Loading...
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46MODULE_AUTHOR("Ben Fennema");
47MODULE_DESCRIPTION("Universal Disk Format Filesystem");
48MODULE_LICENSE("GPL");
49
50#define EXTENT_MERGE_SIZE 5
51
52static umode_t udf_convert_permissions(struct fileEntry *);
53static int udf_update_inode(struct inode *, int);
54static int udf_sync_inode(struct inode *inode);
55static int udf_alloc_i_data(struct inode *inode, size_t size);
56static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos, int next_epos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos,
124 sizeof(struct extent_position));
125 iinfo->cached_extent.lstart = estart;
126 if (next_epos)
127 switch (iinfo->i_alloc_type) {
128 case ICBTAG_FLAG_AD_SHORT:
129 iinfo->cached_extent.epos.offset -=
130 sizeof(struct short_ad);
131 break;
132 case ICBTAG_FLAG_AD_LONG:
133 iinfo->cached_extent.epos.offset -=
134 sizeof(struct long_ad);
135 }
136 spin_unlock(&iinfo->i_extent_cache_lock);
137}
138
139void udf_evict_inode(struct inode *inode)
140{
141 struct udf_inode_info *iinfo = UDF_I(inode);
142 int want_delete = 0;
143
144 if (!inode->i_nlink && !is_bad_inode(inode)) {
145 want_delete = 1;
146 udf_setsize(inode, 0);
147 udf_update_inode(inode, IS_SYNC(inode));
148 }
149 truncate_inode_pages_final(&inode->i_data);
150 invalidate_inode_buffers(inode);
151 clear_inode(inode);
152 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
153 inode->i_size != iinfo->i_lenExtents) {
154 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
155 inode->i_ino, inode->i_mode,
156 (unsigned long long)inode->i_size,
157 (unsigned long long)iinfo->i_lenExtents);
158 }
159 kfree(iinfo->i_ext.i_data);
160 iinfo->i_ext.i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_writepage(struct page *page, struct writeback_control *wbc)
185{
186 return block_write_full_page(page, udf_get_block, wbc);
187}
188
189static int udf_writepages(struct address_space *mapping,
190 struct writeback_control *wbc)
191{
192 return mpage_writepages(mapping, wbc, udf_get_block);
193}
194
195static int udf_readpage(struct file *file, struct page *page)
196{
197 return mpage_readpage(page, udf_get_block);
198}
199
200static int udf_readpages(struct file *file, struct address_space *mapping,
201 struct list_head *pages, unsigned nr_pages)
202{
203 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209{
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readpages = udf_readpages,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260 struct writeback_control udf_wbc = {
261 .sync_mode = WB_SYNC_NONE,
262 .nr_to_write = 1,
263 };
264
265 WARN_ON_ONCE(!inode_is_locked(inode));
266 if (!iinfo->i_lenAlloc) {
267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269 else
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271 /* from now on we have normal address_space methods */
272 inode->i_data.a_ops = &udf_aops;
273 up_write(&iinfo->i_data_sem);
274 mark_inode_dirty(inode);
275 return 0;
276 }
277 /*
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
280 */
281 up_write(&iinfo->i_data_sem);
282
283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284 if (!page)
285 return -ENOMEM;
286
287 if (!PageUptodate(page)) {
288 kaddr = kmap(page);
289 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290 PAGE_SIZE - iinfo->i_lenAlloc);
291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292 iinfo->i_lenAlloc);
293 flush_dcache_page(page);
294 SetPageUptodate(page);
295 kunmap(page);
296 }
297 down_write(&iinfo->i_data_sem);
298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299 iinfo->i_lenAlloc);
300 iinfo->i_lenAlloc = 0;
301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303 else
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305 /* from now on we have normal address_space methods */
306 inode->i_data.a_ops = &udf_aops;
307 up_write(&iinfo->i_data_sem);
308 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 kaddr = kmap(page);
313 down_write(&iinfo->i_data_sem);
314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315 inode->i_size);
316 kunmap(page);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329 int *err)
330{
331 int newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403 iinfo->i_lenAlloc);
404 iinfo->i_lenAlloc = 0;
405 eloc.logicalBlockNum = *block;
406 eloc.partitionReferenceNum =
407 iinfo->i_location.partitionReferenceNum;
408 iinfo->i_lenExtents = inode->i_size;
409 epos.bh = NULL;
410 epos.block = iinfo->i_location;
411 epos.offset = udf_file_entry_alloc_offset(inode);
412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413 /* UniqueID stuff */
414
415 brelse(epos.bh);
416 mark_inode_dirty(inode);
417 return dbh;
418}
419
420static int udf_get_block(struct inode *inode, sector_t block,
421 struct buffer_head *bh_result, int create)
422{
423 int err, new;
424 sector_t phys = 0;
425 struct udf_inode_info *iinfo;
426
427 if (!create) {
428 phys = udf_block_map(inode, block);
429 if (phys)
430 map_bh(bh_result, inode->i_sb, phys);
431 return 0;
432 }
433
434 err = -EIO;
435 new = 0;
436 iinfo = UDF_I(inode);
437
438 down_write(&iinfo->i_data_sem);
439 if (block == iinfo->i_next_alloc_block + 1) {
440 iinfo->i_next_alloc_block++;
441 iinfo->i_next_alloc_goal++;
442 }
443
444 udf_clear_extent_cache(inode);
445 phys = inode_getblk(inode, block, &err, &new);
446 if (!phys)
447 goto abort;
448
449 if (new)
450 set_buffer_new(bh_result);
451 map_bh(bh_result, inode->i_sb, phys);
452
453abort:
454 up_write(&iinfo->i_data_sem);
455 return err;
456}
457
458static struct buffer_head *udf_getblk(struct inode *inode, long block,
459 int create, int *err)
460{
461 struct buffer_head *bh;
462 struct buffer_head dummy;
463
464 dummy.b_state = 0;
465 dummy.b_blocknr = -1000;
466 *err = udf_get_block(inode, block, &dummy, create);
467 if (!*err && buffer_mapped(&dummy)) {
468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469 if (buffer_new(&dummy)) {
470 lock_buffer(bh);
471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472 set_buffer_uptodate(bh);
473 unlock_buffer(bh);
474 mark_buffer_dirty_inode(bh, inode);
475 }
476 return bh;
477 }
478
479 return NULL;
480}
481
482/* Extend the file by 'blocks' blocks, return the number of extents added */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 sector_t blocks)
487{
488 sector_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 int prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!blocks && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = ((1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531 sb->s_blocksize_bits;
532 if (add > blocks)
533 add = blocks;
534 blocks -= add;
535 last_ext->extLength += add << sb->s_blocksize_bits;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548 /*
549 * We've rewritten the last extent but there may be empty
550 * indirect extent after it - enter it.
551 */
552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
553 }
554
555 /* Managed to do everything necessary? */
556 if (!blocks)
557 goto out;
558
559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
560 last_ext->extLocation.logicalBlockNum = 0;
561 last_ext->extLocation.partitionReferenceNum = 0;
562 add = (1 << (30-sb->s_blocksize_bits)) - 1;
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 (add << sb->s_blocksize_bits);
565
566 /* Create enough extents to cover the whole hole */
567 while (blocks > add) {
568 blocks -= add;
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575 if (blocks) {
576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
577 (blocks << sb->s_blocksize_bits);
578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 last_ext->extLength, 1);
580 if (err)
581 return err;
582 count++;
583 }
584
585out:
586 /* Do we have some preallocated blocks saved? */
587 if (prealloc_len) {
588 err = udf_add_aext(inode, last_pos, &prealloc_loc,
589 prealloc_len, 1);
590 if (err)
591 return err;
592 last_ext->extLocation = prealloc_loc;
593 last_ext->extLength = prealloc_len;
594 count++;
595 }
596
597 /* last_pos should point to the last written extent... */
598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 last_pos->offset -= sizeof(struct short_ad);
600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 last_pos->offset -= sizeof(struct long_ad);
602 else
603 return -EIO;
604
605 return count;
606}
607
608static int udf_extend_file(struct inode *inode, loff_t newsize)
609{
610
611 struct extent_position epos;
612 struct kernel_lb_addr eloc;
613 uint32_t elen;
614 int8_t etype;
615 struct super_block *sb = inode->i_sb;
616 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
617 int adsize;
618 struct udf_inode_info *iinfo = UDF_I(inode);
619 struct kernel_long_ad extent;
620 int err;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
630
631 /* File has extent covering the new size (could happen when extending
632 * inside a block)? */
633 if (etype != -1)
634 return 0;
635 if (newsize & (sb->s_blocksize - 1))
636 offset++;
637 /* Extended file just to the boundary of the last file block? */
638 if (offset == 0)
639 return 0;
640
641 /* Truncate is extending the file by 'offset' blocks */
642 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
643 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
644 /* File has no extents at all or has empty last
645 * indirect extent! Create a fake extent... */
646 extent.extLocation.logicalBlockNum = 0;
647 extent.extLocation.partitionReferenceNum = 0;
648 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
649 } else {
650 epos.offset -= adsize;
651 etype = udf_next_aext(inode, &epos, &extent.extLocation,
652 &extent.extLength, 0);
653 extent.extLength |= etype << 30;
654 }
655 err = udf_do_extend_file(inode, &epos, &extent, offset);
656 if (err < 0)
657 goto out;
658 err = 0;
659 iinfo->i_lenExtents = newsize;
660out:
661 brelse(epos.bh);
662 return err;
663}
664
665static sector_t inode_getblk(struct inode *inode, sector_t block,
666 int *err, int *new)
667{
668 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
669 struct extent_position prev_epos, cur_epos, next_epos;
670 int count = 0, startnum = 0, endnum = 0;
671 uint32_t elen = 0, tmpelen;
672 struct kernel_lb_addr eloc, tmpeloc;
673 int c = 1;
674 loff_t lbcount = 0, b_off = 0;
675 uint32_t newblocknum, newblock;
676 sector_t offset = 0;
677 int8_t etype;
678 struct udf_inode_info *iinfo = UDF_I(inode);
679 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
680 int lastblock = 0;
681 bool isBeyondEOF;
682
683 *err = 0;
684 *new = 0;
685 prev_epos.offset = udf_file_entry_alloc_offset(inode);
686 prev_epos.block = iinfo->i_location;
687 prev_epos.bh = NULL;
688 cur_epos = next_epos = prev_epos;
689 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
690
691 /* find the extent which contains the block we are looking for.
692 alternate between laarr[0] and laarr[1] for locations of the
693 current extent, and the previous extent */
694 do {
695 if (prev_epos.bh != cur_epos.bh) {
696 brelse(prev_epos.bh);
697 get_bh(cur_epos.bh);
698 prev_epos.bh = cur_epos.bh;
699 }
700 if (cur_epos.bh != next_epos.bh) {
701 brelse(cur_epos.bh);
702 get_bh(next_epos.bh);
703 cur_epos.bh = next_epos.bh;
704 }
705
706 lbcount += elen;
707
708 prev_epos.block = cur_epos.block;
709 cur_epos.block = next_epos.block;
710
711 prev_epos.offset = cur_epos.offset;
712 cur_epos.offset = next_epos.offset;
713
714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
715 if (etype == -1)
716 break;
717
718 c = !c;
719
720 laarr[c].extLength = (etype << 30) | elen;
721 laarr[c].extLocation = eloc;
722
723 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
724 pgoal = eloc.logicalBlockNum +
725 ((elen + inode->i_sb->s_blocksize - 1) >>
726 inode->i_sb->s_blocksize_bits);
727
728 count++;
729 } while (lbcount + elen <= b_off);
730
731 b_off -= lbcount;
732 offset = b_off >> inode->i_sb->s_blocksize_bits;
733 /*
734 * Move prev_epos and cur_epos into indirect extent if we are at
735 * the pointer to it
736 */
737 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
738 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
739
740 /* if the extent is allocated and recorded, return the block
741 if the extent is not a multiple of the blocksize, round up */
742
743 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
744 if (elen & (inode->i_sb->s_blocksize - 1)) {
745 elen = EXT_RECORDED_ALLOCATED |
746 ((elen + inode->i_sb->s_blocksize - 1) &
747 ~(inode->i_sb->s_blocksize - 1));
748 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
749 }
750 brelse(prev_epos.bh);
751 brelse(cur_epos.bh);
752 brelse(next_epos.bh);
753 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
754 return newblock;
755 }
756
757 /* Are we beyond EOF? */
758 if (etype == -1) {
759 int ret;
760 isBeyondEOF = true;
761 if (count) {
762 if (c)
763 laarr[0] = laarr[1];
764 startnum = 1;
765 } else {
766 /* Create a fake extent when there's not one */
767 memset(&laarr[0].extLocation, 0x00,
768 sizeof(struct kernel_lb_addr));
769 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
770 /* Will udf_do_extend_file() create real extent from
771 a fake one? */
772 startnum = (offset > 0);
773 }
774 /* Create extents for the hole between EOF and offset */
775 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
776 if (ret < 0) {
777 brelse(prev_epos.bh);
778 brelse(cur_epos.bh);
779 brelse(next_epos.bh);
780 *err = ret;
781 return 0;
782 }
783 c = 0;
784 offset = 0;
785 count += ret;
786 /* We are not covered by a preallocated extent? */
787 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
788 EXT_NOT_RECORDED_ALLOCATED) {
789 /* Is there any real extent? - otherwise we overwrite
790 * the fake one... */
791 if (count)
792 c = !c;
793 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
794 inode->i_sb->s_blocksize;
795 memset(&laarr[c].extLocation, 0x00,
796 sizeof(struct kernel_lb_addr));
797 count++;
798 }
799 endnum = c + 1;
800 lastblock = 1;
801 } else {
802 isBeyondEOF = false;
803 endnum = startnum = ((count > 2) ? 2 : count);
804
805 /* if the current extent is in position 0,
806 swap it with the previous */
807 if (!c && count != 1) {
808 laarr[2] = laarr[0];
809 laarr[0] = laarr[1];
810 laarr[1] = laarr[2];
811 c = 1;
812 }
813
814 /* if the current block is located in an extent,
815 read the next extent */
816 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
817 if (etype != -1) {
818 laarr[c + 1].extLength = (etype << 30) | elen;
819 laarr[c + 1].extLocation = eloc;
820 count++;
821 startnum++;
822 endnum++;
823 } else
824 lastblock = 1;
825 }
826
827 /* if the current extent is not recorded but allocated, get the
828 * block in the extent corresponding to the requested block */
829 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
831 else { /* otherwise, allocate a new block */
832 if (iinfo->i_next_alloc_block == block)
833 goal = iinfo->i_next_alloc_goal;
834
835 if (!goal) {
836 if (!(goal = pgoal)) /* XXX: what was intended here? */
837 goal = iinfo->i_location.logicalBlockNum + 1;
838 }
839
840 newblocknum = udf_new_block(inode->i_sb, inode,
841 iinfo->i_location.partitionReferenceNum,
842 goal, err);
843 if (!newblocknum) {
844 brelse(prev_epos.bh);
845 brelse(cur_epos.bh);
846 brelse(next_epos.bh);
847 *err = -ENOSPC;
848 return 0;
849 }
850 if (isBeyondEOF)
851 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
852 }
853
854 /* if the extent the requsted block is located in contains multiple
855 * blocks, split the extent into at most three extents. blocks prior
856 * to requested block, requested block, and blocks after requested
857 * block */
858 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
859
860#ifdef UDF_PREALLOCATE
861 /* We preallocate blocks only for regular files. It also makes sense
862 * for directories but there's a problem when to drop the
863 * preallocation. We might use some delayed work for that but I feel
864 * it's overengineering for a filesystem like UDF. */
865 if (S_ISREG(inode->i_mode))
866 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
867#endif
868
869 /* merge any continuous blocks in laarr */
870 udf_merge_extents(inode, laarr, &endnum);
871
872 /* write back the new extents, inserting new extents if the new number
873 * of extents is greater than the old number, and deleting extents if
874 * the new number of extents is less than the old number */
875 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
876
877 brelse(prev_epos.bh);
878 brelse(cur_epos.bh);
879 brelse(next_epos.bh);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 return 0;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_time(inode);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896
897 return newblock;
898}
899
900static void udf_split_extents(struct inode *inode, int *c, int offset,
901 int newblocknum,
902 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
903 int *endnum)
904{
905 unsigned long blocksize = inode->i_sb->s_blocksize;
906 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
907
908 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
909 (laarr[*c].extLength >> 30) ==
910 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
911 int curr = *c;
912 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
913 blocksize - 1) >> blocksize_bits;
914 int8_t etype = (laarr[curr].extLength >> 30);
915
916 if (blen == 1)
917 ;
918 else if (!offset || blen == offset + 1) {
919 laarr[curr + 2] = laarr[curr + 1];
920 laarr[curr + 1] = laarr[curr];
921 } else {
922 laarr[curr + 3] = laarr[curr + 1];
923 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
924 }
925
926 if (offset) {
927 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
928 udf_free_blocks(inode->i_sb, inode,
929 &laarr[curr].extLocation,
930 0, offset);
931 laarr[curr].extLength =
932 EXT_NOT_RECORDED_NOT_ALLOCATED |
933 (offset << blocksize_bits);
934 laarr[curr].extLocation.logicalBlockNum = 0;
935 laarr[curr].extLocation.
