Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v4.10.11
 
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
 
 
 
  25#include <linux/cpu.h>
  26#include <linux/errno.h>
 
 
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/export.h>
  30#include <linux/radix-tree.h>
  31#include <linux/percpu.h>
 
 
 
  32#include <linux/slab.h>
  33#include <linux/kmemleak.h>
  34#include <linux/cpu.h>
  35#include <linux/string.h>
  36#include <linux/bitops.h>
  37#include <linux/rcupdate.h>
  38#include <linux/preempt.h>		/* in_interrupt() */
  39
  40
  41/* Number of nodes in fully populated tree of given height */
  42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  43
  44/*
  45 * Radix tree node cache.
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	unsigned nr;
  67	/* nodes->private_data points to next preallocated node */
  68	struct radix_tree_node *nodes;
  69};
  70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  71
  72static inline struct radix_tree_node *entry_to_node(void *ptr)
  73{
  74	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  75}
  76
  77static inline void *node_to_entry(void *ptr)
  78{
  79	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  80}
  81
  82#define RADIX_TREE_RETRY	node_to_entry(NULL)
  83
  84#ifdef CONFIG_RADIX_TREE_MULTIORDER
  85/* Sibling slots point directly to another slot in the same node */
  86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  87{
  88	void **ptr = node;
  89	return (parent->slots <= ptr) &&
  90			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  91}
  92#else
  93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  94{
  95	return false;
  96}
  97#endif
  98
  99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
 100						 void **slot)
 101{
 102	return slot - parent->slots;
 103}
 104
 105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
 106			struct radix_tree_node **nodep, unsigned long index)
 107{
 108	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 109	void **entry = rcu_dereference_raw(parent->slots[offset]);
 110
 111#ifdef CONFIG_RADIX_TREE_MULTIORDER
 112	if (radix_tree_is_internal_node(entry)) {
 113		if (is_sibling_entry(parent, entry)) {
 114			void **sibentry = (void **) entry_to_node(entry);
 115			offset = get_slot_offset(parent, sibentry);
 116			entry = rcu_dereference_raw(*sibentry);
 117		}
 118	}
 119#endif
 120
 121	*nodep = (void *)entry;
 122	return offset;
 123}
 124
 125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 126{
 127	return root->gfp_mask & __GFP_BITS_MASK;
 128}
 129
 130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 131		int offset)
 132{
 133	__set_bit(offset, node->tags[tag]);
 134}
 135
 136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 137		int offset)
 138{
 139	__clear_bit(offset, node->tags[tag]);
 140}
 141
 142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 143		int offset)
 144{
 145	return test_bit(offset, node->tags[tag]);
 146}
 147
 148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 149{
 150	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 151}
 152
 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 154{
 155	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 156}
 157
 158static inline void root_tag_clear_all(struct radix_tree_root *root)
 159{
 160	root->gfp_mask &= __GFP_BITS_MASK;
 
 
 
 
 
 161}
 162
 163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 164{
 165	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 166}
 167
 168static inline unsigned root_tags_get(struct radix_tree_root *root)
 169{
 170	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
 171}
 172
 173/*
 174 * Returns 1 if any slot in the node has this tag set.
 175 * Otherwise returns 0.
 176 */
 177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 
 178{
 179	unsigned idx;
 180	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 181		if (node->tags[tag][idx])
 182			return 1;
 183	}
 184	return 0;
 185}
 186
 
 
 
 
 
 187/**
 188 * radix_tree_find_next_bit - find the next set bit in a memory region
 189 *
 190 * @addr: The address to base the search on
 191 * @size: The bitmap size in bits
 192 * @offset: The bitnumber to start searching at
 193 *
 194 * Unrollable variant of find_next_bit() for constant size arrays.
 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 196 * Returns next bit offset, or size if nothing found.
 197 */
 198static __always_inline unsigned long
 199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 200			 unsigned long offset)
 201{
 202	const unsigned long *addr = node->tags[tag];
 203
 204	if (offset < RADIX_TREE_MAP_SIZE) {
 205		unsigned long tmp;
 206
 207		addr += offset / BITS_PER_LONG;
 208		tmp = *addr >> (offset % BITS_PER_LONG);
 209		if (tmp)
 210			return __ffs(tmp) + offset;
 211		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 212		while (offset < RADIX_TREE_MAP_SIZE) {
 213			tmp = *++addr;
 214			if (tmp)
 215				return __ffs(tmp) + offset;
 216			offset += BITS_PER_LONG;
 217		}
 218	}
 219	return RADIX_TREE_MAP_SIZE;
 220}
 221
 222static unsigned int iter_offset(const struct radix_tree_iter *iter)
 223{
 224	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 225}
 226
 227/*
 228 * The maximum index which can be stored in a radix tree
 229 */
 230static inline unsigned long shift_maxindex(unsigned int shift)
 231{
 232	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 233}
 234
 235static inline unsigned long node_maxindex(struct radix_tree_node *node)
 236{
 237	return shift_maxindex(node->shift);
 238}
 239
 240#ifndef __KERNEL__
 241static void dump_node(struct radix_tree_node *node, unsigned long index)
 242{
 243	unsigned long i;
 244
 245	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 246		node, node->offset, index, index | node_maxindex(node),
 247		node->parent,
 248		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 249		node->shift, node->count, node->exceptional);
 250
 251	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 252		unsigned long first = index | (i << node->shift);
 253		unsigned long last = first | ((1UL << node->shift) - 1);
 254		void *entry = node->slots[i];
 255		if (!entry)
 256			continue;
 257		if (entry == RADIX_TREE_RETRY) {
 258			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 259					i, first, last, node);
 260		} else if (!radix_tree_is_internal_node(entry)) {
 261			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 262					entry, i, first, last, node);
 263		} else if (is_sibling_entry(node, entry)) {
 264			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 265					entry, i, first, last, node,
 266					*(void **)entry_to_node(entry));
 267		} else {
 268			dump_node(entry_to_node(entry), first);
 269		}
 270	}
 271}
 272
 273/* For debug */
 274static void radix_tree_dump(struct radix_tree_root *root)
 275{
 276	pr_debug("radix root: %p rnode %p tags %x\n",
 277			root, root->rnode,
 278			root->gfp_mask >> __GFP_BITS_SHIFT);
 279	if (!radix_tree_is_internal_node(root->rnode))
 280		return;
 281	dump_node(entry_to_node(root->rnode), 0);
 282}
 283#endif
 284
 285/*
 286 * This assumes that the caller has performed appropriate preallocation, and
 287 * that the caller has pinned this thread of control to the current CPU.
 288 */
 289static struct radix_tree_node *
 290radix_tree_node_alloc(struct radix_tree_root *root,
 291			struct radix_tree_node *parent,
 292			unsigned int shift, unsigned int offset,
 293			unsigned int count, unsigned int exceptional)
 294{
 295	struct radix_tree_node *ret = NULL;
 296	gfp_t gfp_mask = root_gfp_mask(root);
 297
 298	/*
 299	 * Preload code isn't irq safe and it doesn't make sense to use
 300	 * preloading during an interrupt anyway as all the allocations have
 301	 * to be atomic. So just do normal allocation when in interrupt.
 302	 */
 303	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 304		struct radix_tree_preload *rtp;
 305
 306		/*
 307		 * Even if the caller has preloaded, try to allocate from the
 308		 * cache first for the new node to get accounted to the memory
 309		 * cgroup.
 310		 */
 311		ret = kmem_cache_alloc(radix_tree_node_cachep,
 312				       gfp_mask | __GFP_NOWARN);
 313		if (ret)
 314			goto out;
 315
 316		/*
 317		 * Provided the caller has preloaded here, we will always
 318		 * succeed in getting a node here (and never reach
 319		 * kmem_cache_alloc)
 320		 */
 321		rtp = this_cpu_ptr(&radix_tree_preloads);
 322		if (rtp->nr) {
 323			ret = rtp->nodes;
 324			rtp->nodes = ret->private_data;
 325			ret->private_data = NULL;
 326			rtp->nr--;
 327		}
 328		/*
 329		 * Update the allocation stack trace as this is more useful
 330		 * for debugging.
 331		 */
 332		kmemleak_update_trace(ret);
 333		goto out;
 334	}
 335	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 336out:
 337	BUG_ON(radix_tree_is_internal_node(ret));
 338	if (ret) {
 339		ret->parent = parent;
 340		ret->shift = shift;
 341		ret->offset = offset;
 342		ret->count = count;
 343		ret->exceptional = exceptional;
 
 
 344	}
 345	return ret;
 346}
 347
 348static void radix_tree_node_rcu_free(struct rcu_head *head)
 349{
 350	struct radix_tree_node *node =
 351			container_of(head, struct radix_tree_node, rcu_head);
 352
 353	/*
 354	 * Must only free zeroed nodes into the slab.  We can be left with
 355	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 356	 * and tags here.
 357	 */
 358	memset(node->slots, 0, sizeof(node->slots));
 359	memset(node->tags, 0, sizeof(node->tags));
 360	INIT_LIST_HEAD(&node->private_list);
 361
 362	kmem_cache_free(radix_tree_node_cachep, node);
 363}
 364
 365static inline void
 366radix_tree_node_free(struct radix_tree_node *node)
 367{
 368	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 369}
 370
 371/*
 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 373 * ensure that the addition of a single element in the tree cannot fail.  On
 374 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 375 * with preemption not disabled.
 376 *
 377 * To make use of this facility, the radix tree must be initialised without
 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 379 */
 380static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 381{
 382	struct radix_tree_preload *rtp;
 383	struct radix_tree_node *node;
 384	int ret = -ENOMEM;
 385
 386	/*
 387	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 388	 * they should never be accounted to any particular memory cgroup.
 389	 */
 390	gfp_mask &= ~__GFP_ACCOUNT;
 391
 392	preempt_disable();
 393	rtp = this_cpu_ptr(&radix_tree_preloads);
 394	while (rtp->nr < nr) {
 395		preempt_enable();
 396		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 397		if (node == NULL)
 398			goto out;
 399		preempt_disable();
 400		rtp = this_cpu_ptr(&radix_tree_preloads);
 401		if (rtp->nr < nr) {
 402			node->private_data = rtp->nodes;
 403			rtp->nodes = node;
 404			rtp->nr++;
 405		} else {
 406			kmem_cache_free(radix_tree_node_cachep, node);
 407		}
 408	}
 409	ret = 0;
 410out:
 411	return ret;
 412}
 413
 414/*
 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 416 * ensure that the addition of a single element in the tree cannot fail.  On
 417 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 418 * with preemption not disabled.
 419 *
 420 * To make use of this facility, the radix tree must be initialised without
 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 422 */
 423int radix_tree_preload(gfp_t gfp_mask)
 424{
 425	/* Warn on non-sensical use... */
 426	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 427	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 428}
 429EXPORT_SYMBOL(radix_tree_preload);
 430
 431/*
 432 * The same as above function, except we don't guarantee preloading happens.
 433 * We do it, if we decide it helps. On success, return zero with preemption
 434 * disabled. On error, return -ENOMEM with preemption not disabled.
 435 */
 436int radix_tree_maybe_preload(gfp_t gfp_mask)
 437{
 438	if (gfpflags_allow_blocking(gfp_mask))
 439		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 440	/* Preloading doesn't help anything with this gfp mask, skip it */
 441	preempt_disable();
 442	return 0;
 443}
 444EXPORT_SYMBOL(radix_tree_maybe_preload);
 445
 446#ifdef CONFIG_RADIX_TREE_MULTIORDER
 447/*
 448 * Preload with enough objects to ensure that we can split a single entry
 449 * of order @old_order into many entries of size @new_order
 450 */
 451int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 452							gfp_t gfp_mask)
 453{
 454	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 455	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 456				(new_order / RADIX_TREE_MAP_SHIFT);
 457	unsigned nr = 0;
 458
 459	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 460	BUG_ON(new_order >= old_order);
 461
 462	while (layers--)
 463		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 464	return __radix_tree_preload(gfp_mask, top * nr);
 465}
 466#endif
 467
 468/*
 469 * The same as function above, but preload number of nodes required to insert
 470 * (1 << order) continuous naturally-aligned elements.
 471 */
 472int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 473{
 474	unsigned long nr_subtrees;
 475	int nr_nodes, subtree_height;
 476
 477	/* Preloading doesn't help anything with this gfp mask, skip it */
 478	if (!gfpflags_allow_blocking(gfp_mask)) {
 479		preempt_disable();
 480		return 0;
 481	}
 482
 483	/*
 484	 * Calculate number and height of fully populated subtrees it takes to
 485	 * store (1 << order) elements.
 486	 */
 487	nr_subtrees = 1 << order;
 488	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 489			subtree_height++)
 490		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 491
 492	/*
 493	 * The worst case is zero height tree with a single item at index 0 and
 494	 * then inserting items starting at ULONG_MAX - (1 << order).
 495	 *
 496	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 497	 * 0-index item.
 498	 */
 499	nr_nodes = RADIX_TREE_MAX_PATH;
 500
 501	/* Plus branch to fully populated subtrees. */
 502	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 503
 504	/* Root node is shared. */
 505	nr_nodes--;
 506
 507	/* Plus nodes required to build subtrees. */
 508	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 509
 510	return __radix_tree_preload(gfp_mask, nr_nodes);
 511}
 512
 513static unsigned radix_tree_load_root(struct radix_tree_root *root,
 514		struct radix_tree_node **nodep, unsigned long *maxindex)
 515{
 516	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 517
 518	*nodep = node;
 519
 520	if (likely(radix_tree_is_internal_node(node))) {
 521		node = entry_to_node(node);
 522		*maxindex = node_maxindex(node);
 523		return node->shift + RADIX_TREE_MAP_SHIFT;
 524	}
 525
 526	*maxindex = 0;
 527	return 0;
 528}
 529
 530/*
 531 *	Extend a radix tree so it can store key @index.
 532 */
 533static int radix_tree_extend(struct radix_tree_root *root,
 534				unsigned long index, unsigned int shift)
 535{
 536	struct radix_tree_node *slot;
 537	unsigned int maxshift;
 538	int tag;
 539
 540	/* Figure out what the shift should be.  */
 541	maxshift = shift;
 542	while (index > shift_maxindex(maxshift))
 543		maxshift += RADIX_TREE_MAP_SHIFT;
 544
 545	slot = root->rnode;
 546	if (!slot)
 547		goto out;
 548
 549	do {
 550		struct radix_tree_node *node = radix_tree_node_alloc(root,
 551							NULL, shift, 0, 1, 0);
 552		if (!node)
 553			return -ENOMEM;
 554
 555		/* Propagate the aggregated tag info into the new root */
 556		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 557			if (root_tag_get(root, tag))
 558				tag_set(node, tag, 0);
 
