1753MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1754
1755/*  Resets the speaker controller on RocketModem II and III devices */
1756static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1757{
1758	ByteIO_t addr;
1759
1760	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1761	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1762		addr = CtlP->AiopIO[0] + 0x4F;
1763		sOutB(addr, 0);
1764	}
1765
1766	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1767	if ((model == MODEL_UPCI_RM3_8PORT)
1768	    || (model == MODEL_UPCI_RM3_4PORT)) {
1769		addr = CtlP->AiopIO[0] + 0x88;
1770		sOutB(addr, 0);
1771	}
1772}
1773
1774/***************************************************************************
1775Function: sPCIInitController
1776Purpose:  Initialization of controller global registers and controller
1777          structure.
1778Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1779                          IRQNum,Frequency,PeriodicOnly)
1780          CONTROLLER_T *CtlP; Ptr to controller structure
1781          int CtlNum; Controller number
1782          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1783             This list must be in the order the AIOPs will be found on the
1784             controller.  Once an AIOP in the list is not found, it is
1785             assumed that there are no more AIOPs on the controller.
1786          int AiopIOListSize; Number of addresses in AiopIOList
1787          int IRQNum; Interrupt Request number.  Can be any of the following:
1788                         0: Disable global interrupts
1789                         3: IRQ 3
1790                         4: IRQ 4
1791                         5: IRQ 5
1792                         9: IRQ 9
1793                         10: IRQ 10
1794                         11: IRQ 11
1795                         12: IRQ 12
1796                         15: IRQ 15
1797          Byte_t Frequency: A flag identifying the frequency
1798                   of the periodic interrupt, can be any one of the following:
1799                      FREQ_DIS - periodic interrupt disabled
1800                      FREQ_137HZ - 137 Hertz
1801                      FREQ_69HZ - 69 Hertz
1802                      FREQ_34HZ - 34 Hertz
1803                      FREQ_17HZ - 17 Hertz
1804                      FREQ_9HZ - 9 Hertz
1805                      FREQ_4HZ - 4 Hertz
1806                   If IRQNum is set to 0 the Frequency parameter is
1807                   overidden, it is forced to a value of FREQ_DIS.
1808          int PeriodicOnly: 1 if all interrupts except the periodic
1809                               interrupt are to be blocked.
1810                            0 is both the periodic interrupt and
1811                               other channel interrupts are allowed.
1812                            If IRQNum is set to 0 the PeriodicOnly parameter is
1813                               overidden, it is forced to a value of 0.
1814Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
1815               initialization failed.
1816
1817Comments:
1818          If periodic interrupts are to be disabled but AIOP interrupts
1819          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1820
1821          If interrupts are to be completely disabled set IRQNum to 0.
1822
1823          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1824          invalid combination.
1825
1826          This function performs initialization of global interrupt modes,
1827          but it does not actually enable global interrupts.  To enable
1828          and disable global interrupts use functions sEnGlobalInt() and
1829          sDisGlobalInt().  Enabling of global interrupts is normally not
1830          done until all other initializations are complete.
1831
1832          Even if interrupts are globally enabled, they must also be
1833          individually enabled for each channel that is to generate
1834          interrupts.
1835
1836Warnings: No range checking on any of the parameters is done.
1837
1838          No context switches are allowed while executing this function.
1839
1840          After this function all AIOPs on the controller are disabled,
1841          they can be enabled with sEnAiop().
1842*/
1843static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1844			      ByteIO_t * AiopIOList, int AiopIOListSize,
1845			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1846			      int PeriodicOnly, int altChanRingIndicator,
1847			      int UPCIRingInd)
1848{
1849	int i;
1850	ByteIO_t io;
1851
1852	CtlP->AltChanRingIndicator = altChanRingIndicator;
1853	CtlP->UPCIRingInd = UPCIRingInd;
1854	CtlP->CtlNum = CtlNum;
1855	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
1856	CtlP->BusType = isPCI;	/* controller release 1 */
1857
1858	if (ConfigIO) {
1859		CtlP->isUPCI = 1;
1860		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1861		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1862		CtlP->AiopIntrBits = upci_aiop_intr_bits;
1863	} else {
1864		CtlP->isUPCI = 0;
1865		CtlP->PCIIO =
1866		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1867		CtlP->AiopIntrBits = aiop_intr_bits;
1868	}
1869
1870	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
1871	/* Init AIOPs */
1872	CtlP->NumAiop = 0;
1873	for (i = 0; i < AiopIOListSize; i++) {
1874		io = AiopIOList[i];
1875		CtlP->AiopIO[i] = (WordIO_t) io;
1876		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1877
1878		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
1879		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
1880			break;	/* done looking for AIOPs */
1881
1882		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
1883		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
1884		sOutB(io + _INDX_DATA, sClockPrescale);
1885		CtlP->NumAiop++;	/* bump count of AIOPs */
1886	}
1887
1888	if (CtlP->NumAiop == 0)
1889		return (-1);
1890	else
1891		return (CtlP->NumAiop);
1892}
1893
1894/*
1895 *  Called when a PCI card is found.  Retrieves and stores model information,
1896 *  init's aiopic and serial port hardware.
1897 *  Inputs:  i is the board number (0-n)
1898 */
1899static __init int register_PCI(int i, struct pci_dev *dev)
1900{
1901	int num_aiops, aiop, max_num_aiops, num_chan, chan;
1902	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1903	CONTROLLER_t *ctlp;
1904
1905	int fast_clock = 0;
1906	int altChanRingIndicator = 0;
1907	int ports_per_aiop = 8;
1908	WordIO_t ConfigIO = 0;
1909	ByteIO_t UPCIRingInd = 0;
1910
1911	if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1912	    pci_enable_device(dev))
1913		return 0;
1914
1915	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1916
1917	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1918	rocketModel[i].loadrm2 = 0;
1919	rocketModel[i].startingPortNumber = nextLineNumber;
1920
1921	/*  Depending on the model, set up some config variables */
1922	switch (dev->device) {
1923	case PCI_DEVICE_ID_RP4QUAD:
1924		max_num_aiops = 1;
1925		ports_per_aiop = 4;
1926		rocketModel[i].model = MODEL_RP4QUAD;
1927		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1928		rocketModel[i].numPorts = 4;
1929		break;
1930	case PCI_DEVICE_ID_RP8OCTA:
1931		max_num_aiops = 1;
1932		rocketModel[i].model = MODEL_RP8OCTA;
1933		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1934		rocketModel[i].numPorts = 8;
1935		break;
1936	case PCI_DEVICE_ID_URP8OCTA:
1937		max_num_aiops = 1;
1938		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1939		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1940		rocketModel[i].numPorts = 8;
1941		break;
1942	case PCI_DEVICE_ID_RP8INTF:
1943		max_num_aiops = 1;
1944		rocketModel[i].model = MODEL_RP8INTF;
1945		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1946		rocketModel[i].numPorts = 8;
1947		break;
1948	case PCI_DEVICE_ID_URP8INTF:
1949		max_num_aiops = 1;
1950		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1951		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1952		rocketModel[i].numPorts = 8;
1953		break;
1954	case PCI_DEVICE_ID_RP8J:
1955		max_num_aiops = 1;
1956		rocketModel[i].model = MODEL_RP8J;
1957		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1958		rocketModel[i].numPorts = 8;
1959		break;
1960	case PCI_DEVICE_ID_RP4J:
1961		max_num_aiops = 1;
1962		ports_per_aiop = 4;
1963		rocketModel[i].model = MODEL_RP4J;
1964		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1965		rocketModel[i].numPorts = 4;
1966		break;
1967	case PCI_DEVICE_ID_RP8SNI:
1968		max_num_aiops = 1;
1969		rocketModel[i].model = MODEL_RP8SNI;
1970		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1971		rocketModel[i].numPorts = 8;
1972		break;
1973	case PCI_DEVICE_ID_RP16SNI:
1974		max_num_aiops = 2;
1975		rocketModel[i].model = MODEL_RP16SNI;
1976		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1977		rocketModel[i].numPorts = 16;
1978		break;
1979	case PCI_DEVICE_ID_RP16INTF:
1980		max_num_aiops = 2;
1981		rocketModel[i].model = MODEL_RP16INTF;
1982		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1983		rocketModel[i].numPorts = 16;
1984		break;
1985	case PCI_DEVICE_ID_URP16INTF:
1986		max_num_aiops = 2;
1987		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1988		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1989		rocketModel[i].numPorts = 16;
1990		break;
1991	case PCI_DEVICE_ID_CRP16INTF:
1992		max_num_aiops = 2;
1993		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1994		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1995		rocketModel[i].numPorts = 16;
1996		break;
1997	case PCI_DEVICE_ID_RP32INTF:
1998		max_num_aiops = 4;
1999		rocketModel[i].model = MODEL_RP32INTF;
2000		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2001		rocketModel[i].numPorts = 32;
2002		break;
2003	case PCI_DEVICE_ID_URP32INTF:
2004		max_num_aiops = 4;
2005		rocketModel[i].model = MODEL_UPCI_RP32INTF;
2006		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2007		rocketModel[i].numPorts = 32;
2008		break;
2009	case PCI_DEVICE_ID_RPP4:
2010		max_num_aiops = 1;
2011		ports_per_aiop = 4;
2012		altChanRingIndicator++;
2013		fast_clock++;
2014		rocketModel[i].model = MODEL_RPP4;
2015		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2016		rocketModel[i].numPorts = 4;
2017		break;
2018	case PCI_DEVICE_ID_RPP8:
2019		max_num_aiops = 2;
2020		ports_per_aiop = 4;
2021		altChanRingIndicator++;
2022		fast_clock++;
2023		rocketModel[i].model = MODEL_RPP8;
2024		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025		rocketModel[i].numPorts = 8;
2026		break;
2027	case PCI_DEVICE_ID_RP2_232:
2028		max_num_aiops = 1;
2029		ports_per_aiop = 2;
2030		altChanRingIndicator++;
2031		fast_clock++;
2032		rocketModel[i].model = MODEL_RP2_232;
2033		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2034		rocketModel[i].numPorts = 2;
2035		break;
2036	case PCI_DEVICE_ID_RP2_422:
2037		max_num_aiops = 1;
2038		ports_per_aiop = 2;
2039		altChanRingIndicator++;
2040		fast_clock++;
2041		rocketModel[i].model = MODEL_RP2_422;
2042		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2043		rocketModel[i].numPorts = 2;
2044		break;
2045	case PCI_DEVICE_ID_RP6M:
2046
2047		max_num_aiops = 1;
2048		ports_per_aiop = 6;
2049
2050		/*  If revision is 1, the rocketmodem flash must be loaded.
2051		 *  If it is 2 it is a "socketed" version. */
2052		if (dev->revision == 1) {
2053			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2054			rocketModel[i].loadrm2 = 1;
2055		} else {
2056			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2057		}
2058
2059		rocketModel[i].model = MODEL_RP6M;
2060		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2061		rocketModel[i].numPorts = 6;
2062		break;
2063	case PCI_DEVICE_ID_RP4M:
2064		max_num_aiops = 1;
2065		ports_per_aiop = 4;
2066		if (dev->revision == 1) {
2067			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2068			rocketModel[i].loadrm2 = 1;
2069		} else {
2070			rcktpt_type[i] = ROCKET_TYPE_MODEM;
2071		}
2072
2073		rocketModel[i].model = MODEL_RP4M;
2074		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2075		rocketModel[i].numPorts = 4;
2076		break;
2077	default:
2078		max_num_aiops = 0;
2079		break;
2080	}
2081
2082	/*
2083	 * Check for UPCI boards.
2084	 */
2085
2086	switch (dev->device) {
2087	case PCI_DEVICE_ID_URP32INTF:
2088	case PCI_DEVICE_ID_URP8INTF:
2089	case PCI_DEVICE_ID_URP16INTF:
2090	case PCI_DEVICE_ID_CRP16INTF:
2091	case PCI_DEVICE_ID_URP8OCTA:
2092		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2093		ConfigIO = pci_resource_start(dev, 1);
2094		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2095			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096
2097			/*
2098			 * Check for octa or quad cable.
2099			 */
2100			if (!
2101			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2102			     PCI_GPIO_CTRL_8PORT)) {
2103				ports_per_aiop = 4;
2104				rocketModel[i].numPorts = 4;
2105			}
2106		}
2107		break;
2108	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2109		max_num_aiops = 1;
2110		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2111		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2112		rocketModel[i].numPorts = 8;
2113		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2114		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115		ConfigIO = pci_resource_start(dev, 1);
2116		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2117		break;
2118	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2119		max_num_aiops = 1;
2120		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2121		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2122		rocketModel[i].numPorts = 4;
2123		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2124		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2125		ConfigIO = pci_resource_start(dev, 1);
2126		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2127		break;
2128	default:
2129		break;
2130	}
2131
2132	if (fast_clock) {
2133		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2134		rp_baud_base[i] = 921600;
2135	} else {
2136		/*
2137		 * If support_low_speed is set, use the slow clock
2138		 * prescale, which supports 50 bps
2139		 */
2140		if (support_low_speed) {
2141			/* mod 9 (divide by 10) prescale */
2142			sClockPrescale = 0x19;
2143			rp_baud_base[i] = 230400;
2144		} else {
2145			/* mod 4 (divide by 5) prescale */
2146			sClockPrescale = 0x14;
2147			rp_baud_base[i] = 460800;
2148		}
2149	}
2150
2151	for (aiop = 0; aiop < max_num_aiops; aiop++)
2152		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2153	ctlp = sCtlNumToCtlPtr(i);
2154	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2155	for (aiop = 0; aiop < max_num_aiops; aiop++)
2156		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2157
2158	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2159		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2160		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2161		rocketModel[i].startingPortNumber,
2162		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2163
2164	if (num_aiops <= 0) {
2165		rcktpt_io_addr[i] = 0;
2166		return (0);
2167	}
2168	is_PCI[i] = 1;
2169
2170	/*  Reset the AIOPIC, init the serial ports */
2171	for (aiop = 0; aiop < num_aiops; aiop++) {
2172		sResetAiopByNum(ctlp, aiop);
2173		num_chan = ports_per_aiop;
2174		for (chan = 0; chan < num_chan; chan++)
2175			init_r_port(i, aiop, chan, dev);
2176	}
2177
2178	/*  Rocket modems must be reset */
2179	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2180	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2181	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2182		num_chan = ports_per_aiop;
2183		for (chan = 0; chan < num_chan; chan++)
2184			sPCIModemReset(ctlp, chan, 1);
2185		msleep(500);
2186		for (chan = 0; chan < num_chan; chan++)
2187			sPCIModemReset(ctlp, chan, 0);
2188		msleep(500);
2189		rmSpeakerReset(ctlp, rocketModel[i].model);
2190	}
2191	return (1);
2192}
2193
2194/*
2195 *  Probes for PCI cards, inits them if found
2196 *  Input:   board_found = number of ISA boards already found, or the
2197 *           starting board number
2198 *  Returns: Number of PCI boards found
2199 */
2200static int __init init_PCI(int boards_found)
2201{
2202	struct pci_dev *dev = NULL;
2203	int count = 0;
2204
2205	/*  Work through the PCI device list, pulling out ours */
2206	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2207		if (register_PCI(count + boards_found, dev))
2208			count++;
2209	}
2210	return (count);
2211}
2212
2213#endif				/* CONFIG_PCI */
2214
2215/*
2216 *  Probes for ISA cards
2217 *  Input:   i = the board number to look for
2218 *  Returns: 1 if board found, 0 else
2219 */
2220static int __init init_ISA(int i)
2221{
2222	int num_aiops, num_chan = 0, total_num_chan = 0;
2223	int aiop, chan;
2224	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2225	CONTROLLER_t *ctlp;
2226	char *type_string;
2227
2228	/*  If io_addr is zero, no board configured */
2229	if (rcktpt_io_addr[i] == 0)
2230		return (0);
2231
2232	/*  Reserve the IO region */
2233	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2234		printk(KERN_ERR "Unable to reserve IO region for configured "
2235				"ISA RocketPort at address 0x%lx, board not "
2236				"installed...\n", rcktpt_io_addr[i]);
2237		rcktpt_io_addr[i] = 0;
2238		return (0);
2239	}
2240
2241	ctlp = sCtlNumToCtlPtr(i);
2242
2243	ctlp->boardType = rcktpt_type[i];
2244
2245	switch (rcktpt_type[i]) {
2246	case ROCKET_TYPE_PC104:
2247		type_string = "(PC104)";
2248		break;
2249	case ROCKET_TYPE_MODEM:
2250		type_string = "(RocketModem)";
2251		break;
2252	case ROCKET_TYPE_MODEMII:
2253		type_string = "(RocketModem II)";
2254		break;
2255	default:
2256		type_string = "";
2257		break;
2258	}
2259
2260	/*
2261	 * If support_low_speed is set, use the slow clock prescale,
2262	 * which supports 50 bps
2263	 */
2264	if (support_low_speed) {
2265		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2266		rp_baud_base[i] = 230400;
2267	} else {
2268		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2269		rp_baud_base[i] = 460800;
2270	}
2271
2272	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2273		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2274
2275	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2276
2277	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2278		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2279		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2280	}
2281
2282	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2283	if (num_aiops <= 0) {
2284		release_region(rcktpt_io_addr[i], 64);
2285		rcktpt_io_addr[i] = 0;
2286		return (0);
2287	}
2288  
2289	rocketModel[i].startingPortNumber = nextLineNumber;
2290
2291	for (aiop = 0; aiop < num_aiops; aiop++) {
2292		sResetAiopByNum(ctlp, aiop);
2293		sEnAiop(ctlp, aiop);
2294		num_chan = sGetAiopNumChan(ctlp, aiop);
2295		total_num_chan += num_chan;
2296		for (chan = 0; chan < num_chan; chan++)
2297			init_r_port(i, aiop, chan, NULL);
2298	}
2299	is_PCI[i] = 0;
2300	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2301		num_chan = sGetAiopNumChan(ctlp, 0);
2302		total_num_chan = num_chan;
2303		for (chan = 0; chan < num_chan; chan++)
2304			sModemReset(ctlp, chan, 1);
2305		msleep(500);
2306		for (chan = 0; chan < num_chan; chan++)
2307			sModemReset(ctlp, chan, 0);
2308		msleep(500);
2309		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2310	} else {
2311		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2312	}
2313	rocketModel[i].numPorts = total_num_chan;
2314	rocketModel[i].model = MODEL_ISA;
2315
2316	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2317	       i, rcktpt_io_addr[i], num_aiops, type_string);
2318
2319	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2320	       rocketModel[i].modelString,
2321	       rocketModel[i].startingPortNumber,
2322	       rocketModel[i].startingPortNumber +
2323	       rocketModel[i].numPorts - 1);
2324
2325	return (1);
2326}
2327
2328static const struct tty_operations rocket_ops = {
2329	.open = rp_open,
2330	.close = rp_close,
2331	.write = rp_write,
2332	.put_char = rp_put_char,
2333	.write_room = rp_write_room,
2334	.chars_in_buffer = rp_chars_in_buffer,
2335	.flush_buffer = rp_flush_buffer,
2336	.ioctl = rp_ioctl,
2337	.throttle = rp_throttle,
2338	.unthrottle = rp_unthrottle,
2339	.set_termios = rp_set_termios,
2340	.stop = rp_stop,
2341	.start = rp_start,
2342	.hangup = rp_hangup,
2343	.break_ctl = rp_break,
2344	.send_xchar = rp_send_xchar,
2345	.wait_until_sent = rp_wait_until_sent,
2346	.tiocmget = rp_tiocmget,
2347	.tiocmset = rp_tiocmset,
2348};
2349
2350static const struct tty_port_operations rocket_port_ops = {
2351	.carrier_raised = carrier_raised,
2352	.dtr_rts = dtr_rts,
2353};
2354
2355/*
2356 * The module "startup" routine; it's run when the module is loaded.
