Linux Audio

Check our new training course

In-person Linux kernel drivers training

Jun 16-20, 2025
Register
Loading...
v4.10.11
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
 
  63
  64/*
  65 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  66 * single thread processors through the kernel debugger.
  67 */
  68int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  69int kdb_nextline = 1;
  70int kdb_state;			/* General KDB state */
  71
  72struct task_struct *kdb_current_task;
  73EXPORT_SYMBOL(kdb_current_task);
  74struct pt_regs *kdb_current_regs;
  75
  76const char *kdb_diemsg;
  77static int kdb_go_count;
  78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  79static unsigned int kdb_continue_catastrophic =
  80	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  81#else
  82static unsigned int kdb_continue_catastrophic;
  83#endif
  84
  85/* kdb_commands describes the available commands. */
  86static kdbtab_t *kdb_commands;
  87#define KDB_BASE_CMD_MAX 50
  88static int kdb_max_commands = KDB_BASE_CMD_MAX;
  89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  90#define for_each_kdbcmd(cmd, num)					\
  91	for ((cmd) = kdb_base_commands, (num) = 0;			\
  92	     num < kdb_max_commands;					\
  93	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  94
  95typedef struct _kdbmsg {
  96	int	km_diag;	/* kdb diagnostic */
  97	char	*km_msg;	/* Corresponding message text */
  98} kdbmsg_t;
  99
 100#define KDBMSG(msgnum, text) \
 101	{ KDB_##msgnum, text }
 102
 103static kdbmsg_t kdbmsgs[] = {
 104	KDBMSG(NOTFOUND, "Command Not Found"),
 105	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 106	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 107	       "8 is only allowed on 64 bit systems"),
 108	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 109	KDBMSG(NOTENV, "Cannot find environment variable"),
 110	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 111	KDBMSG(NOTIMP, "Command not implemented"),
 112	KDBMSG(ENVFULL, "Environment full"),
 113	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 114	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 115#ifdef CONFIG_CPU_XSCALE
 116	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 117#else
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 119#endif
 120	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 121	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 122	KDBMSG(BADMODE, "Invalid IDMODE"),
 123	KDBMSG(BADINT, "Illegal numeric value"),
 124	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 125	KDBMSG(BADREG, "Invalid register name"),
 126	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 127	KDBMSG(BADLENGTH, "Invalid length field"),
 128	KDBMSG(NOBP, "No Breakpoint exists"),
 129	KDBMSG(BADADDR, "Invalid address"),
 130	KDBMSG(NOPERM, "Permission denied"),
 131};
 132#undef KDBMSG
 133
 134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 135
 136
 137/*
 138 * Initial environment.   This is all kept static and local to
 139 * this file.   We don't want to rely on the memory allocation
 140 * mechanisms in the kernel, so we use a very limited allocate-only
 141 * heap for new and altered environment variables.  The entire
 142 * environment is limited to a fixed number of entries (add more
 143 * to __env[] if required) and a fixed amount of heap (add more to
 144 * KDB_ENVBUFSIZE if required).
 145 */
 146
 147static char *__env[] = {
 148#if defined(CONFIG_SMP)
 149 "PROMPT=[%d]kdb> ",
 
 150#else
 151 "PROMPT=kdb> ",
 152#endif
 153 "MOREPROMPT=more> ",
 
 154 "RADIX=16",
 155 "MDCOUNT=8",			/* lines of md output */
 156 KDB_PLATFORM_ENV,
 157 "DTABCOUNT=30",
 158 "NOSECT=1",
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183};
 184
 185static const int __nenv = ARRAY_SIZE(__env);
 186
 187struct task_struct *kdb_curr_task(int cpu)
 188{
 189	struct task_struct *p = curr_task(cpu);
 190#ifdef	_TIF_MCA_INIT
 191	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 192		p = krp->p;
 193#endif
 194	return p;
 195}
 196
 197/*
 198 * Check whether the flags of the current command and the permissions
 199 * of the kdb console has allow a command to be run.
 200 */
 201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 202				   bool no_args)
 203{
 204	/* permissions comes from userspace so needs massaging slightly */
 205	permissions &= KDB_ENABLE_MASK;
 206	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 207
 208	/* some commands change group when launched with no arguments */
 209	if (no_args)
 210		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 211
 212	flags |= KDB_ENABLE_ALL;
 213
 214	return permissions & flags;
 215}
 216
 217/*
 218 * kdbgetenv - This function will return the character string value of
 219 *	an environment variable.
 220 * Parameters:
 221 *	match	A character string representing an environment variable.
 222 * Returns:
 223 *	NULL	No environment variable matches 'match'
 224 *	char*	Pointer to string value of environment variable.
 225 */
 226char *kdbgetenv(const char *match)
 227{
 228	char **ep = __env;
 229	int matchlen = strlen(match);
 230	int i;
 231
 232	for (i = 0; i < __nenv; i++) {
 233		char *e = *ep++;
 234
 235		if (!e)
 236			continue;
 237
 238		if ((strncmp(match, e, matchlen) == 0)
 239		 && ((e[matchlen] == '\0')
 240		   || (e[matchlen] == '='))) {
 241			char *cp = strchr(e, '=');
 242			return cp ? ++cp : "";
 243		}
 244	}
 245	return NULL;
 246}
 247
 248/*
 249 * kdballocenv - This function is used to allocate bytes for
 250 *	environment entries.
 251 * Parameters:
 252 *	match	A character string representing a numeric value
 253 * Outputs:
 254 *	*value  the unsigned long representation of the env variable 'match'
 255 * Returns:
 256 *	Zero on success, a kdb diagnostic on failure.
 257 * Remarks:
 258 *	We use a static environment buffer (envbuffer) to hold the values
 259 *	of dynamically generated environment variables (see kdb_set).  Buffer
 260 *	space once allocated is never free'd, so over time, the amount of space
 261 *	(currently 512 bytes) will be exhausted if env variables are changed
 262 *	frequently.
 263 */
 264static char *kdballocenv(size_t bytes)
 265{
 266#define	KDB_ENVBUFSIZE	512
 267	static char envbuffer[KDB_ENVBUFSIZE];
 268	static int envbufsize;
 269	char *ep = NULL;
 270
 271	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 272		ep = &envbuffer[envbufsize];
 273		envbufsize += bytes;
 274	}
 275	return ep;
 276}
 277
 278/*
 279 * kdbgetulenv - This function will return the value of an unsigned
 280 *	long-valued environment variable.
 281 * Parameters:
 282 *	match	A character string representing a numeric value
 283 * Outputs:
 284 *	*value  the unsigned long represntation of the env variable 'match'
 285 * Returns:
 286 *	Zero on success, a kdb diagnostic on failure.
 287 */
 288static int kdbgetulenv(const char *match, unsigned long *value)
 289{
 290	char *ep;
 291
 292	ep = kdbgetenv(match);
 293	if (!ep)
 294		return KDB_NOTENV;
 295	if (strlen(ep) == 0)
 296		return KDB_NOENVVALUE;
 297
 298	*value = simple_strtoul(ep, NULL, 0);
 299
 300	return 0;
 301}
 302
 303/*
 304 * kdbgetintenv - This function will return the value of an
 305 *	integer-valued environment variable.
 306 * Parameters:
 307 *	match	A character string representing an integer-valued env variable
 308 * Outputs:
 309 *	*value  the integer representation of the environment variable 'match'
 310 * Returns:
 311 *	Zero on success, a kdb diagnostic on failure.
 312 */
 313int kdbgetintenv(const char *match, int *value)
 314{
 315	unsigned long val;
 316	int diag;
 317
 318	diag = kdbgetulenv(match, &val);
 319	if (!diag)
 320		*value = (int) val;
 321	return diag;
 322}
 323
 324/*
 325 * kdbgetularg - This function will convert a numeric string into an
 326 *	unsigned long value.
 327 * Parameters:
 328 *	arg	A character string representing a numeric value
 329 * Outputs:
 330 *	*value  the unsigned long represntation of arg.
 331 * Returns:
 332 *	Zero on success, a kdb diagnostic on failure.
 333 */
 334int kdbgetularg(const char *arg, unsigned long *value)
 335{
 336	char *endp;
 337	unsigned long val;
 338
 339	val = simple_strtoul(arg, &endp, 0);
 340
 341	if (endp == arg) {
 342		/*
 343		 * Also try base 16, for us folks too lazy to type the
 344		 * leading 0x...
 345		 */
 346		val = simple_strtoul(arg, &endp, 16);
 347		if (endp == arg)
 348			return KDB_BADINT;
 349	}
 350
 351	*value = val;
 352
 353	return 0;
 354}
 355
 356int kdbgetu64arg(const char *arg, u64 *value)
 357{
 358	char *endp;
 359	u64 val;
 360
 361	val = simple_strtoull(arg, &endp, 0);
 362
 363	if (endp == arg) {
 364
 365		val = simple_strtoull(arg, &endp, 16);
 366		if (endp == arg)
 367			return KDB_BADINT;
 368	}
 369
 370	*value = val;
 371
 372	return 0;
 373}
 374
 375/*
 376 * kdb_set - This function implements the 'set' command.  Alter an
 377 *	existing environment variable or create a new one.
 378 */
 379int kdb_set(int argc, const char **argv)
 380{
 381	int i;
 382	char *ep;
 383	size_t varlen, vallen;
 384
 385	/*
 386	 * we can be invoked two ways:
 387	 *   set var=value    argv[1]="var", argv[2]="value"
 388	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 389	 * - if the latter, shift 'em down.
 390	 */
 391	if (argc == 3) {
 392		argv[2] = argv[3];
 393		argc--;
 394	}
 395
 396	if (argc != 2)
 397		return KDB_ARGCOUNT;
 398
 399	/*
 400	 * Check for internal variables
 401	 */
 402	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 403		unsigned int debugflags;
 404		char *cp;
 405
 406		debugflags = simple_strtoul(argv[2], &cp, 0);
 407		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 408			kdb_printf("kdb: illegal debug flags '%s'\n",
 409				    argv[2]);
 410			return 0;
 411		}
 412		kdb_flags = (kdb_flags &
 413			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 414			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 415
 416		return 0;
 417	}
 418
 419	/*
 420	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 421	 * name, argv[2] = value.
 422	 */
 423	varlen = strlen(argv[1]);
 424	vallen = strlen(argv[2]);
 425	ep = kdballocenv(varlen + vallen + 2);
 426	if (ep == (char *)0)
 427		return KDB_ENVBUFFULL;
 428
 429	sprintf(ep, "%s=%s", argv[1], argv[2]);
 430
 431	ep[varlen+vallen+1] = '\0';
 432
 433	for (i = 0; i < __nenv; i++) {
 434		if (__env[i]
 435		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 436		   && ((__env[i][varlen] == '\0')
 437		    || (__env[i][varlen] == '=')))) {
 438			__env[i] = ep;
 439			return 0;
 440		}
 441	}
 442
 443	/*
 444	 * Wasn't existing variable.  Fit into slot.
 445	 */
 446	for (i = 0; i < __nenv-1; i++) {
 447		if (__env[i] == (char *)0) {
 448			__env[i] = ep;
 449			return 0;
 450		}
 451	}
 452
 453	return KDB_ENVFULL;
 454}
 455
 456static int kdb_check_regs(void)
 457{
 458	if (!kdb_current_regs) {
 459		kdb_printf("No current kdb registers."
 460			   "  You may need to select another task\n");
 461		return KDB_BADREG;
 462	}
 463	return 0;
 464}
 465
 466/*
 467 * kdbgetaddrarg - This function is responsible for parsing an
 468 *	address-expression and returning the value of the expression,
 469 *	symbol name, and offset to the caller.
 470 *
 471 *	The argument may consist of a numeric value (decimal or
 472 *	hexidecimal), a symbol name, a register name (preceded by the
 473 *	percent sign), an environment variable with a numeric value
 474 *	(preceded by a dollar sign) or a simple arithmetic expression
 475 *	consisting of a symbol name, +/-, and a numeric constant value
 476 *	(offset).
 477 * Parameters:
 478 *	argc	- count of arguments in argv
 479 *	argv	- argument vector
 480 *	*nextarg - index to next unparsed argument in argv[]
 481 *	regs	- Register state at time of KDB entry
 482 * Outputs:
 483 *	*value	- receives the value of the address-expression
 484 *	*offset - receives the offset specified, if any
 485 *	*name   - receives the symbol name, if any
 486 *	*nextarg - index to next unparsed argument in argv[]
 487 * Returns:
 488 *	zero is returned on success, a kdb diagnostic code is
 489 *      returned on error.
 490 */
 491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 492		  unsigned long *value,  long *offset,
 493		  char **name)
 494{
 495	unsigned long addr;
 496	unsigned long off = 0;
 497	int positive;
 498	int diag;
 499	int found = 0;
 500	char *symname;
 501	char symbol = '\0';
 502	char *cp;
 503	kdb_symtab_t symtab;
 504
 505	/*
 506	 * If the enable flags prohibit both arbitrary memory access
 507	 * and flow control then there are no reasonable grounds to
 508	 * provide symbol lookup.
 509	 */
 510	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 511			     kdb_cmd_enabled, false))
 512		return KDB_NOPERM;
 513
 514	/*
 515	 * Process arguments which follow the following syntax:
 516	 *
 517	 *  symbol | numeric-address [+/- numeric-offset]
 518	 *  %register
 519	 *  $environment-variable
 520	 */
 521
 522	if (*nextarg > argc)
 523		return KDB_ARGCOUNT;
 524
 525	symname = (char *)argv[*nextarg];
 526
 527	/*
 528	 * If there is no whitespace between the symbol
 529	 * or address and the '+' or '-' symbols, we
 530	 * remember the character and replace it with a
 531	 * null so the symbol/value can be properly parsed
 532	 */
 533	cp = strpbrk(symname, "+-");
 534	if (cp != NULL) {
 535		symbol = *cp;
 536		*cp++ = '\0';
 537	}
 538
 539	if (symname[0] == '$') {
 540		diag = kdbgetulenv(&symname[1], &addr);
 541		if (diag)
 542			return diag;
 543	} else if (symname[0] == '%') {
 544		diag = kdb_check_regs();
 545		if (diag)
 546			return diag;
 547		/* Implement register values with % at a later time as it is
 548		 * arch optional.
 549		 */
 550		return KDB_NOTIMP;
 551	} else {
 552		found = kdbgetsymval(symname, &symtab);
 553		if (found) {
 554			addr = symtab.sym_start;
 555		} else {
 556			diag = kdbgetularg(argv[*nextarg], &addr);
 557			if (diag)
 558				return diag;
 559		}
 560	}
 561
 562	if (!found)
 563		found = kdbnearsym(addr, &symtab);
 564
 565	(*nextarg)++;
 566
 567	if (name)
 568		*name = symname;
 569	if (value)
 570		*value = addr;
 571	if (offset && name && *name)
 572		*offset = addr - symtab.sym_start;
 573
 574	if ((*nextarg > argc)
 575	 && (symbol == '\0'))
 576		return 0;
 577
 578	/*
 579	 * check for +/- and offset
 580	 */
 581
 582	if (symbol == '\0') {
 583		if ((argv[*nextarg][0] != '+')
 584		 && (argv[*nextarg][0] != '-')) {
 585			/*
 586			 * Not our argument.  Return.
 587			 */
 588			return 0;
 589		} else {
 590			positive = (argv[*nextarg][0] == '+');
 591			(*nextarg)++;
 592		}
 593	} else
 594		positive = (symbol == '+');
 595
 596	/*
 597	 * Now there must be an offset!
 598	 */
 599	if ((*nextarg > argc)
 600	 && (symbol == '\0')) {
 601		return KDB_INVADDRFMT;
 602	}
 603
 604	if (!symbol) {
 605		cp = (char *)argv[*nextarg];
 606		(*nextarg)++;
 607	}
 608
 609	diag = kdbgetularg(cp, &off);
 610	if (diag)
 611		return diag;
 612
 613	if (!positive)
 614		off = -off;
 615
 616	if (offset)
 617		*offset += off;
 618
 619	if (value)
 620		*value += off;
 621
 622	return 0;
 623}
 624
 625static void kdb_cmderror(int diag)
 626{
 627	int i;
 628
 629	if (diag >= 0) {
 630		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 631		return;
 632	}
 633
 634	for (i = 0; i < __nkdb_err; i++) {
 635		if (kdbmsgs[i].km_diag == diag) {
 636			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 637			return;
 638		}
 639	}
 640
 641	kdb_printf("Unknown diag %d\n", -diag);
 642}
 643
 644/*
 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 646 *	command which defines one command as a set of other commands,
 647 *	terminated by endefcmd.  kdb_defcmd processes the initial
 648 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 649 *	the following commands until 'endefcmd'.
 650 * Inputs:
 651 *	argc	argument count
 652 *	argv	argument vector
 653 * Returns:
 654 *	zero for success, a kdb diagnostic if error
 655 */
 656struct defcmd_set {
 657	int count;
 658	int usable;
 659	char *name;
 660	char *usage;
 661	char *help;
 662	char **command;
 663};
 664static struct defcmd_set *defcmd_set;
 665static int defcmd_set_count;
 666static int defcmd_in_progress;
 667
 668/* Forward references */
 669static int kdb_exec_defcmd(int argc, const char **argv);
 670
 671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 672{
 673	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 674	char **save_command = s->command;
 675	if (strcmp(argv0, "endefcmd") == 0) {
 676		defcmd_in_progress = 0;
 677		if (!s->count)
 678			s->usable = 0;
 679		if (s->usable)
 680			/* macros are always safe because when executed each
 681			 * internal command re-enters kdb_parse() and is
 682			 * safety checked individually.
 683			 */
 684			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 685					   s->help, 0,
 686					   KDB_ENABLE_ALWAYS_SAFE);
 687		return 0;
 688	}
 689	if (!s->usable)
 690		return KDB_NOTIMP;
 691	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 692	if (!s->command) {
 693		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 694			   cmdstr);
 695		s->usable = 0;
 696		return KDB_NOTIMP;
 697	}
 698	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 699	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 700	kfree(save_command);
 701	return 0;
 702}
 703
 704static int kdb_defcmd(int argc, const char **argv)
 705{
 706	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 707	if (defcmd_in_progress) {
 708		kdb_printf("kdb: nested defcmd detected, assuming missing "
 709			   "endefcmd\n");
 710		kdb_defcmd2("endefcmd", "endefcmd");
 711	}
 712	if (argc == 0) {
 713		int i;
 714		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 715			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 716				   s->usage, s->help);
 717			for (i = 0; i < s->count; ++i)
 718				kdb_printf("%s", s->command[i]);
 719			kdb_printf("endefcmd\n");
 720		}
 721		return 0;
 722	}
 723	if (argc != 3)
 724		return KDB_ARGCOUNT;
 725	if (in_dbg_master()) {
 726		kdb_printf("Command only available during kdb_init()\n");
 727		return KDB_NOTIMP;
 728	}
 729	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 730			     GFP_KDB);
 731	if (!defcmd_set)
 732		goto fail_defcmd;
 
