Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
 
 
 
  25#include <linux/cpu.h>
  26#include <linux/errno.h>
 
 
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/export.h>
  30#include <linux/radix-tree.h>
  31#include <linux/percpu.h>
 
 
 
  32#include <linux/slab.h>
  33#include <linux/kmemleak.h>
  34#include <linux/cpu.h>
  35#include <linux/string.h>
  36#include <linux/bitops.h>
  37#include <linux/rcupdate.h>
  38#include <linux/preempt.h>		/* in_interrupt() */
  39
  40
  41/* Number of nodes in fully populated tree of given height */
  42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  43
  44/*
  45 * Radix tree node cache.
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	unsigned nr;
  67	/* nodes->private_data points to next preallocated node */
  68	struct radix_tree_node *nodes;
  69};
  70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  71
  72static inline struct radix_tree_node *entry_to_node(void *ptr)
  73{
  74	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  75}
  76
  77static inline void *node_to_entry(void *ptr)
  78{
  79	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  80}
  81
  82#define RADIX_TREE_RETRY	node_to_entry(NULL)
  83
  84#ifdef CONFIG_RADIX_TREE_MULTIORDER
  85/* Sibling slots point directly to another slot in the same node */
  86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
 
  87{
  88	void **ptr = node;
  89	return (parent->slots <= ptr) &&
  90			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  91}
  92#else
  93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
 
  94{
  95	return false;
  96}
  97#endif
  98
  99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
 100						 void **slot)
 101{
 102	return slot - parent->slots;
 103}
 104
 105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
 106			struct radix_tree_node **nodep, unsigned long index)
 107{
 108	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 109	void **entry = rcu_dereference_raw(parent->slots[offset]);
 110
 111#ifdef CONFIG_RADIX_TREE_MULTIORDER
 112	if (radix_tree_is_internal_node(entry)) {
 113		if (is_sibling_entry(parent, entry)) {
 114			void **sibentry = (void **) entry_to_node(entry);
 
 115			offset = get_slot_offset(parent, sibentry);
 116			entry = rcu_dereference_raw(*sibentry);
 117		}
 118	}
 119#endif
 120
 121	*nodep = (void *)entry;
 122	return offset;
 123}
 124
 125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 126{
 127	return root->gfp_mask & __GFP_BITS_MASK;
 128}
 129
 130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 131		int offset)
 132{
 133	__set_bit(offset, node->tags[tag]);
 134}
 135
 136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 137		int offset)
 138{
 139	__clear_bit(offset, node->tags[tag]);
 140}
 141
 142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 143		int offset)
 144{
 145	return test_bit(offset, node->tags[tag]);
 146}
 147
 148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 149{
 150	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 151}
 152
 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 154{
 155	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 156}
 157
 158static inline void root_tag_clear_all(struct radix_tree_root *root)
 159{
 160	root->gfp_mask &= __GFP_BITS_MASK;
 
 
 
 
 
 161}
 162
 163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 164{
 165	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 166}
 167
 168static inline unsigned root_tags_get(struct radix_tree_root *root)
 169{
 170	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
 171}
 172
 173/*
 174 * Returns 1 if any slot in the node has this tag set.
 175 * Otherwise returns 0.
 176 */
 177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 
 178{
 179	unsigned idx;
 180	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 181		if (node->tags[tag][idx])
 182			return 1;
 183	}
 184	return 0;
 185}
 186
 
 
 
 
 
 187/**
 188 * radix_tree_find_next_bit - find the next set bit in a memory region
 189 *
 190 * @addr: The address to base the search on
 191 * @size: The bitmap size in bits
 192 * @offset: The bitnumber to start searching at
 193 *
 194 * Unrollable variant of find_next_bit() for constant size arrays.
 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 196 * Returns next bit offset, or size if nothing found.
 197 */
 198static __always_inline unsigned long
 199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 200			 unsigned long offset)
 201{
 202	const unsigned long *addr = node->tags[tag];
 203
 204	if (offset < RADIX_TREE_MAP_SIZE) {
 205		unsigned long tmp;
 206
 207		addr += offset / BITS_PER_LONG;
 208		tmp = *addr >> (offset % BITS_PER_LONG);
 209		if (tmp)
 210			return __ffs(tmp) + offset;
 211		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 212		while (offset < RADIX_TREE_MAP_SIZE) {
 213			tmp = *++addr;
 214			if (tmp)
 215				return __ffs(tmp) + offset;
 216			offset += BITS_PER_LONG;
 217		}
 218	}
 219	return RADIX_TREE_MAP_SIZE;
 220}
 221
 222static unsigned int iter_offset(const struct radix_tree_iter *iter)
 223{
 224	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 225}
 226
 227/*
 228 * The maximum index which can be stored in a radix tree
 229 */
 230static inline unsigned long shift_maxindex(unsigned int shift)
 231{
 232	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 233}
 234
 235static inline unsigned long node_maxindex(struct radix_tree_node *node)
 236{
 237	return shift_maxindex(node->shift);
 238}
 239
 
 
 
 
 
 
 
 240#ifndef __KERNEL__
 241static void dump_node(struct radix_tree_node *node, unsigned long index)
 242{
 243	unsigned long i;
 244
 245	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 246		node, node->offset, index, index | node_maxindex(node),
 247		node->parent,
 248		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 249		node->shift, node->count, node->exceptional);
 250
 251	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 252		unsigned long first = index | (i << node->shift);
 253		unsigned long last = first | ((1UL << node->shift) - 1);
 254		void *entry = node->slots[i];
 255		if (!entry)
 256			continue;
 257		if (entry == RADIX_TREE_RETRY) {
 258			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 259					i, first, last, node);
 260		} else if (!radix_tree_is_internal_node(entry)) {
 261			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 262					entry, i, first, last, node);
 263		} else if (is_sibling_entry(node, entry)) {
 264			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 265					entry, i, first, last, node,
 266					*(void **)entry_to_node(entry));
 267		} else {
 268			dump_node(entry_to_node(entry), first);
 269		}
 270	}
 271}
 272
 273/* For debug */
 274static void radix_tree_dump(struct radix_tree_root *root)
 275{
 276	pr_debug("radix root: %p rnode %p tags %x\n",
 277			root, root->rnode,
 278			root->gfp_mask >> __GFP_BITS_SHIFT);
 279	if (!radix_tree_is_internal_node(root->rnode))
 280		return;
 281	dump_node(entry_to_node(root->rnode), 0);
 282}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283#endif
 284
 285/*
 286 * This assumes that the caller has performed appropriate preallocation, and
 287 * that the caller has pinned this thread of control to the current CPU.
 288 */
 289static struct radix_tree_node *
 290radix_tree_node_alloc(struct radix_tree_root *root,
 291			struct radix_tree_node *parent,
 292			unsigned int shift, unsigned int offset,
 293			unsigned int count, unsigned int exceptional)
 294{
 295	struct radix_tree_node *ret = NULL;
 296	gfp_t gfp_mask = root_gfp_mask(root);
 297
 298	/*
 299	 * Preload code isn't irq safe and it doesn't make sense to use
 300	 * preloading during an interrupt anyway as all the allocations have
 301	 * to be atomic. So just do normal allocation when in interrupt.
 302	 */
 303	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 304		struct radix_tree_preload *rtp;
 305
 306		/*
 307		 * Even if the caller has preloaded, try to allocate from the
 308		 * cache first for the new node to get accounted to the memory
 309		 * cgroup.
 310		 */
 311		ret = kmem_cache_alloc(radix_tree_node_cachep,
 312				       gfp_mask | __GFP_NOWARN);
 313		if (ret)
 314			goto out;
 315
 316		/*
 317		 * Provided the caller has preloaded here, we will always
 318		 * succeed in getting a node here (and never reach
 319		 * kmem_cache_alloc)
 320		 */
 321		rtp = this_cpu_ptr(&radix_tree_preloads);
 322		if (rtp->nr) {
 323			ret = rtp->nodes;
 324			rtp->nodes = ret->private_data;
 325			ret->private_data = NULL;
 326			rtp->nr--;
 327		}
 328		/*
 329		 * Update the allocation stack trace as this is more useful
 330		 * for debugging.
 331		 */
 332		kmemleak_update_trace(ret);
 333		goto out;
 334	}
 335	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 336out:
 337	BUG_ON(radix_tree_is_internal_node(ret));
 338	if (ret) {
 339		ret->parent = parent;
 340		ret->shift = shift;
 341		ret->offset = offset;
 342		ret->count = count;
 343		ret->exceptional = exceptional;
 
 
 344	}
 345	return ret;
 346}
 347
 348static void radix_tree_node_rcu_free(struct rcu_head *head)
 349{
 350	struct radix_tree_node *node =
 351			container_of(head, struct radix_tree_node, rcu_head);
 352
 353	/*
 354	 * Must only free zeroed nodes into the slab.  We can be left with
 355	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 356	 * and tags here.
 357	 */
 358	memset(node->slots, 0, sizeof(node->slots));
 359	memset(node->tags, 0, sizeof(node->tags));
 360	INIT_LIST_HEAD(&node->private_list);
 361
 362	kmem_cache_free(radix_tree_node_cachep, node);
 363}
 364
 365static inline void
 366radix_tree_node_free(struct radix_tree_node *node)
 367{
 368	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 369}
 370
 371/*
 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 373 * ensure that the addition of a single element in the tree cannot fail.  On
 374 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 375 * with preemption not disabled.
 376 *
 377 * To make use of this facility, the radix tree must be initialised without
 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 379 */
 380static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 381{
 382	struct radix_tree_preload *rtp;
 383	struct radix_tree_node *node;
 384	int ret = -ENOMEM;
 385
 386	/*
 387	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 388	 * they should never be accounted to any particular memory cgroup.
 389	 */
 390	gfp_mask &= ~__GFP_ACCOUNT;
 391
 392	preempt_disable();
 393	rtp = this_cpu_ptr(&radix_tree_preloads);
 394	while (rtp->nr < nr) {
 395		preempt_enable();
 396		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 397		if (node == NULL)
 398			goto out;
 399		preempt_disable();
 400		rtp = this_cpu_ptr(&radix_tree_preloads);
 401		if (rtp->nr < nr) {
 402			node->private_data = rtp->nodes;
 403			rtp->nodes = node;
 404			rtp->nr++;
 405		} else {
 406			kmem_cache_free(radix_tree_node_cachep, node);
 407		}
 408	}
 409	ret = 0;
 410out:
 411	return ret;
 412}
 413
 414/*
 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 416 * ensure that the addition of a single element in the tree cannot fail.  On
 417 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 418 * with preemption not disabled.
 419 *
 420 * To make use of this facility, the radix tree must be initialised without
 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 422 */
 423int radix_tree_preload(gfp_t gfp_mask)
 424{
 425	/* Warn on non-sensical use... */
 426	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 427	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 428}
 429EXPORT_SYMBOL(radix_tree_preload);
 430
 431/*
 432 * The same as above function, except we don't guarantee preloading happens.
 433 * We do it, if we decide it helps. On success, return zero with preemption
 434 * disabled. On error, return -ENOMEM with preemption not disabled.
 435 */
 436int radix_tree_maybe_preload(gfp_t gfp_mask)
 437{
 438	if (gfpflags_allow_blocking(gfp_mask))
 439		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 440	/* Preloading doesn't help anything with this gfp mask, skip it */
 441	preempt_disable();
 442	return 0;
 443}
 444EXPORT_SYMBOL(radix_tree_maybe_preload);
 445
 446#ifdef CONFIG_RADIX_TREE_MULTIORDER
 447/*
 448 * Preload with enough objects to ensure that we can split a single entry
 449 * of order @old_order into many entries of size @new_order
 450 */
 451int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 452							gfp_t gfp_mask)
 453{
 454	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 455	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 456				(new_order / RADIX_TREE_MAP_SHIFT);
 457	unsigned nr = 0;
 458
 459	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 460	BUG_ON(new_order >= old_order);
 461
 462	while (layers--)
 463		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 464	return __radix_tree_preload(gfp_mask, top * nr);
 465}
 466#endif
 467
 468/*
 469 * The same as function above, but preload number of nodes required to insert
 470 * (1 << order) continuous naturally-aligned elements.
 471 */
 472int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 473{
 474	unsigned long nr_subtrees;
 475	int nr_nodes, subtree_height;
 476
 477	/* Preloading doesn't help anything with this gfp mask, skip it */
 478	if (!gfpflags_allow_blocking(gfp_mask)) {
 479		preempt_disable();
 480		return 0;
 481	}
 482
 483	/*
 484	 * Calculate number and height of fully populated subtrees it takes to
 485	 * store (1 << order) elements.
 486	 */
 487	nr_subtrees = 1 << order;
 488	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 489			subtree_height++)
 490		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 491
 492	/*
 493	 * The worst case is zero height tree with a single item at index 0 and
 494	 * then inserting items starting at ULONG_MAX - (1 << order).
 495	 *
 496	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 497	 * 0-index item.
 498	 */
 499	nr_nodes = RADIX_TREE_MAX_PATH;
 500
 501	/* Plus branch to fully populated subtrees. */
 502	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 503
 504	/* Root node is shared. */
 505	nr_nodes--;
 506
 507	/* Plus nodes required to build subtrees. */
 508	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 509
 510	return __radix_tree_preload(gfp_mask, nr_nodes);
 511}
 512
 513static unsigned radix_tree_load_root(struct radix_tree_root *root,
 514		struct radix_tree_node **nodep, unsigned long *maxindex)
 515{
 516	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 517
 518	*nodep = node;
 519
 520	if (likely(radix_tree_is_internal_node(node))) {
 521		node = entry_to_node(node);
 522		*maxindex = node_maxindex(node);
 523		return node->shift + RADIX_TREE_MAP_SHIFT;
 524	}
 525
 526	*maxindex = 0;
 527	return 0;
 528}
 529
 530/*
 531 *	Extend a radix tree so it can store key @index.
 532 */
 533static int radix_tree_extend(struct radix_tree_root *root,
 534				unsigned long index, unsigned int shift)
 535{
 536	struct radix_tree_node *slot;
 537	unsigned int maxshift;
 538	int tag;
 539
 540	/* Figure out what the shift should be.  */
 541	maxshift = shift;
 542	while (index > shift_maxindex(maxshift))
 543		maxshift += RADIX_TREE_MAP_SHIFT;
 544
 545	slot = root->rnode;
 546	if (!slot)
 547		goto out;
 548
 549	do {
 550		struct radix_tree_node *node = radix_tree_node_alloc(root,
 551							NULL, shift, 0, 1, 0);
 552		if (!node)
 553			return -ENOMEM;
 554
 555		/* Propagate the aggregated tag info into the new root */
 556		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 557			if (root_tag_get(root, tag))
 558				tag_set(node, tag, 0);
 
 
 
 
 
 
 
 
 559		}
 560
 561		BUG_ON(shift > BITS_PER_LONG);
 562		if (radix_tree_is_internal_node(slot)) {
 563			entry_to_node(slot)->parent = node;
 564		} else if (radix_tree_exceptional_entry(slot)) {
 565			/* Moving an exceptional root->rnode to a node */
 566			node->exceptional = 1;
 567		}
 568		node->slots[0] = slot;
 569		slot = node_to_entry(node);
 570		rcu_assign_pointer(root->rnode, slot);
 
 
 
 
 571		shift += RADIX_TREE_MAP_SHIFT;
 572	} while (shift <= maxshift);
 573out:
 574	return maxshift + RADIX_TREE_MAP_SHIFT;
 575}
 576
 577/**
 578 *	radix_tree_shrink    -    shrink radix tree to minimum height
 579 *	@root		radix tree root
 580 */
 581static inline void radix_tree_shrink(struct radix_tree_root *root,
 582				     radix_tree_update_node_t update_node,
 583				     void *private)
 584{
 
