Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
 
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46MODULE_AUTHOR("Ben Fennema");
  47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
  48MODULE_LICENSE("GPL");
  49
  50#define EXTENT_MERGE_SIZE 5
  51
  52static umode_t udf_convert_permissions(struct fileEntry *);
  53static int udf_update_inode(struct inode *, int);
 
  54static int udf_sync_inode(struct inode *inode);
  55static int udf_alloc_i_data(struct inode *inode, size_t size);
  56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  57static int8_t udf_insert_aext(struct inode *, struct extent_position,
  58			      struct kernel_lb_addr, uint32_t);
  59static void udf_split_extents(struct inode *, int *, int, int,
  60			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  61static void udf_prealloc_extents(struct inode *, int, int,
  62				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  63static void udf_merge_extents(struct inode *,
  64			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  65static void udf_update_extents(struct inode *,
  66			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
  67			       struct extent_position *);
  68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  69
  70static void __udf_clear_extent_cache(struct inode *inode)
  71{
  72	struct udf_inode_info *iinfo = UDF_I(inode);
  73
  74	if (iinfo->cached_extent.lstart != -1) {
  75		brelse(iinfo->cached_extent.epos.bh);
  76		iinfo->cached_extent.lstart = -1;
  77	}
  78}
  79
  80/* Invalidate extent cache */
  81static void udf_clear_extent_cache(struct inode *inode)
  82{
  83	struct udf_inode_info *iinfo = UDF_I(inode);
  84
  85	spin_lock(&iinfo->i_extent_cache_lock);
  86	__udf_clear_extent_cache(inode);
  87	spin_unlock(&iinfo->i_extent_cache_lock);
  88}
  89
  90/* Return contents of extent cache */
  91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  92				 loff_t *lbcount, struct extent_position *pos)
  93{
  94	struct udf_inode_info *iinfo = UDF_I(inode);
  95	int ret = 0;
  96
  97	spin_lock(&iinfo->i_extent_cache_lock);
  98	if ((iinfo->cached_extent.lstart <= bcount) &&
  99	    (iinfo->cached_extent.lstart != -1)) {
 100		/* Cache hit */
 101		*lbcount = iinfo->cached_extent.lstart;
 102		memcpy(pos, &iinfo->cached_extent.epos,
 103		       sizeof(struct extent_position));
 104		if (pos->bh)
 105			get_bh(pos->bh);
 106		ret = 1;
 107	}
 108	spin_unlock(&iinfo->i_extent_cache_lock);
 109	return ret;
 110}
 111
 112/* Add extent to extent cache */
 113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 114				    struct extent_position *pos, int next_epos)
 115{
 116	struct udf_inode_info *iinfo = UDF_I(inode);
 117
 118	spin_lock(&iinfo->i_extent_cache_lock);
 119	/* Invalidate previously cached extent */
 120	__udf_clear_extent_cache(inode);
 121	if (pos->bh)
 122		get_bh(pos->bh);
 123	memcpy(&iinfo->cached_extent.epos, pos,
 124	       sizeof(struct extent_position));
 125	iinfo->cached_extent.lstart = estart;
 126	if (next_epos)
 127		switch (iinfo->i_alloc_type) {
 128		case ICBTAG_FLAG_AD_SHORT:
 129			iinfo->cached_extent.epos.offset -=
 130			sizeof(struct short_ad);
 131			break;
 132		case ICBTAG_FLAG_AD_LONG:
 133			iinfo->cached_extent.epos.offset -=
 134			sizeof(struct long_ad);
 135		}
 136	spin_unlock(&iinfo->i_extent_cache_lock);
 137}
 138
 139void udf_evict_inode(struct inode *inode)
 140{
 141	struct udf_inode_info *iinfo = UDF_I(inode);
 142	int want_delete = 0;
 143
 144	if (!inode->i_nlink && !is_bad_inode(inode)) {
 145		want_delete = 1;
 146		udf_setsize(inode, 0);
 147		udf_update_inode(inode, IS_SYNC(inode));
 148	}
 149	truncate_inode_pages_final(&inode->i_data);
 150	invalidate_inode_buffers(inode);
 151	clear_inode(inode);
 152	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 153	    inode->i_size != iinfo->i_lenExtents) {
 154		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 155			 inode->i_ino, inode->i_mode,
 156			 (unsigned long long)inode->i_size,
 157			 (unsigned long long)iinfo->i_lenExtents);
 158	}
 159	kfree(iinfo->i_ext.i_data);
 160	iinfo->i_ext.i_data = NULL;
 161	udf_clear_extent_cache(inode);
 162	if (want_delete) {
 163		udf_free_inode(inode);
 164	}
 165}
 166
 167static void udf_write_failed(struct address_space *mapping, loff_t to)
 168{
 169	struct inode *inode = mapping->host;
 170	struct udf_inode_info *iinfo = UDF_I(inode);
 171	loff_t isize = inode->i_size;
 172
 173	if (to > isize) {
 174		truncate_pagecache(inode, isize);
 175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 176			down_write(&iinfo->i_data_sem);
 177			udf_clear_extent_cache(inode);
 178			udf_truncate_extents(inode);
 179			up_write(&iinfo->i_data_sem);
 180		}
 181	}
 182}
 183
 184static int udf_writepage(struct page *page, struct writeback_control *wbc)
 185{
 186	return block_write_full_page(page, udf_get_block, wbc);
 187}
 188
 189static int udf_writepages(struct address_space *mapping,
 190			struct writeback_control *wbc)
 191{
 192	return mpage_writepages(mapping, wbc, udf_get_block);
 193}
 194
 195static int udf_readpage(struct file *file, struct page *page)
 196{
 197	return mpage_readpage(page, udf_get_block);
 198}
 199
 200static int udf_readpages(struct file *file, struct address_space *mapping,
 201			struct list_head *pages, unsigned nr_pages)
 202{
 203	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 204}
 205
 206static int udf_write_begin(struct file *file, struct address_space *mapping,
 207			loff_t pos, unsigned len, unsigned flags,
 208			struct page **pagep, void **fsdata)
 209{
 210	int ret;
 211
 212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 213	if (unlikely(ret))
 214		udf_write_failed(mapping, pos + len);
 215	return ret;
 216}
 217
 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 
 
 219{
 220	struct file *file = iocb->ki_filp;
 221	struct address_space *mapping = file->f_mapping;
 222	struct inode *inode = mapping->host;
 223	size_t count = iov_iter_count(iter);
 224	ssize_t ret;
 225
 226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 228		udf_write_failed(mapping, iocb->ki_pos + count);
 