936 partitionReferenceNum = 0;
937 } else
938 laarr[curr].extLength = (etype << 30) |
939 (offset << blocksize_bits);
940 curr++;
941 (*c)++;
942 (*endnum)++;
943 }
944
945 laarr[curr].extLocation.logicalBlockNum = newblocknum;
946 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
947 laarr[curr].extLocation.partitionReferenceNum =
948 UDF_I(inode)->i_location.partitionReferenceNum;
949 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
950 blocksize;
951 curr++;
952
953 if (blen != offset + 1) {
954 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
955 laarr[curr].extLocation.logicalBlockNum +=
956 offset + 1;
957 laarr[curr].extLength = (etype << 30) |
958 ((blen - (offset + 1)) << blocksize_bits);
959 curr++;
960 (*endnum)++;
961 }
962 }
963}
964
965static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
966 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
967 int *endnum)
968{
969 int start, length = 0, currlength = 0, i;
970
971 if (*endnum >= (c + 1)) {
972 if (!lastblock)
973 return;
974 else
975 start = c;
976 } else {
977 if ((laarr[c + 1].extLength >> 30) ==
978 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
979 start = c + 1;
980 length = currlength =
981 (((laarr[c + 1].extLength &
982 UDF_EXTENT_LENGTH_MASK) +
983 inode->i_sb->s_blocksize - 1) >>
984 inode->i_sb->s_blocksize_bits);
985 } else
986 start = c;
987 }
988
989 for (i = start + 1; i <= *endnum; i++) {
990 if (i == *endnum) {
991 if (lastblock)
992 length += UDF_DEFAULT_PREALLOC_BLOCKS;
993 } else if ((laarr[i].extLength >> 30) ==
994 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
995 length += (((laarr[i].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 break;
1001 }
1002
1003 if (length) {
1004 int next = laarr[start].extLocation.logicalBlockNum +
1005 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1006 inode->i_sb->s_blocksize - 1) >>
1007 inode->i_sb->s_blocksize_bits);
1008 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1009 laarr[start].extLocation.partitionReferenceNum,
1010 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1011 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1012 currlength);
1013 if (numalloc) {
1014 if (start == (c + 1))
1015 laarr[start].extLength +=
1016 (numalloc <<
1017 inode->i_sb->s_blocksize_bits);
1018 else {
1019 memmove(&laarr[c + 2], &laarr[c + 1],
1020 sizeof(struct long_ad) * (*endnum - (c + 1)));
1021 (*endnum)++;
1022 laarr[c + 1].extLocation.logicalBlockNum = next;
1023 laarr[c + 1].extLocation.partitionReferenceNum =
1024 laarr[c].extLocation.
1025 partitionReferenceNum;
1026 laarr[c + 1].extLength =
1027 EXT_NOT_RECORDED_ALLOCATED |
1028 (numalloc <<
1029 inode->i_sb->s_blocksize_bits);
1030 start = c + 1;
1031 }
1032
1033 for (i = start + 1; numalloc && i < *endnum; i++) {
1034 int elen = ((laarr[i].extLength &
1035 UDF_EXTENT_LENGTH_MASK) +
1036 inode->i_sb->s_blocksize - 1) >>
1037 inode->i_sb->s_blocksize_bits;
1038
1039 if (elen > numalloc) {
1040 laarr[i].extLength -=
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 numalloc = 0;
1044 } else {
1045 numalloc -= elen;
1046 if (*endnum > (i + 1))
1047 memmove(&laarr[i],
1048 &laarr[i + 1],
1049 sizeof(struct long_ad) *
1050 (*endnum - (i + 1)));
1051 i--;
1052 (*endnum)--;
1053 }
1054 }
1055 UDF_I(inode)->i_lenExtents +=
1056 numalloc << inode->i_sb->s_blocksize_bits;
1057 }
1058 }
1059}
1060
1061static void udf_merge_extents(struct inode *inode,
1062 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1063 int *endnum)
1064{
1065 int i;
1066 unsigned long blocksize = inode->i_sb->s_blocksize;
1067 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1068
1069 for (i = 0; i < (*endnum - 1); i++) {
1070 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1071 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1072
1073 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1074 (((li->extLength >> 30) ==
1075 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1076 ((lip1->extLocation.logicalBlockNum -
1077 li->extLocation.logicalBlockNum) ==
1078 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1079 blocksize - 1) >> blocksize_bits)))) {
1080
1081 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1084 lip1->extLength = (lip1->extLength -
1085 (li->extLength &
1086 UDF_EXTENT_LENGTH_MASK) +
1087 UDF_EXTENT_LENGTH_MASK) &
1088 ~(blocksize - 1);
1089 li->extLength = (li->extLength &
1090 UDF_EXTENT_FLAG_MASK) +
1091 (UDF_EXTENT_LENGTH_MASK + 1) -
1092 blocksize;
1093 lip1->extLocation.logicalBlockNum =
1094 li->extLocation.logicalBlockNum +
1095 ((li->extLength &
1096 UDF_EXTENT_LENGTH_MASK) >>
1097 blocksize_bits);
1098 } else {
1099 li->extLength = lip1->extLength +
1100 (((li->extLength &
1101 UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~(blocksize - 1));
1103 if (*endnum > (i + 2))
1104 memmove(&laarr[i + 1], &laarr[i + 2],
1105 sizeof(struct long_ad) *
1106 (*endnum - (i + 2)));
1107 i--;
1108 (*endnum)--;
1109 }
1110 } else if (((li->extLength >> 30) ==
1111 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1112 ((lip1->extLength >> 30) ==
1113 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1114 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1115 ((li->extLength &
1116 UDF_EXTENT_LENGTH_MASK) +
1117 blocksize - 1) >> blocksize_bits);
1118 li->extLocation.logicalBlockNum = 0;
1119 li->extLocation.partitionReferenceNum = 0;
1120
1121 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1124 lip1->extLength = (lip1->extLength -
1125 (li->extLength &
1126 UDF_EXTENT_LENGTH_MASK) +
1127 UDF_EXTENT_LENGTH_MASK) &
1128 ~(blocksize - 1);
1129 li->extLength = (li->extLength &
1130 UDF_EXTENT_FLAG_MASK) +
1131 (UDF_EXTENT_LENGTH_MASK + 1) -
1132 blocksize;
1133 } else {
1134 li->extLength = lip1->extLength +
1135 (((li->extLength &
1136 UDF_EXTENT_LENGTH_MASK) +
1137 blocksize - 1) & ~(blocksize - 1));
1138 if (*endnum > (i + 2))
1139 memmove(&laarr[i + 1], &laarr[i + 2],
1140 sizeof(struct long_ad) *
1141 (*endnum - (i + 2)));
1142 i--;
1143 (*endnum)--;
1144 }
1145 } else if ((li->extLength >> 30) ==
1146 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1147 udf_free_blocks(inode->i_sb, inode,
1148 &li->extLocation, 0,
1149 ((li->extLength &
1150 UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) >> blocksize_bits);
1152 li->extLocation.logicalBlockNum = 0;
1153 li->extLocation.partitionReferenceNum = 0;
1154 li->extLength = (li->extLength &
1155 UDF_EXTENT_LENGTH_MASK) |
1156 EXT_NOT_RECORDED_NOT_ALLOCATED;
1157 }
1158 }
1159}
1160
1161static void udf_update_extents(struct inode *inode,
1162 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1173 laarr[i].extLength);
1174 } else if (startnum < endnum) {
1175 for (i = 0; i < (endnum - startnum); i++) {
1176 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1177 laarr[i].extLength);
1178 udf_next_aext(inode, epos, &laarr[i].extLocation,
1179 &laarr[i].extLength, 1);
1180 start++;
1181 }
1182 }
1183
1184 for (i = start; i < endnum; i++) {
1185 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1186 udf_write_aext(inode, epos, &laarr[i].extLocation,
1187 laarr[i].extLength, 1);
1188 }
1189}
1190
1191struct buffer_head *udf_bread(struct inode *inode, int block,
1192 int create, int *err)
1193{
1194 struct buffer_head *bh = NULL;
1195
1196 bh = udf_getblk(inode, block, create, err);
1197 if (!bh)
1198 return NULL;
1199
1200 if (buffer_uptodate(bh))
1201 return bh;
1202
1203 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1204
1205 wait_on_buffer(bh);
1206 if (buffer_uptodate(bh))
1207 return bh;
1208
1209 brelse(bh);
1210 *err = -EIO;
1211 return NULL;
1212}
1213
1214int udf_setsize(struct inode *inode, loff_t newsize)
1215{
1216 int err;
1217 struct udf_inode_info *iinfo;
1218 int bsize = 1 << inode->i_blkbits;
1219
1220 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221 S_ISLNK(inode->i_mode)))
1222 return -EINVAL;
1223 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224 return -EPERM;
1225
1226 iinfo = UDF_I(inode);
1227 if (newsize > inode->i_size) {
1228 down_write(&iinfo->i_data_sem);
1229 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230 if (bsize <
1231 (udf_file_entry_alloc_offset(inode) + newsize)) {
1232 err = udf_expand_file_adinicb(inode);
1233 if (err)
1234 return err;
1235 down_write(&iinfo->i_data_sem);
1236 } else {
1237 iinfo->i_lenAlloc = newsize;
1238 goto set_size;
1239 }
1240 }
1241 err = udf_extend_file(inode, newsize);
1242 if (err) {
1243 up_write(&iinfo->i_data_sem);
1244 return err;
1245 }
1246set_size:
1247 truncate_setsize(inode, newsize);
1248 up_write(&iinfo->i_data_sem);
1249 } else {
1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251 down_write(&iinfo->i_data_sem);
1252 udf_clear_extent_cache(inode);
1253 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1254 0x00, bsize - newsize -
1255 udf_file_entry_alloc_offset(inode));
1256 iinfo->i_lenAlloc = newsize;
1257 truncate_setsize(inode, newsize);
1258 up_write(&iinfo->i_data_sem);
1259 goto update_time;
1260 }
1261 err = block_truncate_page(inode->i_mapping, newsize,
1262 udf_get_block);
1263 if (err)
1264 return err;
1265 down_write(&iinfo->i_data_sem);
1266 udf_clear_extent_cache(inode);
1267 truncate_setsize(inode, newsize);
1268 udf_truncate_extents(inode);
1269 up_write(&iinfo->i_data_sem);
1270 }
1271update_time:
1272 inode->i_mtime = inode->i_ctime = current_time(inode);
1273 if (IS_SYNC(inode))
1274 udf_sync_inode(inode);
1275 else
1276 mark_inode_dirty(inode);
1277 return 0;
1278}
1279
1280/*
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1284 */
1285#define UDF_MAX_ICB_NESTING 1024
1286
1287static int udf_read_inode(struct inode *inode, bool hidden_inode)
1288{
1289 struct buffer_head *bh = NULL;
1290 struct fileEntry *fe;
1291 struct extendedFileEntry *efe;
1292 uint16_t ident;
1293 struct udf_inode_info *iinfo = UDF_I(inode);
1294 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1295 struct kernel_lb_addr *iloc = &iinfo->i_location;
1296 unsigned int link_count;
1297 unsigned int indirections = 0;
1298 int bs = inode->i_sb->s_blocksize;
1299 int ret = -EIO;
1300
1301reread:
1302 if (iloc->logicalBlockNum >=
1303 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1304 udf_debug("block=%d, partition=%d out of range\n",
1305 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1306 return -EIO;
1307 }
1308
1309 /*
1310 * Set defaults, but the inode is still incomplete!
