Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/errno.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/export.h>
  30#include <linux/radix-tree.h>
  31#include <linux/percpu.h>
  32#include <linux/slab.h>
  33#include <linux/kmemleak.h>
  34#include <linux/cpu.h>
  35#include <linux/string.h>
  36#include <linux/bitops.h>
  37#include <linux/rcupdate.h>
  38#include <linux/preempt.h>		/* in_interrupt() */
  39
  40
  41/* Number of nodes in fully populated tree of given height */
  42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43
  44/*
  45 * Radix tree node cache.
 
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	unsigned nr;
  67	/* nodes->private_data points to next preallocated node */
  68	struct radix_tree_node *nodes;
  69};
  70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  71
  72static inline struct radix_tree_node *entry_to_node(void *ptr)
  73{
  74	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  75}
  76
  77static inline void *node_to_entry(void *ptr)
  78{
  79	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  80}
  81
  82#define RADIX_TREE_RETRY	node_to_entry(NULL)
  83
  84#ifdef CONFIG_RADIX_TREE_MULTIORDER
  85/* Sibling slots point directly to another slot in the same node */
  86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  87{
  88	void **ptr = node;
  89	return (parent->slots <= ptr) &&
  90			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  91}
  92#else
  93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  94{
  95	return false;
  96}
  97#endif
  98
  99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
 100						 void **slot)
 101{
 102	return slot - parent->slots;
 103}
 104
 105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
 106			struct radix_tree_node **nodep, unsigned long index)
 107{
 108	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 109	void **entry = rcu_dereference_raw(parent->slots[offset]);
 110
 111#ifdef CONFIG_RADIX_TREE_MULTIORDER
 112	if (radix_tree_is_internal_node(entry)) {
 113		if (is_sibling_entry(parent, entry)) {
 114			void **sibentry = (void **) entry_to_node(entry);
 115			offset = get_slot_offset(parent, sibentry);
 116			entry = rcu_dereference_raw(*sibentry);
 117		}
 118	}
 119#endif
 120
 121	*nodep = (void *)entry;
 122	return offset;
 123}
 124
 125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 126{
 127	return root->gfp_mask & __GFP_BITS_MASK;
 128}
 129
 130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 131		int offset)
 132{
 133	__set_bit(offset, node->tags[tag]);
 134}
 135
 136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 137		int offset)
 138{
 139	__clear_bit(offset, node->tags[tag]);
 140}
 141
 142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 143		int offset)
 144{
 145	return test_bit(offset, node->tags[tag]);
 146}
 147
 148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 149{
 150	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 151}
 152
 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 154{
 155	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 156}
 157
 158static inline void root_tag_clear_all(struct radix_tree_root *root)
 159{
 160	root->gfp_mask &= __GFP_BITS_MASK;
 161}
 162
 163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 164{
 165	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 166}
 167
 168static inline unsigned root_tags_get(struct radix_tree_root *root)
 169{
 170	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
 171}
 172
 173/*
 174 * Returns 1 if any slot in the node has this tag set.
 175 * Otherwise returns 0.
 176 */
 177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 178{
 179	unsigned idx;
 180	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 181		if (node->tags[tag][idx])
 182			return 1;
 183	}
 184	return 0;
 185}
 186
 187/**
 188 * radix_tree_find_next_bit - find the next set bit in a memory region
 189 *
 190 * @addr: The address to base the search on
 191 * @size: The bitmap size in bits
 192 * @offset: The bitnumber to start searching at
 193 *
 194 * Unrollable variant of find_next_bit() for constant size arrays.
 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 196 * Returns next bit offset, or size if nothing found.
 197 */
 198static __always_inline unsigned long
 199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 200			 unsigned long offset)
 201{
 202	const unsigned long *addr = node->tags[tag];
 203
 204	if (offset < RADIX_TREE_MAP_SIZE) {
 205		unsigned long tmp;
 206
 207		addr += offset / BITS_PER_LONG;
 208		tmp = *addr >> (offset % BITS_PER_LONG);
 209		if (tmp)
 210			return __ffs(tmp) + offset;
 211		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 212		while (offset < RADIX_TREE_MAP_SIZE) {
 213			tmp = *++addr;
 214			if (tmp)
 215				return __ffs(tmp) + offset;
 216			offset += BITS_PER_LONG;
 217		}
 218	}
 219	return RADIX_TREE_MAP_SIZE;
 220}
 221
 222static unsigned int iter_offset(const struct radix_tree_iter *iter)
 223{
 224	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 225}
 226
 227/*
 228 * The maximum index which can be stored in a radix tree
 229 */
 230static inline unsigned long shift_maxindex(unsigned int shift)
 231{
 232	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 233}
 234
 235static inline unsigned long node_maxindex(struct radix_tree_node *node)
 236{
 237	return shift_maxindex(node->shift);
 238}
 239
 240#ifndef __KERNEL__
 241static void dump_node(struct radix_tree_node *node, unsigned long index)
 242{
 243	unsigned long i;
 244
 245	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 246		node, node->offset, index, index | node_maxindex(node),
 247		node->parent,
 248		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 249		node->shift, node->count, node->exceptional);
 250
 251	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 252		unsigned long first = index | (i << node->shift);
 253		unsigned long last = first | ((1UL << node->shift) - 1);
 254		void *entry = node->slots[i];
 255		if (!entry)
 256			continue;
 257		if (entry == RADIX_TREE_RETRY) {
 258			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 259					i, first, last, node);
 260		} else if (!radix_tree_is_internal_node(entry)) {
 261			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 262					entry, i, first, last, node);
 263		} else if (is_sibling_entry(node, entry)) {
 264			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 265					entry, i, first, last, node,
 266					*(void **)entry_to_node(entry));
 267		} else {
 268			dump_node(entry_to_node(entry), first);
 269		}
 270	}
 271}
 272
 273/* For debug */
 274static void radix_tree_dump(struct radix_tree_root *root)
 275{
 276	pr_debug("radix root: %p rnode %p tags %x\n",
 277			root, root->rnode,
 278			root->gfp_mask >> __GFP_BITS_SHIFT);
 279	if (!radix_tree_is_internal_node(root->rnode))
 280		return;
 281	dump_node(entry_to_node(root->rnode), 0);
 282}
 283#endif
 284
 285/*
 286 * This assumes that the caller has performed appropriate preallocation, and
 287 * that the caller has pinned this thread of control to the current CPU.
 288 */
 289static struct radix_tree_node *
 290radix_tree_node_alloc(struct radix_tree_root *root,
 291			struct radix_tree_node *parent,
 292			unsigned int shift, unsigned int offset,
 293			unsigned int count, unsigned int exceptional)
 294{
 295	struct radix_tree_node *ret = NULL;
 296	gfp_t gfp_mask = root_gfp_mask(root);
 297
 298	/*
 299	 * Preload code isn't irq safe and it doesn't make sense to use
 300	 * preloading during an interrupt anyway as all the allocations have
 301	 * to be atomic. So just do normal allocation when in interrupt.
 302	 */
 303	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 304		struct radix_tree_preload *rtp;
 305
 306		/*
 307		 * Even if the caller has preloaded, try to allocate from the
 308		 * cache first for the new node to get accounted to the memory
 309		 * cgroup.
 310		 */
 311		ret = kmem_cache_alloc(radix_tree_node_cachep,
 312				       gfp_mask | __GFP_NOWARN);
 313		if (ret)
 314			goto out;
 315
 316		/*
 317		 * Provided the caller has preloaded here, we will always
 318		 * succeed in getting a node here (and never reach
 319		 * kmem_cache_alloc)
 320		 */
 321		rtp = this_cpu_ptr(&radix_tree_preloads);
 322		if (rtp->nr) {
 323			ret = rtp->nodes;
 324			rtp->nodes = ret->private_data;
 325			ret->private_data = NULL;
 326			rtp->nr--;
 327		}
 328		/*
 329		 * Update the allocation stack trace as this is more useful
 330		 * for debugging.
 331		 */
 332		kmemleak_update_trace(ret);
 333		goto out;
 334	}
 335	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 336out:
 337	BUG_ON(radix_tree_is_internal_node(ret));
 338	if (ret) {
 339		ret->parent = parent;
 340		ret->shift = shift;
 341		ret->offset = offset;
 342		ret->count = count;
 343		ret->exceptional = exceptional;
 344	}
 
 
 
 
 345	return ret;
 346}
 347
 348static void radix_tree_node_rcu_free(struct rcu_head *head)
 349{
 350	struct radix_tree_node *node =
 351			container_of(head, struct radix_tree_node, rcu_head);
 
 352
 353	/*
 354	 * Must only free zeroed nodes into the slab.  We can be left with
 355	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 356	 * and tags here.
 357	 */
 358	memset(node->slots, 0, sizeof(node->slots));
 359	memset(node->tags, 0, sizeof(node->tags));
 360	INIT_LIST_HEAD(&node->private_list);
 
 
 361
 362	kmem_cache_free(radix_tree_node_cachep, node);
 363}
 364
 365static inline void
 366radix_tree_node_free(struct radix_tree_node *node)
 367{
 368	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 369}
 370
 371/*
 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 373 * ensure that the addition of a single element in the tree cannot fail.  On
 374 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 375 * with preemption not disabled.
 376 *
 377 * To make use of this facility, the radix tree must be initialised without
 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 379 */
 380static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 381{
 382	struct radix_tree_preload *rtp;
 383	struct radix_tree_node *node;
 384	int ret = -ENOMEM;
 385
 386	/*
 387	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 388	 * they should never be accounted to any particular memory cgroup.
 389	 */
 390	gfp_mask &= ~__GFP_ACCOUNT;
 391
 392	preempt_disable();
 393	rtp = this_cpu_ptr(&radix_tree_preloads);
 394	while (rtp->nr < nr) {
 395		preempt_enable();
 396		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 397		if (node == NULL)
 398			goto out;
 399		preempt_disable();
 400		rtp = this_cpu_ptr(&radix_tree_preloads);
 401		if (rtp->nr < nr) {
 402			node->private_data = rtp->nodes;
 403			rtp->nodes = node;
 404			rtp->nr++;
 405		} else {
 406			kmem_cache_free(radix_tree_node_cachep, node);
 407		}
 408	}
 409	ret = 0;
 410out:
 411	return ret;
 412}
 413
 414/*
 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 416 * ensure that the addition of a single element in the tree cannot fail.  On
 417 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 418 * with preemption not disabled.
 419 *
 420 * To make use of this facility, the radix tree must be initialised without
 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 422 */
 423int radix_tree_preload(gfp_t gfp_mask)
 424{
 425	/* Warn on non-sensical use... */
 426	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 427	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 428}
 429EXPORT_SYMBOL(radix_tree_preload);
 430
 431/*
 432 * The same as above function, except we don't guarantee preloading happens.
 433 * We do it, if we decide it helps. On success, return zero with preemption
 434 * disabled. On error, return -ENOMEM with preemption not disabled.
 435 */
 436int radix_tree_maybe_preload(gfp_t gfp_mask)
 437{
 438	if (gfpflags_allow_blocking(gfp_mask))
 439		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 440	/* Preloading doesn't help anything with this gfp mask, skip it */
 441	preempt_disable();
 442	return 0;
 443}
 444EXPORT_SYMBOL(radix_tree_maybe_preload);
 445
 446#ifdef CONFIG_RADIX_TREE_MULTIORDER
 447/*
 448 * Preload with enough objects to ensure that we can split a single entry
 449 * of order @old_order into many entries of size @new_order
 450 */
 451int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 452							gfp_t gfp_mask)
 453{
 454	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 455	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 456				(new_order / RADIX_TREE_MAP_SHIFT);
 457	unsigned nr = 0;
 458
 459	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 460	BUG_ON(new_order >= old_order);
 461
 462	while (layers--)
 463		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 464	return __radix_tree_preload(gfp_mask, top * nr);
 465}
 466#endif
 467
 468/*
 469 * The same as function above, but preload number of nodes required to insert
 470 * (1 << order) continuous naturally-aligned elements.
 471 */
 472int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 473{
 474	unsigned long nr_subtrees;
 475	int nr_nodes, subtree_height;
 476
 477	/* Preloading doesn't help anything with this gfp mask, skip it */
 478	if (!gfpflags_allow_blocking(gfp_mask)) {
 479		preempt_disable();
 480		return 0;
 481	}
 482
 483	/*
 484	 * Calculate number and height of fully populated subtrees it takes to
 485	 * store (1 << order) elements.
 486	 */
 487	nr_subtrees = 1 << order;
 488	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 489			subtree_height++)
 490		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 491
 492	/*
 493	 * The worst case is zero height tree with a single item at index 0 and
 494	 * then inserting items starting at ULONG_MAX - (1 << order).
 495	 *
 496	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 497	 * 0-index item.
 498	 */
 499	nr_nodes = RADIX_TREE_MAX_PATH;
 500
 501	/* Plus branch to fully populated subtrees. */
 502	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 503
 504	/* Root node is shared. */
 505	nr_nodes--;
 506
 507	/* Plus nodes required to build subtrees. */
 508	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 509
 510	return __radix_tree_preload(gfp_mask, nr_nodes);
 511}
 512
 513static unsigned radix_tree_load_root(struct radix_tree_root *root,
 514		struct radix_tree_node **nodep, unsigned long *maxindex)
 515{
 516	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 517
 518	*nodep = node;
 519
 520	if (likely(radix_tree_is_internal_node(node))) {
 521		node = entry_to_node(node);
 522		*maxindex = node_maxindex(node);
 523		return node->shift + RADIX_TREE_MAP_SHIFT;
 524	}
 525
 526	*maxindex = 0;
 527	return 0;
 528}
 529
 530/*
 531 *	Extend a radix tree so it can store key @index.
 532 */
 533static int radix_tree_extend(struct radix_tree_root *root,
 534				unsigned long index, unsigned int shift)
 535{
 536	struct radix_tree_node *slot;
 537	unsigned int maxshift;
 538	int tag;
 539
 540	/* Figure out what the shift should be.  */
 541	maxshift = shift;
 542	while (index > shift_maxindex(maxshift))
 543		maxshift += RADIX_TREE_MAP_SHIFT;
 544
 545	slot = root->rnode;
 546	if (!slot)
 547		goto out;
 