 229	return ret;
 230}
 231
 232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 233{
 234	return generic_block_bmap(mapping, block, udf_get_block);
 235}
 236
 237const struct address_space_operations udf_aops = {
 238	.readpage	= udf_readpage,
 239	.readpages	= udf_readpages,
 240	.writepage	= udf_writepage,
 241	.writepages	= udf_writepages,
 242	.write_begin	= udf_write_begin,
 243	.write_end	= generic_write_end,
 244	.direct_IO	= udf_direct_IO,
 245	.bmap		= udf_bmap,
 246};
 247
 248/*
 249 * Expand file stored in ICB to a normal one-block-file
 250 *
 251 * This function requires i_data_sem for writing and releases it.
 252 * This function requires i_mutex held
 253 */
 254int udf_expand_file_adinicb(struct inode *inode)
 255{
 256	struct page *page;
 257	char *kaddr;
 258	struct udf_inode_info *iinfo = UDF_I(inode);
 259	int err;
 260	struct writeback_control udf_wbc = {
 261		.sync_mode = WB_SYNC_NONE,
 262		.nr_to_write = 1,
 263	};
 264
 265	WARN_ON_ONCE(!inode_is_locked(inode));
 266	if (!iinfo->i_lenAlloc) {
 267		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 268			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 269		else
 270			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 271		/* from now on we have normal address_space methods */
 272		inode->i_data.a_ops = &udf_aops;
 273		up_write(&iinfo->i_data_sem);
 274		mark_inode_dirty(inode);
 275		return 0;
 276	}
 277	/*
 278	 * Release i_data_sem so that we can lock a page - page lock ranks
 279	 * above i_data_sem. i_mutex still protects us against file changes.
 280	 */
 281	up_write(&iinfo->i_data_sem);
 282
 283	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 284	if (!page)
 285		return -ENOMEM;
 286
 287	if (!PageUptodate(page)) {
 288		kaddr = kmap(page);
 289		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 290		       PAGE_SIZE - iinfo->i_lenAlloc);
 291		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 292			iinfo->i_lenAlloc);
 293		flush_dcache_page(page);
 294		SetPageUptodate(page);
 295		kunmap(page);
 296	}
 297	down_write(&iinfo->i_data_sem);
 298	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 299	       iinfo->i_lenAlloc);
 300	iinfo->i_lenAlloc = 0;
 301	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 302		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 303	else
 304		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 305	/* from now on we have normal address_space methods */
 306	inode->i_data.a_ops = &udf_aops;
 307	up_write(&iinfo->i_data_sem);
 308	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 309	if (err) {
 310		/* Restore everything back so that we don't lose data... */
 311		lock_page(page);
 312		kaddr = kmap(page);
 313		down_write(&iinfo->i_data_sem);
 314		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 315		       inode->i_size);
 316		kunmap(page);
 317		unlock_page(page);
 318		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 319		inode->i_data.a_ops = &udf_adinicb_aops;
 320		up_write(&iinfo->i_data_sem);
 321	}
 322	put_page(page);
 323	mark_inode_dirty(inode);
 324
 325	return err;
 326}
 327
 328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
 329					   int *err)
 330{
 331	int newblock;
 332	struct buffer_head *dbh = NULL;
 333	struct kernel_lb_addr eloc;
 334	uint8_t alloctype;
 335	struct extent_position epos;
 336
 337	struct udf_fileident_bh sfibh, dfibh;
 338	loff_t f_pos = udf_ext0_offset(inode);
 339	int size = udf_ext0_offset(inode) + inode->i_size;
 340	struct fileIdentDesc cfi, *sfi, *dfi;
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342
 343	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 344		alloctype = ICBTAG_FLAG_AD_SHORT;
 345	else
 346		alloctype = ICBTAG_FLAG_AD_LONG;
 347
 348	if (!inode->i_size) {
 349		iinfo->i_alloc_type = alloctype;
 350		mark_inode_dirty(inode);
 351		return NULL;
 352	}
 353
 354	/* alloc block, and copy data to it */
 355	*block = udf_new_block(inode->i_sb, inode,
 356			       iinfo->i_location.partitionReferenceNum,
 357			       iinfo->i_location.logicalBlockNum, err);
 358	if (!(*block))
 359		return NULL;
 360	newblock = udf_get_pblock(inode->i_sb, *block,
 361				  iinfo->i_location.partitionReferenceNum,
 362				0);
 363	if (!newblock)
 364		return NULL;
 365	dbh = udf_tgetblk(inode->i_sb, newblock);
 366	if (!dbh)
 367		return NULL;
 368	lock_buffer(dbh);
 369	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 370	set_buffer_uptodate(dbh);
 371	unlock_buffer(dbh);
 372	mark_buffer_dirty_inode(dbh, inode);
 373
 374	sfibh.soffset = sfibh.eoffset =
 375			f_pos & (inode->i_sb->s_blocksize - 1);
 376	sfibh.sbh = sfibh.ebh = NULL;
 377	dfibh.soffset = dfibh.eoffset = 0;
 378	dfibh.sbh = dfibh.ebh = dbh;
 379	while (f_pos < size) {
 380		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 381		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 382					 NULL, NULL, NULL);
 383		if (!sfi) {
 384			brelse(dbh);
 385			return NULL;
 386		}
 387		iinfo->i_alloc_type = alloctype;
 388		sfi->descTag.tagLocation = cpu_to_le32(*block);
 389		dfibh.soffset = dfibh.eoffset;
 390		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 391		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 392		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 393				 sfi->fileIdent +
 394					le16_to_cpu(sfi->lengthOfImpUse))) {
 395			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 396			brelse(dbh);
 397			return NULL;
 398		}
 399	}
 400	mark_buffer_dirty_inode(dbh, inode);
 401
 402	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 403		iinfo->i_lenAlloc);
 404	iinfo->i_lenAlloc = 0;
 405	eloc.logicalBlockNum = *block;
 406	eloc.partitionReferenceNum =
 407				iinfo->i_location.partitionReferenceNum;
 408	iinfo->i_lenExtents = inode->i_size;
 409	epos.bh = NULL;
 410	epos.block = iinfo->i_location;
 411	epos.offset = udf_file_entry_alloc_offset(inode);
 412	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 413	/* UniqueID stuff */
 414
 415	brelse(epos.bh);
 416	mark_inode_dirty(inode);
 417	return dbh;
 418}
 419
 420static int udf_get_block(struct inode *inode, sector_t block,
 421			 struct buffer_head *bh_result, int create)
 422{
 423	int err, new;
 424	sector_t phys = 0;
 425	struct udf_inode_info *iinfo;
 426
 427	if (!create) {
 428		phys = udf_block_map(inode, block);
 429		if (phys)
 430			map_bh(bh_result, inode->i_sb, phys);
 431		return 0;
 432	}
 433
 434	err = -EIO;
 435	new = 0;
 436	iinfo = UDF_I(inode);
 437
 438	down_write(&iinfo->i_data_sem);
 439	if (block == iinfo->i_next_alloc_block + 1) {
 440		iinfo->i_next_alloc_block++;
 441		iinfo->i_next_alloc_goal++;
 442	}
 443
 444	udf_clear_extent_cache(inode);
 445	phys = inode_getblk(inode, block, &err, &new);
 446	if (!phys)
 447		goto abort;
 448
 449	if (new)
 450		set_buffer_new(bh_result);
 451	map_bh(bh_result, inode->i_sb, phys);
 452
 453abort:
 454	up_write(&iinfo->i_data_sem);
 455	return err;
 456}
 457
 458static struct buffer_head *udf_getblk(struct inode *inode, long block,
 459				      int create, int *err)
 460{
 461	struct buffer_head *bh;
 462	struct buffer_head dummy;
 463
 464	dummy.b_state = 0;
 465	dummy.b_blocknr = -1000;
 466	*err = udf_get_block(inode, block, &dummy, create);
 467	if (!*err && buffer_mapped(&dummy)) {
 468		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 469		if (buffer_new(&dummy)) {
 470			lock_buffer(bh);
 471			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 472			set_buffer_uptodate(bh);
 473			unlock_buffer(bh);
 474			mark_buffer_dirty_inode(bh, inode);
 475		}
 476		return bh;
 477	}
 478
 479	return NULL;
 480}
 481
 482/* Extend the file by 'blocks' blocks, return the number of extents added */
 483static int udf_do_extend_file(struct inode *inode,
 484			      struct extent_position *last_pos,
 485			      struct kernel_long_ad *last_ext,
 486			      sector_t blocks)
 487{
 488	sector_t add;
 489	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 490	struct super_block *sb = inode->i_sb;
 491	struct kernel_lb_addr prealloc_loc = {};
 492	int prealloc_len = 0;
 493	struct udf_inode_info *iinfo;
 494	int err;
 495
 496	/* The previous extent is fake and we should not extend by anything
 497	 * - there's nothing to do... */
 498	if (!blocks && fake)
 499		return 0;
 500
 501	iinfo = UDF_I(inode);
 502	/* Round the last extent up to a multiple of block size */
 503	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 504		last_ext->extLength =
 505			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 506			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 507			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 508		iinfo->i_lenExtents =
 509			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 510			~(sb->s_blocksize - 1);
 511	}
 512
 513	/* Last extent are just preallocated blocks? */
 514	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 515						EXT_NOT_RECORDED_ALLOCATED) {
 516		/* Save the extent so that we can reattach it to the end */
 517		prealloc_loc = last_ext->extLocation;
 518		prealloc_len = last_ext->extLength;
 519		/* Mark the extent as a hole */
 520		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 521			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 522		last_ext->extLocation.logicalBlockNum = 0;
 523		last_ext->extLocation.partitionReferenceNum = 0;
 524	}
 525
 526	/* Can we merge with the previous extent? */
 527	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 528					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 529		add = ((1 << 30) - sb->s_blocksize -
 530			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 531			sb->s_blocksize_bits;
 532		if (add > blocks)
 533			add = blocks;
 534		blocks -= add;
 535		last_ext->extLength += add << sb->s_blocksize_bits;
 536	}
 537
 538	if (fake) {
 539		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 540			     last_ext->extLength, 1);
 541		count++;
 542	} else {
 543		struct kernel_lb_addr tmploc;
 544		uint32_t tmplen;
 545
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 548		/*
 549		 * We've rewritten the last extent but there may be empty
 550		 * indirect extent after it - enter it.
 551		 */
 552		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 553	}
 554
 555	/* Managed to do everything necessary? */
 556	if (!blocks)
 557		goto out;
 558
 559	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 560	last_ext->extLocation.logicalBlockNum = 0;
 561	last_ext->extLocation.partitionReferenceNum = 0;
 562	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 563	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 564				(add << sb->s_blocksize_bits);
 565
 566	/* Create enough extents to cover the whole hole */
 567	while (blocks > add) {
 568		blocks -= add;
 569		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 570				   last_ext->extLength, 1);
 571		if (err)
 572			return err;
 573		count++;
 574	}
 575	if (blocks) {
 576		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 577			(blocks << sb->s_blocksize_bits);
 578		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 579				   last_ext->extLength, 1);
 580		if (err)
 581			return err;
 582		count++;
 583	}
 584
 585out:
 586	/* Do we have some preallocated blocks saved? */
 587	if (prealloc_len) {
 588		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 589				   prealloc_len, 1);
 590		if (err)
 591			return err;
 592		last_ext->extLocation = prealloc_loc;
 593		last_ext->extLength = prealloc_len;
 594		count++;
 595	}
 596
 597	/* last_pos should point to the last written extent... */
 598	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 599		last_pos->offset -= sizeof(struct short_ad);
 600	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 601		last_pos->offset -= sizeof(struct long_ad);
 602	else
 603		return -EIO;
 604
 605	return count;
 606}
 607
 608static int udf_extend_file(struct inode *inode, loff_t newsize)
 609{
 610
 611	struct extent_position epos;
 612	struct kernel_lb_addr eloc;
 613	uint32_t elen;
 614	int8_t etype;
 615	struct super_block *sb = inode->i_sb;
 616	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 617	int adsize;
 618	struct udf_inode_info *iinfo = UDF_I(inode);
 619	struct kernel_long_ad extent;
 620	int err;
 621
 622	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 623		adsize = sizeof(struct short_ad);
 624	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 625		adsize = sizeof(struct long_ad);
 626	else
 627		BUG();
 628
 629	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 630
 631	/* File has extent covering the new size (could happen when extending
 632	 * inside a block)? */
 633	if (etype != -1)
 634		return 0;
 635	if (newsize & (sb->s_blocksize - 1))
 636		offset++;
 637	/* Extended file just to the boundary of the last file block? */
 638	if (offset == 0)
 639		return 0;
 640
 641	/* Truncate is extending the file by 'offset' blocks */
 642	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 643	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 644		/* File has no extents at all or has empty last
 645		 * indirect extent! Create a fake extent... */
 646		extent.extLocation.logicalBlockNum = 0;
 647		extent.extLocation.partitionReferenceNum = 0;
 648		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 649	} else {
 650		epos.offset -= adsize;
 651		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 652				      &extent.extLength, 0);
 653		extent.extLength |= etype << 30;
 654	}
 655	err = udf_do_extend_file(inode, &epos, &extent, offset);
 656	if (err < 0)
 657		goto out;
 658	err = 0;
 659	iinfo->i_lenExtents = newsize;
 660out:
 661	brelse(epos.bh);
 662	return err;
 663}
 664
 665static sector_t inode_getblk(struct inode *inode, sector_t block,
 666			     int *err, int *new)
 667{
 668	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 669	struct extent_position prev_epos, cur_epos, next_epos;
 670	int count = 0, startnum = 0, endnum = 0;
 671	uint32_t elen = 0, tmpelen;
 672	struct kernel_lb_addr eloc, tmpeloc;
 673	int c = 1;
 674	loff_t lbcount = 0, b_off = 0;
 675	uint32_t newblocknum, newblock;
 676	sector_t offset = 0;
 677	int8_t etype;
 678	struct udf_inode_info *iinfo = UDF_I(inode);
 679	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 680	int lastblock = 0;
 681	bool isBeyondEOF;
 682
 683	*err = 0;
 684	*new = 0;
 685	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 686	prev_epos.block = iinfo->i_location;
 687	prev_epos.bh = NULL;
 688	cur_epos = next_epos = prev_epos;
 689	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 690
 691	/* find the extent which contains the block we are looking for.
 692	   alternate between laarr[0] and laarr[1] for locations of the
 693	   current extent, and the previous extent */
 694	do {
 695		if (prev_epos.bh != cur_epos.bh) {
 696			brelse(prev_epos.bh);
 697			get_bh(cur_epos.bh);
 698			prev_epos.bh = cur_epos.bh;
 699		}
 700		if (cur_epos.bh != next_epos.bh) {
 701			brelse(cur_epos.bh);
 702			get_bh(next_epos.bh);
 703			cur_epos.bh = next_epos.bh;
 704		}
 705
 706		lbcount += elen;
 707
 708		prev_epos.block = cur_epos.block;
 709		cur_epos.block = next_epos.block;
 710
 711		prev_epos.offset = cur_epos.offset;
 712		cur_epos.offset = next_epos.offset;
 713
 714		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 715		if (etype == -1)
 716			break;
 717
 718		c = !c;
 719
 720		laarr[c].extLength = (etype << 30) | elen;
 721		laarr[c].extLocation = eloc;
 722
 723		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 724			pgoal = eloc.logicalBlockNum +
 725				((elen + inode->i_sb->s_blocksize - 1) >>
 726				 inode->i_sb->s_blocksize_bits);
 727
 728		count++;
 729	} while (lbcount + elen <= b_off);
 730
 731	b_off -= lbcount;
 732	offset = b_off >> inode->i_sb->s_blocksize_bits;
 733	/*
 734	 * Move prev_epos and cur_epos into indirect extent if we are at
 735	 * the pointer to it
 736	 */
 737	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 738	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 739
 740	/* if the extent is allocated and recorded, return the block
 741	   if the extent is not a multiple of the blocksize, round up */
 742
 743	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 744		if (elen & (inode->i_sb->s_blocksize - 1)) {
 745			elen = EXT_RECORDED_ALLOCATED |
 746				((elen + inode->i_sb->s_blocksize - 1) &
 747				 ~(inode->i_sb->s_blocksize - 1));
 748			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 749		}
 750		brelse(prev_epos.bh);
 751		brelse(cur_epos.bh);
 752		brelse(next_epos.bh);
 753		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 754		return newblock;
 755	}
 756
 757	/* Are we beyond EOF? */
 758	if (etype == -1) {
 759		int ret;
 760		isBeyondEOF = true;
 761		if (count) {
 762			if (c)
 763				laarr[0] = laarr[1];
 764			startnum = 1;
 765		} else {
 766			/* Create a fake extent when there's not one */
 767			memset(&laarr[0].extLocation, 0x00,
 768				sizeof(struct kernel_lb_addr));
 769			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 770			/* Will udf_do_extend_file() create real extent from
 771			   a fake one? */
 772			startnum = (offset > 0);
 773		}
 774		/* Create extents for the hole between EOF and offset */
 775		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 776		if (ret < 0) {
 777			brelse(prev_epos.bh);
 778			brelse(cur_epos.bh);
 779			brelse(next_epos.bh);
 780			*err = ret;
 781			return 0;
 782		}
 783		c = 0;
 784		offset = 0;
 785		count += ret;
 786		/* We are not covered by a preallocated extent? */
 787		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 788						EXT_NOT_RECORDED_ALLOCATED) {
 789			/* Is there any real extent? - otherwise we overwrite
 790			 * the fake one... */
 791			if (count)
 792				c = !c;
 793			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 794				inode->i_sb->s_blocksize;
 795			memset(&laarr[c].extLocation, 0x00,
 796				sizeof(struct kernel_lb_addr));
 797			count++;
 798		}
 799		endnum = c + 1;
 800		lastblock = 1;
 801	} else {
 802		isBeyondEOF = false;
 803		endnum = startnum = ((count > 2) ? 2 : count);
 804
 805		/* if the current extent is in position 0,
 806		   swap it with the previous */
 807		if (!c && count != 1) {
 808			laarr[2] = laarr[0];
 809			laarr[0] = laarr[1];
 810			laarr[1] = laarr[2];
 811			c = 1;
 812		}
 813
 814		/* if the current block is located in an extent,
 815		   read the next extent */
 816		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 817		if (etype != -1) {
 818			laarr[c + 1].extLength = (etype << 30) | elen;
 819			laarr[c + 1].extLocation = eloc;
 820			count++;
 821			startnum++;
 822			endnum++;
 823		} else
 824			lastblock = 1;
 825	}
 826
 827	/* if the current extent is not recorded but allocated, get the
 828	 * block in the extent corresponding to the requested block */
 829	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 830		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 831	else { /* otherwise, allocate a new block */
 832		if (iinfo->i_next_alloc_block == block)
 833			goal = iinfo->i_next_alloc_goal;
 834
 835		if (!goal) {
 836			if (!(goal = pgoal)) /* XXX: what was intended here? */
 837				goal = iinfo->i_location.logicalBlockNum + 1;
 838		}
 839
 840		newblocknum = udf_new_block(inode->i_sb, inode,
 841				iinfo->i_location.partitionReferenceNum,
 842				goal, err);
 843		if (!newblocknum) {
 844			brelse(prev_epos.bh);
 845			brelse(cur_epos.bh);
 846			brelse(next_epos.bh);
 847			*err = -ENOSPC;
 848			return 0;
 849		}
 850		if (isBeyondEOF)
 851			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 852	}
 853
 854	/* if the extent the requsted block is located in contains multiple
 855	 * blocks, split the extent into at most three extents. blocks prior
 856	 * to requested block, requested block, and blocks after requested
 857	 * block */
 858	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 859
 860#ifdef UDF_PREALLOCATE
 861	/* We preallocate blocks only for regular files. It also makes sense
 862	 * for directories but there's a problem when to drop the
 863	 * preallocation. We might use some delayed work for that but I feel
 864	 * it's overengineering for a filesystem like UDF. */
 865	if (S_ISREG(inode->i_mode))
 866		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 867#endif
 868
 869	/* merge any continuous blocks in laarr */
 870	udf_merge_extents(inode, laarr, &endnum);
 871
 872	/* write back the new extents, inserting new extents if the new number
 873	 * of extents is greater than the old number, and deleting extents if
 874	 * the new number of extents is less than the old number */
 875	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 876
 877	brelse(prev_epos.bh);
 878	brelse(cur_epos.bh);
 879	brelse(next_epos.bh);
 880
 881	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 882				iinfo->i_location.partitionReferenceNum, 0);
 883	if (!newblock) {
 884		*err = -EIO;
 885		return 0;
 886	}
 887	*new = 1;
 888	iinfo->i_next_alloc_block = block;
 889	iinfo->i_next_alloc_goal = newblocknum;
 890	inode->i_ctime = current_time(inode);
 891
 892	if (IS_SYNC(inode))
 893		udf_sync_inode(inode);
 894	else
 895		mark_inode_dirty(inode);
 896
 897	return newblock;
 898}
 899
 900static void udf_split_extents(struct inode *inode, int *c, int offset,
 901			      int newblocknum,
 902			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 903			      int *endnum)
 904{
 905	unsigned long blocksize = inode->i_sb->s_blocksize;
 906	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 907
 908	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 909	    (laarr[*c].extLength >> 30) ==
 910				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 911		int curr = *c;
 912		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 913			    blocksize - 1) >> blocksize_bits;
 914		int8_t etype = (laarr[curr].extLength >> 30);
 915
 916		if (blen == 1)
 917			;
 918		else if (!offset || blen == offset + 1) {
 919			laarr[curr + 2] = laarr[curr + 1];
 920			laarr[curr + 1] = laarr[curr];
 921		} else {
 922			laarr[curr + 3] = laarr[curr + 1];
 923			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 924		}
 925
 926		if (offset) {
 927			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 928				udf_free_blocks(inode->i_sb, inode,
 929						&laarr[curr].extLocation,
 930						0, offset);
 931				laarr[curr].extLength =
 932					EXT_NOT_RECORDED_NOT_ALLOCATED |
 933					(offset << blocksize_bits);
 934				laarr[curr].extLocation.logicalBlockNum = 0;
 935				laarr[curr].extLocation.
 936						partitionReferenceNum = 0;
 937			} else
 938				laarr[curr].extLength = (etype << 30) |
 939					(offset << blocksize_bits);
 940			curr++;
 941			(*c)++;
 942			(*endnum)++;
 943		}
 944
 945		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 946		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 947			laarr[curr].extLocation.partitionReferenceNum =
 948				UDF_I(inode)->i_location.partitionReferenceNum;
 949		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 950			blocksize;
 951		curr++;
 952
 953		if (blen != offset + 1) {
 954			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 955				laarr[curr].extLocation.logicalBlockNum +=
 956								offset + 1;
 957			laarr[curr].extLength = (etype << 30) |
 958				((blen - (offset + 1)) << blocksize_bits);
 959			curr++;
 960			(*endnum)++;
 961		}
 962	}
 963}
 964
 965static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 966				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 967				 int *endnum)
 968{
 969	int start, length = 0, currlength = 0, i;
 970
 971	if (*endnum >= (c + 1)) {
 972		if (!lastblock)
 973			return;
 974		else
 975			start = c;
 976	} else {
 977		if ((laarr[c + 1].extLength >> 30) ==
 978					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 979			start = c + 1;
 980			length = currlength =
 981				(((laarr[c + 1].extLength &
 982					UDF_EXTENT_LENGTH_MASK) +
 983				inode->i_sb->s_blocksize - 1) >>
 984				inode->i_sb->s_blocksize_bits);
 985		} else
 986			start = c;
 987	}
 988
 989	for (i = start + 1; i <= *endnum; i++) {
 990		if (i == *endnum) {
 991			if (lastblock)
 992				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 993		} else if ((laarr[i].extLength >> 30) ==
 994				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 995			length += (((laarr[i].extLength &
 996						UDF_EXTENT_LENGTH_MASK) +
 997				    inode->i_sb->s_blocksize - 1) >>
 998				    inode->i_sb->s_blocksize_bits);
 999		} else
1000			break;
1001	}
1002
1003	if (length) {
1004		int next = laarr[start].extLocation.logicalBlockNum +
1005			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1006			  inode->i_sb->s_blocksize - 1) >>
1007			  inode->i_sb->s_blocksize_bits);
1008		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1009				laarr[start].extLocation.partitionReferenceNum,
1010				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1011				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1012				currlength);
1013		if (numalloc) 	{
1014			if (start == (c + 1))
1015				laarr[start].extLength +=
1016					(numalloc <<
1017					 inode->i_sb->s_blocksize_bits);
1018			else {
1019				memmove(&laarr[c + 2], &laarr[c + 1],
1020					sizeof(struct long_ad) * (*endnum - (c + 1)));
1021				(*endnum)++;
1022				laarr[c + 1].extLocation.logicalBlockNum = next;
1023				laarr[c + 1].extLocation.partitionReferenceNum =
1024					laarr[c].extLocation.
1025							partitionReferenceNum;
1026				laarr[c + 1].extLength =
1027					EXT_NOT_RECORDED_ALLOCATED |
1028					(numalloc <<
1029					 inode->i_sb->s_blocksize_bits);
1030				start = c + 1;
1031			}
1032
1033			for (i = start + 1; numalloc && i < *endnum; i++) {
1034				int elen = ((laarr[i].extLength &
1035						UDF_EXTENT_LENGTH_MASK) +
1036					    inode->i_sb->s_blocksize - 1) >>
1037					    inode->i_sb->s_blocksize_bits;
1038
1039				if (elen > numalloc) {
1040					laarr[i].extLength -=
1041						(numalloc <<
1042						 inode->i_sb->s_blocksize_bits);
1043					numalloc = 0;
1044				} else {
1045					numalloc -= elen;
1046					if (*endnum > (i + 1))
1047						memmove(&laarr[i],
1048							&laarr[i + 1],
1049							sizeof(struct long_ad) *
1050							(*endnum - (i + 1)));
1051					i--;
1052					(*endnum)--;
1053				}
1054			}
1055			UDF_I(inode)->i_lenExtents +=
1056				numalloc << inode->i_sb->s_blocksize_bits;
1057		}
1058	}
1059}
1060
1061static void udf_merge_extents(struct inode *inode,
1062			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1063			      int *endnum)
1064{
1065	int i;
1066	unsigned long blocksize = inode->i_sb->s_blocksize;
1067	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1068
1069	for (i = 0; i < (*endnum - 1); i++) {
1070		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1071		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1072
1073		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1074			(((li->extLength >> 30) ==
1075				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1076			((lip1->extLocation.logicalBlockNum -
1077			  li->extLocation.logicalBlockNum) ==
1078			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1079			blocksize - 1) >> blocksize_bits)))) {
1080
1081			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1083				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1084				lip1->extLength = (lip1->extLength -
1085						  (li->extLength &
1086						   UDF_EXTENT_LENGTH_MASK) +
1087						   UDF_EXTENT_LENGTH_MASK) &
1088							~(blocksize - 1);
1089				li->extLength = (li->extLength &
1090						 UDF_EXTENT_FLAG_MASK) +
1091						(UDF_EXTENT_LENGTH_MASK + 1) -
1092						blocksize;
1093				lip1->extLocation.logicalBlockNum =
1094					li->extLocation.logicalBlockNum +
1095					((li->extLength &
1096						UDF_EXTENT_LENGTH_MASK) >>
1097						blocksize_bits);
1098			} else {
1099				li->extLength = lip1->extLength +
1100					(((li->extLength &
1101						UDF_EXTENT_LENGTH_MASK) +
1102					 blocksize - 1) & ~(blocksize - 1));
1103				if (*endnum > (i + 2))
1104					memmove(&laarr[i + 1], &laarr[i + 2],
1105						sizeof(struct long_ad) *
1106						(*endnum - (i + 2)));
1107				i--;
1108				(*endnum)--;
1109			}
1110		} else if (((li->extLength >> 30) ==
1111				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1112			   ((lip1->extLength >> 30) ==
1113				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1114			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1115					((li->extLength &
1116					  UDF_EXTENT_LENGTH_MASK) +
1117					 blocksize - 1) >> blocksize_bits);
1118			li->extLocation.logicalBlockNum = 0;
1119			li->extLocation.partitionReferenceNum = 0;
1120
1121			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1123			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1124				lip1->extLength = (lip1->extLength -
1125						   (li->extLength &
1126						   UDF_EXTENT_LENGTH_MASK) +
1127						   UDF_EXTENT_LENGTH_MASK) &
1128						   ~(blocksize - 1);
1129				li->extLength = (li->extLength &
1130						 UDF_EXTENT_FLAG_MASK) +
1131						(UDF_EXTENT_LENGTH_MASK + 1) -
1132						blocksize;
1133			} else {
1134				li->extLength = lip1->extLength +
1135					(((li->extLength &
1136						UDF_EXTENT_LENGTH_MASK) +
1137					  blocksize - 1) & ~(blocksize - 1));
1138				if (*endnum > (i + 2))
1139					memmove(&laarr[i + 1], &laarr[i + 2],
1140						sizeof(struct long_ad) *
1141						(*endnum - (i + 2)));
1142				i--;
1143				(*endnum)--;
1144			}
1145		} else if ((li->extLength >> 30) ==
1146					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1147			udf_free_blocks(inode->i_sb, inode,
1148					&li->extLocation, 0,
1149					((li->extLength &
1150						UDF_EXTENT_LENGTH_MASK) +
1151					 blocksize - 1) >> blocksize_bits);
1152			li->extLocation.logicalBlockNum = 0;
1153			li->extLocation.partitionReferenceNum = 0;
1154			li->extLength = (li->extLength &
1155						UDF_EXTENT_LENGTH_MASK) |
1156						EXT_NOT_RECORDED_NOT_ALLOCATED;
1157		}
1158	}
1159}
1160
1161static void udf_update_extents(struct inode *inode,
1162			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1163			       int startnum, int endnum,
1164			       struct extent_position *epos)
1165{
1166	int start = 0, i;
1167	struct kernel_lb_addr tmploc;
1168	uint32_t tmplen;
1169
1170	if (startnum > endnum) {
1171		for (i = 0; i < (startnum - endnum); i++)
1172			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1173					laarr[i].extLength);
1174	} else if (startnum < endnum) {
1175		for (i = 0; i < (endnum - startnum); i++) {
1176			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1177					laarr[i].extLength);
1178			udf_next_aext(inode, epos, &laarr[i].extLocation,
1179				      &laarr[i].extLength, 1);
1180			start++;
1181		}
1182	}
1183
1184	for (i = start; i < endnum; i++) {
1185		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1186		udf_write_aext(inode, epos, &laarr[i].extLocation,
1187			       laarr[i].extLength, 1);
1188	}
1189}
1190
1191struct buffer_head *udf_bread(struct inode *inode, int block,
1192			      int create, int *err)
1193{
1194	struct buffer_head *bh = NULL;
1195
1196	bh = udf_getblk(inode, block, create, err);
1197	if (!bh)
1198		return NULL;
1199
1200	if (buffer_uptodate(bh))
1201		return bh;
1202
1203	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1204
1205	wait_on_buffer(bh);
1206	if (buffer_uptodate(bh))
1207		return bh;
1208
1209	brelse(bh);
1210	*err = -EIO;
1211	return NULL;
1212}
1213
1214int udf_setsize(struct inode *inode, loff_t newsize)
1215{
1216	int err;
1217	struct udf_inode_info *iinfo;
1218	int bsize = 1 << inode->i_blkbits;
1219
1220	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221	      S_ISLNK(inode->i_mode)))
1222		return -EINVAL;
1223	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224		return -EPERM;
1225
1226	iinfo = UDF_I(inode);
1227	if (newsize > inode->i_size) {
1228		down_write(&iinfo->i_data_sem);
1229		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230			if (bsize <
1231			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1232				err = udf_expand_file_adinicb(inode);
1233				if (err)
1234					return err;
1235				down_write(&iinfo->i_data_sem);
1236			} else {
1237				iinfo->i_lenAlloc = newsize;
1238				goto set_size;
1239			}
1240		}
1241		err = udf_extend_file(inode, newsize);
1242		if (err) {
1243			up_write(&iinfo->i_data_sem);
1244			return err;
1245		}
1246set_size:
1247		truncate_setsize(inode, newsize);
1248		up_write(&iinfo->i_data_sem);
1249	} else {
1250		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251			down_write(&iinfo->i_data_sem);
1252			udf_clear_extent_cache(inode);
1253			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1254			       0x00, bsize - newsize -
1255			       udf_file_entry_alloc_offset(inode));
1256			iinfo->i_lenAlloc = newsize;
1257			truncate_setsize(inode, newsize);
1258			up_write(&iinfo->i_data_sem);
1259			goto update_time;
1260		}
1261		err = block_truncate_page(inode->i_mapping, newsize,
1262					  udf_get_block);
1263		if (err)
1264			return err;
1265		down_write(&iinfo->i_data_sem);
1266		udf_clear_extent_cache(inode);
1267		truncate_setsize(inode, newsize);
1268		udf_truncate_extents(inode);
1269		up_write(&iinfo->i_data_sem);
1270	}
1271update_time:
1272	inode->i_mtime = inode->i_ctime = current_time(inode);
1273	if (IS_SYNC(inode))
1274		udf_sync_inode(inode);
1275	else
1276		mark_inode_dirty(inode);
1277	return 0;
1278}
1279
1280/*
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1284 */
1285#define UDF_MAX_ICB_NESTING 1024
1286
1287static int udf_read_inode(struct inode *inode, bool hidden_inode)
1288{
1289	struct buffer_head *bh = NULL;
1290	struct fileEntry *fe;
1291	struct extendedFileEntry *efe;
1292	uint16_t ident;
1293	struct udf_inode_info *iinfo = UDF_I(inode);
1294	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1295	struct kernel_lb_addr *iloc = &iinfo->i_location;
1296	unsigned int link_count;
1297	unsigned int indirections = 0;
1298	int bs = inode->i_sb->s_blocksize;
1299	int ret = -EIO;
1300
1301reread:
1302	if (iloc->logicalBlockNum >=
1303	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1304		udf_debug("block=%d, partition=%d out of range\n",
1305			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1306		return -EIO;
1307	}
1308
1309	/*
1310	 * Set defaults, but the inode is still incomplete!
1311	 * Note: get_new_inode() sets the following on a new inode:
1312	 *      i_sb = sb
1313	 *      i_no = ino
1314	 *      i_flags = sb->s_flags
1315	 *      i_state = 0
1316	 * clean_inode(): zero fills and sets
1317	 *      i_count = 1
1318	 *      i_nlink = 1
1319	 *      i_op = NULL;
1320	 */
1321	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1322	if (!bh) {
1323		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1324		return -EIO;
 