 
 585	for (;;) {
 586		struct radix_tree_node *node = root->rnode;
 587		struct radix_tree_node *child;
 588
 589		if (!radix_tree_is_internal_node(node))
 590			break;
 591		node = entry_to_node(node);
 592
 593		/*
 594		 * The candidate node has more than one child, or its child
 595		 * is not at the leftmost slot, or the child is a multiorder
 596		 * entry, we cannot shrink.
 597		 */
 598		if (node->count != 1)
 599			break;
 600		child = node->slots[0];
 601		if (!child)
 602			break;
 603		if (!radix_tree_is_internal_node(child) && node->shift)
 604			break;
 605
 606		if (radix_tree_is_internal_node(child))
 607			entry_to_node(child)->parent = NULL;
 608
 609		/*
 610		 * We don't need rcu_assign_pointer(), since we are simply
 611		 * moving the node from one part of the tree to another: if it
 612		 * was safe to dereference the old pointer to it
 613		 * (node->slots[0]), it will be safe to dereference the new
 614		 * one (root->rnode) as far as dependent read barriers go.
 615		 */
 616		root->rnode = child;
 
 
 617
 618		/*
 619		 * We have a dilemma here. The node's slot[0] must not be
 620		 * NULLed in case there are concurrent lookups expecting to
 621		 * find the item. However if this was a bottom-level node,
 622		 * then it may be subject to the slot pointer being visible
 623		 * to callers dereferencing it. If item corresponding to
 624		 * slot[0] is subsequently deleted, these callers would expect
 625		 * their slot to become empty sooner or later.
 626		 *
 627		 * For example, lockless pagecache will look up a slot, deref
 628		 * the page pointer, and if the page has 0 refcount it means it
 629		 * was concurrently deleted from pagecache so try the deref
 630		 * again. Fortunately there is already a requirement for logic
 631		 * to retry the entire slot lookup -- the indirect pointer
 632		 * problem (replacing direct root node with an indirect pointer
 633		 * also results in a stale slot). So tag the slot as indirect
 634		 * to force callers to retry.
 635		 */
 636		node->count = 0;
 637		if (!radix_tree_is_internal_node(child)) {
 638			node->slots[0] = RADIX_TREE_RETRY;
 639			if (update_node)
 640				update_node(node, private);
 641		}
 642
 643		WARN_ON_ONCE(!list_empty(&node->private_list));
 644		radix_tree_node_free(node);
 
 645	}
 
 
 646}
 647
 648static void delete_node(struct radix_tree_root *root,
 649			struct radix_tree_node *node,
 650			radix_tree_update_node_t update_node, void *private)
 651{
 
 
 652	do {
 653		struct radix_tree_node *parent;
 654
 655		if (node->count) {
 656			if (node == entry_to_node(root->rnode))
 657				radix_tree_shrink(root, update_node, private);
 658			return;
 
 
 659		}
 660
 661		parent = node->parent;
 662		if (parent) {
 663			parent->slots[node->offset] = NULL;
 664			parent->count--;
 665		} else {
 666			root_tag_clear_all(root);
 
 
 
 
 
 667			root->rnode = NULL;
 668		}
 669
 670		WARN_ON_ONCE(!list_empty(&node->private_list));
 671		radix_tree_node_free(node);
 
 672
 673		node = parent;
 674	} while (node);
 
 
 675}
 676
 677/**
 678 *	__radix_tree_create	-	create a slot in a radix tree
 679 *	@root:		radix tree root
 680 *	@index:		index key
 681 *	@order:		index occupies 2^order aligned slots
 682 *	@nodep:		returns node
 683 *	@slotp:		returns slot
 684 *
 685 *	Create, if necessary, and return the node and slot for an item
 686 *	at position @index in the radix tree @root.
 687 *
 688 *	Until there is more than one item in the tree, no nodes are
 689 *	allocated and @root->rnode is used as a direct slot instead of
 690 *	pointing to a node, in which case *@nodep will be NULL.
 691 *
 692 *	Returns -ENOMEM, or 0 for success.
 693 */
 694int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 695			unsigned order, struct radix_tree_node **nodep,
 696			void ***slotp)
 697{
 698	struct radix_tree_node *node = NULL, *child;
 699	void **slot = (void **)&root->rnode;
 700	unsigned long maxindex;
 701	unsigned int shift, offset = 0;
 702	unsigned long max = index | ((1UL << order) - 1);
 
 703
 704	shift = radix_tree_load_root(root, &child, &maxindex);
 705
 706	/* Make sure the tree is high enough.  */
 707	if (order > 0 && max == ((1UL << order) - 1))
 708		max++;
 709	if (max > maxindex) {
 710		int error = radix_tree_extend(root, max, shift);
 711		if (error < 0)
 712			return error;
 713		shift = error;
 714		child = root->rnode;
 715	}
 716
 717	while (shift > order) {
 718		shift -= RADIX_TREE_MAP_SHIFT;
 719		if (child == NULL) {
 720			/* Have to add a child node.  */
 721			child = radix_tree_node_alloc(root, node, shift,
 722							offset, 0, 0);
 723			if (!child)
 724				return -ENOMEM;
 725			rcu_assign_pointer(*slot, node_to_entry(child));
 726			if (node)
 727				node->count++;
 728		} else if (!radix_tree_is_internal_node(child))
 729			break;
 730
 731		/* Go a level down */
 732		node = entry_to_node(child);
 733		offset = radix_tree_descend(node, &child, index);
 734		slot = &node->slots[offset];
 735	}
 736
 737	if (nodep)
 738		*nodep = node;
 739	if (slotp)
 740		*slotp = slot;
 741	return 0;
 742}
 743
 744#ifdef CONFIG_RADIX_TREE_MULTIORDER
 745/*
 746 * Free any nodes below this node.  The tree is presumed to not need
 747 * shrinking, and any user data in the tree is presumed to not need a
 748 * destructor called on it.  If we need to add a destructor, we can
 749 * add that functionality later.  Note that we may not clear tags or
 750 * slots from the tree as an RCU walker may still have a pointer into
 751 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 752 * but we'll still have to clear those in rcu_free.
 753 */
 754static void radix_tree_free_nodes(struct radix_tree_node *node)
 755{
 756	unsigned offset = 0;
 757	struct radix_tree_node *child = entry_to_node(node);
 758
 759	for (;;) {
 760		void *entry = child->slots[offset];
 761		if (radix_tree_is_internal_node(entry) &&
 762					!is_sibling_entry(child, entry)) {
 763			child = entry_to_node(entry);
 764			offset = 0;
 765			continue;
 766		}
 767		offset++;
 768		while (offset == RADIX_TREE_MAP_SIZE) {
 769			struct radix_tree_node *old = child;
 770			offset = child->offset + 1;
 771			child = child->parent;
 772			WARN_ON_ONCE(!list_empty(&old->private_list));
 773			radix_tree_node_free(old);
 774			if (old == entry_to_node(node))
 775				return;
 776		}
 777	}
 778}
 779
 780static inline int insert_entries(struct radix_tree_node *node, void **slot,
 781				void *item, unsigned order, bool replace)
 
 782{
 783	struct radix_tree_node *child;
 784	unsigned i, n, tag, offset, tags = 0;
 785
 786	if (node) {
 787		if (order > node->shift)
 788			n = 1 << (order - node->shift);
 789		else
 790			n = 1;
 791		offset = get_slot_offset(node, slot);
 792	} else {
 793		n = 1;
 794		offset = 0;
 795	}
 796
 797	if (n > 1) {
 798		offset = offset & ~(n - 1);
 799		slot = &node->slots[offset];
 800	}
 801	child = node_to_entry(slot);
 802
 803	for (i = 0; i < n; i++) {
 804		if (slot[i]) {
 805			if (replace) {
 806				node->count--;
 807				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 808					if (tag_get(node, tag, offset + i))
 809						tags |= 1 << tag;
 810			} else
 811				return -EEXIST;
 812		}
 813	}
 814
 815	for (i = 0; i < n; i++) {
 816		struct radix_tree_node *old = slot[i];
 817		if (i) {
 818			rcu_assign_pointer(slot[i], child);
 819			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 820				if (tags & (1 << tag))
 821					tag_clear(node, tag, offset + i);
 822		} else {
 823			rcu_assign_pointer(slot[i], item);
 824			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 825				if (tags & (1 << tag))
 826					tag_set(node, tag, offset);
 827		}
 828		if (radix_tree_is_internal_node(old) &&
 829					!is_sibling_entry(node, old) &&
 830					(old != RADIX_TREE_RETRY))
 831			radix_tree_free_nodes(old);
 832		if (radix_tree_exceptional_entry(old))
 833			node->exceptional--;
 834	}
 835	if (node) {
 836		node->count += n;
 837		if (radix_tree_exceptional_entry(item))
 838			node->exceptional += n;
 839	}
 840	return n;
 841}
 842#else
 843static inline int insert_entries(struct radix_tree_node *node, void **slot,
 844				void *item, unsigned order, bool replace)
 845{
 846	if (*slot)
 847		return -EEXIST;
 848	rcu_assign_pointer(*slot, item);
 849	if (node) {
 850		node->count++;
 851		if (radix_tree_exceptional_entry(item))
 852			node->exceptional++;
 853	}
 854	return 1;
 855}
 856#endif
 857
 858/**
 859 *	__radix_tree_insert    -    insert into a radix tree
 860 *	@root:		radix tree root
 861 *	@index:		index key
 862 *	@order:		key covers the 2^order indices around index
 863 *	@item:		item to insert
 864 *
 865 *	Insert an item into the radix tree at position @index.
 866 */
 867int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 868			unsigned order, void *item)
 869{
 870	struct radix_tree_node *node;
 871	void **slot;
 872	int error;
 873
 874	BUG_ON(radix_tree_is_internal_node(item));
 875
 876	error = __radix_tree_create(root, index, order, &node, &slot);
 877	if (error)
 878		return error;
 879
 880	error = insert_entries(node, slot, item, order, false);
 881	if (error < 0)
 882		return error;
 883
 884	if (node) {
 885		unsigned offset = get_slot_offset(node, slot);
 886		BUG_ON(tag_get(node, 0, offset));
 887		BUG_ON(tag_get(node, 1, offset));
 888		BUG_ON(tag_get(node, 2, offset));
 889	} else {
 890		BUG_ON(root_tags_get(root));
 891	}
 892
 893	return 0;
 894}
 895EXPORT_SYMBOL(__radix_tree_insert);
 896
 897/**
 898 *	__radix_tree_lookup	-	lookup an item in a radix tree
 899 *	@root:		radix tree root
 900 *	@index:		index key
 901 *	@nodep:		returns node
 902 *	@slotp:		returns slot
 903 *
 904 *	Lookup and return the item at position @index in the radix
 905 *	tree @root.
 906 *
 907 *	Until there is more than one item in the tree, no nodes are
 908 *	allocated and @root->rnode is used as a direct slot instead of
 909 *	pointing to a node, in which case *@nodep will be NULL.
 910 */
 911void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 912			  struct radix_tree_node **nodep, void ***slotp)
 
 913{
 914	struct radix_tree_node *node, *parent;
 915	unsigned long maxindex;
 916	void **slot;
 917
 918 restart:
 919	parent = NULL;
 920	slot = (void **)&root->rnode;
 921	radix_tree_load_root(root, &node, &maxindex);
 922	if (index > maxindex)
 923		return NULL;
 924
 925	while (radix_tree_is_internal_node(node)) {
 926		unsigned offset;
 927
 928		if (node == RADIX_TREE_RETRY)
 929			goto restart;
 930		parent = entry_to_node(node);
 931		offset = radix_tree_descend(parent, &node, index);
 932		slot = parent->slots + offset;
 933	}
 934
 935	if (nodep)
 936		*nodep = parent;
 937	if (slotp)
 938		*slotp = slot;
 939	return node;
 940}
 941
 942/**
 943 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 944 *	@root:		radix tree root
 945 *	@index:		index key
 946 *
 947 *	Returns:  the slot corresponding to the position @index in the
 948 *	radix tree @root. This is useful for update-if-exists operations.
 949 *
 950 *	This function can be called under rcu_read_lock iff the slot is not
 951 *	modified by radix_tree_replace_slot, otherwise it must be called
 952 *	exclusive from other writers. Any dereference of the slot must be done
 953 *	using radix_tree_deref_slot.
 954 */
 955void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 
 956{
 957	void **slot;
 958
 959	if (!__radix_tree_lookup(root, index, NULL, &slot))
 960		return NULL;
 961	return slot;
 962}
 963EXPORT_SYMBOL(radix_tree_lookup_slot);
 964
 965/**
 966 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 967 *	@root:		radix tree root
 968 *	@index:		index key
 969 *
 970 *	Lookup the item at the position @index in the radix tree @root.
 971 *
 972 *	This function can be called under rcu_read_lock, however the caller
 973 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 974 *	them safely). No RCU barriers are required to access or modify the
 975 *	returned item, however.
 976 */
 977void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 978{
 979	return __radix_tree_lookup(root, index, NULL, NULL);
 980}
 981EXPORT_SYMBOL(radix_tree_lookup);
 982
 983static inline int slot_count(struct radix_tree_node *node,
 984						void **slot)
 985{
 986	int n = 1;
 987#ifdef CONFIG_RADIX_TREE_MULTIORDER
 988	void *ptr = node_to_entry(slot);
 989	unsigned offset = get_slot_offset(node, slot);
 990	int i;
 991
 992	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
 993		if (node->slots[offset + i] != ptr)
 994			break;
 995		n++;
 
 
 
 
 
 996	}
 997#endif
 998	return n;
 999}
1000
1001static void replace_slot(struct radix_tree_root *root,
1002			 struct radix_tree_node *node,
1003			 void **slot, void *item,
1004			 bool warn_typeswitch)
1005{
1006	void *old = rcu_dereference_raw(*slot);
1007	int count, exceptional;
1008
1009	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1010
1011	count = !!item - !!old;
1012	exceptional = !!radix_tree_exceptional_entry(item) -
1013		      !!radix_tree_exceptional_entry(old);
1014
1015	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1016
1017	if (node) {
1018		node->count += count;
1019		if (exceptional) {
1020			exceptional *= slot_count(node, slot);
1021			node->exceptional += exceptional;
1022		}
1023	}
1024
1025	rcu_assign_pointer(*slot, item);
1026}
1027
1028static inline void delete_sibling_entries(struct radix_tree_node *node,
1029						void **slot)
 
1030{
1031#ifdef CONFIG_RADIX_TREE_MULTIORDER
1032	bool exceptional = radix_tree_exceptional_entry(*slot);
1033	void *ptr = node_to_entry(slot);
1034	unsigned offset = get_slot_offset(node, slot);
1035	int i;
1036
1037	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038		if (node->slots[offset + i] != ptr)
1039			break;
1040		node->slots[offset + i] = NULL;
1041		node->count--;
1042		if (exceptional)
1043			node->exceptional--;
 
 
 
 
 
 
 
 
 
 
 
1044	}
1045#endif
1046}
1047
1048/**
1049 * __radix_tree_replace		- replace item in a slot
1050 * @root:		radix tree root
1051 * @node:		pointer to tree node
1052 * @slot:		pointer to slot in @node
1053 * @item:		new item to store in the slot.
1054 * @update_node:	callback for changing leaf nodes
1055 * @private:		private data to pass to @update_node
1056 *
1057 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1058 * across slot lookup and replacement.
1059 */
1060void __radix_tree_replace(struct radix_tree_root *root,
1061			  struct radix_tree_node *node,
1062			  void **slot, void *item,
1063			  radix_tree_update_node_t update_node, void *private)
1064{
1065	if (!item)
1066		delete_sibling_entries(node, slot);
 
 
 
1067	/*
1068	 * This function supports replacing exceptional entries and
1069	 * deleting entries, but that needs accounting against the
1070	 * node unless the slot is root->rnode.
1071	 */
1072	replace_slot(root, node, slot, item,
1073		     !node && slot != (void **)&root->rnode);
 
1074
1075	if (!node)
1076		return;
1077
1078	if (update_node)
1079		update_node(node, private);
1080
1081	delete_node(root, node, update_node, private);
1082}
1083
1084/**
1085 * radix_tree_replace_slot	- replace item in a slot
1086 * @root:	radix tree root
1087 * @slot:	pointer to slot
1088 * @item:	new item to store in the slot.
1089 *
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1092 * across slot lookup and replacement.
1093 *
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1099 */
1100void radix_tree_replace_slot(struct radix_tree_root *root,
1101			     void **slot, void *item)
1102{
1103	replace_slot(root, NULL, slot, item, true);
1104}
 
