Loading...
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
19#include <linux/cpu_pm.h>
20#include <linux/clockchips.h>
21#include <linux/clocksource.h>
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
24#include <linux/of_address.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27#include <linux/sched_clock.h>
28#include <linux/acpi.h>
29
30#include <asm/arch_timer.h>
31#include <asm/virt.h>
32
33#include <clocksource/arm_arch_timer.h>
34
35#define CNTTIDR 0x08
36#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
37
38#define CNTACR(n) (0x40 + ((n) * 4))
39#define CNTACR_RPCT BIT(0)
40#define CNTACR_RVCT BIT(1)
41#define CNTACR_RFRQ BIT(2)
42#define CNTACR_RVOFF BIT(3)
43#define CNTACR_RWVT BIT(4)
44#define CNTACR_RWPT BIT(5)
45
46#define CNTVCT_LO 0x08
47#define CNTVCT_HI 0x0c
48#define CNTFRQ 0x10
49#define CNTP_TVAL 0x28
50#define CNTP_CTL 0x2c
51#define CNTV_TVAL 0x38
52#define CNTV_CTL 0x3c
53
54#define ARCH_CP15_TIMER BIT(0)
55#define ARCH_MEM_TIMER BIT(1)
56static unsigned arch_timers_present __initdata;
57
58static void __iomem *arch_counter_base;
59
60struct arch_timer {
61 void __iomem *base;
62 struct clock_event_device evt;
63};
64
65#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
66
67static u32 arch_timer_rate;
68
69enum ppi_nr {
70 PHYS_SECURE_PPI,
71 PHYS_NONSECURE_PPI,
72 VIRT_PPI,
73 HYP_PPI,
74 MAX_TIMER_PPI
75};
76
77static int arch_timer_ppi[MAX_TIMER_PPI];
78
79static struct clock_event_device __percpu *arch_timer_evt;
80
81static enum ppi_nr arch_timer_uses_ppi = VIRT_PPI;
82static bool arch_timer_c3stop;
83static bool arch_timer_mem_use_virtual;
84static bool arch_counter_suspend_stop;
85
86static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
87
88static int __init early_evtstrm_cfg(char *buf)
89{
90 return strtobool(buf, &evtstrm_enable);
91}
92early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
93
94/*
95 * Architected system timer support.
96 */
97
98#ifdef CONFIG_FSL_ERRATUM_A008585
99DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
100EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
101
102static int fsl_a008585_enable = -1;
103
104static int __init early_fsl_a008585_cfg(char *buf)
105{
106 int ret;
107 bool val;
108
109 ret = strtobool(buf, &val);
110 if (ret)
111 return ret;
112
113 fsl_a008585_enable = val;
114 return 0;
115}
116early_param("clocksource.arm_arch_timer.fsl-a008585", early_fsl_a008585_cfg);
117
118u32 __fsl_a008585_read_cntp_tval_el0(void)
119{
120 return __fsl_a008585_read_reg(cntp_tval_el0);
121}
122
123u32 __fsl_a008585_read_cntv_tval_el0(void)
124{
125 return __fsl_a008585_read_reg(cntv_tval_el0);
126}
127
128u64 __fsl_a008585_read_cntvct_el0(void)
129{
130 return __fsl_a008585_read_reg(cntvct_el0);
131}
132EXPORT_SYMBOL(__fsl_a008585_read_cntvct_el0);
133#endif /* CONFIG_FSL_ERRATUM_A008585 */
134
135static __always_inline
136void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
137 struct clock_event_device *clk)
138{
139 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
140 struct arch_timer *timer = to_arch_timer(clk);
141 switch (reg) {
142 case ARCH_TIMER_REG_CTRL:
143 writel_relaxed(val, timer->base + CNTP_CTL);
144 break;
145 case ARCH_TIMER_REG_TVAL:
146 writel_relaxed(val, timer->base + CNTP_TVAL);
147 break;
148 }
149 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
150 struct arch_timer *timer = to_arch_timer(clk);
151 switch (reg) {
152 case ARCH_TIMER_REG_CTRL:
153 writel_relaxed(val, timer->base + CNTV_CTL);
154 break;
155 case ARCH_TIMER_REG_TVAL:
156 writel_relaxed(val, timer->base + CNTV_TVAL);
157 break;
158 }
159 } else {
160 arch_timer_reg_write_cp15(access, reg, val);
161 }
162}
163
164static __always_inline
165u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
166 struct clock_event_device *clk)
167{
168 u32 val;
169
170 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
171 struct arch_timer *timer = to_arch_timer(clk);
172 switch (reg) {
173 case ARCH_TIMER_REG_CTRL:
174 val = readl_relaxed(timer->base + CNTP_CTL);
175 break;
176 case ARCH_TIMER_REG_TVAL:
177 val = readl_relaxed(timer->base + CNTP_TVAL);
178 break;
179 }
180 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
181 struct arch_timer *timer = to_arch_timer(clk);
182 switch (reg) {
183 case ARCH_TIMER_REG_CTRL:
184 val = readl_relaxed(timer->base + CNTV_CTL);
185 break;
186 case ARCH_TIMER_REG_TVAL:
187 val = readl_relaxed(timer->base + CNTV_TVAL);
188 break;
189 }
190 } else {
191 val = arch_timer_reg_read_cp15(access, reg);
192 }
193
194 return val;
195}
196
197static __always_inline irqreturn_t timer_handler(const int access,
198 struct clock_event_device *evt)
199{
200 unsigned long ctrl;
201
202 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
203 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
204 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
205 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
206 evt->event_handler(evt);
207 return IRQ_HANDLED;
208 }
209
210 return IRQ_NONE;
211}
212
213static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
214{
215 struct clock_event_device *evt = dev_id;
216
217 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
218}
219
220static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
221{
222 struct clock_event_device *evt = dev_id;
223
224 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
225}
226
227static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
228{
229 struct clock_event_device *evt = dev_id;
230
231 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
232}
233
234static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
235{
236 struct clock_event_device *evt = dev_id;
237
238 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
239}
240
241static __always_inline int timer_shutdown(const int access,
242 struct clock_event_device *clk)
243{
244 unsigned long ctrl;
245
246 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
247 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
248 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
249
250 return 0;
251}
252
253static int arch_timer_shutdown_virt(struct clock_event_device *clk)
254{
255 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
256}
257
258static int arch_timer_shutdown_phys(struct clock_event_device *clk)
259{
260 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
261}
262
263static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
264{
265 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
266}
267
268static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
269{
270 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
271}
272
273static __always_inline void set_next_event(const int access, unsigned long evt,
274 struct clock_event_device *clk)
275{
276 unsigned long ctrl;
277 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
278 ctrl |= ARCH_TIMER_CTRL_ENABLE;
279 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
280 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
281 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
282}
283
284#ifdef CONFIG_FSL_ERRATUM_A008585
285static __always_inline void fsl_a008585_set_next_event(const int access,
286 unsigned long evt, struct clock_event_device *clk)
287{
288 unsigned long ctrl;
289 u64 cval = evt + arch_counter_get_cntvct();
290
291 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
292 ctrl |= ARCH_TIMER_CTRL_ENABLE;
293 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
294
295 if (access == ARCH_TIMER_PHYS_ACCESS)
296 write_sysreg(cval, cntp_cval_el0);
297 else if (access == ARCH_TIMER_VIRT_ACCESS)
298 write_sysreg(cval, cntv_cval_el0);
299
300 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
301}
302
303static int fsl_a008585_set_next_event_virt(unsigned long evt,
304 struct clock_event_device *clk)
305{
306 fsl_a008585_set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
307 return 0;
308}
309
310static int fsl_a008585_set_next_event_phys(unsigned long evt,
311 struct clock_event_device *clk)
312{
313 fsl_a008585_set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
314 return 0;
315}
316#endif /* CONFIG_FSL_ERRATUM_A008585 */
317
318static int arch_timer_set_next_event_virt(unsigned long evt,
319 struct clock_event_device *clk)
320{
321 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
322 return 0;
323}
324
325static int arch_timer_set_next_event_phys(unsigned long evt,
326 struct clock_event_device *clk)
327{
328 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
329 return 0;
330}
331
332static int arch_timer_set_next_event_virt_mem(unsigned long evt,
333 struct clock_event_device *clk)
334{
335 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
336 return 0;
337}
338
339static int arch_timer_set_next_event_phys_mem(unsigned long evt,
340 struct clock_event_device *clk)
341{
342 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
343 return 0;
344}
345
346static void fsl_a008585_set_sne(struct clock_event_device *clk)
347{
348#ifdef CONFIG_FSL_ERRATUM_A008585
349 if (!static_branch_unlikely(&arch_timer_read_ool_enabled))
350 return;
351
352 if (arch_timer_uses_ppi == VIRT_PPI)
353 clk->set_next_event = fsl_a008585_set_next_event_virt;
354 else
355 clk->set_next_event = fsl_a008585_set_next_event_phys;
356#endif
357}
358
359static void __arch_timer_setup(unsigned type,
360 struct clock_event_device *clk)
361{
362 clk->features = CLOCK_EVT_FEAT_ONESHOT;
363
364 if (type == ARCH_CP15_TIMER) {
365 if (arch_timer_c3stop)
366 clk->features |= CLOCK_EVT_FEAT_C3STOP;
367 clk->name = "arch_sys_timer";
368 clk->rating = 450;
369 clk->cpumask = cpumask_of(smp_processor_id());
370 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
371 switch (arch_timer_uses_ppi) {
372 case VIRT_PPI:
373 clk->set_state_shutdown = arch_timer_shutdown_virt;
374 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
375 clk->set_next_event = arch_timer_set_next_event_virt;
376 break;
377 case PHYS_SECURE_PPI:
378 case PHYS_NONSECURE_PPI:
379 case HYP_PPI:
380 clk->set_state_shutdown = arch_timer_shutdown_phys;
381 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
382 clk->set_next_event = arch_timer_set_next_event_phys;
383 break;
384 default:
385 BUG();
386 }
387
388 fsl_a008585_set_sne(clk);
389 } else {
390 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
391 clk->name = "arch_mem_timer";
392 clk->rating = 400;
393 clk->cpumask = cpu_all_mask;
394 if (arch_timer_mem_use_virtual) {
395 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
396 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
397 clk->set_next_event =
398 arch_timer_set_next_event_virt_mem;
399 } else {
400 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
401 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
402 clk->set_next_event =
403 arch_timer_set_next_event_phys_mem;
404 }
405 }
406
407 clk->set_state_shutdown(clk);
408
409 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
410}
411
412static void arch_timer_evtstrm_enable(int divider)
413{
414 u32 cntkctl = arch_timer_get_cntkctl();
415
416 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
417 /* Set the divider and enable virtual event stream */
418 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
419 | ARCH_TIMER_VIRT_EVT_EN;
420 arch_timer_set_cntkctl(cntkctl);
421 elf_hwcap |= HWCAP_EVTSTRM;
422#ifdef CONFIG_COMPAT
423 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
424#endif
425}
426
427static void arch_timer_configure_evtstream(void)
428{
429 int evt_stream_div, pos;
430
431 /* Find the closest power of two to the divisor */
432 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
433 pos = fls(evt_stream_div);
434 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
435 pos--;
436 /* enable event stream */
437 arch_timer_evtstrm_enable(min(pos, 15));
438}
439
440static void arch_counter_set_user_access(void)
441{
442 u32 cntkctl = arch_timer_get_cntkctl();
443
444 /* Disable user access to the timers and the physical counter */
445 /* Also disable virtual event stream */
446 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
447 | ARCH_TIMER_USR_VT_ACCESS_EN
448 | ARCH_TIMER_VIRT_EVT_EN
449 | ARCH_TIMER_USR_PCT_ACCESS_EN);
450
451 /* Enable user access to the virtual counter */
452 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
453
454 arch_timer_set_cntkctl(cntkctl);
455}
456
457static bool arch_timer_has_nonsecure_ppi(void)
458{
459 return (arch_timer_uses_ppi == PHYS_SECURE_PPI &&
460 arch_timer_ppi[PHYS_NONSECURE_PPI]);
461}
462
463static u32 check_ppi_trigger(int irq)
464{
465 u32 flags = irq_get_trigger_type(irq);
466
467 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
468 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
469 pr_warn("WARNING: Please fix your firmware\n");
470 flags = IRQF_TRIGGER_LOW;
471 }
472
473 return flags;
474}
475
476static int arch_timer_starting_cpu(unsigned int cpu)
477{
478 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
479 u32 flags;
480
481 __arch_timer_setup(ARCH_CP15_TIMER, clk);
482
483 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
484 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
485
486 if (arch_timer_has_nonsecure_ppi()) {
487 flags = check_ppi_trigger(arch_timer_ppi[PHYS_NONSECURE_PPI]);
488 enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], flags);
489 }
490
491 arch_counter_set_user_access();
492 if (evtstrm_enable)
493 arch_timer_configure_evtstream();
494
495 return 0;
496}
497
498static void
499arch_timer_detect_rate(void __iomem *cntbase, struct device_node *np)
500{
501 /* Who has more than one independent system counter? */
502 if (arch_timer_rate)
503 return;
504
505 /*
506 * Try to determine the frequency from the device tree or CNTFRQ,
507 * if ACPI is enabled, get the frequency from CNTFRQ ONLY.