2357 */
2358static int __init rp_init(void)
2359{
2360	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2361
2362	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2363	       ROCKET_VERSION, ROCKET_DATE);
2364
2365	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2366	if (!rocket_driver)
2367		goto err;
2368
2369	/*
2370	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2371	 *  zero, use the default controller IO address of board1 + 0x40.
2372	 */
2373	if (board1) {
2374		if (controller == 0)
2375			controller = board1 + 0x40;
2376	} else {
2377		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2378	}
2379
2380	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2381	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2382		printk(KERN_ERR "Unable to reserve IO region for first "
2383			"configured ISA RocketPort controller 0x%lx.  "
2384			"Driver exiting\n", controller);
2385		ret = -EBUSY;
2386		goto err_tty;
2387	}
2388
2389	/*  Store ISA variable retrieved from command line or .conf file. */
2390	rcktpt_io_addr[0] = board1;
2391	rcktpt_io_addr[1] = board2;
2392	rcktpt_io_addr[2] = board3;
2393	rcktpt_io_addr[3] = board4;
2394
2395	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2396	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2397	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2399	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2401	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2403
2404	/*
2405	 * Set up the tty driver structure and then register this
2406	 * driver with the tty layer.
2407	 */
2408
 
2409	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2410	rocket_driver->name = "ttyR";
2411	rocket_driver->driver_name = "Comtrol RocketPort";
2412	rocket_driver->major = TTY_ROCKET_MAJOR;
2413	rocket_driver->minor_start = 0;
2414	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2415	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2416	rocket_driver->init_termios = tty_std_termios;
2417	rocket_driver->init_termios.c_cflag =
2418	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2419	rocket_driver->init_termios.c_ispeed = 9600;
2420	rocket_driver->init_termios.c_ospeed = 9600;
2421#ifdef ROCKET_SOFT_FLOW
2422	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2423#endif
2424	tty_set_operations(rocket_driver, &rocket_ops);
2425
2426	ret = tty_register_driver(rocket_driver);
2427	if (ret < 0) {
2428		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2429		goto err_controller;
2430	}
2431
2432#ifdef ROCKET_DEBUG_OPEN
2433	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2434#endif
2435
2436	/*
2437	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2438         *  will be initialized here.
2439	 */
2440	isa_boards_found = 0;
2441	pci_boards_found = 0;
2442
2443	for (i = 0; i < NUM_BOARDS; i++) {
2444		if (init_ISA(i))
2445			isa_boards_found++;
2446	}
2447
2448#ifdef CONFIG_PCI
2449	if (isa_boards_found < NUM_BOARDS)
2450		pci_boards_found = init_PCI(isa_boards_found);
2451#endif
2452
2453	max_board = pci_boards_found + isa_boards_found;
2454
2455	if (max_board == 0) {
2456		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2457		ret = -ENXIO;
2458		goto err_ttyu;
2459	}
2460
2461	return 0;
2462err_ttyu:
2463	tty_unregister_driver(rocket_driver);
2464err_controller:
2465	if (controller)
2466		release_region(controller, 4);
2467err_tty:
2468	put_tty_driver(rocket_driver);
2469err:
2470	return ret;
2471}
2472
2473
2474static void rp_cleanup_module(void)
2475{
2476	int retval;
2477	int i;
2478
2479	del_timer_sync(&rocket_timer);
2480
2481	retval = tty_unregister_driver(rocket_driver);
2482	if (retval)
2483		printk(KERN_ERR "Error %d while trying to unregister "
2484		       "rocketport driver\n", -retval);
2485
2486	for (i = 0; i < MAX_RP_PORTS; i++)
2487		if (rp_table[i]) {
2488			tty_unregister_device(rocket_driver, i);
2489			tty_port_destroy(&rp_table[i]->port);
2490			kfree(rp_table[i]);
2491		}
2492
2493	put_tty_driver(rocket_driver);
2494
2495	for (i = 0; i < NUM_BOARDS; i++) {
2496		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497			continue;
2498		release_region(rcktpt_io_addr[i], 64);
2499	}
2500	if (controller)
2501		release_region(controller, 4);
2502}
2503
2504/***************************************************************************
2505Function: sInitController
2506Purpose:  Initialization of controller global registers and controller
2507          structure.
2508Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509                          IRQNum,Frequency,PeriodicOnly)
2510          CONTROLLER_T *CtlP; Ptr to controller structure
2511          int CtlNum; Controller number
2512          ByteIO_t MudbacIO; Mudbac base I/O address.
2513          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514             This list must be in the order the AIOPs will be found on the
2515             controller.  Once an AIOP in the list is not found, it is
2516             assumed that there are no more AIOPs on the controller.
2517          int AiopIOListSize; Number of addresses in AiopIOList
2518          int IRQNum; Interrupt Request number.  Can be any of the following:
2519                         0: Disable global interrupts
2520                         3: IRQ 3
2521                         4: IRQ 4
2522                         5: IRQ 5
2523                         9: IRQ 9
2524                         10: IRQ 10
2525                         11: IRQ 11
2526                         12: IRQ 12
2527                         15: IRQ 15
2528          Byte_t Frequency: A flag identifying the frequency
2529                   of the periodic interrupt, can be any one of the following:
2530                      FREQ_DIS - periodic interrupt disabled
2531                      FREQ_137HZ - 137 Hertz
2532                      FREQ_69HZ - 69 Hertz
2533                      FREQ_34HZ - 34 Hertz
2534                      FREQ_17HZ - 17 Hertz
2535                      FREQ_9HZ - 9 Hertz
2536                      FREQ_4HZ - 4 Hertz
2537                   If IRQNum is set to 0 the Frequency parameter is
2538                   overidden, it is forced to a value of FREQ_DIS.
2539          int PeriodicOnly: 1 if all interrupts except the periodic
2540                               interrupt are to be blocked.
2541                            0 is both the periodic interrupt and
2542                               other channel interrupts are allowed.
2543                            If IRQNum is set to 0 the PeriodicOnly parameter is
2544                               overidden, it is forced to a value of 0.
2545Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546               initialization failed.
2547
2548Comments:
2549          If periodic interrupts are to be disabled but AIOP interrupts
2550          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552          If interrupts are to be completely disabled set IRQNum to 0.
2553
2554          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555          invalid combination.
2556
2557          This function performs initialization of global interrupt modes,
2558          but it does not actually enable global interrupts.  To enable
2559          and disable global interrupts use functions sEnGlobalInt() and
2560          sDisGlobalInt().  Enabling of global interrupts is normally not
2561          done until all other initializations are complete.
2562
2563          Even if interrupts are globally enabled, they must also be
2564          individually enabled for each channel that is to generate
2565          interrupts.
2566
2567Warnings: No range checking on any of the parameters is done.
2568
2569          No context switches are allowed while executing this function.
2570
2571          After this function all AIOPs on the controller are disabled,
2572          they can be enabled with sEnAiop().
2573*/
2574static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575			   ByteIO_t * AiopIOList, int AiopIOListSize,
2576			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577{
2578	int i;
2579	ByteIO_t io;
2580	int done;
2581
2582	CtlP->AiopIntrBits = aiop_intr_bits;
2583	CtlP->AltChanRingIndicator = 0;
2584	CtlP->CtlNum = CtlNum;
2585	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2586	CtlP->BusType = isISA;
2587	CtlP->MBaseIO = MudbacIO;
2588	CtlP->MReg1IO = MudbacIO + 1;
2589	CtlP->MReg2IO = MudbacIO + 2;
2590	CtlP->MReg3IO = MudbacIO + 3;
2591#if 1
2592	CtlP->MReg2 = 0;	/* interrupt disable */
2593	CtlP->MReg3 = 0;	/* no periodic interrupts */
2594#else
2595	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2596		CtlP->MReg2 = 0;	/* interrupt disable */
2597		CtlP->MReg3 = 0;	/* no periodic interrupts */
2598	} else {
2599		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2600		CtlP->MReg3 = Frequency;	/* set frequency */
2601		if (PeriodicOnly) {	/* periodic interrupt only */
2602			CtlP->MReg3 |= PERIODIC_ONLY;
2603		}
2604	}
2605#endif
2606	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608	sControllerEOI(CtlP);	/* clear EOI if warm init */
2609	/* Init AIOPs */
2610	CtlP->NumAiop = 0;
2611	for (i = done = 0; i < AiopIOListSize; i++) {
2612		io = AiopIOList[i];
2613		CtlP->AiopIO[i] = (WordIO_t) io;
2614		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2616		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2617		if (done)
2618			continue;
2619		sEnAiop(CtlP, i);	/* enable the AIOP */
2620		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2621		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2622			done = 1;	/* done looking for AIOPs */
2623		else {
2624			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2625			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2626			sOutB(io + _INDX_DATA, sClockPrescale);
2627			CtlP->NumAiop++;	/* bump count of AIOPs */
2628		}
2629		sDisAiop(CtlP, i);	/* disable AIOP */
2630	}
2631
2632	if (CtlP->NumAiop == 0)
2633		return (-1);
2634	else
2635		return (CtlP->NumAiop);
2636}
2637
2638/***************************************************************************
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2639Function: sReadAiopID
2640Purpose:  Read the AIOP idenfication number directly from an AIOP.
2641Call:     sReadAiopID(io)
2642          ByteIO_t io: AIOP base I/O address
2643Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2644                 is replace by an identifying number.
2645          Flag AIOPID_NULL if no valid AIOP is found
2646Warnings: No context switches are allowed while executing this function.
2647
2648*/
2649static int sReadAiopID(ByteIO_t io)
2650{
2651	Byte_t AiopID;		/* ID byte from AIOP */
2652
2653	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2654	sOutB(io + _CMD_REG, 0x0);
2655	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2656	if (AiopID == 0x06)
2657		return (1);
2658	else			/* AIOP does not exist */
2659		return (-1);
2660}
2661
2662/***************************************************************************
2663Function: sReadAiopNumChan
2664Purpose:  Read the number of channels available in an AIOP directly from
2665          an AIOP.
2666Call:     sReadAiopNumChan(io)
2667          WordIO_t io: AIOP base I/O address
2668Return:   int: The number of channels available
2669Comments: The number of channels is determined by write/reads from identical
2670          offsets within the SRAM address spaces for channels 0 and 4.
2671          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2672          AIOP, otherwise it is an 8 channel.
2673Warnings: No context switches are allowed while executing this function.
2674*/
2675static int sReadAiopNumChan(WordIO_t io)
2676{
2677	Word_t x;
2678	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2679
2680	/* write to chan 0 SRAM */
2681	out32((DWordIO_t) io + _INDX_ADDR, R);
2682	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2683	x = sInW(io + _INDX_DATA);
2684	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2685	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2686		return (8);
2687	else
2688		return (4);
2689}
2690
2691/***************************************************************************
2692Function: sInitChan
2693Purpose:  Initialization of a channel and channel structure
2694Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2695          CONTROLLER_T *CtlP; Ptr to controller structure
2696          CHANNEL_T *ChP; Ptr to channel structure
2697          int AiopNum; AIOP number within controller
2698          int ChanNum; Channel number within AIOP
2699Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2700               number exceeds number of channels available in AIOP.
2701Comments: This function must be called before a channel can be used.
2702Warnings: No range checking on any of the parameters is done.
2703
2704          No context switches are allowed while executing this function.
2705*/
2706static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2707		     int ChanNum)
2708{
2709	int i;
2710	WordIO_t AiopIO;
2711	WordIO_t ChIOOff;
2712	Byte_t *ChR;
2713	Word_t ChOff;
2714	static Byte_t R[4];
2715	int brd9600;
2716
2717	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2718		return 0;	/* exceeds num chans in AIOP */
2719
2720	/* Channel, AIOP, and controller identifiers */
2721	ChP->CtlP = CtlP;
2722	ChP->ChanID = CtlP->AiopID[AiopNum];
2723	ChP->AiopNum = AiopNum;
2724	ChP->ChanNum = ChanNum;
2725
2726	/* Global direct addresses */
2727	AiopIO = CtlP->AiopIO[AiopNum];
2728	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2729	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2730	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2731	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2732	ChP->IndexData = AiopIO + _INDX_DATA;
2733
2734	/* Channel direct addresses */
2735	ChIOOff = AiopIO + ChP->ChanNum * 2;
2736	ChP->TxRxData = ChIOOff + _TD0;
2737	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2738	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2739	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2740
2741	/* Initialize the channel from the RData array */
2742	for (i = 0; i < RDATASIZE; i += 4) {
2743		R[0] = RData[i];
2744		R[1] = RData[i + 1] + 0x10 * ChanNum;
2745		R[2] = RData[i + 2];
2746		R[3] = RData[i + 3];
2747		out32(ChP->IndexAddr, R);
2748	}
2749
2750	ChR = ChP->R;
2751	for (i = 0; i < RREGDATASIZE; i += 4) {
2752		ChR[i] = RRegData[i];
2753		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2754		ChR[i + 2] = RRegData[i + 2];
2755		ChR[i + 3] = RRegData[i + 3];
2756	}
2757
2758	/* Indexed registers */
2759	ChOff = (Word_t) ChanNum *0x1000;
2760
2761	if (sClockPrescale == 0x14)
2762		brd9600 = 47;
2763	else
2764		brd9600 = 23;
2765
2766	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2767	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2768	ChP->BaudDiv[2] = (Byte_t) brd9600;
2769	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2770	out32(ChP->IndexAddr, ChP->BaudDiv);
2771
2772	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2773	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2774	ChP->TxControl[2] = 0;
2775	ChP->TxControl[3] = 0;
2776	out32(ChP->IndexAddr, ChP->TxControl);
2777
2778	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2779	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2780	ChP->RxControl[2] = 0;
2781	ChP->RxControl[3] = 0;
2782	out32(ChP->IndexAddr, ChP->RxControl);
2783
2784	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2785	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2786	ChP->TxEnables[2] = 0;
2787	ChP->TxEnables[3] = 0;
2788	out32(ChP->IndexAddr, ChP->TxEnables);
2789
2790	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2791	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2792	ChP->TxCompare[2] = 0;
2793	ChP->TxCompare[3] = 0;
2794	out32(ChP->IndexAddr, ChP->TxCompare);
2795
2796	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2797	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2798	ChP->TxReplace1[2] = 0;
2799	ChP->TxReplace1[3] = 0;
2800	out32(ChP->IndexAddr, ChP->TxReplace1);
2801
2802	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2803	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2804	ChP->TxReplace2[2] = 0;
2805	ChP->TxReplace2[3] = 0;
2806	out32(ChP->IndexAddr, ChP->TxReplace2);
2807
2808	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2809	ChP->TxFIFO = ChOff + _TX_FIFO;
2810
2811	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2812	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2813	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2814	sOutW(ChP->IndexData, 0);
2815	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2816	ChP->RxFIFO = ChOff + _RX_FIFO;
2817
2818	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2819	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2820	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2821	sOutW(ChP->IndexData, 0);
2822	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2823	sOutW(ChP->IndexData, 0);
2824	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2825	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2826	sOutB(ChP->IndexData, 0);
2827	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2828	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2829	sOutB(ChP->IndexData, 0);
2830	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2831	sEnRxProcessor(ChP);	/* start the Rx processor */
2832
2833	return 1;
2834}
2835
2836/***************************************************************************
2837Function: sStopRxProcessor
2838Purpose:  Stop the receive processor from processing a channel.
2839Call:     sStopRxProcessor(ChP)
2840          CHANNEL_T *ChP; Ptr to channel structure
2841
2842Comments: The receive processor can be started again with sStartRxProcessor().
2843          This function causes the receive processor to skip over the
2844          stopped channel.  It does not stop it from processing other channels.
2845
2846Warnings: No context switches are allowed while executing this function.
2847
2848          Do not leave the receive processor stopped for more than one
2849          character time.
2850
2851          After calling this function a delay of 4 uS is required to ensure
2852          that the receive processor is no longer processing this channel.
2853*/
2854static void sStopRxProcessor(CHANNEL_T * ChP)
2855{
2856	Byte_t R[4];
2857
2858	R[0] = ChP->R[0];
2859	R[1] = ChP->R[1];
2860	R[2] = 0x0a;
2861	R[3] = ChP->R[3];
2862	out32(ChP->IndexAddr, R);
2863}
2864
2865/***************************************************************************
2866Function: sFlushRxFIFO
2867Purpose:  Flush the Rx FIFO
2868Call:     sFlushRxFIFO(ChP)
2869          CHANNEL_T *ChP; Ptr to channel structure
2870Return:   void
2871Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2872          while it is being flushed the receive processor is stopped
2873          and the transmitter is disabled.  After these operations a
2874          4 uS delay is done before clearing the pointers to allow
2875          the receive processor to stop.  These items are handled inside
2876          this function.
2877Warnings: No context switches are allowed while executing this function.
2878*/
2879static void sFlushRxFIFO(CHANNEL_T * ChP)
2880{
2881	int i;
2882	Byte_t Ch;		/* channel number within AIOP */
2883	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2884
2885	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2886		return;		/* don't need to flush */
2887
2888	RxFIFOEnabled = 0;
2889	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2890		RxFIFOEnabled = 1;
2891		sDisRxFIFO(ChP);	/* disable it */
2892		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2893			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2894	}
2895	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2896	Ch = (Byte_t) sGetChanNum(ChP);
2897	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2898	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2899	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2900	sOutW(ChP->IndexData, 0);
2901	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2902	sOutW(ChP->IndexData, 0);
2903	if (RxFIFOEnabled)
2904		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2905}
2906
2907/***************************************************************************
2908Function: sFlushTxFIFO
2909Purpose:  Flush the Tx FIFO
2910Call:     sFlushTxFIFO(ChP)
2911          CHANNEL_T *ChP; Ptr to channel structure
2912Return:   void
2913Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2914          while it is being flushed the receive processor is stopped
2915          and the transmitter is disabled.  After these operations a
2916          4 uS delay is done before clearing the pointers to allow
2917          the receive processor to stop.  These items are handled inside
2918          this function.
2919Warnings: No context switches are allowed while executing this function.
