Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63
64/*
65 * kdb_lock protects updates to kdb_initial_cpu. Used to
66 * single thread processors through the kernel debugger.
67 */
68int kdb_initial_cpu = -1; /* cpu number that owns kdb */
69int kdb_nextline = 1;
70int kdb_state; /* General KDB state */
71
72struct task_struct *kdb_current_task;
73EXPORT_SYMBOL(kdb_current_task);
74struct pt_regs *kdb_current_regs;
75
76const char *kdb_diemsg;
77static int kdb_go_count;
78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
79static unsigned int kdb_continue_catastrophic =
80 CONFIG_KDB_CONTINUE_CATASTROPHIC;
81#else
82static unsigned int kdb_continue_catastrophic;
83#endif
84
85/* kdb_commands describes the available commands. */
86static kdbtab_t *kdb_commands;
87#define KDB_BASE_CMD_MAX 50
88static int kdb_max_commands = KDB_BASE_CMD_MAX;
89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
90#define for_each_kdbcmd(cmd, num) \
91 for ((cmd) = kdb_base_commands, (num) = 0; \
92 num < kdb_max_commands; \
93 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
94
95typedef struct _kdbmsg {
96 int km_diag; /* kdb diagnostic */
97 char *km_msg; /* Corresponding message text */
98} kdbmsg_t;
99
100#define KDBMSG(msgnum, text) \
101 { KDB_##msgnum, text }
102
103static kdbmsg_t kdbmsgs[] = {
104 KDBMSG(NOTFOUND, "Command Not Found"),
105 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
106 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
107 "8 is only allowed on 64 bit systems"),
108 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
109 KDBMSG(NOTENV, "Cannot find environment variable"),
110 KDBMSG(NOENVVALUE, "Environment variable should have value"),
111 KDBMSG(NOTIMP, "Command not implemented"),
112 KDBMSG(ENVFULL, "Environment full"),
113 KDBMSG(ENVBUFFULL, "Environment buffer full"),
114 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
115#ifdef CONFIG_CPU_XSCALE
116 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
117#else
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
119#endif
120 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
121 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
122 KDBMSG(BADMODE, "Invalid IDMODE"),
123 KDBMSG(BADINT, "Illegal numeric value"),
124 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
125 KDBMSG(BADREG, "Invalid register name"),
126 KDBMSG(BADCPUNUM, "Invalid cpu number"),
127 KDBMSG(BADLENGTH, "Invalid length field"),
128 KDBMSG(NOBP, "No Breakpoint exists"),
129 KDBMSG(BADADDR, "Invalid address"),
130 KDBMSG(NOPERM, "Permission denied"),
131};
132#undef KDBMSG
133
134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
135
136
137/*
138 * Initial environment. This is all kept static and local to
139 * this file. We don't want to rely on the memory allocation
140 * mechanisms in the kernel, so we use a very limited allocate-only
141 * heap for new and altered environment variables. The entire
142 * environment is limited to a fixed number of entries (add more
143 * to __env[] if required) and a fixed amount of heap (add more to
144 * KDB_ENVBUFSIZE if required).
145 */
146
147static char *__env[] = {
148#if defined(CONFIG_SMP)
149 "PROMPT=[%d]kdb> ",
150#else
151 "PROMPT=kdb> ",
152#endif
153 "MOREPROMPT=more> ",
154 "RADIX=16",
155 "MDCOUNT=8", /* lines of md output */
156 KDB_PLATFORM_ENV,
157 "DTABCOUNT=30",
158 "NOSECT=1",
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183};
184
185static const int __nenv = ARRAY_SIZE(__env);
186
187struct task_struct *kdb_curr_task(int cpu)
188{
189 struct task_struct *p = curr_task(cpu);
190#ifdef _TIF_MCA_INIT
191 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
192 p = krp->p;
193#endif
194 return p;
195}
196
197/*
198 * Check whether the flags of the current command and the permissions
199 * of the kdb console has allow a command to be run.
200 */
201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
202 bool no_args)
203{
204 /* permissions comes from userspace so needs massaging slightly */
205 permissions &= KDB_ENABLE_MASK;
206 permissions |= KDB_ENABLE_ALWAYS_SAFE;
207
208 /* some commands change group when launched with no arguments */
209 if (no_args)
210 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
211
212 flags |= KDB_ENABLE_ALL;
213
214 return permissions & flags;
215}
216
217/*
218 * kdbgetenv - This function will return the character string value of
219 * an environment variable.
220 * Parameters:
221 * match A character string representing an environment variable.
222 * Returns:
223 * NULL No environment variable matches 'match'
224 * char* Pointer to string value of environment variable.
225 */
226char *kdbgetenv(const char *match)
227{
228 char **ep = __env;
229 int matchlen = strlen(match);
230 int i;
231
232 for (i = 0; i < __nenv; i++) {
233 char *e = *ep++;
234
235 if (!e)
236 continue;
237
238 if ((strncmp(match, e, matchlen) == 0)
239 && ((e[matchlen] == '\0')
240 || (e[matchlen] == '='))) {
241 char *cp = strchr(e, '=');
242 return cp ? ++cp : "";
243 }
244 }
245 return NULL;
246}
247
248/*
249 * kdballocenv - This function is used to allocate bytes for
250 * environment entries.
251 * Parameters:
252 * match A character string representing a numeric value
253 * Outputs:
254 * *value the unsigned long representation of the env variable 'match'
255 * Returns:
256 * Zero on success, a kdb diagnostic on failure.
257 * Remarks:
258 * We use a static environment buffer (envbuffer) to hold the values
259 * of dynamically generated environment variables (see kdb_set). Buffer
260 * space once allocated is never free'd, so over time, the amount of space
261 * (currently 512 bytes) will be exhausted if env variables are changed
262 * frequently.
263 */
264static char *kdballocenv(size_t bytes)
265{
266#define KDB_ENVBUFSIZE 512
267 static char envbuffer[KDB_ENVBUFSIZE];
268 static int envbufsize;
269 char *ep = NULL;
270
271 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
272 ep = &envbuffer[envbufsize];
273 envbufsize += bytes;
274 }
275 return ep;
276}
277
278/*
279 * kdbgetulenv - This function will return the value of an unsigned
280 * long-valued environment variable.
281 * Parameters:
282 * match A character string representing a numeric value
283 * Outputs:
284 * *value the unsigned long represntation of the env variable 'match'
285 * Returns:
286 * Zero on success, a kdb diagnostic on failure.
287 */
288static int kdbgetulenv(const char *match, unsigned long *value)
289{
290 char *ep;
291
292 ep = kdbgetenv(match);
293 if (!ep)
294 return KDB_NOTENV;
295 if (strlen(ep) == 0)
296 return KDB_NOENVVALUE;
297
298 *value = simple_strtoul(ep, NULL, 0);
299
300 return 0;
301}
302
303/*
304 * kdbgetintenv - This function will return the value of an
305 * integer-valued environment variable.
306 * Parameters:
307 * match A character string representing an integer-valued env variable
308 * Outputs:
309 * *value the integer representation of the environment variable 'match'
310 * Returns:
311 * Zero on success, a kdb diagnostic on failure.
312 */
313int kdbgetintenv(const char *match, int *value)
314{
315 unsigned long val;
316 int diag;
317
318 diag = kdbgetulenv(match, &val);
319 if (!diag)
320 *value = (int) val;
321 return diag;
322}
323
324/*
325 * kdbgetularg - This function will convert a numeric string into an
326 * unsigned long value.
327 * Parameters:
328 * arg A character string representing a numeric value
329 * Outputs:
330 * *value the unsigned long represntation of arg.
331 * Returns:
332 * Zero on success, a kdb diagnostic on failure.
333 */
334int kdbgetularg(const char *arg, unsigned long *value)
335{
336 char *endp;
337 unsigned long val;
338
339 val = simple_strtoul(arg, &endp, 0);
340
341 if (endp == arg) {
342 /*
343 * Also try base 16, for us folks too lazy to type the
344 * leading 0x...
345 */
346 val = simple_strtoul(arg, &endp, 16);
347 if (endp == arg)
348 return KDB_BADINT;
349 }
350
351 *value = val;
352
353 return 0;
354}
355
356int kdbgetu64arg(const char *arg, u64 *value)
357{
358 char *endp;
359 u64 val;
360
361 val = simple_strtoull(arg, &endp, 0);
362
363 if (endp == arg) {
364
365 val = simple_strtoull(arg, &endp, 16);
366 if (endp == arg)
367 return KDB_BADINT;
368 }
369
370 *value = val;
371
372 return 0;
373}
374
375/*
376 * kdb_set - This function implements the 'set' command. Alter an
377 * existing environment variable or create a new one.
378 */
379int kdb_set(int argc, const char **argv)
380{
381 int i;
382 char *ep;
383 size_t varlen, vallen;
384
385 /*
386 * we can be invoked two ways:
387 * set var=value argv[1]="var", argv[2]="value"
388 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
389 * - if the latter, shift 'em down.
390 */
391 if (argc == 3) {
392 argv[2] = argv[3];
393 argc--;
394 }
395
396 if (argc != 2)
397 return KDB_ARGCOUNT;
398
399 /*
400 * Check for internal variables
401 */
402 if (strcmp(argv[1], "KDBDEBUG") == 0) {
403 unsigned int debugflags;
404 char *cp;
405
406 debugflags = simple_strtoul(argv[2], &cp, 0);
407 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
408 kdb_printf("kdb: illegal debug flags '%s'\n",
409 argv[2]);
410 return 0;
411 }
412 kdb_flags = (kdb_flags &
413 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
414 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
415
416 return 0;
417 }
418
419 /*
420 * Tokenizer squashed the '=' sign. argv[1] is variable
421 * name, argv[2] = value.
422 */
423 varlen = strlen(argv[1]);
424 vallen = strlen(argv[2]);
425 ep = kdballocenv(varlen + vallen + 2);
426 if (ep == (char *)0)
427 return KDB_ENVBUFFULL;
428
429 sprintf(ep, "%s=%s", argv[1], argv[2]);
430
431 ep[varlen+vallen+1] = '\0';
432
433 for (i = 0; i < __nenv; i++) {
434 if (__env[i]
435 && ((strncmp(__env[i], argv[1], varlen) == 0)
436 && ((__env[i][varlen] == '\0')
437 || (__env[i][varlen] == '=')))) {
438 __env[i] = ep;
439 return 0;
440 }
441 }
442
443 /*
444 * Wasn't existing variable. Fit into slot.
445 */
446 for (i = 0; i < __nenv-1; i++) {
447 if (__env[i] == (char *)0) {
448 __env[i] = ep;
449 return 0;
450 }
451 }
452
453 return KDB_ENVFULL;
454}
455
456static int kdb_check_regs(void)
457{
458 if (!kdb_current_regs) {
459 kdb_printf("No current kdb registers."
460 " You may need to select another task\n");
461 return KDB_BADREG;
462 }
463 return 0;
464}
465
466/*
467 * kdbgetaddrarg - This function is responsible for parsing an
468 * address-expression and returning the value of the expression,
469 * symbol name, and offset to the caller.
470 *
471 * The argument may consist of a numeric value (decimal or
472 * hexidecimal), a symbol name, a register name (preceded by the
473 * percent sign), an environment variable with a numeric value
474 * (preceded by a dollar sign) or a simple arithmetic expression
475 * consisting of a symbol name, +/-, and a numeric constant value
476 * (offset).
477 * Parameters:
478 * argc - count of arguments in argv
479 * argv - argument vector
480 * *nextarg - index to next unparsed argument in argv[]
481 * regs - Register state at time of KDB entry
482 * Outputs:
483 * *value - receives the value of the address-expression
484 * *offset - receives the offset specified, if any
485 * *name - receives the symbol name, if any
486 * *nextarg - index to next unparsed argument in argv[]
487 * Returns:
488 * zero is returned on success, a kdb diagnostic code is
489 * returned on error.
490 */
491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
492 unsigned long *value, long *offset,
493 char **name)
494{
495 unsigned long addr;
496 unsigned long off = 0;
497 int positive;
498 int diag;
499 int found = 0;
500 char *symname;
501 char symbol = '\0';
502 char *cp;
503 kdb_symtab_t symtab;
504
505 /*
506 * If the enable flags prohibit both arbitrary memory access
507 * and flow control then there are no reasonable grounds to
508 * provide symbol lookup.
509 */
510 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
511 kdb_cmd_enabled, false))
512 return KDB_NOPERM;
513
514 /*
515 * Process arguments which follow the following syntax:
516 *
517 * symbol | numeric-address [+/- numeric-offset]
518 * %register
519 * $environment-variable
520 */
521
522 if (*nextarg > argc)
523 return KDB_ARGCOUNT;
524
525 symname = (char *)argv[*nextarg];
526
527 /*
528 * If there is no whitespace between the symbol
529 * or address and the '+' or '-' symbols, we
530 * remember the character and replace it with a
531 * null so the symbol/value can be properly parsed
532 */
533 cp = strpbrk(symname, "+-");
534 if (cp != NULL) {
535 symbol = *cp;
536 *cp++ = '\0';
537 }
538
539 if (symname[0] == '$') {
540 diag = kdbgetulenv(&symname[1], &addr);
541 if (diag)
542 return diag;
543 } else if (symname[0] == '%') {
544 diag = kdb_check_regs();
545 if (diag)
546 return diag;
547 /* Implement register values with % at a later time as it is
548 * arch optional.
549 */
550 return KDB_NOTIMP;
551 } else {
552 found = kdbgetsymval(symname, &symtab);
553 if (found) {
554 addr = symtab.sym_start;
555 } else {
556 diag = kdbgetularg(argv[*nextarg], &addr);
557 if (diag)
558 return diag;
559 }
560 }
561
562 if (!found)
563 found = kdbnearsym(addr, &symtab);
564
565 (*nextarg)++;
566
567 if (name)
568 *name = symname;
569 if (value)
570 *value = addr;
571 if (offset && name && *name)
572 *offset = addr - symtab.sym_start;
573
574 if ((*nextarg > argc)
575 && (symbol == '\0'))
576 return 0;
577
578 /*
579 * check for +/- and offset
580 */
581
582 if (symbol == '\0') {
583 if ((argv[*nextarg][0] != '+')
584 && (argv[*nextarg][0] != '-')) {
585 /*
586 * Not our argument. Return.
587 */
588 return 0;
589 } else {
590 positive = (argv[*nextarg][0] == '+');
591 (*nextarg)++;
592 }
593 } else
594 positive = (symbol == '+');
595
596 /*
597 * Now there must be an offset!
598 */
599 if ((*nextarg > argc)
600 && (symbol == '\0')) {
601 return KDB_INVADDRFMT;
602 }
603
604 if (!symbol) {
605 cp = (char *)argv[*nextarg];
606 (*nextarg)++;
607 }
608
609 diag = kdbgetularg(cp, &off);
610 if (diag)
611 return diag;
612
613 if (!positive)
614 off = -off;
615
616 if (offset)
617 *offset += off;
618
619 if (value)
620 *value += off;
621
622 return 0;
623}
624
625static void kdb_cmderror(int diag)
626{
627 int i;
628
629 if (diag >= 0) {
630 kdb_printf("no error detected (diagnostic is %d)\n", diag);
631 return;
632 }
633
634 for (i = 0; i < __nkdb_err; i++) {
635 if (kdbmsgs[i].km_diag == diag) {
636 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
637 return;
638 }
639 }
640
641 kdb_printf("Unknown diag %d\n", -diag);
642}
643
644/*
645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
646 * command which defines one command as a set of other commands,
647 * terminated by endefcmd. kdb_defcmd processes the initial
648 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
649 * the following commands until 'endefcmd'.
650 * Inputs:
651 * argc argument count
652 * argv argument vector
653 * Returns:
654 * zero for success, a kdb diagnostic if error
655 */
656struct defcmd_set {
657 int count;
658 int usable;
659 char *name;
660 char *usage;
661 char *help;
662 char **command;
663};
664static struct defcmd_set *defcmd_set;
665static int defcmd_set_count;
666static int defcmd_in_progress;
667
668/* Forward references */
669static int kdb_exec_defcmd(int argc, const char **argv);
670
671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
672{
673 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
674 char **save_command = s->command;
675 if (strcmp(argv0, "endefcmd") == 0) {
676 defcmd_in_progress = 0;
677 if (!s->count)
678 s->usable = 0;
679 if (s->usable)
680 /* macros are always safe because when executed each
681 * internal command re-enters kdb_parse() and is
682 * safety checked individually.
683 */
684 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
685 s->help, 0,
686 KDB_ENABLE_ALWAYS_SAFE);
687 return 0;
688 }
689 if (!s->usable)
690 return KDB_NOTIMP;
691 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
692 if (!s->command) {
693 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
694 cmdstr);
695 s->usable = 0;
696 return KDB_NOTIMP;
697 }
698 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
699 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
700 kfree(save_command);
701 return 0;
702}
703
704static int kdb_defcmd(int argc, const char **argv)
705{
706 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
707 if (defcmd_in_progress) {
708 kdb_printf("kdb: nested defcmd detected, assuming missing "
709 "endefcmd\n");
710 kdb_defcmd2("endefcmd", "endefcmd");
711 }
712 if (argc == 0) {
713 int i;
714 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
715 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
716 s->usage, s->help);
717 for (i = 0; i < s->count; ++i)
718 kdb_printf("%s", s->command[i]);
719 kdb_printf("endefcmd\n");
720 }
721 return 0;
722 }
723 if (argc != 3)
724 return KDB_ARGCOUNT;
725 if (in_dbg_master()) {
726 kdb_printf("Command only available during kdb_init()\n");
727 return KDB_NOTIMP;
728 }
729 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
730 GFP_KDB);
731 if (!defcmd_set)
732 goto fail_defcmd;
733 memcpy(defcmd_set, save_defcmd_set,
734 defcmd_set_count * sizeof(*defcmd_set));
735 s = defcmd_set + defcmd_set_count;
736 memset(s, 0, sizeof(*s));
737 s->usable = 1;
738 s->name = kdb_strdup(argv[1], GFP_KDB);
739 if (!s->name)
740 goto fail_name;
741 s->usage = kdb_strdup(argv[2], GFP_KDB);
742 if (!s->usage)
743 goto fail_usage;
744 s->help = kdb_strdup(argv[3], GFP_KDB);
745 if (!s->help)
746 goto fail_help;
747 if (s->usage[0] == '"') {
748 strcpy(s->usage, argv[2]+1);
749 s->usage[strlen(s->usage)-1] = '\0';
750 }
751 if (s->help[0] == '"') {
752 strcpy(s->help, argv[3]+1);
753 s->help[strlen(s->help)-1] = '\0';
754 }
755 ++defcmd_set_count;
756 defcmd_in_progress = 1;
757 kfree(save_defcmd_set);
758 return 0;
759fail_help:
760 kfree(s->usage);
761fail_usage:
762 kfree(s->name);
763fail_name:
764 kfree(defcmd_set);
765fail_defcmd:
766 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
767 defcmd_set = save_defcmd_set;
768 return KDB_NOTIMP;
769}
770
771/*
772 * kdb_exec_defcmd - Execute the set of commands associated with this
773 * defcmd name.