508 */
509 if (!acpi_disabled ||
510 of_property_read_u32(np, "clock-frequency", &arch_timer_rate)) {
511 if (cntbase)
512 arch_timer_rate = readl_relaxed(cntbase + CNTFRQ);
513 else
514 arch_timer_rate = arch_timer_get_cntfrq();
515 }
516
517 /* Check the timer frequency. */
518 if (arch_timer_rate == 0)
519 pr_warn("Architected timer frequency not available\n");
520}
521
522static void arch_timer_banner(unsigned type)
523{
524 pr_info("Architected %s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
525 type & ARCH_CP15_TIMER ? "cp15" : "",
526 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? " and " : "",
527 type & ARCH_MEM_TIMER ? "mmio" : "",
528 (unsigned long)arch_timer_rate / 1000000,
529 (unsigned long)(arch_timer_rate / 10000) % 100,
530 type & ARCH_CP15_TIMER ?
531 (arch_timer_uses_ppi == VIRT_PPI) ? "virt" : "phys" :
532 "",
533 type == (ARCH_CP15_TIMER | ARCH_MEM_TIMER) ? "/" : "",
534 type & ARCH_MEM_TIMER ?
535 arch_timer_mem_use_virtual ? "virt" : "phys" :
536 "");
537}
538
539u32 arch_timer_get_rate(void)
540{
541 return arch_timer_rate;
542}
543
544static u64 arch_counter_get_cntvct_mem(void)
545{
546 u32 vct_lo, vct_hi, tmp_hi;
547
548 do {
549 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
550 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
551 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
552 } while (vct_hi != tmp_hi);
553
554 return ((u64) vct_hi << 32) | vct_lo;
555}
556
557/*
558 * Default to cp15 based access because arm64 uses this function for
559 * sched_clock() before DT is probed and the cp15 method is guaranteed
560 * to exist on arm64. arm doesn't use this before DT is probed so even
561 * if we don't have the cp15 accessors we won't have a problem.
562 */
563u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
564
565static u64 arch_counter_read(struct clocksource *cs)
566{
567 return arch_timer_read_counter();
568}
569
570static u64 arch_counter_read_cc(const struct cyclecounter *cc)
571{
572 return arch_timer_read_counter();
573}
574
575static struct clocksource clocksource_counter = {
576 .name = "arch_sys_counter",
577 .rating = 400,
578 .read = arch_counter_read,
579 .mask = CLOCKSOURCE_MASK(56),
580 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
581};
582
583static struct cyclecounter cyclecounter = {
584 .read = arch_counter_read_cc,
585 .mask = CLOCKSOURCE_MASK(56),
586};
587
588static struct arch_timer_kvm_info arch_timer_kvm_info;
589
590struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
591{
592 return &arch_timer_kvm_info;
593}
594
595static void __init arch_counter_register(unsigned type)
596{
597 u64 start_count;
598
599 /* Register the CP15 based counter if we have one */
600 if (type & ARCH_CP15_TIMER) {
601 if (IS_ENABLED(CONFIG_ARM64) || arch_timer_uses_ppi == VIRT_PPI)
602 arch_timer_read_counter = arch_counter_get_cntvct;
603 else
604 arch_timer_read_counter = arch_counter_get_cntpct;
605
606 clocksource_counter.archdata.vdso_direct = true;
607
608#ifdef CONFIG_FSL_ERRATUM_A008585
609 /*
610 * Don't use the vdso fastpath if errata require using
611 * the out-of-line counter accessor.
612 */
613 if (static_branch_unlikely(&arch_timer_read_ool_enabled))
614 clocksource_counter.archdata.vdso_direct = false;
615#endif
616 } else {
617 arch_timer_read_counter = arch_counter_get_cntvct_mem;
618 }
619
620 if (!arch_counter_suspend_stop)
621 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
622 start_count = arch_timer_read_counter();
623 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
624 cyclecounter.mult = clocksource_counter.mult;
625 cyclecounter.shift = clocksource_counter.shift;
626 timecounter_init(&arch_timer_kvm_info.timecounter,
627 &cyclecounter, start_count);
628
629 /* 56 bits minimum, so we assume worst case rollover */
630 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
631}
632
633static void arch_timer_stop(struct clock_event_device *clk)
634{
635 pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
636 clk->irq, smp_processor_id());
637
638 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
639 if (arch_timer_has_nonsecure_ppi())
640 disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
641
642 clk->set_state_shutdown(clk);
643}
644
645static int arch_timer_dying_cpu(unsigned int cpu)
646{
647 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
648
649 arch_timer_stop(clk);
650 return 0;
651}
652
653#ifdef CONFIG_CPU_PM
654static unsigned int saved_cntkctl;
655static int arch_timer_cpu_pm_notify(struct notifier_block *self,
656 unsigned long action, void *hcpu)
657{
658 if (action == CPU_PM_ENTER)
659 saved_cntkctl = arch_timer_get_cntkctl();
660 else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT)
661 arch_timer_set_cntkctl(saved_cntkctl);
662 return NOTIFY_OK;
663}
664
665static struct notifier_block arch_timer_cpu_pm_notifier = {
666 .notifier_call = arch_timer_cpu_pm_notify,
667};
668
669static int __init arch_timer_cpu_pm_init(void)
670{
671 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
672}
673
674static void __init arch_timer_cpu_pm_deinit(void)
675{
676 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
677}
678
679#else
680static int __init arch_timer_cpu_pm_init(void)
681{
682 return 0;
683}
684
685static void __init arch_timer_cpu_pm_deinit(void)
686{
687}
688#endif
689
690static int __init arch_timer_register(void)
691{
692 int err;
693 int ppi;
694
695 arch_timer_evt = alloc_percpu(struct clock_event_device);
696 if (!arch_timer_evt) {
697 err = -ENOMEM;
698 goto out;
699 }
700
701 ppi = arch_timer_ppi[arch_timer_uses_ppi];
702 switch (arch_timer_uses_ppi) {
703 case VIRT_PPI:
704 err = request_percpu_irq(ppi, arch_timer_handler_virt,
705 "arch_timer", arch_timer_evt);
706 break;
707 case PHYS_SECURE_PPI:
708 case PHYS_NONSECURE_PPI:
709 err = request_percpu_irq(ppi, arch_timer_handler_phys,
710 "arch_timer", arch_timer_evt);
711 if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
712 ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
713 err = request_percpu_irq(ppi, arch_timer_handler_phys,
714 "arch_timer", arch_timer_evt);
715 if (err)
716 free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
717 arch_timer_evt);
718 }
719 break;
720 case HYP_PPI:
721 err = request_percpu_irq(ppi, arch_timer_handler_phys,
722 "arch_timer", arch_timer_evt);
723 break;
724 default:
725 BUG();
726 }
727
728 if (err) {
729 pr_err("arch_timer: can't register interrupt %d (%d)\n",
730 ppi, err);
731 goto out_free;
732 }
733
734 err = arch_timer_cpu_pm_init();
735 if (err)
736 goto out_unreg_notify;
737
738
739 /* Register and immediately configure the timer on the boot CPU */
740 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
741 "clockevents/arm/arch_timer:starting",
742 arch_timer_starting_cpu, arch_timer_dying_cpu);
743 if (err)
744 goto out_unreg_cpupm;
745 return 0;
746
747out_unreg_cpupm:
748 arch_timer_cpu_pm_deinit();
749
750out_unreg_notify:
751 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
752 if (arch_timer_has_nonsecure_ppi())
753 free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
754 arch_timer_evt);
755
756out_free:
757 free_percpu(arch_timer_evt);
758out:
759 return err;
760}
761
762static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
763{
764 int ret;
765 irq_handler_t func;
766 struct arch_timer *t;
767
768 t = kzalloc(sizeof(*t), GFP_KERNEL);
769 if (!t)
770 return -ENOMEM;
771
772 t->base = base;
773 t->evt.irq = irq;
774 __arch_timer_setup(ARCH_MEM_TIMER, &t->evt);
775
776 if (arch_timer_mem_use_virtual)
777 func = arch_timer_handler_virt_mem;
778 else
779 func = arch_timer_handler_phys_mem;
780
781 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
782 if (ret) {
783 pr_err("arch_timer: Failed to request mem timer irq\n");
784 kfree(t);
785 }
786
787 return ret;
788}
789
790static const struct of_device_id arch_timer_of_match[] __initconst = {
791 { .compatible = "arm,armv7-timer", },
792 { .compatible = "arm,armv8-timer", },
793 {},
794};
795
796static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
797 { .compatible = "arm,armv7-timer-mem", },
798 {},
799};
800
801static bool __init
802arch_timer_needs_probing(int type, const struct of_device_id *matches)
803{
804 struct device_node *dn;
805 bool needs_probing = false;
806
807 dn = of_find_matching_node(NULL, matches);
808 if (dn && of_device_is_available(dn) && !(arch_timers_present & type))
809 needs_probing = true;
810 of_node_put(dn);
811
812 return needs_probing;
813}
814
815static int __init arch_timer_common_init(void)
816{
817 unsigned mask = ARCH_CP15_TIMER | ARCH_MEM_TIMER;
818
819 /* Wait until both nodes are probed if we have two timers */
820 if ((arch_timers_present & mask) != mask) {
821 if (arch_timer_needs_probing(ARCH_MEM_TIMER, arch_timer_mem_of_match))
822 return 0;
823 if (arch_timer_needs_probing(ARCH_CP15_TIMER, arch_timer_of_match))
824 return 0;
825 }
826
827 arch_timer_banner(arch_timers_present);
828 arch_counter_register(arch_timers_present);
829 return arch_timer_arch_init();
830}
831
832static int __init arch_timer_init(void)
833{
834 int ret;
835 /*
836 * If HYP mode is available, we know that the physical timer
837 * has been configured to be accessible from PL1. Use it, so
838 * that a guest can use the virtual timer instead.