 
 
 
 733	memcpy(defcmd_set, save_defcmd_set,
 734	       defcmd_set_count * sizeof(*defcmd_set));
 
 735	s = defcmd_set + defcmd_set_count;
 736	memset(s, 0, sizeof(*s));
 737	s->usable = 1;
 738	s->name = kdb_strdup(argv[1], GFP_KDB);
 739	if (!s->name)
 740		goto fail_name;
 741	s->usage = kdb_strdup(argv[2], GFP_KDB);
 742	if (!s->usage)
 743		goto fail_usage;
 744	s->help = kdb_strdup(argv[3], GFP_KDB);
 745	if (!s->help)
 746		goto fail_help;
 747	if (s->usage[0] == '"') {
 748		strcpy(s->usage, argv[2]+1);
 749		s->usage[strlen(s->usage)-1] = '\0';
 750	}
 751	if (s->help[0] == '"') {
 752		strcpy(s->help, argv[3]+1);
 753		s->help[strlen(s->help)-1] = '\0';
 754	}
 755	++defcmd_set_count;
 756	defcmd_in_progress = 1;
 757	kfree(save_defcmd_set);
 758	return 0;
 759fail_help:
 760	kfree(s->usage);
 761fail_usage:
 762	kfree(s->name);
 763fail_name:
 764	kfree(defcmd_set);
 765fail_defcmd:
 766	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 767	defcmd_set = save_defcmd_set;
 768	return KDB_NOTIMP;
 769}
 770
 771/*
 772 * kdb_exec_defcmd - Execute the set of commands associated with this
 773 *	defcmd name.
 774 * Inputs:
 775 *	argc	argument count
 776 *	argv	argument vector
 777 * Returns:
 778 *	zero for success, a kdb diagnostic if error
 779 */
 780static int kdb_exec_defcmd(int argc, const char **argv)
 781{
 782	int i, ret;
 783	struct defcmd_set *s;
 784	if (argc != 0)
 785		return KDB_ARGCOUNT;
 786	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 787		if (strcmp(s->name, argv[0]) == 0)
 788			break;
 789	}
 790	if (i == defcmd_set_count) {
 791		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 792			   argv[0]);
 793		return KDB_NOTIMP;
 794	}
 795	for (i = 0; i < s->count; ++i) {
 796		/* Recursive use of kdb_parse, do not use argv after
 797		 * this point */
 798		argv = NULL;
 799		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 800		ret = kdb_parse(s->command[i]);
 801		if (ret)
 802			return ret;
 803	}
 804	return 0;
 805}
 806
 807/* Command history */
 808#define KDB_CMD_HISTORY_COUNT	32
 809#define CMD_BUFLEN		200	/* kdb_printf: max printline
 810					 * size == 256 */
 811static unsigned int cmd_head, cmd_tail;
 812static unsigned int cmdptr;
 813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 814static char cmd_cur[CMD_BUFLEN];
 815
 816/*
 817 * The "str" argument may point to something like  | grep xyz
 818 */
 819static void parse_grep(const char *str)
 820{
 821	int	len;
 822	char	*cp = (char *)str, *cp2;
 823
 824	/* sanity check: we should have been called with the \ first */
 825	if (*cp != '|')
 826		return;
 827	cp++;
 828	while (isspace(*cp))
 829		cp++;
 830	if (strncmp(cp, "grep ", 5)) {
 831		kdb_printf("invalid 'pipe', see grephelp\n");
 832		return;
 833	}
 834	cp += 5;
 835	while (isspace(*cp))
 836		cp++;
 837	cp2 = strchr(cp, '\n');
 838	if (cp2)
 839		*cp2 = '\0'; /* remove the trailing newline */
 840	len = strlen(cp);
 841	if (len == 0) {
 842		kdb_printf("invalid 'pipe', see grephelp\n");
 843		return;
 844	}
 845	/* now cp points to a nonzero length search string */
 846	if (*cp == '"') {
 847		/* allow it be "x y z" by removing the "'s - there must
 848		   be two of them */
 849		cp++;
 850		cp2 = strchr(cp, '"');
 851		if (!cp2) {
 852			kdb_printf("invalid quoted string, see grephelp\n");
 853			return;
 854		}
 855		*cp2 = '\0'; /* end the string where the 2nd " was */
 856	}
 857	kdb_grep_leading = 0;
 858	if (*cp == '^') {
 859		kdb_grep_leading = 1;
 860		cp++;
 861	}
 862	len = strlen(cp);
 863	kdb_grep_trailing = 0;
 864	if (*(cp+len-1) == '$') {
 865		kdb_grep_trailing = 1;
 866		*(cp+len-1) = '\0';
 867	}
 868	len = strlen(cp);
 869	if (!len)
 870		return;
 871	if (len >= KDB_GREP_STRLEN) {
 872		kdb_printf("search string too long\n");
 873		return;
 874	}
 875	strcpy(kdb_grep_string, cp);
 876	kdb_grepping_flag++;
 877	return;
 878}
 879
 880/*
 881 * kdb_parse - Parse the command line, search the command table for a
 882 *	matching command and invoke the command function.  This
 883 *	function may be called recursively, if it is, the second call
 884 *	will overwrite argv and cbuf.  It is the caller's
 885 *	responsibility to save their argv if they recursively call
 886 *	kdb_parse().
 887 * Parameters:
 888 *      cmdstr	The input command line to be parsed.
 889 *	regs	The registers at the time kdb was entered.
 890 * Returns:
 891 *	Zero for success, a kdb diagnostic if failure.
 892 * Remarks:
 893 *	Limited to 20 tokens.
 894 *
 895 *	Real rudimentary tokenization. Basically only whitespace
 896 *	is considered a token delimeter (but special consideration
 897 *	is taken of the '=' sign as used by the 'set' command).
 898 *
 899 *	The algorithm used to tokenize the input string relies on
 900 *	there being at least one whitespace (or otherwise useless)
 901 *	character between tokens as the character immediately following
 902 *	the token is altered in-place to a null-byte to terminate the
 903 *	token string.
 904 */
 905
 906#define MAXARGC	20
 907
 908int kdb_parse(const char *cmdstr)
 909{
 910	static char *argv[MAXARGC];
 911	static int argc;
 912	static char cbuf[CMD_BUFLEN+2];
 913	char *cp;
 914	char *cpp, quoted;
 915	kdbtab_t *tp;
 916	int i, escaped, ignore_errors = 0, check_grep = 0;
 917
 918	/*
 919	 * First tokenize the command string.
 920	 */
 921	cp = (char *)cmdstr;
 
 922
 923	if (KDB_FLAG(CMD_INTERRUPT)) {
 924		/* Previous command was interrupted, newline must not
 925		 * repeat the command */
 926		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 927		KDB_STATE_SET(PAGER);
 928		argc = 0;	/* no repeat */
 929	}
 930
 931	if (*cp != '\n' && *cp != '\0') {
 932		argc = 0;
 933		cpp = cbuf;
 934		while (*cp) {
 935			/* skip whitespace */
 936			while (isspace(*cp))
 937				cp++;
 938			if ((*cp == '\0') || (*cp == '\n') ||
 939			    (*cp == '#' && !defcmd_in_progress))
 940				break;
 941			/* special case: check for | grep pattern */
 942			if (*cp == '|') {
 943				check_grep++;
 944				break;
 945			}
 946			if (cpp >= cbuf + CMD_BUFLEN) {
 947				kdb_printf("kdb_parse: command buffer "
 948					   "overflow, command ignored\n%s\n",
 949					   cmdstr);
 950				return KDB_NOTFOUND;
 951			}
 952			if (argc >= MAXARGC - 1) {
 953				kdb_printf("kdb_parse: too many arguments, "
 954					   "command ignored\n%s\n", cmdstr);
 955				return KDB_NOTFOUND;
 956			}
 957			argv[argc++] = cpp;
 958			escaped = 0;
 959			quoted = '\0';
 960			/* Copy to next unquoted and unescaped
 961			 * whitespace or '=' */
 962			while (*cp && *cp != '\n' &&
 963			       (escaped || quoted || !isspace(*cp))) {
 964				if (cpp >= cbuf + CMD_BUFLEN)
 965					break;
 966				if (escaped) {
 967					escaped = 0;
 968					*cpp++ = *cp++;
 969					continue;
 970				}
 971				if (*cp == '\\') {
 972					escaped = 1;
 973					++cp;
 974					continue;
 975				}
 976				if (*cp == quoted)
 977					quoted = '\0';
 978				else if (*cp == '\'' || *cp == '"')
 979					quoted = *cp;
 980				*cpp = *cp++;
 981				if (*cpp == '=' && !quoted)
 982					break;
 983				++cpp;
 984			}
 985			*cpp++ = '\0';	/* Squash a ws or '=' character */
 986		}
 987	}
 988	if (!argc)
 989		return 0;
 990	if (check_grep)
 991		parse_grep(cp);
 992	if (defcmd_in_progress) {
 993		int result = kdb_defcmd2(cmdstr, argv[0]);
 994		if (!defcmd_in_progress) {
 995			argc = 0;	/* avoid repeat on endefcmd */
 996			*(argv[0]) = '\0';
 997		}
 998		return result;
 999	}
1000	if (argv[0][0] == '-' && argv[0][1] &&
1001	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1002		ignore_errors = 1;
1003		++argv[0];
1004	}
1005
1006	for_each_kdbcmd(tp, i) {
1007		if (tp->cmd_name) {
1008			/*
1009			 * If this command is allowed to be abbreviated,
1010			 * check to see if this is it.
1011			 */
1012
1013			if (tp->cmd_minlen
1014			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015				if (strncmp(argv[0],
1016					    tp->cmd_name,
1017					    tp->cmd_minlen) == 0) {
1018					break;
1019				}
1020			}
1021
1022			if (strcmp(argv[0], tp->cmd_name) == 0)
1023				break;
1024		}
1025	}
1026
1027	/*
1028	 * If we don't find a command by this name, see if the first
1029	 * few characters of this match any of the known commands.
1030	 * e.g., md1c20 should match md.
1031	 */
1032	if (i == kdb_max_commands) {
1033		for_each_kdbcmd(tp, i) {
1034			if (tp->cmd_name) {
1035				if (strncmp(argv[0],
1036					    tp->cmd_name,
1037					    strlen(tp->cmd_name)) == 0) {
1038					break;
1039				}
1040			}
1041		}
1042	}
1043
1044	if (i < kdb_max_commands) {
1045		int result;
1046
1047		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048			return KDB_NOPERM;
1049
1050		KDB_STATE_SET(CMD);
1051		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052		if (result && ignore_errors && result > KDB_CMD_GO)
1053			result = 0;
1054		KDB_STATE_CLEAR(CMD);
1055
1056		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057			return result;
1058
1059		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060		if (argv[argc])
1061			*(argv[argc]) = '\0';
 
 
 
 
 
 
 
1062		return result;
1063	}
1064
1065	/*
1066	 * If the input with which we were presented does not
1067	 * map to an existing command, attempt to parse it as an
1068	 * address argument and display the result.   Useful for
1069	 * obtaining the address of a variable, or the nearest symbol
1070	 * to an address contained in a register.
1071	 */
1072	{
1073		unsigned long value;
1074		char *name = NULL;
1075		long offset;
1076		int nextarg = 0;
1077
1078		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079				  &value, &offset, &name)) {
1080			return KDB_NOTFOUND;
1081		}
1082
1083		kdb_printf("%s = ", argv[0]);
1084		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085		kdb_printf("\n");
1086		return 0;
1087	}
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P	16
1094#define CTRL_N	14
1095
1096	/* initial situation */
1097	if (cmd_head == cmd_tail)
1098		return 0;
1099	switch (*cmd) {
1100	case CTRL_P:
1101		if (cmdptr != cmd_tail)
1102			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104		return 1;
1105	case CTRL_N:
1106		if (cmdptr != cmd_head)
1107			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109		return 1;
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1116 *	the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120	emergency_restart();
1121	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122	while (1)
1123		cpu_relax();
1124	/* NOTREACHED */
1125	return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130	int old_lvl = console_loglevel;
1131	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132	kdb_trap_printk++;
1133	show_regs(regs);
1134	kdb_trap_printk--;
1135	kdb_printf("\n");
1136	console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141	kdb_current_task = p;
1142
1143	if (kdb_task_has_cpu(p)) {
1144		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145		return;
1146	}
1147	kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
 
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
 
 
 
 
 
 
 
 
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
 
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
 
 
 
 
 
 
 
 
 
 
 
