Loading...
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
19#include <linux/cpu_pm.h>
20#include <linux/clockchips.h>
21#include <linux/clocksource.h>
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
24#include <linux/of_address.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27#include <linux/sched_clock.h>
28#include <linux/acpi.h>
29
30#include <asm/arch_timer.h>
31#include <asm/virt.h>
32
33#include <clocksource/arm_arch_timer.h>
34
35#define CNTTIDR 0x08
36#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38#define CNTACR(n) (0x40 + ((n) * 4))
39#define CNTACR_RPCT BIT(0)
40#define CNTACR_RVCT BIT(1)
41#define CNTACR_RFRQ BIT(2)
42#define CNTACR_RVOFF BIT(3)
43#define CNTACR_RWVT BIT(4)
44#define CNTACR_RWPT BIT(5)
45
46#define CNTVCT_LO 0x08
47#define CNTVCT_HI 0x0c
48#define CNTFRQ 0x10
49#define CNTP_TVAL 0x28
50#define CNTP_CTL 0x2c
51#define CNTV_TVAL 0x38
52#define CNTV_CTL 0x3c
53
54#define ARCH_CP15_TIMER BIT(0)
55#define ARCH_MEM_TIMER BIT(1)
56static unsigned arch_timers_present __initdata;
57
58static void __iomem *arch_counter_base;
59
60struct arch_timer {
61 void __iomem *base;
62 struct clock_event_device evt;
63};
64
65#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67static u32 arch_timer_rate;
68
69enum ppi_nr {
70 PHYS_SECURE_PPI,
71 PHYS_NONSECURE_PPI,
72 VIRT_PPI,
73 HYP_PPI,
74 MAX_TIMER_PPI
75};
76
77static int arch_timer_ppi[MAX_TIMER_PPI];
78
79static struct clock_event_device __percpu *arch_timer_evt;
80
81static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82static bool arch_timer_c3stop;
83static bool arch_timer_mem_use_virtual;
84static bool arch_counter_suspend_stop;
85
86static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88static int __init early_evtstrm_cfg(char *buf)
89{
90 return strtobool(buf, &evtstrm_enable);
91}
92early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94/*
95 * Architected system timer support.
96 */
97
98#ifdef CONFIG_FSL_ERRATUM_A008585
99DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101
102static int fsl_a008585_enable = -1;
103
104static int __init early_fsl_a008585_cfg(char *buf)
105{
106 int ret;
107 bool val;
108
109 ret = strtobool(buf, &val);
110 if (ret)
111 return ret;
112
113 fsl_a008585_enable = val;
114 return 0;
115}
116early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
117
118u32 __fsl_a008585_read_cntp_tval_el0(void)
119{
120 return __fsl_a008585_read_reg(cntp_tval_el0);
121}
122
123u32 __fsl_a008585_read_cntv_tval_el0(void)
124{
125 return __fsl_a008585_read_reg(cntv_tval_el0);
126}
127
128u64 __fsl_a008585_read_cntvct_el0(void)
129{
130 return __fsl_a008585_read_reg(cntvct_el0);
131}
132EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
133#endif /* CONFIG_FSL_ERRATUM_A008585 */
134
135static __always_inline
136void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137 struct clock_event_device *clk)
138{
139 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
140 struct arch_timer *timer = to_arch_timer(clk);
141 switch (reg) {
142 case ARCH_TIMER_REG_CTRL:
143 writel_relaxed(val, timer->base + CNTP_CTL);
144 break;
145 case ARCH_TIMER_REG_TVAL:
146 writel_relaxed(val, timer->base + CNTP_TVAL);
147 break;
148 }
149 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
150 struct arch_timer *timer = to_arch_timer(clk);
151 switch (reg) {
152 case ARCH_TIMER_REG_CTRL:
153 writel_relaxed(val, timer->base + CNTV_CTL);
154 break;
155 case ARCH_TIMER_REG_TVAL:
156 writel_relaxed(val, timer->base + CNTV_TVAL);
157 break;
158 }
159 } else {
160 arch_timer_reg_write_cp15(access, reg, val);
161 }
162}
163
164static __always_inline
165u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166 struct clock_event_device *clk)
167{
168 u32 val;
169
170 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
171 struct arch_timer *timer = to_arch_timer(clk);
172 switch (reg) {
173 case ARCH_TIMER_REG_CTRL:
174 val = readl_relaxed(timer->base + CNTP_CTL);
175 break;
176 case ARCH_TIMER_REG_TVAL:
177 val = readl_relaxed(timer->base + CNTP_TVAL);
178 break;
179 }
180 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
181 struct arch_timer *timer = to_arch_timer(clk);
182 switch (reg) {
183 case ARCH_TIMER_REG_CTRL:
184 val = readl_relaxed(timer->base + CNTV_CTL);
185 break;
186 case ARCH_TIMER_REG_TVAL:
187 val = readl_relaxed(timer->base + CNTV_TVAL);
188 break;
189 }
190 } else {
191 val = arch_timer_reg_read_cp15(access, reg);
192 }
193
194 return val;
195}
196
197static __always_inline irqreturn_t timer_handler(const int access,
198 struct clock_event_device *evt)
199{
200 unsigned long ctrl;
201
202 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
204 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206 evt->event_handler(evt);
207 return IRQ_HANDLED;
208 }
209
210 return IRQ_NONE;
211}
212
213static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
214{
215 struct clock_event_device *evt = dev_id;
216
217 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
218}
219
220static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
221{
222 struct clock_event_device *evt = dev_id;
223
224 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
225}
226
227static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
228{
229 struct clock_event_device *evt = dev_id;
230
231 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
232}
233
234static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
235{
236 struct clock_event_device *evt = dev_id;
237
238 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
239}
240
241static __always_inline int timer_shutdown(const int access,
242 struct clock_event_device *clk)
243{
244 unsigned long ctrl;
245
246 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
247 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
248 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
249
250 return 0;
251}
252
253static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254{
255 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256}
257
258static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259{
260 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261}
262
263static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264{
265 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266}
267
268static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269{
270 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271}
272
273static __always_inline void set_next_event(const int access, unsigned long evt,
274 struct clock_event_device *clk)
275{
276 unsigned long ctrl;
277 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278 ctrl |= ARCH_TIMER_CTRL_ENABLE;
279 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
281 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282}
283
284#ifdef CONFIG_FSL_ERRATUM_A008585
285static __always_inline void fsl_a008585_set_next_event(const int access,
286 unsigned long evt, struct clock_event_device *clk)
287{
288 unsigned long ctrl;
289 u64 cval = evt + arch_counter_get_cntvct();
290