774 * Inputs:
775 * argc argument count
776 * argv argument vector
777 * Returns:
778 * zero for success, a kdb diagnostic if error
779 */
780static int kdb_exec_defcmd(int argc, const char **argv)
781{
782 int i, ret;
783 struct defcmd_set *s;
784 if (argc != 0)
785 return KDB_ARGCOUNT;
786 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
787 if (strcmp(s->name, argv[0]) == 0)
788 break;
789 }
790 if (i == defcmd_set_count) {
791 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
792 argv[0]);
793 return KDB_NOTIMP;
794 }
795 for (i = 0; i < s->count; ++i) {
796 /* Recursive use of kdb_parse, do not use argv after
797 * this point */
798 argv = NULL;
799 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
800 ret = kdb_parse(s->command[i]);
801 if (ret)
802 return ret;
803 }
804 return 0;
805}
806
807/* Command history */
808#define KDB_CMD_HISTORY_COUNT 32
809#define CMD_BUFLEN 200 /* kdb_printf: max printline
810 * size == 256 */
811static unsigned int cmd_head, cmd_tail;
812static unsigned int cmdptr;
813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
814static char cmd_cur[CMD_BUFLEN];
815
816/*
817 * The "str" argument may point to something like | grep xyz
818 */
819static void parse_grep(const char *str)
820{
821 int len;
822 char *cp = (char *)str, *cp2;
823
824 /* sanity check: we should have been called with the \ first */
825 if (*cp != '|')
826 return;
827 cp++;
828 while (isspace(*cp))
829 cp++;
830 if (strncmp(cp, "grep ", 5)) {
831 kdb_printf("invalid 'pipe', see grephelp\n");
832 return;
833 }
834 cp += 5;
835 while (isspace(*cp))
836 cp++;
837 cp2 = strchr(cp, '\n');
838 if (cp2)
839 *cp2 = '\0'; /* remove the trailing newline */
840 len = strlen(cp);
841 if (len == 0) {
842 kdb_printf("invalid 'pipe', see grephelp\n");
843 return;
844 }
845 /* now cp points to a nonzero length search string */
846 if (*cp == '"') {
847 /* allow it be "x y z" by removing the "'s - there must
848 be two of them */
849 cp++;
850 cp2 = strchr(cp, '"');
851 if (!cp2) {
852 kdb_printf("invalid quoted string, see grephelp\n");
853 return;
854 }
855 *cp2 = '\0'; /* end the string where the 2nd " was */
856 }
857 kdb_grep_leading = 0;
858 if (*cp == '^') {
859 kdb_grep_leading = 1;
860 cp++;
861 }
862 len = strlen(cp);
863 kdb_grep_trailing = 0;
864 if (*(cp+len-1) == '$') {
865 kdb_grep_trailing = 1;
866 *(cp+len-1) = '\0';
867 }
868 len = strlen(cp);
869 if (!len)
870 return;
871 if (len >= KDB_GREP_STRLEN) {
872 kdb_printf("search string too long\n");
873 return;
874 }
875 strcpy(kdb_grep_string, cp);
876 kdb_grepping_flag++;
877 return;
878}
879
880/*
881 * kdb_parse - Parse the command line, search the command table for a
882 * matching command and invoke the command function. This
883 * function may be called recursively, if it is, the second call
884 * will overwrite argv and cbuf. It is the caller's
885 * responsibility to save their argv if they recursively call
886 * kdb_parse().
887 * Parameters:
888 * cmdstr The input command line to be parsed.
889 * regs The registers at the time kdb was entered.
890 * Returns:
891 * Zero for success, a kdb diagnostic if failure.
892 * Remarks:
893 * Limited to 20 tokens.
894 *
895 * Real rudimentary tokenization. Basically only whitespace
896 * is considered a token delimeter (but special consideration
897 * is taken of the '=' sign as used by the 'set' command).
898 *
899 * The algorithm used to tokenize the input string relies on
900 * there being at least one whitespace (or otherwise useless)
901 * character between tokens as the character immediately following
902 * the token is altered in-place to a null-byte to terminate the
903 * token string.
904 */
905
906#define MAXARGC 20
907
908int kdb_parse(const char *cmdstr)
909{
910 static char *argv[MAXARGC];
911 static int argc;
912 static char cbuf[CMD_BUFLEN+2];
913 char *cp;
914 char *cpp, quoted;
915 kdbtab_t *tp;
916 int i, escaped, ignore_errors = 0, check_grep = 0;
917
918 /*
919 * First tokenize the command string.
920 */
921 cp = (char *)cmdstr;
922
923 if (KDB_FLAG(CMD_INTERRUPT)) {
924 /* Previous command was interrupted, newline must not
925 * repeat the command */
926 KDB_FLAG_CLEAR(CMD_INTERRUPT);
927 KDB_STATE_SET(PAGER);
928 argc = 0; /* no repeat */
929 }
930
931 if (*cp != '\n' && *cp != '\0') {
932 argc = 0;
933 cpp = cbuf;
934 while (*cp) {
935 /* skip whitespace */
936 while (isspace(*cp))
937 cp++;
938 if ((*cp == '\0') || (*cp == '\n') ||
939 (*cp == '#' && !defcmd_in_progress))
940 break;
941 /* special case: check for | grep pattern */
942 if (*cp == '|') {
943 check_grep++;
944 break;
945 }
946 if (cpp >= cbuf + CMD_BUFLEN) {
947 kdb_printf("kdb_parse: command buffer "
948 "overflow, command ignored\n%s\n",
949 cmdstr);
950 return KDB_NOTFOUND;
951 }
952 if (argc >= MAXARGC - 1) {
953 kdb_printf("kdb_parse: too many arguments, "
954 "command ignored\n%s\n", cmdstr);
955 return KDB_NOTFOUND;
956 }
957 argv[argc++] = cpp;
958 escaped = 0;
959 quoted = '\0';
960 /* Copy to next unquoted and unescaped
961 * whitespace or '=' */
962 while (*cp && *cp != '\n' &&
963 (escaped || quoted || !isspace(*cp))) {
964 if (cpp >= cbuf + CMD_BUFLEN)
965 break;
966 if (escaped) {
967 escaped = 0;
968 *cpp++ = *cp++;
969 continue;
970 }
971 if (*cp == '\\') {
972 escaped = 1;
973 ++cp;
974 continue;
975 }
976 if (*cp == quoted)
977 quoted = '\0';
978 else if (*cp == '\'' || *cp == '"')
979 quoted = *cp;
980 *cpp = *cp++;
981 if (*cpp == '=' && !quoted)
982 break;
983 ++cpp;
984 }
985 *cpp++ = '\0'; /* Squash a ws or '=' character */
986 }
987 }
988 if (!argc)
989 return 0;
990 if (check_grep)
991 parse_grep(cp);
992 if (defcmd_in_progress) {
993 int result = kdb_defcmd2(cmdstr, argv[0]);
994 if (!defcmd_in_progress) {
995 argc = 0; /* avoid repeat on endefcmd */
996 *(argv[0]) = '\0';
997 }
998 return result;
999 }
1000 if (argv[0][0] == '-' && argv[0][1] &&
1001 (argv[0][1] < '0' || argv[0][1] > '9')) {
1002 ignore_errors = 1;
1003 ++argv[0];
1004 }
1005
1006 for_each_kdbcmd(tp, i) {
1007 if (tp->cmd_name) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012
1013 if (tp->cmd_minlen
1014 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015 if (strncmp(argv[0],
1016 tp->cmd_name,
1017 tp->cmd_minlen) == 0) {
1018 break;
1019 }
1020 }
1021
1022 if (strcmp(argv[0], tp->cmd_name) == 0)
1023 break;
1024 }
1025 }
1026
1027 /*
1028 * If we don't find a command by this name, see if the first
1029 * few characters of this match any of the known commands.
1030 * e.g., md1c20 should match md.
1031 */
1032 if (i == kdb_max_commands) {
1033 for_each_kdbcmd(tp, i) {
1034 if (tp->cmd_name) {
1035 if (strncmp(argv[0],
1036 tp->cmd_name,
1037 strlen(tp->cmd_name)) == 0) {
1038 break;
1039 }
1040 }
1041 }
1042 }
1043
1044 if (i < kdb_max_commands) {
1045 int result;
1046
1047 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048 return KDB_NOPERM;
1049
1050 KDB_STATE_SET(CMD);
1051 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052 if (result && ignore_errors && result > KDB_CMD_GO)
1053 result = 0;
1054 KDB_STATE_CLEAR(CMD);
1055
1056 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057 return result;
1058
1059 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060 if (argv[argc])
1061 *(argv[argc]) = '\0';
1062 return result;
1063 }
1064
1065 /*
1066 * If the input with which we were presented does not
1067 * map to an existing command, attempt to parse it as an
1068 * address argument and display the result. Useful for
1069 * obtaining the address of a variable, or the nearest symbol
1070 * to an address contained in a register.
1071 */
1072 {
1073 unsigned long value;
1074 char *name = NULL;
1075 long offset;
1076 int nextarg = 0;
1077
1078 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079 &value, &offset, &name)) {
1080 return KDB_NOTFOUND;
1081 }
1082
1083 kdb_printf("%s = ", argv[0]);
1084 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085 kdb_printf("\n");
1086 return 0;
1087 }
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P 16
1094#define CTRL_N 14
1095
1096 /* initial situation */
1097 if (cmd_head == cmd_tail)
1098 return 0;
1099 switch (*cmd) {
1100 case CTRL_P:
1101 if (cmdptr != cmd_tail)
1102 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104 return 1;
1105 case CTRL_N:
1106 if (cmdptr != cmd_head)
1107 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109 return 1;
1110 }
1111 return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command. Reboot
1116 * the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120 emergency_restart();
1121 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122 while (1)
1123 cpu_relax();
1124 /* NOTREACHED */
1125 return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130 int old_lvl = console_loglevel;
1131 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132 kdb_trap_printk++;
1133 show_regs(regs);
1134 kdb_trap_printk--;
1135 kdb_printf("\n");
1136 console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141 kdb_current_task = p;
1142
1143 if (kdb_task_has_cpu(p)) {
1144 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145 return;
1146 }
1147 kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292#else
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295 if (defcmd_in_progress)
1296 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298 /*
1299 * Fetch command from keyboard
1300 */
1301 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302 if (*cmdbuf != '\n') {
1303 if (*cmdbuf < 32) {
1304 if (cmdptr == cmd_head) {
1305 strncpy(cmd_hist[cmd_head], cmd_cur,
1306 CMD_BUFLEN);
1307 *(cmd_hist[cmd_head] +
1308 strlen(cmd_hist[cmd_head])-1) = '\0';
1309 }
1310 if (!handle_ctrl_cmd(cmdbuf))
1311 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312 cmdbuf = cmd_cur;
1313 goto do_full_getstr;
1314 } else {
1315 strncpy(cmd_hist[cmd_head], cmd_cur,
1316 CMD_BUFLEN);
1317 }
1318
1319 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320 if (cmd_head == cmd_tail)
1321 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322 }
1323
1324 cmdptr = cmd_head;
1325 diag = kdb_parse(cmdbuf);
1326 if (diag == KDB_NOTFOUND) {
1327 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328 diag = 0;
1329 }
1330 if (diag == KDB_CMD_GO
1331 || diag == KDB_CMD_CPU
1332 || diag == KDB_CMD_SS
1333 || diag == KDB_CMD_KGDB)
1334 break;
1335
1336 if (diag)
1337 kdb_cmderror(diag);
1338 }
1339 KDB_DEBUG_STATE("kdb_local 9", diag);
1340 return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 * for debugging.
1347 * Inputs:
1348 * text Identifies the debug point
1349 * value Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355 kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 * controlling cpu, all cpus are in this loop. One cpu is in
1361 * control and will issue the kdb prompt, the others will spin
1362 * until 'go' or cpu switch.
1363 *
1364 * To get a consistent view of the kernel stacks for all
1365 * processes, this routine is invoked from the main kdb code via
1366 * an architecture specific routine. kdba_main_loop is
1367 * responsible for making the kernel stacks consistent for all
1368 * processes, there should be no difference between a blocked
1369 * process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 * reason The reason KDB was invoked
1372 * error The hardware-defined error code
1373 * reason2 kdb's current reason code.
1374 * Initially error but can change
1375 * according to kdb state.
1376 * db_result Result code from break or debug point.
1377 * regs The exception frame at time of fault/breakpoint.
1378 * should always be valid.
1379 * Returns:
1380 * 0 KDB was invoked for an event which it wasn't responsible
1381 * 1 KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384 kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386 int result = 1;
1387 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1388 while (1) {
1389 /*
1390 * All processors except the one that is in control
1391 * will spin here.
1392 */
1393 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394 while (KDB_STATE(HOLD_CPU)) {
1395 /* state KDB is turned off by kdb_cpu to see if the
1396 * other cpus are still live, each cpu in this loop
1397 * turns it back on.
1398 */
1399 if (!KDB_STATE(KDB))
1400 KDB_STATE_SET(KDB);
1401 }
1402
1403 KDB_STATE_CLEAR(SUPPRESS);
1404 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405 if (KDB_STATE(LEAVING))
1406 break; /* Another cpu said 'go' */
1407 /* Still using kdb, this processor is in control */
1408 result = kdb_local(reason2, error, regs, db_result);
1409 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411 if (result == KDB_CMD_CPU)
1412 break;
1413
1414 if (result == KDB_CMD_SS) {
1415 KDB_STATE_SET(DOING_SS);
1416 break;
1417 }
1418
1419 if (result == KDB_CMD_KGDB) {
1420 if (!KDB_STATE(DOING_KGDB))
1421 kdb_printf("Entering please attach debugger "
1422 "or use $D#44+ or $3#33\n");
1423 break;
1424 }
1425 if (result && result != 1 && result != KDB_CMD_GO)
1426 kdb_printf("\nUnexpected kdb_local return code %d\n",
1427 result);
1428 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429 break;
1430 }
1431 if (KDB_STATE(DOING_SS))
1432 KDB_STATE_CLEAR(SSBPT);
1433
1434 /* Clean up any keyboard devices before leaving */
1435 kdb_kbd_cleanup_state();
1436
1437 return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 * mdr <addr arg>,<byte count>
1444 * Inputs:
1445 * addr Start address
1446 * count Number of bytes
1447 * Returns:
1448 * Always 0. Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452 unsigned char c;
1453 while (count--) {
1454 if (kdb_getarea(c, addr))
1455 return 0;
1456 kdb_printf("%02x", c);
1457 addr++;
1458 }
1459 kdb_printf("\n");
1460 return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 * 'md8' 'mdr' and 'mds' commands.
1466 *
1467 * md|mds [<addr arg> [<line count> [<radix>]]]
1468 * mdWcN [<addr arg> [<line count> [<radix>]]]
1469 * where W = is the width (1, 2, 4 or 8) and N is the count.
1470 * for eg., md1c20 reads 20 bytes, 1 at a time.