1325	}
1326
1327	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1328	    ident != TAG_IDENT_USE) {
1329		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1330			inode->i_ino, ident);
1331		goto out;
 
 
1332	}
1333
1334	fe = (struct fileEntry *)bh->b_data;
1335	efe = (struct extendedFileEntry *)bh->b_data;
1336
1337	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1338		struct buffer_head *ibh;
1339
1340		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
 
1341		if (ident == TAG_IDENT_IE && ibh) {
 
1342			struct kernel_lb_addr loc;
1343			struct indirectEntry *ie;
1344
1345			ie = (struct indirectEntry *)ibh->b_data;
1346			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1347
1348			if (ie->indirectICB.extLength) {
1349				brelse(ibh);
1350				memcpy(&iinfo->i_location, &loc,
1351				       sizeof(struct kernel_lb_addr));
1352				if (++indirections > UDF_MAX_ICB_NESTING) {
1353					udf_err(inode->i_sb,
1354						"too many ICBs in ICB hierarchy"
1355						" (max %d supported)\n",
1356						UDF_MAX_ICB_NESTING);
1357					goto out;
 
 
 
1358				}
1359				brelse(bh);
1360				goto reread;
1361			}
1362		}
1363		brelse(ibh);
1364	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1365		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1366			le16_to_cpu(fe->icbTag.strategyType));
1367		goto out;
 
 
1368	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1369	if (fe->icbTag.strategyType == cpu_to_le16(4))
1370		iinfo->i_strat4096 = 0;
1371	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372		iinfo->i_strat4096 = 1;
1373
1374	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1375							ICBTAG_FLAG_AD_MASK;
1376	iinfo->i_unique = 0;
1377	iinfo->i_lenEAttr = 0;
1378	iinfo->i_lenExtents = 0;
1379	iinfo->i_lenAlloc = 0;
1380	iinfo->i_next_alloc_block = 0;
1381	iinfo->i_next_alloc_goal = 0;
1382	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1383		iinfo->i_efe = 1;
1384		iinfo->i_use = 0;
1385		ret = udf_alloc_i_data(inode, bs -
1386					sizeof(struct extendedFileEntry));
1387		if (ret)
1388			goto out;
 
1389		memcpy(iinfo->i_ext.i_data,
1390		       bh->b_data + sizeof(struct extendedFileEntry),
1391		       bs - sizeof(struct extendedFileEntry));
 
1392	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1393		iinfo->i_efe = 0;
1394		iinfo->i_use = 0;
1395		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1396		if (ret)
1397			goto out;
 
 
1398		memcpy(iinfo->i_ext.i_data,
1399		       bh->b_data + sizeof(struct fileEntry),
1400		       bs - sizeof(struct fileEntry));
1401	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402		iinfo->i_efe = 0;
1403		iinfo->i_use = 1;
1404		iinfo->i_lenAlloc = le32_to_cpu(
1405				((struct unallocSpaceEntry *)bh->b_data)->
1406				 lengthAllocDescs);
1407		ret = udf_alloc_i_data(inode, bs -
1408					sizeof(struct unallocSpaceEntry));
1409		if (ret)
1410			goto out;
 
1411		memcpy(iinfo->i_ext.i_data,
1412		       bh->b_data + sizeof(struct unallocSpaceEntry),
1413		       bs - sizeof(struct unallocSpaceEntry));
1414		return 0;
 
1415	}
1416
1417	ret = -EIO;
1418	read_lock(&sbi->s_cred_lock);
1419	i_uid_write(inode, le32_to_cpu(fe->uid));
1420	if (!uid_valid(inode->i_uid) ||
1421	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1422	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1423		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1424
1425	i_gid_write(inode, le32_to_cpu(fe->gid));
1426	if (!gid_valid(inode->i_gid) ||
1427	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1428	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1429		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1430
1431	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1432			sbi->s_fmode != UDF_INVALID_MODE)
1433		inode->i_mode = sbi->s_fmode;
1434	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1435			sbi->s_dmode != UDF_INVALID_MODE)
1436		inode->i_mode = sbi->s_dmode;
1437	else
1438		inode->i_mode = udf_convert_permissions(fe);
1439	inode->i_mode &= ~sbi->s_umask;
1440	read_unlock(&sbi->s_cred_lock);
1441
1442	link_count = le16_to_cpu(fe->fileLinkCount);
1443	if (!link_count) {
1444		if (!hidden_inode) {
1445			ret = -ESTALE;
1446			goto out;
1447		}
1448		link_count = 1;
1449	}
1450	set_nlink(inode, link_count);
1451
1452	inode->i_size = le64_to_cpu(fe->informationLength);
1453	iinfo->i_lenExtents = inode->i_size;
1454
1455	if (iinfo->i_efe == 0) {
1456		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1457			(inode->i_sb->s_blocksize_bits - 9);
1458
1459		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1460			inode->i_atime = sbi->s_record_time;
1461
1462		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1463					    fe->modificationTime))
1464			inode->i_mtime = sbi->s_record_time;
1465
1466		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1467			inode->i_ctime = sbi->s_record_time;
1468
1469		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1470		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1471		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1472		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1473	} else {
1474		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1475		    (inode->i_sb->s_blocksize_bits - 9);
1476
1477		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1478			inode->i_atime = sbi->s_record_time;
1479
1480		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1481					    efe->modificationTime))
1482			inode->i_mtime = sbi->s_record_time;
1483
1484		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1485			iinfo->i_crtime = sbi->s_record_time;
1486
1487		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1488			inode->i_ctime = sbi->s_record_time;
1489
1490		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494	}
1495	inode->i_generation = iinfo->i_unique;
1496
1497	/*
1498	 * Sanity check length of allocation descriptors and extended attrs to
1499	 * avoid integer overflows
1500	 */
1501	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1502		goto out;
1503	/* Now do exact checks */
1504	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1505		goto out;
1506	/* Sanity checks for files in ICB so that we don't get confused later */
1507	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1508		/*
1509		 * For file in ICB data is stored in allocation descriptor
1510		 * so sizes should match
1511		 */
1512		if (iinfo->i_lenAlloc != inode->i_size)
1513			goto out;
1514		/* File in ICB has to fit in there... */
1515		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1516			goto out;
1517	}
1518
1519	switch (fe->icbTag.fileType) {
1520	case ICBTAG_FILE_TYPE_DIRECTORY:
1521		inode->i_op = &udf_dir_inode_operations;
1522		inode->i_fop = &udf_dir_operations;
1523		inode->i_mode |= S_IFDIR;
1524		inc_nlink(inode);
1525		break;
1526	case ICBTAG_FILE_TYPE_REALTIME:
1527	case ICBTAG_FILE_TYPE_REGULAR:
1528	case ICBTAG_FILE_TYPE_UNDEF:
1529	case ICBTAG_FILE_TYPE_VAT20:
1530		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1531			inode->i_data.a_ops = &udf_adinicb_aops;
1532		else
1533			inode->i_data.a_ops = &udf_aops;
1534		inode->i_op = &udf_file_inode_operations;
1535		inode->i_fop = &udf_file_operations;
1536		inode->i_mode |= S_IFREG;
1537		break;
1538	case ICBTAG_FILE_TYPE_BLOCK:
1539		inode->i_mode |= S_IFBLK;
1540		break;
1541	case ICBTAG_FILE_TYPE_CHAR:
1542		inode->i_mode |= S_IFCHR;
1543		break;
1544	case ICBTAG_FILE_TYPE_FIFO:
1545		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1546		break;
1547	case ICBTAG_FILE_TYPE_SOCKET:
1548		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1549		break;
1550	case ICBTAG_FILE_TYPE_SYMLINK:
1551		inode->i_data.a_ops = &udf_symlink_aops;
1552		inode->i_op = &page_symlink_inode_operations;
1553		inode_nohighmem(inode);
1554		inode->i_mode = S_IFLNK | S_IRWXUGO;
1555		break;
1556	case ICBTAG_FILE_TYPE_MAIN:
1557		udf_debug("METADATA FILE-----\n");
1558		break;
1559	case ICBTAG_FILE_TYPE_MIRROR:
1560		udf_debug("METADATA MIRROR FILE-----\n");
1561		break;
1562	case ICBTAG_FILE_TYPE_BITMAP:
1563		udf_debug("METADATA BITMAP FILE-----\n");
1564		break;
1565	default:
1566		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1567			inode->i_ino, fe->icbTag.fileType);
1568		goto out;
 
1569	}
1570	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571		struct deviceSpec *dsea =
1572			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573		if (dsea) {
1574			init_special_inode(inode, inode->i_mode,
1575				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1576				      le32_to_cpu(dsea->minorDeviceIdent)));
1577			/* Developer ID ??? */
1578		} else
1579			goto out;
1580	}
1581	ret = 0;
1582out:
1583	brelse(bh);
1584	return ret;
1585}
1586
1587static int udf_alloc_i_data(struct inode *inode, size_t size)
1588{
1589	struct udf_inode_info *iinfo = UDF_I(inode);
1590	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1591
1592	if (!iinfo->i_ext.i_data) {
1593		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1594			inode->i_ino);
1595		return -ENOMEM;
1596	}
1597
1598	return 0;
1599}
1600
1601static umode_t udf_convert_permissions(struct fileEntry *fe)
1602{
1603	umode_t mode;
1604	uint32_t permissions;
1605	uint32_t flags;
1606
1607	permissions = le32_to_cpu(fe->permissions);
1608	flags = le16_to_cpu(fe->icbTag.flags);
1609
1610	mode =	((permissions) & S_IRWXO) |
1611		((permissions >> 2) & S_IRWXG) |
1612		((permissions >> 4) & S_IRWXU) |
1613		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1614		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1615		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1616
1617	return mode;
1618}
1619
1620int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1621{
1622	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1623}
1624
1625static int udf_sync_inode(struct inode *inode)
1626{
1627	return udf_update_inode(inode, 1);
1628}
1629
1630static int udf_update_inode(struct inode *inode, int do_sync)
1631{
1632	struct buffer_head *bh = NULL;
1633	struct fileEntry *fe;
1634	struct extendedFileEntry *efe;
1635	uint64_t lb_recorded;
1636	uint32_t udfperms;
1637	uint16_t icbflags;
1638	uint16_t crclen;
1639	int err = 0;
1640	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1641	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1642	struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644	bh = udf_tgetblk(inode->i_sb,
1645			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1646	if (!bh) {
1647		udf_debug("getblk failure\n");
1648		return -EIO;
1649	}
1650
1651	lock_buffer(bh);
1652	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1653	fe = (struct fileEntry *)bh->b_data;
1654	efe = (struct extendedFileEntry *)bh->b_data;
1655
1656	if (iinfo->i_use) {
1657		struct unallocSpaceEntry *use =
1658			(struct unallocSpaceEntry *)bh->b_data;
1659
1660		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1661		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1662		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1663					sizeof(struct unallocSpaceEntry));
1664		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1665		crclen = sizeof(struct unallocSpaceEntry);
 
 
 
 
 
 
 