291 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
292 ctrl |= ARCH_TIMER_CTRL_ENABLE;
293 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
294
295 if (access == ARCH_TIMER_PHYS_ACCESS)
296 write_sysreg(cval, cntp_cval_el0);
297 else if (access == ARCH_TIMER_VIRT_ACCESS)
298 write_sysreg(cval, cntv_cval_el0);
299
300 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
301}
302
303static int fsl_a008585_set_next_event_virt(unsigned long evt,
304 struct clock_event_device *clk)
305{
306 fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
307 return 0;
308}
309
310static int fsl_a008585_set_next_event_phys(unsigned long evt,
311 struct clock_event_device *clk)
312{
313 fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
314 return 0;
315}
316#endif /* CONFIG_FSL_ERRATUM_A008585 */
317
318static int arch_timer_set_next_event_virt(unsigned long evt,
319 struct clock_event_device *clk)
320{
321 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322 return 0;
323}
324
325static int arch_timer_set_next_event_phys(unsigned long evt,
326 struct clock_event_device *clk)
327{
328 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329 return 0;
330}
331
332static int arch_timer_set_next_event_virt_mem(unsigned long evt,
333 struct clock_event_device *clk)
334{
335 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
336 return 0;
337}
338
339static int arch_timer_set_next_event_phys_mem(unsigned long evt,
340 struct clock_event_device *clk)
341{
342 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
343 return 0;
344}
345
346static void fsl_a008585_set_sne(struct clock_event_device *clk)
347{
348#ifdef CONFIG_FSL_ERRATUM_A008585
349 if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
350 return;
351
352 if (arch_timer_uses_ppi == VIRT_PPI)
353 clk->set_next_event = fsl_a008585_set_next_event_virt;
354 else
355 clk->set_next_event = fsl_a008585_set_next_event_phys;
356#endif
357}
358
359static void __arch_timer_setup(unsigned type,
360 struct clock_event_device *clk)
361{
362 clk->features = CLOCK_EVT_FEAT_ONESHOT;
363
364 if (type == ARCH_CP15_TIMER) {
365 if (arch_timer_c3stop)
366 clk->features |= CLOCK_EVT_FEAT_C3STOP;
367 clk->name = "arch_sys_timer";
368 clk->rating = 450;
369 clk->cpumask = cpumask_of(smp_processor_id());
370 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
371 switch (arch_timer_uses_ppi) {
372 case VIRT_PPI:
373 clk->set_state_shutdown = arch_timer_shutdown_virt;
374 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375 clk->set_next_event = arch_timer_set_next_event_virt;
376 break;
377 case PHYS_SECURE_PPI:
378 case PHYS_NONSECURE_PPI:
379 case HYP_PPI:
380 clk->set_state_shutdown = arch_timer_shutdown_phys;
381 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382 clk->set_next_event = arch_timer_set_next_event_phys;
383 break;
384 default:
385 BUG();
386 }
387
388 fsl_a008585_set_sne(clk);
389 } else {
390 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391 clk->name = "arch_mem_timer";
392 clk->rating = 400;
393 clk->cpumask = cpu_all_mask;
394 if (arch_timer_mem_use_virtual) {
395 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397 clk->set_next_event =
398 arch_timer_set_next_event_virt_mem;
399 } else {
400 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402 clk->set_next_event =
403 arch_timer_set_next_event_phys_mem;
404 }
405 }
406
407 clk->set_state_shutdown(clk);
408
409 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
410}
411
412static void arch_timer_evtstrm_enable(int divider)
413{
414 u32 cntkctl = arch_timer_get_cntkctl();
415
416 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
417 /* Set the divider and enable virtual event stream */
418 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
419 | ARCH_TIMER_VIRT_EVT_EN;
420 arch_timer_set_cntkctl(cntkctl);
421 elf_hwcap |= HWCAP_EVTSTRM;
422#ifdef CONFIG_COMPAT
423 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
424#endif
425}
426
427static void arch_timer_configure_evtstream(void)
428{
429 int evt_stream_div, pos;
430
431 /* Find the closest power of two to the divisor */
432 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
433 pos = fls(evt_stream_div);
434 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
435 pos--;
436 /* enable event stream */
437 arch_timer_evtstrm_enable(min(pos, 15));
438}
439
440static void arch_counter_set_user_access(void)
441{
442 u32 cntkctl = arch_timer_get_cntkctl();
443
444 /* Disable user access to the timers and the physical counter */
445 /* Also disable virtual event stream */
446 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
447 | ARCH_TIMER_USR_VT_ACCESS_EN
448 | ARCH_TIMER_VIRT_EVT_EN
449 | ARCH_TIMER_USR_PCT_ACCESS_EN);
450
451 /* Enable user access to the virtual counter */
452 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
453
454 arch_timer_set_cntkctl(cntkctl);
455}
456
457static bool arch_timer_has_nonsecure_ppi(void)
458{
459 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
460 arch_timer_ppi[PHYS_NONSECURE_PPI]);
461}
462
463static u32 check_ppi_trigger(int irq)
464{
465 u32 flags = irq_get_trigger_type(irq);
466
467 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
468 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
469 pr_warn("WARNING: Please fix your firmware\n");
470 flags = IRQF_TRIGGER_LOW;
471 }
472
473 return flags;
474}
475
476static int arch_timer_starting_cpu(unsigned int cpu)
477{
478 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
479 u32 flags;
480
481 __arch_timer_setup(ARCH_CP15_TIMER, clk);
482
483 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
484 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
485
486 if (arch_timer_has_nonsecure_ppi()) {
487 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
488 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
489 }
490
491 arch_counter_set_user_access();
492 if (evtstrm_enable)
493 arch_timer_configure_evtstream();
494
495 return 0;
496}
497
498static void
499arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
500{
501 /* Who has more than one independent system counter? */
502 if (arch_timer_rate)
503 return;
504
505 /*
506 * Try to determine the frequency from the device tree or CNTFRQ,
507 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
508 */
509 if (!acpi_disabled ||
510 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
511 if (cntbase)
512 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
513 else
514 arch_timer_rate = arch_timer_get_cntfrq();
515 }
516
517 /* Check the timer frequency. */
518 if (arch_timer_rate == 0)
519 pr_warn("Architected timer frequency not available\n");
520}
521
522static void arch_timer_banner(unsigned type)
523{
524 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
525 type & ARCH_CP15_TIMER ? "cp15" : "",
526 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
527 type & ARCH_MEM_TIMER ? "mmio" : "",
528 (unsigned long)arch_timer_rate / 1000000,
529 (unsigned long)(arch_timer_rate / 10000) % 100,
530 type & ARCH_CP15_TIMER ?