1105
1106/**
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root:	radix tree root
1109 * @slot:	pointer to slot
1110 * @item:	new item to store in the slot.
1111 *
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1114 */
1115void radix_tree_iter_replace(struct radix_tree_root *root,
1116		const struct radix_tree_iter *iter, void **slot, void *item)
 
1117{
1118	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1119}
1120
1121#ifdef CONFIG_RADIX_TREE_MULTIORDER
1122/**
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1127 * @item: new entry
1128 *
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1131 * this call.
1132 *
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1135 */
1136int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1137			unsigned order, void *item)
1138{
1139	struct radix_tree_node *node;
1140	void **slot;
1141	int error;
1142
1143	BUG_ON(radix_tree_is_internal_node(item));
1144
1145	error = __radix_tree_create(root, index, order, &node, &slot);
1146	if (!error)
1147		error = insert_entries(node, slot, item, order, true);
1148	if (error > 0)
1149		error = 0;
1150
1151	return error;
1152}
1153
1154/**
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1159 *
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order.  After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1164 *
1165 * The tags from this entry are replicated to all the new entries.
1166 *
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1170 */
1171int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1172				unsigned order)
1173{
1174	struct radix_tree_node *parent, *node, *child;
1175	void **slot;
1176	unsigned int offset, end;
1177	unsigned n, tag, tags = 0;
 
1178
1179	if (!__radix_tree_lookup(root, index, &parent, &slot))
1180		return -ENOENT;
1181	if (!parent)
1182		return -ENOENT;
1183
1184	offset = get_slot_offset(parent, slot);
1185
1186	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1187		if (tag_get(parent, tag, offset))
1188			tags |= 1 << tag;
1189
1190	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1191		if (!is_sibling_entry(parent, parent->slots[end]))
 
1192			break;
1193		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194			if (tags & (1 << tag))
1195				tag_set(parent, tag, end);
1196		/* rcu_assign_pointer ensures tags are set before RETRY */
1197		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1198	}
1199	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1200	parent->exceptional -= (end - offset);
1201
1202	if (order == parent->shift)
1203		return 0;
1204	if (order > parent->shift) {
1205		while (offset < end)
1206			offset += insert_entries(parent, &parent->slots[offset],
1207					RADIX_TREE_RETRY, order, true);
1208		return 0;
1209	}
1210
1211	node = parent;
1212
1213	for (;;) {
1214		if (node->shift > order) {
1215			child = radix_tree_node_alloc(root, node,
1216					node->shift - RADIX_TREE_MAP_SHIFT,
1217					offset, 0, 0);
1218			if (!child)
1219				goto nomem;
1220			if (node != parent) {
1221				node->count++;
1222				node->slots[offset] = node_to_entry(child);
 
1223				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1224					if (tags & (1 << tag))
1225						tag_set(node, tag, offset);
1226			}
1227
1228			node = child;
1229			offset = 0;
1230			continue;
1231		}
1232
1233		n = insert_entries(node, &node->slots[offset],
1234					RADIX_TREE_RETRY, order, false);
1235		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1236
1237		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238			if (tags & (1 << tag))
1239				tag_set(node, tag, offset);
1240		offset += n;
1241
1242		while (offset == RADIX_TREE_MAP_SIZE) {
1243			if (node == parent)
1244				break;
1245			offset = node->offset;
1246			child = node;
1247			node = node->parent;
1248			rcu_assign_pointer(node->slots[offset],
1249						node_to_entry(child));
1250			offset++;
1251		}
1252		if ((node == parent) && (offset == end))
1253			return 0;
1254	}
1255
1256 nomem:
1257	/* Shouldn't happen; did user forget to preload? */
1258	/* TODO: free all the allocated nodes */
1259	WARN_ON(1);
1260	return -ENOMEM;
1261}
1262#endif
1263
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1264/**
1265 *	radix_tree_tag_set - set a tag on a radix tree node
1266 *	@root:		radix tree root
1267 *	@index:		index key
1268 *	@tag:		tag index
1269 *
1270 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 *	corresponding to @index in the radix tree.  From
1272 *	the root all the way down to the leaf node.
1273 *
1274 *	Returns the address of the tagged item.  Setting a tag on a not-present
1275 *	item is a bug.
1276 */
1277void *radix_tree_tag_set(struct radix_tree_root *root,
1278			unsigned long index, unsigned int tag)
1279{
1280	struct radix_tree_node *node, *parent;
1281	unsigned long maxindex;
1282
1283	radix_tree_load_root(root, &node, &maxindex);
1284	BUG_ON(index > maxindex);
1285
1286	while (radix_tree_is_internal_node(node)) {
1287		unsigned offset;
1288
1289		parent = entry_to_node(node);
1290		offset = radix_tree_descend(parent, &node, index);
1291		BUG_ON(!node);
1292
1293		if (!tag_get(parent, tag, offset))
1294			tag_set(parent, tag, offset);
1295	}
1296
1297	/* set the root's tag bit */
1298	if (!root_tag_get(root, tag))
1299		root_tag_set(root, tag);
1300
1301	return node;
1302}
1303EXPORT_SYMBOL(radix_tree_tag_set);
1304
 
 
 
 
 
 
 
 
 
 
 
 
1305static void node_tag_clear(struct radix_tree_root *root,
1306				struct radix_tree_node *node,
1307				unsigned int tag, unsigned int offset)
1308{
1309	while (node) {
1310		if (!tag_get(node, tag, offset))
1311			return;
1312		tag_clear(node, tag, offset);
1313		if (any_tag_set(node, tag))
1314			return;
1315
1316		offset = node->offset;
1317		node = node->parent;
1318	}
1319
1320	/* clear the root's tag bit */
1321	if (root_tag_get(root, tag))
1322		root_tag_clear(root, tag);
1323}
1324
1325static void node_tag_set(struct radix_tree_root *root,
1326				struct radix_tree_node *node,
1327				unsigned int tag, unsigned int offset)
1328{
1329	while (node) {
1330		if (tag_get(node, tag, offset))
1331			return;
1332		tag_set(node, tag, offset);
1333		offset = node->offset;
1334		node = node->parent;
1335	}
1336
1337	if (!root_tag_get(root, tag))
1338		root_tag_set(root, tag);
1339}
1340
1341/**
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root:	radix tree root
1344 * @iter:	iterator state
1345 * @tag:	tag to set
1346 */
1347void radix_tree_iter_tag_set(struct radix_tree_root *root,
1348			const struct radix_tree_iter *iter, unsigned int tag)
1349{
1350	node_tag_set(root, iter->node, tag, iter_offset(iter));
1351}
1352
1353/**
1354 *	radix_tree_tag_clear - clear a tag on a radix tree node
1355 *	@root:		radix tree root
1356 *	@index:		index key
1357 *	@tag:		tag index
1358 *
1359 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 *	corresponding to @index in the radix tree.  If this causes
1361 *	the leaf node to have no tags set then clear the tag in the
1362 *	next-to-leaf node, etc.
1363 *
1364 *	Returns the address of the tagged item on success, else NULL.  ie:
1365 *	has the same return value and semantics as radix_tree_lookup().
1366 */
1367void *radix_tree_tag_clear(struct radix_tree_root *root,
1368			unsigned long index, unsigned int tag)
1369{
1370	struct radix_tree_node *node, *parent;
1371	unsigned long maxindex;
1372	int uninitialized_var(offset);
1373
1374	radix_tree_load_root(root, &node, &maxindex);
1375	if (index > maxindex)
1376		return NULL;
1377
1378	parent = NULL;
1379
1380	while (radix_tree_is_internal_node(node)) {
1381		parent = entry_to_node(node);
1382		offset = radix_tree_descend(parent, &node, index);
1383	}
1384
1385	if (node)
1386		node_tag_clear(root, parent, tag, offset);
1387
1388	return node;
1389}
1390EXPORT_SYMBOL(radix_tree_tag_clear);
1391
1392/**
 
 
 
 
 
 
 
 
 
 
 
 
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root:		radix tree root
1395 * @index:		index key
1396 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1397 *
1398 * Return values:
1399 *
1400 *  0: tag not present or not set
1401 *  1: tag set
1402 *
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1405 * from concurrency.
1406 */
1407int radix_tree_tag_get(struct radix_tree_root *root,
1408			unsigned long index, unsigned int tag)
1409{
1410	struct radix_tree_node *node, *parent;
1411	unsigned long maxindex;
1412
1413	if (!root_tag_get(root, tag))
1414		return 0;
1415
1416	radix_tree_load_root(root, &node, &maxindex);
1417	if (index > maxindex)
1418		return 0;
1419	if (node == NULL)
1420		return 0;
1421
1422	while (radix_tree_is_internal_node(node)) {
1423		unsigned offset;
1424
1425		parent = entry_to_node(node);
1426		offset = radix_tree_descend(parent, &node, index);
1427
1428		if (!node)
1429			return 0;
1430		if (!tag_get(parent, tag, offset))
1431			return 0;
1432		if (node == RADIX_TREE_RETRY)
1433			break;
1434	}
1435
1436	return 1;
1437}
1438EXPORT_SYMBOL(radix_tree_tag_get);
1439
1440static inline void __set_iter_shift(struct radix_tree_iter *iter,
1441					unsigned int shift)
1442{
1443#ifdef CONFIG_RADIX_TREE_MULTIORDER
1444	iter->shift = shift;
1445#endif
1446}
1447
1448/* Construct iter->tags bit-mask from node->tags[tag] array */
1449static void set_iter_tags(struct radix_tree_iter *iter,
1450				struct radix_tree_node *node, unsigned offset,
1451				unsigned tag)
1452{
1453	unsigned tag_long = offset / BITS_PER_LONG;
1454	unsigned tag_bit  = offset % BITS_PER_LONG;
1455
 
 
 
 
 
1456	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1457
1458	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1460		/* Pick tags from next element */
1461		if (tag_bit)
1462			iter->tags |= node->tags[tag][tag_long + 1] <<
1463						(BITS_PER_LONG - tag_bit);
1464		/* Clip chunk size, here only BITS_PER_LONG tags */
1465		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1466	}
1467}
1468
1469#ifdef CONFIG_RADIX_TREE_MULTIORDER
1470static void **skip_siblings(struct radix_tree_node **nodep,
1471			void **slot, struct radix_tree_iter *iter)
1472{
1473	void *sib = node_to_entry(slot - 1);
1474
1475	while (iter->index < iter->next_index) {
1476		*nodep = rcu_dereference_raw(*slot);
1477		if (*nodep && *nodep != sib)
1478			return slot;
1479		slot++;
1480		iter->index = __radix_tree_iter_add(iter, 1);
1481		iter->tags >>= 1;
1482	}
1483
1484	*nodep = NULL;
1485	return NULL;
1486}
1487
1488void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1489					unsigned flags)
1490{
1491	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1492	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1493
1494	slot = skip_siblings(&node, slot, iter);
1495
1496	while (radix_tree_is_internal_node(node)) {
1497		unsigned offset;
1498		unsigned long next_index;
1499
1500		if (node == RADIX_TREE_RETRY)
1501			return slot;
1502		node = entry_to_node(node);
1503		iter->node = node;
1504		iter->shift = node->shift;
1505
1506		if (flags & RADIX_TREE_ITER_TAGGED) {
1507			offset = radix_tree_find_next_bit(node, tag, 0);
1508			if (offset == RADIX_TREE_MAP_SIZE)
1509				return NULL;
1510			slot = &node->slots[offset];
1511			iter->index = __radix_tree_iter_add(iter, offset);
1512			set_iter_tags(iter, node, offset, tag);
1513			node = rcu_dereference_raw(*slot);
1514		} else {
1515			offset = 0;
1516			slot = &node->slots[0];
1517			for (;;) {
1518				node = rcu_dereference_raw(*slot);
1519				if (node)
1520					break;
1521				slot++;
1522				offset++;
1523				if (offset == RADIX_TREE_MAP_SIZE)
1524					return NULL;
1525			}
1526			iter->index = __radix_tree_iter_add(iter, offset);
1527		}
1528		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1529			goto none;
1530		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1531		if (next_index < iter->next_index)
1532			iter->next_index = next_index;
1533	}
1534
1535	return slot;
1536 none:
1537	iter->next_index = 0;
1538	return NULL;
1539}
1540EXPORT_SYMBOL(__radix_tree_next_slot);
1541#else
1542static void **skip_siblings(struct radix_tree_node **nodep,
1543			void **slot, struct radix_tree_iter *iter)
1544{
1545	return slot;
1546}
1547#endif
1548
1549void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
 
1550{
1551	struct radix_tree_node *node;
1552
1553	slot++;
1554	iter->index = __radix_tree_iter_add(iter, 1);
1555	node = rcu_dereference_raw(*slot);
1556	skip_siblings(&node, slot, iter);
1557	iter->next_index = iter->index;
1558	iter->tags = 0;
1559	return NULL;
1560}
1561EXPORT_SYMBOL(radix_tree_iter_resume);
1562
1563/**
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
1565 *
1566 * @root:	radix tree root
1567 * @iter:	iterator state
1568 * @flags:	RADIX_TREE_ITER_* flags and tag index
1569 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1570 */
1571void **radix_tree_next_chunk(struct radix_tree_root *root,
1572			     struct radix_tree_iter *iter, unsigned flags)
1573{
1574	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1575	struct radix_tree_node *node, *child;
1576	unsigned long index, offset, maxindex;
1577
1578	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1579		return NULL;
1580
1581	/*
1582	 * Catch next_index overflow after ~0UL. iter->index never overflows
1583	 * during iterating; it can be zero only at the beginning.
1584	 * And we cannot overflow iter->next_index in a single step,
1585	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1586	 *
1587	 * This condition also used by radix_tree_next_slot() to stop
1588	 * contiguous iterating, and forbid switching to the next chunk.
1589	 */
1590	index = iter->next_index;
1591	if (!index && iter->index)
1592		return NULL;
1593
1594 restart:
1595	radix_tree_load_root(root, &child, &maxindex);
1596	if (index > maxindex)
1597		return NULL;
1598	if (!child)
1599		return NULL;
1600
1601	if (!radix_tree_is_internal_node(child)) {
1602		/* Single-slot tree */
1603		iter->index = index;
1604		iter->next_index = maxindex + 1;
1605		iter->tags = 1;
1606		iter->node = NULL;
1607		__set_iter_shift(iter, 0);
1608		return (void **)&root->rnode;
1609	}
1610
1611	do {
1612		node = entry_to_node(child);
1613		offset = radix_tree_descend(node, &child, index);
1614
1615		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1616				!tag_get(node, tag, offset) : !child) {
1617			/* Hole detected */
1618			if (flags & RADIX_TREE_ITER_CONTIG)
1619				return NULL;
1620
1621			if (flags & RADIX_TREE_ITER_TAGGED)
1622				offset = radix_tree_find_next_bit(node, tag,
1623						offset + 1);
1624			else
1625				while (++offset	< RADIX_TREE_MAP_SIZE) {
1626					void *slot = node->slots[offset];
 