 
1666
1667		goto finish;
1668	}
1669
1670	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671		fe->uid = cpu_to_le32(-1);
1672	else
1673		fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676		fe->gid = cpu_to_le32(-1);
1677	else
1678		fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680	udfperms = ((inode->i_mode & S_IRWXO)) |
1681		   ((inode->i_mode & S_IRWXG) << 2) |
1682		   ((inode->i_mode & S_IRWXU) << 4);
1683
1684	udfperms |= (le32_to_cpu(fe->permissions) &
1685		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688	fe->permissions = cpu_to_le32(udfperms);
1689
1690	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692	else
1693		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695	fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698		struct regid *eid;
1699		struct deviceSpec *dsea =
1700			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701		if (!dsea) {
1702			dsea = (struct deviceSpec *)
1703				udf_add_extendedattr(inode,
1704						     sizeof(struct deviceSpec) +
1705						     sizeof(struct regid), 12, 0x3);
1706			dsea->attrType = cpu_to_le32(12);
1707			dsea->attrSubtype = 1;
1708			dsea->attrLength = cpu_to_le32(
1709						sizeof(struct deviceSpec) +
1710						sizeof(struct regid));
1711			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712		}
1713		eid = (struct regid *)dsea->impUse;
1714		memset(eid, 0, sizeof(struct regid));
1715		strcpy(eid->ident, UDF_ID_DEVELOPER);
1716		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720	}
1721
1722	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723		lb_recorded = 0; /* No extents => no blocks! */
1724	else
1725		lb_recorded =
1726			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727			(blocksize_bits - 9);
1728
1729	if (iinfo->i_efe == 0) {
1730		memcpy(bh->b_data + sizeof(struct fileEntry),
1731		       iinfo->i_ext.i_data,
1732		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738		memset(&(fe->impIdent), 0, sizeof(struct regid));
1739		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747		crclen = sizeof(struct fileEntry);
1748	} else {
1749		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750		       iinfo->i_ext.i_data,
1751		       inode->i_sb->s_blocksize -
1752					sizeof(struct extendedFileEntry));
1753		efe->objectSize = cpu_to_le64(inode->i_size);
1754		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759			iinfo->i_crtime = inode->i_atime;
1760
1761		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764			iinfo->i_crtime = inode->i_mtime;
1765
1766		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769			iinfo->i_crtime = inode->i_ctime;
1770
1771		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776		memset(&(efe->impIdent), 0, sizeof(struct regid));
1777		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785		crclen = sizeof(struct extendedFileEntry);
1786	}
1787
1788finish:
1789	if (iinfo->i_strat4096) {
1790		fe->icbTag.strategyType = cpu_to_le16(4096);
1791		fe->icbTag.strategyParameter = cpu_to_le16(1);
1792		fe->icbTag.numEntries = cpu_to_le16(2);
1793	} else {
1794		fe->icbTag.strategyType = cpu_to_le16(4);
1795		fe->icbTag.numEntries = cpu_to_le16(1);
1796	}
1797
1798	if (iinfo->i_use)
1799		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1800	else if (S_ISDIR(inode->i_mode))
1801		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1802	else if (S_ISREG(inode->i_mode))
1803		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1804	else if (S_ISLNK(inode->i_mode))
1805		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1806	else if (S_ISBLK(inode->i_mode))
1807		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1808	else if (S_ISCHR(inode->i_mode))
1809		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1810	else if (S_ISFIFO(inode->i_mode))
1811		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1812	else if (S_ISSOCK(inode->i_mode))
1813		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1814
1815	icbflags =	iinfo->i_alloc_type |
1816			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1817			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1818			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1819			(le16_to_cpu(fe->icbTag.flags) &
1820				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1821				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1822
1823	fe->icbTag.flags = cpu_to_le16(icbflags);
1824	if (sbi->s_udfrev >= 0x0200)
1825		fe->descTag.descVersion = cpu_to_le16(3);
1826	else
1827		fe->descTag.descVersion = cpu_to_le16(2);
1828	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1829	fe->descTag.tagLocation = cpu_to_le32(
1830					iinfo->i_location.logicalBlockNum);
1831	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1832	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1833	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1834						  crclen));
1835	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1836
 
1837	set_buffer_uptodate(bh);
1838	unlock_buffer(bh);
1839
1840	/* write the data blocks */
1841	mark_buffer_dirty(bh);
1842	if (do_sync) {
1843		sync_dirty_buffer(bh);
1844		if (buffer_write_io_error(bh)) {
1845			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1846				 inode->i_ino);
1847			err = -EIO;
1848		}
1849	}
1850	brelse(bh);
1851
1852	return err;
1853}
1854
1855struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1856			 bool hidden_inode)
1857{
1858	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1859	struct inode *inode = iget_locked(sb, block);
1860	int err;
1861
1862	if (!inode)
1863		return ERR_PTR(-ENOMEM);
1864
1865	if (!(inode->i_state & I_NEW))
1866		return inode;
1867
1868	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1869	err = udf_read_inode(inode, hidden_inode);
1870	if (err < 0) {
1871		iget_failed(inode);
1872		return ERR_PTR(err);
1873	}
1874	unlock_new_inode(inode);
1875
1876	return inode;
1877}
1878
1879int udf_setup_indirect_aext(struct inode *inode, int block,
1880			    struct extent_position *epos)
1881{
1882	struct super_block *sb = inode->i_sb;
1883	struct buffer_head *bh;
1884	struct allocExtDesc *aed;
1885	struct extent_position nepos;
1886	struct kernel_lb_addr neloc;
1887	int ver, adsize;
1888
1889	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1890		adsize = sizeof(struct short_ad);
1891	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1892		adsize = sizeof(struct long_ad);
1893	else
1894		return -EIO;
1895
1896	neloc.logicalBlockNum = block;
1897	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1898
1899	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1900	if (!bh)
1901		return -EIO;
1902	lock_buffer(bh);
1903	memset(bh->b_data, 0x00, sb->s_blocksize);
1904	set_buffer_uptodate(bh);
1905	unlock_buffer(bh);
1906	mark_buffer_dirty_inode(bh, inode);
1907
1908	aed = (struct allocExtDesc *)(bh->b_data);
1909	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1910		aed->previousAllocExtLocation =
1911				cpu_to_le32(epos->block.logicalBlockNum);
1912	}
1913	aed->lengthAllocDescs = cpu_to_le32(0);
1914	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1915		ver = 3;
1916	else
1917		ver = 2;
1918	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1919		    sizeof(struct tag));
1920
1921	nepos.block = neloc;
1922	nepos.offset = sizeof(struct allocExtDesc);
1923	nepos.bh = bh;
1924
1925	/*
1926	 * Do we have to copy current last extent to make space for indirect
1927	 * one?
1928	 */
1929	if (epos->offset + adsize > sb->s_blocksize) {
1930		struct kernel_lb_addr cp_loc;
1931		uint32_t cp_len;
1932		int cp_type;
1933
1934		epos->offset -= adsize;
1935		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1936		cp_len |= ((uint32_t)cp_type) << 30;
1937
1938		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1939		udf_write_aext(inode, epos, &nepos.block,
1940			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1941	} else {
1942		__udf_add_aext(inode, epos, &nepos.block,
1943			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1944	}
1945
1946	brelse(epos->bh);
1947	*epos = nepos;
1948
1949	return 0;
 
 
1950}
1951
1952/*
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1956 */
1957int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1958		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1959{
1960	struct udf_inode_info *iinfo = UDF_I(inode);
1961	struct allocExtDesc *aed;
1962	int adsize;
 
 
 
 
 
 
 
 
 
 
 
 
1963
1964	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965		adsize = sizeof(struct short_ad);
1966	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967		adsize = sizeof(struct long_ad);
1968	else
1969		return -EIO;
1970
1971	if (!epos->bh) {
1972		WARN_ON(iinfo->i_lenAlloc !=
1973			epos->offset - udf_file_entry_alloc_offset(inode));
1974	} else {
1975		aed = (struct allocExtDesc *)epos->bh->b_data;
1976		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1977			epos->offset - sizeof(struct allocExtDesc));
1978		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1979	}
1980
1981	udf_write_aext(inode, epos, eloc, elen, inc);
1982
1983	if (!epos->bh) {
1984		iinfo->i_lenAlloc += adsize;
1985		mark_inode_dirty(inode);
1986	} else {
1987		aed = (struct allocExtDesc *)epos->bh->b_data;
1988		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1989		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1990				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1991			udf_update_tag(epos->bh->b_data,
1992					epos->offset + (inc ? 0 : adsize));
1993		else
1994			udf_update_tag(epos->bh->b_data,
1995					sizeof(struct allocExtDesc));
1996		mark_buffer_dirty_inode(epos->bh, inode);
1997	}
1998
1999	return 0;
2000}
2001
2002/*
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2005 */
2006int udf_add_aext(struct inode *inode, struct extent_position *epos,
2007		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008{
2009	int adsize;
2010	struct super_block *sb = inode->i_sb;
2011
2012	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2020		int err;
2021		int new_block;
2022
2023		new_block = udf_new_block(sb, NULL,
2024					  epos->block.partitionReferenceNum,
2025					  epos->block.logicalBlockNum, &err);
2026		if (!new_block)
2027			return -ENOSPC;
2028
2029		err = udf_setup_indirect_aext(inode, new_block, epos);
2030		if (err)
2031			return err;
2032	}
2033
2034	return __udf_add_aext(inode, epos, eloc, elen, inc);
2035}
2036
2037void udf_write_aext(struct inode *inode, struct extent_position *epos,
2038		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2039{
2040	int adsize;
2041	uint8_t *ptr;
2042	struct short_ad *sad;
2043	struct long_ad *lad;
2044	struct udf_inode_info *iinfo = UDF_I(inode);
2045
2046	if (!epos->bh)
2047		ptr = iinfo->i_ext.i_data + epos->offset -
2048			udf_file_entry_alloc_offset(inode) +
2049			iinfo->i_lenEAttr;
2050	else
2051		ptr = epos->bh->b_data + epos->offset;
2052
2053	switch (iinfo->i_alloc_type) {
2054	case ICBTAG_FLAG_AD_SHORT:
2055		sad = (struct short_ad *)ptr;
2056		sad->extLength = cpu_to_le32(elen);
2057		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2058		adsize = sizeof(struct short_ad);
2059		break;
2060	case ICBTAG_FLAG_AD_LONG:
2061		lad = (struct long_ad *)ptr;
2062		lad->extLength = cpu_to_le32(elen);
2063		lad->extLocation = cpu_to_lelb(*eloc);
2064		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2065		adsize = sizeof(struct long_ad);
2066		break;
2067	default:
2068		return;
2069	}
2070
2071	if (epos->bh) {
2072		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2073		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2074			struct allocExtDesc *aed =
2075				(struct allocExtDesc *)epos->bh->b_data;
2076			udf_update_tag(epos->bh->b_data,
2077				       le32_to_cpu(aed->lengthAllocDescs) +
2078				       sizeof(struct allocExtDesc));
2079		}
2080		mark_buffer_dirty_inode(epos->bh, inode);
2081	} else {
2082		mark_inode_dirty(inode);
2083	}
2084
2085	if (inc)
2086		epos->offset += adsize;
2087}
2088
2089/*
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2092 */
2093#define UDF_MAX_INDIR_EXTS 16
2094
2095int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2096		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097{
2098	int8_t etype;
2099	unsigned int indirections = 0;
2100
2101	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2102	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2103		int block;
2104
2105		if (++indirections > UDF_MAX_INDIR_EXTS) {
2106			udf_err(inode->i_sb,
2107				"too many indirect extents in inode %lu\n",
2108				inode->i_ino);
2109			return -1;
2110		}
2111
2112		epos->block = *eloc;
2113		epos->offset = sizeof(struct allocExtDesc);
2114		brelse(epos->bh);
2115		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2116		epos->bh = udf_tread(inode->i_sb, block);
2117		if (!epos->bh) {
2118			udf_debug("reading block %d failed!\n", block);
2119			return -1;
2120		}
2121	}
2122
2123	return etype;
2124}
2125
2126int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2127			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2128{
2129	int alen;
2130	int8_t etype;
2131	uint8_t *ptr;
2132	struct short_ad *sad;
2133	struct long_ad *lad;
2134	struct udf_inode_info *iinfo = UDF_I(inode);
2135
2136	if (!epos->bh) {
2137		if (!epos->offset)
2138			epos->offset = udf_file_entry_alloc_offset(inode);
2139		ptr = iinfo->i_ext.i_data + epos->offset -
2140			udf_file_entry_alloc_offset(inode) +
2141			iinfo->i_lenEAttr;
2142		alen = udf_file_entry_alloc_offset(inode) +
2143							iinfo->i_lenAlloc;
2144	} else {
2145		if (!epos->offset)
2146			epos->offset = sizeof(struct allocExtDesc);
2147		ptr = epos->bh->b_data + epos->offset;
2148		alen = sizeof(struct allocExtDesc) +
2149			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2150							lengthAllocDescs);
2151	}
2152
2153	switch (iinfo->i_alloc_type) {
2154	case ICBTAG_FLAG_AD_SHORT:
2155		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2156		if (!sad)
2157			return -1;
2158		etype = le32_to_cpu(sad->extLength) >> 30;
2159		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2160		eloc->partitionReferenceNum =
2161				iinfo->i_location.partitionReferenceNum;
2162		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2163		break;
2164	case ICBTAG_FLAG_AD_LONG:
2165		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2166		if (!lad)
2167			return -1;
2168		etype = le32_to_cpu(lad->extLength) >> 30;
2169		*eloc = lelb_to_cpu(lad->extLocation);
2170		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2171		break;
2172	default:
2173		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2174		return -1;
2175	}
2176
2177	return etype;
2178}
2179
2180static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2181			      struct kernel_lb_addr neloc, uint32_t nelen)
2182{
2183	struct kernel_lb_addr oeloc;
2184	uint32_t oelen;
2185	int8_t etype;
2186
2187	if (epos.bh)
2188		get_bh(epos.bh);
2189
2190	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2191		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2192		neloc = oeloc;
2193		nelen = (etype << 30) | oelen;
2194	}
2195	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2196	brelse(epos.bh);
2197
2198	return (nelen >> 30);
2199}
2200
2201int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2202		       struct kernel_lb_addr eloc, uint32_t elen)
2203{
2204	struct extent_position oepos;
2205	int adsize;
2206	int8_t etype;
2207	struct allocExtDesc *aed;
2208	struct udf_inode_info *iinfo;
2209
2210	if (epos.bh) {
2211		get_bh(epos.bh);
2212		get_bh(epos.bh);
2213	}
2214
2215	iinfo = UDF_I(inode);
2216	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217		adsize = sizeof(struct short_ad);
2218	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219		adsize = sizeof(struct long_ad);
2220	else
2221		adsize = 0;
2222
2223	oepos = epos;
2224	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225		return -1;
2226
2227	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229		if (oepos.bh != epos.bh) {
2230			oepos.block = epos.block;
2231			brelse(oepos.bh);
2232			get_bh(epos.bh);
2233			oepos.bh = epos.bh;
2234			oepos.offset = epos.offset - adsize;
2235		}
2236	}
2237	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238	elen = 0;
2239
2240	if (epos.bh != oepos.bh) {
2241		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244		if (!oepos.bh) {
2245			iinfo->i_lenAlloc -= (adsize * 2);
2246			mark_inode_dirty(inode);
2247		} else {
2248			aed = (struct allocExtDesc *)oepos.bh->b_data;
2249			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252				udf_update_tag(oepos.bh->b_data,
2253						oepos.offset - (2 * adsize));
2254			else
2255				udf_update_tag(oepos.bh->b_data,
2256						sizeof(struct allocExtDesc));
2257			mark_buffer_dirty_inode(oepos.bh, inode);
2258		}
2259	} else {
2260		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261		if (!oepos.bh) {
2262			iinfo->i_lenAlloc -= adsize;
2263			mark_inode_dirty(inode);
2264		} else {
2265			aed = (struct allocExtDesc *)oepos.bh->b_data;
2266			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269				udf_update_tag(oepos.bh->b_data,
2270						epos.offset - adsize);
2271			else
2272				udf_update_tag(oepos.bh->b_data,
2273						sizeof(struct allocExtDesc));
2274			mark_buffer_dirty_inode(oepos.bh, inode);
2275		}
2276	}
2277
2278	brelse(epos.bh);
2279	brelse(oepos.bh);
2280
2281	return (elen >> 30);
2282}
2283
2284int8_t inode_bmap(struct inode *inode, sector_t block,
2285		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2286		  uint32_t *elen, sector_t *offset)
2287{
2288	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289	loff_t lbcount = 0, bcount =
2290	    (loff_t) block << blocksize_bits;
2291	int8_t etype;
2292	struct udf_inode_info *iinfo;
2293
2294	iinfo = UDF_I(inode);
2295	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2296		pos->offset = 0;
2297		pos->block = iinfo->i_location;
2298		pos->bh = NULL;
2299	}
2300	*elen = 0;
2301	do {
2302		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2303		if (etype == -1) {
2304			*offset = (bcount - lbcount) >> blocksize_bits;
2305			iinfo->i_lenExtents = lbcount;
2306			return -1;
2307		}
2308		lbcount += *elen;
2309	} while (lbcount <= bcount);
2310	/* update extent cache */
2311	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2312	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2313
2314	return etype;
2315}
2316
2317long udf_block_map(struct inode *inode, sector_t block)
2318{
2319	struct kernel_lb_addr eloc;
2320	uint32_t elen;
2321	sector_t offset;
2322	struct extent_position epos = {};
2323	int ret;
2324
2325	down_read(&UDF_I(inode)->i_data_sem);
2326
2327	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2328						(EXT_RECORDED_ALLOCATED >> 30))
2329		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2330	else
2331		ret = 0;
2332
2333	up_read(&UDF_I(inode)->i_data_sem);
2334	brelse(epos.bh);
2335
2336	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2337		return udf_fixed_to_variable(ret);
2338	else
2339		return ret;
2340}
v3.15
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/buffer_head.h>
  37#include <linux/writeback.h>
  38#include <linux/slab.h>
  39#include <linux/crc-itu-t.h>
  40#include <linux/mpage.h>
  41#include <linux/aio.h>
 
