Loading...
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
19#include <linux/cpu_pm.h>
20#include <linux/clockchips.h>
21#include <linux/clocksource.h>
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
24#include <linux/of_address.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27#include <linux/sched_clock.h>
28#include <linux/acpi.h>
29
30#include <asm/arch_timer.h>
31#include <asm/virt.h>
32
33#include <clocksource/arm_arch_timer.h>
34
35#define CNTTIDR 0x08
36#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38#define CNTACR(n) (0x40 + ((n) * 4))
39#define CNTACR_RPCT BIT(0)
40#define CNTACR_RVCT BIT(1)
41#define CNTACR_RFRQ BIT(2)
42#define CNTACR_RVOFF BIT(3)
43#define CNTACR_RWVT BIT(4)
44#define CNTACR_RWPT BIT(5)
45
46#define CNTVCT_LO 0x08
47#define CNTVCT_HI 0x0c
48#define CNTFRQ 0x10
49#define CNTP_TVAL 0x28
50#define CNTP_CTL 0x2c
51#define CNTV_TVAL 0x38
52#define CNTV_CTL 0x3c
53
54#define ARCH_CP15_TIMER BIT(0)
55#define ARCH_MEM_TIMER BIT(1)
56static unsigned arch_timers_present __initdata;
57
58static void __iomem *arch_counter_base;
59
60struct arch_timer {
61 void __iomem *base;
62 struct clock_event_device evt;
63};
64
65#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67static u32 arch_timer_rate;
68
69enum ppi_nr {
70 PHYS_SECURE_PPI,
71 PHYS_NONSECURE_PPI,
72 VIRT_PPI,
73 HYP_PPI,
74 MAX_TIMER_PPI
75};
76
77static int arch_timer_ppi[MAX_TIMER_PPI];
78
79static struct clock_event_device __percpu *arch_timer_evt;
80
81static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82static bool arch_timer_c3stop;
83static bool arch_timer_mem_use_virtual;
84static bool arch_counter_suspend_stop;
85
86static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88static int __init early_evtstrm_cfg(char *buf)
89{
90 return strtobool(buf, &evtstrm_enable);
91}
92early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94/*
95 * Architected system timer support.
96 */
97
98#ifdef CONFIG_FSL_ERRATUM_A008585
99DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101
102static int fsl_a008585_enable = -1;
103
104static int __init early_fsl_a008585_cfg(char *buf)
105{
106 int ret;
107 bool val;
108
109 ret = strtobool(buf, &val);
110 if (ret)
111 return ret;
112
113 fsl_a008585_enable = val;
114 return 0;
115}
116early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
117
118u32 __fsl_a008585_read_cntp_tval_el0(void)
119{
120 return __fsl_a008585_read_reg(cntp_tval_el0);
121}
122
123u32 __fsl_a008585_read_cntv_tval_el0(void)
124{
125 return __fsl_a008585_read_reg(cntv_tval_el0);
126}
127
128u64 __fsl_a008585_read_cntvct_el0(void)
129{
130 return __fsl_a008585_read_reg(cntvct_el0);
131}
132EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
133#endif /* CONFIG_FSL_ERRATUM_A008585 */
134
135static __always_inline
136void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137 struct clock_event_device *clk)
138{
139 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
140 struct arch_timer *timer = to_arch_timer(clk);
141 switch (reg) {
142 case ARCH_TIMER_REG_CTRL:
143 writel_relaxed(val, timer->base + CNTP_CTL);
144 break;
145 case ARCH_TIMER_REG_TVAL:
146 writel_relaxed(val, timer->base + CNTP_TVAL);
147 break;
148 }
149 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
150 struct arch_timer *timer = to_arch_timer(clk);
151 switch (reg) {
152 case ARCH_TIMER_REG_CTRL:
153 writel_relaxed(val, timer->base + CNTV_CTL);
154 break;
155 case ARCH_TIMER_REG_TVAL:
156 writel_relaxed(val, timer->base + CNTV_TVAL);
157 break;
158 }
159 } else {
160 arch_timer_reg_write_cp15(access, reg, val);
161 }
162}
163
164static __always_inline
165u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166 struct clock_event_device *clk)
167{
168 u32 val;
169
170 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
171 struct arch_timer *timer = to_arch_timer(clk);
172 switch (reg) {
173 case ARCH_TIMER_REG_CTRL:
174 val = readl_relaxed(timer->base + CNTP_CTL);
175 break;
176 case ARCH_TIMER_REG_TVAL:
177 val = readl_relaxed(timer->base + CNTP_TVAL);
178 break;
179 }
180 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
181 struct arch_timer *timer = to_arch_timer(clk);
182 switch (reg) {
183 case ARCH_TIMER_REG_CTRL:
184 val = readl_relaxed(timer->base + CNTV_CTL);
185 break;
186 case ARCH_TIMER_REG_TVAL:
187 val = readl_relaxed(timer->base + CNTV_TVAL);
188 break;
189 }
190 } else {
191 val = arch_timer_reg_read_cp15(access, reg);
192 }
193
194 return val;
195}
196
197static __always_inline irqreturn_t timer_handler(const int access,
198 struct clock_event_device *evt)
199{
200 unsigned long ctrl;
201
202 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
204 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206 evt->event_handler(evt);
207 return IRQ_HANDLED;
208 }
209
210 return IRQ_NONE;
211}
212
213static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
214{
215 struct clock_event_device *evt = dev_id;
216
217 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
218}
219
220static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
221{
222 struct clock_event_device *evt = dev_id;
223
224 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
225}
226
227static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
228{
229 struct clock_event_device *evt = dev_id;
230
231 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
232}
233
234static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
235{
236 struct clock_event_device *evt = dev_id;
237
238 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
239}
240
241static __always_inline int timer_shutdown(const int access,
242 struct clock_event_device *clk)
243{
244 unsigned long ctrl;
245
246 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
247 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
248 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
249
250 return 0;
251}
252
253static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254{
255 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256}
257
258static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259{
260 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261}
262
263static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264{
265 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266}
267
268static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269{
270 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271}
272
273static __always_inline void set_next_event(const int access, unsigned long evt,
274 struct clock_event_device *clk)
275{
276 unsigned long ctrl;
277 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278 ctrl |= ARCH_TIMER_CTRL_ENABLE;
279 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
281 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282}
283
284#ifdef CONFIG_FSL_ERRATUM_A008585
285static __always_inline void fsl_a008585_set_next_event(const int access,
286 unsigned long evt, struct clock_event_device *clk)
287{
288 unsigned long ctrl;
289 u64 cval = evt + arch_counter_get_cntvct();
290