 
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
1292#else
1293		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295		if (defcmd_in_progress)
1296			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298		/*
1299		 * Fetch command from keyboard
1300		 */
1301		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302		if (*cmdbuf != '\n') {
1303			if (*cmdbuf < 32) {
1304				if (cmdptr == cmd_head) {
1305					strncpy(cmd_hist[cmd_head], cmd_cur,
1306						CMD_BUFLEN);
1307					*(cmd_hist[cmd_head] +
1308					  strlen(cmd_hist[cmd_head])-1) = '\0';
1309				}
1310				if (!handle_ctrl_cmd(cmdbuf))
1311					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312				cmdbuf = cmd_cur;
1313				goto do_full_getstr;
1314			} else {
1315				strncpy(cmd_hist[cmd_head], cmd_cur,
1316					CMD_BUFLEN);
1317			}
1318
1319			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320			if (cmd_head == cmd_tail)
1321				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322		}
1323
1324		cmdptr = cmd_head;
1325		diag = kdb_parse(cmdbuf);
1326		if (diag == KDB_NOTFOUND) {
1327			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328			diag = 0;
1329		}
1330		if (diag == KDB_CMD_GO
1331		 || diag == KDB_CMD_CPU
1332		 || diag == KDB_CMD_SS
 
1333		 || diag == KDB_CMD_KGDB)
1334			break;
1335
1336		if (diag)
1337			kdb_cmderror(diag);
1338	}
1339	KDB_DEBUG_STATE("kdb_local 9", diag);
1340	return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 *	for debugging.
1347 * Inputs:
1348 *	text		Identifies the debug point
1349 *	value		Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355		   kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 *	controlling cpu, all cpus are in this loop.  One cpu is in
1361 *	control and will issue the kdb prompt, the others will spin
1362 *	until 'go' or cpu switch.
1363 *
1364 *	To get a consistent view of the kernel stacks for all
1365 *	processes, this routine is invoked from the main kdb code via
1366 *	an architecture specific routine.  kdba_main_loop is
1367 *	responsible for making the kernel stacks consistent for all
1368 *	processes, there should be no difference between a blocked
1369 *	process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 *	reason		The reason KDB was invoked
1372 *	error		The hardware-defined error code
1373 *	reason2		kdb's current reason code.
1374 *			Initially error but can change
1375 *			according to kdb state.
1376 *	db_result	Result code from break or debug point.
1377 *	regs		The exception frame at time of fault/breakpoint.
1378 *			should always be valid.
1379 * Returns:
1380 *	0	KDB was invoked for an event which it wasn't responsible
1381 *	1	KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386	int result = 1;
1387	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1388	while (1) {
1389		/*
1390		 * All processors except the one that is in control
1391		 * will spin here.
1392		 */
1393		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394		while (KDB_STATE(HOLD_CPU)) {
1395			/* state KDB is turned off by kdb_cpu to see if the
1396			 * other cpus are still live, each cpu in this loop
1397			 * turns it back on.
1398			 */
1399			if (!KDB_STATE(KDB))
1400				KDB_STATE_SET(KDB);
1401		}
1402
1403		KDB_STATE_CLEAR(SUPPRESS);
1404		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405		if (KDB_STATE(LEAVING))
1406			break;	/* Another cpu said 'go' */
1407		/* Still using kdb, this processor is in control */
1408		result = kdb_local(reason2, error, regs, db_result);
1409		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411		if (result == KDB_CMD_CPU)
1412			break;
1413
1414		if (result == KDB_CMD_SS) {
1415			KDB_STATE_SET(DOING_SS);
1416			break;
1417		}
1418
 
 
 
 
 
 
1419		if (result == KDB_CMD_KGDB) {
1420			if (!KDB_STATE(DOING_KGDB))
1421				kdb_printf("Entering please attach debugger "
1422					   "or use $D#44+ or $3#33\n");
1423			break;
1424		}
1425		if (result && result != 1 && result != KDB_CMD_GO)
1426			kdb_printf("\nUnexpected kdb_local return code %d\n",
1427				   result);
1428		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429		break;
1430	}
1431	if (KDB_STATE(DOING_SS))
1432		KDB_STATE_CLEAR(SSBPT);
1433
1434	/* Clean up any keyboard devices before leaving */
1435	kdb_kbd_cleanup_state();
1436
1437	return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 *	mdr  <addr arg>,<byte count>
1444 * Inputs:
1445 *	addr	Start address
1446 *	count	Number of bytes
1447 * Returns:
1448 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452	unsigned char c;
1453	while (count--) {
1454		if (kdb_getarea(c, addr))
1455			return 0;
1456		kdb_printf("%02x", c);
1457		addr++;
1458	}
1459	kdb_printf("\n");
1460	return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 *	'md8' 'mdr' and 'mds' commands.
1466 *
1467 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1468 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1469 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1470 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1471 *	mdr  <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474			int symbolic, int nosect, int bytesperword,
1475			int num, int repeat, int phys)
1476{
1477	/* print just one line of data */
1478	kdb_symtab_t symtab;
1479	char cbuf[32];
1480	char *c = cbuf;
1481	int i;
1482	unsigned long word;
1483
1484	memset(cbuf, '\0', sizeof(cbuf));
1485	if (phys)
1486		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487	else
1488		kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490	for (i = 0; i < num && repeat--; i++) {
1491		if (phys) {
1492			if (kdb_getphysword(&word, addr, bytesperword))
1493				break;
1494		} else if (kdb_getword(&word, addr, bytesperword))
1495			break;
1496		kdb_printf(fmtstr, word);
1497		if (symbolic)
1498			kdbnearsym(word, &symtab);
1499		else
1500			memset(&symtab, 0, sizeof(symtab));
1501		if (symtab.sym_name) {
1502			kdb_symbol_print(word, &symtab, 0);
1503			if (!nosect) {
1504				kdb_printf("\n");
1505				kdb_printf("                       %s %s "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt, symtab.mod_name,
1509					   symtab.sec_name, symtab.sec_start,
1510					   symtab.sym_start, symtab.sym_end);
1511			}
1512			addr += bytesperword;
1513		} else {
1514			union {
1515				u64 word;
1516				unsigned char c[8];
1517			} wc;
1518			unsigned char *cp;
1519#ifdef	__BIG_ENDIAN
1520			cp = wc.c + 8 - bytesperword;
1521#else
1522			cp = wc.c;
1523#endif
1524			wc.word = word;
1525#define printable_char(c) \
1526	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527			switch (bytesperword) {
1528			case 8:
1529				*c++ = printable_char(*cp++);
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				addr += 4;
1534			case 4:
1535				*c++ = printable_char(*cp++);
1536				*c++ = printable_char(*cp++);
1537				addr += 2;
1538			case 2:
1539				*c++ = printable_char(*cp++);
1540				addr++;
1541			case 1:
1542				*c++ = printable_char(*cp++);
1543				addr++;
1544				break;
1545			}
1546#undef printable_char
1547		}
1548	}
1549	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550		   " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555	static unsigned long last_addr;
1556	static int last_radix, last_bytesperword, last_repeat;
1557	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558	int nosect = 0;
1559	char fmtchar, fmtstr[64];
1560	unsigned long addr;
1561	unsigned long word;
1562	long offset = 0;
1563	int symbolic = 0;
1564	int valid = 0;
1565	int phys = 0;
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc != 2)
1576			return KDB_ARGCOUNT;
1577		valid = 1;
1578	} else if (isdigit(argv[0][2])) {
1579		bytesperword = (int)(argv[0][2] - '0');
1580		if (bytesperword == 0) {
1581			bytesperword = last_bytesperword;
1582			if (bytesperword == 0)
1583				bytesperword = 4;
1584		}
1585		last_bytesperword = bytesperword;
1586		repeat = mdcount * 16 / bytesperword;
1587		if (!argv[0][3])
1588			valid = 1;
1589		else if (argv[0][3] == 'c' && argv[0][4]) {
1590			char *p;
1591			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592			mdcount = ((repeat * bytesperword) + 15) / 16;
1593			valid = !*p;
1594		}
1595		last_repeat = repeat;
1596	} else if (strcmp(argv[0], "md") == 0)
1597		valid = 1;
1598	else if (strcmp(argv[0], "mds") == 0)
1599		valid = 1;
1600	else if (strcmp(argv[0], "mdp") == 0) {
1601		phys = valid = 1;
1602	}
1603	if (!valid)
1604		return KDB_NOTFOUND;
1605
1606	if (argc == 0) {
1607		if (last_addr == 0)
1608			return KDB_ARGCOUNT;
1609		addr = last_addr;
1610		radix = last_radix;
1611		bytesperword = last_bytesperword;
1612		repeat = last_repeat;
1613		mdcount = ((repeat * bytesperword) + 15) / 16;
1614	}
1615
1616	if (argc) {
1617		unsigned long val;
1618		int diag, nextarg = 1;
1619		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620				     &offset, NULL);
1621		if (diag)
1622			return diag;
1623		if (argc > nextarg+2)
1624			return KDB_ARGCOUNT;
1625
1626		if (argc >= nextarg) {
1627			diag = kdbgetularg(argv[nextarg], &val);
1628			if (!diag) {
1629				mdcount = (int) val;
1630				repeat = mdcount * 16 / bytesperword;
1631			}
1632		}
1633		if (argc >= nextarg+1) {
1634			diag = kdbgetularg(argv[nextarg+1], &val);
1635			if (!diag)
1636				radix = (int) val;
1637		}
1638	}
1639
1640	if (strcmp(argv[0], "mdr") == 0)
1641		return kdb_mdr(addr, mdcount);
1642
1643	switch (radix) {
1644	case 10:
1645		fmtchar = 'd';
1646		break;
1647	case 16:
1648		fmtchar = 'x';
1649		break;
1650	case 8:
1651		fmtchar = 'o';
1652		break;
1653	default:
1654		return KDB_BADRADIX;
1655	}
1656
1657	last_radix = radix;
1658
1659	if (bytesperword > KDB_WORD_SIZE)
1660		return KDB_BADWIDTH;
1661
1662	switch (bytesperword) {
1663	case 8:
1664		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665		break;
1666	case 4:
1667		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668		break;
1669	case 2:
1670		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671		break;
1672	case 1:
1673		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674		break;
1675	default:
1676		return KDB_BADWIDTH;
1677	}
1678
1679	last_repeat = repeat;
1680	last_bytesperword = bytesperword;
1681
1682	if (strcmp(argv[0], "mds") == 0) {
1683		symbolic = 1;
1684		/* Do not save these changes as last_*, they are temporary mds
1685		 * overrides.
1686		 */
1687		bytesperword = KDB_WORD_SIZE;
1688		repeat = mdcount;
1689		kdbgetintenv("NOSECT", &nosect);
1690	}
1691
1692	/* Round address down modulo BYTESPERWORD */
1693
1694	addr &= ~(bytesperword-1);
1695
1696	while (repeat > 0) {
1697		unsigned long a;
1698		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700		if (KDB_FLAG(CMD_INTERRUPT))
1701			return 0;
1702		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703			if (phys) {
1704				if (kdb_getphysword(&word, a, bytesperword)
1705						|| word)
1706					break;
1707			} else if (kdb_getword(&word, a, bytesperword) || word)
1708				break;
1709		}
1710		n = min(num, repeat);
1711		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712			    num, repeat, phys);
1713		addr += bytesperword * n;
1714		repeat -= n;
1715		z = (z + num - 1) / num;
1716		if (z > 2) {
1717			int s = num * (z-2);
1718			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719				   " zero suppressed\n",
1720				addr, addr + bytesperword * s - 1);
1721			addr += bytesperword * s;
1722			repeat -= s;
1723		}
1724	}
1725	last_addr = addr;
1726
1727	return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 *	mm address-expression new-value
1733 * Remarks:
1734 *	mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738	int diag;
1739	unsigned long addr;
1740	long offset = 0;
1741	unsigned long contents;
1742	int nextarg;
1743	int width;
1744
1745	if (argv[0][2] && !isdigit(argv[0][2]))
1746		return KDB_NOTFOUND;
1747
1748	if (argc < 2)
1749		return KDB_ARGCOUNT;
1750
1751	nextarg = 1;
1752	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753	if (diag)
1754		return diag;
1755
1756	if (nextarg > argc)
1757		return KDB_ARGCOUNT;
1758	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759	if (diag)
1760		return diag;
1761
1762	if (nextarg != argc + 1)
1763		return KDB_ARGCOUNT;
1764
1765	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766	diag = kdb_putword(addr, contents, width);
1767	if (diag)
1768		return diag;
1769
1770	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772	return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 *	go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781	unsigned long addr;
1782	int diag;
1783	int nextarg;
1784	long offset;
1785
1786	if (raw_smp_processor_id() != kdb_initial_cpu) {
1787		kdb_printf("go must execute on the entry cpu, "
1788			   "please use \"cpu %d\" and then execute go\n",
1789			   kdb_initial_cpu);
1790		return KDB_BADCPUNUM;
1791	}
1792	if (argc == 1) {
1793		nextarg = 1;
1794		diag = kdbgetaddrarg(argc, argv, &nextarg,
1795				     &addr, &offset, NULL);
1796		if (diag)
1797			return diag;
1798	} else if (argc) {
1799		return KDB_ARGCOUNT;
1800	}
1801
1802	diag = KDB_CMD_GO;
1803	if (KDB_FLAG(CATASTROPHIC)) {
1804		kdb_printf("Catastrophic error detected\n");
1805		kdb_printf("kdb_continue_catastrophic=%d, ",
1806			kdb_continue_catastrophic);
1807		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808			kdb_printf("type go a second time if you really want "
1809				   "to continue\n");
1810			return 0;
1811		}
1812		if (kdb_continue_catastrophic == 2) {
1813			kdb_printf("forcing reboot\n");
1814			kdb_reboot(0, NULL);
1815		}
1816		kdb_printf("attempting to continue\n");
1817	}
1818	return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826	int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828	int i;
1829	char *rname;
1830	int rsize;
1831	u64 reg64;
1832	u32 reg32;
1833	u16 reg16;
1834	u8 reg8;
1835
1836	if (len)
1837		return len;
1838
1839	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840		rsize = dbg_reg_def[i].size * 2;
1841		if (rsize > 16)
1842			rsize = 2;
1843		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844			len = 0;
1845			kdb_printf("\n");
1846		}
1847		if (len)
1848			len += kdb_printf("  ");
1849		switch(dbg_reg_def[i].size * 8) {
1850		case 8:
1851			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852			if (!rname)
1853				break;
1854			len += kdb_printf("%s: %02x", rname, reg8);
1855			break;
1856		case 16:
1857			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858			if (!rname)
1859				break;
1860			len += kdb_printf("%s: %04x", rname, reg16);
1861			break;
1862		case 32:
1863			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864			if (!rname)
1865				break;
1866			len += kdb_printf("%s: %08x", rname, reg32);
1867			break;
1868		case 64:
1869			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %016llx", rname, reg64);
1873			break;
1874		default:
1875			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876		}
1877	}
1878	kdb_printf("\n");
1879#else
1880	if (len)
1881		return len;
1882
1883	kdb_dumpregs(kdb_current_regs);
1884#endif
1885	return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify)  command.
1890 *	rm register-name new-contents
1891 * Remarks:
1892 *	Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897	int diag;
1898	const char *rname;
1899	int i;
1900	u64 reg64;
1901	u32 reg32;
1902	u16 reg16;
1903	u8 reg8;
1904
1905	if (argc != 2)
1906		return KDB_ARGCOUNT;
1907	/*
1908	 * Allow presence or absence of leading '%' symbol.
1909	 */
1910	rname = argv[1];
1911	if (*rname == '%')
1912		rname++;
1913
1914	diag = kdbgetu64arg(argv[2], &reg64);
1915	if (diag)
1916		return diag;
1917
1918	diag = kdb_check_regs();
1919	if (diag)
1920		return diag;
1921
1922	diag = KDB_BADREG;
1923	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925			diag = 0;
1926			break;
1927		}
1928	}
1929	if (!diag) {
1930		switch(dbg_reg_def[i].size * 8) {
1931		case 8:
1932			reg8 = reg64;
1933			dbg_set_reg(i, &reg8, kdb_current_regs);
1934			break;
1935		case 16:
1936			reg16 = reg64;
1937			dbg_set_reg(i, &reg16, kdb_current_regs);
1938			break;
1939		case 32:
1940			reg32 = reg64;
1941			dbg_set_reg(i, &reg32, kdb_current_regs);
1942			break;
1943		case 64:
1944			dbg_set_reg(i, &reg64, kdb_current_regs);
1945			break;
1946		}
1947	}
1948	return diag;
1949#else
1950	kdb_printf("ERROR: Register set currently not implemented\n");
1951    return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 *		sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963	bool check_mask =
1964	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966	if (argc != 1)
1967		return KDB_ARGCOUNT;
1968
1969	kdb_trap_printk++;
1970	__handle_sysrq(*argv[1], check_mask);
1971	kdb_trap_printk--;
1972
1973	return 0;
1974}
1975#endif	/* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 *	frame) command.  This command takes an address and expects to
1980 *	find an exception frame at that address, formats and prints
1981 *	it.
1982 *		regs address-expression
1983 * Remarks:
1984 *	Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988	int diag;
1989	unsigned long addr;
1990	long offset;
1991	int nextarg;
1992
1993	if (argc != 1)
1994		return KDB_ARGCOUNT;
1995
1996	nextarg = 1;
1997	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998	if (diag)
1999		return diag;
2000	show_regs((struct pt_regs *)addr);
2001	return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2007 *	currently loaded kernel modules.
2008 *	Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012	struct module *mod;
2013
2014	if (argc != 0)
2015		return KDB_ARGCOUNT;
2016
2017	kdb_printf("Module                  Size  modstruct     Used by\n");
2018	list_for_each_entry(mod, kdb_modules, list) {
2019		if (mod->state == MODULE_STATE_UNFORMED)
2020			continue;
2021
2022		kdb_printf("%-20s%8u  0x%p ", mod->name,
2023			   mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025		kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027		if (mod->state == MODULE_STATE_GOING)
2028			kdb_printf(" (Unloading)");
2029		else if (mod->state == MODULE_STATE_COMING)
2030			kdb_printf(" (Loading)");
2031		else
2032			kdb_printf(" (Live)");
2033		kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036		{
2037			struct module_use *use;
2038			kdb_printf(" [ ");
2039			list_for_each_entry(use, &mod->source_list,
2040					    source_list)
2041				kdb_printf("%s ", use->target->name);
2042			kdb_printf("]\n");
2043		}
2044#endif
2045	}
2046
2047	return 0;
2048}
2049
2050#endif	/* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command.  Display the
2054 *	current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059	int i;
2060
2061	for (i = 0; i < __nenv; i++) {
2062		if (__env[i])
2063			kdb_printf("%s\n", __env[i]);
2064	}
2065
2066	if (KDB_DEBUG(MASK))
2067		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069	return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 *	the contents of the syslog buffer.
2076 *		dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080	int diag;
2081	int logging;
2082	int lines = 0;
2083	int adjust = 0;
2084	int n = 0;
2085	int skip = 0;
2086	struct kmsg_dumper dumper = { .active = 1 };
2087	size_t len;
2088	char buf[201];
2089
2090	if (argc > 2)
2091		return KDB_ARGCOUNT;
2092	if (argc) {
2093		char *cp;
2094		lines = simple_strtol(argv[1], &cp, 0);
2095		if (*cp)
2096			lines = 0;
2097		if (argc > 1) {
2098			adjust = simple_strtoul(argv[2], &cp, 0);
2099			if (*cp || adjust < 0)
2100				adjust = 0;
2101		}
2102	}
2103
2104	/* disable LOGGING if set */
2105	diag = kdbgetintenv("LOGGING", &logging);
2106	if (!diag && logging) {
2107		const char *setargs[] = { "set", "LOGGING", "0" };
2108		kdb_set(2, setargs);
2109	}
2110
2111	kmsg_dump_rewind_nolock(&dumper);
2112	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113		n++;
2114
2115	if (lines < 0) {
2116		if (adjust >= n)
2117			kdb_printf("buffer only contains %d lines, nothing "
2118				   "printed\n", n);
2119		else if (adjust - lines >= n)
2120			kdb_printf("buffer only contains %d lines, last %d "
2121				   "lines printed\n", n, n - adjust);
2122		skip = adjust;
2123		lines = abs(lines);
2124	} else if (lines > 0) {
2125		skip = n - lines - adjust;
2126		lines = abs(lines);
2127		if (adjust >= n) {
2128			kdb_printf("buffer only contains %d lines, "
2129				   "nothing printed\n", n);
2130			skip = n;
2131		} else if (skip < 0) {
2132			lines += skip;
2133			skip = 0;
2134			kdb_printf("buffer only contains %d lines, first "
2135				   "%d lines printed\n", n, lines);
2136		}
2137	} else {
2138		lines = n;
2139	}
2140
2141	if (skip >= n || skip < 0)
2142		return 0;
2143
2144	kmsg_dump_rewind_nolock(&dumper);
2145	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146		if (skip) {
2147			skip--;
2148			continue;
2149		}
2150		if (!lines--)
2151			break;
2152		if (KDB_FLAG(CMD_INTERRUPT))
2153			return 0;
2154
2155		kdb_printf("%.*s\n", (int)len - 1, buf);
2156	}
2157
2158	return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167	if (atomic_read(&kdb_nmi_disabled))
2168		return 0;
2169	atomic_set(&kdb_nmi_disabled, 1);
2170	arch_kgdb_ops.enable_nmi(0);
2171	return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177		return -EINVAL;
2178	arch_kgdb_ops.enable_nmi(1);
2179	return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183	.set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 *	cpu	[<cpunum>]
2190 * Returns:
2191 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195	int i, start_cpu, first_print = 1;
2196	char state, prev_state = '?';
2197
2198	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199	kdb_printf("Available cpus: ");
2200	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201		if (!cpu_online(i)) {
2202			state = 'F';	/* cpu is offline */
2203		} else if (!kgdb_info[i].enter_kgdb) {
2204			state = 'D';	/* cpu is online but unresponsive */
2205		} else {
2206			state = ' ';	/* cpu is responding to kdb */
2207			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208				state = 'I';	/* idle task */
2209		}
2210		if (state != prev_state) {
2211			if (prev_state != '?') {
2212				if (!first_print)
2213					kdb_printf(", ");
2214				first_print = 0;
2215				kdb_printf("%d", start_cpu);
2216				if (start_cpu < i-1)
2217					kdb_printf("-%d", i-1);
2218				if (prev_state != ' ')
2219					kdb_printf("(%c)", prev_state);
2220			}
2221			prev_state = state;
2222			start_cpu = i;
2223		}
2224	}
2225	/* print the trailing cpus, ignoring them if they are all offline */
2226	if (prev_state != 'F') {
2227		if (!first_print)
2228			kdb_printf(", ");
2229		kdb_printf("%d", start_cpu);
2230		if (start_cpu < i-1)
2231			kdb_printf("-%d", i-1);
2232		if (prev_state != ' ')
2233			kdb_printf("(%c)", prev_state);
2234	}
2235	kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240	unsigned long cpunum;
2241	int diag;
2242
2243	if (argc == 0) {
2244		kdb_cpu_status();
2245		return 0;
2246	}
2247
2248	if (argc != 1)
2249		return KDB_ARGCOUNT;
2250
2251	diag = kdbgetularg(argv[1], &cpunum);
2252	if (diag)
2253		return diag;
2254
2255	/*
2256	 * Validate cpunum
2257	 */
2258	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259		return KDB_BADCPUNUM;
2260
2261	dbg_switch_cpu = cpunum;
2262
2263	/*
2264	 * Switch to other cpu
2265	 */
2266	return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274	int idle = 0, daemon = 0;
2275	unsigned long mask_I = kdb_task_state_string("I"),
2276		      mask_M = kdb_task_state_string("M");
2277	unsigned long cpu;
2278	const struct task_struct *p, *g;
2279	for_each_online_cpu(cpu) {
2280		p = kdb_curr_task(cpu);
2281		if (kdb_task_state(p, mask_I))
2282			++idle;
2283	}
2284	kdb_do_each_thread(g, p) {
2285		if (kdb_task_state(p, mask_M))
2286			++daemon;
2287	} kdb_while_each_thread(g, p);
2288	if (idle || daemon) {
2289		if (idle)
2290			kdb_printf("%d idle process%s (state I)%s\n",
2291				   idle, idle == 1 ? "" : "es",
2292				   daemon ? " and " : "");
2293		if (daemon)
2294			kdb_printf("%d sleeping system daemon (state M) "
2295				   "process%s", daemon,
2296				   daemon == 1 ? "" : "es");
2297		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298	}
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 *	list of the active processes.
2304 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308	int cpu;
2309	unsigned long tmp;
2310
2311	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%p)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335	struct task_struct *g, *p;
2336	unsigned long mask, cpu;
2337
2338	if (argc == 0)
2339		kdb_ps_suppressed();
2340	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2341		(int)(2*sizeof(void *))+2, "Task Addr",
2342		(int)(2*sizeof(void *))+2, "Thread");
2343	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344	/* Run the active tasks first */
2345	for_each_online_cpu(cpu) {
2346		if (KDB_FLAG(CMD_INTERRUPT))
2347			return 0;
2348		p = kdb_curr_task(cpu);
2349		if (kdb_task_state(p, mask))
2350			kdb_ps1(p);
2351	}
2352	kdb_printf("\n");
2353	/* Now the real tasks */
2354	kdb_do_each_thread(g, p) {
2355		if (KDB_FLAG(CMD_INTERRUPT))
2356			return 0;
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	} kdb_while_each_thread(g, p);
2360
2361	return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 *	the currently active process.
2367 *		pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371	struct task_struct *p;
2372	unsigned long val;
2373	int diag;
2374
2375	if (argc > 1)
2376		return KDB_ARGCOUNT;
2377
2378	if (argc) {
2379		if (strcmp(argv[1], "R") == 0) {
2380			p = KDB_TSK(kdb_initial_cpu);
2381		} else {
2382			diag = kdbgetularg(argv[1], &val);
2383			if (diag)
2384				return KDB_BADINT;
2385
2386			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2387			if (!p) {
2388				kdb_printf("No task with pid=%d\n", (pid_t)val);
2389				return 0;
2390			}
2391		}
2392		kdb_set_current_task(p);
2393	}
2394	kdb_printf("KDB current process is %s(pid=%d)\n",
2395		   kdb_current_task->comm,
2396		   kdb_current_task->pid);
2397
2398	return 0;
2399}
2400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403	return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411	kdbtab_t *kt;
2412	int i;
2413
2414	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415	kdb_printf("-----------------------------"
2416		   "-----------------------------\n");
2417	for_each_kdbcmd(kt, i) {
2418		char *space = "";
 