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46MODULE_AUTHOR("Ben Fennema");
  47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
  48MODULE_LICENSE("GPL");
  49
  50#define EXTENT_MERGE_SIZE 5
  51
  52static umode_t udf_convert_permissions(struct fileEntry *);
  53static int udf_update_inode(struct inode *, int);
  54static void udf_fill_inode(struct inode *, struct buffer_head *);
  55static int udf_sync_inode(struct inode *inode);
  56static int udf_alloc_i_data(struct inode *inode, size_t size);
  57static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  58static int8_t udf_insert_aext(struct inode *, struct extent_position,
  59			      struct kernel_lb_addr, uint32_t);
  60static void udf_split_extents(struct inode *, int *, int, int,
  61			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  62static void udf_prealloc_extents(struct inode *, int, int,
  63				 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  64static void udf_merge_extents(struct inode *,
  65			      struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
  66static void udf_update_extents(struct inode *,
  67			       struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
  68			       struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos, int next_epos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos,
 125	       sizeof(struct extent_position));
 126	iinfo->cached_extent.lstart = estart;
 127	if (next_epos)
 128		switch (iinfo->i_alloc_type) {
 129		case ICBTAG_FLAG_AD_SHORT:
 130			iinfo->cached_extent.epos.offset -=
 131			sizeof(struct short_ad);
 132			break;
 133		case ICBTAG_FLAG_AD_LONG:
 134			iinfo->cached_extent.epos.offset -=
 135			sizeof(struct long_ad);
 136		}
 137	spin_unlock(&iinfo->i_extent_cache_lock);
 138}
 139
 140void udf_evict_inode(struct inode *inode)
 141{
 142	struct udf_inode_info *iinfo = UDF_I(inode);
 143	int want_delete = 0;
 144
 145	if (!inode->i_nlink && !is_bad_inode(inode)) {
 146		want_delete = 1;
 147		udf_setsize(inode, 0);
 148		udf_update_inode(inode, IS_SYNC(inode));
 149	}
 150	truncate_inode_pages_final(&inode->i_data);
 151	invalidate_inode_buffers(inode);
 152	clear_inode(inode);
 153	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 154	    inode->i_size != iinfo->i_lenExtents) {
 155		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 156			 inode->i_ino, inode->i_mode,
 157			 (unsigned long long)inode->i_size,
 158			 (unsigned long long)iinfo->i_lenExtents);
 159	}
 160	kfree(iinfo->i_ext.i_data);
 161	iinfo->i_ext.i_data = NULL;
 162	udf_clear_extent_cache(inode);
 163	if (want_delete) {
 164		udf_free_inode(inode);
 165	}
 166}
 167
 168static void udf_write_failed(struct address_space *mapping, loff_t to)
 169{
 170	struct inode *inode = mapping->host;
 171	struct udf_inode_info *iinfo = UDF_I(inode);
 172	loff_t isize = inode->i_size;
 173
 174	if (to > isize) {
 175		truncate_pagecache(inode, isize);
 176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 177			down_write(&iinfo->i_data_sem);
 178			udf_clear_extent_cache(inode);
 179			udf_truncate_extents(inode);
 180			up_write(&iinfo->i_data_sem);
 181		}
 182	}
 183}
 184
 185static int udf_writepage(struct page *page, struct writeback_control *wbc)
 186{
 187	return block_write_full_page(page, udf_get_block, wbc);
 188}
 189
 190static int udf_writepages(struct address_space *mapping,
 191			struct writeback_control *wbc)
 192{
 193	return mpage_writepages(mapping, wbc, udf_get_block);
 194}
 195
 196static int udf_readpage(struct file *file, struct page *page)
 197{
 198	return mpage_readpage(page, udf_get_block);
 199}
 200
 201static int udf_readpages(struct file *file, struct address_space *mapping,
 202			struct list_head *pages, unsigned nr_pages)
 203{
 204	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 205}
 206
 207static int udf_write_begin(struct file *file, struct address_space *mapping,
 208			loff_t pos, unsigned len, unsigned flags,
 209			struct page **pagep, void **fsdata)
 210{
 211	int ret;
 212
 213	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 214	if (unlikely(ret))
 215		udf_write_failed(mapping, pos + len);
 216	return ret;
 217}
 218
 219static ssize_t udf_direct_IO(int rw, struct kiocb *iocb,
 220			     const struct iovec *iov,
 221			     loff_t offset, unsigned long nr_segs)
 222{
 223	struct file *file = iocb->ki_filp;
 224	struct address_space *mapping = file->f_mapping;
 225	struct inode *inode = mapping->host;
 
 226	ssize_t ret;
 227
 228	ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
 229				  udf_get_block);
 230	if (unlikely(ret < 0 && (rw & WRITE)))
 231		udf_write_failed(mapping, offset + iov_length(iov, nr_segs));
 232	return ret;
 233}
 234
 235static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 236{
 237	return generic_block_bmap(mapping, block, udf_get_block);
 238}
 239
 240const struct address_space_operations udf_aops = {
 241	.readpage	= udf_readpage,
 242	.readpages	= udf_readpages,
 243	.writepage	= udf_writepage,
 244	.writepages	= udf_writepages,
 245	.write_begin	= udf_write_begin,
 246	.write_end	= generic_write_end,
 247	.direct_IO	= udf_direct_IO,
 248	.bmap		= udf_bmap,
 249};
 250
 251/*
 252 * Expand file stored in ICB to a normal one-block-file
 253 *
 254 * This function requires i_data_sem for writing and releases it.
 255 * This function requires i_mutex held
 256 */
 257int udf_expand_file_adinicb(struct inode *inode)
 258{
 259	struct page *page;
 260	char *kaddr;
 261	struct udf_inode_info *iinfo = UDF_I(inode);
 262	int err;
 263	struct writeback_control udf_wbc = {
 264		.sync_mode = WB_SYNC_NONE,
 265		.nr_to_write = 1,
 266	};
 267
 268	WARN_ON_ONCE(!mutex_is_locked(&inode->i_mutex));
 269	if (!iinfo->i_lenAlloc) {
 270		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 271			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 272		else
 273			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 274		/* from now on we have normal address_space methods */
 275		inode->i_data.a_ops = &udf_aops;
 276		up_write(&iinfo->i_data_sem);
 277		mark_inode_dirty(inode);
 278		return 0;
 279	}
 280	/*
 281	 * Release i_data_sem so that we can lock a page - page lock ranks
 282	 * above i_data_sem. i_mutex still protects us against file changes.
 283	 */
 284	up_write(&iinfo->i_data_sem);
 285
 286	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 287	if (!page)
 288		return -ENOMEM;
 289
 290	if (!PageUptodate(page)) {
 291		kaddr = kmap(page);
 292		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 293		       PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
 294		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 295			iinfo->i_lenAlloc);
 296		flush_dcache_page(page);
 297		SetPageUptodate(page);
 298		kunmap(page);
 299	}
 300	down_write(&iinfo->i_data_sem);
 301	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 302	       iinfo->i_lenAlloc);
 303	iinfo->i_lenAlloc = 0;
 304	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 305		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 306	else
 307		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 308	/* from now on we have normal address_space methods */
 309	inode->i_data.a_ops = &udf_aops;
 310	up_write(&iinfo->i_data_sem);
 311	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 312	if (err) {
 313		/* Restore everything back so that we don't lose data... */
 314		lock_page(page);
 315		kaddr = kmap(page);
 316		down_write(&iinfo->i_data_sem);
 317		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 318		       inode->i_size);
 319		kunmap(page);
 320		unlock_page(page);
 321		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 322		inode->i_data.a_ops = &udf_adinicb_aops;
 323		up_write(&iinfo->i_data_sem);
 324	}
 325	page_cache_release(page);
 326	mark_inode_dirty(inode);
 327
 328	return err;
 329}
 330
 331struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
 332					   int *err)
 333{
 334	int newblock;
 335	struct buffer_head *dbh = NULL;
 336	struct kernel_lb_addr eloc;
 337	uint8_t alloctype;
 338	struct extent_position epos;
 339
 340	struct udf_fileident_bh sfibh, dfibh;
 341	loff_t f_pos = udf_ext0_offset(inode);
 342	int size = udf_ext0_offset(inode) + inode->i_size;
 343	struct fileIdentDesc cfi, *sfi, *dfi;
 344	struct udf_inode_info *iinfo = UDF_I(inode);
 345
 346	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 347		alloctype = ICBTAG_FLAG_AD_SHORT;
 348	else
 349		alloctype = ICBTAG_FLAG_AD_LONG;
 350
 351	if (!inode->i_size) {
 352		iinfo->i_alloc_type = alloctype;
 353		mark_inode_dirty(inode);
 354		return NULL;
 355	}
 356
 357	/* alloc block, and copy data to it */
 358	*block = udf_new_block(inode->i_sb, inode,
 359			       iinfo->i_location.partitionReferenceNum,
 360			       iinfo->i_location.logicalBlockNum, err);
 361	if (!(*block))
 362		return NULL;
 363	newblock = udf_get_pblock(inode->i_sb, *block,
 364				  iinfo->i_location.partitionReferenceNum,
 365				0);
 366	if (!newblock)
 367		return NULL;
 368	dbh = udf_tgetblk(inode->i_sb, newblock);
 369	if (!dbh)
 370		return NULL;
 371	lock_buffer(dbh);
 372	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 373	set_buffer_uptodate(dbh);
 374	unlock_buffer(dbh);
 375	mark_buffer_dirty_inode(dbh, inode);
 376
 377	sfibh.soffset = sfibh.eoffset =
 378			f_pos & (inode->i_sb->s_blocksize - 1);
 379	sfibh.sbh = sfibh.ebh = NULL;
 380	dfibh.soffset = dfibh.eoffset = 0;
 381	dfibh.sbh = dfibh.ebh = dbh;
 382	while (f_pos < size) {
 383		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 384		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 385					 NULL, NULL, NULL);
 386		if (!sfi) {
 387			brelse(dbh);
 388			return NULL;
 389		}
 390		iinfo->i_alloc_type = alloctype;
 391		sfi->descTag.tagLocation = cpu_to_le32(*block);
 392		dfibh.soffset = dfibh.eoffset;
 393		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 394		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 395		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 396				 sfi->fileIdent +
 397					le16_to_cpu(sfi->lengthOfImpUse))) {
 398			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 399			brelse(dbh);
 400			return NULL;
 401		}
 402	}
 403	mark_buffer_dirty_inode(dbh, inode);
 404
 405	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 406		iinfo->i_lenAlloc);
 407	iinfo->i_lenAlloc = 0;
 408	eloc.logicalBlockNum = *block;
 409	eloc.partitionReferenceNum =
 410				iinfo->i_location.partitionReferenceNum;
 411	iinfo->i_lenExtents = inode->i_size;
 412	epos.bh = NULL;
 413	epos.block = iinfo->i_location;
 414	epos.offset = udf_file_entry_alloc_offset(inode);
 415	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 416	/* UniqueID stuff */
 417
 418	brelse(epos.bh);
 419	mark_inode_dirty(inode);
 420	return dbh;
 421}
 422
 423static int udf_get_block(struct inode *inode, sector_t block,
 424			 struct buffer_head *bh_result, int create)
 425{
 426	int err, new;
 427	sector_t phys = 0;
 428	struct udf_inode_info *iinfo;
 429
 430	if (!create) {
 431		phys = udf_block_map(inode, block);
 432		if (phys)
 433			map_bh(bh_result, inode->i_sb, phys);
 434		return 0;
 435	}
 436
 437	err = -EIO;
 438	new = 0;
 439	iinfo = UDF_I(inode);
 440
 441	down_write(&iinfo->i_data_sem);
 442	if (block == iinfo->i_next_alloc_block + 1) {
 443		iinfo->i_next_alloc_block++;
 444		iinfo->i_next_alloc_goal++;
 445	}
 446
 447	udf_clear_extent_cache(inode);
 448	phys = inode_getblk(inode, block, &err, &new);
 449	if (!phys)
 450		goto abort;
 451
 452	if (new)
 453		set_buffer_new(bh_result);
 454	map_bh(bh_result, inode->i_sb, phys);
 455
 456abort:
 457	up_write(&iinfo->i_data_sem);
 458	return err;
 459}
 460
 461static struct buffer_head *udf_getblk(struct inode *inode, long block,
 462				      int create, int *err)
 463{
 464	struct buffer_head *bh;
 465	struct buffer_head dummy;
 466
 467	dummy.b_state = 0;
 468	dummy.b_blocknr = -1000;
 469	*err = udf_get_block(inode, block, &dummy, create);
 470	if (!*err && buffer_mapped(&dummy)) {
 471		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 472		if (buffer_new(&dummy)) {
 473			lock_buffer(bh);
 474			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 475			set_buffer_uptodate(bh);
 476			unlock_buffer(bh);
 477			mark_buffer_dirty_inode(bh, inode);
 478		}
 479		return bh;
 480	}
 481
 482	return NULL;
 483}
 484
 485/* Extend the file by 'blocks' blocks, return the number of extents added */
 486static int udf_do_extend_file(struct inode *inode,
 487			      struct extent_position *last_pos,
 488			      struct kernel_long_ad *last_ext,
 489			      sector_t blocks)
 490{
 491	sector_t add;
 492	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 493	struct super_block *sb = inode->i_sb;
 494	struct kernel_lb_addr prealloc_loc = {};
 495	int prealloc_len = 0;
 496	struct udf_inode_info *iinfo;
 497	int err;
 498
 499	/* The previous extent is fake and we should not extend by anything
 500	 * - there's nothing to do... */
 501	if (!blocks && fake)
 502		return 0;
 503
 504	iinfo = UDF_I(inode);
 505	/* Round the last extent up to a multiple of block size */
 506	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 507		last_ext->extLength =
 508			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 509			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 510			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 511		iinfo->i_lenExtents =
 512			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 513			~(sb->s_blocksize - 1);
 514	}
 515
 516	/* Last extent are just preallocated blocks? */
 517	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 518						EXT_NOT_RECORDED_ALLOCATED) {
 519		/* Save the extent so that we can reattach it to the end */
 520		prealloc_loc = last_ext->extLocation;
 521		prealloc_len = last_ext->extLength;
 522		/* Mark the extent as a hole */
 523		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 524			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 525		last_ext->extLocation.logicalBlockNum = 0;
 526		last_ext->extLocation.partitionReferenceNum = 0;
 527	}
 528
 529	/* Can we merge with the previous extent? */
 530	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 531					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 532		add = ((1 << 30) - sb->s_blocksize -
 533			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 534			sb->s_blocksize_bits;
 535		if (add > blocks)
 536			add = blocks;
 537		blocks -= add;
 538		last_ext->extLength += add << sb->s_blocksize_bits;
 539	}
 540
 541	if (fake) {
 542		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 543			     last_ext->extLength, 1);
 544		count++;
 545	} else
 
 
 
 546		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 547				last_ext->extLength, 1);
 
 
 
 
 