1471 * mdr <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474 int symbolic, int nosect, int bytesperword,
1475 int num, int repeat, int phys)
1476{
1477 /* print just one line of data */
1478 kdb_symtab_t symtab;
1479 char cbuf[32];
1480 char *c = cbuf;
1481 int i;
1482 unsigned long word;
1483
1484 memset(cbuf, '\0', sizeof(cbuf));
1485 if (phys)
1486 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487 else
1488 kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490 for (i = 0; i < num && repeat--; i++) {
1491 if (phys) {
1492 if (kdb_getphysword(&word, addr, bytesperword))
1493 break;
1494 } else if (kdb_getword(&word, addr, bytesperword))
1495 break;
1496 kdb_printf(fmtstr, word);
1497 if (symbolic)
1498 kdbnearsym(word, &symtab);
1499 else
1500 memset(&symtab, 0, sizeof(symtab));
1501 if (symtab.sym_name) {
1502 kdb_symbol_print(word, &symtab, 0);
1503 if (!nosect) {
1504 kdb_printf("\n");
1505 kdb_printf(" %s %s "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt, symtab.mod_name,
1509 symtab.sec_name, symtab.sec_start,
1510 symtab.sym_start, symtab.sym_end);
1511 }
1512 addr += bytesperword;
1513 } else {
1514 union {
1515 u64 word;
1516 unsigned char c[8];
1517 } wc;
1518 unsigned char *cp;
1519#ifdef __BIG_ENDIAN
1520 cp = wc.c + 8 - bytesperword;
1521#else
1522 cp = wc.c;
1523#endif
1524 wc.word = word;
1525#define printable_char(c) \
1526 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527 switch (bytesperword) {
1528 case 8:
1529 *c++ = printable_char(*cp++);
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 addr += 4;
1534 case 4:
1535 *c++ = printable_char(*cp++);
1536 *c++ = printable_char(*cp++);
1537 addr += 2;
1538 case 2:
1539 *c++ = printable_char(*cp++);
1540 addr++;
1541 case 1:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 break;
1545 }
1546#undef printable_char
1547 }
1548 }
1549 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550 " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555 static unsigned long last_addr;
1556 static int last_radix, last_bytesperword, last_repeat;
1557 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558 int nosect = 0;
1559 char fmtchar, fmtstr[64];
1560 unsigned long addr;
1561 unsigned long word;
1562 long offset = 0;
1563 int symbolic = 0;
1564 int valid = 0;
1565 int phys = 0;
1566
1567 kdbgetintenv("MDCOUNT", &mdcount);
1568 kdbgetintenv("RADIX", &radix);
1569 kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571 /* Assume 'md <addr>' and start with environment values */
1572 repeat = mdcount * 16 / bytesperword;
1573
1574 if (strcmp(argv[0], "mdr") == 0) {
1575 if (argc != 2)
1576 return KDB_ARGCOUNT;
1577 valid = 1;
1578 } else if (isdigit(argv[0][2])) {
1579 bytesperword = (int)(argv[0][2] - '0');
1580 if (bytesperword == 0) {
1581 bytesperword = last_bytesperword;
1582 if (bytesperword == 0)
1583 bytesperword = 4;
1584 }
1585 last_bytesperword = bytesperword;
1586 repeat = mdcount * 16 / bytesperword;
1587 if (!argv[0][3])
1588 valid = 1;
1589 else if (argv[0][3] == 'c' && argv[0][4]) {
1590 char *p;
1591 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592 mdcount = ((repeat * bytesperword) + 15) / 16;
1593 valid = !*p;
1594 }
1595 last_repeat = repeat;
1596 } else if (strcmp(argv[0], "md") == 0)
1597 valid = 1;
1598 else if (strcmp(argv[0], "mds") == 0)
1599 valid = 1;
1600 else if (strcmp(argv[0], "mdp") == 0) {
1601 phys = valid = 1;
1602 }
1603 if (!valid)
1604 return KDB_NOTFOUND;
1605
1606 if (argc == 0) {
1607 if (last_addr == 0)
1608 return KDB_ARGCOUNT;
1609 addr = last_addr;
1610 radix = last_radix;
1611 bytesperword = last_bytesperword;
1612 repeat = last_repeat;
1613 mdcount = ((repeat * bytesperword) + 15) / 16;
1614 }
1615
1616 if (argc) {
1617 unsigned long val;
1618 int diag, nextarg = 1;
1619 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620 &offset, NULL);
1621 if (diag)
1622 return diag;
1623 if (argc > nextarg+2)
1624 return KDB_ARGCOUNT;
1625
1626 if (argc >= nextarg) {
1627 diag = kdbgetularg(argv[nextarg], &val);
1628 if (!diag) {
1629 mdcount = (int) val;
1630 repeat = mdcount * 16 / bytesperword;
1631 }
1632 }
1633 if (argc >= nextarg+1) {
1634 diag = kdbgetularg(argv[nextarg+1], &val);
1635 if (!diag)
1636 radix = (int) val;
1637 }
1638 }
1639
1640 if (strcmp(argv[0], "mdr") == 0)
1641 return kdb_mdr(addr, mdcount);
1642
1643 switch (radix) {
1644 case 10:
1645 fmtchar = 'd';
1646 break;
1647 case 16:
1648 fmtchar = 'x';
1649 break;
1650 case 8:
1651 fmtchar = 'o';
1652 break;
1653 default:
1654 return KDB_BADRADIX;
1655 }
1656
1657 last_radix = radix;
1658
1659 if (bytesperword > KDB_WORD_SIZE)
1660 return KDB_BADWIDTH;
1661
1662 switch (bytesperword) {
1663 case 8:
1664 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665 break;
1666 case 4:
1667 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668 break;
1669 case 2:
1670 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671 break;
1672 case 1:
1673 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674 break;
1675 default:
1676 return KDB_BADWIDTH;
1677 }
1678
1679 last_repeat = repeat;
1680 last_bytesperword = bytesperword;
1681
1682 if (strcmp(argv[0], "mds") == 0) {
1683 symbolic = 1;
1684 /* Do not save these changes as last_*, they are temporary mds
1685 * overrides.
1686 */
1687 bytesperword = KDB_WORD_SIZE;
1688 repeat = mdcount;
1689 kdbgetintenv("NOSECT", &nosect);
1690 }
1691
1692 /* Round address down modulo BYTESPERWORD */
1693
1694 addr &= ~(bytesperword-1);
1695
1696 while (repeat > 0) {
1697 unsigned long a;
1698 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700 if (KDB_FLAG(CMD_INTERRUPT))
1701 return 0;
1702 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703 if (phys) {
1704 if (kdb_getphysword(&word, a, bytesperword)
1705 || word)
1706 break;
1707 } else if (kdb_getword(&word, a, bytesperword) || word)
1708 break;
1709 }
1710 n = min(num, repeat);
1711 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712 num, repeat, phys);
1713 addr += bytesperword * n;
1714 repeat -= n;
1715 z = (z + num - 1) / num;
1716 if (z > 2) {
1717 int s = num * (z-2);
1718 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719 " zero suppressed\n",
1720 addr, addr + bytesperword * s - 1);
1721 addr += bytesperword * s;
1722 repeat -= s;
1723 }
1724 }
1725 last_addr = addr;
1726
1727 return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 * mm address-expression new-value
1733 * Remarks:
1734 * mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738 int diag;
1739 unsigned long addr;
1740 long offset = 0;
1741 unsigned long contents;
1742 int nextarg;
1743 int width;
1744
1745 if (argv[0][2] && !isdigit(argv[0][2]))
1746 return KDB_NOTFOUND;
1747
1748 if (argc < 2)
1749 return KDB_ARGCOUNT;
1750
1751 nextarg = 1;
1752 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753 if (diag)
1754 return diag;
1755
1756 if (nextarg > argc)
1757 return KDB_ARGCOUNT;
1758 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759 if (diag)
1760 return diag;
1761
1762 if (nextarg != argc + 1)
1763 return KDB_ARGCOUNT;
1764
1765 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766 diag = kdb_putword(addr, contents, width);
1767 if (diag)
1768 return diag;
1769
1770 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772 return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 * go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781 unsigned long addr;
1782 int diag;
1783 int nextarg;
1784 long offset;
1785
1786 if (raw_smp_processor_id() != kdb_initial_cpu) {
1787 kdb_printf("go must execute on the entry cpu, "
1788 "please use \"cpu %d\" and then execute go\n",
1789 kdb_initial_cpu);
1790 return KDB_BADCPUNUM;
1791 }
1792 if (argc == 1) {
1793 nextarg = 1;
1794 diag = kdbgetaddrarg(argc, argv, &nextarg,
1795 &addr, &offset, NULL);
1796 if (diag)
1797 return diag;
1798 } else if (argc) {
1799 return KDB_ARGCOUNT;
1800 }
1801
1802 diag = KDB_CMD_GO;
1803 if (KDB_FLAG(CATASTROPHIC)) {
1804 kdb_printf("Catastrophic error detected\n");
1805 kdb_printf("kdb_continue_catastrophic=%d, ",
1806 kdb_continue_catastrophic);
1807 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808 kdb_printf("type go a second time if you really want "
1809 "to continue\n");
1810 return 0;
1811 }
1812 if (kdb_continue_catastrophic == 2) {
1813 kdb_printf("forcing reboot\n");
1814 kdb_reboot(0, NULL);
1815 }
1816 kdb_printf("attempting to continue\n");
1817 }
1818 return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826 int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828 int i;
1829 char *rname;
1830 int rsize;
1831 u64 reg64;
1832 u32 reg32;
1833 u16 reg16;
1834 u8 reg8;
1835
1836 if (len)
1837 return len;
1838
1839 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840 rsize = dbg_reg_def[i].size * 2;
1841 if (rsize > 16)
1842 rsize = 2;
1843 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844 len = 0;
1845 kdb_printf("\n");
1846 }
1847 if (len)
1848 len += kdb_printf(" ");
1849 switch(dbg_reg_def[i].size * 8) {
1850 case 8:
1851 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1852 if (!rname)
1853 break;
1854 len += kdb_printf("%s: %02x", rname, reg8);
1855 break;
1856 case 16:
1857 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1858 if (!rname)
1859 break;
1860 len += kdb_printf("%s: %04x", rname, reg16);
1861 break;
1862 case 32:
1863 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1864 if (!rname)
1865 break;
1866 len += kdb_printf("%s: %08x", rname, reg32);
1867 break;
1868 case 64:
1869 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %016llx", rname, reg64);
1873 break;
1874 default:
1875 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876 }
1877 }
1878 kdb_printf("\n");
1879#else
1880 if (len)
1881 return len;
1882
1883 kdb_dumpregs(kdb_current_regs);
1884#endif
1885 return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify) command.
1890 * rm register-name new-contents
1891 * Remarks:
1892 * Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897 int diag;
1898 const char *rname;
1899 int i;
1900 u64 reg64;
1901 u32 reg32;
1902 u16 reg16;
1903 u8 reg8;
1904
1905 if (argc != 2)
1906 return KDB_ARGCOUNT;
1907 /*
1908 * Allow presence or absence of leading '%' symbol.
1909 */
1910 rname = argv[1];
1911 if (*rname == '%')
1912 rname++;
1913
1914 diag = kdbgetu64arg(argv[2], ®64);
1915 if (diag)
1916 return diag;
1917
1918 diag = kdb_check_regs();
1919 if (diag)
1920 return diag;
1921
1922 diag = KDB_BADREG;
1923 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925 diag = 0;
1926 break;
1927 }
1928 }
1929 if (!diag) {
1930 switch(dbg_reg_def[i].size * 8) {
1931 case 8:
1932 reg8 = reg64;
1933 dbg_set_reg(i, ®8, kdb_current_regs);
1934 break;
1935 case 16:
1936 reg16 = reg64;
1937 dbg_set_reg(i, ®16, kdb_current_regs);
1938 break;
1939 case 32:
1940 reg32 = reg64;
1941 dbg_set_reg(i, ®32, kdb_current_regs);
1942 break;
1943 case 64:
1944 dbg_set_reg(i, ®64, kdb_current_regs);
1945 break;
1946 }
1947 }
1948 return diag;
1949#else
1950 kdb_printf("ERROR: Register set currently not implemented\n");
1951 return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 * sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963 bool check_mask =
1964 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966 if (argc != 1)
1967 return KDB_ARGCOUNT;
1968
1969 kdb_trap_printk++;
1970 __handle_sysrq(*argv[1], check_mask);
1971 kdb_trap_printk--;
1972
1973 return 0;
1974}
1975#endif /* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 * frame) command. This command takes an address and expects to
1980 * find an exception frame at that address, formats and prints
1981 * it.
1982 * regs address-expression
1983 * Remarks:
1984 * Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988 int diag;
1989 unsigned long addr;
1990 long offset;
1991 int nextarg;
1992
1993 if (argc != 1)
1994 return KDB_ARGCOUNT;
1995
1996 nextarg = 1;
1997 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998 if (diag)
1999 return diag;
2000 show_regs((struct pt_regs *)addr);
2001 return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2007 * currently loaded kernel modules.
2008 * Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012 struct module *mod;
2013
2014 if (argc != 0)
2015 return KDB_ARGCOUNT;
2016
2017 kdb_printf("Module Size modstruct Used by\n");
2018 list_for_each_entry(mod, kdb_modules, list) {
2019 if (mod->state == MODULE_STATE_UNFORMED)
2020 continue;
2021
2022 kdb_printf("%-20s%8u 0x%p ", mod->name,
2023 mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025 kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027 if (mod->state == MODULE_STATE_GOING)
2028 kdb_printf(" (Unloading)");
2029 else if (mod->state == MODULE_STATE_COMING)
2030 kdb_printf(" (Loading)");
2031 else
2032 kdb_printf(" (Live)");
2033 kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036 {
2037 struct module_use *use;
2038 kdb_printf(" [ ");
2039 list_for_each_entry(use, &mod->source_list,
2040 source_list)
2041 kdb_printf("%s ", use->target->name);
2042 kdb_printf("]\n");
2043 }
2044#endif
2045 }
2046
2047 return 0;
2048}
2049
2050#endif /* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command. Display the
2054 * current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059 int i;
2060
2061 for (i = 0; i < __nenv; i++) {
2062 if (__env[i])
2063 kdb_printf("%s\n", __env[i]);
2064 }
2065
2066 if (KDB_DEBUG(MASK))
2067 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069 return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 * the contents of the syslog buffer.
2076 * dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080 int diag;
2081 int logging;
2082 int lines = 0;
2083 int adjust = 0;
2084 int n = 0;
2085 int skip = 0;
2086 struct kmsg_dumper dumper = { .active = 1 };
2087 size_t len;
2088 char buf[201];
2089
2090 if (argc > 2)
2091 return KDB_ARGCOUNT;
2092 if (argc) {
2093 char *cp;
2094 lines = simple_strtol(argv[1], &cp, 0);
2095 if (*cp)
2096 lines = 0;
2097 if (argc > 1) {
2098 adjust = simple_strtoul(argv[2], &cp, 0);
2099 if (*cp || adjust < 0)
2100 adjust = 0;
2101 }
2102 }
2103
2104 /* disable LOGGING if set */
2105 diag = kdbgetintenv("LOGGING", &logging);
2106 if (!diag && logging) {
2107 const char *setargs[] = { "set", "LOGGING", "0" };
2108 kdb_set(2, setargs);
2109 }
2110
2111 kmsg_dump_rewind_nolock(&dumper);
2112 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113 n++;
2114
2115 if (lines < 0) {
2116 if (adjust >= n)
2117 kdb_printf("buffer only contains %d lines, nothing "
2118 "printed\n", n);
2119 else if (adjust - lines >= n)
2120 kdb_printf("buffer only contains %d lines, last %d "
2121 "lines printed\n", n, n - adjust);
2122 skip = adjust;
2123 lines = abs(lines);
2124 } else if (lines > 0) {
2125 skip = n - lines - adjust;
2126 lines = abs(lines);
2127 if (adjust >= n) {
2128 kdb_printf("buffer only contains %d lines, "
2129 "nothing printed\n", n);
2130 skip = n;
2131 } else if (skip < 0) {
2132 lines += skip;
2133 skip = 0;
2134 kdb_printf("buffer only contains %d lines, first "
2135 "%d lines printed\n", n, lines);
2136 }
2137 } else {
2138 lines = n;
2139 }
2140
2141 if (skip >= n || skip < 0)
2142 return 0;
2143
2144 kmsg_dump_rewind_nolock(&dumper);
2145 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146 if (skip) {
2147 skip--;
2148 continue;
2149 }
2150 if (!lines--)
2151 break;
2152 if (KDB_FLAG(CMD_INTERRUPT))
2153 return 0;
2154
2155 kdb_printf("%.*s\n", (int)len - 1, buf);
2156 }
2157
2158 return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167 if (atomic_read(&kdb_nmi_disabled))
2168 return 0;
2169 atomic_set(&kdb_nmi_disabled, 1);
2170 arch_kgdb_ops.enable_nmi(0);
2171 return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177 return -EINVAL;
2178 arch_kgdb_ops.enable_nmi(1);
2179 return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183 .set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 * cpu [<cpunum>]
2190 * Returns:
2191 * KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195 int i, start_cpu, first_print = 1;
2196 char state, prev_state = '?';
2197
2198 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199 kdb_printf("Available cpus: ");
2200 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201 if (!cpu_online(i)) {
2202 state = 'F'; /* cpu is offline */
2203 } else if (!kgdb_info[i].enter_kgdb) {
2204 state = 'D'; /* cpu is online but unresponsive */
2205 } else {
2206 state = ' '; /* cpu is responding to kdb */
2207 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208 state = 'I'; /* idle task */
2209 }
2210 if (state != prev_state) {
2211 if (prev_state != '?') {
2212 if (!first_print)
2213 kdb_printf(", ");
2214 first_print = 0;
2215 kdb_printf("%d", start_cpu);
2216 if (start_cpu < i-1)
2217 kdb_printf("-%d", i-1);
2218 if (prev_state != ' ')
2219 kdb_printf("(%c)", prev_state);
2220 }
2221 prev_state = state;
2222 start_cpu = i;
2223 }
2224 }
2225 /* print the trailing cpus, ignoring them if they are all offline */
2226 if (prev_state != 'F') {
2227 if (!first_print)
2228 kdb_printf(", ");
2229 kdb_printf("%d", start_cpu);
2230 if (start_cpu < i-1)
2231 kdb_printf("-%d", i-1);
2232 if (prev_state != ' ')
2233 kdb_printf("(%c)", prev_state);
2234 }
2235 kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240 unsigned long cpunum;
2241 int diag;
2242
2243 if (argc == 0) {
2244 kdb_cpu_status();
2245 return 0;
2246 }
2247
2248 if (argc != 1)
2249 return KDB_ARGCOUNT;
2250
2251 diag = kdbgetularg(argv[1], &cpunum);
2252 if (diag)
2253 return diag;
2254
2255 /*
2256 * Validate cpunum
2257 */
2258 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259 return KDB_BADCPUNUM;
2260
2261 dbg_switch_cpu = cpunum;
2262
2263 /*
2264 * Switch to other cpu
2265 */
2266 return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274 int idle = 0, daemon = 0;
2275 unsigned long mask_I = kdb_task_state_string("I"),
2276 mask_M = kdb_task_state_string("M");
2277 unsigned long cpu;
2278 const struct task_struct *p, *g;
2279 for_each_online_cpu(cpu) {
2280 p = kdb_curr_task(cpu);
2281 if (kdb_task_state(p, mask_I))
2282 ++idle;
2283 }
2284 kdb_do_each_thread(g, p) {
2285 if (kdb_task_state(p, mask_M))
2286 ++daemon;
2287 } kdb_while_each_thread(g, p);
2288 if (idle || daemon) {
2289 if (idle)
2290 kdb_printf("%d idle process%s (state I)%s\n",
2291 idle, idle == 1 ? "" : "es",
2292 daemon ? " and " : "");
2293 if (daemon)
2294 kdb_printf("%d sleeping system daemon (state M) "
2295 "process%s", daemon,
2296 daemon == 1 ? "" : "es");
2297 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298 }
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 * list of the active processes.