2920*/
2921static void sFlushTxFIFO(CHANNEL_T * ChP)
2922{
2923	int i;
2924	Byte_t Ch;		/* channel number within AIOP */
2925	int TxEnabled;		/* 1 if transmitter enabled */
2926
2927	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2928		return;		/* don't need to flush */
2929
2930	TxEnabled = 0;
2931	if (ChP->TxControl[3] & TX_ENABLE) {
2932		TxEnabled = 1;
2933		sDisTransmit(ChP);	/* disable transmitter */
2934	}
2935	sStopRxProcessor(ChP);	/* stop Rx processor */
2936	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2937		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2938	Ch = (Byte_t) sGetChanNum(ChP);
2939	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2940	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2941	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2942	sOutW(ChP->IndexData, 0);
2943	if (TxEnabled)
2944		sEnTransmit(ChP);	/* enable transmitter */
2945	sStartRxProcessor(ChP);	/* restart Rx processor */
2946}
2947
2948/***************************************************************************
2949Function: sWriteTxPrioByte
2950Purpose:  Write a byte of priority transmit data to a channel
2951Call:     sWriteTxPrioByte(ChP,Data)
2952          CHANNEL_T *ChP; Ptr to channel structure
2953          Byte_t Data; The transmit data byte
2954
2955Return:   int: 1 if the bytes is successfully written, otherwise 0.
2956
2957Comments: The priority byte is transmitted before any data in the Tx FIFO.
2958
2959Warnings: No context switches are allowed while executing this function.
2960*/
2961static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2962{
2963	Byte_t DWBuf[4];	/* buffer for double word writes */
2964	Word_t *WordPtr;	/* must be far because Win SS != DS */
2965	register DWordIO_t IndexAddr;
2966
2967	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2968		IndexAddr = ChP->IndexAddr;
2969		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2970		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2971			return (0);	/* nothing sent */
2972
2973		WordPtr = (Word_t *) (&DWBuf[0]);
2974		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2975
2976		DWBuf[2] = Data;	/* data byte value */
2977		out32(IndexAddr, DWBuf);	/* write it out */
2978
2979		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2980
2981		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2982		DWBuf[3] = 0;	/* priority buffer pointer */
2983		out32(IndexAddr, DWBuf);	/* write it out */
2984	} else {		/* write it to Tx FIFO */
2985
2986		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2987	}
2988	return (1);		/* 1 byte sent */
2989}
2990
2991/***************************************************************************
2992Function: sEnInterrupts
2993Purpose:  Enable one or more interrupts for a channel
2994Call:     sEnInterrupts(ChP,Flags)
2995          CHANNEL_T *ChP; Ptr to channel structure
2996          Word_t Flags: Interrupt enable flags, can be any combination
2997             of the following flags:
2998                TXINT_EN:   Interrupt on Tx FIFO empty
2999                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3000                            sSetRxTrigger())
3001                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3002                MCINT_EN:   Interrupt on modem input change
3003                CHANINT_EN: Allow channel interrupt signal to the AIOP's
3004                            Interrupt Channel Register.
3005Return:   void
3006Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3007          enabled.  If an interrupt enable flag is not set in Flags, that
3008          interrupt will not be changed.  Interrupts can be disabled with
3009          function sDisInterrupts().
3010
3011          This function sets the appropriate bit for the channel in the AIOP's
3012          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3013          this channel's bit to be set in the AIOP's Interrupt Channel Register.
3014
3015          Interrupts must also be globally enabled before channel interrupts
3016          will be passed on to the host.  This is done with function
3017          sEnGlobalInt().
3018
3019          In some cases it may be desirable to disable interrupts globally but
3020          enable channel interrupts.  This would allow the global interrupt
3021          status register to be used to determine which AIOPs need service.
3022*/
3023static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3024{
3025	Byte_t Mask;		/* Interrupt Mask Register */
3026
3027	ChP->RxControl[2] |=
3028	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3029
3030	out32(ChP->IndexAddr, ChP->RxControl);
3031
3032	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3033
3034	out32(ChP->IndexAddr, ChP->TxControl);
3035
3036	if (Flags & CHANINT_EN) {
3037		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3038		sOutB(ChP->IntMask, Mask);
3039	}
3040}
3041
3042/***************************************************************************
3043Function: sDisInterrupts
3044Purpose:  Disable one or more interrupts for a channel
3045Call:     sDisInterrupts(ChP,Flags)
3046          CHANNEL_T *ChP; Ptr to channel structure
3047          Word_t Flags: Interrupt flags, can be any combination
3048             of the following flags:
3049                TXINT_EN:   Interrupt on Tx FIFO empty
3050                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3051                            sSetRxTrigger())
3052                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3053                MCINT_EN:   Interrupt on modem input change
3054                CHANINT_EN: Disable channel interrupt signal to the
3055                            AIOP's Interrupt Channel Register.
3056Return:   void
3057Comments: If an interrupt flag is set in Flags, that interrupt will be
3058          disabled.  If an interrupt flag is not set in Flags, that
3059          interrupt will not be changed.  Interrupts can be enabled with
3060          function sEnInterrupts().
3061
3062          This function clears the appropriate bit for the channel in the AIOP's
3063          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3064          this channel's bit from being set in the AIOP's Interrupt Channel
3065          Register.
3066*/
3067static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3068{
3069	Byte_t Mask;		/* Interrupt Mask Register */
3070
3071	ChP->RxControl[2] &=
3072	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3073	out32(ChP->IndexAddr, ChP->RxControl);
3074	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3075	out32(ChP->IndexAddr, ChP->TxControl);
3076
3077	if (Flags & CHANINT_EN) {
3078		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3079		sOutB(ChP->IntMask, Mask);
3080	}
3081}
3082
3083static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3084{
3085	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3086}
3087
3088/*
3089 *  Not an official SSCI function, but how to reset RocketModems.
3090 *  ISA bus version
3091 */
3092static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3093{
3094	ByteIO_t addr;
3095	Byte_t val;
3096
3097	addr = CtlP->AiopIO[0] + 0x400;
3098	val = sInB(CtlP->MReg3IO);
3099	/* if AIOP[1] is not enabled, enable it */
3100	if ((val & 2) == 0) {
3101		val = sInB(CtlP->MReg2IO);
3102		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3103		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3104	}
3105
3106	sEnAiop(CtlP, 1);
3107	if (!on)
3108		addr += 8;
3109	sOutB(addr + chan, 0);	/* apply or remove reset */
3110	sDisAiop(CtlP, 1);
3111}
3112
3113/*
3114 *  Not an official SSCI function, but how to reset RocketModems.
3115 *  PCI bus version
3116 */
3117static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3118{
3119	ByteIO_t addr;
3120
3121	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3122	if (!on)
3123		addr += 8;
3124	sOutB(addr + chan, 0);	/* apply or remove reset */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3125}
3126
3127/*  Returns the line number given the controller (board), aiop and channel number */
3128static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3129{
3130	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3131}
3132
3133/*
3134 *  Stores the line number associated with a given controller (board), aiop
3135 *  and channel number.  
3136 *  Returns:  The line number assigned 
3137 */
3138static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3139{
3140	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3141	return (nextLineNumber - 1);
3142}
v3.1
   1/*
   2 * RocketPort device driver for Linux
   3 *
   4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
   5 * 
   6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
   7 * 
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2 of the
  11 * License, or (at your option) any later version.
  12 * 
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 * 
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
  23/*
  24 * Kernel Synchronization:
  25 *
  26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
  27 * from user mode) and the timer bottom half (tasklet).  This is a polled driver, interrupts
  28 * are not used.
  29 *
  30 * Critical data: 
  31 * -  rp_table[], accessed through passed "info" pointers, is a global (static) array of 
  32 *    serial port state information and the xmit_buf circular buffer.  Protected by 
  33 *    a per port spinlock.
  34 * -  xmit_flags[], an array of ints indexed by line (port) number, indicating that there
  35 *    is data to be transmitted.  Protected by atomic bit operations.
  36 * -  rp_num_ports, int indicating number of open ports, protected by atomic operations.
  37 * 
  38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
  39 * simultaneous access to the same port by more than one process.
  40 */
  41
  42/****** Defines ******/
  43#define ROCKET_PARANOIA_CHECK
  44#define ROCKET_DISABLE_SIMUSAGE
  45
  46#undef ROCKET_SOFT_FLOW
  47#undef ROCKET_DEBUG_OPEN
  48#undef ROCKET_DEBUG_INTR
  49#undef ROCKET_DEBUG_WRITE
  50#undef ROCKET_DEBUG_FLOW
  51#undef ROCKET_DEBUG_THROTTLE
  52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
  53#undef ROCKET_DEBUG_RECEIVE
  54#undef ROCKET_DEBUG_HANGUP
  55#undef REV_PCI_ORDER
  56#undef ROCKET_DEBUG_IO
  57
  58#define POLL_PERIOD HZ/100	/*  Polling period .01 seconds (10ms) */
  59
  60/****** Kernel includes ******/
  61
  62#include <linux/module.h>
  63#include <linux/errno.h>
  64#include <linux/major.h>
  65#include <linux/kernel.h>
  66#include <linux/signal.h>
  67#include <linux/slab.h>
  68#include <linux/mm.h>
  69#include <linux/sched.h>
  70#include <linux/timer.h>
  71#include <linux/interrupt.h>
  72#include <linux/tty.h>
  73#include <linux/tty_driver.h>
  74#include <linux/tty_flip.h>
  75#include <linux/serial.h>
  76#include <linux/string.h>
  77#include <linux/fcntl.h>
  78#include <linux/ptrace.h>
  79#include <linux/mutex.h>
  80#include <linux/ioport.h>
  81#include <linux/delay.h>
  82#include <linux/completion.h>
  83#include <linux/wait.h>
  84#include <linux/pci.h>
  85#include <linux/uaccess.h>
  86#include <linux/atomic.h>
  87#include <asm/unaligned.h>
  88#include <linux/bitops.h>
  89#include <linux/spinlock.h>
  90#include <linux/init.h>
  91
  92/****** RocketPort includes ******/
  93
  94#include "rocket_int.h"
  95#include "rocket.h"
  96
  97#define ROCKET_VERSION "2.09"
  98#define ROCKET_DATE "12-June-2003"
  99
 100/****** RocketPort Local Variables ******/
 101
 102static void rp_do_poll(unsigned long dummy);
 103
 104static struct tty_driver *rocket_driver;
 105
 106static struct rocket_version driver_version = {	
 107	ROCKET_VERSION, ROCKET_DATE
 108};
 109
 110static struct r_port *rp_table[MAX_RP_PORTS];	       /*  The main repository of serial port state information. */
 111static unsigned int xmit_flags[NUM_BOARDS];	       /*  Bit significant, indicates port had data to transmit. */
 112						       /*  eg.  Bit 0 indicates port 0 has xmit data, ...        */
 113static atomic_t rp_num_ports_open;	               /*  Number of serial ports open                           */
 114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
 115
 116static unsigned long board1;	                       /* ISA addresses, retrieved from rocketport.conf          */
 117static unsigned long board2;
 118static unsigned long board3;
 119static unsigned long board4;
 120static unsigned long controller;
 121static int support_low_speed;
 122static unsigned long modem1;
 123static unsigned long modem2;
 124static unsigned long modem3;
 125static unsigned long modem4;
 126static unsigned long pc104_1[8];
 127static unsigned long pc104_2[8];
 128static unsigned long pc104_3[8];
 129static unsigned long pc104_4[8];
 130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
 131
 132static int rp_baud_base[NUM_BOARDS];	               /*  Board config info (Someday make a per-board structure)  */
 133static unsigned long rcktpt_io_addr[NUM_BOARDS];
 134static int rcktpt_type[NUM_BOARDS];
 135static int is_PCI[NUM_BOARDS];
 136static rocketModel_t rocketModel[NUM_BOARDS];
 137static int max_board;
 138static const struct tty_port_operations rocket_port_ops;
 139
 140/*
 141 * The following arrays define the interrupt bits corresponding to each AIOP.
 142 * These bits are different between the ISA and regular PCI boards and the
 143 * Universal PCI boards.
 144 */
 145
 146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
 147	AIOP_INTR_BIT_0,
 148	AIOP_INTR_BIT_1,
 149	AIOP_INTR_BIT_2,
 150	AIOP_INTR_BIT_3
 151};
 152
 
 153static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
 154	UPCI_AIOP_INTR_BIT_0,
 155	UPCI_AIOP_INTR_BIT_1,
 156	UPCI_AIOP_INTR_BIT_2,
 157	UPCI_AIOP_INTR_BIT_3
 158};
 
 159
 160static Byte_t RData[RDATASIZE] = {
 161	0x00, 0x09, 0xf6, 0x82,
 162	0x02, 0x09, 0x86, 0xfb,
 163	0x04, 0x09, 0x00, 0x0a,
 164	0x06, 0x09, 0x01, 0x0a,
 165	0x08, 0x09, 0x8a, 0x13,
 166	0x0a, 0x09, 0xc5, 0x11,
 167	0x0c, 0x09, 0x86, 0x85,
 168	0x0e, 0x09, 0x20, 0x0a,
 169	0x10, 0x09, 0x21, 0x0a,
 170	0x12, 0x09, 0x41, 0xff,
 171	0x14, 0x09, 0x82, 0x00,
 172	0x16, 0x09, 0x82, 0x7b,
 173	0x18, 0x09, 0x8a, 0x7d,
 174	0x1a, 0x09, 0x88, 0x81,
 175	0x1c, 0x09, 0x86, 0x7a,
 176	0x1e, 0x09, 0x84, 0x81,
 177	0x20, 0x09, 0x82, 0x7c,
 178	0x22, 0x09, 0x0a, 0x0a
 179};
 180
 181static Byte_t RRegData[RREGDATASIZE] = {
 182	0x00, 0x09, 0xf6, 0x82,	/* 00: Stop Rx processor */
 183	0x08, 0x09, 0x8a, 0x13,	/* 04: Tx software flow control */
 184	0x0a, 0x09, 0xc5, 0x11,	/* 08: XON char */
 185	0x0c, 0x09, 0x86, 0x85,	/* 0c: XANY */
 186	0x12, 0x09, 0x41, 0xff,	/* 10: Rx mask char */
 187	0x14, 0x09, 0x82, 0x00,	/* 14: Compare/Ignore #0 */
 188	0x16, 0x09, 0x82, 0x7b,	/* 18: Compare #1 */
 189	0x18, 0x09, 0x8a, 0x7d,	/* 1c: Compare #2 */
 190	0x1a, 0x09, 0x88, 0x81,	/* 20: Interrupt #1 */
 191	0x1c, 0x09, 0x86, 0x7a,	/* 24: Ignore/Replace #1 */
 192	0x1e, 0x09, 0x84, 0x81,	/* 28: Interrupt #2 */
 193	0x20, 0x09, 0x82, 0x7c,	/* 2c: Ignore/Replace #2 */
 194	0x22, 0x09, 0x0a, 0x0a	/* 30: Rx FIFO Enable */
 195};
 196
 197static CONTROLLER_T sController[CTL_SIZE] = {
 198	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 199	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 200	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 201	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 202	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 203	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
 204	{-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
 205	 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
 206};
 207
 208static Byte_t sBitMapClrTbl[8] = {
 209	0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
 210};
 211
 212static Byte_t sBitMapSetTbl[8] = {
 213	0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
 214};
 215
 216static int sClockPrescale = 0x14;
 217
 218/*
 219 *  Line number is the ttySIx number (x), the Minor number.  We 
 220 *  assign them sequentially, starting at zero.  The following 
 221 *  array keeps track of the line number assigned to a given board/aiop/channel.
 222 */
 223static unsigned char lineNumbers[MAX_RP_PORTS];
 224static unsigned long nextLineNumber;
 225
 226/*****  RocketPort Static Prototypes   *********/
 227static int __init init_ISA(int i);
 228static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
 229static void rp_flush_buffer(struct tty_struct *tty);
 230static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
 231static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
 232static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
 233static void rp_start(struct tty_struct *tty);
 234static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
 235		     int ChanNum);
 236static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
 237static void sFlushRxFIFO(CHANNEL_T * ChP);
 238static void sFlushTxFIFO(CHANNEL_T * ChP);
 239static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
 240static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
 241static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
 242static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
 243static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
 244static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
 245			      ByteIO_t * AiopIOList, int AiopIOListSize,
 246			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
 247			      int PeriodicOnly, int altChanRingIndicator,
 248			      int UPCIRingInd);
 249static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
 250			   ByteIO_t * AiopIOList, int AiopIOListSize,
 251			   int IRQNum, Byte_t Frequency, int PeriodicOnly);
 252static int sReadAiopID(ByteIO_t io);
 253static int sReadAiopNumChan(WordIO_t io);
 254
 255MODULE_AUTHOR("Theodore Ts'o");
 256MODULE_DESCRIPTION("Comtrol RocketPort driver");
 257module_param(board1, ulong, 0);
 258MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
 259module_param(board2, ulong, 0);
 260MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
 261module_param(board3, ulong, 0);
 262MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
 263module_param(board4, ulong, 0);
 264MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
 265module_param(controller, ulong, 0);
 266MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
 267module_param(support_low_speed, bool, 0);
 268MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
 269module_param(modem1, ulong, 0);
 270MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
 271module_param(modem2, ulong, 0);
 272MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
 273module_param(modem3, ulong, 0);
 274MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
 275module_param(modem4, ulong, 0);
 276MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
 277module_param_array(pc104_1, ulong, NULL, 0);
 278MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
 279module_param_array(pc104_2, ulong, NULL, 0);
 280MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
 281module_param_array(pc104_3, ulong, NULL, 0);
 282MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
 283module_param_array(pc104_4, ulong, NULL, 0);
 284MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
 285
 286static int rp_init(void);
 287static void rp_cleanup_module(void);
 288
 289module_init(rp_init);
 290module_exit(rp_cleanup_module);
 291
 292
 293MODULE_LICENSE("Dual BSD/GPL");
 294
 295/*************************************************************************/
 296/*                     Module code starts here                           */
 297
 298static inline int rocket_paranoia_check(struct r_port *info,
 299					const char *routine)
 300{
 301#ifdef ROCKET_PARANOIA_CHECK
 302	if (!info)
 303		return 1;
 304	if (info->magic != RPORT_MAGIC) {
 305		printk(KERN_WARNING "Warning: bad magic number for rocketport "
 306				"struct in %s\n", routine);
 307		return 1;
 308	}
 309#endif
 310	return 0;
 311}
 312
 313
 314/*  Serial port receive data function.  Called (from timer poll) when an AIOPIC signals 
 315 *  that receive data is present on a serial port.  Pulls data from FIFO, moves it into the 
 316 *  tty layer.  
 317 */
 318static void rp_do_receive(struct r_port *info,
 319			  struct tty_struct *tty,
 320			  CHANNEL_t * cp, unsigned int ChanStatus)
 321{
 322	unsigned int CharNStat;
 323	int ToRecv, wRecv, space;
 324	unsigned char *cbuf;
 325
 326	ToRecv = sGetRxCnt(cp);
 327#ifdef ROCKET_DEBUG_INTR
 328	printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
 329#endif
 330	if (ToRecv == 0)
 331		return;
 332
 333	/*
 334	 * if status indicates there are errored characters in the
 335	 * FIFO, then enter status mode (a word in FIFO holds
 336	 * character and status).