 
 548
 549	/* Managed to do everything necessary? */
 550	if (!blocks)
 551		goto out;
 552
 553	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 554	last_ext->extLocation.logicalBlockNum = 0;
 555	last_ext->extLocation.partitionReferenceNum = 0;
 556	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 557	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 558				(add << sb->s_blocksize_bits);
 559
 560	/* Create enough extents to cover the whole hole */
 561	while (blocks > add) {
 562		blocks -= add;
 563		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 564				   last_ext->extLength, 1);
 565		if (err)
 566			return err;
 567		count++;
 568	}
 569	if (blocks) {
 570		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 571			(blocks << sb->s_blocksize_bits);
 572		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 573				   last_ext->extLength, 1);
 574		if (err)
 575			return err;
 576		count++;
 577	}
 578
 579out:
 580	/* Do we have some preallocated blocks saved? */
 581	if (prealloc_len) {
 582		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 583				   prealloc_len, 1);
 584		if (err)
 585			return err;
 586		last_ext->extLocation = prealloc_loc;
 587		last_ext->extLength = prealloc_len;
 588		count++;
 589	}
 590
 591	/* last_pos should point to the last written extent... */
 592	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 593		last_pos->offset -= sizeof(struct short_ad);
 594	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 595		last_pos->offset -= sizeof(struct long_ad);
 596	else
 597		return -EIO;
 598
 599	return count;
 600}
 601
 602static int udf_extend_file(struct inode *inode, loff_t newsize)
 603{
 604
 605	struct extent_position epos;
 606	struct kernel_lb_addr eloc;
 607	uint32_t elen;
 608	int8_t etype;
 609	struct super_block *sb = inode->i_sb;
 610	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 611	int adsize;
 612	struct udf_inode_info *iinfo = UDF_I(inode);
 613	struct kernel_long_ad extent;
 614	int err;
 615
 616	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 617		adsize = sizeof(struct short_ad);
 618	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 619		adsize = sizeof(struct long_ad);
 620	else
 621		BUG();
 622
 623	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 624
 625	/* File has extent covering the new size (could happen when extending
 626	 * inside a block)? */
 627	if (etype != -1)
 628		return 0;
 629	if (newsize & (sb->s_blocksize - 1))
 630		offset++;
 631	/* Extended file just to the boundary of the last file block? */
 632	if (offset == 0)
 633		return 0;
 634
 635	/* Truncate is extending the file by 'offset' blocks */
 636	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 637	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 638		/* File has no extents at all or has empty last
 639		 * indirect extent! Create a fake extent... */
 640		extent.extLocation.logicalBlockNum = 0;
 641		extent.extLocation.partitionReferenceNum = 0;
 642		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 643	} else {
 644		epos.offset -= adsize;
 645		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 646				      &extent.extLength, 0);
 647		extent.extLength |= etype << 30;
 648	}
 649	err = udf_do_extend_file(inode, &epos, &extent, offset);
 650	if (err < 0)
 651		goto out;
 652	err = 0;
 653	iinfo->i_lenExtents = newsize;
 654out:
 655	brelse(epos.bh);
 656	return err;
 657}
 658
 659static sector_t inode_getblk(struct inode *inode, sector_t block,
 660			     int *err, int *new)
 661{
 662	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 663	struct extent_position prev_epos, cur_epos, next_epos;
 664	int count = 0, startnum = 0, endnum = 0;
 665	uint32_t elen = 0, tmpelen;
 666	struct kernel_lb_addr eloc, tmpeloc;
 667	int c = 1;
 668	loff_t lbcount = 0, b_off = 0;
 669	uint32_t newblocknum, newblock;
 670	sector_t offset = 0;
 671	int8_t etype;
 672	struct udf_inode_info *iinfo = UDF_I(inode);
 673	int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 674	int lastblock = 0;
 675	bool isBeyondEOF;
 676
 677	*err = 0;
 678	*new = 0;
 679	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 680	prev_epos.block = iinfo->i_location;
 681	prev_epos.bh = NULL;
 682	cur_epos = next_epos = prev_epos;
 683	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 684
 685	/* find the extent which contains the block we are looking for.
 686	   alternate between laarr[0] and laarr[1] for locations of the
 687	   current extent, and the previous extent */
 688	do {
 689		if (prev_epos.bh != cur_epos.bh) {
 690			brelse(prev_epos.bh);
 691			get_bh(cur_epos.bh);
 692			prev_epos.bh = cur_epos.bh;
 693		}
 694		if (cur_epos.bh != next_epos.bh) {
 695			brelse(cur_epos.bh);
 696			get_bh(next_epos.bh);
 697			cur_epos.bh = next_epos.bh;
 698		}
 699
 700		lbcount += elen;
 701
 702		prev_epos.block = cur_epos.block;
 703		cur_epos.block = next_epos.block;
 704
 705		prev_epos.offset = cur_epos.offset;
 706		cur_epos.offset = next_epos.offset;
 707
 708		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 709		if (etype == -1)
 710			break;
 711
 712		c = !c;
 713
 714		laarr[c].extLength = (etype << 30) | elen;
 715		laarr[c].extLocation = eloc;
 716
 717		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 718			pgoal = eloc.logicalBlockNum +
 719				((elen + inode->i_sb->s_blocksize - 1) >>
 720				 inode->i_sb->s_blocksize_bits);
 721
 722		count++;
 723	} while (lbcount + elen <= b_off);
 724
 725	b_off -= lbcount;
 726	offset = b_off >> inode->i_sb->s_blocksize_bits;
 727	/*
 728	 * Move prev_epos and cur_epos into indirect extent if we are at
 729	 * the pointer to it
 730	 */
 731	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 732	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 733
 734	/* if the extent is allocated and recorded, return the block
 735	   if the extent is not a multiple of the blocksize, round up */
 736
 737	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 738		if (elen & (inode->i_sb->s_blocksize - 1)) {
 739			elen = EXT_RECORDED_ALLOCATED |
 740				((elen + inode->i_sb->s_blocksize - 1) &
 741				 ~(inode->i_sb->s_blocksize - 1));
 742			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 743		}
 744		brelse(prev_epos.bh);
 745		brelse(cur_epos.bh);
 746		brelse(next_epos.bh);
 747		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 748		return newblock;
 749	}
 750
 751	/* Are we beyond EOF? */
 752	if (etype == -1) {
 753		int ret;
 754		isBeyondEOF = 1;
 755		if (count) {
 756			if (c)
 757				laarr[0] = laarr[1];
 758			startnum = 1;
 759		} else {
 760			/* Create a fake extent when there's not one */
 761			memset(&laarr[0].extLocation, 0x00,
 762				sizeof(struct kernel_lb_addr));
 763			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 764			/* Will udf_do_extend_file() create real extent from
 765			   a fake one? */
 766			startnum = (offset > 0);
 767		}
 768		/* Create extents for the hole between EOF and offset */
 769		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 770		if (ret < 0) {
 771			brelse(prev_epos.bh);
 772			brelse(cur_epos.bh);
 773			brelse(next_epos.bh);
 774			*err = ret;
 775			return 0;
 776		}
 777		c = 0;
 778		offset = 0;
 779		count += ret;
 780		/* We are not covered by a preallocated extent? */
 781		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 782						EXT_NOT_RECORDED_ALLOCATED) {
 783			/* Is there any real extent? - otherwise we overwrite
 784			 * the fake one... */
 785			if (count)
 786				c = !c;
 787			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 788				inode->i_sb->s_blocksize;
 789			memset(&laarr[c].extLocation, 0x00,
 790				sizeof(struct kernel_lb_addr));
 791			count++;
 792		}
 793		endnum = c + 1;
 794		lastblock = 1;
 795	} else {
 796		isBeyondEOF = 0;
 797		endnum = startnum = ((count > 2) ? 2 : count);
 798
 799		/* if the current extent is in position 0,
 800		   swap it with the previous */
 801		if (!c && count != 1) {
 802			laarr[2] = laarr[0];
 803			laarr[0] = laarr[1];
 804			laarr[1] = laarr[2];
 805			c = 1;
 806		}
 807
 808		/* if the current block is located in an extent,
 809		   read the next extent */
 810		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 811		if (etype != -1) {
 812			laarr[c + 1].extLength = (etype << 30) | elen;
 813			laarr[c + 1].extLocation = eloc;
 814			count++;
 815			startnum++;
 816			endnum++;
 817		} else
 818			lastblock = 1;
 819	}
 820
 821	/* if the current extent is not recorded but allocated, get the
 822	 * block in the extent corresponding to the requested block */
 823	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 824		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 825	else { /* otherwise, allocate a new block */
 826		if (iinfo->i_next_alloc_block == block)
 827			goal = iinfo->i_next_alloc_goal;
 828
 829		if (!goal) {
 830			if (!(goal = pgoal)) /* XXX: what was intended here? */
 831				goal = iinfo->i_location.logicalBlockNum + 1;
 832		}
 833
 834		newblocknum = udf_new_block(inode->i_sb, inode,
 835				iinfo->i_location.partitionReferenceNum,
 836				goal, err);
 837		if (!newblocknum) {
 838			brelse(prev_epos.bh);
 839			brelse(cur_epos.bh);
 840			brelse(next_epos.bh);
 841			*err = -ENOSPC;
 842			return 0;
 843		}
 844		if (isBeyondEOF)
 845			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 846	}
 847
 848	/* if the extent the requsted block is located in contains multiple
 849	 * blocks, split the extent into at most three extents. blocks prior
 850	 * to requested block, requested block, and blocks after requested
 851	 * block */
 852	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 853
 854#ifdef UDF_PREALLOCATE
 855	/* We preallocate blocks only for regular files. It also makes sense
 856	 * for directories but there's a problem when to drop the
 857	 * preallocation. We might use some delayed work for that but I feel
 858	 * it's overengineering for a filesystem like UDF. */
 859	if (S_ISREG(inode->i_mode))
 860		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 861#endif
 862
 863	/* merge any continuous blocks in laarr */
 864	udf_merge_extents(inode, laarr, &endnum);
 865
 866	/* write back the new extents, inserting new extents if the new number
 867	 * of extents is greater than the old number, and deleting extents if
 868	 * the new number of extents is less than the old number */
 869	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 870
 871	brelse(prev_epos.bh);
 872	brelse(cur_epos.bh);
 873	brelse(next_epos.bh);
 874
 875	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 876				iinfo->i_location.partitionReferenceNum, 0);
 877	if (!newblock) {
 878		*err = -EIO;
 879		return 0;
 880	}
 881	*new = 1;
 882	iinfo->i_next_alloc_block = block;
 883	iinfo->i_next_alloc_goal = newblocknum;
 884	inode->i_ctime = current_fs_time(inode->i_sb);
 885
 886	if (IS_SYNC(inode))
 887		udf_sync_inode(inode);
 888	else
 889		mark_inode_dirty(inode);
 890
 891	return newblock;
 892}
 893
 894static void udf_split_extents(struct inode *inode, int *c, int offset,
 895			      int newblocknum,
 896			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 897			      int *endnum)
 898{
 899	unsigned long blocksize = inode->i_sb->s_blocksize;
 900	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 901
 902	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 903	    (laarr[*c].extLength >> 30) ==
 904				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 905		int curr = *c;
 906		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 907			    blocksize - 1) >> blocksize_bits;
 908		int8_t etype = (laarr[curr].extLength >> 30);
 909
 910		if (blen == 1)
 911			;
 912		else if (!offset || blen == offset + 1) {
 913			laarr[curr + 2] = laarr[curr + 1];
 914			laarr[curr + 1] = laarr[curr];
 915		} else {
 916			laarr[curr + 3] = laarr[curr + 1];
 917			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 918		}
 919
 920		if (offset) {
 921			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 922				udf_free_blocks(inode->i_sb, inode,
 923						&laarr[curr].extLocation,
 924						0, offset);
 925				laarr[curr].extLength =
 926					EXT_NOT_RECORDED_NOT_ALLOCATED |
 927					(offset << blocksize_bits);
 928				laarr[curr].extLocation.logicalBlockNum = 0;
 929				laarr[curr].extLocation.
 930						partitionReferenceNum = 0;
 931			} else
 932				laarr[curr].extLength = (etype << 30) |
 933					(offset << blocksize_bits);
 934			curr++;
 935			(*c)++;
 936			(*endnum)++;
 937		}
 938
 939		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 940		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 941			laarr[curr].extLocation.partitionReferenceNum =
 942				UDF_I(inode)->i_location.partitionReferenceNum;
 943		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 944			blocksize;
 945		curr++;
 946
 947		if (blen != offset + 1) {
 948			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 949				laarr[curr].extLocation.logicalBlockNum +=
 950								offset + 1;
 951			laarr[curr].extLength = (etype << 30) |
 952				((blen - (offset + 1)) << blocksize_bits);
 953			curr++;
 954			(*endnum)++;
 955		}
 956	}
 957}
 958
 959static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 960				 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
 961				 int *endnum)
 962{
 963	int start, length = 0, currlength = 0, i;
 964
 965	if (*endnum >= (c + 1)) {
 966		if (!lastblock)
 967			return;
 968		else
 969			start = c;
 970	} else {
 971		if ((laarr[c + 1].extLength >> 30) ==
 972					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 973			start = c + 1;
 974			length = currlength =
 975				(((laarr[c + 1].extLength &
 976					UDF_EXTENT_LENGTH_MASK) +
 977				inode->i_sb->s_blocksize - 1) >>
 978				inode->i_sb->s_blocksize_bits);
 979		} else
 980			start = c;
 981	}
 982
 983	for (i = start + 1; i <= *endnum; i++) {
 984		if (i == *endnum) {
 985			if (lastblock)
 986				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 987		} else if ((laarr[i].extLength >> 30) ==
 988				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 989			length += (((laarr[i].extLength &
 990						UDF_EXTENT_LENGTH_MASK) +
 991				    inode->i_sb->s_blocksize - 1) >>
 992				    inode->i_sb->s_blocksize_bits);
 993		} else
 994			break;
 995	}
 996
 997	if (length) {
 998		int next = laarr[start].extLocation.logicalBlockNum +
 999			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1000			  inode->i_sb->s_blocksize - 1) >>
1001			  inode->i_sb->s_blocksize_bits);
1002		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1003				laarr[start].extLocation.partitionReferenceNum,
1004				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1005				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1006				currlength);
1007		if (numalloc) 	{
1008			if (start == (c + 1))
1009				laarr[start].extLength +=
1010					(numalloc <<
1011					 inode->i_sb->s_blocksize_bits);
1012			else {
1013				memmove(&laarr[c + 2], &laarr[c + 1],
1014					sizeof(struct long_ad) * (*endnum - (c + 1)));
1015				(*endnum)++;
1016				laarr[c + 1].extLocation.logicalBlockNum = next;
1017				laarr[c + 1].extLocation.partitionReferenceNum =
1018					laarr[c].extLocation.
1019							partitionReferenceNum;
1020				laarr[c + 1].extLength =
1021					EXT_NOT_RECORDED_ALLOCATED |
1022					(numalloc <<
1023					 inode->i_sb->s_blocksize_bits);
1024				start = c + 1;
1025			}
1026
1027			for (i = start + 1; numalloc && i < *endnum; i++) {
1028				int elen = ((laarr[i].extLength &
1029						UDF_EXTENT_LENGTH_MASK) +
1030					    inode->i_sb->s_blocksize - 1) >>
1031					    inode->i_sb->s_blocksize_bits;
1032
1033				if (elen > numalloc) {
1034					laarr[i].extLength -=
1035						(numalloc <<
1036						 inode->i_sb->s_blocksize_bits);
1037					numalloc = 0;
1038				} else {
1039					numalloc -= elen;
1040					if (*endnum > (i + 1))
1041						memmove(&laarr[i],
1042							&laarr[i + 1],
1043							sizeof(struct long_ad) *
1044							(*endnum - (i + 1)));
1045					i--;
1046					(*endnum)--;
1047				}
1048			}
1049			UDF_I(inode)->i_lenExtents +=
1050				numalloc << inode->i_sb->s_blocksize_bits;
1051		}
1052	}
1053}
1054
1055static void udf_merge_extents(struct inode *inode,
1056			      struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1057			      int *endnum)
1058{
1059	int i;
1060	unsigned long blocksize = inode->i_sb->s_blocksize;
1061	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1062
1063	for (i = 0; i < (*endnum - 1); i++) {
1064		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1065		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1066
1067		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1068			(((li->extLength >> 30) ==
1069				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1070			((lip1->extLocation.logicalBlockNum -
1071			  li->extLocation.logicalBlockNum) ==
1072			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1073			blocksize - 1) >> blocksize_bits)))) {
1074
1075			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1076				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1077				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1078				lip1->extLength = (lip1->extLength -
1079						  (li->extLength &
1080						   UDF_EXTENT_LENGTH_MASK) +
1081						   UDF_EXTENT_LENGTH_MASK) &
1082							~(blocksize - 1);
1083				li->extLength = (li->extLength &
1084						 UDF_EXTENT_FLAG_MASK) +
1085						(UDF_EXTENT_LENGTH_MASK + 1) -
1086						blocksize;
1087				lip1->extLocation.logicalBlockNum =
1088					li->extLocation.logicalBlockNum +
1089					((li->extLength &
1090						UDF_EXTENT_LENGTH_MASK) >>
1091						blocksize_bits);
1092			} else {
1093				li->extLength = lip1->extLength +
1094					(((li->extLength &
1095						UDF_EXTENT_LENGTH_MASK) +
1096					 blocksize - 1) & ~(blocksize - 1));
1097				if (*endnum > (i + 2))
1098					memmove(&laarr[i + 1], &laarr[i + 2],
1099						sizeof(struct long_ad) *
1100						(*endnum - (i + 2)));
1101				i--;
1102				(*endnum)--;
1103			}
1104		} else if (((li->extLength >> 30) ==
1105				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1106			   ((lip1->extLength >> 30) ==
1107				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1108			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1109					((li->extLength &
1110					  UDF_EXTENT_LENGTH_MASK) +
1111					 blocksize - 1) >> blocksize_bits);
1112			li->extLocation.logicalBlockNum = 0;
1113			li->extLocation.partitionReferenceNum = 0;
1114
1115			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1116			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1117			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1118				lip1->extLength = (lip1->extLength -
1119						   (li->extLength &
1120						   UDF_EXTENT_LENGTH_MASK) +
1121						   UDF_EXTENT_LENGTH_MASK) &
1122						   ~(blocksize - 1);
1123				li->extLength = (li->extLength &
1124						 UDF_EXTENT_FLAG_MASK) +
1125						(UDF_EXTENT_LENGTH_MASK + 1) -
1126						blocksize;
1127			} else {
1128				li->extLength = lip1->extLength +
1129					(((li->extLength &
1130						UDF_EXTENT_LENGTH_MASK) +
1131					  blocksize - 1) & ~(blocksize - 1));
1132				if (*endnum > (i + 2))
1133					memmove(&laarr[i + 1], &laarr[i + 2],
1134						sizeof(struct long_ad) *
1135						(*endnum - (i + 2)));
1136				i--;
1137				(*endnum)--;
1138			}
1139		} else if ((li->extLength >> 30) ==
1140					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1141			udf_free_blocks(inode->i_sb, inode,
1142					&li->extLocation, 0,
1143					((li->extLength &
1144						UDF_EXTENT_LENGTH_MASK) +
1145					 blocksize - 1) >> blocksize_bits);
1146			li->extLocation.logicalBlockNum = 0;
1147			li->extLocation.partitionReferenceNum = 0;
1148			li->extLength = (li->extLength &
1149						UDF_EXTENT_LENGTH_MASK) |
1150						EXT_NOT_RECORDED_NOT_ALLOCATED;
1151		}
1152	}
1153}
1154
1155static void udf_update_extents(struct inode *inode,
1156			       struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1157			       int startnum, int endnum,
1158			       struct extent_position *epos)
1159{
1160	int start = 0, i;
1161	struct kernel_lb_addr tmploc;
1162	uint32_t tmplen;
1163
1164	if (startnum > endnum) {
1165		for (i = 0; i < (startnum - endnum); i++)
1166			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1167					laarr[i].extLength);
1168	} else if (startnum < endnum) {
1169		for (i = 0; i < (endnum - startnum); i++) {
1170			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1171					laarr[i].extLength);
1172			udf_next_aext(inode, epos, &laarr[i].extLocation,
1173				      &laarr[i].extLength, 1);
1174			start++;
1175		}
1176	}
1177
1178	for (i = start; i < endnum; i++) {
1179		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1180		udf_write_aext(inode, epos, &laarr[i].extLocation,
1181			       laarr[i].extLength, 1);
1182	}
1183}
1184
1185struct buffer_head *udf_bread(struct inode *inode, int block,
1186			      int create, int *err)
1187{
1188	struct buffer_head *bh = NULL;
1189
1190	bh = udf_getblk(inode, block, create, err);
1191	if (!bh)
1192		return NULL;
1193
1194	if (buffer_uptodate(bh))
1195		return bh;
1196
1197	ll_rw_block(READ, 1, &bh);
1198
1199	wait_on_buffer(bh);
1200	if (buffer_uptodate(bh))
1201		return bh;
1202
1203	brelse(bh);
1204	*err = -EIO;
1205	return NULL;
1206}
1207
1208int udf_setsize(struct inode *inode, loff_t newsize)
1209{
1210	int err;
1211	struct udf_inode_info *iinfo;
1212	int bsize = 1 << inode->i_blkbits;
1213
1214	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1215	      S_ISLNK(inode->i_mode)))
1216		return -EINVAL;
1217	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1218		return -EPERM;
1219
1220	iinfo = UDF_I(inode);
1221	if (newsize > inode->i_size) {
1222		down_write(&iinfo->i_data_sem);
1223		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1224			if (bsize <
1225			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1226				err = udf_expand_file_adinicb(inode);
1227				if (err)
1228					return err;
1229				down_write(&iinfo->i_data_sem);
1230			} else {
1231				iinfo->i_lenAlloc = newsize;
1232				goto set_size;
1233			}
1234		}
1235		err = udf_extend_file(inode, newsize);
1236		if (err) {
1237			up_write(&iinfo->i_data_sem);
1238			return err;
1239		}
1240set_size:
1241		truncate_setsize(inode, newsize);
1242		up_write(&iinfo->i_data_sem);
1243	} else {
1244		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1245			down_write(&iinfo->i_data_sem);
1246			udf_clear_extent_cache(inode);
1247			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1248			       0x00, bsize - newsize -
1249			       udf_file_entry_alloc_offset(inode));
1250			iinfo->i_lenAlloc = newsize;
1251			truncate_setsize(inode, newsize);
1252			up_write(&iinfo->i_data_sem);
1253			goto update_time;
1254		}
1255		err = block_truncate_page(inode->i_mapping, newsize,
1256					  udf_get_block);
1257		if (err)
1258			return err;
1259		down_write(&iinfo->i_data_sem);
1260		udf_clear_extent_cache(inode);
1261		truncate_setsize(inode, newsize);
1262		udf_truncate_extents(inode);
1263		up_write(&iinfo->i_data_sem);
1264	}
1265update_time:
1266	inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1267	if (IS_SYNC(inode))
1268		udf_sync_inode(inode);
1269	else
1270		mark_inode_dirty(inode);
1271	return 0;
1272}
1273
1274static void __udf_read_inode(struct inode *inode)
 