291 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
292 ctrl |= ARCH_TIMER_CTRL_ENABLE;
293 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
294
295 if (access == ARCH_TIMER_PHYS_ACCESS)
296 write_sysreg(cval, cntp_cval_el0);
297 else if (access == ARCH_TIMER_VIRT_ACCESS)
298 write_sysreg(cval, cntv_cval_el0);
299
300 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
301}
302
303static int fsl_a008585_set_next_event_virt(unsigned long evt,
304 struct clock_event_device *clk)
305{
306 fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
307 return 0;
308}
309
310static int fsl_a008585_set_next_event_phys(unsigned long evt,
311 struct clock_event_device *clk)
312{
313 fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
314 return 0;
315}
316#endif /* CONFIG_FSL_ERRATUM_A008585 */
317
318static int arch_timer_set_next_event_virt(unsigned long evt,
319 struct clock_event_device *clk)
320{
321 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322 return 0;
323}
324
325static int arch_timer_set_next_event_phys(unsigned long evt,
326 struct clock_event_device *clk)
327{
328 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329 return 0;
330}
331
332static int arch_timer_set_next_event_virt_mem(unsigned long evt,
333 struct clock_event_device *clk)
334{
335 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
336 return 0;
337}
338
339static int arch_timer_set_next_event_phys_mem(unsigned long evt,
340 struct clock_event_device *clk)
341{
342 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
343 return 0;
344}
345
346static void fsl_a008585_set_sne(struct clock_event_device *clk)
347{
348#ifdef CONFIG_FSL_ERRATUM_A008585
349 if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
350 return;
351
352 if (arch_timer_uses_ppi == VIRT_PPI)
353 clk->set_next_event = fsl_a008585_set_next_event_virt;
354 else
355 clk->set_next_event = fsl_a008585_set_next_event_phys;
356#endif
357}
358
359static void __arch_timer_setup(unsigned type,
360 struct clock_event_device *clk)
361{
362 clk->features = CLOCK_EVT_FEAT_ONESHOT;
363
364 if (type == ARCH_CP15_TIMER) {
365 if (arch_timer_c3stop)
366 clk->features |= CLOCK_EVT_FEAT_C3STOP;
367 clk->name = "arch_sys_timer";
368 clk->rating = 450;
369 clk->cpumask = cpumask_of(smp_processor_id());
370 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
371 switch (arch_timer_uses_ppi) {
372 case VIRT_PPI:
373 clk->set_state_shutdown = arch_timer_shutdown_virt;
374 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375 clk->set_next_event = arch_timer_set_next_event_virt;
376 break;
377 case PHYS_SECURE_PPI:
378 case PHYS_NONSECURE_PPI:
379 case HYP_PPI:
380 clk->set_state_shutdown = arch_timer_shutdown_phys;
381 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382 clk->set_next_event = arch_timer_set_next_event_phys;
383 break;
384 default:
385 BUG();
386 }
387
388 fsl_a008585_set_sne(clk);
389 } else {
390 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391 clk->name = "arch_mem_timer";
392 clk->rating = 400;
393 clk->cpumask = cpu_all_mask;
394 if (arch_timer_mem_use_virtual) {
395 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397 clk->set_next_event =
398 arch_timer_set_next_event_virt_mem;
399 } else {
400 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402 clk->set_next_event =
403 arch_timer_set_next_event_phys_mem;
404 }
405 }
406
407 clk->set_state_shutdown(clk);
408
409 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
410}
411
412static void arch_timer_evtstrm_enable(int divider)
413{
414 u32 cntkctl = arch_timer_get_cntkctl();
415
416 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
417 /* Set the divider and enable virtual event stream */
418 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
419 | ARCH_TIMER_VIRT_EVT_EN;
420 arch_timer_set_cntkctl(cntkctl);
421 elf_hwcap |= HWCAP_EVTSTRM;
422#ifdef CONFIG_COMPAT
423 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
424#endif
425}
426
427static void arch_timer_configure_evtstream(void)
428{
429 int evt_stream_div, pos;
430
431 /* Find the closest power of two to the divisor */
432 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
433 pos = fls(evt_stream_div);
434 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
435 pos--;
436 /* enable event stream */
437 arch_timer_evtstrm_enable(min(pos, 15));
438}
439
440static void arch_counter_set_user_access(void)
441{
442 u32 cntkctl = arch_timer_get_cntkctl();
443
444 /* Disable user access to the timers and the physical counter */
445 /* Also disable virtual event stream */
446 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
447 | ARCH_TIMER_USR_VT_ACCESS_EN
448 | ARCH_TIMER_VIRT_EVT_EN
449 | ARCH_TIMER_USR_PCT_ACCESS_EN);
450
451 /* Enable user access to the virtual counter */
452 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
453
454 arch_timer_set_cntkctl(cntkctl);
455}
456
457static bool arch_timer_has_nonsecure_ppi(void)
458{
459 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
460 arch_timer_ppi[PHYS_NONSECURE_PPI]);
461}
462
463static u32 check_ppi_trigger(int irq)
464{
465 u32 flags = irq_get_trigger_type(irq);
466
467 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
468 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
469 pr_warn("WARNING: Please fix your firmware\n");
470 flags = IRQF_TRIGGER_LOW;
471 }
472
473 return flags;
474}
475
476static int arch_timer_starting_cpu(unsigned int cpu)
477{
478 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
479 u32 flags;
480
481 __arch_timer_setup(ARCH_CP15_TIMER, clk);
482
483 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
484 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
485
486 if (arch_timer_has_nonsecure_ppi()) {
487 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
488 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
489 }
490
491 arch_counter_set_user_access();
492 if (evtstrm_enable)
493 arch_timer_configure_evtstream();
494
495 return 0;
496}
497
498static void
499arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
500{
501 /* Who has more than one independent system counter? */
502 if (arch_timer_rate)
503 return;
504
505 /*
506 * Try to determine the frequency from the device tree or CNTFRQ,
507 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
508 */
509 if (!acpi_disabled ||
510 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
511 if (cntbase)
512 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
513 else
514 arch_timer_rate = arch_timer_get_cntfrq();
515 }
516
517 /* Check the timer frequency. */
518 if (arch_timer_rate == 0)
519 pr_warn("Architected timer frequency not available\n");
520}
521
522static void arch_timer_banner(unsigned type)
523{
524 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
525 type & ARCH_CP15_TIMER ? "cp15" : "",
526 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
527 type & ARCH_MEM_TIMER ? "mmio" : "",
528 (unsigned long)arch_timer_rate / 1000000,
529 (unsigned long)(arch_timer_rate / 10000) % 100,
530 type & ARCH_CP15_TIMER ?