839 *
840 * If no interrupt provided for virtual timer, we'll have to
841 * stick to the physical timer. It'd better be accessible...
842 *
843 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
844 * accesses to CNTP_*_EL1 registers are silently redirected to
845 * their CNTHP_*_EL2 counterparts, and use a different PPI
846 * number.
847 */
848 if (is_hyp_mode_available() || !arch_timer_ppi[VIRT_PPI]) {
849 bool has_ppi;
850
851 if (is_kernel_in_hyp_mode()) {
852 arch_timer_uses_ppi = HYP_PPI;
853 has_ppi = !!arch_timer_ppi[HYP_PPI];
854 } else {
855 arch_timer_uses_ppi = PHYS_SECURE_PPI;
856 has_ppi = (!!arch_timer_ppi[PHYS_SECURE_PPI] ||
857 !!arch_timer_ppi[PHYS_NONSECURE_PPI]);
858 }
859
860 if (!has_ppi) {
861 pr_warn("arch_timer: No interrupt available, giving up\n");
862 return -EINVAL;
863 }
864 }
865
866 ret = arch_timer_register();
867 if (ret)
868 return ret;
869
870 ret = arch_timer_common_init();
871 if (ret)
872 return ret;
873
874 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[VIRT_PPI];
875
876 return 0;
877}
878
879static int __init arch_timer_of_init(struct device_node *np)
880{
881 int i;
882
883 if (arch_timers_present & ARCH_CP15_TIMER) {
884 pr_warn("arch_timer: multiple nodes in dt, skipping\n");
885 return 0;
886 }
887
888 arch_timers_present |= ARCH_CP15_TIMER;
889 for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
890 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
891
892 arch_timer_detect_rate(NULL, np);
893
894 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
895
896#ifdef CONFIG_FSL_ERRATUM_A008585
897 if (fsl_a008585_enable < 0)
898 fsl_a008585_enable = of_property_read_bool(np, "fsl,erratum-a008585");
899 if (fsl_a008585_enable) {
900 static_branch_enable(&arch_timer_read_ool_enabled);
901 pr_info("Enabling workaround for FSL erratum A-008585\n");
902 }
903#endif
904
905 /*
906 * If we cannot rely on firmware initializing the timer registers then
907 * we should use the physical timers instead.
908 */
909 if (IS_ENABLED(CONFIG_ARM) &&
910 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
911 arch_timer_uses_ppi = PHYS_SECURE_PPI;
912
913 /* On some systems, the counter stops ticking when in suspend. */
914 arch_counter_suspend_stop = of_property_read_bool(np,
915 "arm,no-tick-in-suspend");
916
917 return arch_timer_init();
918}
919CLOCKSOURCE_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
920CLOCKSOURCE_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
921
922static int __init arch_timer_mem_init(struct device_node *np)
923{
924 struct device_node *frame, *best_frame = NULL;
925 void __iomem *cntctlbase, *base;
926 unsigned int irq, ret = -EINVAL;
927 u32 cnttidr;
928
929 arch_timers_present |= ARCH_MEM_TIMER;
930 cntctlbase = of_iomap(np, 0);
931 if (!cntctlbase) {
932 pr_err("arch_timer: Can't find CNTCTLBase\n");
933 return -ENXIO;
934 }
935
936 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
937
938 /*
939 * Try to find a virtual capable frame. Otherwise fall back to a
940 * physical capable frame.
941 */
942 for_each_available_child_of_node(np, frame) {
943 int n;
944 u32 cntacr;
945
946 if (of_property_read_u32(frame, "frame-number", &n)) {
947 pr_err("arch_timer: Missing frame-number\n");
948 of_node_put(frame);
949 goto out;
950 }
951
952 /* Try enabling everything, and see what sticks */
953 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
954 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
955 writel_relaxed(cntacr, cntctlbase + CNTACR(n));
956 cntacr = readl_relaxed(cntctlbase + CNTACR(n));
957
958 if ((cnttidr & CNTTIDR_VIRT(n)) &&
959 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
960 of_node_put(best_frame);
961 best_frame = frame;
962 arch_timer_mem_use_virtual = true;
963 break;
964 }
965
966 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
967 continue;
968
969 of_node_put(best_frame);
970 best_frame = of_node_get(frame);
971 }
972
973 ret= -ENXIO;
974 base = arch_counter_base = of_io_request_and_map(best_frame, 0,
975 "arch_mem_timer");
976 if (IS_ERR(base)) {
977 pr_err("arch_timer: Can't map frame's registers\n");
978 goto out;
979 }
980
981 if (arch_timer_mem_use_virtual)
982 irq = irq_of_parse_and_map(best_frame, 1);
983 else
984 irq = irq_of_parse_and_map(best_frame, 0);
985
986 ret = -EINVAL;
987 if (!irq) {
988 pr_err("arch_timer: Frame missing %s irq",
989 arch_timer_mem_use_virtual ? "virt" : "phys");
990 goto out;
991 }
992
993 arch_timer_detect_rate(base, np);
994 ret = arch_timer_mem_register(base, irq);
995 if (ret)
996 goto out;
997
998 return arch_timer_common_init();
999out:
1000 iounmap(cntctlbase);
1001 of_node_put(best_frame);
1002 return ret;
1003}
1004CLOCKSOURCE_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1005 arch_timer_mem_init);
1006
1007#ifdef CONFIG_ACPI
1008static int __init map_generic_timer_interrupt(u32 interrupt, u32 flags)
1009{
1010 int trigger, polarity;
1011
1012 if (!interrupt)
1013 return 0;
1014
1015 trigger = (flags & ACPI_GTDT_INTERRUPT_MODE) ? ACPI_EDGE_SENSITIVE
1016 : ACPI_LEVEL_SENSITIVE;
1017
1018 polarity = (flags & ACPI_GTDT_INTERRUPT_POLARITY) ? ACPI_ACTIVE_LOW
1019 : ACPI_ACTIVE_HIGH;
1020
1021 return acpi_register_gsi(NULL, interrupt, trigger, polarity);
1022}
1023
1024/* Initialize per-processor generic timer */
1025static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1026{
1027 struct acpi_table_gtdt *gtdt;
1028
1029 if (arch_timers_present & ARCH_CP15_TIMER) {
1030 pr_warn("arch_timer: already initialized, skipping\n");
1031 return -EINVAL;
1032 }
1033
1034 gtdt = container_of(table, struct acpi_table_gtdt, header);
1035
1036 arch_timers_present |= ARCH_CP15_TIMER;
1037
1038 arch_timer_ppi[PHYS_SECURE_PPI] =
1039 map_generic_timer_interrupt(gtdt->secure_el1_interrupt,
1040 gtdt->secure_el1_flags);
1041
1042 arch_timer_ppi[PHYS_NONSECURE_PPI] =
1043 map_generic_timer_interrupt(gtdt->non_secure_el1_interrupt,
1044 gtdt->non_secure_el1_flags);
1045
1046 arch_timer_ppi[VIRT_PPI] =
1047 map_generic_timer_interrupt(gtdt->virtual_timer_interrupt,
1048 gtdt->virtual_timer_flags);
1049
1050 arch_timer_ppi[HYP_PPI] =
1051 map_generic_timer_interrupt(gtdt->non_secure_el2_interrupt,
1052 gtdt->non_secure_el2_flags);
1053
1054 /* Get the frequency from CNTFRQ */
1055 arch_timer_detect_rate(NULL, NULL);
1056
1057 /* Always-on capability */
1058 arch_timer_c3stop = !(gtdt->non_secure_el1_flags & ACPI_GTDT_ALWAYS_ON);
1059
1060 arch_timer_init();
1061 return 0;
1062}
1063CLOCKSOURCE_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1064#endif
1/*
2 * linux/drivers/clocksource/arm_arch_timer.c
3 *
4 * Copyright (C) 2011 ARM Ltd.
5 * All Rights Reserved
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11
12#define pr_fmt(fmt) "arm_arch_timer: " fmt
13
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/device.h>
17#include <linux/smp.h>
18#include <linux/cpu.h>
19#include <linux/cpu_pm.h>
20#include <linux/clockchips.h>
21#include <linux/clocksource.h>
22#include <linux/interrupt.h>
23#include <linux/of_irq.h>
24#include <linux/of_address.h>
25#include <linux/io.h>
26#include <linux/slab.h>
27#include <linux/sched/clock.h>
28#include <linux/sched_clock.h>
29#include <linux/acpi.h>
30
31#include <asm/arch_timer.h>
32#include <asm/virt.h>
33
34#include <clocksource/arm_arch_timer.h>
35
36#undef pr_fmt
37#define pr_fmt(fmt) "arch_timer: " fmt
38
39#define CNTTIDR 0x08
40#define CNTTIDR_VIRT(n) (BIT(1) << ((n) * 4))
41
42#define CNTACR(n) (0x40 + ((n) * 4))
43#define CNTACR_RPCT BIT(0)
44#define CNTACR_RVCT BIT(1)
45#define CNTACR_RFRQ BIT(2)
46#define CNTACR_RVOFF BIT(3)
47#define CNTACR_RWVT BIT(4)
48#define CNTACR_RWPT BIT(5)
49
50#define CNTVCT_LO 0x08
51#define CNTVCT_HI 0x0c
52#define CNTFRQ 0x10
53#define CNTP_TVAL 0x28
54#define CNTP_CTL 0x2c
55#define CNTV_TVAL 0x38
56#define CNTV_CTL 0x3c
57
58static unsigned arch_timers_present __initdata;
59
60static void __iomem *arch_counter_base;
61
62struct arch_timer {
63 void __iomem *base;
64 struct clock_event_device evt;
65};
66
67#define to_arch_timer(e) container_of(e, struct arch_timer, evt)
68
69static u32 arch_timer_rate;
70static int arch_timer_ppi[ARCH_TIMER_MAX_TIMER_PPI];
71
72static struct clock_event_device __percpu *arch_timer_evt;
73
74static enum arch_timer_ppi_nr arch_timer_uses_ppi = ARCH_TIMER_VIRT_PPI;
75static bool arch_timer_c3stop;
76static bool arch_timer_mem_use_virtual;
77static bool arch_counter_suspend_stop;
78static bool vdso_default = true;
79
80static cpumask_t evtstrm_available = CPU_MASK_NONE;
81static bool evtstrm_enable = IS_ENABLED(CONFIG_ARM_ARCH_TIMER_EVTSTREAM);
82
83static int __init early_evtstrm_cfg(char *buf)
84{
85 return strtobool(buf, &evtstrm_enable);
86}
87early_param("clocksource.arm_arch_timer.evtstrm", early_evtstrm_cfg);
88
89/*
90 * Architected system timer support.