 
 
 
 
 
 
1275{
1276	struct buffer_head *bh = NULL;
1277	struct fileEntry *fe;
 
1278	uint16_t ident;
1279	struct udf_inode_info *iinfo = UDF_I(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1280
1281	/*
1282	 * Set defaults, but the inode is still incomplete!
1283	 * Note: get_new_inode() sets the following on a new inode:
1284	 *      i_sb = sb
1285	 *      i_no = ino
1286	 *      i_flags = sb->s_flags
1287	 *      i_state = 0
1288	 * clean_inode(): zero fills and sets
1289	 *      i_count = 1
1290	 *      i_nlink = 1
1291	 *      i_op = NULL;
1292	 */
1293	bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1294	if (!bh) {
1295		udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1296		make_bad_inode(inode);
1297		return;
1298	}
1299
1300	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1301	    ident != TAG_IDENT_USE) {
1302		udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1303			inode->i_ino, ident);
1304		brelse(bh);
1305		make_bad_inode(inode);
1306		return;
1307	}
1308
1309	fe = (struct fileEntry *)bh->b_data;
 
1310
1311	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1312		struct buffer_head *ibh;
1313
1314		ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1315					&ident);
1316		if (ident == TAG_IDENT_IE && ibh) {
1317			struct buffer_head *nbh = NULL;
1318			struct kernel_lb_addr loc;
1319			struct indirectEntry *ie;
1320
1321			ie = (struct indirectEntry *)ibh->b_data;
1322			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1323
1324			if (ie->indirectICB.extLength &&
1325				(nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1326							&ident))) {
1327				if (ident == TAG_IDENT_FE ||
1328					ident == TAG_IDENT_EFE) {
1329					memcpy(&iinfo->i_location,
1330						&loc,
1331						sizeof(struct kernel_lb_addr));
1332					brelse(bh);
1333					brelse(ibh);
1334					brelse(nbh);
1335					__udf_read_inode(inode);
1336					return;
1337				}
1338				brelse(nbh);
 
1339			}
1340		}
1341		brelse(ibh);
1342	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1343		udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1344			le16_to_cpu(fe->icbTag.strategyType));
1345		brelse(bh);
1346		make_bad_inode(inode);
1347		return;
1348	}
1349	udf_fill_inode(inode, bh);
1350
1351	brelse(bh);
1352}
1353
1354static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1355{
1356	struct fileEntry *fe;
1357	struct extendedFileEntry *efe;
1358	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1359	struct udf_inode_info *iinfo = UDF_I(inode);
1360	unsigned int link_count;
1361
1362	fe = (struct fileEntry *)bh->b_data;
1363	efe = (struct extendedFileEntry *)bh->b_data;
1364
1365	if (fe->icbTag.strategyType == cpu_to_le16(4))
1366		iinfo->i_strat4096 = 0;
1367	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1368		iinfo->i_strat4096 = 1;
1369
1370	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1371							ICBTAG_FLAG_AD_MASK;
1372	iinfo->i_unique = 0;
1373	iinfo->i_lenEAttr = 0;
1374	iinfo->i_lenExtents = 0;
1375	iinfo->i_lenAlloc = 0;
1376	iinfo->i_next_alloc_block = 0;
1377	iinfo->i_next_alloc_goal = 0;
1378	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1379		iinfo->i_efe = 1;
1380		iinfo->i_use = 0;
1381		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1382					sizeof(struct extendedFileEntry))) {
1383			make_bad_inode(inode);
1384			return;
1385		}
1386		memcpy(iinfo->i_ext.i_data,
1387		       bh->b_data + sizeof(struct extendedFileEntry),
1388		       inode->i_sb->s_blocksize -
1389					sizeof(struct extendedFileEntry));
1390	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1391		iinfo->i_efe = 0;
1392		iinfo->i_use = 0;
1393		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1394						sizeof(struct fileEntry))) {
1395			make_bad_inode(inode);
1396			return;
1397		}
1398		memcpy(iinfo->i_ext.i_data,
1399		       bh->b_data + sizeof(struct fileEntry),
1400		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1401	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402		iinfo->i_efe = 0;
1403		iinfo->i_use = 1;
1404		iinfo->i_lenAlloc = le32_to_cpu(
1405				((struct unallocSpaceEntry *)bh->b_data)->
1406				 lengthAllocDescs);
1407		if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1408					sizeof(struct unallocSpaceEntry))) {
1409			make_bad_inode(inode);
1410			return;
1411		}
1412		memcpy(iinfo->i_ext.i_data,
1413		       bh->b_data + sizeof(struct unallocSpaceEntry),
1414		       inode->i_sb->s_blocksize -
1415					sizeof(struct unallocSpaceEntry));
1416		return;
1417	}
1418
 
1419	read_lock(&sbi->s_cred_lock);
1420	i_uid_write(inode, le32_to_cpu(fe->uid));
1421	if (!uid_valid(inode->i_uid) ||
1422	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1423	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1424		inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1425
1426	i_gid_write(inode, le32_to_cpu(fe->gid));
1427	if (!gid_valid(inode->i_gid) ||
1428	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1429	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1430		inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1431
1432	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1433			sbi->s_fmode != UDF_INVALID_MODE)
1434		inode->i_mode = sbi->s_fmode;
1435	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1436			sbi->s_dmode != UDF_INVALID_MODE)
1437		inode->i_mode = sbi->s_dmode;
1438	else
1439		inode->i_mode = udf_convert_permissions(fe);
1440	inode->i_mode &= ~sbi->s_umask;
1441	read_unlock(&sbi->s_cred_lock);
1442
1443	link_count = le16_to_cpu(fe->fileLinkCount);
1444	if (!link_count)
 
 
 
 
1445		link_count = 1;
 
1446	set_nlink(inode, link_count);
1447
1448	inode->i_size = le64_to_cpu(fe->informationLength);
1449	iinfo->i_lenExtents = inode->i_size;
1450
1451	if (iinfo->i_efe == 0) {
1452		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1453			(inode->i_sb->s_blocksize_bits - 9);
1454
1455		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1456			inode->i_atime = sbi->s_record_time;
1457
1458		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1459					    fe->modificationTime))
1460			inode->i_mtime = sbi->s_record_time;
1461
1462		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1463			inode->i_ctime = sbi->s_record_time;
1464
1465		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1466		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1467		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1468		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1469	} else {
1470		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1471		    (inode->i_sb->s_blocksize_bits - 9);
1472
1473		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1474			inode->i_atime = sbi->s_record_time;
1475
1476		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1477					    efe->modificationTime))
1478			inode->i_mtime = sbi->s_record_time;
1479
1480		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1481			iinfo->i_crtime = sbi->s_record_time;
1482
1483		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1484			inode->i_ctime = sbi->s_record_time;
1485
1486		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1487		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1488		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1489		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1490	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
1492	switch (fe->icbTag.fileType) {
1493	case ICBTAG_FILE_TYPE_DIRECTORY:
1494		inode->i_op = &udf_dir_inode_operations;
1495		inode->i_fop = &udf_dir_operations;
1496		inode->i_mode |= S_IFDIR;
1497		inc_nlink(inode);
1498		break;
1499	case ICBTAG_FILE_TYPE_REALTIME:
1500	case ICBTAG_FILE_TYPE_REGULAR:
1501	case ICBTAG_FILE_TYPE_UNDEF:
1502	case ICBTAG_FILE_TYPE_VAT20:
1503		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1504			inode->i_data.a_ops = &udf_adinicb_aops;
1505		else
1506			inode->i_data.a_ops = &udf_aops;
1507		inode->i_op = &udf_file_inode_operations;
1508		inode->i_fop = &udf_file_operations;
1509		inode->i_mode |= S_IFREG;
1510		break;
1511	case ICBTAG_FILE_TYPE_BLOCK:
1512		inode->i_mode |= S_IFBLK;
1513		break;
1514	case ICBTAG_FILE_TYPE_CHAR:
1515		inode->i_mode |= S_IFCHR;
1516		break;
1517	case ICBTAG_FILE_TYPE_FIFO:
1518		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1519		break;
1520	case ICBTAG_FILE_TYPE_SOCKET:
1521		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1522		break;
1523	case ICBTAG_FILE_TYPE_SYMLINK:
1524		inode->i_data.a_ops = &udf_symlink_aops;
1525		inode->i_op = &udf_symlink_inode_operations;
 
1526		inode->i_mode = S_IFLNK | S_IRWXUGO;
1527		break;
1528	case ICBTAG_FILE_TYPE_MAIN:
1529		udf_debug("METADATA FILE-----\n");
1530		break;
1531	case ICBTAG_FILE_TYPE_MIRROR:
1532		udf_debug("METADATA MIRROR FILE-----\n");
1533		break;
1534	case ICBTAG_FILE_TYPE_BITMAP:
1535		udf_debug("METADATA BITMAP FILE-----\n");
1536		break;
1537	default:
1538		udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1539			inode->i_ino, fe->icbTag.fileType);
1540		make_bad_inode(inode);
1541		return;
1542	}
1543	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1544		struct deviceSpec *dsea =
1545			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1546		if (dsea) {
1547			init_special_inode(inode, inode->i_mode,
1548				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1549				      le32_to_cpu(dsea->minorDeviceIdent)));
1550			/* Developer ID ??? */
1551		} else
1552			make_bad_inode(inode);
1553	}
 
 
 
 
1554}
1555
1556static int udf_alloc_i_data(struct inode *inode, size_t size)
1557{
1558	struct udf_inode_info *iinfo = UDF_I(inode);
1559	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1560
1561	if (!iinfo->i_ext.i_data) {
1562		udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1563			inode->i_ino);
1564		return -ENOMEM;
1565	}
1566
1567	return 0;
1568}
1569
1570static umode_t udf_convert_permissions(struct fileEntry *fe)
1571{
1572	umode_t mode;
1573	uint32_t permissions;
1574	uint32_t flags;
1575
1576	permissions = le32_to_cpu(fe->permissions);
1577	flags = le16_to_cpu(fe->icbTag.flags);
1578
1579	mode =	((permissions) & S_IRWXO) |
1580		((permissions >> 2) & S_IRWXG) |
1581		((permissions >> 4) & S_IRWXU) |
1582		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1583		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1584		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1585
1586	return mode;
1587}
1588
1589int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1590{
1591	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1592}
1593
1594static int udf_sync_inode(struct inode *inode)
1595{
1596	return udf_update_inode(inode, 1);
1597}
1598
1599static int udf_update_inode(struct inode *inode, int do_sync)
1600{
1601	struct buffer_head *bh = NULL;
1602	struct fileEntry *fe;
1603	struct extendedFileEntry *efe;
1604	uint64_t lb_recorded;
1605	uint32_t udfperms;
1606	uint16_t icbflags;
1607	uint16_t crclen;
1608	int err = 0;
1609	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1610	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1611	struct udf_inode_info *iinfo = UDF_I(inode);
1612
1613	bh = udf_tgetblk(inode->i_sb,
1614			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1615	if (!bh) {
1616		udf_debug("getblk failure\n");
1617		return -ENOMEM;
1618	}
1619
1620	lock_buffer(bh);
1621	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1622	fe = (struct fileEntry *)bh->b_data;
1623	efe = (struct extendedFileEntry *)bh->b_data;
1624
1625	if (iinfo->i_use) {
1626		struct unallocSpaceEntry *use =
1627			(struct unallocSpaceEntry *)bh->b_data;
1628
1629		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1630		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1631		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1632					sizeof(struct unallocSpaceEntry));
1633		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1634		use->descTag.tagLocation =
1635				cpu_to_le32(iinfo->i_location.logicalBlockNum);
1636		crclen = sizeof(struct unallocSpaceEntry) +
1637				iinfo->i_lenAlloc - sizeof(struct tag);
1638		use->descTag.descCRCLength = cpu_to_le16(crclen);
1639		use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1640							   sizeof(struct tag),
1641							   crclen));
1642		use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1643
1644		goto out;
1645	}
1646
1647	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1648		fe->uid = cpu_to_le32(-1);
1649	else
1650		fe->uid = cpu_to_le32(i_uid_read(inode));
1651
1652	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1653		fe->gid = cpu_to_le32(-1);
1654	else
1655		fe->gid = cpu_to_le32(i_gid_read(inode));
1656
1657	udfperms = ((inode->i_mode & S_IRWXO)) |
1658		   ((inode->i_mode & S_IRWXG) << 2) |
1659		   ((inode->i_mode & S_IRWXU) << 4);
1660
1661	udfperms |= (le32_to_cpu(fe->permissions) &
1662		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1663		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1664		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1665	fe->permissions = cpu_to_le32(udfperms);
1666
1667	if (S_ISDIR(inode->i_mode))
1668		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1669	else
1670		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1671
1672	fe->informationLength = cpu_to_le64(inode->i_size);
1673
1674	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1675		struct regid *eid;
1676		struct deviceSpec *dsea =
1677			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1678		if (!dsea) {
1679			dsea = (struct deviceSpec *)
1680				udf_add_extendedattr(inode,
1681						     sizeof(struct deviceSpec) +
1682						     sizeof(struct regid), 12, 0x3);
1683			dsea->attrType = cpu_to_le32(12);
1684			dsea->attrSubtype = 1;
1685			dsea->attrLength = cpu_to_le32(
1686						sizeof(struct deviceSpec) +
1687						sizeof(struct regid));
1688			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1689		}
1690		eid = (struct regid *)dsea->impUse;
1691		memset(eid, 0, sizeof(struct regid));
1692		strcpy(eid->ident, UDF_ID_DEVELOPER);
1693		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1694		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1695		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1696		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1697	}
1698
1699	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1700		lb_recorded = 0; /* No extents => no blocks! */
1701	else
1702		lb_recorded =
1703			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1704			(blocksize_bits - 9);
1705
1706	if (iinfo->i_efe == 0) {
1707		memcpy(bh->b_data + sizeof(struct fileEntry),
1708		       iinfo->i_ext.i_data,
1709		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1710		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1711
1712		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1713		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1714		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1715		memset(&(fe->impIdent), 0, sizeof(struct regid));
1716		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1717		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1718		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1719		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1720		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1721		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1722		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1723		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1724		crclen = sizeof(struct fileEntry);
1725	} else {
1726		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1727		       iinfo->i_ext.i_data,
1728		       inode->i_sb->s_blocksize -
1729					sizeof(struct extendedFileEntry));
1730		efe->objectSize = cpu_to_le64(inode->i_size);
1731		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1732
1733		if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1734		    (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1735		     iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1736			iinfo->i_crtime = inode->i_atime;
1737
1738		if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1739		    (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1740		     iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1741			iinfo->i_crtime = inode->i_mtime;
1742
1743		if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1744		    (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1745		     iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1746			iinfo->i_crtime = inode->i_ctime;
1747
1748		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1749		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1750		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1751		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1752
1753		memset(&(efe->impIdent), 0, sizeof(struct regid));
1754		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1755		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1756		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1757		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1758		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1759		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1760		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1761		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1762		crclen = sizeof(struct extendedFileEntry);
1763	}
 