 548
 549	do {
 550		struct radix_tree_node *node = radix_tree_node_alloc(root,
 551							NULL, shift, 0, 1, 0);
 552		if (!node)
 553			return -ENOMEM;
 554
 
 
 
 555		/* Propagate the aggregated tag info into the new root */
 556		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 557			if (root_tag_get(root, tag))
 558				tag_set(node, tag, 0);
 559		}
 560
 561		BUG_ON(shift > BITS_PER_LONG);
 562		if (radix_tree_is_internal_node(slot)) {
 563			entry_to_node(slot)->parent = node;
 564		} else if (radix_tree_exceptional_entry(slot)) {
 565			/* Moving an exceptional root->rnode to a node */
 566			node->exceptional = 1;
 567		}
 568		node->slots[0] = slot;
 569		slot = node_to_entry(node);
 570		rcu_assign_pointer(root->rnode, slot);
 571		shift += RADIX_TREE_MAP_SHIFT;
 572	} while (shift <= maxshift);
 573out:
 574	return maxshift + RADIX_TREE_MAP_SHIFT;
 575}
 576
 577/**
 578 *	radix_tree_shrink    -    shrink radix tree to minimum height
 579 *	@root		radix tree root
 580 */
 581static inline void radix_tree_shrink(struct radix_tree_root *root,
 582				     radix_tree_update_node_t update_node,
 583				     void *private)
 584{
 585	for (;;) {
 586		struct radix_tree_node *node = root->rnode;
 587		struct radix_tree_node *child;
 588
 589		if (!radix_tree_is_internal_node(node))
 590			break;
 591		node = entry_to_node(node);
 592
 593		/*
 594		 * The candidate node has more than one child, or its child
 595		 * is not at the leftmost slot, or the child is a multiorder
 596		 * entry, we cannot shrink.
 597		 */
 598		if (node->count != 1)
 599			break;
 600		child = node->slots[0];
 601		if (!child)
 602			break;
 603		if (!radix_tree_is_internal_node(child) && node->shift)
 604			break;
 605
 606		if (radix_tree_is_internal_node(child))
 607			entry_to_node(child)->parent = NULL;
 608
 609		/*
 610		 * We don't need rcu_assign_pointer(), since we are simply
 611		 * moving the node from one part of the tree to another: if it
 612		 * was safe to dereference the old pointer to it
 613		 * (node->slots[0]), it will be safe to dereference the new
 614		 * one (root->rnode) as far as dependent read barriers go.
 615		 */
 616		root->rnode = child;
 617
 618		/*
 619		 * We have a dilemma here. The node's slot[0] must not be
 620		 * NULLed in case there are concurrent lookups expecting to
 621		 * find the item. However if this was a bottom-level node,
 622		 * then it may be subject to the slot pointer being visible
 623		 * to callers dereferencing it. If item corresponding to
 624		 * slot[0] is subsequently deleted, these callers would expect
 625		 * their slot to become empty sooner or later.
 626		 *
 627		 * For example, lockless pagecache will look up a slot, deref
 628		 * the page pointer, and if the page has 0 refcount it means it
 629		 * was concurrently deleted from pagecache so try the deref
 630		 * again. Fortunately there is already a requirement for logic
 631		 * to retry the entire slot lookup -- the indirect pointer
 632		 * problem (replacing direct root node with an indirect pointer
 633		 * also results in a stale slot). So tag the slot as indirect
 634		 * to force callers to retry.
 635		 */
 636		node->count = 0;
 637		if (!radix_tree_is_internal_node(child)) {
 638			node->slots[0] = RADIX_TREE_RETRY;
 639			if (update_node)
 640				update_node(node, private);
 641		}
 642
 643		WARN_ON_ONCE(!list_empty(&node->private_list));
 644		radix_tree_node_free(node);
 645	}
 646}
 647
 648static void delete_node(struct radix_tree_root *root,
 649			struct radix_tree_node *node,
 650			radix_tree_update_node_t update_node, void *private)
 651{
 652	do {
 653		struct radix_tree_node *parent;
 654
 655		if (node->count) {
 656			if (node == entry_to_node(root->rnode))
 657				radix_tree_shrink(root, update_node, private);
 658			return;
 659		}
 660
 661		parent = node->parent;
 662		if (parent) {
 663			parent->slots[node->offset] = NULL;
 664			parent->count--;
 665		} else {
 666			root_tag_clear_all(root);
 667			root->rnode = NULL;
 668		}
 669
 670		WARN_ON_ONCE(!list_empty(&node->private_list));
 671		radix_tree_node_free(node);
 672
 673		node = parent;
 674	} while (node);
 675}
 676
 677/**
 678 *	__radix_tree_create	-	create a slot in a radix tree
 679 *	@root:		radix tree root
 680 *	@index:		index key
 681 *	@order:		index occupies 2^order aligned slots
 682 *	@nodep:		returns node
 683 *	@slotp:		returns slot
 684 *
 685 *	Create, if necessary, and return the node and slot for an item
 686 *	at position @index in the radix tree @root.
 687 *
 688 *	Until there is more than one item in the tree, no nodes are
 689 *	allocated and @root->rnode is used as a direct slot instead of
 690 *	pointing to a node, in which case *@nodep will be NULL.
 691 *
 692 *	Returns -ENOMEM, or 0 for success.
 693 */
 694int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 695			unsigned order, struct radix_tree_node **nodep,
 696			void ***slotp)
 697{
 698	struct radix_tree_node *node = NULL, *child;
 699	void **slot = (void **)&root->rnode;
 700	unsigned long maxindex;
 701	unsigned int shift, offset = 0;
 702	unsigned long max = index | ((1UL << order) - 1);
 703
 704	shift = radix_tree_load_root(root, &child, &maxindex);
 705
 706	/* Make sure the tree is high enough.  */
 707	if (order > 0 && max == ((1UL << order) - 1))
 708		max++;
 709	if (max > maxindex) {
 710		int error = radix_tree_extend(root, max, shift);
 711		if (error < 0)
 712			return error;
 713		shift = error;
 714		child = root->rnode;
 715	}
 716
 717	while (shift > order) {
 718		shift -= RADIX_TREE_MAP_SHIFT;
 719		if (child == NULL) {
 
 
 
 
 
 720			/* Have to add a child node.  */
 721			child = radix_tree_node_alloc(root, node, shift,
 722							offset, 0, 0);
 723			if (!child)
 724				return -ENOMEM;
 725			rcu_assign_pointer(*slot, node_to_entry(child));
 726			if (node)
 
 727				node->count++;
 728		} else if (!radix_tree_is_internal_node(child))
 729			break;
 
 730
 731		/* Go a level down */
 732		node = entry_to_node(child);
 733		offset = radix_tree_descend(node, &child, index);
 734		slot = &node->slots[offset];
 735	}
 736
 737	if (nodep)
 738		*nodep = node;
 739	if (slotp)
 740		*slotp = slot;
 741	return 0;
 742}
 743
 744#ifdef CONFIG_RADIX_TREE_MULTIORDER
 745/*
 746 * Free any nodes below this node.  The tree is presumed to not need
 747 * shrinking, and any user data in the tree is presumed to not need a
 748 * destructor called on it.  If we need to add a destructor, we can
 749 * add that functionality later.  Note that we may not clear tags or
 750 * slots from the tree as an RCU walker may still have a pointer into
 751 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 752 * but we'll still have to clear those in rcu_free.
 753 */
 754static void radix_tree_free_nodes(struct radix_tree_node *node)
 755{
 756	unsigned offset = 0;
 757	struct radix_tree_node *child = entry_to_node(node);
 758
 759	for (;;) {
 760		void *entry = child->slots[offset];
 761		if (radix_tree_is_internal_node(entry) &&
 762					!is_sibling_entry(child, entry)) {
 763			child = entry_to_node(entry);
 764			offset = 0;
 765			continue;
 766		}
 767		offset++;
 768		while (offset == RADIX_TREE_MAP_SIZE) {
 769			struct radix_tree_node *old = child;
 770			offset = child->offset + 1;
 771			child = child->parent;
 772			WARN_ON_ONCE(!list_empty(&old->private_list));
 773			radix_tree_node_free(old);
 774			if (old == entry_to_node(node))
 775				return;
 776		}
 777	}
 778}
 779
 780static inline int insert_entries(struct radix_tree_node *node, void **slot,
 781				void *item, unsigned order, bool replace)
 782{
 783	struct radix_tree_node *child;
 784	unsigned i, n, tag, offset, tags = 0;
 785
 786	if (node) {
 787		if (order > node->shift)
 788			n = 1 << (order - node->shift);
 789		else
 790			n = 1;
 791		offset = get_slot_offset(node, slot);
 792	} else {
 793		n = 1;
 794		offset = 0;
 
 795	}
 796
 797	if (n > 1) {
 798		offset = offset & ~(n - 1);
 799		slot = &node->slots[offset];
 800	}
 801	child = node_to_entry(slot);
 802
 803	for (i = 0; i < n; i++) {
 804		if (slot[i]) {
 805			if (replace) {
 806				node->count--;
 807				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 808					if (tag_get(node, tag, offset + i))
 809						tags |= 1 << tag;
 810			} else
 811				return -EEXIST;
 812		}
 813	}
 814
 815	for (i = 0; i < n; i++) {
 816		struct radix_tree_node *old = slot[i];
 817		if (i) {
 818			rcu_assign_pointer(slot[i], child);
 819			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 820				if (tags & (1 << tag))
 821					tag_clear(node, tag, offset + i);
 822		} else {
 823			rcu_assign_pointer(slot[i], item);
 824			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 825				if (tags & (1 << tag))
 826					tag_set(node, tag, offset);
 827		}
 828		if (radix_tree_is_internal_node(old) &&
 829					!is_sibling_entry(node, old) &&
 830					(old != RADIX_TREE_RETRY))
 831			radix_tree_free_nodes(old);
 832		if (radix_tree_exceptional_entry(old))
 833			node->exceptional--;
 834	}
 835	if (node) {
 836		node->count += n;
 837		if (radix_tree_exceptional_entry(item))
 838			node->exceptional += n;
 839	}
 840	return n;
 841}
 842#else
 843static inline int insert_entries(struct radix_tree_node *node, void **slot,
 844				void *item, unsigned order, bool replace)
 845{
 846	if (*slot)
 847		return -EEXIST;
 848	rcu_assign_pointer(*slot, item);
 849	if (node) {
 850		node->count++;
 851		if (radix_tree_exceptional_entry(item))
 852			node->exceptional++;
 853	}
 854	return 1;
 855}
 856#endif
 857
 858/**
 859 *	__radix_tree_insert    -    insert into a radix tree
 860 *	@root:		radix tree root
 861 *	@index:		index key
 862 *	@order:		key covers the 2^order indices around index
 863 *	@item:		item to insert
 864 *
 865 *	Insert an item into the radix tree at position @index.
 866 */
 867int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 868			unsigned order, void *item)
 869{
 870	struct radix_tree_node *node;
 871	void **slot;
 872	int error;
 873
 874	BUG_ON(radix_tree_is_internal_node(item));
 875
 876	error = __radix_tree_create(root, index, order, &node, &slot);
 877	if (error)
 878		return error;
 879
 880	error = insert_entries(node, slot, item, order, false);
 881	if (error < 0)
 882		return error;
 883
 884	if (node) {
 885		unsigned offset = get_slot_offset(node, slot);
 886		BUG_ON(tag_get(node, 0, offset));
 887		BUG_ON(tag_get(node, 1, offset));
 888		BUG_ON(tag_get(node, 2, offset));
 889	} else {
 890		BUG_ON(root_tags_get(root));
 891	}
 