 
2419		if (KDB_FLAG(CMD_INTERRUPT))
2420			return 0;
2421		if (!kt->cmd_name)
2422			continue;
2423		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424			continue;
2425		if (strlen(kt->cmd_usage) > 20)
2426			space = "\n                                    ";
2427		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428			   kt->cmd_usage, space, kt->cmd_help);
2429	}
2430	return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438	long sig, pid;
2439	char *endp;
2440	struct task_struct *p;
2441	struct siginfo info;
2442
2443	if (argc != 2)
2444		return KDB_ARGCOUNT;
2445
2446	sig = simple_strtol(argv[1], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (sig >= 0) {
2450		kdb_printf("Invalid signal parameter.<-signal>\n");
2451		return 0;
2452	}
2453	sig = -sig;
2454
2455	pid = simple_strtol(argv[2], &endp, 0);
2456	if (*endp)
2457		return KDB_BADINT;
2458	if (pid <= 0) {
2459		kdb_printf("Process ID must be large than 0.\n");
2460		return 0;
2461	}
2462
2463	/* Find the process. */
2464	p = find_task_by_pid_ns(pid, &init_pid_ns);
2465	if (!p) {
2466		kdb_printf("The specified process isn't found.\n");
2467		return 0;
2468	}
2469	p = p->group_leader;
2470	info.si_signo = sig;
2471	info.si_errno = 0;
2472	info.si_code = SI_USER;
2473	info.si_pid = pid;  /* same capabilities as process being signalled */
2474	info.si_uid = 0;    /* kdb has root authority */
2475	kdb_send_sig_info(p, &info);
2476	return 0;
2477}
2478
2479struct kdb_tm {
2480	int tm_sec;	/* seconds */
2481	int tm_min;	/* minutes */
2482	int tm_hour;	/* hours */
2483	int tm_mday;	/* day of the month */
2484	int tm_mon;	/* month */
2485	int tm_year;	/* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490	/* This will work from 1970-2099, 2100 is not a leap year */
2491	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492				 31, 30, 31, 30, 31 };
2493	memset(tm, 0, sizeof(*tm));
2494	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2495	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2497	tm->tm_min =  tm->tm_sec / 60 % 60;
2498	tm->tm_hour = tm->tm_sec / 60 / 60;
2499	tm->tm_sec =  tm->tm_sec % 60;
2500	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501	tm->tm_mday %= (4*365+1);
2502	mon_day[1] = 29;
2503	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504		tm->tm_mday -= mon_day[tm->tm_mon];
2505		if (++tm->tm_mon == 12) {
2506			tm->tm_mon = 0;
2507			++tm->tm_year;
2508			mon_day[1] = 28;
2509		}
2510	}
2511	++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521	struct timespec uptime;
2522	ktime_get_ts(&uptime);
2523	memset(val, 0, sizeof(*val));
2524	val->uptime = uptime.tv_sec;
2525	val->loads[0] = avenrun[0];
2526	val->loads[1] = avenrun[1];
2527	val->loads[2] = avenrun[2];
2528	val->procs = nr_threads-1;
2529	si_meminfo(val);
2530
2531	return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539	struct timespec now;
2540	struct kdb_tm tm;
2541	struct sysinfo val;
2542
2543	if (argc)
2544		return KDB_ARGCOUNT;
2545
2546	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2547	kdb_printf("release    %s\n", init_uts_ns.name.release);
2548	kdb_printf("version    %s\n", init_uts_ns.name.version);
2549	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2550	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2551	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2553
2554	now = __current_kernel_time();
2555	kdb_gmtime(&now, &tm);
2556	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2557		   "tz_minuteswest %d\n",
2558		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559		tm.tm_hour, tm.tm_min, tm.tm_sec,
2560		sys_tz.tz_minuteswest);
2561
2562	kdb_sysinfo(&val);
2563	kdb_printf("uptime     ");
2564	if (val.uptime > (24*60*60)) {
2565		int days = val.uptime / (24*60*60);
2566		val.uptime %= (24*60*60);
2567		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568	}
2569	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581	/* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2584		   "Buffers:        %8lu kB\n",
2585		   K(val.totalram), K(val.freeram), K(val.bufferram));
2586	return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594	char fmtstr[64];
2595	int cpu, diag, nextarg = 1;
2596	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598	if (argc < 1 || argc > 3)
2599		return KDB_ARGCOUNT;
2600
2601	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602	if (diag)
2603		return diag;
2604
2605	if (argc >= 2) {
2606		diag = kdbgetularg(argv[2], &bytesperword);
2607		if (diag)
2608			return diag;
2609	}
2610	if (!bytesperword)
2611		bytesperword = KDB_WORD_SIZE;
2612	else if (bytesperword > KDB_WORD_SIZE)
2613		return KDB_BADWIDTH;
2614	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615	if (argc >= 3) {
2616		diag = kdbgetularg(argv[3], &whichcpu);
2617		if (diag)
2618			return diag;
2619		if (!cpu_online(whichcpu)) {
2620			kdb_printf("cpu %ld is not online\n", whichcpu);
2621			return KDB_BADCPUNUM;
2622		}
2623	}
2624
2625	/* Most architectures use __per_cpu_offset[cpu], some use
2626	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627	 */
2628#ifdef	__per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef	CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637	for_each_online_cpu(cpu) {
2638		if (KDB_FLAG(CMD_INTERRUPT))
2639			return 0;
2640
2641		if (whichcpu != ~0UL && whichcpu != cpu)
2642			continue;
2643		addr = symaddr + KDB_PCU(cpu);
2644		diag = kdb_getword(&val, addr, bytesperword);
2645		if (diag) {
2646			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647				   "read, diag=%d\n", cpu, addr, diag);
2648			continue;
2649		}
2650		kdb_printf("%5d ", cpu);
2651		kdb_md_line(fmtstr, addr,
2652			bytesperword == KDB_WORD_SIZE,
2653			1, bytesperword, 1, 1, 0);
2654	}
2655#undef KDB_PCU
2656	return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664	kdb_printf("Usage of  cmd args | grep pattern:\n");
2665	kdb_printf("  Any command's output may be filtered through an ");
2666	kdb_printf("emulated 'pipe'.\n");
2667	kdb_printf("  'grep' is just a key word.\n");
2668	kdb_printf("  The pattern may include a very limited set of "
2669		   "metacharacters:\n");
2670	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2671	kdb_printf("  And if there are spaces in the pattern, you may "
2672		   "quote it:\n");
2673	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674		   " or \"^pat tern$\"\n");
2675	return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * 	debugger command.
2681 * Inputs:
2682 *	cmd	Command name
2683 *	func	Function to execute the command
2684 *	usage	A simple usage string showing arguments
2685 *	help	A simple help string describing command
2686 *	repeat	Does the command auto repeat on enter?
2687 * Returns:
2688 *	zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50	/* arbitrary */
2691int kdb_register_flags(char *cmd,
2692		       kdb_func_t func,
2693		       char *usage,
2694		       char *help,
2695		       short minlen,
2696		       kdb_cmdflags_t flags)
2697{
2698	int i;
2699	kdbtab_t *kp;
2700
2701	/*
2702	 *  Brute force method to determine duplicates
2703	 */
2704	for_each_kdbcmd(kp, i) {
2705		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706			kdb_printf("Duplicate kdb command registered: "
2707				"%s, func %p help %s\n", cmd, func, help);
2708			return 1;
2709		}
2710	}
2711
2712	/*
2713	 * Insert command into first available location in table
2714	 */
2715	for_each_kdbcmd(kp, i) {
2716		if (kp->cmd_name == NULL)
2717			break;
2718	}
2719
2720	if (i >= kdb_max_commands) {
2721		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723		if (!new) {
2724			kdb_printf("Could not allocate new kdb_command "
2725				   "table\n");
2726			return 1;
2727		}
2728		if (kdb_commands) {
2729			memcpy(new, kdb_commands,
2730			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731			kfree(kdb_commands);
2732		}
2733		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734		       kdb_command_extend * sizeof(*new));
2735		kdb_commands = new;
2736		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737		kdb_max_commands += kdb_command_extend;
2738	}
2739
2740	kp->cmd_name   = cmd;
2741	kp->cmd_func   = func;
2742	kp->cmd_usage  = usage;
2743	kp->cmd_help   = help;
 