1627					if (is_sibling_entry(node, slot))
1628						continue;
1629					if (slot)
1630						break;
1631				}
1632			index &= ~node_maxindex(node);
1633			index += offset << node->shift;
1634			/* Overflow after ~0UL */
1635			if (!index)
1636				return NULL;
1637			if (offset == RADIX_TREE_MAP_SIZE)
1638				goto restart;
1639			child = rcu_dereference_raw(node->slots[offset]);
1640		}
1641
1642		if (!child)
1643			goto restart;
1644		if (child == RADIX_TREE_RETRY)
1645			break;
1646	} while (radix_tree_is_internal_node(child));
1647
1648	/* Update the iterator state */
1649	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1650	iter->next_index = (index | node_maxindex(node)) + 1;
1651	iter->node = node;
1652	__set_iter_shift(iter, node->shift);
1653
1654	if (flags & RADIX_TREE_ITER_TAGGED)
1655		set_iter_tags(iter, node, offset, tag);
1656
1657	return node->slots + offset;
1658}
1659EXPORT_SYMBOL(radix_tree_next_chunk);
1660
1661/**
1662 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 *	@root:		radix tree root
1664 *	@results:	where the results of the lookup are placed
1665 *	@first_index:	start the lookup from this key
1666 *	@max_items:	place up to this many items at *results
1667 *
1668 *	Performs an index-ascending scan of the tree for present items.  Places
1669 *	them at *@results and returns the number of items which were placed at
1670 *	*@results.
1671 *
1672 *	The implementation is naive.
1673 *
1674 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 *	rcu_read_lock. In this case, rather than the returned results being
1676 *	an atomic snapshot of the tree at a single point in time, the
1677 *	semantics of an RCU protected gang lookup are as though multiple
1678 *	radix_tree_lookups have been issued in individual locks, and results
1679 *	stored in 'results'.
1680 */
1681unsigned int
1682radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1683			unsigned long first_index, unsigned int max_items)
1684{
1685	struct radix_tree_iter iter;
1686	void **slot;
1687	unsigned int ret = 0;
1688
1689	if (unlikely(!max_items))
1690		return 0;
1691
1692	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1693		results[ret] = rcu_dereference_raw(*slot);
1694		if (!results[ret])
1695			continue;
1696		if (radix_tree_is_internal_node(results[ret])) {
1697			slot = radix_tree_iter_retry(&iter);
1698			continue;
1699		}
1700		if (++ret == max_items)
1701			break;
1702	}
1703
1704	return ret;
1705}
1706EXPORT_SYMBOL(radix_tree_gang_lookup);
1707
1708/**
1709 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 *	@root:		radix tree root
1711 *	@results:	where the results of the lookup are placed
1712 *	@indices:	where their indices should be placed (but usually NULL)
1713 *	@first_index:	start the lookup from this key
1714 *	@max_items:	place up to this many items at *results
1715 *
1716 *	Performs an index-ascending scan of the tree for present items.  Places
1717 *	their slots at *@results and returns the number of items which were
1718 *	placed at *@results.
1719 *
1720 *	The implementation is naive.
1721 *
1722 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 *	protection, radix_tree_deref_slot may fail requiring a retry.
1725 */
1726unsigned int
1727radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1728			void ***results, unsigned long *indices,
1729			unsigned long first_index, unsigned int max_items)
1730{
1731	struct radix_tree_iter iter;
1732	void **slot;
1733	unsigned int ret = 0;
1734
1735	if (unlikely(!max_items))
1736		return 0;
1737
1738	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1739		results[ret] = slot;
1740		if (indices)
1741			indices[ret] = iter.index;
1742		if (++ret == max_items)
1743			break;
1744	}
1745
1746	return ret;
1747}
1748EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1749
1750/**
1751 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1752 *	                             based on a tag
1753 *	@root:		radix tree root
1754 *	@results:	where the results of the lookup are placed
1755 *	@first_index:	start the lookup from this key
1756 *	@max_items:	place up to this many items at *results
1757 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1758 *
1759 *	Performs an index-ascending scan of the tree for present items which
1760 *	have the tag indexed by @tag set.  Places the items at *@results and
1761 *	returns the number of items which were placed at *@results.
1762 */
1763unsigned int
1764radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1765		unsigned long first_index, unsigned int max_items,
1766		unsigned int tag)
1767{
1768	struct radix_tree_iter iter;
1769	void **slot;
1770	unsigned int ret = 0;
1771
1772	if (unlikely(!max_items))
1773		return 0;
1774
1775	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1776		results[ret] = rcu_dereference_raw(*slot);
1777		if (!results[ret])
1778			continue;
1779		if (radix_tree_is_internal_node(results[ret])) {
1780			slot = radix_tree_iter_retry(&iter);
1781			continue;
1782		}
1783		if (++ret == max_items)
1784			break;
1785	}
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1790
1791/**
1792 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 *					  radix tree based on a tag
1794 *	@root:		radix tree root
1795 *	@results:	where the results of the lookup are placed
1796 *	@first_index:	start the lookup from this key
1797 *	@max_items:	place up to this many items at *results
1798 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1799 *
1800 *	Performs an index-ascending scan of the tree for present items which
1801 *	have the tag indexed by @tag set.  Places the slots at *@results and
1802 *	returns the number of slots which were placed at *@results.
1803 */
1804unsigned int
1805radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1806		unsigned long first_index, unsigned int max_items,
1807		unsigned int tag)
1808{
1809	struct radix_tree_iter iter;
1810	void **slot;
1811	unsigned int ret = 0;
1812
1813	if (unlikely(!max_items))
1814		return 0;
1815
1816	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1817		results[ret] = slot;
1818		if (++ret == max_items)
1819			break;
1820	}
1821
1822	return ret;
1823}
1824EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1825
1826/**
1827 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1828 *	@root:		radix tree root
1829 *	@node:		node containing @index
1830 *	@update_node:	callback for changing leaf nodes
1831 *	@private:	private data to pass to @update_node
1832 *
1833 *	After clearing the slot at @index in @node from radix tree
1834 *	rooted at @root, call this function to attempt freeing the
1835 *	node and shrinking the tree.
1836 */
1837void __radix_tree_delete_node(struct radix_tree_root *root,
1838			      struct radix_tree_node *node,
1839			      radix_tree_update_node_t update_node,
1840			      void *private)
1841{
1842	delete_node(root, node, update_node, private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843}
1844
1845/**
1846 *	radix_tree_delete_item    -    delete an item from a radix tree
1847 *	@root:		radix tree root
1848 *	@index:		index key
1849 *	@item:		expected item
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1850 *
1851 *	Remove @item at @index from the radix tree rooted at @root.
1852 *
1853 *	Returns the address of the deleted item, or NULL if it was not present
1854 *	or the entry at the given @index was not @item.
1855 */
1856void *radix_tree_delete_item(struct radix_tree_root *root,
1857			     unsigned long index, void *item)
1858{
1859	struct radix_tree_node *node;
1860	unsigned int offset;
1861	void **slot;
1862	void *entry;
1863	int tag;
1864
1865	entry = __radix_tree_lookup(root, index, &node, &slot);
1866	if (!entry)
 
 
 
1867		return NULL;
1868
1869	if (item && entry != item)
1870		return NULL;
1871
1872	if (!node) {
1873		root_tag_clear_all(root);
1874		root->rnode = NULL;
1875		return entry;
1876	}
1877
1878	offset = get_slot_offset(node, slot);
1879
1880	/* Clear all tags associated with the item to be deleted.  */
1881	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1882		node_tag_clear(root, node, tag, offset);
1883
1884	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1885
1886	return entry;
1887}
1888EXPORT_SYMBOL(radix_tree_delete_item);
1889
1890/**
1891 *	radix_tree_delete    -    delete an item from a radix tree
1892 *	@root:		radix tree root
1893 *	@index:		index key
1894 *
1895 *	Remove the item at @index from the radix tree rooted at @root.
1896 *
1897 *	Returns the address of the deleted item, or NULL if it was not present.
1898 */
1899void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1900{
1901	return radix_tree_delete_item(root, index, NULL);
1902}
1903EXPORT_SYMBOL(radix_tree_delete);
1904
1905void radix_tree_clear_tags(struct radix_tree_root *root,
1906			   struct radix_tree_node *node,
1907			   void **slot)
1908{
1909	if (node) {
1910		unsigned int tag, offset = get_slot_offset(node, slot);
1911		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1912			node_tag_clear(root, node, tag, offset);
1913	} else {
1914		/* Clear root node tags */
1915		root->gfp_mask &= __GFP_BITS_MASK;
1916	}
1917}
1918
1919/**
1920 *	radix_tree_tagged - test whether any items in the tree are tagged
1921 *	@root:		radix tree root
1922 *	@tag:		tag to test
1923 */
1924int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1925{
1926	return root_tag_get(root, tag);
1927}
1928EXPORT_SYMBOL(radix_tree_tagged);
1929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1930static void
1931radix_tree_node_ctor(void *arg)
1932{
1933	struct radix_tree_node *node = arg;
1934
1935	memset(node, 0, sizeof(*node));
1936	INIT_LIST_HEAD(&node->private_list);
1937}
1938
1939static __init unsigned long __maxindex(unsigned int height)
1940{
1941	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1942	int shift = RADIX_TREE_INDEX_BITS - width;
1943
1944	if (shift < 0)
1945		return ~0UL;
1946	if (shift >= BITS_PER_LONG)
1947		return 0UL;
1948	return ~0UL >> shift;
1949}
1950
1951static __init void radix_tree_init_maxnodes(void)
1952{
1953	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1954	unsigned int i, j;
1955
1956	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1957		height_to_maxindex[i] = __maxindex(i);
1958	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1959		for (j = i; j > 0; j--)
1960			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1961	}
1962}
1963
1964static int radix_tree_cpu_dead(unsigned int cpu)
1965{
1966	struct radix_tree_preload *rtp;
1967	struct radix_tree_node *node;
1968
1969	/* Free per-cpu pool of preloaded nodes */
1970	rtp = &per_cpu(radix_tree_preloads, cpu);
1971	while (rtp->nr) {
1972		node = rtp->nodes;
1973		rtp->nodes = node->private_data;
1974		kmem_cache_free(radix_tree_node_cachep, node);
1975		rtp->nr--;
1976	}
 
 
1977	return 0;
1978}
1979
1980void __init radix_tree_init(void)
1981{
1982	int ret;
 
 
 
1983	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1984			sizeof(struct radix_tree_node), 0,
1985			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1986			radix_tree_node_ctor);
1987	radix_tree_init_maxnodes();
1988	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1989					NULL, radix_tree_cpu_dead);
1990	WARN_ON(ret < 0);
1991}
v4.17
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/bitmap.h>
  26#include <linux/bitops.h>
  27#include <linux/bug.h>
  28#include <linux/cpu.h>
  29#include <linux/errno.h>
  30#include <linux/export.h>
  31#include <linux/idr.h>
  32#include <linux/init.h>
  33#include <linux/kernel.h>
  34#include <linux/kmemleak.h>
 
  35#include <linux/percpu.h>
  36#include <linux/preempt.h>		/* in_interrupt() */
  37#include <linux/radix-tree.h>
  38#include <linux/rcupdate.h>
  39#include <linux/slab.h>
 
 
  40#include <linux/string.h>
 
 
 
  41
  42
  43/* Number of nodes in fully populated tree of given height */
  44static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  45
  46/*
  47 * Radix tree node cache.
  48 */
  49static struct kmem_cache *radix_tree_node_cachep;
  50
  51/*
  52 * The radix tree is variable-height, so an insert operation not only has
  53 * to build the branch to its corresponding item, it also has to build the
  54 * branch to existing items if the size has to be increased (by
  55 * radix_tree_extend).
  56 *
  57 * The worst case is a zero height tree with just a single item at index 0,
  58 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  59 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  60 * Hence:
  61 */
  62#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  63
  64/*
  65 * The IDR does not have to be as high as the radix tree since it uses
  66 * signed integers, not unsigned longs.
  67 */
  68#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  69#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  70						RADIX_TREE_MAP_SHIFT))
  71#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  72
  73/*
  74 * The IDA is even shorter since it uses a bitmap at the last level.
  75 */
  76#define IDA_INDEX_BITS		(8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
  77#define IDA_MAX_PATH		(DIV_ROUND_UP(IDA_INDEX_BITS, \
  78						RADIX_TREE_MAP_SHIFT))
  79#define IDA_PRELOAD_SIZE	(IDA_MAX_PATH * 2 - 1)
  80
  81/*
  82 * Per-cpu pool of preloaded nodes
  83 */
  84struct radix_tree_preload {
  85	unsigned nr;
  86	/* nodes->parent points to next preallocated node */
  87	struct radix_tree_node *nodes;
  88};
  89static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  90
  91static inline struct radix_tree_node *entry_to_node(void *ptr)
  92{
  93	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  94}
  95
  96static inline void *node_to_entry(void *ptr)
  97{
  98	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  99}
 100
 101#define RADIX_TREE_RETRY	node_to_entry(NULL)
 102
 103#ifdef CONFIG_RADIX_TREE_MULTIORDER
 104/* Sibling slots point directly to another slot in the same node */
 105static inline
 106bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 107{
 108	void __rcu **ptr = node;
 109	return (parent->slots <= ptr) &&
 110			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
 111}
 112#else
 113static inline
 114bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
 115{
 116	return false;
 117}
 118#endif
 119
 120static inline unsigned long
 121get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
 122{
 123	return slot - parent->slots;
 124}
 125
 126static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
 127			struct radix_tree_node **nodep, unsigned long index)
 128{
 129	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 130	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
 131
 132#ifdef CONFIG_RADIX_TREE_MULTIORDER
 133	if (radix_tree_is_internal_node(entry)) {
 134		if (is_sibling_entry(parent, entry)) {
 135			void __rcu **sibentry;
 136			sibentry = (void __rcu **) entry_to_node(entry);
 137			offset = get_slot_offset(parent, sibentry);
 138			entry = rcu_dereference_raw(*sibentry);
 139		}
 140	}
 141#endif
 142
 143	*nodep = (void *)entry;
 144	return offset;
 145}
 146
 147static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
 148{
 149	return root->gfp_mask & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
 150}
 151
 152static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 153		int offset)
 154{
 155	__set_bit(offset, node->tags[tag]);
 156}
 157
 158static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 159		int offset)
 160{
 161	__clear_bit(offset, node->tags[tag]);
 162}
 163
 164static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 165		int offset)
 166{
 167	return test_bit(offset, node->tags[tag]);
 168}
 169
 170static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 171{
 172	root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 173}
 174
 175static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 176{
 177	root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 178}
 179
 180static inline void root_tag_clear_all(struct radix_tree_root *root)
 181{
 182	root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
 183}
 184
 185static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 186{
 187	return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
 188}
 189
 190static inline unsigned root_tags_get(const struct radix_tree_root *root)
 191{
 192	return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
 193}
 194
 195static inline bool is_idr(const struct radix_tree_root *root)
 196{
 197	return !!(root->gfp_mask & ROOT_IS_IDR);
 198}
 199
 200/*
 201 * Returns 1 if any slot in the node has this tag set.
 202 * Otherwise returns 0.
 203 */
 204static inline int any_tag_set(const struct radix_tree_node *node,
 205							unsigned int tag)
 206{
 207	unsigned idx;
 208	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 209		if (node->tags[tag][idx])
 210			return 1;
 211	}
 212	return 0;
 213}
 214
 215static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 216{
 217	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 218}
 219
 220/**
 221 * radix_tree_find_next_bit - find the next set bit in a memory region
 222 *
 223 * @addr: The address to base the search on
 224 * @size: The bitmap size in bits
 225 * @offset: The bitnumber to start searching at
 226 *
 227 * Unrollable variant of find_next_bit() for constant size arrays.
 228 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 229 * Returns next bit offset, or size if nothing found.
 230 */
 231static __always_inline unsigned long
 232radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 233			 unsigned long offset)
 234{
 235	const unsigned long *addr = node->tags[tag];
 236
 237	if (offset < RADIX_TREE_MAP_SIZE) {
 238		unsigned long tmp;
 239
 240		addr += offset / BITS_PER_LONG;
 241		tmp = *addr >> (offset % BITS_PER_LONG);
 242		if (tmp)
 243			return __ffs(tmp) + offset;
 244		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 245		while (offset < RADIX_TREE_MAP_SIZE) {
 246			tmp = *++addr;
 247			if (tmp)
 248				return __ffs(tmp) + offset;
 249			offset += BITS_PER_LONG;
 250		}
 251	}
 252	return RADIX_TREE_MAP_SIZE;
 253}
 254
 255static unsigned int iter_offset(const struct radix_tree_iter *iter)
 256{
 257	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 258}
 259
 260/*
 261 * The maximum index which can be stored in a radix tree
 262 */
 263static inline unsigned long shift_maxindex(unsigned int shift)
 264{
 265	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 266}
 267
 268static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 269{
 270	return shift_maxindex(node->shift);
 271}
 272
 273static unsigned long next_index(unsigned long index,
 274				const struct radix_tree_node *node,
 275				unsigned long offset)
 276{
 277	return (index & ~node_maxindex(node)) + (offset << node->shift);
 278}
 279
 280#ifndef __KERNEL__
 281static void dump_node(struct radix_tree_node *node, unsigned long index)
 282{
 283	unsigned long i;
 284
 285	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 286		node, node->offset, index, index | node_maxindex(node),
 287		node->parent,
 288		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 289		node->shift, node->count, node->exceptional);
 290
 291	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 292		unsigned long first = index | (i << node->shift);
 293		unsigned long last = first | ((1UL << node->shift) - 1);
 294		void *entry = node->slots[i];
 295		if (!entry)
 296			continue;
 297		if (entry == RADIX_TREE_RETRY) {
 298			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 299					i, first, last, node);
 300		} else if (!radix_tree_is_internal_node(entry)) {
 301			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 302					entry, i, first, last, node);
 303		} else if (is_sibling_entry(node, entry)) {
 304			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 305					entry, i, first, last, node,
 306					*(void **)entry_to_node(entry));
 307		} else {
 308			dump_node(entry_to_node(entry), first);
 309		}
 310	}
 311}
 312
 313/* For debug */
 314static void radix_tree_dump(struct radix_tree_root *root)
 315{
 316	pr_debug("radix root: %p rnode %p tags %x\n",
 317			root, root->rnode,
 318			root->gfp_mask >> ROOT_TAG_SHIFT);
 319	if (!radix_tree_is_internal_node(root->rnode))
 320		return;
 321	dump_node(entry_to_node(root->rnode), 0);
 322}
 323
 324static void dump_ida_node(void *entry, unsigned long index)
 325{
 326	unsigned long i;
 327
 328	if (!entry)
 329		return;
 330
 331	if (radix_tree_is_internal_node(entry)) {
 332		struct radix_tree_node *node = entry_to_node(entry);
 333
 334		pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
 335			node, node->offset, index * IDA_BITMAP_BITS,
 336			((index | node_maxindex(node)) + 1) *
 337				IDA_BITMAP_BITS - 1,
 338			node->parent, node->tags[0][0], node->shift,
 339			node->count);
 340		for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
 341			dump_ida_node(node->slots[i],
 342					index | (i << node->shift));
 343	} else if (radix_tree_exceptional_entry(entry)) {
 344		pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
 345				entry, (int)(index & RADIX_TREE_MAP_MASK),
 346				index * IDA_BITMAP_BITS,
 347				index * IDA_BITMAP_BITS + BITS_PER_LONG -
 348					RADIX_TREE_EXCEPTIONAL_SHIFT,
 349				(unsigned long)entry >>
 350					RADIX_TREE_EXCEPTIONAL_SHIFT);
 351	} else {
 352		struct ida_bitmap *bitmap = entry;
 353
 354		pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
 355				(int)(index & RADIX_TREE_MAP_MASK),
 356				index * IDA_BITMAP_BITS,
 357				(index + 1) * IDA_BITMAP_BITS - 1);
 358		for (i = 0; i < IDA_BITMAP_LONGS; i++)
 359			pr_cont(" %lx", bitmap->bitmap[i]);
 360		pr_cont("\n");
 361	}
 362}
 363
 364static void ida_dump(struct ida *ida)
 365{
 366	struct radix_tree_root *root = &ida->ida_rt;
 367	pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
 368				root->gfp_mask >> ROOT_TAG_SHIFT);
 369	dump_ida_node(root->rnode, 0);
 370}
 371#endif
 372
 373/*
 374 * This assumes that the caller has performed appropriate preallocation, and
 375 * that the caller has pinned this thread of control to the current CPU.
 376 */
 377static struct radix_tree_node *
 378radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 379			struct radix_tree_root *root,
 380			unsigned int shift, unsigned int offset,
 381			unsigned int count, unsigned int exceptional)
 382{
 383	struct radix_tree_node *ret = NULL;
 