 337	 */
 338	if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
 339		if (!(ChanStatus & STATMODE)) {
 340#ifdef ROCKET_DEBUG_RECEIVE
 341			printk(KERN_INFO "Entering STATMODE...\n");
 342#endif
 343			ChanStatus |= STATMODE;
 344			sEnRxStatusMode(cp);
 345		}
 346	}
 347
 348	/* 
 349	 * if we previously entered status mode, then read down the
 350	 * FIFO one word at a time, pulling apart the character and
 351	 * the status.  Update error counters depending on status
 352	 */
 353	if (ChanStatus & STATMODE) {
 354#ifdef ROCKET_DEBUG_RECEIVE
 355		printk(KERN_INFO "Ignore %x, read %x...\n",
 356			info->ignore_status_mask, info->read_status_mask);
 357#endif
 358		while (ToRecv) {
 359			char flag;
 360
 361			CharNStat = sInW(sGetTxRxDataIO(cp));
 362#ifdef ROCKET_DEBUG_RECEIVE
 363			printk(KERN_INFO "%x...\n", CharNStat);
 364#endif
 365			if (CharNStat & STMBREAKH)
 366				CharNStat &= ~(STMFRAMEH | STMPARITYH);
 367			if (CharNStat & info->ignore_status_mask) {
 368				ToRecv--;
 369				continue;
 370			}
 371			CharNStat &= info->read_status_mask;
 372			if (CharNStat & STMBREAKH)
 373				flag = TTY_BREAK;
 374			else if (CharNStat & STMPARITYH)
 375				flag = TTY_PARITY;
 376			else if (CharNStat & STMFRAMEH)
 377				flag = TTY_FRAME;
 378			else if (CharNStat & STMRCVROVRH)
 379				flag = TTY_OVERRUN;
 380			else
 381				flag = TTY_NORMAL;
 382			tty_insert_flip_char(tty, CharNStat & 0xff, flag);
 
 383			ToRecv--;
 384		}
 385
 386		/*
 387		 * after we've emptied the FIFO in status mode, turn
 388		 * status mode back off
 389		 */
 390		if (sGetRxCnt(cp) == 0) {
 391#ifdef ROCKET_DEBUG_RECEIVE
 392			printk(KERN_INFO "Status mode off.\n");
 393#endif
 394			sDisRxStatusMode(cp);
 395		}
 396	} else {
 397		/*
 398		 * we aren't in status mode, so read down the FIFO two
 399		 * characters at time by doing repeated word IO
 400		 * transfer.
 401		 */
 402		space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
 403		if (space < ToRecv) {
 404#ifdef ROCKET_DEBUG_RECEIVE
 405			printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
 406#endif
 407			if (space <= 0)
 408				return;
 409			ToRecv = space;
 410		}
 411		wRecv = ToRecv >> 1;
 412		if (wRecv)
 413			sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
 414		if (ToRecv & 1)
 415			cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
 416	}
 417	/*  Push the data up to the tty layer */
 418	tty_flip_buffer_push(tty);
 419}
 420
 421/*
 422 *  Serial port transmit data function.  Called from the timer polling loop as a 
 423 *  result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
 424 *  to be sent out the serial port.  Data is buffered in rp_table[line].xmit_buf, it is 
 425 *  moved to the port's xmit FIFO.  *info is critical data, protected by spinlocks.
 426 */
 427static void rp_do_transmit(struct r_port *info)
 428{
 429	int c;
 430	CHANNEL_t *cp = &info->channel;
 431	struct tty_struct *tty;
 432	unsigned long flags;
 433
 434#ifdef ROCKET_DEBUG_INTR
 435	printk(KERN_DEBUG "%s\n", __func__);
 436#endif
 437	if (!info)
 438		return;
 439	tty = tty_port_tty_get(&info->port);
 440
 441	if (tty == NULL) {
 442		printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
 443		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 444		return;
 445	}
 446
 447	spin_lock_irqsave(&info->slock, flags);
 448	info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
 449
 450	/*  Loop sending data to FIFO until done or FIFO full */
 451	while (1) {
 452		if (tty->stopped || tty->hw_stopped)
 453			break;
 454		c = min(info->xmit_fifo_room, info->xmit_cnt);
 455		c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
 456		if (c <= 0 || info->xmit_fifo_room <= 0)
 457			break;
 458		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
 459		if (c & 1)
 460			sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
 461		info->xmit_tail += c;
 462		info->xmit_tail &= XMIT_BUF_SIZE - 1;
 463		info->xmit_cnt -= c;
 464		info->xmit_fifo_room -= c;
 465#ifdef ROCKET_DEBUG_INTR
 466		printk(KERN_INFO "tx %d chars...\n", c);
 467#endif
 468	}
 469
 470	if (info->xmit_cnt == 0)
 471		clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
 472
 473	if (info->xmit_cnt < WAKEUP_CHARS) {
 474		tty_wakeup(tty);
 475#ifdef ROCKETPORT_HAVE_POLL_WAIT
 476		wake_up_interruptible(&tty->poll_wait);
 477#endif
 478	}
 479
 480	spin_unlock_irqrestore(&info->slock, flags);
 481	tty_kref_put(tty);
 482
 483#ifdef ROCKET_DEBUG_INTR
 484	printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
 485	       info->xmit_tail, info->xmit_fifo_room);
 486#endif
 487}
 488
 489/*
 490 *  Called when a serial port signals it has read data in it's RX FIFO.
 491 *  It checks what interrupts are pending and services them, including
 492 *  receiving serial data.  
 493 */
 494static void rp_handle_port(struct r_port *info)
 495{
 496	CHANNEL_t *cp;
 497	struct tty_struct *tty;
 498	unsigned int IntMask, ChanStatus;
 499
 500	if (!info)
 501		return;
 502
 503	if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
 504		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 505				"info->flags & NOT_INIT\n");
 506		return;
 507	}
 508	tty = tty_port_tty_get(&info->port);
 509	if (!tty) {
 510		printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
 511				"tty==NULL\n");
 512		return;
 513	}
 514	cp = &info->channel;
 515
 516	IntMask = sGetChanIntID(cp) & info->intmask;
 517#ifdef ROCKET_DEBUG_INTR
 518	printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
 519#endif
 520	ChanStatus = sGetChanStatus(cp);
 521	if (IntMask & RXF_TRIG) {	/* Rx FIFO trigger level */
 522		rp_do_receive(info, tty, cp, ChanStatus);
 523	}
 524	if (IntMask & DELTA_CD) {	/* CD change  */
 525#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
 526		printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
 527		       (ChanStatus & CD_ACT) ? "on" : "off");
 528#endif
 529		if (!(ChanStatus & CD_ACT) && info->cd_status) {
 530#ifdef ROCKET_DEBUG_HANGUP
 531			printk(KERN_INFO "CD drop, calling hangup.\n");
 532#endif
 533			tty_hangup(tty);
 534		}
 535		info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
 536		wake_up_interruptible(&info->port.open_wait);
 537	}
 538#ifdef ROCKET_DEBUG_INTR
 539	if (IntMask & DELTA_CTS) {	/* CTS change */
 540		printk(KERN_INFO "CTS change...\n");
 541	}
 542	if (IntMask & DELTA_DSR) {	/* DSR change */
 543		printk(KERN_INFO "DSR change...\n");
 544	}
 545#endif
 546	tty_kref_put(tty);
 547}
 548
 549/*
 550 *  The top level polling routine.  Repeats every 1/100 HZ (10ms).
 551 */
 552static void rp_do_poll(unsigned long dummy)
 553{
 554	CONTROLLER_t *ctlp;
 555	int ctrl, aiop, ch, line;
 556	unsigned int xmitmask, i;
 557	unsigned int CtlMask;
 558	unsigned char AiopMask;
 559	Word_t bit;
 560
 561	/*  Walk through all the boards (ctrl's) */
 562	for (ctrl = 0; ctrl < max_board; ctrl++) {
 563		if (rcktpt_io_addr[ctrl] <= 0)
 564			continue;
 565
 566		/*  Get a ptr to the board's control struct */
 567		ctlp = sCtlNumToCtlPtr(ctrl);
 568
 569		/*  Get the interrupt status from the board */
 570#ifdef CONFIG_PCI
 571		if (ctlp->BusType == isPCI)
 572			CtlMask = sPCIGetControllerIntStatus(ctlp);
 573		else
 574#endif
 575			CtlMask = sGetControllerIntStatus(ctlp);
 576
 577		/*  Check if any AIOP read bits are set */
 578		for (aiop = 0; CtlMask; aiop++) {
 579			bit = ctlp->AiopIntrBits[aiop];
 580			if (CtlMask & bit) {
 581				CtlMask &= ~bit;
 582				AiopMask = sGetAiopIntStatus(ctlp, aiop);
 583
 584				/*  Check if any port read bits are set */
 585				for (ch = 0; AiopMask;  AiopMask >>= 1, ch++) {
 586					if (AiopMask & 1) {
 587
 588						/*  Get the line number (/dev/ttyRx number). */
 589						/*  Read the data from the port. */
 590						line = GetLineNumber(ctrl, aiop, ch);
 591						rp_handle_port(rp_table[line]);
 592					}
 593				}
 594			}
 595		}
 596
 597		xmitmask = xmit_flags[ctrl];
 598
 599		/*
 600		 *  xmit_flags contains bit-significant flags, indicating there is data
 601		 *  to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port 
 602		 *  1, ... (32 total possible).  The variable i has the aiop and ch 
 603		 *  numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
 604		 */
 605		if (xmitmask) {
 606			for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
 607				if (xmitmask & (1 << i)) {
 608					aiop = (i & 0x18) >> 3;
 609					ch = i & 0x07;
 610					line = GetLineNumber(ctrl, aiop, ch);
 611					rp_do_transmit(rp_table[line]);
 612				}
 613			}
 614		}
 615	}
 616
 617	/*
 618	 * Reset the timer so we get called at the next clock tick (10ms).
 619	 */
 620	if (atomic_read(&rp_num_ports_open))
 621		mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 622}
 623
 624/*
 625 *  Initializes the r_port structure for a port, as well as enabling the port on 
 626 *  the board.  
 627 *  Inputs:  board, aiop, chan numbers
 628 */
 629static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
 
 630{
 631	unsigned rocketMode;
 632	struct r_port *info;
 633	int line;
 634	CONTROLLER_T *ctlp;
 635
 636	/*  Get the next available line number */
 637	line = SetLineNumber(board, aiop, chan);
 638
 639	ctlp = sCtlNumToCtlPtr(board);
 640
 641	/*  Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
 642	info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
 643	if (!info) {
 644		printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
 645				line);
 646		return;
 647	}
 648
 649	info->magic = RPORT_MAGIC;
 650	info->line = line;
 651	info->ctlp = ctlp;
 652	info->board = board;
 653	info->aiop = aiop;
 654	info->chan = chan;
 655	tty_port_init(&info->port);
 656	info->port.ops = &rocket_port_ops;
 657	init_completion(&info->close_wait);
 658	info->flags &= ~ROCKET_MODE_MASK;
 659	switch (pc104[board][line]) {
 660	case 422:
 661		info->flags |= ROCKET_MODE_RS422;
 662		break;
 663	case 485:
 664		info->flags |= ROCKET_MODE_RS485;
 665		break;
 666	case 232:
 667	default:
 668		info->flags |= ROCKET_MODE_RS232;
 669		break;
 670	}
 671
 672	info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
 673	if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
 674		printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
 675				board, aiop, chan);
 
 676		kfree(info);
 677		return;
 678	}
 679
 680	rocketMode = info->flags & ROCKET_MODE_MASK;
 681
 682	if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
 683		sEnRTSToggle(&info->channel);
 684	else
 685		sDisRTSToggle(&info->channel);
 686
 687	if (ctlp->boardType == ROCKET_TYPE_PC104) {
 688		switch (rocketMode) {
 689		case ROCKET_MODE_RS485:
 690			sSetInterfaceMode(&info->channel, InterfaceModeRS485);
 691			break;
 692		case ROCKET_MODE_RS422:
 693			sSetInterfaceMode(&info->channel, InterfaceModeRS422);
 694			break;
 695		case ROCKET_MODE_RS232:
 696		default:
 697			if (info->flags & ROCKET_RTS_TOGGLE)
 698				sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
 699			else
 700				sSetInterfaceMode(&info->channel, InterfaceModeRS232);
 701			break;
 702		}
 703	}
 704	spin_lock_init(&info->slock);
 705	mutex_init(&info->write_mtx);
 706	rp_table[line] = info;
 707	tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
 708			NULL);
 709}
 710
 711/*
 712 *  Configures a rocketport port according to its termio settings.  Called from 
 713 *  user mode into the driver (exception handler).  *info CD manipulation is spinlock protected.
 714 */
 715static void configure_r_port(struct tty_struct *tty, struct r_port *info,
 716			     struct ktermios *old_termios)
 717{
 718	unsigned cflag;
 719	unsigned long flags;
 720	unsigned rocketMode;
 721	int bits, baud, divisor;
 722	CHANNEL_t *cp;
 723	struct ktermios *t = tty->termios;
 724
 725	cp = &info->channel;
 726	cflag = t->c_cflag;
 727
 728	/* Byte size and parity */
 729	if ((cflag & CSIZE) == CS8) {
 730		sSetData8(cp);
 731		bits = 10;
 732	} else {
 733		sSetData7(cp);
 734		bits = 9;
 735	}
 736	if (cflag & CSTOPB) {
 737		sSetStop2(cp);
 738		bits++;
 739	} else {
 740		sSetStop1(cp);
 741	}
 742
 743	if (cflag & PARENB) {
 744		sEnParity(cp);
 745		bits++;
 746		if (cflag & PARODD) {
 747			sSetOddParity(cp);
 748		} else {
 749			sSetEvenParity(cp);
 750		}
 751	} else {
 752		sDisParity(cp);
 753	}
 754
 755	/* baud rate */
 756	baud = tty_get_baud_rate(tty);
 757	if (!baud)
 758		baud = 9600;
 759	divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
 760	if ((divisor >= 8192 || divisor < 0) && old_termios) {
 761		baud = tty_termios_baud_rate(old_termios);
 762		if (!baud)
 763			baud = 9600;
 764		divisor = (rp_baud_base[info->board] / baud) - 1;
 765	}
 766	if (divisor >= 8192 || divisor < 0) {
 767		baud = 9600;
 768		divisor = (rp_baud_base[info->board] / baud) - 1;
 769	}
 770	info->cps = baud / bits;
 771	sSetBaud(cp, divisor);
 772
 773	/* FIXME: Should really back compute a baud rate from the divisor */
 774	tty_encode_baud_rate(tty, baud, baud);
 775
 776	if (cflag & CRTSCTS) {
 777		info->intmask |= DELTA_CTS;
 778		sEnCTSFlowCtl(cp);
 779	} else {
 780		info->intmask &= ~DELTA_CTS;
 781		sDisCTSFlowCtl(cp);
 782	}
 783	if (cflag & CLOCAL) {
 784		info->intmask &= ~DELTA_CD;
 785	} else {
 786		spin_lock_irqsave(&info->slock, flags);
 787		if (sGetChanStatus(cp) & CD_ACT)
 788			info->cd_status = 1;
 789		else
 790			info->cd_status = 0;
 791		info->intmask |= DELTA_CD;
 792		spin_unlock_irqrestore(&info->slock, flags);
 793	}
 794
 795	/*
 796	 * Handle software flow control in the board
 797	 */
 798#ifdef ROCKET_SOFT_FLOW
 799	if (I_IXON(tty)) {
 800		sEnTxSoftFlowCtl(cp);
 801		if (I_IXANY(tty)) {
 802			sEnIXANY(cp);
 803		} else {
 804			sDisIXANY(cp);
 805		}
 806		sSetTxXONChar(cp, START_CHAR(tty));
 807		sSetTxXOFFChar(cp, STOP_CHAR(tty));
 808	} else {
 809		sDisTxSoftFlowCtl(cp);
 810		sDisIXANY(cp);
 811		sClrTxXOFF(cp);
 812	}
 813#endif
 814
 815	/*
 816	 * Set up ignore/read mask words
 817	 */
 818	info->read_status_mask = STMRCVROVRH | 0xFF;
 819	if (I_INPCK(tty))
 820		info->read_status_mask |= STMFRAMEH | STMPARITYH;
 821	if (I_BRKINT(tty) || I_PARMRK(tty))
 822		info->read_status_mask |= STMBREAKH;
 823
 824	/*
 825	 * Characters to ignore
 826	 */
 827	info->ignore_status_mask = 0;
 828	if (I_IGNPAR(tty))
 829		info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
 830	if (I_IGNBRK(tty)) {
 831		info->ignore_status_mask |= STMBREAKH;
 832		/*
 833		 * If we're ignoring parity and break indicators,
 834		 * ignore overruns too.  (For real raw support).
 835		 */
 836		if (I_IGNPAR(tty))
 837			info->ignore_status_mask |= STMRCVROVRH;
 838	}
 839
 840	rocketMode = info->flags & ROCKET_MODE_MASK;
 841
 842	if ((info->flags & ROCKET_RTS_TOGGLE)
 843	    || (rocketMode == ROCKET_MODE_RS485))
 844		sEnRTSToggle(cp);
 845	else
 846		sDisRTSToggle(cp);
 847
 848	sSetRTS(&info->channel);
 849
 850	if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
 851		switch (rocketMode) {
 852		case ROCKET_MODE_RS485:
 853			sSetInterfaceMode(cp, InterfaceModeRS485);
 854			break;
 855		case ROCKET_MODE_RS422:
 856			sSetInterfaceMode(cp, InterfaceModeRS422);
 857			break;
 858		case ROCKET_MODE_RS232:
 859		default:
 860			if (info->flags & ROCKET_RTS_TOGGLE)
 861				sSetInterfaceMode(cp, InterfaceModeRS232T);
 862			else
 863				sSetInterfaceMode(cp, InterfaceModeRS232);
 864			break;
 865		}
 866	}
 867}
 868
 869static int carrier_raised(struct tty_port *port)
 870{
 871	struct r_port *info = container_of(port, struct r_port, port);
 872	return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
 873}
 874
 875static void dtr_rts(struct tty_port *port, int on)
 876{
 877	struct r_port *info = container_of(port, struct r_port, port);
 878	if (on) {
 879		sSetDTR(&info->channel);
 880		sSetRTS(&info->channel);
 881	} else {
 882		sClrDTR(&info->channel);
 883		sClrRTS(&info->channel);
 884	}
 885}
 886
 887/*
 888 *  Exception handler that opens a serial port.  Creates xmit_buf storage, fills in 
 889 *  port's r_port struct.  Initializes the port hardware.  
 890 */
 891static int rp_open(struct tty_struct *tty, struct file *filp)
 892{
 893	struct r_port *info;
 894	struct tty_port *port;
 895	int line = 0, retval;
 896	CHANNEL_t *cp;
 897	unsigned long page;
 898
 899	line = tty->index;
 900	if (line < 0 || line >= MAX_RP_PORTS || ((info = rp_table[line]) == NULL))
 901		return -ENXIO;
 902	port = &info->port;
 903	
 904	page = __get_free_page(GFP_KERNEL);
 905	if (!page)
 906		return -ENOMEM;
 907
 908	if (port->flags & ASYNC_CLOSING) {
 909		retval = wait_for_completion_interruptible(&info->close_wait);
 910		free_page(page);
 911		if (retval)
 912			return retval;
 913		return ((port->flags & ASYNC_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
 914	}
 915
 916	/*
 917	 * We must not sleep from here until the port is marked fully in use.
