Loading...
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static bool support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153#ifdef CONFIG_PCI
154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155 UPCI_AIOP_INTR_BIT_0,
156 UPCI_AIOP_INTR_BIT_1,
157 UPCI_AIOP_INTR_BIT_2,
158 UPCI_AIOP_INTR_BIT_3
159};
160#endif
161
162static Byte_t RData[RDATASIZE] = {
163 0x00, 0x09, 0xf6, 0x82,
164 0x02, 0x09, 0x86, 0xfb,
165 0x04, 0x09, 0x00, 0x0a,
166 0x06, 0x09, 0x01, 0x0a,
167 0x08, 0x09, 0x8a, 0x13,
168 0x0a, 0x09, 0xc5, 0x11,
169 0x0c, 0x09, 0x86, 0x85,
170 0x0e, 0x09, 0x20, 0x0a,
171 0x10, 0x09, 0x21, 0x0a,
172 0x12, 0x09, 0x41, 0xff,
173 0x14, 0x09, 0x82, 0x00,
174 0x16, 0x09, 0x82, 0x7b,
175 0x18, 0x09, 0x8a, 0x7d,
176 0x1a, 0x09, 0x88, 0x81,
177 0x1c, 0x09, 0x86, 0x7a,
178 0x1e, 0x09, 0x84, 0x81,
179 0x20, 0x09, 0x82, 0x7c,
180 0x22, 0x09, 0x0a, 0x0a
181};
182
183static Byte_t RRegData[RREGDATASIZE] = {
184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
197};
198
199static CONTROLLER_T sController[CTL_SIZE] = {
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208};
209
210static Byte_t sBitMapClrTbl[8] = {
211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212};
213
214static Byte_t sBitMapSetTbl[8] = {
215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216};
217
218static int sClockPrescale = 0x14;
219
220/*
221 * Line number is the ttySIx number (x), the Minor number. We
222 * assign them sequentially, starting at zero. The following
223 * array keeps track of the line number assigned to a given board/aiop/channel.
224 */
225static unsigned char lineNumbers[MAX_RP_PORTS];
226static unsigned long nextLineNumber;
227
228/***** RocketPort Static Prototypes *********/
229static int __init init_ISA(int i);
230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231static void rp_flush_buffer(struct tty_struct *tty);
232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234static void rp_start(struct tty_struct *tty);
235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236 int ChanNum);
237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238static void sFlushRxFIFO(CHANNEL_T * ChP);
239static void sFlushTxFIFO(CHANNEL_T * ChP);
240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246 ByteIO_t * AiopIOList, int AiopIOListSize,
247 int IRQNum, Byte_t Frequency, int PeriodicOnly);
248static int sReadAiopID(ByteIO_t io);
249static int sReadAiopNumChan(WordIO_t io);
250
251MODULE_AUTHOR("Theodore Ts'o");
252MODULE_DESCRIPTION("Comtrol RocketPort driver");
253module_param(board1, ulong, 0);
254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255module_param(board2, ulong, 0);
256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257module_param(board3, ulong, 0);
258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259module_param(board4, ulong, 0);
260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261module_param(controller, ulong, 0);
262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263module_param(support_low_speed, bool, 0);
264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265module_param(modem1, ulong, 0);
266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267module_param(modem2, ulong, 0);
268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269module_param(modem3, ulong, 0);
270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271module_param(modem4, ulong, 0);
272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273module_param_array(pc104_1, ulong, NULL, 0);
274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275module_param_array(pc104_2, ulong, NULL, 0);
276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277module_param_array(pc104_3, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279module_param_array(pc104_4, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282static int rp_init(void);
283static void rp_cleanup_module(void);
284
285module_init(rp_init);
286module_exit(rp_cleanup_module);
287
288
289MODULE_LICENSE("Dual BSD/GPL");
290
291/*************************************************************************/
292/* Module code starts here */
293
294static inline int rocket_paranoia_check(struct r_port *info,
295 const char *routine)
296{
297#ifdef ROCKET_PARANOIA_CHECK
298 if (!info)
299 return 1;
300 if (info->magic != RPORT_MAGIC) {
301 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302 "struct in %s\n", routine);
303 return 1;
304 }
305#endif
306 return 0;
307}
308
309
310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
312 * tty layer.
313 */
314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315 unsigned int ChanStatus)
316{
317 unsigned int CharNStat;
318 int ToRecv, wRecv, space;
319 unsigned char *cbuf;
320
321 ToRecv = sGetRxCnt(cp);
322#ifdef ROCKET_DEBUG_INTR
323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324#endif
325 if (ToRecv == 0)
326 return;
327
328 /*
329 * if status indicates there are errored characters in the
330 * FIFO, then enter status mode (a word in FIFO holds
331 * character and status).
332 */
333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334 if (!(ChanStatus & STATMODE)) {
335#ifdef ROCKET_DEBUG_RECEIVE
336 printk(KERN_INFO "Entering STATMODE...\n");
337#endif
338 ChanStatus |= STATMODE;
339 sEnRxStatusMode(cp);
340 }
341 }
342
343 /*
344 * if we previously entered status mode, then read down the
345 * FIFO one word at a time, pulling apart the character and
346 * the status. Update error counters depending on status
347 */
348 if (ChanStatus & STATMODE) {
349#ifdef ROCKET_DEBUG_RECEIVE
350 printk(KERN_INFO "Ignore %x, read %x...\n",
351 info->ignore_status_mask, info->read_status_mask);
352#endif
353 while (ToRecv) {
354 char flag;
355
356 CharNStat = sInW(sGetTxRxDataIO(cp));
357#ifdef ROCKET_DEBUG_RECEIVE
358 printk(KERN_INFO "%x...\n", CharNStat);
359#endif
360 if (CharNStat & STMBREAKH)
361 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362 if (CharNStat & info->ignore_status_mask) {
363 ToRecv--;
364 continue;
365 }
366 CharNStat &= info->read_status_mask;
367 if (CharNStat & STMBREAKH)
368 flag = TTY_BREAK;
369 else if (CharNStat & STMPARITYH)
370 flag = TTY_PARITY;
371 else if (CharNStat & STMFRAMEH)
372 flag = TTY_FRAME;
373 else if (CharNStat & STMRCVROVRH)
374 flag = TTY_OVERRUN;
375 else
376 flag = TTY_NORMAL;
377 tty_insert_flip_char(&info->port, CharNStat & 0xff,
378 flag);
379 ToRecv--;
380 }
381
382 /*
383 * after we've emptied the FIFO in status mode, turn
384 * status mode back off
385 */
386 if (sGetRxCnt(cp) == 0) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "Status mode off.\n");
389#endif
390 sDisRxStatusMode(cp);
391 }
392 } else {
393 /*
394 * we aren't in status mode, so read down the FIFO two
395 * characters at time by doing repeated word IO
396 * transfer.
397 */
398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399 if (space < ToRecv) {
400#ifdef ROCKET_DEBUG_RECEIVE
401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402#endif
403 if (space <= 0)
404 return;
405 ToRecv = space;
406 }
407 wRecv = ToRecv >> 1;
408 if (wRecv)
409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410 if (ToRecv & 1)
411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412 }
413 /* Push the data up to the tty layer */
414 tty_flip_buffer_push(&info->port);
415}
416
417/*
418 * Serial port transmit data function. Called from the timer polling loop as a
419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
422 */
423static void rp_do_transmit(struct r_port *info)
424{
425 int c;
426 CHANNEL_t *cp = &info->channel;
427 struct tty_struct *tty;
428 unsigned long flags;
429
430#ifdef ROCKET_DEBUG_INTR
431 printk(KERN_DEBUG "%s\n", __func__);
432#endif
433 if (!info)
434 return;
435 tty = tty_port_tty_get(&info->port);
436
437 if (tty == NULL) {
438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446 /* Loop sending data to FIFO until done or FIFO full */
447 while (1) {
448 if (tty->stopped)
449 break;
450 c = min(info->xmit_fifo_room, info->xmit_cnt);
451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461#ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463#endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471#ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473#endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477 tty_kref_put(tty);
478
479#ifdef ROCKET_DEBUG_INTR
480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481 info->xmit_tail, info->xmit_fifo_room);
482#endif
483}
484
485/*
486 * Called when a serial port signals it has read data in it's RX FIFO.
487 * It checks what interrupts are pending and services them, including
488 * receiving serial data.
489 */
490static void rp_handle_port(struct r_port *info)
491{
492 CHANNEL_t *cp;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if (!tty_port_initialized(&info->port)) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503
504 cp = &info->channel;
505
506 IntMask = sGetChanIntID(cp) & info->intmask;
507#ifdef ROCKET_DEBUG_INTR
508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509#endif
510 ChanStatus = sGetChanStatus(cp);
511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
512 rp_do_receive(info, cp, ChanStatus);
513 }
514 if (IntMask & DELTA_CD) { /* CD change */
515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517 (ChanStatus & CD_ACT) ? "on" : "off");
518#endif
519 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520#ifdef ROCKET_DEBUG_HANGUP
521 printk(KERN_INFO "CD drop, calling hangup.\n");
522#endif
523 tty_port_tty_hangup(&info->port, false);
524 }
525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526 wake_up_interruptible(&info->port.open_wait);
527 }
528#ifdef ROCKET_DEBUG_INTR
529 if (IntMask & DELTA_CTS) { /* CTS change */
530 printk(KERN_INFO "CTS change...\n");
531 }
532 if (IntMask & DELTA_DSR) { /* DSR change */
533 printk(KERN_INFO "DSR change...\n");
534 }
535#endif
536}
537
538/*
539 * The top level polling routine. Repeats every 1/100 HZ (10ms).
540 */
541static void rp_do_poll(unsigned long dummy)
542{
543 CONTROLLER_t *ctlp;
544 int ctrl, aiop, ch, line;
545 unsigned int xmitmask, i;
546 unsigned int CtlMask;
547 unsigned char AiopMask;
548 Word_t bit;
549
550 /* Walk through all the boards (ctrl's) */
551 for (ctrl = 0; ctrl < max_board; ctrl++) {
552 if (rcktpt_io_addr[ctrl] <= 0)
553 continue;
554
555 /* Get a ptr to the board's control struct */
556 ctlp = sCtlNumToCtlPtr(ctrl);
557
558 /* Get the interrupt status from the board */
559#ifdef CONFIG_PCI
560 if (ctlp->BusType == isPCI)
561 CtlMask = sPCIGetControllerIntStatus(ctlp);
562 else
563#endif
564 CtlMask = sGetControllerIntStatus(ctlp);
565
566 /* Check if any AIOP read bits are set */
567 for (aiop = 0; CtlMask; aiop++) {
568 bit = ctlp->AiopIntrBits[aiop];
569 if (CtlMask & bit) {
570 CtlMask &= ~bit;
571 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573 /* Check if any port read bits are set */
574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
575 if (AiopMask & 1) {
576
577 /* Get the line number (/dev/ttyRx number). */
578 /* Read the data from the port. */
579 line = GetLineNumber(ctrl, aiop, ch);
580 rp_handle_port(rp_table[line]);
581 }
582 }
583 }
584 }
585
586 xmitmask = xmit_flags[ctrl];
587
588 /*
589 * xmit_flags contains bit-significant flags, indicating there is data
590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
591 * 1, ... (32 total possible). The variable i has the aiop and ch
592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593 */
594 if (xmitmask) {
595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596 if (xmitmask & (1 << i)) {
597 aiop = (i & 0x18) >> 3;
598 ch = i & 0x07;
599 line = GetLineNumber(ctrl, aiop, ch);
600 rp_do_transmit(rp_table[line]);
601 }
602 }
603 }
604 }
605
606 /*
607 * Reset the timer so we get called at the next clock tick (10ms).
608 */
609 if (atomic_read(&rp_num_ports_open))
610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611}
612
613/*
614 * Initializes the r_port structure for a port, as well as enabling the port on
615 * the board.
616 * Inputs: board, aiop, chan numbers
617 */
618static void __init
619init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
620{
621 unsigned rocketMode;
622 struct r_port *info;
623 int line;
624 CONTROLLER_T *ctlp;
625
626 /* Get the next available line number */
627 line = SetLineNumber(board, aiop, chan);
628
629 ctlp = sCtlNumToCtlPtr(board);
630
631 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
632 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
633 if (!info) {
634 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
635 line);
636 return;
637 }
638
639 info->magic = RPORT_MAGIC;
640 info->line = line;
641 info->ctlp = ctlp;
642 info->board = board;
643 info->aiop = aiop;
644 info->chan = chan;
645 tty_port_init(&info->port);
646 info->port.ops = &rocket_port_ops;
647 info->flags &= ~ROCKET_MODE_MASK;
648 switch (pc104[board][line]) {
649 case 422:
650 info->flags |= ROCKET_MODE_RS422;
651 break;
652 case 485:
653 info->flags |= ROCKET_MODE_RS485;
654 break;
655 case 232:
656 default:
657 info->flags |= ROCKET_MODE_RS232;
658 break;
659 }
660
661 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
662 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
663 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
664 board, aiop, chan);
665 tty_port_destroy(&info->port);
666 kfree(info);
667 return;
668 }
669
670 rocketMode = info->flags & ROCKET_MODE_MASK;
671
672 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
673 sEnRTSToggle(&info->channel);
674 else
675 sDisRTSToggle(&info->channel);
676
677 if (ctlp->boardType == ROCKET_TYPE_PC104) {
678 switch (rocketMode) {
679 case ROCKET_MODE_RS485:
680 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
681 break;
682 case ROCKET_MODE_RS422:
683 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
684 break;
685 case ROCKET_MODE_RS232:
686 default:
687 if (info->flags & ROCKET_RTS_TOGGLE)
688 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
689 else
690 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
691 break;
692 }
693 }
694 spin_lock_init(&info->slock);
695 mutex_init(&info->write_mtx);
696 rp_table[line] = info;
697 tty_port_register_device(&info->port, rocket_driver, line,
698 pci_dev ? &pci_dev->dev : NULL);
699}
700
701/*
702 * Configures a rocketport port according to its termio settings. Called from
703 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
704 */
705static void configure_r_port(struct tty_struct *tty, struct r_port *info,
706 struct ktermios *old_termios)
707{
708 unsigned cflag;
709 unsigned long flags;
710 unsigned rocketMode;
711 int bits, baud, divisor;
712 CHANNEL_t *cp;
713 struct ktermios *t = &tty->termios;
714
715 cp = &info->channel;
716 cflag = t->c_cflag;
717
718 /* Byte size and parity */
719 if ((cflag & CSIZE) == CS8) {
720 sSetData8(cp);
721 bits = 10;
722 } else {
723 sSetData7(cp);
724 bits = 9;
725 }
726 if (cflag & CSTOPB) {
727 sSetStop2(cp);
728 bits++;
729 } else {
730 sSetStop1(cp);
731 }
732
733 if (cflag & PARENB) {
734 sEnParity(cp);
735 bits++;
736 if (cflag & PARODD) {
737 sSetOddParity(cp);
738 } else {
739 sSetEvenParity(cp);
740 }
741 } else {
742 sDisParity(cp);
743 }
744
745 /* baud rate */
746 baud = tty_get_baud_rate(tty);
747 if (!baud)
748 baud = 9600;
749 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
750 if ((divisor >= 8192 || divisor < 0) && old_termios) {
751 baud = tty_termios_baud_rate(old_termios);
752 if (!baud)
753 baud = 9600;
754 divisor = (rp_baud_base[info->board] / baud) - 1;
755 }
756 if (divisor >= 8192 || divisor < 0) {
757 baud = 9600;
758 divisor = (rp_baud_base[info->board] / baud) - 1;
759 }
760 info->cps = baud / bits;
761 sSetBaud(cp, divisor);
762
763 /* FIXME: Should really back compute a baud rate from the divisor */
764 tty_encode_baud_rate(tty, baud, baud);
765
766 if (cflag & CRTSCTS) {
767 info->intmask |= DELTA_CTS;
768 sEnCTSFlowCtl(cp);
769 } else {
770 info->intmask &= ~DELTA_CTS;
771 sDisCTSFlowCtl(cp);
772 }
773 if (cflag & CLOCAL) {
774 info->intmask &= ~DELTA_CD;
775 } else {
776 spin_lock_irqsave(&info->slock, flags);
777 if (sGetChanStatus(cp) & CD_ACT)
778 info->cd_status = 1;
779 else
780 info->cd_status = 0;
781 info->intmask |= DELTA_CD;
782 spin_unlock_irqrestore(&info->slock, flags);
783 }
784
785 /*
786 * Handle software flow control in the board
787 */
788#ifdef ROCKET_SOFT_FLOW
789 if (I_IXON(tty)) {
790 sEnTxSoftFlowCtl(cp);
791 if (I_IXANY(tty)) {
792 sEnIXANY(cp);
793 } else {
794 sDisIXANY(cp);
795 }
796 sSetTxXONChar(cp, START_CHAR(tty));
797 sSetTxXOFFChar(cp, STOP_CHAR(tty));
798 } else {
799 sDisTxSoftFlowCtl(cp);
800 sDisIXANY(cp);
801 sClrTxXOFF(cp);
802 }
803#endif
804
805 /*
806 * Set up ignore/read mask words
807 */
808 info->read_status_mask = STMRCVROVRH | 0xFF;
809 if (I_INPCK(tty))
810 info->read_status_mask |= STMFRAMEH | STMPARITYH;
811 if (I_BRKINT(tty) || I_PARMRK(tty))
812 info->read_status_mask |= STMBREAKH;
813
814 /*
815 * Characters to ignore
816 */
817 info->ignore_status_mask = 0;
818 if (I_IGNPAR(tty))
819 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
820 if (I_IGNBRK(tty)) {
821 info->ignore_status_mask |= STMBREAKH;
822 /*
823 * If we're ignoring parity and break indicators,
824 * ignore overruns too. (For real raw support).
825 */
826 if (I_IGNPAR(tty))
827 info->ignore_status_mask |= STMRCVROVRH;
828 }
829
830 rocketMode = info->flags & ROCKET_MODE_MASK;
831
832 if ((info->flags & ROCKET_RTS_TOGGLE)
833 || (rocketMode == ROCKET_MODE_RS485))
834 sEnRTSToggle(cp);
835 else
836 sDisRTSToggle(cp);
837
838 sSetRTS(&info->channel);
839
840 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
841 switch (rocketMode) {
842 case ROCKET_MODE_RS485:
843 sSetInterfaceMode(cp, InterfaceModeRS485);
844 break;
845 case ROCKET_MODE_RS422:
846 sSetInterfaceMode(cp, InterfaceModeRS422);
847 break;
848 case ROCKET_MODE_RS232:
849 default:
850 if (info->flags & ROCKET_RTS_TOGGLE)
851 sSetInterfaceMode(cp, InterfaceModeRS232T);
852 else
853 sSetInterfaceMode(cp, InterfaceModeRS232);
854 break;
855 }
856 }
857}
858
859static int carrier_raised(struct tty_port *port)
860{
861 struct r_port *info = container_of(port, struct r_port, port);
862 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
863}
864
865static void dtr_rts(struct tty_port *port, int on)
866{
867 struct r_port *info = container_of(port, struct r_port, port);
868 if (on) {
869 sSetDTR(&info->channel);
870 sSetRTS(&info->channel);
871 } else {
872 sClrDTR(&info->channel);
873 sClrRTS(&info->channel);
874 }
875}
876
877/*
878 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
879 * port's r_port struct. Initializes the port hardware.
880 */
881static int rp_open(struct tty_struct *tty, struct file *filp)
882{
883 struct r_port *info;
884 struct tty_port *port;
885 int retval;
886 CHANNEL_t *cp;
887 unsigned long page;
888
889 info = rp_table[tty->index];
890 if (info == NULL)
891 return -ENXIO;
892 port = &info->port;
893
894 page = __get_free_page(GFP_KERNEL);
895 if (!page)
896 return -ENOMEM;
897
898 /*
899 * We must not sleep from here until the port is marked fully in use.
900 */
901 if (info->xmit_buf)
902 free_page(page);
903 else
904 info->xmit_buf = (unsigned char *) page;
905
906 tty->driver_data = info;
907 tty_port_tty_set(port, tty);
908
909 if (port->count++ == 0) {
910 atomic_inc(&rp_num_ports_open);
911
912#ifdef ROCKET_DEBUG_OPEN
913 printk(KERN_INFO "rocket mod++ = %d...\n",
914 atomic_read(&rp_num_ports_open));
915#endif
916 }
917#ifdef ROCKET_DEBUG_OPEN
918 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
919#endif
920
921 /*
922 * Info->count is now 1; so it's safe to sleep now.
923 */
924 if (!tty_port_initialized(port)) {
925 cp = &info->channel;
926 sSetRxTrigger(cp, TRIG_1);
927 if (sGetChanStatus(cp) & CD_ACT)
928 info->cd_status = 1;
929 else
930 info->cd_status = 0;
931 sDisRxStatusMode(cp);
932 sFlushRxFIFO(cp);
933 sFlushTxFIFO(cp);
934
935 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
936 sSetRxTrigger(cp, TRIG_1);
937
938 sGetChanStatus(cp);
939 sDisRxStatusMode(cp);
940 sClrTxXOFF(cp);
941
942 sDisCTSFlowCtl(cp);
943 sDisTxSoftFlowCtl(cp);
944
945 sEnRxFIFO(cp);
946 sEnTransmit(cp);
947
948 tty_port_set_initialized(&info->port, 1);
949
950 /*
951 * Set up the tty->alt_speed kludge
952 */
953 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
954 tty->alt_speed = 57600;
955 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
956 tty->alt_speed = 115200;
957 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
958 tty->alt_speed = 230400;
959 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
960 tty->alt_speed = 460800;
961
962 configure_r_port(tty, info, NULL);
963 if (C_BAUD(tty)) {
964 sSetDTR(cp);
965 sSetRTS(cp);
966 }
967 }
968 /* Starts (or resets) the maint polling loop */
969 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
970
971 retval = tty_port_block_til_ready(port, tty, filp);
972 if (retval) {
973#ifdef ROCKET_DEBUG_OPEN
974 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
975#endif
976 return retval;
977 }
978 return 0;
979}
980
981/*
982 * Exception handler that closes a serial port. info->port.count is considered critical.
983 */
984static void rp_close(struct tty_struct *tty, struct file *filp)
985{
986 struct r_port *info = tty->driver_data;
987 struct tty_port *port = &info->port;
988 int timeout;
989 CHANNEL_t *cp;
990
991 if (rocket_paranoia_check(info, "rp_close"))
992 return;
993
994#ifdef ROCKET_DEBUG_OPEN
995 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
996#endif
997
998 if (tty_port_close_start(port, tty, filp) == 0)
999 return;
1000
1001 mutex_lock(&port->mutex);
1002 cp = &info->channel;
1003 /*
1004 * Before we drop DTR, make sure the UART transmitter
1005 * has completely drained; this is especially
1006 * important if there is a transmit FIFO!
