Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
 
  63
  64/*
  65 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  66 * single thread processors through the kernel debugger.
  67 */
  68int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  69int kdb_nextline = 1;
  70int kdb_state;			/* General KDB state */
  71
  72struct task_struct *kdb_current_task;
  73EXPORT_SYMBOL(kdb_current_task);
  74struct pt_regs *kdb_current_regs;
  75
  76const char *kdb_diemsg;
  77static int kdb_go_count;
  78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  79static unsigned int kdb_continue_catastrophic =
  80	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  81#else
  82static unsigned int kdb_continue_catastrophic;
  83#endif
  84
  85/* kdb_commands describes the available commands. */
  86static kdbtab_t *kdb_commands;
  87#define KDB_BASE_CMD_MAX 50
  88static int kdb_max_commands = KDB_BASE_CMD_MAX;
  89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  90#define for_each_kdbcmd(cmd, num)					\
  91	for ((cmd) = kdb_base_commands, (num) = 0;			\
  92	     num < kdb_max_commands;					\
  93	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  94
  95typedef struct _kdbmsg {
  96	int	km_diag;	/* kdb diagnostic */
  97	char	*km_msg;	/* Corresponding message text */
  98} kdbmsg_t;
  99
 100#define KDBMSG(msgnum, text) \
 101	{ KDB_##msgnum, text }
 102
 103static kdbmsg_t kdbmsgs[] = {
 104	KDBMSG(NOTFOUND, "Command Not Found"),
 105	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 106	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 107	       "8 is only allowed on 64 bit systems"),
 108	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 109	KDBMSG(NOTENV, "Cannot find environment variable"),
 110	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 111	KDBMSG(NOTIMP, "Command not implemented"),
 112	KDBMSG(ENVFULL, "Environment full"),
 113	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 114	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 115#ifdef CONFIG_CPU_XSCALE
 116	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 117#else
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 119#endif
 120	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 121	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 122	KDBMSG(BADMODE, "Invalid IDMODE"),
 123	KDBMSG(BADINT, "Illegal numeric value"),
 124	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 125	KDBMSG(BADREG, "Invalid register name"),
 126	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 127	KDBMSG(BADLENGTH, "Invalid length field"),
 128	KDBMSG(NOBP, "No Breakpoint exists"),
 129	KDBMSG(BADADDR, "Invalid address"),
 130	KDBMSG(NOPERM, "Permission denied"),
 131};
 132#undef KDBMSG
 133
 134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 135
 136
 137/*
 138 * Initial environment.   This is all kept static and local to
 139 * this file.   We don't want to rely on the memory allocation
 140 * mechanisms in the kernel, so we use a very limited allocate-only
 141 * heap for new and altered environment variables.  The entire
 142 * environment is limited to a fixed number of entries (add more
 143 * to __env[] if required) and a fixed amount of heap (add more to
 144 * KDB_ENVBUFSIZE if required).
 145 */
 146
 147static char *__env[] = {
 148#if defined(CONFIG_SMP)
 149 "PROMPT=[%d]kdb> ",
 
 150#else
 151 "PROMPT=kdb> ",
 152#endif
 153 "MOREPROMPT=more> ",
 
 154 "RADIX=16",
 155 "MDCOUNT=8",			/* lines of md output */
 156 KDB_PLATFORM_ENV,
 157 "DTABCOUNT=30",
 158 "NOSECT=1",
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183};
 184
 185static const int __nenv = ARRAY_SIZE(__env);
 186
 187struct task_struct *kdb_curr_task(int cpu)
 188{
 189	struct task_struct *p = curr_task(cpu);
 190#ifdef	_TIF_MCA_INIT
 191	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 192		p = krp->p;
 193#endif
 194	return p;
 195}
 196
 197/*
 198 * Check whether the flags of the current command and the permissions
 199 * of the kdb console has allow a command to be run.
 200 */
 201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 202				   bool no_args)
 203{
 204	/* permissions comes from userspace so needs massaging slightly */
 205	permissions &= KDB_ENABLE_MASK;
 206	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 207
 208	/* some commands change group when launched with no arguments */
 209	if (no_args)
 210		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 211
 212	flags |= KDB_ENABLE_ALL;
 213
 214	return permissions & flags;
 215}
 216
 217/*
 218 * kdbgetenv - This function will return the character string value of
 219 *	an environment variable.
 220 * Parameters:
 221 *	match	A character string representing an environment variable.
 222 * Returns:
 223 *	NULL	No environment variable matches 'match'
 224 *	char*	Pointer to string value of environment variable.
 225 */
 226char *kdbgetenv(const char *match)
 227{
 228	char **ep = __env;
 229	int matchlen = strlen(match);
 230	int i;
 231
 232	for (i = 0; i < __nenv; i++) {
 233		char *e = *ep++;
 234
 235		if (!e)
 236			continue;
 237
 238		if ((strncmp(match, e, matchlen) == 0)
 239		 && ((e[matchlen] == '\0')
 240		   || (e[matchlen] == '='))) {
 241			char *cp = strchr(e, '=');
 242			return cp ? ++cp : "";
 243		}
 244	}
 245	return NULL;
 246}
 247
 248/*
 249 * kdballocenv - This function is used to allocate bytes for
 250 *	environment entries.
 251 * Parameters:
 252 *	match	A character string representing a numeric value
 253 * Outputs:
 254 *	*value  the unsigned long representation of the env variable 'match'
 255 * Returns:
 256 *	Zero on success, a kdb diagnostic on failure.
 257 * Remarks:
 258 *	We use a static environment buffer (envbuffer) to hold the values
 259 *	of dynamically generated environment variables (see kdb_set).  Buffer
 260 *	space once allocated is never free'd, so over time, the amount of space
 261 *	(currently 512 bytes) will be exhausted if env variables are changed
 262 *	frequently.
 263 */
 264static char *kdballocenv(size_t bytes)
 265{
 266#define	KDB_ENVBUFSIZE	512
 267	static char envbuffer[KDB_ENVBUFSIZE];
 268	static int envbufsize;
 269	char *ep = NULL;
 270
 271	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 272		ep = &envbuffer[envbufsize];
 273		envbufsize += bytes;
 274	}
 275	return ep;
 276}
 277
 278/*
 279 * kdbgetulenv - This function will return the value of an unsigned
 280 *	long-valued environment variable.
 281 * Parameters:
 282 *	match	A character string representing a numeric value
 283 * Outputs:
 284 *	*value  the unsigned long represntation of the env variable 'match'
 285 * Returns:
 286 *	Zero on success, a kdb diagnostic on failure.
 287 */
 288static int kdbgetulenv(const char *match, unsigned long *value)
 289{
 290	char *ep;
 291
 292	ep = kdbgetenv(match);
 293	if (!ep)
 294		return KDB_NOTENV;
 295	if (strlen(ep) == 0)
 296		return KDB_NOENVVALUE;
 297
 298	*value = simple_strtoul(ep, NULL, 0);
 299
 300	return 0;
 301}
 302
 303/*
 304 * kdbgetintenv - This function will return the value of an
 305 *	integer-valued environment variable.
 306 * Parameters:
 307 *	match	A character string representing an integer-valued env variable
 308 * Outputs:
 309 *	*value  the integer representation of the environment variable 'match'
 310 * Returns:
 311 *	Zero on success, a kdb diagnostic on failure.
 312 */
 313int kdbgetintenv(const char *match, int *value)
 314{
 315	unsigned long val;
 316	int diag;
 317
 318	diag = kdbgetulenv(match, &val);
 319	if (!diag)
 320		*value = (int) val;
 321	return diag;
 322}
 323
 324/*
 325 * kdbgetularg - This function will convert a numeric string into an
 326 *	unsigned long value.
 327 * Parameters:
 328 *	arg	A character string representing a numeric value
 329 * Outputs:
 330 *	*value  the unsigned long represntation of arg.
 331 * Returns:
 332 *	Zero on success, a kdb diagnostic on failure.
 333 */
 334int kdbgetularg(const char *arg, unsigned long *value)
 335{
 336	char *endp;
 337	unsigned long val;
 338
 339	val = simple_strtoul(arg, &endp, 0);
 340
 341	if (endp == arg) {
 342		/*
 343		 * Also try base 16, for us folks too lazy to type the
 344		 * leading 0x...
 345		 */
 346		val = simple_strtoul(arg, &endp, 16);
 347		if (endp == arg)
 348			return KDB_BADINT;
 349	}
 350
 351	*value = val;
 352
 353	return 0;
 354}
 355
 356int kdbgetu64arg(const char *arg, u64 *value)
 357{
 358	char *endp;
 359	u64 val;
 360
 361	val = simple_strtoull(arg, &endp, 0);
 362
 363	if (endp == arg) {
 364
 365		val = simple_strtoull(arg, &endp, 16);
 366		if (endp == arg)
 367			return KDB_BADINT;
 368	}
 369
 370	*value = val;
 371
 372	return 0;
 373}
 374
 375/*
 376 * kdb_set - This function implements the 'set' command.  Alter an
 377 *	existing environment variable or create a new one.
 378 */
 379int kdb_set(int argc, const char **argv)
 380{
 381	int i;
 382	char *ep;
 383	size_t varlen, vallen;
 384
 385	/*
 386	 * we can be invoked two ways:
 387	 *   set var=value    argv[1]="var", argv[2]="value"
 388	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 389	 * - if the latter, shift 'em down.
 390	 */
 391	if (argc == 3) {
 392		argv[2] = argv[3];
 393		argc--;
 394	}
 395
 396	if (argc != 2)
 397		return KDB_ARGCOUNT;
 398
 399	/*
 400	 * Check for internal variables
 401	 */
 402	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 403		unsigned int debugflags;
 404		char *cp;
 405
 406		debugflags = simple_strtoul(argv[2], &cp, 0);
 407		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 408			kdb_printf("kdb: illegal debug flags '%s'\n",
 409				    argv[2]);
 410			return 0;
 411		}
 412		kdb_flags = (kdb_flags &
 413			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 414			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 415
 416		return 0;
 417	}
 418
 419	/*
 420	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 421	 * name, argv[2] = value.
 422	 */
 423	varlen = strlen(argv[1]);
 424	vallen = strlen(argv[2]);
 425	ep = kdballocenv(varlen + vallen + 2);
 426	if (ep == (char *)0)
 427		return KDB_ENVBUFFULL;
 428
 429	sprintf(ep, "%s=%s", argv[1], argv[2]);
 430
 431	ep[varlen+vallen+1] = '\0';
 432
 433	for (i = 0; i < __nenv; i++) {
 434		if (__env[i]
 435		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 436		   && ((__env[i][varlen] == '\0')
 437		    || (__env[i][varlen] == '=')))) {
 438			__env[i] = ep;
 439			return 0;
 440		}
 441	}
 442
 443	/*
 444	 * Wasn't existing variable.  Fit into slot.
 445	 */
 446	for (i = 0; i < __nenv-1; i++) {
 447		if (__env[i] == (char *)0) {
 448			__env[i] = ep;
 449			return 0;
 450		}
 451	}
 452
 453	return KDB_ENVFULL;
 454}
 455
 456static int kdb_check_regs(void)
 457{
 458	if (!kdb_current_regs) {
 459		kdb_printf("No current kdb registers."
 460			   "  You may need to select another task\n");
 461		return KDB_BADREG;
 462	}
 463	return 0;
 464}
 465
 466/*
 467 * kdbgetaddrarg - This function is responsible for parsing an
 468 *	address-expression and returning the value of the expression,
 469 *	symbol name, and offset to the caller.
 470 *
 471 *	The argument may consist of a numeric value (decimal or
 472 *	hexidecimal), a symbol name, a register name (preceded by the
 473 *	percent sign), an environment variable with a numeric value
 474 *	(preceded by a dollar sign) or a simple arithmetic expression
 475 *	consisting of a symbol name, +/-, and a numeric constant value
 476 *	(offset).
 477 * Parameters:
 478 *	argc	- count of arguments in argv
 479 *	argv	- argument vector
 480 *	*nextarg - index to next unparsed argument in argv[]
 481 *	regs	- Register state at time of KDB entry
 482 * Outputs:
 483 *	*value	- receives the value of the address-expression
 484 *	*offset - receives the offset specified, if any
 485 *	*name   - receives the symbol name, if any
 486 *	*nextarg - index to next unparsed argument in argv[]
 487 * Returns:
 488 *	zero is returned on success, a kdb diagnostic code is
 489 *      returned on error.
 490 */
 491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 492		  unsigned long *value,  long *offset,
 493		  char **name)
 494{
 495	unsigned long addr;
 496	unsigned long off = 0;
 497	int positive;
 498	int diag;
 499	int found = 0;
 500	char *symname;
 501	char symbol = '\0';
 502	char *cp;
 503	kdb_symtab_t symtab;
 504
 505	/*
 506	 * If the enable flags prohibit both arbitrary memory access
 507	 * and flow control then there are no reasonable grounds to
 508	 * provide symbol lookup.
 509	 */
 510	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 511			     kdb_cmd_enabled, false))
 512		return KDB_NOPERM;
 513
 514	/*
 515	 * Process arguments which follow the following syntax:
 516	 *
 517	 *  symbol | numeric-address [+/- numeric-offset]
 518	 *  %register
 519	 *  $environment-variable
 520	 */
 521
 522	if (*nextarg > argc)
 523		return KDB_ARGCOUNT;
 524
 525	symname = (char *)argv[*nextarg];
 526
 527	/*
 528	 * If there is no whitespace between the symbol
 529	 * or address and the '+' or '-' symbols, we
 530	 * remember the character and replace it with a
 531	 * null so the symbol/value can be properly parsed
 532	 */
 533	cp = strpbrk(symname, "+-");
 534	if (cp != NULL) {
 535		symbol = *cp;
 536		*cp++ = '\0';
 537	}
 538
 539	if (symname[0] == '$') {
 540		diag = kdbgetulenv(&symname[1], &addr);
 541		if (diag)
 542			return diag;
 543	} else if (symname[0] == '%') {
 544		diag = kdb_check_regs();
 545		if (diag)
 546			return diag;
 547		/* Implement register values with % at a later time as it is
 548		 * arch optional.
 549		 */
 550		return KDB_NOTIMP;
 551	} else {
 552		found = kdbgetsymval(symname, &symtab);
 553		if (found) {
 554			addr = symtab.sym_start;
 555		} else {
 556			diag = kdbgetularg(argv[*nextarg], &addr);
 557			if (diag)
 558				return diag;
 559		}
 560	}
 561
 562	if (!found)
 563		found = kdbnearsym(addr, &symtab);
 564
 565	(*nextarg)++;
 566
 567	if (name)
 568		*name = symname;
 569	if (value)
 570		*value = addr;
 571	if (offset && name && *name)
 572		*offset = addr - symtab.sym_start;
 573
 574	if ((*nextarg > argc)
 575	 && (symbol == '\0'))
 576		return 0;
 577
 578	/*
 579	 * check for +/- and offset
 580	 */
 581
 582	if (symbol == '\0') {
 583		if ((argv[*nextarg][0] != '+')
 584		 && (argv[*nextarg][0] != '-')) {
 585			/*
 586			 * Not our argument.  Return.
 587			 */
 588			return 0;
 589		} else {
 590			positive = (argv[*nextarg][0] == '+');
 591			(*nextarg)++;
 592		}
 593	} else
 594		positive = (symbol == '+');
 595
 596	/*
 597	 * Now there must be an offset!
 598	 */
 599	if ((*nextarg > argc)
 600	 && (symbol == '\0')) {
 601		return KDB_INVADDRFMT;
 602	}
 603
 604	if (!symbol) {
 605		cp = (char *)argv[*nextarg];
 606		(*nextarg)++;
 607	}
 608
 609	diag = kdbgetularg(cp, &off);
 610	if (diag)
 611		return diag;
 612
 613	if (!positive)
 614		off = -off;
 615
 616	if (offset)
 617		*offset += off;
 618
 619	if (value)
 620		*value += off;
 621
 622	return 0;
 623}
 624
 625static void kdb_cmderror(int diag)
 626{
 627	int i;
 628
 629	if (diag >= 0) {
 630		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 631		return;
 632	}
 633
 634	for (i = 0; i < __nkdb_err; i++) {
 635		if (kdbmsgs[i].km_diag == diag) {
 636			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 637			return;
 638		}
 639	}
 640
 641	kdb_printf("Unknown diag %d\n", -diag);
 642}
 643
 644/*
 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 646 *	command which defines one command as a set of other commands,
 647 *	terminated by endefcmd.  kdb_defcmd processes the initial
 648 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 649 *	the following commands until 'endefcmd'.
 650 * Inputs:
 651 *	argc	argument count
 652 *	argv	argument vector
 653 * Returns:
 654 *	zero for success, a kdb diagnostic if error
 655 */
 656struct defcmd_set {
 657	int count;
 658	int usable;
 659	char *name;
 660	char *usage;
 661	char *help;
 662	char **command;
 663};
 664static struct defcmd_set *defcmd_set;
 665static int defcmd_set_count;
 666static int defcmd_in_progress;
 667
 668/* Forward references */
 669static int kdb_exec_defcmd(int argc, const char **argv);
 670
 671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 672{
 673	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 674	char **save_command = s->command;
 675	if (strcmp(argv0, "endefcmd") == 0) {
 676		defcmd_in_progress = 0;
 677		if (!s->count)
 678			s->usable = 0;
 679		if (s->usable)
 680			/* macros are always safe because when executed each
 681			 * internal command re-enters kdb_parse() and is
 682			 * safety checked individually.
 683			 */
 684			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 685					   s->help, 0,
 686					   KDB_ENABLE_ALWAYS_SAFE);
 687		return 0;
 688	}
 689	if (!s->usable)
 690		return KDB_NOTIMP;
 691	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 692	if (!s->command) {
 693		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 694			   cmdstr);
 695		s->usable = 0;
 696		return KDB_NOTIMP;
 697	}
 698	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 699	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 700	kfree(save_command);
 701	return 0;
 702}
 703
 704static int kdb_defcmd(int argc, const char **argv)
 705{
 706	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 707	if (defcmd_in_progress) {
 708		kdb_printf("kdb: nested defcmd detected, assuming missing "
 709			   "endefcmd\n");
 710		kdb_defcmd2("endefcmd", "endefcmd");
 711	}
 712	if (argc == 0) {
 713		int i;
 714		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 715			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 716				   s->usage, s->help);
 717			for (i = 0; i < s->count; ++i)
 718				kdb_printf("%s", s->command[i]);
 719			kdb_printf("endefcmd\n");
 720		}
 721		return 0;
 722	}
 723	if (argc != 3)
 724		return KDB_ARGCOUNT;
 725	if (in_dbg_master()) {
 726		kdb_printf("Command only available during kdb_init()\n");
 727		return KDB_NOTIMP;
 728	}
 729	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 730			     GFP_KDB);
 731	if (!defcmd_set)
 732		goto fail_defcmd;
 
 
 
 
 733	memcpy(defcmd_set, save_defcmd_set,
 734	       defcmd_set_count * sizeof(*defcmd_set));
 