 918	 */
 919	if (info->xmit_buf)
 920		free_page(page);
 921	else
 922		info->xmit_buf = (unsigned char *) page;
 923
 924	tty->driver_data = info;
 925	tty_port_tty_set(port, tty);
 926
 927	if (port->count++ == 0) {
 928		atomic_inc(&rp_num_ports_open);
 929
 930#ifdef ROCKET_DEBUG_OPEN
 931		printk(KERN_INFO "rocket mod++ = %d...\n",
 932				atomic_read(&rp_num_ports_open));
 933#endif
 934	}
 935#ifdef ROCKET_DEBUG_OPEN
 936	printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
 937#endif
 938
 939	/*
 940	 * Info->count is now 1; so it's safe to sleep now.
 941	 */
 942	if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
 943		cp = &info->channel;
 944		sSetRxTrigger(cp, TRIG_1);
 945		if (sGetChanStatus(cp) & CD_ACT)
 946			info->cd_status = 1;
 947		else
 948			info->cd_status = 0;
 949		sDisRxStatusMode(cp);
 950		sFlushRxFIFO(cp);
 951		sFlushTxFIFO(cp);
 952
 953		sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
 954		sSetRxTrigger(cp, TRIG_1);
 955
 956		sGetChanStatus(cp);
 957		sDisRxStatusMode(cp);
 958		sClrTxXOFF(cp);
 959
 960		sDisCTSFlowCtl(cp);
 961		sDisTxSoftFlowCtl(cp);
 962
 963		sEnRxFIFO(cp);
 964		sEnTransmit(cp);
 965
 966		set_bit(ASYNCB_INITIALIZED, &info->port.flags);
 967
 968		/*
 969		 * Set up the tty->alt_speed kludge
 970		 */
 971		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
 972			tty->alt_speed = 57600;
 973		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
 974			tty->alt_speed = 115200;
 975		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
 976			tty->alt_speed = 230400;
 977		if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
 978			tty->alt_speed = 460800;
 979
 980		configure_r_port(tty, info, NULL);
 981		if (tty->termios->c_cflag & CBAUD) {
 982			sSetDTR(cp);
 983			sSetRTS(cp);
 984		}
 985	}
 986	/*  Starts (or resets) the maint polling loop */
 987	mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
 988
 989	retval = tty_port_block_til_ready(port, tty, filp);
 990	if (retval) {
 991#ifdef ROCKET_DEBUG_OPEN
 992		printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
 993#endif
 994		return retval;
 995	}
 996	return 0;
 997}
 998
 999/*
1000 *  Exception handler that closes a serial port. info->port.count is considered critical.
1001 */
1002static void rp_close(struct tty_struct *tty, struct file *filp)
1003{
1004	struct r_port *info = tty->driver_data;
1005	struct tty_port *port = &info->port;
1006	int timeout;
1007	CHANNEL_t *cp;
1008	
1009	if (rocket_paranoia_check(info, "rp_close"))
1010		return;
1011
1012#ifdef ROCKET_DEBUG_OPEN
1013	printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1014#endif
1015
1016	if (tty_port_close_start(port, tty, filp) == 0)
1017		return;
1018
1019	mutex_lock(&port->mutex);
1020	cp = &info->channel;
1021	/*
1022	 * Before we drop DTR, make sure the UART transmitter
1023	 * has completely drained; this is especially
1024	 * important if there is a transmit FIFO!
1025	 */
1026	timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1027	if (timeout == 0)
1028		timeout = 1;
1029	rp_wait_until_sent(tty, timeout);
1030	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1031
1032	sDisTransmit(cp);
1033	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034	sDisCTSFlowCtl(cp);
1035	sDisTxSoftFlowCtl(cp);
1036	sClrTxXOFF(cp);
1037	sFlushRxFIFO(cp);
1038	sFlushTxFIFO(cp);
1039	sClrRTS(cp);
1040	if (C_HUPCL(tty))
1041		sClrDTR(cp);
1042
1043	rp_flush_buffer(tty);
1044		
1045	tty_ldisc_flush(tty);
1046
1047	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1048
1049	/* We can't yet use tty_port_close_end as the buffer handling in this
1050	   driver is a bit different to the usual */
1051
1052	if (port->blocked_open) {
1053		if (port->close_delay) {
1054			msleep_interruptible(jiffies_to_msecs(port->close_delay));
1055		}
1056		wake_up_interruptible(&port->open_wait);
1057	} else {
1058		if (info->xmit_buf) {
1059			free_page((unsigned long) info->xmit_buf);
1060			info->xmit_buf = NULL;
1061		}
1062	}
1063	spin_lock_irq(&port->lock);
1064	info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_CLOSING | ASYNC_NORMAL_ACTIVE);
1065	tty->closing = 0;
1066	spin_unlock_irq(&port->lock);
 
 
1067	mutex_unlock(&port->mutex);
1068	tty_port_tty_set(port, NULL);
1069
1070	wake_up_interruptible(&port->close_wait);
1071	complete_all(&info->close_wait);
1072	atomic_dec(&rp_num_ports_open);
1073
1074#ifdef ROCKET_DEBUG_OPEN
1075	printk(KERN_INFO "rocket mod-- = %d...\n",
1076			atomic_read(&rp_num_ports_open));
1077	printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1078#endif
1079
1080}
1081
1082static void rp_set_termios(struct tty_struct *tty,
1083			   struct ktermios *old_termios)
1084{
1085	struct r_port *info = tty->driver_data;
1086	CHANNEL_t *cp;
1087	unsigned cflag;
1088
1089	if (rocket_paranoia_check(info, "rp_set_termios"))
1090		return;
1091
1092	cflag = tty->termios->c_cflag;
1093
1094	/*
1095	 * This driver doesn't support CS5 or CS6
1096	 */
1097	if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1098		tty->termios->c_cflag =
1099		    ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1100	/* Or CMSPAR */
1101	tty->termios->c_cflag &= ~CMSPAR;
1102
1103	configure_r_port(tty, info, old_termios);
1104
1105	cp = &info->channel;
1106
1107	/* Handle transition to B0 status */
1108	if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1109		sClrDTR(cp);
1110		sClrRTS(cp);
1111	}
1112
1113	/* Handle transition away from B0 status */
1114	if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1115		if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1116			sSetRTS(cp);
1117		sSetDTR(cp);
1118	}
1119
1120	if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1121		tty->hw_stopped = 0;
1122		rp_start(tty);
1123	}
1124}
1125
1126static int rp_break(struct tty_struct *tty, int break_state)
1127{
1128	struct r_port *info = tty->driver_data;
1129	unsigned long flags;
1130
1131	if (rocket_paranoia_check(info, "rp_break"))
1132		return -EINVAL;
1133
1134	spin_lock_irqsave(&info->slock, flags);
1135	if (break_state == -1)
1136		sSendBreak(&info->channel);
1137	else
1138		sClrBreak(&info->channel);
1139	spin_unlock_irqrestore(&info->slock, flags);
1140	return 0;
1141}
1142
1143/*
1144 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1145 * the UPCI boards was added, it was decided to make this a function because
1146 * the macro was getting too complicated. All cases except the first one
1147 * (UPCIRingInd) are taken directly from the original macro.
1148 */
1149static int sGetChanRI(CHANNEL_T * ChP)
1150{
1151	CONTROLLER_t *CtlP = ChP->CtlP;
1152	int ChanNum = ChP->ChanNum;
1153	int RingInd = 0;
1154
1155	if (CtlP->UPCIRingInd)
1156		RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1157	else if (CtlP->AltChanRingIndicator)
1158		RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1159	else if (CtlP->boardType == ROCKET_TYPE_PC104)
1160		RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1161
1162	return RingInd;
1163}
1164
1165/********************************************************************************************/
1166/*  Here are the routines used by rp_ioctl.  These are all called from exception handlers.  */
1167
1168/*
1169 *  Returns the state of the serial modem control lines.  These next 2 functions 
1170 *  are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1171 */
1172static int rp_tiocmget(struct tty_struct *tty)
1173{
1174	struct r_port *info = tty->driver_data;
1175	unsigned int control, result, ChanStatus;
1176
1177	ChanStatus = sGetChanStatusLo(&info->channel);
1178	control = info->channel.TxControl[3];
1179	result = ((control & SET_RTS) ? TIOCM_RTS : 0) | 
1180		((control & SET_DTR) ?  TIOCM_DTR : 0) |
1181		((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1182		(sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1183		((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1184		((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1185
1186	return result;
1187}
1188
1189/* 
1190 *  Sets the modem control lines
1191 */
1192static int rp_tiocmset(struct tty_struct *tty,
1193				unsigned int set, unsigned int clear)
1194{
1195	struct r_port *info = tty->driver_data;
1196
1197	if (set & TIOCM_RTS)
1198		info->channel.TxControl[3] |= SET_RTS;
1199	if (set & TIOCM_DTR)
1200		info->channel.TxControl[3] |= SET_DTR;
1201	if (clear & TIOCM_RTS)
1202		info->channel.TxControl[3] &= ~SET_RTS;
1203	if (clear & TIOCM_DTR)
1204		info->channel.TxControl[3] &= ~SET_DTR;
1205
1206	out32(info->channel.IndexAddr, info->channel.TxControl);
1207	return 0;
1208}
1209
1210static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1211{
1212	struct rocket_config tmp;
1213
1214	if (!retinfo)
1215		return -EFAULT;
1216	memset(&tmp, 0, sizeof (tmp));
1217	mutex_lock(&info->port.mutex);
1218	tmp.line = info->line;
1219	tmp.flags = info->flags;
1220	tmp.close_delay = info->port.close_delay;
1221	tmp.closing_wait = info->port.closing_wait;
1222	tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1223	mutex_unlock(&info->port.mutex);
1224
1225	if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1226		return -EFAULT;
1227	return 0;
1228}
1229
1230static int set_config(struct tty_struct *tty, struct r_port *info,
1231					struct rocket_config __user *new_info)
1232{
1233	struct rocket_config new_serial;
1234
1235	if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1236		return -EFAULT;
1237
1238	mutex_lock(&info->port.mutex);
1239	if (!capable(CAP_SYS_ADMIN))
1240	{
1241		if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1242			mutex_unlock(&info->port.mutex);
1243			return -EPERM;
1244		}
1245		info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1246		configure_r_port(tty, info, NULL);
1247		mutex_unlock(&info->port.mutex);
1248		return 0;
1249	}
1250
1251	info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1252	info->port.close_delay = new_serial.close_delay;
1253	info->port.closing_wait = new_serial.closing_wait;
1254
1255	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1256		tty->alt_speed = 57600;
1257	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1258		tty->alt_speed = 115200;
1259	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1260		tty->alt_speed = 230400;
1261	if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1262		tty->alt_speed = 460800;
1263	mutex_unlock(&info->port.mutex);
1264
1265	configure_r_port(tty, info, NULL);
1266	return 0;
1267}
1268
1269/*
1270 *  This function fills in a rocket_ports struct with information
1271 *  about what boards/ports are in the system.  This info is passed
1272 *  to user space.  See setrocket.c where the info is used to create
1273 *  the /dev/ttyRx ports.
1274 */
1275static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1276{
1277	struct rocket_ports tmp;
1278	int board;
1279
1280	if (!retports)
1281		return -EFAULT;
1282	memset(&tmp, 0, sizeof (tmp));
1283	tmp.tty_major = rocket_driver->major;
1284
1285	for (board = 0; board < 4; board++) {
1286		tmp.rocketModel[board].model = rocketModel[board].model;
1287		strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1288		tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1289		tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1290		tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1291	}
1292	if (copy_to_user(retports, &tmp, sizeof (*retports)))
1293		return -EFAULT;
1294	return 0;
1295}
1296
1297static int reset_rm2(struct r_port *info, void __user *arg)
1298{
1299	int reset;
1300
1301	if (!capable(CAP_SYS_ADMIN))
1302		return -EPERM;
1303
1304	if (copy_from_user(&reset, arg, sizeof (int)))
1305		return -EFAULT;
1306	if (reset)
1307		reset = 1;
1308
1309	if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1310            rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1311		return -EINVAL;
1312
1313	if (info->ctlp->BusType == isISA)
1314		sModemReset(info->ctlp, info->chan, reset);
1315	else
1316		sPCIModemReset(info->ctlp, info->chan, reset);
1317
1318	return 0;
1319}
1320
1321static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1322{
1323	if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1324		return -EFAULT;
1325	return 0;
1326}
1327
1328/*  IOCTL call handler into the driver */
1329static int rp_ioctl(struct tty_struct *tty,
1330		    unsigned int cmd, unsigned long arg)
1331{
1332	struct r_port *info = tty->driver_data;
1333	void __user *argp = (void __user *)arg;
1334	int ret = 0;
1335
1336	if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1337		return -ENXIO;
1338
1339	switch (cmd) {
1340	case RCKP_GET_STRUCT:
1341		if (copy_to_user(argp, info, sizeof (struct r_port)))
1342			ret = -EFAULT;
1343		break;
1344	case RCKP_GET_CONFIG:
1345		ret = get_config(info, argp);
1346		break;
1347	case RCKP_SET_CONFIG:
1348		ret = set_config(tty, info, argp);
1349		break;
1350	case RCKP_GET_PORTS:
1351		ret = get_ports(info, argp);
1352		break;
1353	case RCKP_RESET_RM2:
1354		ret = reset_rm2(info, argp);
1355		break;
1356	case RCKP_GET_VERSION:
1357		ret = get_version(info, argp);
1358		break;
1359	default:
1360		ret = -ENOIOCTLCMD;
1361	}
1362	return ret;
1363}
1364
1365static void rp_send_xchar(struct tty_struct *tty, char ch)
1366{
1367	struct r_port *info = tty->driver_data;
1368	CHANNEL_t *cp;
1369
1370	if (rocket_paranoia_check(info, "rp_send_xchar"))
1371		return;
1372
1373	cp = &info->channel;
1374	if (sGetTxCnt(cp))
1375		sWriteTxPrioByte(cp, ch);
1376	else
1377		sWriteTxByte(sGetTxRxDataIO(cp), ch);
1378}
1379
1380static void rp_throttle(struct tty_struct *tty)
1381{
1382	struct r_port *info = tty->driver_data;
1383
1384#ifdef ROCKET_DEBUG_THROTTLE
1385	printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1386	       tty->ldisc.chars_in_buffer(tty));
1387#endif
1388
1389	if (rocket_paranoia_check(info, "rp_throttle"))
1390		return;
1391
1392	if (I_IXOFF(tty))
1393		rp_send_xchar(tty, STOP_CHAR(tty));
1394
1395	sClrRTS(&info->channel);
1396}
1397
1398static void rp_unthrottle(struct tty_struct *tty)
1399{
1400	struct r_port *info = tty->driver_data;
1401#ifdef ROCKET_DEBUG_THROTTLE
1402	printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1403	       tty->ldisc.chars_in_buffer(tty));
1404#endif
1405
1406	if (rocket_paranoia_check(info, "rp_throttle"))
1407		return;
1408
1409	if (I_IXOFF(tty))
1410		rp_send_xchar(tty, START_CHAR(tty));
1411
1412	sSetRTS(&info->channel);
1413}
1414
1415/*
1416 * ------------------------------------------------------------
1417 * rp_stop() and rp_start()
1418 *
1419 * This routines are called before setting or resetting tty->stopped.
1420 * They enable or disable transmitter interrupts, as necessary.
1421 * ------------------------------------------------------------
1422 */
1423static void rp_stop(struct tty_struct *tty)
1424{
1425	struct r_port *info = tty->driver_data;
1426
1427#ifdef ROCKET_DEBUG_FLOW
1428	printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1429	       info->xmit_cnt, info->xmit_fifo_room);
1430#endif
1431
1432	if (rocket_paranoia_check(info, "rp_stop"))
1433		return;
1434
1435	if (sGetTxCnt(&info->channel))
1436		sDisTransmit(&info->channel);
1437}
1438
1439static void rp_start(struct tty_struct *tty)
1440{
1441	struct r_port *info = tty->driver_data;
1442
1443#ifdef ROCKET_DEBUG_FLOW
1444	printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1445	       info->xmit_cnt, info->xmit_fifo_room);
1446#endif
1447
1448	if (rocket_paranoia_check(info, "rp_stop"))
1449		return;
1450
1451	sEnTransmit(&info->channel);
1452	set_bit((info->aiop * 8) + info->chan,
1453		(void *) &xmit_flags[info->board]);
1454}
1455
1456/*
1457 * rp_wait_until_sent() --- wait until the transmitter is empty
1458 */
1459static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1460{
1461	struct r_port *info = tty->driver_data;
1462	CHANNEL_t *cp;
1463	unsigned long orig_jiffies;
1464	int check_time, exit_time;
1465	int txcnt;
1466
1467	if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1468		return;
1469
1470	cp = &info->channel;
1471
1472	orig_jiffies = jiffies;
1473#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1474	printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1475	       jiffies);
1476	printk(KERN_INFO "cps=%d...\n", info->cps);
1477#endif
1478	while (1) {
1479		txcnt = sGetTxCnt(cp);
1480		if (!txcnt) {
1481			if (sGetChanStatusLo(cp) & TXSHRMT)
1482				break;
1483			check_time = (HZ / info->cps) / 5;
1484		} else {
1485			check_time = HZ * txcnt / info->cps;
1486		}
1487		if (timeout) {
1488			exit_time = orig_jiffies + timeout - jiffies;
1489			if (exit_time <= 0)
1490				break;
1491			if (exit_time < check_time)
1492				check_time = exit_time;
1493		}
1494		if (check_time == 0)
1495			check_time = 1;
1496#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1497		printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1498				jiffies, check_time);
1499#endif
1500		msleep_interruptible(jiffies_to_msecs(check_time));
1501		if (signal_pending(current))
1502			break;
1503	}
1504	__set_current_state(TASK_RUNNING);
1505#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1506	printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1507#endif
1508}
1509
1510/*
1511 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1512 */
1513static void rp_hangup(struct tty_struct *tty)
1514{
1515	CHANNEL_t *cp;
1516	struct r_port *info = tty->driver_data;
1517	unsigned long flags;
1518
1519	if (rocket_paranoia_check(info, "rp_hangup"))
1520		return;
1521
1522#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1523	printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1524#endif
1525	rp_flush_buffer(tty);
1526	spin_lock_irqsave(&info->port.lock, flags);
1527	if (info->port.flags & ASYNC_CLOSING) {
1528		spin_unlock_irqrestore(&info->port.lock, flags);
1529		return;
1530	}
1531	if (info->port.count)
1532		atomic_dec(&rp_num_ports_open);
1533	clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1534	spin_unlock_irqrestore(&info->port.lock, flags);
1535
1536	tty_port_hangup(&info->port);
1537
1538	cp = &info->channel;
1539	sDisRxFIFO(cp);
1540	sDisTransmit(cp);
1541	sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1542	sDisCTSFlowCtl(cp);
1543	sDisTxSoftFlowCtl(cp);
1544	sClrTxXOFF(cp);
1545	clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1546
1547	wake_up_interruptible(&info->port.open_wait);
1548}
1549
1550/*
1551 *  Exception handler - write char routine.  The RocketPort driver uses a
1552 *  double-buffering strategy, with the twist that if the in-memory CPU
1553 *  buffer is empty, and there's space in the transmit FIFO, the
1554 *  writing routines will write directly to transmit FIFO.