 
 
 
 
 
 
 
 559		}
 560
 561		BUG_ON(shift > BITS_PER_LONG);
 562		if (radix_tree_is_internal_node(slot)) {
 563			entry_to_node(slot)->parent = node;
 564		} else if (radix_tree_exceptional_entry(slot)) {
 565			/* Moving an exceptional root->rnode to a node */
 566			node->exceptional = 1;
 567		}
 568		node->slots[0] = slot;
 569		slot = node_to_entry(node);
 570		rcu_assign_pointer(root->rnode, slot);
 
 
 
 
 571		shift += RADIX_TREE_MAP_SHIFT;
 572	} while (shift <= maxshift);
 573out:
 574	return maxshift + RADIX_TREE_MAP_SHIFT;
 575}
 576
 577/**
 578 *	radix_tree_shrink    -    shrink radix tree to minimum height
 579 *	@root		radix tree root
 580 */
 581static inline void radix_tree_shrink(struct radix_tree_root *root,
 582				     radix_tree_update_node_t update_node,
 583				     void *private)
 584{
 
 
 585	for (;;) {
 586		struct radix_tree_node *node = root->rnode;
 587		struct radix_tree_node *child;
 588
 589		if (!radix_tree_is_internal_node(node))
 590			break;
 591		node = entry_to_node(node);
 592
 593		/*
 594		 * The candidate node has more than one child, or its child
 595		 * is not at the leftmost slot, or the child is a multiorder
 596		 * entry, we cannot shrink.
 597		 */
 598		if (node->count != 1)
 599			break;
 600		child = node->slots[0];
 601		if (!child)
 602			break;
 603		if (!radix_tree_is_internal_node(child) && node->shift)
 
 
 
 
 
 
 604			break;
 605
 606		if (radix_tree_is_internal_node(child))
 607			entry_to_node(child)->parent = NULL;
 608
 609		/*
 610		 * We don't need rcu_assign_pointer(), since we are simply
 611		 * moving the node from one part of the tree to another: if it
 612		 * was safe to dereference the old pointer to it
 613		 * (node->slots[0]), it will be safe to dereference the new
 614		 * one (root->rnode) as far as dependent read barriers go.
 615		 */
 616		root->rnode = child;
 
 
 617
 618		/*
 619		 * We have a dilemma here. The node's slot[0] must not be
 620		 * NULLed in case there are concurrent lookups expecting to
 621		 * find the item. However if this was a bottom-level node,
 622		 * then it may be subject to the slot pointer being visible
 623		 * to callers dereferencing it. If item corresponding to
 624		 * slot[0] is subsequently deleted, these callers would expect
 625		 * their slot to become empty sooner or later.
 626		 *
 627		 * For example, lockless pagecache will look up a slot, deref
 628		 * the page pointer, and if the page has 0 refcount it means it
 629		 * was concurrently deleted from pagecache so try the deref
 630		 * again. Fortunately there is already a requirement for logic
 631		 * to retry the entire slot lookup -- the indirect pointer
 632		 * problem (replacing direct root node with an indirect pointer
 633		 * also results in a stale slot). So tag the slot as indirect
 634		 * to force callers to retry.
 635		 */
 636		node->count = 0;
 637		if (!radix_tree_is_internal_node(child)) {
 638			node->slots[0] = RADIX_TREE_RETRY;
 639			if (update_node)
 640				update_node(node, private);
 641		}
 642
 643		WARN_ON_ONCE(!list_empty(&node->private_list));
 644		radix_tree_node_free(node);
 
 645	}
 
 
 646}
 647
 648static void delete_node(struct radix_tree_root *root,
 649			struct radix_tree_node *node,
 650			radix_tree_update_node_t update_node, void *private)
 651{
 
 
 652	do {
 653		struct radix_tree_node *parent;
 654
 655		if (node->count) {
 656			if (node == entry_to_node(root->rnode))
 657				radix_tree_shrink(root, update_node, private);
 658			return;
 
 659		}
 660
 661		parent = node->parent;
 662		if (parent) {
 663			parent->slots[node->offset] = NULL;
 664			parent->count--;
 665		} else {
 666			root_tag_clear_all(root);
 667			root->rnode = NULL;
 
 
 
 
 
 668		}
 669
 670		WARN_ON_ONCE(!list_empty(&node->private_list));
 671		radix_tree_node_free(node);
 
 672
 673		node = parent;
 674	} while (node);
 
 
 675}
 676
 677/**
 678 *	__radix_tree_create	-	create a slot in a radix tree
 679 *	@root:		radix tree root
 680 *	@index:		index key
 681 *	@order:		index occupies 2^order aligned slots
 682 *	@nodep:		returns node
 683 *	@slotp:		returns slot
 684 *
 685 *	Create, if necessary, and return the node and slot for an item
 686 *	at position @index in the radix tree @root.
 687 *
 688 *	Until there is more than one item in the tree, no nodes are
 689 *	allocated and @root->rnode is used as a direct slot instead of
 690 *	pointing to a node, in which case *@nodep will be NULL.
 691 *
 692 *	Returns -ENOMEM, or 0 for success.
 693 */
 694int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 695			unsigned order, struct radix_tree_node **nodep,
 696			void ***slotp)
 697{
 698	struct radix_tree_node *node = NULL, *child;
 699	void **slot = (void **)&root->rnode;
 700	unsigned long maxindex;
 701	unsigned int shift, offset = 0;
 702	unsigned long max = index | ((1UL << order) - 1);
 
 703
 704	shift = radix_tree_load_root(root, &child, &maxindex);
 705
 706	/* Make sure the tree is high enough.  */
 707	if (order > 0 && max == ((1UL << order) - 1))
 708		max++;
 709	if (max > maxindex) {
 710		int error = radix_tree_extend(root, max, shift);
 711		if (error < 0)
 712			return error;
 713		shift = error;
 714		child = root->rnode;
 715	}
 716
 717	while (shift > order) {
 718		shift -= RADIX_TREE_MAP_SHIFT;
 719		if (child == NULL) {
 720			/* Have to add a child node.  */
 721			child = radix_tree_node_alloc(root, node, shift,
 722							offset, 0, 0);
 723			if (!child)
 724				return -ENOMEM;
 725			rcu_assign_pointer(*slot, node_to_entry(child));
 726			if (node)
 727				node->count++;
 728		} else if (!radix_tree_is_internal_node(child))
 729			break;
 730
 731		/* Go a level down */
 732		node = entry_to_node(child);
 733		offset = radix_tree_descend(node, &child, index);
 734		slot = &node->slots[offset];
 735	}
 736
 737	if (nodep)
 738		*nodep = node;
 739	if (slotp)
 740		*slotp = slot;
 741	return 0;
 742}
 743
 744#ifdef CONFIG_RADIX_TREE_MULTIORDER
 745/*
 746 * Free any nodes below this node.  The tree is presumed to not need
 747 * shrinking, and any user data in the tree is presumed to not need a
 748 * destructor called on it.  If we need to add a destructor, we can
 749 * add that functionality later.  Note that we may not clear tags or
 750 * slots from the tree as an RCU walker may still have a pointer into
 751 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 752 * but we'll still have to clear those in rcu_free.
 753 */
 754static void radix_tree_free_nodes(struct radix_tree_node *node)
 755{
 756	unsigned offset = 0;
 757	struct radix_tree_node *child = entry_to_node(node);
 758
 759	for (;;) {
 760		void *entry = child->slots[offset];
 761		if (radix_tree_is_internal_node(entry) &&
 762					!is_sibling_entry(child, entry)) {
 763			child = entry_to_node(entry);
 764			offset = 0;
 765			continue;
 766		}
 767		offset++;
 768		while (offset == RADIX_TREE_MAP_SIZE) {
 769			struct radix_tree_node *old = child;
 770			offset = child->offset + 1;
 771			child = child->parent;
 772			WARN_ON_ONCE(!list_empty(&old->private_list));
 773			radix_tree_node_free(old);
 774			if (old == entry_to_node(node))
 775				return;
 776		}
 777	}
 778}
 779
 780static inline int insert_entries(struct radix_tree_node *node, void **slot,
 781				void *item, unsigned order, bool replace)
 782{
 783	struct radix_tree_node *child;
 784	unsigned i, n, tag, offset, tags = 0;
 785
 786	if (node) {
 787		if (order > node->shift)
 788			n = 1 << (order - node->shift);
 789		else
 790			n = 1;
 791		offset = get_slot_offset(node, slot);
 792	} else {
 793		n = 1;
 794		offset = 0;
 795	}
 796
 797	if (n > 1) {
 798		offset = offset & ~(n - 1);
 799		slot = &node->slots[offset];
 800	}
 801	child = node_to_entry(slot);
 802
 803	for (i = 0; i < n; i++) {
 804		if (slot[i]) {
 805			if (replace) {
 806				node->count--;
 807				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 808					if (tag_get(node, tag, offset + i))
 809						tags |= 1 << tag;
 810			} else
 811				return -EEXIST;
 812		}
 813	}
 814
 815	for (i = 0; i < n; i++) {
 816		struct radix_tree_node *old = slot[i];
 817		if (i) {
 818			rcu_assign_pointer(slot[i], child);
 819			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 820				if (tags & (1 << tag))
 821					tag_clear(node, tag, offset + i);
 822		} else {
 823			rcu_assign_pointer(slot[i], item);
 824			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 825				if (tags & (1 << tag))
 826					tag_set(node, tag, offset);
 827		}
 828		if (radix_tree_is_internal_node(old) &&
 829					!is_sibling_entry(node, old) &&
 830					(old != RADIX_TREE_RETRY))
 831			radix_tree_free_nodes(old);
 832		if (radix_tree_exceptional_entry(old))
 833			node->exceptional--;
 834	}
 835	if (node) {
 836		node->count += n;
 837		if (radix_tree_exceptional_entry(item))
 838			node->exceptional += n;
 839	}
 840	return n;
 841}
 842#else
 843static inline int insert_entries(struct radix_tree_node *node, void **slot,
 844				void *item, unsigned order, bool replace)
 845{
 846	if (*slot)
 847		return -EEXIST;
 848	rcu_assign_pointer(*slot, item);
 849	if (node) {
 850		node->count++;
 851		if (radix_tree_exceptional_entry(item))
 852			node->exceptional++;
 853	}
 854	return 1;
 855}
 856#endif
 857
 858/**
 859 *	__radix_tree_insert    -    insert into a radix tree
 860 *	@root:		radix tree root
 861 *	@index:		index key
 862 *	@order:		key covers the 2^order indices around index
 863 *	@item:		item to insert
 864 *
 865 *	Insert an item into the radix tree at position @index.
 866 */
 867int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 868			unsigned order, void *item)
 869{
 870	struct radix_tree_node *node;
 871	void **slot;
 872	int error;
 873
 874	BUG_ON(radix_tree_is_internal_node(item));
 875
 876	error = __radix_tree_create(root, index, order, &node, &slot);
 877	if (error)
 878		return error;
 879
 880	error = insert_entries(node, slot, item, order, false);
 881	if (error < 0)
 882		return error;
 883
 884	if (node) {
 885		unsigned offset = get_slot_offset(node, slot);
 886		BUG_ON(tag_get(node, 0, offset));
 887		BUG_ON(tag_get(node, 1, offset));
 888		BUG_ON(tag_get(node, 2, offset));
 889	} else {
 890		BUG_ON(root_tags_get(root));
 891	}
 892
 893	return 0;
 894}
 895EXPORT_SYMBOL(__radix_tree_insert);
 896
 897/**
 898 *	__radix_tree_lookup	-	lookup an item in a radix tree
 899 *	@root:		radix tree root
 900 *	@index:		index key
 901 *	@nodep:		returns node
 902 *	@slotp:		returns slot
 903 *
 904 *	Lookup and return the item at position @index in the radix
 905 *	tree @root.
 906 *
 907 *	Until there is more than one item in the tree, no nodes are
 908 *	allocated and @root->rnode is used as a direct slot instead of
 909 *	pointing to a node, in which case *@nodep will be NULL.
 910 */
 911void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 912			  struct radix_tree_node **nodep, void ***slotp)
 