2744	kp->cmd_minlen = minlen;
2745	kp->cmd_flags  = flags;
2746
2747	return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 *	not need to specify a repeat state.  Equivalent to
2755 *	kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 *	cmd	Command name
2758 *	func	Function to execute the command
2759 *	usage	A simple usage string showing arguments
2760 *	help	A simple help string describing command
2761 * Returns:
2762 *	zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765	     kdb_func_t func,
2766	     char *usage,
2767	     char *help,
2768	     short minlen)
2769{
2770	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
 
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 *	debugger command.  It is generally called when a module which
2777 *	implements kdb commands is unloaded.
2778 * Inputs:
2779 *	cmd	Command name
2780 * Returns:
2781 *	zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785	int i;
2786	kdbtab_t *kp;
2787
2788	/*
2789	 *  find the command.
2790	 */
2791	for_each_kdbcmd(kp, i) {
2792		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793			kp->cmd_name = NULL;
2794			return 0;
2795		}
2796	}
2797
2798	/* Couldn't find it.  */
2799	return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806	int i;
2807	kdbtab_t *kp;
2808
2809	for_each_kdbcmd(kp, i)
2810		kp->cmd_name = NULL;
2811
2812	kdb_register_flags("md", kdb_md, "<vaddr>",
2813	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816	  "Display Raw Memory", 0,
2817	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819	  "Display Physical Memory", 0,
2820	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821	kdb_register_flags("mds", kdb_md, "<vaddr>",
2822	  "Display Memory Symbolically", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825	  "Modify Memory Contents", 0,
2826	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828	  "Continue Execution", 1,
2829	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830	kdb_register_flags("rd", kdb_rd, "",
2831	  "Display Registers", 0,
2832	  KDB_ENABLE_REG_READ);
2833	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834	  "Modify Registers", 0,
2835	  KDB_ENABLE_REG_WRITE);
2836	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837	  "Display exception frame", 0,
2838	  KDB_ENABLE_MEM_READ);
2839	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840	  "Stack traceback", 1,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("btp", kdb_bt, "<pid>",
2843	  "Display stack for process <pid>", 0,
2844	  KDB_ENABLE_INSPECT);
2845	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846	  "Backtrace all processes matching state flag", 0,
2847	  KDB_ENABLE_INSPECT);
2848	kdb_register_flags("btc", kdb_bt, "",
2849	  "Backtrace current process on each cpu", 0,
2850	  KDB_ENABLE_INSPECT);
2851	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852	  "Backtrace process given its struct task address", 0,
2853	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854	kdb_register_flags("env", kdb_env, "",
2855	  "Show environment variables", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE);
2857	kdb_register_flags("set", kdb_set, "",
2858	  "Set environment variables", 0,
2859	  KDB_ENABLE_ALWAYS_SAFE);
2860	kdb_register_flags("help", kdb_help, "",
2861	  "Display Help Message", 1,
2862	  KDB_ENABLE_ALWAYS_SAFE);
2863	kdb_register_flags("?", kdb_help, "",
2864	  "Display Help Message", 0,
2865	  KDB_ENABLE_ALWAYS_SAFE);
2866	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867	  "Switch to new cpu", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869	kdb_register_flags("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, 0);
2871	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0,
2873	  KDB_ENABLE_INSPECT);
2874	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875	  "Switch to another task", 0,
2876	  KDB_ENABLE_INSPECT);
2877	kdb_register_flags("reboot", kdb_reboot, "",
2878	  "Reboot the machine immediately", 0,
2879	  KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881	kdb_register_flags("lsmod", kdb_lsmod, "",
2882	  "List loaded kernel modules", 0,
2883	  KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886	kdb_register_flags("sr", kdb_sr, "<key>",
2887	  "Magic SysRq key", 0,
2888	  KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892	  "Display syslog buffer", 0,
2893	  KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895	if (arch_kgdb_ops.enable_nmi) {
2896		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897		  "Disable NMI entry to KDB", 0,
2898		  KDB_ENABLE_ALWAYS_SAFE);
2899	}
2900	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901	  "Define a set of commands, down to endefcmd", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904	  "Send a signal to a process", 0,
2905	  KDB_ENABLE_SIGNAL);
2906	kdb_register_flags("summary", kdb_summary, "",
2907	  "Summarize the system", 4,
2908	  KDB_ENABLE_ALWAYS_SAFE);
2909	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910	  "Display per_cpu variables", 3,
2911	  KDB_ENABLE_MEM_READ);
2912	kdb_register_flags("grephelp", kdb_grep_help, "",
2913	  "Display help on | grep", 0,
2914	  KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds.  */
2918static void __init kdb_cmd_init(void)
2919{
2920	int i, diag;
2921	for (i = 0; kdb_cmds[i]; ++i) {
2922		diag = kdb_parse(kdb_cmds[i]);
2923		if (diag)
2924			kdb_printf("kdb command %s failed, kdb diag %d\n",
2925				kdb_cmds[i], diag);
2926	}
2927	if (defcmd_in_progress) {
2928		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929		kdb_parse("endefcmd");
2930	}
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937	int i;
2938
2939	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940		return;
2941	for (i = kdb_init_lvl; i < lvl; i++) {
2942		switch (i) {
2943		case KDB_NOT_INITIALIZED:
2944			kdb_inittab();		/* Initialize Command Table */
2945			kdb_initbptab();	/* Initialize Breakpoints */
2946			break;
2947		case KDB_INIT_EARLY:
2948			kdb_cmd_init();		/* Build kdb_cmds tables */
2949			break;
2950		}
2951	}
2952	kdb_init_lvl = lvl;
2953}
v3.5.6
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
 
  15#include <linux/string.h>
  16#include <linux/kernel.h>
  17#include <linux/kmsg_dump.h>
  18#include <linux/reboot.h>
  19#include <linux/sched.h>
  20#include <linux/sysrq.h>
  21#include <linux/smp.h>
  22#include <linux/utsname.h>
  23#include <linux/vmalloc.h>
 
  24#include <linux/module.h>
 
  25#include <linux/mm.h>
  26#include <linux/init.h>
  27#include <linux/kallsyms.h>
  28#include <linux/kgdb.h>
  29#include <linux/kdb.h>
  30#include <linux/notifier.h>
  31#include <linux/interrupt.h>
  32#include <linux/delay.h>
  33#include <linux/nmi.h>
  34#include <linux/time.h>
  35#include <linux/ptrace.h>
  36#include <linux/sysctl.h>
  37#include <linux/cpu.h>
  38#include <linux/kdebug.h>
  39#include <linux/proc_fs.h>
  40#include <linux/uaccess.h>
  41#include <linux/slab.h>
  42#include "kdb_private.h"
  43
  44#define GREP_LEN 256
  45char kdb_grep_string[GREP_LEN];
 
 
 
 
 
  46int kdb_grepping_flag;
  47EXPORT_SYMBOL(kdb_grepping_flag);
  48int kdb_grep_leading;
  49int kdb_grep_trailing;
  50
  51/*
  52 * Kernel debugger state flags
  53 */
  54int kdb_flags;
  55atomic_t kdb_event;
  56
  57/*
  58 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  59 * single thread processors through the kernel debugger.
  60 */
  61int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  62int kdb_nextline = 1;
  63int kdb_state;			/* General KDB state */
  64
  65struct task_struct *kdb_current_task;
  66EXPORT_SYMBOL(kdb_current_task);
  67struct pt_regs *kdb_current_regs;
  68
  69const char *kdb_diemsg;
  70static int kdb_go_count;
  71#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  72static unsigned int kdb_continue_catastrophic =
  73	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  74#else
  75static unsigned int kdb_continue_catastrophic;
  76#endif
  77
  78/* kdb_commands describes the available commands. */
  79static kdbtab_t *kdb_commands;
  80#define KDB_BASE_CMD_MAX 50
  81static int kdb_max_commands = KDB_BASE_CMD_MAX;
  82static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  83#define for_each_kdbcmd(cmd, num)					\
  84	for ((cmd) = kdb_base_commands, (num) = 0;			\
  85	     num < kdb_max_commands;					\
  86	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  87
  88typedef struct _kdbmsg {
  89	int	km_diag;	/* kdb diagnostic */
  90	char	*km_msg;	/* Corresponding message text */
  91} kdbmsg_t;
  92
  93#define KDBMSG(msgnum, text) \
  94	{ KDB_##msgnum, text }
  95
  96static kdbmsg_t kdbmsgs[] = {
  97	KDBMSG(NOTFOUND, "Command Not Found"),
  98	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
  99	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 100	       "8 is only allowed on 64 bit systems"),
 101	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 102	KDBMSG(NOTENV, "Cannot find environment variable"),
 103	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 104	KDBMSG(NOTIMP, "Command not implemented"),
 105	KDBMSG(ENVFULL, "Environment full"),
 106	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 107	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 108#ifdef CONFIG_CPU_XSCALE
 109	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 110#else
 111	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 112#endif
 113	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 114	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 115	KDBMSG(BADMODE, "Invalid IDMODE"),
 116	KDBMSG(BADINT, "Illegal numeric value"),
 117	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 118	KDBMSG(BADREG, "Invalid register name"),
 119	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 120	KDBMSG(BADLENGTH, "Invalid length field"),
 121	KDBMSG(NOBP, "No Breakpoint exists"),
 122	KDBMSG(BADADDR, "Invalid address"),
 
 123};
 124#undef KDBMSG
 125
 126static const int __nkdb_err = sizeof(kdbmsgs) / sizeof(kdbmsg_t);
 127
 128
 129/*
 130 * Initial environment.   This is all kept static and local to
 131 * this file.   We don't want to rely on the memory allocation
 132 * mechanisms in the kernel, so we use a very limited allocate-only
 133 * heap for new and altered environment variables.  The entire
 134 * environment is limited to a fixed number of entries (add more
 135 * to __env[] if required) and a fixed amount of heap (add more to
 136 * KDB_ENVBUFSIZE if required).
 137 */
 138
 139static char *__env[] = {
 140#if defined(CONFIG_SMP)
 141 "PROMPT=[%d]kdb> ",
 142 "MOREPROMPT=[%d]more> ",
 143#else
 144 "PROMPT=kdb> ",
 