2304 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308 int cpu;
2309 unsigned long tmp;
2310
2311 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%p)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335 struct task_struct *g, *p;
2336 unsigned long mask, cpu;
2337
2338 if (argc == 0)
2339 kdb_ps_suppressed();
2340 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2341 (int)(2*sizeof(void *))+2, "Task Addr",
2342 (int)(2*sizeof(void *))+2, "Thread");
2343 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344 /* Run the active tasks first */
2345 for_each_online_cpu(cpu) {
2346 if (KDB_FLAG(CMD_INTERRUPT))
2347 return 0;
2348 p = kdb_curr_task(cpu);
2349 if (kdb_task_state(p, mask))
2350 kdb_ps1(p);
2351 }
2352 kdb_printf("\n");
2353 /* Now the real tasks */
2354 kdb_do_each_thread(g, p) {
2355 if (KDB_FLAG(CMD_INTERRUPT))
2356 return 0;
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 } kdb_while_each_thread(g, p);
2360
2361 return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 * the currently active process.
2367 * pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371 struct task_struct *p;
2372 unsigned long val;
2373 int diag;
2374
2375 if (argc > 1)
2376 return KDB_ARGCOUNT;
2377
2378 if (argc) {
2379 if (strcmp(argv[1], "R") == 0) {
2380 p = KDB_TSK(kdb_initial_cpu);
2381 } else {
2382 diag = kdbgetularg(argv[1], &val);
2383 if (diag)
2384 return KDB_BADINT;
2385
2386 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2387 if (!p) {
2388 kdb_printf("No task with pid=%d\n", (pid_t)val);
2389 return 0;
2390 }
2391 }
2392 kdb_set_current_task(p);
2393 }
2394 kdb_printf("KDB current process is %s(pid=%d)\n",
2395 kdb_current_task->comm,
2396 kdb_current_task->pid);
2397
2398 return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403 return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411 kdbtab_t *kt;
2412 int i;
2413
2414 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415 kdb_printf("-----------------------------"
2416 "-----------------------------\n");
2417 for_each_kdbcmd(kt, i) {
2418 char *space = "";
2419 if (KDB_FLAG(CMD_INTERRUPT))
2420 return 0;
2421 if (!kt->cmd_name)
2422 continue;
2423 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424 continue;
2425 if (strlen(kt->cmd_usage) > 20)
2426 space = "\n ";
2427 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428 kt->cmd_usage, space, kt->cmd_help);
2429 }
2430 return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438 long sig, pid;
2439 char *endp;
2440 struct task_struct *p;
2441 struct siginfo info;
2442
2443 if (argc != 2)
2444 return KDB_ARGCOUNT;
2445
2446 sig = simple_strtol(argv[1], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (sig >= 0) {
2450 kdb_printf("Invalid signal parameter.<-signal>\n");
2451 return 0;
2452 }
2453 sig = -sig;
2454
2455 pid = simple_strtol(argv[2], &endp, 0);
2456 if (*endp)
2457 return KDB_BADINT;
2458 if (pid <= 0) {
2459 kdb_printf("Process ID must be large than 0.\n");
2460 return 0;
2461 }
2462
2463 /* Find the process. */
2464 p = find_task_by_pid_ns(pid, &init_pid_ns);
2465 if (!p) {
2466 kdb_printf("The specified process isn't found.\n");
2467 return 0;
2468 }
2469 p = p->group_leader;
2470 info.si_signo = sig;
2471 info.si_errno = 0;
2472 info.si_code = SI_USER;
2473 info.si_pid = pid; /* same capabilities as process being signalled */
2474 info.si_uid = 0; /* kdb has root authority */
2475 kdb_send_sig_info(p, &info);
2476 return 0;
2477}
2478
2479struct kdb_tm {
2480 int tm_sec; /* seconds */
2481 int tm_min; /* minutes */
2482 int tm_hour; /* hours */
2483 int tm_mday; /* day of the month */
2484 int tm_mon; /* month */
2485 int tm_year; /* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490 /* This will work from 1970-2099, 2100 is not a leap year */
2491 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492 31, 30, 31, 30, 31 };
2493 memset(tm, 0, sizeof(*tm));
2494 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2495 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2497 tm->tm_min = tm->tm_sec / 60 % 60;
2498 tm->tm_hour = tm->tm_sec / 60 / 60;
2499 tm->tm_sec = tm->tm_sec % 60;
2500 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501 tm->tm_mday %= (4*365+1);
2502 mon_day[1] = 29;
2503 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504 tm->tm_mday -= mon_day[tm->tm_mon];
2505 if (++tm->tm_mon == 12) {
2506 tm->tm_mon = 0;
2507 ++tm->tm_year;
2508 mon_day[1] = 28;
2509 }
2510 }
2511 ++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521 struct timespec uptime;
2522 ktime_get_ts(&uptime);
2523 memset(val, 0, sizeof(*val));
2524 val->uptime = uptime.tv_sec;
2525 val->loads[0] = avenrun[0];
2526 val->loads[1] = avenrun[1];
2527 val->loads[2] = avenrun[2];
2528 val->procs = nr_threads-1;
2529 si_meminfo(val);
2530
2531 return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539 struct timespec now;
2540 struct kdb_tm tm;
2541 struct sysinfo val;
2542
2543 if (argc)
2544 return KDB_ARGCOUNT;
2545
2546 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2547 kdb_printf("release %s\n", init_uts_ns.name.release);
2548 kdb_printf("version %s\n", init_uts_ns.name.version);
2549 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2550 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2551 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2553
2554 now = __current_kernel_time();
2555 kdb_gmtime(&now, &tm);
2556 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2557 "tz_minuteswest %d\n",
2558 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559 tm.tm_hour, tm.tm_min, tm.tm_sec,
2560 sys_tz.tz_minuteswest);
2561
2562 kdb_sysinfo(&val);
2563 kdb_printf("uptime ");
2564 if (val.uptime > (24*60*60)) {
2565 int days = val.uptime / (24*60*60);
2566 val.uptime %= (24*60*60);
2567 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568 }
2569 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581 /* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2584 "Buffers: %8lu kB\n",
2585 K(val.totalram), K(val.freeram), K(val.bufferram));
2586 return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594 char fmtstr[64];
2595 int cpu, diag, nextarg = 1;
2596 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598 if (argc < 1 || argc > 3)
2599 return KDB_ARGCOUNT;
2600
2601 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602 if (diag)
2603 return diag;
2604
2605 if (argc >= 2) {
2606 diag = kdbgetularg(argv[2], &bytesperword);
2607 if (diag)
2608 return diag;
2609 }
2610 if (!bytesperword)
2611 bytesperword = KDB_WORD_SIZE;
2612 else if (bytesperword > KDB_WORD_SIZE)
2613 return KDB_BADWIDTH;
2614 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615 if (argc >= 3) {
2616 diag = kdbgetularg(argv[3], &whichcpu);
2617 if (diag)
2618 return diag;
2619 if (!cpu_online(whichcpu)) {
2620 kdb_printf("cpu %ld is not online\n", whichcpu);
2621 return KDB_BADCPUNUM;
2622 }
2623 }
2624
2625 /* Most architectures use __per_cpu_offset[cpu], some use
2626 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627 */
2628#ifdef __per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637 for_each_online_cpu(cpu) {
2638 if (KDB_FLAG(CMD_INTERRUPT))
2639 return 0;
2640
2641 if (whichcpu != ~0UL && whichcpu != cpu)
2642 continue;
2643 addr = symaddr + KDB_PCU(cpu);
2644 diag = kdb_getword(&val, addr, bytesperword);
2645 if (diag) {
2646 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647 "read, diag=%d\n", cpu, addr, diag);
2648 continue;
2649 }
2650 kdb_printf("%5d ", cpu);
2651 kdb_md_line(fmtstr, addr,
2652 bytesperword == KDB_WORD_SIZE,
2653 1, bytesperword, 1, 1, 0);
2654 }
2655#undef KDB_PCU
2656 return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664 kdb_printf("Usage of cmd args | grep pattern:\n");
2665 kdb_printf(" Any command's output may be filtered through an ");
2666 kdb_printf("emulated 'pipe'.\n");
2667 kdb_printf(" 'grep' is just a key word.\n");
2668 kdb_printf(" The pattern may include a very limited set of "
2669 "metacharacters:\n");
2670 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2671 kdb_printf(" And if there are spaces in the pattern, you may "
2672 "quote it:\n");
2673 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674 " or \"^pat tern$\"\n");
2675 return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * debugger command.
2681 * Inputs:
2682 * cmd Command name
2683 * func Function to execute the command
2684 * usage A simple usage string showing arguments
2685 * help A simple help string describing command
2686 * repeat Does the command auto repeat on enter?
2687 * Returns:
2688 * zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50 /* arbitrary */
2691int kdb_register_flags(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen,
2696 kdb_cmdflags_t flags)
2697{
2698 int i;
2699 kdbtab_t *kp;
2700
2701 /*
2702 * Brute force method to determine duplicates
2703 */
2704 for_each_kdbcmd(kp, i) {
2705 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706 kdb_printf("Duplicate kdb command registered: "
2707 "%s, func %p help %s\n", cmd, func, help);
2708 return 1;
2709 }
2710 }
2711
2712 /*
2713 * Insert command into first available location in table
2714 */
2715 for_each_kdbcmd(kp, i) {
2716 if (kp->cmd_name == NULL)
2717 break;
2718 }
2719
2720 if (i >= kdb_max_commands) {
2721 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723 if (!new) {
2724 kdb_printf("Could not allocate new kdb_command "
2725 "table\n");
2726 return 1;
2727 }
2728 if (kdb_commands) {
2729 memcpy(new, kdb_commands,
2730 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731 kfree(kdb_commands);
2732 }
2733 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734 kdb_command_extend * sizeof(*new));
2735 kdb_commands = new;
2736 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737 kdb_max_commands += kdb_command_extend;
2738 }
2739
2740 kp->cmd_name = cmd;
2741 kp->cmd_func = func;
2742 kp->cmd_usage = usage;
2743 kp->cmd_help = help;
2744 kp->cmd_minlen = minlen;
2745 kp->cmd_flags = flags;
2746
2747 return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 * not need to specify a repeat state. Equivalent to
2755 * kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 * cmd Command name
2758 * func Function to execute the command
2759 * usage A simple usage string showing arguments
2760 * help A simple help string describing command
2761 * Returns:
2762 * zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765 kdb_func_t func,
2766 char *usage,
2767 char *help,
2768 short minlen)
2769{
2770 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 * debugger command. It is generally called when a module which
2777 * implements kdb commands is unloaded.
2778 * Inputs:
2779 * cmd Command name
2780 * Returns:
2781 * zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785 int i;
2786 kdbtab_t *kp;
2787
2788 /*
2789 * find the command.
2790 */
2791 for_each_kdbcmd(kp, i) {
2792 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793 kp->cmd_name = NULL;
2794 return 0;
2795 }
2796 }
2797
2798 /* Couldn't find it. */
2799 return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806 int i;
2807 kdbtab_t *kp;
2808
2809 for_each_kdbcmd(kp, i)
2810 kp->cmd_name = NULL;
2811
2812 kdb_register_flags("md", kdb_md, "<vaddr>",
2813 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816 "Display Raw Memory", 0,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819 "Display Physical Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821 kdb_register_flags("mds", kdb_md, "<vaddr>",
2822 "Display Memory Symbolically", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825 "Modify Memory Contents", 0,
2826 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828 "Continue Execution", 1,
2829 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830 kdb_register_flags("rd", kdb_rd, "",
2831 "Display Registers", 0,
2832 KDB_ENABLE_REG_READ);
2833 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834 "Modify Registers", 0,
2835 KDB_ENABLE_REG_WRITE);
2836 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837 "Display exception frame", 0,
2838 KDB_ENABLE_MEM_READ);
2839 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840 "Stack traceback", 1,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("btp", kdb_bt, "<pid>",
2843 "Display stack for process <pid>", 0,
2844 KDB_ENABLE_INSPECT);
2845 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846 "Backtrace all processes matching state flag", 0,
2847 KDB_ENABLE_INSPECT);
2848 kdb_register_flags("btc", kdb_bt, "",
2849 "Backtrace current process on each cpu", 0,
2850 KDB_ENABLE_INSPECT);
2851 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852 "Backtrace process given its struct task address", 0,
2853 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854 kdb_register_flags("env", kdb_env, "",
2855 "Show environment variables", 0,
2856 KDB_ENABLE_ALWAYS_SAFE);
2857 kdb_register_flags("set", kdb_set, "",
2858 "Set environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
2860 kdb_register_flags("help", kdb_help, "",
2861 "Display Help Message", 1,
2862 KDB_ENABLE_ALWAYS_SAFE);
2863 kdb_register_flags("?", kdb_help, "",
2864 "Display Help Message", 0,
2865 KDB_ENABLE_ALWAYS_SAFE);
2866 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867 "Switch to new cpu", 0,
2868 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869 kdb_register_flags("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, 0);
2871 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0,
2873 KDB_ENABLE_INSPECT);
2874 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875 "Switch to another task", 0,
2876 KDB_ENABLE_INSPECT);
2877 kdb_register_flags("reboot", kdb_reboot, "",
2878 "Reboot the machine immediately", 0,
2879 KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881 kdb_register_flags("lsmod", kdb_lsmod, "",
2882 "List loaded kernel modules", 0,
2883 KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886 kdb_register_flags("sr", kdb_sr, "<key>",
2887 "Magic SysRq key", 0,
2888 KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892 "Display syslog buffer", 0,
2893 KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895 if (arch_kgdb_ops.enable_nmi) {
2896 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897 "Disable NMI entry to KDB", 0,
2898 KDB_ENABLE_ALWAYS_SAFE);
2899 }
2900 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901 "Define a set of commands, down to endefcmd", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904 "Send a signal to a process", 0,
2905 KDB_ENABLE_SIGNAL);
2906 kdb_register_flags("summary", kdb_summary, "",
2907 "Summarize the system", 4,
2908 KDB_ENABLE_ALWAYS_SAFE);
2909 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910 "Display per_cpu variables", 3,
2911 KDB_ENABLE_MEM_READ);
2912 kdb_register_flags("grephelp", kdb_grep_help, "",
2913 "Display help on | grep", 0,
2914 KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds. */
2918static void __init kdb_cmd_init(void)
2919{
2920 int i, diag;
2921 for (i = 0; kdb_cmds[i]; ++i) {
2922 diag = kdb_parse(kdb_cmds[i]);
2923 if (diag)
2924 kdb_printf("kdb command %s failed, kdb diag %d\n",
2925 kdb_cmds[i], diag);
2926 }
2927 if (defcmd_in_progress) {
2928 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929 kdb_parse("endefcmd");
2930 }
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937 int i;
2938
2939 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940 return;
2941 for (i = kdb_init_lvl; i < lvl; i++) {
2942 switch (i) {
2943 case KDB_NOT_INITIALIZED:
2944 kdb_inittab(); /* Initialize Command Table */
2945 kdb_initbptab(); /* Initialize Breakpoints */
2946 break;
2947 case KDB_INIT_EARLY:
2948 kdb_cmd_init(); /* Build kdb_cmds tables */
2949 break;
2950 }
2951 }
2952 kdb_init_lvl = lvl;
2953}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/string.h>
16#include <linux/kernel.h>
17#include <linux/reboot.h>
18#include <linux/sched.h>
19#include <linux/sysrq.h>
20#include <linux/smp.h>
21#include <linux/utsname.h>
22#include <linux/vmalloc.h>
23#include <linux/module.h>
24#include <linux/mm.h>
25#include <linux/init.h>
26#include <linux/kallsyms.h>
27#include <linux/kgdb.h>
28#include <linux/kdb.h>
29#include <linux/notifier.h>
30#include <linux/interrupt.h>
31#include <linux/delay.h>
32#include <linux/nmi.h>
33#include <linux/time.h>
34#include <linux/ptrace.h>
35#include <linux/sysctl.h>
36#include <linux/cpu.h>
37#include <linux/kdebug.h>
38#include <linux/proc_fs.h>
39#include <linux/uaccess.h>
40#include <linux/slab.h>
41#include "kdb_private.h"
42
43#define GREP_LEN 256
44char kdb_grep_string[GREP_LEN];
45int kdb_grepping_flag;
46EXPORT_SYMBOL(kdb_grepping_flag);
47int kdb_grep_leading;
48int kdb_grep_trailing;
49
50/*
51 * Kernel debugger state flags
52 */
53int kdb_flags;
54atomic_t kdb_event;
55
56/*
57 * kdb_lock protects updates to kdb_initial_cpu. Used to
58 * single thread processors through the kernel debugger.