531 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
532 "",
533 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
534 type & ARCH_MEM_TIMER ?
535 arch_timer_mem_use_virtual ? "virt" : "phys" :
536 "");
537}
538
539u32 arch_timer_get_rate(void)
540{
541 return arch_timer_rate;
542}
543
544static u64 arch_counter_get_cntvct_mem(void)
545{
546 u32 vct_lo, vct_hi, tmp_hi;
547
548 do {
549 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
550 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
551 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
552 } while (vct_hi != tmp_hi);
553
554 return ((u64) vct_hi << 32) | vct_lo;
555}
556
557/*
558 * Default to cp15 based access because arm64 uses this function for
559 * sched_clock() before DT is probed and the cp15 method is guaranteed
560 * to exist on arm64. arm doesn't use this before DT is probed so even
561 * if we don't have the cp15 accessors we won't have a problem.
562 */
563u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
564
565static u64 arch_counter_read(struct clocksource *cs)
566{
567 return arch_timer_read_counter();
568}
569
570static u64 arch_counter_read_cc(const struct cyclecounter *cc)
571{
572 return arch_timer_read_counter();
573}
574
575static struct clocksource clocksource_counter = {
576 .name = "arch_sys_counter",
577 .rating = 400,
578 .read = arch_counter_read,
579 .mask = CLOCKSOURCE_MASK(56),
580 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
581};
582
583static struct cyclecounter cyclecounter = {
584 .read = arch_counter_read_cc,
585 .mask = CLOCKSOURCE_MASK(56),
586};
587
588static struct arch_timer_kvm_info arch_timer_kvm_info;
589
590struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
591{
592 return &arch_timer_kvm_info;
593}
594
595static void __init arch_counter_register(unsigned type)
596{
597 u64 start_count;
598
599 /* Register the CP15 based counter if we have one */
600 if (type & ARCH_CP15_TIMER) {
601 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
602 arch_timer_read_counter = arch_counter_get_cntvct;
603 else
604 arch_timer_read_counter = arch_counter_get_cntpct;
605
606 clocksource_counter.archdata.vdso_direct = true;
607
608#ifdef CONFIG_FSL_ERRATUM_A008585
609 /*
610 * Don't use the vdso fastpath if errata require using
611 * the out-of-line counter accessor.
612 */
613 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
614 clocksource_counter.archdata.vdso_direct = false;
615#endif
616 } else {
617 arch_timer_read_counter = arch_counter_get_cntvct_mem;
618 }
619
620 if (!arch_counter_suspend_stop)
621 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
622 start_count = arch_timer_read_counter();
623 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
624 cyclecounter.mult = clocksource_counter.mult;
625 cyclecounter.shift = clocksource_counter.shift;
626 timecounter_init(&arch_timer_kvm_info.timecounter,
627 &cyclecounter, start_count);
628
629 /* 56 bits minimum, so we assume worst case rollover */
630 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
631}
632
633static void arch_timer_stop(struct clock_event_device *clk)
634{
635 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
636 clk->irq, smp_processor_id());
637
638 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
639 if (arch_timer_has_nonsecure_ppi())
640 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
641
642 clk->set_state_shutdown(clk);
643}
644
645static int arch_timer_dying_cpu(unsigned int cpu)
646{
647 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
648
649 arch_timer_stop(clk);
650 return 0;
651}
652
653#ifdef CONFIG_CPU_PM
654static unsigned int saved_cntkctl;
655static int arch_timer_cpu_pm_notify(struct notifier_block *self,
656 unsigned long action, void *hcpu)
657{
658 if (action == CPU_PM_ENTER)
659 saved_cntkctl = arch_timer_get_cntkctl();
660 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
661 arch_timer_set_cntkctl(saved_cntkctl);
662 return NOTIFY_OK;
663}
664
665static struct notifier_block arch_timer_cpu_pm_notifier = {
666 .notifier_call = arch_timer_cpu_pm_notify,
667};
668
669static int __init arch_timer_cpu_pm_init(void)
670{
671 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
672}
673
674static void __init arch_timer_cpu_pm_deinit(void)
675{
676 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
677}
678
679#else
680static int __init arch_timer_cpu_pm_init(void)
681{
682 return 0;
683}
684
685static void __init arch_timer_cpu_pm_deinit(void)
686{
687}
688#endif
689
690static int __init arch_timer_register(void)
691{
692 int err;
693 int ppi;
694
695 arch_timer_evt = alloc_percpu(struct clock_event_device);
696 if (!arch_timer_evt) {
697 err = -ENOMEM;
698 goto out;
699 }
700
701 ppi = arch_timer_ppi[arch_timer_uses_ppi];
702 switch (arch_timer_uses_ppi) {
703 case VIRT_PPI:
704 err = request_percpu_irq(ppi, arch_timer_handler_virt,
705 "arch_timer", arch_timer_evt);
706 break;
707 case PHYS_SECURE_PPI:
708 case PHYS_NONSECURE_PPI:
709 err = request_percpu_irq(ppi, arch_timer_handler_phys,
710 "arch_timer", arch_timer_evt);
711 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
712 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