531 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
532 "",
533 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
534 type & ARCH_MEM_TIMER ?
535 arch_timer_mem_use_virtual ? "virt" : "phys" :
536 "");
537}
538
539u32 arch_timer_get_rate(void)
540{
541 return arch_timer_rate;
542}
543
544static u64 arch_counter_get_cntvct_mem(void)
545{
546 u32 vct_lo, vct_hi, tmp_hi;
547
548 do {
549 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
550 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
551 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
552 } while (vct_hi != tmp_hi);
553
554 return ((u64) vct_hi << 32) | vct_lo;
555}
556
557/*
558 * Default to cp15 based access because arm64 uses this function for
559 * sched_clock() before DT is probed and the cp15 method is guaranteed
560 * to exist on arm64. arm doesn't use this before DT is probed so even
561 * if we don't have the cp15 accessors we won't have a problem.
562 */
563u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
564
565static u64 arch_counter_read(struct clocksource *cs)
566{
567 return arch_timer_read_counter();
568}
569
570static u64 arch_counter_read_cc(const struct cyclecounter *cc)
571{
572 return arch_timer_read_counter();
573}
574
575static struct clocksource clocksource_counter = {
576 .name = "arch_sys_counter",
577 .rating = 400,
578 .read = arch_counter_read,
579 .mask = CLOCKSOURCE_MASK(56),
580 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
581};
582
583static struct cyclecounter cyclecounter = {
584 .read = arch_counter_read_cc,
585 .mask = CLOCKSOURCE_MASK(56),
586};
587
588static struct arch_timer_kvm_info arch_timer_kvm_info;
589
590struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
591{
592 return &arch_timer_kvm_info;
593}
594
595static void __init arch_counter_register(unsigned type)
596{
597 u64 start_count;
598
599 /* Register the CP15 based counter if we have one */
600 if (type & ARCH_CP15_TIMER) {
601 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
602 arch_timer_read_counter = arch_counter_get_cntvct;
603 else
604 arch_timer_read_counter = arch_counter_get_cntpct;
605
606 clocksource_counter.archdata.vdso_direct = true;
607
608#ifdef CONFIG_FSL_ERRATUM_A008585
609 /*
610 * Don't use the vdso fastpath if errata require using
611 * the out-of-line counter accessor.
612 */
613 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
614 clocksource_counter.archdata.vdso_direct = false;
615#endif
616 } else {
617 arch_timer_read_counter = arch_counter_get_cntvct_mem;
618 }
619
620 if (!arch_counter_suspend_stop)
621 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
622 start_count = arch_timer_read_counter();
623 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
624 cyclecounter.mult = clocksource_counter.mult;
625 cyclecounter.shift = clocksource_counter.shift;
626 timecounter_init(&arch_timer_kvm_info.timecounter,
627 &cyclecounter, start_count);
628
629 /* 56 bits minimum, so we assume worst case rollover */
630 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
631}
632
633static void arch_timer_stop(struct clock_event_device *clk)
634{
635 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
636 clk->irq, smp_processor_id());
637
638 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
639 if (arch_timer_has_nonsecure_ppi())
640 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
641
642 clk->set_state_shutdown(clk);
643}
644
645static int arch_timer_dying_cpu(unsigned int cpu)
646{
647 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
648
649 arch_timer_stop(clk);
650 return 0;
651}
652
653#ifdef CONFIG_CPU_PM
654static unsigned int saved_cntkctl;
655static int arch_timer_cpu_pm_notify(struct notifier_block *self,
656 unsigned long action, void *hcpu)
657{
658 if (action == CPU_PM_ENTER)
659 saved_cntkctl = arch_timer_get_cntkctl();
660 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
661 arch_timer_set_cntkctl(saved_cntkctl);
662 return NOTIFY_OK;
663}
664
665static struct notifier_block arch_timer_cpu_pm_notifier = {
666 .notifier_call = arch_timer_cpu_pm_notify,
667};
668
669static int __init arch_timer_cpu_pm_init(void)
670{
671 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
672}
673
674static void __init arch_timer_cpu_pm_deinit(void)
675{
676 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
677}
678
679#else
680static int __init arch_timer_cpu_pm_init(void)
681{
682 return 0;
683}
684
685static void __init arch_timer_cpu_pm_deinit(void)
686{
687}
688#endif
689
690static int __init arch_timer_register(void)
691{
692 int err;
693 int ppi;
694
695 arch_timer_evt = alloc_percpu(struct clock_event_device);
696 if (!arch_timer_evt) {
697 err = -ENOMEM;
698 goto out;
699 }
700
701 ppi = arch_timer_ppi[arch_timer_uses_ppi];
702 switch (arch_timer_uses_ppi) {
703 case VIRT_PPI:
704 err = request_percpu_irq(ppi, arch_timer_handler_virt,
705 "arch_timer", arch_timer_evt);
706 break;
707 case PHYS_SECURE_PPI:
708 case PHYS_NONSECURE_PPI:
709 err = request_percpu_irq(ppi, arch_timer_handler_phys,
710 "arch_timer", arch_timer_evt);
711 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
712 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
713 err = request_percpu_irq(ppi, arch_timer_handler_phys,
714 "arch_timer", arch_timer_evt);
715 if (err)
716 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
717 arch_timer_evt);
718 }
719 break;
720 case HYP_PPI:
721 err = request_percpu_irq(ppi, arch_timer_handler_phys,
722 "arch_timer", arch_timer_evt);
723 break;
724 default:
725 BUG();
726 }
727
728 if (err) {
729 pr_err("arch_timer: can't register interrupt %d (%d)\n",
730 ppi, err);
731 goto out_free;
732 }
733
734 err = arch_timer_cpu_pm_init();