 735	s = defcmd_set + defcmd_set_count;
 736	memset(s, 0, sizeof(*s));
 737	s->usable = 1;
 738	s->name = kdb_strdup(argv[1], GFP_KDB);
 739	if (!s->name)
 740		goto fail_name;
 741	s->usage = kdb_strdup(argv[2], GFP_KDB);
 742	if (!s->usage)
 743		goto fail_usage;
 744	s->help = kdb_strdup(argv[3], GFP_KDB);
 745	if (!s->help)
 746		goto fail_help;
 747	if (s->usage[0] == '"') {
 748		strcpy(s->usage, argv[2]+1);
 749		s->usage[strlen(s->usage)-1] = '\0';
 750	}
 751	if (s->help[0] == '"') {
 752		strcpy(s->help, argv[3]+1);
 753		s->help[strlen(s->help)-1] = '\0';
 754	}
 755	++defcmd_set_count;
 756	defcmd_in_progress = 1;
 757	kfree(save_defcmd_set);
 758	return 0;
 759fail_help:
 760	kfree(s->usage);
 761fail_usage:
 762	kfree(s->name);
 763fail_name:
 764	kfree(defcmd_set);
 765fail_defcmd:
 766	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 767	defcmd_set = save_defcmd_set;
 768	return KDB_NOTIMP;
 769}
 770
 771/*
 772 * kdb_exec_defcmd - Execute the set of commands associated with this
 773 *	defcmd name.
 774 * Inputs:
 775 *	argc	argument count
 776 *	argv	argument vector
 777 * Returns:
 778 *	zero for success, a kdb diagnostic if error
 779 */
 780static int kdb_exec_defcmd(int argc, const char **argv)
 781{
 782	int i, ret;
 783	struct defcmd_set *s;
 784	if (argc != 0)
 785		return KDB_ARGCOUNT;
 786	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 787		if (strcmp(s->name, argv[0]) == 0)
 788			break;
 789	}
 790	if (i == defcmd_set_count) {
 791		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 792			   argv[0]);
 793		return KDB_NOTIMP;
 794	}
 795	for (i = 0; i < s->count; ++i) {
 796		/* Recursive use of kdb_parse, do not use argv after
 797		 * this point */
 798		argv = NULL;
 799		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 800		ret = kdb_parse(s->command[i]);
 801		if (ret)
 802			return ret;
 803	}
 804	return 0;
 805}
 806
 807/* Command history */
 808#define KDB_CMD_HISTORY_COUNT	32
 809#define CMD_BUFLEN		200	/* kdb_printf: max printline
 810					 * size == 256 */
 811static unsigned int cmd_head, cmd_tail;
 812static unsigned int cmdptr;
 813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 814static char cmd_cur[CMD_BUFLEN];
 815
 816/*
 817 * The "str" argument may point to something like  | grep xyz
 818 */
 819static void parse_grep(const char *str)
 820{
 821	int	len;
 822	char	*cp = (char *)str, *cp2;
 823
 824	/* sanity check: we should have been called with the \ first */
 825	if (*cp != '|')
 826		return;
 827	cp++;
 828	while (isspace(*cp))
 829		cp++;
 830	if (strncmp(cp, "grep ", 5)) {
 831		kdb_printf("invalid 'pipe', see grephelp\n");
 832		return;
 833	}
 834	cp += 5;
 835	while (isspace(*cp))
 836		cp++;
 837	cp2 = strchr(cp, '\n');
 838	if (cp2)
 839		*cp2 = '\0'; /* remove the trailing newline */
 840	len = strlen(cp);
 841	if (len == 0) {
 842		kdb_printf("invalid 'pipe', see grephelp\n");
 843		return;
 844	}
 845	/* now cp points to a nonzero length search string */
 846	if (*cp == '"') {
 847		/* allow it be "x y z" by removing the "'s - there must
 848		   be two of them */
 849		cp++;
 850		cp2 = strchr(cp, '"');
 851		if (!cp2) {
 852			kdb_printf("invalid quoted string, see grephelp\n");
 853			return;
 854		}
 855		*cp2 = '\0'; /* end the string where the 2nd " was */
 856	}
 857	kdb_grep_leading = 0;
 858	if (*cp == '^') {
 859		kdb_grep_leading = 1;
 860		cp++;
 861	}
 862	len = strlen(cp);
 863	kdb_grep_trailing = 0;
 864	if (*(cp+len-1) == '$') {
 865		kdb_grep_trailing = 1;
 866		*(cp+len-1) = '\0';
 867	}
 868	len = strlen(cp);
 869	if (!len)
 870		return;
 871	if (len >= KDB_GREP_STRLEN) {
 872		kdb_printf("search string too long\n");
 873		return;
 874	}
 875	strcpy(kdb_grep_string, cp);
 876	kdb_grepping_flag++;
 877	return;
 878}
 879
 880/*
 881 * kdb_parse - Parse the command line, search the command table for a
 882 *	matching command and invoke the command function.  This
 883 *	function may be called recursively, if it is, the second call
 884 *	will overwrite argv and cbuf.  It is the caller's
 885 *	responsibility to save their argv if they recursively call
 886 *	kdb_parse().
 887 * Parameters:
 888 *      cmdstr	The input command line to be parsed.
 889 *	regs	The registers at the time kdb was entered.
 890 * Returns:
 891 *	Zero for success, a kdb diagnostic if failure.
 892 * Remarks:
 893 *	Limited to 20 tokens.
 894 *
 895 *	Real rudimentary tokenization. Basically only whitespace
 896 *	is considered a token delimeter (but special consideration
 897 *	is taken of the '=' sign as used by the 'set' command).
 898 *
 899 *	The algorithm used to tokenize the input string relies on
 900 *	there being at least one whitespace (or otherwise useless)
 901 *	character between tokens as the character immediately following
 902 *	the token is altered in-place to a null-byte to terminate the
 903 *	token string.
 904 */
 905
 906#define MAXARGC	20
 907
 908int kdb_parse(const char *cmdstr)
 909{
 910	static char *argv[MAXARGC];
 911	static int argc;
 912	static char cbuf[CMD_BUFLEN+2];
 913	char *cp;
 914	char *cpp, quoted;
 915	kdbtab_t *tp;
 916	int i, escaped, ignore_errors = 0, check_grep = 0;
 917
 918	/*
 919	 * First tokenize the command string.
 920	 */
 921	cp = (char *)cmdstr;
 
 922
 923	if (KDB_FLAG(CMD_INTERRUPT)) {
 924		/* Previous command was interrupted, newline must not
 925		 * repeat the command */
 926		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 927		KDB_STATE_SET(PAGER);
 928		argc = 0;	/* no repeat */
 929	}
 930
 931	if (*cp != '\n' && *cp != '\0') {
 932		argc = 0;
 933		cpp = cbuf;
 934		while (*cp) {
 935			/* skip whitespace */
 936			while (isspace(*cp))
 937				cp++;
 938			if ((*cp == '\0') || (*cp == '\n') ||
 939			    (*cp == '#' && !defcmd_in_progress))
 940				break;
 941			/* special case: check for | grep pattern */
 942			if (*cp == '|') {
 943				check_grep++;
 944				break;
 945			}
 946			if (cpp >= cbuf + CMD_BUFLEN) {
 947				kdb_printf("kdb_parse: command buffer "
 948					   "overflow, command ignored\n%s\n",
 949					   cmdstr);
 950				return KDB_NOTFOUND;
 951			}
 952			if (argc >= MAXARGC - 1) {
 953				kdb_printf("kdb_parse: too many arguments, "
 954					   "command ignored\n%s\n", cmdstr);
 955				return KDB_NOTFOUND;
 956			}
 957			argv[argc++] = cpp;
 958			escaped = 0;
 959			quoted = '\0';
 960			/* Copy to next unquoted and unescaped
 961			 * whitespace or '=' */
 962			while (*cp && *cp != '\n' &&
 963			       (escaped || quoted || !isspace(*cp))) {
 964				if (cpp >= cbuf + CMD_BUFLEN)
 965					break;
 966				if (escaped) {
 967					escaped = 0;
 968					*cpp++ = *cp++;
 969					continue;
 970				}
 971				if (*cp == '\\') {
 972					escaped = 1;
 973					++cp;
 974					continue;
 975				}
 976				if (*cp == quoted)
 977					quoted = '\0';
 978				else if (*cp == '\'' || *cp == '"')
 979					quoted = *cp;
 980				*cpp = *cp++;
 981				if (*cpp == '=' && !quoted)
 982					break;
 983				++cpp;
 984			}
 985			*cpp++ = '\0';	/* Squash a ws or '=' character */
 986		}
 987	}
 988	if (!argc)
 989		return 0;
 990	if (check_grep)
 991		parse_grep(cp);
 992	if (defcmd_in_progress) {
 993		int result = kdb_defcmd2(cmdstr, argv[0]);
 994		if (!defcmd_in_progress) {
 995			argc = 0;	/* avoid repeat on endefcmd */
 996			*(argv[0]) = '\0';
 997		}
 998		return result;
 999	}
1000	if (argv[0][0] == '-' && argv[0][1] &&
1001	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1002		ignore_errors = 1;
1003		++argv[0];
1004	}
1005
1006	for_each_kdbcmd(tp, i) {
1007		if (tp->cmd_name) {
1008			/*
1009			 * If this command is allowed to be abbreviated,
1010			 * check to see if this is it.
1011			 */
1012
1013			if (tp->cmd_minlen
1014			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015				if (strncmp(argv[0],
1016					    tp->cmd_name,
1017					    tp->cmd_minlen) == 0) {
1018					break;
1019				}
1020			}
1021
1022			if (strcmp(argv[0], tp->cmd_name) == 0)
1023				break;
1024		}
1025	}
1026
1027	/*
1028	 * If we don't find a command by this name, see if the first
1029	 * few characters of this match any of the known commands.
1030	 * e.g., md1c20 should match md.
1031	 */
1032	if (i == kdb_max_commands) {
1033		for_each_kdbcmd(tp, i) {
1034			if (tp->cmd_name) {
1035				if (strncmp(argv[0],
1036					    tp->cmd_name,
1037					    strlen(tp->cmd_name)) == 0) {
1038					break;
1039				}
1040			}
1041		}
1042	}
1043
1044	if (i < kdb_max_commands) {
1045		int result;
1046
1047		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048			return KDB_NOPERM;
1049
1050		KDB_STATE_SET(CMD);
1051		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052		if (result && ignore_errors && result > KDB_CMD_GO)
1053			result = 0;
1054		KDB_STATE_CLEAR(CMD);
1055
1056		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057			return result;
1058
1059		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060		if (argv[argc])
1061			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1062		return result;
1063	}
1064
1065	/*
1066	 * If the input with which we were presented does not
1067	 * map to an existing command, attempt to parse it as an
1068	 * address argument and display the result.   Useful for
1069	 * obtaining the address of a variable, or the nearest symbol
1070	 * to an address contained in a register.
1071	 */
1072	{
1073		unsigned long value;
1074		char *name = NULL;
1075		long offset;
1076		int nextarg = 0;
1077
1078		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079				  &value, &offset, &name)) {
1080			return KDB_NOTFOUND;
1081		}
1082
1083		kdb_printf("%s = ", argv[0]);
1084		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085		kdb_printf("\n");
1086		return 0;
1087	}
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P	16
1094#define CTRL_N	14
1095
1096	/* initial situation */
1097	if (cmd_head == cmd_tail)
1098		return 0;
1099	switch (*cmd) {
1100	case CTRL_P:
1101		if (cmdptr != cmd_tail)
1102			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104		return 1;
1105	case CTRL_N:
1106		if (cmdptr != cmd_head)
1107			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109		return 1;
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1116 *	the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120	emergency_restart();
1121	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122	while (1)
1123		cpu_relax();
1124	/* NOTREACHED */
1125	return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130	int old_lvl = console_loglevel;
1131	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132	kdb_trap_printk++;
1133	show_regs(regs);
1134	kdb_trap_printk--;
1135	kdb_printf("\n");
1136	console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141	kdb_current_task = p;
1142
1143	if (kdb_task_has_cpu(p)) {
1144		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145		return;
1146	}
1147	kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
 
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
 
 
 
 
 
 
 
 
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
 
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
 
 
 
 
 
 
 
 
 
 
 
 
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
1292#else
1293		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295		if (defcmd_in_progress)
1296			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298		/*
1299		 * Fetch command from keyboard
1300		 */
1301		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302		if (*cmdbuf != '\n') {
1303			if (*cmdbuf < 32) {
1304				if (cmdptr == cmd_head) {
1305					strncpy(cmd_hist[cmd_head], cmd_cur,
1306						CMD_BUFLEN);
1307					*(cmd_hist[cmd_head] +
1308					  strlen(cmd_hist[cmd_head])-1) = '\0';
1309				}
1310				if (!handle_ctrl_cmd(cmdbuf))
1311					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312				cmdbuf = cmd_cur;
1313				goto do_full_getstr;
1314			} else {
1315				strncpy(cmd_hist[cmd_head], cmd_cur,
1316					CMD_BUFLEN);
1317			}
1318
1319			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320			if (cmd_head == cmd_tail)
1321				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322		}
1323
1324		cmdptr = cmd_head;
1325		diag = kdb_parse(cmdbuf);
1326		if (diag == KDB_NOTFOUND) {
1327			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328			diag = 0;
1329		}
1330		if (diag == KDB_CMD_GO
1331		 || diag == KDB_CMD_CPU
1332		 || diag == KDB_CMD_SS
 
1333		 || diag == KDB_CMD_KGDB)
1334			break;
1335
1336		if (diag)
1337			kdb_cmderror(diag);
1338	}
1339	KDB_DEBUG_STATE("kdb_local 9", diag);
1340	return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 *	for debugging.
1347 * Inputs:
1348 *	text		Identifies the debug point
1349 *	value		Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355		   kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 *	controlling cpu, all cpus are in this loop.  One cpu is in
1361 *	control and will issue the kdb prompt, the others will spin
1362 *	until 'go' or cpu switch.
1363 *
1364 *	To get a consistent view of the kernel stacks for all
1365 *	processes, this routine is invoked from the main kdb code via
1366 *	an architecture specific routine.  kdba_main_loop is
1367 *	responsible for making the kernel stacks consistent for all
1368 *	processes, there should be no difference between a blocked
1369 *	process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 *	reason		The reason KDB was invoked
1372 *	error		The hardware-defined error code
1373 *	reason2		kdb's current reason code.
1374 *			Initially error but can change
1375 *			according to kdb state.
1376 *	db_result	Result code from break or debug point.
1377 *	regs		The exception frame at time of fault/breakpoint.
1378 *			should always be valid.
1379 * Returns:
1380 *	0	KDB was invoked for an event which it wasn't responsible
1381 *	1	KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386	int result = 1;
1387	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1388	while (1) {
1389		/*
1390		 * All processors except the one that is in control
1391		 * will spin here.
1392		 */
1393		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394		while (KDB_STATE(HOLD_CPU)) {
1395			/* state KDB is turned off by kdb_cpu to see if the
1396			 * other cpus are still live, each cpu in this loop
1397			 * turns it back on.
1398			 */
1399			if (!KDB_STATE(KDB))
1400				KDB_STATE_SET(KDB);
1401		}
1402
1403		KDB_STATE_CLEAR(SUPPRESS);
1404		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405		if (KDB_STATE(LEAVING))
1406			break;	/* Another cpu said 'go' */
1407		/* Still using kdb, this processor is in control */
1408		result = kdb_local(reason2, error, regs, db_result);
1409		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411		if (result == KDB_CMD_CPU)
1412			break;
1413
1414		if (result == KDB_CMD_SS) {
1415			KDB_STATE_SET(DOING_SS);
1416			break;
1417		}
1418
 
 
 
 
 