1311 * Note: get_new_inode() sets the following on a new inode:
1312 * i_sb = sb
1313 * i_no = ino
1314 * i_flags = sb->s_flags
1315 * i_state = 0
1316 * clean_inode(): zero fills and sets
1317 * i_count = 1
1318 * i_nlink = 1
1319 * i_op = NULL;
1320 */
1321 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1322 if (!bh) {
1323 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1324 return -EIO;
1325 }
1326
1327 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1328 ident != TAG_IDENT_USE) {
1329 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1330 inode->i_ino, ident);
1331 goto out;
1332 }
1333
1334 fe = (struct fileEntry *)bh->b_data;
1335 efe = (struct extendedFileEntry *)bh->b_data;
1336
1337 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1338 struct buffer_head *ibh;
1339
1340 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1341 if (ident == TAG_IDENT_IE && ibh) {
1342 struct kernel_lb_addr loc;
1343 struct indirectEntry *ie;
1344
1345 ie = (struct indirectEntry *)ibh->b_data;
1346 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1347
1348 if (ie->indirectICB.extLength) {
1349 brelse(ibh);
1350 memcpy(&iinfo->i_location, &loc,
1351 sizeof(struct kernel_lb_addr));
1352 if (++indirections > UDF_MAX_ICB_NESTING) {
1353 udf_err(inode->i_sb,
1354 "too many ICBs in ICB hierarchy"
1355 " (max %d supported)\n",
1356 UDF_MAX_ICB_NESTING);
1357 goto out;
1358 }
1359 brelse(bh);
1360 goto reread;
1361 }
1362 }
1363 brelse(ibh);
1364 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1365 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1366 le16_to_cpu(fe->icbTag.strategyType));
1367 goto out;
1368 }
1369 if (fe->icbTag.strategyType == cpu_to_le16(4))
1370 iinfo->i_strat4096 = 0;
1371 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372 iinfo->i_strat4096 = 1;
1373
1374 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1375 ICBTAG_FLAG_AD_MASK;
1376 iinfo->i_unique = 0;
1377 iinfo->i_lenEAttr = 0;
1378 iinfo->i_lenExtents = 0;
1379 iinfo->i_lenAlloc = 0;
1380 iinfo->i_next_alloc_block = 0;
1381 iinfo->i_next_alloc_goal = 0;
1382 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1383 iinfo->i_efe = 1;
1384 iinfo->i_use = 0;
1385 ret = udf_alloc_i_data(inode, bs -
1386 sizeof(struct extendedFileEntry));
1387 if (ret)
1388 goto out;
1389 memcpy(iinfo->i_ext.i_data,
1390 bh->b_data + sizeof(struct extendedFileEntry),
1391 bs - sizeof(struct extendedFileEntry));
1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1393 iinfo->i_efe = 0;
1394 iinfo->i_use = 0;
1395 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1396 if (ret)
1397 goto out;
1398 memcpy(iinfo->i_ext.i_data,
1399 bh->b_data + sizeof(struct fileEntry),
1400 bs - sizeof(struct fileEntry));
1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402 iinfo->i_efe = 0;
1403 iinfo->i_use = 1;
1404 iinfo->i_lenAlloc = le32_to_cpu(
1405 ((struct unallocSpaceEntry *)bh->b_data)->
1406 lengthAllocDescs);
1407 ret = udf_alloc_i_data(inode, bs -
1408 sizeof(struct unallocSpaceEntry));
1409 if (ret)
1410 goto out;
1411 memcpy(iinfo->i_ext.i_data,
1412 bh->b_data + sizeof(struct unallocSpaceEntry),
1413 bs - sizeof(struct unallocSpaceEntry));
1414 return 0;
1415 }
1416
1417 ret = -EIO;
1418 read_lock(&sbi->s_cred_lock);
1419 i_uid_write(inode, le32_to_cpu(fe->uid));
1420 if (!uid_valid(inode->i_uid) ||
1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1423 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1424
1425 i_gid_write(inode, le32_to_cpu(fe->gid));
1426 if (!gid_valid(inode->i_gid) ||
1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1429 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1430
1431 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1432 sbi->s_fmode != UDF_INVALID_MODE)
1433 inode->i_mode = sbi->s_fmode;
1434 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1435 sbi->s_dmode != UDF_INVALID_MODE)
1436 inode->i_mode = sbi->s_dmode;
1437 else
1438 inode->i_mode = udf_convert_permissions(fe);
1439 inode->i_mode &= ~sbi->s_umask;
1440 read_unlock(&sbi->s_cred_lock);
1441
1442 link_count = le16_to_cpu(fe->fileLinkCount);
1443 if (!link_count) {
1444 if (!hidden_inode) {
1445 ret = -ESTALE;
1446 goto out;
1447 }
1448 link_count = 1;
1449 }
1450 set_nlink(inode, link_count);
1451
1452 inode->i_size = le64_to_cpu(fe->informationLength);
1453 iinfo->i_lenExtents = inode->i_size;
1454
1455 if (iinfo->i_efe == 0) {
1456 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1457 (inode->i_sb->s_blocksize_bits - 9);
1458
1459 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1460 inode->i_atime = sbi->s_record_time;
1461
1462 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1463 fe->modificationTime))
1464 inode->i_mtime = sbi->s_record_time;
1465
1466 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1467 inode->i_ctime = sbi->s_record_time;
1468
1469 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1470 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1471 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1472 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1473 } else {
1474 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1475 (inode->i_sb->s_blocksize_bits - 9);
1476
1477 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1478 inode->i_atime = sbi->s_record_time;
1479
1480 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1481 efe->modificationTime))
1482 inode->i_mtime = sbi->s_record_time;
1483
1484 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1485 iinfo->i_crtime = sbi->s_record_time;
1486
1487 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1488 inode->i_ctime = sbi->s_record_time;
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494 }
1495 inode->i_generation = iinfo->i_unique;
1496
1497 /*
1498 * Sanity check length of allocation descriptors and extended attrs to
1499 * avoid integer overflows
1500 */
1501 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1502 goto out;
1503 /* Now do exact checks */
1504 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1505 goto out;
1506 /* Sanity checks for files in ICB so that we don't get confused later */
1507 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1508 /*
1509 * For file in ICB data is stored in allocation descriptor
1510 * so sizes should match
1511 */
1512 if (iinfo->i_lenAlloc != inode->i_size)
1513 goto out;
1514 /* File in ICB has to fit in there... */
1515 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1516 goto out;
1517 }
1518
1519 switch (fe->icbTag.fileType) {
1520 case ICBTAG_FILE_TYPE_DIRECTORY:
1521 inode->i_op = &udf_dir_inode_operations;
1522 inode->i_fop = &udf_dir_operations;
1523 inode->i_mode |= S_IFDIR;
1524 inc_nlink(inode);
1525 break;
1526 case ICBTAG_FILE_TYPE_REALTIME:
1527 case ICBTAG_FILE_TYPE_REGULAR:
1528 case ICBTAG_FILE_TYPE_UNDEF:
1529 case ICBTAG_FILE_TYPE_VAT20:
1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1531 inode->i_data.a_ops = &udf_adinicb_aops;
1532 else
1533 inode->i_data.a_ops = &udf_aops;
1534 inode->i_op = &udf_file_inode_operations;
1535 inode->i_fop = &udf_file_operations;
1536 inode->i_mode |= S_IFREG;
1537 break;
1538 case ICBTAG_FILE_TYPE_BLOCK:
1539 inode->i_mode |= S_IFBLK;
1540 break;
1541 case ICBTAG_FILE_TYPE_CHAR:
1542 inode->i_mode |= S_IFCHR;
1543 break;
1544 case ICBTAG_FILE_TYPE_FIFO:
1545 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1546 break;
1547 case ICBTAG_FILE_TYPE_SOCKET:
1548 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1549 break;
1550 case ICBTAG_FILE_TYPE_SYMLINK:
1551 inode->i_data.a_ops = &udf_symlink_aops;
1552 inode->i_op = &page_symlink_inode_operations;
1553 inode_nohighmem(inode);
1554 inode->i_mode = S_IFLNK | S_IRWXUGO;
1555 break;
1556 case ICBTAG_FILE_TYPE_MAIN:
1557 udf_debug("METADATA FILE-----\n");
1558 break;
1559 case ICBTAG_FILE_TYPE_MIRROR:
1560 udf_debug("METADATA MIRROR FILE-----\n");
1561 break;
1562 case ICBTAG_FILE_TYPE_BITMAP:
1563 udf_debug("METADATA BITMAP FILE-----\n");
1564 break;
1565 default:
1566 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1567 inode->i_ino, fe->icbTag.fileType);
1568 goto out;
1569 }
1570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571 struct deviceSpec *dsea =
1572 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573 if (dsea) {
1574 init_special_inode(inode, inode->i_mode,
1575 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1576 le32_to_cpu(dsea->minorDeviceIdent)));
1577 /* Developer ID ??? */
1578 } else
1579 goto out;
1580 }
1581 ret = 0;
1582out:
1583 brelse(bh);
1584 return ret;
1585}
1586
1587static int udf_alloc_i_data(struct inode *inode, size_t size)
1588{
1589 struct udf_inode_info *iinfo = UDF_I(inode);
1590 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1591
1592 if (!iinfo->i_ext.i_data) {
1593 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1594 inode->i_ino);
1595 return -ENOMEM;
1596 }
1597
1598 return 0;
1599}
1600
1601static umode_t udf_convert_permissions(struct fileEntry *fe)
1602{
1603 umode_t mode;
1604 uint32_t permissions;
1605 uint32_t flags;
1606
1607 permissions = le32_to_cpu(fe->permissions);
1608 flags = le16_to_cpu(fe->icbTag.flags);
1609
1610 mode = ((permissions) & S_IRWXO) |
1611 ((permissions >> 2) & S_IRWXG) |
1612 ((permissions >> 4) & S_IRWXU) |
1613 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1614 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1615 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1616
1617 return mode;
1618}
1619
1620int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1621{
1622 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1623}
1624
1625static int udf_sync_inode(struct inode *inode)
1626{
1627 return udf_update_inode(inode, 1);
1628}
1629
1630static int udf_update_inode(struct inode *inode, int do_sync)
1631{
1632 struct buffer_head *bh = NULL;
1633 struct fileEntry *fe;
1634 struct extendedFileEntry *efe;
1635 uint64_t lb_recorded;
1636 uint32_t udfperms;
1637 uint16_t icbflags;
1638 uint16_t crclen;
1639 int err = 0;
1640 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1641 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1642 struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644 bh = udf_tgetblk(inode->i_sb,
1645 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1646 if (!bh) {
1647 udf_debug("getblk failure\n");
1648 return -EIO;
1649 }
1650
1651 lock_buffer(bh);
1652 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1653 fe = (struct fileEntry *)bh->b_data;
1654 efe = (struct extendedFileEntry *)bh->b_data;
1655
1656 if (iinfo->i_use) {
1657 struct unallocSpaceEntry *use =
1658 (struct unallocSpaceEntry *)bh->b_data;
1659
1660 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1661 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1662 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1663 sizeof(struct unallocSpaceEntry));
1664 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1665 crclen = sizeof(struct unallocSpaceEntry);
1666
1667 goto finish;
1668 }
1669
1670 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671 fe->uid = cpu_to_le32(-1);
1672 else
1673 fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676 fe->gid = cpu_to_le32(-1);
1677 else
1678 fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680 udfperms = ((inode->i_mode & S_IRWXO)) |
1681 ((inode->i_mode & S_IRWXG) << 2) |
1682 ((inode->i_mode & S_IRWXU) << 4);
1683
1684 udfperms |= (le32_to_cpu(fe->permissions) &
1685 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688 fe->permissions = cpu_to_le32(udfperms);
1689
1690 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692 else
1693 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695 fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698 struct regid *eid;
1699 struct deviceSpec *dsea =
1700 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701 if (!dsea) {
1702 dsea = (struct deviceSpec *)
1703 udf_add_extendedattr(inode,
1704 sizeof(struct deviceSpec) +
1705 sizeof(struct regid), 12, 0x3);
1706 dsea->attrType = cpu_to_le32(12);
1707 dsea->attrSubtype = 1;
1708 dsea->attrLength = cpu_to_le32(
1709 sizeof(struct deviceSpec) +
1710 sizeof(struct regid));
1711 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712 }
1713 eid = (struct regid *)dsea->impUse;
1714 memset(eid, 0, sizeof(struct regid));
1715 strcpy(eid->ident, UDF_ID_DEVELOPER);
1716 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720 }
1721
1722 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723 lb_recorded = 0; /* No extents => no blocks! */
1724 else
1725 lb_recorded =
1726 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727 (blocksize_bits - 9);
1728
1729 if (iinfo->i_efe == 0) {
1730 memcpy(bh->b_data + sizeof(struct fileEntry),
1731 iinfo->i_ext.i_data,
1732 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738 memset(&(fe->impIdent), 0, sizeof(struct regid));
1739 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747 crclen = sizeof(struct fileEntry);
1748 } else {
1749 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750 iinfo->i_ext.i_data,
1751 inode->i_sb->s_blocksize -
1752 sizeof(struct extendedFileEntry));
1753 efe->objectSize = cpu_to_le64(inode->i_size);
1754 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759 iinfo->i_crtime = inode->i_atime;
1760
1761 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764 iinfo->i_crtime = inode->i_mtime;
1765
1766 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769 iinfo->i_crtime = inode->i_ctime;
1770
1771 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776 memset(&(efe->impIdent), 0, sizeof(struct regid));
1777 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785 crclen = sizeof(struct extendedFileEntry);
1786 }
1787
1788finish:
1789 if (iinfo->i_strat4096) {
1790 fe->icbTag.strategyType = cpu_to_le16(4096);
1791 fe->icbTag.strategyParameter = cpu_to_le16(1);
1792 fe->icbTag.numEntries = cpu_to_le16(2);
1793 } else {
1794 fe->icbTag.strategyType = cpu_to_le16(4);
1795 fe->icbTag.numEntries = cpu_to_le16(1);
1796 }
1797
1798 if (iinfo->i_use)
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1800 else if (S_ISDIR(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1802 else if (S_ISREG(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1804 else if (S_ISLNK(inode->i_mode))
1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1806 else if (S_ISBLK(inode->i_mode))
1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1808 else if (S_ISCHR(inode->i_mode))
1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1810 else if (S_ISFIFO(inode->i_mode))
1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1812 else if (S_ISSOCK(inode->i_mode))
1813 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1814
1815 icbflags = iinfo->i_alloc_type |
1816 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1817 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1818 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1819 (le16_to_cpu(fe->icbTag.flags) &
1820 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1821 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1822
1823 fe->icbTag.flags = cpu_to_le16(icbflags);
1824 if (sbi->s_udfrev >= 0x0200)
1825 fe->descTag.descVersion = cpu_to_le16(3);
1826 else
1827 fe->descTag.descVersion = cpu_to_le16(2);
1828 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1829 fe->descTag.tagLocation = cpu_to_le32(
1830 iinfo->i_location.logicalBlockNum);
1831 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1832 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1833 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1834 crclen));
1835 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1836
1837 set_buffer_uptodate(bh);
1838 unlock_buffer(bh);
1839
1840 /* write the data blocks */
1841 mark_buffer_dirty(bh);
1842 if (do_sync) {
1843 sync_dirty_buffer(bh);
1844 if (buffer_write_io_error(bh)) {
1845 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1846 inode->i_ino);
1847 err = -EIO;
1848 }
1849 }
1850 brelse(bh);
1851
1852 return err;
1853}
1854
1855struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1856 bool hidden_inode)
1857{
1858 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1859 struct inode *inode = iget_locked(sb, block);
1860 int err;
1861
1862 if (!inode)
1863 return ERR_PTR(-ENOMEM);
1864
1865 if (!(inode->i_state & I_NEW))
1866 return inode;
1867
1868 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1869 err = udf_read_inode(inode, hidden_inode);
1870 if (err < 0) {
1871 iget_failed(inode);
1872 return ERR_PTR(err);
1873 }
1874 unlock_new_inode(inode);
1875
1876 return inode;
1877}
1878
1879int udf_setup_indirect_aext(struct inode *inode, int block,
1880 struct extent_position *epos)
1881{
1882 struct super_block *sb = inode->i_sb;
1883 struct buffer_head *bh;
1884 struct allocExtDesc *aed;
1885 struct extent_position nepos;
1886 struct kernel_lb_addr neloc;
1887 int ver, adsize;
1888
1889 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1890 adsize = sizeof(struct short_ad);
1891 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1892 adsize = sizeof(struct long_ad);
1893 else
1894 return -EIO;
1895
1896 neloc.logicalBlockNum = block;
1897 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1898
1899 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1900 if (!bh)
1901 return -EIO;
1902 lock_buffer(bh);
1903 memset(bh->b_data, 0x00, sb->s_blocksize);
1904 set_buffer_uptodate(bh);
1905 unlock_buffer(bh);
1906 mark_buffer_dirty_inode(bh, inode);
1907
1908 aed = (struct allocExtDesc *)(bh->b_data);
1909 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1910 aed->previousAllocExtLocation =
1911 cpu_to_le32(epos->block.logicalBlockNum);
1912 }
1913 aed->lengthAllocDescs = cpu_to_le32(0);
1914 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1915 ver = 3;
1916 else
1917 ver = 2;
1918 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1919 sizeof(struct tag));
1920
1921 nepos.block = neloc;
1922 nepos.offset = sizeof(struct allocExtDesc);
1923 nepos.bh = bh;
1924
1925 /*
1926 * Do we have to copy current last extent to make space for indirect
1927 * one?