735 if (err)
736 goto out_unreg_notify;
737
738
739 /* Register and immediately configure the timer on the boot CPU */
740 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
741 "clockevents/arm/arch_timer:starting",
742 arch_timer_starting_cpu, arch_timer_dying_cpu);
743 if (err)
744 goto out_unreg_cpupm;
745 return 0;
746
747out_unreg_cpupm:
748 arch_timer_cpu_pm_deinit();
749
750out_unreg_notify:
751 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
752 if (arch_timer_has_nonsecure_ppi())
753 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
754 arch_timer_evt);
755
756out_free:
757 free_percpu(arch_timer_evt);
758out:
759 return err;
760}
761
762static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
763{
764 int ret;
765 irq_handler_t func;
766 struct arch_timer *t;
767
768 t = kzalloc(sizeof(*t), GFP_KERNEL);
769 if (!t)
770 return -ENOMEM;
771
772 t->base = base;
773 t->evt.irq = irq;
774 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
775
776 if (arch_timer_mem_use_virtual)
777 func = arch_timer_handler_virt_mem;
778 else
779 func = arch_timer_handler_phys_mem;
780
781 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
782 if (ret) {
783 pr_err("arch_timer: Failed to request mem timer irq\n");
784 kfree(t);
785 }
786
787 return ret;
788}
789
790static const struct of_device_id arch_timer_of_match[] __initconst = {
791 { .compatible = "arm,armv7-timer", },
792 { .compatible = "arm,armv8-timer", },
793 {},
794};
795
796static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
797 { .compatible = "arm,armv7-timer-mem", },
798 {},
799};
800
801static bool __init
802arch_timer_needs_probing(int type, const struct of_device_id *matches)
803{
804 struct device_node *dn;
805 bool needs_probing = false;
806
807 dn = of_find_matching_node(NULL, matches);
808 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
809 needs_probing = true;
810 of_node_put(dn);
811
812 return needs_probing;
813}
814
815static int __init arch_timer_common_init(void)
816{
817 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
818
819 /* Wait until both nodes are probed if we have two timers */
820 if ((arch_timers_present & mask) != mask) {
821 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
822 return 0;
823 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
824 return 0;
825 }
826
827 arch_timer_banner(arch_timers_present);
828 arch_counter_register(arch_timers_present);
829 return arch_timer_arch_init();
830}
831
832static int __init arch_timer_init(void)
833{
834 int ret;
835 /*
836 * If HYP mode is available, we know that the physical timer
837 * has been configured to be accessible from PL1. Use it, so
838 * that a guest can use the virtual timer instead.
839 *
840 * If no interrupt provided for virtual timer, we'll have to
841 * stick to the physical timer. It'd better be accessible...
842 *
843 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
844 * accesses to CNTP_*_EL1 registers are silently redirected to
845 * their CNTHP_*_EL2 counterparts, and use a different PPI
846 * number.
847 */
848 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
849 bool has_ppi;
850
851 if (is_kernel_in_hyp_mode()) {
852 arch_timer_uses_ppi = HYP_PPI;
853 has_ppi = !!arch_timer_ppi[HYP_PPI];
854 } else {
855 arch_timer_uses_ppi = PHYS_SECURE_PPI;
856 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
857 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
858 }
859
860 if (!has_ppi) {
861 pr_warn("arch_timer: No interrupt available, giving up\n");
862 return -EINVAL;
863 }
864 }
865
866 ret = arch_timer_register();
867 if (ret)
868 return ret;
869
870 ret = arch_timer_common_init();
871 if (ret)
872 return ret;
873
874 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
875
876 return 0;
877}
878
879static int __init arch_timer_of_init(struct device_node *np)
880{
881 int i;
882
883 if (arch_timers_present & ARCH_CP15_TIMER) {
884 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
885 return 0;
886 }
887
888 arch_timers_present |= ARCH_CP15_TIMER;
889 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
890 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
891
892 arch_timer_detect_rate(NULL, np);
893
894 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
895
896#ifdef CONFIG_FSL_ERRATUM_A008585
897 if (fsl_a008585_enable < 0)
898 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
899 if (fsl_a008585_enable) {
900 static_branch_enable(&arch_timer_read_ool_enabled);
901 pr_info("Enabling workaround for FSL erratum A-008585\n");
902 }
903#endif
904
905 /*
906 * If we cannot rely on firmware initializing the timer registers then
907 * we should use the physical timers instead.
908 */
909 if (IS_ENABLED(CONFIG_ARM) &&
910 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
911 arch_timer_uses_ppi = PHYS_SECURE_PPI;
912
913 /* On some systems, the counter stops ticking when in suspend. */
914 arch_counter_suspend_stop = of_property_read_bool(np,
915 "arm,no-tick-in-suspend");
916
917 return arch_timer_init();
918}
919CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
920CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
921
922static int __init arch_timer_mem_init(struct device_node *np)
923{
924 struct device_node *frame, *best_frame = NULL;
925 void __iomem *cntctlbase, *base;
926 unsigned int irq, ret = -EINVAL;
927 u32 cnttidr;
928
929 arch_timers_present |= ARCH_MEM_TIMER;
930 cntctlbase = of_iomap(np, 0);
931 if (!cntctlbase) {
932 pr_err("arch_timer: Can't find CNTCTLBase\n");
933 return -ENXIO;
934 }
935
936 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
937
938 /*
939 * Try to find a virtual capable frame. Otherwise fall back to a
940 * physical capable frame.