 
1419		if (result == KDB_CMD_KGDB) {
1420			if (!KDB_STATE(DOING_KGDB))
1421				kdb_printf("Entering please attach debugger "
1422					   "or use $D#44+ or $3#33\n");
1423			break;
1424		}
1425		if (result && result != 1 && result != KDB_CMD_GO)
1426			kdb_printf("\nUnexpected kdb_local return code %d\n",
1427				   result);
1428		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429		break;
1430	}
1431	if (KDB_STATE(DOING_SS))
1432		KDB_STATE_CLEAR(SSBPT);
1433
1434	/* Clean up any keyboard devices before leaving */
1435	kdb_kbd_cleanup_state();
1436
1437	return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 *	mdr  <addr arg>,<byte count>
1444 * Inputs:
1445 *	addr	Start address
1446 *	count	Number of bytes
1447 * Returns:
1448 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452	unsigned char c;
1453	while (count--) {
1454		if (kdb_getarea(c, addr))
1455			return 0;
1456		kdb_printf("%02x", c);
1457		addr++;
1458	}
1459	kdb_printf("\n");
1460	return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 *	'md8' 'mdr' and 'mds' commands.
1466 *
1467 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1468 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1469 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1470 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1471 *	mdr  <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474			int symbolic, int nosect, int bytesperword,
1475			int num, int repeat, int phys)
1476{
1477	/* print just one line of data */
1478	kdb_symtab_t symtab;
1479	char cbuf[32];
1480	char *c = cbuf;
1481	int i;
1482	unsigned long word;
1483
1484	memset(cbuf, '\0', sizeof(cbuf));
1485	if (phys)
1486		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487	else
1488		kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490	for (i = 0; i < num && repeat--; i++) {
1491		if (phys) {
1492			if (kdb_getphysword(&word, addr, bytesperword))
1493				break;
1494		} else if (kdb_getword(&word, addr, bytesperword))
1495			break;
1496		kdb_printf(fmtstr, word);
1497		if (symbolic)
1498			kdbnearsym(word, &symtab);
1499		else
1500			memset(&symtab, 0, sizeof(symtab));
1501		if (symtab.sym_name) {
1502			kdb_symbol_print(word, &symtab, 0);
1503			if (!nosect) {
1504				kdb_printf("\n");
1505				kdb_printf("                       %s %s "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt, symtab.mod_name,
1509					   symtab.sec_name, symtab.sec_start,
1510					   symtab.sym_start, symtab.sym_end);
1511			}
1512			addr += bytesperword;
1513		} else {
1514			union {
1515				u64 word;
1516				unsigned char c[8];
1517			} wc;
1518			unsigned char *cp;
1519#ifdef	__BIG_ENDIAN
1520			cp = wc.c + 8 - bytesperword;
1521#else
1522			cp = wc.c;
1523#endif
1524			wc.word = word;
1525#define printable_char(c) \
1526	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527			switch (bytesperword) {
1528			case 8:
1529				*c++ = printable_char(*cp++);
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				addr += 4;
1534			case 4:
1535				*c++ = printable_char(*cp++);
1536				*c++ = printable_char(*cp++);
1537				addr += 2;
1538			case 2:
1539				*c++ = printable_char(*cp++);
1540				addr++;
1541			case 1:
1542				*c++ = printable_char(*cp++);
1543				addr++;
1544				break;
1545			}
1546#undef printable_char
1547		}
1548	}
1549	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550		   " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555	static unsigned long last_addr;
1556	static int last_radix, last_bytesperword, last_repeat;
1557	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558	int nosect = 0;
1559	char fmtchar, fmtstr[64];
1560	unsigned long addr;
1561	unsigned long word;
1562	long offset = 0;
1563	int symbolic = 0;
1564	int valid = 0;
1565	int phys = 0;
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc != 2)
1576			return KDB_ARGCOUNT;
1577		valid = 1;
1578	} else if (isdigit(argv[0][2])) {
1579		bytesperword = (int)(argv[0][2] - '0');
1580		if (bytesperword == 0) {
1581			bytesperword = last_bytesperword;
1582			if (bytesperword == 0)
1583				bytesperword = 4;
1584		}
1585		last_bytesperword = bytesperword;
1586		repeat = mdcount * 16 / bytesperword;
1587		if (!argv[0][3])
1588			valid = 1;
1589		else if (argv[0][3] == 'c' && argv[0][4]) {
1590			char *p;
1591			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592			mdcount = ((repeat * bytesperword) + 15) / 16;
1593			valid = !*p;
1594		}
1595		last_repeat = repeat;
1596	} else if (strcmp(argv[0], "md") == 0)
1597		valid = 1;
1598	else if (strcmp(argv[0], "mds") == 0)
1599		valid = 1;
1600	else if (strcmp(argv[0], "mdp") == 0) {
1601		phys = valid = 1;
1602	}
1603	if (!valid)
1604		return KDB_NOTFOUND;
1605
1606	if (argc == 0) {
1607		if (last_addr == 0)
1608			return KDB_ARGCOUNT;
1609		addr = last_addr;
1610		radix = last_radix;
1611		bytesperword = last_bytesperword;
1612		repeat = last_repeat;
1613		mdcount = ((repeat * bytesperword) + 15) / 16;
1614	}
1615
1616	if (argc) {
1617		unsigned long val;
1618		int diag, nextarg = 1;
1619		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620				     &offset, NULL);
1621		if (diag)
1622			return diag;
1623		if (argc > nextarg+2)
1624			return KDB_ARGCOUNT;
1625
1626		if (argc >= nextarg) {
1627			diag = kdbgetularg(argv[nextarg], &val);
1628			if (!diag) {
1629				mdcount = (int) val;
1630				repeat = mdcount * 16 / bytesperword;
1631			}
1632		}
1633		if (argc >= nextarg+1) {
1634			diag = kdbgetularg(argv[nextarg+1], &val);
1635			if (!diag)
1636				radix = (int) val;
1637		}
1638	}
1639
1640	if (strcmp(argv[0], "mdr") == 0)
1641		return kdb_mdr(addr, mdcount);
1642
1643	switch (radix) {
1644	case 10:
1645		fmtchar = 'd';
1646		break;
1647	case 16:
1648		fmtchar = 'x';
1649		break;
1650	case 8:
1651		fmtchar = 'o';
1652		break;
1653	default:
1654		return KDB_BADRADIX;
1655	}
1656
1657	last_radix = radix;
1658
1659	if (bytesperword > KDB_WORD_SIZE)
1660		return KDB_BADWIDTH;
1661
1662	switch (bytesperword) {
1663	case 8:
1664		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665		break;
1666	case 4:
1667		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668		break;
1669	case 2:
1670		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671		break;
1672	case 1:
1673		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674		break;
1675	default:
1676		return KDB_BADWIDTH;
1677	}
1678
1679	last_repeat = repeat;
1680	last_bytesperword = bytesperword;
1681
1682	if (strcmp(argv[0], "mds") == 0) {
1683		symbolic = 1;
1684		/* Do not save these changes as last_*, they are temporary mds
1685		 * overrides.
1686		 */
1687		bytesperword = KDB_WORD_SIZE;
1688		repeat = mdcount;
1689		kdbgetintenv("NOSECT", &nosect);
1690	}
1691
1692	/* Round address down modulo BYTESPERWORD */
1693
1694	addr &= ~(bytesperword-1);
1695
1696	while (repeat > 0) {
1697		unsigned long a;
1698		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700		if (KDB_FLAG(CMD_INTERRUPT))
1701			return 0;
1702		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703			if (phys) {
1704				if (kdb_getphysword(&word, a, bytesperword)
1705						|| word)
1706					break;
1707			} else if (kdb_getword(&word, a, bytesperword) || word)
1708				break;
1709		}
1710		n = min(num, repeat);
1711		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712			    num, repeat, phys);
1713		addr += bytesperword * n;
1714		repeat -= n;
1715		z = (z + num - 1) / num;
1716		if (z > 2) {
1717			int s = num * (z-2);
1718			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719				   " zero suppressed\n",
1720				addr, addr + bytesperword * s - 1);
1721			addr += bytesperword * s;
1722			repeat -= s;
1723		}
1724	}
1725	last_addr = addr;
1726
1727	return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 *	mm address-expression new-value
1733 * Remarks:
1734 *	mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738	int diag;
1739	unsigned long addr;
1740	long offset = 0;
1741	unsigned long contents;
1742	int nextarg;
1743	int width;
1744
1745	if (argv[0][2] && !isdigit(argv[0][2]))
1746		return KDB_NOTFOUND;
1747
1748	if (argc < 2)
1749		return KDB_ARGCOUNT;
1750
1751	nextarg = 1;
1752	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753	if (diag)
1754		return diag;
1755
1756	if (nextarg > argc)
1757		return KDB_ARGCOUNT;
1758	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759	if (diag)
1760		return diag;
1761
1762	if (nextarg != argc + 1)
1763		return KDB_ARGCOUNT;
1764
1765	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766	diag = kdb_putword(addr, contents, width);
1767	if (diag)
1768		return diag;
1769
1770	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772	return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 *	go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781	unsigned long addr;
1782	int diag;
1783	int nextarg;
1784	long offset;
1785
1786	if (raw_smp_processor_id() != kdb_initial_cpu) {
1787		kdb_printf("go must execute on the entry cpu, "
1788			   "please use \"cpu %d\" and then execute go\n",
1789			   kdb_initial_cpu);
1790		return KDB_BADCPUNUM;
1791	}
1792	if (argc == 1) {
1793		nextarg = 1;
1794		diag = kdbgetaddrarg(argc, argv, &nextarg,
1795				     &addr, &offset, NULL);
1796		if (diag)
1797			return diag;
1798	} else if (argc) {
1799		return KDB_ARGCOUNT;
1800	}
1801
1802	diag = KDB_CMD_GO;
1803	if (KDB_FLAG(CATASTROPHIC)) {
1804		kdb_printf("Catastrophic error detected\n");
1805		kdb_printf("kdb_continue_catastrophic=%d, ",
1806			kdb_continue_catastrophic);
1807		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808			kdb_printf("type go a second time if you really want "
1809				   "to continue\n");
1810			return 0;
1811		}
1812		if (kdb_continue_catastrophic == 2) {
1813			kdb_printf("forcing reboot\n");
1814			kdb_reboot(0, NULL);
1815		}
1816		kdb_printf("attempting to continue\n");
1817	}
1818	return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826	int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828	int i;
1829	char *rname;
1830	int rsize;
1831	u64 reg64;
1832	u32 reg32;
1833	u16 reg16;
1834	u8 reg8;
1835
1836	if (len)
1837		return len;
1838
1839	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840		rsize = dbg_reg_def[i].size * 2;
1841		if (rsize > 16)
1842			rsize = 2;
1843		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844			len = 0;
1845			kdb_printf("\n");
1846		}
1847		if (len)
1848			len += kdb_printf("  ");
1849		switch(dbg_reg_def[i].size * 8) {
1850		case 8:
1851			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852			if (!rname)
1853				break;
1854			len += kdb_printf("%s: %02x", rname, reg8);
1855			break;
1856		case 16:
1857			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858			if (!rname)
1859				break;
1860			len += kdb_printf("%s: %04x", rname, reg16);
1861			break;
1862		case 32:
1863			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864			if (!rname)
1865				break;
1866			len += kdb_printf("%s: %08x", rname, reg32);
1867			break;
1868		case 64:
1869			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %016llx", rname, reg64);
1873			break;
1874		default:
1875			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876		}
1877	}
1878	kdb_printf("\n");
1879#else
1880	if (len)
1881		return len;
1882
1883	kdb_dumpregs(kdb_current_regs);
1884#endif
1885	return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify)  command.
1890 *	rm register-name new-contents
1891 * Remarks:
1892 *	Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897	int diag;
1898	const char *rname;
1899	int i;
1900	u64 reg64;
1901	u32 reg32;
1902	u16 reg16;
1903	u8 reg8;
1904
1905	if (argc != 2)
1906		return KDB_ARGCOUNT;
1907	/*
1908	 * Allow presence or absence of leading '%' symbol.
1909	 */
1910	rname = argv[1];
1911	if (*rname == '%')
1912		rname++;
1913
1914	diag = kdbgetu64arg(argv[2], &reg64);
1915	if (diag)
1916		return diag;
1917
1918	diag = kdb_check_regs();
1919	if (diag)
1920		return diag;
1921
1922	diag = KDB_BADREG;
1923	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925			diag = 0;
1926			break;
1927		}
1928	}
1929	if (!diag) {
1930		switch(dbg_reg_def[i].size * 8) {
1931		case 8:
1932			reg8 = reg64;
1933			dbg_set_reg(i, &reg8, kdb_current_regs);
1934			break;
1935		case 16:
1936			reg16 = reg64;
1937			dbg_set_reg(i, &reg16, kdb_current_regs);
1938			break;
1939		case 32:
1940			reg32 = reg64;
1941			dbg_set_reg(i, &reg32, kdb_current_regs);
1942			break;
1943		case 64:
1944			dbg_set_reg(i, &reg64, kdb_current_regs);
1945			break;
1946		}
1947	}
1948	return diag;
1949#else
1950	kdb_printf("ERROR: Register set currently not implemented\n");
1951    return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 *		sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963	bool check_mask =
1964	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966	if (argc != 1)
1967		return KDB_ARGCOUNT;
1968
1969	kdb_trap_printk++;
1970	__handle_sysrq(*argv[1], check_mask);
1971	kdb_trap_printk--;
1972
1973	return 0;
1974}
1975#endif	/* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 *	frame) command.  This command takes an address and expects to
1980 *	find an exception frame at that address, formats and prints
1981 *	it.
1982 *		regs address-expression
1983 * Remarks:
1984 *	Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988	int diag;
1989	unsigned long addr;
1990	long offset;
1991	int nextarg;
1992
1993	if (argc != 1)
1994		return KDB_ARGCOUNT;
1995
1996	nextarg = 1;
1997	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998	if (diag)
1999		return diag;
2000	show_regs((struct pt_regs *)addr);
2001	return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2007 *	currently loaded kernel modules.
2008 *	Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012	struct module *mod;
2013
2014	if (argc != 0)
2015		return KDB_ARGCOUNT;
2016
2017	kdb_printf("Module                  Size  modstruct     Used by\n");
2018	list_for_each_entry(mod, kdb_modules, list) {
2019		if (mod->state == MODULE_STATE_UNFORMED)
2020			continue;
2021
2022		kdb_printf("%-20s%8u  0x%p ", mod->name,
2023			   mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025		kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027		if (mod->state == MODULE_STATE_GOING)
2028			kdb_printf(" (Unloading)");
2029		else if (mod->state == MODULE_STATE_COMING)
2030			kdb_printf(" (Loading)");
2031		else
2032			kdb_printf(" (Live)");
2033		kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036		{
2037			struct module_use *use;
2038			kdb_printf(" [ ");
2039			list_for_each_entry(use, &mod->source_list,
2040					    source_list)
2041				kdb_printf("%s ", use->target->name);
2042			kdb_printf("]\n");
2043		}
2044#endif
2045	}
2046
2047	return 0;
2048}
2049
2050#endif	/* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command.  Display the
2054 *	current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059	int i;
2060
2061	for (i = 0; i < __nenv; i++) {
2062		if (__env[i])
2063			kdb_printf("%s\n", __env[i]);
2064	}
2065
2066	if (KDB_DEBUG(MASK))
2067		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069	return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 *	the contents of the syslog buffer.
2076 *		dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080	int diag;
2081	int logging;
2082	int lines = 0;
2083	int adjust = 0;
2084	int n = 0;
2085	int skip = 0;
2086	struct kmsg_dumper dumper = { .active = 1 };
2087	size_t len;
2088	char buf[201];
2089
2090	if (argc > 2)
2091		return KDB_ARGCOUNT;
2092	if (argc) {
2093		char *cp;
2094		lines = simple_strtol(argv[1], &cp, 0);
2095		if (*cp)
2096			lines = 0;
2097		if (argc > 1) {
2098			adjust = simple_strtoul(argv[2], &cp, 0);
2099			if (*cp || adjust < 0)
2100				adjust = 0;
2101		}
2102	}
2103
2104	/* disable LOGGING if set */
2105	diag = kdbgetintenv("LOGGING", &logging);
2106	if (!diag && logging) {
2107		const char *setargs[] = { "set", "LOGGING", "0" };
2108		kdb_set(2, setargs);
2109	}
2110
2111	kmsg_dump_rewind_nolock(&dumper);
2112	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113		n++;
2114
 
 
 
 
 
 
 
 
 
 
 
 
2115	if (lines < 0) {
2116		if (adjust >= n)
2117			kdb_printf("buffer only contains %d lines, nothing "
2118				   "printed\n", n);
2119		else if (adjust - lines >= n)
2120			kdb_printf("buffer only contains %d lines, last %d "
2121				   "lines printed\n", n, n - adjust);
2122		skip = adjust;
2123		lines = abs(lines);
 
 
 
 
 
 
 
 
 
 
 
2124	} else if (lines > 0) {
2125		skip = n - lines - adjust;
2126		lines = abs(lines);
2127		if (adjust >= n) {
2128			kdb_printf("buffer only contains %d lines, "
2129				   "nothing printed\n", n);
2130			skip = n;
2131		} else if (skip < 0) {
2132			lines += skip;
2133			skip = 0;
2134			kdb_printf("buffer only contains %d lines, first "
2135				   "%d lines printed\n", n, lines);
2136		}
2137	} else {
2138		lines = n;
2139	}
2140
2141	if (skip >= n || skip < 0)
2142		return 0;
2143
2144	kmsg_dump_rewind_nolock(&dumper);
2145	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146		if (skip) {
2147			skip--;
2148			continue;
2149		}
2150		if (!lines--)
2151			break;
2152		if (KDB_FLAG(CMD_INTERRUPT))
2153			return 0;
2154
2155		kdb_printf("%.*s\n", (int)len - 1, buf);
 
 
 
 
 
 
 
2156	}
 
 
2157
2158	return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167	if (atomic_read(&kdb_nmi_disabled))
2168		return 0;
2169	atomic_set(&kdb_nmi_disabled, 1);
2170	arch_kgdb_ops.enable_nmi(0);
2171	return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177		return -EINVAL;
2178	arch_kgdb_ops.enable_nmi(1);
2179	return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183	.set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 *	cpu	[<cpunum>]
2190 * Returns:
2191 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195	int i, start_cpu, first_print = 1;
2196	char state, prev_state = '?';
2197
2198	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199	kdb_printf("Available cpus: ");
2200	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201		if (!cpu_online(i)) {
2202			state = 'F';	/* cpu is offline */
2203		} else if (!kgdb_info[i].enter_kgdb) {
2204			state = 'D';	/* cpu is online but unresponsive */
2205		} else {
2206			state = ' ';	/* cpu is responding to kdb */
2207			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208				state = 'I';	/* idle task */
2209		}
2210		if (state != prev_state) {
2211			if (prev_state != '?') {
2212				if (!first_print)
2213					kdb_printf(", ");
2214				first_print = 0;
2215				kdb_printf("%d", start_cpu);
2216				if (start_cpu < i-1)
2217					kdb_printf("-%d", i-1);
2218				if (prev_state != ' ')
2219					kdb_printf("(%c)", prev_state);
2220			}
2221			prev_state = state;
2222			start_cpu = i;
2223		}
2224	}
2225	/* print the trailing cpus, ignoring them if they are all offline */
2226	if (prev_state != 'F') {
2227		if (!first_print)
2228			kdb_printf(", ");
2229		kdb_printf("%d", start_cpu);
2230		if (start_cpu < i-1)
2231			kdb_printf("-%d", i-1);
2232		if (prev_state != ' ')
2233			kdb_printf("(%c)", prev_state);
2234	}
2235	kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240	unsigned long cpunum;
2241	int diag;
2242
2243	if (argc == 0) {
2244		kdb_cpu_status();
2245		return 0;
2246	}
2247
2248	if (argc != 1)
2249		return KDB_ARGCOUNT;
2250
2251	diag = kdbgetularg(argv[1], &cpunum);
2252	if (diag)
2253		return diag;
2254
2255	/*
2256	 * Validate cpunum
2257	 */
2258	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259		return KDB_BADCPUNUM;
2260
2261	dbg_switch_cpu = cpunum;
2262
2263	/*
2264	 * Switch to other cpu
2265	 */
2266	return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274	int idle = 0, daemon = 0;
2275	unsigned long mask_I = kdb_task_state_string("I"),
2276		      mask_M = kdb_task_state_string("M");
2277	unsigned long cpu;
2278	const struct task_struct *p, *g;
2279	for_each_online_cpu(cpu) {
2280		p = kdb_curr_task(cpu);
2281		if (kdb_task_state(p, mask_I))
2282			++idle;
2283	}
2284	kdb_do_each_thread(g, p) {
2285		if (kdb_task_state(p, mask_M))
2286			++daemon;
2287	} kdb_while_each_thread(g, p);
2288	if (idle || daemon) {
2289		if (idle)
2290			kdb_printf("%d idle process%s (state I)%s\n",
2291				   idle, idle == 1 ? "" : "es",
2292				   daemon ? " and " : "");
2293		if (daemon)
2294			kdb_printf("%d sleeping system daemon (state M) "
2295				   "process%s", daemon,
2296				   daemon == 1 ? "" : "es");
2297		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298	}
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 *	list of the active processes.
2304 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308	int cpu;
2309	unsigned long tmp;
2310
2311	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%p)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335	struct task_struct *g, *p;
2336	unsigned long mask, cpu;
2337
2338	if (argc == 0)
2339		kdb_ps_suppressed();
2340	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2341		(int)(2*sizeof(void *))+2, "Task Addr",
2342		(int)(2*sizeof(void *))+2, "Thread");
2343	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344	/* Run the active tasks first */
2345	for_each_online_cpu(cpu) {
2346		if (KDB_FLAG(CMD_INTERRUPT))
2347			return 0;
2348		p = kdb_curr_task(cpu);
2349		if (kdb_task_state(p, mask))
2350			kdb_ps1(p);
2351	}
2352	kdb_printf("\n");
2353	/* Now the real tasks */
2354	kdb_do_each_thread(g, p) {
2355		if (KDB_FLAG(CMD_INTERRUPT))
2356			return 0;
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	} kdb_while_each_thread(g, p);
2360
2361	return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 *	the currently active process.
2367 *		pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371	struct task_struct *p;
2372	unsigned long val;
2373	int diag;
2374
2375	if (argc > 1)
2376		return KDB_ARGCOUNT;
2377
2378	if (argc) {
2379		if (strcmp(argv[1], "R") == 0) {
2380			p = KDB_TSK(kdb_initial_cpu);
2381		} else {
2382			diag = kdbgetularg(argv[1], &val);
2383			if (diag)
2384				return KDB_BADINT;
2385
2386			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2387			if (!p) {
2388				kdb_printf("No task with pid=%d\n", (pid_t)val);
2389				return 0;
2390			}
2391		}
2392		kdb_set_current_task(p);
2393	}
2394	kdb_printf("KDB current process is %s(pid=%d)\n",
2395		   kdb_current_task->comm,
2396		   kdb_current_task->pid);
2397
2398	return 0;
2399}
2400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403	return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411	kdbtab_t *kt;
2412	int i;
2413
2414	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415	kdb_printf("-----------------------------"
2416		   "-----------------------------\n");
2417	for_each_kdbcmd(kt, i) {
2418		char *space = "";
 