1007 */
1008 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1009 if (timeout == 0)
1010 timeout = 1;
1011 rp_wait_until_sent(tty, timeout);
1012 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1013
1014 sDisTransmit(cp);
1015 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1016 sDisCTSFlowCtl(cp);
1017 sDisTxSoftFlowCtl(cp);
1018 sClrTxXOFF(cp);
1019 sFlushRxFIFO(cp);
1020 sFlushTxFIFO(cp);
1021 sClrRTS(cp);
1022 if (C_HUPCL(tty))
1023 sClrDTR(cp);
1024
1025 rp_flush_buffer(tty);
1026
1027 tty_ldisc_flush(tty);
1028
1029 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1030
1031 /* We can't yet use tty_port_close_end as the buffer handling in this
1032 driver is a bit different to the usual */
1033
1034 if (port->blocked_open) {
1035 if (port->close_delay) {
1036 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1037 }
1038 wake_up_interruptible(&port->open_wait);
1039 } else {
1040 if (info->xmit_buf) {
1041 free_page((unsigned long) info->xmit_buf);
1042 info->xmit_buf = NULL;
1043 }
1044 }
1045 spin_lock_irq(&port->lock);
1046 tty->closing = 0;
1047 spin_unlock_irq(&port->lock);
1048 tty_port_set_initialized(port, 0);
1049 tty_port_set_active(port, 0);
1050 mutex_unlock(&port->mutex);
1051 tty_port_tty_set(port, NULL);
1052
1053 atomic_dec(&rp_num_ports_open);
1054
1055#ifdef ROCKET_DEBUG_OPEN
1056 printk(KERN_INFO "rocket mod-- = %d...\n",
1057 atomic_read(&rp_num_ports_open));
1058 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1059#endif
1060
1061}
1062
1063static void rp_set_termios(struct tty_struct *tty,
1064 struct ktermios *old_termios)
1065{
1066 struct r_port *info = tty->driver_data;
1067 CHANNEL_t *cp;
1068 unsigned cflag;
1069
1070 if (rocket_paranoia_check(info, "rp_set_termios"))
1071 return;
1072
1073 cflag = tty->termios.c_cflag;
1074
1075 /*
1076 * This driver doesn't support CS5 or CS6
1077 */
1078 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1079 tty->termios.c_cflag =
1080 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1081 /* Or CMSPAR */
1082 tty->termios.c_cflag &= ~CMSPAR;
1083
1084 configure_r_port(tty, info, old_termios);
1085
1086 cp = &info->channel;
1087
1088 /* Handle transition to B0 status */
1089 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1090 sClrDTR(cp);
1091 sClrRTS(cp);
1092 }
1093
1094 /* Handle transition away from B0 status */
1095 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1096 sSetRTS(cp);
1097 sSetDTR(cp);
1098 }
1099
1100 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1101 rp_start(tty);
1102}
1103
1104static int rp_break(struct tty_struct *tty, int break_state)
1105{
1106 struct r_port *info = tty->driver_data;
1107 unsigned long flags;
1108
1109 if (rocket_paranoia_check(info, "rp_break"))
1110 return -EINVAL;
1111
1112 spin_lock_irqsave(&info->slock, flags);
1113 if (break_state == -1)
1114 sSendBreak(&info->channel);
1115 else
1116 sClrBreak(&info->channel);
1117 spin_unlock_irqrestore(&info->slock, flags);
1118 return 0;
1119}
1120
1121/*
1122 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1123 * the UPCI boards was added, it was decided to make this a function because
1124 * the macro was getting too complicated. All cases except the first one
1125 * (UPCIRingInd) are taken directly from the original macro.
1126 */
1127static int sGetChanRI(CHANNEL_T * ChP)
1128{
1129 CONTROLLER_t *CtlP = ChP->CtlP;
1130 int ChanNum = ChP->ChanNum;
1131 int RingInd = 0;
1132
1133 if (CtlP->UPCIRingInd)
1134 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1135 else if (CtlP->AltChanRingIndicator)
1136 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1137 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1138 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1139
1140 return RingInd;
1141}
1142
1143/********************************************************************************************/
1144/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1145
1146/*
1147 * Returns the state of the serial modem control lines. These next 2 functions
1148 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1149 */
1150static int rp_tiocmget(struct tty_struct *tty)
1151{
1152 struct r_port *info = tty->driver_data;
1153 unsigned int control, result, ChanStatus;
1154
1155 ChanStatus = sGetChanStatusLo(&info->channel);
1156 control = info->channel.TxControl[3];
1157 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1158 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1159 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1160 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1161 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1162 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1163
1164 return result;
1165}
1166
1167/*
1168 * Sets the modem control lines
1169 */
1170static int rp_tiocmset(struct tty_struct *tty,
1171 unsigned int set, unsigned int clear)
1172{
1173 struct r_port *info = tty->driver_data;
1174
1175 if (set & TIOCM_RTS)
1176 info->channel.TxControl[3] |= SET_RTS;
1177 if (set & TIOCM_DTR)
1178 info->channel.TxControl[3] |= SET_DTR;
1179 if (clear & TIOCM_RTS)
1180 info->channel.TxControl[3] &= ~SET_RTS;
1181 if (clear & TIOCM_DTR)
1182 info->channel.TxControl[3] &= ~SET_DTR;
1183
1184 out32(info->channel.IndexAddr, info->channel.TxControl);
1185 return 0;
1186}
1187
1188static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1189{
1190 struct rocket_config tmp;
1191
1192 memset(&tmp, 0, sizeof (tmp));
1193 mutex_lock(&info->port.mutex);
1194 tmp.line = info->line;
1195 tmp.flags = info->flags;
1196 tmp.close_delay = info->port.close_delay;
1197 tmp.closing_wait = info->port.closing_wait;
1198 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199 mutex_unlock(&info->port.mutex);
1200
1201 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202 return -EFAULT;
1203 return 0;
1204}
1205
1206static int set_config(struct tty_struct *tty, struct r_port *info,
1207 struct rocket_config __user *new_info)
1208{
1209 struct rocket_config new_serial;
1210
1211 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212 return -EFAULT;
1213
1214 mutex_lock(&info->port.mutex);
1215 if (!capable(CAP_SYS_ADMIN))
1216 {
1217 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218 mutex_unlock(&info->port.mutex);
1219 return -EPERM;
1220 }
1221 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222 configure_r_port(tty, info, NULL);
1223 mutex_unlock(&info->port.mutex);
1224 return 0;
1225 }
1226
1227 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228 info->port.close_delay = new_serial.close_delay;
1229 info->port.closing_wait = new_serial.closing_wait;
1230
1231 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232 tty->alt_speed = 57600;
1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234 tty->alt_speed = 115200;
1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236 tty->alt_speed = 230400;
1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238 tty->alt_speed = 460800;
1239 mutex_unlock(&info->port.mutex);
1240
1241 configure_r_port(tty, info, NULL);
1242 return 0;
1243}
1244
1245/*
1246 * This function fills in a rocket_ports struct with information
1247 * about what boards/ports are in the system. This info is passed
1248 * to user space. See setrocket.c where the info is used to create
1249 * the /dev/ttyRx ports.
1250 */
1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252{
1253 struct rocket_ports tmp;
1254 int board;
1255
1256 memset(&tmp, 0, sizeof (tmp));
1257 tmp.tty_major = rocket_driver->major;
1258
1259 for (board = 0; board < 4; board++) {
1260 tmp.rocketModel[board].model = rocketModel[board].model;
1261 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1262 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1263 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1264 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1265 }
1266 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1267 return -EFAULT;
1268 return 0;
1269}
1270
1271static int reset_rm2(struct r_port *info, void __user *arg)
1272{
1273 int reset;
1274
1275 if (!capable(CAP_SYS_ADMIN))
1276 return -EPERM;
1277
1278 if (copy_from_user(&reset, arg, sizeof (int)))
1279 return -EFAULT;
1280 if (reset)
1281 reset = 1;
1282
1283 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1284 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1285 return -EINVAL;
1286
1287 if (info->ctlp->BusType == isISA)
1288 sModemReset(info->ctlp, info->chan, reset);
1289 else
1290 sPCIModemReset(info->ctlp, info->chan, reset);
1291
1292 return 0;
1293}
1294
1295static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1296{
1297 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1298 return -EFAULT;
1299 return 0;
1300}
1301
1302/* IOCTL call handler into the driver */
1303static int rp_ioctl(struct tty_struct *tty,
1304 unsigned int cmd, unsigned long arg)
1305{
1306 struct r_port *info = tty->driver_data;
1307 void __user *argp = (void __user *)arg;
1308 int ret = 0;
1309
1310 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1311 return -ENXIO;
1312
1313 switch (cmd) {
1314 case RCKP_GET_STRUCT:
1315 if (copy_to_user(argp, info, sizeof (struct r_port)))
1316 ret = -EFAULT;
1317 break;
1318 case RCKP_GET_CONFIG:
1319 ret = get_config(info, argp);
1320 break;
1321 case RCKP_SET_CONFIG:
1322 ret = set_config(tty, info, argp);
1323 break;
1324 case RCKP_GET_PORTS:
1325 ret = get_ports(info, argp);
1326 break;
1327 case RCKP_RESET_RM2:
1328 ret = reset_rm2(info, argp);
1329 break;
1330 case RCKP_GET_VERSION:
1331 ret = get_version(info, argp);
1332 break;
1333 default:
1334 ret = -ENOIOCTLCMD;
1335 }
1336 return ret;
1337}
1338
1339static void rp_send_xchar(struct tty_struct *tty, char ch)
1340{
1341 struct r_port *info = tty->driver_data;
1342 CHANNEL_t *cp;
1343
1344 if (rocket_paranoia_check(info, "rp_send_xchar"))
1345 return;
1346
1347 cp = &info->channel;
1348 if (sGetTxCnt(cp))
1349 sWriteTxPrioByte(cp, ch);
1350 else
1351 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1352}
1353
1354static void rp_throttle(struct tty_struct *tty)
1355{
1356 struct r_port *info = tty->driver_data;
1357
1358#ifdef ROCKET_DEBUG_THROTTLE
1359 printk(KERN_INFO "throttle %s ....\n", tty->name);
1360#endif
1361
1362 if (rocket_paranoia_check(info, "rp_throttle"))
1363 return;
1364
1365 if (I_IXOFF(tty))
1366 rp_send_xchar(tty, STOP_CHAR(tty));
1367
1368 sClrRTS(&info->channel);
1369}
1370
1371static void rp_unthrottle(struct tty_struct *tty)
1372{
1373 struct r_port *info = tty->driver_data;
1374#ifdef ROCKET_DEBUG_THROTTLE
1375 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1376#endif
1377
1378 if (rocket_paranoia_check(info, "rp_unthrottle"))
1379 return;
1380
1381 if (I_IXOFF(tty))
1382 rp_send_xchar(tty, START_CHAR(tty));
1383
1384 sSetRTS(&info->channel);
1385}
1386
1387/*
1388 * ------------------------------------------------------------
1389 * rp_stop() and rp_start()
1390 *
1391 * This routines are called before setting or resetting tty->stopped.
1392 * They enable or disable transmitter interrupts, as necessary.
1393 * ------------------------------------------------------------
1394 */
1395static void rp_stop(struct tty_struct *tty)
1396{
1397 struct r_port *info = tty->driver_data;
1398
1399#ifdef ROCKET_DEBUG_FLOW
1400 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1401 info->xmit_cnt, info->xmit_fifo_room);
1402#endif
1403
1404 if (rocket_paranoia_check(info, "rp_stop"))
1405 return;
1406
1407 if (sGetTxCnt(&info->channel))
1408 sDisTransmit(&info->channel);
1409}
1410
1411static void rp_start(struct tty_struct *tty)
1412{
1413 struct r_port *info = tty->driver_data;
1414
1415#ifdef ROCKET_DEBUG_FLOW
1416 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1417 info->xmit_cnt, info->xmit_fifo_room);
1418#endif
1419
1420 if (rocket_paranoia_check(info, "rp_stop"))
1421 return;
1422
1423 sEnTransmit(&info->channel);
1424 set_bit((info->aiop * 8) + info->chan,
1425 (void *) &xmit_flags[info->board]);
1426}
1427
1428/*
1429 * rp_wait_until_sent() --- wait until the transmitter is empty
1430 */
1431static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1432{
1433 struct r_port *info = tty->driver_data;
1434 CHANNEL_t *cp;
1435 unsigned long orig_jiffies;
1436 int check_time, exit_time;
1437 int txcnt;
1438
1439 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1440 return;
1441
1442 cp = &info->channel;
1443
1444 orig_jiffies = jiffies;
1445#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1446 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1447 jiffies);
1448 printk(KERN_INFO "cps=%d...\n", info->cps);
1449#endif
1450 while (1) {
1451 txcnt = sGetTxCnt(cp);
1452 if (!txcnt) {
1453 if (sGetChanStatusLo(cp) & TXSHRMT)
1454 break;
1455 check_time = (HZ / info->cps) / 5;
1456 } else {
1457 check_time = HZ * txcnt / info->cps;
1458 }
1459 if (timeout) {
1460 exit_time = orig_jiffies + timeout - jiffies;
1461 if (exit_time <= 0)
1462 break;
1463 if (exit_time < check_time)
1464 check_time = exit_time;
1465 }
1466 if (check_time == 0)
1467 check_time = 1;
1468#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1469 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1470 jiffies, check_time);
1471#endif
1472 msleep_interruptible(jiffies_to_msecs(check_time));
1473 if (signal_pending(current))
1474 break;
1475 }
1476 __set_current_state(TASK_RUNNING);
1477#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1478 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1479#endif
1480}
1481
1482/*
1483 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1484 */
1485static void rp_hangup(struct tty_struct *tty)
1486{
1487 CHANNEL_t *cp;
1488 struct r_port *info = tty->driver_data;
1489 unsigned long flags;
1490
1491 if (rocket_paranoia_check(info, "rp_hangup"))
1492 return;
1493
1494#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1495 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1496#endif
1497 rp_flush_buffer(tty);
1498 spin_lock_irqsave(&info->port.lock, flags);
1499 if (info->port.count)
1500 atomic_dec(&rp_num_ports_open);
1501 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1502 spin_unlock_irqrestore(&info->port.lock, flags);
1503
1504 tty_port_hangup(&info->port);
1505
1506 cp = &info->channel;
1507 sDisRxFIFO(cp);
1508 sDisTransmit(cp);
1509 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1510 sDisCTSFlowCtl(cp);
1511 sDisTxSoftFlowCtl(cp);
1512 sClrTxXOFF(cp);
1513 tty_port_set_initialized(&info->port, 0);
1514
1515 wake_up_interruptible(&info->port.open_wait);
1516}
1517
1518/*
1519 * Exception handler - write char routine. The RocketPort driver uses a
1520 * double-buffering strategy, with the twist that if the in-memory CPU
1521 * buffer is empty, and there's space in the transmit FIFO, the
1522 * writing routines will write directly to transmit FIFO.
1523 * Write buffer and counters protected by spinlocks
1524 */
1525static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1526{
1527 struct r_port *info = tty->driver_data;
1528 CHANNEL_t *cp;
1529 unsigned long flags;
1530
1531 if (rocket_paranoia_check(info, "rp_put_char"))
1532 return 0;
1533
1534 /*
1535 * Grab the port write mutex, locking out other processes that try to
1536 * write to this port
1537 */
1538 mutex_lock(&info->write_mtx);
1539
1540#ifdef ROCKET_DEBUG_WRITE
1541 printk(KERN_INFO "rp_put_char %c...\n", ch);
1542#endif
1543
1544 spin_lock_irqsave(&info->slock, flags);
1545 cp = &info->channel;
1546
1547 if (!tty->stopped && info->xmit_fifo_room == 0)
1548 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1549
1550 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1551 info->xmit_buf[info->xmit_head++] = ch;
1552 info->xmit_head &= XMIT_BUF_SIZE - 1;
1553 info->xmit_cnt++;
1554 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1555 } else {
1556 sOutB(sGetTxRxDataIO(cp), ch);
1557 info->xmit_fifo_room--;
1558 }
1559 spin_unlock_irqrestore(&info->slock, flags);
1560 mutex_unlock(&info->write_mtx);
1561 return 1;
1562}
1563
1564/*
1565 * Exception handler - write routine, called when user app writes to the device.
1566 * A per port write mutex is used to protect from another process writing to
1567 * this port at the same time. This other process could be running on the other CPU
1568 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1569 * Spinlocks protect the info xmit members.
1570 */
1571static int rp_write(struct tty_struct *tty,
1572 const unsigned char *buf, int count)
1573{
1574 struct r_port *info = tty->driver_data;
1575 CHANNEL_t *cp;
1576 const unsigned char *b;
1577 int c, retval = 0;
1578 unsigned long flags;
1579
1580 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1581 return 0;
1582
1583 if (mutex_lock_interruptible(&info->write_mtx))
1584 return -ERESTARTSYS;
1585
1586#ifdef ROCKET_DEBUG_WRITE
1587 printk(KERN_INFO "rp_write %d chars...\n", count);
1588#endif
1589 cp = &info->channel;
1590
1591 if (!tty->stopped && info->xmit_fifo_room < count)
1592 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1593
1594 /*
1595 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1596 * into FIFO. Use the write queue for temp storage.
1597 */
1598 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1599 c = min(count, info->xmit_fifo_room);
1600 b = buf;
1601
1602 /* Push data into FIFO, 2 bytes at a time */
1603 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1604
1605 /* If there is a byte remaining, write it */
1606 if (c & 1)
1607 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1608
1609 retval += c;
1610 buf += c;
1611 count -= c;
1612
1613 spin_lock_irqsave(&info->slock, flags);
1614 info->xmit_fifo_room -= c;
1615 spin_unlock_irqrestore(&info->slock, flags);
1616 }
1617
1618 /* If count is zero, we wrote it all and are done */
1619 if (!count)
1620 goto end;
1621
1622 /* Write remaining data into the port's xmit_buf */
1623 while (1) {
1624 /* Hung up ? */
1625 if (!tty_port_active(&info->port))
1626 goto end;
1627 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1628 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1629 if (c <= 0)
1630 break;
1631
1632 b = buf;
1633 memcpy(info->xmit_buf + info->xmit_head, b, c);
1634
1635 spin_lock_irqsave(&info->slock, flags);
1636 info->xmit_head =
1637 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1638 info->xmit_cnt += c;
1639 spin_unlock_irqrestore(&info->slock, flags);
1640
1641 buf += c;
1642 count -= c;
1643 retval += c;
1644 }
1645
1646 if ((retval > 0) && !tty->stopped)
1647 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1648
1649end:
1650 if (info->xmit_cnt < WAKEUP_CHARS) {
1651 tty_wakeup(tty);
1652#ifdef ROCKETPORT_HAVE_POLL_WAIT
1653 wake_up_interruptible(&tty->poll_wait);
1654#endif
1655 }
1656 mutex_unlock(&info->write_mtx);
1657 return retval;
1658}
1659
1660/*
1661 * Return the number of characters that can be sent. We estimate
1662 * only using the in-memory transmit buffer only, and ignore the
1663 * potential space in the transmit FIFO.
1664 */
1665static int rp_write_room(struct tty_struct *tty)
1666{
1667 struct r_port *info = tty->driver_data;
1668 int ret;
1669
1670 if (rocket_paranoia_check(info, "rp_write_room"))
1671 return 0;
1672
1673 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1674 if (ret < 0)
1675 ret = 0;
1676#ifdef ROCKET_DEBUG_WRITE
1677 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1678#endif
1679 return ret;
1680}
1681
1682/*
1683 * Return the number of characters in the buffer. Again, this only
1684 * counts those characters in the in-memory transmit buffer.
1685 */
1686static int rp_chars_in_buffer(struct tty_struct *tty)
1687{
1688 struct r_port *info = tty->driver_data;
1689
1690 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1691 return 0;
1692
1693#ifdef ROCKET_DEBUG_WRITE
1694 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1695#endif
1696 return info->xmit_cnt;
1697}
1698
1699/*
1700 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1701 * r_port struct for the port. Note that spinlock are used to protect info members,
1702 * do not call this function if the spinlock is already held.
1703 */
1704static void rp_flush_buffer(struct tty_struct *tty)
1705{
1706 struct r_port *info = tty->driver_data;
1707 CHANNEL_t *cp;
1708 unsigned long flags;
1709
1710 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1711 return;
1712
1713 spin_lock_irqsave(&info->slock, flags);
1714 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1715 spin_unlock_irqrestore(&info->slock, flags);
1716
1717#ifdef ROCKETPORT_HAVE_POLL_WAIT
1718 wake_up_interruptible(&tty->poll_wait);
1719#endif
1720 tty_wakeup(tty);
1721
1722 cp = &info->channel;
1723 sFlushTxFIFO(cp);
1724}
1725
1726#ifdef CONFIG_PCI
1727
1728static const struct pci_device_id rocket_pci_ids[] = {
1729 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1730 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1751 { }
1752};
1753MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1754
1755/* Resets the speaker controller on RocketModem II and III devices */
1756static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1757{
1758 ByteIO_t addr;
1759
1760 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1761 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1762 addr = CtlP->AiopIO[0] + 0x4F;
1763 sOutB(addr, 0);
1764 }
1765
1766 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1767 if ((model == MODEL_UPCI_RM3_8PORT)
1768 || (model == MODEL_UPCI_RM3_4PORT)) {
1769 addr = CtlP->AiopIO[0] + 0x88;
1770 sOutB(addr, 0);
1771 }
1772}
1773
1774/***************************************************************************
1775Function: sPCIInitController
1776Purpose: Initialization of controller global registers and controller
1777 structure.
1778Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1779 IRQNum,Frequency,PeriodicOnly)
1780 CONTROLLER_T *CtlP; Ptr to controller structure
1781 int CtlNum; Controller number
1782 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1783 This list must be in the order the AIOPs will be found on the
1784 controller. Once an AIOP in the list is not found, it is
1785 assumed that there are no more AIOPs on the controller.
1786 int AiopIOListSize; Number of addresses in AiopIOList
1787 int IRQNum; Interrupt Request number. Can be any of the following:
1788 0: Disable global interrupts
1789 3: IRQ 3
1790 4: IRQ 4
1791 5: IRQ 5
1792 9: IRQ 9
1793 10: IRQ 10
1794 11: IRQ 11
1795 12: IRQ 12
1796 15: IRQ 15
1797 Byte_t Frequency: A flag identifying the frequency
1798 of the periodic interrupt, can be any one of the following:
1799 FREQ_DIS - periodic interrupt disabled
1800 FREQ_137HZ - 137 Hertz
1801 FREQ_69HZ - 69 Hertz
1802 FREQ_34HZ - 34 Hertz
1803 FREQ_17HZ - 17 Hertz
1804 FREQ_9HZ - 9 Hertz
1805 FREQ_4HZ - 4 Hertz
1806 If IRQNum is set to 0 the Frequency parameter is
1807 overidden, it is forced to a value of FREQ_DIS.