1555 *  Write buffer and counters protected by spinlocks
1556 */
1557static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1558{
1559	struct r_port *info = tty->driver_data;
1560	CHANNEL_t *cp;
1561	unsigned long flags;
1562
1563	if (rocket_paranoia_check(info, "rp_put_char"))
1564		return 0;
1565
1566	/*
1567	 * Grab the port write mutex, locking out other processes that try to
1568	 * write to this port
1569	 */
1570	mutex_lock(&info->write_mtx);
1571
1572#ifdef ROCKET_DEBUG_WRITE
1573	printk(KERN_INFO "rp_put_char %c...\n", ch);
1574#endif
1575
1576	spin_lock_irqsave(&info->slock, flags);
1577	cp = &info->channel;
1578
1579	if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1580		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1581
1582	if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1583		info->xmit_buf[info->xmit_head++] = ch;
1584		info->xmit_head &= XMIT_BUF_SIZE - 1;
1585		info->xmit_cnt++;
1586		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1587	} else {
1588		sOutB(sGetTxRxDataIO(cp), ch);
1589		info->xmit_fifo_room--;
1590	}
1591	spin_unlock_irqrestore(&info->slock, flags);
1592	mutex_unlock(&info->write_mtx);
1593	return 1;
1594}
1595
1596/*
1597 *  Exception handler - write routine, called when user app writes to the device.
1598 *  A per port write mutex is used to protect from another process writing to
1599 *  this port at the same time.  This other process could be running on the other CPU
1600 *  or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out). 
1601 *  Spinlocks protect the info xmit members.
1602 */
1603static int rp_write(struct tty_struct *tty,
1604		    const unsigned char *buf, int count)
1605{
1606	struct r_port *info = tty->driver_data;
1607	CHANNEL_t *cp;
1608	const unsigned char *b;
1609	int c, retval = 0;
1610	unsigned long flags;
1611
1612	if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1613		return 0;
1614
1615	if (mutex_lock_interruptible(&info->write_mtx))
1616		return -ERESTARTSYS;
1617
1618#ifdef ROCKET_DEBUG_WRITE
1619	printk(KERN_INFO "rp_write %d chars...\n", count);
1620#endif
1621	cp = &info->channel;
1622
1623	if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1624		info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1625
1626        /*
1627	 *  If the write queue for the port is empty, and there is FIFO space, stuff bytes 
1628	 *  into FIFO.  Use the write queue for temp storage.
1629         */
1630	if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1631		c = min(count, info->xmit_fifo_room);
1632		b = buf;
1633
1634		/*  Push data into FIFO, 2 bytes at a time */
1635		sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1636
1637		/*  If there is a byte remaining, write it */
1638		if (c & 1)
1639			sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1640
1641		retval += c;
1642		buf += c;
1643		count -= c;
1644
1645		spin_lock_irqsave(&info->slock, flags);
1646		info->xmit_fifo_room -= c;
1647		spin_unlock_irqrestore(&info->slock, flags);
1648	}
1649
1650	/* If count is zero, we wrote it all and are done */
1651	if (!count)
1652		goto end;
1653
1654	/*  Write remaining data into the port's xmit_buf */
1655	while (1) {
1656		/* Hung up ? */
1657		if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1658			goto end;
1659		c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1660		c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1661		if (c <= 0)
1662			break;
1663
1664		b = buf;
1665		memcpy(info->xmit_buf + info->xmit_head, b, c);
1666
1667		spin_lock_irqsave(&info->slock, flags);
1668		info->xmit_head =
1669		    (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1670		info->xmit_cnt += c;
1671		spin_unlock_irqrestore(&info->slock, flags);
1672
1673		buf += c;
1674		count -= c;
1675		retval += c;
1676	}
1677
1678	if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1679		set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1680	
1681end:
1682 	if (info->xmit_cnt < WAKEUP_CHARS) {
1683 		tty_wakeup(tty);
1684#ifdef ROCKETPORT_HAVE_POLL_WAIT
1685		wake_up_interruptible(&tty->poll_wait);
1686#endif
1687	}
1688	mutex_unlock(&info->write_mtx);
1689	return retval;
1690}
1691
1692/*
1693 * Return the number of characters that can be sent.  We estimate
1694 * only using the in-memory transmit buffer only, and ignore the
1695 * potential space in the transmit FIFO.
1696 */
1697static int rp_write_room(struct tty_struct *tty)
1698{
1699	struct r_port *info = tty->driver_data;
1700	int ret;
1701
1702	if (rocket_paranoia_check(info, "rp_write_room"))
1703		return 0;
1704
1705	ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1706	if (ret < 0)
1707		ret = 0;
1708#ifdef ROCKET_DEBUG_WRITE
1709	printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1710#endif
1711	return ret;
1712}
1713
1714/*
1715 * Return the number of characters in the buffer.  Again, this only
1716 * counts those characters in the in-memory transmit buffer.
1717 */
1718static int rp_chars_in_buffer(struct tty_struct *tty)
1719{
1720	struct r_port *info = tty->driver_data;
1721
1722	if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1723		return 0;
1724
1725#ifdef ROCKET_DEBUG_WRITE
1726	printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1727#endif
1728	return info->xmit_cnt;
1729}
1730
1731/*
1732 *  Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1733 *  r_port struct for the port.  Note that spinlock are used to protect info members,
1734 *  do not call this function if the spinlock is already held.
1735 */
1736static void rp_flush_buffer(struct tty_struct *tty)
1737{
1738	struct r_port *info = tty->driver_data;
1739	CHANNEL_t *cp;
1740	unsigned long flags;
1741
1742	if (rocket_paranoia_check(info, "rp_flush_buffer"))
1743		return;
1744
1745	spin_lock_irqsave(&info->slock, flags);
1746	info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1747	spin_unlock_irqrestore(&info->slock, flags);
1748
1749#ifdef ROCKETPORT_HAVE_POLL_WAIT
1750	wake_up_interruptible(&tty->poll_wait);
1751#endif
1752	tty_wakeup(tty);
1753
1754	cp = &info->channel;
1755	sFlushTxFIFO(cp);
1756}
1757
1758#ifdef CONFIG_PCI
1759
1760static struct pci_device_id __devinitdata __used rocket_pci_ids[] = {
1761	{ PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1762	{ }
1763};
1764MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1766/*
1767 *  Called when a PCI card is found.  Retrieves and stores model information,
1768 *  init's aiopic and serial port hardware.
1769 *  Inputs:  i is the board number (0-n)
1770 */
1771static __init int register_PCI(int i, struct pci_dev *dev)
1772{
1773	int num_aiops, aiop, max_num_aiops, num_chan, chan;
1774	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1775	CONTROLLER_t *ctlp;
1776
1777	int fast_clock = 0;
1778	int altChanRingIndicator = 0;
1779	int ports_per_aiop = 8;
1780	WordIO_t ConfigIO = 0;
1781	ByteIO_t UPCIRingInd = 0;
1782
1783	if (!dev || pci_enable_device(dev))
 
1784		return 0;
1785
1786	rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1787
1788	rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1789	rocketModel[i].loadrm2 = 0;
1790	rocketModel[i].startingPortNumber = nextLineNumber;
1791
1792	/*  Depending on the model, set up some config variables */
1793	switch (dev->device) {
1794	case PCI_DEVICE_ID_RP4QUAD:
1795		max_num_aiops = 1;
1796		ports_per_aiop = 4;
1797		rocketModel[i].model = MODEL_RP4QUAD;
1798		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1799		rocketModel[i].numPorts = 4;
1800		break;
1801	case PCI_DEVICE_ID_RP8OCTA:
1802		max_num_aiops = 1;
1803		rocketModel[i].model = MODEL_RP8OCTA;
1804		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1805		rocketModel[i].numPorts = 8;
1806		break;
1807	case PCI_DEVICE_ID_URP8OCTA:
1808		max_num_aiops = 1;
1809		rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1810		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1811		rocketModel[i].numPorts = 8;
1812		break;
1813	case PCI_DEVICE_ID_RP8INTF:
1814		max_num_aiops = 1;
1815		rocketModel[i].model = MODEL_RP8INTF;
1816		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1817		rocketModel[i].numPorts = 8;
1818		break;
1819	case PCI_DEVICE_ID_URP8INTF:
1820		max_num_aiops = 1;
1821		rocketModel[i].model = MODEL_UPCI_RP8INTF;
1822		strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1823		rocketModel[i].numPorts = 8;
1824		break;
1825	case PCI_DEVICE_ID_RP8J:
1826		max_num_aiops = 1;
1827		rocketModel[i].model = MODEL_RP8J;
1828		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1829		rocketModel[i].numPorts = 8;
1830		break;
1831	case PCI_DEVICE_ID_RP4J:
1832		max_num_aiops = 1;
1833		ports_per_aiop = 4;
1834		rocketModel[i].model = MODEL_RP4J;
1835		strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1836		rocketModel[i].numPorts = 4;
1837		break;
1838	case PCI_DEVICE_ID_RP8SNI:
1839		max_num_aiops = 1;
1840		rocketModel[i].model = MODEL_RP8SNI;
1841		strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1842		rocketModel[i].numPorts = 8;
1843		break;
1844	case PCI_DEVICE_ID_RP16SNI:
1845		max_num_aiops = 2;
1846		rocketModel[i].model = MODEL_RP16SNI;
1847		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1848		rocketModel[i].numPorts = 16;
1849		break;
1850	case PCI_DEVICE_ID_RP16INTF:
1851		max_num_aiops = 2;
1852		rocketModel[i].model = MODEL_RP16INTF;
1853		strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1854		rocketModel[i].numPorts = 16;
1855		break;
1856	case PCI_DEVICE_ID_URP16INTF:
1857		max_num_aiops = 2;
1858		rocketModel[i].model = MODEL_UPCI_RP16INTF;
1859		strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1860		rocketModel[i].numPorts = 16;
1861		break;
1862	case PCI_DEVICE_ID_CRP16INTF:
1863		max_num_aiops = 2;
1864		rocketModel[i].model = MODEL_CPCI_RP16INTF;
1865		strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1866		rocketModel[i].numPorts = 16;
1867		break;
1868	case PCI_DEVICE_ID_RP32INTF:
1869		max_num_aiops = 4;
1870		rocketModel[i].model = MODEL_RP32INTF;
1871		strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1872		rocketModel[i].numPorts = 32;
1873		break;
1874	case PCI_DEVICE_ID_URP32INTF:
1875		max_num_aiops = 4;
1876		rocketModel[i].model = MODEL_UPCI_RP32INTF;
1877		strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1878		rocketModel[i].numPorts = 32;
1879		break;
1880	case PCI_DEVICE_ID_RPP4:
1881		max_num_aiops = 1;
1882		ports_per_aiop = 4;
1883		altChanRingIndicator++;
1884		fast_clock++;
1885		rocketModel[i].model = MODEL_RPP4;
1886		strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
1887		rocketModel[i].numPorts = 4;
1888		break;
1889	case PCI_DEVICE_ID_RPP8:
1890		max_num_aiops = 2;
1891		ports_per_aiop = 4;
1892		altChanRingIndicator++;
1893		fast_clock++;
1894		rocketModel[i].model = MODEL_RPP8;
1895		strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
1896		rocketModel[i].numPorts = 8;
1897		break;
1898	case PCI_DEVICE_ID_RP2_232:
1899		max_num_aiops = 1;
1900		ports_per_aiop = 2;
1901		altChanRingIndicator++;
1902		fast_clock++;
1903		rocketModel[i].model = MODEL_RP2_232;
1904		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
1905		rocketModel[i].numPorts = 2;
1906		break;
1907	case PCI_DEVICE_ID_RP2_422:
1908		max_num_aiops = 1;
1909		ports_per_aiop = 2;
1910		altChanRingIndicator++;
1911		fast_clock++;
1912		rocketModel[i].model = MODEL_RP2_422;
1913		strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
1914		rocketModel[i].numPorts = 2;
1915		break;
1916	case PCI_DEVICE_ID_RP6M:
1917
1918		max_num_aiops = 1;
1919		ports_per_aiop = 6;
1920
1921		/*  If revision is 1, the rocketmodem flash must be loaded.
1922		 *  If it is 2 it is a "socketed" version. */
1923		if (dev->revision == 1) {
1924			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1925			rocketModel[i].loadrm2 = 1;
1926		} else {
1927			rcktpt_type[i] = ROCKET_TYPE_MODEM;
1928		}
1929
1930		rocketModel[i].model = MODEL_RP6M;
1931		strcpy(rocketModel[i].modelString, "RocketModem 6 port");
1932		rocketModel[i].numPorts = 6;
1933		break;
1934	case PCI_DEVICE_ID_RP4M:
1935		max_num_aiops = 1;
1936		ports_per_aiop = 4;
1937		if (dev->revision == 1) {
1938			rcktpt_type[i] = ROCKET_TYPE_MODEMII;
1939			rocketModel[i].loadrm2 = 1;
1940		} else {
1941			rcktpt_type[i] = ROCKET_TYPE_MODEM;
1942		}
1943
1944		rocketModel[i].model = MODEL_RP4M;
1945		strcpy(rocketModel[i].modelString, "RocketModem 4 port");
1946		rocketModel[i].numPorts = 4;
1947		break;
1948	default:
1949		max_num_aiops = 0;
1950		break;
1951	}
1952
1953	/*
1954	 * Check for UPCI boards.
1955	 */
1956
1957	switch (dev->device) {
1958	case PCI_DEVICE_ID_URP32INTF:
1959	case PCI_DEVICE_ID_URP8INTF:
1960	case PCI_DEVICE_ID_URP16INTF:
1961	case PCI_DEVICE_ID_CRP16INTF:
1962	case PCI_DEVICE_ID_URP8OCTA:
1963		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1964		ConfigIO = pci_resource_start(dev, 1);
1965		if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
1966			UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1967
1968			/*
1969			 * Check for octa or quad cable.
1970			 */
1971			if (!
1972			    (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
1973			     PCI_GPIO_CTRL_8PORT)) {
1974				ports_per_aiop = 4;
1975				rocketModel[i].numPorts = 4;
1976			}
1977		}
1978		break;
1979	case PCI_DEVICE_ID_UPCI_RM3_8PORT:
1980		max_num_aiops = 1;
1981		rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
1982		strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
1983		rocketModel[i].numPorts = 8;
1984		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1985		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1986		ConfigIO = pci_resource_start(dev, 1);
1987		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1988		break;
1989	case PCI_DEVICE_ID_UPCI_RM3_4PORT:
1990		max_num_aiops = 1;
1991		rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
1992		strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
1993		rocketModel[i].numPorts = 4;
1994		rcktpt_io_addr[i] = pci_resource_start(dev, 2);
1995		UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
1996		ConfigIO = pci_resource_start(dev, 1);
1997		rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
1998		break;
1999	default:
2000		break;
2001	}
2002
2003	if (fast_clock) {
2004		sClockPrescale = 0x12;	/* mod 2 (divide by 3) */
2005		rp_baud_base[i] = 921600;
2006	} else {
2007		/*
2008		 * If support_low_speed is set, use the slow clock
2009		 * prescale, which supports 50 bps
2010		 */
2011		if (support_low_speed) {
2012			/* mod 9 (divide by 10) prescale */
2013			sClockPrescale = 0x19;
2014			rp_baud_base[i] = 230400;
2015		} else {
2016			/* mod 4 (divide by 5) prescale */
2017			sClockPrescale = 0x14;
2018			rp_baud_base[i] = 460800;
2019		}
2020	}
2021
2022	for (aiop = 0; aiop < max_num_aiops; aiop++)
2023		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2024	ctlp = sCtlNumToCtlPtr(i);
2025	num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2026	for (aiop = 0; aiop < max_num_aiops; aiop++)
2027		ctlp->AiopNumChan[aiop] = ports_per_aiop;
2028
2029	dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2030		"address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2031		i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2032		rocketModel[i].startingPortNumber,
2033		rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2034
2035	if (num_aiops <= 0) {
2036		rcktpt_io_addr[i] = 0;
2037		return (0);
2038	}
2039	is_PCI[i] = 1;
2040
2041	/*  Reset the AIOPIC, init the serial ports */
2042	for (aiop = 0; aiop < num_aiops; aiop++) {
2043		sResetAiopByNum(ctlp, aiop);
2044		num_chan = ports_per_aiop;
2045		for (chan = 0; chan < num_chan; chan++)
2046			init_r_port(i, aiop, chan, dev);
2047	}
2048
2049	/*  Rocket modems must be reset */
2050	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2051	    (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2052	    (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2053		num_chan = ports_per_aiop;
2054		for (chan = 0; chan < num_chan; chan++)
2055			sPCIModemReset(ctlp, chan, 1);
2056		msleep(500);
2057		for (chan = 0; chan < num_chan; chan++)
2058			sPCIModemReset(ctlp, chan, 0);
2059		msleep(500);
2060		rmSpeakerReset(ctlp, rocketModel[i].model);
2061	}
2062	return (1);
2063}
2064
2065/*
2066 *  Probes for PCI cards, inits them if found
2067 *  Input:   board_found = number of ISA boards already found, or the
2068 *           starting board number
2069 *  Returns: Number of PCI boards found
2070 */
2071static int __init init_PCI(int boards_found)
2072{
2073	struct pci_dev *dev = NULL;
2074	int count = 0;
2075
2076	/*  Work through the PCI device list, pulling out ours */
2077	while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2078		if (register_PCI(count + boards_found, dev))
2079			count++;
2080	}
2081	return (count);
2082}
2083
2084#endif				/* CONFIG_PCI */
2085
2086/*
2087 *  Probes for ISA cards
2088 *  Input:   i = the board number to look for
2089 *  Returns: 1 if board found, 0 else
2090 */
2091static int __init init_ISA(int i)
2092{
2093	int num_aiops, num_chan = 0, total_num_chan = 0;
2094	int aiop, chan;
2095	unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2096	CONTROLLER_t *ctlp;
2097	char *type_string;
2098
2099	/*  If io_addr is zero, no board configured */
2100	if (rcktpt_io_addr[i] == 0)
2101		return (0);
2102
2103	/*  Reserve the IO region */
2104	if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2105		printk(KERN_ERR "Unable to reserve IO region for configured "
2106				"ISA RocketPort at address 0x%lx, board not "
2107				"installed...\n", rcktpt_io_addr[i]);
2108		rcktpt_io_addr[i] = 0;
2109		return (0);
2110	}
2111
2112	ctlp = sCtlNumToCtlPtr(i);
2113
2114	ctlp->boardType = rcktpt_type[i];
2115
2116	switch (rcktpt_type[i]) {
2117	case ROCKET_TYPE_PC104:
2118		type_string = "(PC104)";
2119		break;
2120	case ROCKET_TYPE_MODEM:
2121		type_string = "(RocketModem)";
2122		break;
2123	case ROCKET_TYPE_MODEMII:
2124		type_string = "(RocketModem II)";
2125		break;
2126	default:
2127		type_string = "";
2128		break;
2129	}
2130
2131	/*
2132	 * If support_low_speed is set, use the slow clock prescale,
2133	 * which supports 50 bps
2134	 */
2135	if (support_low_speed) {
2136		sClockPrescale = 0x19;	/* mod 9 (divide by 10) prescale */
2137		rp_baud_base[i] = 230400;
2138	} else {
2139		sClockPrescale = 0x14;	/* mod 4 (divide by 5) prescale */
2140		rp_baud_base[i] = 460800;
2141	}
2142
2143	for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2144		aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2145
2146	num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio,  MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2147
2148	if (ctlp->boardType == ROCKET_TYPE_PC104) {
2149		sEnAiop(ctlp, 2);	/* only one AIOPIC, but these */
2150		sEnAiop(ctlp, 3);	/* CSels used for other stuff */
2151	}
2152
2153	/*  If something went wrong initing the AIOP's release the ISA IO memory */
2154	if (num_aiops <= 0) {
2155		release_region(rcktpt_io_addr[i], 64);
2156		rcktpt_io_addr[i] = 0;
2157		return (0);
2158	}
2159  
2160	rocketModel[i].startingPortNumber = nextLineNumber;
2161
2162	for (aiop = 0; aiop < num_aiops; aiop++) {
2163		sResetAiopByNum(ctlp, aiop);
2164		sEnAiop(ctlp, aiop);
2165		num_chan = sGetAiopNumChan(ctlp, aiop);
2166		total_num_chan += num_chan;
2167		for (chan = 0; chan < num_chan; chan++)
2168			init_r_port(i, aiop, chan, NULL);
2169	}
2170	is_PCI[i] = 0;
2171	if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2172		num_chan = sGetAiopNumChan(ctlp, 0);
2173		total_num_chan = num_chan;
2174		for (chan = 0; chan < num_chan; chan++)
2175			sModemReset(ctlp, chan, 1);
2176		msleep(500);
2177		for (chan = 0; chan < num_chan; chan++)
2178			sModemReset(ctlp, chan, 0);
2179		msleep(500);
2180		strcpy(rocketModel[i].modelString, "RocketModem ISA");
2181	} else {
2182		strcpy(rocketModel[i].modelString, "RocketPort ISA");
2183	}
2184	rocketModel[i].numPorts = total_num_chan;
2185	rocketModel[i].model = MODEL_ISA;
2186
2187	printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n", 
2188	       i, rcktpt_io_addr[i], num_aiops, type_string);
2189
2190	printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2191	       rocketModel[i].modelString,
2192	       rocketModel[i].startingPortNumber,
2193	       rocketModel[i].startingPortNumber +
2194	       rocketModel[i].numPorts - 1);
2195
2196	return (1);
2197}
2198
2199static const struct tty_operations rocket_ops = {
2200	.open = rp_open,
2201	.close = rp_close,
2202	.write = rp_write,
2203	.put_char = rp_put_char,
2204	.write_room = rp_write_room,
2205	.chars_in_buffer = rp_chars_in_buffer,
2206	.flush_buffer = rp_flush_buffer,
2207	.ioctl = rp_ioctl,
2208	.throttle = rp_throttle,
2209	.unthrottle = rp_unthrottle,
2210	.set_termios = rp_set_termios,
2211	.stop = rp_stop,
2212	.start = rp_start,
2213	.hangup = rp_hangup,
2214	.break_ctl = rp_break,
2215	.send_xchar = rp_send_xchar,
2216	.wait_until_sent = rp_wait_until_sent,
2217	.tiocmget = rp_tiocmget,
2218	.tiocmset = rp_tiocmset,
2219};
2220
2221static const struct tty_port_operations rocket_port_ops = {
2222	.carrier_raised = carrier_raised,
2223	.dtr_rts = dtr_rts,
2224};
2225
2226/*
2227 * The module "startup" routine; it's run when the module is loaded.