941 */
942 for_each_available_child_of_node(np, frame) {
943 int n;
944 u32 cntacr;
945
946 if (of_property_read_u32(frame, "frame-number", &n)) {
947 pr_err("arch_timer: Missing frame-number\n");
948 of_node_put(frame);
949 goto out;
950 }
951
952 /* Try enabling everything, and see what sticks */
953 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
954 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
955 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
956 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
957
958 if ((cnttidr & CNTTIDR_VIRT(n)) &&
959 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
960 of_node_put(best_frame);
961 best_frame = frame;
962 arch_timer_mem_use_virtual = true;
963 break;
964 }
965
966 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
967 continue;
968
969 of_node_put(best_frame);
970 best_frame = of_node_get(frame);
971 }
972
973 ret= -ENXIO;
974 base = arch_counter_base = of_io_request_and_map(best_frame, 0,
975 "arch_mem_timer");
976 if (IS_ERR(base)) {
977 pr_err("arch_timer: Can't map frame's registers\n");
978 goto out;
979 }
980
981 if (arch_timer_mem_use_virtual)
982 irq = irq_of_parse_and_map(best_frame, 1);
983 else
984 irq = irq_of_parse_and_map(best_frame, 0);
985
986 ret = -EINVAL;
987 if (!irq) {
988 pr_err("arch_timer: Frame missing %s irq",
989 arch_timer_mem_use_virtual ? "virt" : "phys");
990 goto out;
991 }
992
993 arch_timer_detect_rate(base, np);
994 ret = arch_timer_mem_register(base, irq);
995 if (ret)
996 goto out;
997
998 return arch_timer_common_init();
999out:
1000 iounmap(cntctlbase);
1001 of_node_put(best_frame);
1002 return ret;
1003}
1004CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005 arch_timer_mem_init);
1006
1007#ifdef CONFIG_ACPI
1008static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1009{
1010 int trigger, polarity;
1011
1012 if (!interrupt)
1013 return 0;
1014
1015 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1016 : ACPI_LEVEL_SENSITIVE;
1017
1018 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1019 : ACPI_ACTIVE_HIGH;
1020
1021 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1022}
1023
1024/* Initialize per-processor generic timer */
1025static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1026{
1027 struct acpi_table_gtdt *gtdt;
1028
1029 if (arch_timers_present & ARCH_CP15_TIMER) {
1030 pr_warn("arch_timer: already initialized, skipping\n");
1031 return -EINVAL;
1032 }
1033
1034 gtdt = container_of(table, struct acpi_table_gtdt, header);
1035
1036 arch_timers_present |= ARCH_CP15_TIMER;
1037
1038 arch_timer_ppi[PHYS_SECURE_PPI] =
1039 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1040 gtdt->secure_el1_flags);
1041
1042 arch_timer_ppi[PHYS_NONSECURE_PPI] =
1043 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1044 gtdt->non_secure_el1_flags);
1045
1046 arch_timer_ppi[VIRT_PPI] =
1047 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1048 gtdt->virtual_timer_flags);
1049
1050 arch_timer_ppi[HYP_PPI] =
1051 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1052 gtdt->non_secure_el2_flags);
1053
1054 /* Get the frequency from CNTFRQ */
1055 arch_timer_detect_rate(NULL, NULL);
1056
1057 /* Always-on capability */
1058 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1059
1060 arch_timer_init();
1061 return 0;
1062}
1063CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064#endif
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/init.h>
12#include <linux/kernel.h>
13#include <linux/device.h>
14#include <linux/smp.h>
15#include <linux/cpu.h>
16#include <linux/cpu_pm.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/interrupt.h>
20#include <linux/of_irq.h>
21#include <linux/of_address.h>
22#include <linux/io.h>
23#include <linux/slab.h>
24#include <linux/sched_clock.h>
25#include <linux/acpi.h>
26
27#include <asm/arch_timer.h>
28#include <asm/virt.h>
29
30#include <clocksource/arm_arch_timer.h>
31
32#define CNTTIDR 0x08
33#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
34
35#define CNTACR(n) (0x40 + ((n) * 4))
36#define CNTACR_RPCT BIT(0)
37#define CNTACR_RVCT BIT(1)
38#define CNTACR_RFRQ BIT(2)
39#define CNTACR_RVOFF BIT(3)
40#define CNTACR_RWVT BIT(4)
41#define CNTACR_RWPT BIT(5)
42
43#define CNTVCT_LO 0x08
44#define CNTVCT_HI 0x0c
45#define CNTFRQ 0x10
46#define CNTP_TVAL 0x28
47#define CNTP_CTL 0x2c
48#define CNTV_TVAL 0x38
49#define CNTV_CTL 0x3c
50
51#define ARCH_CP15_TIMER BIT(0)
52#define ARCH_MEM_TIMER BIT(1)
53static unsigned arch_timers_present __initdata;
54
55static void __iomem *arch_counter_base;
56
57struct arch_timer {
58 void __iomem *base;
59 struct clock_event_device evt;
60};
61
62#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
63
64static u32 arch_timer_rate;
65
66enum ppi_nr {
67 PHYS_SECURE_PPI,
68 PHYS_NONSECURE_PPI,
69 VIRT_PPI,
70 HYP_PPI,
71 MAX_TIMER_PPI
72};
73
74static int arch_timer_ppi[MAX_TIMER_PPI];
75
76static struct clock_event_device __percpu *arch_timer_evt;
77
78static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
79static bool arch_timer_c3stop;
80static bool arch_timer_mem_use_virtual;
81
82/*
83 * Architected system timer support.
84 */
85
86static __always_inline
87void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
88 struct clock_event_device *clk)
89{
90 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
91 struct arch_timer *timer = to_arch_timer(clk);
92 switch (reg) {
93 case ARCH_TIMER_REG_CTRL:
94 writel_relaxed(val, timer->base + CNTP_CTL);
95 break;
96 case ARCH_TIMER_REG_TVAL:
97 writel_relaxed(val, timer->base + CNTP_TVAL);
98 break;
99 }
100 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
101 struct arch_timer *timer = to_arch_timer(clk);
102 switch (reg) {
103 case ARCH_TIMER_REG_CTRL:
104 writel_relaxed(val, timer->base + CNTV_CTL);
105 break;
106 case ARCH_TIMER_REG_TVAL:
107 writel_relaxed(val, timer->base + CNTV_TVAL);
108 break;
109 }
110 } else {
111 arch_timer_reg_write_cp15(access, reg, val);
112 }
113}
114
115static __always_inline
116u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
117 struct clock_event_device *clk)
118{
119 u32 val;
120
121 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
122 struct arch_timer *timer = to_arch_timer(clk);
123 switch (reg) {
124 case ARCH_TIMER_REG_CTRL:
125 val = readl_relaxed(timer->base + CNTP_CTL);
126 break;
127 case ARCH_TIMER_REG_TVAL:
128 val = readl_relaxed(timer->base + CNTP_TVAL);
129 break;
130 }
131 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
132 struct arch_timer *timer = to_arch_timer(clk);
133 switch (reg) {
134 case ARCH_TIMER_REG_CTRL:
135 val = readl_relaxed(timer->base + CNTV_CTL);
136 break;
137 case ARCH_TIMER_REG_TVAL:
138 val = readl_relaxed(timer->base + CNTV_TVAL);
139 break;
140 }
141 } else {
142 val = arch_timer_reg_read_cp15(access, reg);
143 }
144
145 return val;
146}
147
148static __always_inline irqreturn_t timer_handler(const int access,
149 struct clock_event_device *evt)
150{
151 unsigned long ctrl;
152
153 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
154 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
155 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
156 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
157 evt->event_handler(evt);
158 return IRQ_HANDLED;
159 }
160
161 return IRQ_NONE;
162}
163
164static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
165{
166 struct clock_event_device *evt = dev_id;
167
168 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
169}
170
171static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
172{
173 struct clock_event_device *evt = dev_id;
174
175 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
176}
177
178static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
179{
180 struct clock_event_device *evt = dev_id;
181
182 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
183}
184