1808 int PeriodicOnly: 1 if all interrupts except the periodic
1809 interrupt are to be blocked.
1810 0 is both the periodic interrupt and
1811 other channel interrupts are allowed.
1812 If IRQNum is set to 0 the PeriodicOnly parameter is
1813 overidden, it is forced to a value of 0.
1814Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1815 initialization failed.
1816
1817Comments:
1818 If periodic interrupts are to be disabled but AIOP interrupts
1819 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1820
1821 If interrupts are to be completely disabled set IRQNum to 0.
1822
1823 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1824 invalid combination.
1825
1826 This function performs initialization of global interrupt modes,
1827 but it does not actually enable global interrupts. To enable
1828 and disable global interrupts use functions sEnGlobalInt() and
1829 sDisGlobalInt(). Enabling of global interrupts is normally not
1830 done until all other initializations are complete.
1831
1832 Even if interrupts are globally enabled, they must also be
1833 individually enabled for each channel that is to generate
1834 interrupts.
1835
1836Warnings: No range checking on any of the parameters is done.
1837
1838 No context switches are allowed while executing this function.
1839
1840 After this function all AIOPs on the controller are disabled,
1841 they can be enabled with sEnAiop().
1842*/
1843static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1844 ByteIO_t * AiopIOList, int AiopIOListSize,
1845 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1846 int PeriodicOnly, int altChanRingIndicator,
1847 int UPCIRingInd)
1848{
1849 int i;
1850 ByteIO_t io;
1851
1852 CtlP->AltChanRingIndicator = altChanRingIndicator;
1853 CtlP->UPCIRingInd = UPCIRingInd;
1854 CtlP->CtlNum = CtlNum;
1855 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1856 CtlP->BusType = isPCI; /* controller release 1 */
1857
1858 if (ConfigIO) {
1859 CtlP->isUPCI = 1;
1860 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1861 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1862 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1863 } else {
1864 CtlP->isUPCI = 0;
1865 CtlP->PCIIO =
1866 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1867 CtlP->AiopIntrBits = aiop_intr_bits;
1868 }
1869
1870 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1871 /* Init AIOPs */
1872 CtlP->NumAiop = 0;
1873 for (i = 0; i < AiopIOListSize; i++) {
1874 io = AiopIOList[i];
1875 CtlP->AiopIO[i] = (WordIO_t) io;
1876 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1877
1878 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1879 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1880 break; /* done looking for AIOPs */
1881
1882 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1883 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1884 sOutB(io + _INDX_DATA, sClockPrescale);
1885 CtlP->NumAiop++; /* bump count of AIOPs */
1886 }
1887
1888 if (CtlP->NumAiop == 0)
1889 return (-1);
1890 else
1891 return (CtlP->NumAiop);
1892}
1893
1894/*
1895 * Called when a PCI card is found. Retrieves and stores model information,
1896 * init's aiopic and serial port hardware.
1897 * Inputs: i is the board number (0-n)
1898 */
1899static __init int register_PCI(int i, struct pci_dev *dev)
1900{
1901 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1902 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1903 CONTROLLER_t *ctlp;
1904
1905 int fast_clock = 0;
1906 int altChanRingIndicator = 0;
1907 int ports_per_aiop = 8;
1908 WordIO_t ConfigIO = 0;
1909 ByteIO_t UPCIRingInd = 0;
1910
1911 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1912 pci_enable_device(dev))
1913 return 0;
1914
1915 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1916
1917 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1918 rocketModel[i].loadrm2 = 0;
1919 rocketModel[i].startingPortNumber = nextLineNumber;
1920
1921 /* Depending on the model, set up some config variables */
1922 switch (dev->device) {
1923 case PCI_DEVICE_ID_RP4QUAD:
1924 max_num_aiops = 1;
1925 ports_per_aiop = 4;
1926 rocketModel[i].model = MODEL_RP4QUAD;
1927 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1928 rocketModel[i].numPorts = 4;
1929 break;
1930 case PCI_DEVICE_ID_RP8OCTA:
1931 max_num_aiops = 1;
1932 rocketModel[i].model = MODEL_RP8OCTA;
1933 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1934 rocketModel[i].numPorts = 8;
1935 break;
1936 case PCI_DEVICE_ID_URP8OCTA:
1937 max_num_aiops = 1;
1938 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1939 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1940 rocketModel[i].numPorts = 8;
1941 break;
1942 case PCI_DEVICE_ID_RP8INTF:
1943 max_num_aiops = 1;
1944 rocketModel[i].model = MODEL_RP8INTF;
1945 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1946 rocketModel[i].numPorts = 8;
1947 break;
1948 case PCI_DEVICE_ID_URP8INTF:
1949 max_num_aiops = 1;
1950 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1951 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1952 rocketModel[i].numPorts = 8;
1953 break;
1954 case PCI_DEVICE_ID_RP8J:
1955 max_num_aiops = 1;
1956 rocketModel[i].model = MODEL_RP8J;
1957 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1958 rocketModel[i].numPorts = 8;
1959 break;
1960 case PCI_DEVICE_ID_RP4J:
1961 max_num_aiops = 1;
1962 ports_per_aiop = 4;
1963 rocketModel[i].model = MODEL_RP4J;
1964 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1965 rocketModel[i].numPorts = 4;
1966 break;
1967 case PCI_DEVICE_ID_RP8SNI:
1968 max_num_aiops = 1;
1969 rocketModel[i].model = MODEL_RP8SNI;
1970 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1971 rocketModel[i].numPorts = 8;
1972 break;
1973 case PCI_DEVICE_ID_RP16SNI:
1974 max_num_aiops = 2;
1975 rocketModel[i].model = MODEL_RP16SNI;
1976 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1977 rocketModel[i].numPorts = 16;
1978 break;
1979 case PCI_DEVICE_ID_RP16INTF:
1980 max_num_aiops = 2;
1981 rocketModel[i].model = MODEL_RP16INTF;
1982 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1983 rocketModel[i].numPorts = 16;
1984 break;
1985 case PCI_DEVICE_ID_URP16INTF:
1986 max_num_aiops = 2;
1987 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1988 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1989 rocketModel[i].numPorts = 16;
1990 break;
1991 case PCI_DEVICE_ID_CRP16INTF:
1992 max_num_aiops = 2;
1993 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1994 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1995 rocketModel[i].numPorts = 16;
1996 break;
1997 case PCI_DEVICE_ID_RP32INTF:
1998 max_num_aiops = 4;
1999 rocketModel[i].model = MODEL_RP32INTF;
2000 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2001 rocketModel[i].numPorts = 32;
2002 break;
2003 case PCI_DEVICE_ID_URP32INTF:
2004 max_num_aiops = 4;
2005 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2006 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2007 rocketModel[i].numPorts = 32;
2008 break;
2009 case PCI_DEVICE_ID_RPP4:
2010 max_num_aiops = 1;
2011 ports_per_aiop = 4;
2012 altChanRingIndicator++;
2013 fast_clock++;
2014 rocketModel[i].model = MODEL_RPP4;
2015 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2016 rocketModel[i].numPorts = 4;
2017 break;
2018 case PCI_DEVICE_ID_RPP8:
2019 max_num_aiops = 2;
2020 ports_per_aiop = 4;
2021 altChanRingIndicator++;
2022 fast_clock++;
2023 rocketModel[i].model = MODEL_RPP8;
2024 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025 rocketModel[i].numPorts = 8;
2026 break;
2027 case PCI_DEVICE_ID_RP2_232:
2028 max_num_aiops = 1;
2029 ports_per_aiop = 2;
2030 altChanRingIndicator++;
2031 fast_clock++;
2032 rocketModel[i].model = MODEL_RP2_232;
2033 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2034 rocketModel[i].numPorts = 2;
2035 break;
2036 case PCI_DEVICE_ID_RP2_422:
2037 max_num_aiops = 1;
2038 ports_per_aiop = 2;
2039 altChanRingIndicator++;
2040 fast_clock++;
2041 rocketModel[i].model = MODEL_RP2_422;
2042 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2043 rocketModel[i].numPorts = 2;
2044 break;
2045 case PCI_DEVICE_ID_RP6M:
2046
2047 max_num_aiops = 1;
2048 ports_per_aiop = 6;
2049
2050 /* If revision is 1, the rocketmodem flash must be loaded.
2051 * If it is 2 it is a "socketed" version. */
2052 if (dev->revision == 1) {
2053 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2054 rocketModel[i].loadrm2 = 1;
2055 } else {
2056 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2057 }
2058
2059 rocketModel[i].model = MODEL_RP6M;
2060 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2061 rocketModel[i].numPorts = 6;
2062 break;
2063 case PCI_DEVICE_ID_RP4M:
2064 max_num_aiops = 1;
2065 ports_per_aiop = 4;
2066 if (dev->revision == 1) {
2067 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2068 rocketModel[i].loadrm2 = 1;
2069 } else {
2070 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2071 }
2072
2073 rocketModel[i].model = MODEL_RP4M;
2074 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2075 rocketModel[i].numPorts = 4;
2076 break;
2077 default:
2078 max_num_aiops = 0;
2079 break;
2080 }
2081
2082 /*
2083 * Check for UPCI boards.
2084 */
2085
2086 switch (dev->device) {
2087 case PCI_DEVICE_ID_URP32INTF:
2088 case PCI_DEVICE_ID_URP8INTF:
2089 case PCI_DEVICE_ID_URP16INTF:
2090 case PCI_DEVICE_ID_CRP16INTF:
2091 case PCI_DEVICE_ID_URP8OCTA:
2092 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2093 ConfigIO = pci_resource_start(dev, 1);
2094 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2095 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2096
2097 /*
2098 * Check for octa or quad cable.
2099 */
2100 if (!
2101 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2102 PCI_GPIO_CTRL_8PORT)) {
2103 ports_per_aiop = 4;
2104 rocketModel[i].numPorts = 4;
2105 }
2106 }
2107 break;
2108 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2109 max_num_aiops = 1;
2110 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2111 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2112 rocketModel[i].numPorts = 8;
2113 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2114 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2115 ConfigIO = pci_resource_start(dev, 1);
2116 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2117 break;
2118 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2119 max_num_aiops = 1;
2120 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2121 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2122 rocketModel[i].numPorts = 4;
2123 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2124 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2125 ConfigIO = pci_resource_start(dev, 1);
2126 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2127 break;
2128 default:
2129 break;
2130 }
2131
2132 if (fast_clock) {
2133 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2134 rp_baud_base[i] = 921600;
2135 } else {
2136 /*
2137 * If support_low_speed is set, use the slow clock
2138 * prescale, which supports 50 bps
2139 */
2140 if (support_low_speed) {
2141 /* mod 9 (divide by 10) prescale */
2142 sClockPrescale = 0x19;
2143 rp_baud_base[i] = 230400;
2144 } else {
2145 /* mod 4 (divide by 5) prescale */
2146 sClockPrescale = 0x14;
2147 rp_baud_base[i] = 460800;
2148 }
2149 }
2150
2151 for (aiop = 0; aiop < max_num_aiops; aiop++)
2152 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2153 ctlp = sCtlNumToCtlPtr(i);
2154 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2155 for (aiop = 0; aiop < max_num_aiops; aiop++)
2156 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2157
2158 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2159 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2160 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2161 rocketModel[i].startingPortNumber,
2162 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2163
2164 if (num_aiops <= 0) {
2165 rcktpt_io_addr[i] = 0;
2166 return (0);
2167 }
2168 is_PCI[i] = 1;
2169
2170 /* Reset the AIOPIC, init the serial ports */
2171 for (aiop = 0; aiop < num_aiops; aiop++) {
2172 sResetAiopByNum(ctlp, aiop);
2173 num_chan = ports_per_aiop;
2174 for (chan = 0; chan < num_chan; chan++)
2175 init_r_port(i, aiop, chan, dev);
2176 }
2177
2178 /* Rocket modems must be reset */
2179 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2180 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2181 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2182 num_chan = ports_per_aiop;
2183 for (chan = 0; chan < num_chan; chan++)
2184 sPCIModemReset(ctlp, chan, 1);
2185 msleep(500);
2186 for (chan = 0; chan < num_chan; chan++)
2187 sPCIModemReset(ctlp, chan, 0);
2188 msleep(500);
2189 rmSpeakerReset(ctlp, rocketModel[i].model);
2190 }
2191 return (1);
2192}
2193
2194/*
2195 * Probes for PCI cards, inits them if found
2196 * Input: board_found = number of ISA boards already found, or the
2197 * starting board number
2198 * Returns: Number of PCI boards found
2199 */
2200static int __init init_PCI(int boards_found)
2201{
2202 struct pci_dev *dev = NULL;
2203 int count = 0;
2204
2205 /* Work through the PCI device list, pulling out ours */
2206 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2207 if (register_PCI(count + boards_found, dev))
2208 count++;
2209 }
2210 return (count);
2211}
2212
2213#endif /* CONFIG_PCI */
2214
2215/*
2216 * Probes for ISA cards
2217 * Input: i = the board number to look for
2218 * Returns: 1 if board found, 0 else
2219 */
2220static int __init init_ISA(int i)
2221{
2222 int num_aiops, num_chan = 0, total_num_chan = 0;
2223 int aiop, chan;
2224 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2225 CONTROLLER_t *ctlp;
2226 char *type_string;
2227
2228 /* If io_addr is zero, no board configured */
2229 if (rcktpt_io_addr[i] == 0)
2230 return (0);
2231
2232 /* Reserve the IO region */
2233 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2234 printk(KERN_ERR "Unable to reserve IO region for configured "
2235 "ISA RocketPort at address 0x%lx, board not "
2236 "installed...\n", rcktpt_io_addr[i]);
2237 rcktpt_io_addr[i] = 0;
2238 return (0);
2239 }
2240
2241 ctlp = sCtlNumToCtlPtr(i);
2242
2243 ctlp->boardType = rcktpt_type[i];
2244
2245 switch (rcktpt_type[i]) {
2246 case ROCKET_TYPE_PC104:
2247 type_string = "(PC104)";
2248 break;
2249 case ROCKET_TYPE_MODEM:
2250 type_string = "(RocketModem)";
2251 break;
2252 case ROCKET_TYPE_MODEMII:
2253 type_string = "(RocketModem II)";
2254 break;
2255 default:
2256 type_string = "";
2257 break;
2258 }
2259
2260 /*
2261 * If support_low_speed is set, use the slow clock prescale,
2262 * which supports 50 bps
2263 */
2264 if (support_low_speed) {
2265 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2266 rp_baud_base[i] = 230400;
2267 } else {
2268 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2269 rp_baud_base[i] = 460800;
2270 }
2271
2272 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2273 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2274
2275 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2276
2277 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2278 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2279 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2280 }
2281
2282 /* If something went wrong initing the AIOP's release the ISA IO memory */
2283 if (num_aiops <= 0) {
2284 release_region(rcktpt_io_addr[i], 64);
2285 rcktpt_io_addr[i] = 0;
2286 return (0);
2287 }
2288
2289 rocketModel[i].startingPortNumber = nextLineNumber;
2290
2291 for (aiop = 0; aiop < num_aiops; aiop++) {
2292 sResetAiopByNum(ctlp, aiop);
2293 sEnAiop(ctlp, aiop);
2294 num_chan = sGetAiopNumChan(ctlp, aiop);
2295 total_num_chan += num_chan;
2296 for (chan = 0; chan < num_chan; chan++)
2297 init_r_port(i, aiop, chan, NULL);
2298 }
2299 is_PCI[i] = 0;
2300 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2301 num_chan = sGetAiopNumChan(ctlp, 0);
2302 total_num_chan = num_chan;
2303 for (chan = 0; chan < num_chan; chan++)
2304 sModemReset(ctlp, chan, 1);
2305 msleep(500);
2306 for (chan = 0; chan < num_chan; chan++)
2307 sModemReset(ctlp, chan, 0);
2308 msleep(500);
2309 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2310 } else {
2311 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2312 }
2313 rocketModel[i].numPorts = total_num_chan;
2314 rocketModel[i].model = MODEL_ISA;
2315
2316 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2317 i, rcktpt_io_addr[i], num_aiops, type_string);
2318
2319 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2320 rocketModel[i].modelString,
2321 rocketModel[i].startingPortNumber,
2322 rocketModel[i].startingPortNumber +
2323 rocketModel[i].numPorts - 1);
2324
2325 return (1);
2326}
2327
2328static const struct tty_operations rocket_ops = {
2329 .open = rp_open,
2330 .close = rp_close,
2331 .write = rp_write,
2332 .put_char = rp_put_char,
2333 .write_room = rp_write_room,
2334 .chars_in_buffer = rp_chars_in_buffer,
2335 .flush_buffer = rp_flush_buffer,
2336 .ioctl = rp_ioctl,
2337 .throttle = rp_throttle,
2338 .unthrottle = rp_unthrottle,
2339 .set_termios = rp_set_termios,
2340 .stop = rp_stop,
2341 .start = rp_start,
2342 .hangup = rp_hangup,
2343 .break_ctl = rp_break,
2344 .send_xchar = rp_send_xchar,
2345 .wait_until_sent = rp_wait_until_sent,
2346 .tiocmget = rp_tiocmget,
2347 .tiocmset = rp_tiocmset,
2348};
2349
2350static const struct tty_port_operations rocket_port_ops = {
2351 .carrier_raised = carrier_raised,
2352 .dtr_rts = dtr_rts,
2353};
2354
2355/*
2356 * The module "startup" routine; it's run when the module is loaded.
2357 */
2358static int __init rp_init(void)
2359{
2360 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2361
2362 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2363 ROCKET_VERSION, ROCKET_DATE);
2364
2365 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2366 if (!rocket_driver)
2367 goto err;
2368
2369 /*
2370 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2371 * zero, use the default controller IO address of board1 + 0x40.
2372 */
2373 if (board1) {
2374 if (controller == 0)
2375 controller = board1 + 0x40;
2376 } else {
2377 controller = 0; /* Used as a flag, meaning no ISA boards */
2378 }
2379
2380 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2381 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2382 printk(KERN_ERR "Unable to reserve IO region for first "
2383 "configured ISA RocketPort controller 0x%lx. "
2384 "Driver exiting\n", controller);
2385 ret = -EBUSY;
2386 goto err_tty;
2387 }
2388
2389 /* Store ISA variable retrieved from command line or .conf file. */
2390 rcktpt_io_addr[0] = board1;
2391 rcktpt_io_addr[1] = board2;
2392 rcktpt_io_addr[2] = board3;
2393 rcktpt_io_addr[3] = board4;
2394
2395 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2396 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2397 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2399 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2401 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2403
2404 /*
2405 * Set up the tty driver structure and then register this
2406 * driver with the tty layer.
2407 */
2408
2409 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2410 rocket_driver->name = "ttyR";
2411 rocket_driver->driver_name = "Comtrol RocketPort";
2412 rocket_driver->major = TTY_ROCKET_MAJOR;
2413 rocket_driver->minor_start = 0;
2414 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2415 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2416 rocket_driver->init_termios = tty_std_termios;
2417 rocket_driver->init_termios.c_cflag =
2418 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2419 rocket_driver->init_termios.c_ispeed = 9600;
2420 rocket_driver->init_termios.c_ospeed = 9600;
2421#ifdef ROCKET_SOFT_FLOW
2422 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2423#endif
2424 tty_set_operations(rocket_driver, &rocket_ops);
2425
2426 ret = tty_register_driver(rocket_driver);
2427 if (ret < 0) {
2428 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2429 goto err_controller;
2430 }
2431
2432#ifdef ROCKET_DEBUG_OPEN
2433 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2434#endif
2435
2436 /*
2437 * OK, let's probe each of the controllers looking for boards. Any boards found
2438 * will be initialized here.
2439 */
2440 isa_boards_found = 0;
2441 pci_boards_found = 0;
2442
2443 for (i = 0; i < NUM_BOARDS; i++) {
2444 if (init_ISA(i))
2445 isa_boards_found++;
2446 }
2447
2448#ifdef CONFIG_PCI
2449 if (isa_boards_found < NUM_BOARDS)
2450 pci_boards_found = init_PCI(isa_boards_found);
2451#endif
2452
2453 max_board = pci_boards_found + isa_boards_found;
2454
2455 if (max_board == 0) {
2456 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2457 ret = -ENXIO;
2458 goto err_ttyu;
2459 }
2460
2461 return 0;
2462err_ttyu:
2463 tty_unregister_driver(rocket_driver);
2464err_controller:
2465 if (controller)
2466 release_region(controller, 4);
2467err_tty:
2468 put_tty_driver(rocket_driver);
2469err:
2470 return ret;
2471}
2472
2473
2474static void rp_cleanup_module(void)
2475{
2476 int retval;
2477 int i;
2478
2479 del_timer_sync(&rocket_timer);
2480
2481 retval = tty_unregister_driver(rocket_driver);
2482 if (retval)
2483 printk(KERN_ERR "Error %d while trying to unregister "
2484 "rocketport driver\n", -retval);
2485
2486 for (i = 0; i < MAX_RP_PORTS; i++)
2487 if (rp_table[i]) {
2488 tty_unregister_device(rocket_driver, i);
2489 tty_port_destroy(&rp_table[i]->port);
2490 kfree(rp_table[i]);
2491 }
2492
2493 put_tty_driver(rocket_driver);
2494
2495 for (i = 0; i < NUM_BOARDS; i++) {
2496 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497 continue;
2498 release_region(rcktpt_io_addr[i], 64);
2499 }
2500 if (controller)
2501 release_region(controller, 4);
2502}
2503
2504/***************************************************************************
2505Function: sInitController
2506Purpose: Initialization of controller global registers and controller
2507 structure.
2508Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509 IRQNum,Frequency,PeriodicOnly)
2510 CONTROLLER_T *CtlP; Ptr to controller structure
2511 int CtlNum; Controller number
2512 ByteIO_t MudbacIO; Mudbac base I/O address.
2513 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514 This list must be in the order the AIOPs will be found on the
2515 controller. Once an AIOP in the list is not found, it is
2516 assumed that there are no more AIOPs on the controller.
2517 int AiopIOListSize; Number of addresses in AiopIOList
2518 int IRQNum; Interrupt Request number. Can be any of the following:
2519 0: Disable global interrupts
2520 3: IRQ 3
2521 4: IRQ 4
2522 5: IRQ 5
2523 9: IRQ 9
2524 10: IRQ 10
2525 11: IRQ 11
2526 12: IRQ 12
2527 15: IRQ 15
2528 Byte_t Frequency: A flag identifying the frequency
2529 of the periodic interrupt, can be any one of the following:
2530 FREQ_DIS - periodic interrupt disabled
2531 FREQ_137HZ - 137 Hertz
2532 FREQ_69HZ - 69 Hertz
2533 FREQ_34HZ - 34 Hertz
2534 FREQ_17HZ - 17 Hertz
2535 FREQ_9HZ - 9 Hertz
2536 FREQ_4HZ - 4 Hertz
2537 If IRQNum is set to 0 the Frequency parameter is
2538 overidden, it is forced to a value of FREQ_DIS.