713 err = request_percpu_irq(ppi, arch_timer_handler_phys,
714 "arch_timer", arch_timer_evt);
715 if (err)
716 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
717 arch_timer_evt);
718 }
719 break;
720 case HYP_PPI:
721 err = request_percpu_irq(ppi, arch_timer_handler_phys,
722 "arch_timer", arch_timer_evt);
723 break;
724 default:
725 BUG();
726 }
727
728 if (err) {
729 pr_err("arch_timer: can't register interrupt %d (%d)\n",
730 ppi, err);
731 goto out_free;
732 }
733
734 err = arch_timer_cpu_pm_init();
735 if (err)
736 goto out_unreg_notify;
737
738
739 /* Register and immediately configure the timer on the boot CPU */
740 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
741 "clockevents/arm/arch_timer:starting",
742 arch_timer_starting_cpu, arch_timer_dying_cpu);
743 if (err)
744 goto out_unreg_cpupm;
745 return 0;
746
747out_unreg_cpupm:
748 arch_timer_cpu_pm_deinit();
749
750out_unreg_notify:
751 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
752 if (arch_timer_has_nonsecure_ppi())
753 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
754 arch_timer_evt);
755
756out_free:
757 free_percpu(arch_timer_evt);
758out:
759 return err;
760}
761
762static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
763{
764 int ret;
765 irq_handler_t func;
766 struct arch_timer *t;
767
768 t = kzalloc(sizeof(*t), GFP_KERNEL);
769 if (!t)
770 return -ENOMEM;
771
772 t->base = base;
773 t->evt.irq = irq;
774 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
775
776 if (arch_timer_mem_use_virtual)
777 func = arch_timer_handler_virt_mem;
778 else
779 func = arch_timer_handler_phys_mem;
780
781 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
782 if (ret) {
783 pr_err("arch_timer: Failed to request mem timer irq\n");
784 kfree(t);
785 }
786
787 return ret;
788}
789
790static const struct of_device_id arch_timer_of_match[] __initconst = {
791 { .compatible = "arm,armv7-timer", },
792 { .compatible = "arm,armv8-timer", },
793 {},
794};
795
796static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
797 { .compatible = "arm,armv7-timer-mem", },
798 {},
799};
800
801static bool __init
802arch_timer_needs_probing(int type, const struct of_device_id *matches)
803{
804 struct device_node *dn;
805 bool needs_probing = false;
806
807 dn = of_find_matching_node(NULL, matches);
808 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
809 needs_probing = true;
810 of_node_put(dn);
811
812 return needs_probing;
813}
814
815static int __init arch_timer_common_init(void)
816{
817 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
818
819 /* Wait until both nodes are probed if we have two timers */
820 if ((arch_timers_present & mask) != mask) {
821 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
822 return 0;
823 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
824 return 0;
825 }
826
827 arch_timer_banner(arch_timers_present);
828 arch_counter_register(arch_timers_present);
829 return arch_timer_arch_init();
830}
831
832static int __init arch_timer_init(void)
833{
834 int ret;
835 /*
836 * If HYP mode is available, we know that the physical timer
837 * has been configured to be accessible from PL1. Use it, so
838 * that a guest can use the virtual timer instead.
839 *
840 * If no interrupt provided for virtual timer, we'll have to
841 * stick to the physical timer. It'd better be accessible...
842 *
843 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
844 * accesses to CNTP_*_EL1 registers are silently redirected to
845 * their CNTHP_*_EL2 counterparts, and use a different PPI
846 * number.
847 */
848 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
849 bool has_ppi;
850
851 if (is_kernel_in_hyp_mode()) {
852 arch_timer_uses_ppi = HYP_PPI;
853 has_ppi = !!arch_timer_ppi[HYP_PPI];
854 } else {
855 arch_timer_uses_ppi = PHYS_SECURE_PPI;
856 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
857 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
858 }
859
860 if (!has_ppi) {
861 pr_warn("arch_timer: No interrupt available, giving up\n");
862 return -EINVAL;
863 }
864 }
865
866 ret = arch_timer_register();
867 if (ret)
868 return ret;
869
870 ret = arch_timer_common_init();
871 if (ret)
872 return ret;
873
874 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
875
876 return 0;
877}
878
879static int __init arch_timer_of_init(struct device_node *np)
880{
881 int i;
882
883 if (arch_timers_present & ARCH_CP15_TIMER) {
884 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
885 return 0;
886 }
887
888 arch_timers_present |= ARCH_CP15_TIMER;
889 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
890 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
891
892 arch_timer_detect_rate(NULL, np);
893
894 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
895
896#ifdef CONFIG_FSL_ERRATUM_A008585
897 if (fsl_a008585_enable < 0)
898 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
899 if (fsl_a008585_enable) {
900 static_branch_enable(&arch_timer_read_ool_enabled);
901 pr_info("Enabling workaround for FSL erratum A-008585\n");
902 }
903#endif
904
905 /*
906 * If we cannot rely on firmware initializing the timer registers then
907 * we should use the physical timers instead.