 145 "MOREPROMPT=more> ",
 146#endif
 147 "RADIX=16",
 148 "MDCOUNT=8",			/* lines of md output */
 149 KDB_PLATFORM_ENV,
 150 "DTABCOUNT=30",
 151 "NOSECT=1",
 152 (char *)0,
 153 (char *)0,
 154 (char *)0,
 155 (char *)0,
 156 (char *)0,
 157 (char *)0,
 158 (char *)0,
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176};
 177
 178static const int __nenv = (sizeof(__env) / sizeof(char *));
 179
 180struct task_struct *kdb_curr_task(int cpu)
 181{
 182	struct task_struct *p = curr_task(cpu);
 183#ifdef	_TIF_MCA_INIT
 184	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 185		p = krp->p;
 186#endif
 187	return p;
 188}
 189
 190/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 191 * kdbgetenv - This function will return the character string value of
 192 *	an environment variable.
 193 * Parameters:
 194 *	match	A character string representing an environment variable.
 195 * Returns:
 196 *	NULL	No environment variable matches 'match'
 197 *	char*	Pointer to string value of environment variable.
 198 */
 199char *kdbgetenv(const char *match)
 200{
 201	char **ep = __env;
 202	int matchlen = strlen(match);
 203	int i;
 204
 205	for (i = 0; i < __nenv; i++) {
 206		char *e = *ep++;
 207
 208		if (!e)
 209			continue;
 210
 211		if ((strncmp(match, e, matchlen) == 0)
 212		 && ((e[matchlen] == '\0')
 213		   || (e[matchlen] == '='))) {
 214			char *cp = strchr(e, '=');
 215			return cp ? ++cp : "";
 216		}
 217	}
 218	return NULL;
 219}
 220
 221/*
 222 * kdballocenv - This function is used to allocate bytes for
 223 *	environment entries.
 224 * Parameters:
 225 *	match	A character string representing a numeric value
 226 * Outputs:
 227 *	*value  the unsigned long representation of the env variable 'match'
 228 * Returns:
 229 *	Zero on success, a kdb diagnostic on failure.
 230 * Remarks:
 231 *	We use a static environment buffer (envbuffer) to hold the values
 232 *	of dynamically generated environment variables (see kdb_set).  Buffer
 233 *	space once allocated is never free'd, so over time, the amount of space
 234 *	(currently 512 bytes) will be exhausted if env variables are changed
 235 *	frequently.
 236 */
 237static char *kdballocenv(size_t bytes)
 238{
 239#define	KDB_ENVBUFSIZE	512
 240	static char envbuffer[KDB_ENVBUFSIZE];
 241	static int envbufsize;
 242	char *ep = NULL;
 243
 244	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 245		ep = &envbuffer[envbufsize];
 246		envbufsize += bytes;
 247	}
 248	return ep;
 249}
 250
 251/*
 252 * kdbgetulenv - This function will return the value of an unsigned
 253 *	long-valued environment variable.
 254 * Parameters:
 255 *	match	A character string representing a numeric value
 256 * Outputs:
 257 *	*value  the unsigned long represntation of the env variable 'match'
 258 * Returns:
 259 *	Zero on success, a kdb diagnostic on failure.
 260 */
 261static int kdbgetulenv(const char *match, unsigned long *value)
 262{
 263	char *ep;
 264
 265	ep = kdbgetenv(match);
 266	if (!ep)
 267		return KDB_NOTENV;
 268	if (strlen(ep) == 0)
 269		return KDB_NOENVVALUE;
 270
 271	*value = simple_strtoul(ep, NULL, 0);
 272
 273	return 0;
 274}
 275
 276/*
 277 * kdbgetintenv - This function will return the value of an
 278 *	integer-valued environment variable.
 279 * Parameters:
 280 *	match	A character string representing an integer-valued env variable
 281 * Outputs:
 282 *	*value  the integer representation of the environment variable 'match'
 283 * Returns:
 284 *	Zero on success, a kdb diagnostic on failure.
 285 */
 286int kdbgetintenv(const char *match, int *value)
 287{
 288	unsigned long val;
 289	int diag;
 290
 291	diag = kdbgetulenv(match, &val);
 292	if (!diag)
 293		*value = (int) val;
 294	return diag;
 295}
 296
 297/*
 298 * kdbgetularg - This function will convert a numeric string into an
 299 *	unsigned long value.
 300 * Parameters:
 301 *	arg	A character string representing a numeric value
 302 * Outputs:
 303 *	*value  the unsigned long represntation of arg.
 304 * Returns:
 305 *	Zero on success, a kdb diagnostic on failure.
 306 */
 307int kdbgetularg(const char *arg, unsigned long *value)
 308{
 309	char *endp;
 310	unsigned long val;
 311
 312	val = simple_strtoul(arg, &endp, 0);
 313
 314	if (endp == arg) {
 315		/*
 316		 * Also try base 16, for us folks too lazy to type the
 317		 * leading 0x...
 318		 */
 319		val = simple_strtoul(arg, &endp, 16);
 320		if (endp == arg)
 321			return KDB_BADINT;
 322	}
 323
 324	*value = val;
 325
 326	return 0;
 327}
 328
 329int kdbgetu64arg(const char *arg, u64 *value)
 330{
 331	char *endp;
 332	u64 val;
 333
 334	val = simple_strtoull(arg, &endp, 0);
 335
 336	if (endp == arg) {
 337
 338		val = simple_strtoull(arg, &endp, 16);
 339		if (endp == arg)
 340			return KDB_BADINT;
 341	}
 342
 343	*value = val;
 344
 345	return 0;
 346}
 347
 348/*
 349 * kdb_set - This function implements the 'set' command.  Alter an
 350 *	existing environment variable or create a new one.
 351 */
 352int kdb_set(int argc, const char **argv)
 353{
 354	int i;
 355	char *ep;
 356	size_t varlen, vallen;
 357
 358	/*
 359	 * we can be invoked two ways:
 360	 *   set var=value    argv[1]="var", argv[2]="value"
 361	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 362	 * - if the latter, shift 'em down.
 363	 */
 364	if (argc == 3) {
 365		argv[2] = argv[3];
 366		argc--;
 367	}
 368
 369	if (argc != 2)
 370		return KDB_ARGCOUNT;
 371
 372	/*
 373	 * Check for internal variables
 374	 */
 375	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 376		unsigned int debugflags;
 377		char *cp;
 378
 379		debugflags = simple_strtoul(argv[2], &cp, 0);
 380		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 381			kdb_printf("kdb: illegal debug flags '%s'\n",
 382				    argv[2]);
 383			return 0;
 384		}
 385		kdb_flags = (kdb_flags &
 386			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 387			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 388
 389		return 0;
 390	}
 391
 392	/*
 393	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 394	 * name, argv[2] = value.
 395	 */
 396	varlen = strlen(argv[1]);
 397	vallen = strlen(argv[2]);
 398	ep = kdballocenv(varlen + vallen + 2);
 399	if (ep == (char *)0)
 400		return KDB_ENVBUFFULL;
 401
 402	sprintf(ep, "%s=%s", argv[1], argv[2]);
 403
 404	ep[varlen+vallen+1] = '\0';
 405
 406	for (i = 0; i < __nenv; i++) {
 407		if (__env[i]
 408		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 409		   && ((__env[i][varlen] == '\0')
 410		    || (__env[i][varlen] == '=')))) {
 411			__env[i] = ep;
 412			return 0;
 413		}
 414	}
 415
 416	/*
 417	 * Wasn't existing variable.  Fit into slot.
 418	 */
 419	for (i = 0; i < __nenv-1; i++) {
 420		if (__env[i] == (char *)0) {
 421			__env[i] = ep;
 422			return 0;
 423		}
 424	}
 425
 426	return KDB_ENVFULL;
 427}
 428
 429static int kdb_check_regs(void)
 430{
 431	if (!kdb_current_regs) {
 432		kdb_printf("No current kdb registers."
 433			   "  You may need to select another task\n");
 434		return KDB_BADREG;
 435	}
 436	return 0;
 437}
 438
 439/*
 440 * kdbgetaddrarg - This function is responsible for parsing an
 441 *	address-expression and returning the value of the expression,
 442 *	symbol name, and offset to the caller.
 443 *
 444 *	The argument may consist of a numeric value (decimal or
 445 *	hexidecimal), a symbol name, a register name (preceded by the
 446 *	percent sign), an environment variable with a numeric value
 447 *	(preceded by a dollar sign) or a simple arithmetic expression
 448 *	consisting of a symbol name, +/-, and a numeric constant value
 449 *	(offset).
 450 * Parameters:
 451 *	argc	- count of arguments in argv
 452 *	argv	- argument vector
 453 *	*nextarg - index to next unparsed argument in argv[]
 454 *	regs	- Register state at time of KDB entry
 455 * Outputs:
 456 *	*value	- receives the value of the address-expression
 457 *	*offset - receives the offset specified, if any
 458 *	*name   - receives the symbol name, if any
 459 *	*nextarg - index to next unparsed argument in argv[]
 460 * Returns:
 461 *	zero is returned on success, a kdb diagnostic code is
 462 *      returned on error.
 463 */
 464int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 465		  unsigned long *value,  long *offset,
 466		  char **name)
 467{
 468	unsigned long addr;
 469	unsigned long off = 0;
 470	int positive;
 471	int diag;
 472	int found = 0;
 473	char *symname;
 474	char symbol = '\0';
 475	char *cp;
 476	kdb_symtab_t symtab;
 477
 478	/*
 
 
 
 
 
 
 
 
 
 479	 * Process arguments which follow the following syntax:
 480	 *
 481	 *  symbol | numeric-address [+/- numeric-offset]
 482	 *  %register
 483	 *  $environment-variable
 484	 */
 485
 486	if (*nextarg > argc)
 487		return KDB_ARGCOUNT;
 488
 489	symname = (char *)argv[*nextarg];
 490
 491	/*
 492	 * If there is no whitespace between the symbol
 493	 * or address and the '+' or '-' symbols, we
 494	 * remember the character and replace it with a
 495	 * null so the symbol/value can be properly parsed
 496	 */
 497	cp = strpbrk(symname, "+-");
 498	if (cp != NULL) {
 499		symbol = *cp;
 500		*cp++ = '\0';
 501	}
 502
 503	if (symname[0] == '$') {
 504		diag = kdbgetulenv(&symname[1], &addr);
 505		if (diag)
 506			return diag;
 507	} else if (symname[0] == '%') {
 508		diag = kdb_check_regs();
 509		if (diag)
 510			return diag;
 511		/* Implement register values with % at a later time as it is
 512		 * arch optional.
 513		 */
 514		return KDB_NOTIMP;
 515	} else {
 516		found = kdbgetsymval(symname, &symtab);
 517		if (found) {
 518			addr = symtab.sym_start;
 519		} else {
 520			diag = kdbgetularg(argv[*nextarg], &addr);
 521			if (diag)
 522				return diag;
 523		}
 524	}
 525
 526	if (!found)
 527		found = kdbnearsym(addr, &symtab);
 528
 529	(*nextarg)++;
 530
 531	if (name)
 532		*name = symname;
 533	if (value)
 534		*value = addr;
 535	if (offset && name && *name)
 536		*offset = addr - symtab.sym_start;
 537
 538	if ((*nextarg > argc)
 539	 && (symbol == '\0'))
 540		return 0;
 541
 542	/*
 543	 * check for +/- and offset
 544	 */
 545
 546	if (symbol == '\0') {
 547		if ((argv[*nextarg][0] != '+')
 548		 && (argv[*nextarg][0] != '-')) {
 549			/*
 550			 * Not our argument.  Return.
 551			 */
 552			return 0;
 553		} else {
 554			positive = (argv[*nextarg][0] == '+');
 555			(*nextarg)++;
 556		}
 557	} else
 558		positive = (symbol == '+');
 559
 560	/*
 561	 * Now there must be an offset!
 562	 */
 563	if ((*nextarg > argc)
 564	 && (symbol == '\0')) {
 565		return KDB_INVADDRFMT;
 566	}
 567
 568	if (!symbol) {
 569		cp = (char *)argv[*nextarg];
 570		(*nextarg)++;
 571	}
 572
 573	diag = kdbgetularg(cp, &off);
 574	if (diag)
 575		return diag;
 576
 577	if (!positive)
 578		off = -off;
 579
 580	if (offset)
 581		*offset += off;
 582
 583	if (value)
 584		*value += off;
 585
 586	return 0;
 587}
 588
 589static void kdb_cmderror(int diag)
 590{
 591	int i;
 592
 593	if (diag >= 0) {
 594		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 595		return;
 596	}
 597
 598	for (i = 0; i < __nkdb_err; i++) {
 599		if (kdbmsgs[i].km_diag == diag) {
 600			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 601			return;
 602		}
 603	}
 604
 605	kdb_printf("Unknown diag %d\n", -diag);
 606}
 607
 608/*
 609 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 610 *	command which defines one command as a set of other commands,
 611 *	terminated by endefcmd.  kdb_defcmd processes the initial
 612 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 613 *	the following commands until 'endefcmd'.
 614 * Inputs:
 615 *	argc	argument count
 616 *	argv	argument vector
 617 * Returns:
 618 *	zero for success, a kdb diagnostic if error
 619 */
 620struct defcmd_set {
 621	int count;
 622	int usable;
 623	char *name;
 624	char *usage;
 625	char *help;
 626	char **command;
 627};
 628static struct defcmd_set *defcmd_set;
 629static int defcmd_set_count;
 630static int defcmd_in_progress;
 631
 632/* Forward references */
 633static int kdb_exec_defcmd(int argc, const char **argv);
 634
 635static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 636{
 637	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 638	char **save_command = s->command;
 639	if (strcmp(argv0, "endefcmd") == 0) {
 640		defcmd_in_progress = 0;
 641		if (!s->count)
 642			s->usable = 0;
 643		if (s->usable)
 644			kdb_register(s->name, kdb_exec_defcmd,
 645				     s->usage, s->help, 0);
 
 
 
 
 
 646		return 0;
 647	}
 648	if (!s->usable)
 649		return KDB_NOTIMP;
 650	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 651	if (!s->command) {
 652		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 653			   cmdstr);
 654		s->usable = 0;
 655		return KDB_NOTIMP;
 656	}
 657	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 658	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 659	kfree(save_command);
 660	return 0;
 661}
 662
 663static int kdb_defcmd(int argc, const char **argv)
 664{
 665	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 666	if (defcmd_in_progress) {
 667		kdb_printf("kdb: nested defcmd detected, assuming missing "
 668			   "endefcmd\n");
 669		kdb_defcmd2("endefcmd", "endefcmd");
 670	}
 671	if (argc == 0) {
 672		int i;
 673		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 674			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 675				   s->usage, s->help);
 676			for (i = 0; i < s->count; ++i)
 677				kdb_printf("%s", s->command[i]);
 678			kdb_printf("endefcmd\n");
 679		}
 680		return 0;
 681	}
 682	if (argc != 3)
 683		return KDB_ARGCOUNT;
 
 
 
 
 684	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 685			     GFP_KDB);
 686	if (!defcmd_set) {
 687		kdb_printf("Could not allocate new defcmd_set entry for %s\n",
 688			   argv[1]);
 689		defcmd_set = save_defcmd_set;
 690		return KDB_NOTIMP;
 691	}
 692	memcpy(defcmd_set, save_defcmd_set,
 693	       defcmd_set_count * sizeof(*defcmd_set));
 694	kfree(save_defcmd_set);
 695	s = defcmd_set + defcmd_set_count;
 696	memset(s, 0, sizeof(*s));
 697	s->usable = 1;
 698	s->name = kdb_strdup(argv[1], GFP_KDB);
 
 
 699	s->usage = kdb_strdup(argv[2], GFP_KDB);
 
 
 700	s->help = kdb_strdup(argv[3], GFP_KDB);
 
 
 701	if (s->usage[0] == '"') {
 702		strcpy(s->usage, s->usage+1);
 703		s->usage[strlen(s->usage)-1] = '\0';
 704	}
 705	if (s->help[0] == '"') {
 706		strcpy(s->help, s->help+1);
 707		s->help[strlen(s->help)-1] = '\0';
 708	}
 709	++defcmd_set_count;
 710	defcmd_in_progress = 1;
 
 711	return 0;
 
 
 
 
 
 
 
 
 