2539 int PeriodicOnly: 1 if all interrupts except the periodic
2540 interrupt are to be blocked.
2541 0 is both the periodic interrupt and
2542 other channel interrupts are allowed.
2543 If IRQNum is set to 0 the PeriodicOnly parameter is
2544 overidden, it is forced to a value of 0.
2545Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546 initialization failed.
2547
2548Comments:
2549 If periodic interrupts are to be disabled but AIOP interrupts
2550 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552 If interrupts are to be completely disabled set IRQNum to 0.
2553
2554 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555 invalid combination.
2556
2557 This function performs initialization of global interrupt modes,
2558 but it does not actually enable global interrupts. To enable
2559 and disable global interrupts use functions sEnGlobalInt() and
2560 sDisGlobalInt(). Enabling of global interrupts is normally not
2561 done until all other initializations are complete.
2562
2563 Even if interrupts are globally enabled, they must also be
2564 individually enabled for each channel that is to generate
2565 interrupts.
2566
2567Warnings: No range checking on any of the parameters is done.
2568
2569 No context switches are allowed while executing this function.
2570
2571 After this function all AIOPs on the controller are disabled,
2572 they can be enabled with sEnAiop().
2573*/
2574static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575 ByteIO_t * AiopIOList, int AiopIOListSize,
2576 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577{
2578 int i;
2579 ByteIO_t io;
2580 int done;
2581
2582 CtlP->AiopIntrBits = aiop_intr_bits;
2583 CtlP->AltChanRingIndicator = 0;
2584 CtlP->CtlNum = CtlNum;
2585 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2586 CtlP->BusType = isISA;
2587 CtlP->MBaseIO = MudbacIO;
2588 CtlP->MReg1IO = MudbacIO + 1;
2589 CtlP->MReg2IO = MudbacIO + 2;
2590 CtlP->MReg3IO = MudbacIO + 3;
2591#if 1
2592 CtlP->MReg2 = 0; /* interrupt disable */
2593 CtlP->MReg3 = 0; /* no periodic interrupts */
2594#else
2595 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2596 CtlP->MReg2 = 0; /* interrupt disable */
2597 CtlP->MReg3 = 0; /* no periodic interrupts */
2598 } else {
2599 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2600 CtlP->MReg3 = Frequency; /* set frequency */
2601 if (PeriodicOnly) { /* periodic interrupt only */
2602 CtlP->MReg3 |= PERIODIC_ONLY;
2603 }
2604 }
2605#endif
2606 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608 sControllerEOI(CtlP); /* clear EOI if warm init */
2609 /* Init AIOPs */
2610 CtlP->NumAiop = 0;
2611 for (i = done = 0; i < AiopIOListSize; i++) {
2612 io = AiopIOList[i];
2613 CtlP->AiopIO[i] = (WordIO_t) io;
2614 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2616 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2617 if (done)
2618 continue;
2619 sEnAiop(CtlP, i); /* enable the AIOP */
2620 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2621 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2622 done = 1; /* done looking for AIOPs */
2623 else {
2624 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2625 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2626 sOutB(io + _INDX_DATA, sClockPrescale);
2627 CtlP->NumAiop++; /* bump count of AIOPs */
2628 }
2629 sDisAiop(CtlP, i); /* disable AIOP */
2630 }
2631
2632 if (CtlP->NumAiop == 0)
2633 return (-1);
2634 else
2635 return (CtlP->NumAiop);
2636}
2637
2638/***************************************************************************
2639Function: sReadAiopID
2640Purpose: Read the AIOP idenfication number directly from an AIOP.
2641Call: sReadAiopID(io)
2642 ByteIO_t io: AIOP base I/O address
2643Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2644 is replace by an identifying number.
2645 Flag AIOPID_NULL if no valid AIOP is found
2646Warnings: No context switches are allowed while executing this function.
2647
2648*/
2649static int sReadAiopID(ByteIO_t io)
2650{
2651 Byte_t AiopID; /* ID byte from AIOP */
2652
2653 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2654 sOutB(io + _CMD_REG, 0x0);
2655 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2656 if (AiopID == 0x06)
2657 return (1);
2658 else /* AIOP does not exist */
2659 return (-1);
2660}
2661
2662/***************************************************************************
2663Function: sReadAiopNumChan
2664Purpose: Read the number of channels available in an AIOP directly from
2665 an AIOP.
2666Call: sReadAiopNumChan(io)
2667 WordIO_t io: AIOP base I/O address
2668Return: int: The number of channels available
2669Comments: The number of channels is determined by write/reads from identical
2670 offsets within the SRAM address spaces for channels 0 and 4.
2671 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2672 AIOP, otherwise it is an 8 channel.
2673Warnings: No context switches are allowed while executing this function.
2674*/
2675static int sReadAiopNumChan(WordIO_t io)
2676{
2677 Word_t x;
2678 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2679
2680 /* write to chan 0 SRAM */
2681 out32((DWordIO_t) io + _INDX_ADDR, R);
2682 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2683 x = sInW(io + _INDX_DATA);
2684 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2685 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2686 return (8);
2687 else
2688 return (4);
2689}
2690
2691/***************************************************************************
2692Function: sInitChan
2693Purpose: Initialization of a channel and channel structure
2694Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2695 CONTROLLER_T *CtlP; Ptr to controller structure
2696 CHANNEL_T *ChP; Ptr to channel structure
2697 int AiopNum; AIOP number within controller
2698 int ChanNum; Channel number within AIOP
2699Return: int: 1 if initialization succeeded, 0 if it fails because channel
2700 number exceeds number of channels available in AIOP.
2701Comments: This function must be called before a channel can be used.
2702Warnings: No range checking on any of the parameters is done.
2703
2704 No context switches are allowed while executing this function.
2705*/
2706static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2707 int ChanNum)
2708{
2709 int i;
2710 WordIO_t AiopIO;
2711 WordIO_t ChIOOff;
2712 Byte_t *ChR;
2713 Word_t ChOff;
2714 static Byte_t R[4];
2715 int brd9600;
2716
2717 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2718 return 0; /* exceeds num chans in AIOP */
2719
2720 /* Channel, AIOP, and controller identifiers */
2721 ChP->CtlP = CtlP;
2722 ChP->ChanID = CtlP->AiopID[AiopNum];
2723 ChP->AiopNum = AiopNum;
2724 ChP->ChanNum = ChanNum;
2725
2726 /* Global direct addresses */
2727 AiopIO = CtlP->AiopIO[AiopNum];
2728 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2729 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2730 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2731 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2732 ChP->IndexData = AiopIO + _INDX_DATA;
2733
2734 /* Channel direct addresses */
2735 ChIOOff = AiopIO + ChP->ChanNum * 2;
2736 ChP->TxRxData = ChIOOff + _TD0;
2737 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2738 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2739 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2740
2741 /* Initialize the channel from the RData array */
2742 for (i = 0; i < RDATASIZE; i += 4) {
2743 R[0] = RData[i];
2744 R[1] = RData[i + 1] + 0x10 * ChanNum;
2745 R[2] = RData[i + 2];
2746 R[3] = RData[i + 3];
2747 out32(ChP->IndexAddr, R);
2748 }
2749
2750 ChR = ChP->R;
2751 for (i = 0; i < RREGDATASIZE; i += 4) {
2752 ChR[i] = RRegData[i];
2753 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2754 ChR[i + 2] = RRegData[i + 2];
2755 ChR[i + 3] = RRegData[i + 3];
2756 }
2757
2758 /* Indexed registers */
2759 ChOff = (Word_t) ChanNum *0x1000;
2760
2761 if (sClockPrescale == 0x14)
2762 brd9600 = 47;
2763 else
2764 brd9600 = 23;
2765
2766 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2767 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2768 ChP->BaudDiv[2] = (Byte_t) brd9600;
2769 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2770 out32(ChP->IndexAddr, ChP->BaudDiv);
2771
2772 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2773 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2774 ChP->TxControl[2] = 0;
2775 ChP->TxControl[3] = 0;
2776 out32(ChP->IndexAddr, ChP->TxControl);
2777
2778 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2779 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2780 ChP->RxControl[2] = 0;
2781 ChP->RxControl[3] = 0;
2782 out32(ChP->IndexAddr, ChP->RxControl);
2783
2784 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2785 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2786 ChP->TxEnables[2] = 0;
2787 ChP->TxEnables[3] = 0;
2788 out32(ChP->IndexAddr, ChP->TxEnables);
2789
2790 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2791 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2792 ChP->TxCompare[2] = 0;
2793 ChP->TxCompare[3] = 0;
2794 out32(ChP->IndexAddr, ChP->TxCompare);
2795
2796 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2797 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2798 ChP->TxReplace1[2] = 0;
2799 ChP->TxReplace1[3] = 0;
2800 out32(ChP->IndexAddr, ChP->TxReplace1);
2801
2802 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2803 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2804 ChP->TxReplace2[2] = 0;
2805 ChP->TxReplace2[3] = 0;
2806 out32(ChP->IndexAddr, ChP->TxReplace2);
2807
2808 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2809 ChP->TxFIFO = ChOff + _TX_FIFO;
2810
2811 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2812 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2813 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2814 sOutW(ChP->IndexData, 0);
2815 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2816 ChP->RxFIFO = ChOff + _RX_FIFO;
2817
2818 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2819 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2820 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2821 sOutW(ChP->IndexData, 0);
2822 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2823 sOutW(ChP->IndexData, 0);
2824 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2825 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2826 sOutB(ChP->IndexData, 0);
2827 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2828 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2829 sOutB(ChP->IndexData, 0);
2830 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2831 sEnRxProcessor(ChP); /* start the Rx processor */
2832
2833 return 1;
2834}
2835
2836/***************************************************************************
2837Function: sStopRxProcessor
2838Purpose: Stop the receive processor from processing a channel.
2839Call: sStopRxProcessor(ChP)
2840 CHANNEL_T *ChP; Ptr to channel structure
2841
2842Comments: The receive processor can be started again with sStartRxProcessor().
2843 This function causes the receive processor to skip over the
2844 stopped channel. It does not stop it from processing other channels.
2845
2846Warnings: No context switches are allowed while executing this function.
2847
2848 Do not leave the receive processor stopped for more than one
2849 character time.
2850
2851 After calling this function a delay of 4 uS is required to ensure
2852 that the receive processor is no longer processing this channel.
2853*/
2854static void sStopRxProcessor(CHANNEL_T * ChP)
2855{
2856 Byte_t R[4];
2857
2858 R[0] = ChP->R[0];
2859 R[1] = ChP->R[1];
2860 R[2] = 0x0a;
2861 R[3] = ChP->R[3];
2862 out32(ChP->IndexAddr, R);
2863}
2864
2865/***************************************************************************
2866Function: sFlushRxFIFO
2867Purpose: Flush the Rx FIFO
2868Call: sFlushRxFIFO(ChP)
2869 CHANNEL_T *ChP; Ptr to channel structure
2870Return: void
2871Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2872 while it is being flushed the receive processor is stopped
2873 and the transmitter is disabled. After these operations a
2874 4 uS delay is done before clearing the pointers to allow
2875 the receive processor to stop. These items are handled inside
2876 this function.
2877Warnings: No context switches are allowed while executing this function.
2878*/
2879static void sFlushRxFIFO(CHANNEL_T * ChP)
2880{
2881 int i;
2882 Byte_t Ch; /* channel number within AIOP */
2883 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2884
2885 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2886 return; /* don't need to flush */
2887
2888 RxFIFOEnabled = 0;
2889 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2890 RxFIFOEnabled = 1;
2891 sDisRxFIFO(ChP); /* disable it */
2892 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2893 sInB(ChP->IntChan); /* depends on bus i/o timing */
2894 }
2895 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2896 Ch = (Byte_t) sGetChanNum(ChP);
2897 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2898 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2899 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2900 sOutW(ChP->IndexData, 0);
2901 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2902 sOutW(ChP->IndexData, 0);
2903 if (RxFIFOEnabled)
2904 sEnRxFIFO(ChP); /* enable Rx FIFO */
2905}
2906
2907/***************************************************************************
2908Function: sFlushTxFIFO
2909Purpose: Flush the Tx FIFO
2910Call: sFlushTxFIFO(ChP)
2911 CHANNEL_T *ChP; Ptr to channel structure
2912Return: void
2913Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2914 while it is being flushed the receive processor is stopped
2915 and the transmitter is disabled. After these operations a
2916 4 uS delay is done before clearing the pointers to allow
2917 the receive processor to stop. These items are handled inside
2918 this function.
2919Warnings: No context switches are allowed while executing this function.
2920*/
2921static void sFlushTxFIFO(CHANNEL_T * ChP)
2922{
2923 int i;
2924 Byte_t Ch; /* channel number within AIOP */
2925 int TxEnabled; /* 1 if transmitter enabled */
2926
2927 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2928 return; /* don't need to flush */
2929
2930 TxEnabled = 0;
2931 if (ChP->TxControl[3] & TX_ENABLE) {
2932 TxEnabled = 1;
2933 sDisTransmit(ChP); /* disable transmitter */
2934 }
2935 sStopRxProcessor(ChP); /* stop Rx processor */
2936 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2937 sInB(ChP->IntChan); /* depends on bus i/o timing */
2938 Ch = (Byte_t) sGetChanNum(ChP);
2939 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2940 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2941 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2942 sOutW(ChP->IndexData, 0);
2943 if (TxEnabled)
2944 sEnTransmit(ChP); /* enable transmitter */
2945 sStartRxProcessor(ChP); /* restart Rx processor */
2946}
2947
2948/***************************************************************************
2949Function: sWriteTxPrioByte
2950Purpose: Write a byte of priority transmit data to a channel
2951Call: sWriteTxPrioByte(ChP,Data)
2952 CHANNEL_T *ChP; Ptr to channel structure
2953 Byte_t Data; The transmit data byte
2954
2955Return: int: 1 if the bytes is successfully written, otherwise 0.
2956
2957Comments: The priority byte is transmitted before any data in the Tx FIFO.
2958
2959Warnings: No context switches are allowed while executing this function.
2960*/
2961static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2962{
2963 Byte_t DWBuf[4]; /* buffer for double word writes */
2964 Word_t *WordPtr; /* must be far because Win SS != DS */
2965 register DWordIO_t IndexAddr;
2966
2967 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2968 IndexAddr = ChP->IndexAddr;
2969 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2970 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2971 return (0); /* nothing sent */
2972
2973 WordPtr = (Word_t *) (&DWBuf[0]);
2974 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2975
2976 DWBuf[2] = Data; /* data byte value */
2977 out32(IndexAddr, DWBuf); /* write it out */
2978
2979 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2980
2981 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2982 DWBuf[3] = 0; /* priority buffer pointer */
2983 out32(IndexAddr, DWBuf); /* write it out */
2984 } else { /* write it to Tx FIFO */
2985
2986 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2987 }
2988 return (1); /* 1 byte sent */
2989}
2990
2991/***************************************************************************
2992Function: sEnInterrupts
2993Purpose: Enable one or more interrupts for a channel
2994Call: sEnInterrupts(ChP,Flags)
2995 CHANNEL_T *ChP; Ptr to channel structure
2996 Word_t Flags: Interrupt enable flags, can be any combination
2997 of the following flags:
2998 TXINT_EN: Interrupt on Tx FIFO empty
2999 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3000 sSetRxTrigger())
3001 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3002 MCINT_EN: Interrupt on modem input change
3003 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3004 Interrupt Channel Register.
3005Return: void
3006Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3007 enabled. If an interrupt enable flag is not set in Flags, that
3008 interrupt will not be changed. Interrupts can be disabled with
3009 function sDisInterrupts().
3010
3011 This function sets the appropriate bit for the channel in the AIOP's
3012 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3013 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3014
3015 Interrupts must also be globally enabled before channel interrupts
3016 will be passed on to the host. This is done with function
3017 sEnGlobalInt().
3018
3019 In some cases it may be desirable to disable interrupts globally but
3020 enable channel interrupts. This would allow the global interrupt
3021 status register to be used to determine which AIOPs need service.
3022*/
3023static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3024{
3025 Byte_t Mask; /* Interrupt Mask Register */
3026
3027 ChP->RxControl[2] |=
3028 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3029
3030 out32(ChP->IndexAddr, ChP->RxControl);
3031
3032 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3033
3034 out32(ChP->IndexAddr, ChP->TxControl);
3035
3036 if (Flags & CHANINT_EN) {
3037 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3038 sOutB(ChP->IntMask, Mask);
3039 }
3040}
3041
3042/***************************************************************************
3043Function: sDisInterrupts
3044Purpose: Disable one or more interrupts for a channel
3045Call: sDisInterrupts(ChP,Flags)
3046 CHANNEL_T *ChP; Ptr to channel structure
3047 Word_t Flags: Interrupt flags, can be any combination
3048 of the following flags:
3049 TXINT_EN: Interrupt on Tx FIFO empty
3050 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3051 sSetRxTrigger())
3052 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3053 MCINT_EN: Interrupt on modem input change
3054 CHANINT_EN: Disable channel interrupt signal to the
3055 AIOP's Interrupt Channel Register.
3056Return: void
3057Comments: If an interrupt flag is set in Flags, that interrupt will be
3058 disabled. If an interrupt flag is not set in Flags, that
3059 interrupt will not be changed. Interrupts can be enabled with
3060 function sEnInterrupts().
3061
3062 This function clears the appropriate bit for the channel in the AIOP's
3063 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3064 this channel's bit from being set in the AIOP's Interrupt Channel
3065 Register.
3066*/
3067static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3068{
3069 Byte_t Mask; /* Interrupt Mask Register */
3070
3071 ChP->RxControl[2] &=
3072 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3073 out32(ChP->IndexAddr, ChP->RxControl);
3074 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3075 out32(ChP->IndexAddr, ChP->TxControl);
3076
3077 if (Flags & CHANINT_EN) {
3078 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3079 sOutB(ChP->IntMask, Mask);
3080 }
3081}
3082
3083static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3084{
3085 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3086}
3087
3088/*
3089 * Not an official SSCI function, but how to reset RocketModems.
3090 * ISA bus version
3091 */
3092static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3093{
3094 ByteIO_t addr;
3095 Byte_t val;
3096
3097 addr = CtlP->AiopIO[0] + 0x400;
3098 val = sInB(CtlP->MReg3IO);
3099 /* if AIOP[1] is not enabled, enable it */
3100 if ((val & 2) == 0) {
3101 val = sInB(CtlP->MReg2IO);
3102 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3103 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3104 }
3105
3106 sEnAiop(CtlP, 1);
3107 if (!on)
3108 addr += 8;
3109 sOutB(addr + chan, 0); /* apply or remove reset */
3110 sDisAiop(CtlP, 1);
3111}
3112
3113/*
3114 * Not an official SSCI function, but how to reset RocketModems.
3115 * PCI bus version
3116 */
3117static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3118{
3119 ByteIO_t addr;
3120
3121 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3122 if (!on)
3123 addr += 8;
3124 sOutB(addr + chan, 0); /* apply or remove reset */
3125}
3126
3127/* Returns the line number given the controller (board), aiop and channel number */
3128static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3129{
3130 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3131}
3132
3133/*
3134 * Stores the line number associated with a given controller (board), aiop
3135 * and channel number.
3136 * Returns: The line number assigned
3137 */
3138static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3139{
3140 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3141 return (nextLineNumber - 1);
3142}
1/*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23/*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42/****** Defines ******/
43#define ROCKET_PARANOIA_CHECK
44#define ROCKET_DISABLE_SIMUSAGE
45
46#undef ROCKET_SOFT_FLOW
47#undef ROCKET_DEBUG_OPEN
48#undef ROCKET_DEBUG_INTR
49#undef ROCKET_DEBUG_WRITE
50#undef ROCKET_DEBUG_FLOW
51#undef ROCKET_DEBUG_THROTTLE
52#undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53#undef ROCKET_DEBUG_RECEIVE
54#undef ROCKET_DEBUG_HANGUP
55#undef REV_PCI_ORDER
56#undef ROCKET_DEBUG_IO
57
58#define POLL_PERIOD (HZ/100) /* Polling period .01 seconds (10ms) */
59
60/****** Kernel includes ******/
61
62#include <linux/module.h>
63#include <linux/errno.h>
64#include <linux/major.h>
65#include <linux/kernel.h>
66#include <linux/signal.h>
67#include <linux/slab.h>
68#include <linux/mm.h>
69#include <linux/sched.h>
70#include <linux/timer.h>
71#include <linux/interrupt.h>
72#include <linux/tty.h>
73#include <linux/tty_driver.h>
74#include <linux/tty_flip.h>
75#include <linux/serial.h>
76#include <linux/string.h>
77#include <linux/fcntl.h>
78#include <linux/ptrace.h>
79#include <linux/mutex.h>
80#include <linux/ioport.h>
81#include <linux/delay.h>
82#include <linux/completion.h>
83#include <linux/wait.h>
84#include <linux/pci.h>
85#include <linux/uaccess.h>
86#include <linux/atomic.h>
87#include <asm/unaligned.h>
88#include <linux/bitops.h>
89#include <linux/spinlock.h>
90#include <linux/init.h>
91
92/****** RocketPort includes ******/
93
94#include "rocket_int.h"
95#include "rocket.h"
96
97#define ROCKET_VERSION "2.09"
98#define ROCKET_DATE "12-June-2003"
99
100/****** RocketPort Local Variables ******/
101
102static void rp_do_poll(unsigned long dummy);
103
104static struct tty_driver *rocket_driver;
105
106static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108};
109
110static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113static atomic_t rp_num_ports_open; /* Number of serial ports open */
114static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117static unsigned long board2;
118static unsigned long board3;
119static unsigned long board4;
120static unsigned long controller;
121static bool support_low_speed;
122static unsigned long modem1;
123static unsigned long modem2;
124static unsigned long modem3;
125static unsigned long modem4;
126static unsigned long pc104_1[8];
127static unsigned long pc104_2[8];
128static unsigned long pc104_3[8];
129static unsigned long pc104_4[8];
130static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133static unsigned long rcktpt_io_addr[NUM_BOARDS];
134static int rcktpt_type[NUM_BOARDS];
135static int is_PCI[NUM_BOARDS];
136static rocketModel_t rocketModel[NUM_BOARDS];
137static int max_board;
138static const struct tty_port_operations rocket_port_ops;
139
140/*
141 * The following arrays define the interrupt bits corresponding to each AIOP.
142 * These bits are different between the ISA and regular PCI boards and the
143 * Universal PCI boards.