 892
 893	return 0;
 894}
 895EXPORT_SYMBOL(__radix_tree_insert);
 896
 897/**
 898 *	__radix_tree_lookup	-	lookup an item in a radix tree
 899 *	@root:		radix tree root
 900 *	@index:		index key
 901 *	@nodep:		returns node
 902 *	@slotp:		returns slot
 903 *
 904 *	Lookup and return the item at position @index in the radix
 905 *	tree @root.
 906 *
 907 *	Until there is more than one item in the tree, no nodes are
 908 *	allocated and @root->rnode is used as a direct slot instead of
 909 *	pointing to a node, in which case *@nodep will be NULL.
 910 */
 911void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 912			  struct radix_tree_node **nodep, void ***slotp)
 913{
 914	struct radix_tree_node *node, *parent;
 915	unsigned long maxindex;
 916	void **slot;
 917
 918 restart:
 919	parent = NULL;
 920	slot = (void **)&root->rnode;
 921	radix_tree_load_root(root, &node, &maxindex);
 922	if (index > maxindex)
 923		return NULL;
 924
 925	while (radix_tree_is_internal_node(node)) {
 926		unsigned offset;
 927
 928		if (node == RADIX_TREE_RETRY)
 929			goto restart;
 930		parent = entry_to_node(node);
 931		offset = radix_tree_descend(parent, &node, index);
 932		slot = parent->slots + offset;
 933	}
 934
 935	if (nodep)
 936		*nodep = parent;
 937	if (slotp)
 938		*slotp = slot;
 939	return node;
 940}
 941
 942/**
 943 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 944 *	@root:		radix tree root
 945 *	@index:		index key
 946 *
 947 *	Returns:  the slot corresponding to the position @index in the
 948 *	radix tree @root. This is useful for update-if-exists operations.
 949 *
 950 *	This function can be called under rcu_read_lock iff the slot is not
 951 *	modified by radix_tree_replace_slot, otherwise it must be called
 952 *	exclusive from other writers. Any dereference of the slot must be done
 953 *	using radix_tree_deref_slot.
 954 */
 955void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 956{
 957	void **slot;
 958
 959	if (!__radix_tree_lookup(root, index, NULL, &slot))
 960		return NULL;
 961	return slot;
 962}
 963EXPORT_SYMBOL(radix_tree_lookup_slot);
 964
 965/**
 966 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 967 *	@root:		radix tree root
 968 *	@index:		index key
 969 *
 970 *	Lookup the item at the position @index in the radix tree @root.
 971 *
 972 *	This function can be called under rcu_read_lock, however the caller
 973 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 974 *	them safely). No RCU barriers are required to access or modify the
 975 *	returned item, however.
 976 */
 977void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 978{
 979	return __radix_tree_lookup(root, index, NULL, NULL);
 980}
 981EXPORT_SYMBOL(radix_tree_lookup);
 982
 983static inline int slot_count(struct radix_tree_node *node,
 984						void **slot)
 985{
 986	int n = 1;
 987#ifdef CONFIG_RADIX_TREE_MULTIORDER
 988	void *ptr = node_to_entry(slot);
 989	unsigned offset = get_slot_offset(node, slot);
 990	int i;
 991
 992	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
 993		if (node->slots[offset + i] != ptr)
 994			break;
 995		n++;
 996	}
 997#endif
 998	return n;
 999}
1000
1001static void replace_slot(struct radix_tree_root *root,
1002			 struct radix_tree_node *node,
1003			 void **slot, void *item,
1004			 bool warn_typeswitch)
1005{
1006	void *old = rcu_dereference_raw(*slot);
1007	int count, exceptional;
1008
1009	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1010
1011	count = !!item - !!old;
1012	exceptional = !!radix_tree_exceptional_entry(item) -
1013		      !!radix_tree_exceptional_entry(old);
1014
1015	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1016
1017	if (node) {
1018		node->count += count;
1019		if (exceptional) {
1020			exceptional *= slot_count(node, slot);
1021			node->exceptional += exceptional;
1022		}
1023	}
1024
1025	rcu_assign_pointer(*slot, item);
1026}
1027
1028static inline void delete_sibling_entries(struct radix_tree_node *node,
1029						void **slot)
1030{
1031#ifdef CONFIG_RADIX_TREE_MULTIORDER
1032	bool exceptional = radix_tree_exceptional_entry(*slot);
1033	void *ptr = node_to_entry(slot);
1034	unsigned offset = get_slot_offset(node, slot);
1035	int i;
1036
1037	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038		if (node->slots[offset + i] != ptr)
1039			break;
1040		node->slots[offset + i] = NULL;
1041		node->count--;
1042		if (exceptional)
1043			node->exceptional--;
1044	}
1045#endif
1046}
1047
1048/**
1049 * __radix_tree_replace		- replace item in a slot
1050 * @root:		radix tree root
1051 * @node:		pointer to tree node
1052 * @slot:		pointer to slot in @node
1053 * @item:		new item to store in the slot.
1054 * @update_node:	callback for changing leaf nodes
1055 * @private:		private data to pass to @update_node
1056 *
1057 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1058 * across slot lookup and replacement.
1059 */
1060void __radix_tree_replace(struct radix_tree_root *root,
1061			  struct radix_tree_node *node,
1062			  void **slot, void *item,
1063			  radix_tree_update_node_t update_node, void *private)
1064{
1065	if (!item)
1066		delete_sibling_entries(node, slot);
1067	/*
1068	 * This function supports replacing exceptional entries and
1069	 * deleting entries, but that needs accounting against the
1070	 * node unless the slot is root->rnode.
1071	 */
1072	replace_slot(root, node, slot, item,
1073		     !node && slot != (void **)&root->rnode);
1074
1075	if (!node)
1076		return;
1077
1078	if (update_node)
1079		update_node(node, private);
1080
1081	delete_node(root, node, update_node, private);
1082}
1083
1084/**
1085 * radix_tree_replace_slot	- replace item in a slot
1086 * @root:	radix tree root
1087 * @slot:	pointer to slot
1088 * @item:	new item to store in the slot.
1089 *
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1092 * across slot lookup and replacement.
1093 *
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1099 */
1100void radix_tree_replace_slot(struct radix_tree_root *root,
1101			     void **slot, void *item)
1102{
1103	replace_slot(root, NULL, slot, item, true);
1104}
1105
1106/**
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root:	radix tree root
1109 * @slot:	pointer to slot
1110 * @item:	new item to store in the slot.
1111 *
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1114 */
1115void radix_tree_iter_replace(struct radix_tree_root *root,
1116		const struct radix_tree_iter *iter, void **slot, void *item)
1117{
1118	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1119}
1120
1121#ifdef CONFIG_RADIX_TREE_MULTIORDER
1122/**
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1127 * @item: new entry
1128 *
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1131 * this call.
1132 *
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1135 */
1136int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1137			unsigned order, void *item)
1138{
1139	struct radix_tree_node *node;
1140	void **slot;
1141	int error;
1142
1143	BUG_ON(radix_tree_is_internal_node(item));
1144
1145	error = __radix_tree_create(root, index, order, &node, &slot);
1146	if (!error)
1147		error = insert_entries(node, slot, item, order, true);
1148	if (error > 0)
1149		error = 0;
1150
1151	return error;
1152}
1153
1154/**
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1159 *
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order.  After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1164 *
1165 * The tags from this entry are replicated to all the new entries.
1166 *
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1170 */
1171int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1172				unsigned order)
1173{
1174	struct radix_tree_node *parent, *node, *child;
1175	void **slot;
1176	unsigned int offset, end;
1177	unsigned n, tag, tags = 0;
1178
1179	if (!__radix_tree_lookup(root, index, &parent, &slot))
1180		return -ENOENT;
1181	if (!parent)
1182		return -ENOENT;
1183
1184	offset = get_slot_offset(parent, slot);
1185
1186	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1187		if (tag_get(parent, tag, offset))
1188			tags |= 1 << tag;
1189
1190	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1191		if (!is_sibling_entry(parent, parent->slots[end]))
1192			break;
1193		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194			if (tags & (1 << tag))
1195				tag_set(parent, tag, end);
1196		/* rcu_assign_pointer ensures tags are set before RETRY */
1197		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1198	}
1199	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1200	parent->exceptional -= (end - offset);
1201
1202	if (order == parent->shift)
1203		return 0;
1204	if (order > parent->shift) {
1205		while (offset < end)
1206			offset += insert_entries(parent, &parent->slots[offset],
1207					RADIX_TREE_RETRY, order, true);
1208		return 0;
1209	}
1210
1211	node = parent;
1212
1213	for (;;) {
1214		if (node->shift > order) {
1215			child = radix_tree_node_alloc(root, node,
1216					node->shift - RADIX_TREE_MAP_SHIFT,
1217					offset, 0, 0);
1218			if (!child)
1219				goto nomem;
1220			if (node != parent) {
1221				node->count++;
1222				node->slots[offset] = node_to_entry(child);
1223				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1224					if (tags & (1 << tag))
1225						tag_set(node, tag, offset);
1226			}
1227
1228			node = child;
1229			offset = 0;
1230			continue;
1231		}
1232
1233		n = insert_entries(node, &node->slots[offset],
1234					RADIX_TREE_RETRY, order, false);
1235		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1236
1237		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238			if (tags & (1 << tag))
1239				tag_set(node, tag, offset);
1240		offset += n;
1241
1242		while (offset == RADIX_TREE_MAP_SIZE) {
1243			if (node == parent)
1244				break;
1245			offset = node->offset;
1246			child = node;
1247			node = node->parent;
1248			rcu_assign_pointer(node->slots[offset],
1249						node_to_entry(child));
1250			offset++;
1251		}
1252		if ((node == parent) && (offset == end))
1253			return 0;
1254	}
1255
1256 nomem:
1257	/* Shouldn't happen; did user forget to preload? */
1258	/* TODO: free all the allocated nodes */
1259	WARN_ON(1);
1260	return -ENOMEM;
1261}
1262#endif
1263
1264/**
1265 *	radix_tree_tag_set - set a tag on a radix tree node
1266 *	@root:		radix tree root
1267 *	@index:		index key
1268 *	@tag:		tag index
1269 *
1270 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 *	corresponding to @index in the radix tree.  From
1272 *	the root all the way down to the leaf node.
1273 *
1274 *	Returns the address of the tagged item.  Setting a tag on a not-present
1275 *	item is a bug.
1276 */
1277void *radix_tree_tag_set(struct radix_tree_root *root,
1278			unsigned long index, unsigned int tag)
1279{
1280	struct radix_tree_node *node, *parent;
1281	unsigned long maxindex;
1282
1283	radix_tree_load_root(root, &node, &maxindex);
1284	BUG_ON(index > maxindex);
1285
1286	while (radix_tree_is_internal_node(node)) {
1287		unsigned offset;
1288
1289		parent = entry_to_node(node);
1290		offset = radix_tree_descend(parent, &node, index);
1291		BUG_ON(!node);
1292
1293		if (!tag_get(parent, tag, offset))
1294			tag_set(parent, tag, offset);
 
 
 
 
 
1295	}
1296
1297	/* set the root's tag bit */
1298	if (!root_tag_get(root, tag))
1299		root_tag_set(root, tag);
1300
1301	return node;
1302}
1303EXPORT_SYMBOL(radix_tree_tag_set);
1304
1305static void node_tag_clear(struct radix_tree_root *root,
1306				struct radix_tree_node *node,
1307				unsigned int tag, unsigned int offset)
1308{
1309	while (node) {
1310		if (!tag_get(node, tag, offset))
1311			return;
1312		tag_clear(node, tag, offset);
1313		if (any_tag_set(node, tag))
1314			return;
1315
1316		offset = node->offset;
1317		node = node->parent;
1318	}
1319
1320	/* clear the root's tag bit */
1321	if (root_tag_get(root, tag))
1322		root_tag_clear(root, tag);
1323}
1324
1325static void node_tag_set(struct radix_tree_root *root,
1326				struct radix_tree_node *node,
1327				unsigned int tag, unsigned int offset)
1328{
1329	while (node) {
1330		if (tag_get(node, tag, offset))
1331			return;
1332		tag_set(node, tag, offset);
1333		offset = node->offset;
1334		node = node->parent;
1335	}
1336
1337	if (!root_tag_get(root, tag))
1338		root_tag_set(root, tag);
1339}
1340
1341/**
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root:	radix tree root
1344 * @iter:	iterator state
1345 * @tag:	tag to set
1346 */
1347void radix_tree_iter_tag_set(struct radix_tree_root *root,
1348			const struct radix_tree_iter *iter, unsigned int tag)
1349{
1350	node_tag_set(root, iter->node, tag, iter_offset(iter));
1351}
1352
1353/**
1354 *	radix_tree_tag_clear - clear a tag on a radix tree node
1355 *	@root:		radix tree root
1356 *	@index:		index key
1357 *	@tag:		tag index
1358 *
1359 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 *	corresponding to @index in the radix tree.  If this causes
1361 *	the leaf node to have no tags set then clear the tag in the
1362 *	next-to-leaf node, etc.
1363 *
1364 *	Returns the address of the tagged item on success, else NULL.  ie:
1365 *	has the same return value and semantics as radix_tree_lookup().
1366 */
1367void *radix_tree_tag_clear(struct radix_tree_root *root,
1368			unsigned long index, unsigned int tag)
1369{
1370	struct radix_tree_node *node, *parent;
1371	unsigned long maxindex;
1372	int uninitialized_var(offset);
 
 
 
 
1373
1374	radix_tree_load_root(root, &node, &maxindex);
1375	if (index > maxindex)
1376		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378	parent = NULL;
 
1379
1380	while (radix_tree_is_internal_node(node)) {
1381		parent = entry_to_node(node);
1382		offset = radix_tree_descend(parent, &node, index);
 
 
 