 913{
 914	struct radix_tree_node *node, *parent;
 915	unsigned long maxindex;
 916	void **slot;
 917
 918 restart:
 919	parent = NULL;
 920	slot = (void **)&root->rnode;
 921	radix_tree_load_root(root, &node, &maxindex);
 922	if (index > maxindex)
 923		return NULL;
 924
 925	while (radix_tree_is_internal_node(node)) {
 926		unsigned offset;
 927
 928		if (node == RADIX_TREE_RETRY)
 929			goto restart;
 930		parent = entry_to_node(node);
 931		offset = radix_tree_descend(parent, &node, index);
 932		slot = parent->slots + offset;
 
 
 
 
 933	}
 934
 935	if (nodep)
 936		*nodep = parent;
 937	if (slotp)
 938		*slotp = slot;
 939	return node;
 940}
 941
 942/**
 943 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 944 *	@root:		radix tree root
 945 *	@index:		index key
 946 *
 947 *	Returns:  the slot corresponding to the position @index in the
 948 *	radix tree @root. This is useful for update-if-exists operations.
 949 *
 950 *	This function can be called under rcu_read_lock iff the slot is not
 951 *	modified by radix_tree_replace_slot, otherwise it must be called
 952 *	exclusive from other writers. Any dereference of the slot must be done
 953 *	using radix_tree_deref_slot.
 954 */
 955void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 
 956{
 957	void **slot;
 958
 959	if (!__radix_tree_lookup(root, index, NULL, &slot))
 960		return NULL;
 961	return slot;
 962}
 963EXPORT_SYMBOL(radix_tree_lookup_slot);
 964
 965/**
 966 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 967 *	@root:		radix tree root
 968 *	@index:		index key
 969 *
 970 *	Lookup the item at the position @index in the radix tree @root.
 971 *
 972 *	This function can be called under rcu_read_lock, however the caller
 973 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 974 *	them safely). No RCU barriers are required to access or modify the
 975 *	returned item, however.
 976 */
 977void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 978{
 979	return __radix_tree_lookup(root, index, NULL, NULL);
 980}
 981EXPORT_SYMBOL(radix_tree_lookup);
 982
 983static inline int slot_count(struct radix_tree_node *node,
 984						void **slot)
 985{
 986	int n = 1;
 987#ifdef CONFIG_RADIX_TREE_MULTIORDER
 988	void *ptr = node_to_entry(slot);
 989	unsigned offset = get_slot_offset(node, slot);
 990	int i;
 991
 992	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
 993		if (node->slots[offset + i] != ptr)
 994			break;
 995		n++;
 996	}
 997#endif
 998	return n;
 999}
1000
1001static void replace_slot(struct radix_tree_root *root,
1002			 struct radix_tree_node *node,
1003			 void **slot, void *item,
1004			 bool warn_typeswitch)
1005{
1006	void *old = rcu_dereference_raw(*slot);
1007	int count, exceptional;
1008
1009	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1010
1011	count = !!item - !!old;
1012	exceptional = !!radix_tree_exceptional_entry(item) -
1013		      !!radix_tree_exceptional_entry(old);
1014
1015	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1016
1017	if (node) {
1018		node->count += count;
1019		if (exceptional) {
1020			exceptional *= slot_count(node, slot);
1021			node->exceptional += exceptional;
1022		}
1023	}
1024
1025	rcu_assign_pointer(*slot, item);
1026}
1027
1028static inline void delete_sibling_entries(struct radix_tree_node *node,
1029						void **slot)
 
1030{
1031#ifdef CONFIG_RADIX_TREE_MULTIORDER
1032	bool exceptional = radix_tree_exceptional_entry(*slot);
1033	void *ptr = node_to_entry(slot);
1034	unsigned offset = get_slot_offset(node, slot);
1035	int i;
1036
1037	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038		if (node->slots[offset + i] != ptr)
1039			break;
1040		node->slots[offset + i] = NULL;
1041		node->count--;
1042		if (exceptional)
1043			node->exceptional--;
 
 
 
 
 
 
 
 
 
 
 
1044	}
1045#endif
1046}
1047
1048/**
1049 * __radix_tree_replace		- replace item in a slot
1050 * @root:		radix tree root
1051 * @node:		pointer to tree node
1052 * @slot:		pointer to slot in @node
1053 * @item:		new item to store in the slot.
1054 * @update_node:	callback for changing leaf nodes
1055 * @private:		private data to pass to @update_node
1056 *
1057 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1058 * across slot lookup and replacement.
1059 */
1060void __radix_tree_replace(struct radix_tree_root *root,
1061			  struct radix_tree_node *node,
1062			  void **slot, void *item,
1063			  radix_tree_update_node_t update_node, void *private)
1064{
1065	if (!item)
1066		delete_sibling_entries(node, slot);
 
 
1067	/*
1068	 * This function supports replacing exceptional entries and
1069	 * deleting entries, but that needs accounting against the
1070	 * node unless the slot is root->rnode.
1071	 */
1072	replace_slot(root, node, slot, item,
1073		     !node && slot != (void **)&root->rnode);
 
1074
1075	if (!node)
1076		return;
1077
1078	if (update_node)
1079		update_node(node, private);
1080
1081	delete_node(root, node, update_node, private);
1082}
1083
1084/**
1085 * radix_tree_replace_slot	- replace item in a slot
1086 * @root:	radix tree root
1087 * @slot:	pointer to slot
1088 * @item:	new item to store in the slot.
1089 *
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1092 * across slot lookup and replacement.
1093 *
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1099 */
1100void radix_tree_replace_slot(struct radix_tree_root *root,
1101			     void **slot, void *item)
1102{
1103	replace_slot(root, NULL, slot, item, true);
1104}
 
1105
1106/**
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root:	radix tree root
1109 * @slot:	pointer to slot
1110 * @item:	new item to store in the slot.
1111 *
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1114 */
1115void radix_tree_iter_replace(struct radix_tree_root *root,
1116		const struct radix_tree_iter *iter, void **slot, void *item)
 
1117{
1118	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1119}
1120
1121#ifdef CONFIG_RADIX_TREE_MULTIORDER
1122/**
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1127 * @item: new entry
1128 *
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1131 * this call.
1132 *
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1135 */
1136int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1137			unsigned order, void *item)
1138{
1139	struct radix_tree_node *node;
1140	void **slot;
1141	int error;
1142
1143	BUG_ON(radix_tree_is_internal_node(item));
1144
1145	error = __radix_tree_create(root, index, order, &node, &slot);
1146	if (!error)
1147		error = insert_entries(node, slot, item, order, true);
1148	if (error > 0)
1149		error = 0;
1150
1151	return error;
1152}
1153
1154/**
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1159 *
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order.  After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1164 *
1165 * The tags from this entry are replicated to all the new entries.
1166 *
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1170 */
1171int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1172				unsigned order)
1173{
1174	struct radix_tree_node *parent, *node, *child;
1175	void **slot;
1176	unsigned int offset, end;
1177	unsigned n, tag, tags = 0;
1178
1179	if (!__radix_tree_lookup(root, index, &parent, &slot))
1180		return -ENOENT;
1181	if (!parent)
1182		return -ENOENT;
1183
1184	offset = get_slot_offset(parent, slot);
1185
1186	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1187		if (tag_get(parent, tag, offset))
1188			tags |= 1 << tag;
1189
1190	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1191		if (!is_sibling_entry(parent, parent->slots[end]))
1192			break;
1193		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194			if (tags & (1 << tag))
1195				tag_set(parent, tag, end);
1196		/* rcu_assign_pointer ensures tags are set before RETRY */
1197		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1198	}
1199	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1200	parent->exceptional -= (end - offset);
1201
1202	if (order == parent->shift)
1203		return 0;
1204	if (order > parent->shift) {
1205		while (offset < end)
1206			offset += insert_entries(parent, &parent->slots[offset],
1207					RADIX_TREE_RETRY, order, true);
1208		return 0;
1209	}
1210
1211	node = parent;
1212
1213	for (;;) {
1214		if (node->shift > order) {
1215			child = radix_tree_node_alloc(root, node,
1216					node->shift - RADIX_TREE_MAP_SHIFT,
1217					offset, 0, 0);
1218			if (!child)
1219				goto nomem;
1220			if (node != parent) {
1221				node->count++;
1222				node->slots[offset] = node_to_entry(child);
1223				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1224					if (tags & (1 << tag))
1225						tag_set(node, tag, offset);
1226			}
1227
1228			node = child;
1229			offset = 0;
1230			continue;
1231		}
1232
1233		n = insert_entries(node, &node->slots[offset],
1234					RADIX_TREE_RETRY, order, false);
1235		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1236
1237		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238			if (tags & (1 << tag))
1239				tag_set(node, tag, offset);
1240		offset += n;
1241
1242		while (offset == RADIX_TREE_MAP_SIZE) {
1243			if (node == parent)
1244				break;
1245			offset = node->offset;
1246			child = node;
1247			node = node->parent;
1248			rcu_assign_pointer(node->slots[offset],
1249						node_to_entry(child));
1250			offset++;
1251		}
1252		if ((node == parent) && (offset == end))
1253			return 0;
1254	}
1255
1256 nomem:
1257	/* Shouldn't happen; did user forget to preload? */
1258	/* TODO: free all the allocated nodes */
1259	WARN_ON(1);
1260	return -ENOMEM;
1261}
1262#endif
1263
1264/**
1265 *	radix_tree_tag_set - set a tag on a radix tree node
1266 *	@root:		radix tree root
1267 *	@index:		index key
1268 *	@tag:		tag index
1269 *
1270 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 *	corresponding to @index in the radix tree.  From
1272 *	the root all the way down to the leaf node.
1273 *
1274 *	Returns the address of the tagged item.  Setting a tag on a not-present
1275 *	item is a bug.
1276 */
1277void *radix_tree_tag_set(struct radix_tree_root *root,
1278			unsigned long index, unsigned int tag)
1279{
1280	struct radix_tree_node *node, *parent;
1281	unsigned long maxindex;
1282
1283	radix_tree_load_root(root, &node, &maxindex);
1284	BUG_ON(index > maxindex);
1285
1286	while (radix_tree_is_internal_node(node)) {
1287		unsigned offset;
1288
1289		parent = entry_to_node(node);
1290		offset = radix_tree_descend(parent, &node, index);
1291		BUG_ON(!node);
1292
1293		if (!tag_get(parent, tag, offset))
1294			tag_set(parent, tag, offset);
1295	}
1296
1297	/* set the root's tag bit */
1298	if (!root_tag_get(root, tag))
1299		root_tag_set(root, tag);
1300
1301	return node;
1302}
1303EXPORT_SYMBOL(radix_tree_tag_set);
1304
1305static void node_tag_clear(struct radix_tree_root *root,
1306				struct radix_tree_node *node,
1307				unsigned int tag, unsigned int offset)
1308{
1309	while (node) {
1310		if (!tag_get(node, tag, offset))
1311			return;
1312		tag_clear(node, tag, offset);
1313		if (any_tag_set(node, tag))
1314			return;
1315
1316		offset = node->offset;
1317		node = node->parent;
1318	}
1319
1320	/* clear the root's tag bit */
1321	if (root_tag_get(root, tag))
1322		root_tag_clear(root, tag);
1323}
1324
1325static void node_tag_set(struct radix_tree_root *root,
1326				struct radix_tree_node *node,
1327				unsigned int tag, unsigned int offset)
1328{
1329	while (node) {
1330		if (tag_get(node, tag, offset))
1331			return;
1332		tag_set(node, tag, offset);
1333		offset = node->offset;
1334		node = node->parent;
1335	}
1336
1337	if (!root_tag_get(root, tag))
1338		root_tag_set(root, tag);
1339}
1340
1341/**
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root:	radix tree root
1344 * @iter:	iterator state
1345 * @tag:	tag to set
1346 */
1347void radix_tree_iter_tag_set(struct radix_tree_root *root,
1348			const struct radix_tree_iter *iter, unsigned int tag)
1349{
1350	node_tag_set(root, iter->node, tag, iter_offset(iter));
1351}
1352
1353/**
1354 *	radix_tree_tag_clear - clear a tag on a radix tree node
1355 *	@root:		radix tree root
1356 *	@index:		index key
1357 *	@tag:		tag index
1358 *
1359 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 *	corresponding to @index in the radix tree.  If this causes
1361 *	the leaf node to have no tags set then clear the tag in the
1362 *	next-to-leaf node, etc.
1363 *
1364 *	Returns the address of the tagged item on success, else NULL.  ie:
1365 *	has the same return value and semantics as radix_tree_lookup().
1366 */
1367void *radix_tree_tag_clear(struct radix_tree_root *root,
1368			unsigned long index, unsigned int tag)
1369{
1370	struct radix_tree_node *node, *parent;
1371	unsigned long maxindex;
1372	int uninitialized_var(offset);
1373
1374	radix_tree_load_root(root, &node, &maxindex);
1375	if (index > maxindex)
1376		return NULL;
1377
1378	parent = NULL;
1379
1380	while (radix_tree_is_internal_node(node)) {
1381		parent = entry_to_node(node);
1382		offset = radix_tree_descend(parent, &node, index);
1383	}
1384
1385	if (node)
1386		node_tag_clear(root, parent, tag, offset);
1387
1388	return node;
1389}
1390EXPORT_SYMBOL(radix_tree_tag_clear);
1391
1392/**
 
 
 
 
 
 
 
 
 
 
 