1928 */
1929 if (epos->offset + adsize > sb->s_blocksize) {
1930 struct kernel_lb_addr cp_loc;
1931 uint32_t cp_len;
1932 int cp_type;
1933
1934 epos->offset -= adsize;
1935 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1936 cp_len |= ((uint32_t)cp_type) << 30;
1937
1938 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1939 udf_write_aext(inode, epos, &nepos.block,
1940 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1941 } else {
1942 __udf_add_aext(inode, epos, &nepos.block,
1943 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1944 }
1945
1946 brelse(epos->bh);
1947 *epos = nepos;
1948
1949 return 0;
1950}
1951
1952/*
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1956 */
1957int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1958 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1959{
1960 struct udf_inode_info *iinfo = UDF_I(inode);
1961 struct allocExtDesc *aed;
1962 int adsize;
1963
1964 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965 adsize = sizeof(struct short_ad);
1966 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967 adsize = sizeof(struct long_ad);
1968 else
1969 return -EIO;
1970
1971 if (!epos->bh) {
1972 WARN_ON(iinfo->i_lenAlloc !=
1973 epos->offset - udf_file_entry_alloc_offset(inode));
1974 } else {
1975 aed = (struct allocExtDesc *)epos->bh->b_data;
1976 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1977 epos->offset - sizeof(struct allocExtDesc));
1978 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1979 }
1980
1981 udf_write_aext(inode, epos, eloc, elen, inc);
1982
1983 if (!epos->bh) {
1984 iinfo->i_lenAlloc += adsize;
1985 mark_inode_dirty(inode);
1986 } else {
1987 aed = (struct allocExtDesc *)epos->bh->b_data;
1988 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1989 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1990 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1991 udf_update_tag(epos->bh->b_data,
1992 epos->offset + (inc ? 0 : adsize));
1993 else
1994 udf_update_tag(epos->bh->b_data,
1995 sizeof(struct allocExtDesc));
1996 mark_buffer_dirty_inode(epos->bh, inode);
1997 }
1998
1999 return 0;
2000}
2001
2002/*
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2005 */
2006int udf_add_aext(struct inode *inode, struct extent_position *epos,
2007 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008{
2009 int adsize;
2010 struct super_block *sb = inode->i_sb;
2011
2012 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2020 int err;
2021 int new_block;
2022
2023 new_block = udf_new_block(sb, NULL,
2024 epos->block.partitionReferenceNum,
2025 epos->block.logicalBlockNum, &err);
2026 if (!new_block)
2027 return -ENOSPC;
2028
2029 err = udf_setup_indirect_aext(inode, new_block, epos);
2030 if (err)
2031 return err;
2032 }
2033
2034 return __udf_add_aext(inode, epos, eloc, elen, inc);
2035}
2036
2037void udf_write_aext(struct inode *inode, struct extent_position *epos,
2038 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2039{
2040 int adsize;
2041 uint8_t *ptr;
2042 struct short_ad *sad;
2043 struct long_ad *lad;
2044 struct udf_inode_info *iinfo = UDF_I(inode);
2045
2046 if (!epos->bh)
2047 ptr = iinfo->i_ext.i_data + epos->offset -
2048 udf_file_entry_alloc_offset(inode) +
2049 iinfo->i_lenEAttr;
2050 else
2051 ptr = epos->bh->b_data + epos->offset;
2052
2053 switch (iinfo->i_alloc_type) {
2054 case ICBTAG_FLAG_AD_SHORT:
2055 sad = (struct short_ad *)ptr;
2056 sad->extLength = cpu_to_le32(elen);
2057 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2058 adsize = sizeof(struct short_ad);
2059 break;
2060 case ICBTAG_FLAG_AD_LONG:
2061 lad = (struct long_ad *)ptr;
2062 lad->extLength = cpu_to_le32(elen);
2063 lad->extLocation = cpu_to_lelb(*eloc);
2064 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2065 adsize = sizeof(struct long_ad);
2066 break;
2067 default:
2068 return;
2069 }
2070
2071 if (epos->bh) {
2072 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2073 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2074 struct allocExtDesc *aed =
2075 (struct allocExtDesc *)epos->bh->b_data;
2076 udf_update_tag(epos->bh->b_data,
2077 le32_to_cpu(aed->lengthAllocDescs) +
2078 sizeof(struct allocExtDesc));
2079 }
2080 mark_buffer_dirty_inode(epos->bh, inode);
2081 } else {
2082 mark_inode_dirty(inode);
2083 }
2084
2085 if (inc)
2086 epos->offset += adsize;
2087}
2088
2089/*
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2092 */
2093#define UDF_MAX_INDIR_EXTS 16
2094
2095int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2096 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097{
2098 int8_t etype;
2099 unsigned int indirections = 0;
2100
2101 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2102 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2103 int block;
2104
2105 if (++indirections > UDF_MAX_INDIR_EXTS) {
2106 udf_err(inode->i_sb,
2107 "too many indirect extents in inode %lu\n",
2108 inode->i_ino);
2109 return -1;
2110 }
2111
2112 epos->block = *eloc;
2113 epos->offset = sizeof(struct allocExtDesc);
2114 brelse(epos->bh);
2115 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2116 epos->bh = udf_tread(inode->i_sb, block);
2117 if (!epos->bh) {
2118 udf_debug("reading block %d failed!\n", block);
2119 return -1;
2120 }
2121 }
2122
2123 return etype;
2124}
2125
2126int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2127 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2128{
2129 int alen;
2130 int8_t etype;
2131 uint8_t *ptr;
2132 struct short_ad *sad;
2133 struct long_ad *lad;
2134 struct udf_inode_info *iinfo = UDF_I(inode);
2135
2136 if (!epos->bh) {
2137 if (!epos->offset)
2138 epos->offset = udf_file_entry_alloc_offset(inode);
2139 ptr = iinfo->i_ext.i_data + epos->offset -
2140 udf_file_entry_alloc_offset(inode) +
2141 iinfo->i_lenEAttr;
2142 alen = udf_file_entry_alloc_offset(inode) +
2143 iinfo->i_lenAlloc;
2144 } else {
2145 if (!epos->offset)
2146 epos->offset = sizeof(struct allocExtDesc);
2147 ptr = epos->bh->b_data + epos->offset;
2148 alen = sizeof(struct allocExtDesc) +
2149 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2150 lengthAllocDescs);
2151 }
2152
2153 switch (iinfo->i_alloc_type) {
2154 case ICBTAG_FLAG_AD_SHORT:
2155 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2156 if (!sad)
2157 return -1;
2158 etype = le32_to_cpu(sad->extLength) >> 30;
2159 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2160 eloc->partitionReferenceNum =
2161 iinfo->i_location.partitionReferenceNum;
2162 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2163 break;
2164 case ICBTAG_FLAG_AD_LONG:
2165 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2166 if (!lad)
2167 return -1;
2168 etype = le32_to_cpu(lad->extLength) >> 30;
2169 *eloc = lelb_to_cpu(lad->extLocation);
2170 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2171 break;
2172 default:
2173 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2174 return -1;
2175 }
2176
2177 return etype;
2178}
2179
2180static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr neloc, uint32_t nelen)
2182{
2183 struct kernel_lb_addr oeloc;
2184 uint32_t oelen;
2185 int8_t etype;
2186
2187 if (epos.bh)
2188 get_bh(epos.bh);
2189
2190 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2191 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2192 neloc = oeloc;
2193 nelen = (etype << 30) | oelen;
2194 }
2195 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2196 brelse(epos.bh);
2197
2198 return (nelen >> 30);
2199}
2200
2201int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2202 struct kernel_lb_addr eloc, uint32_t elen)
2203{
2204 struct extent_position oepos;
2205 int adsize;
2206 int8_t etype;
2207 struct allocExtDesc *aed;
2208 struct udf_inode_info *iinfo;
2209
2210 if (epos.bh) {
2211 get_bh(epos.bh);
2212 get_bh(epos.bh);
2213 }
2214
2215 iinfo = UDF_I(inode);
2216 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217 adsize = sizeof(struct short_ad);
2218 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219 adsize = sizeof(struct long_ad);
2220 else
2221 adsize = 0;
2222
2223 oepos = epos;
2224 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225 return -1;
2226
2227 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229 if (oepos.bh != epos.bh) {
2230 oepos.block = epos.block;
2231 brelse(oepos.bh);
2232 get_bh(epos.bh);
2233 oepos.bh = epos.bh;
2234 oepos.offset = epos.offset - adsize;
2235 }
2236 }
2237 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238 elen = 0;
2239
2240 if (epos.bh != oepos.bh) {
2241 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244 if (!oepos.bh) {
2245 iinfo->i_lenAlloc -= (adsize * 2);
2246 mark_inode_dirty(inode);
2247 } else {
2248 aed = (struct allocExtDesc *)oepos.bh->b_data;
2249 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252 udf_update_tag(oepos.bh->b_data,
2253 oepos.offset - (2 * adsize));
2254 else
2255 udf_update_tag(oepos.bh->b_data,
2256 sizeof(struct allocExtDesc));
2257 mark_buffer_dirty_inode(oepos.bh, inode);
2258 }
2259 } else {
2260 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261 if (!oepos.bh) {
2262 iinfo->i_lenAlloc -= adsize;
2263 mark_inode_dirty(inode);
2264 } else {
2265 aed = (struct allocExtDesc *)oepos.bh->b_data;
2266 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269 udf_update_tag(oepos.bh->b_data,
2270 epos.offset - adsize);
2271 else
2272 udf_update_tag(oepos.bh->b_data,
2273 sizeof(struct allocExtDesc));
2274 mark_buffer_dirty_inode(oepos.bh, inode);
2275 }
2276 }
2277
2278 brelse(epos.bh);
2279 brelse(oepos.bh);
2280
2281 return (elen >> 30);
2282}
2283
2284int8_t inode_bmap(struct inode *inode, sector_t block,
2285 struct extent_position *pos, struct kernel_lb_addr *eloc,
2286 uint32_t *elen, sector_t *offset)
2287{
2288 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289 loff_t lbcount = 0, bcount =
2290 (loff_t) block << blocksize_bits;
2291 int8_t etype;
2292 struct udf_inode_info *iinfo;
2293
2294 iinfo = UDF_I(inode);
2295 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2296 pos->offset = 0;
2297 pos->block = iinfo->i_location;
2298 pos->bh = NULL;
2299 }
2300 *elen = 0;
2301 do {
2302 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2303 if (etype == -1) {
2304 *offset = (bcount - lbcount) >> blocksize_bits;
2305 iinfo->i_lenExtents = lbcount;
2306 return -1;
2307 }
2308 lbcount += *elen;
2309 } while (lbcount <= bcount);
2310 /* update extent cache */
2311 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2312 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2313
2314 return etype;
2315}
2316
2317long udf_block_map(struct inode *inode, sector_t block)
2318{
2319 struct kernel_lb_addr eloc;
2320 uint32_t elen;
2321 sector_t offset;
2322 struct extent_position epos = {};
2323 int ret;
2324
2325 down_read(&UDF_I(inode)->i_data_sem);
2326
2327 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2328 (EXT_RECORDED_ALLOCATED >> 30))
2329 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2330 else
2331 ret = 0;
2332
2333 up_read(&UDF_I(inode)->i_data_sem);
2334 brelse(epos.bh);
2335
2336 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2337 return udf_fixed_to_variable(ret);
2338 else
2339 return ret;
2340}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39#include <linux/crc-itu-t.h>
40
41#include "udf_i.h"
42#include "udf_sb.h"
43
44MODULE_AUTHOR("Ben Fennema");
45MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46MODULE_LICENSE("GPL");
47
48#define EXTENT_MERGE_SIZE 5
49
50static mode_t udf_convert_permissions(struct fileEntry *);
51static int udf_update_inode(struct inode *, int);
52static void udf_fill_inode(struct inode *, struct buffer_head *);
53static int udf_sync_inode(struct inode *inode);
54static int udf_alloc_i_data(struct inode *inode, size_t size);
55static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71void udf_evict_inode(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
87 "inode size %llu different from extent length %llu. "
88 "Filesystem need not be standards compliant.\n",
89 inode->i_sb->s_id, inode->i_ino, inode->i_mode,
90 (unsigned long long)inode->i_size,
91 (unsigned long long)iinfo->i_lenExtents);
92 }
93 kfree(iinfo->i_ext.i_data);
94 iinfo->i_ext.i_data = NULL;
95 if (want_delete) {
96 udf_free_inode(inode);
97 }
98}
99
100static int udf_writepage(struct page *page, struct writeback_control *wbc)
101{
102 return block_write_full_page(page, udf_get_block, wbc);
103}
104
105static int udf_readpage(struct file *file, struct page *page)
106{
107 return block_read_full_page(page, udf_get_block);
108}
109
110static int udf_write_begin(struct file *file, struct address_space *mapping,
111 loff_t pos, unsigned len, unsigned flags,
112 struct page **pagep, void **fsdata)
113{
114 int ret;
115
116 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
117 if (unlikely(ret)) {
118 struct inode *inode = mapping->host;
119 struct udf_inode_info *iinfo = UDF_I(inode);
120 loff_t isize = inode->i_size;
121
122 if (pos + len > isize) {
123 truncate_pagecache(inode, pos + len, isize);
124 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