 
1383	}
1384
1385	if (node)
1386		node_tag_clear(root, parent, tag, offset);
 
1387
1388	return node;
 
1389}
1390EXPORT_SYMBOL(radix_tree_tag_clear);
1391
1392/**
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root:		radix tree root
1395 * @index:		index key
1396 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1397 *
1398 * Return values:
1399 *
1400 *  0: tag not present or not set
1401 *  1: tag set
1402 *
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1405 * from concurrency.
1406 */
1407int radix_tree_tag_get(struct radix_tree_root *root,
1408			unsigned long index, unsigned int tag)
1409{
1410	struct radix_tree_node *node, *parent;
1411	unsigned long maxindex;
 
1412
 
1413	if (!root_tag_get(root, tag))
1414		return 0;
1415
1416	radix_tree_load_root(root, &node, &maxindex);
1417	if (index > maxindex)
1418		return 0;
1419	if (node == NULL)
1420		return 0;
1421
1422	while (radix_tree_is_internal_node(node)) {
1423		unsigned offset;
 
1424
1425		parent = entry_to_node(node);
1426		offset = radix_tree_descend(parent, &node, index);
 
1427
1428		if (!node)
1429			return 0;
1430		if (!tag_get(parent, tag, offset))
 
 
 
1431			return 0;
1432		if (node == RADIX_TREE_RETRY)
1433			break;
1434	}
1435
1436	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1437}
1438EXPORT_SYMBOL(radix_tree_tag_get);
1439
1440static inline void __set_iter_shift(struct radix_tree_iter *iter,
1441					unsigned int shift)
1442{
1443#ifdef CONFIG_RADIX_TREE_MULTIORDER
1444	iter->shift = shift;
1445#endif
1446}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1447
1448/* Construct iter->tags bit-mask from node->tags[tag] array */
1449static void set_iter_tags(struct radix_tree_iter *iter,
1450				struct radix_tree_node *node, unsigned offset,
1451				unsigned tag)
1452{
1453	unsigned tag_long = offset / BITS_PER_LONG;
1454	unsigned tag_bit  = offset % BITS_PER_LONG;
1455
1456	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1457
1458	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1460		/* Pick tags from next element */
1461		if (tag_bit)
1462			iter->tags |= node->tags[tag][tag_long + 1] <<
1463						(BITS_PER_LONG - tag_bit);
1464		/* Clip chunk size, here only BITS_PER_LONG tags */
1465		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1466	}
1467}
1468
1469#ifdef CONFIG_RADIX_TREE_MULTIORDER
1470static void **skip_siblings(struct radix_tree_node **nodep,
1471			void **slot, struct radix_tree_iter *iter)
1472{
1473	void *sib = node_to_entry(slot - 1);
1474
1475	while (iter->index < iter->next_index) {
1476		*nodep = rcu_dereference_raw(*slot);
1477		if (*nodep && *nodep != sib)
1478			return slot;
1479		slot++;
1480		iter->index = __radix_tree_iter_add(iter, 1);
1481		iter->tags >>= 1;
1482	}
1483
1484	*nodep = NULL;
1485	return NULL;
1486}
1487
1488void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1489					unsigned flags)
1490{
1491	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1492	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1493
1494	slot = skip_siblings(&node, slot, iter);
1495
1496	while (radix_tree_is_internal_node(node)) {
1497		unsigned offset;
1498		unsigned long next_index;
1499
1500		if (node == RADIX_TREE_RETRY)
1501			return slot;
1502		node = entry_to_node(node);
1503		iter->node = node;
1504		iter->shift = node->shift;
1505
1506		if (flags & RADIX_TREE_ITER_TAGGED) {
1507			offset = radix_tree_find_next_bit(node, tag, 0);
1508			if (offset == RADIX_TREE_MAP_SIZE)
1509				return NULL;
1510			slot = &node->slots[offset];
1511			iter->index = __radix_tree_iter_add(iter, offset);
1512			set_iter_tags(iter, node, offset, tag);
1513			node = rcu_dereference_raw(*slot);
1514		} else {
1515			offset = 0;
1516			slot = &node->slots[0];
1517			for (;;) {
1518				node = rcu_dereference_raw(*slot);
1519				if (node)
1520					break;
1521				slot++;
1522				offset++;
1523				if (offset == RADIX_TREE_MAP_SIZE)
1524					return NULL;
1525			}
1526			iter->index = __radix_tree_iter_add(iter, offset);
1527		}
1528		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1529			goto none;
1530		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1531		if (next_index < iter->next_index)
1532			iter->next_index = next_index;
1533	}
1534
1535	return slot;
1536 none:
1537	iter->next_index = 0;
1538	return NULL;
1539}
1540EXPORT_SYMBOL(__radix_tree_next_slot);
1541#else
1542static void **skip_siblings(struct radix_tree_node **nodep,
1543			void **slot, struct radix_tree_iter *iter)
1544{
1545	return slot;
1546}
1547#endif
1548
1549void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1550{
1551	struct radix_tree_node *node;
 
 
 
 
 
 
1552
1553	slot++;
1554	iter->index = __radix_tree_iter_add(iter, 1);
1555	node = rcu_dereference_raw(*slot);
1556	skip_siblings(&node, slot, iter);
1557	iter->next_index = iter->index;
1558	iter->tags = 0;
1559	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1560}
1561EXPORT_SYMBOL(radix_tree_iter_resume);
 
1562
1563/**
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
 
 
 
 
 
 
1565 *
1566 * @root:	radix tree root
1567 * @iter:	iterator state
1568 * @flags:	RADIX_TREE_ITER_* flags and tag index
1569 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 
 
 
 
 
 
1570 */
1571void **radix_tree_next_chunk(struct radix_tree_root *root,
1572			     struct radix_tree_iter *iter, unsigned flags)
1573{
1574	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1575	struct radix_tree_node *node, *child;
1576	unsigned long index, offset, maxindex;
1577
1578	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1579		return NULL;
 
 
 
 
 
1580
1581	/*
1582	 * Catch next_index overflow after ~0UL. iter->index never overflows
1583	 * during iterating; it can be zero only at the beginning.
1584	 * And we cannot overflow iter->next_index in a single step,
1585	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1586	 *
1587	 * This condition also used by radix_tree_next_slot() to stop
1588	 * contiguous iterating, and forbid switching to the next chunk.
1589	 */
1590	index = iter->next_index;
1591	if (!index && iter->index)
1592		return NULL;
1593
1594 restart:
1595	radix_tree_load_root(root, &child, &maxindex);
1596	if (index > maxindex)
1597		return NULL;
1598	if (!child)
1599		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600
1601	if (!radix_tree_is_internal_node(child)) {
1602		/* Single-slot tree */
1603		iter->index = index;
1604		iter->next_index = maxindex + 1;
1605		iter->tags = 1;
1606		iter->node = NULL;
1607		__set_iter_shift(iter, 0);
1608		return (void **)&root->rnode;
1609	}
1610
1611	do {
1612		node = entry_to_node(child);
1613		offset = radix_tree_descend(node, &child, index);
1614
1615		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1616				!tag_get(node, tag, offset) : !child) {
1617			/* Hole detected */
1618			if (flags & RADIX_TREE_ITER_CONTIG)
1619				return NULL;
1620
1621			if (flags & RADIX_TREE_ITER_TAGGED)
1622				offset = radix_tree_find_next_bit(node, tag,
1623						offset + 1);
1624			else
1625				while (++offset	< RADIX_TREE_MAP_SIZE) {
1626					void *slot = node->slots[offset];
1627					if (is_sibling_entry(node, slot))
1628						continue;
1629					if (slot)
1630						break;
1631				}
1632			index &= ~node_maxindex(node);
1633			index += offset << node->shift;
1634			/* Overflow after ~0UL */
1635			if (!index)
1636				return NULL;
1637			if (offset == RADIX_TREE_MAP_SIZE)
1638				goto restart;
1639			child = rcu_dereference_raw(node->slots[offset]);
1640		}
1641
1642		if (!child)
1643			goto restart;
1644		if (child == RADIX_TREE_RETRY)
1645			break;
1646	} while (radix_tree_is_internal_node(child));
1647
1648	/* Update the iterator state */
1649	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1650	iter->next_index = (index | node_maxindex(node)) + 1;
1651	iter->node = node;
1652	__set_iter_shift(iter, node->shift);
 
 
 
 
 
 
 
 
1653
1654	if (flags & RADIX_TREE_ITER_TAGGED)
1655		set_iter_tags(iter, node, offset, tag);
 
 
 
1656
1657	return node->slots + offset;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1658}
1659EXPORT_SYMBOL(radix_tree_next_chunk);
1660
1661/**
1662 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 *	@root:		radix tree root
1664 *	@results:	where the results of the lookup are placed
1665 *	@first_index:	start the lookup from this key
1666 *	@max_items:	place up to this many items at *results
1667 *
1668 *	Performs an index-ascending scan of the tree for present items.  Places
1669 *	them at *@results and returns the number of items which were placed at
1670 *	*@results.
1671 *
1672 *	The implementation is naive.
1673 *
1674 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 *	rcu_read_lock. In this case, rather than the returned results being
1676 *	an atomic snapshot of the tree at a single point in time, the
1677 *	semantics of an RCU protected gang lookup are as though multiple
1678 *	radix_tree_lookups have been issued in individual locks, and results
1679 *	stored in 'results'.
1680 */
1681unsigned int
1682radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1683			unsigned long first_index, unsigned int max_items)
1684{
1685	struct radix_tree_iter iter;
1686	void **slot;
1687	unsigned int ret = 0;
 
1688
1689	if (unlikely(!max_items))
 
1690		return 0;
1691
1692	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1693		results[ret] = rcu_dereference_raw(*slot);
1694		if (!results[ret])
1695			continue;
1696		if (radix_tree_is_internal_node(results[ret])) {
1697			slot = radix_tree_iter_retry(&iter);
1698			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699		}
1700		if (++ret == max_items)
 
1701			break;
 
1702	}
1703
1704	return ret;
1705}
1706EXPORT_SYMBOL(radix_tree_gang_lookup);
1707
1708/**
1709 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 *	@root:		radix tree root
1711 *	@results:	where the results of the lookup are placed
1712 *	@indices:	where their indices should be placed (but usually NULL)
1713 *	@first_index:	start the lookup from this key
1714 *	@max_items:	place up to this many items at *results
1715 *
1716 *	Performs an index-ascending scan of the tree for present items.  Places
1717 *	their slots at *@results and returns the number of items which were
1718 *	placed at *@results.
1719 *
1720 *	The implementation is naive.
1721 *
1722 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 *	protection, radix_tree_deref_slot may fail requiring a retry.
1725 */
1726unsigned int
1727radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1728			void ***results, unsigned long *indices,
1729			unsigned long first_index, unsigned int max_items)
1730{
1731	struct radix_tree_iter iter;
1732	void **slot;
1733	unsigned int ret = 0;
 
1734
1735	if (unlikely(!max_items))
 
1736		return 0;
1737
1738	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1739		results[ret] = slot;
 
 
1740		if (indices)
1741			indices[ret] = iter.index;
1742		if (++ret == max_items)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1743			break;
 
1744	}
1745
1746	return ret;
1747}
1748EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1749
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1750/**
1751 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1752 *	                             based on a tag
1753 *	@root:		radix tree root
1754 *	@results:	where the results of the lookup are placed
1755 *	@first_index:	start the lookup from this key
1756 *	@max_items:	place up to this many items at *results
1757 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1758 *
1759 *	Performs an index-ascending scan of the tree for present items which
1760 *	have the tag indexed by @tag set.  Places the items at *@results and
1761 *	returns the number of items which were placed at *@results.
1762 */
1763unsigned int
1764radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1765		unsigned long first_index, unsigned int max_items,
1766		unsigned int tag)
1767{
1768	struct radix_tree_iter iter;
1769	void **slot;
1770	unsigned int ret = 0;
 
1771
1772	if (unlikely(!max_items))
 
1773		return 0;
1774
1775	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1776		results[ret] = rcu_dereference_raw(*slot);
1777		if (!results[ret])
1778			continue;
1779		if (radix_tree_is_internal_node(results[ret])) {
1780			slot = radix_tree_iter_retry(&iter);
1781			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1782		}
1783		if (++ret == max_items)
 
1784			break;
 
1785	}
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1790
1791/**
1792 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 *					  radix tree based on a tag
1794 *	@root:		radix tree root
1795 *	@results:	where the results of the lookup are placed
1796 *	@first_index:	start the lookup from this key
1797 *	@max_items:	place up to this many items at *results
1798 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1799 *
1800 *	Performs an index-ascending scan of the tree for present items which
1801 *	have the tag indexed by @tag set.  Places the slots at *@results and
1802 *	returns the number of slots which were placed at *@results.
1803 */
1804unsigned int
1805radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1806		unsigned long first_index, unsigned int max_items,
1807		unsigned int tag)
1808{
1809	struct radix_tree_iter iter;
1810	void **slot;
1811	unsigned int ret = 0;
 
1812
1813	if (unlikely(!max_items))
 
1814		return 0;
1815
1816	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1817		results[ret] = slot;
1818		if (++ret == max_items)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819			break;
 
1820	}
1821
1822	return ret;
1823}
1824EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1825
1826/**
1827 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1828 *	@root:		radix tree root
1829 *	@node:		node containing @index
1830 *	@update_node:	callback for changing leaf nodes
1831 *	@private:	private data to pass to @update_node
1832 *
1833 *	After clearing the slot at @index in @node from radix tree
1834 *	rooted at @root, call this function to attempt freeing the
1835 *	node and shrinking the tree.
1836 */
1837void __radix_tree_delete_node(struct radix_tree_root *root,
1838			      struct radix_tree_node *node,
1839			      radix_tree_update_node_t update_node,
1840			      void *private)
1841{
1842	delete_node(root, node, update_node, private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843}
1844
1845/**
1846 *	radix_tree_delete_item    -    delete an item from a radix tree
1847 *	@root:		radix tree root
1848 *	@index:		index key
1849 *	@item:		expected item
1850 *
1851 *	Remove @item at @index from the radix tree rooted at @root.
1852 *
1853 *	Returns the address of the deleted item, or NULL if it was not present
1854 *	or the entry at the given @index was not @item.
 