185static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
186{
187 struct clock_event_device *evt = dev_id;
188
189 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
190}
191
192static __always_inline int timer_shutdown(const int access,
193 struct clock_event_device *clk)
194{
195 unsigned long ctrl;
196
197 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
198 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
199 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
200
201 return 0;
202}
203
204static int arch_timer_shutdown_virt(struct clock_event_device *clk)
205{
206 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
207}
208
209static int arch_timer_shutdown_phys(struct clock_event_device *clk)
210{
211 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
212}
213
214static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
215{
216 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
217}
218
219static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
220{
221 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
222}
223
224static __always_inline void set_next_event(const int access, unsigned long evt,
225 struct clock_event_device *clk)
226{
227 unsigned long ctrl;
228 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
229 ctrl |= ARCH_TIMER_CTRL_ENABLE;
230 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
231 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
232 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
233}
234
235static int arch_timer_set_next_event_virt(unsigned long evt,
236 struct clock_event_device *clk)
237{
238 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
239 return 0;
240}
241
242static int arch_timer_set_next_event_phys(unsigned long evt,
243 struct clock_event_device *clk)
244{
245 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
246 return 0;
247}
248
249static int arch_timer_set_next_event_virt_mem(unsigned long evt,
250 struct clock_event_device *clk)
251{
252 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
253 return 0;
254}
255
256static int arch_timer_set_next_event_phys_mem(unsigned long evt,
257 struct clock_event_device *clk)
258{
259 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
260 return 0;
261}
262
263static void __arch_timer_setup(unsigned type,
264 struct clock_event_device *clk)
265{
266 clk->features = CLOCK_EVT_FEAT_ONESHOT;
267
268 if (type == ARCH_CP15_TIMER) {
269 if (arch_timer_c3stop)
270 clk->features |= CLOCK_EVT_FEAT_C3STOP;
271 clk->name = "arch_sys_timer";
272 clk->rating = 450;
273 clk->cpumask = cpumask_of(smp_processor_id());
274 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
275 switch (arch_timer_uses_ppi) {
276 case VIRT_PPI:
277 clk->set_state_shutdown = arch_timer_shutdown_virt;
278 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
279 clk->set_next_event = arch_timer_set_next_event_virt;
280 break;
281 case PHYS_SECURE_PPI:
282 case PHYS_NONSECURE_PPI:
283 case HYP_PPI:
284 clk->set_state_shutdown = arch_timer_shutdown_phys;
285 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
286 clk->set_next_event = arch_timer_set_next_event_phys;
287 break;
288 default:
289 BUG();
290 }
291 } else {
292 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
293 clk->name = "arch_mem_timer";
294 clk->rating = 400;
295 clk->cpumask = cpu_all_mask;
296 if (arch_timer_mem_use_virtual) {
297 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
298 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
299 clk->set_next_event =
300 arch_timer_set_next_event_virt_mem;
301 } else {
302 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
303 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
304 clk->set_next_event =
305 arch_timer_set_next_event_phys_mem;
306 }
307 }
308
309 clk->set_state_shutdown(clk);
310
311 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
312}
313
314static void arch_timer_evtstrm_enable(int divider)
315{
316 u32 cntkctl = arch_timer_get_cntkctl();
317
318 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
319 /* Set the divider and enable virtual event stream */
320 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
321 | ARCH_TIMER_VIRT_EVT_EN;
322 arch_timer_set_cntkctl(cntkctl);
323 elf_hwcap |= HWCAP_EVTSTRM;
324#ifdef CONFIG_COMPAT
325 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
326#endif
327}
328
329static void arch_timer_configure_evtstream(void)
330{
331 int evt_stream_div, pos;
332
333 /* Find the closest power of two to the divisor */
334 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
335 pos = fls(evt_stream_div);
336 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
337 pos--;
338 /* enable event stream */
339 arch_timer_evtstrm_enable(min(pos, 15));
340}
341
342static void arch_counter_set_user_access(void)
343{
344 u32 cntkctl = arch_timer_get_cntkctl();
345
346 /* Disable user access to the timers and the physical counter */
347 /* Also disable virtual event stream */
348 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
349 | ARCH_TIMER_USR_VT_ACCESS_EN
350 | ARCH_TIMER_VIRT_EVT_EN
351 | ARCH_TIMER_USR_PCT_ACCESS_EN);
352
353 /* Enable user access to the virtual counter */
354 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
355
356 arch_timer_set_cntkctl(cntkctl);
357}
358
359static bool arch_timer_has_nonsecure_ppi(void)
360{
361 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
362 arch_timer_ppi[PHYS_NONSECURE_PPI]);
363}
364
365static int arch_timer_setup(struct clock_event_device *clk)
366{
367 __arch_timer_setup(ARCH_CP15_TIMER, clk);
368
369 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], 0);
370
371 if (arch_timer_has_nonsecure_ppi())
372 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
373
374 arch_counter_set_user_access();
375 if (IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM))
376 arch_timer_configure_evtstream();
377
378 return 0;
379}
380
381static void
382arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
383{
384 /* Who has more than one independent system counter? */
385 if (arch_timer_rate)
386 return;
387
388 /*
389 * Try to determine the frequency from the device tree or CNTFRQ,
390 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
391 */
392 if (!acpi_disabled ||
393 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
394 if (cntbase)
395 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
396 else
397 arch_timer_rate = arch_timer_get_cntfrq();
398 }
399
400 /* Check the timer frequency. */
401 if (arch_timer_rate == 0)
402 pr_warn("Architected timer frequency not available\n");
403}
404
405static void arch_timer_banner(unsigned type)
406{
407 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
408 type & ARCH_CP15_TIMER ? "cp15" : "",
409 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
410 type & ARCH_MEM_TIMER ? "mmio" : "",
411 (unsigned long)arch_timer_rate / 1000000,
412 (unsigned long)(arch_timer_rate / 10000) % 100,
413 type & ARCH_CP15_TIMER ?
414 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
415 "",
416 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
417 type & ARCH_MEM_TIMER ?
418 arch_timer_mem_use_virtual ? "virt" : "phys" :
419 "");
420}
421
422u32 arch_timer_get_rate(void)
423{
424 return arch_timer_rate;
425}
426
427static u64 arch_counter_get_cntvct_mem(void)
428{
429 u32 vct_lo, vct_hi, tmp_hi;
430
431 do {
432 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
433 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
434 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
435 } while (vct_hi != tmp_hi);
436
437 return ((u64) vct_hi << 32) | vct_lo;
438}
439
440/*
441 * Default to cp15 based access because arm64 uses this function for
442 * sched_clock() before DT is probed and the cp15 method is guaranteed
443 * to exist on arm64. arm doesn't use this before DT is probed so even
444 * if we don't have the cp15 accessors we won't have a problem.