908 */
909 if (IS_ENABLED(CONFIG_ARM) &&
910 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
911 arch_timer_uses_ppi = PHYS_SECURE_PPI;
912
913 /* On some systems, the counter stops ticking when in suspend. */
914 arch_counter_suspend_stop = of_property_read_bool(np,
915 "arm,no-tick-in-suspend");
916
917 return arch_timer_init();
918}
919CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
920CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
921
922static int __init arch_timer_mem_init(struct device_node *np)
923{
924 struct device_node *frame, *best_frame = NULL;
925 void __iomem *cntctlbase, *base;
926 unsigned int irq, ret = -EINVAL;
927 u32 cnttidr;
928
929 arch_timers_present |= ARCH_MEM_TIMER;
930 cntctlbase = of_iomap(np, 0);
931 if (!cntctlbase) {
932 pr_err("arch_timer: Can't find CNTCTLBase\n");
933 return -ENXIO;
934 }
935
936 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
937
938 /*
939 * Try to find a virtual capable frame. Otherwise fall back to a
940 * physical capable frame.
941 */
942 for_each_available_child_of_node(np, frame) {
943 int n;
944 u32 cntacr;
945
946 if (of_property_read_u32(frame, "frame-number", &n)) {
947 pr_err("arch_timer: Missing frame-number\n");
948 of_node_put(frame);
949 goto out;
950 }
951
952 /* Try enabling everything, and see what sticks */
953 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
954 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
955 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
956 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
957
958 if ((cnttidr & CNTTIDR_VIRT(n)) &&
959 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
960 of_node_put(best_frame);
961 best_frame = frame;
962 arch_timer_mem_use_virtual = true;
963 break;
964 }
965
966 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
967 continue;
968
969 of_node_put(best_frame);
970 best_frame = of_node_get(frame);
971 }
972
973 ret= -ENXIO;
974 base = arch_counter_base = of_io_request_and_map(best_frame, 0,
975 "arch_mem_timer");
976 if (IS_ERR(base)) {
977 pr_err("arch_timer: Can't map frame's registers\n");
978 goto out;
979 }
980
981 if (arch_timer_mem_use_virtual)
982 irq = irq_of_parse_and_map(best_frame, 1);
983 else
984 irq = irq_of_parse_and_map(best_frame, 0);
985
986 ret = -EINVAL;
987 if (!irq) {
988 pr_err("arch_timer: Frame missing %s irq",
989 arch_timer_mem_use_virtual ? "virt" : "phys");
990 goto out;
991 }
992
993 arch_timer_detect_rate(base, np);
994 ret = arch_timer_mem_register(base, irq);
995 if (ret)
996 goto out;
997
998 return arch_timer_common_init();
999out:
1000 iounmap(cntctlbase);
1001 of_node_put(best_frame);
1002 return ret;
1003}
1004CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005 arch_timer_mem_init);
1006
1007#ifdef CONFIG_ACPI
1008static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1009{
1010 int trigger, polarity;
1011
1012 if (!interrupt)
1013 return 0;
1014
1015 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1016 : ACPI_LEVEL_SENSITIVE;
1017
1018 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1019 : ACPI_ACTIVE_HIGH;
1020
1021 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1022}
1023
1024/* Initialize per-processor generic timer */
1025static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1026{
1027 struct acpi_table_gtdt *gtdt;
1028
1029 if (arch_timers_present & ARCH_CP15_TIMER) {
1030 pr_warn("arch_timer: already initialized, skipping\n");
1031 return -EINVAL;
1032 }
1033
1034 gtdt = container_of(table, struct acpi_table_gtdt, header);
1035
1036 arch_timers_present |= ARCH_CP15_TIMER;
1037
1038 arch_timer_ppi[PHYS_SECURE_PPI] =
1039 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1040 gtdt->secure_el1_flags);
1041
1042 arch_timer_ppi[PHYS_NONSECURE_PPI] =
1043 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1044 gtdt->non_secure_el1_flags);
1045
1046 arch_timer_ppi[VIRT_PPI] =
1047 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1048 gtdt->virtual_timer_flags);
1049
1050 arch_timer_ppi[HYP_PPI] =
1051 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1052 gtdt->non_secure_el2_flags);
1053
1054 /* Get the frequency from CNTFRQ */
1055 arch_timer_detect_rate(NULL, NULL);
1056
1057 /* Always-on capability */
1058 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1059
1060 arch_timer_init();
1061 return 0;
1062}
1063CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064#endif
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/interrupt.h>
19#include <linux/of_irq.h>
20#include <linux/of_address.h>
21#include <linux/io.h>
22#include <linux/slab.h>
23#include <linux/sched_clock.h>
24
25#include <asm/arch_timer.h>
26#include <asm/virt.h>
27
28#include <clocksource/arm_arch_timer.h>
29
30#define CNTTIDR 0x08
31#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
32
33#define CNTVCT_LO 0x08
34#define CNTVCT_HI 0x0c
35#define CNTFRQ 0x10
36#define CNTP_TVAL 0x28
37#define CNTP_CTL 0x2c
38#define CNTV_TVAL 0x38
39#define CNTV_CTL 0x3c
40
41#define ARCH_CP15_TIMER BIT(0)
42#define ARCH_MEM_TIMER BIT(1)
43static unsigned arch_timers_present __initdata;
44
45static void __iomem *arch_counter_base;
46
47struct arch_timer {
48 void __iomem *base;
49 struct clock_event_device evt;
50};
51
52#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
53
54static u32 arch_timer_rate;
55
56enum ppi_nr {
57 PHYS_SECURE_PPI,
58 PHYS_NONSECURE_PPI,
59 VIRT_PPI,
60 HYP_PPI,
61 MAX_TIMER_PPI
62};
63
64static int arch_timer_ppi[MAX_TIMER_PPI];
65
66static struct clock_event_device __percpu *arch_timer_evt;
67
68static bool arch_timer_use_virtual = true;
69static bool arch_timer_c3stop;
70static bool arch_timer_mem_use_virtual;
71
72/*
73 * Architected system timer support.