 
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root:		radix tree root
1395 * @index:		index key
1396 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1397 *
1398 * Return values:
1399 *
1400 *  0: tag not present or not set
1401 *  1: tag set
1402 *
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1405 * from concurrency.
1406 */
1407int radix_tree_tag_get(struct radix_tree_root *root,
1408			unsigned long index, unsigned int tag)
1409{
1410	struct radix_tree_node *node, *parent;
1411	unsigned long maxindex;
1412
1413	if (!root_tag_get(root, tag))
1414		return 0;
1415
1416	radix_tree_load_root(root, &node, &maxindex);
1417	if (index > maxindex)
1418		return 0;
1419	if (node == NULL)
1420		return 0;
1421
1422	while (radix_tree_is_internal_node(node)) {
1423		unsigned offset;
1424
1425		parent = entry_to_node(node);
1426		offset = radix_tree_descend(parent, &node, index);
1427
1428		if (!node)
1429			return 0;
1430		if (!tag_get(parent, tag, offset))
1431			return 0;
1432		if (node == RADIX_TREE_RETRY)
1433			break;
1434	}
1435
1436	return 1;
1437}
1438EXPORT_SYMBOL(radix_tree_tag_get);
1439
1440static inline void __set_iter_shift(struct radix_tree_iter *iter,
1441					unsigned int shift)
1442{
1443#ifdef CONFIG_RADIX_TREE_MULTIORDER
1444	iter->shift = shift;
1445#endif
1446}
1447
1448/* Construct iter->tags bit-mask from node->tags[tag] array */
1449static void set_iter_tags(struct radix_tree_iter *iter,
1450				struct radix_tree_node *node, unsigned offset,
1451				unsigned tag)
1452{
1453	unsigned tag_long = offset / BITS_PER_LONG;
1454	unsigned tag_bit  = offset % BITS_PER_LONG;
1455
 
 
 
 
 
1456	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1457
1458	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1460		/* Pick tags from next element */
1461		if (tag_bit)
1462			iter->tags |= node->tags[tag][tag_long + 1] <<
1463						(BITS_PER_LONG - tag_bit);
1464		/* Clip chunk size, here only BITS_PER_LONG tags */
1465		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1466	}
1467}
1468
1469#ifdef CONFIG_RADIX_TREE_MULTIORDER
1470static void **skip_siblings(struct radix_tree_node **nodep,
1471			void **slot, struct radix_tree_iter *iter)
1472{
1473	void *sib = node_to_entry(slot - 1);
1474
1475	while (iter->index < iter->next_index) {
1476		*nodep = rcu_dereference_raw(*slot);
1477		if (*nodep && *nodep != sib)
1478			return slot;
1479		slot++;
1480		iter->index = __radix_tree_iter_add(iter, 1);
1481		iter->tags >>= 1;
1482	}
1483
1484	*nodep = NULL;
1485	return NULL;
1486}
1487
1488void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1489					unsigned flags)
1490{
1491	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1492	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1493
1494	slot = skip_siblings(&node, slot, iter);
1495
1496	while (radix_tree_is_internal_node(node)) {
1497		unsigned offset;
1498		unsigned long next_index;
1499
1500		if (node == RADIX_TREE_RETRY)
1501			return slot;
1502		node = entry_to_node(node);
1503		iter->node = node;
1504		iter->shift = node->shift;
1505
1506		if (flags & RADIX_TREE_ITER_TAGGED) {
1507			offset = radix_tree_find_next_bit(node, tag, 0);
1508			if (offset == RADIX_TREE_MAP_SIZE)
1509				return NULL;
1510			slot = &node->slots[offset];
1511			iter->index = __radix_tree_iter_add(iter, offset);
1512			set_iter_tags(iter, node, offset, tag);
1513			node = rcu_dereference_raw(*slot);
1514		} else {
1515			offset = 0;
1516			slot = &node->slots[0];
1517			for (;;) {
1518				node = rcu_dereference_raw(*slot);
1519				if (node)
1520					break;
1521				slot++;
1522				offset++;
1523				if (offset == RADIX_TREE_MAP_SIZE)
1524					return NULL;
1525			}
1526			iter->index = __radix_tree_iter_add(iter, offset);
1527		}
1528		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1529			goto none;
1530		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1531		if (next_index < iter->next_index)
1532			iter->next_index = next_index;
1533	}
1534
1535	return slot;
1536 none:
1537	iter->next_index = 0;
1538	return NULL;
1539}
1540EXPORT_SYMBOL(__radix_tree_next_slot);
1541#else
1542static void **skip_siblings(struct radix_tree_node **nodep,
1543			void **slot, struct radix_tree_iter *iter)
1544{
1545	return slot;
1546}
1547#endif
1548
1549void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1550{
1551	struct radix_tree_node *node;
1552
1553	slot++;
1554	iter->index = __radix_tree_iter_add(iter, 1);
1555	node = rcu_dereference_raw(*slot);
1556	skip_siblings(&node, slot, iter);
1557	iter->next_index = iter->index;
1558	iter->tags = 0;
1559	return NULL;
1560}
1561EXPORT_SYMBOL(radix_tree_iter_resume);
1562
1563/**
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
1565 *
1566 * @root:	radix tree root
1567 * @iter:	iterator state
1568 * @flags:	RADIX_TREE_ITER_* flags and tag index
1569 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1570 */
1571void **radix_tree_next_chunk(struct radix_tree_root *root,
1572			     struct radix_tree_iter *iter, unsigned flags)
1573{
1574	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1575	struct radix_tree_node *node, *child;
1576	unsigned long index, offset, maxindex;
1577
1578	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1579		return NULL;
1580
1581	/*
1582	 * Catch next_index overflow after ~0UL. iter->index never overflows
1583	 * during iterating; it can be zero only at the beginning.
1584	 * And we cannot overflow iter->next_index in a single step,
1585	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1586	 *
1587	 * This condition also used by radix_tree_next_slot() to stop
1588	 * contiguous iterating, and forbid switching to the next chunk.
1589	 */
1590	index = iter->next_index;
1591	if (!index && iter->index)
1592		return NULL;
1593
1594 restart:
1595	radix_tree_load_root(root, &child, &maxindex);
1596	if (index > maxindex)
1597		return NULL;
1598	if (!child)
1599		return NULL;
1600
1601	if (!radix_tree_is_internal_node(child)) {
1602		/* Single-slot tree */
1603		iter->index = index;
1604		iter->next_index = maxindex + 1;
1605		iter->tags = 1;
1606		iter->node = NULL;
1607		__set_iter_shift(iter, 0);
1608		return (void **)&root->rnode;
1609	}
1610
1611	do {
1612		node = entry_to_node(child);
1613		offset = radix_tree_descend(node, &child, index);
1614
1615		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1616				!tag_get(node, tag, offset) : !child) {
1617			/* Hole detected */
1618			if (flags & RADIX_TREE_ITER_CONTIG)
1619				return NULL;
1620
1621			if (flags & RADIX_TREE_ITER_TAGGED)
1622				offset = radix_tree_find_next_bit(node, tag,
1623						offset + 1);
1624			else
1625				while (++offset	< RADIX_TREE_MAP_SIZE) {
1626					void *slot = node->slots[offset];
1627					if (is_sibling_entry(node, slot))
1628						continue;
1629					if (slot)
1630						break;
1631				}
1632			index &= ~node_maxindex(node);
1633			index += offset << node->shift;
1634			/* Overflow after ~0UL */
1635			if (!index)
1636				return NULL;
1637			if (offset == RADIX_TREE_MAP_SIZE)
1638				goto restart;
1639			child = rcu_dereference_raw(node->slots[offset]);
1640		}
1641
1642		if (!child)
1643			goto restart;
1644		if (child == RADIX_TREE_RETRY)
1645			break;
1646	} while (radix_tree_is_internal_node(child));
1647
1648	/* Update the iterator state */
1649	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1650	iter->next_index = (index | node_maxindex(node)) + 1;
1651	iter->node = node;
1652	__set_iter_shift(iter, node->shift);
1653
1654	if (flags & RADIX_TREE_ITER_TAGGED)
1655		set_iter_tags(iter, node, offset, tag);
1656
1657	return node->slots + offset;
1658}
1659EXPORT_SYMBOL(radix_tree_next_chunk);
1660
1661/**
1662 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 *	@root:		radix tree root
1664 *	@results:	where the results of the lookup are placed
1665 *	@first_index:	start the lookup from this key
1666 *	@max_items:	place up to this many items at *results
1667 *
1668 *	Performs an index-ascending scan of the tree for present items.  Places
1669 *	them at *@results and returns the number of items which were placed at
1670 *	*@results.
1671 *
1672 *	The implementation is naive.
1673 *
1674 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 *	rcu_read_lock. In this case, rather than the returned results being
1676 *	an atomic snapshot of the tree at a single point in time, the
1677 *	semantics of an RCU protected gang lookup are as though multiple
1678 *	radix_tree_lookups have been issued in individual locks, and results
1679 *	stored in 'results'.
1680 */
1681unsigned int
1682radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1683			unsigned long first_index, unsigned int max_items)
1684{
1685	struct radix_tree_iter iter;
1686	void **slot;
1687	unsigned int ret = 0;
1688
1689	if (unlikely(!max_items))
1690		return 0;
1691
1692	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1693		results[ret] = rcu_dereference_raw(*slot);
1694		if (!results[ret])
1695			continue;
1696		if (radix_tree_is_internal_node(results[ret])) {
1697			slot = radix_tree_iter_retry(&iter);
1698			continue;
1699		}
1700		if (++ret == max_items)
1701			break;
1702	}
1703
1704	return ret;
1705}
1706EXPORT_SYMBOL(radix_tree_gang_lookup);
1707
1708/**
1709 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 *	@root:		radix tree root
1711 *	@results:	where the results of the lookup are placed
1712 *	@indices:	where their indices should be placed (but usually NULL)
1713 *	@first_index:	start the lookup from this key
1714 *	@max_items:	place up to this many items at *results
1715 *
1716 *	Performs an index-ascending scan of the tree for present items.  Places
1717 *	their slots at *@results and returns the number of items which were
1718 *	placed at *@results.
1719 *
1720 *	The implementation is naive.
1721 *
1722 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 *	protection, radix_tree_deref_slot may fail requiring a retry.
1725 */
1726unsigned int
1727radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1728			void ***results, unsigned long *indices,
1729			unsigned long first_index, unsigned int max_items)
1730{
1731	struct radix_tree_iter iter;
1732	void **slot;
1733	unsigned int ret = 0;
1734
1735	if (unlikely(!max_items))
1736		return 0;
1737
1738	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1739		results[ret] = slot;
1740		if (indices)
1741			indices[ret] = iter.index;
1742		if (++ret == max_items)
1743			break;
1744	}
1745
1746	return ret;
1747}
1748EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1749
1750/**
1751 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1752 *	                             based on a tag
1753 *	@root:		radix tree root
1754 *	@results:	where the results of the lookup are placed
1755 *	@first_index:	start the lookup from this key
1756 *	@max_items:	place up to this many items at *results
1757 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1758 *
1759 *	Performs an index-ascending scan of the tree for present items which
1760 *	have the tag indexed by @tag set.  Places the items at *@results and
1761 *	returns the number of items which were placed at *@results.
1762 */
1763unsigned int
1764radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1765		unsigned long first_index, unsigned int max_items,
1766		unsigned int tag)
1767{
1768	struct radix_tree_iter iter;
1769	void **slot;
1770	unsigned int ret = 0;
1771
1772	if (unlikely(!max_items))
1773		return 0;
1774
1775	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1776		results[ret] = rcu_dereference_raw(*slot);
1777		if (!results[ret])
1778			continue;
1779		if (radix_tree_is_internal_node(results[ret])) {
1780			slot = radix_tree_iter_retry(&iter);
1781			continue;
1782		}
1783		if (++ret == max_items)
1784			break;
1785	}
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1790
1791/**
1792 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 *					  radix tree based on a tag
1794 *	@root:		radix tree root
1795 *	@results:	where the results of the lookup are placed
1796 *	@first_index:	start the lookup from this key
1797 *	@max_items:	place up to this many items at *results
1798 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1799 *
1800 *	Performs an index-ascending scan of the tree for present items which
1801 *	have the tag indexed by @tag set.  Places the slots at *@results and
1802 *	returns the number of slots which were placed at *@results.
1803 */
1804unsigned int
1805radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1806		unsigned long first_index, unsigned int max_items,
1807		unsigned int tag)
1808{
1809	struct radix_tree_iter iter;
1810	void **slot;
1811	unsigned int ret = 0;
1812
1813	if (unlikely(!max_items))
1814		return 0;
1815
1816	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1817		results[ret] = slot;
1818		if (++ret == max_items)
1819			break;
1820	}
1821
1822	return ret;
1823}
1824EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826/**
1827 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1828 *	@root:		radix tree root
1829 *	@node:		node containing @index
1830 *	@update_node:	callback for changing leaf nodes
1831 *	@private:	private data to pass to @update_node
1832 *
1833 *	After clearing the slot at @index in @node from radix tree
1834 *	rooted at @root, call this function to attempt freeing the
1835 *	node and shrinking the tree.
 