91 */
92
93static __always_inline
94void arch_timer_reg_write(int access, enum arch_timer_reg reg, u32 val,
95 struct clock_event_device *clk)
96{
97 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
98 struct arch_timer *timer = to_arch_timer(clk);
99 switch (reg) {
100 case ARCH_TIMER_REG_CTRL:
101 writel_relaxed(val, timer->base + CNTP_CTL);
102 break;
103 case ARCH_TIMER_REG_TVAL:
104 writel_relaxed(val, timer->base + CNTP_TVAL);
105 break;
106 }
107 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
108 struct arch_timer *timer = to_arch_timer(clk);
109 switch (reg) {
110 case ARCH_TIMER_REG_CTRL:
111 writel_relaxed(val, timer->base + CNTV_CTL);
112 break;
113 case ARCH_TIMER_REG_TVAL:
114 writel_relaxed(val, timer->base + CNTV_TVAL);
115 break;
116 }
117 } else {
118 arch_timer_reg_write_cp15(access, reg, val);
119 }
120}
121
122static __always_inline
123u32 arch_timer_reg_read(int access, enum arch_timer_reg reg,
124 struct clock_event_device *clk)
125{
126 u32 val;
127
128 if (access == ARCH_TIMER_MEM_PHYS_ACCESS) {
129 struct arch_timer *timer = to_arch_timer(clk);
130 switch (reg) {
131 case ARCH_TIMER_REG_CTRL:
132 val = readl_relaxed(timer->base + CNTP_CTL);
133 break;
134 case ARCH_TIMER_REG_TVAL:
135 val = readl_relaxed(timer->base + CNTP_TVAL);
136 break;
137 }
138 } else if (access == ARCH_TIMER_MEM_VIRT_ACCESS) {
139 struct arch_timer *timer = to_arch_timer(clk);
140 switch (reg) {
141 case ARCH_TIMER_REG_CTRL:
142 val = readl_relaxed(timer->base + CNTV_CTL);
143 break;
144 case ARCH_TIMER_REG_TVAL:
145 val = readl_relaxed(timer->base + CNTV_TVAL);
146 break;
147 }
148 } else {
149 val = arch_timer_reg_read_cp15(access, reg);
150 }
151
152 return val;
153}
154
155/*
156 * Default to cp15 based access because arm64 uses this function for
157 * sched_clock() before DT is probed and the cp15 method is guaranteed
158 * to exist on arm64. arm doesn't use this before DT is probed so even
159 * if we don't have the cp15 accessors we won't have a problem.
160 */
161u64 (*arch_timer_read_counter)(void) = arch_counter_get_cntvct;
162EXPORT_SYMBOL_GPL(arch_timer_read_counter);
163
164static u64 arch_counter_read(struct clocksource *cs)
165{
166 return arch_timer_read_counter();
167}
168
169static u64 arch_counter_read_cc(const struct cyclecounter *cc)
170{
171 return arch_timer_read_counter();
172}
173
174static struct clocksource clocksource_counter = {
175 .name = "arch_sys_counter",
176 .rating = 400,
177 .read = arch_counter_read,
178 .mask = CLOCKSOURCE_MASK(56),
179 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
180};
181
182static struct cyclecounter cyclecounter __ro_after_init = {
183 .read = arch_counter_read_cc,
184 .mask = CLOCKSOURCE_MASK(56),
185};
186
187struct ate_acpi_oem_info {
188 char oem_id[ACPI_OEM_ID_SIZE + 1];
189 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
190 u32 oem_revision;
191};
192
193#ifdef CONFIG_FSL_ERRATUM_A008585
194/*
195 * The number of retries is an arbitrary value well beyond the highest number
196 * of iterations the loop has been observed to take.
197 */
198#define __fsl_a008585_read_reg(reg) ({ \
199 u64 _old, _new; \
200 int _retries = 200; \
201 \
202 do { \
203 _old = read_sysreg(reg); \
204 _new = read_sysreg(reg); \
205 _retries--; \
206 } while (unlikely(_old != _new) && _retries); \
207 \
208 WARN_ON_ONCE(!_retries); \
209 _new; \
210})
211
212static u32 notrace fsl_a008585_read_cntp_tval_el0(void)
213{
214 return __fsl_a008585_read_reg(cntp_tval_el0);
215}
216
217static u32 notrace fsl_a008585_read_cntv_tval_el0(void)
218{
219 return __fsl_a008585_read_reg(cntv_tval_el0);
220}
221
222static u64 notrace fsl_a008585_read_cntpct_el0(void)
223{
224 return __fsl_a008585_read_reg(cntpct_el0);
225}
226
227static u64 notrace fsl_a008585_read_cntvct_el0(void)
228{
229 return __fsl_a008585_read_reg(cntvct_el0);
230}
231#endif
232
233#ifdef CONFIG_HISILICON_ERRATUM_161010101
234/*
235 * Verify whether the value of the second read is larger than the first by
236 * less than 32 is the only way to confirm the value is correct, so clear the
237 * lower 5 bits to check whether the difference is greater than 32 or not.
238 * Theoretically the erratum should not occur more than twice in succession
239 * when reading the system counter, but it is possible that some interrupts
240 * may lead to more than twice read errors, triggering the warning, so setting
241 * the number of retries far beyond the number of iterations the loop has been
242 * observed to take.
243 */
244#define __hisi_161010101_read_reg(reg) ({ \
245 u64 _old, _new; \
246 int _retries = 50; \
247 \
248 do { \
249 _old = read_sysreg(reg); \
250 _new = read_sysreg(reg); \
251 _retries--; \
252 } while (unlikely((_new - _old) >> 5) && _retries); \
253 \
254 WARN_ON_ONCE(!_retries); \
255 _new; \
256})
257
258static u32 notrace hisi_161010101_read_cntp_tval_el0(void)
259{
260 return __hisi_161010101_read_reg(cntp_tval_el0);
261}
262
263static u32 notrace hisi_161010101_read_cntv_tval_el0(void)
264{
265 return __hisi_161010101_read_reg(cntv_tval_el0);
266}
267
268static u64 notrace hisi_161010101_read_cntpct_el0(void)
269{
270 return __hisi_161010101_read_reg(cntpct_el0);
271}
272
273static u64 notrace hisi_161010101_read_cntvct_el0(void)
274{
275 return __hisi_161010101_read_reg(cntvct_el0);
276}
277
278static struct ate_acpi_oem_info hisi_161010101_oem_info[] = {
279 /*
280 * Note that trailing spaces are required to properly match
281 * the OEM table information.