 
2419		if (KDB_FLAG(CMD_INTERRUPT))
2420			return 0;
2421		if (!kt->cmd_name)
2422			continue;
2423		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424			continue;
2425		if (strlen(kt->cmd_usage) > 20)
2426			space = "\n                                    ";
2427		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428			   kt->cmd_usage, space, kt->cmd_help);
2429	}
2430	return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438	long sig, pid;
2439	char *endp;
2440	struct task_struct *p;
2441	struct siginfo info;
2442
2443	if (argc != 2)
2444		return KDB_ARGCOUNT;
2445
2446	sig = simple_strtol(argv[1], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (sig >= 0) {
2450		kdb_printf("Invalid signal parameter.<-signal>\n");
2451		return 0;
2452	}
2453	sig = -sig;
2454
2455	pid = simple_strtol(argv[2], &endp, 0);
2456	if (*endp)
2457		return KDB_BADINT;
2458	if (pid <= 0) {
2459		kdb_printf("Process ID must be large than 0.\n");
2460		return 0;
2461	}
2462
2463	/* Find the process. */
2464	p = find_task_by_pid_ns(pid, &init_pid_ns);
2465	if (!p) {
2466		kdb_printf("The specified process isn't found.\n");
2467		return 0;
2468	}
2469	p = p->group_leader;
2470	info.si_signo = sig;
2471	info.si_errno = 0;
2472	info.si_code = SI_USER;
2473	info.si_pid = pid;  /* same capabilities as process being signalled */
2474	info.si_uid = 0;    /* kdb has root authority */
2475	kdb_send_sig_info(p, &info);
2476	return 0;
2477}
2478
2479struct kdb_tm {
2480	int tm_sec;	/* seconds */
2481	int tm_min;	/* minutes */
2482	int tm_hour;	/* hours */
2483	int tm_mday;	/* day of the month */
2484	int tm_mon;	/* month */
2485	int tm_year;	/* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490	/* This will work from 1970-2099, 2100 is not a leap year */
2491	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492				 31, 30, 31, 30, 31 };
2493	memset(tm, 0, sizeof(*tm));
2494	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2495	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2497	tm->tm_min =  tm->tm_sec / 60 % 60;
2498	tm->tm_hour = tm->tm_sec / 60 / 60;
2499	tm->tm_sec =  tm->tm_sec % 60;
2500	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501	tm->tm_mday %= (4*365+1);
2502	mon_day[1] = 29;
2503	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504		tm->tm_mday -= mon_day[tm->tm_mon];
2505		if (++tm->tm_mon == 12) {
2506			tm->tm_mon = 0;
2507			++tm->tm_year;
2508			mon_day[1] = 28;
2509		}
2510	}
2511	++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521	struct timespec uptime;
2522	ktime_get_ts(&uptime);
2523	memset(val, 0, sizeof(*val));
2524	val->uptime = uptime.tv_sec;
2525	val->loads[0] = avenrun[0];
2526	val->loads[1] = avenrun[1];
2527	val->loads[2] = avenrun[2];
2528	val->procs = nr_threads-1;
2529	si_meminfo(val);
2530
2531	return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539	struct timespec now;
2540	struct kdb_tm tm;
2541	struct sysinfo val;
2542
2543	if (argc)
2544		return KDB_ARGCOUNT;
2545
2546	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2547	kdb_printf("release    %s\n", init_uts_ns.name.release);
2548	kdb_printf("version    %s\n", init_uts_ns.name.version);
2549	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2550	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2551	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2553
2554	now = __current_kernel_time();
2555	kdb_gmtime(&now, &tm);
2556	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2557		   "tz_minuteswest %d\n",
2558		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559		tm.tm_hour, tm.tm_min, tm.tm_sec,
2560		sys_tz.tz_minuteswest);
2561
2562	kdb_sysinfo(&val);
2563	kdb_printf("uptime     ");
2564	if (val.uptime > (24*60*60)) {
2565		int days = val.uptime / (24*60*60);
2566		val.uptime %= (24*60*60);
2567		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568	}
2569	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581	/* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2584		   "Buffers:        %8lu kB\n",
2585		   K(val.totalram), K(val.freeram), K(val.bufferram));
2586	return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594	char fmtstr[64];
2595	int cpu, diag, nextarg = 1;
2596	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598	if (argc < 1 || argc > 3)
2599		return KDB_ARGCOUNT;
2600
2601	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602	if (diag)
2603		return diag;
2604
2605	if (argc >= 2) {
2606		diag = kdbgetularg(argv[2], &bytesperword);
2607		if (diag)
2608			return diag;
2609	}
2610	if (!bytesperword)
2611		bytesperword = KDB_WORD_SIZE;
2612	else if (bytesperword > KDB_WORD_SIZE)
2613		return KDB_BADWIDTH;
2614	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615	if (argc >= 3) {
2616		diag = kdbgetularg(argv[3], &whichcpu);
2617		if (diag)
2618			return diag;
2619		if (!cpu_online(whichcpu)) {
2620			kdb_printf("cpu %ld is not online\n", whichcpu);
2621			return KDB_BADCPUNUM;
2622		}
2623	}
2624
2625	/* Most architectures use __per_cpu_offset[cpu], some use
2626	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627	 */
2628#ifdef	__per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef	CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637	for_each_online_cpu(cpu) {
2638		if (KDB_FLAG(CMD_INTERRUPT))
2639			return 0;
2640
2641		if (whichcpu != ~0UL && whichcpu != cpu)
2642			continue;
2643		addr = symaddr + KDB_PCU(cpu);
2644		diag = kdb_getword(&val, addr, bytesperword);
2645		if (diag) {
2646			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647				   "read, diag=%d\n", cpu, addr, diag);
2648			continue;
2649		}
2650		kdb_printf("%5d ", cpu);
2651		kdb_md_line(fmtstr, addr,
2652			bytesperword == KDB_WORD_SIZE,
2653			1, bytesperword, 1, 1, 0);
2654	}
2655#undef KDB_PCU
2656	return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664	kdb_printf("Usage of  cmd args | grep pattern:\n");
2665	kdb_printf("  Any command's output may be filtered through an ");
2666	kdb_printf("emulated 'pipe'.\n");
2667	kdb_printf("  'grep' is just a key word.\n");
2668	kdb_printf("  The pattern may include a very limited set of "
2669		   "metacharacters:\n");
2670	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2671	kdb_printf("  And if there are spaces in the pattern, you may "
2672		   "quote it:\n");
2673	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674		   " or \"^pat tern$\"\n");
2675	return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * 	debugger command.
2681 * Inputs:
2682 *	cmd	Command name
2683 *	func	Function to execute the command
2684 *	usage	A simple usage string showing arguments
2685 *	help	A simple help string describing command
2686 *	repeat	Does the command auto repeat on enter?
2687 * Returns:
2688 *	zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50	/* arbitrary */
2691int kdb_register_flags(char *cmd,
2692		       kdb_func_t func,
2693		       char *usage,
2694		       char *help,
2695		       short minlen,
2696		       kdb_cmdflags_t flags)
2697{
2698	int i;
2699	kdbtab_t *kp;
2700
2701	/*
2702	 *  Brute force method to determine duplicates
2703	 */
2704	for_each_kdbcmd(kp, i) {
2705		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706			kdb_printf("Duplicate kdb command registered: "
2707				"%s, func %p help %s\n", cmd, func, help);
2708			return 1;
2709		}
2710	}
2711
2712	/*
2713	 * Insert command into first available location in table
2714	 */
2715	for_each_kdbcmd(kp, i) {
2716		if (kp->cmd_name == NULL)
2717			break;
2718	}
2719
2720	if (i >= kdb_max_commands) {
2721		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723		if (!new) {
2724			kdb_printf("Could not allocate new kdb_command "
2725				   "table\n");
2726			return 1;
2727		}
2728		if (kdb_commands) {
2729			memcpy(new, kdb_commands,
2730			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731			kfree(kdb_commands);
2732		}
2733		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734		       kdb_command_extend * sizeof(*new));
2735		kdb_commands = new;
2736		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737		kdb_max_commands += kdb_command_extend;
2738	}
2739
2740	kp->cmd_name   = cmd;
2741	kp->cmd_func   = func;
2742	kp->cmd_usage  = usage;
2743	kp->cmd_help   = help;
 
2744	kp->cmd_minlen = minlen;
2745	kp->cmd_flags  = flags;
2746
2747	return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 *	not need to specify a repeat state.  Equivalent to
2755 *	kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 *	cmd	Command name
2758 *	func	Function to execute the command
2759 *	usage	A simple usage string showing arguments
2760 *	help	A simple help string describing command
2761 * Returns:
2762 *	zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765	     kdb_func_t func,
2766	     char *usage,
2767	     char *help,
2768	     short minlen)
2769{
2770	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 *	debugger command.  It is generally called when a module which
2777 *	implements kdb commands is unloaded.
2778 * Inputs:
2779 *	cmd	Command name
2780 * Returns:
2781 *	zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785	int i;
2786	kdbtab_t *kp;
2787
2788	/*
2789	 *  find the command.
2790	 */
2791	for_each_kdbcmd(kp, i) {
2792		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793			kp->cmd_name = NULL;
2794			return 0;
2795		}
2796	}
2797
2798	/* Couldn't find it.  */
2799	return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806	int i;
2807	kdbtab_t *kp;
2808
2809	for_each_kdbcmd(kp, i)
2810		kp->cmd_name = NULL;
2811
2812	kdb_register_flags("md", kdb_md, "<vaddr>",
2813	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816	  "Display Raw Memory", 0,
2817	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819	  "Display Physical Memory", 0,
2820	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821	kdb_register_flags("mds", kdb_md, "<vaddr>",
2822	  "Display Memory Symbolically", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825	  "Modify Memory Contents", 0,
2826	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828	  "Continue Execution", 1,
2829	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830	kdb_register_flags("rd", kdb_rd, "",
2831	  "Display Registers", 0,
2832	  KDB_ENABLE_REG_READ);
2833	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834	  "Modify Registers", 0,
2835	  KDB_ENABLE_REG_WRITE);
2836	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837	  "Display exception frame", 0,
2838	  KDB_ENABLE_MEM_READ);
2839	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840	  "Stack traceback", 1,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("btp", kdb_bt, "<pid>",
2843	  "Display stack for process <pid>", 0,
2844	  KDB_ENABLE_INSPECT);
2845	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846	  "Backtrace all processes matching state flag", 0,
2847	  KDB_ENABLE_INSPECT);
2848	kdb_register_flags("btc", kdb_bt, "",
2849	  "Backtrace current process on each cpu", 0,
2850	  KDB_ENABLE_INSPECT);
2851	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852	  "Backtrace process given its struct task address", 0,
2853	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854	kdb_register_flags("env", kdb_env, "",
2855	  "Show environment variables", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE);
2857	kdb_register_flags("set", kdb_set, "",
2858	  "Set environment variables", 0,
2859	  KDB_ENABLE_ALWAYS_SAFE);
2860	kdb_register_flags("help", kdb_help, "",
2861	  "Display Help Message", 1,
2862	  KDB_ENABLE_ALWAYS_SAFE);
2863	kdb_register_flags("?", kdb_help, "",
2864	  "Display Help Message", 0,
2865	  KDB_ENABLE_ALWAYS_SAFE);
2866	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867	  "Switch to new cpu", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869	kdb_register_flags("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, 0);
2871	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0,
2873	  KDB_ENABLE_INSPECT);
2874	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875	  "Switch to another task", 0,
2876	  KDB_ENABLE_INSPECT);
2877	kdb_register_flags("reboot", kdb_reboot, "",
2878	  "Reboot the machine immediately", 0,
2879	  KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881	kdb_register_flags("lsmod", kdb_lsmod, "",
2882	  "List loaded kernel modules", 0,
2883	  KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886	kdb_register_flags("sr", kdb_sr, "<key>",
2887	  "Magic SysRq key", 0,
2888	  KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892	  "Display syslog buffer", 0,
2893	  KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895	if (arch_kgdb_ops.enable_nmi) {
2896		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897		  "Disable NMI entry to KDB", 0,
2898		  KDB_ENABLE_ALWAYS_SAFE);
2899	}
2900	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901	  "Define a set of commands, down to endefcmd", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904	  "Send a signal to a process", 0,
2905	  KDB_ENABLE_SIGNAL);
2906	kdb_register_flags("summary", kdb_summary, "",
2907	  "Summarize the system", 4,
2908	  KDB_ENABLE_ALWAYS_SAFE);
2909	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910	  "Display per_cpu variables", 3,
2911	  KDB_ENABLE_MEM_READ);
2912	kdb_register_flags("grephelp", kdb_grep_help, "",
2913	  "Display help on | grep", 0,
2914	  KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds.  */
2918static void __init kdb_cmd_init(void)
2919{
2920	int i, diag;
2921	for (i = 0; kdb_cmds[i]; ++i) {
2922		diag = kdb_parse(kdb_cmds[i]);
2923		if (diag)
2924			kdb_printf("kdb command %s failed, kdb diag %d\n",
2925				kdb_cmds[i], diag);
2926	}
2927	if (defcmd_in_progress) {
2928		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929		kdb_parse("endefcmd");
2930	}
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937	int i;
2938
2939	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940		return;
2941	for (i = kdb_init_lvl; i < lvl; i++) {
2942		switch (i) {
2943		case KDB_NOT_INITIALIZED:
2944			kdb_inittab();		/* Initialize Command Table */
2945			kdb_initbptab();	/* Initialize Breakpoints */
2946			break;
2947		case KDB_INIT_EARLY:
2948			kdb_cmd_init();		/* Build kdb_cmds tables */
2949			break;
2950		}
2951	}
2952	kdb_init_lvl = lvl;
2953}
v3.1
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
 
  17#include <linux/reboot.h>
  18#include <linux/sched.h>
  19#include <linux/sysrq.h>
  20#include <linux/smp.h>
  21#include <linux/utsname.h>
  22#include <linux/vmalloc.h>
 
  23#include <linux/module.h>
 
  24#include <linux/mm.h>
  25#include <linux/init.h>
  26#include <linux/kallsyms.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdb.h>
  29#include <linux/notifier.h>
  30#include <linux/interrupt.h>
  31#include <linux/delay.h>
  32#include <linux/nmi.h>
  33#include <linux/time.h>
  34#include <linux/ptrace.h>
  35#include <linux/sysctl.h>
  36#include <linux/cpu.h>
  37#include <linux/kdebug.h>
  38#include <linux/proc_fs.h>
  39#include <linux/uaccess.h>
  40#include <linux/slab.h>
  41#include "kdb_private.h"
  42
  43#define GREP_LEN 256
  44char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  45int kdb_grepping_flag;
  46EXPORT_SYMBOL(kdb_grepping_flag);
  47int kdb_grep_leading;
  48int kdb_grep_trailing;
  49
  50/*
  51 * Kernel debugger state flags
  52 */
  53int kdb_flags;
  54atomic_t kdb_event;
  55
  56/*
  57 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  58 * single thread processors through the kernel debugger.
  59 */
  60int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  61int kdb_nextline = 1;
  62int kdb_state;			/* General KDB state */
  63
  64struct task_struct *kdb_current_task;
  65EXPORT_SYMBOL(kdb_current_task);
  66struct pt_regs *kdb_current_regs;
  67
  68const char *kdb_diemsg;
  69static int kdb_go_count;
  70#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  71static unsigned int kdb_continue_catastrophic =
  72	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  73#else
  74static unsigned int kdb_continue_catastrophic;
  75#endif
  76
  77/* kdb_commands describes the available commands. */
  78static kdbtab_t *kdb_commands;
  79#define KDB_BASE_CMD_MAX 50
  80static int kdb_max_commands = KDB_BASE_CMD_MAX;
  81static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  82#define for_each_kdbcmd(cmd, num)					\
  83	for ((cmd) = kdb_base_commands, (num) = 0;			\
  84	     num < kdb_max_commands;					\
  85	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  86
  87typedef struct _kdbmsg {
  88	int	km_diag;	/* kdb diagnostic */
  89	char	*km_msg;	/* Corresponding message text */
  90} kdbmsg_t;
  91
  92#define KDBMSG(msgnum, text) \
  93	{ KDB_##msgnum, text }
  94
  95static kdbmsg_t kdbmsgs[] = {
  96	KDBMSG(NOTFOUND, "Command Not Found"),
  97	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  98	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
  99	       "8 is only allowed on 64 bit systems"),
 100	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 101	KDBMSG(NOTENV, "Cannot find environment variable"),
 102	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 103	KDBMSG(NOTIMP, "Command not implemented"),
 104	KDBMSG(ENVFULL, "Environment full"),
 105	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 106	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 107#ifdef CONFIG_CPU_XSCALE
 108	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 109#else
 110	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 111#endif
 112	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 113	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 114	KDBMSG(BADMODE, "Invalid IDMODE"),
 115	KDBMSG(BADINT, "Illegal numeric value"),
 116	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 117	KDBMSG(BADREG, "Invalid register name"),
 118	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 119	KDBMSG(BADLENGTH, "Invalid length field"),
 120	KDBMSG(NOBP, "No Breakpoint exists"),
 121	KDBMSG(BADADDR, "Invalid address"),
 
 122};
 123#undef KDBMSG
 124
 125static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 126
 127
 128/*
 129 * Initial environment.   This is all kept static and local to
 130 * this file.   We don't want to rely on the memory allocation
 131 * mechanisms in the kernel, so we use a very limited allocate-only
 132 * heap for new and altered environment variables.  The entire
 133 * environment is limited to a fixed number of entries (add more
 134 * to __env[] if required) and a fixed amount of heap (add more to
 135 * KDB_ENVBUFSIZE if required).
 136 */
 137
 138static char *__env[] = {
 139#if defined(CONFIG_SMP)
 140 "PROMPT=[%d]kdb> ",
 141 "MOREPROMPT=[%d]more> ",
 142#else
 143 "PROMPT=kdb> ",
 