125 down_write(&iinfo->i_data_sem);
126 udf_truncate_extents(inode);
127 up_write(&iinfo->i_data_sem);
128 }
129 }
130 }
131
132 return ret;
133}
134
135static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136{
137 return generic_block_bmap(mapping, block, udf_get_block);
138}
139
140const struct address_space_operations udf_aops = {
141 .readpage = udf_readpage,
142 .writepage = udf_writepage,
143 .write_begin = udf_write_begin,
144 .write_end = generic_write_end,
145 .bmap = udf_bmap,
146};
147
148int udf_expand_file_adinicb(struct inode *inode)
149{
150 struct page *page;
151 char *kaddr;
152 struct udf_inode_info *iinfo = UDF_I(inode);
153 int err;
154 struct writeback_control udf_wbc = {
155 .sync_mode = WB_SYNC_NONE,
156 .nr_to_write = 1,
157 };
158
159 if (!iinfo->i_lenAlloc) {
160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
161 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
162 else
163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
164 /* from now on we have normal address_space methods */
165 inode->i_data.a_ops = &udf_aops;
166 mark_inode_dirty(inode);
167 return 0;
168 }
169
170 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
171 if (!page)
172 return -ENOMEM;
173
174 if (!PageUptodate(page)) {
175 kaddr = kmap(page);
176 memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 iinfo->i_lenAlloc);
180 flush_dcache_page(page);
181 SetPageUptodate(page);
182 kunmap(page);
183 }
184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 iinfo->i_lenAlloc);
186 iinfo->i_lenAlloc = 0;
187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 else
190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191 /* from now on we have normal address_space methods */
192 inode->i_data.a_ops = &udf_aops;
193 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
194 if (err) {
195 /* Restore everything back so that we don't lose data... */
196 lock_page(page);
197 kaddr = kmap(page);
198 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
199 inode->i_size);
200 kunmap(page);
201 unlock_page(page);
202 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
203 inode->i_data.a_ops = &udf_adinicb_aops;
204 }
205 page_cache_release(page);
206 mark_inode_dirty(inode);
207
208 return err;
209}
210
211struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
212 int *err)
213{
214 int newblock;
215 struct buffer_head *dbh = NULL;
216 struct kernel_lb_addr eloc;
217 uint8_t alloctype;
218 struct extent_position epos;
219
220 struct udf_fileident_bh sfibh, dfibh;
221 loff_t f_pos = udf_ext0_offset(inode);
222 int size = udf_ext0_offset(inode) + inode->i_size;
223 struct fileIdentDesc cfi, *sfi, *dfi;
224 struct udf_inode_info *iinfo = UDF_I(inode);
225
226 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
227 alloctype = ICBTAG_FLAG_AD_SHORT;
228 else
229 alloctype = ICBTAG_FLAG_AD_LONG;
230
231 if (!inode->i_size) {
232 iinfo->i_alloc_type = alloctype;
233 mark_inode_dirty(inode);
234 return NULL;
235 }
236
237 /* alloc block, and copy data to it */
238 *block = udf_new_block(inode->i_sb, inode,
239 iinfo->i_location.partitionReferenceNum,
240 iinfo->i_location.logicalBlockNum, err);
241 if (!(*block))
242 return NULL;
243 newblock = udf_get_pblock(inode->i_sb, *block,
244 iinfo->i_location.partitionReferenceNum,
245 0);
246 if (!newblock)
247 return NULL;
248 dbh = udf_tgetblk(inode->i_sb, newblock);
249 if (!dbh)
250 return NULL;
251 lock_buffer(dbh);
252 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
253 set_buffer_uptodate(dbh);
254 unlock_buffer(dbh);
255 mark_buffer_dirty_inode(dbh, inode);
256
257 sfibh.soffset = sfibh.eoffset =
258 f_pos & (inode->i_sb->s_blocksize - 1);
259 sfibh.sbh = sfibh.ebh = NULL;
260 dfibh.soffset = dfibh.eoffset = 0;
261 dfibh.sbh = dfibh.ebh = dbh;
262 while (f_pos < size) {
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
264 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
265 NULL, NULL, NULL);
266 if (!sfi) {
267 brelse(dbh);
268 return NULL;
269 }
270 iinfo->i_alloc_type = alloctype;
271 sfi->descTag.tagLocation = cpu_to_le32(*block);
272 dfibh.soffset = dfibh.eoffset;
273 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
274 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
275 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
276 sfi->fileIdent +
277 le16_to_cpu(sfi->lengthOfImpUse))) {
278 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
279 brelse(dbh);
280 return NULL;
281 }
282 }
283 mark_buffer_dirty_inode(dbh, inode);
284
285 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
286 iinfo->i_lenAlloc);
287 iinfo->i_lenAlloc = 0;
288 eloc.logicalBlockNum = *block;
289 eloc.partitionReferenceNum =
290 iinfo->i_location.partitionReferenceNum;
291 iinfo->i_lenExtents = inode->i_size;
292 epos.bh = NULL;
293 epos.block = iinfo->i_location;
294 epos.offset = udf_file_entry_alloc_offset(inode);
295 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
296 /* UniqueID stuff */
297
298 brelse(epos.bh);
299 mark_inode_dirty(inode);
300 return dbh;
301}
302
303static int udf_get_block(struct inode *inode, sector_t block,
304 struct buffer_head *bh_result, int create)
305{
306 int err, new;
307 struct buffer_head *bh;
308 sector_t phys = 0;
309 struct udf_inode_info *iinfo;
310
311 if (!create) {
312 phys = udf_block_map(inode, block);
313 if (phys)
314 map_bh(bh_result, inode->i_sb, phys);
315 return 0;
316 }
317
318 err = -EIO;
319 new = 0;
320 bh = NULL;
321 iinfo = UDF_I(inode);
322
323 down_write(&iinfo->i_data_sem);
324 if (block == iinfo->i_next_alloc_block + 1) {
325 iinfo->i_next_alloc_block++;
326 iinfo->i_next_alloc_goal++;
327 }
328
329 err = 0;
330
331 bh = inode_getblk(inode, block, &err, &phys, &new);
332 BUG_ON(bh);
333 if (err)
334 goto abort;
335 BUG_ON(!phys);
336
337 if (new)
338 set_buffer_new(bh_result);
339 map_bh(bh_result, inode->i_sb, phys);
340
341abort:
342 up_write(&iinfo->i_data_sem);
343 return err;
344}
345
346static struct buffer_head *udf_getblk(struct inode *inode, long block,
347 int create, int *err)
348{
349 struct buffer_head *bh;
350 struct buffer_head dummy;
351
352 dummy.b_state = 0;
353 dummy.b_blocknr = -1000;
354 *err = udf_get_block(inode, block, &dummy, create);
355 if (!*err && buffer_mapped(&dummy)) {
356 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
357 if (buffer_new(&dummy)) {
358 lock_buffer(bh);
359 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
360 set_buffer_uptodate(bh);
361 unlock_buffer(bh);
362 mark_buffer_dirty_inode(bh, inode);
363 }
364 return bh;
365 }
366
367 return NULL;
368}
369
370/* Extend the file by 'blocks' blocks, return the number of extents added */
371static int udf_do_extend_file(struct inode *inode,
372 struct extent_position *last_pos,
373 struct kernel_long_ad *last_ext,
374 sector_t blocks)
375{
376 sector_t add;
377 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
378 struct super_block *sb = inode->i_sb;
379 struct kernel_lb_addr prealloc_loc = {};
380 int prealloc_len = 0;
381 struct udf_inode_info *iinfo;
382 int err;
383
384 /* The previous extent is fake and we should not extend by anything
385 * - there's nothing to do... */
386 if (!blocks && fake)
387 return 0;
388
389 iinfo = UDF_I(inode);
390 /* Round the last extent up to a multiple of block size */
391 if (last_ext->extLength & (sb->s_blocksize - 1)) {
392 last_ext->extLength =
393 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
394 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
395 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
396 iinfo->i_lenExtents =
397 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
398 ~(sb->s_blocksize - 1);
399 }
400
401 /* Last extent are just preallocated blocks? */
402 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
403 EXT_NOT_RECORDED_ALLOCATED) {
404 /* Save the extent so that we can reattach it to the end */
405 prealloc_loc = last_ext->extLocation;
406 prealloc_len = last_ext->extLength;
407 /* Mark the extent as a hole */
408 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
409 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
410 last_ext->extLocation.logicalBlockNum = 0;
411 last_ext->extLocation.partitionReferenceNum = 0;
412 }
413
414 /* Can we merge with the previous extent? */
415 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
416 EXT_NOT_RECORDED_NOT_ALLOCATED) {
417 add = ((1 << 30) - sb->s_blocksize -
418 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
419 sb->s_blocksize_bits;
420 if (add > blocks)
421 add = blocks;
422 blocks -= add;
423 last_ext->extLength += add << sb->s_blocksize_bits;
424 }
425
426 if (fake) {
427 udf_add_aext(inode, last_pos, &last_ext->extLocation,
428 last_ext->extLength, 1);
429 count++;
430 } else
431 udf_write_aext(inode, last_pos, &last_ext->extLocation,
432 last_ext->extLength, 1);
433
434 /* Managed to do everything necessary? */
435 if (!blocks)
436 goto out;
437
438 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
439 last_ext->extLocation.logicalBlockNum = 0;
440 last_ext->extLocation.partitionReferenceNum = 0;
441 add = (1 << (30-sb->s_blocksize_bits)) - 1;
442 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443 (add << sb->s_blocksize_bits);
444
445 /* Create enough extents to cover the whole hole */
446 while (blocks > add) {
447 blocks -= add;
448 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
449 last_ext->extLength, 1);
450 if (err)
451 return err;
452 count++;
453 }
454 if (blocks) {
455 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
456 (blocks << sb->s_blocksize_bits);
457 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
458 last_ext->extLength, 1);
459 if (err)
460 return err;
461 count++;
462 }
463
464out:
465 /* Do we have some preallocated blocks saved? */
466 if (prealloc_len) {
467 err = udf_add_aext(inode, last_pos, &prealloc_loc,
468 prealloc_len, 1);
469 if (err)
470 return err;
471 last_ext->extLocation = prealloc_loc;
472 last_ext->extLength = prealloc_len;
473 count++;
474 }
475
476 /* last_pos should point to the last written extent... */
477 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
478 last_pos->offset -= sizeof(struct short_ad);
479 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
480 last_pos->offset -= sizeof(struct long_ad);
481 else
482 return -EIO;
483
484 return count;
485}
486
487static int udf_extend_file(struct inode *inode, loff_t newsize)
488{
489
490 struct extent_position epos;
491 struct kernel_lb_addr eloc;
492 uint32_t elen;
493 int8_t etype;
494 struct super_block *sb = inode->i_sb;
495 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
496 int adsize;
497 struct udf_inode_info *iinfo = UDF_I(inode);
498 struct kernel_long_ad extent;
499 int err;
500
501 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
502 adsize = sizeof(struct short_ad);
503 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
504 adsize = sizeof(struct long_ad);
505 else
506 BUG();
507
508 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
509
510 /* File has extent covering the new size (could happen when extending
511 * inside a block)? */
512 if (etype != -1)
513 return 0;
514 if (newsize & (sb->s_blocksize - 1))
515 offset++;
516 /* Extended file just to the boundary of the last file block? */
517 if (offset == 0)
518 return 0;
519
520 /* Truncate is extending the file by 'offset' blocks */
521 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
522 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
523 /* File has no extents at all or has empty last
524 * indirect extent! Create a fake extent... */
525 extent.extLocation.logicalBlockNum = 0;
526 extent.extLocation.partitionReferenceNum = 0;
527 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
528 } else {
529 epos.offset -= adsize;
530 etype = udf_next_aext(inode, &epos, &extent.extLocation,
531 &extent.extLength, 0);
532 extent.extLength |= etype << 30;
533 }
534 err = udf_do_extend_file(inode, &epos, &extent, offset);
535 if (err < 0)
536 goto out;
537 err = 0;
538 iinfo->i_lenExtents = newsize;
539out:
540 brelse(epos.bh);
541 return err;
542}
543
544static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
545 int *err, sector_t *phys, int *new)
546{
547 static sector_t last_block;
548 struct buffer_head *result = NULL;
549 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
550 struct extent_position prev_epos, cur_epos, next_epos;
551 int count = 0, startnum = 0, endnum = 0;
552 uint32_t elen = 0, tmpelen;
553 struct kernel_lb_addr eloc, tmpeloc;
554 int c = 1;
555 loff_t lbcount = 0, b_off = 0;
556 uint32_t newblocknum, newblock;
557 sector_t offset = 0;
558 int8_t etype;
559 struct udf_inode_info *iinfo = UDF_I(inode);
560 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
561 int lastblock = 0;
562
563 prev_epos.offset = udf_file_entry_alloc_offset(inode);
564 prev_epos.block = iinfo->i_location;
565 prev_epos.bh = NULL;
566 cur_epos = next_epos = prev_epos;
567 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
568
569 /* find the extent which contains the block we are looking for.