59 */
60int kdb_initial_cpu = -1; /* cpu number that owns kdb */
61int kdb_nextline = 1;
62int kdb_state; /* General KDB state */
63
64struct task_struct *kdb_current_task;
65EXPORT_SYMBOL(kdb_current_task);
66struct pt_regs *kdb_current_regs;
67
68const char *kdb_diemsg;
69static int kdb_go_count;
70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
71static unsigned int kdb_continue_catastrophic =
72 CONFIG_KDB_CONTINUE_CATASTROPHIC;
73#else
74static unsigned int kdb_continue_catastrophic;
75#endif
76
77/* kdb_commands describes the available commands. */
78static kdbtab_t *kdb_commands;
79#define KDB_BASE_CMD_MAX 50
80static int kdb_max_commands = KDB_BASE_CMD_MAX;
81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
82#define for_each_kdbcmd(cmd, num) \
83 for ((cmd) = kdb_base_commands, (num) = 0; \
84 num < kdb_max_commands; \
85 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
86
87typedef struct _kdbmsg {
88 int km_diag; /* kdb diagnostic */
89 char *km_msg; /* Corresponding message text */
90} kdbmsg_t;
91
92#define KDBMSG(msgnum, text) \
93 { KDB_##msgnum, text }
94
95static kdbmsg_t kdbmsgs[] = {
96 KDBMSG(NOTFOUND, "Command Not Found"),
97 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
98 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
99 "8 is only allowed on 64 bit systems"),
100 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
101 KDBMSG(NOTENV, "Cannot find environment variable"),
102 KDBMSG(NOENVVALUE, "Environment variable should have value"),
103 KDBMSG(NOTIMP, "Command not implemented"),
104 KDBMSG(ENVFULL, "Environment full"),
105 KDBMSG(ENVBUFFULL, "Environment buffer full"),
106 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
107#ifdef CONFIG_CPU_XSCALE
108 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
109#else
110 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
111#endif
112 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
113 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
114 KDBMSG(BADMODE, "Invalid IDMODE"),
115 KDBMSG(BADINT, "Illegal numeric value"),
116 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
117 KDBMSG(BADREG, "Invalid register name"),
118 KDBMSG(BADCPUNUM, "Invalid cpu number"),
119 KDBMSG(BADLENGTH, "Invalid length field"),
120 KDBMSG(NOBP, "No Breakpoint exists"),
121 KDBMSG(BADADDR, "Invalid address"),
122};
123#undef KDBMSG
124
125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
126
127
128/*
129 * Initial environment. This is all kept static and local to
130 * this file. We don't want to rely on the memory allocation
131 * mechanisms in the kernel, so we use a very limited allocate-only
132 * heap for new and altered environment variables. The entire
133 * environment is limited to a fixed number of entries (add more
134 * to __env[] if required) and a fixed amount of heap (add more to
135 * KDB_ENVBUFSIZE if required).
136 */
137
138static char *__env[] = {
139#if defined(CONFIG_SMP)
140 "PROMPT=[%d]kdb> ",
141 "MOREPROMPT=[%d]more> ",
142#else
143 "PROMPT=kdb> ",
144 "MOREPROMPT=more> ",
145#endif
146 "RADIX=16",
147 "MDCOUNT=8", /* lines of md output */
148 KDB_PLATFORM_ENV,
149 "DTABCOUNT=30",
150 "NOSECT=1",
151 (char *)0,
152 (char *)0,
153 (char *)0,
154 (char *)0,
155 (char *)0,
156 (char *)0,
157 (char *)0,
158 (char *)0,
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175};
176
177static const int __nenv = (sizeof(__env) / sizeof(char *));
178
179struct task_struct *kdb_curr_task(int cpu)
180{
181 struct task_struct *p = curr_task(cpu);
182#ifdef _TIF_MCA_INIT
183 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
184 p = krp->p;
185#endif
186 return p;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long represntation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdbgetularg - This function will convert a numeric string into an
298 * unsigned long value.
299 * Parameters:
300 * arg A character string representing a numeric value
301 * Outputs:
302 * *value the unsigned long represntation of arg.
303 * Returns:
304 * Zero on success, a kdb diagnostic on failure.
305 */
306int kdbgetularg(const char *arg, unsigned long *value)
307{
308 char *endp;
309 unsigned long val;
310
311 val = simple_strtoul(arg, &endp, 0);
312
313 if (endp == arg) {
314 /*
315 * Also try base 16, for us folks too lazy to type the
316 * leading 0x...
317 */
318 val = simple_strtoul(arg, &endp, 16);
319 if (endp == arg)
320 return KDB_BADINT;
321 }
322
323 *value = val;
324
325 return 0;
326}
327
328int kdbgetu64arg(const char *arg, u64 *value)
329{
330 char *endp;
331 u64 val;
332
333 val = simple_strtoull(arg, &endp, 0);
334
335 if (endp == arg) {
336
337 val = simple_strtoull(arg, &endp, 16);
338 if (endp == arg)
339 return KDB_BADINT;
340 }
341
342 *value = val;
343
344 return 0;
345}
346
347/*
348 * kdb_set - This function implements the 'set' command. Alter an
349 * existing environment variable or create a new one.
350 */
351int kdb_set(int argc, const char **argv)
352{
353 int i;
354 char *ep;
355 size_t varlen, vallen;
356
357 /*
358 * we can be invoked two ways:
359 * set var=value argv[1]="var", argv[2]="value"
360 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
361 * - if the latter, shift 'em down.
362 */
363 if (argc == 3) {
364 argv[2] = argv[3];
365 argc--;
366 }
367
368 if (argc != 2)
369 return KDB_ARGCOUNT;
370
371 /*
372 * Check for internal variables
373 */
374 if (strcmp(argv[1], "KDBDEBUG") == 0) {
375 unsigned int debugflags;
376 char *cp;
377
378 debugflags = simple_strtoul(argv[2], &cp, 0);
379 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
380 kdb_printf("kdb: illegal debug flags '%s'\n",
381 argv[2]);
382 return 0;
383 }
384 kdb_flags = (kdb_flags &
385 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
386 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
387
388 return 0;
389 }
390
391 /*
392 * Tokenizer squashed the '=' sign. argv[1] is variable
393 * name, argv[2] = value.
394 */
395 varlen = strlen(argv[1]);
396 vallen = strlen(argv[2]);
397 ep = kdballocenv(varlen + vallen + 2);
398 if (ep == (char *)0)
399 return KDB_ENVBUFFULL;
400
401 sprintf(ep, "%s=%s", argv[1], argv[2]);
402
403 ep[varlen+vallen+1] = '\0';
404
405 for (i = 0; i < __nenv; i++) {
406 if (__env[i]
407 && ((strncmp(__env[i], argv[1], varlen) == 0)
408 && ((__env[i][varlen] == '\0')
409 || (__env[i][varlen] == '=')))) {
410 __env[i] = ep;
411 return 0;
412 }
413 }
414
415 /*
416 * Wasn't existing variable. Fit into slot.
417 */
418 for (i = 0; i < __nenv-1; i++) {
419 if (__env[i] == (char *)0) {
420 __env[i] = ep;
421 return 0;
422 }
423 }
424
425 return KDB_ENVFULL;
426}
427
428static int kdb_check_regs(void)
429{
430 if (!kdb_current_regs) {
431 kdb_printf("No current kdb registers."
432 " You may need to select another task\n");
433 return KDB_BADREG;
434 }
435 return 0;
436}
437
438/*
439 * kdbgetaddrarg - This function is responsible for parsing an
440 * address-expression and returning the value of the expression,
441 * symbol name, and offset to the caller.
442 *
443 * The argument may consist of a numeric value (decimal or
444 * hexidecimal), a symbol name, a register name (preceded by the
445 * percent sign), an environment variable with a numeric value
446 * (preceded by a dollar sign) or a simple arithmetic expression
447 * consisting of a symbol name, +/-, and a numeric constant value
448 * (offset).
449 * Parameters:
450 * argc - count of arguments in argv
451 * argv - argument vector
452 * *nextarg - index to next unparsed argument in argv[]
453 * regs - Register state at time of KDB entry
454 * Outputs:
455 * *value - receives the value of the address-expression
456 * *offset - receives the offset specified, if any
457 * *name - receives the symbol name, if any
458 * *nextarg - index to next unparsed argument in argv[]
459 * Returns:
460 * zero is returned on success, a kdb diagnostic code is
461 * returned on error.
462 */
463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
464 unsigned long *value, long *offset,
465 char **name)
466{
467 unsigned long addr;
468 unsigned long off = 0;
469 int positive;
470 int diag;
471 int found = 0;
472 char *symname;
473 char symbol = '\0';
474 char *cp;
475 kdb_symtab_t symtab;
476
477 /*
478 * Process arguments which follow the following syntax:
479 *
480 * symbol | numeric-address [+/- numeric-offset]
481 * %register
482 * $environment-variable
483 */
484
485 if (*nextarg > argc)
486 return KDB_ARGCOUNT;
487
488 symname = (char *)argv[*nextarg];
489
490 /*
491 * If there is no whitespace between the symbol
492 * or address and the '+' or '-' symbols, we
493 * remember the character and replace it with a
494 * null so the symbol/value can be properly parsed
495 */
496 cp = strpbrk(symname, "+-");
497 if (cp != NULL) {
498 symbol = *cp;
499 *cp++ = '\0';
500 }
501
502 if (symname[0] == '$') {
503 diag = kdbgetulenv(&symname[1], &addr);
504 if (diag)
505 return diag;
506 } else if (symname[0] == '%') {
507 diag = kdb_check_regs();
508 if (diag)
509 return diag;
510 /* Implement register values with % at a later time as it is
511 * arch optional.
512 */
513 return KDB_NOTIMP;
514 } else {
515 found = kdbgetsymval(symname, &symtab);
516 if (found) {
517 addr = symtab.sym_start;
518 } else {
519 diag = kdbgetularg(argv[*nextarg], &addr);
520 if (diag)
521 return diag;
522 }
523 }
524
525 if (!found)
526 found = kdbnearsym(addr, &symtab);
527
528 (*nextarg)++;
529
530 if (name)
531 *name = symname;
532 if (value)
533 *value = addr;
534 if (offset && name && *name)
535 *offset = addr - symtab.sym_start;
536
537 if ((*nextarg > argc)
538 && (symbol == '\0'))
539 return 0;
540
541 /*
542 * check for +/- and offset
543 */
544
545 if (symbol == '\0') {
546 if ((argv[*nextarg][0] != '+')
547 && (argv[*nextarg][0] != '-')) {
548 /*
549 * Not our argument. Return.
550 */
551 return 0;
552 } else {
553 positive = (argv[*nextarg][0] == '+');
554 (*nextarg)++;
555 }
556 } else
557 positive = (symbol == '+');
558
559 /*
560 * Now there must be an offset!
561 */
562 if ((*nextarg > argc)
563 && (symbol == '\0')) {
564 return KDB_INVADDRFMT;
565 }
566
567 if (!symbol) {
568 cp = (char *)argv[*nextarg];
569 (*nextarg)++;
570 }
571
572 diag = kdbgetularg(cp, &off);
573 if (diag)
574 return diag;
575
576 if (!positive)
577 off = -off;
578
579 if (offset)
580 *offset += off;
581
582 if (value)
583 *value += off;
584
585 return 0;
586}
587
588static void kdb_cmderror(int diag)
589{
590 int i;
591
592 if (diag >= 0) {
593 kdb_printf("no error detected (diagnostic is %d)\n", diag);
594 return;
595 }
596
597 for (i = 0; i < __nkdb_err; i++) {
598 if (kdbmsgs[i].km_diag == diag) {
599 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
600 return;
601 }
602 }
603
604 kdb_printf("Unknown diag %d\n", -diag);
605}
606
607/*
608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
609 * command which defines one command as a set of other commands,
610 * terminated by endefcmd. kdb_defcmd processes the initial
611 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
612 * the following commands until 'endefcmd'.
613 * Inputs:
614 * argc argument count
615 * argv argument vector
616 * Returns:
617 * zero for success, a kdb diagnostic if error
618 */
619struct defcmd_set {
620 int count;
621 int usable;
622 char *name;
623 char *usage;
624 char *help;
625 char **command;
626};
627static struct defcmd_set *defcmd_set;
628static int defcmd_set_count;
629static int defcmd_in_progress;
630
631/* Forward references */
632static int kdb_exec_defcmd(int argc, const char **argv);
633
634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
635{
636 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
637 char **save_command = s->command;
638 if (strcmp(argv0, "endefcmd") == 0) {
639 defcmd_in_progress = 0;
640 if (!s->count)
641 s->usable = 0;
642 if (s->usable)
643 kdb_register(s->name, kdb_exec_defcmd,
644 s->usage, s->help, 0);
645 return 0;
646 }
647 if (!s->usable)
648 return KDB_NOTIMP;
649 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
650 if (!s->command) {
651 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
652 cmdstr);
653 s->usable = 0;
654 return KDB_NOTIMP;
655 }
656 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
657 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
658 kfree(save_command);
659 return 0;
660}
661
662static int kdb_defcmd(int argc, const char **argv)
663{
664 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
665 if (defcmd_in_progress) {
666 kdb_printf("kdb: nested defcmd detected, assuming missing "
667 "endefcmd\n");
668 kdb_defcmd2("endefcmd", "endefcmd");
669 }
670 if (argc == 0) {
671 int i;
672 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
673 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
674 s->usage, s->help);
675 for (i = 0; i < s->count; ++i)
676 kdb_printf("%s", s->command[i]);
677 kdb_printf("endefcmd\n");
678 }
679 return 0;
680 }
681 if (argc != 3)
682 return KDB_ARGCOUNT;
683 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
684 GFP_KDB);
685 if (!defcmd_set) {
686 kdb_printf("Could not allocate new defcmd_set entry for %s\n",
687 argv[1]);
688 defcmd_set = save_defcmd_set;
689 return KDB_NOTIMP;
690 }
691 memcpy(defcmd_set, save_defcmd_set,
692 defcmd_set_count * sizeof(*defcmd_set));
693 kfree(save_defcmd_set);
694 s = defcmd_set + defcmd_set_count;
695 memset(s, 0, sizeof(*s));
696 s->usable = 1;
697 s->name = kdb_strdup(argv[1], GFP_KDB);
698 s->usage = kdb_strdup(argv[2], GFP_KDB);
699 s->help = kdb_strdup(argv[3], GFP_KDB);
700 if (s->usage[0] == '"') {
701 strcpy(s->usage, s->usage+1);
702 s->usage[strlen(s->usage)-1] = '\0';
703 }
704 if (s->help[0] == '"') {
705 strcpy(s->help, s->help+1);
706 s->help[strlen(s->help)-1] = '\0';
707 }
708 ++defcmd_set_count;
709 defcmd_in_progress = 1;
710 return 0;
711}
712
713/*
714 * kdb_exec_defcmd - Execute the set of commands associated with this
715 * defcmd name.
716 * Inputs:
717 * argc argument count
718 * argv argument vector
719 * Returns:
720 * zero for success, a kdb diagnostic if error
721 */
722static int kdb_exec_defcmd(int argc, const char **argv)
723{
724 int i, ret;
725 struct defcmd_set *s;
726 if (argc != 0)
727 return KDB_ARGCOUNT;
728 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
729 if (strcmp(s->name, argv[0]) == 0)
730 break;
731 }
732 if (i == defcmd_set_count) {
733 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
734 argv[0]);
735 return KDB_NOTIMP;
736 }
737 for (i = 0; i < s->count; ++i) {
738 /* Recursive use of kdb_parse, do not use argv after
739 * this point */
740 argv = NULL;
741 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
742 ret = kdb_parse(s->command[i]);
743 if (ret)
744 return ret;
745 }
746 return 0;
747}
748
749/* Command history */
750#define KDB_CMD_HISTORY_COUNT 32
751#define CMD_BUFLEN 200 /* kdb_printf: max printline
752 * size == 256 */
753static unsigned int cmd_head, cmd_tail;
754static unsigned int cmdptr;
755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
756static char cmd_cur[CMD_BUFLEN];
757
758/*
759 * The "str" argument may point to something like | grep xyz
760 */
761static void parse_grep(const char *str)
762{
763 int len;
764 char *cp = (char *)str, *cp2;
765
766 /* sanity check: we should have been called with the \ first */
767 if (*cp != '|')
768 return;
769 cp++;
770 while (isspace(*cp))
771 cp++;
772 if (strncmp(cp, "grep ", 5)) {
773 kdb_printf("invalid 'pipe', see grephelp\n");
774 return;
775 }
776 cp += 5;
777 while (isspace(*cp))
778 cp++;
779 cp2 = strchr(cp, '\n');
780 if (cp2)
781 *cp2 = '\0'; /* remove the trailing newline */
782 len = strlen(cp);
783 if (len == 0) {
784 kdb_printf("invalid 'pipe', see grephelp\n");
785 return;
786 }
787 /* now cp points to a nonzero length search string */
788 if (*cp == '"') {
789 /* allow it be "x y z" by removing the "'s - there must
790 be two of them */
791 cp++;
792 cp2 = strchr(cp, '"');
793 if (!cp2) {
794 kdb_printf("invalid quoted string, see grephelp\n");
795 return;
796 }
797 *cp2 = '\0'; /* end the string where the 2nd " was */
798 }
799 kdb_grep_leading = 0;
800 if (*cp == '^') {
801 kdb_grep_leading = 1;
802 cp++;
803 }
804 len = strlen(cp);
805 kdb_grep_trailing = 0;
806 if (*(cp+len-1) == '$') {
807 kdb_grep_trailing = 1;
808 *(cp+len-1) = '\0';
809 }
810 len = strlen(cp);
811 if (!len)
812 return;
813 if (len >= GREP_LEN) {
814 kdb_printf("search string too long\n");
815 return;
816 }
817 strcpy(kdb_grep_string, cp);
818 kdb_grepping_flag++;
819 return;
820}
821
822/*
823 * kdb_parse - Parse the command line, search the command table for a
824 * matching command and invoke the command function. This
825 * function may be called recursively, if it is, the second call
826 * will overwrite argv and cbuf. It is the caller's
827 * responsibility to save their argv if they recursively call
828 * kdb_parse().
829 * Parameters:
830 * cmdstr The input command line to be parsed.
831 * regs The registers at the time kdb was entered.
832 * Returns:
833 * Zero for success, a kdb diagnostic if failure.
834 * Remarks:
835 * Limited to 20 tokens.
836 *
837 * Real rudimentary tokenization. Basically only whitespace
838 * is considered a token delimeter (but special consideration
839 * is taken of the '=' sign as used by the 'set' command).
840 *
841 * The algorithm used to tokenize the input string relies on
842 * there being at least one whitespace (or otherwise useless)
843 * character between tokens as the character immediately following
844 * the token is altered in-place to a null-byte to terminate the
845 * token string.
846 */
847
848#define MAXARGC 20
849
850int kdb_parse(const char *cmdstr)
851{
852 static char *argv[MAXARGC];
853 static int argc;
854 static char cbuf[CMD_BUFLEN+2];
855 char *cp;
856 char *cpp, quoted;
857 kdbtab_t *tp;
858 int i, escaped, ignore_errors = 0, check_grep;
859
860 /*
861 * First tokenize the command string.