144 */
145
146static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
147 AIOP_INTR_BIT_0,
148 AIOP_INTR_BIT_1,
149 AIOP_INTR_BIT_2,
150 AIOP_INTR_BIT_3
151};
152
153#ifdef CONFIG_PCI
154static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
155 UPCI_AIOP_INTR_BIT_0,
156 UPCI_AIOP_INTR_BIT_1,
157 UPCI_AIOP_INTR_BIT_2,
158 UPCI_AIOP_INTR_BIT_3
159};
160#endif
161
162static Byte_t RData[RDATASIZE] = {
163 0x00, 0x09, 0xf6, 0x82,
164 0x02, 0x09, 0x86, 0xfb,
165 0x04, 0x09, 0x00, 0x0a,
166 0x06, 0x09, 0x01, 0x0a,
167 0x08, 0x09, 0x8a, 0x13,
168 0x0a, 0x09, 0xc5, 0x11,
169 0x0c, 0x09, 0x86, 0x85,
170 0x0e, 0x09, 0x20, 0x0a,
171 0x10, 0x09, 0x21, 0x0a,
172 0x12, 0x09, 0x41, 0xff,
173 0x14, 0x09, 0x82, 0x00,
174 0x16, 0x09, 0x82, 0x7b,
175 0x18, 0x09, 0x8a, 0x7d,
176 0x1a, 0x09, 0x88, 0x81,
177 0x1c, 0x09, 0x86, 0x7a,
178 0x1e, 0x09, 0x84, 0x81,
179 0x20, 0x09, 0x82, 0x7c,
180 0x22, 0x09, 0x0a, 0x0a
181};
182
183static Byte_t RRegData[RREGDATASIZE] = {
184 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
185 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
186 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
187 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
188 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
189 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
190 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
191 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
192 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
193 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
194 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
195 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
196 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
197};
198
199static CONTROLLER_T sController[CTL_SIZE] = {
200 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
201 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
202 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
203 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
204 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
205 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
206 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
207 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
208};
209
210static Byte_t sBitMapClrTbl[8] = {
211 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
212};
213
214static Byte_t sBitMapSetTbl[8] = {
215 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
216};
217
218static int sClockPrescale = 0x14;
219
220/*
221 * Line number is the ttySIx number (x), the Minor number. We
222 * assign them sequentially, starting at zero. The following
223 * array keeps track of the line number assigned to a given board/aiop/channel.
224 */
225static unsigned char lineNumbers[MAX_RP_PORTS];
226static unsigned long nextLineNumber;
227
228/***** RocketPort Static Prototypes *********/
229static int __init init_ISA(int i);
230static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
231static void rp_flush_buffer(struct tty_struct *tty);
232static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
233static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
234static void rp_start(struct tty_struct *tty);
235static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
236 int ChanNum);
237static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
238static void sFlushRxFIFO(CHANNEL_T * ChP);
239static void sFlushTxFIFO(CHANNEL_T * ChP);
240static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
241static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
242static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
243static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
244static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
245static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
246 ByteIO_t * AiopIOList, int AiopIOListSize,
247 int IRQNum, Byte_t Frequency, int PeriodicOnly);
248static int sReadAiopID(ByteIO_t io);
249static int sReadAiopNumChan(WordIO_t io);
250
251MODULE_AUTHOR("Theodore Ts'o");
252MODULE_DESCRIPTION("Comtrol RocketPort driver");
253module_param(board1, ulong, 0);
254MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
255module_param(board2, ulong, 0);
256MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
257module_param(board3, ulong, 0);
258MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
259module_param(board4, ulong, 0);
260MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
261module_param(controller, ulong, 0);
262MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
263module_param(support_low_speed, bool, 0);
264MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
265module_param(modem1, ulong, 0);
266MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
267module_param(modem2, ulong, 0);
268MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
269module_param(modem3, ulong, 0);
270MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
271module_param(modem4, ulong, 0);
272MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
273module_param_array(pc104_1, ulong, NULL, 0);
274MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
275module_param_array(pc104_2, ulong, NULL, 0);
276MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
277module_param_array(pc104_3, ulong, NULL, 0);
278MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
279module_param_array(pc104_4, ulong, NULL, 0);
280MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
281
282static int rp_init(void);
283static void rp_cleanup_module(void);
284
285module_init(rp_init);
286module_exit(rp_cleanup_module);
287
288
289MODULE_LICENSE("Dual BSD/GPL");
290
291/*************************************************************************/
292/* Module code starts here */
293
294static inline int rocket_paranoia_check(struct r_port *info,
295 const char *routine)
296{
297#ifdef ROCKET_PARANOIA_CHECK
298 if (!info)
299 return 1;
300 if (info->magic != RPORT_MAGIC) {
301 printk(KERN_WARNING "Warning: bad magic number for rocketport "
302 "struct in %s\n", routine);
303 return 1;
304 }
305#endif
306 return 0;
307}
308
309
310/* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
311 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
312 * tty layer.
313 */
314static void rp_do_receive(struct r_port *info, CHANNEL_t *cp,
315 unsigned int ChanStatus)
316{
317 unsigned int CharNStat;
318 int ToRecv, wRecv, space;
319 unsigned char *cbuf;
320
321 ToRecv = sGetRxCnt(cp);
322#ifdef ROCKET_DEBUG_INTR
323 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
324#endif
325 if (ToRecv == 0)
326 return;
327
328 /*
329 * if status indicates there are errored characters in the
330 * FIFO, then enter status mode (a word in FIFO holds
331 * character and status).
332 */
333 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
334 if (!(ChanStatus & STATMODE)) {
335#ifdef ROCKET_DEBUG_RECEIVE
336 printk(KERN_INFO "Entering STATMODE...\n");
337#endif
338 ChanStatus |= STATMODE;
339 sEnRxStatusMode(cp);
340 }
341 }
342
343 /*
344 * if we previously entered status mode, then read down the
345 * FIFO one word at a time, pulling apart the character and
346 * the status. Update error counters depending on status
347 */
348 if (ChanStatus & STATMODE) {
349#ifdef ROCKET_DEBUG_RECEIVE
350 printk(KERN_INFO "Ignore %x, read %x...\n",
351 info->ignore_status_mask, info->read_status_mask);
352#endif
353 while (ToRecv) {
354 char flag;
355
356 CharNStat = sInW(sGetTxRxDataIO(cp));
357#ifdef ROCKET_DEBUG_RECEIVE
358 printk(KERN_INFO "%x...\n", CharNStat);
359#endif
360 if (CharNStat & STMBREAKH)
361 CharNStat &= ~(STMFRAMEH | STMPARITYH);
362 if (CharNStat & info->ignore_status_mask) {
363 ToRecv--;
364 continue;
365 }
366 CharNStat &= info->read_status_mask;
367 if (CharNStat & STMBREAKH)
368 flag = TTY_BREAK;
369 else if (CharNStat & STMPARITYH)
370 flag = TTY_PARITY;
371 else if (CharNStat & STMFRAMEH)
372 flag = TTY_FRAME;
373 else if (CharNStat & STMRCVROVRH)
374 flag = TTY_OVERRUN;
375 else
376 flag = TTY_NORMAL;
377 tty_insert_flip_char(&info->port, CharNStat & 0xff,
378 flag);
379 ToRecv--;
380 }
381
382 /*
383 * after we've emptied the FIFO in status mode, turn
384 * status mode back off
385 */
386 if (sGetRxCnt(cp) == 0) {
387#ifdef ROCKET_DEBUG_RECEIVE
388 printk(KERN_INFO "Status mode off.\n");
389#endif
390 sDisRxStatusMode(cp);
391 }
392 } else {
393 /*
394 * we aren't in status mode, so read down the FIFO two
395 * characters at time by doing repeated word IO
396 * transfer.
397 */
398 space = tty_prepare_flip_string(&info->port, &cbuf, ToRecv);
399 if (space < ToRecv) {
400#ifdef ROCKET_DEBUG_RECEIVE
401 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
402#endif
403 if (space <= 0)
404 return;
405 ToRecv = space;
406 }
407 wRecv = ToRecv >> 1;
408 if (wRecv)
409 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
410 if (ToRecv & 1)
411 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
412 }
413 /* Push the data up to the tty layer */
414 tty_flip_buffer_push(&info->port);
415}
416
417/*
418 * Serial port transmit data function. Called from the timer polling loop as a
419 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
420 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
421 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
422 */
423static void rp_do_transmit(struct r_port *info)
424{
425 int c;
426 CHANNEL_t *cp = &info->channel;
427 struct tty_struct *tty;
428 unsigned long flags;
429
430#ifdef ROCKET_DEBUG_INTR
431 printk(KERN_DEBUG "%s\n", __func__);
432#endif
433 if (!info)
434 return;
435 tty = tty_port_tty_get(&info->port);
436
437 if (tty == NULL) {
438 printk(KERN_WARNING "rp: WARNING %s called with tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
445
446 /* Loop sending data to FIFO until done or FIFO full */
447 while (1) {
448 if (tty->stopped)
449 break;
450 c = min(info->xmit_fifo_room, info->xmit_cnt);
451 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461#ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463#endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471#ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473#endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477 tty_kref_put(tty);
478
479#ifdef ROCKET_DEBUG_INTR
480 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
481 info->xmit_tail, info->xmit_fifo_room);
482#endif
483}
484
485/*
486 * Called when a serial port signals it has read data in it's RX FIFO.
487 * It checks what interrupts are pending and services them, including
488 * receiving serial data.
489 */
490static void rp_handle_port(struct r_port *info)
491{
492 CHANNEL_t *cp;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if ((info->port.flags & ASYNC_INITIALIZED) == 0) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503
504 cp = &info->channel;
505
506 IntMask = sGetChanIntID(cp) & info->intmask;
507#ifdef ROCKET_DEBUG_INTR
508 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
509#endif
510 ChanStatus = sGetChanStatus(cp);
511 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
512 rp_do_receive(info, cp, ChanStatus);
513 }
514 if (IntMask & DELTA_CD) { /* CD change */
515#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
516 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
517 (ChanStatus & CD_ACT) ? "on" : "off");
518#endif
519 if (!(ChanStatus & CD_ACT) && info->cd_status) {
520#ifdef ROCKET_DEBUG_HANGUP
521 printk(KERN_INFO "CD drop, calling hangup.\n");
522#endif
523 tty_port_tty_hangup(&info->port, false);
524 }
525 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
526 wake_up_interruptible(&info->port.open_wait);
527 }
528#ifdef ROCKET_DEBUG_INTR
529 if (IntMask & DELTA_CTS) { /* CTS change */
530 printk(KERN_INFO "CTS change...\n");
531 }
532 if (IntMask & DELTA_DSR) { /* DSR change */
533 printk(KERN_INFO "DSR change...\n");
534 }
535#endif
536}
537
538/*
539 * The top level polling routine. Repeats every 1/100 HZ (10ms).
540 */
541static void rp_do_poll(unsigned long dummy)
542{
543 CONTROLLER_t *ctlp;
544 int ctrl, aiop, ch, line;
545 unsigned int xmitmask, i;
546 unsigned int CtlMask;
547 unsigned char AiopMask;
548 Word_t bit;
549
550 /* Walk through all the boards (ctrl's) */
551 for (ctrl = 0; ctrl < max_board; ctrl++) {
552 if (rcktpt_io_addr[ctrl] <= 0)
553 continue;
554
555 /* Get a ptr to the board's control struct */
556 ctlp = sCtlNumToCtlPtr(ctrl);
557
558 /* Get the interrupt status from the board */
559#ifdef CONFIG_PCI
560 if (ctlp->BusType == isPCI)
561 CtlMask = sPCIGetControllerIntStatus(ctlp);
562 else
563#endif
564 CtlMask = sGetControllerIntStatus(ctlp);
565
566 /* Check if any AIOP read bits are set */
567 for (aiop = 0; CtlMask; aiop++) {
568 bit = ctlp->AiopIntrBits[aiop];
569 if (CtlMask & bit) {
570 CtlMask &= ~bit;
571 AiopMask = sGetAiopIntStatus(ctlp, aiop);
572
573 /* Check if any port read bits are set */
574 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
575 if (AiopMask & 1) {
576
577 /* Get the line number (/dev/ttyRx number). */
578 /* Read the data from the port. */
579 line = GetLineNumber(ctrl, aiop, ch);
580 rp_handle_port(rp_table[line]);
581 }
582 }
583 }
584 }
585
586 xmitmask = xmit_flags[ctrl];
587
588 /*
589 * xmit_flags contains bit-significant flags, indicating there is data
590 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
591 * 1, ... (32 total possible). The variable i has the aiop and ch
592 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
593 */
594 if (xmitmask) {
595 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
596 if (xmitmask & (1 << i)) {
597 aiop = (i & 0x18) >> 3;
598 ch = i & 0x07;
599 line = GetLineNumber(ctrl, aiop, ch);
600 rp_do_transmit(rp_table[line]);
601 }
602 }
603 }
604 }
605
606 /*
607 * Reset the timer so we get called at the next clock tick (10ms).
608 */
609 if (atomic_read(&rp_num_ports_open))
610 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
611}
612
613/*
614 * Initializes the r_port structure for a port, as well as enabling the port on
615 * the board.
616 * Inputs: board, aiop, chan numbers
617 */
618static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
619{
620 unsigned rocketMode;
621 struct r_port *info;
622 int line;
623 CONTROLLER_T *ctlp;
624
625 /* Get the next available line number */
626 line = SetLineNumber(board, aiop, chan);
627
628 ctlp = sCtlNumToCtlPtr(board);
629
630 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
631 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
632 if (!info) {
633 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
634 line);
635 return;
636 }
637
638 info->magic = RPORT_MAGIC;
639 info->line = line;
640 info->ctlp = ctlp;
641 info->board = board;
642 info->aiop = aiop;
643 info->chan = chan;
644 tty_port_init(&info->port);
645 info->port.ops = &rocket_port_ops;
646 info->flags &= ~ROCKET_MODE_MASK;
647 switch (pc104[board][line]) {
648 case 422:
649 info->flags |= ROCKET_MODE_RS422;
650 break;
651 case 485:
652 info->flags |= ROCKET_MODE_RS485;
653 break;
654 case 232:
655 default:
656 info->flags |= ROCKET_MODE_RS232;
657 break;
658 }
659
660 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
661 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
662 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
663 board, aiop, chan);
664 tty_port_destroy(&info->port);
665 kfree(info);
666 return;
667 }
668
669 rocketMode = info->flags & ROCKET_MODE_MASK;
670
671 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
672 sEnRTSToggle(&info->channel);
673 else
674 sDisRTSToggle(&info->channel);
675
676 if (ctlp->boardType == ROCKET_TYPE_PC104) {
677 switch (rocketMode) {
678 case ROCKET_MODE_RS485:
679 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
680 break;
681 case ROCKET_MODE_RS422:
682 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
683 break;
684 case ROCKET_MODE_RS232:
685 default:
686 if (info->flags & ROCKET_RTS_TOGGLE)
687 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
688 else
689 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
690 break;
691 }
692 }
693 spin_lock_init(&info->slock);
694 mutex_init(&info->write_mtx);
695 rp_table[line] = info;
696 tty_port_register_device(&info->port, rocket_driver, line,
697 pci_dev ? &pci_dev->dev : NULL);
698}
699
700/*
701 * Configures a rocketport port according to its termio settings. Called from
702 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
703 */
704static void configure_r_port(struct tty_struct *tty, struct r_port *info,
705 struct ktermios *old_termios)
706{
707 unsigned cflag;
708 unsigned long flags;
709 unsigned rocketMode;
710 int bits, baud, divisor;
711 CHANNEL_t *cp;
712 struct ktermios *t = &tty->termios;
713
714 cp = &info->channel;
715 cflag = t->c_cflag;
716
717 /* Byte size and parity */
718 if ((cflag & CSIZE) == CS8) {
719 sSetData8(cp);
720 bits = 10;
721 } else {
722 sSetData7(cp);
723 bits = 9;
724 }
725 if (cflag & CSTOPB) {
726 sSetStop2(cp);
727 bits++;
728 } else {
729 sSetStop1(cp);
730 }
731
732 if (cflag & PARENB) {
733 sEnParity(cp);
734 bits++;
735 if (cflag & PARODD) {
736 sSetOddParity(cp);
737 } else {
738 sSetEvenParity(cp);
739 }
740 } else {
741 sDisParity(cp);
742 }
743
744 /* baud rate */
745 baud = tty_get_baud_rate(tty);
746 if (!baud)
747 baud = 9600;
748 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
749 if ((divisor >= 8192 || divisor < 0) && old_termios) {
750 baud = tty_termios_baud_rate(old_termios);
751 if (!baud)
752 baud = 9600;
753 divisor = (rp_baud_base[info->board] / baud) - 1;
754 }
755 if (divisor >= 8192 || divisor < 0) {
756 baud = 9600;
757 divisor = (rp_baud_base[info->board] / baud) - 1;
758 }
759 info->cps = baud / bits;
760 sSetBaud(cp, divisor);
761
762 /* FIXME: Should really back compute a baud rate from the divisor */
763 tty_encode_baud_rate(tty, baud, baud);
764
765 if (cflag & CRTSCTS) {
766 info->intmask |= DELTA_CTS;
767 sEnCTSFlowCtl(cp);
768 } else {
769 info->intmask &= ~DELTA_CTS;
770 sDisCTSFlowCtl(cp);
771 }
772 if (cflag & CLOCAL) {
773 info->intmask &= ~DELTA_CD;
774 } else {
775 spin_lock_irqsave(&info->slock, flags);
776 if (sGetChanStatus(cp) & CD_ACT)
777 info->cd_status = 1;
778 else
779 info->cd_status = 0;
780 info->intmask |= DELTA_CD;
781 spin_unlock_irqrestore(&info->slock, flags);
782 }
783
784 /*
785 * Handle software flow control in the board
786 */
787#ifdef ROCKET_SOFT_FLOW
788 if (I_IXON(tty)) {
789 sEnTxSoftFlowCtl(cp);
790 if (I_IXANY(tty)) {
791 sEnIXANY(cp);
792 } else {
793 sDisIXANY(cp);
794 }
795 sSetTxXONChar(cp, START_CHAR(tty));
796 sSetTxXOFFChar(cp, STOP_CHAR(tty));
797 } else {
798 sDisTxSoftFlowCtl(cp);
799 sDisIXANY(cp);
800 sClrTxXOFF(cp);
801 }
802#endif
803
804 /*
805 * Set up ignore/read mask words
806 */
807 info->read_status_mask = STMRCVROVRH | 0xFF;
808 if (I_INPCK(tty))
809 info->read_status_mask |= STMFRAMEH | STMPARITYH;
810 if (I_BRKINT(tty) || I_PARMRK(tty))
811 info->read_status_mask |= STMBREAKH;
812
813 /*
814 * Characters to ignore
815 */
816 info->ignore_status_mask = 0;
817 if (I_IGNPAR(tty))
818 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
819 if (I_IGNBRK(tty)) {
820 info->ignore_status_mask |= STMBREAKH;
821 /*
822 * If we're ignoring parity and break indicators,
823 * ignore overruns too. (For real raw support).
824 */
825 if (I_IGNPAR(tty))
826 info->ignore_status_mask |= STMRCVROVRH;
827 }
828
829 rocketMode = info->flags & ROCKET_MODE_MASK;
830
831 if ((info->flags & ROCKET_RTS_TOGGLE)
832 || (rocketMode == ROCKET_MODE_RS485))
833 sEnRTSToggle(cp);
834 else
835 sDisRTSToggle(cp);
836
837 sSetRTS(&info->channel);
838
839 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
840 switch (rocketMode) {
841 case ROCKET_MODE_RS485:
842 sSetInterfaceMode(cp, InterfaceModeRS485);
843 break;
844 case ROCKET_MODE_RS422:
845 sSetInterfaceMode(cp, InterfaceModeRS422);
846 break;
847 case ROCKET_MODE_RS232:
848 default:
849 if (info->flags & ROCKET_RTS_TOGGLE)
850 sSetInterfaceMode(cp, InterfaceModeRS232T);
851 else
852 sSetInterfaceMode(cp, InterfaceModeRS232);
853 break;
854 }
855 }
856}
857
858static int carrier_raised(struct tty_port *port)
859{
860 struct r_port *info = container_of(port, struct r_port, port);
861 return (sGetChanStatusLo(&info->channel) & CD_ACT) ? 1 : 0;
862}
863
864static void dtr_rts(struct tty_port *port, int on)
865{
866 struct r_port *info = container_of(port, struct r_port, port);
867 if (on) {
868 sSetDTR(&info->channel);
869 sSetRTS(&info->channel);
870 } else {
871 sClrDTR(&info->channel);
872 sClrRTS(&info->channel);
873 }
874}
875
876/*
877 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
878 * port's r_port struct. Initializes the port hardware.
879 */
880static int rp_open(struct tty_struct *tty, struct file *filp)
881{
882 struct r_port *info;
883 struct tty_port *port;
884 int retval;
885 CHANNEL_t *cp;
886 unsigned long page;
887
888 info = rp_table[tty->index];
889 if (info == NULL)
890 return -ENXIO;
891 port = &info->port;
892
893 page = __get_free_page(GFP_KERNEL);
894 if (!page)
895 return -ENOMEM;
896
897 /*
898 * We must not sleep from here until the port is marked fully in use.
899 */
900 if (info->xmit_buf)
901 free_page(page);
902 else
903 info->xmit_buf = (unsigned char *) page;
904
905 tty->driver_data = info;
906 tty_port_tty_set(port, tty);
907
908 if (port->count++ == 0) {
909 atomic_inc(&rp_num_ports_open);
910
911#ifdef ROCKET_DEBUG_OPEN
912 printk(KERN_INFO "rocket mod++ = %d...\n",
913 atomic_read(&rp_num_ports_open));
914#endif
915 }
916#ifdef ROCKET_DEBUG_OPEN
917 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
918#endif
919
920 /*
921 * Info->count is now 1; so it's safe to sleep now.
922 */
923 if (!test_bit(ASYNCB_INITIALIZED, &port->flags)) {
924 cp = &info->channel;
925 sSetRxTrigger(cp, TRIG_1);
926 if (sGetChanStatus(cp) & CD_ACT)
927 info->cd_status = 1;
928 else
929 info->cd_status = 0;
930 sDisRxStatusMode(cp);
931 sFlushRxFIFO(cp);
932 sFlushTxFIFO(cp);
933
934 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
935 sSetRxTrigger(cp, TRIG_1);
936
937 sGetChanStatus(cp);
938 sDisRxStatusMode(cp);
939 sClrTxXOFF(cp);
940
941 sDisCTSFlowCtl(cp);
942 sDisTxSoftFlowCtl(cp);
943
944 sEnRxFIFO(cp);
945 sEnTransmit(cp);
946
947 set_bit(ASYNCB_INITIALIZED, &info->port.flags);
948
949 /*
950 * Set up the tty->alt_speed kludge
951 */
952 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
953 tty->alt_speed = 57600;
954 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
955 tty->alt_speed = 115200;
956 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
957 tty->alt_speed = 230400;
958 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
959 tty->alt_speed = 460800;
960
961 configure_r_port(tty, info, NULL);
962 if (C_BAUD(tty)) {
963 sSetDTR(cp);
964 sSetRTS(cp);
965 }
966 }
967 /* Starts (or resets) the maint polling loop */
968 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
969
970 retval = tty_port_block_til_ready(port, tty, filp);
971 if (retval) {
972#ifdef ROCKET_DEBUG_OPEN
973 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
974#endif
975 return retval;
976 }
977 return 0;
978}
979
980/*
981 * Exception handler that closes a serial port. info->port.count is considered critical.