570 alternate between laarr[0] and laarr[1] for locations of the
571 current extent, and the previous extent */
572 do {
573 if (prev_epos.bh != cur_epos.bh) {
574 brelse(prev_epos.bh);
575 get_bh(cur_epos.bh);
576 prev_epos.bh = cur_epos.bh;
577 }
578 if (cur_epos.bh != next_epos.bh) {
579 brelse(cur_epos.bh);
580 get_bh(next_epos.bh);
581 cur_epos.bh = next_epos.bh;
582 }
583
584 lbcount += elen;
585
586 prev_epos.block = cur_epos.block;
587 cur_epos.block = next_epos.block;
588
589 prev_epos.offset = cur_epos.offset;
590 cur_epos.offset = next_epos.offset;
591
592 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
593 if (etype == -1)
594 break;
595
596 c = !c;
597
598 laarr[c].extLength = (etype << 30) | elen;
599 laarr[c].extLocation = eloc;
600
601 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
602 pgoal = eloc.logicalBlockNum +
603 ((elen + inode->i_sb->s_blocksize - 1) >>
604 inode->i_sb->s_blocksize_bits);
605
606 count++;
607 } while (lbcount + elen <= b_off);
608
609 b_off -= lbcount;
610 offset = b_off >> inode->i_sb->s_blocksize_bits;
611 /*
612 * Move prev_epos and cur_epos into indirect extent if we are at
613 * the pointer to it
614 */
615 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
616 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
617
618 /* if the extent is allocated and recorded, return the block
619 if the extent is not a multiple of the blocksize, round up */
620
621 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
622 if (elen & (inode->i_sb->s_blocksize - 1)) {
623 elen = EXT_RECORDED_ALLOCATED |
624 ((elen + inode->i_sb->s_blocksize - 1) &
625 ~(inode->i_sb->s_blocksize - 1));
626 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
627 }
628 brelse(prev_epos.bh);
629 brelse(cur_epos.bh);
630 brelse(next_epos.bh);
631 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
632 *phys = newblock;
633 return NULL;
634 }
635
636 last_block = block;
637 /* Are we beyond EOF? */
638 if (etype == -1) {
639 int ret;
640
641 if (count) {
642 if (c)
643 laarr[0] = laarr[1];
644 startnum = 1;
645 } else {
646 /* Create a fake extent when there's not one */
647 memset(&laarr[0].extLocation, 0x00,
648 sizeof(struct kernel_lb_addr));
649 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
650 /* Will udf_do_extend_file() create real extent from
651 a fake one? */
652 startnum = (offset > 0);
653 }
654 /* Create extents for the hole between EOF and offset */
655 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
656 if (ret < 0) {
657 brelse(prev_epos.bh);
658 brelse(cur_epos.bh);
659 brelse(next_epos.bh);
660 *err = ret;
661 return NULL;
662 }
663 c = 0;
664 offset = 0;
665 count += ret;
666 /* We are not covered by a preallocated extent? */
667 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
668 EXT_NOT_RECORDED_ALLOCATED) {
669 /* Is there any real extent? - otherwise we overwrite
670 * the fake one... */
671 if (count)
672 c = !c;
673 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
674 inode->i_sb->s_blocksize;
675 memset(&laarr[c].extLocation, 0x00,
676 sizeof(struct kernel_lb_addr));
677 count++;
678 endnum++;
679 }
680 endnum = c + 1;
681 lastblock = 1;
682 } else {
683 endnum = startnum = ((count > 2) ? 2 : count);
684
685 /* if the current extent is in position 0,
686 swap it with the previous */
687 if (!c && count != 1) {
688 laarr[2] = laarr[0];
689 laarr[0] = laarr[1];
690 laarr[1] = laarr[2];
691 c = 1;
692 }
693
694 /* if the current block is located in an extent,
695 read the next extent */
696 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
697 if (etype != -1) {
698 laarr[c + 1].extLength = (etype << 30) | elen;
699 laarr[c + 1].extLocation = eloc;
700 count++;
701 startnum++;
702 endnum++;
703 } else
704 lastblock = 1;
705 }
706
707 /* if the current extent is not recorded but allocated, get the
708 * block in the extent corresponding to the requested block */
709 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
710 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
711 else { /* otherwise, allocate a new block */
712 if (iinfo->i_next_alloc_block == block)
713 goal = iinfo->i_next_alloc_goal;
714
715 if (!goal) {
716 if (!(goal = pgoal)) /* XXX: what was intended here? */
717 goal = iinfo->i_location.logicalBlockNum + 1;
718 }
719
720 newblocknum = udf_new_block(inode->i_sb, inode,
721 iinfo->i_location.partitionReferenceNum,
722 goal, err);
723 if (!newblocknum) {
724 brelse(prev_epos.bh);
725 *err = -ENOSPC;
726 return NULL;
727 }
728 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
729 }
730
731 /* if the extent the requsted block is located in contains multiple
732 * blocks, split the extent into at most three extents. blocks prior
733 * to requested block, requested block, and blocks after requested
734 * block */
735 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
736
737#ifdef UDF_PREALLOCATE
738 /* We preallocate blocks only for regular files. It also makes sense
739 * for directories but there's a problem when to drop the
740 * preallocation. We might use some delayed work for that but I feel
741 * it's overengineering for a filesystem like UDF. */
742 if (S_ISREG(inode->i_mode))
743 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
744#endif
745
746 /* merge any continuous blocks in laarr */
747 udf_merge_extents(inode, laarr, &endnum);
748
749 /* write back the new extents, inserting new extents if the new number
750 * of extents is greater than the old number, and deleting extents if
751 * the new number of extents is less than the old number */
752 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
753
754 brelse(prev_epos.bh);
755
756 newblock = udf_get_pblock(inode->i_sb, newblocknum,
757 iinfo->i_location.partitionReferenceNum, 0);
758 if (!newblock)
759 return NULL;
760 *phys = newblock;
761 *err = 0;
762 *new = 1;
763 iinfo->i_next_alloc_block = block;
764 iinfo->i_next_alloc_goal = newblocknum;
765 inode->i_ctime = current_fs_time(inode->i_sb);
766
767 if (IS_SYNC(inode))
768 udf_sync_inode(inode);
769 else
770 mark_inode_dirty(inode);
771
772 return result;
773}
774
775static void udf_split_extents(struct inode *inode, int *c, int offset,
776 int newblocknum,
777 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
778 int *endnum)
779{
780 unsigned long blocksize = inode->i_sb->s_blocksize;
781 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
782
783 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
784 (laarr[*c].extLength >> 30) ==
785 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
786 int curr = *c;
787 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
788 blocksize - 1) >> blocksize_bits;
789 int8_t etype = (laarr[curr].extLength >> 30);
790
791 if (blen == 1)
792 ;
793 else if (!offset || blen == offset + 1) {
794 laarr[curr + 2] = laarr[curr + 1];
795 laarr[curr + 1] = laarr[curr];
796 } else {
797 laarr[curr + 3] = laarr[curr + 1];
798 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
799 }
800
801 if (offset) {
802 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
803 udf_free_blocks(inode->i_sb, inode,
804 &laarr[curr].extLocation,
805 0, offset);
806 laarr[curr].extLength =
807 EXT_NOT_RECORDED_NOT_ALLOCATED |
808 (offset << blocksize_bits);
809 laarr[curr].extLocation.logicalBlockNum = 0;
810 laarr[curr].extLocation.
811 partitionReferenceNum = 0;
812 } else
813 laarr[curr].extLength = (etype << 30) |
814 (offset << blocksize_bits);
815 curr++;
816 (*c)++;
817 (*endnum)++;
818 }
819
820 laarr[curr].extLocation.logicalBlockNum = newblocknum;
821 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
822 laarr[curr].extLocation.partitionReferenceNum =
823 UDF_I(inode)->i_location.partitionReferenceNum;
824 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
825 blocksize;
826 curr++;
827
828 if (blen != offset + 1) {
829 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 laarr[curr].extLocation.logicalBlockNum +=
831 offset + 1;
832 laarr[curr].extLength = (etype << 30) |
833 ((blen - (offset + 1)) << blocksize_bits);
834 curr++;
835 (*endnum)++;
836 }
837 }
838}
839
840static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
841 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
842 int *endnum)
843{
844 int start, length = 0, currlength = 0, i;
845
846 if (*endnum >= (c + 1)) {
847 if (!lastblock)
848 return;
849 else
850 start = c;
851 } else {
852 if ((laarr[c + 1].extLength >> 30) ==
853 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
854 start = c + 1;
855 length = currlength =
856 (((laarr[c + 1].extLength &
857 UDF_EXTENT_LENGTH_MASK) +
858 inode->i_sb->s_blocksize - 1) >>
859 inode->i_sb->s_blocksize_bits);
860 } else
861 start = c;
862 }
863
864 for (i = start + 1; i <= *endnum; i++) {
865 if (i == *endnum) {
866 if (lastblock)
867 length += UDF_DEFAULT_PREALLOC_BLOCKS;
868 } else if ((laarr[i].extLength >> 30) ==
869 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
870 length += (((laarr[i].extLength &
871 UDF_EXTENT_LENGTH_MASK) +
872 inode->i_sb->s_blocksize - 1) >>
873 inode->i_sb->s_blocksize_bits);
874 } else
875 break;
876 }
877
878 if (length) {
879 int next = laarr[start].extLocation.logicalBlockNum +
880 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
881 inode->i_sb->s_blocksize - 1) >>
882 inode->i_sb->s_blocksize_bits);
883 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
884 laarr[start].extLocation.partitionReferenceNum,
885 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
886 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
887 currlength);
888 if (numalloc) {
889 if (start == (c + 1))
890 laarr[start].extLength +=
891 (numalloc <<
892 inode->i_sb->s_blocksize_bits);
893 else {
894 memmove(&laarr[c + 2], &laarr[c + 1],
895 sizeof(struct long_ad) * (*endnum - (c + 1)));
896 (*endnum)++;
897 laarr[c + 1].extLocation.logicalBlockNum = next;
898 laarr[c + 1].extLocation.partitionReferenceNum =
899 laarr[c].extLocation.
900 partitionReferenceNum;
901 laarr[c + 1].extLength =
902 EXT_NOT_RECORDED_ALLOCATED |
903 (numalloc <<
904 inode->i_sb->s_blocksize_bits);
905 start = c + 1;
906 }
907
908 for (i = start + 1; numalloc && i < *endnum; i++) {
909 int elen = ((laarr[i].extLength &
910 UDF_EXTENT_LENGTH_MASK) +
911 inode->i_sb->s_blocksize - 1) >>
912 inode->i_sb->s_blocksize_bits;
913
914 if (elen > numalloc) {
915 laarr[i].extLength -=
916 (numalloc <<
917 inode->i_sb->s_blocksize_bits);
918 numalloc = 0;
919 } else {
920 numalloc -= elen;
921 if (*endnum > (i + 1))
922 memmove(&laarr[i],
923 &laarr[i + 1],
924 sizeof(struct long_ad) *
925 (*endnum - (i + 1)));
926 i--;
927 (*endnum)--;
928 }
929 }
930 UDF_I(inode)->i_lenExtents +=
931 numalloc << inode->i_sb->s_blocksize_bits;
932 }
933 }
934}
935
936static void udf_merge_extents(struct inode *inode,
937 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
938 int *endnum)
939{
940 int i;
941 unsigned long blocksize = inode->i_sb->s_blocksize;
942 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
943
944 for (i = 0; i < (*endnum - 1); i++) {
945 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
946 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
947
948 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
949 (((li->extLength >> 30) ==
950 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
951 ((lip1->extLocation.logicalBlockNum -
952 li->extLocation.logicalBlockNum) ==
953 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
954 blocksize - 1) >> blocksize_bits)))) {
955
956 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
957 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
958 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
959 lip1->extLength = (lip1->extLength -
960 (li->extLength &
961 UDF_EXTENT_LENGTH_MASK) +
962 UDF_EXTENT_LENGTH_MASK) &
963 ~(blocksize - 1);
964 li->extLength = (li->extLength &
965 UDF_EXTENT_FLAG_MASK) +
966 (UDF_EXTENT_LENGTH_MASK + 1) -
967 blocksize;
968 lip1->extLocation.logicalBlockNum =
969 li->extLocation.logicalBlockNum +
970 ((li->extLength &
971 UDF_EXTENT_LENGTH_MASK) >>
972 blocksize_bits);
973 } else {
974 li->extLength = lip1->extLength +
975 (((li->extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 blocksize - 1) & ~(blocksize - 1));
978 if (*endnum > (i + 2))
979 memmove(&laarr[i + 1], &laarr[i + 2],
980 sizeof(struct long_ad) *
981 (*endnum - (i + 2)));
982 i--;
983 (*endnum)--;
984 }
985 } else if (((li->extLength >> 30) ==
986 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
987 ((lip1->extLength >> 30) ==
988 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
989 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
990 ((li->extLength &
991 UDF_EXTENT_LENGTH_MASK) +
992 blocksize - 1) >> blocksize_bits);
993 li->extLocation.logicalBlockNum = 0;
994 li->extLocation.partitionReferenceNum = 0;
995
996 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
997 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
998 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
999 lip1->extLength = (lip1->extLength -
1000 (li->extLength &
1001 UDF_EXTENT_LENGTH_MASK) +
1002 UDF_EXTENT_LENGTH_MASK) &
1003 ~(blocksize - 1);
1004 li->extLength = (li->extLength &
1005 UDF_EXTENT_FLAG_MASK) +
1006 (UDF_EXTENT_LENGTH_MASK + 1) -
1007 blocksize;
1008 } else {
1009 li->extLength = lip1->extLength +
1010 (((li->extLength &
1011 UDF_EXTENT_LENGTH_MASK) +
1012 blocksize - 1) & ~(blocksize - 1));
1013 if (*endnum > (i + 2))
1014 memmove(&laarr[i + 1], &laarr[i + 2],
1015 sizeof(struct long_ad) *
1016 (*endnum - (i + 2)));
1017 i--;
1018 (*endnum)--;
1019 }
1020 } else if ((li->extLength >> 30) ==
1021 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1022 udf_free_blocks(inode->i_sb, inode,
1023 &li->extLocation, 0,
1024 ((li->extLength &
1025 UDF_EXTENT_LENGTH_MASK) +
1026 blocksize - 1) >> blocksize_bits);
1027 li->extLocation.logicalBlockNum = 0;
1028 li->extLocation.partitionReferenceNum = 0;
1029 li->extLength = (li->extLength &
1030 UDF_EXTENT_LENGTH_MASK) |
1031 EXT_NOT_RECORDED_NOT_ALLOCATED;
1032 }
1033 }
1034}
1035
1036static void udf_update_extents(struct inode *inode,
1037 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1038 int startnum, int endnum,
1039 struct extent_position *epos)
1040{
1041 int start = 0, i;
1042 struct kernel_lb_addr tmploc;
1043 uint32_t tmplen;
1044
1045 if (startnum > endnum) {
1046 for (i = 0; i < (startnum - endnum); i++)
1047 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1048 laarr[i].extLength);
1049 } else if (startnum < endnum) {
1050 for (i = 0; i < (endnum - startnum); i++) {
1051 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1052 laarr[i].extLength);
1053 udf_next_aext(inode, epos, &laarr[i].extLocation,
1054 &laarr[i].extLength, 1);
1055 start++;
1056 }
1057 }
1058
1059 for (i = start; i < endnum; i++) {
1060 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1061 udf_write_aext(inode, epos, &laarr[i].extLocation,
1062 laarr[i].extLength, 1);
1063 }
1064}
1065
1066struct buffer_head *udf_bread(struct inode *inode, int block,
1067 int create, int *err)
1068{
1069 struct buffer_head *bh = NULL;
1070
1071 bh = udf_getblk(inode, block, create, err);
1072 if (!bh)
1073 return NULL;
1074
1075 if (buffer_uptodate(bh))
1076 return bh;
1077
1078 ll_rw_block(READ, 1, &bh);
1079
1080 wait_on_buffer(bh);
1081 if (buffer_uptodate(bh))
1082 return bh;
1083
1084 brelse(bh);
1085 *err = -EIO;
1086 return NULL;
1087}
1088
1089int udf_setsize(struct inode *inode, loff_t newsize)
1090{
1091 int err;
1092 struct udf_inode_info *iinfo;
1093 int bsize = 1 << inode->i_blkbits;
1094
1095 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1096 S_ISLNK(inode->i_mode)))
1097 return -EINVAL;
1098 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1099 return -EPERM;
1100
1101 iinfo = UDF_I(inode);
1102 if (newsize > inode->i_size) {
1103 down_write(&iinfo->i_data_sem);
1104 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1105 if (bsize <
1106 (udf_file_entry_alloc_offset(inode) + newsize)) {
1107 err = udf_expand_file_adinicb(inode);
1108 if (err) {
1109 up_write(&iinfo->i_data_sem);
1110 return err;
1111 }
1112 } else
1113 iinfo->i_lenAlloc = newsize;
1114 }
1115 err = udf_extend_file(inode, newsize);
1116 if (err) {
1117 up_write(&iinfo->i_data_sem);
1118 return err;
1119 }
1120 truncate_setsize(inode, newsize);
1121 up_write(&iinfo->i_data_sem);
1122 } else {
1123 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1124 down_write(&iinfo->i_data_sem);
1125 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1126 0x00, bsize - newsize -
1127 udf_file_entry_alloc_offset(inode));
1128 iinfo->i_lenAlloc = newsize;
1129 truncate_setsize(inode, newsize);
1130 up_write(&iinfo->i_data_sem);
1131 goto update_time;
1132 }
1133 err = block_truncate_page(inode->i_mapping, newsize,
1134 udf_get_block);
1135 if (err)
1136 return err;
1137 down_write(&iinfo->i_data_sem);
1138 truncate_setsize(inode, newsize);
1139 udf_truncate_extents(inode);
1140 up_write(&iinfo->i_data_sem);
1141 }
1142update_time:
1143 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1144 if (IS_SYNC(inode))
1145 udf_sync_inode(inode);
1146 else
1147 mark_inode_dirty(inode);
1148 return 0;
1149}
1150
1151static void __udf_read_inode(struct inode *inode)
1152{
1153 struct buffer_head *bh = NULL;
1154 struct fileEntry *fe;
1155 uint16_t ident;
1156 struct udf_inode_info *iinfo = UDF_I(inode);
1157
1158 /*
1159 * Set defaults, but the inode is still incomplete!