1855 */
1856void *radix_tree_delete_item(struct radix_tree_root *root,
1857			     unsigned long index, void *item)
1858{
1859	struct radix_tree_node *node;
1860	unsigned int offset;
1861	void **slot;
1862	void *entry;
1863	int tag;
1864
1865	entry = __radix_tree_lookup(root, index, &node, &slot);
1866	if (!entry)
1867		return NULL;
 
 
 
 
 
 
1868
1869	if (item && entry != item)
1870		return NULL;
 
 
1871
1872	if (!node) {
1873		root_tag_clear_all(root);
1874		root->rnode = NULL;
1875		return entry;
1876	}
 
 
 
 
 
 
 
 
1877
1878	offset = get_slot_offset(node, slot);
 
 
 
 
 
 
 
 
 
 
 
 
1879
1880	/* Clear all tags associated with the item to be deleted.  */
1881	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1882		node_tag_clear(root, node, tag, offset);
 
 
 
 
 
1883
1884	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
 
 
 
 
 
 
 
 
 
 
 
1885
1886	return entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887}
1888EXPORT_SYMBOL(radix_tree_delete_item);
1889
1890/**
1891 *	radix_tree_delete    -    delete an item from a radix tree
1892 *	@root:		radix tree root
1893 *	@index:		index key
1894 *
1895 *	Remove the item at @index from the radix tree rooted at @root.
1896 *
1897 *	Returns the address of the deleted item, or NULL if it was not present.
1898 */
1899void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1900{
1901	return radix_tree_delete_item(root, index, NULL);
1902}
1903EXPORT_SYMBOL(radix_tree_delete);
 
 
 
 
 
 
 
1904
1905void radix_tree_clear_tags(struct radix_tree_root *root,
1906			   struct radix_tree_node *node,
1907			   void **slot)
1908{
1909	if (node) {
1910		unsigned int tag, offset = get_slot_offset(node, slot);
1911		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1912			node_tag_clear(root, node, tag, offset);
1913	} else {
1914		/* Clear root node tags */
1915		root->gfp_mask &= __GFP_BITS_MASK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1916	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917}
 
1918
1919/**
1920 *	radix_tree_tagged - test whether any items in the tree are tagged
1921 *	@root:		radix tree root
1922 *	@tag:		tag to test
1923 */
1924int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1925{
1926	return root_tag_get(root, tag);
1927}
1928EXPORT_SYMBOL(radix_tree_tagged);
1929
1930static void
1931radix_tree_node_ctor(void *arg)
1932{
1933	struct radix_tree_node *node = arg;
1934
1935	memset(node, 0, sizeof(*node));
1936	INIT_LIST_HEAD(&node->private_list);
1937}
1938
1939static __init unsigned long __maxindex(unsigned int height)
1940{
1941	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1942	int shift = RADIX_TREE_INDEX_BITS - width;
1943
1944	if (shift < 0)
1945		return ~0UL;
1946	if (shift >= BITS_PER_LONG)
1947		return 0UL;
1948	return ~0UL >> shift;
1949}
1950
1951static __init void radix_tree_init_maxnodes(void)
1952{
1953	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1954	unsigned int i, j;
1955
1956	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1957		height_to_maxindex[i] = __maxindex(i);
1958	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1959		for (j = i; j > 0; j--)
1960			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1961	}
1962}
1963
1964static int radix_tree_cpu_dead(unsigned int cpu)
1965{
1966	struct radix_tree_preload *rtp;
1967	struct radix_tree_node *node;
1968
1969	/* Free per-cpu pool of preloaded nodes */
1970	rtp = &per_cpu(radix_tree_preloads, cpu);
1971	while (rtp->nr) {
1972		node = rtp->nodes;
1973		rtp->nodes = node->private_data;
1974		kmem_cache_free(radix_tree_node_cachep, node);
1975		rtp->nr--;
1976	}
1977	return 0;
 
 
 
 
1978}
1979
1980void __init radix_tree_init(void)
1981{
1982	int ret;
1983	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1984			sizeof(struct radix_tree_node), 0,
1985			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1986			radix_tree_node_ctor);
1987	radix_tree_init_maxnodes();
1988	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1989					NULL, radix_tree_cpu_dead);
1990	WARN_ON(ret < 0);
1991}
v3.1
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
 
 
 
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License as
   9 * published by the Free Software Foundation; either version 2, or (at
  10 * your option) any later version.
  11 *
  12 * This program is distributed in the hope that it will be useful, but
  13 * WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  15 * General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  20 */
  21
 
  22#include <linux/errno.h>
  23#include <linux/init.h>
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/radix-tree.h>
  27#include <linux/percpu.h>
  28#include <linux/slab.h>
  29#include <linux/notifier.h>
  30#include <linux/cpu.h>
  31#include <linux/string.h>
  32#include <linux/bitops.h>
  33#include <linux/rcupdate.h>
 
  34
  35
  36#ifdef __KERNEL__
  37#define RADIX_TREE_MAP_SHIFT	(CONFIG_BASE_SMALL ? 4 : 6)
  38#else
  39#define RADIX_TREE_MAP_SHIFT	3	/* For more stressful testing */
  40#endif
  41
  42#define RADIX_TREE_MAP_SIZE	(1UL << RADIX_TREE_MAP_SHIFT)
  43#define RADIX_TREE_MAP_MASK	(RADIX_TREE_MAP_SIZE-1)
  44
  45#define RADIX_TREE_TAG_LONGS	\
  46	((RADIX_TREE_MAP_SIZE + BITS_PER_LONG - 1) / BITS_PER_LONG)
  47
  48struct radix_tree_node {
  49	unsigned int	height;		/* Height from the bottom */
  50	unsigned int	count;
  51	struct rcu_head	rcu_head;
  52	void __rcu	*slots[RADIX_TREE_MAP_SIZE];
  53	unsigned long	tags[RADIX_TREE_MAX_TAGS][RADIX_TREE_TAG_LONGS];
  54};
  55
  56struct radix_tree_path {
  57	struct radix_tree_node *node;
  58	int offset;
  59};
  60
  61#define RADIX_TREE_INDEX_BITS  (8 /* CHAR_BIT */ * sizeof(unsigned long))
  62#define RADIX_TREE_MAX_PATH (DIV_ROUND_UP(RADIX_TREE_INDEX_BITS, \
  63					  RADIX_TREE_MAP_SHIFT))
  64
  65/*
  66 * The height_to_maxindex array needs to be one deeper than the maximum
  67 * path as height 0 holds only 1 entry.
  68 */
  69static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  70
  71/*
  72 * Radix tree node cache.
 
 
 
 
 
 
 
 
  73 */
  74static struct kmem_cache *radix_tree_node_cachep;
  75
  76/*
  77 * Per-cpu pool of preloaded nodes
  78 */
  79struct radix_tree_preload {
  80	int nr;
  81	struct radix_tree_node *nodes[RADIX_TREE_MAX_PATH];
 
  82};
  83static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  84
  85static inline void *ptr_to_indirect(void *ptr)
  86{
  87	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  88}
  89
  90static inline void *indirect_to_ptr(void *ptr)
  91{
  92	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93}
  94
  95static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  96{
  97	return root->gfp_mask & __GFP_BITS_MASK;
  98}
  99
 100static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 101		int offset)
 102{
 103	__set_bit(offset, node->tags[tag]);
 104}
 105
 106static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 107		int offset)
 108{
 109	__clear_bit(offset, node->tags[tag]);
 110}
 111
 112static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 113		int offset)
 114{
 115	return test_bit(offset, node->tags[tag]);
 116}
 117
 118static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 119{
 120	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 121}
 122
 123static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 124{
 125	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 126}
 127
 128static inline void root_tag_clear_all(struct radix_tree_root *root)
 129{
 130	root->gfp_mask &= __GFP_BITS_MASK;
 131}
 132
 133static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 134{
 135	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 
 
 
 
 
 136}
 137
 138/*
 139 * Returns 1 if any slot in the node has this tag set.
 140 * Otherwise returns 0.
 141 */
 142static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 143{
 144	int idx;
 145	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 146		if (node->tags[tag][idx])
 147			return 1;
 148	}
 149	return 0;
 150}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 151/*
 152 * This assumes that the caller has performed appropriate preallocation, and
 153 * that the caller has pinned this thread of control to the current CPU.
 154 */
 155static struct radix_tree_node *
 156radix_tree_node_alloc(struct radix_tree_root *root)
 
 
 
 157{
 158	struct radix_tree_node *ret = NULL;
 159	gfp_t gfp_mask = root_gfp_mask(root);
 160
 161	if (!(gfp_mask & __GFP_WAIT)) {
 
 
 
 
 
 162		struct radix_tree_preload *rtp;
 163
 164		/*
 
 
 
 
 
 
 
 
 
 
 165		 * Provided the caller has preloaded here, we will always
 166		 * succeed in getting a node here (and never reach
 167		 * kmem_cache_alloc)
 168		 */
 169		rtp = &__get_cpu_var(radix_tree_preloads);
 170		if (rtp->nr) {
 171			ret = rtp->nodes[rtp->nr - 1];
 172			rtp->nodes[rtp->nr - 1] = NULL;
 
 173			rtp->nr--;
 174		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 175	}
 176	if (ret == NULL)
 177		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 178
 179	BUG_ON(radix_tree_is_indirect_ptr(ret));
 180	return ret;
 181}
 182
 183static void radix_tree_node_rcu_free(struct rcu_head *head)
 184{
 185	struct radix_tree_node *node =
 186			container_of(head, struct radix_tree_node, rcu_head);
 187	int i;
 188
 189	/*
 190	 * must only free zeroed nodes into the slab. radix_tree_shrink
 191	 * can leave us with a non-NULL entry in the first slot, so clear
 192	 * that here to make sure.
 193	 */
 194	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 195		tag_clear(node, i, 0);
 196
 197	node->slots[0] = NULL;
 198	node->count = 0;
 199
 200	kmem_cache_free(radix_tree_node_cachep, node);
 201}
 202
 203static inline void
 204radix_tree_node_free(struct radix_tree_node *node)
 205{
 206	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 207}
 208
 209/*
 210 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 211 * ensure that the addition of a single element in the tree cannot fail.  On
 212 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 213 * with preemption not disabled.
 214 *
 215 * To make use of this facility, the radix tree must be initialised without
 216 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 217 */
 218int radix_tree_preload(gfp_t gfp_mask)
 219{
 220	struct radix_tree_preload *rtp;
 221	struct radix_tree_node *node;
 222	int ret = -ENOMEM;
 223
 
 
 
 
 
 
 224	preempt_disable();
 225	rtp = &__get_cpu_var(radix_tree_preloads);
 226	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
 227		preempt_enable();
 228		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 229		if (node == NULL)
 230			goto out;
 231		preempt_disable();
 232		rtp = &__get_cpu_var(radix_tree_preloads);
 233		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
 234			rtp->nodes[rtp->nr++] = node;
 235		else
 
 
 236			kmem_cache_free(radix_tree_node_cachep, node);
 
 237	}
 238	ret = 0;
 239out:
 240	return ret;
 241}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 242EXPORT_SYMBOL(radix_tree_preload);
 243
 244/*
 245 *	Return the maximum key which can be store into a
 246 *	radix tree with height HEIGHT.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 247 */
 248static inline unsigned long radix_tree_maxindex(unsigned int height)
 
 249{
 250	return height_to_maxindex[height];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 251}
 252
 253/*
 254 *	Extend a radix tree so it can store key @index.
 255 */
 256static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
 
 257{
 258	struct radix_tree_node *node;
 259	unsigned int height;
 260	int tag;
 261
 262	/* Figure out what the height should be.  */
 263	height = root->height + 1;
 264	while (index > radix_tree_maxindex(height))
 265		height++;
 266
 267	if (root->rnode == NULL) {
 268		root->height = height;
 269		goto out;
 270	}
 271
 272	do {
 273		unsigned int newheight;
 274		if (!(node = radix_tree_node_alloc(root)))
 