 384
 385	/*
 386	 * Preload code isn't irq safe and it doesn't make sense to use
 387	 * preloading during an interrupt anyway as all the allocations have
 388	 * to be atomic. So just do normal allocation when in interrupt.
 389	 */
 390	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 391		struct radix_tree_preload *rtp;
 392
 393		/*
 394		 * Even if the caller has preloaded, try to allocate from the
 395		 * cache first for the new node to get accounted to the memory
 396		 * cgroup.
 397		 */
 398		ret = kmem_cache_alloc(radix_tree_node_cachep,
 399				       gfp_mask | __GFP_NOWARN);
 400		if (ret)
 401			goto out;
 402
 403		/*
 404		 * Provided the caller has preloaded here, we will always
 405		 * succeed in getting a node here (and never reach
 406		 * kmem_cache_alloc)
 407		 */
 408		rtp = this_cpu_ptr(&radix_tree_preloads);
 409		if (rtp->nr) {
 410			ret = rtp->nodes;
 411			rtp->nodes = ret->parent;
 
 412			rtp->nr--;
 413		}
 414		/*
 415		 * Update the allocation stack trace as this is more useful
 416		 * for debugging.
 417		 */
 418		kmemleak_update_trace(ret);
 419		goto out;
 420	}
 421	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 422out:
 423	BUG_ON(radix_tree_is_internal_node(ret));
 424	if (ret) {
 
 425		ret->shift = shift;
 426		ret->offset = offset;
 427		ret->count = count;
 428		ret->exceptional = exceptional;
 429		ret->parent = parent;
 430		ret->root = root;
 431	}
 432	return ret;
 433}
 434
 435static void radix_tree_node_rcu_free(struct rcu_head *head)
 436{
 437	struct radix_tree_node *node =
 438			container_of(head, struct radix_tree_node, rcu_head);
 439
 440	/*
 441	 * Must only free zeroed nodes into the slab.  We can be left with
 442	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 443	 * and tags here.
 444	 */
 445	memset(node->slots, 0, sizeof(node->slots));
 446	memset(node->tags, 0, sizeof(node->tags));
 447	INIT_LIST_HEAD(&node->private_list);
 448
 449	kmem_cache_free(radix_tree_node_cachep, node);
 450}
 451
 452static inline void
 453radix_tree_node_free(struct radix_tree_node *node)
 454{
 455	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 456}
 457
 458/*
 459 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 460 * ensure that the addition of a single element in the tree cannot fail.  On
 461 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 462 * with preemption not disabled.
 463 *
 464 * To make use of this facility, the radix tree must be initialised without
 465 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 466 */
 467static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 468{
 469	struct radix_tree_preload *rtp;
 470	struct radix_tree_node *node;
 471	int ret = -ENOMEM;
 472
 473	/*
 474	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 475	 * they should never be accounted to any particular memory cgroup.
 476	 */
 477	gfp_mask &= ~__GFP_ACCOUNT;
 478
 479	preempt_disable();
 480	rtp = this_cpu_ptr(&radix_tree_preloads);
 481	while (rtp->nr < nr) {
 482		preempt_enable();
 483		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 484		if (node == NULL)
 485			goto out;
 486		preempt_disable();
 487		rtp = this_cpu_ptr(&radix_tree_preloads);
 488		if (rtp->nr < nr) {
 489			node->parent = rtp->nodes;
 490			rtp->nodes = node;
 491			rtp->nr++;
 492		} else {
 493			kmem_cache_free(radix_tree_node_cachep, node);
 494		}
 495	}
 496	ret = 0;
 497out:
 498	return ret;
 499}
 500
 501/*
 502 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 503 * ensure that the addition of a single element in the tree cannot fail.  On
 504 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 505 * with preemption not disabled.
 506 *
 507 * To make use of this facility, the radix tree must be initialised without
 508 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 509 */
 510int radix_tree_preload(gfp_t gfp_mask)
 511{
 512	/* Warn on non-sensical use... */
 513	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 514	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 515}
 516EXPORT_SYMBOL(radix_tree_preload);
 517
 518/*
 519 * The same as above function, except we don't guarantee preloading happens.
 520 * We do it, if we decide it helps. On success, return zero with preemption
 521 * disabled. On error, return -ENOMEM with preemption not disabled.
 522 */
 523int radix_tree_maybe_preload(gfp_t gfp_mask)
 524{
 525	if (gfpflags_allow_blocking(gfp_mask))
 526		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 527	/* Preloading doesn't help anything with this gfp mask, skip it */
 528	preempt_disable();
 529	return 0;
 530}
 531EXPORT_SYMBOL(radix_tree_maybe_preload);
 532
 533#ifdef CONFIG_RADIX_TREE_MULTIORDER
 534/*
 535 * Preload with enough objects to ensure that we can split a single entry
 536 * of order @old_order into many entries of size @new_order
 537 */
 538int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 539							gfp_t gfp_mask)
 540{
 541	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 542	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 543				(new_order / RADIX_TREE_MAP_SHIFT);
 544	unsigned nr = 0;
 545
 546	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 547	BUG_ON(new_order >= old_order);
 548
 549	while (layers--)
 550		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 551	return __radix_tree_preload(gfp_mask, top * nr);
 552}
 553#endif
 554
 555/*
 556 * The same as function above, but preload number of nodes required to insert
 557 * (1 << order) continuous naturally-aligned elements.
 558 */
 559int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 560{
 561	unsigned long nr_subtrees;
 562	int nr_nodes, subtree_height;
 563
 564	/* Preloading doesn't help anything with this gfp mask, skip it */
 565	if (!gfpflags_allow_blocking(gfp_mask)) {
 566		preempt_disable();
 567		return 0;
 568	}
 569
 570	/*
 571	 * Calculate number and height of fully populated subtrees it takes to
 572	 * store (1 << order) elements.
 573	 */
 574	nr_subtrees = 1 << order;
 575	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 576			subtree_height++)
 577		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 578
 579	/*
 580	 * The worst case is zero height tree with a single item at index 0 and
 581	 * then inserting items starting at ULONG_MAX - (1 << order).
 582	 *
 583	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 584	 * 0-index item.
 585	 */
 586	nr_nodes = RADIX_TREE_MAX_PATH;
 587
 588	/* Plus branch to fully populated subtrees. */
 589	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 590
 591	/* Root node is shared. */
 592	nr_nodes--;
 593
 594	/* Plus nodes required to build subtrees. */
 595	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 596
 597	return __radix_tree_preload(gfp_mask, nr_nodes);
 598}
 599
 600static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 601		struct radix_tree_node **nodep, unsigned long *maxindex)
 602{
 603	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 604
 605	*nodep = node;
 606
 607	if (likely(radix_tree_is_internal_node(node))) {
 608		node = entry_to_node(node);
 609		*maxindex = node_maxindex(node);
 610		return node->shift + RADIX_TREE_MAP_SHIFT;
 611	}
 612
 613	*maxindex = 0;
 614	return 0;
 615}
 616
 617/*
 618 *	Extend a radix tree so it can store key @index.
 619 */
 620static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 621				unsigned long index, unsigned int shift)
 622{
 623	void *entry;
 624	unsigned int maxshift;
 625	int tag;
 626
 627	/* Figure out what the shift should be.  */
 628	maxshift = shift;
 629	while (index > shift_maxindex(maxshift))
 630		maxshift += RADIX_TREE_MAP_SHIFT;
 631
 632	entry = rcu_dereference_raw(root->rnode);
 633	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 634		goto out;
 635
 636	do {
 637		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 638							root, shift, 0, 1, 0);
 639		if (!node)
 640			return -ENOMEM;
 641
 642		if (is_idr(root)) {
 643			all_tag_set(node, IDR_FREE);
 644			if (!root_tag_get(root, IDR_FREE)) {
 645				tag_clear(node, IDR_FREE, 0);
 646				root_tag_set(root, IDR_FREE);
 647			}
 648		} else {
 649			/* Propagate the aggregated tag info to the new child */
 650			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 651				if (root_tag_get(root, tag))
 652					tag_set(node, tag, 0);
 653			}
 654		}
 655
 656		BUG_ON(shift > BITS_PER_LONG);
 657		if (radix_tree_is_internal_node(entry)) {
 658			entry_to_node(entry)->parent = node;
 659		} else if (radix_tree_exceptional_entry(entry)) {
 660			/* Moving an exceptional root->rnode to a node */
 661			node->exceptional = 1;
 662		}
 663		/*
 664		 * entry was already in the radix tree, so we do not need
 665		 * rcu_assign_pointer here
 666		 */
 667		node->slots[0] = (void __rcu *)entry;
 668		entry = node_to_entry(node);
 669		rcu_assign_pointer(root->rnode, entry);
 670		shift += RADIX_TREE_MAP_SHIFT;
 671	} while (shift <= maxshift);
 672out:
 673	return maxshift + RADIX_TREE_MAP_SHIFT;
 674}
 675
 676/**
 677 *	radix_tree_shrink    -    shrink radix tree to minimum height
 678 *	@root		radix tree root
 679 */
 680static inline bool radix_tree_shrink(struct radix_tree_root *root,
 681				     radix_tree_update_node_t update_node)
 
 682{
 683	bool shrunk = false;
 684
 685	for (;;) {
 686		struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 687		struct radix_tree_node *child;
 688
 689		if (!radix_tree_is_internal_node(node))
 690			break;
 691		node = entry_to_node(node);
 692
 693		/*
 694		 * The candidate node has more than one child, or its child
 695		 * is not at the leftmost slot, or the child is a multiorder
 696		 * entry, we cannot shrink.
 697		 */
 698		if (node->count != 1)
 699			break;
 700		child = rcu_dereference_raw(node->slots[0]);
 701		if (!child)
 702			break;
 703		if (!radix_tree_is_internal_node(child) && node->shift)
 704			break;
 705
 706		if (radix_tree_is_internal_node(child))
 707			entry_to_node(child)->parent = NULL;
 708
 709		/*
 710		 * We don't need rcu_assign_pointer(), since we are simply
 711		 * moving the node from one part of the tree to another: if it
 712		 * was safe to dereference the old pointer to it
 713		 * (node->slots[0]), it will be safe to dereference the new
 714		 * one (root->rnode) as far as dependent read barriers go.
 715		 */
 716		root->rnode = (void __rcu *)child;
 717		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 718			root_tag_clear(root, IDR_FREE);
 719
 720		/*
 721		 * We have a dilemma here. The node's slot[0] must not be
 722		 * NULLed in case there are concurrent lookups expecting to
 723		 * find the item. However if this was a bottom-level node,
 724		 * then it may be subject to the slot pointer being visible
 725		 * to callers dereferencing it. If item corresponding to
 726		 * slot[0] is subsequently deleted, these callers would expect
 727		 * their slot to become empty sooner or later.
 728		 *
 729		 * For example, lockless pagecache will look up a slot, deref
 730		 * the page pointer, and if the page has 0 refcount it means it
 731		 * was concurrently deleted from pagecache so try the deref
 732		 * again. Fortunately there is already a requirement for logic
 733		 * to retry the entire slot lookup -- the indirect pointer
 734		 * problem (replacing direct root node with an indirect pointer
 735		 * also results in a stale slot). So tag the slot as indirect
 736		 * to force callers to retry.
 737		 */
 738		node->count = 0;
 739		if (!radix_tree_is_internal_node(child)) {
 740			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 741			if (update_node)
 742				update_node(node);
 743		}
 744
 745		WARN_ON_ONCE(!list_empty(&node->private_list));
 746		radix_tree_node_free(node);
 747		shrunk = true;
 748	}
 749
 750	return shrunk;
 751}
 752
 753static bool delete_node(struct radix_tree_root *root,
 754			struct radix_tree_node *node,
 755			radix_tree_update_node_t update_node)
 756{
 757	bool deleted = false;
 758
 759	do {
 760		struct radix_tree_node *parent;
 761
 762		if (node->count) {
 763			if (node_to_entry(node) ==
 764					rcu_dereference_raw(root->rnode))
 765				deleted |= radix_tree_shrink(root,
 766								update_node);
 767			return deleted;
 768		}
 769
 770		parent = node->parent;
 771		if (parent) {
 772			parent->slots[node->offset] = NULL;
 773			parent->count--;
 774		} else {
 775			/*
 776			 * Shouldn't the tags already have all been cleared
 777			 * by the caller?
 778			 */
 779			if (!is_idr(root))
 780				root_tag_clear_all(root);
 781			root->rnode = NULL;
 782		}
 783
 784		WARN_ON_ONCE(!list_empty(&node->private_list));
 785		radix_tree_node_free(node);
 786		deleted = true;
 787
 788		node = parent;
 789	} while (node);
 790
 791	return deleted;
 792}
 793
 794/**
 795 *	__radix_tree_create	-	create a slot in a radix tree
 796 *	@root:		radix tree root
 797 *	@index:		index key
 798 *	@order:		index occupies 2^order aligned slots
 799 *	@nodep:		returns node
 800 *	@slotp:		returns slot
 801 *
 802 *	Create, if necessary, and return the node and slot for an item
 803 *	at position @index in the radix tree @root.
 804 *
 805 *	Until there is more than one item in the tree, no nodes are
 806 *	allocated and @root->rnode is used as a direct slot instead of
 807 *	pointing to a node, in which case *@nodep will be NULL.
 808 *
 809 *	Returns -ENOMEM, or 0 for success.
 810 */
 811int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 812			unsigned order, struct radix_tree_node **nodep,
 813			void __rcu ***slotp)
 814{
 815	struct radix_tree_node *node = NULL, *child;
 816	void __rcu **slot = (void __rcu **)&root->rnode;
 817	unsigned long maxindex;
 818	unsigned int shift, offset = 0;
 819	unsigned long max = index | ((1UL << order) - 1);
 820	gfp_t gfp = root_gfp_mask(root);
 821
 822	shift = radix_tree_load_root(root, &child, &maxindex);
 823
 824	/* Make sure the tree is high enough.  */
 825	if (order > 0 && max == ((1UL << order) - 1))
 826		max++;
 827	if (max > maxindex) {
 828		int error = radix_tree_extend(root, gfp, max, shift);
 829		if (error < 0)
 830			return error;
 831		shift = error;
 832		child = rcu_dereference_raw(root->rnode);
 833	}
 834
 835	while (shift > order) {
 836		shift -= RADIX_TREE_MAP_SHIFT;
 837		if (child == NULL) {
 838			/* Have to add a child node.  */
 839			child = radix_tree_node_alloc(gfp, node, root, shift,
 840							offset, 0, 0);
 841			if (!child)
 842				return -ENOMEM;
 843			rcu_assign_pointer(*slot, node_to_entry(child));
 844			if (node)
 845				node->count++;
 846		} else if (!radix_tree_is_internal_node(child))
 847			break;
 848
 849		/* Go a level down */
 850		node = entry_to_node(child);
 851		offset = radix_tree_descend(node, &child, index);
 852		slot = &node->slots[offset];
 853	}
 854
 855	if (nodep)
 856		*nodep = node;
 857	if (slotp)
 858		*slotp = slot;
 859	return 0;
 860}
 861
 