1160 * Note: get_new_inode() sets the following on a new inode:
1161 * i_sb = sb
1162 * i_no = ino
1163 * i_flags = sb->s_flags
1164 * i_state = 0
1165 * clean_inode(): zero fills and sets
1166 * i_count = 1
1167 * i_nlink = 1
1168 * i_op = NULL;
1169 */
1170 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1171 if (!bh) {
1172 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1173 inode->i_ino);
1174 make_bad_inode(inode);
1175 return;
1176 }
1177
1178 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1179 ident != TAG_IDENT_USE) {
1180 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1181 "failed ident=%d\n", inode->i_ino, ident);
1182 brelse(bh);
1183 make_bad_inode(inode);
1184 return;
1185 }
1186
1187 fe = (struct fileEntry *)bh->b_data;
1188
1189 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1190 struct buffer_head *ibh;
1191
1192 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1193 &ident);
1194 if (ident == TAG_IDENT_IE && ibh) {
1195 struct buffer_head *nbh = NULL;
1196 struct kernel_lb_addr loc;
1197 struct indirectEntry *ie;
1198
1199 ie = (struct indirectEntry *)ibh->b_data;
1200 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1201
1202 if (ie->indirectICB.extLength &&
1203 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1204 &ident))) {
1205 if (ident == TAG_IDENT_FE ||
1206 ident == TAG_IDENT_EFE) {
1207 memcpy(&iinfo->i_location,
1208 &loc,
1209 sizeof(struct kernel_lb_addr));
1210 brelse(bh);
1211 brelse(ibh);
1212 brelse(nbh);
1213 __udf_read_inode(inode);
1214 return;
1215 }
1216 brelse(nbh);
1217 }
1218 }
1219 brelse(ibh);
1220 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1221 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1222 le16_to_cpu(fe->icbTag.strategyType));
1223 brelse(bh);
1224 make_bad_inode(inode);
1225 return;
1226 }
1227 udf_fill_inode(inode, bh);
1228
1229 brelse(bh);
1230}
1231
1232static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1233{
1234 struct fileEntry *fe;
1235 struct extendedFileEntry *efe;
1236 int offset;
1237 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1238 struct udf_inode_info *iinfo = UDF_I(inode);
1239
1240 fe = (struct fileEntry *)bh->b_data;
1241 efe = (struct extendedFileEntry *)bh->b_data;
1242
1243 if (fe->icbTag.strategyType == cpu_to_le16(4))
1244 iinfo->i_strat4096 = 0;
1245 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1246 iinfo->i_strat4096 = 1;
1247
1248 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1249 ICBTAG_FLAG_AD_MASK;
1250 iinfo->i_unique = 0;
1251 iinfo->i_lenEAttr = 0;
1252 iinfo->i_lenExtents = 0;
1253 iinfo->i_lenAlloc = 0;
1254 iinfo->i_next_alloc_block = 0;
1255 iinfo->i_next_alloc_goal = 0;
1256 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1257 iinfo->i_efe = 1;
1258 iinfo->i_use = 0;
1259 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1260 sizeof(struct extendedFileEntry))) {
1261 make_bad_inode(inode);
1262 return;
1263 }
1264 memcpy(iinfo->i_ext.i_data,
1265 bh->b_data + sizeof(struct extendedFileEntry),
1266 inode->i_sb->s_blocksize -
1267 sizeof(struct extendedFileEntry));
1268 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1269 iinfo->i_efe = 0;
1270 iinfo->i_use = 0;
1271 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1272 sizeof(struct fileEntry))) {
1273 make_bad_inode(inode);
1274 return;
1275 }
1276 memcpy(iinfo->i_ext.i_data,
1277 bh->b_data + sizeof(struct fileEntry),
1278 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1279 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1280 iinfo->i_efe = 0;
1281 iinfo->i_use = 1;
1282 iinfo->i_lenAlloc = le32_to_cpu(
1283 ((struct unallocSpaceEntry *)bh->b_data)->
1284 lengthAllocDescs);
1285 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1286 sizeof(struct unallocSpaceEntry))) {
1287 make_bad_inode(inode);
1288 return;
1289 }
1290 memcpy(iinfo->i_ext.i_data,
1291 bh->b_data + sizeof(struct unallocSpaceEntry),
1292 inode->i_sb->s_blocksize -
1293 sizeof(struct unallocSpaceEntry));
1294 return;
1295 }
1296
1297 read_lock(&sbi->s_cred_lock);
1298 inode->i_uid = le32_to_cpu(fe->uid);
1299 if (inode->i_uid == -1 ||
1300 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1301 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1302 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1303
1304 inode->i_gid = le32_to_cpu(fe->gid);
1305 if (inode->i_gid == -1 ||
1306 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1307 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1308 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1309
1310 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1311 sbi->s_fmode != UDF_INVALID_MODE)
1312 inode->i_mode = sbi->s_fmode;
1313 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1314 sbi->s_dmode != UDF_INVALID_MODE)
1315 inode->i_mode = sbi->s_dmode;
1316 else
1317 inode->i_mode = udf_convert_permissions(fe);
1318 inode->i_mode &= ~sbi->s_umask;
1319 read_unlock(&sbi->s_cred_lock);
1320
1321 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1322 if (!inode->i_nlink)
1323 inode->i_nlink = 1;
1324
1325 inode->i_size = le64_to_cpu(fe->informationLength);
1326 iinfo->i_lenExtents = inode->i_size;
1327
1328 if (iinfo->i_efe == 0) {
1329 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1330 (inode->i_sb->s_blocksize_bits - 9);
1331
1332 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1333 inode->i_atime = sbi->s_record_time;
1334
1335 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1336 fe->modificationTime))
1337 inode->i_mtime = sbi->s_record_time;
1338
1339 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1340 inode->i_ctime = sbi->s_record_time;
1341
1342 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1343 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1344 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1345 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1346 } else {
1347 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1348 (inode->i_sb->s_blocksize_bits - 9);
1349
1350 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1351 inode->i_atime = sbi->s_record_time;
1352
1353 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1354 efe->modificationTime))
1355 inode->i_mtime = sbi->s_record_time;
1356
1357 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1358 iinfo->i_crtime = sbi->s_record_time;
1359
1360 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1361 inode->i_ctime = sbi->s_record_time;
1362
1363 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1364 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1365 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1366 offset = sizeof(struct extendedFileEntry) +
1367 iinfo->i_lenEAttr;
1368 }
1369
1370 switch (fe->icbTag.fileType) {
1371 case ICBTAG_FILE_TYPE_DIRECTORY:
1372 inode->i_op = &udf_dir_inode_operations;
1373 inode->i_fop = &udf_dir_operations;
1374 inode->i_mode |= S_IFDIR;
1375 inc_nlink(inode);
1376 break;
1377 case ICBTAG_FILE_TYPE_REALTIME:
1378 case ICBTAG_FILE_TYPE_REGULAR:
1379 case ICBTAG_FILE_TYPE_UNDEF:
1380 case ICBTAG_FILE_TYPE_VAT20:
1381 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1382 inode->i_data.a_ops = &udf_adinicb_aops;
1383 else
1384 inode->i_data.a_ops = &udf_aops;
1385 inode->i_op = &udf_file_inode_operations;
1386 inode->i_fop = &udf_file_operations;
1387 inode->i_mode |= S_IFREG;
1388 break;
1389 case ICBTAG_FILE_TYPE_BLOCK:
1390 inode->i_mode |= S_IFBLK;
1391 break;
1392 case ICBTAG_FILE_TYPE_CHAR:
1393 inode->i_mode |= S_IFCHR;
1394 break;
1395 case ICBTAG_FILE_TYPE_FIFO:
1396 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1397 break;
1398 case ICBTAG_FILE_TYPE_SOCKET:
1399 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1400 break;
1401 case ICBTAG_FILE_TYPE_SYMLINK:
1402 inode->i_data.a_ops = &udf_symlink_aops;
1403 inode->i_op = &udf_symlink_inode_operations;
1404 inode->i_mode = S_IFLNK | S_IRWXUGO;
1405 break;
1406 case ICBTAG_FILE_TYPE_MAIN:
1407 udf_debug("METADATA FILE-----\n");
1408 break;
1409 case ICBTAG_FILE_TYPE_MIRROR:
1410 udf_debug("METADATA MIRROR FILE-----\n");
1411 break;
1412 case ICBTAG_FILE_TYPE_BITMAP:
1413 udf_debug("METADATA BITMAP FILE-----\n");
1414 break;
1415 default:
1416 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1417 "file type=%d\n", inode->i_ino,
1418 fe->icbTag.fileType);
1419 make_bad_inode(inode);
1420 return;
1421 }
1422 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1423 struct deviceSpec *dsea =
1424 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1425 if (dsea) {
1426 init_special_inode(inode, inode->i_mode,
1427 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1428 le32_to_cpu(dsea->minorDeviceIdent)));
1429 /* Developer ID ??? */
1430 } else
1431 make_bad_inode(inode);
1432 }
1433}
1434
1435static int udf_alloc_i_data(struct inode *inode, size_t size)
1436{
1437 struct udf_inode_info *iinfo = UDF_I(inode);
1438 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1439
1440 if (!iinfo->i_ext.i_data) {
1441 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1442 "no free memory\n", inode->i_ino);
1443 return -ENOMEM;
1444 }
1445
1446 return 0;
1447}
1448
1449static mode_t udf_convert_permissions(struct fileEntry *fe)
1450{
1451 mode_t mode;
1452 uint32_t permissions;
1453 uint32_t flags;
1454
1455 permissions = le32_to_cpu(fe->permissions);
1456 flags = le16_to_cpu(fe->icbTag.flags);
1457
1458 mode = ((permissions) & S_IRWXO) |
1459 ((permissions >> 2) & S_IRWXG) |
1460 ((permissions >> 4) & S_IRWXU) |
1461 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1462 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1463 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1464
1465 return mode;
1466}
1467
1468int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1469{
1470 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1471}
1472
1473static int udf_sync_inode(struct inode *inode)
1474{
1475 return udf_update_inode(inode, 1);
1476}
1477
1478static int udf_update_inode(struct inode *inode, int do_sync)
1479{
1480 struct buffer_head *bh = NULL;
1481 struct fileEntry *fe;
1482 struct extendedFileEntry *efe;
1483 uint32_t udfperms;
1484 uint16_t icbflags;
1485 uint16_t crclen;
1486 int err = 0;
1487 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1488 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1489 struct udf_inode_info *iinfo = UDF_I(inode);
1490
1491 bh = udf_tgetblk(inode->i_sb,
1492 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1493 if (!bh) {
1494 udf_debug("getblk failure\n");
1495 return -ENOMEM;
1496 }
1497
1498 lock_buffer(bh);
1499 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1500 fe = (struct fileEntry *)bh->b_data;
1501 efe = (struct extendedFileEntry *)bh->b_data;
1502
1503 if (iinfo->i_use) {
1504 struct unallocSpaceEntry *use =
1505 (struct unallocSpaceEntry *)bh->b_data;
1506
1507 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1508 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1509 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1510 sizeof(struct unallocSpaceEntry));
1511 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1512 use->descTag.tagLocation =
1513 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1514 crclen = sizeof(struct unallocSpaceEntry) +
1515 iinfo->i_lenAlloc - sizeof(struct tag);
1516 use->descTag.descCRCLength = cpu_to_le16(crclen);
1517 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1518 sizeof(struct tag),
1519 crclen));
1520 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1521
1522 goto out;
1523 }
1524
1525 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1526 fe->uid = cpu_to_le32(-1);
1527 else
1528 fe->uid = cpu_to_le32(inode->i_uid);
1529
1530 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1531 fe->gid = cpu_to_le32(-1);
1532 else
1533 fe->gid = cpu_to_le32(inode->i_gid);
1534
1535 udfperms = ((inode->i_mode & S_IRWXO)) |
1536 ((inode->i_mode & S_IRWXG) << 2) |
1537 ((inode->i_mode & S_IRWXU) << 4);
1538
1539 udfperms |= (le32_to_cpu(fe->permissions) &
1540 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1541 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1542 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1543 fe->permissions = cpu_to_le32(udfperms);
1544
1545 if (S_ISDIR(inode->i_mode))
1546 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1547 else
1548 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1549
1550 fe->informationLength = cpu_to_le64(inode->i_size);
1551
1552 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1553 struct regid *eid;
1554 struct deviceSpec *dsea =
1555 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1556 if (!dsea) {
1557 dsea = (struct deviceSpec *)
1558 udf_add_extendedattr(inode,
1559 sizeof(struct deviceSpec) +
1560 sizeof(struct regid), 12, 0x3);
1561 dsea->attrType = cpu_to_le32(12);
1562 dsea->attrSubtype = 1;
1563 dsea->attrLength = cpu_to_le32(
1564 sizeof(struct deviceSpec) +
1565 sizeof(struct regid));
1566 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1567 }
1568 eid = (struct regid *)dsea->impUse;
1569 memset(eid, 0, sizeof(struct regid));
1570 strcpy(eid->ident, UDF_ID_DEVELOPER);
1571 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1572 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1573 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1574 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1575 }
1576
1577 if (iinfo->i_efe == 0) {
1578 memcpy(bh->b_data + sizeof(struct fileEntry),
1579 iinfo->i_ext.i_data,
1580 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1581 fe->logicalBlocksRecorded = cpu_to_le64(
1582 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1583 (blocksize_bits - 9));
1584
1585 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1586 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1587 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1588 memset(&(fe->impIdent), 0, sizeof(struct regid));
1589 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1590 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1591 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1592 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1593 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1594 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1595 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1596 crclen = sizeof(struct fileEntry);
1597 } else {
1598 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1599 iinfo->i_ext.i_data,
1600 inode->i_sb->s_blocksize -
1601 sizeof(struct extendedFileEntry));
1602 efe->objectSize = cpu_to_le64(inode->i_size);
1603 efe->logicalBlocksRecorded = cpu_to_le64(
1604 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1605 (blocksize_bits - 9));
1606
1607 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1608 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1609 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1610 iinfo->i_crtime = inode->i_atime;
1611
1612 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1613 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1614 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1615 iinfo->i_crtime = inode->i_mtime;
1616
1617 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1618 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1619 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1620 iinfo->i_crtime = inode->i_ctime;
1621
1622 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1623 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1624 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1625 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1626
1627 memset(&(efe->impIdent), 0, sizeof(struct regid));