 275			return -ENOMEM;
 276
 277		/* Increase the height.  */
 278		node->slots[0] = indirect_to_ptr(root->rnode);
 279
 280		/* Propagate the aggregated tag info into the new root */
 281		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 282			if (root_tag_get(root, tag))
 283				tag_set(node, tag, 0);
 284		}
 285
 286		newheight = root->height+1;
 287		node->height = newheight;
 288		node->count = 1;
 289		node = ptr_to_indirect(node);
 290		rcu_assign_pointer(root->rnode, node);
 291		root->height = newheight;
 292	} while (height > root->height);
 
 
 
 
 
 293out:
 294	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 295}
 296
 297/**
 298 *	radix_tree_insert    -    insert into a radix tree
 299 *	@root:		radix tree root
 300 *	@index:		index key
 301 *	@item:		item to insert
 302 *
 303 *	Insert an item into the radix tree at position @index.
 304 */
 305int radix_tree_insert(struct radix_tree_root *root,
 306			unsigned long index, void *item)
 307{
 308	struct radix_tree_node *node = NULL, *slot;
 309	unsigned int height, shift;
 310	int offset;
 311	int error;
 
 
 
 
 
 
 
 
 
 
 
 312
 313	BUG_ON(radix_tree_is_indirect_ptr(item));
 314
 315	/* Make sure the tree is high enough.  */
 316	if (index > radix_tree_maxindex(root->height)) {
 317		error = radix_tree_extend(root, index);
 318		if (error)
 
 
 319			return error;
 
 
 320	}
 321
 322	slot = indirect_to_ptr(root->rnode);
 323
 324	height = root->height;
 325	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 326
 327	offset = 0;			/* uninitialised var warning */
 328	while (height > 0) {
 329		if (slot == NULL) {
 330			/* Have to add a child node.  */
 331			if (!(slot = radix_tree_node_alloc(root)))
 
 
 332				return -ENOMEM;
 333			slot->height = height;
 334			if (node) {
 335				rcu_assign_pointer(node->slots[offset], slot);
 336				node->count++;
 337			} else
 338				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
 339		}
 340
 341		/* Go a level down */
 342		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 343		node = slot;
 344		slot = node->slots[offset];
 345		shift -= RADIX_TREE_MAP_SHIFT;
 346		height--;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347	}
 
 348
 349	if (slot != NULL)
 350		return -EEXIST;
 
 
 
 351
 352	if (node) {
 353		node->count++;
 354		rcu_assign_pointer(node->slots[offset], item);
 355		BUG_ON(tag_get(node, 0, offset));
 356		BUG_ON(tag_get(node, 1, offset));
 
 357	} else {
 358		rcu_assign_pointer(root->rnode, item);
 359		BUG_ON(root_tag_get(root, 0));
 360		BUG_ON(root_tag_get(root, 1));
 361	}
 362
 363	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 364}
 365EXPORT_SYMBOL(radix_tree_insert);
 366
 367/*
 368 * is_slot == 1 : search for the slot.
 369 * is_slot == 0 : search for the node.
 
 
 
 
 
 370 */
 371static void *radix_tree_lookup_element(struct radix_tree_root *root,
 372				unsigned long index, int is_slot)
 373{
 374	unsigned int height, shift;
 375	struct radix_tree_node *node, **slot;
 
 376
 377	node = rcu_dereference_raw(root->rnode);
 378	if (node == NULL)
 379		return NULL;
 
 
 
 
 
 
 380
 381	if (!radix_tree_is_indirect_ptr(node)) {
 382		if (index > 0)
 383			return NULL;
 384		return is_slot ? (void *)&root->rnode : node;
 
 
 
 385	}
 386	node = indirect_to_ptr(node);
 387
 388	height = node->height;
 389	if (index > radix_tree_maxindex(height))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 390		return NULL;
 391
 392	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 
 393
 394	do {
 395		slot = (struct radix_tree_node **)
 396			(node->slots + ((index>>shift) & RADIX_TREE_MAP_MASK));
 397		node = rcu_dereference_raw(*slot);
 398		if (node == NULL)
 399			return NULL;
 400
 401		shift -= RADIX_TREE_MAP_SHIFT;
 402		height--;
 403	} while (height > 0);
 404
 405	return is_slot ? (void *)slot : indirect_to_ptr(node);
 406}
 407
 408/**
 409 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 410 *	@root:		radix tree root
 411 *	@index:		index key
 412 *
 413 *	Returns:  the slot corresponding to the position @index in the
 414 *	radix tree @root. This is useful for update-if-exists operations.
 415 *
 416 *	This function can be called under rcu_read_lock iff the slot is not
 417 *	modified by radix_tree_replace_slot, otherwise it must be called
 418 *	exclusive from other writers. Any dereference of the slot must be done
 419 *	using radix_tree_deref_slot.
 420 */
 421void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 422{
 423	return (void **)radix_tree_lookup_element(root, index, 1);
 
 
 
 
 424}
 425EXPORT_SYMBOL(radix_tree_lookup_slot);
 426
 427/**
 428 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 429 *	@root:		radix tree root
 430 *	@index:		index key
 431 *
 432 *	Lookup the item at the position @index in the radix tree @root.
 433 *
 434 *	This function can be called under rcu_read_lock, however the caller
 435 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 436 *	them safely). No RCU barriers are required to access or modify the
 437 *	returned item, however.
 438 */
 439void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 440{
 441	return radix_tree_lookup_element(root, index, 0);
 442}
 443EXPORT_SYMBOL(radix_tree_lookup);
 444
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 445/**
 446 *	radix_tree_tag_set - set a tag on a radix tree node
 447 *	@root:		radix tree root
 448 *	@index:		index key
 449 *	@tag: 		tag index
 450 *
 451 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 452 *	corresponding to @index in the radix tree.  From
 453 *	the root all the way down to the leaf node.
 454 *
 455 *	Returns the address of the tagged item.   Setting a tag on a not-present
 456 *	item is a bug.
 457 */
 458void *radix_tree_tag_set(struct radix_tree_root *root,
 459			unsigned long index, unsigned int tag)
 460{
 461	unsigned int height, shift;
 462	struct radix_tree_node *slot;
 463
 464	height = root->height;
 465	BUG_ON(index > radix_tree_maxindex(height));
 466
 467	slot = indirect_to_ptr(root->rnode);
 468	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 469
 470	while (height > 0) {
 471		int offset;
 
 472
 473		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 474		if (!tag_get(slot, tag, offset))
 475			tag_set(slot, tag, offset);
 476		slot = slot->slots[offset];
 477		BUG_ON(slot == NULL);
 478		shift -= RADIX_TREE_MAP_SHIFT;
 479		height--;
 480	}
 481
 482	/* set the root's tag bit */
 483	if (slot && !root_tag_get(root, tag))
 484		root_tag_set(root, tag);
 485
 486	return slot;
 487}
 488EXPORT_SYMBOL(radix_tree_tag_set);
 489
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 490/**
 491 *	radix_tree_tag_clear - clear a tag on a radix tree node
 492 *	@root:		radix tree root
 493 *	@index:		index key
 494 *	@tag: 		tag index
 495 *
 496 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 497 *	corresponding to @index in the radix tree.  If
 498 *	this causes the leaf node to have no tags set then clear the tag in the
 499 *	next-to-leaf node, etc.
 500 *
 501 *	Returns the address of the tagged item on success, else NULL.  ie:
 502 *	has the same return value and semantics as radix_tree_lookup().
 503 */
 504void *radix_tree_tag_clear(struct radix_tree_root *root,
 505			unsigned long index, unsigned int tag)
 506{
 507	/*
 508	 * The radix tree path needs to be one longer than the maximum path
 509	 * since the "list" is null terminated.
 510	 */
 511	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
 512	struct radix_tree_node *slot = NULL;
 513	unsigned int height, shift;
 514
 515	height = root->height;
 516	if (index > radix_tree_maxindex(height))
 517		goto out;
 518
 519	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 520	pathp->node = NULL;
 521	slot = indirect_to_ptr(root->rnode);
 522
 523	while (height > 0) {
 524		int offset;
 525
 526		if (slot == NULL)
 527			goto out;
 528
 529		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 530		pathp[1].offset = offset;
 531		pathp[1].node = slot;
 532		slot = slot->slots[offset];
 533		pathp++;
 534		shift -= RADIX_TREE_MAP_SHIFT;
 535		height--;
 536	}
 537
 538	if (slot == NULL)
 539		goto out;
 540
 541	while (pathp->node) {
 542		if (!tag_get(pathp->node, tag, pathp->offset))
 543			goto out;
 544		tag_clear(pathp->node, tag, pathp->offset);
 545		if (any_tag_set(pathp->node, tag))
 546			goto out;
 547		pathp--;
 548	}
 549
 550	/* clear the root's tag bit */
 551	if (root_tag_get(root, tag))
 552		root_tag_clear(root, tag);
 553
 554out:
 555	return slot;
 556}
 557EXPORT_SYMBOL(radix_tree_tag_clear);
 558
 559/**
 560 * radix_tree_tag_get - get a tag on a radix tree node
 561 * @root:		radix tree root
 562 * @index:		index key
 563 * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
 564 *
 565 * Return values:
 566 *
 567 *  0: tag not present or not set
 568 *  1: tag set
 569 *
 570 * Note that the return value of this function may not be relied on, even if
 571 * the RCU lock is held, unless tag modification and node deletion are excluded
 572 * from concurrency.
 573 */
 574int radix_tree_tag_get(struct radix_tree_root *root,
 575			unsigned long index, unsigned int tag)
 576{
 577	unsigned int height, shift;
 578	struct radix_tree_node *node;
 579	int saw_unset_tag = 0;
 580
 581	/* check the root's tag bit */
 582	if (!root_tag_get(root, tag))
 583		return 0;
 584
 585	node = rcu_dereference_raw(root->rnode);
 
 
 586	if (node == NULL)
 587		return 0;
 588
 589	if (!radix_tree_is_indirect_ptr(node))
 590		return (index == 0);
 591	node = indirect_to_ptr(node);
 592
 593	height = node->height;
 594	if (index > radix_tree_maxindex(height))
 595		return 0;
 596
 597	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 598
 599	for ( ; ; ) {
 600		int offset;
 601
 602		if (node == NULL)
 603			return 0;
 
 
 
 604
 605		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 606
 607		/*
 608		 * This is just a debug check.  Later, we can bale as soon as
 609		 * we see an unset tag.
 610		 */
 611		if (!tag_get(node, tag, offset))
 612			saw_unset_tag = 1;
 613		if (height == 1)
 614			return !!tag_get(node, tag, offset);
 615		node = rcu_dereference_raw(node->slots[offset]);
 616		shift -= RADIX_TREE_MAP_SHIFT;
 617		height--;
 618	}
 619}
 620EXPORT_SYMBOL(radix_tree_tag_get);
 621
 622/**
 623 * radix_tree_range_tag_if_tagged - for each item in given range set given
 624 *				   tag if item has another tag set
 625 * @root:		radix tree root
 626 * @first_indexp:	pointer to a starting index of a range to scan
 627 * @last_index:		last index of a range to scan
 628 * @nr_to_tag:		maximum number items to tag
 629 * @iftag:		tag index to test
 630 * @settag:		tag index to set if tested tag is set
 631 *
 632 * This function scans range of radix tree from first_index to last_index
 633 * (inclusive).  For each item in the range if iftag is set, the function sets
 634 * also settag. The function stops either after tagging nr_to_tag items or
 635 * after reaching last_index.
 636 *
 637 * The tags must be set from the leaf level only and propagated back up the
 638 * path to the root. We must do this so that we resolve the full path before
 639 * setting any tags on intermediate nodes. If we set tags as we descend, then
 640 * we can get to the leaf node and find that the index that has the iftag
 641 * set is outside the range we are scanning. This reults in dangling tags and
 642 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 643 *
 644 * The function returns number of leaves where the tag was set and sets
 645 * *first_indexp to the first unscanned index.
 646 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 647 * be prepared to handle that.
 648 */
 649unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 650		unsigned long *first_indexp, unsigned long last_index,
 651		unsigned long nr_to_tag,
 652		unsigned int iftag, unsigned int settag)
 653{
 654	unsigned int height = root->height;
 655	struct radix_tree_path path[height];
 656	struct radix_tree_path *pathp = path;
 657	struct radix_tree_node *slot;
 658	unsigned int shift;
 659	unsigned long tagged = 0;
 660	unsigned long index = *first_indexp;
 661
 662	last_index = min(last_index, radix_tree_maxindex(height));
 663	if (index > last_index)
 664		return 0;
 665	if (!nr_to_tag)
 666		return 0;
 667	if (!root_tag_get(root, iftag)) {
 668		*first_indexp = last_index + 1;
 669		return 0;
 670	}
 671	if (height == 0) {
 672		*first_indexp = last_index + 1;
 673		root_tag_set(root, settag);
 674		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 675	}
 676
 677	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 678	slot = indirect_to_ptr(root->rnode);
 
 
 
 
 
 
 
 
 
 
 