862 */
863 cp = (char *)cmdstr;
864 kdb_grepping_flag = check_grep = 0;
865
866 if (KDB_FLAG(CMD_INTERRUPT)) {
867 /* Previous command was interrupted, newline must not
868 * repeat the command */
869 KDB_FLAG_CLEAR(CMD_INTERRUPT);
870 KDB_STATE_SET(PAGER);
871 argc = 0; /* no repeat */
872 }
873
874 if (*cp != '\n' && *cp != '\0') {
875 argc = 0;
876 cpp = cbuf;
877 while (*cp) {
878 /* skip whitespace */
879 while (isspace(*cp))
880 cp++;
881 if ((*cp == '\0') || (*cp == '\n') ||
882 (*cp == '#' && !defcmd_in_progress))
883 break;
884 /* special case: check for | grep pattern */
885 if (*cp == '|') {
886 check_grep++;
887 break;
888 }
889 if (cpp >= cbuf + CMD_BUFLEN) {
890 kdb_printf("kdb_parse: command buffer "
891 "overflow, command ignored\n%s\n",
892 cmdstr);
893 return KDB_NOTFOUND;
894 }
895 if (argc >= MAXARGC - 1) {
896 kdb_printf("kdb_parse: too many arguments, "
897 "command ignored\n%s\n", cmdstr);
898 return KDB_NOTFOUND;
899 }
900 argv[argc++] = cpp;
901 escaped = 0;
902 quoted = '\0';
903 /* Copy to next unquoted and unescaped
904 * whitespace or '=' */
905 while (*cp && *cp != '\n' &&
906 (escaped || quoted || !isspace(*cp))) {
907 if (cpp >= cbuf + CMD_BUFLEN)
908 break;
909 if (escaped) {
910 escaped = 0;
911 *cpp++ = *cp++;
912 continue;
913 }
914 if (*cp == '\\') {
915 escaped = 1;
916 ++cp;
917 continue;
918 }
919 if (*cp == quoted)
920 quoted = '\0';
921 else if (*cp == '\'' || *cp == '"')
922 quoted = *cp;
923 *cpp = *cp++;
924 if (*cpp == '=' && !quoted)
925 break;
926 ++cpp;
927 }
928 *cpp++ = '\0'; /* Squash a ws or '=' character */
929 }
930 }
931 if (!argc)
932 return 0;
933 if (check_grep)
934 parse_grep(cp);
935 if (defcmd_in_progress) {
936 int result = kdb_defcmd2(cmdstr, argv[0]);
937 if (!defcmd_in_progress) {
938 argc = 0; /* avoid repeat on endefcmd */
939 *(argv[0]) = '\0';
940 }
941 return result;
942 }
943 if (argv[0][0] == '-' && argv[0][1] &&
944 (argv[0][1] < '0' || argv[0][1] > '9')) {
945 ignore_errors = 1;
946 ++argv[0];
947 }
948
949 for_each_kdbcmd(tp, i) {
950 if (tp->cmd_name) {
951 /*
952 * If this command is allowed to be abbreviated,
953 * check to see if this is it.
954 */
955
956 if (tp->cmd_minlen
957 && (strlen(argv[0]) <= tp->cmd_minlen)) {
958 if (strncmp(argv[0],
959 tp->cmd_name,
960 tp->cmd_minlen) == 0) {
961 break;
962 }
963 }
964
965 if (strcmp(argv[0], tp->cmd_name) == 0)
966 break;
967 }
968 }
969
970 /*
971 * If we don't find a command by this name, see if the first
972 * few characters of this match any of the known commands.
973 * e.g., md1c20 should match md.
974 */
975 if (i == kdb_max_commands) {
976 for_each_kdbcmd(tp, i) {
977 if (tp->cmd_name) {
978 if (strncmp(argv[0],
979 tp->cmd_name,
980 strlen(tp->cmd_name)) == 0) {
981 break;
982 }
983 }
984 }
985 }
986
987 if (i < kdb_max_commands) {
988 int result;
989 KDB_STATE_SET(CMD);
990 result = (*tp->cmd_func)(argc-1, (const char **)argv);
991 if (result && ignore_errors && result > KDB_CMD_GO)
992 result = 0;
993 KDB_STATE_CLEAR(CMD);
994 switch (tp->cmd_repeat) {
995 case KDB_REPEAT_NONE:
996 argc = 0;
997 if (argv[0])
998 *(argv[0]) = '\0';
999 break;
1000 case KDB_REPEAT_NO_ARGS:
1001 argc = 1;
1002 if (argv[1])
1003 *(argv[1]) = '\0';
1004 break;
1005 case KDB_REPEAT_WITH_ARGS:
1006 break;
1007 }
1008 return result;
1009 }
1010
1011 /*
1012 * If the input with which we were presented does not
1013 * map to an existing command, attempt to parse it as an
1014 * address argument and display the result. Useful for
1015 * obtaining the address of a variable, or the nearest symbol
1016 * to an address contained in a register.
1017 */
1018 {
1019 unsigned long value;
1020 char *name = NULL;
1021 long offset;
1022 int nextarg = 0;
1023
1024 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025 &value, &offset, &name)) {
1026 return KDB_NOTFOUND;
1027 }
1028
1029 kdb_printf("%s = ", argv[0]);
1030 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031 kdb_printf("\n");
1032 return 0;
1033 }
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P 16
1040#define CTRL_N 14
1041
1042 /* initial situation */
1043 if (cmd_head == cmd_tail)
1044 return 0;
1045 switch (*cmd) {
1046 case CTRL_P:
1047 if (cmdptr != cmd_tail)
1048 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050 return 1;
1051 case CTRL_N:
1052 if (cmdptr != cmd_head)
1053 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055 return 1;
1056 }
1057 return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command. Reboot
1062 * the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066 emergency_restart();
1067 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068 while (1)
1069 cpu_relax();
1070 /* NOTREACHED */
1071 return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076 int old_lvl = console_loglevel;
1077 console_loglevel = 15;
1078 kdb_trap_printk++;
1079 show_regs(regs);
1080 kdb_trap_printk--;
1081 kdb_printf("\n");
1082 console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087 kdb_current_task = p;
1088
1089 if (kdb_task_has_cpu(p)) {
1090 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091 return;
1092 }
1093 kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb. This routine is invoked on a
1098 * specific processor, it is not global. The main kdb() routine
1099 * ensures that only one processor at a time is in this routine.
1100 * This code is called with the real reason code on the first
1101 * entry to a kdb session, thereafter it is called with reason
1102 * SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 * reason The reason KDB was invoked
1105 * error The hardware-defined error code
1106 * regs The exception frame at time of fault/breakpoint.
1107 * db_result Result code from the break or debug point.
1108 * Returns:
1109 * 0 KDB was invoked for an event which it wasn't responsible
1110 * 1 KDB handled the event for which it was invoked.
1111 * KDB_CMD_GO User typed 'go'.
1112 * KDB_CMD_CPU User switched to another cpu.
1113 * KDB_CMD_SS Single step.
1114 * KDB_CMD_SSB Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117 kdb_dbtrap_t db_result)
1118{
1119 char *cmdbuf;
1120 int diag;
1121 struct task_struct *kdb_current =
1122 kdb_curr_task(raw_smp_processor_id());
1123
1124 KDB_DEBUG_STATE("kdb_local 1", reason);
1125 kdb_go_count = 0;
1126 if (reason == KDB_REASON_DEBUG) {
1127 /* special case below */
1128 } else {
1129 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130 kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132 kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134 }
1135
1136 switch (reason) {
1137 case KDB_REASON_DEBUG:
1138 {
1139 /*
1140 * If re-entering kdb after a single step
1141 * command, don't print the message.
1142 */
1143 switch (db_result) {
1144 case KDB_DB_BPT:
1145 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146 kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148 kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151 instruction_pointer(regs));
1152 break;
1153 case KDB_DB_SSB:
1154 /*
1155 * In the midst of ssb command. Just return.
1156 */
1157 KDB_DEBUG_STATE("kdb_local 3", reason);
1158 return KDB_CMD_SSB; /* Continue with SSB command */
1159
1160 break;
1161 case KDB_DB_SS:
1162 break;
1163 case KDB_DB_SSBPT:
1164 KDB_DEBUG_STATE("kdb_local 4", reason);
1165 return 1; /* kdba_db_trap did the work */
1166 default:
1167 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168 db_result);
1169 break;
1170 }
1171
1172 }
1173 break;
1174 case KDB_REASON_ENTER:
1175 if (KDB_STATE(KEYBOARD))
1176 kdb_printf("due to Keyboard Entry\n");
1177 else
1178 kdb_printf("due to KDB_ENTER()\n");
1179 break;
1180 case KDB_REASON_KEYBOARD:
1181 KDB_STATE_SET(KEYBOARD);
1182 kdb_printf("due to Keyboard Entry\n");
1183 break;
1184 case KDB_REASON_ENTER_SLAVE:
1185 /* drop through, slaves only get released via cpu switch */
1186 case KDB_REASON_SWITCH:
1187 kdb_printf("due to cpu switch\n");
1188 break;
1189 case KDB_REASON_OOPS:
1190 kdb_printf("Oops: %s\n", kdb_diemsg);
1191 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192 instruction_pointer(regs));
1193 kdb_dumpregs(regs);
1194 break;
1195 case KDB_REASON_NMI:
1196 kdb_printf("due to NonMaskable Interrupt @ "
1197 kdb_machreg_fmt "\n",
1198 instruction_pointer(regs));
1199 kdb_dumpregs(regs);
1200 break;
1201 case KDB_REASON_SSTEP:
1202 case KDB_REASON_BREAK:
1203 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204 reason == KDB_REASON_BREAK ?
1205 "Breakpoint" : "SS trap", instruction_pointer(regs));
1206 /*
1207 * Determine if this breakpoint is one that we
1208 * are interested in.
1209 */
1210 if (db_result != KDB_DB_BPT) {
1211 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212 db_result);
1213 KDB_DEBUG_STATE("kdb_local 6", reason);
1214 return 0; /* Not for us, dismiss it */
1215 }
1216 break;
1217 case KDB_REASON_RECURSE:
1218 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219 instruction_pointer(regs));
1220 break;
1221 default:
1222 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223 KDB_DEBUG_STATE("kdb_local 8", reason);
1224 return 0; /* Not for us, dismiss it */
1225 }
1226
1227 while (1) {
1228 /*
1229 * Initialize pager context.
1230 */
1231 kdb_nextline = 1;
1232 KDB_STATE_CLEAR(SUPPRESS);
1233
1234 cmdbuf = cmd_cur;
1235 *cmdbuf = '\0';
1236 *(cmd_hist[cmd_head]) = '\0';
1237
1238 if (KDB_FLAG(ONLY_DO_DUMP)) {
1239 /* kdb is off but a catastrophic error requires a dump.
1240 * Take the dump and reboot.
1241 * Turn on logging so the kdb output appears in the log
1242 * buffer in the dump.
1243 */
1244 const char *setargs[] = { "set", "LOGGING", "1" };
1245 kdb_set(2, setargs);
1246 kdb_reboot(0, NULL);
1247 /*NOTREACHED*/
1248 }
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253 raw_smp_processor_id());
1254#else
1255 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257 if (defcmd_in_progress)
1258 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260 /*
1261 * Fetch command from keyboard
1262 */
1263 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264 if (*cmdbuf != '\n') {
1265 if (*cmdbuf < 32) {
1266 if (cmdptr == cmd_head) {
1267 strncpy(cmd_hist[cmd_head], cmd_cur,
1268 CMD_BUFLEN);
1269 *(cmd_hist[cmd_head] +
1270 strlen(cmd_hist[cmd_head])-1) = '\0';
1271 }
1272 if (!handle_ctrl_cmd(cmdbuf))
1273 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274 cmdbuf = cmd_cur;
1275 goto do_full_getstr;
1276 } else {
1277 strncpy(cmd_hist[cmd_head], cmd_cur,
1278 CMD_BUFLEN);
1279 }
1280
1281 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282 if (cmd_head == cmd_tail)
1283 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284 }
1285
1286 cmdptr = cmd_head;
1287 diag = kdb_parse(cmdbuf);
1288 if (diag == KDB_NOTFOUND) {
1289 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290 diag = 0;
1291 }
1292 if (diag == KDB_CMD_GO
1293 || diag == KDB_CMD_CPU
1294 || diag == KDB_CMD_SS
1295 || diag == KDB_CMD_SSB
1296 || diag == KDB_CMD_KGDB)
1297 break;
1298
1299 if (diag)
1300 kdb_cmderror(diag);
1301 }
1302 KDB_DEBUG_STATE("kdb_local 9", diag);
1303 return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 * for debugging.
1310 * Inputs:
1311 * text Identifies the debug point
1312 * value Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318 kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 * controlling cpu, all cpus are in this loop. One cpu is in
1324 * control and will issue the kdb prompt, the others will spin
1325 * until 'go' or cpu switch.
1326 *
1327 * To get a consistent view of the kernel stacks for all
1328 * processes, this routine is invoked from the main kdb code via
1329 * an architecture specific routine. kdba_main_loop is
1330 * responsible for making the kernel stacks consistent for all
1331 * processes, there should be no difference between a blocked
1332 * process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 * reason The reason KDB was invoked
1335 * error The hardware-defined error code
1336 * reason2 kdb's current reason code.
1337 * Initially error but can change
1338 * according to kdb state.
1339 * db_result Result code from break or debug point.
1340 * regs The exception frame at time of fault/breakpoint.
1341 * should always be valid.
1342 * Returns:
1343 * 0 KDB was invoked for an event which it wasn't responsible
1344 * 1 KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347 kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349 int result = 1;
1350 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1351 while (1) {
1352 /*
1353 * All processors except the one that is in control
1354 * will spin here.
1355 */
1356 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357 while (KDB_STATE(HOLD_CPU)) {
1358 /* state KDB is turned off by kdb_cpu to see if the
1359 * other cpus are still live, each cpu in this loop
1360 * turns it back on.
1361 */
1362 if (!KDB_STATE(KDB))
1363 KDB_STATE_SET(KDB);
1364 }
1365
1366 KDB_STATE_CLEAR(SUPPRESS);
1367 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368 if (KDB_STATE(LEAVING))
1369 break; /* Another cpu said 'go' */
1370 /* Still using kdb, this processor is in control */
1371 result = kdb_local(reason2, error, regs, db_result);
1372 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374 if (result == KDB_CMD_CPU)
1375 break;
1376
1377 if (result == KDB_CMD_SS) {
1378 KDB_STATE_SET(DOING_SS);
1379 break;
1380 }
1381
1382 if (result == KDB_CMD_SSB) {
1383 KDB_STATE_SET(DOING_SS);
1384 KDB_STATE_SET(DOING_SSB);
1385 break;
1386 }
1387
1388 if (result == KDB_CMD_KGDB) {
1389 if (!KDB_STATE(DOING_KGDB))
1390 kdb_printf("Entering please attach debugger "
1391 "or use $D#44+ or $3#33\n");
1392 break;
1393 }
1394 if (result && result != 1 && result != KDB_CMD_GO)
1395 kdb_printf("\nUnexpected kdb_local return code %d\n",
1396 result);
1397 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398 break;
1399 }
1400 if (KDB_STATE(DOING_SS))
1401 KDB_STATE_CLEAR(SSBPT);
1402
1403 return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 * mdr <addr arg>,<byte count>
1410 * Inputs:
1411 * addr Start address
1412 * count Number of bytes
1413 * Returns:
1414 * Always 0. Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418 unsigned char c;
1419 while (count--) {
1420 if (kdb_getarea(c, addr))
1421 return 0;
1422 kdb_printf("%02x", c);
1423 addr++;
1424 }
1425 kdb_printf("\n");
1426 return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 * 'md8' 'mdr' and 'mds' commands.
1432 *
1433 * md|mds [<addr arg> [<line count> [<radix>]]]
1434 * mdWcN [<addr arg> [<line count> [<radix>]]]
1435 * where W = is the width (1, 2, 4 or 8) and N is the count.
1436 * for eg., md1c20 reads 20 bytes, 1 at a time.