 862/*
 863 * Free any nodes below this node.  The tree is presumed to not need
 864 * shrinking, and any user data in the tree is presumed to not need a
 865 * destructor called on it.  If we need to add a destructor, we can
 866 * add that functionality later.  Note that we may not clear tags or
 867 * slots from the tree as an RCU walker may still have a pointer into
 868 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 869 * but we'll still have to clear those in rcu_free.
 870 */
 871static void radix_tree_free_nodes(struct radix_tree_node *node)
 872{
 873	unsigned offset = 0;
 874	struct radix_tree_node *child = entry_to_node(node);
 875
 876	for (;;) {
 877		void *entry = rcu_dereference_raw(child->slots[offset]);
 878		if (radix_tree_is_internal_node(entry) &&
 879					!is_sibling_entry(child, entry)) {
 880			child = entry_to_node(entry);
 881			offset = 0;
 882			continue;
 883		}
 884		offset++;
 885		while (offset == RADIX_TREE_MAP_SIZE) {
 886			struct radix_tree_node *old = child;
 887			offset = child->offset + 1;
 888			child = child->parent;
 889			WARN_ON_ONCE(!list_empty(&old->private_list));
 890			radix_tree_node_free(old);
 891			if (old == entry_to_node(node))
 892				return;
 893		}
 894	}
 895}
 896
 897#ifdef CONFIG_RADIX_TREE_MULTIORDER
 898static inline int insert_entries(struct radix_tree_node *node,
 899		void __rcu **slot, void *item, unsigned order, bool replace)
 900{
 901	struct radix_tree_node *child;
 902	unsigned i, n, tag, offset, tags = 0;
 903
 904	if (node) {
 905		if (order > node->shift)
 906			n = 1 << (order - node->shift);
 907		else
 908			n = 1;
 909		offset = get_slot_offset(node, slot);
 910	} else {
 911		n = 1;
 912		offset = 0;
 913	}
 914
 915	if (n > 1) {
 916		offset = offset & ~(n - 1);
 917		slot = &node->slots[offset];
 918	}
 919	child = node_to_entry(slot);
 920
 921	for (i = 0; i < n; i++) {
 922		if (slot[i]) {
 923			if (replace) {
 924				node->count--;
 925				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 926					if (tag_get(node, tag, offset + i))
 927						tags |= 1 << tag;
 928			} else
 929				return -EEXIST;
 930		}
 931	}
 932
 933	for (i = 0; i < n; i++) {
 934		struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
 935		if (i) {
 936			rcu_assign_pointer(slot[i], child);
 937			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 938				if (tags & (1 << tag))
 939					tag_clear(node, tag, offset + i);
 940		} else {
 941			rcu_assign_pointer(slot[i], item);
 942			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 943				if (tags & (1 << tag))
 944					tag_set(node, tag, offset);
 945		}
 946		if (radix_tree_is_internal_node(old) &&
 947					!is_sibling_entry(node, old) &&
 948					(old != RADIX_TREE_RETRY))
 949			radix_tree_free_nodes(old);
 950		if (radix_tree_exceptional_entry(old))
 951			node->exceptional--;
 952	}
 953	if (node) {
 954		node->count += n;
 955		if (radix_tree_exceptional_entry(item))
 956			node->exceptional += n;
 957	}
 958	return n;
 959}
 960#else
 961static inline int insert_entries(struct radix_tree_node *node,
 962		void __rcu **slot, void *item, unsigned order, bool replace)
 963{
 964	if (*slot)
 965		return -EEXIST;
 966	rcu_assign_pointer(*slot, item);
 967	if (node) {
 968		node->count++;
 969		if (radix_tree_exceptional_entry(item))
 970			node->exceptional++;
 971	}
 972	return 1;
 973}
 974#endif
 975
 976/**
 977 *	__radix_tree_insert    -    insert into a radix tree
 978 *	@root:		radix tree root
 979 *	@index:		index key
 980 *	@order:		key covers the 2^order indices around index
 981 *	@item:		item to insert
 982 *
 983 *	Insert an item into the radix tree at position @index.
 984 */
 985int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 986			unsigned order, void *item)
 987{
 988	struct radix_tree_node *node;
 989	void __rcu **slot;
 990	int error;
 991
 992	BUG_ON(radix_tree_is_internal_node(item));
 993
 994	error = __radix_tree_create(root, index, order, &node, &slot);
 995	if (error)
 996		return error;
 997
 998	error = insert_entries(node, slot, item, order, false);
 999	if (error < 0)
1000		return error;
1001
1002	if (node) {
1003		unsigned offset = get_slot_offset(node, slot);
1004		BUG_ON(tag_get(node, 0, offset));
1005		BUG_ON(tag_get(node, 1, offset));
1006		BUG_ON(tag_get(node, 2, offset));
1007	} else {
1008		BUG_ON(root_tags_get(root));
1009	}
1010
1011	return 0;
1012}
1013EXPORT_SYMBOL(__radix_tree_insert);
1014
1015/**
1016 *	__radix_tree_lookup	-	lookup an item in a radix tree
1017 *	@root:		radix tree root
1018 *	@index:		index key
1019 *	@nodep:		returns node
1020 *	@slotp:		returns slot
1021 *
1022 *	Lookup and return the item at position @index in the radix
1023 *	tree @root.
1024 *
1025 *	Until there is more than one item in the tree, no nodes are
1026 *	allocated and @root->rnode is used as a direct slot instead of
1027 *	pointing to a node, in which case *@nodep will be NULL.
1028 */
1029void *__radix_tree_lookup(const struct radix_tree_root *root,
1030			  unsigned long index, struct radix_tree_node **nodep,
1031			  void __rcu ***slotp)
1032{
1033	struct radix_tree_node *node, *parent;
1034	unsigned long maxindex;
1035	void __rcu **slot;
1036
1037 restart:
1038	parent = NULL;
1039	slot = (void __rcu **)&root->rnode;
1040	radix_tree_load_root(root, &node, &maxindex);
1041	if (index > maxindex)
1042		return NULL;
1043
1044	while (radix_tree_is_internal_node(node)) {
1045		unsigned offset;
1046
1047		if (node == RADIX_TREE_RETRY)
1048			goto restart;
1049		parent = entry_to_node(node);
1050		offset = radix_tree_descend(parent, &node, index);
1051		slot = parent->slots + offset;
1052	}
1053
1054	if (nodep)
1055		*nodep = parent;
1056	if (slotp)
1057		*slotp = slot;
1058	return node;
1059}
1060
1061/**
1062 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
1063 *	@root:		radix tree root
1064 *	@index:		index key
1065 *
1066 *	Returns:  the slot corresponding to the position @index in the
1067 *	radix tree @root. This is useful for update-if-exists operations.
1068 *
1069 *	This function can be called under rcu_read_lock iff the slot is not
1070 *	modified by radix_tree_replace_slot, otherwise it must be called
1071 *	exclusive from other writers. Any dereference of the slot must be done
1072 *	using radix_tree_deref_slot.
1073 */
1074void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
1075				unsigned long index)
1076{
1077	void __rcu **slot;
1078
1079	if (!__radix_tree_lookup(root, index, NULL, &slot))
1080		return NULL;
1081	return slot;
1082}
1083EXPORT_SYMBOL(radix_tree_lookup_slot);
1084
1085/**
1086 *	radix_tree_lookup    -    perform lookup operation on a radix tree
1087 *	@root:		radix tree root
1088 *	@index:		index key
1089 *
1090 *	Lookup the item at the position @index in the radix tree @root.
1091 *
1092 *	This function can be called under rcu_read_lock, however the caller
1093 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1094 *	them safely). No RCU barriers are required to access or modify the
1095 *	returned item, however.
1096 */
1097void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
1098{
1099	return __radix_tree_lookup(root, index, NULL, NULL);
1100}
1101EXPORT_SYMBOL(radix_tree_lookup);
1102
1103static inline void replace_sibling_entries(struct radix_tree_node *node,
1104				void __rcu **slot, int count, int exceptional)
1105{
 
1106#ifdef CONFIG_RADIX_TREE_MULTIORDER
1107	void *ptr = node_to_entry(slot);
1108	unsigned offset = get_slot_offset(node, slot) + 1;
 
1109
1110	while (offset < RADIX_TREE_MAP_SIZE) {
1111		if (rcu_dereference_raw(node->slots[offset]) != ptr)
1112			break;
1113		if (count < 0) {
1114			node->slots[offset] = NULL;
1115			node->count--;
1116		}
1117		node->exceptional += exceptional;
1118		offset++;
1119	}
1120#endif
 
1121}
1122
1123static void replace_slot(void __rcu **slot, void *item,
1124		struct radix_tree_node *node, int count, int exceptional)
 
 
1125{
1126	if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1127		return;
 
 
 
 
 
 
 
 
1128
1129	if (node && (count || exceptional)) {
1130		node->count += count;
1131		node->exceptional += exceptional;
1132		replace_sibling_entries(node, slot, count, exceptional);
 
 
1133	}
1134
1135	rcu_assign_pointer(*slot, item);
1136}
1137
1138static bool node_tag_get(const struct radix_tree_root *root,
1139				const struct radix_tree_node *node,
1140				unsigned int tag, unsigned int offset)
1141{
1142	if (node)
1143		return tag_get(node, tag, offset);
1144	return root_tag_get(root, tag);
1145}
 
1146
1147/*
1148 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1149 * free, don't adjust the count, even if it's transitioning between NULL and
1150 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
1151 * have empty bits, but it only stores NULL in slots when they're being
1152 * deleted.
1153 */
1154static int calculate_count(struct radix_tree_root *root,
1155				struct radix_tree_node *node, void __rcu **slot,
1156				void *item, void *old)
1157{
1158	if (is_idr(root)) {
1159		unsigned offset = get_slot_offset(node, slot);
1160		bool free = node_tag_get(root, node, IDR_FREE, offset);
1161		if (!free)
1162			return 0;
1163		if (!old)
1164			return 1;
1165	}
1166	return !!item - !!old;
1167}
1168
1169/**
1170 * __radix_tree_replace		- replace item in a slot
1171 * @root:		radix tree root
1172 * @node:		pointer to tree node
1173 * @slot:		pointer to slot in @node
1174 * @item:		new item to store in the slot.
1175 * @update_node:	callback for changing leaf nodes
 