 144 "MOREPROMPT=more> ",
 145#endif
 146 "RADIX=16",
 147 "MDCOUNT=8",			/* lines of md output */
 148 KDB_PLATFORM_ENV,
 149 "DTABCOUNT=30",
 150 "NOSECT=1",
 151 (char *)0,
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175};
 176
 177static const int __nenv = (sizeof(__env) / sizeof(char *));
 178
 179struct task_struct *kdb_curr_task(int cpu)
 180{
 181	struct task_struct *p = curr_task(cpu);
 182#ifdef	_TIF_MCA_INIT
 183	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 184		p = krp->p;
 185#endif
 186	return p;
 187}
 188
 189/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long represntation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 297 * kdbgetularg - This function will convert a numeric string into an
 298 *	unsigned long value.
 299 * Parameters:
 300 *	arg	A character string representing a numeric value
 301 * Outputs:
 302 *	*value  the unsigned long represntation of arg.
 303 * Returns:
 304 *	Zero on success, a kdb diagnostic on failure.
 305 */
 306int kdbgetularg(const char *arg, unsigned long *value)
 307{
 308	char *endp;
 309	unsigned long val;
 310
 311	val = simple_strtoul(arg, &endp, 0);
 312
 313	if (endp == arg) {
 314		/*
 315		 * Also try base 16, for us folks too lazy to type the
 316		 * leading 0x...
 317		 */
 318		val = simple_strtoul(arg, &endp, 16);
 319		if (endp == arg)
 320			return KDB_BADINT;
 321	}
 322
 323	*value = val;
 324
 325	return 0;
 326}
 327
 328int kdbgetu64arg(const char *arg, u64 *value)
 329{
 330	char *endp;
 331	u64 val;
 332
 333	val = simple_strtoull(arg, &endp, 0);
 334
 335	if (endp == arg) {
 336
 337		val = simple_strtoull(arg, &endp, 16);
 338		if (endp == arg)
 339			return KDB_BADINT;
 340	}
 341
 342	*value = val;
 343
 344	return 0;
 345}
 346
 347/*
 348 * kdb_set - This function implements the 'set' command.  Alter an
 349 *	existing environment variable or create a new one.
 350 */
 351int kdb_set(int argc, const char **argv)
 352{
 353	int i;
 354	char *ep;
 355	size_t varlen, vallen;
 356
 357	/*
 358	 * we can be invoked two ways:
 359	 *   set var=value    argv[1]="var", argv[2]="value"
 360	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 361	 * - if the latter, shift 'em down.
 362	 */
 363	if (argc == 3) {
 364		argv[2] = argv[3];
 365		argc--;
 366	}
 367
 368	if (argc != 2)
 369		return KDB_ARGCOUNT;
 370
 371	/*
 372	 * Check for internal variables
 373	 */
 374	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 375		unsigned int debugflags;
 376		char *cp;
 377
 378		debugflags = simple_strtoul(argv[2], &cp, 0);
 379		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 380			kdb_printf("kdb: illegal debug flags '%s'\n",
 381				    argv[2]);
 382			return 0;
 383		}
 384		kdb_flags = (kdb_flags &
 385			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 386			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 387
 388		return 0;
 389	}
 390
 391	/*
 392	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 393	 * name, argv[2] = value.
 394	 */
 395	varlen = strlen(argv[1]);
 396	vallen = strlen(argv[2]);
 397	ep = kdballocenv(varlen + vallen + 2);
 398	if (ep == (char *)0)
 399		return KDB_ENVBUFFULL;
 400
 401	sprintf(ep, "%s=%s", argv[1], argv[2]);
 402
 403	ep[varlen+vallen+1] = '\0';
 404
 405	for (i = 0; i < __nenv; i++) {
 406		if (__env[i]
 407		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 408		   && ((__env[i][varlen] == '\0')
 409		    || (__env[i][varlen] == '=')))) {
 410			__env[i] = ep;
 411			return 0;
 412		}
 413	}
 414
 415	/*
 416	 * Wasn't existing variable.  Fit into slot.
 417	 */
 418	for (i = 0; i < __nenv-1; i++) {
 419		if (__env[i] == (char *)0) {
 420			__env[i] = ep;
 421			return 0;
 422		}
 423	}
 424
 425	return KDB_ENVFULL;
 426}
 427
 428static int kdb_check_regs(void)
 429{
 430	if (!kdb_current_regs) {
 431		kdb_printf("No current kdb registers."
 432			   "  You may need to select another task\n");
 433		return KDB_BADREG;
 434	}
 435	return 0;
 436}
 437
 438/*
 439 * kdbgetaddrarg - This function is responsible for parsing an
 440 *	address-expression and returning the value of the expression,
 441 *	symbol name, and offset to the caller.
 442 *
 443 *	The argument may consist of a numeric value (decimal or
 444 *	hexidecimal), a symbol name, a register name (preceded by the
 445 *	percent sign), an environment variable with a numeric value
 446 *	(preceded by a dollar sign) or a simple arithmetic expression
 447 *	consisting of a symbol name, +/-, and a numeric constant value
 448 *	(offset).
 449 * Parameters:
 450 *	argc	- count of arguments in argv
 451 *	argv	- argument vector
 452 *	*nextarg - index to next unparsed argument in argv[]
 453 *	regs	- Register state at time of KDB entry
 454 * Outputs:
 455 *	*value	- receives the value of the address-expression
 456 *	*offset - receives the offset specified, if any
 457 *	*name   - receives the symbol name, if any
 458 *	*nextarg - index to next unparsed argument in argv[]
 459 * Returns:
 460 *	zero is returned on success, a kdb diagnostic code is
 461 *      returned on error.
 462 */
 463int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 464		  unsigned long *value,  long *offset,
 465		  char **name)
 466{
 467	unsigned long addr;
 468	unsigned long off = 0;
 469	int positive;
 470	int diag;
 471	int found = 0;
 472	char *symname;
 473	char symbol = '\0';
 474	char *cp;
 475	kdb_symtab_t symtab;
 476
 477	/*
 
 
 
 
 
 
 
 
 
 478	 * Process arguments which follow the following syntax:
 479	 *
 480	 *  symbol | numeric-address [+/- numeric-offset]
 481	 *  %register
 482	 *  $environment-variable
 483	 */
 484
 485	if (*nextarg > argc)
 486		return KDB_ARGCOUNT;
 487
 488	symname = (char *)argv[*nextarg];
 489
 490	/*
 491	 * If there is no whitespace between the symbol
 492	 * or address and the '+' or '-' symbols, we
 493	 * remember the character and replace it with a
 494	 * null so the symbol/value can be properly parsed
 495	 */
 496	cp = strpbrk(symname, "+-");
 497	if (cp != NULL) {
 498		symbol = *cp;
 499		*cp++ = '\0';
 500	}
 501
 502	if (symname[0] == '$') {
 503		diag = kdbgetulenv(&symname[1], &addr);
 504		if (diag)
 505			return diag;
 506	} else if (symname[0] == '%') {
 507		diag = kdb_check_regs();
 508		if (diag)
 509			return diag;
 510		/* Implement register values with % at a later time as it is
 511		 * arch optional.
 512		 */
 513		return KDB_NOTIMP;
 514	} else {
 515		found = kdbgetsymval(symname, &symtab);
 516		if (found) {
 517			addr = symtab.sym_start;
 518		} else {
 519			diag = kdbgetularg(argv[*nextarg], &addr);
 520			if (diag)
 521				return diag;
 522		}
 523	}
 524
 525	if (!found)
 526		found = kdbnearsym(addr, &symtab);
 527
 528	(*nextarg)++;
 529
 530	if (name)
 531		*name = symname;
 532	if (value)
 533		*value = addr;
 534	if (offset && name && *name)
 535		*offset = addr - symtab.sym_start;
 536
 537	if ((*nextarg > argc)
 538	 && (symbol == '\0'))
 539		return 0;
 540
 541	/*
 542	 * check for +/- and offset
 543	 */
 544
 545	if (symbol == '\0') {
 546		if ((argv[*nextarg][0] != '+')
 547		 && (argv[*nextarg][0] != '-')) {
 548			/*
 549			 * Not our argument.  Return.
 550			 */
 551			return 0;
 552		} else {
 553			positive = (argv[*nextarg][0] == '+');
 554			(*nextarg)++;
 555		}
 556	} else
 557		positive = (symbol == '+');
 558
 559	/*
 560	 * Now there must be an offset!
 561	 */
 562	if ((*nextarg > argc)
 563	 && (symbol == '\0')) {
 564		return KDB_INVADDRFMT;
 565	}
 566
 567	if (!symbol) {
 568		cp = (char *)argv[*nextarg];
 569		(*nextarg)++;
 570	}
 571
 572	diag = kdbgetularg(cp, &off);
 573	if (diag)
 574		return diag;
 575
 576	if (!positive)
 577		off = -off;
 578
 579	if (offset)
 580		*offset += off;
 581
 582	if (value)
 583		*value += off;
 584
 585	return 0;
 586}
 587
 588static void kdb_cmderror(int diag)
 589{
 590	int i;
 591
 592	if (diag >= 0) {
 593		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 594		return;
 595	}
 596
 597	for (i = 0; i < __nkdb_err; i++) {
 598		if (kdbmsgs[i].km_diag == diag) {
 599			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 600			return;
 601		}
 602	}
 603
 604	kdb_printf("Unknown diag %d\n", -diag);
 605}
 606
 607/*
 608 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 609 *	command which defines one command as a set of other commands,
 610 *	terminated by endefcmd.  kdb_defcmd processes the initial
 611 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 612 *	the following commands until 'endefcmd'.
 613 * Inputs:
 614 *	argc	argument count
 615 *	argv	argument vector
 616 * Returns:
 617 *	zero for success, a kdb diagnostic if error
 618 */
 619struct defcmd_set {
 620	int count;
 621	int usable;
 622	char *name;
 623	char *usage;
 624	char *help;
 625	char **command;
 626};
 627static struct defcmd_set *defcmd_set;
 628static int defcmd_set_count;
 629static int defcmd_in_progress;
 630
 631/* Forward references */
 632static int kdb_exec_defcmd(int argc, const char **argv);
 633
 634static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 635{
 636	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 637	char **save_command = s->command;
 638	if (strcmp(argv0, "endefcmd") == 0) {
 639		defcmd_in_progress = 0;
 640		if (!s->count)
 641			s->usable = 0;
 642		if (s->usable)
 643			kdb_register(s->name, kdb_exec_defcmd,
 644				     s->usage, s->help, 0);
 
 
 
 
 
 645		return 0;
 646	}
 647	if (!s->usable)
 648		return KDB_NOTIMP;
 649	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 650	if (!s->command) {
 651		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 652			   cmdstr);
 653		s->usable = 0;
 654		return KDB_NOTIMP;
 655	}
 656	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 657	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 658	kfree(save_command);
 659	return 0;
 660}
 661
 662static int kdb_defcmd(int argc, const char **argv)
 663{
 664	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 665	if (defcmd_in_progress) {
 666		kdb_printf("kdb: nested defcmd detected, assuming missing "
 667			   "endefcmd\n");
 668		kdb_defcmd2("endefcmd", "endefcmd");
 669	}
 670	if (argc == 0) {
 671		int i;
 672		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 673			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 674				   s->usage, s->help);
 675			for (i = 0; i < s->count; ++i)
 676				kdb_printf("%s", s->command[i]);
 677			kdb_printf("endefcmd\n");
 678		}
 679		return 0;
 680	}
 681	if (argc != 3)
 682		return KDB_ARGCOUNT;
 
 
 
 
 683	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 684			     GFP_KDB);
 685	if (!defcmd_set) {
 686		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 687			   argv[1]);
 688		defcmd_set = save_defcmd_set;
 689		return KDB_NOTIMP;
 690	}
 691	memcpy(defcmd_set, save_defcmd_set,
 692	       defcmd_set_count * sizeof(*defcmd_set));
 693	kfree(save_defcmd_set);
 694	s = defcmd_set + defcmd_set_count;
 695	memset(s, 0, sizeof(*s));
 696	s->usable = 1;
 697	s->name = kdb_strdup(argv[1], GFP_KDB);
 
 
 698	s->usage = kdb_strdup(argv[2], GFP_KDB);
 
 
 699	s->help = kdb_strdup(argv[3], GFP_KDB);
 
 
 700	if (s->usage[0] == '"') {
 701		strcpy(s->usage, s->usage+1);
 702		s->usage[strlen(s->usage)-1] = '\0';
 703	}
 704	if (s->help[0] == '"') {
 705		strcpy(s->help, s->help+1);
 706		s->help[strlen(s->help)-1] = '\0';
 707	}
 708	++defcmd_set_count;
 709	defcmd_in_progress = 1;
 
 710	return 0;
 
 
 
 
 
 
 
 
 
 
 711}
 712
 713/*
 714 * kdb_exec_defcmd - Execute the set of commands associated with this
 715 *	defcmd name.
 716 * Inputs:
 717 *	argc	argument count
 718 *	argv	argument vector
 719 * Returns:
 720 *	zero for success, a kdb diagnostic if error
 721 */
 722static int kdb_exec_defcmd(int argc, const char **argv)
 723{
 724	int i, ret;
 725	struct defcmd_set *s;
 726	if (argc != 0)
 727		return KDB_ARGCOUNT;
 728	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 729		if (strcmp(s->name, argv[0]) == 0)
 730			break;
 731	}
 732	if (i == defcmd_set_count) {
 733		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 734			   argv[0]);
 735		return KDB_NOTIMP;
 736	}
 737	for (i = 0; i < s->count; ++i) {
 738		/* Recursive use of kdb_parse, do not use argv after
 739		 * this point */
 740		argv = NULL;
 741		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 742		ret = kdb_parse(s->command[i]);
 743		if (ret)
 744			return ret;
 745	}
 746	return 0;
 747}
 748
 749/* Command history */
 750#define KDB_CMD_HISTORY_COUNT	32
 751#define CMD_BUFLEN		200	/* kdb_printf: max printline
 752					 * size == 256 */
 753static unsigned int cmd_head, cmd_tail;
 754static unsigned int cmdptr;
 755static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 756static char cmd_cur[CMD_BUFLEN];
 757
 758/*
 759 * The "str" argument may point to something like  | grep xyz
 760 */
 761static void parse_grep(const char *str)
 762{
 763	int	len;
 764	char	*cp = (char *)str, *cp2;
 765
 766	/* sanity check: we should have been called with the \ first */
 767	if (*cp != '|')
 768		return;
 769	cp++;
 770	while (isspace(*cp))
 771		cp++;
 772	if (strncmp(cp, "grep ", 5)) {
 773		kdb_printf("invalid 'pipe', see grephelp\n");
 774		return;
 775	}
 776	cp += 5;
 777	while (isspace(*cp))
 778		cp++;
 779	cp2 = strchr(cp, '\n');
 780	if (cp2)
 781		*cp2 = '\0'; /* remove the trailing newline */
 782	len = strlen(cp);
 783	if (len == 0) {
 784		kdb_printf("invalid 'pipe', see grephelp\n");
 785		return;
 786	}
 787	/* now cp points to a nonzero length search string */
 788	if (*cp == '"') {
 789		/* allow it be "x y z" by removing the "'s - there must
 790		   be two of them */
 791		cp++;
 792		cp2 = strchr(cp, '"');
 793		if (!cp2) {
 794			kdb_printf("invalid quoted string, see grephelp\n");
 795			return;
 796		}
 797		*cp2 = '\0'; /* end the string where the 2nd " was */
 798	}
 799	kdb_grep_leading = 0;
 800	if (*cp == '^') {
 801		kdb_grep_leading = 1;
 802		cp++;
 803	}
 804	len = strlen(cp);
 805	kdb_grep_trailing = 0;
 806	if (*(cp+len-1) == '$') {
 807		kdb_grep_trailing = 1;
 808		*(cp+len-1) = '\0';
 809	}
 810	len = strlen(cp);
 811	if (!len)
 812		return;
 813	if (len >= GREP_LEN) {
 814		kdb_printf("search string too long\n");
 815		return;
 816	}
 817	strcpy(kdb_grep_string, cp);
 818	kdb_grepping_flag++;
 819	return;
 820}
 821
 822/*
 823 * kdb_parse - Parse the command line, search the command table for a
 824 *	matching command and invoke the command function.  This
 825 *	function may be called recursively, if it is, the second call
 826 *	will overwrite argv and cbuf.  It is the caller's
 827 *	responsibility to save their argv if they recursively call
 828 *	kdb_parse().
 829 * Parameters:
 830 *      cmdstr	The input command line to be parsed.
 831 *	regs	The registers at the time kdb was entered.
 832 * Returns:
 833 *	Zero for success, a kdb diagnostic if failure.
 834 * Remarks:
 835 *	Limited to 20 tokens.
 836 *
 837 *	Real rudimentary tokenization. Basically only whitespace
 838 *	is considered a token delimeter (but special consideration
 839 *	is taken of the '=' sign as used by the 'set' command).
 840 *
 841 *	The algorithm used to tokenize the input string relies on
 842 *	there being at least one whitespace (or otherwise useless)
 843 *	character between tokens as the character immediately following
 844 *	the token is altered in-place to a null-byte to terminate the
 845 *	token string.
 846 */
 847
 848#define MAXARGC	20
 849
 850int kdb_parse(const char *cmdstr)
 851{
 852	static char *argv[MAXARGC];
 853	static int argc;
 854	static char cbuf[CMD_BUFLEN+2];
 855	char *cp;
 856	char *cpp, quoted;
 857	kdbtab_t *tp;
 858	int i, escaped, ignore_errors = 0, check_grep;
 859
 860	/*
 861	 * First tokenize the command string.
 862	 */
 863	cp = (char *)cmdstr;
 864	kdb_grepping_flag = check_grep = 0;
 865
 866	if (KDB_FLAG(CMD_INTERRUPT)) {
 867		/* Previous command was interrupted, newline must not
 868		 * repeat the command */
 869		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 870		KDB_STATE_SET(PAGER);
 871		argc = 0;	/* no repeat */
 872	}
 873
 874	if (*cp != '\n' && *cp != '\0') {
 875		argc = 0;
 876		cpp = cbuf;
 877		while (*cp) {
 878			/* skip whitespace */
 879			while (isspace(*cp))
 880				cp++;
 881			if ((*cp == '\0') || (*cp == '\n') ||
 882			    (*cp == '#' && !defcmd_in_progress))
 883				break;
 884			/* special case: check for | grep pattern */
 885			if (*cp == '|') {
 886				check_grep++;
 887				break;
 888			}
 889			if (cpp >= cbuf + CMD_BUFLEN) {
 890				kdb_printf("kdb_parse: command buffer "
 891					   "overflow, command ignored\n%s\n",
 892					   cmdstr);
 893				return KDB_NOTFOUND;
 894			}
 895			if (argc >= MAXARGC - 1) {
 896				kdb_printf("kdb_parse: too many arguments, "
 897					   "command ignored\n%s\n", cmdstr);
 898				return KDB_NOTFOUND;
 899			}
 900			argv[argc++] = cpp;
 901			escaped = 0;
 902			quoted = '\0';
 903			/* Copy to next unquoted and unescaped
 904			 * whitespace or '=' */
 905			while (*cp && *cp != '\n' &&
 906			       (escaped || quoted || !isspace(*cp))) {
 907				if (cpp >= cbuf + CMD_BUFLEN)
 908					break;
 909				if (escaped) {
 910					escaped = 0;
 911					*cpp++ = *cp++;
 912					continue;
 913				}
 914				if (*cp == '\\') {
 915					escaped = 1;
 916					++cp;
 917					continue;
 918				}
 919				if (*cp == quoted)
 920					quoted = '\0';
 921				else if (*cp == '\'' || *cp == '"')
 922					quoted = *cp;
 923				*cpp = *cp++;
 924				if (*cpp == '=' && !quoted)
 925					break;
 926				++cpp;
 927			}
 928			*cpp++ = '\0';	/* Squash a ws or '=' character */
 929		}
 930	}
 931	if (!argc)
 932		return 0;
 933	if (check_grep)
 934		parse_grep(cp);
 935	if (defcmd_in_progress) {
 936		int result = kdb_defcmd2(cmdstr, argv[0]);
 937		if (!defcmd_in_progress) {
 938			argc = 0;	/* avoid repeat on endefcmd */
 939			*(argv[0]) = '\0';
 940		}
 941		return result;
 942	}
 943	if (argv[0][0] == '-' && argv[0][1] &&
 944	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 945		ignore_errors = 1;
 946		++argv[0];
 947	}
 948
 949	for_each_kdbcmd(tp, i) {
 950		if (tp->cmd_name) {
 951			/*
 952			 * If this command is allowed to be abbreviated,
 953			 * check to see if this is it.
 954			 */
 955
 956			if (tp->cmd_minlen
 957			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 958				if (strncmp(argv[0],
 959					    tp->cmd_name,
 960					    tp->cmd_minlen) == 0) {
 961					break;
 962				}
 963			}
 964
 965			if (strcmp(argv[0], tp->cmd_name) == 0)
 966				break;
 967		}
 968	}
 969
 970	/*
 971	 * If we don't find a command by this name, see if the first
 972	 * few characters of this match any of the known commands.
 973	 * e.g., md1c20 should match md.
 974	 */
 975	if (i == kdb_max_commands) {
 976		for_each_kdbcmd(tp, i) {
 977			if (tp->cmd_name) {
 978				if (strncmp(argv[0],
 979					    tp->cmd_name,
 980					    strlen(tp->cmd_name)) == 0) {
 981					break;
 982				}
 983			}
 984		}
 985	}
 986
 987	if (i < kdb_max_commands) {
 988		int result;
 
 
 