982 */
983static void rp_close(struct tty_struct *tty, struct file *filp)
984{
985 struct r_port *info = tty->driver_data;
986 struct tty_port *port = &info->port;
987 int timeout;
988 CHANNEL_t *cp;
989
990 if (rocket_paranoia_check(info, "rp_close"))
991 return;
992
993#ifdef ROCKET_DEBUG_OPEN
994 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
995#endif
996
997 if (tty_port_close_start(port, tty, filp) == 0)
998 return;
999
1000 mutex_lock(&port->mutex);
1001 cp = &info->channel;
1002 /*
1003 * Before we drop DTR, make sure the UART transmitter
1004 * has completely drained; this is especially
1005 * important if there is a transmit FIFO!
1006 */
1007 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1008 if (timeout == 0)
1009 timeout = 1;
1010 rp_wait_until_sent(tty, timeout);
1011 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1012
1013 sDisTransmit(cp);
1014 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1015 sDisCTSFlowCtl(cp);
1016 sDisTxSoftFlowCtl(cp);
1017 sClrTxXOFF(cp);
1018 sFlushRxFIFO(cp);
1019 sFlushTxFIFO(cp);
1020 sClrRTS(cp);
1021 if (C_HUPCL(tty))
1022 sClrDTR(cp);
1023
1024 rp_flush_buffer(tty);
1025
1026 tty_ldisc_flush(tty);
1027
1028 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1029
1030 /* We can't yet use tty_port_close_end as the buffer handling in this
1031 driver is a bit different to the usual */
1032
1033 if (port->blocked_open) {
1034 if (port->close_delay) {
1035 msleep_interruptible(jiffies_to_msecs(port->close_delay));
1036 }
1037 wake_up_interruptible(&port->open_wait);
1038 } else {
1039 if (info->xmit_buf) {
1040 free_page((unsigned long) info->xmit_buf);
1041 info->xmit_buf = NULL;
1042 }
1043 }
1044 spin_lock_irq(&port->lock);
1045 info->port.flags &= ~(ASYNC_INITIALIZED | ASYNC_NORMAL_ACTIVE);
1046 tty->closing = 0;
1047 spin_unlock_irq(&port->lock);
1048 mutex_unlock(&port->mutex);
1049 tty_port_tty_set(port, NULL);
1050
1051 atomic_dec(&rp_num_ports_open);
1052
1053#ifdef ROCKET_DEBUG_OPEN
1054 printk(KERN_INFO "rocket mod-- = %d...\n",
1055 atomic_read(&rp_num_ports_open));
1056 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1057#endif
1058
1059}
1060
1061static void rp_set_termios(struct tty_struct *tty,
1062 struct ktermios *old_termios)
1063{
1064 struct r_port *info = tty->driver_data;
1065 CHANNEL_t *cp;
1066 unsigned cflag;
1067
1068 if (rocket_paranoia_check(info, "rp_set_termios"))
1069 return;
1070
1071 cflag = tty->termios.c_cflag;
1072
1073 /*
1074 * This driver doesn't support CS5 or CS6
1075 */
1076 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1077 tty->termios.c_cflag =
1078 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1079 /* Or CMSPAR */
1080 tty->termios.c_cflag &= ~CMSPAR;
1081
1082 configure_r_port(tty, info, old_termios);
1083
1084 cp = &info->channel;
1085
1086 /* Handle transition to B0 status */
1087 if ((old_termios->c_cflag & CBAUD) && !C_BAUD(tty)) {
1088 sClrDTR(cp);
1089 sClrRTS(cp);
1090 }
1091
1092 /* Handle transition away from B0 status */
1093 if (!(old_termios->c_cflag & CBAUD) && C_BAUD(tty)) {
1094 sSetRTS(cp);
1095 sSetDTR(cp);
1096 }
1097
1098 if ((old_termios->c_cflag & CRTSCTS) && !C_CRTSCTS(tty))
1099 rp_start(tty);
1100}
1101
1102static int rp_break(struct tty_struct *tty, int break_state)
1103{
1104 struct r_port *info = tty->driver_data;
1105 unsigned long flags;
1106
1107 if (rocket_paranoia_check(info, "rp_break"))
1108 return -EINVAL;
1109
1110 spin_lock_irqsave(&info->slock, flags);
1111 if (break_state == -1)
1112 sSendBreak(&info->channel);
1113 else
1114 sClrBreak(&info->channel);
1115 spin_unlock_irqrestore(&info->slock, flags);
1116 return 0;
1117}
1118
1119/*
1120 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1121 * the UPCI boards was added, it was decided to make this a function because
1122 * the macro was getting too complicated. All cases except the first one
1123 * (UPCIRingInd) are taken directly from the original macro.
1124 */
1125static int sGetChanRI(CHANNEL_T * ChP)
1126{
1127 CONTROLLER_t *CtlP = ChP->CtlP;
1128 int ChanNum = ChP->ChanNum;
1129 int RingInd = 0;
1130
1131 if (CtlP->UPCIRingInd)
1132 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1133 else if (CtlP->AltChanRingIndicator)
1134 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1135 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1136 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1137
1138 return RingInd;
1139}
1140
1141/********************************************************************************************/
1142/* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1143
1144/*
1145 * Returns the state of the serial modem control lines. These next 2 functions
1146 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1147 */
1148static int rp_tiocmget(struct tty_struct *tty)
1149{
1150 struct r_port *info = tty->driver_data;
1151 unsigned int control, result, ChanStatus;
1152
1153 ChanStatus = sGetChanStatusLo(&info->channel);
1154 control = info->channel.TxControl[3];
1155 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1156 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1157 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1158 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1159 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1160 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1161
1162 return result;
1163}
1164
1165/*
1166 * Sets the modem control lines
1167 */
1168static int rp_tiocmset(struct tty_struct *tty,
1169 unsigned int set, unsigned int clear)
1170{
1171 struct r_port *info = tty->driver_data;
1172
1173 if (set & TIOCM_RTS)
1174 info->channel.TxControl[3] |= SET_RTS;
1175 if (set & TIOCM_DTR)
1176 info->channel.TxControl[3] |= SET_DTR;
1177 if (clear & TIOCM_RTS)
1178 info->channel.TxControl[3] &= ~SET_RTS;
1179 if (clear & TIOCM_DTR)
1180 info->channel.TxControl[3] &= ~SET_DTR;
1181
1182 out32(info->channel.IndexAddr, info->channel.TxControl);
1183 return 0;
1184}
1185
1186static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1187{
1188 struct rocket_config tmp;
1189
1190 if (!retinfo)
1191 return -EFAULT;
1192 memset(&tmp, 0, sizeof (tmp));
1193 mutex_lock(&info->port.mutex);
1194 tmp.line = info->line;
1195 tmp.flags = info->flags;
1196 tmp.close_delay = info->port.close_delay;
1197 tmp.closing_wait = info->port.closing_wait;
1198 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1199 mutex_unlock(&info->port.mutex);
1200
1201 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1202 return -EFAULT;
1203 return 0;
1204}
1205
1206static int set_config(struct tty_struct *tty, struct r_port *info,
1207 struct rocket_config __user *new_info)
1208{
1209 struct rocket_config new_serial;
1210
1211 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1212 return -EFAULT;
1213
1214 mutex_lock(&info->port.mutex);
1215 if (!capable(CAP_SYS_ADMIN))
1216 {
1217 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK)) {
1218 mutex_unlock(&info->port.mutex);
1219 return -EPERM;
1220 }
1221 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1222 configure_r_port(tty, info, NULL);
1223 mutex_unlock(&info->port.mutex);
1224 return 0;
1225 }
1226
1227 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1228 info->port.close_delay = new_serial.close_delay;
1229 info->port.closing_wait = new_serial.closing_wait;
1230
1231 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1232 tty->alt_speed = 57600;
1233 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1234 tty->alt_speed = 115200;
1235 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1236 tty->alt_speed = 230400;
1237 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1238 tty->alt_speed = 460800;
1239 mutex_unlock(&info->port.mutex);
1240
1241 configure_r_port(tty, info, NULL);
1242 return 0;
1243}
1244
1245/*
1246 * This function fills in a rocket_ports struct with information
1247 * about what boards/ports are in the system. This info is passed
1248 * to user space. See setrocket.c where the info is used to create
1249 * the /dev/ttyRx ports.
1250 */
1251static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1252{
1253 struct rocket_ports tmp;
1254 int board;
1255
1256 if (!retports)
1257 return -EFAULT;
1258 memset(&tmp, 0, sizeof (tmp));
1259 tmp.tty_major = rocket_driver->major;
1260
1261 for (board = 0; board < 4; board++) {
1262 tmp.rocketModel[board].model = rocketModel[board].model;
1263 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1264 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1265 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1266 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1267 }
1268 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1269 return -EFAULT;
1270 return 0;
1271}
1272
1273static int reset_rm2(struct r_port *info, void __user *arg)
1274{
1275 int reset;
1276
1277 if (!capable(CAP_SYS_ADMIN))
1278 return -EPERM;
1279
1280 if (copy_from_user(&reset, arg, sizeof (int)))
1281 return -EFAULT;
1282 if (reset)
1283 reset = 1;
1284
1285 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1286 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1287 return -EINVAL;
1288
1289 if (info->ctlp->BusType == isISA)
1290 sModemReset(info->ctlp, info->chan, reset);
1291 else
1292 sPCIModemReset(info->ctlp, info->chan, reset);
1293
1294 return 0;
1295}
1296
1297static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1298{
1299 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1300 return -EFAULT;
1301 return 0;
1302}
1303
1304/* IOCTL call handler into the driver */
1305static int rp_ioctl(struct tty_struct *tty,
1306 unsigned int cmd, unsigned long arg)
1307{
1308 struct r_port *info = tty->driver_data;
1309 void __user *argp = (void __user *)arg;
1310 int ret = 0;
1311
1312 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1313 return -ENXIO;
1314
1315 switch (cmd) {
1316 case RCKP_GET_STRUCT:
1317 if (copy_to_user(argp, info, sizeof (struct r_port)))
1318 ret = -EFAULT;
1319 break;
1320 case RCKP_GET_CONFIG:
1321 ret = get_config(info, argp);
1322 break;
1323 case RCKP_SET_CONFIG:
1324 ret = set_config(tty, info, argp);
1325 break;
1326 case RCKP_GET_PORTS:
1327 ret = get_ports(info, argp);
1328 break;
1329 case RCKP_RESET_RM2:
1330 ret = reset_rm2(info, argp);
1331 break;
1332 case RCKP_GET_VERSION:
1333 ret = get_version(info, argp);
1334 break;
1335 default:
1336 ret = -ENOIOCTLCMD;
1337 }
1338 return ret;
1339}
1340
1341static void rp_send_xchar(struct tty_struct *tty, char ch)
1342{
1343 struct r_port *info = tty->driver_data;
1344 CHANNEL_t *cp;
1345
1346 if (rocket_paranoia_check(info, "rp_send_xchar"))
1347 return;
1348
1349 cp = &info->channel;
1350 if (sGetTxCnt(cp))
1351 sWriteTxPrioByte(cp, ch);
1352 else
1353 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1354}
1355
1356static void rp_throttle(struct tty_struct *tty)
1357{
1358 struct r_port *info = tty->driver_data;
1359
1360#ifdef ROCKET_DEBUG_THROTTLE
1361 printk(KERN_INFO "throttle %s ....\n", tty->name);
1362#endif
1363
1364 if (rocket_paranoia_check(info, "rp_throttle"))
1365 return;
1366
1367 if (I_IXOFF(tty))
1368 rp_send_xchar(tty, STOP_CHAR(tty));
1369
1370 sClrRTS(&info->channel);
1371}
1372
1373static void rp_unthrottle(struct tty_struct *tty)
1374{
1375 struct r_port *info = tty->driver_data;
1376#ifdef ROCKET_DEBUG_THROTTLE
1377 printk(KERN_INFO "unthrottle %s ....\n", tty->name);
1378#endif
1379
1380 if (rocket_paranoia_check(info, "rp_unthrottle"))
1381 return;
1382
1383 if (I_IXOFF(tty))
1384 rp_send_xchar(tty, START_CHAR(tty));
1385
1386 sSetRTS(&info->channel);
1387}
1388
1389/*
1390 * ------------------------------------------------------------
1391 * rp_stop() and rp_start()
1392 *
1393 * This routines are called before setting or resetting tty->stopped.
1394 * They enable or disable transmitter interrupts, as necessary.
1395 * ------------------------------------------------------------
1396 */
1397static void rp_stop(struct tty_struct *tty)
1398{
1399 struct r_port *info = tty->driver_data;
1400
1401#ifdef ROCKET_DEBUG_FLOW
1402 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1403 info->xmit_cnt, info->xmit_fifo_room);
1404#endif
1405
1406 if (rocket_paranoia_check(info, "rp_stop"))
1407 return;
1408
1409 if (sGetTxCnt(&info->channel))
1410 sDisTransmit(&info->channel);
1411}
1412
1413static void rp_start(struct tty_struct *tty)
1414{
1415 struct r_port *info = tty->driver_data;
1416
1417#ifdef ROCKET_DEBUG_FLOW
1418 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1419 info->xmit_cnt, info->xmit_fifo_room);
1420#endif
1421
1422 if (rocket_paranoia_check(info, "rp_stop"))
1423 return;
1424
1425 sEnTransmit(&info->channel);
1426 set_bit((info->aiop * 8) + info->chan,
1427 (void *) &xmit_flags[info->board]);
1428}
1429
1430/*
1431 * rp_wait_until_sent() --- wait until the transmitter is empty
1432 */
1433static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1434{
1435 struct r_port *info = tty->driver_data;
1436 CHANNEL_t *cp;
1437 unsigned long orig_jiffies;
1438 int check_time, exit_time;
1439 int txcnt;
1440
1441 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1442 return;
1443
1444 cp = &info->channel;
1445
1446 orig_jiffies = jiffies;
1447#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1448 printk(KERN_INFO "In %s(%d) (jiff=%lu)...\n", __func__, timeout,
1449 jiffies);
1450 printk(KERN_INFO "cps=%d...\n", info->cps);
1451#endif
1452 while (1) {
1453 txcnt = sGetTxCnt(cp);
1454 if (!txcnt) {
1455 if (sGetChanStatusLo(cp) & TXSHRMT)
1456 break;
1457 check_time = (HZ / info->cps) / 5;
1458 } else {
1459 check_time = HZ * txcnt / info->cps;
1460 }
1461 if (timeout) {
1462 exit_time = orig_jiffies + timeout - jiffies;
1463 if (exit_time <= 0)
1464 break;
1465 if (exit_time < check_time)
1466 check_time = exit_time;
1467 }
1468 if (check_time == 0)
1469 check_time = 1;
1470#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1471 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1472 jiffies, check_time);
1473#endif
1474 msleep_interruptible(jiffies_to_msecs(check_time));
1475 if (signal_pending(current))
1476 break;
1477 }
1478 __set_current_state(TASK_RUNNING);
1479#ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1480 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1481#endif
1482}
1483
1484/*
1485 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1486 */
1487static void rp_hangup(struct tty_struct *tty)
1488{
1489 CHANNEL_t *cp;
1490 struct r_port *info = tty->driver_data;
1491 unsigned long flags;
1492
1493 if (rocket_paranoia_check(info, "rp_hangup"))
1494 return;
1495
1496#if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1497 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1498#endif
1499 rp_flush_buffer(tty);
1500 spin_lock_irqsave(&info->port.lock, flags);
1501 if (info->port.count)
1502 atomic_dec(&rp_num_ports_open);
1503 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1504 spin_unlock_irqrestore(&info->port.lock, flags);
1505
1506 tty_port_hangup(&info->port);
1507
1508 cp = &info->channel;
1509 sDisRxFIFO(cp);
1510 sDisTransmit(cp);
1511 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1512 sDisCTSFlowCtl(cp);
1513 sDisTxSoftFlowCtl(cp);
1514 sClrTxXOFF(cp);
1515 clear_bit(ASYNCB_INITIALIZED, &info->port.flags);
1516
1517 wake_up_interruptible(&info->port.open_wait);
1518}
1519
1520/*
1521 * Exception handler - write char routine. The RocketPort driver uses a
1522 * double-buffering strategy, with the twist that if the in-memory CPU
1523 * buffer is empty, and there's space in the transmit FIFO, the
1524 * writing routines will write directly to transmit FIFO.
1525 * Write buffer and counters protected by spinlocks
1526 */
1527static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1528{
1529 struct r_port *info = tty->driver_data;
1530 CHANNEL_t *cp;
1531 unsigned long flags;
1532
1533 if (rocket_paranoia_check(info, "rp_put_char"))
1534 return 0;
1535
1536 /*
1537 * Grab the port write mutex, locking out other processes that try to
1538 * write to this port
1539 */
1540 mutex_lock(&info->write_mtx);
1541
1542#ifdef ROCKET_DEBUG_WRITE
1543 printk(KERN_INFO "rp_put_char %c...\n", ch);
1544#endif
1545
1546 spin_lock_irqsave(&info->slock, flags);
1547 cp = &info->channel;
1548
1549 if (!tty->stopped && info->xmit_fifo_room == 0)
1550 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1551
1552 if (tty->stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1553 info->xmit_buf[info->xmit_head++] = ch;
1554 info->xmit_head &= XMIT_BUF_SIZE - 1;
1555 info->xmit_cnt++;
1556 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1557 } else {
1558 sOutB(sGetTxRxDataIO(cp), ch);
1559 info->xmit_fifo_room--;
1560 }
1561 spin_unlock_irqrestore(&info->slock, flags);
1562 mutex_unlock(&info->write_mtx);
1563 return 1;
1564}
1565
1566/*
1567 * Exception handler - write routine, called when user app writes to the device.
1568 * A per port write mutex is used to protect from another process writing to
1569 * this port at the same time. This other process could be running on the other CPU
1570 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1571 * Spinlocks protect the info xmit members.
1572 */
1573static int rp_write(struct tty_struct *tty,
1574 const unsigned char *buf, int count)
1575{
1576 struct r_port *info = tty->driver_data;
1577 CHANNEL_t *cp;
1578 const unsigned char *b;
1579 int c, retval = 0;
1580 unsigned long flags;
1581
1582 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1583 return 0;
1584
1585 if (mutex_lock_interruptible(&info->write_mtx))
1586 return -ERESTARTSYS;
1587
1588#ifdef ROCKET_DEBUG_WRITE
1589 printk(KERN_INFO "rp_write %d chars...\n", count);
1590#endif
1591 cp = &info->channel;
1592
1593 if (!tty->stopped && info->xmit_fifo_room < count)
1594 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1595
1596 /*
1597 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1598 * into FIFO. Use the write queue for temp storage.
1599 */
1600 if (!tty->stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1601 c = min(count, info->xmit_fifo_room);
1602 b = buf;
1603
1604 /* Push data into FIFO, 2 bytes at a time */
1605 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1606
1607 /* If there is a byte remaining, write it */
1608 if (c & 1)
1609 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1610
1611 retval += c;
1612 buf += c;
1613 count -= c;
1614
1615 spin_lock_irqsave(&info->slock, flags);
1616 info->xmit_fifo_room -= c;
1617 spin_unlock_irqrestore(&info->slock, flags);
1618 }
1619
1620 /* If count is zero, we wrote it all and are done */
1621 if (!count)
1622 goto end;
1623
1624 /* Write remaining data into the port's xmit_buf */
1625 while (1) {
1626 /* Hung up ? */
1627 if (!test_bit(ASYNCB_NORMAL_ACTIVE, &info->port.flags))
1628 goto end;
1629 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1630 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1631 if (c <= 0)
1632 break;
1633
1634 b = buf;
1635 memcpy(info->xmit_buf + info->xmit_head, b, c);
1636
1637 spin_lock_irqsave(&info->slock, flags);
1638 info->xmit_head =
1639 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1640 info->xmit_cnt += c;
1641 spin_unlock_irqrestore(&info->slock, flags);
1642
1643 buf += c;
1644 count -= c;
1645 retval += c;
1646 }
1647
1648 if ((retval > 0) && !tty->stopped)
1649 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1650
1651end:
1652 if (info->xmit_cnt < WAKEUP_CHARS) {
1653 tty_wakeup(tty);
1654#ifdef ROCKETPORT_HAVE_POLL_WAIT
1655 wake_up_interruptible(&tty->poll_wait);
1656#endif
1657 }
1658 mutex_unlock(&info->write_mtx);
1659 return retval;
1660}
1661
1662/*
1663 * Return the number of characters that can be sent. We estimate
1664 * only using the in-memory transmit buffer only, and ignore the
1665 * potential space in the transmit FIFO.
1666 */
1667static int rp_write_room(struct tty_struct *tty)
1668{
1669 struct r_port *info = tty->driver_data;
1670 int ret;
1671
1672 if (rocket_paranoia_check(info, "rp_write_room"))
1673 return 0;
1674
1675 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1676 if (ret < 0)
1677 ret = 0;
1678#ifdef ROCKET_DEBUG_WRITE
1679 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1680#endif
1681 return ret;
1682}
1683
1684/*
1685 * Return the number of characters in the buffer. Again, this only
1686 * counts those characters in the in-memory transmit buffer.
1687 */
1688static int rp_chars_in_buffer(struct tty_struct *tty)
1689{
1690 struct r_port *info = tty->driver_data;
1691
1692 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1693 return 0;
1694
1695#ifdef ROCKET_DEBUG_WRITE
1696 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1697#endif
1698 return info->xmit_cnt;
1699}
1700
1701/*
1702 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1703 * r_port struct for the port. Note that spinlock are used to protect info members,
1704 * do not call this function if the spinlock is already held.