1176 *
1177 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1178 * across slot lookup and replacement.
1179 */
1180void __radix_tree_replace(struct radix_tree_root *root,
1181			  struct radix_tree_node *node,
1182			  void __rcu **slot, void *item,
1183			  radix_tree_update_node_t update_node)
1184{
1185	void *old = rcu_dereference_raw(*slot);
1186	int exceptional = !!radix_tree_exceptional_entry(item) -
1187				!!radix_tree_exceptional_entry(old);
1188	int count = calculate_count(root, node, slot, item, old);
1189
1190	/*
1191	 * This function supports replacing exceptional entries and
1192	 * deleting entries, but that needs accounting against the
1193	 * node unless the slot is root->rnode.
1194	 */
1195	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
1196			(count || exceptional));
1197	replace_slot(slot, item, node, count, exceptional);
1198
1199	if (!node)
1200		return;
1201
1202	if (update_node)
1203		update_node(node);
1204
1205	delete_node(root, node, update_node);
1206}
1207
1208/**
1209 * radix_tree_replace_slot	- replace item in a slot
1210 * @root:	radix tree root
1211 * @slot:	pointer to slot
1212 * @item:	new item to store in the slot.
1213 *
1214 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1215 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1216 * across slot lookup and replacement.
1217 *
1218 * NOTE: This cannot be used to switch between non-entries (empty slots),
1219 * regular entries, and exceptional entries, as that requires accounting
1220 * inside the radix tree node. When switching from one type of entry or
1221 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1222 * radix_tree_iter_replace().
1223 */
1224void radix_tree_replace_slot(struct radix_tree_root *root,
1225			     void __rcu **slot, void *item)
1226{
1227	__radix_tree_replace(root, NULL, slot, item, NULL);
1228}
1229EXPORT_SYMBOL(radix_tree_replace_slot);
1230
1231/**
1232 * radix_tree_iter_replace - replace item in a slot
1233 * @root:	radix tree root
1234 * @slot:	pointer to slot
1235 * @item:	new item to store in the slot.
1236 *
1237 * For use with radix_tree_split() and radix_tree_for_each_slot().
1238 * Caller must hold tree write locked across split and replacement.
1239 */
1240void radix_tree_iter_replace(struct radix_tree_root *root,
1241				const struct radix_tree_iter *iter,
1242				void __rcu **slot, void *item)
1243{
1244	__radix_tree_replace(root, iter->node, slot, item, NULL);
1245}
1246
1247#ifdef CONFIG_RADIX_TREE_MULTIORDER
1248/**
1249 * radix_tree_join - replace multiple entries with one multiorder entry
1250 * @root: radix tree root
1251 * @index: an index inside the new entry
1252 * @order: order of the new entry
1253 * @item: new entry
1254 *
1255 * Call this function to replace several entries with one larger entry.
1256 * The existing entries are presumed to not need freeing as a result of
1257 * this call.
1258 *
1259 * The replacement entry will have all the tags set on it that were set
1260 * on any of the entries it is replacing.
1261 */
1262int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1263			unsigned order, void *item)
1264{
1265	struct radix_tree_node *node;
1266	void __rcu **slot;
1267	int error;
1268
1269	BUG_ON(radix_tree_is_internal_node(item));
1270
1271	error = __radix_tree_create(root, index, order, &node, &slot);
1272	if (!error)
1273		error = insert_entries(node, slot, item, order, true);
1274	if (error > 0)
1275		error = 0;
1276
1277	return error;
1278}
1279
1280/**
1281 * radix_tree_split - Split an entry into smaller entries
1282 * @root: radix tree root
1283 * @index: An index within the large entry
1284 * @order: Order of new entries
1285 *
1286 * Call this function as the first step in replacing a multiorder entry
1287 * with several entries of lower order.  After this function returns,
1288 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1289 * and call radix_tree_iter_replace() to set up each new entry.
1290 *
1291 * The tags from this entry are replicated to all the new entries.
1292 *
1293 * The radix tree should be locked against modification during the entire
1294 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1295 * should prompt RCU walkers to restart the lookup from the root.
1296 */
1297int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1298				unsigned order)
1299{
1300	struct radix_tree_node *parent, *node, *child;
1301	void __rcu **slot;
1302	unsigned int offset, end;
1303	unsigned n, tag, tags = 0;
1304	gfp_t gfp = root_gfp_mask(root);
1305
1306	if (!__radix_tree_lookup(root, index, &parent, &slot))
1307		return -ENOENT;
1308	if (!parent)
1309		return -ENOENT;
1310
1311	offset = get_slot_offset(parent, slot);
1312
1313	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1314		if (tag_get(parent, tag, offset))
1315			tags |= 1 << tag;
1316
1317	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1318		if (!is_sibling_entry(parent,
1319				rcu_dereference_raw(parent->slots[end])))
1320			break;
1321		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1322			if (tags & (1 << tag))
1323				tag_set(parent, tag, end);
1324		/* rcu_assign_pointer ensures tags are set before RETRY */
1325		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1326	}
1327	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1328	parent->exceptional -= (end - offset);
1329
1330	if (order == parent->shift)
1331		return 0;
1332	if (order > parent->shift) {
1333		while (offset < end)
1334			offset += insert_entries(parent, &parent->slots[offset],
1335					RADIX_TREE_RETRY, order, true);
1336		return 0;
1337	}
1338
1339	node = parent;
1340
1341	for (;;) {
1342		if (node->shift > order) {
1343			child = radix_tree_node_alloc(gfp, node, root,
1344					node->shift - RADIX_TREE_MAP_SHIFT,
1345					offset, 0, 0);
1346			if (!child)
1347				goto nomem;
1348			if (node != parent) {
1349				node->count++;
1350				rcu_assign_pointer(node->slots[offset],
1351							node_to_entry(child));
1352				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1353					if (tags & (1 << tag))
1354						tag_set(node, tag, offset);
1355			}
1356
1357			node = child;
1358			offset = 0;
1359			continue;
1360		}
1361
1362		n = insert_entries(node, &node->slots[offset],
1363					RADIX_TREE_RETRY, order, false);
1364		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1365
1366		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1367			if (tags & (1 << tag))
1368				tag_set(node, tag, offset);
1369		offset += n;
1370
1371		while (offset == RADIX_TREE_MAP_SIZE) {
1372			if (node == parent)
1373				break;
1374			offset = node->offset;
1375			child = node;
1376			node = node->parent;
1377			rcu_assign_pointer(node->slots[offset],
1378						node_to_entry(child));
1379			offset++;
1380		}
1381		if ((node == parent) && (offset == end))
1382			return 0;
1383	}
1384
1385 nomem:
1386	/* Shouldn't happen; did user forget to preload? */
1387	/* TODO: free all the allocated nodes */
1388	WARN_ON(1);
1389	return -ENOMEM;
1390}
1391#endif
1392
1393static void node_tag_set(struct radix_tree_root *root,
1394				struct radix_tree_node *node,
1395				unsigned int tag, unsigned int offset)
1396{
1397	while (node) {
1398		if (tag_get(node, tag, offset))
1399			return;
1400		tag_set(node, tag, offset);
1401		offset = node->offset;
1402		node = node->parent;
1403	}
1404
1405	if (!root_tag_get(root, tag))
1406		root_tag_set(root, tag);
1407}
1408
1409/**
1410 *	radix_tree_tag_set - set a tag on a radix tree node
1411 *	@root:		radix tree root
1412 *	@index:		index key
1413 *	@tag:		tag index
1414 *
1415 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1416 *	corresponding to @index in the radix tree.  From
1417 *	the root all the way down to the leaf node.
1418 *
1419 *	Returns the address of the tagged item.  Setting a tag on a not-present
1420 *	item is a bug.
1421 */
1422void *radix_tree_tag_set(struct radix_tree_root *root,
1423			unsigned long index, unsigned int tag)
1424{
1425	struct radix_tree_node *node, *parent;
1426	unsigned long maxindex;
1427
1428	radix_tree_load_root(root, &node, &maxindex);
1429	BUG_ON(index > maxindex);
1430
1431	while (radix_tree_is_internal_node(node)) {
1432		unsigned offset;
1433
1434		parent = entry_to_node(node);
1435		offset = radix_tree_descend(parent, &node, index);
1436		BUG_ON(!node);
1437
1438		if (!tag_get(parent, tag, offset))
1439			tag_set(parent, tag, offset);
1440	}
1441
1442	/* set the root's tag bit */
1443	if (!root_tag_get(root, tag))
1444		root_tag_set(root, tag);
1445
1446	return node;
1447}
1448EXPORT_SYMBOL(radix_tree_tag_set);
1449
1450/**
1451 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1452 * @root:	radix tree root
1453 * @iter:	iterator state
1454 * @tag:	tag to set
1455 */
1456void radix_tree_iter_tag_set(struct radix_tree_root *root,
1457			const struct radix_tree_iter *iter, unsigned int tag)
1458{
1459	node_tag_set(root, iter->node, tag, iter_offset(iter));
1460}
1461
1462static void node_tag_clear(struct radix_tree_root *root,
1463				struct radix_tree_node *node,
1464				unsigned int tag, unsigned int offset)
1465{
1466	while (node) {
1467		if (!tag_get(node, tag, offset))
1468			return;
1469		tag_clear(node, tag, offset);
1470		if (any_tag_set(node, tag))
1471			return;
1472
1473		offset = node->offset;
1474		node = node->parent;
1475	}
1476
1477	/* clear the root's tag bit */
1478	if (root_tag_get(root, tag))
1479		root_tag_clear(root, tag);
1480}
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482/**
1483 *	radix_tree_tag_clear - clear a tag on a radix tree node
1484 *	@root:		radix tree root
1485 *	@index:		index key
1486 *	@tag:		tag index
1487 *
1488 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1489 *	corresponding to @index in the radix tree.  If this causes
1490 *	the leaf node to have no tags set then clear the tag in the
1491 *	next-to-leaf node, etc.
1492 *
1493 *	Returns the address of the tagged item on success, else NULL.  ie:
1494 *	has the same return value and semantics as radix_tree_lookup().
1495 */
1496void *radix_tree_tag_clear(struct radix_tree_root *root,
1497			unsigned long index, unsigned int tag)
1498{
1499	struct radix_tree_node *node, *parent;
1500	unsigned long maxindex;
1501	int uninitialized_var(offset);
1502
1503	radix_tree_load_root(root, &node, &maxindex);
1504	if (index > maxindex)
1505		return NULL;
1506
1507	parent = NULL;
1508
1509	while (radix_tree_is_internal_node(node)) {
1510		parent = entry_to_node(node);
1511		offset = radix_tree_descend(parent, &node, index);
1512	}
1513
1514	if (node)
1515		node_tag_clear(root, parent, tag, offset);
1516
1517	return node;
1518}
1519EXPORT_SYMBOL(radix_tree_tag_clear);
1520
1521/**
1522  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1523  * @root: radix tree root
1524  * @iter: iterator state
1525  * @tag: tag to clear
1526  */
1527void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1528			const struct radix_tree_iter *iter, unsigned int tag)
1529{
1530	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1531}
1532
1533/**
1534 * radix_tree_tag_get - get a tag on a radix tree node
1535 * @root:		radix tree root
1536 * @index:		index key
1537 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1538 *
1539 * Return values:
1540 *
1541 *  0: tag not present or not set
1542 *  1: tag set
1543 *
1544 * Note that the return value of this function may not be relied on, even if
1545 * the RCU lock is held, unless tag modification and node deletion are excluded
1546 * from concurrency.
1547 */
1548int radix_tree_tag_get(const struct radix_tree_root *root,
1549			unsigned long index, unsigned int tag)
1550{
1551	struct radix_tree_node *node, *parent;
1552	unsigned long maxindex;
1553
1554	if (!root_tag_get(root, tag))
1555		return 0;
1556
1557	radix_tree_load_root(root, &node, &maxindex);
1558	if (index > maxindex)
1559		return 0;
 
 
1560
1561	while (radix_tree_is_internal_node(node)) {
1562		unsigned offset;
1563
1564		parent = entry_to_node(node);
1565		offset = radix_tree_descend(parent, &node, index);
1566
 
 
1567		if (!tag_get(parent, tag, offset))
1568			return 0;
1569		if (node == RADIX_TREE_RETRY)
1570			break;
1571	}
1572
1573	return 1;
1574}
1575EXPORT_SYMBOL(radix_tree_tag_get);
1576
1577static inline void __set_iter_shift(struct radix_tree_iter *iter,
1578					unsigned int shift)
1579{
1580#ifdef CONFIG_RADIX_TREE_MULTIORDER
1581	iter->shift = shift;
1582#endif
1583}
1584
1585/* Construct iter->tags bit-mask from node->tags[tag] array */
1586static void set_iter_tags(struct radix_tree_iter *iter,
1587				struct radix_tree_node *node, unsigned offset,
1588				unsigned tag)
1589{
1590	unsigned tag_long = offset / BITS_PER_LONG;
1591	unsigned tag_bit  = offset % BITS_PER_LONG;
1592
1593	if (!node) {
1594		iter->tags = 1;
1595		return;
1596	}
1597
1598	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1599
1600	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1601	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1602		/* Pick tags from next element */
1603		if (tag_bit)
1604			iter->tags |= node->tags[tag][tag_long + 1] <<
1605						(BITS_PER_LONG - tag_bit);
1606		/* Clip chunk size, here only BITS_PER_LONG tags */
1607		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1608	}
1609}
1610
1611#ifdef CONFIG_RADIX_TREE_MULTIORDER
1612static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1613			void __rcu **slot, struct radix_tree_iter *iter)
1614{
 
 
1615	while (iter->index < iter->next_index) {
1616		*nodep = rcu_dereference_raw(*slot);
1617		if (*nodep && !is_sibling_entry(iter->node, *nodep))
1618			return slot;
1619		slot++;
1620		iter->index = __radix_tree_iter_add(iter, 1);
1621		iter->tags >>= 1;
1622	}
1623
1624	*nodep = NULL;
1625	return NULL;
1626}
1627
1628void __rcu **__radix_tree_next_slot(void __rcu **slot,
1629				struct radix_tree_iter *iter, unsigned flags)
1630{
1631	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1632	struct radix_tree_node *node;
1633
1634	slot = skip_siblings(&node, slot, iter);
1635
1636	while (radix_tree_is_internal_node(node)) {
1637		unsigned offset;
1638		unsigned long next_index;
1639
1640		if (node == RADIX_TREE_RETRY)
1641			return slot;
1642		node = entry_to_node(node);
1643		iter->node = node;
1644		iter->shift = node->shift;
1645
1646		if (flags & RADIX_TREE_ITER_TAGGED) {
1647			offset = radix_tree_find_next_bit(node, tag, 0);
1648			if (offset == RADIX_TREE_MAP_SIZE)
1649				return NULL;
1650			slot = &node->slots[offset];
1651			iter->index = __radix_tree_iter_add(iter, offset);
1652			set_iter_tags(iter, node, offset, tag);
1653			node = rcu_dereference_raw(*slot);
1654		} else {
1655			offset = 0;
1656			slot = &node->slots[0];
1657			for (;;) {
1658				node = rcu_dereference_raw(*slot);
1659				if (node)
1660					break;
1661				slot++;
1662				offset++;
1663				if (offset == RADIX_TREE_MAP_SIZE)
1664					return NULL;
1665			}
1666			iter->index = __radix_tree_iter_add(iter, offset);
1667		}
1668		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1669			goto none;
1670		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1671		if (next_index < iter->next_index)
1672			iter->next_index = next_index;
1673	}
1674
1675	return slot;
1676 none:
1677	iter->next_index = 0;
1678	return NULL;
1679}
1680EXPORT_SYMBOL(__radix_tree_next_slot);
1681#else
1682static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1683			void __rcu **slot, struct radix_tree_iter *iter)
1684{
1685	return slot;
1686}
1687#endif
1688
1689void __rcu **radix_tree_iter_resume(void __rcu **slot,
1690					struct radix_tree_iter *iter)
1691{
1692	struct radix_tree_node *node;
1693
1694	slot++;
1695	iter->index = __radix_tree_iter_add(iter, 1);
 