 
 989		KDB_STATE_SET(CMD);
 990		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 991		if (result && ignore_errors && result > KDB_CMD_GO)
 992			result = 0;
 993		KDB_STATE_CLEAR(CMD);
 994		switch (tp->cmd_repeat) {
 995		case KDB_REPEAT_NONE:
 996			argc = 0;
 997			if (argv[0])
 998				*(argv[0]) = '\0';
 999			break;
1000		case KDB_REPEAT_NO_ARGS:
1001			argc = 1;
1002			if (argv[1])
1003				*(argv[1]) = '\0';
1004			break;
1005		case KDB_REPEAT_WITH_ARGS:
1006			break;
1007		}
1008		return result;
1009	}
1010
1011	/*
1012	 * If the input with which we were presented does not
1013	 * map to an existing command, attempt to parse it as an
1014	 * address argument and display the result.   Useful for
1015	 * obtaining the address of a variable, or the nearest symbol
1016	 * to an address contained in a register.
1017	 */
1018	{
1019		unsigned long value;
1020		char *name = NULL;
1021		long offset;
1022		int nextarg = 0;
1023
1024		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1025				  &value, &offset, &name)) {
1026			return KDB_NOTFOUND;
1027		}
1028
1029		kdb_printf("%s = ", argv[0]);
1030		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1031		kdb_printf("\n");
1032		return 0;
1033	}
1034}
1035
1036
1037static int handle_ctrl_cmd(char *cmd)
1038{
1039#define CTRL_P	16
1040#define CTRL_N	14
1041
1042	/* initial situation */
1043	if (cmd_head == cmd_tail)
1044		return 0;
1045	switch (*cmd) {
1046	case CTRL_P:
1047		if (cmdptr != cmd_tail)
1048			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1049		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1050		return 1;
1051	case CTRL_N:
1052		if (cmdptr != cmd_head)
1053			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1054		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1055		return 1;
1056	}
1057	return 0;
1058}
1059
1060/*
1061 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1062 *	the system immediately, or loop for ever on failure.
1063 */
1064static int kdb_reboot(int argc, const char **argv)
1065{
1066	emergency_restart();
1067	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1068	while (1)
1069		cpu_relax();
1070	/* NOTREACHED */
1071	return 0;
1072}
1073
1074static void kdb_dumpregs(struct pt_regs *regs)
1075{
1076	int old_lvl = console_loglevel;
1077	console_loglevel = 15;
1078	kdb_trap_printk++;
1079	show_regs(regs);
1080	kdb_trap_printk--;
1081	kdb_printf("\n");
1082	console_loglevel = old_lvl;
1083}
1084
1085void kdb_set_current_task(struct task_struct *p)
1086{
1087	kdb_current_task = p;
1088
1089	if (kdb_task_has_cpu(p)) {
1090		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1091		return;
1092	}
1093	kdb_current_regs = NULL;
1094}
1095
1096/*
1097 * kdb_local - The main code for kdb.  This routine is invoked on a
1098 *	specific processor, it is not global.  The main kdb() routine
1099 *	ensures that only one processor at a time is in this routine.
1100 *	This code is called with the real reason code on the first
1101 *	entry to a kdb session, thereafter it is called with reason
1102 *	SWITCH, even if the user goes back to the original cpu.
1103 * Inputs:
1104 *	reason		The reason KDB was invoked
1105 *	error		The hardware-defined error code
1106 *	regs		The exception frame at time of fault/breakpoint.
1107 *	db_result	Result code from the break or debug point.
1108 * Returns:
1109 *	0	KDB was invoked for an event which it wasn't responsible
1110 *	1	KDB handled the event for which it was invoked.
1111 *	KDB_CMD_GO	User typed 'go'.
1112 *	KDB_CMD_CPU	User switched to another cpu.
1113 *	KDB_CMD_SS	Single step.
1114 *	KDB_CMD_SSB	Single step until branch.
1115 */
1116static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1117		     kdb_dbtrap_t db_result)
1118{
1119	char *cmdbuf;
1120	int diag;
1121	struct task_struct *kdb_current =
1122		kdb_curr_task(raw_smp_processor_id());
1123
1124	KDB_DEBUG_STATE("kdb_local 1", reason);
1125	kdb_go_count = 0;
1126	if (reason == KDB_REASON_DEBUG) {
1127		/* special case below */
1128	} else {
1129		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1130			   kdb_current, kdb_current ? kdb_current->pid : 0);
1131#if defined(CONFIG_SMP)
1132		kdb_printf("on processor %d ", raw_smp_processor_id());
1133#endif
1134	}
1135
1136	switch (reason) {
1137	case KDB_REASON_DEBUG:
1138	{
1139		/*
1140		 * If re-entering kdb after a single step
1141		 * command, don't print the message.
1142		 */
1143		switch (db_result) {
1144		case KDB_DB_BPT:
1145			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1146				   kdb_current, kdb_current->pid);
1147#if defined(CONFIG_SMP)
1148			kdb_printf("on processor %d ", raw_smp_processor_id());
1149#endif
1150			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1151				   instruction_pointer(regs));
1152			break;
1153		case KDB_DB_SSB:
1154			/*
1155			 * In the midst of ssb command. Just return.
1156			 */
1157			KDB_DEBUG_STATE("kdb_local 3", reason);
1158			return KDB_CMD_SSB;	/* Continue with SSB command */
1159
1160			break;
1161		case KDB_DB_SS:
1162			break;
1163		case KDB_DB_SSBPT:
1164			KDB_DEBUG_STATE("kdb_local 4", reason);
1165			return 1;	/* kdba_db_trap did the work */
1166		default:
1167			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1168				   db_result);
1169			break;
1170		}
1171
1172	}
1173		break;
1174	case KDB_REASON_ENTER:
1175		if (KDB_STATE(KEYBOARD))
1176			kdb_printf("due to Keyboard Entry\n");
1177		else
1178			kdb_printf("due to KDB_ENTER()\n");
1179		break;
1180	case KDB_REASON_KEYBOARD:
1181		KDB_STATE_SET(KEYBOARD);
1182		kdb_printf("due to Keyboard Entry\n");
1183		break;
1184	case KDB_REASON_ENTER_SLAVE:
1185		/* drop through, slaves only get released via cpu switch */
1186	case KDB_REASON_SWITCH:
1187		kdb_printf("due to cpu switch\n");
1188		break;
1189	case KDB_REASON_OOPS:
1190		kdb_printf("Oops: %s\n", kdb_diemsg);
1191		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1192			   instruction_pointer(regs));
1193		kdb_dumpregs(regs);
1194		break;
 
 
 
1195	case KDB_REASON_NMI:
1196		kdb_printf("due to NonMaskable Interrupt @ "
1197			   kdb_machreg_fmt "\n",
1198			   instruction_pointer(regs));
1199		kdb_dumpregs(regs);
1200		break;
1201	case KDB_REASON_SSTEP:
1202	case KDB_REASON_BREAK:
1203		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1204			   reason == KDB_REASON_BREAK ?
1205			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1206		/*
1207		 * Determine if this breakpoint is one that we
1208		 * are interested in.
1209		 */
1210		if (db_result != KDB_DB_BPT) {
1211			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1212				   db_result);
1213			KDB_DEBUG_STATE("kdb_local 6", reason);
1214			return 0;	/* Not for us, dismiss it */
1215		}
1216		break;
1217	case KDB_REASON_RECURSE:
1218		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1219			   instruction_pointer(regs));
1220		break;
1221	default:
1222		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1223		KDB_DEBUG_STATE("kdb_local 8", reason);
1224		return 0;	/* Not for us, dismiss it */
1225	}
1226
1227	while (1) {
1228		/*
1229		 * Initialize pager context.
1230		 */
1231		kdb_nextline = 1;
1232		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1233
1234		cmdbuf = cmd_cur;
1235		*cmdbuf = '\0';
1236		*(cmd_hist[cmd_head]) = '\0';
1237
1238		if (KDB_FLAG(ONLY_DO_DUMP)) {
1239			/* kdb is off but a catastrophic error requires a dump.
1240			 * Take the dump and reboot.
1241			 * Turn on logging so the kdb output appears in the log
1242			 * buffer in the dump.
1243			 */
1244			const char *setargs[] = { "set", "LOGGING", "1" };
1245			kdb_set(2, setargs);
1246			kdb_reboot(0, NULL);
1247			/*NOTREACHED*/
1248		}
1249
1250do_full_getstr:
1251#if defined(CONFIG_SMP)
1252		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1253			 raw_smp_processor_id());
1254#else
1255		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1256#endif
1257		if (defcmd_in_progress)
1258			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1259
1260		/*
1261		 * Fetch command from keyboard
1262		 */
1263		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1264		if (*cmdbuf != '\n') {
1265			if (*cmdbuf < 32) {
1266				if (cmdptr == cmd_head) {
1267					strncpy(cmd_hist[cmd_head], cmd_cur,
1268						CMD_BUFLEN);
1269					*(cmd_hist[cmd_head] +
1270					  strlen(cmd_hist[cmd_head])-1) = '\0';
1271				}
1272				if (!handle_ctrl_cmd(cmdbuf))
1273					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1274				cmdbuf = cmd_cur;
1275				goto do_full_getstr;
1276			} else {
1277				strncpy(cmd_hist[cmd_head], cmd_cur,
1278					CMD_BUFLEN);
1279			}
1280
1281			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1282			if (cmd_head == cmd_tail)
1283				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1284		}
1285
1286		cmdptr = cmd_head;
1287		diag = kdb_parse(cmdbuf);
1288		if (diag == KDB_NOTFOUND) {
1289			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1290			diag = 0;
1291		}
1292		if (diag == KDB_CMD_GO
1293		 || diag == KDB_CMD_CPU
1294		 || diag == KDB_CMD_SS
1295		 || diag == KDB_CMD_SSB
1296		 || diag == KDB_CMD_KGDB)
1297			break;
1298
1299		if (diag)
1300			kdb_cmderror(diag);
1301	}
1302	KDB_DEBUG_STATE("kdb_local 9", diag);
1303	return diag;
1304}
1305
1306
1307/*
1308 * kdb_print_state - Print the state data for the current processor
1309 *	for debugging.
1310 * Inputs:
1311 *	text		Identifies the debug point
1312 *	value		Any integer value to be printed, e.g. reason code.
1313 */
1314void kdb_print_state(const char *text, int value)
1315{
1316	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1317		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1318		   kdb_state);
1319}
1320
1321/*
1322 * kdb_main_loop - After initial setup and assignment of the
1323 *	controlling cpu, all cpus are in this loop.  One cpu is in
1324 *	control and will issue the kdb prompt, the others will spin
1325 *	until 'go' or cpu switch.
1326 *
1327 *	To get a consistent view of the kernel stacks for all
1328 *	processes, this routine is invoked from the main kdb code via
1329 *	an architecture specific routine.  kdba_main_loop is
1330 *	responsible for making the kernel stacks consistent for all
1331 *	processes, there should be no difference between a blocked
1332 *	process and a running process as far as kdb is concerned.
1333 * Inputs:
1334 *	reason		The reason KDB was invoked
1335 *	error		The hardware-defined error code
1336 *	reason2		kdb's current reason code.
1337 *			Initially error but can change
1338 *			according to kdb state.
1339 *	db_result	Result code from break or debug point.
1340 *	regs		The exception frame at time of fault/breakpoint.
1341 *			should always be valid.
1342 * Returns:
1343 *	0	KDB was invoked for an event which it wasn't responsible
1344 *	1	KDB handled the event for which it was invoked.
1345 */
1346int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1347	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1348{
1349	int result = 1;
1350	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1351	while (1) {
1352		/*
1353		 * All processors except the one that is in control
1354		 * will spin here.
1355		 */
1356		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1357		while (KDB_STATE(HOLD_CPU)) {
1358			/* state KDB is turned off by kdb_cpu to see if the
1359			 * other cpus are still live, each cpu in this loop
1360			 * turns it back on.
1361			 */
1362			if (!KDB_STATE(KDB))
1363				KDB_STATE_SET(KDB);
1364		}
1365
1366		KDB_STATE_CLEAR(SUPPRESS);
1367		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1368		if (KDB_STATE(LEAVING))
1369			break;	/* Another cpu said 'go' */
1370		/* Still using kdb, this processor is in control */
1371		result = kdb_local(reason2, error, regs, db_result);
1372		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1373
1374		if (result == KDB_CMD_CPU)
1375			break;
1376
1377		if (result == KDB_CMD_SS) {
1378			KDB_STATE_SET(DOING_SS);
1379			break;
1380		}
1381
1382		if (result == KDB_CMD_SSB) {
1383			KDB_STATE_SET(DOING_SS);
1384			KDB_STATE_SET(DOING_SSB);
1385			break;
1386		}
1387
1388		if (result == KDB_CMD_KGDB) {
1389			if (!KDB_STATE(DOING_KGDB))
1390				kdb_printf("Entering please attach debugger "
1391					   "or use $D#44+ or $3#33\n");
1392			break;
1393		}
1394		if (result && result != 1 && result != KDB_CMD_GO)
1395			kdb_printf("\nUnexpected kdb_local return code %d\n",
1396				   result);
1397		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1398		break;
1399	}
1400	if (KDB_STATE(DOING_SS))
1401		KDB_STATE_CLEAR(SSBPT);
1402
 
 
 