 
1836 */
1837void __radix_tree_delete_node(struct radix_tree_root *root,
1838			      struct radix_tree_node *node,
1839			      radix_tree_update_node_t update_node,
1840			      void *private)
1841{
1842	delete_node(root, node, update_node, private);
 
1843}
 
1844
1845/**
1846 *	radix_tree_delete_item    -    delete an item from a radix tree
1847 *	@root:		radix tree root
1848 *	@index:		index key
1849 *	@item:		expected item
1850 *
1851 *	Remove @item at @index from the radix tree rooted at @root.
1852 *
1853 *	Returns the address of the deleted item, or NULL if it was not present
1854 *	or the entry at the given @index was not @item.
1855 */
1856void *radix_tree_delete_item(struct radix_tree_root *root,
1857			     unsigned long index, void *item)
1858{
1859	struct radix_tree_node *node;
1860	unsigned int offset;
1861	void **slot;
1862	void *entry;
1863	int tag;
1864
1865	entry = __radix_tree_lookup(root, index, &node, &slot);
1866	if (!entry)
 
 
 
1867		return NULL;
1868
1869	if (item && entry != item)
1870		return NULL;
1871
1872	if (!node) {
1873		root_tag_clear_all(root);
1874		root->rnode = NULL;
1875		return entry;
1876	}
1877
1878	offset = get_slot_offset(node, slot);
1879
1880	/* Clear all tags associated with the item to be deleted.  */
1881	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1882		node_tag_clear(root, node, tag, offset);
1883
1884	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1885
1886	return entry;
1887}
1888EXPORT_SYMBOL(radix_tree_delete_item);
1889
1890/**
1891 *	radix_tree_delete    -    delete an item from a radix tree
1892 *	@root:		radix tree root
1893 *	@index:		index key
1894 *
1895 *	Remove the item at @index from the radix tree rooted at @root.
1896 *
1897 *	Returns the address of the deleted item, or NULL if it was not present.
1898 */
1899void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1900{
1901	return radix_tree_delete_item(root, index, NULL);
1902}
1903EXPORT_SYMBOL(radix_tree_delete);
1904
1905void radix_tree_clear_tags(struct radix_tree_root *root,
1906			   struct radix_tree_node *node,
1907			   void **slot)
1908{
1909	if (node) {
1910		unsigned int tag, offset = get_slot_offset(node, slot);
1911		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1912			node_tag_clear(root, node, tag, offset);
1913	} else {
1914		/* Clear root node tags */
1915		root->gfp_mask &= __GFP_BITS_MASK;
1916	}
1917}
1918
1919/**
1920 *	radix_tree_tagged - test whether any items in the tree are tagged
1921 *	@root:		radix tree root
1922 *	@tag:		tag to test
1923 */
1924int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1925{
1926	return root_tag_get(root, tag);
1927}
1928EXPORT_SYMBOL(radix_tree_tagged);
1929
1930static void
1931radix_tree_node_ctor(void *arg)
 
 
 
 
 
 
1932{
1933	struct radix_tree_node *node = arg;
1934
1935	memset(node, 0, sizeof(*node));
1936	INIT_LIST_HEAD(&node->private_list);
1937}
 
1938
1939static __init unsigned long __maxindex(unsigned int height)
 
 
1940{
1941	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1942	int shift = RADIX_TREE_INDEX_BITS - width;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1943
1944	if (shift < 0)
1945		return ~0UL;
1946	if (shift >= BITS_PER_LONG)
1947		return 0UL;
1948	return ~0UL >> shift;
 
 
 
 
 
 
 
 
 
 
 
 
 
1949}
 
1950
1951static __init void radix_tree_init_maxnodes(void)
 
1952{
1953	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1954	unsigned int i, j;
1955
1956	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1957		height_to_maxindex[i] = __maxindex(i);
1958	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1959		for (j = i; j > 0; j--)
1960			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1961	}
1962}
1963
1964static int radix_tree_cpu_dead(unsigned int cpu)
1965{
1966	struct radix_tree_preload *rtp;
1967	struct radix_tree_node *node;
1968
1969	/* Free per-cpu pool of preloaded nodes */
1970	rtp = &per_cpu(radix_tree_preloads, cpu);
1971	while (rtp->nr) {
1972		node = rtp->nodes;
1973		rtp->nodes = node->private_data;
1974		kmem_cache_free(radix_tree_node_cachep, node);
1975		rtp->nr--;
1976	}
1977	return 0;
1978}
1979
1980void __init radix_tree_init(void)
1981{
1982	int ret;
 
 
 
 
1983	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1984			sizeof(struct radix_tree_node), 0,
1985			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1986			radix_tree_node_ctor);
1987	radix_tree_init_maxnodes();
1988	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1989					NULL, radix_tree_cpu_dead);
1990	WARN_ON(ret < 0);
1991}
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
 
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>		/* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
 
 
  27#include <linux/string.h>
  28#include <linux/xarray.h>
 
 
 
  29
 
 
  30
  31/*
  32 * Radix tree node cache.
  33 */
  34struct kmem_cache *radix_tree_node_cachep;
  35
  36/*
  37 * The radix tree is variable-height, so an insert operation not only has
  38 * to build the branch to its corresponding item, it also has to build the
  39 * branch to existing items if the size has to be increased (by
  40 * radix_tree_extend).
  41 *
  42 * The worst case is a zero height tree with just a single item at index 0,
  43 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  44 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  45 * Hence:
  46 */
  47#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  48
  49/*
  50 * The IDR does not have to be as high as the radix tree since it uses
  51 * signed integers, not unsigned longs.
  52 */
  53#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  54#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  55						RADIX_TREE_MAP_SHIFT))
  56#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  57
  58/*
  59 * The IDA is even shorter since it uses a bitmap at the last level.
  60 */
  61#define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  62#define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
  63						RADIX_TREE_MAP_SHIFT))
  64#define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
  65
  66/*
  67 * Per-cpu pool of preloaded nodes
  68 */
  69struct radix_tree_preload {
  70	unsigned nr;
  71	/* nodes->parent points to next preallocated node */
  72	struct radix_tree_node *nodes;
  73};
  74static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  75
  76static inline struct radix_tree_node *entry_to_node(void *ptr)
  77{
  78	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  79}
  80
  81static inline void *node_to_entry(void *ptr)
  82{
  83	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  84}
  85
  86#define RADIX_TREE_RETRY	XA_RETRY_ENTRY
  87
  88static inline unsigned long
  89get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 
 
 
 
 
 
 
 
  90{
  91	return parent ? slot - parent->slots : 0;
  92}
 
  93
  94static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 
 
 
 
 
 
  95			struct radix_tree_node **nodep, unsigned long index)
  96{
  97	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  98	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 
 
 
 
 
 
 
 
 
 
  99
 100	*nodep = (void *)entry;
 101	return offset;
 102}
 103
 104static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 105{
 106	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
 107}
 108
 109static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 110		int offset)
 111{
 112	__set_bit(offset, node->tags[tag]);
 113}
 114
 115static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 116		int offset)
 117{
 118	__clear_bit(offset, node->tags[tag]);
 119}
 120
 121static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 122		int offset)
 123{
 124	return test_bit(offset, node->tags[tag]);
 125}
 126
 127static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 128{
 129	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 130}
 131
 132static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 133{
 134	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 135}
 136
 137static inline void root_tag_clear_all(struct radix_tree_root *root)
 138{
 139	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 140}
 141
 142static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 143{
 144	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 145}
 146
 147static inline unsigned root_tags_get(const struct radix_tree_root *root)
 148{
 149	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 150}
 151
 152static inline bool is_idr(const struct radix_tree_root *root)
 153{
 154	return !!(root->xa_flags & ROOT_IS_IDR);
 155}
 156
 157/*
 158 * Returns 1 if any slot in the node has this tag set.
 159 * Otherwise returns 0.
 160 */
 161static inline int any_tag_set(const struct radix_tree_node *node,
 162							unsigned int tag)
 163{
 164	unsigned idx;
 165	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 166		if (node->tags[tag][idx])
 167			return 1;
 168	}
 169	return 0;
 170}
 171
 172static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 173{
 174	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 175}
 176
 177/**
 178 * radix_tree_find_next_bit - find the next set bit in a memory region
 179 *
 180 * @addr: The address to base the search on
 181 * @size: The bitmap size in bits
 182 * @offset: The bitnumber to start searching at
 183 *
 184 * Unrollable variant of find_next_bit() for constant size arrays.
 185 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 186 * Returns next bit offset, or size if nothing found.
 187 */
 188static __always_inline unsigned long
 189radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 190			 unsigned long offset)
 191{
 192	const unsigned long *addr = node->tags[tag];
 193
 194	if (offset < RADIX_TREE_MAP_SIZE) {
 195		unsigned long tmp;
 196
 197		addr += offset / BITS_PER_LONG;
 198		tmp = *addr >> (offset % BITS_PER_LONG);
 199		if (tmp)
 200			return __ffs(tmp) + offset;
 201		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 202		while (offset < RADIX_TREE_MAP_SIZE) {
 203			tmp = *++addr;
 204			if (tmp)
 205				return __ffs(tmp) + offset;
 206			offset += BITS_PER_LONG;
 207		}
 208	}
 209	return RADIX_TREE_MAP_SIZE;
 210}
 211
 212static unsigned int iter_offset(const struct radix_tree_iter *iter)
 213{
 214	return iter->index & RADIX_TREE_MAP_MASK;
 215}
 216
 217/*
 218 * The maximum index which can be stored in a radix tree
 219 */
 220static inline unsigned long shift_maxindex(unsigned int shift)
 221{
 222	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 223}
 224
 225static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 226{
 227	return shift_maxindex(node->shift);
 228}
 229
 230static unsigned long next_index(unsigned long index,
 231				const struct radix_tree_node *node,
 232				unsigned long offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 233{
 234	return (index & ~node_maxindex(node)) + (offset << node->shift);
 
 
 
 
 
 235}
 
 236
 237/*
 238 * This assumes that the caller has performed appropriate preallocation, and
 239 * that the caller has pinned this thread of control to the current CPU.
 240 */
 241static struct radix_tree_node *
 242radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 243			struct radix_tree_root *root,
 244			unsigned int shift, unsigned int offset,
 245			unsigned int count, unsigned int nr_values)
 246{
 247	struct radix_tree_node *ret = NULL;
 
 248
 249	/*
 250	 * Preload code isn't irq safe and it doesn't make sense to use
 251	 * preloading during an interrupt anyway as all the allocations have
 252	 * to be atomic. So just do normal allocation when in interrupt.
 253	 */
 254	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 255		struct radix_tree_preload *rtp;
 256
 257		/*
 258		 * Even if the caller has preloaded, try to allocate from the
 259		 * cache first for the new node to get accounted to the memory
 260		 * cgroup.
 261		 */
 262		ret = kmem_cache_alloc(radix_tree_node_cachep,
 263				       gfp_mask | __GFP_NOWARN);
 264		if (ret)
 265			goto out;
 266
 267		/*
 268		 * Provided the caller has preloaded here, we will always
 269		 * succeed in getting a node here (and never reach
 270		 * kmem_cache_alloc)
 271		 */
 272		rtp = this_cpu_ptr(&radix_tree_preloads);
 273		if (rtp->nr) {
 274			ret = rtp->nodes;
 275			rtp->nodes = ret->parent;
 
 276			rtp->nr--;
 277		}
 278		/*
 279		 * Update the allocation stack trace as this is more useful
 280		 * for debugging.
 281		 */
 282		kmemleak_update_trace(ret);
 283		goto out;
 284	}
 285	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 286out:
 287	BUG_ON(radix_tree_is_internal_node(ret));
 288	if (ret) {
 