282 */
283 {
284 .oem_id = "HISI ",
285 .oem_table_id = "HIP05 ",
286 .oem_revision = 0,
287 },
288 {
289 .oem_id = "HISI ",
290 .oem_table_id = "HIP06 ",
291 .oem_revision = 0,
292 },
293 {
294 .oem_id = "HISI ",
295 .oem_table_id = "HIP07 ",
296 .oem_revision = 0,
297 },
298 { /* Sentinel indicating the end of the OEM array */ },
299};
300#endif
301
302#ifdef CONFIG_ARM64_ERRATUM_858921
303static u64 notrace arm64_858921_read_cntpct_el0(void)
304{
305 u64 old, new;
306
307 old = read_sysreg(cntpct_el0);
308 new = read_sysreg(cntpct_el0);
309 return (((old ^ new) >> 32) & 1) ? old : new;
310}
311
312static u64 notrace arm64_858921_read_cntvct_el0(void)
313{
314 u64 old, new;
315
316 old = read_sysreg(cntvct_el0);
317 new = read_sysreg(cntvct_el0);
318 return (((old ^ new) >> 32) & 1) ? old : new;
319}
320#endif
321
322#ifdef CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND
323DEFINE_PER_CPU(const struct arch_timer_erratum_workaround *, timer_unstable_counter_workaround);
324EXPORT_SYMBOL_GPL(timer_unstable_counter_workaround);
325
326DEFINE_STATIC_KEY_FALSE(arch_timer_read_ool_enabled);
327EXPORT_SYMBOL_GPL(arch_timer_read_ool_enabled);
328
329static void erratum_set_next_event_tval_generic(const int access, unsigned long evt,
330 struct clock_event_device *clk)
331{
332 unsigned long ctrl;
333 u64 cval;
334
335 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
336 ctrl |= ARCH_TIMER_CTRL_ENABLE;
337 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
338
339 if (access == ARCH_TIMER_PHYS_ACCESS) {
340 cval = evt + arch_counter_get_cntpct();
341 write_sysreg(cval, cntp_cval_el0);
342 } else {
343 cval = evt + arch_counter_get_cntvct();
344 write_sysreg(cval, cntv_cval_el0);
345 }
346
347 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
348}
349
350static __maybe_unused int erratum_set_next_event_tval_virt(unsigned long evt,
351 struct clock_event_device *clk)
352{
353 erratum_set_next_event_tval_generic(ARCH_TIMER_VIRT_ACCESS, evt, clk);
354 return 0;
355}
356
357static __maybe_unused int erratum_set_next_event_tval_phys(unsigned long evt,
358 struct clock_event_device *clk)
359{
360 erratum_set_next_event_tval_generic(ARCH_TIMER_PHYS_ACCESS, evt, clk);
361 return 0;
362}
363
364static const struct arch_timer_erratum_workaround ool_workarounds[] = {
365#ifdef CONFIG_FSL_ERRATUM_A008585
366 {
367 .match_type = ate_match_dt,
368 .id = "fsl,erratum-a008585",
369 .desc = "Freescale erratum a005858",
370 .read_cntp_tval_el0 = fsl_a008585_read_cntp_tval_el0,
371 .read_cntv_tval_el0 = fsl_a008585_read_cntv_tval_el0,
372 .read_cntpct_el0 = fsl_a008585_read_cntpct_el0,
373 .read_cntvct_el0 = fsl_a008585_read_cntvct_el0,
374 .set_next_event_phys = erratum_set_next_event_tval_phys,
375 .set_next_event_virt = erratum_set_next_event_tval_virt,
376 },
377#endif
378#ifdef CONFIG_HISILICON_ERRATUM_161010101
379 {
380 .match_type = ate_match_dt,
381 .id = "hisilicon,erratum-161010101",
382 .desc = "HiSilicon erratum 161010101",
383 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
384 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
385 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
386 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
387 .set_next_event_phys = erratum_set_next_event_tval_phys,
388 .set_next_event_virt = erratum_set_next_event_tval_virt,
389 },
390 {
391 .match_type = ate_match_acpi_oem_info,
392 .id = hisi_161010101_oem_info,
393 .desc = "HiSilicon erratum 161010101",
394 .read_cntp_tval_el0 = hisi_161010101_read_cntp_tval_el0,
395 .read_cntv_tval_el0 = hisi_161010101_read_cntv_tval_el0,
396 .read_cntpct_el0 = hisi_161010101_read_cntpct_el0,
397 .read_cntvct_el0 = hisi_161010101_read_cntvct_el0,
398 .set_next_event_phys = erratum_set_next_event_tval_phys,
399 .set_next_event_virt = erratum_set_next_event_tval_virt,
400 },
401#endif
402#ifdef CONFIG_ARM64_ERRATUM_858921
403 {
404 .match_type = ate_match_local_cap_id,
405 .id = (void *)ARM64_WORKAROUND_858921,
406 .desc = "ARM erratum 858921",
407 .read_cntpct_el0 = arm64_858921_read_cntpct_el0,
408 .read_cntvct_el0 = arm64_858921_read_cntvct_el0,
409 },
410#endif
411};
412
413typedef bool (*ate_match_fn_t)(const struct arch_timer_erratum_workaround *,
414 const void *);
415
416static
417bool arch_timer_check_dt_erratum(const struct arch_timer_erratum_workaround *wa,
418 const void *arg)
419{
420 const struct device_node *np = arg;
421
422 return of_property_read_bool(np, wa->id);
423}
424
425static
426bool arch_timer_check_local_cap_erratum(const struct arch_timer_erratum_workaround *wa,
427 const void *arg)
428{
429 return this_cpu_has_cap((uintptr_t)wa->id);
430}
431
432
433static
434bool arch_timer_check_acpi_oem_erratum(const struct arch_timer_erratum_workaround *wa,
435 const void *arg)
436{
437 static const struct ate_acpi_oem_info empty_oem_info = {};
438 const struct ate_acpi_oem_info *info = wa->id;
439 const struct acpi_table_header *table = arg;
440
441 /* Iterate over the ACPI OEM info array, looking for a match */
442 while (memcmp(info, &empty_oem_info, sizeof(*info))) {
443 if (!memcmp(info->oem_id, table->oem_id, ACPI_OEM_ID_SIZE) &&
444 !memcmp(info->oem_table_id, table->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
445 info->oem_revision == table->oem_revision)
446 return true;
447
448 info++;
449 }
450
451 return false;
452}
453
454static const struct arch_timer_erratum_workaround *
455arch_timer_iterate_errata(enum arch_timer_erratum_match_type type,
456 ate_match_fn_t match_fn,
457 void *arg)
458{
459 int i;
460
461 for (i = 0; i < ARRAY_SIZE(ool_workarounds); i++) {
462 if (ool_workarounds[i].match_type != type)
463 continue;
464
465 if (match_fn(&ool_workarounds[i], arg))
466 return &ool_workarounds[i];
467 }
468
469 return NULL;
470}
471
472static
473void arch_timer_enable_workaround(const struct arch_timer_erratum_workaround *wa,
474 bool local)
475{
476 int i;
477
478 if (local) {
479 __this_cpu_write(timer_unstable_counter_workaround, wa);
480 } else {
481 for_each_possible_cpu(i)
482 per_cpu(timer_unstable_counter_workaround, i) = wa;
483 }
484
485 /*
486 * Use the locked version, as we're called from the CPU
487 * hotplug framework. Otherwise, we end-up in deadlock-land.
488 */
489 static_branch_enable_cpuslocked(&arch_timer_read_ool_enabled);
490
491 /*
492 * Don't use the vdso fastpath if errata require using the
493 * out-of-line counter accessor. We may change our mind pretty
494 * late in the game (with a per-CPU erratum, for example), so
495 * change both the default value and the vdso itself.
496 */
497 if (wa->read_cntvct_el0) {
498 clocksource_counter.archdata.vdso_direct = false;
499 vdso_default = false;
500 }
501}
502
503static void arch_timer_check_ool_workaround(enum arch_timer_erratum_match_type type,
504 void *arg)
505{
506 const struct arch_timer_erratum_workaround *wa;
507 ate_match_fn_t match_fn = NULL;
508 bool local = false;
509
510 switch (type) {
511 case ate_match_dt:
512 match_fn = arch_timer_check_dt_erratum;
513 break;
514 case ate_match_local_cap_id:
515 match_fn = arch_timer_check_local_cap_erratum;
516 local = true;
517 break;
518 case ate_match_acpi_oem_info:
519 match_fn = arch_timer_check_acpi_oem_erratum;
520 break;
521 default:
522 WARN_ON(1);
523 return;
524 }
525
526 wa = arch_timer_iterate_errata(type, match_fn, arg);
527 if (!wa)
528 return;
529
530 if (needs_unstable_timer_counter_workaround()) {
531 const struct arch_timer_erratum_workaround *__wa;
532 __wa = __this_cpu_read(timer_unstable_counter_workaround);
533 if (__wa && wa != __wa)
534 pr_warn("Can't enable workaround for %s (clashes with %s\n)",
535 wa->desc, __wa->desc);
536
537 if (__wa)
538 return;
539 }
540
541 arch_timer_enable_workaround(wa, local);
542 pr_info("Enabling %s workaround for %s\n",
543 local ? "local" : "global", wa->desc);
544}
545
546#define erratum_handler(fn, r, ...) \
547({ \
548 bool __val; \
549 if (needs_unstable_timer_counter_workaround()) { \
550 const struct arch_timer_erratum_workaround *__wa; \
551 __wa = __this_cpu_read(timer_unstable_counter_workaround); \
552 if (__wa && __wa->fn) { \
553 r = __wa->fn(__VA_ARGS__); \
554 __val = true; \
555 } else { \
556 __val = false; \
557 } \
558 } else { \
559 __val = false; \
560 } \
561 __val; \
562})
563
564static bool arch_timer_this_cpu_has_cntvct_wa(void)
565{
566 const struct arch_timer_erratum_workaround *wa;
567
568 wa = __this_cpu_read(timer_unstable_counter_workaround);
569 return wa && wa->read_cntvct_el0;
570}
571#else
572#define arch_timer_check_ool_workaround(t,a) do { } while(0)
573#define erratum_set_next_event_tval_virt(...) ({BUG(); 0;})
574#define erratum_set_next_event_tval_phys(...) ({BUG(); 0;})
575#define erratum_handler(fn, r, ...) ({false;})
576#define arch_timer_this_cpu_has_cntvct_wa() ({false;})
577#endif /* CONFIG_ARM_ARCH_TIMER_OOL_WORKAROUND */
578
579static __always_inline irqreturn_t timer_handler(const int access,
580 struct clock_event_device *evt)
581{
582 unsigned long ctrl;
583
584 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, evt);
585 if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
586 ctrl |= ARCH_TIMER_CTRL_IT_MASK;
587 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, evt);
588 evt->event_handler(evt);
589 return IRQ_HANDLED;
590 }
591
592 return IRQ_NONE;
593}
594
595static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
596{