1403	return result;
1404}
1405
1406/*
1407 * kdb_mdr - This function implements the guts of the 'mdr', memory
1408 * read command.
1409 *	mdr  <addr arg>,<byte count>
1410 * Inputs:
1411 *	addr	Start address
1412 *	count	Number of bytes
1413 * Returns:
1414 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1415 */
1416static int kdb_mdr(unsigned long addr, unsigned int count)
1417{
1418	unsigned char c;
1419	while (count--) {
1420		if (kdb_getarea(c, addr))
1421			return 0;
1422		kdb_printf("%02x", c);
1423		addr++;
1424	}
1425	kdb_printf("\n");
1426	return 0;
1427}
1428
1429/*
1430 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1431 *	'md8' 'mdr' and 'mds' commands.
1432 *
1433 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1434 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1435 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1436 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1437 *	mdr  <addr arg>,<byte count>
1438 */
1439static void kdb_md_line(const char *fmtstr, unsigned long addr,
1440			int symbolic, int nosect, int bytesperword,
1441			int num, int repeat, int phys)
1442{
1443	/* print just one line of data */
1444	kdb_symtab_t symtab;
1445	char cbuf[32];
1446	char *c = cbuf;
1447	int i;
1448	unsigned long word;
1449
1450	memset(cbuf, '\0', sizeof(cbuf));
1451	if (phys)
1452		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1453	else
1454		kdb_printf(kdb_machreg_fmt0 " ", addr);
1455
1456	for (i = 0; i < num && repeat--; i++) {
1457		if (phys) {
1458			if (kdb_getphysword(&word, addr, bytesperword))
1459				break;
1460		} else if (kdb_getword(&word, addr, bytesperword))
1461			break;
1462		kdb_printf(fmtstr, word);
1463		if (symbolic)
1464			kdbnearsym(word, &symtab);
1465		else
1466			memset(&symtab, 0, sizeof(symtab));
1467		if (symtab.sym_name) {
1468			kdb_symbol_print(word, &symtab, 0);
1469			if (!nosect) {
1470				kdb_printf("\n");
1471				kdb_printf("                       %s %s "
1472					   kdb_machreg_fmt " "
1473					   kdb_machreg_fmt " "
1474					   kdb_machreg_fmt, symtab.mod_name,
1475					   symtab.sec_name, symtab.sec_start,
1476					   symtab.sym_start, symtab.sym_end);
1477			}
1478			addr += bytesperword;
1479		} else {
1480			union {
1481				u64 word;
1482				unsigned char c[8];
1483			} wc;
1484			unsigned char *cp;
1485#ifdef	__BIG_ENDIAN
1486			cp = wc.c + 8 - bytesperword;
1487#else
1488			cp = wc.c;
1489#endif
1490			wc.word = word;
1491#define printable_char(c) \
1492	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1493			switch (bytesperword) {
1494			case 8:
1495				*c++ = printable_char(*cp++);
1496				*c++ = printable_char(*cp++);
1497				*c++ = printable_char(*cp++);
1498				*c++ = printable_char(*cp++);
1499				addr += 4;
1500			case 4:
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 2;
1504			case 2:
1505				*c++ = printable_char(*cp++);
1506				addr++;
1507			case 1:
1508				*c++ = printable_char(*cp++);
1509				addr++;
1510				break;
1511			}
1512#undef printable_char
1513		}
1514	}
1515	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1516		   " ", cbuf);
1517}
1518
1519static int kdb_md(int argc, const char **argv)
1520{
1521	static unsigned long last_addr;
1522	static int last_radix, last_bytesperword, last_repeat;
1523	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1524	int nosect = 0;
1525	char fmtchar, fmtstr[64];
1526	unsigned long addr;
1527	unsigned long word;
1528	long offset = 0;
1529	int symbolic = 0;
1530	int valid = 0;
1531	int phys = 0;
1532
1533	kdbgetintenv("MDCOUNT", &mdcount);
1534	kdbgetintenv("RADIX", &radix);
1535	kdbgetintenv("BYTESPERWORD", &bytesperword);
1536
1537	/* Assume 'md <addr>' and start with environment values */
1538	repeat = mdcount * 16 / bytesperword;
1539
1540	if (strcmp(argv[0], "mdr") == 0) {
1541		if (argc != 2)
1542			return KDB_ARGCOUNT;
1543		valid = 1;
1544	} else if (isdigit(argv[0][2])) {
1545		bytesperword = (int)(argv[0][2] - '0');
1546		if (bytesperword == 0) {
1547			bytesperword = last_bytesperword;
1548			if (bytesperword == 0)
1549				bytesperword = 4;
1550		}
1551		last_bytesperword = bytesperword;
1552		repeat = mdcount * 16 / bytesperword;
1553		if (!argv[0][3])
1554			valid = 1;
1555		else if (argv[0][3] == 'c' && argv[0][4]) {
1556			char *p;
1557			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1558			mdcount = ((repeat * bytesperword) + 15) / 16;
1559			valid = !*p;
1560		}
1561		last_repeat = repeat;
1562	} else if (strcmp(argv[0], "md") == 0)
1563		valid = 1;
1564	else if (strcmp(argv[0], "mds") == 0)
1565		valid = 1;
1566	else if (strcmp(argv[0], "mdp") == 0) {
1567		phys = valid = 1;
1568	}
1569	if (!valid)
1570		return KDB_NOTFOUND;
1571
1572	if (argc == 0) {
1573		if (last_addr == 0)
1574			return KDB_ARGCOUNT;
1575		addr = last_addr;
1576		radix = last_radix;
1577		bytesperword = last_bytesperword;
1578		repeat = last_repeat;
1579		mdcount = ((repeat * bytesperword) + 15) / 16;
1580	}
1581
1582	if (argc) {
1583		unsigned long val;
1584		int diag, nextarg = 1;
1585		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1586				     &offset, NULL);
1587		if (diag)
1588			return diag;
1589		if (argc > nextarg+2)
1590			return KDB_ARGCOUNT;
1591
1592		if (argc >= nextarg) {
1593			diag = kdbgetularg(argv[nextarg], &val);
1594			if (!diag) {
1595				mdcount = (int) val;
1596				repeat = mdcount * 16 / bytesperword;
1597			}
1598		}
1599		if (argc >= nextarg+1) {
1600			diag = kdbgetularg(argv[nextarg+1], &val);
1601			if (!diag)
1602				radix = (int) val;
1603		}
1604	}
1605
1606	if (strcmp(argv[0], "mdr") == 0)
1607		return kdb_mdr(addr, mdcount);
1608
1609	switch (radix) {
1610	case 10:
1611		fmtchar = 'd';
1612		break;
1613	case 16:
1614		fmtchar = 'x';
1615		break;
1616	case 8:
1617		fmtchar = 'o';
1618		break;
1619	default:
1620		return KDB_BADRADIX;
1621	}
1622
1623	last_radix = radix;
1624
1625	if (bytesperword > KDB_WORD_SIZE)
1626		return KDB_BADWIDTH;
1627
1628	switch (bytesperword) {
1629	case 8:
1630		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1631		break;
1632	case 4:
1633		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1634		break;
1635	case 2:
1636		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1637		break;
1638	case 1:
1639		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1640		break;
1641	default:
1642		return KDB_BADWIDTH;
1643	}
1644
1645	last_repeat = repeat;
1646	last_bytesperword = bytesperword;
1647
1648	if (strcmp(argv[0], "mds") == 0) {
1649		symbolic = 1;
1650		/* Do not save these changes as last_*, they are temporary mds
1651		 * overrides.
1652		 */
1653		bytesperword = KDB_WORD_SIZE;
1654		repeat = mdcount;
1655		kdbgetintenv("NOSECT", &nosect);
1656	}
1657
1658	/* Round address down modulo BYTESPERWORD */
1659
1660	addr &= ~(bytesperword-1);
1661
1662	while (repeat > 0) {
1663		unsigned long a;
1664		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1665
1666		if (KDB_FLAG(CMD_INTERRUPT))
1667			return 0;
1668		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1669			if (phys) {
1670				if (kdb_getphysword(&word, a, bytesperword)
1671						|| word)
1672					break;
1673			} else if (kdb_getword(&word, a, bytesperword) || word)
1674				break;
1675		}
1676		n = min(num, repeat);
1677		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1678			    num, repeat, phys);
1679		addr += bytesperword * n;
1680		repeat -= n;
1681		z = (z + num - 1) / num;
1682		if (z > 2) {
1683			int s = num * (z-2);
1684			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1685				   " zero suppressed\n",
1686				addr, addr + bytesperword * s - 1);
1687			addr += bytesperword * s;
1688			repeat -= s;
1689		}
1690	}
1691	last_addr = addr;
1692
1693	return 0;
1694}
1695
1696/*
1697 * kdb_mm - This function implements the 'mm' command.
1698 *	mm address-expression new-value
1699 * Remarks:
1700 *	mm works on machine words, mmW works on bytes.
1701 */
1702static int kdb_mm(int argc, const char **argv)
1703{
1704	int diag;
1705	unsigned long addr;
1706	long offset = 0;
1707	unsigned long contents;
1708	int nextarg;
1709	int width;
1710
1711	if (argv[0][2] && !isdigit(argv[0][2]))
1712		return KDB_NOTFOUND;
1713
1714	if (argc < 2)
1715		return KDB_ARGCOUNT;
1716
1717	nextarg = 1;
1718	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1719	if (diag)
1720		return diag;
1721
1722	if (nextarg > argc)
1723		return KDB_ARGCOUNT;
1724	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1725	if (diag)
1726		return diag;
1727
1728	if (nextarg != argc + 1)
1729		return KDB_ARGCOUNT;
1730
1731	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1732	diag = kdb_putword(addr, contents, width);
1733	if (diag)
1734		return diag;
1735
1736	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1737
1738	return 0;
1739}
1740
1741/*
1742 * kdb_go - This function implements the 'go' command.
1743 *	go [address-expression]
1744 */
1745static int kdb_go(int argc, const char **argv)
1746{
1747	unsigned long addr;
1748	int diag;
1749	int nextarg;
1750	long offset;
1751
1752	if (raw_smp_processor_id() != kdb_initial_cpu) {
1753		kdb_printf("go must execute on the entry cpu, "
1754			   "please use \"cpu %d\" and then execute go\n",
1755			   kdb_initial_cpu);
1756		return KDB_BADCPUNUM;
1757	}
1758	if (argc == 1) {
1759		nextarg = 1;
1760		diag = kdbgetaddrarg(argc, argv, &nextarg,
1761				     &addr, &offset, NULL);
1762		if (diag)
1763			return diag;
1764	} else if (argc) {
1765		return KDB_ARGCOUNT;
1766	}
1767
1768	diag = KDB_CMD_GO;
1769	if (KDB_FLAG(CATASTROPHIC)) {
1770		kdb_printf("Catastrophic error detected\n");
1771		kdb_printf("kdb_continue_catastrophic=%d, ",
1772			kdb_continue_catastrophic);
1773		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1774			kdb_printf("type go a second time if you really want "
1775				   "to continue\n");
1776			return 0;
1777		}
1778		if (kdb_continue_catastrophic == 2) {
1779			kdb_printf("forcing reboot\n");
1780			kdb_reboot(0, NULL);
1781		}
1782		kdb_printf("attempting to continue\n");
1783	}
1784	return diag;
1785}
1786
1787/*
1788 * kdb_rd - This function implements the 'rd' command.
1789 */
1790static int kdb_rd(int argc, const char **argv)
1791{
1792	int len = kdb_check_regs();
1793#if DBG_MAX_REG_NUM > 0
1794	int i;
1795	char *rname;
1796	int rsize;
1797	u64 reg64;
1798	u32 reg32;
1799	u16 reg16;
1800	u8 reg8;
1801
1802	if (len)
1803		return len;
1804
1805	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1806		rsize = dbg_reg_def[i].size * 2;
1807		if (rsize > 16)
1808			rsize = 2;
1809		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1810			len = 0;
1811			kdb_printf("\n");
1812		}
1813		if (len)
1814			len += kdb_printf("  ");
1815		switch(dbg_reg_def[i].size * 8) {
1816		case 8:
1817			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1818			if (!rname)
1819				break;
1820			len += kdb_printf("%s: %02x", rname, reg8);
1821			break;
1822		case 16:
1823			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1824			if (!rname)
1825				break;
1826			len += kdb_printf("%s: %04x", rname, reg16);
1827			break;
1828		case 32:
1829			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1830			if (!rname)
1831				break;
1832			len += kdb_printf("%s: %08x", rname, reg32);
1833			break;
1834		case 64:
1835			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1836			if (!rname)
1837				break;
1838			len += kdb_printf("%s: %016llx", rname, reg64);
1839			break;
1840		default:
1841			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1842		}
1843	}
1844	kdb_printf("\n");
1845#else
1846	if (len)
1847		return len;
1848
1849	kdb_dumpregs(kdb_current_regs);
1850#endif
1851	return 0;
1852}
1853
1854/*
1855 * kdb_rm - This function implements the 'rm' (register modify)  command.
1856 *	rm register-name new-contents
1857 * Remarks:
1858 *	Allows register modification with the same restrictions as gdb
1859 */
1860static int kdb_rm(int argc, const char **argv)
1861{
1862#if DBG_MAX_REG_NUM > 0
1863	int diag;
1864	const char *rname;
1865	int i;
1866	u64 reg64;
1867	u32 reg32;
1868	u16 reg16;
1869	u8 reg8;
1870
1871	if (argc != 2)
1872		return KDB_ARGCOUNT;
1873	/*
1874	 * Allow presence or absence of leading '%' symbol.
1875	 */
1876	rname = argv[1];
1877	if (*rname == '%')
1878		rname++;
1879
1880	diag = kdbgetu64arg(argv[2], &reg64);
1881	if (diag)
1882		return diag;
1883
1884	diag = kdb_check_regs();
1885	if (diag)
1886		return diag;
1887
1888	diag = KDB_BADREG;
1889	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1890		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1891			diag = 0;
1892			break;
1893		}
1894	}
1895	if (!diag) {
1896		switch(dbg_reg_def[i].size * 8) {
1897		case 8:
1898			reg8 = reg64;
1899			dbg_set_reg(i, &reg8, kdb_current_regs);
1900			break;
1901		case 16:
1902			reg16 = reg64;
1903			dbg_set_reg(i, &reg16, kdb_current_regs);
1904			break;
1905		case 32:
1906			reg32 = reg64;
1907			dbg_set_reg(i, &reg32, kdb_current_regs);
1908			break;
1909		case 64:
1910			dbg_set_reg(i, &reg64, kdb_current_regs);
1911			break;
1912		}
1913	}
1914	return diag;
1915#else
1916	kdb_printf("ERROR: Register set currently not implemented\n");
1917    return 0;
1918#endif
1919}
1920
1921#if defined(CONFIG_MAGIC_SYSRQ)
1922/*
1923 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1924 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1925 *		sr <magic-sysrq-code>
1926 */
1927static int kdb_sr(int argc, const char **argv)
1928{
 
 
 
1929	if (argc != 1)
1930		return KDB_ARGCOUNT;
 
1931	kdb_trap_printk++;
1932	__handle_sysrq(*argv[1], false);
1933	kdb_trap_printk--;
1934
1935	return 0;
1936}
1937#endif	/* CONFIG_MAGIC_SYSRQ */
1938
1939/*
1940 * kdb_ef - This function implements the 'regs' (display exception
1941 *	frame) command.  This command takes an address and expects to
1942 *	find an exception frame at that address, formats and prints
1943 *	it.
1944 *		regs address-expression
1945 * Remarks:
1946 *	Not done yet.
1947 */
1948static int kdb_ef(int argc, const char **argv)
1949{
1950	int diag;
1951	unsigned long addr;
1952	long offset;
1953	int nextarg;
1954
1955	if (argc != 1)
1956		return KDB_ARGCOUNT;
1957
1958	nextarg = 1;
1959	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1960	if (diag)
1961		return diag;
1962	show_regs((struct pt_regs *)addr);
1963	return 0;
1964}
1965
1966#if defined(CONFIG_MODULES)
1967/*
1968 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1969 *	currently loaded kernel modules.
1970 *	Mostly taken from userland lsmod.
1971 */
1972static int kdb_lsmod(int argc, const char **argv)
1973{
1974	struct module *mod;
1975
1976	if (argc != 0)
1977		return KDB_ARGCOUNT;
1978
1979	kdb_printf("Module                  Size  modstruct     Used by\n");
1980	list_for_each_entry(mod, kdb_modules, list) {
 
 
1981
1982		kdb_printf("%-20s%8u  0x%p ", mod->name,
1983			   mod->core_size, (void *)mod);
1984#ifdef CONFIG_MODULE_UNLOAD
1985		kdb_printf("%4d ", module_refcount(mod));
1986#endif
1987		if (mod->state == MODULE_STATE_GOING)
1988			kdb_printf(" (Unloading)");
1989		else if (mod->state == MODULE_STATE_COMING)
1990			kdb_printf(" (Loading)");
1991		else
1992			kdb_printf(" (Live)");
1993		kdb_printf(" 0x%p", mod->module_core);
1994
1995#ifdef CONFIG_MODULE_UNLOAD
1996		{
1997			struct module_use *use;
1998			kdb_printf(" [ ");
1999			list_for_each_entry(use, &mod->source_list,
2000					    source_list)
2001				kdb_printf("%s ", use->target->name);
2002			kdb_printf("]\n");
2003		}
2004#endif
2005	}
2006
2007	return 0;
2008}
2009
2010#endif	/* CONFIG_MODULES */
2011
2012/*
2013 * kdb_env - This function implements the 'env' command.  Display the
2014 *	current environment variables.
2015 */
2016
2017static int kdb_env(int argc, const char **argv)
2018{
2019	int i;
2020
2021	for (i = 0; i < __nenv; i++) {
2022		if (__env[i])
2023			kdb_printf("%s\n", __env[i]);
2024	}
2025
2026	if (KDB_DEBUG(MASK))
2027		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2028
2029	return 0;
2030}
2031
2032#ifdef CONFIG_PRINTK
2033/*
2034 * kdb_dmesg - This function implements the 'dmesg' command to display
2035 *	the contents of the syslog buffer.
2036 *		dmesg [lines] [adjust]
2037 */
2038static int kdb_dmesg(int argc, const char **argv)
2039{
2040	char *syslog_data[4], *start, *end, c = '\0', *p;
2041	int diag, logging, logsize, lines = 0, adjust = 0, n;
 
 
 
 
 
 
 
2042
2043	if (argc > 2)
2044		return KDB_ARGCOUNT;
2045	if (argc) {
2046		char *cp;
2047		lines = simple_strtol(argv[1], &cp, 0);
2048		if (*cp)
2049			lines = 0;
2050		if (argc > 1) {
2051			adjust = simple_strtoul(argv[2], &cp, 0);
2052			if (*cp || adjust < 0)
2053				adjust = 0;
2054		}
2055	}
2056
2057	/* disable LOGGING if set */
2058	diag = kdbgetintenv("LOGGING", &logging);
2059	if (!diag && logging) {
2060		const char *setargs[] = { "set", "LOGGING", "0" };
2061		kdb_set(2, setargs);
2062	}
2063
2064	/* syslog_data[0,1] physical start, end+1.  syslog_data[2,3]
2065	 * logical start, end+1. */
2066	kdb_syslog_data(syslog_data);
2067	if (syslog_data[2] == syslog_data[3])
2068		return 0;
2069	logsize = syslog_data[1] - syslog_data[0];
2070	start = syslog_data[2];
2071	end = syslog_data[3];
2072#define KDB_WRAP(p) (((p - syslog_data[0]) % logsize) + syslog_data[0])
2073	for (n = 0, p = start; p < end; ++p) {
2074		c = *KDB_WRAP(p);
2075		if (c == '\n')
2076			++n;
2077	}
2078	if (c != '\n')
2079		++n;
2080	if (lines < 0) {
2081		if (adjust >= n)
2082			kdb_printf("buffer only contains %d lines, nothing "
2083				   "printed\n", n);
2084		else if (adjust - lines >= n)
2085			kdb_printf("buffer only contains %d lines, last %d "
2086				   "lines printed\n", n, n - adjust);
2087		if (adjust) {
2088			for (; start < end && adjust; ++start) {
2089				if (*KDB_WRAP(start) == '\n')
2090					--adjust;
2091			}
2092			if (start < end)
2093				++start;
2094		}
2095		for (p = start; p < end && lines; ++p) {
2096			if (*KDB_WRAP(p) == '\n')
2097				++lines;
2098		}
2099		end = p;
2100	} else if (lines > 0) {
2101		int skip = n - (adjust + lines);
 
2102		if (adjust >= n) {
2103			kdb_printf("buffer only contains %d lines, "
2104				   "nothing printed\n", n);
2105			skip = n;
2106		} else if (skip < 0) {
2107			lines += skip;
2108			skip = 0;
2109			kdb_printf("buffer only contains %d lines, first "
2110				   "%d lines printed\n", n, lines);
2111		}
2112		for (; start < end && skip; ++start) {
2113			if (*KDB_WRAP(start) == '\n')
2114				--skip;
2115		}
2116		for (p = start; p < end && lines; ++p) {
2117			if (*KDB_WRAP(p) == '\n')
2118				--lines;
2119		}
2120		end = p;
2121	}
2122	/* Do a line at a time (max 200 chars) to reduce protocol overhead */
2123	c = '\n';
2124	while (start != end) {
2125		char buf[201];
2126		p = buf;
2127		if (KDB_FLAG(CMD_INTERRUPT))
2128			return 0;
2129		while (start < end && (c = *KDB_WRAP(start)) &&
2130		       (p - buf) < sizeof(buf)-1) {
2131			++start;
2132			*p++ = c;
2133			if (c == '\n')
2134				break;
2135		}
2136		*p = '\0';
2137		kdb_printf("%s", buf);
2138	}
2139	if (c != '\n')
2140		kdb_printf("\n");
2141
2142	return 0;
2143}
2144#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2145/*
2146 * kdb_cpu - This function implements the 'cpu' command.
2147 *	cpu	[<cpunum>]
2148 * Returns:
2149 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2150 */
2151static void kdb_cpu_status(void)
2152{
2153	int i, start_cpu, first_print = 1;
2154	char state, prev_state = '?';
2155
2156	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2157	kdb_printf("Available cpus: ");
2158	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2159		if (!cpu_online(i)) {
2160			state = 'F';	/* cpu is offline */
 
 
2161		} else {
2162			state = ' ';	/* cpu is responding to kdb */
2163			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2164				state = 'I';	/* idle task */
2165		}
2166		if (state != prev_state) {
2167			if (prev_state != '?') {
2168				if (!first_print)
2169					kdb_printf(", ");
2170				first_print = 0;
2171				kdb_printf("%d", start_cpu);
2172				if (start_cpu < i-1)
2173					kdb_printf("-%d", i-1);
2174				if (prev_state != ' ')
2175					kdb_printf("(%c)", prev_state);
2176			}
2177			prev_state = state;
2178			start_cpu = i;
2179		}
2180	}
2181	/* print the trailing cpus, ignoring them if they are all offline */
2182	if (prev_state != 'F') {
2183		if (!first_print)
2184			kdb_printf(", ");
2185		kdb_printf("%d", start_cpu);
2186		if (start_cpu < i-1)
2187			kdb_printf("-%d", i-1);
2188		if (prev_state != ' ')
2189			kdb_printf("(%c)", prev_state);
2190	}
2191	kdb_printf("\n");
2192}
2193
2194static int kdb_cpu(int argc, const char **argv)
2195{
2196	unsigned long cpunum;
2197	int diag;
2198
2199	if (argc == 0) {
2200		kdb_cpu_status();
2201		return 0;
2202	}
2203
2204	if (argc != 1)
2205		return KDB_ARGCOUNT;
2206
2207	diag = kdbgetularg(argv[1], &cpunum);
2208	if (diag)
2209		return diag;
2210
2211	/*
2212	 * Validate cpunum
2213	 */
2214	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2215		return KDB_BADCPUNUM;
2216
2217	dbg_switch_cpu = cpunum;
2218
2219	/*
2220	 * Switch to other cpu
2221	 */
2222	return KDB_CMD_CPU;
2223}
2224
2225/* The user may not realize that ps/bta with no parameters does not print idle
2226 * or sleeping system daemon processes, so tell them how many were suppressed.
2227 */
2228void kdb_ps_suppressed(void)
2229{
2230	int idle = 0, daemon = 0;
2231	unsigned long mask_I = kdb_task_state_string("I"),
2232		      mask_M = kdb_task_state_string("M");
2233	unsigned long cpu;
2234	const struct task_struct *p, *g;
2235	for_each_online_cpu(cpu) {
2236		p = kdb_curr_task(cpu);
2237		if (kdb_task_state(p, mask_I))
2238			++idle;
2239	}
2240	kdb_do_each_thread(g, p) {
2241		if (kdb_task_state(p, mask_M))
2242			++daemon;
2243	} kdb_while_each_thread(g, p);
2244	if (idle || daemon) {
2245		if (idle)
2246			kdb_printf("%d idle process%s (state I)%s\n",
2247				   idle, idle == 1 ? "" : "es",
2248				   daemon ? " and " : "");
2249		if (daemon)
2250			kdb_printf("%d sleeping system daemon (state M) "
2251				   "process%s", daemon,
2252				   daemon == 1 ? "" : "es");
2253		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2254	}
2255}
2256
2257/*
2258 * kdb_ps - This function implements the 'ps' command which shows a
2259 *	list of the active processes.
2260 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2261 */
2262void kdb_ps1(const struct task_struct *p)
2263{
2264	int cpu;
2265	unsigned long tmp;
2266
2267	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2268		return;
2269
2270	cpu = kdb_process_cpu(p);
2271	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2272		   (void *)p, p->pid, p->parent->pid,
2273		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2274		   kdb_task_state_char(p),
2275		   (void *)(&p->thread),
2276		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2277		   p->comm);
2278	if (kdb_task_has_cpu(p)) {
2279		if (!KDB_TSK(cpu)) {
2280			kdb_printf("  Error: no saved data for this cpu\n");
2281		} else {
2282			if (KDB_TSK(cpu) != p)
2283				kdb_printf("  Error: does not match running "
2284				   "process table (0x%p)\n", KDB_TSK(cpu));
2285		}
2286	}
2287}
2288
2289static int kdb_ps(int argc, const char **argv)
2290{
2291	struct task_struct *g, *p;
2292	unsigned long mask, cpu;
2293
2294	if (argc == 0)
2295		kdb_ps_suppressed();
2296	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2297		(int)(2*sizeof(void *))+2, "Task Addr",
2298		(int)(2*sizeof(void *))+2, "Thread");
2299	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2300	/* Run the active tasks first */
2301	for_each_online_cpu(cpu) {
2302		if (KDB_FLAG(CMD_INTERRUPT))
2303			return 0;
2304		p = kdb_curr_task(cpu);
2305		if (kdb_task_state(p, mask))
2306			kdb_ps1(p);
2307	}
2308	kdb_printf("\n");
2309	/* Now the real tasks */
2310	kdb_do_each_thread(g, p) {
2311		if (KDB_FLAG(CMD_INTERRUPT))
2312			return 0;
2313		if (kdb_task_state(p, mask))
2314			kdb_ps1(p);
2315	} kdb_while_each_thread(g, p);
2316
2317	return 0;
2318}
2319
2320/*
2321 * kdb_pid - This function implements the 'pid' command which switches
2322 *	the currently active process.
2323 *		pid [<pid> | R]
2324 */
2325static int kdb_pid(int argc, const char **argv)
2326{
2327	struct task_struct *p;
2328	unsigned long val;
2329	int diag;
2330
2331	if (argc > 1)
2332		return KDB_ARGCOUNT;
2333
2334	if (argc) {
2335		if (strcmp(argv[1], "R") == 0) {
2336			p = KDB_TSK(kdb_initial_cpu);
2337		} else {
2338			diag = kdbgetularg(argv[1], &val);
2339			if (diag)
2340				return KDB_BADINT;
2341
2342			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2343			if (!p) {
2344				kdb_printf("No task with pid=%d\n", (pid_t)val);
2345				return 0;
2346			}
2347		}
2348		kdb_set_current_task(p);
2349	}
2350	kdb_printf("KDB current process is %s(pid=%d)\n",
2351		   kdb_current_task->comm,
2352		   kdb_current_task->pid);
2353
2354	return 0;
2355}
2356
2357/*
2358 * kdb_ll - This function implements the 'll' command which follows a
2359 *	linked list and executes an arbitrary command for each
2360 *	element.
2361 */
2362static int kdb_ll(int argc, const char **argv)
2363{
2364	int diag = 0;
2365	unsigned long addr;
2366	long offset = 0;
2367	unsigned long va;
2368	unsigned long linkoffset;
2369	int nextarg;
2370	const char *command;
2371
2372	if (argc != 3)
2373		return KDB_ARGCOUNT;
2374
2375	nextarg = 1;
2376	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2377	if (diag)
2378		return diag;
2379
2380	diag = kdbgetularg(argv[2], &linkoffset);
2381	if (diag)
2382		return diag;
2383
2384	/*
2385	 * Using the starting address as
2386	 * the first element in the list, and assuming that
2387	 * the list ends with a null pointer.
2388	 */
2389
2390	va = addr;
2391	command = kdb_strdup(argv[3], GFP_KDB);
2392	if (!command) {
2393		kdb_printf("%s: cannot duplicate command\n", __func__);
2394		return 0;
2395	}
2396	/* Recursive use of kdb_parse, do not use argv after this point */
2397	argv = NULL;
2398
2399	while (va) {
2400		char buf[80];
2401
2402		if (KDB_FLAG(CMD_INTERRUPT))
2403			goto out;
2404
2405		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2406		diag = kdb_parse(buf);
2407		if (diag)
2408			goto out;
2409
2410		addr = va + linkoffset;
2411		if (kdb_getword(&va, addr, sizeof(va)))
2412			goto out;
2413	}
2414
2415out:
2416	kfree(command);
2417	return diag;
2418}
2419
2420static int kdb_kgdb(int argc, const char **argv)
2421{
2422	return KDB_CMD_KGDB;
2423}
2424
2425/*
2426 * kdb_help - This function implements the 'help' and '?' commands.
2427 */
2428static int kdb_help(int argc, const char **argv)
2429{
2430	kdbtab_t *kt;
2431	int i;
2432
2433	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2434	kdb_printf("-----------------------------"
2435		   "-----------------------------\n");
2436	for_each_kdbcmd(kt, i) {
2437		if (kt->cmd_name)
2438			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2439				   kt->cmd_usage, kt->cmd_help);
2440		if (KDB_FLAG(CMD_INTERRUPT))
2441			return 0;
 