 289		ret->shift = shift;
 290		ret->offset = offset;
 291		ret->count = count;
 292		ret->nr_values = nr_values;
 293		ret->parent = parent;
 294		ret->array = root;
 295	}
 296	return ret;
 297}
 298
 299void radix_tree_node_rcu_free(struct rcu_head *head)
 300{
 301	struct radix_tree_node *node =
 302			container_of(head, struct radix_tree_node, rcu_head);
 303
 304	/*
 305	 * Must only free zeroed nodes into the slab.  We can be left with
 306	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 307	 * and tags here.
 308	 */
 309	memset(node->slots, 0, sizeof(node->slots));
 310	memset(node->tags, 0, sizeof(node->tags));
 311	INIT_LIST_HEAD(&node->private_list);
 312
 313	kmem_cache_free(radix_tree_node_cachep, node);
 314}
 315
 316static inline void
 317radix_tree_node_free(struct radix_tree_node *node)
 318{
 319	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 320}
 321
 322/*
 323 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 324 * ensure that the addition of a single element in the tree cannot fail.  On
 325 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 326 * with preemption not disabled.
 327 *
 328 * To make use of this facility, the radix tree must be initialised without
 329 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 330 */
 331static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 332{
 333	struct radix_tree_preload *rtp;
 334	struct radix_tree_node *node;
 335	int ret = -ENOMEM;
 336
 337	/*
 338	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 339	 * they should never be accounted to any particular memory cgroup.
 340	 */
 341	gfp_mask &= ~__GFP_ACCOUNT;
 342
 343	preempt_disable();
 344	rtp = this_cpu_ptr(&radix_tree_preloads);
 345	while (rtp->nr < nr) {
 346		preempt_enable();
 347		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 348		if (node == NULL)
 349			goto out;
 350		preempt_disable();
 351		rtp = this_cpu_ptr(&radix_tree_preloads);
 352		if (rtp->nr < nr) {
 353			node->parent = rtp->nodes;
 354			rtp->nodes = node;
 355			rtp->nr++;
 356		} else {
 357			kmem_cache_free(radix_tree_node_cachep, node);
 358		}
 359	}
 360	ret = 0;
 361out:
 362	return ret;
 363}
 364
 365/*
 366 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 367 * ensure that the addition of a single element in the tree cannot fail.  On
 368 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 369 * with preemption not disabled.
 370 *
 371 * To make use of this facility, the radix tree must be initialised without
 372 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 373 */
 374int radix_tree_preload(gfp_t gfp_mask)
 375{
 376	/* Warn on non-sensical use... */
 377	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 378	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 379}
 380EXPORT_SYMBOL(radix_tree_preload);
 381
 382/*
 383 * The same as above function, except we don't guarantee preloading happens.
 384 * We do it, if we decide it helps. On success, return zero with preemption
 385 * disabled. On error, return -ENOMEM with preemption not disabled.
 386 */
 387int radix_tree_maybe_preload(gfp_t gfp_mask)
 388{
 389	if (gfpflags_allow_blocking(gfp_mask))
 390		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 391	/* Preloading doesn't help anything with this gfp mask, skip it */
 392	preempt_disable();
 393	return 0;
 394}
 395EXPORT_SYMBOL(radix_tree_maybe_preload);
 396
 397static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 398		struct radix_tree_node **nodep, unsigned long *maxindex)
 399{
 400	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 401
 402	*nodep = node;
 403
 404	if (likely(radix_tree_is_internal_node(node))) {
 405		node = entry_to_node(node);
 406		*maxindex = node_maxindex(node);
 407		return node->shift + RADIX_TREE_MAP_SHIFT;
 408	}
 409
 410	*maxindex = 0;
 411	return 0;
 412}
 413
 414/*
 415 *	Extend a radix tree so it can store key @index.
 416 */
 417static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 418				unsigned long index, unsigned int shift)
 419{
 420	void *entry;
 421	unsigned int maxshift;
 422	int tag;
 423
 424	/* Figure out what the shift should be.  */
 425	maxshift = shift;
 426	while (index > shift_maxindex(maxshift))
 427		maxshift += RADIX_TREE_MAP_SHIFT;
 428
 429	entry = rcu_dereference_raw(root->xa_head);
 430	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 431		goto out;
 432
 433	do {
 434		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 435							root, shift, 0, 1, 0);
 436		if (!node)
 437			return -ENOMEM;
 438
 439		if (is_idr(root)) {
 440			all_tag_set(node, IDR_FREE);
 441			if (!root_tag_get(root, IDR_FREE)) {
 442				tag_clear(node, IDR_FREE, 0);
 443				root_tag_set(root, IDR_FREE);
 444			}
 445		} else {
 446			/* Propagate the aggregated tag info to the new child */
 447			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 448				if (root_tag_get(root, tag))
 449					tag_set(node, tag, 0);
 450			}
 451		}
 452
 453		BUG_ON(shift > BITS_PER_LONG);
 454		if (radix_tree_is_internal_node(entry)) {
 455			entry_to_node(entry)->parent = node;
 456		} else if (xa_is_value(entry)) {
 457			/* Moving a value entry root->xa_head to a node */
 458			node->nr_values = 1;
 459		}
 460		/*
 461		 * entry was already in the radix tree, so we do not need
 462		 * rcu_assign_pointer here
 463		 */
 464		node->slots[0] = (void __rcu *)entry;
 465		entry = node_to_entry(node);
 466		rcu_assign_pointer(root->xa_head, entry);
 467		shift += RADIX_TREE_MAP_SHIFT;
 468	} while (shift <= maxshift);
 469out:
 470	return maxshift + RADIX_TREE_MAP_SHIFT;
 471}
 472
 473/**
 474 *	radix_tree_shrink    -    shrink radix tree to minimum height
 475 *	@root		radix tree root
 476 */
 477static inline bool radix_tree_shrink(struct radix_tree_root *root)
 
 
 478{
 479	bool shrunk = false;
 480
 481	for (;;) {
 482		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 483		struct radix_tree_node *child;
 484
 485		if (!radix_tree_is_internal_node(node))
 486			break;
 487		node = entry_to_node(node);
 488
 489		/*
 490		 * The candidate node has more than one child, or its child
 491		 * is not at the leftmost slot, we cannot shrink.
 
 492		 */
 493		if (node->count != 1)
 494			break;
 495		child = rcu_dereference_raw(node->slots[0]);
 496		if (!child)
 497			break;
 498
 499		/*
 500		 * For an IDR, we must not shrink entry 0 into the root in
 501		 * case somebody calls idr_replace() with a pointer that
 502		 * appears to be an internal entry
 503		 */
 504		if (!node->shift && is_idr(root))
 505			break;
 506
 507		if (radix_tree_is_internal_node(child))
 508			entry_to_node(child)->parent = NULL;
 509
 510		/*
 511		 * We don't need rcu_assign_pointer(), since we are simply
 512		 * moving the node from one part of the tree to another: if it
 513		 * was safe to dereference the old pointer to it
 514		 * (node->slots[0]), it will be safe to dereference the new
 515		 * one (root->xa_head) as far as dependent read barriers go.
 516		 */
 517		root->xa_head = (void __rcu *)child;
 518		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 519			root_tag_clear(root, IDR_FREE);
 520
 521		/*
 522		 * We have a dilemma here. The node's slot[0] must not be
 523		 * NULLed in case there are concurrent lookups expecting to
 524		 * find the item. However if this was a bottom-level node,
 525		 * then it may be subject to the slot pointer being visible
 526		 * to callers dereferencing it. If item corresponding to
 527		 * slot[0] is subsequently deleted, these callers would expect
 528		 * their slot to become empty sooner or later.
 529		 *
 530		 * For example, lockless pagecache will look up a slot, deref
 531		 * the page pointer, and if the page has 0 refcount it means it
 532		 * was concurrently deleted from pagecache so try the deref
 533		 * again. Fortunately there is already a requirement for logic
 534		 * to retry the entire slot lookup -- the indirect pointer
 535		 * problem (replacing direct root node with an indirect pointer
 536		 * also results in a stale slot). So tag the slot as indirect
 537		 * to force callers to retry.
 538		 */
 539		node->count = 0;
 540		if (!radix_tree_is_internal_node(child)) {
 541			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 
 
 542		}
 543
 544		WARN_ON_ONCE(!list_empty(&node->private_list));
 545		radix_tree_node_free(node);
 546		shrunk = true;
 547	}
 548
 549	return shrunk;
 550}
 551
 552static bool delete_node(struct radix_tree_root *root,
 553			struct radix_tree_node *node)
 
 554{
 555	bool deleted = false;
 556
 557	do {
 558		struct radix_tree_node *parent;
 559
 560		if (node->count) {
 561			if (node_to_entry(node) ==
 562					rcu_dereference_raw(root->xa_head))
 563				deleted |= radix_tree_shrink(root);
 564			return deleted;
 565		}
 566
 567		parent = node->parent;
 568		if (parent) {
 569			parent->slots[node->offset] = NULL;
 570			parent->count--;
 571		} else {
 572			/*
 573			 * Shouldn't the tags already have all been cleared
 574			 * by the caller?
 575			 */
 576			if (!is_idr(root))
 577				root_tag_clear_all(root);
 578			root->xa_head = NULL;
 579		}
 580
 581		WARN_ON_ONCE(!list_empty(&node->private_list));
 582		radix_tree_node_free(node);
 583		deleted = true;
 584
 585		node = parent;
 586	} while (node);
 587
 588	return deleted;
 589}
 590
 591/**
 592 *	__radix_tree_create	-	create a slot in a radix tree
 593 *	@root:		radix tree root
 594 *	@index:		index key
 
 595 *	@nodep:		returns node
 596 *	@slotp:		returns slot
 597 *
 598 *	Create, if necessary, and return the node and slot for an item
 599 *	at position @index in the radix tree @root.
 600 *
 601 *	Until there is more than one item in the tree, no nodes are
 602 *	allocated and @root->xa_head is used as a direct slot instead of
 603 *	pointing to a node, in which case *@nodep will be NULL.
 604 *
 605 *	Returns -ENOMEM, or 0 for success.
 606 */
 607static int __radix_tree_create(struct radix_tree_root *root,
 608		unsigned long index, struct radix_tree_node **nodep,
 609		void __rcu ***slotp)
 610{
 611	struct radix_tree_node *node = NULL, *child;
 612	void __rcu **slot = (void __rcu **)&root->xa_head;
 613	unsigned long maxindex;
 614	unsigned int shift, offset = 0;
 615	unsigned long max = index;
 616	gfp_t gfp = root_gfp_mask(root);
 617
 618	shift = radix_tree_load_root(root, &child, &maxindex);
 619
 620	/* Make sure the tree is high enough.  */
 
 
 621	if (max > maxindex) {
 622		int error = radix_tree_extend(root, gfp, max, shift);
 623		if (error < 0)
 624			return error;
 625		shift = error;
 626		child = rcu_dereference_raw(root->xa_head);
 627	}
 628
 629	while (shift > 0) {
 630		shift -= RADIX_TREE_MAP_SHIFT;
 631		if (child == NULL) {
 632			/* Have to add a child node.  */
 633			child = radix_tree_node_alloc(gfp, node, root, shift,
 634							offset, 0, 0);
 635			if (!child)
 636				return -ENOMEM;
 637			rcu_assign_pointer(*slot, node_to_entry(child));
 638			if (node)
 639				node->count++;
 640		} else if (!radix_tree_is_internal_node(child))
 641			break;
 642
 643		/* Go a level down */
 644		node = entry_to_node(child);
 645		offset = radix_tree_descend(node, &child, index);
 646		slot = &node->slots[offset];
 647	}
 648
 649	if (nodep)
 650		*nodep = node;
 651	if (slotp)
 652		*slotp = slot;
 653	return 0;
 654}
 655
 
 656/*
 657 * Free any nodes below this node.  The tree is presumed to not need
 658 * shrinking, and any user data in the tree is presumed to not need a
 659 * destructor called on it.  If we need to add a destructor, we can
 660 * add that functionality later.  Note that we may not clear tags or
 661 * slots from the tree as an RCU walker may still have a pointer into
 662 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 663 * but we'll still have to clear those in rcu_free.
 664 */
 665static void radix_tree_free_nodes(struct radix_tree_node *node)
 666{
 667	unsigned offset = 0;
 668	struct radix_tree_node *child = entry_to_node(node);
 669
 670	for (;;) {
 671		void *entry = rcu_dereference_raw(child->slots[offset]);
 672		if (xa_is_node(entry) && child->shift) {
 
 673			child = entry_to_node(entry);
 674			offset = 0;
 675			continue;
 676		}
 677		offset++;
 678		while (offset == RADIX_TREE_MAP_SIZE) {
 679			struct radix_tree_node *old = child;
 680			offset = child->offset + 1;
 681			child = child->parent;
 682			WARN_ON_ONCE(!list_empty(&old->private_list));
 683			radix_tree_node_free(old);
 684			if (old == entry_to_node(node))
 685				return;
 686		}
 687	}
 688}
 689
 690static inline int insert_entries(struct radix_tree_node *node,
 691		void __rcu **slot, void *item, bool replace)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 692{
 693	if (*slot)
 694		return -EEXIST;
 695	rcu_assign_pointer(*slot, item);
 696	if (node) {
 697		node->count++;
 698		if (xa_is_value(item))
 699			node->nr_values++;
 700	}
 701	return 1;
 702}
 
 703
 704/**
 705 *	__radix_tree_insert    -    insert into a radix tree
 706 *	@root:		radix tree root
 707 *	@index:		index key
 
 708 *	@item:		item to insert
 709 *
 710 *	Insert an item into the radix tree at position @index.
 711 */
 712int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 713			void *item)
 714{
 715	struct radix_tree_node *node;
 716	void __rcu **slot;
 717	int error;
 718
 719	BUG_ON(radix_tree_is_internal_node(item));
 720
 721	error = __radix_tree_create(root, index, &node, &slot);
 722	if (error)
 723		return error;
 724
 725	error = insert_entries(node, slot, item, false);
 726	if (error < 0)
 727		return error;
 728
 729	if (node) {
 730		unsigned offset = get_slot_offset(node, slot);
 731		BUG_ON(tag_get(node, 0, offset));
 732		BUG_ON(tag_get(node, 1, offset));
 733		BUG_ON(tag_get(node, 2, offset));
 734	} else {
 735		BUG_ON(root_tags_get(root));
 736	}
 737
 738	return 0;
 739}
 740EXPORT_SYMBOL(radix_tree_insert);
 741
 742/**
 743 *	__radix_tree_lookup	-	lookup an item in a radix tree
 744 *	@root:		radix tree root
 745 *	@index:		index key
 746 *	@nodep:		returns node
 747 *	@slotp:		returns slot
 748 *
 749 *	Lookup and return the item at position @index in the radix
 750 *	tree @root.
 751 *
 752 *	Until there is more than one item in the tree, no nodes are
 753 *	allocated and @root->xa_head is used as a direct slot instead of
 754 *	pointing to a node, in which case *@nodep will be NULL.
 755 */
 756void *__radix_tree_lookup(const struct radix_tree_root *root,
 757			  unsigned long index, struct radix_tree_node **nodep,
 758			  void __rcu ***slotp)
 759{
 760	struct radix_tree_node *node, *parent;
 761	unsigned long maxindex;
 762	void __rcu **slot;
 763
 764 restart:
 765	parent = NULL;
 766	slot = (void __rcu **)&root->xa_head;
 767	radix_tree_load_root(root, &node, &maxindex);
 768	if (index > maxindex)
 769		return NULL;
 770
 771	while (radix_tree_is_internal_node(node)) {
 772		unsigned offset;
 773
 