597 struct clock_event_device *evt = dev_id;
598
599 return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
600}
601
602static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
603{
604 struct clock_event_device *evt = dev_id;
605
606 return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
607}
608
609static irqreturn_t arch_timer_handler_phys_mem(int irq, void *dev_id)
610{
611 struct clock_event_device *evt = dev_id;
612
613 return timer_handler(ARCH_TIMER_MEM_PHYS_ACCESS, evt);
614}
615
616static irqreturn_t arch_timer_handler_virt_mem(int irq, void *dev_id)
617{
618 struct clock_event_device *evt = dev_id;
619
620 return timer_handler(ARCH_TIMER_MEM_VIRT_ACCESS, evt);
621}
622
623static __always_inline int timer_shutdown(const int access,
624 struct clock_event_device *clk)
625{
626 unsigned long ctrl;
627
628 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
629 ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
630 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
631
632 return 0;
633}
634
635static int arch_timer_shutdown_virt(struct clock_event_device *clk)
636{
637 return timer_shutdown(ARCH_TIMER_VIRT_ACCESS, clk);
638}
639
640static int arch_timer_shutdown_phys(struct clock_event_device *clk)
641{
642 return timer_shutdown(ARCH_TIMER_PHYS_ACCESS, clk);
643}
644
645static int arch_timer_shutdown_virt_mem(struct clock_event_device *clk)
646{
647 return timer_shutdown(ARCH_TIMER_MEM_VIRT_ACCESS, clk);
648}
649
650static int arch_timer_shutdown_phys_mem(struct clock_event_device *clk)
651{
652 return timer_shutdown(ARCH_TIMER_MEM_PHYS_ACCESS, clk);
653}
654
655static __always_inline void set_next_event(const int access, unsigned long evt,
656 struct clock_event_device *clk)
657{
658 unsigned long ctrl;
659 ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL, clk);
660 ctrl |= ARCH_TIMER_CTRL_ENABLE;
661 ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
662 arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt, clk);
663 arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl, clk);
664}
665
666static int arch_timer_set_next_event_virt(unsigned long evt,
667 struct clock_event_device *clk)
668{
669 int ret;
670
671 if (erratum_handler(set_next_event_virt, ret, evt, clk))
672 return ret;
673
674 set_next_event(ARCH_TIMER_VIRT_ACCESS, evt, clk);
675 return 0;
676}
677
678static int arch_timer_set_next_event_phys(unsigned long evt,
679 struct clock_event_device *clk)
680{
681 int ret;
682
683 if (erratum_handler(set_next_event_phys, ret, evt, clk))
684 return ret;
685
686 set_next_event(ARCH_TIMER_PHYS_ACCESS, evt, clk);
687 return 0;
688}
689
690static int arch_timer_set_next_event_virt_mem(unsigned long evt,
691 struct clock_event_device *clk)
692{
693 set_next_event(ARCH_TIMER_MEM_VIRT_ACCESS, evt, clk);
694 return 0;
695}
696
697static int arch_timer_set_next_event_phys_mem(unsigned long evt,
698 struct clock_event_device *clk)
699{
700 set_next_event(ARCH_TIMER_MEM_PHYS_ACCESS, evt, clk);
701 return 0;
702}
703
704static void __arch_timer_setup(unsigned type,
705 struct clock_event_device *clk)
706{
707 clk->features = CLOCK_EVT_FEAT_ONESHOT;
708
709 if (type == ARCH_TIMER_TYPE_CP15) {
710 if (arch_timer_c3stop)
711 clk->features |= CLOCK_EVT_FEAT_C3STOP;
712 clk->name = "arch_sys_timer";
713 clk->rating = 450;
714 clk->cpumask = cpumask_of(smp_processor_id());
715 clk->irq = arch_timer_ppi[arch_timer_uses_ppi];
716 switch (arch_timer_uses_ppi) {
717 case ARCH_TIMER_VIRT_PPI:
718 clk->set_state_shutdown = arch_timer_shutdown_virt;
719 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt;
720 clk->set_next_event = arch_timer_set_next_event_virt;
721 break;
722 case ARCH_TIMER_PHYS_SECURE_PPI:
723 case ARCH_TIMER_PHYS_NONSECURE_PPI:
724 case ARCH_TIMER_HYP_PPI:
725 clk->set_state_shutdown = arch_timer_shutdown_phys;
726 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys;
727 clk->set_next_event = arch_timer_set_next_event_phys;
728 break;
729 default:
730 BUG();
731 }
732
733 arch_timer_check_ool_workaround(ate_match_local_cap_id, NULL);
734 } else {
735 clk->features |= CLOCK_EVT_FEAT_DYNIRQ;
736 clk->name = "arch_mem_timer";
737 clk->rating = 400;
738 clk->cpumask = cpu_all_mask;
739 if (arch_timer_mem_use_virtual) {
740 clk->set_state_shutdown = arch_timer_shutdown_virt_mem;
741 clk->set_state_oneshot_stopped = arch_timer_shutdown_virt_mem;
742 clk->set_next_event =
743 arch_timer_set_next_event_virt_mem;
744 } else {
745 clk->set_state_shutdown = arch_timer_shutdown_phys_mem;
746 clk->set_state_oneshot_stopped = arch_timer_shutdown_phys_mem;
747 clk->set_next_event =
748 arch_timer_set_next_event_phys_mem;
749 }
750 }
751
752 clk->set_state_shutdown(clk);
753
754 clockevents_config_and_register(clk, arch_timer_rate, 0xf, 0x7fffffff);
755}
756
757static void arch_timer_evtstrm_enable(int divider)
758{
759 u32 cntkctl = arch_timer_get_cntkctl();
760
761 cntkctl &= ~ARCH_TIMER_EVT_TRIGGER_MASK;
762 /* Set the divider and enable virtual event stream */
763 cntkctl |= (divider << ARCH_TIMER_EVT_TRIGGER_SHIFT)
764 | ARCH_TIMER_VIRT_EVT_EN;
765 arch_timer_set_cntkctl(cntkctl);
766 elf_hwcap |= HWCAP_EVTSTRM;
767#ifdef CONFIG_COMPAT
768 compat_elf_hwcap |= COMPAT_HWCAP_EVTSTRM;
769#endif
770 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
771}
772
773static void arch_timer_configure_evtstream(void)
774{
775 int evt_stream_div, pos;
776
777 /* Find the closest power of two to the divisor */
778 evt_stream_div = arch_timer_rate / ARCH_TIMER_EVT_STREAM_FREQ;
779 pos = fls(evt_stream_div);
780 if (pos > 1 && !(evt_stream_div & (1 << (pos - 2))))
781 pos--;
782 /* enable event stream */
783 arch_timer_evtstrm_enable(min(pos, 15));
784}
785
786static void arch_counter_set_user_access(void)
787{
788 u32 cntkctl = arch_timer_get_cntkctl();
789
790 /* Disable user access to the timers and both counters */
791 /* Also disable virtual event stream */
792 cntkctl &= ~(ARCH_TIMER_USR_PT_ACCESS_EN
793 | ARCH_TIMER_USR_VT_ACCESS_EN
794 | ARCH_TIMER_USR_VCT_ACCESS_EN
795 | ARCH_TIMER_VIRT_EVT_EN
796 | ARCH_TIMER_USR_PCT_ACCESS_EN);
797
798 /*
799 * Enable user access to the virtual counter if it doesn't
800 * need to be workaround. The vdso may have been already
801 * disabled though.
802 */
803 if (arch_timer_this_cpu_has_cntvct_wa())
804 pr_info("CPU%d: Trapping CNTVCT access\n", smp_processor_id());
805 else
806 cntkctl |= ARCH_TIMER_USR_VCT_ACCESS_EN;
807
808 arch_timer_set_cntkctl(cntkctl);
809}
810
811static bool arch_timer_has_nonsecure_ppi(void)
812{
813 return (arch_timer_uses_ppi == ARCH_TIMER_PHYS_SECURE_PPI &&
814 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
815}
816
817static u32 check_ppi_trigger(int irq)
818{
819 u32 flags = irq_get_trigger_type(irq);
820
821 if (flags != IRQF_TRIGGER_HIGH && flags != IRQF_TRIGGER_LOW) {
822 pr_warn("WARNING: Invalid trigger for IRQ%d, assuming level low\n", irq);
823 pr_warn("WARNING: Please fix your firmware\n");
824 flags = IRQF_TRIGGER_LOW;
825 }
826
827 return flags;
828}
829
830static int arch_timer_starting_cpu(unsigned int cpu)
831{
832 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
833 u32 flags;
834
835 __arch_timer_setup(ARCH_TIMER_TYPE_CP15, clk);
836
837 flags = check_ppi_trigger(arch_timer_ppi[arch_timer_uses_ppi]);
838 enable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], flags);
839
840 if (arch_timer_has_nonsecure_ppi()) {
841 flags = check_ppi_trigger(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
842 enable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
843 flags);
844 }
845
846 arch_counter_set_user_access();
847 if (evtstrm_enable)
848 arch_timer_configure_evtstream();
849
850 return 0;
851}
852
853/*
854 * For historical reasons, when probing with DT we use whichever (non-zero)
855 * rate was probed first, and don't verify that others match. If the first node
856 * probed has a clock-frequency property, this overrides the HW register.
857 */
858static void arch_timer_of_configure_rate(u32 rate, struct device_node *np)
859{
860 /* Who has more than one independent system counter? */
861 if (arch_timer_rate)
862 return;
863
864 if (of_property_read_u32(np, "clock-frequency", &arch_timer_rate))
865 arch_timer_rate = rate;
866
867 /* Check the timer frequency. */
868 if (arch_timer_rate == 0)
869 pr_warn("frequency not available\n");
870}
871
872static void arch_timer_banner(unsigned type)
873{
874 pr_info("%s%s%s timer(s) running at %lu.%02luMHz (%s%s%s).\n",
875 type & ARCH_TIMER_TYPE_CP15 ? "cp15" : "",
876 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ?
877 " and " : "",
878 type & ARCH_TIMER_TYPE_MEM ? "mmio" : "",
879 (unsigned long)arch_timer_rate / 1000000,
880 (unsigned long)(arch_timer_rate / 10000) % 100,
881 type & ARCH_TIMER_TYPE_CP15 ?
882 (arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI) ? "virt" : "phys" :
883 "",
884 type == (ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM) ? "/" : "",
885 type & ARCH_TIMER_TYPE_MEM ?
886 arch_timer_mem_use_virtual ? "virt" : "phys" :
887 "");
888}
889
890u32 arch_timer_get_rate(void)
891{
892 return arch_timer_rate;
893}
894
895bool arch_timer_evtstrm_available(void)
896{
897 /*
898 * We might get called from a preemptible context. This is fine
899 * because availability of the event stream should be always the same
900 * for a preemptible context and context where we might resume a task.