74 */
75
76static __always_inline
77void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
78 struct clock_event_device *clk)
79{
80 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
81 struct arch_timer *timer = to_arch_timer(clk);
82 switch (reg) {
83 case ARCH_TIMER_REG_CTRL:
84 writel_relaxed(val, timer->base + CNTP_CTL);
85 break;
86 case ARCH_TIMER_REG_TVAL:
87 writel_relaxed(val, timer->base + CNTP_TVAL);
88 break;
89 }
90 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTV_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTV_TVAL);
98 break;
99 }
100 } else {
101 arch_timer_reg_write_cp15(access, reg, val);
102 }
103}
104
105static __always_inline
106u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
107 struct clock_event_device *clk)
108{
109 u32 val;
110
111 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
112 struct arch_timer *timer = to_arch_timer(clk);
113 switch (reg) {
114 case ARCH_TIMER_REG_CTRL:
115 val = readl_relaxed(timer->base + CNTP_CTL);
116 break;
117 case ARCH_TIMER_REG_TVAL:
118 val = readl_relaxed(timer->base + CNTP_TVAL);
119 break;
120 }
121 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTV_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTV_TVAL);
129 break;
130 }
131 } else {
132 val = arch_timer_reg_read_cp15(access, reg);
133 }
134
135 return val;
136}
137
138static __always_inline irqreturn_t timer_handler(const int access,
139 struct clock_event_device *evt)
140{
141 unsigned long ctrl;
142
143 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
144 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
145 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
146 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
147 evt->event_handler(evt);
148 return IRQ_HANDLED;
149 }
150
151 return IRQ_NONE;
152}
153
154static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
155{
156 struct clock_event_device *evt = dev_id;
157
158 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
159}
160
161static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
162{
163 struct clock_event_device *evt = dev_id;
164
165 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
166}
167
168static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
169{
170 struct clock_event_device *evt = dev_id;
171
172 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
173}
174
175static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
176{
177 struct clock_event_device *evt = dev_id;
178
179 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
180}
181
182static __always_inline void timer_set_mode(const int access, int mode,
183 struct clock_event_device *clk)
184{
185 unsigned long ctrl;
186 switch (mode) {
187 case CLOCK_EVT_MODE_UNUSED:
188 case CLOCK_EVT_MODE_SHUTDOWN:
189 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
190 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
191 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
192 break;
193 default:
194 break;
195 }
196}
197
198static void arch_timer_set_mode_virt(enum clock_event_mode mode,
199 struct clock_event_device *clk)
200{
201 timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode, clk);
202}
203
204static void arch_timer_set_mode_phys(enum clock_event_mode mode,
205 struct clock_event_device *clk)
206{
207 timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode, clk);
208}
209
210static void arch_timer_set_mode_virt_mem(enum clock_event_mode mode,
211 struct clock_event_device *clk)
212{
213 timer_set_mode(ARCH_TIMER_MEM_VIRT_ACCESS, mode, clk);
214}
215
216static void arch_timer_set_mode_phys_mem(enum clock_event_mode mode,
217 struct clock_event_device *clk)
218{
219 timer_set_mode(ARCH_TIMER_MEM_PHYS_ACCESS, mode, clk);
220}
221
222static __always_inline void set_next_event(const int access, unsigned long evt,
223 struct clock_event_device *clk)
224{
225 unsigned long ctrl;
226 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
227 ctrl |= ARCH_TIMER_CTRL_ENABLE;
228 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
229 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
230 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
231}
232
233static int arch_timer_set_next_event_virt(unsigned long evt,
234 struct clock_event_device *clk)
235{
236 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
237 return 0;
238}
239
240static int arch_timer_set_next_event_phys(unsigned long evt,
241 struct clock_event_device *clk)
242{
243 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
244 return 0;
245}
246
247static int arch_timer_set_next_event_virt_mem(unsigned long evt,
248 struct clock_event_device *clk)
249{
250 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
251 return 0;
252}
253
254static int arch_timer_set_next_event_phys_mem(unsigned long evt,
255 struct clock_event_device *clk)
256{
257 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
258 return 0;
259}
260
261static void __arch_timer_setup(unsigned type,
262 struct clock_event_device *clk)
263{
264 clk->features = CLOCK_EVT_FEAT_ONESHOT;
265
266 if (type == ARCH_CP15_TIMER) {
267 if (arch_timer_c3stop)
268 clk->features |= CLOCK_EVT_FEAT_C3STOP;
269 clk->name = "arch_sys_timer";
270 clk->rating = 450;
271 clk->cpumask = cpumask_of(smp_processor_id());
272 if (arch_timer_use_virtual) {
273 clk->irq = arch_timer_ppi[VIRT_PPI];
274 clk->set_mode = arch_timer_set_mode_virt;
275 clk->set_next_event = arch_timer_set_next_event_virt;
276 } else {
277 clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
278 clk->set_mode = arch_timer_set_mode_phys;
279 clk->set_next_event = arch_timer_set_next_event_phys;
280 }
281 } else {
282 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
283 clk->name = "arch_mem_timer";
284 clk->rating = 400;
285 clk->cpumask = cpu_all_mask;
286 if (arch_timer_mem_use_virtual) {
287 clk->set_mode = arch_timer_set_mode_virt_mem;
288 clk->set_next_event =
289 arch_timer_set_next_event_virt_mem;
290 } else {
291 clk->set_mode = arch_timer_set_mode_phys_mem;
292 clk->set_next_event =
293 arch_timer_set_next_event_phys_mem;
294 }
295 }
296
297 clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, clk);
298
299 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
300}
301
302static void arch_timer_configure_evtstream(void)
303{
304 int evt_stream_div, pos;
305
306 /* Find the closest power of two to the divisor */
307 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
308 pos = fls(evt_stream_div);
309 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
310 pos--;
311 /* enable event stream */
312 arch_timer_evtstrm_enable(min(pos, 15));
313}
314
315static int arch_timer_setup(struct clock_event_device *clk)
316{
317 __arch_timer_setup(ARCH_CP15_TIMER, clk);
318
319 if (arch_timer_use_virtual)
320 enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
321 else {
322 enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
323 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
324 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
325 }
326
327 arch_counter_set_user_access();
328 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
329 arch_timer_configure_evtstream();
330
331 return 0;
332}
333
334static void
335arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
336{
337 /* Who has more than one independent system counter? */
338 if (arch_timer_rate)
339 return;
340
341 /* Try to determine the frequency from the device tree or CNTFRQ */
342 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
343 if (cntbase)
344 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
345 else
346 arch_timer_rate = arch_timer_get_cntfrq();
347 }
348
349 /* Check the timer frequency. */
350 if (arch_timer_rate == 0)
351 pr_warn("Architected timer frequency not available\n");
352}
353
354static void arch_timer_banner(unsigned type)
355{
356 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
357 type & ARCH_CP15_TIMER ? "cp15" : "",
358 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
359 type & ARCH_MEM_TIMER ? "mmio" : "",
360 (unsigned long)arch_timer_rate / 1000000,
361 (unsigned long)(arch_timer_rate / 10000) % 100,
362 type & ARCH_CP15_TIMER ?