1705 */
1706static void rp_flush_buffer(struct tty_struct *tty)
1707{
1708 struct r_port *info = tty->driver_data;
1709 CHANNEL_t *cp;
1710 unsigned long flags;
1711
1712 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1713 return;
1714
1715 spin_lock_irqsave(&info->slock, flags);
1716 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1717 spin_unlock_irqrestore(&info->slock, flags);
1718
1719#ifdef ROCKETPORT_HAVE_POLL_WAIT
1720 wake_up_interruptible(&tty->poll_wait);
1721#endif
1722 tty_wakeup(tty);
1723
1724 cp = &info->channel;
1725 sFlushTxFIFO(cp);
1726}
1727
1728#ifdef CONFIG_PCI
1729
1730static const struct pci_device_id rocket_pci_ids[] = {
1731 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4QUAD) },
1732 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8OCTA) },
1733 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8OCTA) },
1734 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8INTF) },
1735 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP8INTF) },
1736 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8J) },
1737 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4J) },
1738 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP8SNI) },
1739 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16SNI) },
1740 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP16INTF) },
1741 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP16INTF) },
1742 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_CRP16INTF) },
1743 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP32INTF) },
1744 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_URP32INTF) },
1745 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP4) },
1746 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RPP8) },
1747 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_232) },
1748 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP2_422) },
1749 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP6M) },
1750 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_RP4M) },
1751 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_8PORT) },
1752 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_DEVICE_ID_UPCI_RM3_4PORT) },
1753 { }
1754};
1755MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1756
1757/* Resets the speaker controller on RocketModem II and III devices */
1758static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
1759{
1760 ByteIO_t addr;
1761
1762 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
1763 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
1764 addr = CtlP->AiopIO[0] + 0x4F;
1765 sOutB(addr, 0);
1766 }
1767
1768 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
1769 if ((model == MODEL_UPCI_RM3_8PORT)
1770 || (model == MODEL_UPCI_RM3_4PORT)) {
1771 addr = CtlP->AiopIO[0] + 0x88;
1772 sOutB(addr, 0);
1773 }
1774}
1775
1776/***************************************************************************
1777Function: sPCIInitController
1778Purpose: Initialization of controller global registers and controller
1779 structure.
1780Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
1781 IRQNum,Frequency,PeriodicOnly)
1782 CONTROLLER_T *CtlP; Ptr to controller structure
1783 int CtlNum; Controller number
1784 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
1785 This list must be in the order the AIOPs will be found on the
1786 controller. Once an AIOP in the list is not found, it is
1787 assumed that there are no more AIOPs on the controller.
1788 int AiopIOListSize; Number of addresses in AiopIOList
1789 int IRQNum; Interrupt Request number. Can be any of the following:
1790 0: Disable global interrupts
1791 3: IRQ 3
1792 4: IRQ 4
1793 5: IRQ 5
1794 9: IRQ 9
1795 10: IRQ 10
1796 11: IRQ 11
1797 12: IRQ 12
1798 15: IRQ 15
1799 Byte_t Frequency: A flag identifying the frequency
1800 of the periodic interrupt, can be any one of the following:
1801 FREQ_DIS - periodic interrupt disabled
1802 FREQ_137HZ - 137 Hertz
1803 FREQ_69HZ - 69 Hertz
1804 FREQ_34HZ - 34 Hertz
1805 FREQ_17HZ - 17 Hertz
1806 FREQ_9HZ - 9 Hertz
1807 FREQ_4HZ - 4 Hertz
1808 If IRQNum is set to 0 the Frequency parameter is
1809 overidden, it is forced to a value of FREQ_DIS.
1810 int PeriodicOnly: 1 if all interrupts except the periodic
1811 interrupt are to be blocked.
1812 0 is both the periodic interrupt and
1813 other channel interrupts are allowed.
1814 If IRQNum is set to 0 the PeriodicOnly parameter is
1815 overidden, it is forced to a value of 0.
1816Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
1817 initialization failed.
1818
1819Comments:
1820 If periodic interrupts are to be disabled but AIOP interrupts
1821 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
1822
1823 If interrupts are to be completely disabled set IRQNum to 0.
1824
1825 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
1826 invalid combination.
1827
1828 This function performs initialization of global interrupt modes,
1829 but it does not actually enable global interrupts. To enable
1830 and disable global interrupts use functions sEnGlobalInt() and
1831 sDisGlobalInt(). Enabling of global interrupts is normally not
1832 done until all other initializations are complete.
1833
1834 Even if interrupts are globally enabled, they must also be
1835 individually enabled for each channel that is to generate
1836 interrupts.
1837
1838Warnings: No range checking on any of the parameters is done.
1839
1840 No context switches are allowed while executing this function.
1841
1842 After this function all AIOPs on the controller are disabled,
1843 they can be enabled with sEnAiop().
1844*/
1845static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
1846 ByteIO_t * AiopIOList, int AiopIOListSize,
1847 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
1848 int PeriodicOnly, int altChanRingIndicator,
1849 int UPCIRingInd)
1850{
1851 int i;
1852 ByteIO_t io;
1853
1854 CtlP->AltChanRingIndicator = altChanRingIndicator;
1855 CtlP->UPCIRingInd = UPCIRingInd;
1856 CtlP->CtlNum = CtlNum;
1857 CtlP->CtlID = CTLID_0001; /* controller release 1 */
1858 CtlP->BusType = isPCI; /* controller release 1 */
1859
1860 if (ConfigIO) {
1861 CtlP->isUPCI = 1;
1862 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
1863 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
1864 CtlP->AiopIntrBits = upci_aiop_intr_bits;
1865 } else {
1866 CtlP->isUPCI = 0;
1867 CtlP->PCIIO =
1868 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
1869 CtlP->AiopIntrBits = aiop_intr_bits;
1870 }
1871
1872 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
1873 /* Init AIOPs */
1874 CtlP->NumAiop = 0;
1875 for (i = 0; i < AiopIOListSize; i++) {
1876 io = AiopIOList[i];
1877 CtlP->AiopIO[i] = (WordIO_t) io;
1878 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
1879
1880 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
1881 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
1882 break; /* done looking for AIOPs */
1883
1884 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
1885 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
1886 sOutB(io + _INDX_DATA, sClockPrescale);
1887 CtlP->NumAiop++; /* bump count of AIOPs */
1888 }
1889
1890 if (CtlP->NumAiop == 0)
1891 return (-1);
1892 else
1893 return (CtlP->NumAiop);
1894}
1895
1896/*
1897 * Called when a PCI card is found. Retrieves and stores model information,
1898 * init's aiopic and serial port hardware.
1899 * Inputs: i is the board number (0-n)
1900 */
1901static __init int register_PCI(int i, struct pci_dev *dev)
1902{
1903 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1904 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1905 CONTROLLER_t *ctlp;
1906
1907 int fast_clock = 0;
1908 int altChanRingIndicator = 0;
1909 int ports_per_aiop = 8;
1910 WordIO_t ConfigIO = 0;
1911 ByteIO_t UPCIRingInd = 0;
1912
1913 if (!dev || !pci_match_id(rocket_pci_ids, dev) ||
1914 pci_enable_device(dev))
1915 return 0;
1916
1917 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1918
1919 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1920 rocketModel[i].loadrm2 = 0;
1921 rocketModel[i].startingPortNumber = nextLineNumber;
1922
1923 /* Depending on the model, set up some config variables */
1924 switch (dev->device) {
1925 case PCI_DEVICE_ID_RP4QUAD:
1926 max_num_aiops = 1;
1927 ports_per_aiop = 4;
1928 rocketModel[i].model = MODEL_RP4QUAD;
1929 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1930 rocketModel[i].numPorts = 4;
1931 break;
1932 case PCI_DEVICE_ID_RP8OCTA:
1933 max_num_aiops = 1;
1934 rocketModel[i].model = MODEL_RP8OCTA;
1935 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1936 rocketModel[i].numPorts = 8;
1937 break;
1938 case PCI_DEVICE_ID_URP8OCTA:
1939 max_num_aiops = 1;
1940 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1941 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1942 rocketModel[i].numPorts = 8;
1943 break;
1944 case PCI_DEVICE_ID_RP8INTF:
1945 max_num_aiops = 1;
1946 rocketModel[i].model = MODEL_RP8INTF;
1947 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1948 rocketModel[i].numPorts = 8;
1949 break;
1950 case PCI_DEVICE_ID_URP8INTF:
1951 max_num_aiops = 1;
1952 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1953 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1954 rocketModel[i].numPorts = 8;
1955 break;
1956 case PCI_DEVICE_ID_RP8J:
1957 max_num_aiops = 1;
1958 rocketModel[i].model = MODEL_RP8J;
1959 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1960 rocketModel[i].numPorts = 8;
1961 break;
1962 case PCI_DEVICE_ID_RP4J:
1963 max_num_aiops = 1;
1964 ports_per_aiop = 4;
1965 rocketModel[i].model = MODEL_RP4J;
1966 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1967 rocketModel[i].numPorts = 4;
1968 break;
1969 case PCI_DEVICE_ID_RP8SNI:
1970 max_num_aiops = 1;
1971 rocketModel[i].model = MODEL_RP8SNI;
1972 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1973 rocketModel[i].numPorts = 8;
1974 break;
1975 case PCI_DEVICE_ID_RP16SNI:
1976 max_num_aiops = 2;
1977 rocketModel[i].model = MODEL_RP16SNI;
1978 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1979 rocketModel[i].numPorts = 16;
1980 break;
1981 case PCI_DEVICE_ID_RP16INTF:
1982 max_num_aiops = 2;
1983 rocketModel[i].model = MODEL_RP16INTF;
1984 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1985 rocketModel[i].numPorts = 16;
1986 break;
1987 case PCI_DEVICE_ID_URP16INTF:
1988 max_num_aiops = 2;
1989 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1990 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1991 rocketModel[i].numPorts = 16;
1992 break;
1993 case PCI_DEVICE_ID_CRP16INTF:
1994 max_num_aiops = 2;
1995 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1996 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1997 rocketModel[i].numPorts = 16;
1998 break;
1999 case PCI_DEVICE_ID_RP32INTF:
2000 max_num_aiops = 4;
2001 rocketModel[i].model = MODEL_RP32INTF;
2002 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
2003 rocketModel[i].numPorts = 32;
2004 break;
2005 case PCI_DEVICE_ID_URP32INTF:
2006 max_num_aiops = 4;
2007 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2008 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2009 rocketModel[i].numPorts = 32;
2010 break;
2011 case PCI_DEVICE_ID_RPP4:
2012 max_num_aiops = 1;
2013 ports_per_aiop = 4;
2014 altChanRingIndicator++;
2015 fast_clock++;
2016 rocketModel[i].model = MODEL_RPP4;
2017 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2018 rocketModel[i].numPorts = 4;
2019 break;
2020 case PCI_DEVICE_ID_RPP8:
2021 max_num_aiops = 2;
2022 ports_per_aiop = 4;
2023 altChanRingIndicator++;
2024 fast_clock++;
2025 rocketModel[i].model = MODEL_RPP8;
2026 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2027 rocketModel[i].numPorts = 8;
2028 break;
2029 case PCI_DEVICE_ID_RP2_232:
2030 max_num_aiops = 1;
2031 ports_per_aiop = 2;
2032 altChanRingIndicator++;
2033 fast_clock++;
2034 rocketModel[i].model = MODEL_RP2_232;
2035 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2036 rocketModel[i].numPorts = 2;
2037 break;
2038 case PCI_DEVICE_ID_RP2_422:
2039 max_num_aiops = 1;
2040 ports_per_aiop = 2;
2041 altChanRingIndicator++;
2042 fast_clock++;
2043 rocketModel[i].model = MODEL_RP2_422;
2044 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2045 rocketModel[i].numPorts = 2;
2046 break;
2047 case PCI_DEVICE_ID_RP6M:
2048
2049 max_num_aiops = 1;
2050 ports_per_aiop = 6;
2051
2052 /* If revision is 1, the rocketmodem flash must be loaded.
2053 * If it is 2 it is a "socketed" version. */
2054 if (dev->revision == 1) {
2055 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2056 rocketModel[i].loadrm2 = 1;
2057 } else {
2058 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2059 }
2060
2061 rocketModel[i].model = MODEL_RP6M;
2062 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2063 rocketModel[i].numPorts = 6;
2064 break;
2065 case PCI_DEVICE_ID_RP4M:
2066 max_num_aiops = 1;
2067 ports_per_aiop = 4;
2068 if (dev->revision == 1) {
2069 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2070 rocketModel[i].loadrm2 = 1;
2071 } else {
2072 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2073 }
2074
2075 rocketModel[i].model = MODEL_RP4M;
2076 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2077 rocketModel[i].numPorts = 4;
2078 break;
2079 default:
2080 max_num_aiops = 0;
2081 break;
2082 }
2083
2084 /*
2085 * Check for UPCI boards.
2086 */
2087
2088 switch (dev->device) {
2089 case PCI_DEVICE_ID_URP32INTF:
2090 case PCI_DEVICE_ID_URP8INTF:
2091 case PCI_DEVICE_ID_URP16INTF:
2092 case PCI_DEVICE_ID_CRP16INTF:
2093 case PCI_DEVICE_ID_URP8OCTA:
2094 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2095 ConfigIO = pci_resource_start(dev, 1);
2096 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2097 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2098
2099 /*
2100 * Check for octa or quad cable.
2101 */
2102 if (!
2103 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2104 PCI_GPIO_CTRL_8PORT)) {
2105 ports_per_aiop = 4;
2106 rocketModel[i].numPorts = 4;
2107 }
2108 }
2109 break;
2110 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2111 max_num_aiops = 1;
2112 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2113 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2114 rocketModel[i].numPorts = 8;
2115 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2116 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2117 ConfigIO = pci_resource_start(dev, 1);
2118 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2119 break;
2120 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2121 max_num_aiops = 1;
2122 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2123 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2124 rocketModel[i].numPorts = 4;
2125 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2126 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2127 ConfigIO = pci_resource_start(dev, 1);
2128 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2129 break;
2130 default:
2131 break;
2132 }
2133
2134 if (fast_clock) {
2135 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2136 rp_baud_base[i] = 921600;
2137 } else {
2138 /*
2139 * If support_low_speed is set, use the slow clock
2140 * prescale, which supports 50 bps
2141 */
2142 if (support_low_speed) {
2143 /* mod 9 (divide by 10) prescale */
2144 sClockPrescale = 0x19;
2145 rp_baud_base[i] = 230400;
2146 } else {
2147 /* mod 4 (divide by 5) prescale */
2148 sClockPrescale = 0x14;
2149 rp_baud_base[i] = 460800;
2150 }
2151 }
2152
2153 for (aiop = 0; aiop < max_num_aiops; aiop++)
2154 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2155 ctlp = sCtlNumToCtlPtr(i);
2156 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2157 for (aiop = 0; aiop < max_num_aiops; aiop++)
2158 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2159
2160 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2161 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2162 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2163 rocketModel[i].startingPortNumber,
2164 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2165
2166 if (num_aiops <= 0) {
2167 rcktpt_io_addr[i] = 0;
2168 return (0);
2169 }
2170 is_PCI[i] = 1;
2171
2172 /* Reset the AIOPIC, init the serial ports */
2173 for (aiop = 0; aiop < num_aiops; aiop++) {
2174 sResetAiopByNum(ctlp, aiop);
2175 num_chan = ports_per_aiop;
2176 for (chan = 0; chan < num_chan; chan++)
2177 init_r_port(i, aiop, chan, dev);
2178 }
2179
2180 /* Rocket modems must be reset */
2181 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2182 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2183 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2184 num_chan = ports_per_aiop;
2185 for (chan = 0; chan < num_chan; chan++)
2186 sPCIModemReset(ctlp, chan, 1);
2187 msleep(500);
2188 for (chan = 0; chan < num_chan; chan++)
2189 sPCIModemReset(ctlp, chan, 0);
2190 msleep(500);
2191 rmSpeakerReset(ctlp, rocketModel[i].model);
2192 }
2193 return (1);
2194}
2195
2196/*
2197 * Probes for PCI cards, inits them if found
2198 * Input: board_found = number of ISA boards already found, or the
2199 * starting board number
2200 * Returns: Number of PCI boards found
2201 */
2202static int __init init_PCI(int boards_found)
2203{
2204 struct pci_dev *dev = NULL;
2205 int count = 0;
2206
2207 /* Work through the PCI device list, pulling out ours */
2208 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2209 if (register_PCI(count + boards_found, dev))
2210 count++;
2211 }
2212 return (count);
2213}
2214
2215#endif /* CONFIG_PCI */
2216
2217/*
2218 * Probes for ISA cards
2219 * Input: i = the board number to look for
2220 * Returns: 1 if board found, 0 else
2221 */
2222static int __init init_ISA(int i)
2223{
2224 int num_aiops, num_chan = 0, total_num_chan = 0;
2225 int aiop, chan;
2226 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2227 CONTROLLER_t *ctlp;
2228 char *type_string;
2229
2230 /* If io_addr is zero, no board configured */
2231 if (rcktpt_io_addr[i] == 0)
2232 return (0);
2233
2234 /* Reserve the IO region */
2235 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2236 printk(KERN_ERR "Unable to reserve IO region for configured "
2237 "ISA RocketPort at address 0x%lx, board not "
2238 "installed...\n", rcktpt_io_addr[i]);
2239 rcktpt_io_addr[i] = 0;
2240 return (0);
2241 }
2242
2243 ctlp = sCtlNumToCtlPtr(i);
2244
2245 ctlp->boardType = rcktpt_type[i];
2246
2247 switch (rcktpt_type[i]) {
2248 case ROCKET_TYPE_PC104:
2249 type_string = "(PC104)";
2250 break;
2251 case ROCKET_TYPE_MODEM:
2252 type_string = "(RocketModem)";
2253 break;
2254 case ROCKET_TYPE_MODEMII:
2255 type_string = "(RocketModem II)";
2256 break;
2257 default:
2258 type_string = "";
2259 break;
2260 }
2261
2262 /*
2263 * If support_low_speed is set, use the slow clock prescale,
2264 * which supports 50 bps
2265 */
2266 if (support_low_speed) {
2267 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2268 rp_baud_base[i] = 230400;
2269 } else {
2270 sClockPrescale = 0x14; /* mod 4 (divide by 5) prescale */
2271 rp_baud_base[i] = 460800;
2272 }
2273
2274 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2275 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2276
2277 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2278
2279 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2280 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2281 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2282 }
2283
2284 /* If something went wrong initing the AIOP's release the ISA IO memory */
2285 if (num_aiops <= 0) {
2286 release_region(rcktpt_io_addr[i], 64);
2287 rcktpt_io_addr[i] = 0;
2288 return (0);
2289 }
2290
2291 rocketModel[i].startingPortNumber = nextLineNumber;
2292
2293 for (aiop = 0; aiop < num_aiops; aiop++) {
2294 sResetAiopByNum(ctlp, aiop);
2295 sEnAiop(ctlp, aiop);
2296 num_chan = sGetAiopNumChan(ctlp, aiop);
2297 total_num_chan += num_chan;
2298 for (chan = 0; chan < num_chan; chan++)
2299 init_r_port(i, aiop, chan, NULL);
2300 }
2301 is_PCI[i] = 0;
2302 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2303 num_chan = sGetAiopNumChan(ctlp, 0);
2304 total_num_chan = num_chan;
2305 for (chan = 0; chan < num_chan; chan++)
2306 sModemReset(ctlp, chan, 1);
2307 msleep(500);
2308 for (chan = 0; chan < num_chan; chan++)
2309 sModemReset(ctlp, chan, 0);
2310 msleep(500);
2311 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2312 } else {
2313 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2314 }
2315 rocketModel[i].numPorts = total_num_chan;
2316 rocketModel[i].model = MODEL_ISA;
2317
2318 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2319 i, rcktpt_io_addr[i], num_aiops, type_string);
2320
2321 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2322 rocketModel[i].modelString,
2323 rocketModel[i].startingPortNumber,
2324 rocketModel[i].startingPortNumber +
2325 rocketModel[i].numPorts - 1);
2326
2327 return (1);
2328}
2329
2330static const struct tty_operations rocket_ops = {
2331 .open = rp_open,
2332 .close = rp_close,
2333 .write = rp_write,
2334 .put_char = rp_put_char,
2335 .write_room = rp_write_room,
2336 .chars_in_buffer = rp_chars_in_buffer,
2337 .flush_buffer = rp_flush_buffer,
2338 .ioctl = rp_ioctl,
2339 .throttle = rp_throttle,
2340 .unthrottle = rp_unthrottle,
2341 .set_termios = rp_set_termios,
2342 .stop = rp_stop,
2343 .start = rp_start,
2344 .hangup = rp_hangup,
2345 .break_ctl = rp_break,
2346 .send_xchar = rp_send_xchar,
2347 .wait_until_sent = rp_wait_until_sent,
2348 .tiocmget = rp_tiocmget,
2349 .tiocmset = rp_tiocmset,
2350};
2351
2352static const struct tty_port_operations rocket_port_ops = {
2353 .carrier_raised = carrier_raised,
2354 .dtr_rts = dtr_rts,
2355};
2356
2357/*
2358 * The module "startup" routine; it's run when the module is loaded.
2359 */
2360static int __init rp_init(void)
2361{
2362 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2363
2364 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2365 ROCKET_VERSION, ROCKET_DATE);
2366
2367 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2368 if (!rocket_driver)
2369 goto err;
2370
2371 /*
2372 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2373 * zero, use the default controller IO address of board1 + 0x40.
2374 */
2375 if (board1) {
2376 if (controller == 0)
2377 controller = board1 + 0x40;
2378 } else {
2379 controller = 0; /* Used as a flag, meaning no ISA boards */
2380 }
2381
2382 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2383 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2384 printk(KERN_ERR "Unable to reserve IO region for first "
2385 "configured ISA RocketPort controller 0x%lx. "
2386 "Driver exiting\n", controller);
2387 ret = -EBUSY;
2388 goto err_tty;
2389 }
2390
2391 /* Store ISA variable retrieved from command line or .conf file. */
2392 rcktpt_io_addr[0] = board1;
2393 rcktpt_io_addr[1] = board2;
2394 rcktpt_io_addr[2] = board3;
2395 rcktpt_io_addr[3] = board4;
2396
2397 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2398 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2399 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2400 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2401 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2402 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2403 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2404 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2405
2406 /*
2407 * Set up the tty driver structure and then register this
2408 * driver with the tty layer.
2409 */
2410
2411 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2412 rocket_driver->name = "ttyR";
2413 rocket_driver->driver_name = "Comtrol RocketPort";
2414 rocket_driver->major = TTY_ROCKET_MAJOR;
2415 rocket_driver->minor_start = 0;
2416 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2417 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2418 rocket_driver->init_termios = tty_std_termios;
2419 rocket_driver->init_termios.c_cflag =
2420 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2421 rocket_driver->init_termios.c_ispeed = 9600;
2422 rocket_driver->init_termios.c_ospeed = 9600;
2423#ifdef ROCKET_SOFT_FLOW
2424 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2425#endif
2426 tty_set_operations(rocket_driver, &rocket_ops);
2427
2428 ret = tty_register_driver(rocket_driver);
2429 if (ret < 0) {
2430 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2431 goto err_controller;
2432 }
2433
2434#ifdef ROCKET_DEBUG_OPEN
2435 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2436#endif
2437
2438 /*
2439 * OK, let's probe each of the controllers looking for boards. Any boards found
2440 * will be initialized here.