901 */
902 return cpumask_test_cpu(raw_smp_processor_id(), &evtstrm_available);
903}
904
905static u64 arch_counter_get_cntvct_mem(void)
906{
907 u32 vct_lo, vct_hi, tmp_hi;
908
909 do {
910 vct_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
911 vct_lo = readl_relaxed(arch_counter_base + CNTVCT_LO);
912 tmp_hi = readl_relaxed(arch_counter_base + CNTVCT_HI);
913 } while (vct_hi != tmp_hi);
914
915 return ((u64) vct_hi << 32) | vct_lo;
916}
917
918static struct arch_timer_kvm_info arch_timer_kvm_info;
919
920struct arch_timer_kvm_info *arch_timer_get_kvm_info(void)
921{
922 return &arch_timer_kvm_info;
923}
924
925static void __init arch_counter_register(unsigned type)
926{
927 u64 start_count;
928
929 /* Register the CP15 based counter if we have one */
930 if (type & ARCH_TIMER_TYPE_CP15) {
931 if ((IS_ENABLED(CONFIG_ARM64) && !is_hyp_mode_available()) ||
932 arch_timer_uses_ppi == ARCH_TIMER_VIRT_PPI)
933 arch_timer_read_counter = arch_counter_get_cntvct;
934 else
935 arch_timer_read_counter = arch_counter_get_cntpct;
936
937 clocksource_counter.archdata.vdso_direct = vdso_default;
938 } else {
939 arch_timer_read_counter = arch_counter_get_cntvct_mem;
940 }
941
942 if (!arch_counter_suspend_stop)
943 clocksource_counter.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
944 start_count = arch_timer_read_counter();
945 clocksource_register_hz(&clocksource_counter, arch_timer_rate);
946 cyclecounter.mult = clocksource_counter.mult;
947 cyclecounter.shift = clocksource_counter.shift;
948 timecounter_init(&arch_timer_kvm_info.timecounter,
949 &cyclecounter, start_count);
950
951 /* 56 bits minimum, so we assume worst case rollover */
952 sched_clock_register(arch_timer_read_counter, 56, arch_timer_rate);
953}
954
955static void arch_timer_stop(struct clock_event_device *clk)
956{
957 pr_debug("disable IRQ%d cpu #%d\n", clk->irq, smp_processor_id());
958
959 disable_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi]);
960 if (arch_timer_has_nonsecure_ppi())
961 disable_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI]);
962
963 clk->set_state_shutdown(clk);
964}
965
966static int arch_timer_dying_cpu(unsigned int cpu)
967{
968 struct clock_event_device *clk = this_cpu_ptr(arch_timer_evt);
969
970 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
971
972 arch_timer_stop(clk);
973 return 0;
974}
975
976#ifdef CONFIG_CPU_PM
977static DEFINE_PER_CPU(unsigned long, saved_cntkctl);
978static int arch_timer_cpu_pm_notify(struct notifier_block *self,
979 unsigned long action, void *hcpu)
980{
981 if (action == CPU_PM_ENTER) {
982 __this_cpu_write(saved_cntkctl, arch_timer_get_cntkctl());
983
984 cpumask_clear_cpu(smp_processor_id(), &evtstrm_available);
985 } else if (action == CPU_PM_ENTER_FAILED || action == CPU_PM_EXIT) {
986 arch_timer_set_cntkctl(__this_cpu_read(saved_cntkctl));
987
988 if (elf_hwcap & HWCAP_EVTSTRM)
989 cpumask_set_cpu(smp_processor_id(), &evtstrm_available);
990 }
991 return NOTIFY_OK;
992}
993
994static struct notifier_block arch_timer_cpu_pm_notifier = {
995 .notifier_call = arch_timer_cpu_pm_notify,
996};
997
998static int __init arch_timer_cpu_pm_init(void)
999{
1000 return cpu_pm_register_notifier(&arch_timer_cpu_pm_notifier);
1001}
1002
1003static void __init arch_timer_cpu_pm_deinit(void)
1004{
1005 WARN_ON(cpu_pm_unregister_notifier(&arch_timer_cpu_pm_notifier));
1006}
1007
1008#else
1009static int __init arch_timer_cpu_pm_init(void)
1010{
1011 return 0;
1012}
1013
1014static void __init arch_timer_cpu_pm_deinit(void)
1015{
1016}
1017#endif
1018
1019static int __init arch_timer_register(void)
1020{
1021 int err;
1022 int ppi;
1023
1024 arch_timer_evt = alloc_percpu(struct clock_event_device);
1025 if (!arch_timer_evt) {
1026 err = -ENOMEM;
1027 goto out;
1028 }
1029
1030 ppi = arch_timer_ppi[arch_timer_uses_ppi];
1031 switch (arch_timer_uses_ppi) {
1032 case ARCH_TIMER_VIRT_PPI:
1033 err = request_percpu_irq(ppi, arch_timer_handler_virt,
1034 "arch_timer", arch_timer_evt);
1035 break;
1036 case ARCH_TIMER_PHYS_SECURE_PPI:
1037 case ARCH_TIMER_PHYS_NONSECURE_PPI:
1038 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1039 "arch_timer", arch_timer_evt);
1040 if (!err && arch_timer_has_nonsecure_ppi()) {
1041 ppi = arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI];
1042 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1043 "arch_timer", arch_timer_evt);
1044 if (err)
1045 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_SECURE_PPI],
1046 arch_timer_evt);
1047 }
1048 break;
1049 case ARCH_TIMER_HYP_PPI:
1050 err = request_percpu_irq(ppi, arch_timer_handler_phys,
1051 "arch_timer", arch_timer_evt);
1052 break;
1053 default:
1054 BUG();
1055 }
1056
1057 if (err) {
1058 pr_err("can't register interrupt %d (%d)\n", ppi, err);
1059 goto out_free;
1060 }
1061
1062 err = arch_timer_cpu_pm_init();
1063 if (err)
1064 goto out_unreg_notify;
1065
1066 /* Register and immediately configure the timer on the boot CPU */
1067 err = cpuhp_setup_state(CPUHP_AP_ARM_ARCH_TIMER_STARTING,
1068 "clockevents/arm/arch_timer:starting",
1069 arch_timer_starting_cpu, arch_timer_dying_cpu);
1070 if (err)
1071 goto out_unreg_cpupm;
1072 return 0;
1073
1074out_unreg_cpupm:
1075 arch_timer_cpu_pm_deinit();
1076
1077out_unreg_notify:
1078 free_percpu_irq(arch_timer_ppi[arch_timer_uses_ppi], arch_timer_evt);
1079 if (arch_timer_has_nonsecure_ppi())
1080 free_percpu_irq(arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI],
1081 arch_timer_evt);
1082
1083out_free:
1084 free_percpu(arch_timer_evt);
1085out:
1086 return err;
1087}
1088
1089static int __init arch_timer_mem_register(void __iomem *base, unsigned int irq)
1090{
1091 int ret;
1092 irq_handler_t func;
1093 struct arch_timer *t;
1094
1095 t = kzalloc(sizeof(*t), GFP_KERNEL);
1096 if (!t)
1097 return -ENOMEM;
1098
1099 t->base = base;
1100 t->evt.irq = irq;
1101 __arch_timer_setup(ARCH_TIMER_TYPE_MEM, &t->evt);
1102
1103 if (arch_timer_mem_use_virtual)
1104 func = arch_timer_handler_virt_mem;
1105 else
1106 func = arch_timer_handler_phys_mem;
1107
1108 ret = request_irq(irq, func, IRQF_TIMER, "arch_mem_timer", &t->evt);
1109 if (ret) {
1110 pr_err("Failed to request mem timer irq\n");
1111 kfree(t);
1112 }
1113
1114 return ret;
1115}
1116
1117static const struct of_device_id arch_timer_of_match[] __initconst = {
1118 { .compatible = "arm,armv7-timer", },
1119 { .compatible = "arm,armv8-timer", },
1120 {},
1121};
1122
1123static const struct of_device_id arch_timer_mem_of_match[] __initconst = {
1124 { .compatible = "arm,armv7-timer-mem", },
1125 {},
1126};
1127
1128static bool __init arch_timer_needs_of_probing(void)
1129{
1130 struct device_node *dn;
1131 bool needs_probing = false;
1132 unsigned int mask = ARCH_TIMER_TYPE_CP15 | ARCH_TIMER_TYPE_MEM;
1133
1134 /* We have two timers, and both device-tree nodes are probed. */
1135 if ((arch_timers_present & mask) == mask)
1136 return false;
1137
1138 /*
1139 * Only one type of timer is probed,
1140 * check if we have another type of timer node in device-tree.
1141 */
1142 if (arch_timers_present & ARCH_TIMER_TYPE_CP15)
1143 dn = of_find_matching_node(NULL, arch_timer_mem_of_match);
1144 else
1145 dn = of_find_matching_node(NULL, arch_timer_of_match);
1146
1147 if (dn && of_device_is_available(dn))
1148 needs_probing = true;
1149
1150 of_node_put(dn);
1151
1152 return needs_probing;
1153}
1154
1155static int __init arch_timer_common_init(void)
1156{
1157 arch_timer_banner(arch_timers_present);
1158 arch_counter_register(arch_timers_present);
1159 return arch_timer_arch_init();
1160}
1161
1162/**
1163 * arch_timer_select_ppi() - Select suitable PPI for the current system.
1164 *
1165 * If HYP mode is available, we know that the physical timer
1166 * has been configured to be accessible from PL1. Use it, so
1167 * that a guest can use the virtual timer instead.
1168 *
1169 * On ARMv8.1 with VH extensions, the kernel runs in HYP. VHE
1170 * accesses to CNTP_*_EL1 registers are silently redirected to
1171 * their CNTHP_*_EL2 counterparts, and use a different PPI
1172 * number.
1173 *
1174 * If no interrupt provided for virtual timer, we'll have to
1175 * stick to the physical timer. It'd better be accessible...
1176 * For arm64 we never use the secure interrupt.
1177 *
1178 * Return: a suitable PPI type for the current system.
1179 */
1180static enum arch_timer_ppi_nr __init arch_timer_select_ppi(void)
1181{
1182 if (is_kernel_in_hyp_mode())
1183 return ARCH_TIMER_HYP_PPI;
1184
1185 if (!is_hyp_mode_available() && arch_timer_ppi[ARCH_TIMER_VIRT_PPI])
1186 return ARCH_TIMER_VIRT_PPI;
1187
1188 if (IS_ENABLED(CONFIG_ARM64))
1189 return ARCH_TIMER_PHYS_NONSECURE_PPI;
1190
1191 return ARCH_TIMER_PHYS_SECURE_PPI;
1192}
1193
1194static int __init arch_timer_of_init(struct device_node *np)
1195{
1196 int i, ret;
1197 u32 rate;
1198
1199 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1200 pr_warn("multiple nodes in dt, skipping\n");
1201 return 0;
1202 }
1203
1204 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1205 for (i = ARCH_TIMER_PHYS_SECURE_PPI; i < ARCH_TIMER_MAX_TIMER_PPI; i++)
1206 arch_timer_ppi[i] = irq_of_parse_and_map(np, i);
1207
1208 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1209
1210 rate = arch_timer_get_cntfrq();
1211 arch_timer_of_configure_rate(rate, np);
1212
1213 arch_timer_c3stop = !of_property_read_bool(np, "always-on");
1214
1215 /* Check for globally applicable workarounds */
1216 arch_timer_check_ool_workaround(ate_match_dt, np);
1217
1218 /*
1219 * If we cannot rely on firmware initializing the timer registers then
1220 * we should use the physical timers instead.
1221 */
1222 if (IS_ENABLED(CONFIG_ARM) &&
1223 of_property_read_bool(np, "arm,cpu-registers-not-fw-configured"))
1224 arch_timer_uses_ppi = ARCH_TIMER_PHYS_SECURE_PPI;
1225 else
1226 arch_timer_uses_ppi = arch_timer_select_ppi();
1227
1228 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1229 pr_err("No interrupt available, giving up\n");
1230 return -EINVAL;
1231 }
1232
1233 /* On some systems, the counter stops ticking when in suspend. */
1234 arch_counter_suspend_stop = of_property_read_bool(np,
1235 "arm,no-tick-in-suspend");
1236
1237 ret = arch_timer_register();
1238 if (ret)
1239 return ret;
1240
1241 if (arch_timer_needs_of_probing())
1242 return 0;
1243
1244 return arch_timer_common_init();
1245}
1246TIMER_OF_DECLARE(armv7_arch_timer, "arm,armv7-timer", arch_timer_of_init);
1247TIMER_OF_DECLARE(armv8_arch_timer, "arm,armv8-timer", arch_timer_of_init);
1248
1249static u32 __init
1250arch_timer_mem_frame_get_cntfrq(struct arch_timer_mem_frame *frame)
1251{
1252 void __iomem *base;
1253 u32 rate;
1254
1255 base = ioremap(frame->cntbase, frame->size);
1256 if (!base) {
1257 pr_err("Unable to map frame @ %pa\n", &frame->cntbase);
1258 return 0;
1259 }
1260
1261 rate = readl_relaxed(base + CNTFRQ);
1262
1263 iounmap(base);
1264
1265 return rate;
1266}
1267
1268static struct arch_timer_mem_frame * __init
1269arch_timer_mem_find_best_frame(struct arch_timer_mem *timer_mem)
1270{
1271 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1272 void __iomem *cntctlbase;
1273 u32 cnttidr;
1274 int i;
1275
1276 cntctlbase = ioremap(timer_mem->cntctlbase, timer_mem->size);
1277 if (!cntctlbase) {
1278 pr_err("Can't map CNTCTLBase @ %pa\n",
1279 &timer_mem->cntctlbase);
1280 return NULL;
1281 }
1282
1283 cnttidr = readl_relaxed(cntctlbase + CNTTIDR);
1284
1285 /*
1286 * Try to find a virtual capable frame. Otherwise fall back to a
1287 * physical capable frame.