 
1764	if (iinfo->i_strat4096) {
1765		fe->icbTag.strategyType = cpu_to_le16(4096);
1766		fe->icbTag.strategyParameter = cpu_to_le16(1);
1767		fe->icbTag.numEntries = cpu_to_le16(2);
1768	} else {
1769		fe->icbTag.strategyType = cpu_to_le16(4);
1770		fe->icbTag.numEntries = cpu_to_le16(1);
1771	}
1772
1773	if (S_ISDIR(inode->i_mode))
 
 
1774		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1775	else if (S_ISREG(inode->i_mode))
1776		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1777	else if (S_ISLNK(inode->i_mode))
1778		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1779	else if (S_ISBLK(inode->i_mode))
1780		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1781	else if (S_ISCHR(inode->i_mode))
1782		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1783	else if (S_ISFIFO(inode->i_mode))
1784		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1785	else if (S_ISSOCK(inode->i_mode))
1786		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1787
1788	icbflags =	iinfo->i_alloc_type |
1789			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1790			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1791			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1792			(le16_to_cpu(fe->icbTag.flags) &
1793				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1794				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1795
1796	fe->icbTag.flags = cpu_to_le16(icbflags);
1797	if (sbi->s_udfrev >= 0x0200)
1798		fe->descTag.descVersion = cpu_to_le16(3);
1799	else
1800		fe->descTag.descVersion = cpu_to_le16(2);
1801	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1802	fe->descTag.tagLocation = cpu_to_le32(
1803					iinfo->i_location.logicalBlockNum);
1804	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1805	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1806	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1807						  crclen));
1808	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1809
1810out:
1811	set_buffer_uptodate(bh);
1812	unlock_buffer(bh);
1813
1814	/* write the data blocks */
1815	mark_buffer_dirty(bh);
1816	if (do_sync) {
1817		sync_dirty_buffer(bh);
1818		if (buffer_write_io_error(bh)) {
1819			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1820				 inode->i_ino);
1821			err = -EIO;
1822		}
1823	}
1824	brelse(bh);
1825
1826	return err;
1827}
1828
1829struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
 
1830{
1831	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1832	struct inode *inode = iget_locked(sb, block);
 
1833
1834	if (!inode)
1835		return NULL;
 
 
 
1836
1837	if (inode->i_state & I_NEW) {
1838		memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1839		__udf_read_inode(inode);
1840		unlock_new_inode(inode);
 
1841	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1842
1843	if (is_bad_inode(inode))
1844		goto out_iput;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1845
1846	if (ino->logicalBlockNum >= UDF_SB(sb)->
1847			s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1848		udf_debug("block=%d, partition=%d out of range\n",
1849			  ino->logicalBlockNum, ino->partitionReferenceNum);
1850		make_bad_inode(inode);
1851		goto out_iput;
 
 
 
 
 
 
 
 
 
 
 
 
 
1852	}
1853
1854	return inode;
 
1855
1856 out_iput:
1857	iput(inode);
1858	return NULL;
1859}
1860
1861int udf_add_aext(struct inode *inode, struct extent_position *epos,
1862		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
 
 
 
 
 
1863{
 
 
1864	int adsize;
1865	struct short_ad *sad = NULL;
1866	struct long_ad *lad = NULL;
1867	struct allocExtDesc *aed;
1868	uint8_t *ptr;
1869	struct udf_inode_info *iinfo = UDF_I(inode);
1870
1871	if (!epos->bh)
1872		ptr = iinfo->i_ext.i_data + epos->offset -
1873			udf_file_entry_alloc_offset(inode) +
1874			iinfo->i_lenEAttr;
1875	else
1876		ptr = epos->bh->b_data + epos->offset;
1877
1878	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1879		adsize = sizeof(struct short_ad);
1880	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1881		adsize = sizeof(struct long_ad);
1882	else
1883		return -EIO;
1884
1885	if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1886		unsigned char *sptr, *dptr;
1887		struct buffer_head *nbh;
1888		int err, loffset;
1889		struct kernel_lb_addr obloc = epos->block;
1890
1891		epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1892						obloc.partitionReferenceNum,
1893						obloc.logicalBlockNum, &err);
1894		if (!epos->block.logicalBlockNum)
1895			return -ENOSPC;
1896		nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1897								 &epos->block,
1898								 0));
1899		if (!nbh)
1900			return -EIO;
1901		lock_buffer(nbh);
1902		memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1903		set_buffer_uptodate(nbh);
1904		unlock_buffer(nbh);
1905		mark_buffer_dirty_inode(nbh, inode);
1906
1907		aed = (struct allocExtDesc *)(nbh->b_data);
1908		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1909			aed->previousAllocExtLocation =
1910					cpu_to_le32(obloc.logicalBlockNum);
1911		if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1912			loffset = epos->offset;
1913			aed->lengthAllocDescs = cpu_to_le32(adsize);
1914			sptr = ptr - adsize;
1915			dptr = nbh->b_data + sizeof(struct allocExtDesc);
1916			memcpy(dptr, sptr, adsize);
1917			epos->offset = sizeof(struct allocExtDesc) + adsize;
1918		} else {
1919			loffset = epos->offset + adsize;
1920			aed->lengthAllocDescs = cpu_to_le32(0);
1921			sptr = ptr;
1922			epos->offset = sizeof(struct allocExtDesc);
1923
1924			if (epos->bh) {
1925				aed = (struct allocExtDesc *)epos->bh->b_data;
1926				le32_add_cpu(&aed->lengthAllocDescs, adsize);
1927			} else {
1928				iinfo->i_lenAlloc += adsize;
1929				mark_inode_dirty(inode);
1930			}
1931		}
1932		if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1933			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1934				    epos->block.logicalBlockNum, sizeof(struct tag));
1935		else
1936			udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1937				    epos->block.logicalBlockNum, sizeof(struct tag));
1938		switch (iinfo->i_alloc_type) {
1939		case ICBTAG_FLAG_AD_SHORT:
1940			sad = (struct short_ad *)sptr;
1941			sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1942						     inode->i_sb->s_blocksize);
1943			sad->extPosition =
1944				cpu_to_le32(epos->block.logicalBlockNum);
1945			break;
1946		case ICBTAG_FLAG_AD_LONG:
1947			lad = (struct long_ad *)sptr;
1948			lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1949						     inode->i_sb->s_blocksize);
1950			lad->extLocation = cpu_to_lelb(epos->block);
1951			memset(lad->impUse, 0x00, sizeof(lad->impUse));
1952			break;
1953		}
1954		if (epos->bh) {
1955			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1956			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1957				udf_update_tag(epos->bh->b_data, loffset);
1958			else
1959				udf_update_tag(epos->bh->b_data,
1960						sizeof(struct allocExtDesc));
1961			mark_buffer_dirty_inode(epos->bh, inode);
1962			brelse(epos->bh);
1963		} else {
1964			mark_inode_dirty(inode);
1965		}
1966		epos->bh = nbh;
1967	}
1968
1969	udf_write_aext(inode, epos, eloc, elen, inc);
1970
1971	if (!epos->bh) {
1972		iinfo->i_lenAlloc += adsize;
1973		mark_inode_dirty(inode);
1974	} else {
1975		aed = (struct allocExtDesc *)epos->bh->b_data;
1976		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1977		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1978				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1979			udf_update_tag(epos->bh->b_data,
1980					epos->offset + (inc ? 0 : adsize));
1981		else
1982			udf_update_tag(epos->bh->b_data,
1983					sizeof(struct allocExtDesc));
1984		mark_buffer_dirty_inode(epos->bh, inode);
1985	}
1986
1987	return 0;
1988}
1989
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1990void udf_write_aext(struct inode *inode, struct extent_position *epos,
1991		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1992{
1993	int adsize;
1994	uint8_t *ptr;
1995	struct short_ad *sad;
1996	struct long_ad *lad;
1997	struct udf_inode_info *iinfo = UDF_I(inode);
1998
1999	if (!epos->bh)
2000		ptr = iinfo->i_ext.i_data + epos->offset -
2001			udf_file_entry_alloc_offset(inode) +
2002			iinfo->i_lenEAttr;
2003	else
2004		ptr = epos->bh->b_data + epos->offset;
2005
2006	switch (iinfo->i_alloc_type) {
2007	case ICBTAG_FLAG_AD_SHORT:
2008		sad = (struct short_ad *)ptr;
2009		sad->extLength = cpu_to_le32(elen);
2010		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2011		adsize = sizeof(struct short_ad);
2012		break;
2013	case ICBTAG_FLAG_AD_LONG:
2014		lad = (struct long_ad *)ptr;
2015		lad->extLength = cpu_to_le32(elen);
2016		lad->extLocation = cpu_to_lelb(*eloc);
2017		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2018		adsize = sizeof(struct long_ad);
2019		break;
2020	default:
2021		return;
2022	}
2023
2024	if (epos->bh) {
2025		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2026		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2027			struct allocExtDesc *aed =
2028				(struct allocExtDesc *)epos->bh->b_data;
2029			udf_update_tag(epos->bh->b_data,
2030				       le32_to_cpu(aed->lengthAllocDescs) +
2031				       sizeof(struct allocExtDesc));
2032		}
2033		mark_buffer_dirty_inode(epos->bh, inode);
2034	} else {
2035		mark_inode_dirty(inode);
2036	}
2037
2038	if (inc)
2039		epos->offset += adsize;
2040}
2041
 
 
 
 
 
 
2042int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2043		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2044{
2045	int8_t etype;
 
2046
2047	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2048	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2049		int block;
 
 
 
 
 
 
 
 
2050		epos->block = *eloc;
2051		epos->offset = sizeof(struct allocExtDesc);
2052		brelse(epos->bh);
2053		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2054		epos->bh = udf_tread(inode->i_sb, block);
2055		if (!epos->bh) {
2056			udf_debug("reading block %d failed!\n", block);
2057			return -1;
2058		}
2059	}
2060
2061	return etype;
2062}
2063
2064int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2065			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2066{
2067	int alen;
2068	int8_t etype;
2069	uint8_t *ptr;
2070	struct short_ad *sad;
2071	struct long_ad *lad;
2072	struct udf_inode_info *iinfo = UDF_I(inode);
2073
2074	if (!epos->bh) {
2075		if (!epos->offset)
2076			epos->offset = udf_file_entry_alloc_offset(inode);
2077		ptr = iinfo->i_ext.i_data + epos->offset -
2078			udf_file_entry_alloc_offset(inode) +
2079			iinfo->i_lenEAttr;
2080		alen = udf_file_entry_alloc_offset(inode) +
2081							iinfo->i_lenAlloc;
2082	} else {
2083		if (!epos->offset)
2084			epos->offset = sizeof(struct allocExtDesc);
2085		ptr = epos->bh->b_data + epos->offset;
2086		alen = sizeof(struct allocExtDesc) +
2087			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2088							lengthAllocDescs);
2089	}
2090
2091	switch (iinfo->i_alloc_type) {
2092	case ICBTAG_FLAG_AD_SHORT:
2093		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2094		if (!sad)
2095			return -1;
2096		etype = le32_to_cpu(sad->extLength) >> 30;
2097		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2098		eloc->partitionReferenceNum =
2099				iinfo->i_location.partitionReferenceNum;
2100		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2101		break;
2102	case ICBTAG_FLAG_AD_LONG:
2103		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2104		if (!lad)
2105			return -1;
2106		etype = le32_to_cpu(lad->extLength) >> 30;
2107		*eloc = lelb_to_cpu(lad->extLocation);
2108		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2109		break;
2110	default:
2111		udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2112		return -1;
2113	}
2114
2115	return etype;
2116}
2117
2118static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2119			      struct kernel_lb_addr neloc, uint32_t nelen)
2120{
2121	struct kernel_lb_addr oeloc;
2122	uint32_t oelen;
2123	int8_t etype;
2124
2125	if (epos.bh)
2126		get_bh(epos.bh);
2127
2128	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2129		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2130		neloc = oeloc;
2131		nelen = (etype << 30) | oelen;
2132	}
2133	udf_add_aext(inode, &epos, &neloc, nelen, 1);
2134	brelse(epos.bh);
2135
2136	return (nelen >> 30);
2137}
2138
2139int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2140		       struct kernel_lb_addr eloc, uint32_t elen)
2141{
2142	struct extent_position oepos;
2143	int adsize;
2144	int8_t etype;
2145	struct allocExtDesc *aed;
2146	struct udf_inode_info *iinfo;
2147
2148	if (epos.bh) {
2149		get_bh(epos.bh);
2150		get_bh(epos.bh);
2151	}
2152
2153	iinfo = UDF_I(inode);
2154	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2155		adsize = sizeof(struct short_ad);
2156	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2157		adsize = sizeof(struct long_ad);
2158	else
2159		adsize = 0;
2160
2161	oepos = epos;
2162	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2163		return -1;
2164
2165	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2166		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2167		if (oepos.bh != epos.bh) {
2168			oepos.block = epos.block;
2169			brelse(oepos.bh);
2170			get_bh(epos.bh);
2171			oepos.bh = epos.bh;
2172			oepos.offset = epos.offset - adsize;
2173		}
2174	}
2175	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2176	elen = 0;
2177
2178	if (epos.bh != oepos.bh) {
2179		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2180		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2181		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2182		if (!oepos.bh) {
2183			iinfo->i_lenAlloc -= (adsize * 2);
2184			mark_inode_dirty(inode);
2185		} else {
2186			aed = (struct allocExtDesc *)oepos.bh->b_data;
2187			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2188			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2189			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2190				udf_update_tag(oepos.bh->b_data,
2191						oepos.offset - (2 * adsize));
2192			else
2193				udf_update_tag(oepos.bh->b_data,
2194						sizeof(struct allocExtDesc));
2195			mark_buffer_dirty_inode(oepos.bh, inode);
2196		}
2197	} else {
2198		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2199		if (!oepos.bh) {
2200			iinfo->i_lenAlloc -= adsize;
2201			mark_inode_dirty(inode);
2202		} else {
2203			aed = (struct allocExtDesc *)oepos.bh->b_data;
2204			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2205			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2206			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2207				udf_update_tag(oepos.bh->b_data,
2208						epos.offset - adsize);
2209			else
2210				udf_update_tag(oepos.bh->b_data,
2211						sizeof(struct allocExtDesc));
2212			mark_buffer_dirty_inode(oepos.bh, inode);
2213		}
2214	}
2215
2216	brelse(epos.bh);
2217	brelse(oepos.bh);
2218
2219	return (elen >> 30);
2220}
2221
2222int8_t inode_bmap(struct inode *inode, sector_t block,
2223		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2224		  uint32_t *elen, sector_t *offset)
2225{
2226	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2227	loff_t lbcount = 0, bcount =
2228	    (loff_t) block << blocksize_bits;
2229	int8_t etype;
2230	struct udf_inode_info *iinfo;
2231
2232	iinfo = UDF_I(inode);
2233	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2234		pos->offset = 0;
2235		pos->block = iinfo->i_location;
2236		pos->bh = NULL;
2237	}
2238	*elen = 0;
2239	do {
2240		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2241		if (etype == -1) {
2242			*offset = (bcount - lbcount) >> blocksize_bits;
2243			iinfo->i_lenExtents = lbcount;
2244			return -1;
2245		}
2246		lbcount += *elen;
2247	} while (lbcount <= bcount);
2248	/* update extent cache */
2249	udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2250	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2251
2252	return etype;
2253}
2254
2255long udf_block_map(struct inode *inode, sector_t block)
2256{
2257	struct kernel_lb_addr eloc;
2258	uint32_t elen;
2259	sector_t offset;
2260	struct extent_position epos = {};
2261	int ret;
2262
2263	down_read(&UDF_I(inode)->i_data_sem);
2264
2265	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2266						(EXT_RECORDED_ALLOCATED >> 30))
2267		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2268	else
2269		ret = 0;
2270
2271	up_read(&UDF_I(inode)->i_data_sem);
2272	brelse(epos.bh);
2273
2274	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2275		return udf_fixed_to_variable(ret);
2276	else
2277		return ret;
2278}