 
 
 
 
 
 
 
2442	}
2443	return 0;
2444}
2445
2446/*
2447 * kdb_kill - This function implements the 'kill' commands.
2448 */
2449static int kdb_kill(int argc, const char **argv)
2450{
2451	long sig, pid;
2452	char *endp;
2453	struct task_struct *p;
2454	struct siginfo info;
2455
2456	if (argc != 2)
2457		return KDB_ARGCOUNT;
2458
2459	sig = simple_strtol(argv[1], &endp, 0);
2460	if (*endp)
2461		return KDB_BADINT;
2462	if (sig >= 0) {
2463		kdb_printf("Invalid signal parameter.<-signal>\n");
2464		return 0;
2465	}
2466	sig = -sig;
2467
2468	pid = simple_strtol(argv[2], &endp, 0);
2469	if (*endp)
2470		return KDB_BADINT;
2471	if (pid <= 0) {
2472		kdb_printf("Process ID must be large than 0.\n");
2473		return 0;
2474	}
2475
2476	/* Find the process. */
2477	p = find_task_by_pid_ns(pid, &init_pid_ns);
2478	if (!p) {
2479		kdb_printf("The specified process isn't found.\n");
2480		return 0;
2481	}
2482	p = p->group_leader;
2483	info.si_signo = sig;
2484	info.si_errno = 0;
2485	info.si_code = SI_USER;
2486	info.si_pid = pid;  /* same capabilities as process being signalled */
2487	info.si_uid = 0;    /* kdb has root authority */
2488	kdb_send_sig_info(p, &info);
2489	return 0;
2490}
2491
2492struct kdb_tm {
2493	int tm_sec;	/* seconds */
2494	int tm_min;	/* minutes */
2495	int tm_hour;	/* hours */
2496	int tm_mday;	/* day of the month */
2497	int tm_mon;	/* month */
2498	int tm_year;	/* year */
2499};
2500
2501static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2502{
2503	/* This will work from 1970-2099, 2100 is not a leap year */
2504	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2505				 31, 30, 31, 30, 31 };
2506	memset(tm, 0, sizeof(*tm));
2507	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2508	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2509		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2510	tm->tm_min =  tm->tm_sec / 60 % 60;
2511	tm->tm_hour = tm->tm_sec / 60 / 60;
2512	tm->tm_sec =  tm->tm_sec % 60;
2513	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2514	tm->tm_mday %= (4*365+1);
2515	mon_day[1] = 29;
2516	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2517		tm->tm_mday -= mon_day[tm->tm_mon];
2518		if (++tm->tm_mon == 12) {
2519			tm->tm_mon = 0;
2520			++tm->tm_year;
2521			mon_day[1] = 28;
2522		}
2523	}
2524	++tm->tm_mday;
2525}
2526
2527/*
2528 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2529 * I cannot call that code directly from kdb, it has an unconditional
2530 * cli()/sti() and calls routines that take locks which can stop the debugger.
2531 */
2532static void kdb_sysinfo(struct sysinfo *val)
2533{
2534	struct timespec uptime;
2535	do_posix_clock_monotonic_gettime(&uptime);
2536	memset(val, 0, sizeof(*val));
2537	val->uptime = uptime.tv_sec;
2538	val->loads[0] = avenrun[0];
2539	val->loads[1] = avenrun[1];
2540	val->loads[2] = avenrun[2];
2541	val->procs = nr_threads-1;
2542	si_meminfo(val);
2543
2544	return;
2545}
2546
2547/*
2548 * kdb_summary - This function implements the 'summary' command.
2549 */
2550static int kdb_summary(int argc, const char **argv)
2551{
2552	struct timespec now;
2553	struct kdb_tm tm;
2554	struct sysinfo val;
2555
2556	if (argc)
2557		return KDB_ARGCOUNT;
2558
2559	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2560	kdb_printf("release    %s\n", init_uts_ns.name.release);
2561	kdb_printf("version    %s\n", init_uts_ns.name.version);
2562	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2563	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2564	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2565	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2566
2567	now = __current_kernel_time();
2568	kdb_gmtime(&now, &tm);
2569	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2570		   "tz_minuteswest %d\n",
2571		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2572		tm.tm_hour, tm.tm_min, tm.tm_sec,
2573		sys_tz.tz_minuteswest);
2574
2575	kdb_sysinfo(&val);
2576	kdb_printf("uptime     ");
2577	if (val.uptime > (24*60*60)) {
2578		int days = val.uptime / (24*60*60);
2579		val.uptime %= (24*60*60);
2580		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2581	}
2582	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2583
2584	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2585
2586#define LOAD_INT(x) ((x) >> FSHIFT)
2587#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2588	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2589		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2590		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2591		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2592#undef LOAD_INT
2593#undef LOAD_FRAC
2594	/* Display in kilobytes */
2595#define K(x) ((x) << (PAGE_SHIFT - 10))
2596	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2597		   "Buffers:        %8lu kB\n",
2598		   val.totalram, val.freeram, val.bufferram);
2599	return 0;
2600}
2601
2602/*
2603 * kdb_per_cpu - This function implements the 'per_cpu' command.
2604 */
2605static int kdb_per_cpu(int argc, const char **argv)
2606{
2607	char fmtstr[64];
2608	int cpu, diag, nextarg = 1;
2609	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2610
2611	if (argc < 1 || argc > 3)
2612		return KDB_ARGCOUNT;
2613
2614	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2615	if (diag)
2616		return diag;
2617
2618	if (argc >= 2) {
2619		diag = kdbgetularg(argv[2], &bytesperword);
2620		if (diag)
2621			return diag;
2622	}
2623	if (!bytesperword)
2624		bytesperword = KDB_WORD_SIZE;
2625	else if (bytesperword > KDB_WORD_SIZE)
2626		return KDB_BADWIDTH;
2627	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2628	if (argc >= 3) {
2629		diag = kdbgetularg(argv[3], &whichcpu);
2630		if (diag)
2631			return diag;
2632		if (!cpu_online(whichcpu)) {
2633			kdb_printf("cpu %ld is not online\n", whichcpu);
2634			return KDB_BADCPUNUM;
2635		}
2636	}
2637
2638	/* Most architectures use __per_cpu_offset[cpu], some use
2639	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2640	 */
2641#ifdef	__per_cpu_offset
2642#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2643#else
2644#ifdef	CONFIG_SMP
2645#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2646#else
2647#define KDB_PCU(cpu) 0
2648#endif
2649#endif
2650	for_each_online_cpu(cpu) {
2651		if (KDB_FLAG(CMD_INTERRUPT))
2652			return 0;
2653
2654		if (whichcpu != ~0UL && whichcpu != cpu)
2655			continue;
2656		addr = symaddr + KDB_PCU(cpu);
2657		diag = kdb_getword(&val, addr, bytesperword);
2658		if (diag) {
2659			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2660				   "read, diag=%d\n", cpu, addr, diag);
2661			continue;
2662		}
2663		kdb_printf("%5d ", cpu);
2664		kdb_md_line(fmtstr, addr,
2665			bytesperword == KDB_WORD_SIZE,
2666			1, bytesperword, 1, 1, 0);
2667	}
2668#undef KDB_PCU
2669	return 0;
2670}
2671
2672/*
2673 * display help for the use of cmd | grep pattern
2674 */
2675static int kdb_grep_help(int argc, const char **argv)
2676{
2677	kdb_printf("Usage of  cmd args | grep pattern:\n");
2678	kdb_printf("  Any command's output may be filtered through an ");
2679	kdb_printf("emulated 'pipe'.\n");
2680	kdb_printf("  'grep' is just a key word.\n");
2681	kdb_printf("  The pattern may include a very limited set of "
2682		   "metacharacters:\n");
2683	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2684	kdb_printf("  And if there are spaces in the pattern, you may "
2685		   "quote it:\n");
2686	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2687		   " or \"^pat tern$\"\n");
2688	return 0;
2689}
2690
2691/*
2692 * kdb_register_repeat - This function is used to register a kernel
2693 * 	debugger command.
2694 * Inputs:
2695 *	cmd	Command name
2696 *	func	Function to execute the command
2697 *	usage	A simple usage string showing arguments
2698 *	help	A simple help string describing command
2699 *	repeat	Does the command auto repeat on enter?
2700 * Returns:
2701 *	zero for success, one if a duplicate command.
2702 */
2703#define kdb_command_extend 50	/* arbitrary */
2704int kdb_register_repeat(char *cmd,
2705			kdb_func_t func,
2706			char *usage,
2707			char *help,
2708			short minlen,
2709			kdb_repeat_t repeat)
2710{
2711	int i;
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  Brute force method to determine duplicates
2716	 */
2717	for_each_kdbcmd(kp, i) {
2718		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2719			kdb_printf("Duplicate kdb command registered: "
2720				"%s, func %p help %s\n", cmd, func, help);
2721			return 1;
2722		}
2723	}
2724
2725	/*
2726	 * Insert command into first available location in table
2727	 */
2728	for_each_kdbcmd(kp, i) {
2729		if (kp->cmd_name == NULL)
2730			break;
2731	}
2732
2733	if (i >= kdb_max_commands) {
2734		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2735			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2736		if (!new) {
2737			kdb_printf("Could not allocate new kdb_command "
2738				   "table\n");
2739			return 1;
2740		}
2741		if (kdb_commands) {
2742			memcpy(new, kdb_commands,
2743			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2744			kfree(kdb_commands);
2745		}
2746		memset(new + kdb_max_commands, 0,
2747		       kdb_command_extend * sizeof(*new));
2748		kdb_commands = new;
2749		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2750		kdb_max_commands += kdb_command_extend;
2751	}
2752
2753	kp->cmd_name   = cmd;
2754	kp->cmd_func   = func;
2755	kp->cmd_usage  = usage;
2756	kp->cmd_help   = help;
2757	kp->cmd_flags  = 0;
2758	kp->cmd_minlen = minlen;
2759	kp->cmd_repeat = repeat;
2760
2761	return 0;
2762}
2763EXPORT_SYMBOL_GPL(kdb_register_repeat);
2764
2765
2766/*
2767 * kdb_register - Compatibility register function for commands that do
2768 *	not need to specify a repeat state.  Equivalent to
2769 *	kdb_register_repeat with KDB_REPEAT_NONE.
2770 * Inputs:
2771 *	cmd	Command name
2772 *	func	Function to execute the command
2773 *	usage	A simple usage string showing arguments
2774 *	help	A simple help string describing command
2775 * Returns:
2776 *	zero for success, one if a duplicate command.
2777 */
2778int kdb_register(char *cmd,
2779	     kdb_func_t func,
2780	     char *usage,
2781	     char *help,
2782	     short minlen)
2783{
2784	return kdb_register_repeat(cmd, func, usage, help, minlen,
2785				   KDB_REPEAT_NONE);
2786}
2787EXPORT_SYMBOL_GPL(kdb_register);
2788
2789/*
2790 * kdb_unregister - This function is used to unregister a kernel
2791 *	debugger command.  It is generally called when a module which
2792 *	implements kdb commands is unloaded.
2793 * Inputs:
2794 *	cmd	Command name
2795 * Returns:
2796 *	zero for success, one command not registered.
2797 */
2798int kdb_unregister(char *cmd)
2799{
2800	int i;
2801	kdbtab_t *kp;
2802
2803	/*
2804	 *  find the command.
2805	 */
2806	for_each_kdbcmd(kp, i) {
2807		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2808			kp->cmd_name = NULL;
2809			return 0;
2810		}
2811	}
2812
2813	/* Couldn't find it.  */
2814	return 1;
2815}
2816EXPORT_SYMBOL_GPL(kdb_unregister);
2817
2818/* Initialize the kdb command table. */
2819static void __init kdb_inittab(void)
2820{
2821	int i;
2822	kdbtab_t *kp;
2823
2824	for_each_kdbcmd(kp, i)
2825		kp->cmd_name = NULL;
2826
2827	kdb_register_repeat("md", kdb_md, "<vaddr>",
2828	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2829			    KDB_REPEAT_NO_ARGS);
2830	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2831	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2832	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2833	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2834	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2835	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2836	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2837	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2838	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2839	  "Continue Execution", 1, KDB_REPEAT_NONE);
2840	kdb_register_repeat("rd", kdb_rd, "",
2841	  "Display Registers", 0, KDB_REPEAT_NONE);
2842	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2843	  "Modify Registers", 0, KDB_REPEAT_NONE);
2844	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2845	  "Display exception frame", 0, KDB_REPEAT_NONE);
2846	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2847	  "Stack traceback", 1, KDB_REPEAT_NONE);
2848	kdb_register_repeat("btp", kdb_bt, "<pid>",
2849	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2850	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2851	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2852	kdb_register_repeat("btc", kdb_bt, "",
2853	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2854	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
 
 
 
 
 
 
 
 
 
 
 
 
2855	  "Backtrace process given its struct task address", 0,
2856			    KDB_REPEAT_NONE);
2857	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2858	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2859	kdb_register_repeat("env", kdb_env, "",
2860	  "Show environment variables", 0, KDB_REPEAT_NONE);
2861	kdb_register_repeat("set", kdb_set, "",
2862	  "Set environment variables", 0, KDB_REPEAT_NONE);
2863	kdb_register_repeat("help", kdb_help, "",
2864	  "Display Help Message", 1, KDB_REPEAT_NONE);
2865	kdb_register_repeat("?", kdb_help, "",
2866	  "Display Help Message", 0, KDB_REPEAT_NONE);
2867	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2868	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0, KDB_REPEAT_NONE);
2873	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2874	  "Switch to another task", 0, KDB_REPEAT_NONE);
2875	kdb_register_repeat("reboot", kdb_reboot, "",
2876	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
2877#if defined(CONFIG_MODULES)
2878	kdb_register_repeat("lsmod", kdb_lsmod, "",
2879	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
2880#endif
2881#if defined(CONFIG_MAGIC_SYSRQ)
2882	kdb_register_repeat("sr", kdb_sr, "<key>",
2883	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
2884#endif
2885#if defined(CONFIG_PRINTK)
2886	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2887	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
2888#endif
2889	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2890	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2891	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2892	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2893	kdb_register_repeat("summary", kdb_summary, "",
2894	  "Summarize the system", 4, KDB_REPEAT_NONE);
2895	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2896	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2897	kdb_register_repeat("grephelp", kdb_grep_help, "",
2898	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
2899}
2900
2901/* Execute any commands defined in kdb_cmds.  */
2902static void __init kdb_cmd_init(void)
2903{
2904	int i, diag;
2905	for (i = 0; kdb_cmds[i]; ++i) {
2906		diag = kdb_parse(kdb_cmds[i]);
2907		if (diag)
2908			kdb_printf("kdb command %s failed, kdb diag %d\n",
2909				kdb_cmds[i], diag);
2910	}
2911	if (defcmd_in_progress) {
2912		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2913		kdb_parse("endefcmd");
2914	}
2915}
2916
2917/* Initialize kdb_printf, breakpoint tables and kdb state */
2918void __init kdb_init(int lvl)
2919{
2920	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2921	int i;
2922
2923	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2924		return;
2925	for (i = kdb_init_lvl; i < lvl; i++) {
2926		switch (i) {
2927		case KDB_NOT_INITIALIZED:
2928			kdb_inittab();		/* Initialize Command Table */
2929			kdb_initbptab();	/* Initialize Breakpoints */
2930			break;
2931		case KDB_INIT_EARLY:
2932			kdb_cmd_init();		/* Build kdb_cmds tables */
2933			break;
2934		}
2935	}
2936	kdb_init_lvl = lvl;
2937}