1437 * mdr <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440 int symbolic, int nosect, int bytesperword,
1441 int num, int repeat, int phys)
1442{
1443 /* print just one line of data */
1444 kdb_symtab_t symtab;
1445 char cbuf[32];
1446 char *c = cbuf;
1447 int i;
1448 unsigned long word;
1449
1450 memset(cbuf, '\0', sizeof(cbuf));
1451 if (phys)
1452 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453 else
1454 kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456 for (i = 0; i < num && repeat--; i++) {
1457 if (phys) {
1458 if (kdb_getphysword(&word, addr, bytesperword))
1459 break;
1460 } else if (kdb_getword(&word, addr, bytesperword))
1461 break;
1462 kdb_printf(fmtstr, word);
1463 if (symbolic)
1464 kdbnearsym(word, &symtab);
1465 else
1466 memset(&symtab, 0, sizeof(symtab));
1467 if (symtab.sym_name) {
1468 kdb_symbol_print(word, &symtab, 0);
1469 if (!nosect) {
1470 kdb_printf("\n");
1471 kdb_printf(" %s %s "
1472 kdb_machreg_fmt " "
1473 kdb_machreg_fmt " "
1474 kdb_machreg_fmt, symtab.mod_name,
1475 symtab.sec_name, symtab.sec_start,
1476 symtab.sym_start, symtab.sym_end);
1477 }
1478 addr += bytesperword;
1479 } else {
1480 union {
1481 u64 word;
1482 unsigned char c[8];
1483 } wc;
1484 unsigned char *cp;
1485#ifdef __BIG_ENDIAN
1486 cp = wc.c + 8 - bytesperword;
1487#else
1488 cp = wc.c;
1489#endif
1490 wc.word = word;
1491#define printable_char(c) \
1492 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493 switch (bytesperword) {
1494 case 8:
1495 *c++ = printable_char(*cp++);
1496 *c++ = printable_char(*cp++);
1497 *c++ = printable_char(*cp++);
1498 *c++ = printable_char(*cp++);
1499 addr += 4;
1500 case 4:
1501 *c++ = printable_char(*cp++);
1502 *c++ = printable_char(*cp++);
1503 addr += 2;
1504 case 2:
1505 *c++ = printable_char(*cp++);
1506 addr++;
1507 case 1:
1508 *c++ = printable_char(*cp++);
1509 addr++;
1510 break;
1511 }
1512#undef printable_char
1513 }
1514 }
1515 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516 " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521 static unsigned long last_addr;
1522 static int last_radix, last_bytesperword, last_repeat;
1523 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524 int nosect = 0;
1525 char fmtchar, fmtstr[64];
1526 unsigned long addr;
1527 unsigned long word;
1528 long offset = 0;
1529 int symbolic = 0;
1530 int valid = 0;
1531 int phys = 0;
1532
1533 kdbgetintenv("MDCOUNT", &mdcount);
1534 kdbgetintenv("RADIX", &radix);
1535 kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537 /* Assume 'md <addr>' and start with environment values */
1538 repeat = mdcount * 16 / bytesperword;
1539
1540 if (strcmp(argv[0], "mdr") == 0) {
1541 if (argc != 2)
1542 return KDB_ARGCOUNT;
1543 valid = 1;
1544 } else if (isdigit(argv[0][2])) {
1545 bytesperword = (int)(argv[0][2] - '0');
1546 if (bytesperword == 0) {
1547 bytesperword = last_bytesperword;
1548 if (bytesperword == 0)
1549 bytesperword = 4;
1550 }
1551 last_bytesperword = bytesperword;
1552 repeat = mdcount * 16 / bytesperword;
1553 if (!argv[0][3])
1554 valid = 1;
1555 else if (argv[0][3] == 'c' && argv[0][4]) {
1556 char *p;
1557 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558 mdcount = ((repeat * bytesperword) + 15) / 16;
1559 valid = !*p;
1560 }
1561 last_repeat = repeat;
1562 } else if (strcmp(argv[0], "md") == 0)
1563 valid = 1;
1564 else if (strcmp(argv[0], "mds") == 0)
1565 valid = 1;
1566 else if (strcmp(argv[0], "mdp") == 0) {
1567 phys = valid = 1;
1568 }
1569 if (!valid)
1570 return KDB_NOTFOUND;
1571
1572 if (argc == 0) {
1573 if (last_addr == 0)
1574 return KDB_ARGCOUNT;
1575 addr = last_addr;
1576 radix = last_radix;
1577 bytesperword = last_bytesperword;
1578 repeat = last_repeat;
1579 mdcount = ((repeat * bytesperword) + 15) / 16;
1580 }
1581
1582 if (argc) {
1583 unsigned long val;
1584 int diag, nextarg = 1;
1585 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586 &offset, NULL);
1587 if (diag)
1588 return diag;
1589 if (argc > nextarg+2)
1590 return KDB_ARGCOUNT;
1591
1592 if (argc >= nextarg) {
1593 diag = kdbgetularg(argv[nextarg], &val);
1594 if (!diag) {
1595 mdcount = (int) val;
1596 repeat = mdcount * 16 / bytesperword;
1597 }
1598 }
1599 if (argc >= nextarg+1) {
1600 diag = kdbgetularg(argv[nextarg+1], &val);
1601 if (!diag)
1602 radix = (int) val;
1603 }
1604 }
1605
1606 if (strcmp(argv[0], "mdr") == 0)
1607 return kdb_mdr(addr, mdcount);
1608
1609 switch (radix) {
1610 case 10:
1611 fmtchar = 'd';
1612 break;
1613 case 16:
1614 fmtchar = 'x';
1615 break;
1616 case 8:
1617 fmtchar = 'o';
1618 break;
1619 default:
1620 return KDB_BADRADIX;
1621 }
1622
1623 last_radix = radix;
1624
1625 if (bytesperword > KDB_WORD_SIZE)
1626 return KDB_BADWIDTH;
1627
1628 switch (bytesperword) {
1629 case 8:
1630 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631 break;
1632 case 4:
1633 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634 break;
1635 case 2:
1636 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637 break;
1638 case 1:
1639 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640 break;
1641 default:
1642 return KDB_BADWIDTH;
1643 }
1644
1645 last_repeat = repeat;
1646 last_bytesperword = bytesperword;
1647
1648 if (strcmp(argv[0], "mds") == 0) {
1649 symbolic = 1;
1650 /* Do not save these changes as last_*, they are temporary mds
1651 * overrides.
1652 */
1653 bytesperword = KDB_WORD_SIZE;
1654 repeat = mdcount;
1655 kdbgetintenv("NOSECT", &nosect);
1656 }
1657
1658 /* Round address down modulo BYTESPERWORD */
1659
1660 addr &= ~(bytesperword-1);
1661
1662 while (repeat > 0) {
1663 unsigned long a;
1664 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666 if (KDB_FLAG(CMD_INTERRUPT))
1667 return 0;
1668 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669 if (phys) {
1670 if (kdb_getphysword(&word, a, bytesperword)
1671 || word)
1672 break;
1673 } else if (kdb_getword(&word, a, bytesperword) || word)
1674 break;
1675 }
1676 n = min(num, repeat);
1677 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678 num, repeat, phys);
1679 addr += bytesperword * n;
1680 repeat -= n;
1681 z = (z + num - 1) / num;
1682 if (z > 2) {
1683 int s = num * (z-2);
1684 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685 " zero suppressed\n",
1686 addr, addr + bytesperword * s - 1);
1687 addr += bytesperword * s;
1688 repeat -= s;
1689 }
1690 }
1691 last_addr = addr;
1692
1693 return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 * mm address-expression new-value
1699 * Remarks:
1700 * mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704 int diag;
1705 unsigned long addr;
1706 long offset = 0;
1707 unsigned long contents;
1708 int nextarg;
1709 int width;
1710
1711 if (argv[0][2] && !isdigit(argv[0][2]))
1712 return KDB_NOTFOUND;
1713
1714 if (argc < 2)
1715 return KDB_ARGCOUNT;
1716
1717 nextarg = 1;
1718 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719 if (diag)
1720 return diag;
1721
1722 if (nextarg > argc)
1723 return KDB_ARGCOUNT;
1724 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725 if (diag)
1726 return diag;
1727
1728 if (nextarg != argc + 1)
1729 return KDB_ARGCOUNT;
1730
1731 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732 diag = kdb_putword(addr, contents, width);
1733 if (diag)
1734 return diag;
1735
1736 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738 return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 * go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747 unsigned long addr;
1748 int diag;
1749 int nextarg;
1750 long offset;
1751
1752 if (raw_smp_processor_id() != kdb_initial_cpu) {
1753 kdb_printf("go must execute on the entry cpu, "
1754 "please use \"cpu %d\" and then execute go\n",
1755 kdb_initial_cpu);
1756 return KDB_BADCPUNUM;
1757 }
1758 if (argc == 1) {
1759 nextarg = 1;
1760 diag = kdbgetaddrarg(argc, argv, &nextarg,
1761 &addr, &offset, NULL);
1762 if (diag)
1763 return diag;
1764 } else if (argc) {
1765 return KDB_ARGCOUNT;
1766 }
1767
1768 diag = KDB_CMD_GO;
1769 if (KDB_FLAG(CATASTROPHIC)) {
1770 kdb_printf("Catastrophic error detected\n");
1771 kdb_printf("kdb_continue_catastrophic=%d, ",
1772 kdb_continue_catastrophic);
1773 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774 kdb_printf("type go a second time if you really want "
1775 "to continue\n");
1776 return 0;
1777 }
1778 if (kdb_continue_catastrophic == 2) {
1779 kdb_printf("forcing reboot\n");
1780 kdb_reboot(0, NULL);
1781 }
1782 kdb_printf("attempting to continue\n");
1783 }
1784 return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792 int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794 int i;
1795 char *rname;
1796 int rsize;
1797 u64 reg64;
1798 u32 reg32;
1799 u16 reg16;
1800 u8 reg8;
1801
1802 if (len)
1803 return len;
1804
1805 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806 rsize = dbg_reg_def[i].size * 2;
1807 if (rsize > 16)
1808 rsize = 2;
1809 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810 len = 0;
1811 kdb_printf("\n");
1812 }
1813 if (len)
1814 len += kdb_printf(" ");
1815 switch(dbg_reg_def[i].size * 8) {
1816 case 8:
1817 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1818 if (!rname)
1819 break;
1820 len += kdb_printf("%s: %02x", rname, reg8);
1821 break;
1822 case 16:
1823 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1824 if (!rname)
1825 break;
1826 len += kdb_printf("%s: %04x", rname, reg16);
1827 break;
1828 case 32:
1829 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1830 if (!rname)
1831 break;
1832 len += kdb_printf("%s: %08x", rname, reg32);
1833 break;
1834 case 64:
1835 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1836 if (!rname)
1837 break;
1838 len += kdb_printf("%s: %016llx", rname, reg64);
1839 break;
1840 default:
1841 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842 }
1843 }
1844 kdb_printf("\n");
1845#else
1846 if (len)
1847 return len;
1848
1849 kdb_dumpregs(kdb_current_regs);
1850#endif
1851 return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify) command.
1856 * rm register-name new-contents
1857 * Remarks:
1858 * Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863 int diag;
1864 const char *rname;
1865 int i;
1866 u64 reg64;
1867 u32 reg32;
1868 u16 reg16;
1869 u8 reg8;
1870
1871 if (argc != 2)
1872 return KDB_ARGCOUNT;
1873 /*
1874 * Allow presence or absence of leading '%' symbol.
1875 */
1876 rname = argv[1];
1877 if (*rname == '%')
1878 rname++;
1879
1880 diag = kdbgetu64arg(argv[2], ®64);
1881 if (diag)
1882 return diag;
1883
1884 diag = kdb_check_regs();
1885 if (diag)
1886 return diag;
1887
1888 diag = KDB_BADREG;
1889 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891 diag = 0;
1892 break;
1893 }
1894 }
1895 if (!diag) {
1896 switch(dbg_reg_def[i].size * 8) {
1897 case 8:
1898 reg8 = reg64;
1899 dbg_set_reg(i, ®8, kdb_current_regs);
1900 break;
1901 case 16:
1902 reg16 = reg64;
1903 dbg_set_reg(i, ®16, kdb_current_regs);
1904 break;
1905 case 32:
1906 reg32 = reg64;
1907 dbg_set_reg(i, ®32, kdb_current_regs);
1908 break;
1909 case 64:
1910 dbg_set_reg(i, ®64, kdb_current_regs);
1911 break;
1912 }
1913 }
1914 return diag;
1915#else
1916 kdb_printf("ERROR: Register set currently not implemented\n");
1917 return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 * sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
1929 if (argc != 1)
1930 return KDB_ARGCOUNT;
1931 kdb_trap_printk++;
1932 __handle_sysrq(*argv[1], false);
1933 kdb_trap_printk--;
1934
1935 return 0;
1936}
1937#endif /* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 * frame) command. This command takes an address and expects to
1942 * find an exception frame at that address, formats and prints
1943 * it.
1944 * regs address-expression
1945 * Remarks:
1946 * Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950 int diag;
1951 unsigned long addr;
1952 long offset;
1953 int nextarg;
1954
1955 if (argc != 1)
1956 return KDB_ARGCOUNT;
1957
1958 nextarg = 1;
1959 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960 if (diag)
1961 return diag;
1962 show_regs((struct pt_regs *)addr);
1963 return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command. Lists
1969 * currently loaded kernel modules.
1970 * Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974 struct module *mod;
1975
1976 if (argc != 0)
1977 return KDB_ARGCOUNT;
1978
1979 kdb_printf("Module Size modstruct Used by\n");
1980 list_for_each_entry(mod, kdb_modules, list) {
1981
1982 kdb_printf("%-20s%8u 0x%p ", mod->name,
1983 mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985 kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987 if (mod->state == MODULE_STATE_GOING)
1988 kdb_printf(" (Unloading)");
1989 else if (mod->state == MODULE_STATE_COMING)
1990 kdb_printf(" (Loading)");
1991 else
1992 kdb_printf(" (Live)");
1993 kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996 {
1997 struct module_use *use;
1998 kdb_printf(" [ ");
1999 list_for_each_entry(use, &mod->source_list,
2000 source_list)
2001 kdb_printf("%s ", use->target->name);
2002 kdb_printf("]\n");
2003 }
2004#endif
2005 }
2006
2007 return 0;
2008}
2009
2010#endif /* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command. Display the
2014 * current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019 int i;
2020
2021 for (i = 0; i < __nenv; i++) {
2022 if (__env[i])
2023 kdb_printf("%s\n", __env[i]);
2024 }
2025
2026 if (KDB_DEBUG(MASK))
2027 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029 return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 * the contents of the syslog buffer.
2036 * dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040 char *syslog_data[4], *start, *end, c = '\0', *p;
2041 int diag, logging, logsize, lines = 0, adjust = 0, n;
2042
2043 if (argc > 2)
2044 return KDB_ARGCOUNT;
2045 if (argc) {
2046 char *cp;
2047 lines = simple_strtol(argv[1], &cp, 0);
2048 if (*cp)
2049 lines = 0;
2050 if (argc > 1) {
2051 adjust = simple_strtoul(argv[2], &cp, 0);
2052 if (*cp || adjust < 0)
2053 adjust = 0;
2054 }
2055 }
2056
2057 /* disable LOGGING if set */
2058 diag = kdbgetintenv("LOGGING", &logging);
2059 if (!diag && logging) {
2060 const char *setargs[] = { "set", "LOGGING", "0" };
2061 kdb_set(2, setargs);
2062 }
2063
2064 /* syslog_data[0,1] physical start, end+1. syslog_data[2,3]
2065 * logical start, end+1. */
2066 kdb_syslog_data(syslog_data);
2067 if (syslog_data[2] == syslog_data[3])
2068 return 0;
2069 logsize = syslog_data[1] - syslog_data[0];
2070 start = syslog_data[2];
2071 end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073 for (n = 0, p = start; p < end; ++p) {
2074 c = *KDB_WRAP(p);
2075 if (c == '\n')
2076 ++n;
2077 }
2078 if (c != '\n')
2079 ++n;
2080 if (lines < 0) {
2081 if (adjust >= n)
2082 kdb_printf("buffer only contains %d lines, nothing "
2083 "printed\n", n);
2084 else if (adjust - lines >= n)
2085 kdb_printf("buffer only contains %d lines, last %d "
2086 "lines printed\n", n, n - adjust);
2087 if (adjust) {
2088 for (; start < end && adjust; ++start) {
2089 if (*KDB_WRAP(start) == '\n')
2090 --adjust;
2091 }
2092 if (start < end)
2093 ++start;
2094 }
2095 for (p = start; p < end && lines; ++p) {
2096 if (*KDB_WRAP(p) == '\n')
2097 ++lines;
2098 }
2099 end = p;
2100 } else if (lines > 0) {
2101 int skip = n - (adjust + lines);
2102 if (adjust >= n) {
2103 kdb_printf("buffer only contains %d lines, "
2104 "nothing printed\n", n);
2105 skip = n;
2106 } else if (skip < 0) {
2107 lines += skip;
2108 skip = 0;
2109 kdb_printf("buffer only contains %d lines, first "
2110 "%d lines printed\n", n, lines);
2111 }
2112 for (; start < end && skip; ++start) {
2113 if (*KDB_WRAP(start) == '\n')
2114 --skip;
2115 }
2116 for (p = start; p < end && lines; ++p) {
2117 if (*KDB_WRAP(p) == '\n')
2118 --lines;
2119 }
2120 end = p;
2121 }
2122 /* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123 c = '\n';
2124 while (start != end) {
2125 char buf[201];
2126 p = buf;
2127 if (KDB_FLAG(CMD_INTERRUPT))
2128 return 0;
2129 while (start < end && (c = *KDB_WRAP(start)) &&
2130 (p - buf) < sizeof(buf)-1) {
2131 ++start;
2132 *p++ = c;
2133 if (c == '\n')
2134 break;
2135 }
2136 *p = '\0';
2137 kdb_printf("%s", buf);
2138 }
2139 if (c != '\n')
2140 kdb_printf("\n");
2141
2142 return 0;
2143}
2144#endif /* CONFIG_PRINTK */
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 * cpu [<cpunum>]
2148 * Returns:
2149 * KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153 int i, start_cpu, first_print = 1;
2154 char state, prev_state = '?';
2155
2156 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157 kdb_printf("Available cpus: ");
2158 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159 if (!cpu_online(i)) {
2160 state = 'F'; /* cpu is offline */
2161 } else {
2162 state = ' '; /* cpu is responding to kdb */
2163 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164 state = 'I'; /* idle task */
2165 }
2166 if (state != prev_state) {
2167 if (prev_state != '?') {
2168 if (!first_print)
2169 kdb_printf(", ");
2170 first_print = 0;
2171 kdb_printf("%d", start_cpu);
2172 if (start_cpu < i-1)
2173 kdb_printf("-%d", i-1);
2174 if (prev_state != ' ')
2175 kdb_printf("(%c)", prev_state);
2176 }
2177 prev_state = state;
2178 start_cpu = i;
2179 }
2180 }
2181 /* print the trailing cpus, ignoring them if they are all offline */
2182 if (prev_state != 'F') {
2183 if (!first_print)
2184 kdb_printf(", ");
2185 kdb_printf("%d", start_cpu);
2186 if (start_cpu < i-1)
2187 kdb_printf("-%d", i-1);
2188 if (prev_state != ' ')
2189 kdb_printf("(%c)", prev_state);
2190 }
2191 kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196 unsigned long cpunum;
2197 int diag;
2198
2199 if (argc == 0) {
2200 kdb_cpu_status();
2201 return 0;
2202 }
2203
2204 if (argc != 1)
2205 return KDB_ARGCOUNT;
2206
2207 diag = kdbgetularg(argv[1], &cpunum);
2208 if (diag)
2209 return diag;
2210
2211 /*
2212 * Validate cpunum
2213 */
2214 if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215 return KDB_BADCPUNUM;
2216
2217 dbg_switch_cpu = cpunum;
2218
2219 /*
2220 * Switch to other cpu
2221 */
2222 return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230 int idle = 0, daemon = 0;
2231 unsigned long mask_I = kdb_task_state_string("I"),
2232 mask_M = kdb_task_state_string("M");
2233 unsigned long cpu;
2234 const struct task_struct *p, *g;
2235 for_each_online_cpu(cpu) {
2236 p = kdb_curr_task(cpu);
2237 if (kdb_task_state(p, mask_I))
2238 ++idle;
2239 }
2240 kdb_do_each_thread(g, p) {
2241 if (kdb_task_state(p, mask_M))
2242 ++daemon;
2243 } kdb_while_each_thread(g, p);
2244 if (idle || daemon) {
2245 if (idle)
2246 kdb_printf("%d idle process%s (state I)%s\n",
2247 idle, idle == 1 ? "" : "es",
2248 daemon ? " and " : "");
2249 if (daemon)
2250 kdb_printf("%d sleeping system daemon (state M) "
2251 "process%s", daemon,
2252 daemon == 1 ? "" : "es");
2253 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254 }
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 * list of the active processes.