 679
 680	/*
 681	 * we fill the path from (root->height - 2) to 0, leaving the index at
 682	 * (root->height - 1) as a terminator. Zero the node in the terminator
 683	 * so that we can use this to end walk loops back up the path.
 684	 */
 685	path[height - 1].node = NULL;
 686
 687	for (;;) {
 688		int offset;
 689
 690		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 691		if (!slot->slots[offset])
 692			goto next;
 693		if (!tag_get(slot, iftag, offset))
 694			goto next;
 695		if (height > 1) {
 696			/* Go down one level */
 697			height--;
 698			shift -= RADIX_TREE_MAP_SHIFT;
 699			path[height - 1].node = slot;
 700			path[height - 1].offset = offset;
 701			slot = slot->slots[offset];
 702			continue;
 703		}
 704
 705		/* tag the leaf */
 706		tagged++;
 707		tag_set(slot, settag, offset);
 708
 709		/* walk back up the path tagging interior nodes */
 710		pathp = &path[0];
 711		while (pathp->node) {
 712			/* stop if we find a node with the tag already set */
 713			if (tag_get(pathp->node, settag, pathp->offset))
 714				break;
 715			tag_set(pathp->node, settag, pathp->offset);
 716			pathp++;
 717		}
 718
 719next:
 720		/* Go to next item at level determined by 'shift' */
 721		index = ((index >> shift) + 1) << shift;
 722		/* Overflow can happen when last_index is ~0UL... */
 723		if (index > last_index || !index)
 724			break;
 725		if (tagged >= nr_to_tag)
 726			break;
 727		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
 728			/*
 729			 * We've fully scanned this node. Go up. Because
 730			 * last_index is guaranteed to be in the tree, what
 731			 * we do below cannot wander astray.
 732			 */
 733			slot = path[height - 1].node;
 734			height++;
 735			shift += RADIX_TREE_MAP_SHIFT;
 736		}
 737	}
 738	/*
 739	 * We need not to tag the root tag if there is no tag which is set with
 740	 * settag within the range from *first_indexp to last_index.
 741	 */
 742	if (tagged > 0)
 743		root_tag_set(root, settag);
 744	*first_indexp = index;
 745
 746	return tagged;
 747}
 748EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
 749
 750
 751/**
 752 *	radix_tree_next_hole    -    find the next hole (not-present entry)
 753 *	@root:		tree root
 754 *	@index:		index key
 755 *	@max_scan:	maximum range to search
 756 *
 757 *	Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the lowest
 758 *	indexed hole.
 759 *
 760 *	Returns: the index of the hole if found, otherwise returns an index
 761 *	outside of the set specified (in which case 'return - index >= max_scan'
 762 *	will be true). In rare cases of index wrap-around, 0 will be returned.
 763 *
 764 *	radix_tree_next_hole may be called under rcu_read_lock. However, like
 765 *	radix_tree_gang_lookup, this will not atomically search a snapshot of
 766 *	the tree at a single point in time. For example, if a hole is created
 767 *	at index 5, then subsequently a hole is created at index 10,
 768 *	radix_tree_next_hole covering both indexes may return 10 if called
 769 *	under rcu_read_lock.
 770 */
 771unsigned long radix_tree_next_hole(struct radix_tree_root *root,
 772				unsigned long index, unsigned long max_scan)
 773{
 774	unsigned long i;
 
 
 775
 776	for (i = 0; i < max_scan; i++) {
 777		if (!radix_tree_lookup(root, index))
 778			break;
 779		index++;
 780		if (index == 0)
 781			break;
 782	}
 783
 784	return index;
 785}
 786EXPORT_SYMBOL(radix_tree_next_hole);
 
 
 
 
 
 
 
 
 
 787
 788/**
 789 *	radix_tree_prev_hole    -    find the prev hole (not-present entry)
 790 *	@root:		tree root
 791 *	@index:		index key
 792 *	@max_scan:	maximum range to search
 793 *
 794 *	Search backwards in the range [max(index-max_scan+1, 0), index]
 795 *	for the first hole.
 796 *
 797 *	Returns: the index of the hole if found, otherwise returns an index
 798 *	outside of the set specified (in which case 'index - return >= max_scan'
 799 *	will be true). In rare cases of wrap-around, ULONG_MAX will be returned.
 800 *
 801 *	radix_tree_next_hole may be called under rcu_read_lock. However, like
 802 *	radix_tree_gang_lookup, this will not atomically search a snapshot of
 803 *	the tree at a single point in time. For example, if a hole is created
 804 *	at index 10, then subsequently a hole is created at index 5,
 805 *	radix_tree_prev_hole covering both indexes may return 5 if called under
 806 *	rcu_read_lock.
 807 */
 808unsigned long radix_tree_prev_hole(struct radix_tree_root *root,
 809				   unsigned long index, unsigned long max_scan)
 810{
 811	unsigned long i;
 812
 813	for (i = 0; i < max_scan; i++) {
 814		if (!radix_tree_lookup(root, index))
 815			break;
 816		index--;
 817		if (index == ULONG_MAX)
 818			break;
 
 
 819	}
 820
 821	return index;
 822}
 823EXPORT_SYMBOL(radix_tree_prev_hole);
 824
 825static unsigned int
 826__lookup(struct radix_tree_node *slot, void ***results, unsigned long *indices,
 827	unsigned long index, unsigned int max_items, unsigned long *next_index)
 828{
 829	unsigned int nr_found = 0;
 830	unsigned int shift, height;
 831	unsigned long i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 832
 833	height = slot->height;
 834	if (height == 0)
 835		goto out;
 836	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 
 837
 838	for ( ; height > 1; height--) {
 839		i = (index >> shift) & RADIX_TREE_MAP_MASK;
 840		for (;;) {
 841			if (slot->slots[i] != NULL)
 842				break;
 843			index &= ~((1UL << shift) - 1);
 844			index += 1UL << shift;
 845			if (index == 0)
 846				goto out;	/* 32-bit wraparound */
 847			i++;
 848			if (i == RADIX_TREE_MAP_SIZE)
 849				goto out;
 850		}
 851
 852		shift -= RADIX_TREE_MAP_SHIFT;
 853		slot = rcu_dereference_raw(slot->slots[i]);
 854		if (slot == NULL)
 855			goto out;
 856	}
 857
 858	/* Bottom level: grab some items */
 859	for (i = index & RADIX_TREE_MAP_MASK; i < RADIX_TREE_MAP_SIZE; i++) {
 860		if (slot->slots[i]) {
 861			results[nr_found] = &(slot->slots[i]);
 862			if (indices)
 863				indices[nr_found] = index;
 864			if (++nr_found == max_items) {
 865				index++;
 866				goto out;
 867			}
 868		}
 869		index++;
 870	}
 871out:
 872	*next_index = index;
 873	return nr_found;
 874}
 
 875
 876/**
 877 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 878 *	@root:		radix tree root
 879 *	@results:	where the results of the lookup are placed
 880 *	@first_index:	start the lookup from this key
 881 *	@max_items:	place up to this many items at *results
 882 *
 883 *	Performs an index-ascending scan of the tree for present items.  Places
 884 *	them at *@results and returns the number of items which were placed at
 885 *	*@results.
 886 *
 887 *	The implementation is naive.
 888 *
 889 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 890 *	rcu_read_lock. In this case, rather than the returned results being
 891 *	an atomic snapshot of the tree at a single point in time, the semantics
 892 *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
 893 *	have been issued in individual locks, and results stored in 'results'.
 
 894 */
 895unsigned int
 896radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
 897			unsigned long first_index, unsigned int max_items)
 898{
 899	unsigned long max_index;
 900	struct radix_tree_node *node;
 901	unsigned long cur_index = first_index;
 902	unsigned int ret;
 903
 904	node = rcu_dereference_raw(root->rnode);
 905	if (!node)
 906		return 0;
 907
 908	if (!radix_tree_is_indirect_ptr(node)) {
 909		if (first_index > 0)
 910			return 0;
 911		results[0] = node;
 912		return 1;
 913	}
 914	node = indirect_to_ptr(node);
 915
 916	max_index = radix_tree_maxindex(node->height);
 917
 918	ret = 0;
 919	while (ret < max_items) {
 920		unsigned int nr_found, slots_found, i;
 921		unsigned long next_index;	/* Index of next search */
 922
 923		if (cur_index > max_index)
 924			break;
 925		slots_found = __lookup(node, (void ***)results + ret, NULL,
 926				cur_index, max_items - ret, &next_index);
 927		nr_found = 0;
 928		for (i = 0; i < slots_found; i++) {
 929			struct radix_tree_node *slot;
 930			slot = *(((void ***)results)[ret + i]);
 931			if (!slot)
 932				continue;
 933			results[ret + nr_found] =
 934				indirect_to_ptr(rcu_dereference_raw(slot));
 935			nr_found++;
 936		}
 937		ret += nr_found;
 938		if (next_index == 0)
 939			break;
 940		cur_index = next_index;
 941	}
 942
 943	return ret;
 944}
 945EXPORT_SYMBOL(radix_tree_gang_lookup);
 946
 947/**
 948 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
 949 *	@root:		radix tree root
 950 *	@results:	where the results of the lookup are placed
 951 *	@indices:	where their indices should be placed (but usually NULL)
 952 *	@first_index:	start the lookup from this key
 953 *	@max_items:	place up to this many items at *results
 954 *
 955 *	Performs an index-ascending scan of the tree for present items.  Places
 956 *	their slots at *@results and returns the number of items which were
 957 *	placed at *@results.
 958 *
 959 *	The implementation is naive.
 960 *
 961 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
 962 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
 963 *	protection, radix_tree_deref_slot may fail requiring a retry.
 964 */
 965unsigned int
 966radix_tree_gang_lookup_slot(struct radix_tree_root *root,
 967			void ***results, unsigned long *indices,
 968			unsigned long first_index, unsigned int max_items)
 969{
 970	unsigned long max_index;
 971	struct radix_tree_node *node;
 972	unsigned long cur_index = first_index;
 973	unsigned int ret;
 974
 975	node = rcu_dereference_raw(root->rnode);
 976	if (!node)
 977		return 0;
 978
 979	if (!radix_tree_is_indirect_ptr(node)) {
 980		if (first_index > 0)
 981			return 0;
 982		results[0] = (void **)&root->rnode;
 983		if (indices)
 984			indices[0] = 0;
 985		return 1;
 986	}
 987	node = indirect_to_ptr(node);
 988
 989	max_index = radix_tree_maxindex(node->height);
 990
 991	ret = 0;
 992	while (ret < max_items) {
 993		unsigned int slots_found;
 994		unsigned long next_index;	/* Index of next search */
 995
 996		if (cur_index > max_index)
 997			break;
 998		slots_found = __lookup(node, results + ret,
 999				indices ? indices + ret : NULL,
1000				cur_index, max_items - ret, &next_index);
1001		ret += slots_found;
1002		if (next_index == 0)
1003			break;
1004		cur_index = next_index;
1005	}
1006
1007	return ret;
1008}
1009EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1010
1011/*
1012 * FIXME: the two tag_get()s here should use find_next_bit() instead of
1013 * open-coding the search.
1014 */
1015static unsigned int
1016__lookup_tag(struct radix_tree_node *slot, void ***results, unsigned long index,
1017	unsigned int max_items, unsigned long *next_index, unsigned int tag)
1018{
1019	unsigned int nr_found = 0;
1020	unsigned int shift, height;
1021
1022	height = slot->height;
1023	if (height == 0)
1024		goto out;
1025	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1026
1027	while (height > 0) {
1028		unsigned long i = (index >> shift) & RADIX_TREE_MAP_MASK ;
1029
1030		for (;;) {
1031			if (tag_get(slot, tag, i))
1032				break;
1033			index &= ~((1UL << shift) - 1);
1034			index += 1UL << shift;
1035			if (index == 0)
1036				goto out;	/* 32-bit wraparound */
1037			i++;
1038			if (i == RADIX_TREE_MAP_SIZE)
1039				goto out;
1040		}
1041		height--;
1042		if (height == 0) {	/* Bottom level: grab some items */
1043			unsigned long j = index & RADIX_TREE_MAP_MASK;
1044
1045			for ( ; j < RADIX_TREE_MAP_SIZE; j++) {
1046				index++;
1047				if (!tag_get(slot, tag, j))
1048					continue;
1049				/*
1050				 * Even though the tag was found set, we need to
1051				 * recheck that we have a non-NULL node, because
1052				 * if this lookup is lockless, it may have been
1053				 * subsequently deleted.
1054				 *
1055				 * Similar care must be taken in any place that
1056				 * lookup ->slots[x] without a lock (ie. can't
1057				 * rely on its value remaining the same).
1058				 */
1059				if (slot->slots[j]) {
1060					results[nr_found++] = &(slot->slots[j]);
1061					if (nr_found == max_items)
1062						goto out;
1063				}
1064			}
1065		}
1066		shift -= RADIX_TREE_MAP_SHIFT;
1067		slot = rcu_dereference_raw(slot->slots[i]);
1068		if (slot == NULL)
1069			break;
1070	}
1071out:
1072	*next_index = index;
1073	return nr_found;
1074}
1075
1076/**
1077 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1078 *	                             based on a tag
1079 *	@root:		radix tree root
1080 *	@results:	where the results of the lookup are placed
1081 *	@first_index:	start the lookup from this key
1082 *	@max_items:	place up to this many items at *results
1083 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1084 *
1085 *	Performs an index-ascending scan of the tree for present items which
1086 *	have the tag indexed by @tag set.  Places the items at *@results and
1087 *	returns the number of items which were placed at *@results.
1088 */
1089unsigned int
1090radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1091		unsigned long first_index, unsigned int max_items,
1092		unsigned int tag)
1093{
1094	struct radix_tree_node *node;
1095	unsigned long max_index;
1096	unsigned long cur_index = first_index;
1097	unsigned int ret;
1098
1099	/* check the root's tag bit */
1100	if (!root_tag_get(root, tag))
1101		return 0;
1102
1103	node = rcu_dereference_raw(root->rnode);
1104	if (!node)
1105		return 0;
1106
1107	if (!radix_tree_is_indirect_ptr(node)) {
1108		if (first_index > 0)
1109			return 0;
1110		results[0] = node;
1111		return 1;
1112	}
1113	node = indirect_to_ptr(node);
1114
1115	max_index = radix_tree_maxindex(node->height);
1116
1117	ret = 0;
1118	while (ret < max_items) {
1119		unsigned int nr_found, slots_found, i;
1120		unsigned long next_index;	/* Index of next search */
1121
1122		if (cur_index > max_index)
1123			break;
1124		slots_found = __lookup_tag(node, (void ***)results + ret,
1125				cur_index, max_items - ret, &next_index, tag);
1126		nr_found = 0;
1127		for (i = 0; i < slots_found; i++) {
1128			struct radix_tree_node *slot;
1129			slot = *(((void ***)results)[ret + i]);
1130			if (!slot)
1131				continue;
1132			results[ret + nr_found] =
1133				indirect_to_ptr(rcu_dereference_raw(slot));
1134			nr_found++;
1135		}
1136		ret += nr_found;
1137		if (next_index == 0)
1138			break;
1139		cur_index = next_index;
1140	}
1141
1142	return ret;
1143}
1144EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1145
1146/**
1147 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1148 *					  radix tree based on a tag
1149 *	@root:		radix tree root
1150 *	@results:	where the results of the lookup are placed
1151 *	@first_index:	start the lookup from this key
1152 *	@max_items:	place up to this many items at *results
1153 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1154 *
1155 *	Performs an index-ascending scan of the tree for present items which
1156 *	have the tag indexed by @tag set.  Places the slots at *@results and
1157 *	returns the number of slots which were placed at *@results.
1158 */
1159unsigned int
1160radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1161		unsigned long first_index, unsigned int max_items,
1162		unsigned int tag)
1163{
1164	struct radix_tree_node *node;
1165	unsigned long max_index;
1166	unsigned long cur_index = first_index;
1167	unsigned int ret;
1168
1169	/* check the root's tag bit */
1170	if (!root_tag_get(root, tag))
1171		return 0;
1172
1173	node = rcu_dereference_raw(root->rnode);
1174	if (!node)
1175		return 0;
1176
1177	if (!radix_tree_is_indirect_ptr(node)) {
1178		if (first_index > 0)
1179			return 0;
1180		results[0] = (void **)&root->rnode;
1181		return 1;
1182	}
1183	node = indirect_to_ptr(node);
1184
1185	max_index = radix_tree_maxindex(node->height);
1186
1187	ret = 0;
1188	while (ret < max_items) {
1189		unsigned int slots_found;
1190		unsigned long next_index;	/* Index of next search */
1191
1192		if (cur_index > max_index)
1193			break;
1194		slots_found = __lookup_tag(node, results + ret,
1195				cur_index, max_items - ret, &next_index, tag);
1196		ret += slots_found;
1197		if (next_index == 0)
1198			break;
1199		cur_index = next_index;
1200	}
1201
1202	return ret;
1203}
1204EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1205
1206#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1207#include <linux/sched.h> /* for cond_resched() */
1208
1209/*
1210 * This linear search is at present only useful to shmem_unuse_inode().
1211 */
1212static unsigned long __locate(struct radix_tree_node *slot, void *item,
1213			      unsigned long index, unsigned long *found_index)
 