 
 712}
 713
 714/*
 715 * kdb_exec_defcmd - Execute the set of commands associated with this
 716 *	defcmd name.
 717 * Inputs:
 718 *	argc	argument count
 719 *	argv	argument vector
 720 * Returns:
 721 *	zero for success, a kdb diagnostic if error
 722 */
 723static int kdb_exec_defcmd(int argc, const char **argv)
 724{
 725	int i, ret;
 726	struct defcmd_set *s;
 727	if (argc != 0)
 728		return KDB_ARGCOUNT;
 729	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 730		if (strcmp(s->name, argv[0]) == 0)
 731			break;
 732	}
 733	if (i == defcmd_set_count) {
 734		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 735			   argv[0]);
 736		return KDB_NOTIMP;
 737	}
 738	for (i = 0; i < s->count; ++i) {
 739		/* Recursive use of kdb_parse, do not use argv after
 740		 * this point */
 741		argv = NULL;
 742		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 743		ret = kdb_parse(s->command[i]);
 744		if (ret)
 745			return ret;
 746	}
 747	return 0;
 748}
 749
 750/* Command history */
 751#define KDB_CMD_HISTORY_COUNT	32
 752#define CMD_BUFLEN		200	/* kdb_printf: max printline
 753					 * size == 256 */
 754static unsigned int cmd_head, cmd_tail;
 755static unsigned int cmdptr;
 756static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 757static char cmd_cur[CMD_BUFLEN];
 758
 759/*
 760 * The "str" argument may point to something like  | grep xyz
 761 */
 762static void parse_grep(const char *str)
 763{
 764	int	len;
 765	char	*cp = (char *)str, *cp2;
 766
 767	/* sanity check: we should have been called with the \ first */
 768	if (*cp != '|')
 769		return;
 770	cp++;
 771	while (isspace(*cp))
 772		cp++;
 773	if (strncmp(cp, "grep ", 5)) {
 774		kdb_printf("invalid 'pipe', see grephelp\n");
 775		return;
 776	}
 777	cp += 5;
 778	while (isspace(*cp))
 779		cp++;
 780	cp2 = strchr(cp, '\n');
 781	if (cp2)
 782		*cp2 = '\0'; /* remove the trailing newline */
 783	len = strlen(cp);
 784	if (len == 0) {
 785		kdb_printf("invalid 'pipe', see grephelp\n");
 786		return;
 787	}
 788	/* now cp points to a nonzero length search string */
 789	if (*cp == '"') {
 790		/* allow it be "x y z" by removing the "'s - there must
 791		   be two of them */
 792		cp++;
 793		cp2 = strchr(cp, '"');
 794		if (!cp2) {
 795			kdb_printf("invalid quoted string, see grephelp\n");
 796			return;
 797		}
 798		*cp2 = '\0'; /* end the string where the 2nd " was */
 799	}
 800	kdb_grep_leading = 0;
 801	if (*cp == '^') {
 802		kdb_grep_leading = 1;
 803		cp++;
 804	}
 805	len = strlen(cp);
 806	kdb_grep_trailing = 0;
 807	if (*(cp+len-1) == '$') {
 808		kdb_grep_trailing = 1;
 809		*(cp+len-1) = '\0';
 810	}
 811	len = strlen(cp);
 812	if (!len)
 813		return;
 814	if (len >= GREP_LEN) {
 815		kdb_printf("search string too long\n");
 816		return;
 817	}
 818	strcpy(kdb_grep_string, cp);
 819	kdb_grepping_flag++;
 820	return;
 821}
 822
 823/*
 824 * kdb_parse - Parse the command line, search the command table for a
 825 *	matching command and invoke the command function.  This
 826 *	function may be called recursively, if it is, the second call
 827 *	will overwrite argv and cbuf.  It is the caller's
 828 *	responsibility to save their argv if they recursively call
 829 *	kdb_parse().
 830 * Parameters:
 831 *      cmdstr	The input command line to be parsed.
 832 *	regs	The registers at the time kdb was entered.
 833 * Returns:
 834 *	Zero for success, a kdb diagnostic if failure.
 835 * Remarks:
 836 *	Limited to 20 tokens.
 837 *
 838 *	Real rudimentary tokenization. Basically only whitespace
 839 *	is considered a token delimeter (but special consideration
 840 *	is taken of the '=' sign as used by the 'set' command).
 841 *
 842 *	The algorithm used to tokenize the input string relies on
 843 *	there being at least one whitespace (or otherwise useless)
 844 *	character between tokens as the character immediately following
 845 *	the token is altered in-place to a null-byte to terminate the
 846 *	token string.
 847 */
 848
 849#define MAXARGC	20
 850
 851int kdb_parse(const char *cmdstr)
 852{
 853	static char *argv[MAXARGC];
 854	static int argc;
 855	static char cbuf[CMD_BUFLEN+2];
 856	char *cp;
 857	char *cpp, quoted;
 858	kdbtab_t *tp;
 859	int i, escaped, ignore_errors = 0, check_grep;
 860
 861	/*
 862	 * First tokenize the command string.
 863	 */
 864	cp = (char *)cmdstr;
 865	kdb_grepping_flag = check_grep = 0;
 866
 867	if (KDB_FLAG(CMD_INTERRUPT)) {
 868		/* Previous command was interrupted, newline must not
 869		 * repeat the command */
 870		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 871		KDB_STATE_SET(PAGER);
 872		argc = 0;	/* no repeat */
 873	}
 874
 875	if (*cp != '\n' && *cp != '\0') {
 876		argc = 0;
 877		cpp = cbuf;
 878		while (*cp) {
 879			/* skip whitespace */
 880			while (isspace(*cp))
 881				cp++;
 882			if ((*cp == '\0') || (*cp == '\n') ||
 883			    (*cp == '#' && !defcmd_in_progress))
 884				break;
 885			/* special case: check for | grep pattern */
 886			if (*cp == '|') {
 887				check_grep++;
 888				break;
 889			}
 890			if (cpp >= cbuf + CMD_BUFLEN) {
 891				kdb_printf("kdb_parse: command buffer "
 892					   "overflow, command ignored\n%s\n",
 893					   cmdstr);
 894				return KDB_NOTFOUND;
 895			}
 896			if (argc >= MAXARGC - 1) {
 897				kdb_printf("kdb_parse: too many arguments, "
 898					   "command ignored\n%s\n", cmdstr);
 899				return KDB_NOTFOUND;
 900			}
 901			argv[argc++] = cpp;
 902			escaped = 0;
 903			quoted = '\0';
 904			/* Copy to next unquoted and unescaped
 905			 * whitespace or '=' */
 906			while (*cp && *cp != '\n' &&
 907			       (escaped || quoted || !isspace(*cp))) {
 908				if (cpp >= cbuf + CMD_BUFLEN)
 909					break;
 910				if (escaped) {
 911					escaped = 0;
 912					*cpp++ = *cp++;
 913					continue;
 914				}
 915				if (*cp == '\\') {
 916					escaped = 1;
 917					++cp;
 918					continue;
 919				}
 920				if (*cp == quoted)
 921					quoted = '\0';
 922				else if (*cp == '\'' || *cp == '"')
 923					quoted = *cp;
 924				*cpp = *cp++;
 925				if (*cpp == '=' && !quoted)
 926					break;
 927				++cpp;
 928			}
 929			*cpp++ = '\0';	/* Squash a ws or '=' character */
 930		}
 931	}
 932	if (!argc)
 933		return 0;
 934	if (check_grep)
 935		parse_grep(cp);
 936	if (defcmd_in_progress) {
 937		int result = kdb_defcmd2(cmdstr, argv[0]);
 938		if (!defcmd_in_progress) {
 939			argc = 0;	/* avoid repeat on endefcmd */
 940			*(argv[0]) = '\0';
 941		}
 942		return result;
 943	}
 944	if (argv[0][0] == '-' && argv[0][1] &&
 945	    (argv[0][1] < '0' || argv[0][1] > '9')) {
 946		ignore_errors = 1;
 947		++argv[0];
 948	}
 949
 950	for_each_kdbcmd(tp, i) {
 951		if (tp->cmd_name) {
 952			/*
 953			 * If this command is allowed to be abbreviated,
 954			 * check to see if this is it.
 955			 */
 956
 957			if (tp->cmd_minlen
 958			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
 959				if (strncmp(argv[0],
 960					    tp->cmd_name,
 961					    tp->cmd_minlen) == 0) {
 962					break;
 963				}
 964			}
 965
 966			if (strcmp(argv[0], tp->cmd_name) == 0)
 967				break;
 968		}
 969	}
 970
 971	/*
 972	 * If we don't find a command by this name, see if the first
 973	 * few characters of this match any of the known commands.
 974	 * e.g., md1c20 should match md.
 975	 */
 976	if (i == kdb_max_commands) {
 977		for_each_kdbcmd(tp, i) {
 978			if (tp->cmd_name) {
 979				if (strncmp(argv[0],
 980					    tp->cmd_name,
 981					    strlen(tp->cmd_name)) == 0) {
 982					break;
 983				}
 984			}
 985		}
 986	}
 987
 988	if (i < kdb_max_commands) {
 989		int result;
 
 
 
 
 990		KDB_STATE_SET(CMD);
 991		result = (*tp->cmd_func)(argc-1, (const char **)argv);
 992		if (result && ignore_errors && result > KDB_CMD_GO)
 993			result = 0;
 994		KDB_STATE_CLEAR(CMD);
 995		switch (tp->cmd_repeat) {
 996		case KDB_REPEAT_NONE:
 997			argc = 0;
 998			if (argv[0])
 999				*(argv[0]) = '\0';
1000			break;
1001		case KDB_REPEAT_NO_ARGS:
1002			argc = 1;
1003			if (argv[1])
1004				*(argv[1]) = '\0';
1005			break;
1006		case KDB_REPEAT_WITH_ARGS:
1007			break;
1008		}
1009		return result;
1010	}
1011
1012	/*
1013	 * If the input with which we were presented does not
1014	 * map to an existing command, attempt to parse it as an
1015	 * address argument and display the result.   Useful for
1016	 * obtaining the address of a variable, or the nearest symbol
1017	 * to an address contained in a register.
1018	 */
1019	{
1020		unsigned long value;
1021		char *name = NULL;
1022		long offset;
1023		int nextarg = 0;
1024
1025		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1026				  &value, &offset, &name)) {
1027			return KDB_NOTFOUND;
1028		}
1029
1030		kdb_printf("%s = ", argv[0]);
1031		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1032		kdb_printf("\n");
1033		return 0;
1034	}
1035}
1036
1037
1038static int handle_ctrl_cmd(char *cmd)
1039{
1040#define CTRL_P	16
1041#define CTRL_N	14
1042
1043	/* initial situation */
1044	if (cmd_head == cmd_tail)
1045		return 0;
1046	switch (*cmd) {
1047	case CTRL_P:
1048		if (cmdptr != cmd_tail)
1049			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1050		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1051		return 1;
1052	case CTRL_N:
1053		if (cmdptr != cmd_head)
1054			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1055		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1056		return 1;
1057	}
1058	return 0;
1059}
1060
1061/*
1062 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1063 *	the system immediately, or loop for ever on failure.
1064 */
1065static int kdb_reboot(int argc, const char **argv)
1066{
1067	emergency_restart();
1068	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1069	while (1)
1070		cpu_relax();
1071	/* NOTREACHED */
1072	return 0;
1073}
1074
1075static void kdb_dumpregs(struct pt_regs *regs)
1076{
1077	int old_lvl = console_loglevel;
1078	console_loglevel = 15;
1079	kdb_trap_printk++;
1080	show_regs(regs);
1081	kdb_trap_printk--;
1082	kdb_printf("\n");
1083	console_loglevel = old_lvl;
1084}
1085
1086void kdb_set_current_task(struct task_struct *p)
1087{
1088	kdb_current_task = p;
1089
1090	if (kdb_task_has_cpu(p)) {
1091		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1092		return;
1093	}
1094	kdb_current_regs = NULL;
1095}
1096
1097/*
1098 * kdb_local - The main code for kdb.  This routine is invoked on a
1099 *	specific processor, it is not global.  The main kdb() routine
1100 *	ensures that only one processor at a time is in this routine.
1101 *	This code is called with the real reason code on the first
1102 *	entry to a kdb session, thereafter it is called with reason
1103 *	SWITCH, even if the user goes back to the original cpu.
1104 * Inputs:
1105 *	reason		The reason KDB was invoked
1106 *	error		The hardware-defined error code
1107 *	regs		The exception frame at time of fault/breakpoint.
1108 *	db_result	Result code from the break or debug point.
1109 * Returns:
1110 *	0	KDB was invoked for an event which it wasn't responsible
1111 *	1	KDB handled the event for which it was invoked.
1112 *	KDB_CMD_GO	User typed 'go'.
1113 *	KDB_CMD_CPU	User switched to another cpu.
1114 *	KDB_CMD_SS	Single step.
1115 *	KDB_CMD_SSB	Single step until branch.
1116 */
1117static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1118		     kdb_dbtrap_t db_result)
1119{
1120	char *cmdbuf;
1121	int diag;
1122	struct task_struct *kdb_current =
1123		kdb_curr_task(raw_smp_processor_id());
1124
1125	KDB_DEBUG_STATE("kdb_local 1", reason);
1126	kdb_go_count = 0;
1127	if (reason == KDB_REASON_DEBUG) {
1128		/* special case below */
1129	} else {
1130		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1131			   kdb_current, kdb_current ? kdb_current->pid : 0);
1132#if defined(CONFIG_SMP)
1133		kdb_printf("on processor %d ", raw_smp_processor_id());
1134#endif
1135	}
1136
1137	switch (reason) {
1138	case KDB_REASON_DEBUG:
1139	{
1140		/*
1141		 * If re-entering kdb after a single step
1142		 * command, don't print the message.
1143		 */
1144		switch (db_result) {
1145		case KDB_DB_BPT:
1146			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1147				   kdb_current, kdb_current->pid);
1148#if defined(CONFIG_SMP)
1149			kdb_printf("on processor %d ", raw_smp_processor_id());
1150#endif
1151			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1152				   instruction_pointer(regs));
1153			break;
1154		case KDB_DB_SSB:
1155			/*
1156			 * In the midst of ssb command. Just return.
1157			 */
1158			KDB_DEBUG_STATE("kdb_local 3", reason);
1159			return KDB_CMD_SSB;	/* Continue with SSB command */
1160
1161			break;
1162		case KDB_DB_SS:
1163			break;
1164		case KDB_DB_SSBPT:
1165			KDB_DEBUG_STATE("kdb_local 4", reason);
1166			return 1;	/* kdba_db_trap did the work */
1167		default:
1168			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1169				   db_result);
1170			break;
1171		}
1172
1173	}
1174		break;
1175	case KDB_REASON_ENTER:
1176		if (KDB_STATE(KEYBOARD))
1177			kdb_printf("due to Keyboard Entry\n");
1178		else
1179			kdb_printf("due to KDB_ENTER()\n");
1180		break;
1181	case KDB_REASON_KEYBOARD:
1182		KDB_STATE_SET(KEYBOARD);
1183		kdb_printf("due to Keyboard Entry\n");
1184		break;
1185	case KDB_REASON_ENTER_SLAVE:
1186		/* drop through, slaves only get released via cpu switch */
1187	case KDB_REASON_SWITCH:
1188		kdb_printf("due to cpu switch\n");
1189		break;
1190	case KDB_REASON_OOPS:
1191		kdb_printf("Oops: %s\n", kdb_diemsg);
1192		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1193			   instruction_pointer(regs));
1194		kdb_dumpregs(regs);
1195		break;
 
 
 
1196	case KDB_REASON_NMI:
1197		kdb_printf("due to NonMaskable Interrupt @ "
1198			   kdb_machreg_fmt "\n",
1199			   instruction_pointer(regs));
1200		kdb_dumpregs(regs);
1201		break;
1202	case KDB_REASON_SSTEP:
1203	case KDB_REASON_BREAK:
1204		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1205			   reason == KDB_REASON_BREAK ?
1206			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1207		/*
1208		 * Determine if this breakpoint is one that we
1209		 * are interested in.
1210		 */
1211		if (db_result != KDB_DB_BPT) {
1212			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1213				   db_result);
1214			KDB_DEBUG_STATE("kdb_local 6", reason);
1215			return 0;	/* Not for us, dismiss it */
1216		}
1217		break;
1218	case KDB_REASON_RECURSE:
1219		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1220			   instruction_pointer(regs));
1221		break;
1222	default:
1223		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1224		KDB_DEBUG_STATE("kdb_local 8", reason);
1225		return 0;	/* Not for us, dismiss it */
1226	}
1227
1228	while (1) {
1229		/*
1230		 * Initialize pager context.
1231		 */
1232		kdb_nextline = 1;
1233		KDB_STATE_CLEAR(SUPPRESS);
 
 
 