2228 */
2229static int __init rp_init(void)
2230{
2231	int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2232
2233	printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2234	       ROCKET_VERSION, ROCKET_DATE);
2235
2236	rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2237	if (!rocket_driver)
2238		goto err;
2239
2240	/*
2241	 *  If board 1 is non-zero, there is at least one ISA configured.  If controller is 
2242	 *  zero, use the default controller IO address of board1 + 0x40.
2243	 */
2244	if (board1) {
2245		if (controller == 0)
2246			controller = board1 + 0x40;
2247	} else {
2248		controller = 0;  /*  Used as a flag, meaning no ISA boards */
2249	}
2250
2251	/*  If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2252	if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2253		printk(KERN_ERR "Unable to reserve IO region for first "
2254			"configured ISA RocketPort controller 0x%lx.  "
2255			"Driver exiting\n", controller);
2256		ret = -EBUSY;
2257		goto err_tty;
2258	}
2259
2260	/*  Store ISA variable retrieved from command line or .conf file. */
2261	rcktpt_io_addr[0] = board1;
2262	rcktpt_io_addr[1] = board2;
2263	rcktpt_io_addr[2] = board3;
2264	rcktpt_io_addr[3] = board4;
2265
2266	rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2267	rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2268	rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2269	rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2270	rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2271	rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2272	rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2273	rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2274
2275	/*
2276	 * Set up the tty driver structure and then register this
2277	 * driver with the tty layer.
2278	 */
2279
2280	rocket_driver->owner = THIS_MODULE;
2281	rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2282	rocket_driver->name = "ttyR";
2283	rocket_driver->driver_name = "Comtrol RocketPort";
2284	rocket_driver->major = TTY_ROCKET_MAJOR;
2285	rocket_driver->minor_start = 0;
2286	rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2287	rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2288	rocket_driver->init_termios = tty_std_termios;
2289	rocket_driver->init_termios.c_cflag =
2290	    B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2291	rocket_driver->init_termios.c_ispeed = 9600;
2292	rocket_driver->init_termios.c_ospeed = 9600;
2293#ifdef ROCKET_SOFT_FLOW
2294	rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2295#endif
2296	tty_set_operations(rocket_driver, &rocket_ops);
2297
2298	ret = tty_register_driver(rocket_driver);
2299	if (ret < 0) {
2300		printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2301		goto err_controller;
2302	}
2303
2304#ifdef ROCKET_DEBUG_OPEN
2305	printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2306#endif
2307
2308	/*
2309	 *  OK, let's probe each of the controllers looking for boards.  Any boards found
2310         *  will be initialized here.
2311	 */
2312	isa_boards_found = 0;
2313	pci_boards_found = 0;
2314
2315	for (i = 0; i < NUM_BOARDS; i++) {
2316		if (init_ISA(i))
2317			isa_boards_found++;
2318	}
2319
2320#ifdef CONFIG_PCI
2321	if (isa_boards_found < NUM_BOARDS)
2322		pci_boards_found = init_PCI(isa_boards_found);
2323#endif
2324
2325	max_board = pci_boards_found + isa_boards_found;
2326
2327	if (max_board == 0) {
2328		printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2329		ret = -ENXIO;
2330		goto err_ttyu;
2331	}
2332
2333	return 0;
2334err_ttyu:
2335	tty_unregister_driver(rocket_driver);
2336err_controller:
2337	if (controller)
2338		release_region(controller, 4);
2339err_tty:
2340	put_tty_driver(rocket_driver);
2341err:
2342	return ret;
2343}
2344
2345
2346static void rp_cleanup_module(void)
2347{
2348	int retval;
2349	int i;
2350
2351	del_timer_sync(&rocket_timer);
2352
2353	retval = tty_unregister_driver(rocket_driver);
2354	if (retval)
2355		printk(KERN_ERR "Error %d while trying to unregister "
2356		       "rocketport driver\n", -retval);
2357
2358	for (i = 0; i < MAX_RP_PORTS; i++)
2359		if (rp_table[i]) {
2360			tty_unregister_device(rocket_driver, i);
 
2361			kfree(rp_table[i]);
2362		}
2363
2364	put_tty_driver(rocket_driver);
2365
2366	for (i = 0; i < NUM_BOARDS; i++) {
2367		if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2368			continue;
2369		release_region(rcktpt_io_addr[i], 64);
2370	}
2371	if (controller)
2372		release_region(controller, 4);
2373}
2374
2375/***************************************************************************
2376Function: sInitController
2377Purpose:  Initialization of controller global registers and controller
2378          structure.
2379Call:     sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2380                          IRQNum,Frequency,PeriodicOnly)
2381          CONTROLLER_T *CtlP; Ptr to controller structure
2382          int CtlNum; Controller number
2383          ByteIO_t MudbacIO; Mudbac base I/O address.
2384          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2385             This list must be in the order the AIOPs will be found on the
2386             controller.  Once an AIOP in the list is not found, it is
2387             assumed that there are no more AIOPs on the controller.
2388          int AiopIOListSize; Number of addresses in AiopIOList
2389          int IRQNum; Interrupt Request number.  Can be any of the following:
2390                         0: Disable global interrupts
2391                         3: IRQ 3
2392                         4: IRQ 4
2393                         5: IRQ 5
2394                         9: IRQ 9
2395                         10: IRQ 10
2396                         11: IRQ 11
2397                         12: IRQ 12
2398                         15: IRQ 15
2399          Byte_t Frequency: A flag identifying the frequency
2400                   of the periodic interrupt, can be any one of the following:
2401                      FREQ_DIS - periodic interrupt disabled
2402                      FREQ_137HZ - 137 Hertz
2403                      FREQ_69HZ - 69 Hertz
2404                      FREQ_34HZ - 34 Hertz
2405                      FREQ_17HZ - 17 Hertz
2406                      FREQ_9HZ - 9 Hertz
2407                      FREQ_4HZ - 4 Hertz
2408                   If IRQNum is set to 0 the Frequency parameter is
2409                   overidden, it is forced to a value of FREQ_DIS.
2410          int PeriodicOnly: 1 if all interrupts except the periodic
2411                               interrupt are to be blocked.
2412                            0 is both the periodic interrupt and
2413                               other channel interrupts are allowed.
2414                            If IRQNum is set to 0 the PeriodicOnly parameter is
2415                               overidden, it is forced to a value of 0.
2416Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2417               initialization failed.
2418
2419Comments:
2420          If periodic interrupts are to be disabled but AIOP interrupts
2421          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2422
2423          If interrupts are to be completely disabled set IRQNum to 0.
2424
2425          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2426          invalid combination.
2427
2428          This function performs initialization of global interrupt modes,
2429          but it does not actually enable global interrupts.  To enable
2430          and disable global interrupts use functions sEnGlobalInt() and
2431          sDisGlobalInt().  Enabling of global interrupts is normally not
2432          done until all other initializations are complete.
2433
2434          Even if interrupts are globally enabled, they must also be
2435          individually enabled for each channel that is to generate
2436          interrupts.
2437
2438Warnings: No range checking on any of the parameters is done.
2439
2440          No context switches are allowed while executing this function.
2441
2442          After this function all AIOPs on the controller are disabled,
2443          they can be enabled with sEnAiop().
2444*/
2445static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2446			   ByteIO_t * AiopIOList, int AiopIOListSize,
2447			   int IRQNum, Byte_t Frequency, int PeriodicOnly)
2448{
2449	int i;
2450	ByteIO_t io;
2451	int done;
2452
2453	CtlP->AiopIntrBits = aiop_intr_bits;
2454	CtlP->AltChanRingIndicator = 0;
2455	CtlP->CtlNum = CtlNum;
2456	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2457	CtlP->BusType = isISA;
2458	CtlP->MBaseIO = MudbacIO;
2459	CtlP->MReg1IO = MudbacIO + 1;
2460	CtlP->MReg2IO = MudbacIO + 2;
2461	CtlP->MReg3IO = MudbacIO + 3;
2462#if 1
2463	CtlP->MReg2 = 0;	/* interrupt disable */
2464	CtlP->MReg3 = 0;	/* no periodic interrupts */
2465#else
2466	if (sIRQMap[IRQNum] == 0) {	/* interrupts globally disabled */
2467		CtlP->MReg2 = 0;	/* interrupt disable */
2468		CtlP->MReg3 = 0;	/* no periodic interrupts */
2469	} else {
2470		CtlP->MReg2 = sIRQMap[IRQNum];	/* set IRQ number */
2471		CtlP->MReg3 = Frequency;	/* set frequency */
2472		if (PeriodicOnly) {	/* periodic interrupt only */
2473			CtlP->MReg3 |= PERIODIC_ONLY;
2474		}
2475	}
2476#endif
2477	sOutB(CtlP->MReg2IO, CtlP->MReg2);
2478	sOutB(CtlP->MReg3IO, CtlP->MReg3);
2479	sControllerEOI(CtlP);	/* clear EOI if warm init */
2480	/* Init AIOPs */
2481	CtlP->NumAiop = 0;
2482	for (i = done = 0; i < AiopIOListSize; i++) {
2483		io = AiopIOList[i];
2484		CtlP->AiopIO[i] = (WordIO_t) io;
2485		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2486		sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03));	/* AIOP index */
2487		sOutB(MudbacIO, (Byte_t) (io >> 6));	/* set up AIOP I/O in MUDBAC */
2488		if (done)
2489			continue;
2490		sEnAiop(CtlP, i);	/* enable the AIOP */
2491		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2492		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2493			done = 1;	/* done looking for AIOPs */
2494		else {
2495			CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2496			sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2497			sOutB(io + _INDX_DATA, sClockPrescale);
2498			CtlP->NumAiop++;	/* bump count of AIOPs */
2499		}
2500		sDisAiop(CtlP, i);	/* disable AIOP */
2501	}
2502
2503	if (CtlP->NumAiop == 0)
2504		return (-1);
2505	else
2506		return (CtlP->NumAiop);
2507}
2508
2509/***************************************************************************
2510Function: sPCIInitController
2511Purpose:  Initialization of controller global registers and controller
2512          structure.
2513Call:     sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2514                          IRQNum,Frequency,PeriodicOnly)
2515          CONTROLLER_T *CtlP; Ptr to controller structure
2516          int CtlNum; Controller number
2517          ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2518             This list must be in the order the AIOPs will be found on the
2519             controller.  Once an AIOP in the list is not found, it is
2520             assumed that there are no more AIOPs on the controller.
2521          int AiopIOListSize; Number of addresses in AiopIOList
2522          int IRQNum; Interrupt Request number.  Can be any of the following:
2523                         0: Disable global interrupts
2524                         3: IRQ 3
2525                         4: IRQ 4
2526                         5: IRQ 5
2527                         9: IRQ 9
2528                         10: IRQ 10
2529                         11: IRQ 11
2530                         12: IRQ 12
2531                         15: IRQ 15
2532          Byte_t Frequency: A flag identifying the frequency
2533                   of the periodic interrupt, can be any one of the following:
2534                      FREQ_DIS - periodic interrupt disabled
2535                      FREQ_137HZ - 137 Hertz
2536                      FREQ_69HZ - 69 Hertz
2537                      FREQ_34HZ - 34 Hertz
2538                      FREQ_17HZ - 17 Hertz
2539                      FREQ_9HZ - 9 Hertz
2540                      FREQ_4HZ - 4 Hertz
2541                   If IRQNum is set to 0 the Frequency parameter is
2542                   overidden, it is forced to a value of FREQ_DIS.
2543          int PeriodicOnly: 1 if all interrupts except the periodic
2544                               interrupt are to be blocked.
2545                            0 is both the periodic interrupt and
2546                               other channel interrupts are allowed.
2547                            If IRQNum is set to 0 the PeriodicOnly parameter is
2548                               overidden, it is forced to a value of 0.
2549Return:   int: Number of AIOPs on the controller, or CTLID_NULL if controller
2550               initialization failed.
2551
2552Comments:
2553          If periodic interrupts are to be disabled but AIOP interrupts
2554          are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2555
2556          If interrupts are to be completely disabled set IRQNum to 0.
2557
2558          Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2559          invalid combination.
2560
2561          This function performs initialization of global interrupt modes,
2562          but it does not actually enable global interrupts.  To enable
2563          and disable global interrupts use functions sEnGlobalInt() and
2564          sDisGlobalInt().  Enabling of global interrupts is normally not
2565          done until all other initializations are complete.
2566
2567          Even if interrupts are globally enabled, they must also be
2568          individually enabled for each channel that is to generate
2569          interrupts.
2570
2571Warnings: No range checking on any of the parameters is done.
2572
2573          No context switches are allowed while executing this function.
2574
2575          After this function all AIOPs on the controller are disabled,
2576          they can be enabled with sEnAiop().
2577*/
2578static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2579			      ByteIO_t * AiopIOList, int AiopIOListSize,
2580			      WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2581			      int PeriodicOnly, int altChanRingIndicator,
2582			      int UPCIRingInd)
2583{
2584	int i;
2585	ByteIO_t io;
2586
2587	CtlP->AltChanRingIndicator = altChanRingIndicator;
2588	CtlP->UPCIRingInd = UPCIRingInd;
2589	CtlP->CtlNum = CtlNum;
2590	CtlP->CtlID = CTLID_0001;	/* controller release 1 */
2591	CtlP->BusType = isPCI;	/* controller release 1 */
2592
2593	if (ConfigIO) {
2594		CtlP->isUPCI = 1;
2595		CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2596		CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2597		CtlP->AiopIntrBits = upci_aiop_intr_bits;
2598	} else {
2599		CtlP->isUPCI = 0;
2600		CtlP->PCIIO =
2601		    (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2602		CtlP->AiopIntrBits = aiop_intr_bits;
2603	}
2604
2605	sPCIControllerEOI(CtlP);	/* clear EOI if warm init */
2606	/* Init AIOPs */
2607	CtlP->NumAiop = 0;
2608	for (i = 0; i < AiopIOListSize; i++) {
2609		io = AiopIOList[i];
2610		CtlP->AiopIO[i] = (WordIO_t) io;
2611		CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2612
2613		CtlP->AiopID[i] = sReadAiopID(io);	/* read AIOP ID */
2614		if (CtlP->AiopID[i] == AIOPID_NULL)	/* if AIOP does not exist */
2615			break;	/* done looking for AIOPs */
2616
2617		CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io);	/* num channels in AIOP */
2618		sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE);	/* clock prescaler */
2619		sOutB(io + _INDX_DATA, sClockPrescale);
2620		CtlP->NumAiop++;	/* bump count of AIOPs */
2621	}
2622
2623	if (CtlP->NumAiop == 0)
2624		return (-1);
2625	else
2626		return (CtlP->NumAiop);
2627}
2628
2629/***************************************************************************
2630Function: sReadAiopID
2631Purpose:  Read the AIOP idenfication number directly from an AIOP.
2632Call:     sReadAiopID(io)
2633          ByteIO_t io: AIOP base I/O address
2634Return:   int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2635                 is replace by an identifying number.
2636          Flag AIOPID_NULL if no valid AIOP is found
2637Warnings: No context switches are allowed while executing this function.