 
 774		parent = entry_to_node(node);
 775		offset = radix_tree_descend(parent, &node, index);
 776		slot = parent->slots + offset;
 777		if (node == RADIX_TREE_RETRY)
 778			goto restart;
 779		if (parent->shift == 0)
 780			break;
 781	}
 782
 783	if (nodep)
 784		*nodep = parent;
 785	if (slotp)
 786		*slotp = slot;
 787	return node;
 788}
 789
 790/**
 791 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 792 *	@root:		radix tree root
 793 *	@index:		index key
 794 *
 795 *	Returns:  the slot corresponding to the position @index in the
 796 *	radix tree @root. This is useful for update-if-exists operations.
 797 *
 798 *	This function can be called under rcu_read_lock iff the slot is not
 799 *	modified by radix_tree_replace_slot, otherwise it must be called
 800 *	exclusive from other writers. Any dereference of the slot must be done
 801 *	using radix_tree_deref_slot.
 802 */
 803void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 804				unsigned long index)
 805{
 806	void __rcu **slot;
 807
 808	if (!__radix_tree_lookup(root, index, NULL, &slot))
 809		return NULL;
 810	return slot;
 811}
 812EXPORT_SYMBOL(radix_tree_lookup_slot);
 813
 814/**
 815 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 816 *	@root:		radix tree root
 817 *	@index:		index key
 818 *
 819 *	Lookup the item at the position @index in the radix tree @root.
 820 *
 821 *	This function can be called under rcu_read_lock, however the caller
 822 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 823 *	them safely). No RCU barriers are required to access or modify the
 824 *	returned item, however.
 825 */
 826void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 827{
 828	return __radix_tree_lookup(root, index, NULL, NULL);
 829}
 830EXPORT_SYMBOL(radix_tree_lookup);
 831
 832static void replace_slot(void __rcu **slot, void *item,
 833		struct radix_tree_node *node, int count, int values)
 834{
 835	if (node && (count || values)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 836		node->count += count;
 837		node->nr_values += values;
 
 
 
 838	}
 839
 840	rcu_assign_pointer(*slot, item);
 841}
 842
 843static bool node_tag_get(const struct radix_tree_root *root,
 844				const struct radix_tree_node *node,
 845				unsigned int tag, unsigned int offset)
 846{
 847	if (node)
 848		return tag_get(node, tag, offset);
 849	return root_tag_get(root, tag);
 850}
 
 851
 852/*
 853 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 854 * free, don't adjust the count, even if it's transitioning between NULL and
 855 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 856 * have empty bits, but it only stores NULL in slots when they're being
 857 * deleted.
 858 */
 859static int calculate_count(struct radix_tree_root *root,
 860				struct radix_tree_node *node, void __rcu **slot,
 861				void *item, void *old)
 862{
 863	if (is_idr(root)) {
 864		unsigned offset = get_slot_offset(node, slot);
 865		bool free = node_tag_get(root, node, IDR_FREE, offset);
 866		if (!free)
 867			return 0;
 868		if (!old)
 869			return 1;
 870	}
 871	return !!item - !!old;
 872}
 873
 874/**
 875 * __radix_tree_replace		- replace item in a slot
 876 * @root:		radix tree root
 877 * @node:		pointer to tree node
 878 * @slot:		pointer to slot in @node
 879 * @item:		new item to store in the slot.
 
 
 880 *
 881 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 882 * across slot lookup and replacement.
 883 */
 884void __radix_tree_replace(struct radix_tree_root *root,
 885			  struct radix_tree_node *node,
 886			  void __rcu **slot, void *item)
 
 887{
 888	void *old = rcu_dereference_raw(*slot);
 889	int values = !!xa_is_value(item) - !!xa_is_value(old);
 890	int count = calculate_count(root, node, slot, item, old);
 891
 892	/*
 893	 * This function supports replacing value entries and
 894	 * deleting entries, but that needs accounting against the
 895	 * node unless the slot is root->xa_head.
 896	 */
 897	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 898			(count || values));
 899	replace_slot(slot, item, node, count, values);
 900
 901	if (!node)
 902		return;
 903
 904	delete_node(root, node);
 
 
 
 905}
 906
 907/**
 908 * radix_tree_replace_slot	- replace item in a slot
 909 * @root:	radix tree root
 910 * @slot:	pointer to slot
 911 * @item:	new item to store in the slot.
 912 *
 913 * For use with radix_tree_lookup_slot() and
 914 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 915 * across slot lookup and replacement.
 916 *
 917 * NOTE: This cannot be used to switch between non-entries (empty slots),
 918 * regular entries, and value entries, as that requires accounting
 919 * inside the radix tree node. When switching from one type of entry or
 920 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 921 * radix_tree_iter_replace().
 922 */
 923void radix_tree_replace_slot(struct radix_tree_root *root,
 924			     void __rcu **slot, void *item)
 925{
 926	__radix_tree_replace(root, NULL, slot, item);
 927}
 928EXPORT_SYMBOL(radix_tree_replace_slot);
 929
 930/**
 931 * radix_tree_iter_replace - replace item in a slot
 932 * @root:	radix tree root
 933 * @slot:	pointer to slot
 934 * @item:	new item to store in the slot.
 935 *
 936 * For use with radix_tree_for_each_slot().
 937 * Caller must hold tree write locked.
 938 */
 939void radix_tree_iter_replace(struct radix_tree_root *root,
 940				const struct radix_tree_iter *iter,
 941				void __rcu **slot, void *item)
 942{
 943	__radix_tree_replace(root, iter->node, slot, item);
 944}
 945
 946static void node_tag_set(struct radix_tree_root *root,
 947				struct radix_tree_node *node,
 948				unsigned int tag, unsigned int offset)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949{
 950	while (node) {
 951		if (tag_get(node, tag, offset))
 952			return;
 953		tag_set(node, tag, offset);
 954		offset = node->offset;
 955		node = node->parent;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 956	}
 957
 958	if (!root_tag_get(root, tag))
 959		root_tag_set(root, tag);
 
 
 
 960}
 
 961
 962/**
 963 *	radix_tree_tag_set - set a tag on a radix tree node
 964 *	@root:		radix tree root
 965 *	@index:		index key
 966 *	@tag:		tag index
 967 *
 968 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 969 *	corresponding to @index in the radix tree.  From
 970 *	the root all the way down to the leaf node.
 971 *
 972 *	Returns the address of the tagged item.  Setting a tag on a not-present
 973 *	item is a bug.
 974 */
 975void *radix_tree_tag_set(struct radix_tree_root *root,
 976			unsigned long index, unsigned int tag)
 977{
 978	struct radix_tree_node *node, *parent;
 979	unsigned long maxindex;
 980
 981	radix_tree_load_root(root, &node, &maxindex);
 982	BUG_ON(index > maxindex);
 983
 984	while (radix_tree_is_internal_node(node)) {
 985		unsigned offset;
 986
 987		parent = entry_to_node(node);
 988		offset = radix_tree_descend(parent, &node, index);
 989		BUG_ON(!node);
 990
 991		if (!tag_get(parent, tag, offset))
 992			tag_set(parent, tag, offset);
 993	}
 994
 995	/* set the root's tag bit */
 996	if (!root_tag_get(root, tag))
 997		root_tag_set(root, tag);
 998
 999	return node;
1000}
1001EXPORT_SYMBOL(radix_tree_tag_set);
1002
1003static void node_tag_clear(struct radix_tree_root *root,
1004				struct radix_tree_node *node,
1005				unsigned int tag, unsigned int offset)
1006{
1007	while (node) {
1008		if (!tag_get(node, tag, offset))
1009			return;
1010		tag_clear(node, tag, offset);
1011		if (any_tag_set(node, tag))
1012			return;
1013
1014		offset = node->offset;
1015		node = node->parent;
1016	}
1017
1018	/* clear the root's tag bit */
1019	if (root_tag_get(root, tag))
1020		root_tag_clear(root, tag);
1021}
1022
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1023/**
1024 *	radix_tree_tag_clear - clear a tag on a radix tree node
1025 *	@root:		radix tree root
1026 *	@index:		index key
1027 *	@tag:		tag index
1028 *
1029 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1030 *	corresponding to @index in the radix tree.  If this causes
1031 *	the leaf node to have no tags set then clear the tag in the
1032 *	next-to-leaf node, etc.
1033 *
1034 *	Returns the address of the tagged item on success, else NULL.  ie:
1035 *	has the same return value and semantics as radix_tree_lookup().
1036 */
1037void *radix_tree_tag_clear(struct radix_tree_root *root,
1038			unsigned long index, unsigned int tag)
1039{
1040	struct radix_tree_node *node, *parent;
1041	unsigned long maxindex;
1042	int uninitialized_var(offset);
1043
1044	radix_tree_load_root(root, &node, &maxindex);
1045	if (index > maxindex)
1046		return NULL;
1047
1048	parent = NULL;
1049
1050	while (radix_tree_is_internal_node(node)) {
1051		parent = entry_to_node(node);
1052		offset = radix_tree_descend(parent, &node, index);
1053	}
1054
1055	if (node)
1056		node_tag_clear(root, parent, tag, offset);
1057
1058	return node;
1059}
1060EXPORT_SYMBOL(radix_tree_tag_clear);
1061
1062/**
1063  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1064  * @root: radix tree root
1065  * @iter: iterator state
1066  * @tag: tag to clear
1067  */
1068void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1069			const struct radix_tree_iter *iter, unsigned int tag)
1070{
1071	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1072}
1073
1074/**
1075 * radix_tree_tag_get - get a tag on a radix tree node
1076 * @root:		radix tree root
1077 * @index:		index key
1078 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1079 *
1080 * Return values:
1081 *
1082 *  0: tag not present or not set
1083 *  1: tag set
1084 *
1085 * Note that the return value of this function may not be relied on, even if
1086 * the RCU lock is held, unless tag modification and node deletion are excluded
1087 * from concurrency.
1088 */
1089int radix_tree_tag_get(const struct radix_tree_root *root,
1090			unsigned long index, unsigned int tag)
1091{
1092	struct radix_tree_node *node, *parent;
1093	unsigned long maxindex;
1094
1095	if (!root_tag_get(root, tag))
1096		return 0;
1097
1098	radix_tree_load_root(root, &node, &maxindex);
1099	if (index > maxindex)
1100		return 0;
 
 
1101
1102	while (radix_tree_is_internal_node(node)) {
1103		unsigned offset;
1104
1105		parent = entry_to_node(node);
1106		offset = radix_tree_descend(parent, &node, index);
1107
 
 
1108		if (!tag_get(parent, tag, offset))
1109			return 0;
1110		if (node == RADIX_TREE_RETRY)
1111			break;
1112	}
1113
1114	return 1;
1115}
1116EXPORT_SYMBOL(radix_tree_tag_get);
1117
 
 
 
 
 
 
 
 
1118/* Construct iter->tags bit-mask from node->tags[tag] array */
1119static void set_iter_tags(struct radix_tree_iter *iter,
1120				struct radix_tree_node *node, unsigned offset,
1121				unsigned tag)
1122{
1123	unsigned tag_long = offset / BITS_PER_LONG;
1124	unsigned tag_bit  = offset % BITS_PER_LONG;
1125
1126	if (!node) {
1127		iter->tags = 1;
1128		return;
1129	}
1130
1131	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1132
1133	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1134	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1135		/* Pick tags from next element */
1136		if (tag_bit)
1137			iter->tags |= node->tags[tag][tag_long + 1] <<
1138						(BITS_PER_LONG - tag_bit);
1139		/* Clip chunk size, here only BITS_PER_LONG tags */
1140		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1141	}
1142}
1143
1144void __rcu **radix_tree_iter_resume(void __rcu **slot,
1145					struct radix_tree_iter *iter)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1146{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1147	slot++;
1148	iter->index = __radix_tree_iter_add(iter, 1);
 
 
1149	iter->next_index = iter->index;
1150	iter->tags = 0;
1151	return NULL;
1152}
1153EXPORT_SYMBOL(radix_tree_iter_resume);
1154
1155/**
1156 * radix_tree_next_chunk - find next chunk of slots for iteration
1157 *
1158 * @root:	radix tree root
1159 * @iter:	iterator state
1160 * @flags:	RADIX_TREE_ITER_* flags and tag index
1161 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1162 */
1163void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1164			     struct radix_tree_iter *iter, unsigned flags)
1165{
1166	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1167	struct radix_tree_node *node, *child;
1168	unsigned long index, offset, maxindex;
1169
1170	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1171		return NULL;
1172
1173	/*
1174	 * Catch next_index overflow after ~0UL. iter->index never overflows
1175	 * during iterating; it can be zero only at the beginning.
1176	 * And we cannot overflow iter->next_index in a single step,
1177	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1178	 *
1179	 * This condition also used by radix_tree_next_slot() to stop
1180	 * contiguous iterating, and forbid switching to the next chunk.
1181	 */
1182	index = iter->next_index;
1183	if (!index && iter->index)
1184		return NULL;
1185
1186 restart:
1187	radix_tree_load_root(root, &child, &maxindex);
1188	if (index > maxindex)
1189		return NULL;
1190	if (!child)
1191		return NULL;
1192
1193	if (!radix_tree_is_internal_node(child)) {
1194		/* Single-slot tree */
1195		iter->index = index;
1196		iter->next_index = maxindex + 1;
1197		iter->tags = 1;
1198		iter->node = NULL;
1199		return (void __rcu **)&root->xa_head;
 