363 arch_timer_use_virtual ? "virt" : "phys" :
364 "",
365 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
366 type & ARCH_MEM_TIMER ?
367 arch_timer_mem_use_virtual ? "virt" : "phys" :
368 "");
369}
370
371u32 arch_timer_get_rate(void)
372{
373 return arch_timer_rate;
374}
375
376static u64 arch_counter_get_cntvct_mem(void)
377{
378 u32 vct_lo, vct_hi, tmp_hi;
379
380 do {
381 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
382 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
383 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
384 } while (vct_hi != tmp_hi);
385
386 return ((u64) vct_hi << 32) | vct_lo;
387}
388
389/*
390 * Default to cp15 based access because arm64 uses this function for
391 * sched_clock() before DT is probed and the cp15 method is guaranteed
392 * to exist on arm64. arm doesn't use this before DT is probed so even
393 * if we don't have the cp15 accessors we won't have a problem.
394 */
395u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
396
397static cycle_t arch_counter_read(struct clocksource *cs)
398{
399 return arch_timer_read_counter();
400}
401
402static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
403{
404 return arch_timer_read_counter();
405}
406
407static struct clocksource clocksource_counter = {
408 .name = "arch_sys_counter",
409 .rating = 400,
410 .read = arch_counter_read,
411 .mask = CLOCKSOURCE_MASK(56),
412 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
413};
414
415static struct cyclecounter cyclecounter = {
416 .read = arch_counter_read_cc,
417 .mask = CLOCKSOURCE_MASK(56),
418};
419
420static struct timecounter timecounter;
421
422struct timecounter *arch_timer_get_timecounter(void)
423{
424 return &timecounter;
425}
426
427static void __init arch_counter_register(unsigned type)
428{
429 u64 start_count;
430
431 /* Register the CP15 based counter if we have one */
432 if (type & ARCH_CP15_TIMER)
433 arch_timer_read_counter = arch_counter_get_cntvct;
434 else
435 arch_timer_read_counter = arch_counter_get_cntvct_mem;
436
437 start_count = arch_timer_read_counter();
438 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
439 cyclecounter.mult = clocksource_counter.mult;
440 cyclecounter.shift = clocksource_counter.shift;
441 timecounter_init(&timecounter, &cyclecounter, start_count);
442
443 /* 56 bits minimum, so we assume worst case rollover */
444 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
445}
446
447static void arch_timer_stop(struct clock_event_device *clk)
448{
449 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
450 clk->irq, smp_processor_id());
451
452 if (arch_timer_use_virtual)
453 disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
454 else {
455 disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
456 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
457 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
458 }
459
460 clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
461}
462
463static int arch_timer_cpu_notify(struct notifier_block *self,
464 unsigned long action, void *hcpu)
465{
466 /*
467 * Grab cpu pointer in each case to avoid spurious
468 * preemptible warnings
469 */
470 switch (action & ~CPU_TASKS_FROZEN) {
471 case CPU_STARTING:
472 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
473 break;
474 case CPU_DYING:
475 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
476 break;
477 }
478
479 return NOTIFY_OK;
480}
481
482static struct notifier_block arch_timer_cpu_nb = {
483 .notifier_call = arch_timer_cpu_notify,
484};
485
486#ifdef CONFIG_CPU_PM
487static unsigned int saved_cntkctl;
488static int arch_timer_cpu_pm_notify(struct notifier_block *self,
489 unsigned long action, void *hcpu)
490{
491 if (action == CPU_PM_ENTER)
492 saved_cntkctl = arch_timer_get_cntkctl();
493 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
494 arch_timer_set_cntkctl(saved_cntkctl);
495 return NOTIFY_OK;
496}
497
498static struct notifier_block arch_timer_cpu_pm_notifier = {
499 .notifier_call = arch_timer_cpu_pm_notify,
500};
501
502static int __init arch_timer_cpu_pm_init(void)
503{
504 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
505}
506#else
507static int __init arch_timer_cpu_pm_init(void)
508{
509 return 0;
510}
511#endif
512
513static int __init arch_timer_register(void)
514{
515 int err;
516 int ppi;
517
518 arch_timer_evt = alloc_percpu(struct clock_event_device);
519 if (!arch_timer_evt) {
520 err = -ENOMEM;
521 goto out;
522 }
523
524 if (arch_timer_use_virtual) {
525 ppi = arch_timer_ppi[VIRT_PPI];
526 err = request_percpu_irq(ppi, arch_timer_handler_virt,
527 "arch_timer", arch_timer_evt);
528 } else {
529 ppi = arch_timer_ppi[PHYS_SECURE_PPI];
530 err = request_percpu_irq(ppi, arch_timer_handler_phys,
531 "arch_timer", arch_timer_evt);
532 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
533 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
534 err = request_percpu_irq(ppi, arch_timer_handler_phys,
535 "arch_timer", arch_timer_evt);
536 if (err)
537 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
538 arch_timer_evt);
539 }
540 }
541
542 if (err) {
543 pr_err("arch_timer: can't register interrupt %d (%d)\n",
544 ppi, err);
545 goto out_free;
546 }
547
548 err = register_cpu_notifier(&arch_timer_cpu_nb);
549 if (err)