445 */
446u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
447
448static cycle_t arch_counter_read(struct clocksource *cs)
449{
450 return arch_timer_read_counter();
451}
452
453static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
454{
455 return arch_timer_read_counter();
456}
457
458static struct clocksource clocksource_counter = {
459 .name = "arch_sys_counter",
460 .rating = 400,
461 .read = arch_counter_read,
462 .mask = CLOCKSOURCE_MASK(56),
463 .flags = CLOCK_SOURCE_IS_CONTINUOUS | CLOCK_SOURCE_SUSPEND_NONSTOP,
464};
465
466static struct cyclecounter cyclecounter = {
467 .read = arch_counter_read_cc,
468 .mask = CLOCKSOURCE_MASK(56),
469};
470
471static struct timecounter timecounter;
472
473struct timecounter *arch_timer_get_timecounter(void)
474{
475 return &timecounter;
476}
477
478static void __init arch_counter_register(unsigned type)
479{
480 u64 start_count;
481
482 /* Register the CP15 based counter if we have one */
483 if (type & ARCH_CP15_TIMER) {
484 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
485 arch_timer_read_counter = arch_counter_get_cntvct;
486 else
487 arch_timer_read_counter = arch_counter_get_cntpct;
488 } else {
489 arch_timer_read_counter = arch_counter_get_cntvct_mem;
490
491 /* If the clocksource name is "arch_sys_counter" the
492 * VDSO will attempt to read the CP15-based counter.
493 * Ensure this does not happen when CP15-based
494 * counter is not available.
495 */
496 clocksource_counter.name = "arch_mem_counter";
497 }
498
499 start_count = arch_timer_read_counter();
500 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
501 cyclecounter.mult = clocksource_counter.mult;
502 cyclecounter.shift = clocksource_counter.shift;
503 timecounter_init(&timecounter, &cyclecounter, start_count);
504
505 /* 56 bits minimum, so we assume worst case rollover */
506 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
507}
508
509static void arch_timer_stop(struct clock_event_device *clk)
510{
511 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
512 clk->irq, smp_processor_id());
513
514 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
515 if (arch_timer_has_nonsecure_ppi())
516 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
517
518 clk->set_state_shutdown(clk);
519}
520
521static int arch_timer_cpu_notify(struct notifier_block *self,
522 unsigned long action, void *hcpu)
523{
524 /*
525 * Grab cpu pointer in each case to avoid spurious
526 * preemptible warnings
527 */
528 switch (action & ~CPU_TASKS_FROZEN) {
529 case CPU_STARTING:
530 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
531 break;
532 case CPU_DYING:
533 arch_timer_stop(this_cpu_ptr(arch_timer_evt));
534 break;
535 }
536
537 return NOTIFY_OK;
538}
539
540static struct notifier_block arch_timer_cpu_nb = {
541 .notifier_call = arch_timer_cpu_notify,
542};
543
544#ifdef CONFIG_CPU_PM
545static unsigned int saved_cntkctl;
546static int arch_timer_cpu_pm_notify(struct notifier_block *self,
547 unsigned long action, void *hcpu)
548{
549 if (action == CPU_PM_ENTER)
550 saved_cntkctl = arch_timer_get_cntkctl();
551 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
552 arch_timer_set_cntkctl(saved_cntkctl);
553 return NOTIFY_OK;
554}
555
556static struct notifier_block arch_timer_cpu_pm_notifier = {
557 .notifier_call = arch_timer_cpu_pm_notify,
558};
559
560static int __init arch_timer_cpu_pm_init(void)
561{
562 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
563}
564#else
565static int __init arch_timer_cpu_pm_init(void)
566{
567 return 0;
568}
569#endif
570
571static int __init arch_timer_register(void)
572{
573 int err;
574 int ppi;
575
576 arch_timer_evt = alloc_percpu(struct clock_event_device);
577 if (!arch_timer_evt) {
578 err = -ENOMEM;
579 goto out;
580 }
581
582 ppi = arch_timer_ppi[arch_timer_uses_ppi];
583 switch (arch_timer_uses_ppi) {
584 case VIRT_PPI:
585 err = request_percpu_irq(ppi, arch_timer_handler_virt,
586 "arch_timer", arch_timer_evt);
587 break;
588 case PHYS_SECURE_PPI:
589 case PHYS_NONSECURE_PPI:
590 err = request_percpu_irq(ppi, arch_timer_handler_phys,
591 "arch_timer", arch_timer_evt);
592 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
593 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
594 err = request_percpu_irq(ppi, arch_timer_handler_phys,
595 "arch_timer", arch_timer_evt);
596 if (err)
597 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
598 arch_timer_evt);
599 }
600 break;
601 case HYP_PPI:
602 err = request_percpu_irq(ppi, arch_timer_handler_phys,
603 "arch_timer", arch_timer_evt);
604 break;
605 default:
606 BUG();
607 }
608
609 if (err) {
610 pr_err("arch_timer: can't register interrupt %d (%d)\n",
611 ppi, err);
612 goto out_free;
613 }
614
615 err = register_cpu_notifier(&arch_timer_cpu_nb);
616 if (err)
617 goto out_free_irq;
618
619 err = arch_timer_cpu_pm_init();
620 if (err)
621 goto out_unreg_notify;
622
623 /* Immediately configure the timer on the boot CPU */
624 arch_timer_setup(this_cpu_ptr(arch_timer_evt));
625
626 return 0;
627
628out_unreg_notify:
629 unregister_cpu_notifier(&arch_timer_cpu_nb);
630out_free_irq:
631 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
632 if (arch_timer_has_nonsecure_ppi())
633 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
634 arch_timer_evt);
635
636out_free:
637 free_percpu(arch_timer_evt);
638out:
639 return err;
640}
641
642static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
643{
644 int ret;
645 irq_handler_t func;
646 struct arch_timer *t;
647
648 t = kzalloc(sizeof(*t), GFP_KERNEL);
649 if (!t)
650 return -ENOMEM;
651
652 t->base = base;
653 t->evt.irq = irq;
654 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
655
656 if (arch_timer_mem_use_virtual)
657 func = arch_timer_handler_virt_mem;
658 else
659 func = arch_timer_handler_phys_mem;
660
661 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
662 if (ret) {
663 pr_err("arch_timer: Failed to request mem timer irq\n");
664 kfree(t);
665 }
666
667 return ret;
668}
669
670static const struct of_device_id arch_timer_of_match[] __initconst = {
671 { .compatible = "arm,armv7-timer", },
672 { .compatible = "arm,armv8-timer", },
673 {},
674};
675
676static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
677 { .compatible = "arm,armv7-timer-mem", },
678 {},
679};
680
681static bool __init
682arch_timer_needs_probing(int type, const struct of_device_id *matches)
683{
684 struct device_node *dn;
685 bool needs_probing = false;
686
687 dn = of_find_matching_node(NULL, matches);
688 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
689 needs_probing = true;
690 of_node_put(dn);
691
692 return needs_probing;
693}
694
695static void __init arch_timer_common_init(void)
696{
697 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
698
699 /* Wait until both nodes are probed if we have two timers */
700 if ((arch_timers_present & mask) != mask) {
701 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
702 return;
703 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
704 return;
705 }
706
707 arch_timer_banner(arch_timers_present);
708 arch_counter_register(arch_timers_present);
709 arch_timer_arch_init();
710}
711
712static void __init arch_timer_init(void)
713{
714 /*
715 * If HYP mode is available, we know that the physical timer
716 * has been configured to be accessible from PL1. Use it, so
717 * that a guest can use the virtual timer instead.