1628 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1629 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1630 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1631 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1632 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1633 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1634 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1635 crclen = sizeof(struct extendedFileEntry);
1636 }
1637 if (iinfo->i_strat4096) {
1638 fe->icbTag.strategyType = cpu_to_le16(4096);
1639 fe->icbTag.strategyParameter = cpu_to_le16(1);
1640 fe->icbTag.numEntries = cpu_to_le16(2);
1641 } else {
1642 fe->icbTag.strategyType = cpu_to_le16(4);
1643 fe->icbTag.numEntries = cpu_to_le16(1);
1644 }
1645
1646 if (S_ISDIR(inode->i_mode))
1647 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1648 else if (S_ISREG(inode->i_mode))
1649 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1650 else if (S_ISLNK(inode->i_mode))
1651 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1652 else if (S_ISBLK(inode->i_mode))
1653 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1654 else if (S_ISCHR(inode->i_mode))
1655 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1656 else if (S_ISFIFO(inode->i_mode))
1657 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1658 else if (S_ISSOCK(inode->i_mode))
1659 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1660
1661 icbflags = iinfo->i_alloc_type |
1662 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1663 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1664 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1665 (le16_to_cpu(fe->icbTag.flags) &
1666 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1667 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1668
1669 fe->icbTag.flags = cpu_to_le16(icbflags);
1670 if (sbi->s_udfrev >= 0x0200)
1671 fe->descTag.descVersion = cpu_to_le16(3);
1672 else
1673 fe->descTag.descVersion = cpu_to_le16(2);
1674 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1675 fe->descTag.tagLocation = cpu_to_le32(
1676 iinfo->i_location.logicalBlockNum);
1677 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1678 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1679 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1680 crclen));
1681 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1682
1683out:
1684 set_buffer_uptodate(bh);
1685 unlock_buffer(bh);
1686
1687 /* write the data blocks */
1688 mark_buffer_dirty(bh);
1689 if (do_sync) {
1690 sync_dirty_buffer(bh);
1691 if (buffer_write_io_error(bh)) {
1692 printk(KERN_WARNING "IO error syncing udf inode "
1693 "[%s:%08lx]\n", inode->i_sb->s_id,
1694 inode->i_ino);
1695 err = -EIO;
1696 }
1697 }
1698 brelse(bh);
1699
1700 return err;
1701}
1702
1703struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1704{
1705 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1706 struct inode *inode = iget_locked(sb, block);
1707
1708 if (!inode)
1709 return NULL;
1710
1711 if (inode->i_state & I_NEW) {
1712 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1713 __udf_read_inode(inode);
1714 unlock_new_inode(inode);
1715 }
1716
1717 if (is_bad_inode(inode))
1718 goto out_iput;
1719
1720 if (ino->logicalBlockNum >= UDF_SB(sb)->
1721 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1722 udf_debug("block=%d, partition=%d out of range\n",
1723 ino->logicalBlockNum, ino->partitionReferenceNum);
1724 make_bad_inode(inode);
1725 goto out_iput;
1726 }
1727
1728 return inode;
1729
1730 out_iput:
1731 iput(inode);
1732 return NULL;
1733}
1734
1735int udf_add_aext(struct inode *inode, struct extent_position *epos,
1736 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1737{
1738 int adsize;
1739 struct short_ad *sad = NULL;
1740 struct long_ad *lad = NULL;
1741 struct allocExtDesc *aed;
1742 uint8_t *ptr;
1743 struct udf_inode_info *iinfo = UDF_I(inode);
1744
1745 if (!epos->bh)
1746 ptr = iinfo->i_ext.i_data + epos->offset -
1747 udf_file_entry_alloc_offset(inode) +
1748 iinfo->i_lenEAttr;
1749 else
1750 ptr = epos->bh->b_data + epos->offset;
1751
1752 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1753 adsize = sizeof(struct short_ad);
1754 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1755 adsize = sizeof(struct long_ad);
1756 else
1757 return -EIO;
1758
1759 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1760 unsigned char *sptr, *dptr;
1761 struct buffer_head *nbh;
1762 int err, loffset;
1763 struct kernel_lb_addr obloc = epos->block;
1764
1765 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1766 obloc.partitionReferenceNum,
1767 obloc.logicalBlockNum, &err);
1768 if (!epos->block.logicalBlockNum)
1769 return -ENOSPC;
1770 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1771 &epos->block,
1772 0));
1773 if (!nbh)
1774 return -EIO;
1775 lock_buffer(nbh);
1776 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1777 set_buffer_uptodate(nbh);
1778 unlock_buffer(nbh);
1779 mark_buffer_dirty_inode(nbh, inode);
1780
1781 aed = (struct allocExtDesc *)(nbh->b_data);
1782 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1783 aed->previousAllocExtLocation =
1784 cpu_to_le32(obloc.logicalBlockNum);
1785 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1786 loffset = epos->offset;
1787 aed->lengthAllocDescs = cpu_to_le32(adsize);
1788 sptr = ptr - adsize;
1789 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1790 memcpy(dptr, sptr, adsize);
1791 epos->offset = sizeof(struct allocExtDesc) + adsize;
1792 } else {
1793 loffset = epos->offset + adsize;
1794 aed->lengthAllocDescs = cpu_to_le32(0);
1795 sptr = ptr;
1796 epos->offset = sizeof(struct allocExtDesc);
1797
1798 if (epos->bh) {
1799 aed = (struct allocExtDesc *)epos->bh->b_data;
1800 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1801 } else {
1802 iinfo->i_lenAlloc += adsize;
1803 mark_inode_dirty(inode);
1804 }
1805 }
1806 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1807 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1808 epos->block.logicalBlockNum, sizeof(struct tag));
1809 else
1810 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1811 epos->block.logicalBlockNum, sizeof(struct tag));
1812 switch (iinfo->i_alloc_type) {
1813 case ICBTAG_FLAG_AD_SHORT:
1814 sad = (struct short_ad *)sptr;
1815 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1816 inode->i_sb->s_blocksize);
1817 sad->extPosition =
1818 cpu_to_le32(epos->block.logicalBlockNum);
1819 break;
1820 case ICBTAG_FLAG_AD_LONG:
1821 lad = (struct long_ad *)sptr;
1822 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1823 inode->i_sb->s_blocksize);
1824 lad->extLocation = cpu_to_lelb(epos->block);
1825 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1826 break;
1827 }
1828 if (epos->bh) {
1829 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1830 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1831 udf_update_tag(epos->bh->b_data, loffset);
1832 else
1833 udf_update_tag(epos->bh->b_data,
1834 sizeof(struct allocExtDesc));
1835 mark_buffer_dirty_inode(epos->bh, inode);
1836 brelse(epos->bh);
1837 } else {
1838 mark_inode_dirty(inode);
1839 }
1840 epos->bh = nbh;
1841 }
1842
1843 udf_write_aext(inode, epos, eloc, elen, inc);
1844
1845 if (!epos->bh) {
1846 iinfo->i_lenAlloc += adsize;
1847 mark_inode_dirty(inode);
1848 } else {
1849 aed = (struct allocExtDesc *)epos->bh->b_data;
1850 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1851 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1852 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1853 udf_update_tag(epos->bh->b_data,
1854 epos->offset + (inc ? 0 : adsize));
1855 else
1856 udf_update_tag(epos->bh->b_data,
1857 sizeof(struct allocExtDesc));
1858 mark_buffer_dirty_inode(epos->bh, inode);
1859 }
1860
1861 return 0;
1862}
1863
1864void udf_write_aext(struct inode *inode, struct extent_position *epos,
1865 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1866{
1867 int adsize;
1868 uint8_t *ptr;
1869 struct short_ad *sad;
1870 struct long_ad *lad;
1871 struct udf_inode_info *iinfo = UDF_I(inode);
1872
1873 if (!epos->bh)
1874 ptr = iinfo->i_ext.i_data + epos->offset -
1875 udf_file_entry_alloc_offset(inode) +
1876 iinfo->i_lenEAttr;
1877 else
1878 ptr = epos->bh->b_data + epos->offset;
1879
1880 switch (iinfo->i_alloc_type) {
1881 case ICBTAG_FLAG_AD_SHORT:
1882 sad = (struct short_ad *)ptr;
1883 sad->extLength = cpu_to_le32(elen);
1884 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1885 adsize = sizeof(struct short_ad);
1886 break;
1887 case ICBTAG_FLAG_AD_LONG:
1888 lad = (struct long_ad *)ptr;
1889 lad->extLength = cpu_to_le32(elen);
1890 lad->extLocation = cpu_to_lelb(*eloc);
1891 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1892 adsize = sizeof(struct long_ad);
1893 break;
1894 default:
1895 return;
1896 }
1897
1898 if (epos->bh) {
1899 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1901 struct allocExtDesc *aed =
1902 (struct allocExtDesc *)epos->bh->b_data;
1903 udf_update_tag(epos->bh->b_data,
1904 le32_to_cpu(aed->lengthAllocDescs) +
1905 sizeof(struct allocExtDesc));
1906 }
1907 mark_buffer_dirty_inode(epos->bh, inode);
1908 } else {
1909 mark_inode_dirty(inode);
1910 }
1911
1912 if (inc)
1913 epos->offset += adsize;
1914}
1915
1916int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1917 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1918{
1919 int8_t etype;
1920
1921 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1922 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1923 int block;
1924 epos->block = *eloc;
1925 epos->offset = sizeof(struct allocExtDesc);
1926 brelse(epos->bh);
1927 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1928 epos->bh = udf_tread(inode->i_sb, block);
1929 if (!epos->bh) {
1930 udf_debug("reading block %d failed!\n", block);
1931 return -1;
1932 }
1933 }
1934
1935 return etype;
1936}
1937
1938int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1939 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1940{
1941 int alen;
1942 int8_t etype;
1943 uint8_t *ptr;
1944 struct short_ad *sad;
1945 struct long_ad *lad;
1946 struct udf_inode_info *iinfo = UDF_I(inode);
1947
1948 if (!epos->bh) {
1949 if (!epos->offset)
1950 epos->offset = udf_file_entry_alloc_offset(inode);
1951 ptr = iinfo->i_ext.i_data + epos->offset -
1952 udf_file_entry_alloc_offset(inode) +
1953 iinfo->i_lenEAttr;
1954 alen = udf_file_entry_alloc_offset(inode) +
1955 iinfo->i_lenAlloc;
1956 } else {
1957 if (!epos->offset)
1958 epos->offset = sizeof(struct allocExtDesc);
1959 ptr = epos->bh->b_data + epos->offset;
1960 alen = sizeof(struct allocExtDesc) +
1961 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1962 lengthAllocDescs);
1963 }
1964
1965 switch (iinfo->i_alloc_type) {
1966 case ICBTAG_FLAG_AD_SHORT:
1967 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1968 if (!sad)
1969 return -1;
1970 etype = le32_to_cpu(sad->extLength) >> 30;
1971 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1972 eloc->partitionReferenceNum =
1973 iinfo->i_location.partitionReferenceNum;
1974 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1975 break;
1976 case ICBTAG_FLAG_AD_LONG:
1977 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1978 if (!lad)
1979 return -1;
1980 etype = le32_to_cpu(lad->extLength) >> 30;
1981 *eloc = lelb_to_cpu(lad->extLocation);
1982 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1983 break;
1984 default:
1985 udf_debug("alloc_type = %d unsupported\n",
1986 iinfo->i_alloc_type);
1987 return -1;
1988 }
1989
1990 return etype;
1991}
1992
1993static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1994 struct kernel_lb_addr neloc, uint32_t nelen)
1995{
1996 struct kernel_lb_addr oeloc;
1997 uint32_t oelen;
1998 int8_t etype;
1999
2000 if (epos.bh)
2001 get_bh(epos.bh);
2002
2003 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2004 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2005 neloc = oeloc;
2006 nelen = (etype << 30) | oelen;
2007 }
2008 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2009 brelse(epos.bh);
2010
2011 return (nelen >> 30);
2012}
2013
2014int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2015 struct kernel_lb_addr eloc, uint32_t elen)
2016{
2017 struct extent_position oepos;
2018 int adsize;
2019 int8_t etype;
2020 struct allocExtDesc *aed;
2021 struct udf_inode_info *iinfo;
2022
2023 if (epos.bh) {
2024 get_bh(epos.bh);
2025 get_bh(epos.bh);
2026 }
2027
2028 iinfo = UDF_I(inode);
2029 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2030 adsize = sizeof(struct short_ad);
2031 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2032 adsize = sizeof(struct long_ad);
2033 else
2034 adsize = 0;
2035
2036 oepos = epos;
2037 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2038 return -1;
2039
2040 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2041 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2042 if (oepos.bh != epos.bh) {
2043 oepos.block = epos.block;
2044 brelse(oepos.bh);
2045 get_bh(epos.bh);
2046 oepos.bh = epos.bh;
2047 oepos.offset = epos.offset - adsize;
2048 }
2049 }
2050 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2051 elen = 0;
2052
2053 if (epos.bh != oepos.bh) {
2054 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2055 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2056 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2057 if (!oepos.bh) {
2058 iinfo->i_lenAlloc -= (adsize * 2);
2059 mark_inode_dirty(inode);
2060 } else {
2061 aed = (struct allocExtDesc *)oepos.bh->b_data;
2062 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2063 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2064 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2065 udf_update_tag(oepos.bh->b_data,
2066 oepos.offset - (2 * adsize));
2067 else
2068 udf_update_tag(oepos.bh->b_data,
2069 sizeof(struct allocExtDesc));
2070 mark_buffer_dirty_inode(oepos.bh, inode);
2071 }
2072 } else {
2073 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2074 if (!oepos.bh) {
2075 iinfo->i_lenAlloc -= adsize;
2076 mark_inode_dirty(inode);
2077 } else {
2078 aed = (struct allocExtDesc *)oepos.bh->b_data;
2079 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2080 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2081 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2082 udf_update_tag(oepos.bh->b_data,
2083 epos.offset - adsize);
2084 else
2085 udf_update_tag(oepos.bh->b_data,
2086 sizeof(struct allocExtDesc));
2087 mark_buffer_dirty_inode(oepos.bh, inode);
2088 }
2089 }
2090
2091 brelse(epos.bh);
2092 brelse(oepos.bh);
2093
2094 return (elen >> 30);
2095}
2096
2097int8_t inode_bmap(struct inode *inode, sector_t block,
2098 struct extent_position *pos, struct kernel_lb_addr *eloc,
2099 uint32_t *elen, sector_t *offset)
2100{
2101 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2102 loff_t lbcount = 0, bcount =
2103 (loff_t) block << blocksize_bits;
2104 int8_t etype;
2105 struct udf_inode_info *iinfo;
2106
2107 iinfo = UDF_I(inode);
2108 pos->offset = 0;
2109 pos->block = iinfo->i_location;
2110 pos->bh = NULL;
2111 *elen = 0;
2112
2113 do {
2114 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2115 if (etype == -1) {
2116 *offset = (bcount - lbcount) >> blocksize_bits;
2117 iinfo->i_lenExtents = lbcount;
2118 return -1;
2119 }
2120 lbcount += *elen;
2121 } while (lbcount <= bcount);
2122
2123 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2124
2125 return etype;
2126}
2127
2128long udf_block_map(struct inode *inode, sector_t block)
2129{
2130 struct kernel_lb_addr eloc;
2131 uint32_t elen;
2132 sector_t offset;
2133 struct extent_position epos = {};
2134 int ret;
2135
2136 down_read(&UDF_I(inode)->i_data_sem);
2137
2138 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2139 (EXT_RECORDED_ALLOCATED >> 30))
2140 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2141 else
2142 ret = 0;
2143
2144 up_read(&UDF_I(inode)->i_data_sem);
2145 brelse(epos.bh);
2146
2147 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2148 return udf_fixed_to_variable(ret);
2149 else
2150 return ret;
2151}