2260 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264 int cpu;
2265 unsigned long tmp;
2266
2267 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268 return;
2269
2270 cpu = kdb_process_cpu(p);
2271 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2272 (void *)p, p->pid, p->parent->pid,
2273 kdb_task_has_cpu(p), kdb_process_cpu(p),
2274 kdb_task_state_char(p),
2275 (void *)(&p->thread),
2276 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277 p->comm);
2278 if (kdb_task_has_cpu(p)) {
2279 if (!KDB_TSK(cpu)) {
2280 kdb_printf(" Error: no saved data for this cpu\n");
2281 } else {
2282 if (KDB_TSK(cpu) != p)
2283 kdb_printf(" Error: does not match running "
2284 "process table (0x%p)\n", KDB_TSK(cpu));
2285 }
2286 }
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291 struct task_struct *g, *p;
2292 unsigned long mask, cpu;
2293
2294 if (argc == 0)
2295 kdb_ps_suppressed();
2296 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2297 (int)(2*sizeof(void *))+2, "Task Addr",
2298 (int)(2*sizeof(void *))+2, "Thread");
2299 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300 /* Run the active tasks first */
2301 for_each_online_cpu(cpu) {
2302 if (KDB_FLAG(CMD_INTERRUPT))
2303 return 0;
2304 p = kdb_curr_task(cpu);
2305 if (kdb_task_state(p, mask))
2306 kdb_ps1(p);
2307 }
2308 kdb_printf("\n");
2309 /* Now the real tasks */
2310 kdb_do_each_thread(g, p) {
2311 if (KDB_FLAG(CMD_INTERRUPT))
2312 return 0;
2313 if (kdb_task_state(p, mask))
2314 kdb_ps1(p);
2315 } kdb_while_each_thread(g, p);
2316
2317 return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 * the currently active process.
2323 * pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327 struct task_struct *p;
2328 unsigned long val;
2329 int diag;
2330
2331 if (argc > 1)
2332 return KDB_ARGCOUNT;
2333
2334 if (argc) {
2335 if (strcmp(argv[1], "R") == 0) {
2336 p = KDB_TSK(kdb_initial_cpu);
2337 } else {
2338 diag = kdbgetularg(argv[1], &val);
2339 if (diag)
2340 return KDB_BADINT;
2341
2342 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2343 if (!p) {
2344 kdb_printf("No task with pid=%d\n", (pid_t)val);
2345 return 0;
2346 }
2347 }
2348 kdb_set_current_task(p);
2349 }
2350 kdb_printf("KDB current process is %s(pid=%d)\n",
2351 kdb_current_task->comm,
2352 kdb_current_task->pid);
2353
2354 return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 * linked list and executes an arbitrary command for each
2360 * element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364 int diag = 0;
2365 unsigned long addr;
2366 long offset = 0;
2367 unsigned long va;
2368 unsigned long linkoffset;
2369 int nextarg;
2370 const char *command;
2371
2372 if (argc != 3)
2373 return KDB_ARGCOUNT;
2374
2375 nextarg = 1;
2376 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377 if (diag)
2378 return diag;
2379
2380 diag = kdbgetularg(argv[2], &linkoffset);
2381 if (diag)
2382 return diag;
2383
2384 /*
2385 * Using the starting address as
2386 * the first element in the list, and assuming that
2387 * the list ends with a null pointer.
2388 */
2389
2390 va = addr;
2391 command = kdb_strdup(argv[3], GFP_KDB);
2392 if (!command) {
2393 kdb_printf("%s: cannot duplicate command\n", __func__);
2394 return 0;
2395 }
2396 /* Recursive use of kdb_parse, do not use argv after this point */
2397 argv = NULL;
2398
2399 while (va) {
2400 char buf[80];
2401
2402 if (KDB_FLAG(CMD_INTERRUPT))
2403 goto out;
2404
2405 sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406 diag = kdb_parse(buf);
2407 if (diag)
2408 goto out;
2409
2410 addr = va + linkoffset;
2411 if (kdb_getword(&va, addr, sizeof(va)))
2412 goto out;
2413 }
2414
2415out:
2416 kfree(command);
2417 return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422 return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430 kdbtab_t *kt;
2431 int i;
2432
2433 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434 kdb_printf("-----------------------------"
2435 "-----------------------------\n");
2436 for_each_kdbcmd(kt, i) {
2437 if (kt->cmd_name)
2438 kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439 kt->cmd_usage, kt->cmd_help);
2440 if (KDB_FLAG(CMD_INTERRUPT))
2441 return 0;
2442 }
2443 return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451 long sig, pid;
2452 char *endp;
2453 struct task_struct *p;
2454 struct siginfo info;
2455
2456 if (argc != 2)
2457 return KDB_ARGCOUNT;
2458
2459 sig = simple_strtol(argv[1], &endp, 0);
2460 if (*endp)
2461 return KDB_BADINT;
2462 if (sig >= 0) {
2463 kdb_printf("Invalid signal parameter.<-signal>\n");
2464 return 0;
2465 }
2466 sig = -sig;
2467
2468 pid = simple_strtol(argv[2], &endp, 0);
2469 if (*endp)
2470 return KDB_BADINT;
2471 if (pid <= 0) {
2472 kdb_printf("Process ID must be large than 0.\n");
2473 return 0;
2474 }
2475
2476 /* Find the process. */
2477 p = find_task_by_pid_ns(pid, &init_pid_ns);
2478 if (!p) {
2479 kdb_printf("The specified process isn't found.\n");
2480 return 0;
2481 }
2482 p = p->group_leader;
2483 info.si_signo = sig;
2484 info.si_errno = 0;
2485 info.si_code = SI_USER;
2486 info.si_pid = pid; /* same capabilities as process being signalled */
2487 info.si_uid = 0; /* kdb has root authority */
2488 kdb_send_sig_info(p, &info);
2489 return 0;
2490}
2491
2492struct kdb_tm {
2493 int tm_sec; /* seconds */
2494 int tm_min; /* minutes */
2495 int tm_hour; /* hours */
2496 int tm_mday; /* day of the month */
2497 int tm_mon; /* month */
2498 int tm_year; /* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503 /* This will work from 1970-2099, 2100 is not a leap year */
2504 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505 31, 30, 31, 30, 31 };
2506 memset(tm, 0, sizeof(*tm));
2507 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2508 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2510 tm->tm_min = tm->tm_sec / 60 % 60;
2511 tm->tm_hour = tm->tm_sec / 60 / 60;
2512 tm->tm_sec = tm->tm_sec % 60;
2513 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514 tm->tm_mday %= (4*365+1);
2515 mon_day[1] = 29;
2516 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517 tm->tm_mday -= mon_day[tm->tm_mon];
2518 if (++tm->tm_mon == 12) {
2519 tm->tm_mon = 0;
2520 ++tm->tm_year;
2521 mon_day[1] = 28;
2522 }
2523 }
2524 ++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534 struct timespec uptime;
2535 do_posix_clock_monotonic_gettime(&uptime);
2536 memset(val, 0, sizeof(*val));
2537 val->uptime = uptime.tv_sec;
2538 val->loads[0] = avenrun[0];
2539 val->loads[1] = avenrun[1];
2540 val->loads[2] = avenrun[2];
2541 val->procs = nr_threads-1;
2542 si_meminfo(val);
2543
2544 return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552 struct timespec now;
2553 struct kdb_tm tm;
2554 struct sysinfo val;
2555
2556 if (argc)
2557 return KDB_ARGCOUNT;
2558
2559 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2560 kdb_printf("release %s\n", init_uts_ns.name.release);
2561 kdb_printf("version %s\n", init_uts_ns.name.version);
2562 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2563 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2564 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2566
2567 now = __current_kernel_time();
2568 kdb_gmtime(&now, &tm);
2569 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2570 "tz_minuteswest %d\n",
2571 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572 tm.tm_hour, tm.tm_min, tm.tm_sec,
2573 sys_tz.tz_minuteswest);
2574
2575 kdb_sysinfo(&val);
2576 kdb_printf("uptime ");
2577 if (val.uptime > (24*60*60)) {
2578 int days = val.uptime / (24*60*60);
2579 val.uptime %= (24*60*60);
2580 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581 }
2582 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594 /* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2597 "Buffers: %8lu kB\n",
2598 val.totalram, val.freeram, val.bufferram);
2599 return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607 char fmtstr[64];
2608 int cpu, diag, nextarg = 1;
2609 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611 if (argc < 1 || argc > 3)
2612 return KDB_ARGCOUNT;
2613
2614 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615 if (diag)
2616 return diag;
2617
2618 if (argc >= 2) {
2619 diag = kdbgetularg(argv[2], &bytesperword);
2620 if (diag)
2621 return diag;
2622 }
2623 if (!bytesperword)
2624 bytesperword = KDB_WORD_SIZE;
2625 else if (bytesperword > KDB_WORD_SIZE)
2626 return KDB_BADWIDTH;
2627 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628 if (argc >= 3) {
2629 diag = kdbgetularg(argv[3], &whichcpu);
2630 if (diag)
2631 return diag;
2632 if (!cpu_online(whichcpu)) {
2633 kdb_printf("cpu %ld is not online\n", whichcpu);
2634 return KDB_BADCPUNUM;
2635 }
2636 }
2637
2638 /* Most architectures use __per_cpu_offset[cpu], some use
2639 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640 */
2641#ifdef __per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650 for_each_online_cpu(cpu) {
2651 if (KDB_FLAG(CMD_INTERRUPT))
2652 return 0;
2653
2654 if (whichcpu != ~0UL && whichcpu != cpu)
2655 continue;
2656 addr = symaddr + KDB_PCU(cpu);
2657 diag = kdb_getword(&val, addr, bytesperword);
2658 if (diag) {
2659 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660 "read, diag=%d\n", cpu, addr, diag);
2661 continue;
2662 }
2663 kdb_printf("%5d ", cpu);
2664 kdb_md_line(fmtstr, addr,
2665 bytesperword == KDB_WORD_SIZE,
2666 1, bytesperword, 1, 1, 0);
2667 }
2668#undef KDB_PCU
2669 return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677 kdb_printf("Usage of cmd args | grep pattern:\n");
2678 kdb_printf(" Any command's output may be filtered through an ");
2679 kdb_printf("emulated 'pipe'.\n");
2680 kdb_printf(" 'grep' is just a key word.\n");
2681 kdb_printf(" The pattern may include a very limited set of "
2682 "metacharacters:\n");
2683 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2684 kdb_printf(" And if there are spaces in the pattern, you may "
2685 "quote it:\n");
2686 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687 " or \"^pat tern$\"\n");
2688 return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * debugger command.
2694 * Inputs:
2695 * cmd Command name
2696 * func Function to execute the command
2697 * usage A simple usage string showing arguments
2698 * help A simple help string describing command
2699 * repeat Does the command auto repeat on enter?
2700 * Returns:
2701 * zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50 /* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705 kdb_func_t func,
2706 char *usage,
2707 char *help,
2708 short minlen,
2709 kdb_repeat_t repeat)
2710{
2711 int i;
2712 kdbtab_t *kp;
2713
2714 /*
2715 * Brute force method to determine duplicates
2716 */
2717 for_each_kdbcmd(kp, i) {
2718 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719 kdb_printf("Duplicate kdb command registered: "
2720 "%s, func %p help %s\n", cmd, func, help);
2721 return 1;
2722 }
2723 }
2724
2725 /*
2726 * Insert command into first available location in table
2727 */
2728 for_each_kdbcmd(kp, i) {
2729 if (kp->cmd_name == NULL)
2730 break;
2731 }
2732
2733 if (i >= kdb_max_commands) {
2734 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736 if (!new) {
2737 kdb_printf("Could not allocate new kdb_command "
2738 "table\n");
2739 return 1;
2740 }
2741 if (kdb_commands) {
2742 memcpy(new, kdb_commands,
2743 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744 kfree(kdb_commands);
2745 }
2746 memset(new + kdb_max_commands, 0,
2747 kdb_command_extend * sizeof(*new));
2748 kdb_commands = new;
2749 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750 kdb_max_commands += kdb_command_extend;
2751 }
2752
2753 kp->cmd_name = cmd;
2754 kp->cmd_func = func;
2755 kp->cmd_usage = usage;
2756 kp->cmd_help = help;
2757 kp->cmd_flags = 0;
2758 kp->cmd_minlen = minlen;
2759 kp->cmd_repeat = repeat;
2760
2761 return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 * not need to specify a repeat state. Equivalent to
2769 * kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 * cmd Command name
2772 * func Function to execute the command
2773 * usage A simple usage string showing arguments
2774 * help A simple help string describing command
2775 * Returns:
2776 * zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779 kdb_func_t func,
2780 char *usage,
2781 char *help,
2782 short minlen)
2783{
2784 return kdb_register_repeat(cmd, func, usage, help, minlen,
2785 KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 * debugger command. It is generally called when a module which
2792 * implements kdb commands is unloaded.
2793 * Inputs:
2794 * cmd Command name
2795 * Returns:
2796 * zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800 int i;
2801 kdbtab_t *kp;
2802
2803 /*
2804 * find the command.
2805 */
2806 for_each_kdbcmd(kp, i) {
2807 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808 kp->cmd_name = NULL;
2809 return 0;
2810 }
2811 }
2812
2813 /* Couldn't find it. */
2814 return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821 int i;
2822 kdbtab_t *kp;
2823
2824 for_each_kdbcmd(kp, i)
2825 kp->cmd_name = NULL;
2826
2827 kdb_register_repeat("md", kdb_md, "<vaddr>",
2828 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829 KDB_REPEAT_NO_ARGS);
2830 kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831 "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832 kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833 "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834 kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835 "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836 kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837 "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838 kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839 "Continue Execution", 1, KDB_REPEAT_NONE);
2840 kdb_register_repeat("rd", kdb_rd, "",
2841 "Display Registers", 0, KDB_REPEAT_NONE);
2842 kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843 "Modify Registers", 0, KDB_REPEAT_NONE);
2844 kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845 "Display exception frame", 0, KDB_REPEAT_NONE);
2846 kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847 "Stack traceback", 1, KDB_REPEAT_NONE);
2848 kdb_register_repeat("btp", kdb_bt, "<pid>",
2849 "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850 kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851 "Display stack all processes", 0, KDB_REPEAT_NONE);
2852 kdb_register_repeat("btc", kdb_bt, "",
2853 "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854 kdb_register_repeat("btt", kdb_bt, "<vaddr>",
2855 "Backtrace process given its struct task address", 0,
2856 KDB_REPEAT_NONE);
2857 kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858 "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859 kdb_register_repeat("env", kdb_env, "",
2860 "Show environment variables", 0, KDB_REPEAT_NONE);
2861 kdb_register_repeat("set", kdb_set, "",
2862 "Set environment variables", 0, KDB_REPEAT_NONE);
2863 kdb_register_repeat("help", kdb_help, "",
2864 "Display Help Message", 1, KDB_REPEAT_NONE);
2865 kdb_register_repeat("?", kdb_help, "",
2866 "Display Help Message", 0, KDB_REPEAT_NONE);
2867 kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868 "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869 kdb_register_repeat("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871 kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0, KDB_REPEAT_NONE);
2873 kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874 "Switch to another task", 0, KDB_REPEAT_NONE);
2875 kdb_register_repeat("reboot", kdb_reboot, "",
2876 "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
2877#if defined(CONFIG_MODULES)
2878 kdb_register_repeat("lsmod", kdb_lsmod, "",
2879 "List loaded kernel modules", 0, KDB_REPEAT_NONE);
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882 kdb_register_repeat("sr", kdb_sr, "<key>",
2883 "Magic SysRq key", 0, KDB_REPEAT_NONE);
2884#endif
2885#if defined(CONFIG_PRINTK)
2886 kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887 "Display syslog buffer", 0, KDB_REPEAT_NONE);
2888#endif
2889 kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890 "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891 kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892 "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893 kdb_register_repeat("summary", kdb_summary, "",
2894 "Summarize the system", 4, KDB_REPEAT_NONE);
2895 kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896 "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897 kdb_register_repeat("grephelp", kdb_grep_help, "",
2898 "Display help on | grep", 0, KDB_REPEAT_NONE);
2899}
2900
2901/* Execute any commands defined in kdb_cmds. */
2902static void __init kdb_cmd_init(void)
2903{
2904 int i, diag;
2905 for (i = 0; kdb_cmds[i]; ++i) {
2906 diag = kdb_parse(kdb_cmds[i]);
2907 if (diag)
2908 kdb_printf("kdb command %s failed, kdb diag %d\n",
2909 kdb_cmds[i], diag);
2910 }
2911 if (defcmd_in_progress) {
2912 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913 kdb_parse("endefcmd");
2914 }
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921 int i;
2922
2923 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924 return;
2925 for (i = kdb_init_lvl; i < lvl; i++) {
2926 switch (i) {
2927 case KDB_NOT_INITIALIZED:
2928 kdb_inittab(); /* Initialize Command Table */
2929 kdb_initbptab(); /* Initialize Breakpoints */
2930 break;
2931 case KDB_INIT_EARLY:
2932 kdb_cmd_init(); /* Build kdb_cmds tables */
2933 break;
2934 }
2935 }
2936 kdb_init_lvl = lvl;
2937}