1200	}
1201
1202	do {
1203		node = entry_to_node(child);
1204		offset = radix_tree_descend(node, &child, index);
1205
1206		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1207				!tag_get(node, tag, offset) : !child) {
1208			/* Hole detected */
1209			if (flags & RADIX_TREE_ITER_CONTIG)
1210				return NULL;
1211
1212			if (flags & RADIX_TREE_ITER_TAGGED)
1213				offset = radix_tree_find_next_bit(node, tag,
1214						offset + 1);
1215			else
1216				while (++offset	< RADIX_TREE_MAP_SIZE) {
1217					void *slot = rcu_dereference_raw(
1218							node->slots[offset]);
 
1219					if (slot)
1220						break;
1221				}
1222			index &= ~node_maxindex(node);
1223			index += offset << node->shift;
1224			/* Overflow after ~0UL */
1225			if (!index)
1226				return NULL;
1227			if (offset == RADIX_TREE_MAP_SIZE)
1228				goto restart;
1229			child = rcu_dereference_raw(node->slots[offset]);
1230		}
1231
1232		if (!child)
1233			goto restart;
1234		if (child == RADIX_TREE_RETRY)
1235			break;
1236	} while (node->shift && radix_tree_is_internal_node(child));
1237
1238	/* Update the iterator state */
1239	iter->index = (index &~ node_maxindex(node)) | offset;
1240	iter->next_index = (index | node_maxindex(node)) + 1;
1241	iter->node = node;
 
1242
1243	if (flags & RADIX_TREE_ITER_TAGGED)
1244		set_iter_tags(iter, node, offset, tag);
1245
1246	return node->slots + offset;
1247}
1248EXPORT_SYMBOL(radix_tree_next_chunk);
1249
1250/**
1251 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1252 *	@root:		radix tree root
1253 *	@results:	where the results of the lookup are placed
1254 *	@first_index:	start the lookup from this key
1255 *	@max_items:	place up to this many items at *results
1256 *
1257 *	Performs an index-ascending scan of the tree for present items.  Places
1258 *	them at *@results and returns the number of items which were placed at
1259 *	*@results.
1260 *
1261 *	The implementation is naive.
1262 *
1263 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1264 *	rcu_read_lock. In this case, rather than the returned results being
1265 *	an atomic snapshot of the tree at a single point in time, the
1266 *	semantics of an RCU protected gang lookup are as though multiple
1267 *	radix_tree_lookups have been issued in individual locks, and results
1268 *	stored in 'results'.
1269 */
1270unsigned int
1271radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1272			unsigned long first_index, unsigned int max_items)
1273{
1274	struct radix_tree_iter iter;
1275	void __rcu **slot;
1276	unsigned int ret = 0;
1277
1278	if (unlikely(!max_items))
1279		return 0;
1280
1281	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1282		results[ret] = rcu_dereference_raw(*slot);
1283		if (!results[ret])
1284			continue;
1285		if (radix_tree_is_internal_node(results[ret])) {
1286			slot = radix_tree_iter_retry(&iter);
1287			continue;
1288		}
1289		if (++ret == max_items)
1290			break;
1291	}
1292
1293	return ret;
1294}
1295EXPORT_SYMBOL(radix_tree_gang_lookup);
1296
1297/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1298 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1299 *	                             based on a tag
1300 *	@root:		radix tree root
1301 *	@results:	where the results of the lookup are placed
1302 *	@first_index:	start the lookup from this key
1303 *	@max_items:	place up to this many items at *results
1304 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1305 *
1306 *	Performs an index-ascending scan of the tree for present items which
1307 *	have the tag indexed by @tag set.  Places the items at *@results and
1308 *	returns the number of items which were placed at *@results.
1309 */
1310unsigned int
1311radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1312		unsigned long first_index, unsigned int max_items,
1313		unsigned int tag)
1314{
1315	struct radix_tree_iter iter;
1316	void __rcu **slot;
1317	unsigned int ret = 0;
1318
1319	if (unlikely(!max_items))
1320		return 0;
1321
1322	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1323		results[ret] = rcu_dereference_raw(*slot);
1324		if (!results[ret])
1325			continue;
1326		if (radix_tree_is_internal_node(results[ret])) {
1327			slot = radix_tree_iter_retry(&iter);
1328			continue;
1329		}
1330		if (++ret == max_items)
1331			break;
1332	}
1333
1334	return ret;
1335}
1336EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1337
1338/**
1339 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1340 *					  radix tree based on a tag
1341 *	@root:		radix tree root
1342 *	@results:	where the results of the lookup are placed
1343 *	@first_index:	start the lookup from this key
1344 *	@max_items:	place up to this many items at *results
1345 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1346 *
1347 *	Performs an index-ascending scan of the tree for present items which
1348 *	have the tag indexed by @tag set.  Places the slots at *@results and
1349 *	returns the number of slots which were placed at *@results.
1350 */
1351unsigned int
1352radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1353		void __rcu ***results, unsigned long first_index,
1354		unsigned int max_items, unsigned int tag)
1355{
1356	struct radix_tree_iter iter;
1357	void __rcu **slot;
1358	unsigned int ret = 0;
1359
1360	if (unlikely(!max_items))
1361		return 0;
1362
1363	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1364		results[ret] = slot;
1365		if (++ret == max_items)
1366			break;
1367	}
1368
1369	return ret;
1370}
1371EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1372
1373static bool __radix_tree_delete(struct radix_tree_root *root,
1374				struct radix_tree_node *node, void __rcu **slot)
1375{
1376	void *old = rcu_dereference_raw(*slot);
1377	int values = xa_is_value(old) ? -1 : 0;
1378	unsigned offset = get_slot_offset(node, slot);
1379	int tag;
1380
1381	if (is_idr(root))
1382		node_tag_set(root, node, IDR_FREE, offset);
1383	else
1384		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1385			node_tag_clear(root, node, tag, offset);
1386
1387	replace_slot(slot, NULL, node, -1, values);
1388	return node && delete_node(root, node);
1389}
1390
1391/**
1392 * radix_tree_iter_delete - delete the entry at this iterator position
1393 * @root: radix tree root
1394 * @iter: iterator state
1395 * @slot: pointer to slot
 
1396 *
1397 * Delete the entry at the position currently pointed to by the iterator.
1398 * This may result in the current node being freed; if it is, the iterator
1399 * is advanced so that it will not reference the freed memory.  This
1400 * function may be called without any locking if there are no other threads
1401 * which can access this tree.
1402 */
1403void radix_tree_iter_delete(struct radix_tree_root *root,
1404				struct radix_tree_iter *iter, void __rcu **slot)
 
 
1405{
1406	if (__radix_tree_delete(root, iter->node, slot))
1407		iter->index = iter->next_index;
1408}
1409EXPORT_SYMBOL(radix_tree_iter_delete);
1410
1411/**
1412 * radix_tree_delete_item - delete an item from a radix tree
1413 * @root: radix tree root
1414 * @index: index key
1415 * @item: expected item
1416 *
1417 * Remove @item at @index from the radix tree rooted at @root.
1418 *
1419 * Return: the deleted entry, or %NULL if it was not present
1420 * or the entry at the given @index was not @item.
1421 */
1422void *radix_tree_delete_item(struct radix_tree_root *root,
1423			     unsigned long index, void *item)
1424{
1425	struct radix_tree_node *node = NULL;
1426	void __rcu **slot = NULL;
 
1427	void *entry;
 
1428
1429	entry = __radix_tree_lookup(root, index, &node, &slot);
1430	if (!slot)
1431		return NULL;
1432	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1433						get_slot_offset(node, slot))))
1434		return NULL;
1435
1436	if (item && entry != item)
1437		return NULL;
1438
1439	__radix_tree_delete(root, node, slot);
 
 
 
 
 
 
 
 
 
 
 
 
1440
1441	return entry;
1442}
1443EXPORT_SYMBOL(radix_tree_delete_item);
1444
1445/**
1446 * radix_tree_delete - delete an entry from a radix tree
1447 * @root: radix tree root
1448 * @index: index key
1449 *
1450 * Remove the entry at @index from the radix tree rooted at @root.
1451 *
1452 * Return: The deleted entry, or %NULL if it was not present.
1453 */
1454void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1455{
1456	return radix_tree_delete_item(root, index, NULL);
1457}
1458EXPORT_SYMBOL(radix_tree_delete);
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460/**
1461 *	radix_tree_tagged - test whether any items in the tree are tagged
1462 *	@root:		radix tree root
1463 *	@tag:		tag to test
1464 */
1465int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1466{
1467	return root_tag_get(root, tag);
1468}
1469EXPORT_SYMBOL(radix_tree_tagged);
1470
1471/**
1472 * idr_preload - preload for idr_alloc()
1473 * @gfp_mask: allocation mask to use for preloading
1474 *
1475 * Preallocate memory to use for the next call to idr_alloc().  This function
1476 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1477 */
1478void idr_preload(gfp_t gfp_mask)
1479{
1480	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1481		preempt_disable();
 
 
1482}
1483EXPORT_SYMBOL(idr_preload);
1484
1485void __rcu **idr_get_free(struct radix_tree_root *root,
1486			      struct radix_tree_iter *iter, gfp_t gfp,
1487			      unsigned long max)
1488{
1489	struct radix_tree_node *node = NULL, *child;
1490	void __rcu **slot = (void __rcu **)&root->xa_head;
1491	unsigned long maxindex, start = iter->next_index;
1492	unsigned int shift, offset = 0;
1493
1494 grow:
1495	shift = radix_tree_load_root(root, &child, &maxindex);
1496	if (!radix_tree_tagged(root, IDR_FREE))
1497		start = max(start, maxindex + 1);
1498	if (start > max)
1499		return ERR_PTR(-ENOSPC);
1500
1501	if (start > maxindex) {
1502		int error = radix_tree_extend(root, gfp, start, shift);
1503		if (error < 0)
1504			return ERR_PTR(error);
1505		shift = error;
1506		child = rcu_dereference_raw(root->xa_head);
1507	}
1508	if (start == 0 && shift == 0)
1509		shift = RADIX_TREE_MAP_SHIFT;
1510
1511	while (shift) {
1512		shift -= RADIX_TREE_MAP_SHIFT;
1513		if (child == NULL) {
1514			/* Have to add a child node.  */
1515			child = radix_tree_node_alloc(gfp, node, root, shift,
1516							offset, 0, 0);
1517			if (!child)
1518				return ERR_PTR(-ENOMEM);
1519			all_tag_set(child, IDR_FREE);
1520			rcu_assign_pointer(*slot, node_to_entry(child));
1521			if (node)
1522				node->count++;
1523		} else if (!radix_tree_is_internal_node(child))
1524			break;
1525
1526		node = entry_to_node(child);
1527		offset = radix_tree_descend(node, &child, start);
1528		if (!tag_get(node, IDR_FREE, offset)) {
1529			offset = radix_tree_find_next_bit(node, IDR_FREE,
1530							offset + 1);
1531			start = next_index(start, node, offset);
1532			if (start > max || start == 0)
1533				return ERR_PTR(-ENOSPC);
1534			while (offset == RADIX_TREE_MAP_SIZE) {
1535				offset = node->offset + 1;
1536				node = node->parent;
1537				if (!node)
1538					goto grow;
1539				shift = node->shift;
1540			}
1541			child = rcu_dereference_raw(node->slots[offset]);
1542		}
1543		slot = &node->slots[offset];
1544	}
1545
1546	iter->index = start;
1547	if (node)
1548		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1549	else
1550		iter->next_index = 1;
1551	iter->node = node;
1552	set_iter_tags(iter, node, offset, IDR_FREE);
1553
1554	return slot;
1555}
1556
1557/**
1558 * idr_destroy - release all internal memory from an IDR
1559 * @idr: idr handle
1560 *
1561 * After this function is called, the IDR is empty, and may be reused or
1562 * the data structure containing it may be freed.
1563 *
1564 * A typical clean-up sequence for objects stored in an idr tree will use
1565 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1566 * free the memory used to keep track of those objects.
1567 */
1568void idr_destroy(struct idr *idr)
1569{
1570	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1571	if (radix_tree_is_internal_node(node))
1572		radix_tree_free_nodes(node);
1573	idr->idr_rt.xa_head = NULL;
1574	root_tag_set(&idr->idr_rt, IDR_FREE);
1575}
1576EXPORT_SYMBOL(idr_destroy);
1577
1578static void
1579radix_tree_node_ctor(void *arg)
1580{
1581	struct radix_tree_node *node = arg;
 
1582
1583	memset(node, 0, sizeof(*node));
1584	INIT_LIST_HEAD(&node->private_list);
 
 
 
 
1585}
1586
1587static int radix_tree_cpu_dead(unsigned int cpu)
1588{
1589	struct radix_tree_preload *rtp;
1590	struct radix_tree_node *node;
1591
1592	/* Free per-cpu pool of preloaded nodes */
1593	rtp = &per_cpu(radix_tree_preloads, cpu);
1594	while (rtp->nr) {
1595		node = rtp->nodes;
1596		rtp->nodes = node->parent;
1597		kmem_cache_free(radix_tree_node_cachep, node);
1598		rtp->nr--;
1599	}
1600	return 0;
1601}
1602
1603void __init radix_tree_init(void)
1604{
1605	int ret;
1606
1607	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1608	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1609	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1610	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1611			sizeof(struct radix_tree_node), 0,
1612			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1613			radix_tree_node_ctor);
 
1614	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1615					NULL, radix_tree_cpu_dead);
1616	WARN_ON(ret < 0);
1617}