2441 */
2442 isa_boards_found = 0;
2443 pci_boards_found = 0;
2444
2445 for (i = 0; i < NUM_BOARDS; i++) {
2446 if (init_ISA(i))
2447 isa_boards_found++;
2448 }
2449
2450#ifdef CONFIG_PCI
2451 if (isa_boards_found < NUM_BOARDS)
2452 pci_boards_found = init_PCI(isa_boards_found);
2453#endif
2454
2455 max_board = pci_boards_found + isa_boards_found;
2456
2457 if (max_board == 0) {
2458 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2459 ret = -ENXIO;
2460 goto err_ttyu;
2461 }
2462
2463 return 0;
2464err_ttyu:
2465 tty_unregister_driver(rocket_driver);
2466err_controller:
2467 if (controller)
2468 release_region(controller, 4);
2469err_tty:
2470 put_tty_driver(rocket_driver);
2471err:
2472 return ret;
2473}
2474
2475
2476static void rp_cleanup_module(void)
2477{
2478 int retval;
2479 int i;
2480
2481 del_timer_sync(&rocket_timer);
2482
2483 retval = tty_unregister_driver(rocket_driver);
2484 if (retval)
2485 printk(KERN_ERR "Error %d while trying to unregister "
2486 "rocketport driver\n", -retval);
2487
2488 for (i = 0; i < MAX_RP_PORTS; i++)
2489 if (rp_table[i]) {
2490 tty_unregister_device(rocket_driver, i);
2491 tty_port_destroy(&rp_table[i]->port);
2492 kfree(rp_table[i]);
2493 }
2494
2495 put_tty_driver(rocket_driver);
2496
2497 for (i = 0; i < NUM_BOARDS; i++) {
2498 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2499 continue;
2500 release_region(rcktpt_io_addr[i], 64);
2501 }
2502 if (controller)
2503 release_region(controller, 4);
2504}
2505
2506/***************************************************************************
2507Function: sInitController
2508Purpose: Initialization of controller global registers and controller
2509 structure.
2510Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2511 IRQNum,Frequency,PeriodicOnly)
2512 CONTROLLER_T *CtlP; Ptr to controller structure
2513 int CtlNum; Controller number
2514 ByteIO_t MudbacIO; Mudbac base I/O address.
2515 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2516 This list must be in the order the AIOPs will be found on the
2517 controller. Once an AIOP in the list is not found, it is
2518 assumed that there are no more AIOPs on the controller.
2519 int AiopIOListSize; Number of addresses in AiopIOList
2520 int IRQNum; Interrupt Request number. Can be any of the following:
2521 0: Disable global interrupts
2522 3: IRQ 3
2523 4: IRQ 4
2524 5: IRQ 5
2525 9: IRQ 9
2526 10: IRQ 10
2527 11: IRQ 11
2528 12: IRQ 12
2529 15: IRQ 15
2530 Byte_t Frequency: A flag identifying the frequency
2531 of the periodic interrupt, can be any one of the following:
2532 FREQ_DIS - periodic interrupt disabled
2533 FREQ_137HZ - 137 Hertz
2534 FREQ_69HZ - 69 Hertz
2535 FREQ_34HZ - 34 Hertz
2536 FREQ_17HZ - 17 Hertz
2537 FREQ_9HZ - 9 Hertz
2538 FREQ_4HZ - 4 Hertz
2539 If IRQNum is set to 0 the Frequency parameter is
2540 overidden, it is forced to a value of FREQ_DIS.
2541 int PeriodicOnly: 1 if all interrupts except the periodic
2542 interrupt are to be blocked.
2543 0 is both the periodic interrupt and
2544 other channel interrupts are allowed.
2545 If IRQNum is set to 0 the PeriodicOnly parameter is
2546 overidden, it is forced to a value of 0.
2547Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2548 initialization failed.
2549
2550Comments:
2551 If periodic interrupts are to be disabled but AIOP interrupts
2552 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2553
2554 If interrupts are to be completely disabled set IRQNum to 0.
2555
2556 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2557 invalid combination.
2558
2559 This function performs initialization of global interrupt modes,
2560 but it does not actually enable global interrupts. To enable
2561 and disable global interrupts use functions sEnGlobalInt() and
2562 sDisGlobalInt(). Enabling of global interrupts is normally not
2563 done until all other initializations are complete.
2564
2565 Even if interrupts are globally enabled, they must also be
2566 individually enabled for each channel that is to generate
2567 interrupts.
2568
2569Warnings: No range checking on any of the parameters is done.
2570
2571 No context switches are allowed while executing this function.
2572
2573 After this function all AIOPs on the controller are disabled,
2574 they can be enabled with sEnAiop().
2575*/
2576static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2577 ByteIO_t * AiopIOList, int AiopIOListSize,
2578 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2579{
2580 int i;
2581 ByteIO_t io;
2582 int done;
2583
2584 CtlP->AiopIntrBits = aiop_intr_bits;
2585 CtlP->AltChanRingIndicator = 0;
2586 CtlP->CtlNum = CtlNum;
2587 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2588 CtlP->BusType = isISA;
2589 CtlP->MBaseIO = MudbacIO;
2590 CtlP->MReg1IO = MudbacIO + 1;
2591 CtlP->MReg2IO = MudbacIO + 2;
2592 CtlP->MReg3IO = MudbacIO + 3;
2593#if 1
2594 CtlP->MReg2 = 0; /* interrupt disable */
2595 CtlP->MReg3 = 0; /* no periodic interrupts */
2596#else
2597 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2598 CtlP->MReg2 = 0; /* interrupt disable */
2599 CtlP->MReg3 = 0; /* no periodic interrupts */
2600 } else {
2601 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2602 CtlP->MReg3 = Frequency; /* set frequency */
2603 if (PeriodicOnly) { /* periodic interrupt only */
2604 CtlP->MReg3 |= PERIODIC_ONLY;
2605 }
2606 }
2607#endif
2608 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2609 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2610 sControllerEOI(CtlP); /* clear EOI if warm init */
2611 /* Init AIOPs */
2612 CtlP->NumAiop = 0;
2613 for (i = done = 0; i < AiopIOListSize; i++) {
2614 io = AiopIOList[i];
2615 CtlP->AiopIO[i] = (WordIO_t) io;
2616 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2617 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2618 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2619 if (done)
2620 continue;
2621 sEnAiop(CtlP, i); /* enable the AIOP */
2622 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2623 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2624 done = 1; /* done looking for AIOPs */
2625 else {
2626 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2627 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2628 sOutB(io + _INDX_DATA, sClockPrescale);
2629 CtlP->NumAiop++; /* bump count of AIOPs */
2630 }
2631 sDisAiop(CtlP, i); /* disable AIOP */
2632 }
2633
2634 if (CtlP->NumAiop == 0)
2635 return (-1);
2636 else
2637 return (CtlP->NumAiop);
2638}
2639
2640/***************************************************************************
2641Function: sReadAiopID
2642Purpose: Read the AIOP idenfication number directly from an AIOP.
2643Call: sReadAiopID(io)
2644 ByteIO_t io: AIOP base I/O address
2645Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2646 is replace by an identifying number.
2647 Flag AIOPID_NULL if no valid AIOP is found
2648Warnings: No context switches are allowed while executing this function.
2649
2650*/
2651static int sReadAiopID(ByteIO_t io)
2652{
2653 Byte_t AiopID; /* ID byte from AIOP */
2654
2655 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2656 sOutB(io + _CMD_REG, 0x0);
2657 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2658 if (AiopID == 0x06)
2659 return (1);
2660 else /* AIOP does not exist */
2661 return (-1);
2662}
2663
2664/***************************************************************************
2665Function: sReadAiopNumChan
2666Purpose: Read the number of channels available in an AIOP directly from
2667 an AIOP.
2668Call: sReadAiopNumChan(io)
2669 WordIO_t io: AIOP base I/O address
2670Return: int: The number of channels available
2671Comments: The number of channels is determined by write/reads from identical
2672 offsets within the SRAM address spaces for channels 0 and 4.
2673 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2674 AIOP, otherwise it is an 8 channel.
2675Warnings: No context switches are allowed while executing this function.
2676*/
2677static int sReadAiopNumChan(WordIO_t io)
2678{
2679 Word_t x;
2680 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2681
2682 /* write to chan 0 SRAM */
2683 out32((DWordIO_t) io + _INDX_ADDR, R);
2684 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2685 x = sInW(io + _INDX_DATA);
2686 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2687 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2688 return (8);
2689 else
2690 return (4);
2691}
2692
2693/***************************************************************************
2694Function: sInitChan
2695Purpose: Initialization of a channel and channel structure
2696Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2697 CONTROLLER_T *CtlP; Ptr to controller structure
2698 CHANNEL_T *ChP; Ptr to channel structure
2699 int AiopNum; AIOP number within controller
2700 int ChanNum; Channel number within AIOP
2701Return: int: 1 if initialization succeeded, 0 if it fails because channel
2702 number exceeds number of channels available in AIOP.
2703Comments: This function must be called before a channel can be used.
2704Warnings: No range checking on any of the parameters is done.
2705
2706 No context switches are allowed while executing this function.
2707*/
2708static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2709 int ChanNum)
2710{
2711 int i;
2712 WordIO_t AiopIO;
2713 WordIO_t ChIOOff;
2714 Byte_t *ChR;
2715 Word_t ChOff;
2716 static Byte_t R[4];
2717 int brd9600;
2718
2719 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2720 return 0; /* exceeds num chans in AIOP */
2721
2722 /* Channel, AIOP, and controller identifiers */
2723 ChP->CtlP = CtlP;
2724 ChP->ChanID = CtlP->AiopID[AiopNum];
2725 ChP->AiopNum = AiopNum;
2726 ChP->ChanNum = ChanNum;
2727
2728 /* Global direct addresses */
2729 AiopIO = CtlP->AiopIO[AiopNum];
2730 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2731 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2732 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2733 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2734 ChP->IndexData = AiopIO + _INDX_DATA;
2735
2736 /* Channel direct addresses */
2737 ChIOOff = AiopIO + ChP->ChanNum * 2;
2738 ChP->TxRxData = ChIOOff + _TD0;
2739 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2740 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2741 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2742
2743 /* Initialize the channel from the RData array */
2744 for (i = 0; i < RDATASIZE; i += 4) {
2745 R[0] = RData[i];
2746 R[1] = RData[i + 1] + 0x10 * ChanNum;
2747 R[2] = RData[i + 2];
2748 R[3] = RData[i + 3];
2749 out32(ChP->IndexAddr, R);
2750 }
2751
2752 ChR = ChP->R;
2753 for (i = 0; i < RREGDATASIZE; i += 4) {
2754 ChR[i] = RRegData[i];
2755 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2756 ChR[i + 2] = RRegData[i + 2];
2757 ChR[i + 3] = RRegData[i + 3];
2758 }
2759
2760 /* Indexed registers */
2761 ChOff = (Word_t) ChanNum *0x1000;
2762
2763 if (sClockPrescale == 0x14)
2764 brd9600 = 47;
2765 else
2766 brd9600 = 23;
2767
2768 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2769 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2770 ChP->BaudDiv[2] = (Byte_t) brd9600;
2771 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2772 out32(ChP->IndexAddr, ChP->BaudDiv);
2773
2774 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2775 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2776 ChP->TxControl[2] = 0;
2777 ChP->TxControl[3] = 0;
2778 out32(ChP->IndexAddr, ChP->TxControl);
2779
2780 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2781 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2782 ChP->RxControl[2] = 0;
2783 ChP->RxControl[3] = 0;
2784 out32(ChP->IndexAddr, ChP->RxControl);
2785
2786 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2787 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2788 ChP->TxEnables[2] = 0;
2789 ChP->TxEnables[3] = 0;
2790 out32(ChP->IndexAddr, ChP->TxEnables);
2791
2792 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2793 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2794 ChP->TxCompare[2] = 0;
2795 ChP->TxCompare[3] = 0;
2796 out32(ChP->IndexAddr, ChP->TxCompare);
2797
2798 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2799 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2800 ChP->TxReplace1[2] = 0;
2801 ChP->TxReplace1[3] = 0;
2802 out32(ChP->IndexAddr, ChP->TxReplace1);
2803
2804 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2805 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2806 ChP->TxReplace2[2] = 0;
2807 ChP->TxReplace2[3] = 0;
2808 out32(ChP->IndexAddr, ChP->TxReplace2);
2809
2810 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2811 ChP->TxFIFO = ChOff + _TX_FIFO;
2812
2813 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2814 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2815 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2816 sOutW(ChP->IndexData, 0);
2817 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2818 ChP->RxFIFO = ChOff + _RX_FIFO;
2819
2820 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2821 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2822 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2823 sOutW(ChP->IndexData, 0);
2824 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2825 sOutW(ChP->IndexData, 0);
2826 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2827 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2828 sOutB(ChP->IndexData, 0);
2829 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2830 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2831 sOutB(ChP->IndexData, 0);
2832 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2833 sEnRxProcessor(ChP); /* start the Rx processor */
2834
2835 return 1;
2836}
2837
2838/***************************************************************************
2839Function: sStopRxProcessor
2840Purpose: Stop the receive processor from processing a channel.
2841Call: sStopRxProcessor(ChP)
2842 CHANNEL_T *ChP; Ptr to channel structure
2843
2844Comments: The receive processor can be started again with sStartRxProcessor().
2845 This function causes the receive processor to skip over the
2846 stopped channel. It does not stop it from processing other channels.
2847
2848Warnings: No context switches are allowed while executing this function.
2849
2850 Do not leave the receive processor stopped for more than one
2851 character time.
2852
2853 After calling this function a delay of 4 uS is required to ensure
2854 that the receive processor is no longer processing this channel.
2855*/
2856static void sStopRxProcessor(CHANNEL_T * ChP)
2857{
2858 Byte_t R[4];
2859
2860 R[0] = ChP->R[0];
2861 R[1] = ChP->R[1];
2862 R[2] = 0x0a;
2863 R[3] = ChP->R[3];
2864 out32(ChP->IndexAddr, R);
2865}
2866
2867/***************************************************************************
2868Function: sFlushRxFIFO
2869Purpose: Flush the Rx FIFO
2870Call: sFlushRxFIFO(ChP)
2871 CHANNEL_T *ChP; Ptr to channel structure
2872Return: void
2873Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2874 while it is being flushed the receive processor is stopped
2875 and the transmitter is disabled. After these operations a
2876 4 uS delay is done before clearing the pointers to allow
2877 the receive processor to stop. These items are handled inside
2878 this function.
2879Warnings: No context switches are allowed while executing this function.
2880*/
2881static void sFlushRxFIFO(CHANNEL_T * ChP)
2882{
2883 int i;
2884 Byte_t Ch; /* channel number within AIOP */
2885 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
2886
2887 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
2888 return; /* don't need to flush */
2889
2890 RxFIFOEnabled = 0;
2891 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
2892 RxFIFOEnabled = 1;
2893 sDisRxFIFO(ChP); /* disable it */
2894 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
2895 sInB(ChP->IntChan); /* depends on bus i/o timing */
2896 }
2897 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
2898 Ch = (Byte_t) sGetChanNum(ChP);
2899 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
2900 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
2901 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2902 sOutW(ChP->IndexData, 0);
2903 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2904 sOutW(ChP->IndexData, 0);
2905 if (RxFIFOEnabled)
2906 sEnRxFIFO(ChP); /* enable Rx FIFO */
2907}
2908
2909/***************************************************************************
2910Function: sFlushTxFIFO
2911Purpose: Flush the Tx FIFO
2912Call: sFlushTxFIFO(ChP)
2913 CHANNEL_T *ChP; Ptr to channel structure
2914Return: void
2915Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2916 while it is being flushed the receive processor is stopped
2917 and the transmitter is disabled. After these operations a
2918 4 uS delay is done before clearing the pointers to allow
2919 the receive processor to stop. These items are handled inside
2920 this function.
2921Warnings: No context switches are allowed while executing this function.
2922*/
2923static void sFlushTxFIFO(CHANNEL_T * ChP)
2924{
2925 int i;
2926 Byte_t Ch; /* channel number within AIOP */
2927 int TxEnabled; /* 1 if transmitter enabled */
2928
2929 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
2930 return; /* don't need to flush */
2931
2932 TxEnabled = 0;
2933 if (ChP->TxControl[3] & TX_ENABLE) {
2934 TxEnabled = 1;
2935 sDisTransmit(ChP); /* disable transmitter */
2936 }
2937 sStopRxProcessor(ChP); /* stop Rx processor */
2938 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
2939 sInB(ChP->IntChan); /* depends on bus i/o timing */
2940 Ch = (Byte_t) sGetChanNum(ChP);
2941 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
2942 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
2943 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2944 sOutW(ChP->IndexData, 0);
2945 if (TxEnabled)
2946 sEnTransmit(ChP); /* enable transmitter */
2947 sStartRxProcessor(ChP); /* restart Rx processor */
2948}
2949
2950/***************************************************************************
2951Function: sWriteTxPrioByte
2952Purpose: Write a byte of priority transmit data to a channel
2953Call: sWriteTxPrioByte(ChP,Data)
2954 CHANNEL_T *ChP; Ptr to channel structure
2955 Byte_t Data; The transmit data byte
2956
2957Return: int: 1 if the bytes is successfully written, otherwise 0.
2958
2959Comments: The priority byte is transmitted before any data in the Tx FIFO.
2960
2961Warnings: No context switches are allowed while executing this function.
2962*/
2963static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
2964{
2965 Byte_t DWBuf[4]; /* buffer for double word writes */
2966 Word_t *WordPtr; /* must be far because Win SS != DS */
2967 register DWordIO_t IndexAddr;
2968
2969 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
2970 IndexAddr = ChP->IndexAddr;
2971 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
2972 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
2973 return (0); /* nothing sent */
2974
2975 WordPtr = (Word_t *) (&DWBuf[0]);
2976 *WordPtr = ChP->TxPrioBuf; /* data byte address */
2977
2978 DWBuf[2] = Data; /* data byte value */
2979 out32(IndexAddr, DWBuf); /* write it out */
2980
2981 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
2982
2983 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
2984 DWBuf[3] = 0; /* priority buffer pointer */
2985 out32(IndexAddr, DWBuf); /* write it out */
2986 } else { /* write it to Tx FIFO */
2987
2988 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
2989 }
2990 return (1); /* 1 byte sent */
2991}
2992
2993/***************************************************************************
2994Function: sEnInterrupts
2995Purpose: Enable one or more interrupts for a channel
2996Call: sEnInterrupts(ChP,Flags)
2997 CHANNEL_T *ChP; Ptr to channel structure
2998 Word_t Flags: Interrupt enable flags, can be any combination
2999 of the following flags:
3000 TXINT_EN: Interrupt on Tx FIFO empty
3001 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3002 sSetRxTrigger())
3003 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3004 MCINT_EN: Interrupt on modem input change
3005 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3006 Interrupt Channel Register.
3007Return: void
3008Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3009 enabled. If an interrupt enable flag is not set in Flags, that
3010 interrupt will not be changed. Interrupts can be disabled with
3011 function sDisInterrupts().
3012
3013 This function sets the appropriate bit for the channel in the AIOP's
3014 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3015 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3016
3017 Interrupts must also be globally enabled before channel interrupts
3018 will be passed on to the host. This is done with function
3019 sEnGlobalInt().
3020
3021 In some cases it may be desirable to disable interrupts globally but
3022 enable channel interrupts. This would allow the global interrupt
3023 status register to be used to determine which AIOPs need service.
3024*/
3025static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3026{
3027 Byte_t Mask; /* Interrupt Mask Register */
3028
3029 ChP->RxControl[2] |=
3030 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3031
3032 out32(ChP->IndexAddr, ChP->RxControl);
3033
3034 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3035
3036 out32(ChP->IndexAddr, ChP->TxControl);
3037
3038 if (Flags & CHANINT_EN) {
3039 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3040 sOutB(ChP->IntMask, Mask);
3041 }
3042}
3043
3044/***************************************************************************
3045Function: sDisInterrupts
3046Purpose: Disable one or more interrupts for a channel
3047Call: sDisInterrupts(ChP,Flags)
3048 CHANNEL_T *ChP; Ptr to channel structure
3049 Word_t Flags: Interrupt flags, can be any combination
3050 of the following flags:
3051 TXINT_EN: Interrupt on Tx FIFO empty
3052 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3053 sSetRxTrigger())
3054 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3055 MCINT_EN: Interrupt on modem input change
3056 CHANINT_EN: Disable channel interrupt signal to the
3057 AIOP's Interrupt Channel Register.
3058Return: void
3059Comments: If an interrupt flag is set in Flags, that interrupt will be
3060 disabled. If an interrupt flag is not set in Flags, that
3061 interrupt will not be changed. Interrupts can be enabled with
3062 function sEnInterrupts().
3063
3064 This function clears the appropriate bit for the channel in the AIOP's
3065 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3066 this channel's bit from being set in the AIOP's Interrupt Channel
3067 Register.
3068*/
3069static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3070{
3071 Byte_t Mask; /* Interrupt Mask Register */
3072
3073 ChP->RxControl[2] &=
3074 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3075 out32(ChP->IndexAddr, ChP->RxControl);
3076 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3077 out32(ChP->IndexAddr, ChP->TxControl);
3078
3079 if (Flags & CHANINT_EN) {
3080 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3081 sOutB(ChP->IntMask, Mask);
3082 }
3083}
3084
3085static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3086{
3087 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3088}
3089
3090/*
3091 * Not an official SSCI function, but how to reset RocketModems.
3092 * ISA bus version
3093 */
3094static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3095{
3096 ByteIO_t addr;
3097 Byte_t val;
3098
3099 addr = CtlP->AiopIO[0] + 0x400;
3100 val = sInB(CtlP->MReg3IO);
3101 /* if AIOP[1] is not enabled, enable it */
3102 if ((val & 2) == 0) {
3103 val = sInB(CtlP->MReg2IO);
3104 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3105 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3106 }
3107
3108 sEnAiop(CtlP, 1);
3109 if (!on)
3110 addr += 8;
3111 sOutB(addr + chan, 0); /* apply or remove reset */
3112 sDisAiop(CtlP, 1);
3113}
3114
3115/*
3116 * Not an official SSCI function, but how to reset RocketModems.
3117 * PCI bus version
3118 */
3119static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3120{
3121 ByteIO_t addr;
3122
3123 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3124 if (!on)
3125 addr += 8;
3126 sOutB(addr + chan, 0); /* apply or remove reset */
3127}
3128
3129/* Returns the line number given the controller (board), aiop and channel number */
3130static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3131{
3132 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3133}
3134
3135/*
3136 * Stores the line number associated with a given controller (board), aiop
3137 * and channel number.
3138 * Returns: The line number assigned
3139 */
3140static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3141{
3142 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3143 return (nextLineNumber - 1);
3144}