1288 */
1289 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1290 u32 cntacr = CNTACR_RFRQ | CNTACR_RWPT | CNTACR_RPCT |
1291 CNTACR_RWVT | CNTACR_RVOFF | CNTACR_RVCT;
1292
1293 frame = &timer_mem->frame[i];
1294 if (!frame->valid)
1295 continue;
1296
1297 /* Try enabling everything, and see what sticks */
1298 writel_relaxed(cntacr, cntctlbase + CNTACR(i));
1299 cntacr = readl_relaxed(cntctlbase + CNTACR(i));
1300
1301 if ((cnttidr & CNTTIDR_VIRT(i)) &&
1302 !(~cntacr & (CNTACR_RWVT | CNTACR_RVCT))) {
1303 best_frame = frame;
1304 arch_timer_mem_use_virtual = true;
1305 break;
1306 }
1307
1308 if (~cntacr & (CNTACR_RWPT | CNTACR_RPCT))
1309 continue;
1310
1311 best_frame = frame;
1312 }
1313
1314 iounmap(cntctlbase);
1315
1316 return best_frame;
1317}
1318
1319static int __init
1320arch_timer_mem_frame_register(struct arch_timer_mem_frame *frame)
1321{
1322 void __iomem *base;
1323 int ret, irq = 0;
1324
1325 if (arch_timer_mem_use_virtual)
1326 irq = frame->virt_irq;
1327 else
1328 irq = frame->phys_irq;
1329
1330 if (!irq) {
1331 pr_err("Frame missing %s irq.\n",
1332 arch_timer_mem_use_virtual ? "virt" : "phys");
1333 return -EINVAL;
1334 }
1335
1336 if (!request_mem_region(frame->cntbase, frame->size,
1337 "arch_mem_timer"))
1338 return -EBUSY;
1339
1340 base = ioremap(frame->cntbase, frame->size);
1341 if (!base) {
1342 pr_err("Can't map frame's registers\n");
1343 return -ENXIO;
1344 }
1345
1346 ret = arch_timer_mem_register(base, irq);
1347 if (ret) {
1348 iounmap(base);
1349 return ret;
1350 }
1351
1352 arch_counter_base = base;
1353 arch_timers_present |= ARCH_TIMER_TYPE_MEM;
1354
1355 return 0;
1356}
1357
1358static int __init arch_timer_mem_of_init(struct device_node *np)
1359{
1360 struct arch_timer_mem *timer_mem;
1361 struct arch_timer_mem_frame *frame;
1362 struct device_node *frame_node;
1363 struct resource res;
1364 int ret = -EINVAL;
1365 u32 rate;
1366
1367 timer_mem = kzalloc(sizeof(*timer_mem), GFP_KERNEL);
1368 if (!timer_mem)
1369 return -ENOMEM;
1370
1371 if (of_address_to_resource(np, 0, &res))
1372 goto out;
1373 timer_mem->cntctlbase = res.start;
1374 timer_mem->size = resource_size(&res);
1375
1376 for_each_available_child_of_node(np, frame_node) {
1377 u32 n;
1378 struct arch_timer_mem_frame *frame;
1379
1380 if (of_property_read_u32(frame_node, "frame-number", &n)) {
1381 pr_err(FW_BUG "Missing frame-number.\n");
1382 of_node_put(frame_node);
1383 goto out;
1384 }
1385 if (n >= ARCH_TIMER_MEM_MAX_FRAMES) {
1386 pr_err(FW_BUG "Wrong frame-number, only 0-%u are permitted.\n",
1387 ARCH_TIMER_MEM_MAX_FRAMES - 1);
1388 of_node_put(frame_node);
1389 goto out;
1390 }
1391 frame = &timer_mem->frame[n];
1392
1393 if (frame->valid) {
1394 pr_err(FW_BUG "Duplicated frame-number.\n");
1395 of_node_put(frame_node);
1396 goto out;
1397 }
1398
1399 if (of_address_to_resource(frame_node, 0, &res)) {
1400 of_node_put(frame_node);
1401 goto out;
1402 }
1403 frame->cntbase = res.start;
1404 frame->size = resource_size(&res);
1405
1406 frame->virt_irq = irq_of_parse_and_map(frame_node,
1407 ARCH_TIMER_VIRT_SPI);
1408 frame->phys_irq = irq_of_parse_and_map(frame_node,
1409 ARCH_TIMER_PHYS_SPI);
1410
1411 frame->valid = true;
1412 }
1413
1414 frame = arch_timer_mem_find_best_frame(timer_mem);
1415 if (!frame) {
1416 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1417 &timer_mem->cntctlbase);
1418 ret = -EINVAL;
1419 goto out;
1420 }
1421
1422 rate = arch_timer_mem_frame_get_cntfrq(frame);
1423 arch_timer_of_configure_rate(rate, np);
1424
1425 ret = arch_timer_mem_frame_register(frame);
1426 if (!ret && !arch_timer_needs_of_probing())
1427 ret = arch_timer_common_init();
1428out:
1429 kfree(timer_mem);
1430 return ret;
1431}
1432TIMER_OF_DECLARE(armv7_arch_timer_mem, "arm,armv7-timer-mem",
1433 arch_timer_mem_of_init);
1434
1435#ifdef CONFIG_ACPI_GTDT
1436static int __init
1437arch_timer_mem_verify_cntfrq(struct arch_timer_mem *timer_mem)
1438{
1439 struct arch_timer_mem_frame *frame;
1440 u32 rate;
1441 int i;
1442
1443 for (i = 0; i < ARCH_TIMER_MEM_MAX_FRAMES; i++) {
1444 frame = &timer_mem->frame[i];
1445
1446 if (!frame->valid)
1447 continue;
1448
1449 rate = arch_timer_mem_frame_get_cntfrq(frame);
1450 if (rate == arch_timer_rate)
1451 continue;
1452
1453 pr_err(FW_BUG "CNTFRQ mismatch: frame @ %pa: (0x%08lx), CPU: (0x%08lx)\n",
1454 &frame->cntbase,
1455 (unsigned long)rate, (unsigned long)arch_timer_rate);
1456
1457 return -EINVAL;
1458 }
1459
1460 return 0;
1461}
1462
1463static int __init arch_timer_mem_acpi_init(int platform_timer_count)
1464{
1465 struct arch_timer_mem *timers, *timer;
1466 struct arch_timer_mem_frame *frame, *best_frame = NULL;
1467 int timer_count, i, ret = 0;
1468
1469 timers = kcalloc(platform_timer_count, sizeof(*timers),
1470 GFP_KERNEL);
1471 if (!timers)
1472 return -ENOMEM;
1473
1474 ret = acpi_arch_timer_mem_init(timers, &timer_count);
1475 if (ret || !timer_count)
1476 goto out;
1477
1478 /*
1479 * While unlikely, it's theoretically possible that none of the frames
1480 * in a timer expose the combination of feature we want.
1481 */
1482 for (i = 0; i < timer_count; i++) {
1483 timer = &timers[i];
1484
1485 frame = arch_timer_mem_find_best_frame(timer);
1486 if (!best_frame)
1487 best_frame = frame;
1488
1489 ret = arch_timer_mem_verify_cntfrq(timer);
1490 if (ret) {
1491 pr_err("Disabling MMIO timers due to CNTFRQ mismatch\n");
1492 goto out;
1493 }
1494
1495 if (!best_frame) /* implies !frame */
1496 /*
1497 * Only complain about missing suitable frames if we
1498 * haven't already found one in a previous iteration.
1499 */
1500 pr_err("Unable to find a suitable frame in timer @ %pa\n",
1501 &timer->cntctlbase);
1502 }
1503
1504 if (best_frame)
1505 ret = arch_timer_mem_frame_register(best_frame);
1506out:
1507 kfree(timers);
1508 return ret;
1509}
1510
1511/* Initialize per-processor generic timer and memory-mapped timer(if present) */
1512static int __init arch_timer_acpi_init(struct acpi_table_header *table)
1513{
1514 int ret, platform_timer_count;
1515
1516 if (arch_timers_present & ARCH_TIMER_TYPE_CP15) {
1517 pr_warn("already initialized, skipping\n");
1518 return -EINVAL;
1519 }
1520
1521 arch_timers_present |= ARCH_TIMER_TYPE_CP15;
1522
1523 ret = acpi_gtdt_init(table, &platform_timer_count);
1524 if (ret) {
1525 pr_err("Failed to init GTDT table.\n");
1526 return ret;
1527 }
1528
1529 arch_timer_ppi[ARCH_TIMER_PHYS_NONSECURE_PPI] =
1530 acpi_gtdt_map_ppi(ARCH_TIMER_PHYS_NONSECURE_PPI);
1531
1532 arch_timer_ppi[ARCH_TIMER_VIRT_PPI] =
1533 acpi_gtdt_map_ppi(ARCH_TIMER_VIRT_PPI);
1534
1535 arch_timer_ppi[ARCH_TIMER_HYP_PPI] =
1536 acpi_gtdt_map_ppi(ARCH_TIMER_HYP_PPI);
1537
1538 arch_timer_kvm_info.virtual_irq = arch_timer_ppi[ARCH_TIMER_VIRT_PPI];
1539
1540 /*
1541 * When probing via ACPI, we have no mechanism to override the sysreg
1542 * CNTFRQ value. This *must* be correct.
1543 */
1544 arch_timer_rate = arch_timer_get_cntfrq();
1545 if (!arch_timer_rate) {
1546 pr_err(FW_BUG "frequency not available.\n");
1547 return -EINVAL;
1548 }
1549
1550 arch_timer_uses_ppi = arch_timer_select_ppi();
1551 if (!arch_timer_ppi[arch_timer_uses_ppi]) {
1552 pr_err("No interrupt available, giving up\n");
1553 return -EINVAL;
1554 }
1555
1556 /* Always-on capability */
1557 arch_timer_c3stop = acpi_gtdt_c3stop(arch_timer_uses_ppi);
1558
1559 /* Check for globally applicable workarounds */
1560 arch_timer_check_ool_workaround(ate_match_acpi_oem_info, table);
1561
1562 ret = arch_timer_register();
1563 if (ret)
1564 return ret;
1565
1566 if (platform_timer_count &&
1567 arch_timer_mem_acpi_init(platform_timer_count))
1568 pr_err("Failed to initialize memory-mapped timer.\n");
1569
1570 return arch_timer_common_init();
1571}
1572TIMER_ACPI_DECLARE(arch_timer, ACPI_SIG_GTDT, arch_timer_acpi_init);
1573#endif