550 goto out_free_irq;
551
552 err = arch_timer_cpu_pm_init();
553 if (err)
554 goto out_unreg_notify;
555
556 /* Immediately configure the timer on the boot CPU */
557 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
558
559 return 0;
560
561out_unreg_notify:
562 unregister_cpu_notifier(&arch_timer_cpu_nb);
563out_free_irq:
564 if (arch_timer_use_virtual)
565 free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
566 else {
567 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
568 arch_timer_evt);
569 if (arch_timer_ppi[PHYS_NONSECURE_PPI])
570 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
571 arch_timer_evt);
572 }
573
574out_free:
575 free_percpu(arch_timer_evt);
576out:
577 return err;
578}
579
580static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
581{
582 int ret;
583 irq_handler_t func;
584 struct arch_timer *t;
585
586 t = kzalloc(sizeof(*t), GFP_KERNEL);
587 if (!t)
588 return -ENOMEM;
589
590 t->base = base;
591 t->evt.irq = irq;
592 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
593
594 if (arch_timer_mem_use_virtual)
595 func = arch_timer_handler_virt_mem;
596 else
597 func = arch_timer_handler_phys_mem;
598
599 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
600 if (ret) {
601 pr_err("arch_timer: Failed to request mem timer irq\n");
602 kfree(t);
603 }
604
605 return ret;
606}
607
608static const struct of_device_id arch_timer_of_match[] __initconst = {
609 { .compatible = "arm,armv7-timer", },
610 { .compatible = "arm,armv8-timer", },
611 {},
612};
613
614static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
615 { .compatible = "arm,armv7-timer-mem", },
616 {},
617};
618
619static void __init arch_timer_common_init(void)
620{
621 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
622
623 /* Wait until both nodes are probed if we have two timers */
624 if ((arch_timers_present & mask) != mask) {
625 if (of_find_matching_node(NULL, arch_timer_mem_of_match) &&
626 !(arch_timers_present & ARCH_MEM_TIMER))
627 return;
628 if (of_find_matching_node(NULL, arch_timer_of_match) &&
629 !(arch_timers_present & ARCH_CP15_TIMER))
630 return;
631 }
632
633 arch_timer_banner(arch_timers_present);
634 arch_counter_register(arch_timers_present);
635 arch_timer_arch_init();
636}
637
638static void __init arch_timer_init(struct device_node *np)
639{
640 int i;
641
642 if (arch_timers_present & ARCH_CP15_TIMER) {
643 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
644 return;
645 }
646
647 arch_timers_present |= ARCH_CP15_TIMER;
648 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
649 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
650 arch_timer_detect_rate(NULL, np);
651
652 /*
653 * If HYP mode is available, we know that the physical timer
654 * has been configured to be accessible from PL1. Use it, so
655 * that a guest can use the virtual timer instead.
656 *
657 * If no interrupt provided for virtual timer, we'll have to
658 * stick to the physical timer. It'd better be accessible...
659 */
660 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
661 arch_timer_use_virtual = false;
662
663 if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
664 !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
665 pr_warn("arch_timer: No interrupt available, giving up\n");
666 return;
667 }
668 }
669
670 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
671
672 arch_timer_register();
673 arch_timer_common_init();
674}
675CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_init);
676CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_init);
677
678static void __init arch_timer_mem_init(struct device_node *np)
679{
680 struct device_node *frame, *best_frame = NULL;
681 void __iomem *cntctlbase, *base;
682 unsigned int irq;
683 u32 cnttidr;
684
685 arch_timers_present |= ARCH_MEM_TIMER;
686 cntctlbase = of_iomap(np, 0);
687 if (!cntctlbase) {
688 pr_err("arch_timer: Can't find CNTCTLBase\n");
689 return;
690 }
691
692 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
693 iounmap(cntctlbase);
694
695 /*
696 * Try to find a virtual capable frame. Otherwise fall back to a
697 * physical capable frame.
698 */
699 for_each_available_child_of_node(np, frame) {
700 int n;
701
702 if (of_property_read_u32(frame, "frame-number", &n)) {
703 pr_err("arch_timer: Missing frame-number\n");
704 of_node_put(best_frame);
705 of_node_put(frame);
706 return;
707 }
708
709 if (cnttidr & CNTTIDR_VIRT(n)) {
710 of_node_put(best_frame);
711 best_frame = frame;
712 arch_timer_mem_use_virtual = true;
713 break;
714 }
715 of_node_put(best_frame);
716 best_frame = of_node_get(frame);
717 }
718
719 base = arch_counter_base = of_iomap(best_frame, 0);
720 if (!base) {
721 pr_err("arch_timer: Can't map frame's registers\n");
722 of_node_put(best_frame);
723 return;
724 }
725
726 if (arch_timer_mem_use_virtual)
727 irq = irq_of_parse_and_map(best_frame, 1);
728 else
729 irq = irq_of_parse_and_map(best_frame, 0);
730 of_node_put(best_frame);
731 if (!irq) {
732 pr_err("arch_timer: Frame missing %s irq",
733 arch_timer_mem_use_virtual ? "virt" : "phys");
734 return;
735 }
736
737 arch_timer_detect_rate(base, np);
738 arch_timer_mem_register(base, irq);
739 arch_timer_common_init();
740}
741CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
742 arch_timer_mem_init);