1696	skip_siblings(&node, slot, iter);
1697	iter->next_index = iter->index;
1698	iter->tags = 0;
1699	return NULL;
1700}
1701EXPORT_SYMBOL(radix_tree_iter_resume);
1702
1703/**
1704 * radix_tree_next_chunk - find next chunk of slots for iteration
1705 *
1706 * @root:	radix tree root
1707 * @iter:	iterator state
1708 * @flags:	RADIX_TREE_ITER_* flags and tag index
1709 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1710 */
1711void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1712			     struct radix_tree_iter *iter, unsigned flags)
1713{
1714	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1715	struct radix_tree_node *node, *child;
1716	unsigned long index, offset, maxindex;
1717
1718	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1719		return NULL;
1720
1721	/*
1722	 * Catch next_index overflow after ~0UL. iter->index never overflows
1723	 * during iterating; it can be zero only at the beginning.
1724	 * And we cannot overflow iter->next_index in a single step,
1725	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1726	 *
1727	 * This condition also used by radix_tree_next_slot() to stop
1728	 * contiguous iterating, and forbid switching to the next chunk.
1729	 */
1730	index = iter->next_index;
1731	if (!index && iter->index)
1732		return NULL;
1733
1734 restart:
1735	radix_tree_load_root(root, &child, &maxindex);
1736	if (index > maxindex)
1737		return NULL;
1738	if (!child)
1739		return NULL;
1740
1741	if (!radix_tree_is_internal_node(child)) {
1742		/* Single-slot tree */
1743		iter->index = index;
1744		iter->next_index = maxindex + 1;
1745		iter->tags = 1;
1746		iter->node = NULL;
1747		__set_iter_shift(iter, 0);
1748		return (void __rcu **)&root->rnode;
1749	}
1750
1751	do {
1752		node = entry_to_node(child);
1753		offset = radix_tree_descend(node, &child, index);
1754
1755		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1756				!tag_get(node, tag, offset) : !child) {
1757			/* Hole detected */
1758			if (flags & RADIX_TREE_ITER_CONTIG)
1759				return NULL;
1760
1761			if (flags & RADIX_TREE_ITER_TAGGED)
1762				offset = radix_tree_find_next_bit(node, tag,
1763						offset + 1);
1764			else
1765				while (++offset	< RADIX_TREE_MAP_SIZE) {
1766					void *slot = rcu_dereference_raw(
1767							node->slots[offset]);
1768					if (is_sibling_entry(node, slot))
1769						continue;
1770					if (slot)
1771						break;
1772				}
1773			index &= ~node_maxindex(node);
1774			index += offset << node->shift;
1775			/* Overflow after ~0UL */
1776			if (!index)
1777				return NULL;
1778			if (offset == RADIX_TREE_MAP_SIZE)
1779				goto restart;
1780			child = rcu_dereference_raw(node->slots[offset]);
1781		}
1782
1783		if (!child)
1784			goto restart;
1785		if (child == RADIX_TREE_RETRY)
1786			break;
1787	} while (radix_tree_is_internal_node(child));
1788
1789	/* Update the iterator state */
1790	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1791	iter->next_index = (index | node_maxindex(node)) + 1;
1792	iter->node = node;
1793	__set_iter_shift(iter, node->shift);
1794
1795	if (flags & RADIX_TREE_ITER_TAGGED)
1796		set_iter_tags(iter, node, offset, tag);
1797
1798	return node->slots + offset;
1799}
1800EXPORT_SYMBOL(radix_tree_next_chunk);
1801
1802/**
1803 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1804 *	@root:		radix tree root
1805 *	@results:	where the results of the lookup are placed
1806 *	@first_index:	start the lookup from this key
1807 *	@max_items:	place up to this many items at *results
1808 *
1809 *	Performs an index-ascending scan of the tree for present items.  Places
1810 *	them at *@results and returns the number of items which were placed at
1811 *	*@results.
1812 *
1813 *	The implementation is naive.
1814 *
1815 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1816 *	rcu_read_lock. In this case, rather than the returned results being
1817 *	an atomic snapshot of the tree at a single point in time, the
1818 *	semantics of an RCU protected gang lookup are as though multiple
1819 *	radix_tree_lookups have been issued in individual locks, and results
1820 *	stored in 'results'.
1821 */
1822unsigned int
1823radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1824			unsigned long first_index, unsigned int max_items)
1825{
1826	struct radix_tree_iter iter;
1827	void __rcu **slot;
1828	unsigned int ret = 0;
1829
1830	if (unlikely(!max_items))
1831		return 0;
1832
1833	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1834		results[ret] = rcu_dereference_raw(*slot);
1835		if (!results[ret])
1836			continue;
1837		if (radix_tree_is_internal_node(results[ret])) {
1838			slot = radix_tree_iter_retry(&iter);
1839			continue;
1840		}
1841		if (++ret == max_items)
1842			break;
1843	}
1844
1845	return ret;
1846}
1847EXPORT_SYMBOL(radix_tree_gang_lookup);
1848
1849/**
1850 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1851 *	@root:		radix tree root
1852 *	@results:	where the results of the lookup are placed
1853 *	@indices:	where their indices should be placed (but usually NULL)
1854 *	@first_index:	start the lookup from this key
1855 *	@max_items:	place up to this many items at *results
1856 *
1857 *	Performs an index-ascending scan of the tree for present items.  Places
1858 *	their slots at *@results and returns the number of items which were
1859 *	placed at *@results.
1860 *
1861 *	The implementation is naive.
1862 *
1863 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1864 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1865 *	protection, radix_tree_deref_slot may fail requiring a retry.
1866 */
1867unsigned int
1868radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
1869			void __rcu ***results, unsigned long *indices,
1870			unsigned long first_index, unsigned int max_items)
1871{
1872	struct radix_tree_iter iter;
1873	void __rcu **slot;
1874	unsigned int ret = 0;
1875
1876	if (unlikely(!max_items))
1877		return 0;
1878
1879	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1880		results[ret] = slot;
1881		if (indices)
1882			indices[ret] = iter.index;
1883		if (++ret == max_items)
1884			break;
1885	}
1886
1887	return ret;
1888}
1889EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1890
1891/**
1892 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1893 *	                             based on a tag
1894 *	@root:		radix tree root
1895 *	@results:	where the results of the lookup are placed
1896 *	@first_index:	start the lookup from this key
1897 *	@max_items:	place up to this many items at *results
1898 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1899 *
1900 *	Performs an index-ascending scan of the tree for present items which
1901 *	have the tag indexed by @tag set.  Places the items at *@results and
1902 *	returns the number of items which were placed at *@results.
1903 */
1904unsigned int
1905radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1906		unsigned long first_index, unsigned int max_items,
1907		unsigned int tag)
1908{
1909	struct radix_tree_iter iter;
1910	void __rcu **slot;
1911	unsigned int ret = 0;
1912
1913	if (unlikely(!max_items))
1914		return 0;
1915
1916	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1917		results[ret] = rcu_dereference_raw(*slot);
1918		if (!results[ret])
1919			continue;
1920		if (radix_tree_is_internal_node(results[ret])) {
1921			slot = radix_tree_iter_retry(&iter);
1922			continue;
1923		}
1924		if (++ret == max_items)
1925			break;
1926	}
1927
1928	return ret;
1929}
1930EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1931
1932/**
1933 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1934 *					  radix tree based on a tag
1935 *	@root:		radix tree root
1936 *	@results:	where the results of the lookup are placed
1937 *	@first_index:	start the lookup from this key
1938 *	@max_items:	place up to this many items at *results
1939 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1940 *
1941 *	Performs an index-ascending scan of the tree for present items which
1942 *	have the tag indexed by @tag set.  Places the slots at *@results and
1943 *	returns the number of slots which were placed at *@results.
1944 */
1945unsigned int
1946radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1947		void __rcu ***results, unsigned long first_index,
1948		unsigned int max_items, unsigned int tag)
1949{
1950	struct radix_tree_iter iter;
1951	void __rcu **slot;
1952	unsigned int ret = 0;
1953
1954	if (unlikely(!max_items))
1955		return 0;
1956
1957	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1958		results[ret] = slot;
1959		if (++ret == max_items)
1960			break;
1961	}
1962
1963	return ret;
1964}
1965EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1966
1967/**
1968 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1969 *	@root:		radix tree root
1970 *	@node:		node containing @index
1971 *	@update_node:	callback for changing leaf nodes
 
1972 *
1973 *	After clearing the slot at @index in @node from radix tree
1974 *	rooted at @root, call this function to attempt freeing the
1975 *	node and shrinking the tree.
1976 */
1977void __radix_tree_delete_node(struct radix_tree_root *root,
1978			      struct radix_tree_node *node,
1979			      radix_tree_update_node_t update_node)
 
1980{
1981	delete_node(root, node, update_node);
1982}
1983
1984static bool __radix_tree_delete(struct radix_tree_root *root,
1985				struct radix_tree_node *node, void __rcu **slot)
1986{
1987	void *old = rcu_dereference_raw(*slot);
1988	int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
1989	unsigned offset = get_slot_offset(node, slot);
1990	int tag;
1991
1992	if (is_idr(root))
1993		node_tag_set(root, node, IDR_FREE, offset);
1994	else
1995		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1996			node_tag_clear(root, node, tag, offset);
1997
1998	replace_slot(slot, NULL, node, -1, exceptional);
1999	return node && delete_node(root, node, NULL);
2000}
2001
2002/**
2003 * radix_tree_iter_delete - delete the entry at this iterator position
2004 * @root: radix tree root
2005 * @iter: iterator state
2006 * @slot: pointer to slot
2007 *
2008 * Delete the entry at the position currently pointed to by the iterator.
2009 * This may result in the current node being freed; if it is, the iterator
2010 * is advanced so that it will not reference the freed memory.  This
2011 * function may be called without any locking if there are no other threads
2012 * which can access this tree.
2013 */
2014void radix_tree_iter_delete(struct radix_tree_root *root,
2015				struct radix_tree_iter *iter, void __rcu **slot)
2016{
2017	if (__radix_tree_delete(root, iter->node, slot))
2018		iter->index = iter->next_index;
2019}
2020EXPORT_SYMBOL(radix_tree_iter_delete);
2021
2022/**
2023 * radix_tree_delete_item - delete an item from a radix tree
2024 * @root: radix tree root
2025 * @index: index key
2026 * @item: expected item
2027 *
2028 * Remove @item at @index from the radix tree rooted at @root.
2029 *
2030 * Return: the deleted entry, or %NULL if it was not present
2031 * or the entry at the given @index was not @item.
2032 */
2033void *radix_tree_delete_item(struct radix_tree_root *root,
2034			     unsigned long index, void *item)
2035{
2036	struct radix_tree_node *node = NULL;
2037	void __rcu **slot = NULL;
 
2038	void *entry;
 
2039
2040	entry = __radix_tree_lookup(root, index, &node, &slot);
2041	if (!slot)
2042		return NULL;
2043	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2044						get_slot_offset(node, slot))))
2045		return NULL;
2046
2047	if (item && entry != item)
2048		return NULL;
2049
2050	__radix_tree_delete(root, node, slot);
 
 
 
 
 
 
 
 
 
 
 
 
2051
2052	return entry;
2053}
2054EXPORT_SYMBOL(radix_tree_delete_item);
2055
2056/**
2057 * radix_tree_delete - delete an entry from a radix tree
2058 * @root: radix tree root
2059 * @index: index key
2060 *
2061 * Remove the entry at @index from the radix tree rooted at @root.
2062 *
2063 * Return: The deleted entry, or %NULL if it was not present.
2064 */
2065void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2066{
2067	return radix_tree_delete_item(root, index, NULL);
2068}
2069EXPORT_SYMBOL(radix_tree_delete);
2070
2071void radix_tree_clear_tags(struct radix_tree_root *root,
2072			   struct radix_tree_node *node,
2073			   void __rcu **slot)
2074{
2075	if (node) {
2076		unsigned int tag, offset = get_slot_offset(node, slot);
2077		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2078			node_tag_clear(root, node, tag, offset);
2079	} else {
2080		root_tag_clear_all(root);
 
2081	}
2082}
2083
2084/**
2085 *	radix_tree_tagged - test whether any items in the tree are tagged
2086 *	@root:		radix tree root
2087 *	@tag:		tag to test
2088 */
2089int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
2090{
2091	return root_tag_get(root, tag);
2092}
2093EXPORT_SYMBOL(radix_tree_tagged);
2094
2095/**
2096 * idr_preload - preload for idr_alloc()
2097 * @gfp_mask: allocation mask to use for preloading
2098 *
2099 * Preallocate memory to use for the next call to idr_alloc().  This function
2100 * returns with preemption disabled.  It will be enabled by idr_preload_end().
2101 */
2102void idr_preload(gfp_t gfp_mask)
2103{
2104	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2105		preempt_disable();
2106}
2107EXPORT_SYMBOL(idr_preload);
2108
2109/**
2110 * ida_pre_get - reserve resources for ida allocation
2111 * @ida: ida handle
2112 * @gfp: memory allocation flags
2113 *
2114 * This function should be called before calling ida_get_new_above().  If it
2115 * is unable to allocate memory, it will return %0.  On success, it returns %1.
2116 */
2117int ida_pre_get(struct ida *ida, gfp_t gfp)
2118{
2119	/*
2120	 * The IDA API has no preload_end() equivalent.  Instead,
2121	 * ida_get_new() can return -EAGAIN, prompting the caller
2122	 * to return to the ida_pre_get() step.
2123	 */
2124	if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2125		preempt_enable();
2126
2127	if (!this_cpu_read(ida_bitmap)) {
2128		struct ida_bitmap *bitmap = kzalloc(sizeof(*bitmap), gfp);
2129		if (!bitmap)
2130			return 0;
2131		if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2132			kfree(bitmap);
2133	}
2134
2135	return 1;
2136}
2137EXPORT_SYMBOL(ida_pre_get);
2138
2139void __rcu **idr_get_free(struct radix_tree_root *root,
2140			      struct radix_tree_iter *iter, gfp_t gfp,
2141			      unsigned long max)
2142{
2143	struct radix_tree_node *node = NULL, *child;
2144	void __rcu **slot = (void __rcu **)&root->rnode;
2145	unsigned long maxindex, start = iter->next_index;
2146	unsigned int shift, offset = 0;
2147
2148 grow:
2149	shift = radix_tree_load_root(root, &child, &maxindex);
2150	if (!radix_tree_tagged(root, IDR_FREE))
2151		start = max(start, maxindex + 1);
2152	if (start > max)
2153		return ERR_PTR(-ENOSPC);
2154
2155	if (start > maxindex) {
2156		int error = radix_tree_extend(root, gfp, start, shift);
2157		if (error < 0)
2158			return ERR_PTR(error);
2159		shift = error;
2160		child = rcu_dereference_raw(root->rnode);
2161	}
2162
2163	while (shift) {
2164		shift -= RADIX_TREE_MAP_SHIFT;
2165		if (child == NULL) {
2166			/* Have to add a child node.  */
2167			child = radix_tree_node_alloc(gfp, node, root, shift,
2168							offset, 0, 0);
2169			if (!child)
2170				return ERR_PTR(-ENOMEM);
2171			all_tag_set(child, IDR_FREE);
2172			rcu_assign_pointer(*slot, node_to_entry(child));
2173			if (node)
2174				node->count++;
2175		} else if (!radix_tree_is_internal_node(child))
2176			break;
2177
2178		node = entry_to_node(child);
2179		offset = radix_tree_descend(node, &child, start);
2180		if (!tag_get(node, IDR_FREE, offset)) {
2181			offset = radix_tree_find_next_bit(node, IDR_FREE,
2182							offset + 1);
2183			start = next_index(start, node, offset);
2184			if (start > max)
2185				return ERR_PTR(-ENOSPC);
2186			while (offset == RADIX_TREE_MAP_SIZE) {
2187				offset = node->offset + 1;
2188				node = node->parent;
2189				if (!node)
2190					goto grow;
2191				shift = node->shift;
2192			}
2193			child = rcu_dereference_raw(node->slots[offset]);
2194		}
2195		slot = &node->slots[offset];
2196	}
2197
2198	iter->index = start;
2199	if (node)
2200		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2201	else
2202		iter->next_index = 1;
2203	iter->node = node;
2204	__set_iter_shift(iter, shift);
2205	set_iter_tags(iter, node, offset, IDR_FREE);
2206
2207	return slot;
2208}
2209
2210/**
2211 * idr_destroy - release all internal memory from an IDR
2212 * @idr: idr handle
2213 *
2214 * After this function is called, the IDR is empty, and may be reused or
2215 * the data structure containing it may be freed.
2216 *
2217 * A typical clean-up sequence for objects stored in an idr tree will use
2218 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2219 * free the memory used to keep track of those objects.
2220 */
2221void idr_destroy(struct idr *idr)
2222{
2223	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2224	if (radix_tree_is_internal_node(node))
2225		radix_tree_free_nodes(node);
2226	idr->idr_rt.rnode = NULL;
2227	root_tag_set(&idr->idr_rt, IDR_FREE);
2228}
2229EXPORT_SYMBOL(idr_destroy);
2230
2231static void
2232radix_tree_node_ctor(void *arg)
2233{
2234	struct radix_tree_node *node = arg;
2235
2236	memset(node, 0, sizeof(*node));
2237	INIT_LIST_HEAD(&node->private_list);
2238}
2239
2240static __init unsigned long __maxindex(unsigned int height)
2241{
2242	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2243	int shift = RADIX_TREE_INDEX_BITS - width;
2244
2245	if (shift < 0)
2246		return ~0UL;
2247	if (shift >= BITS_PER_LONG)
2248		return 0UL;
2249	return ~0UL >> shift;
2250}
2251
2252static __init void radix_tree_init_maxnodes(void)
2253{
2254	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2255	unsigned int i, j;
2256
2257	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2258		height_to_maxindex[i] = __maxindex(i);
2259	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2260		for (j = i; j > 0; j--)
2261			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2262	}
2263}
2264
2265static int radix_tree_cpu_dead(unsigned int cpu)
2266{
2267	struct radix_tree_preload *rtp;
2268	struct radix_tree_node *node;
2269
2270	/* Free per-cpu pool of preloaded nodes */
2271	rtp = &per_cpu(radix_tree_preloads, cpu);
2272	while (rtp->nr) {
2273		node = rtp->nodes;
2274		rtp->nodes = node->parent;
2275		kmem_cache_free(radix_tree_node_cachep, node);
2276		rtp->nr--;
2277	}
2278	kfree(per_cpu(ida_bitmap, cpu));
2279	per_cpu(ida_bitmap, cpu) = NULL;
2280	return 0;
2281}
2282
2283void __init radix_tree_init(void)
2284{
2285	int ret;
2286
2287	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
2288	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
2289	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2290			sizeof(struct radix_tree_node), 0,
2291			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2292			radix_tree_node_ctor);
2293	radix_tree_init_maxnodes();
2294	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2295					NULL, radix_tree_cpu_dead);
2296	WARN_ON(ret < 0);
2297}