718 *
719 * If no interrupt provided for virtual timer, we'll have to
720 * stick to the physical timer. It'd better be accessible...
721 *
722 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
723 * accesses to CNTP_*_EL1 registers are silently redirected to
724 * their CNTHP_*_EL2 counterparts, and use a different PPI
725 * number.
726 */
727 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
728 bool has_ppi;
729
730 if (is_kernel_in_hyp_mode()) {
731 arch_timer_uses_ppi = HYP_PPI;
732 has_ppi = !!arch_timer_ppi[HYP_PPI];
733 } else {
734 arch_timer_uses_ppi = PHYS_SECURE_PPI;
735 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
736 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
737 }
738
739 if (!has_ppi) {
740 pr_warn("arch_timer: No interrupt available, giving up\n");
741 return;
742 }
743 }
744
745 arch_timer_register();
746 arch_timer_common_init();
747}
748
749static void __init arch_timer_of_init(struct device_node *np)
750{
751 int i;
752
753 if (arch_timers_present & ARCH_CP15_TIMER) {
754 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
755 return;
756 }
757
758 arch_timers_present |= ARCH_CP15_TIMER;
759 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
760 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
761
762 arch_timer_detect_rate(NULL, np);
763
764 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
765
766 /*
767 * If we cannot rely on firmware initializing the timer registers then
768 * we should use the physical timers instead.
769 */
770 if (IS_ENABLED(CONFIG_ARM) &&
771 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
772 arch_timer_uses_ppi = PHYS_SECURE_PPI;
773
774 arch_timer_init();
775}
776CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
777CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
778
779static void __init arch_timer_mem_init(struct device_node *np)
780{
781 struct device_node *frame, *best_frame = NULL;
782 void __iomem *cntctlbase, *base;
783 unsigned int irq;
784 u32 cnttidr;
785
786 arch_timers_present |= ARCH_MEM_TIMER;
787 cntctlbase = of_iomap(np, 0);
788 if (!cntctlbase) {
789 pr_err("arch_timer: Can't find CNTCTLBase\n");
790 return;
791 }
792
793 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
794
795 /*
796 * Try to find a virtual capable frame. Otherwise fall back to a
797 * physical capable frame.
798 */
799 for_each_available_child_of_node(np, frame) {
800 int n;
801 u32 cntacr;
802
803 if (of_property_read_u32(frame, "frame-number", &n)) {
804 pr_err("arch_timer: Missing frame-number\n");
805 of_node_put(frame);
806 goto out;
807 }
808
809 /* Try enabling everything, and see what sticks */
810 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
811 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
812 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
813 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
814
815 if ((cnttidr & CNTTIDR_VIRT(n)) &&
816 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
817 of_node_put(best_frame);
818 best_frame = frame;
819 arch_timer_mem_use_virtual = true;
820 break;
821 }
822
823 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
824 continue;
825
826 of_node_put(best_frame);
827 best_frame = of_node_get(frame);
828 }
829
830 base = arch_counter_base = of_iomap(best_frame, 0);
831 if (!base) {
832 pr_err("arch_timer: Can't map frame's registers\n");
833 goto out;
834 }
835
836 if (arch_timer_mem_use_virtual)
837 irq = irq_of_parse_and_map(best_frame, 1);
838 else
839 irq = irq_of_parse_and_map(best_frame, 0);
840
841 if (!irq) {
842 pr_err("arch_timer: Frame missing %s irq",
843 arch_timer_mem_use_virtual ? "virt" : "phys");
844 goto out;
845 }
846
847 arch_timer_detect_rate(base, np);
848 arch_timer_mem_register(base, irq);
849 arch_timer_common_init();
850out:
851 iounmap(cntctlbase);
852 of_node_put(best_frame);
853}
854CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
855 arch_timer_mem_init);
856
857#ifdef CONFIG_ACPI
858static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
859{
860 int trigger, polarity;
861
862 if (!interrupt)
863 return 0;
864
865 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
866 : ACPI_LEVEL_SENSITIVE;
867
868 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
869 : ACPI_ACTIVE_HIGH;
870
871 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
872}
873
874/* Initialize per-processor generic timer */
875static int __init arch_timer_acpi_init(struct acpi_table_header *table)
876{
877 struct acpi_table_gtdt *gtdt;
878
879 if (arch_timers_present & ARCH_CP15_TIMER) {
880 pr_warn("arch_timer: already initialized, skipping\n");
881 return -EINVAL;
882 }
883
884 gtdt = container_of(table, struct acpi_table_gtdt, header);
885
886 arch_timers_present |= ARCH_CP15_TIMER;
887
888 arch_timer_ppi[PHYS_SECURE_PPI] =
889 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
890 gtdt->secure_el1_flags);
891
892 arch_timer_ppi[PHYS_NONSECURE_PPI] =
893 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
894 gtdt->non_secure_el1_flags);
895
896 arch_timer_ppi[VIRT_PPI] =
897 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
898 gtdt->virtual_timer_flags);
899
900 arch_timer_ppi[HYP_PPI] =
901 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
902 gtdt->non_secure_el2_flags);
903
904 /* Get the frequency from CNTFRQ */
905 arch_timer_detect_rate(NULL, NULL);
906
907 /* Always-on capability */
908 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
909
910 arch_timer_init();
911 return 0;
912}
913CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
914#endif