 
 
 
 
 
 
1214{
1215	unsigned int shift, height;
1216	unsigned long i;
1217
1218	height = slot->height;
1219	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1220
1221	for ( ; height > 1; height--) {
1222		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1223		for (;;) {
1224			if (slot->slots[i] != NULL)
1225				break;
1226			index &= ~((1UL << shift) - 1);
1227			index += 1UL << shift;
1228			if (index == 0)
1229				goto out;	/* 32-bit wraparound */
1230			i++;
1231			if (i == RADIX_TREE_MAP_SIZE)
1232				goto out;
1233		}
1234
1235		shift -= RADIX_TREE_MAP_SHIFT;
1236		slot = rcu_dereference_raw(slot->slots[i]);
1237		if (slot == NULL)
1238			goto out;
1239	}
1240
1241	/* Bottom level: check items */
1242	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1243		if (slot->slots[i] == item) {
1244			*found_index = index + i;
1245			index = 0;
1246			goto out;
1247		}
1248	}
1249	index += RADIX_TREE_MAP_SIZE;
1250out:
1251	return index;
1252}
1253
1254/**
1255 *	radix_tree_locate_item - search through radix tree for item
1256 *	@root:		radix tree root
1257 *	@item:		item to be found
 
 
 
1258 *
1259 *	Returns index where item was found, or -1 if not found.
1260 *	Caller must hold no lock (since this time-consuming function needs
1261 *	to be preemptible), and must check afterwards if item is still there.
1262 */
1263unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
 
1264{
1265	struct radix_tree_node *node;
1266	unsigned long max_index;
1267	unsigned long cur_index = 0;
1268	unsigned long found_index = -1;
 
1269
1270	do {
1271		rcu_read_lock();
1272		node = rcu_dereference_raw(root->rnode);
1273		if (!radix_tree_is_indirect_ptr(node)) {
1274			rcu_read_unlock();
1275			if (node == item)
1276				found_index = 0;
1277			break;
1278		}
1279
1280		node = indirect_to_ptr(node);
1281		max_index = radix_tree_maxindex(node->height);
1282		if (cur_index > max_index)
1283			break;
1284
1285		cur_index = __locate(node, item, cur_index, &found_index);
1286		rcu_read_unlock();
1287		cond_resched();
1288	} while (cur_index != 0 && cur_index <= max_index);
1289
1290	return found_index;
1291}
1292#else
1293unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1294{
1295	return -1;
1296}
1297#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1298
1299/**
1300 *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1301 *	@root		radix tree root
1302 */
1303static inline void radix_tree_shrink(struct radix_tree_root *root)
1304{
1305	/* try to shrink tree height */
1306	while (root->height > 0) {
1307		struct radix_tree_node *to_free = root->rnode;
1308		void *newptr;
1309
1310		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1311		to_free = indirect_to_ptr(to_free);
1312
1313		/*
1314		 * The candidate node has more than one child, or its child
1315		 * is not at the leftmost slot, we cannot shrink.
1316		 */
1317		if (to_free->count != 1)
1318			break;
1319		if (!to_free->slots[0])
1320			break;
1321
1322		/*
1323		 * We don't need rcu_assign_pointer(), since we are simply
1324		 * moving the node from one part of the tree to another: if it
1325		 * was safe to dereference the old pointer to it
1326		 * (to_free->slots[0]), it will be safe to dereference the new
1327		 * one (root->rnode) as far as dependent read barriers go.
1328		 */
1329		newptr = to_free->slots[0];
1330		if (root->height > 1)
1331			newptr = ptr_to_indirect(newptr);
1332		root->rnode = newptr;
1333		root->height--;
1334
1335		/*
1336		 * We have a dilemma here. The node's slot[0] must not be
1337		 * NULLed in case there are concurrent lookups expecting to
1338		 * find the item. However if this was a bottom-level node,
1339		 * then it may be subject to the slot pointer being visible
1340		 * to callers dereferencing it. If item corresponding to
1341		 * slot[0] is subsequently deleted, these callers would expect
1342		 * their slot to become empty sooner or later.
1343		 *
1344		 * For example, lockless pagecache will look up a slot, deref
1345		 * the page pointer, and if the page is 0 refcount it means it
1346		 * was concurrently deleted from pagecache so try the deref
1347		 * again. Fortunately there is already a requirement for logic
1348		 * to retry the entire slot lookup -- the indirect pointer
1349		 * problem (replacing direct root node with an indirect pointer
1350		 * also results in a stale slot). So tag the slot as indirect
1351		 * to force callers to retry.
1352		 */
1353		if (root->height == 0)
1354			*((unsigned long *)&to_free->slots[0]) |=
1355						RADIX_TREE_INDIRECT_PTR;
1356
1357		radix_tree_node_free(to_free);
1358	}
1359}
 
1360
1361/**
1362 *	radix_tree_delete    -    delete an item from a radix tree
1363 *	@root:		radix tree root
1364 *	@index:		index key
1365 *
1366 *	Remove the item at @index from the radix tree rooted at @root.
1367 *
1368 *	Returns the address of the deleted item, or NULL if it was not present.
1369 */
1370void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1371{
1372	/*
1373	 * The radix tree path needs to be one longer than the maximum path
1374	 * since the "list" is null terminated.
1375	 */
1376	struct radix_tree_path path[RADIX_TREE_MAX_PATH + 1], *pathp = path;
1377	struct radix_tree_node *slot = NULL;
1378	struct radix_tree_node *to_free;
1379	unsigned int height, shift;
1380	int tag;
1381	int offset;
1382
1383	height = root->height;
1384	if (index > radix_tree_maxindex(height))
1385		goto out;
1386
1387	slot = root->rnode;
1388	if (height == 0) {
1389		root_tag_clear_all(root);
1390		root->rnode = NULL;
1391		goto out;
1392	}
1393	slot = indirect_to_ptr(slot);
1394
1395	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
1396	pathp->node = NULL;
1397
1398	do {
1399		if (slot == NULL)
1400			goto out;
1401
1402		pathp++;
1403		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1404		pathp->offset = offset;
1405		pathp->node = slot;
1406		slot = slot->slots[offset];
1407		shift -= RADIX_TREE_MAP_SHIFT;
1408		height--;
1409	} while (height > 0);
1410
1411	if (slot == NULL)
1412		goto out;
1413
1414	/*
1415	 * Clear all tags associated with the just-deleted item
1416	 */
1417	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1418		if (tag_get(pathp->node, tag, pathp->offset))
1419			radix_tree_tag_clear(root, index, tag);
1420	}
1421
1422	to_free = NULL;
1423	/* Now free the nodes we do not need anymore */
1424	while (pathp->node) {
1425		pathp->node->slots[pathp->offset] = NULL;
1426		pathp->node->count--;
1427		/*
1428		 * Queue the node for deferred freeing after the
1429		 * last reference to it disappears (set NULL, above).
1430		 */
1431		if (to_free)
1432			radix_tree_node_free(to_free);
1433
1434		if (pathp->node->count) {
1435			if (pathp->node == indirect_to_ptr(root->rnode))
1436				radix_tree_shrink(root);
1437			goto out;
1438		}
1439
1440		/* Node with zero slots in use so free it */
1441		to_free = pathp->node;
1442		pathp--;
1443
1444	}
1445	root_tag_clear_all(root);
1446	root->height = 0;
1447	root->rnode = NULL;
1448	if (to_free)
1449		radix_tree_node_free(to_free);
1450
1451out:
1452	return slot;
1453}
1454EXPORT_SYMBOL(radix_tree_delete);
1455
1456/**
1457 *	radix_tree_tagged - test whether any items in the tree are tagged
1458 *	@root:		radix tree root
1459 *	@tag:		tag to test
1460 */
1461int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1462{
1463	return root_tag_get(root, tag);
1464}
1465EXPORT_SYMBOL(radix_tree_tagged);
1466
1467static void
1468radix_tree_node_ctor(void *node)
1469{
1470	memset(node, 0, sizeof(struct radix_tree_node));
 
 
 
1471}
1472
1473static __init unsigned long __maxindex(unsigned int height)
1474{
1475	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1476	int shift = RADIX_TREE_INDEX_BITS - width;
1477
1478	if (shift < 0)
1479		return ~0UL;
1480	if (shift >= BITS_PER_LONG)
1481		return 0UL;
1482	return ~0UL >> shift;
1483}
1484
1485static __init void radix_tree_init_maxindex(void)
1486{
1487	unsigned int i;
 
1488
1489	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1490		height_to_maxindex[i] = __maxindex(i);
 
 
 
 
1491}
1492
1493static int radix_tree_callback(struct notifier_block *nfb,
1494                            unsigned long action,
1495                            void *hcpu)
1496{
1497       int cpu = (long)hcpu;
1498       struct radix_tree_preload *rtp;
1499
1500       /* Free per-cpu pool of perloaded nodes */
1501       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1502               rtp = &per_cpu(radix_tree_preloads, cpu);
1503               while (rtp->nr) {
1504                       kmem_cache_free(radix_tree_node_cachep,
1505                                       rtp->nodes[rtp->nr-1]);
1506                       rtp->nodes[rtp->nr-1] = NULL;
1507                       rtp->nr--;
1508               }
1509       }
1510       return NOTIFY_OK;
1511}
1512
1513void __init radix_tree_init(void)
1514{
 
1515	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1516			sizeof(struct radix_tree_node), 0,
1517			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1518			radix_tree_node_ctor);
1519	radix_tree_init_maxindex();
1520	hotcpu_notifier(radix_tree_callback, 0);
 
 
1521}