2638
2639*/
2640static int sReadAiopID(ByteIO_t io)
2641{
2642	Byte_t AiopID;		/* ID byte from AIOP */
2643
2644	sOutB(io + _CMD_REG, RESET_ALL);	/* reset AIOP */
2645	sOutB(io + _CMD_REG, 0x0);
2646	AiopID = sInW(io + _CHN_STAT0) & 0x07;
2647	if (AiopID == 0x06)
2648		return (1);
2649	else			/* AIOP does not exist */
2650		return (-1);
2651}
2652
2653/***************************************************************************
2654Function: sReadAiopNumChan
2655Purpose:  Read the number of channels available in an AIOP directly from
2656          an AIOP.
2657Call:     sReadAiopNumChan(io)
2658          WordIO_t io: AIOP base I/O address
2659Return:   int: The number of channels available
2660Comments: The number of channels is determined by write/reads from identical
2661          offsets within the SRAM address spaces for channels 0 and 4.
2662          If the channel 4 space is mirrored to channel 0 it is a 4 channel
2663          AIOP, otherwise it is an 8 channel.
2664Warnings: No context switches are allowed while executing this function.
2665*/
2666static int sReadAiopNumChan(WordIO_t io)
2667{
2668	Word_t x;
2669	static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2670
2671	/* write to chan 0 SRAM */
2672	out32((DWordIO_t) io + _INDX_ADDR, R);
2673	sOutW(io + _INDX_ADDR, 0);	/* read from SRAM, chan 0 */
2674	x = sInW(io + _INDX_DATA);
2675	sOutW(io + _INDX_ADDR, 0x4000);	/* read from SRAM, chan 4 */
2676	if (x != sInW(io + _INDX_DATA))	/* if different must be 8 chan */
2677		return (8);
2678	else
2679		return (4);
2680}
2681
2682/***************************************************************************
2683Function: sInitChan
2684Purpose:  Initialization of a channel and channel structure
2685Call:     sInitChan(CtlP,ChP,AiopNum,ChanNum)
2686          CONTROLLER_T *CtlP; Ptr to controller structure
2687          CHANNEL_T *ChP; Ptr to channel structure
2688          int AiopNum; AIOP number within controller
2689          int ChanNum; Channel number within AIOP
2690Return:   int: 1 if initialization succeeded, 0 if it fails because channel
2691               number exceeds number of channels available in AIOP.
2692Comments: This function must be called before a channel can be used.
2693Warnings: No range checking on any of the parameters is done.
2694
2695          No context switches are allowed while executing this function.
2696*/
2697static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2698		     int ChanNum)
2699{
2700	int i;
2701	WordIO_t AiopIO;
2702	WordIO_t ChIOOff;
2703	Byte_t *ChR;
2704	Word_t ChOff;
2705	static Byte_t R[4];
2706	int brd9600;
2707
2708	if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2709		return 0;	/* exceeds num chans in AIOP */
2710
2711	/* Channel, AIOP, and controller identifiers */
2712	ChP->CtlP = CtlP;
2713	ChP->ChanID = CtlP->AiopID[AiopNum];
2714	ChP->AiopNum = AiopNum;
2715	ChP->ChanNum = ChanNum;
2716
2717	/* Global direct addresses */
2718	AiopIO = CtlP->AiopIO[AiopNum];
2719	ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2720	ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2721	ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2722	ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2723	ChP->IndexData = AiopIO + _INDX_DATA;
2724
2725	/* Channel direct addresses */
2726	ChIOOff = AiopIO + ChP->ChanNum * 2;
2727	ChP->TxRxData = ChIOOff + _TD0;
2728	ChP->ChanStat = ChIOOff + _CHN_STAT0;
2729	ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2730	ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2731
2732	/* Initialize the channel from the RData array */
2733	for (i = 0; i < RDATASIZE; i += 4) {
2734		R[0] = RData[i];
2735		R[1] = RData[i + 1] + 0x10 * ChanNum;
2736		R[2] = RData[i + 2];
2737		R[3] = RData[i + 3];
2738		out32(ChP->IndexAddr, R);
2739	}
2740
2741	ChR = ChP->R;
2742	for (i = 0; i < RREGDATASIZE; i += 4) {
2743		ChR[i] = RRegData[i];
2744		ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2745		ChR[i + 2] = RRegData[i + 2];
2746		ChR[i + 3] = RRegData[i + 3];
2747	}
2748
2749	/* Indexed registers */
2750	ChOff = (Word_t) ChanNum *0x1000;
2751
2752	if (sClockPrescale == 0x14)
2753		brd9600 = 47;
2754	else
2755		brd9600 = 23;
2756
2757	ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2758	ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2759	ChP->BaudDiv[2] = (Byte_t) brd9600;
2760	ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2761	out32(ChP->IndexAddr, ChP->BaudDiv);
2762
2763	ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2764	ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2765	ChP->TxControl[2] = 0;
2766	ChP->TxControl[3] = 0;
2767	out32(ChP->IndexAddr, ChP->TxControl);
2768
2769	ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2770	ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2771	ChP->RxControl[2] = 0;
2772	ChP->RxControl[3] = 0;
2773	out32(ChP->IndexAddr, ChP->RxControl);
2774
2775	ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2776	ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2777	ChP->TxEnables[2] = 0;
2778	ChP->TxEnables[3] = 0;
2779	out32(ChP->IndexAddr, ChP->TxEnables);
2780
2781	ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2782	ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2783	ChP->TxCompare[2] = 0;
2784	ChP->TxCompare[3] = 0;
2785	out32(ChP->IndexAddr, ChP->TxCompare);
2786
2787	ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2788	ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2789	ChP->TxReplace1[2] = 0;
2790	ChP->TxReplace1[3] = 0;
2791	out32(ChP->IndexAddr, ChP->TxReplace1);
2792
2793	ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2794	ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2795	ChP->TxReplace2[2] = 0;
2796	ChP->TxReplace2[3] = 0;
2797	out32(ChP->IndexAddr, ChP->TxReplace2);
2798
2799	ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2800	ChP->TxFIFO = ChOff + _TX_FIFO;
2801
2802	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT);	/* apply reset Tx FIFO count */
2803	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Tx FIFO count */
2804	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2805	sOutW(ChP->IndexData, 0);
2806	ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2807	ChP->RxFIFO = ChOff + _RX_FIFO;
2808
2809	sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT);	/* apply reset Rx FIFO count */
2810	sOutB(ChP->Cmd, (Byte_t) ChanNum);	/* remove reset Rx FIFO count */
2811	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2812	sOutW(ChP->IndexData, 0);
2813	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2814	sOutW(ChP->IndexData, 0);
2815	ChP->TxPrioCnt = ChOff + _TXP_CNT;
2816	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2817	sOutB(ChP->IndexData, 0);
2818	ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2819	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2820	sOutB(ChP->IndexData, 0);
2821	ChP->TxPrioBuf = ChOff + _TXP_BUF;
2822	sEnRxProcessor(ChP);	/* start the Rx processor */
2823
2824	return 1;
2825}
2826
2827/***************************************************************************
2828Function: sStopRxProcessor
2829Purpose:  Stop the receive processor from processing a channel.
2830Call:     sStopRxProcessor(ChP)
2831          CHANNEL_T *ChP; Ptr to channel structure
2832
2833Comments: The receive processor can be started again with sStartRxProcessor().
2834          This function causes the receive processor to skip over the
2835          stopped channel.  It does not stop it from processing other channels.
2836
2837Warnings: No context switches are allowed while executing this function.
2838
2839          Do not leave the receive processor stopped for more than one
2840          character time.
2841
2842          After calling this function a delay of 4 uS is required to ensure
2843          that the receive processor is no longer processing this channel.
2844*/
2845static void sStopRxProcessor(CHANNEL_T * ChP)
2846{
2847	Byte_t R[4];
2848
2849	R[0] = ChP->R[0];
2850	R[1] = ChP->R[1];
2851	R[2] = 0x0a;
2852	R[3] = ChP->R[3];
2853	out32(ChP->IndexAddr, R);
2854}
2855
2856/***************************************************************************
2857Function: sFlushRxFIFO
2858Purpose:  Flush the Rx FIFO
2859Call:     sFlushRxFIFO(ChP)
2860          CHANNEL_T *ChP; Ptr to channel structure
2861Return:   void
2862Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2863          while it is being flushed the receive processor is stopped
2864          and the transmitter is disabled.  After these operations a
2865          4 uS delay is done before clearing the pointers to allow
2866          the receive processor to stop.  These items are handled inside
2867          this function.
2868Warnings: No context switches are allowed while executing this function.
2869*/
2870static void sFlushRxFIFO(CHANNEL_T * ChP)
2871{
2872	int i;
2873	Byte_t Ch;		/* channel number within AIOP */
2874	int RxFIFOEnabled;	/* 1 if Rx FIFO enabled */
2875
2876	if (sGetRxCnt(ChP) == 0)	/* Rx FIFO empty */
2877		return;		/* don't need to flush */
2878
2879	RxFIFOEnabled = 0;
2880	if (ChP->R[0x32] == 0x08) {	/* Rx FIFO is enabled */
2881		RxFIFOEnabled = 1;
2882		sDisRxFIFO(ChP);	/* disable it */
2883		for (i = 0; i < 2000 / 200; i++)	/* delay 2 uS to allow proc to disable FIFO */
2884			sInB(ChP->IntChan);	/* depends on bus i/o timing */
2885	}
2886	sGetChanStatus(ChP);	/* clear any pending Rx errors in chan stat */
2887	Ch = (Byte_t) sGetChanNum(ChP);
2888	sOutB(ChP->Cmd, Ch | RESRXFCNT);	/* apply reset Rx FIFO count */
2889	sOutB(ChP->Cmd, Ch);	/* remove reset Rx FIFO count */
2890	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs);	/* clear Rx out ptr */
2891	sOutW(ChP->IndexData, 0);
2892	sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2);	/* clear Rx in ptr */
2893	sOutW(ChP->IndexData, 0);
2894	if (RxFIFOEnabled)
2895		sEnRxFIFO(ChP);	/* enable Rx FIFO */
2896}
2897
2898/***************************************************************************
2899Function: sFlushTxFIFO
2900Purpose:  Flush the Tx FIFO
2901Call:     sFlushTxFIFO(ChP)
2902          CHANNEL_T *ChP; Ptr to channel structure
2903Return:   void
2904Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2905          while it is being flushed the receive processor is stopped
2906          and the transmitter is disabled.  After these operations a
2907          4 uS delay is done before clearing the pointers to allow
2908          the receive processor to stop.  These items are handled inside
2909          this function.
2910Warnings: No context switches are allowed while executing this function.
2911*/
2912static void sFlushTxFIFO(CHANNEL_T * ChP)
2913{
2914	int i;
2915	Byte_t Ch;		/* channel number within AIOP */
2916	int TxEnabled;		/* 1 if transmitter enabled */
2917
2918	if (sGetTxCnt(ChP) == 0)	/* Tx FIFO empty */
2919		return;		/* don't need to flush */
2920
2921	TxEnabled = 0;
2922	if (ChP->TxControl[3] & TX_ENABLE) {
2923		TxEnabled = 1;
2924		sDisTransmit(ChP);	/* disable transmitter */
2925	}
2926	sStopRxProcessor(ChP);	/* stop Rx processor */
2927	for (i = 0; i < 4000 / 200; i++)	/* delay 4 uS to allow proc to stop */
2928		sInB(ChP->IntChan);	/* depends on bus i/o timing */
2929	Ch = (Byte_t) sGetChanNum(ChP);
2930	sOutB(ChP->Cmd, Ch | RESTXFCNT);	/* apply reset Tx FIFO count */
2931	sOutB(ChP->Cmd, Ch);	/* remove reset Tx FIFO count */
2932	sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs);	/* clear Tx in/out ptrs */
2933	sOutW(ChP->IndexData, 0);
2934	if (TxEnabled)
2935		sEnTransmit(ChP);	/* enable transmitter */
2936	sStartRxProcessor(ChP);	/* restart Rx processor */
2937}
2938
2939/***************************************************************************
2940Function: sWriteTxPrioByte
2941Purpose:  Write a byte of priority transmit data to a channel
2942Call:     sWriteTxPrioByte(ChP,Data)
2943          CHANNEL_T *ChP; Ptr to channel structure
2944          Byte_t Data; The transmit data byte
2945
2946Return:   int: 1 if the bytes is successfully written, otherwise 0.
2947
2948Comments: The priority byte is transmitted before any data in the Tx FIFO.
2949
2950Warnings: No context switches are allowed while executing this function.
2951*/
2952static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2953{
2954	Byte_t DWBuf[4];	/* buffer for double word writes */
2955	Word_t *WordPtr;	/* must be far because Win SS != DS */
2956	register DWordIO_t IndexAddr;
2957
2958	if (sGetTxCnt(ChP) > 1) {	/* write it to Tx priority buffer */
2959		IndexAddr = ChP->IndexAddr;
2960		sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt);	/* get priority buffer status */
2961		if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND)	/* priority buffer busy */
2962			return (0);	/* nothing sent */
2963
2964		WordPtr = (Word_t *) (&DWBuf[0]);
2965		*WordPtr = ChP->TxPrioBuf;	/* data byte address */
2966
2967		DWBuf[2] = Data;	/* data byte value */
2968		out32(IndexAddr, DWBuf);	/* write it out */
2969
2970		*WordPtr = ChP->TxPrioCnt;	/* Tx priority count address */
2971
2972		DWBuf[2] = PRI_PEND + 1;	/* indicate 1 byte pending */
2973		DWBuf[3] = 0;	/* priority buffer pointer */
2974		out32(IndexAddr, DWBuf);	/* write it out */
2975	} else {		/* write it to Tx FIFO */
2976
2977		sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2978	}
2979	return (1);		/* 1 byte sent */
2980}
2981
2982/***************************************************************************
2983Function: sEnInterrupts
2984Purpose:  Enable one or more interrupts for a channel
2985Call:     sEnInterrupts(ChP,Flags)
2986          CHANNEL_T *ChP; Ptr to channel structure
2987          Word_t Flags: Interrupt enable flags, can be any combination
2988             of the following flags:
2989                TXINT_EN:   Interrupt on Tx FIFO empty
2990                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
2991                            sSetRxTrigger())
2992                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
2993                MCINT_EN:   Interrupt on modem input change
2994                CHANINT_EN: Allow channel interrupt signal to the AIOP's
2995                            Interrupt Channel Register.
2996Return:   void
2997Comments: If an interrupt enable flag is set in Flags, that interrupt will be
2998          enabled.  If an interrupt enable flag is not set in Flags, that
2999          interrupt will not be changed.  Interrupts can be disabled with
3000          function sDisInterrupts().
3001
3002          This function sets the appropriate bit for the channel in the AIOP's
3003          Interrupt Mask Register if the CHANINT_EN flag is set.  This allows
3004          this channel's bit to be set in the AIOP's Interrupt Channel Register.
3005
3006          Interrupts must also be globally enabled before channel interrupts
3007          will be passed on to the host.  This is done with function
3008          sEnGlobalInt().
3009
3010          In some cases it may be desirable to disable interrupts globally but
3011          enable channel interrupts.  This would allow the global interrupt
3012          status register to be used to determine which AIOPs need service.
3013*/
3014static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3015{
3016	Byte_t Mask;		/* Interrupt Mask Register */
3017
3018	ChP->RxControl[2] |=
3019	    ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3020
3021	out32(ChP->IndexAddr, ChP->RxControl);
3022
3023	ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3024
3025	out32(ChP->IndexAddr, ChP->TxControl);
3026
3027	if (Flags & CHANINT_EN) {
3028		Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3029		sOutB(ChP->IntMask, Mask);
3030	}
3031}
3032
3033/***************************************************************************
3034Function: sDisInterrupts
3035Purpose:  Disable one or more interrupts for a channel
3036Call:     sDisInterrupts(ChP,Flags)
3037          CHANNEL_T *ChP; Ptr to channel structure
3038          Word_t Flags: Interrupt flags, can be any combination
3039             of the following flags:
3040                TXINT_EN:   Interrupt on Tx FIFO empty
3041                RXINT_EN:   Interrupt on Rx FIFO at trigger level (see
3042                            sSetRxTrigger())
3043                SRCINT_EN:  Interrupt on SRC (Special Rx Condition)
3044                MCINT_EN:   Interrupt on modem input change
3045                CHANINT_EN: Disable channel interrupt signal to the
3046                            AIOP's Interrupt Channel Register.
3047Return:   void
3048Comments: If an interrupt flag is set in Flags, that interrupt will be
3049          disabled.  If an interrupt flag is not set in Flags, that
3050          interrupt will not be changed.  Interrupts can be enabled with
3051          function sEnInterrupts().
3052
3053          This function clears the appropriate bit for the channel in the AIOP's
3054          Interrupt Mask Register if the CHANINT_EN flag is set.  This blocks
3055          this channel's bit from being set in the AIOP's Interrupt Channel
3056          Register.
3057*/
3058static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3059{
3060	Byte_t Mask;		/* Interrupt Mask Register */
3061
3062	ChP->RxControl[2] &=
3063	    ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3064	out32(ChP->IndexAddr, ChP->RxControl);
3065	ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3066	out32(ChP->IndexAddr, ChP->TxControl);
3067
3068	if (Flags & CHANINT_EN) {
3069		Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3070		sOutB(ChP->IntMask, Mask);
3071	}
3072}
3073
3074static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3075{
3076	sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3077}
3078
3079/*
3080 *  Not an official SSCI function, but how to reset RocketModems.
3081 *  ISA bus version
3082 */
3083static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3084{
3085	ByteIO_t addr;
3086	Byte_t val;
3087
3088	addr = CtlP->AiopIO[0] + 0x400;
3089	val = sInB(CtlP->MReg3IO);
3090	/* if AIOP[1] is not enabled, enable it */
3091	if ((val & 2) == 0) {
3092		val = sInB(CtlP->MReg2IO);
3093		sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3094		sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3095	}
3096
3097	sEnAiop(CtlP, 1);
3098	if (!on)
3099		addr += 8;
3100	sOutB(addr + chan, 0);	/* apply or remove reset */
3101	sDisAiop(CtlP, 1);
3102}
3103
3104/*
3105 *  Not an official SSCI function, but how to reset RocketModems.
3106 *  PCI bus version
3107 */
3108static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3109{
3110	ByteIO_t addr;
3111
3112	addr = CtlP->AiopIO[0] + 0x40;	/* 2nd AIOP */
3113	if (!on)
3114		addr += 8;
3115	sOutB(addr + chan, 0);	/* apply or remove reset */
3116}
3117
3118/*  Resets the speaker controller on RocketModem II and III devices */
3119static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3120{
3121	ByteIO_t addr;
3122
3123	/* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3124	if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3125		addr = CtlP->AiopIO[0] + 0x4F;
3126		sOutB(addr, 0);
3127	}
3128
3129	/* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3130	if ((model == MODEL_UPCI_RM3_8PORT)
3131	    || (model == MODEL_UPCI_RM3_4PORT)) {
3132		addr = CtlP->AiopIO[0] + 0x88;
3133		sOutB(addr, 0);
3134	}
3135}
3136
3137/*  Returns the line number given the controller (board), aiop and channel number */
3138static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3139{
3140	return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3141}
3142
3143/*
3144 *  Stores the line number associated with a given controller (board), aiop
3145 *  and channel number.  
3146 *  Returns:  The line number assigned 
3147 */
3148static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3149{
3150	lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3151	return (nextLineNumber - 1);
3152}