1234
1235		cmdbuf = cmd_cur;
1236		*cmdbuf = '\0';
1237		*(cmd_hist[cmd_head]) = '\0';
1238
1239		if (KDB_FLAG(ONLY_DO_DUMP)) {
1240			/* kdb is off but a catastrophic error requires a dump.
1241			 * Take the dump and reboot.
1242			 * Turn on logging so the kdb output appears in the log
1243			 * buffer in the dump.
1244			 */
1245			const char *setargs[] = { "set", "LOGGING", "1" };
1246			kdb_set(2, setargs);
1247			kdb_reboot(0, NULL);
1248			/*NOTREACHED*/
1249		}
1250
1251do_full_getstr:
1252#if defined(CONFIG_SMP)
1253		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1254			 raw_smp_processor_id());
1255#else
1256		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1257#endif
1258		if (defcmd_in_progress)
1259			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1260
1261		/*
1262		 * Fetch command from keyboard
1263		 */
1264		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1265		if (*cmdbuf != '\n') {
1266			if (*cmdbuf < 32) {
1267				if (cmdptr == cmd_head) {
1268					strncpy(cmd_hist[cmd_head], cmd_cur,
1269						CMD_BUFLEN);
1270					*(cmd_hist[cmd_head] +
1271					  strlen(cmd_hist[cmd_head])-1) = '\0';
1272				}
1273				if (!handle_ctrl_cmd(cmdbuf))
1274					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1275				cmdbuf = cmd_cur;
1276				goto do_full_getstr;
1277			} else {
1278				strncpy(cmd_hist[cmd_head], cmd_cur,
1279					CMD_BUFLEN);
1280			}
1281
1282			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1283			if (cmd_head == cmd_tail)
1284				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1285		}
1286
1287		cmdptr = cmd_head;
1288		diag = kdb_parse(cmdbuf);
1289		if (diag == KDB_NOTFOUND) {
1290			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1291			diag = 0;
1292		}
1293		if (diag == KDB_CMD_GO
1294		 || diag == KDB_CMD_CPU
1295		 || diag == KDB_CMD_SS
1296		 || diag == KDB_CMD_SSB
1297		 || diag == KDB_CMD_KGDB)
1298			break;
1299
1300		if (diag)
1301			kdb_cmderror(diag);
1302	}
1303	KDB_DEBUG_STATE("kdb_local 9", diag);
1304	return diag;
1305}
1306
1307
1308/*
1309 * kdb_print_state - Print the state data for the current processor
1310 *	for debugging.
1311 * Inputs:
1312 *	text		Identifies the debug point
1313 *	value		Any integer value to be printed, e.g. reason code.
1314 */
1315void kdb_print_state(const char *text, int value)
1316{
1317	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1318		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1319		   kdb_state);
1320}
1321
1322/*
1323 * kdb_main_loop - After initial setup and assignment of the
1324 *	controlling cpu, all cpus are in this loop.  One cpu is in
1325 *	control and will issue the kdb prompt, the others will spin
1326 *	until 'go' or cpu switch.
1327 *
1328 *	To get a consistent view of the kernel stacks for all
1329 *	processes, this routine is invoked from the main kdb code via
1330 *	an architecture specific routine.  kdba_main_loop is
1331 *	responsible for making the kernel stacks consistent for all
1332 *	processes, there should be no difference between a blocked
1333 *	process and a running process as far as kdb is concerned.
1334 * Inputs:
1335 *	reason		The reason KDB was invoked
1336 *	error		The hardware-defined error code
1337 *	reason2		kdb's current reason code.
1338 *			Initially error but can change
1339 *			according to kdb state.
1340 *	db_result	Result code from break or debug point.
1341 *	regs		The exception frame at time of fault/breakpoint.
1342 *			should always be valid.
1343 * Returns:
1344 *	0	KDB was invoked for an event which it wasn't responsible
1345 *	1	KDB handled the event for which it was invoked.
1346 */
1347int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1348	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1349{
1350	int result = 1;
1351	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1352	while (1) {
1353		/*
1354		 * All processors except the one that is in control
1355		 * will spin here.
1356		 */
1357		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1358		while (KDB_STATE(HOLD_CPU)) {
1359			/* state KDB is turned off by kdb_cpu to see if the
1360			 * other cpus are still live, each cpu in this loop
1361			 * turns it back on.
1362			 */
1363			if (!KDB_STATE(KDB))
1364				KDB_STATE_SET(KDB);
1365		}
1366
1367		KDB_STATE_CLEAR(SUPPRESS);
1368		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1369		if (KDB_STATE(LEAVING))
1370			break;	/* Another cpu said 'go' */
1371		/* Still using kdb, this processor is in control */
1372		result = kdb_local(reason2, error, regs, db_result);
1373		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1374
1375		if (result == KDB_CMD_CPU)
1376			break;
1377
1378		if (result == KDB_CMD_SS) {
1379			KDB_STATE_SET(DOING_SS);
1380			break;
1381		}
1382
1383		if (result == KDB_CMD_SSB) {
1384			KDB_STATE_SET(DOING_SS);
1385			KDB_STATE_SET(DOING_SSB);
1386			break;
1387		}
1388
1389		if (result == KDB_CMD_KGDB) {
1390			if (!KDB_STATE(DOING_KGDB))
1391				kdb_printf("Entering please attach debugger "
1392					   "or use $D#44+ or $3#33\n");
1393			break;
1394		}
1395		if (result && result != 1 && result != KDB_CMD_GO)
1396			kdb_printf("\nUnexpected kdb_local return code %d\n",
1397				   result);
1398		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1399		break;
1400	}
1401	if (KDB_STATE(DOING_SS))
1402		KDB_STATE_CLEAR(SSBPT);
1403
1404	/* Clean up any keyboard devices before leaving */
1405	kdb_kbd_cleanup_state();
1406
1407	return result;
1408}
1409
1410/*
1411 * kdb_mdr - This function implements the guts of the 'mdr', memory
1412 * read command.
1413 *	mdr  <addr arg>,<byte count>
1414 * Inputs:
1415 *	addr	Start address
1416 *	count	Number of bytes
1417 * Returns:
1418 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1419 */
1420static int kdb_mdr(unsigned long addr, unsigned int count)
1421{
1422	unsigned char c;
1423	while (count--) {
1424		if (kdb_getarea(c, addr))
1425			return 0;
1426		kdb_printf("%02x", c);
1427		addr++;
1428	}
1429	kdb_printf("\n");
1430	return 0;
1431}
1432
1433/*
1434 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1435 *	'md8' 'mdr' and 'mds' commands.
1436 *
1437 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1438 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1439 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1440 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1441 *	mdr  <addr arg>,<byte count>
1442 */
1443static void kdb_md_line(const char *fmtstr, unsigned long addr,
1444			int symbolic, int nosect, int bytesperword,
1445			int num, int repeat, int phys)
1446{
1447	/* print just one line of data */
1448	kdb_symtab_t symtab;
1449	char cbuf[32];
1450	char *c = cbuf;
1451	int i;
1452	unsigned long word;
1453
1454	memset(cbuf, '\0', sizeof(cbuf));
1455	if (phys)
1456		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1457	else
1458		kdb_printf(kdb_machreg_fmt0 " ", addr);
1459
1460	for (i = 0; i < num && repeat--; i++) {
1461		if (phys) {
1462			if (kdb_getphysword(&word, addr, bytesperword))
1463				break;
1464		} else if (kdb_getword(&word, addr, bytesperword))
1465			break;
1466		kdb_printf(fmtstr, word);
1467		if (symbolic)
1468			kdbnearsym(word, &symtab);
1469		else
1470			memset(&symtab, 0, sizeof(symtab));
1471		if (symtab.sym_name) {
1472			kdb_symbol_print(word, &symtab, 0);
1473			if (!nosect) {
1474				kdb_printf("\n");
1475				kdb_printf("                       %s %s "
1476					   kdb_machreg_fmt " "
1477					   kdb_machreg_fmt " "
1478					   kdb_machreg_fmt, symtab.mod_name,
1479					   symtab.sec_name, symtab.sec_start,
1480					   symtab.sym_start, symtab.sym_end);
1481			}
1482			addr += bytesperword;
1483		} else {
1484			union {
1485				u64 word;
1486				unsigned char c[8];
1487			} wc;
1488			unsigned char *cp;
1489#ifdef	__BIG_ENDIAN
1490			cp = wc.c + 8 - bytesperword;
1491#else
1492			cp = wc.c;
1493#endif
1494			wc.word = word;
1495#define printable_char(c) \
1496	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1497			switch (bytesperword) {
1498			case 8:
1499				*c++ = printable_char(*cp++);
1500				*c++ = printable_char(*cp++);
1501				*c++ = printable_char(*cp++);
1502				*c++ = printable_char(*cp++);
1503				addr += 4;
1504			case 4:
1505				*c++ = printable_char(*cp++);
1506				*c++ = printable_char(*cp++);
1507				addr += 2;
1508			case 2:
1509				*c++ = printable_char(*cp++);
1510				addr++;
1511			case 1:
1512				*c++ = printable_char(*cp++);
1513				addr++;
1514				break;
1515			}
1516#undef printable_char
1517		}
1518	}
1519	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1520		   " ", cbuf);
1521}
1522
1523static int kdb_md(int argc, const char **argv)
1524{
1525	static unsigned long last_addr;
1526	static int last_radix, last_bytesperword, last_repeat;
1527	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1528	int nosect = 0;
1529	char fmtchar, fmtstr[64];
1530	unsigned long addr;
1531	unsigned long word;
1532	long offset = 0;
1533	int symbolic = 0;
1534	int valid = 0;
1535	int phys = 0;
1536
1537	kdbgetintenv("MDCOUNT", &mdcount);
1538	kdbgetintenv("RADIX", &radix);
1539	kdbgetintenv("BYTESPERWORD", &bytesperword);
1540
1541	/* Assume 'md <addr>' and start with environment values */
1542	repeat = mdcount * 16 / bytesperword;
1543
1544	if (strcmp(argv[0], "mdr") == 0) {
1545		if (argc != 2)
1546			return KDB_ARGCOUNT;
1547		valid = 1;
1548	} else if (isdigit(argv[0][2])) {
1549		bytesperword = (int)(argv[0][2] - '0');
1550		if (bytesperword == 0) {
1551			bytesperword = last_bytesperword;
1552			if (bytesperword == 0)
1553				bytesperword = 4;
1554		}
1555		last_bytesperword = bytesperword;
1556		repeat = mdcount * 16 / bytesperword;
1557		if (!argv[0][3])
1558			valid = 1;
1559		else if (argv[0][3] == 'c' && argv[0][4]) {
1560			char *p;
1561			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1562			mdcount = ((repeat * bytesperword) + 15) / 16;
1563			valid = !*p;
1564		}
1565		last_repeat = repeat;
1566	} else if (strcmp(argv[0], "md") == 0)
1567		valid = 1;
1568	else if (strcmp(argv[0], "mds") == 0)
1569		valid = 1;
1570	else if (strcmp(argv[0], "mdp") == 0) {
1571		phys = valid = 1;
1572	}
1573	if (!valid)
1574		return KDB_NOTFOUND;
1575
1576	if (argc == 0) {
1577		if (last_addr == 0)
1578			return KDB_ARGCOUNT;
1579		addr = last_addr;
1580		radix = last_radix;
1581		bytesperword = last_bytesperword;
1582		repeat = last_repeat;
1583		mdcount = ((repeat * bytesperword) + 15) / 16;
1584	}
1585
1586	if (argc) {
1587		unsigned long val;
1588		int diag, nextarg = 1;
1589		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1590				     &offset, NULL);
1591		if (diag)
1592			return diag;
1593		if (argc > nextarg+2)
1594			return KDB_ARGCOUNT;
1595
1596		if (argc >= nextarg) {
1597			diag = kdbgetularg(argv[nextarg], &val);
1598			if (!diag) {
1599				mdcount = (int) val;
1600				repeat = mdcount * 16 / bytesperword;
1601			}
1602		}
1603		if (argc >= nextarg+1) {
1604			diag = kdbgetularg(argv[nextarg+1], &val);
1605			if (!diag)
1606				radix = (int) val;
1607		}
1608	}
1609
1610	if (strcmp(argv[0], "mdr") == 0)
1611		return kdb_mdr(addr, mdcount);
1612
1613	switch (radix) {
1614	case 10:
1615		fmtchar = 'd';
1616		break;
1617	case 16:
1618		fmtchar = 'x';
1619		break;
1620	case 8:
1621		fmtchar = 'o';
1622		break;
1623	default:
1624		return KDB_BADRADIX;
1625	}
1626
1627	last_radix = radix;
1628
1629	if (bytesperword > KDB_WORD_SIZE)
1630		return KDB_BADWIDTH;
1631
1632	switch (bytesperword) {
1633	case 8:
1634		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1635		break;
1636	case 4:
1637		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1638		break;
1639	case 2:
1640		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1641		break;
1642	case 1:
1643		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1644		break;
1645	default:
1646		return KDB_BADWIDTH;
1647	}
1648
1649	last_repeat = repeat;
1650	last_bytesperword = bytesperword;
1651
1652	if (strcmp(argv[0], "mds") == 0) {
1653		symbolic = 1;
1654		/* Do not save these changes as last_*, they are temporary mds
1655		 * overrides.
1656		 */
1657		bytesperword = KDB_WORD_SIZE;
1658		repeat = mdcount;
1659		kdbgetintenv("NOSECT", &nosect);
1660	}
1661
1662	/* Round address down modulo BYTESPERWORD */
1663
1664	addr &= ~(bytesperword-1);
1665
1666	while (repeat > 0) {
1667		unsigned long a;
1668		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1669
1670		if (KDB_FLAG(CMD_INTERRUPT))
1671			return 0;
1672		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1673			if (phys) {
1674				if (kdb_getphysword(&word, a, bytesperword)
1675						|| word)
1676					break;
1677			} else if (kdb_getword(&word, a, bytesperword) || word)
1678				break;
1679		}
1680		n = min(num, repeat);
1681		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1682			    num, repeat, phys);
1683		addr += bytesperword * n;
1684		repeat -= n;
1685		z = (z + num - 1) / num;
1686		if (z > 2) {
1687			int s = num * (z-2);
1688			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1689				   " zero suppressed\n",
1690				addr, addr + bytesperword * s - 1);
1691			addr += bytesperword * s;
1692			repeat -= s;
1693		}
1694	}
1695	last_addr = addr;
1696
1697	return 0;
1698}
1699
1700/*
1701 * kdb_mm - This function implements the 'mm' command.
1702 *	mm address-expression new-value
1703 * Remarks:
1704 *	mm works on machine words, mmW works on bytes.
1705 */
1706static int kdb_mm(int argc, const char **argv)
1707{
1708	int diag;
1709	unsigned long addr;
1710	long offset = 0;
1711	unsigned long contents;
1712	int nextarg;
1713	int width;
1714
1715	if (argv[0][2] && !isdigit(argv[0][2]))
1716		return KDB_NOTFOUND;
1717
1718	if (argc < 2)
1719		return KDB_ARGCOUNT;
1720
1721	nextarg = 1;
1722	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1723	if (diag)
1724		return diag;
1725
1726	if (nextarg > argc)
1727		return KDB_ARGCOUNT;
1728	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1729	if (diag)
1730		return diag;
1731
1732	if (nextarg != argc + 1)
1733		return KDB_ARGCOUNT;
1734
1735	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1736	diag = kdb_putword(addr, contents, width);
1737	if (diag)
1738		return diag;
1739
1740	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1741
1742	return 0;
1743}
1744
1745/*
1746 * kdb_go - This function implements the 'go' command.
1747 *	go [address-expression]
1748 */
1749static int kdb_go(int argc, const char **argv)
1750{
1751	unsigned long addr;
1752	int diag;
1753	int nextarg;
1754	long offset;
1755
1756	if (raw_smp_processor_id() != kdb_initial_cpu) {
1757		kdb_printf("go must execute on the entry cpu, "
1758			   "please use \"cpu %d\" and then execute go\n",
1759			   kdb_initial_cpu);
1760		return KDB_BADCPUNUM;
1761	}
1762	if (argc == 1) {
1763		nextarg = 1;
1764		diag = kdbgetaddrarg(argc, argv, &nextarg,
1765				     &addr, &offset, NULL);
1766		if (diag)
1767			return diag;
1768	} else if (argc) {
1769		return KDB_ARGCOUNT;
1770	}
1771
1772	diag = KDB_CMD_GO;
1773	if (KDB_FLAG(CATASTROPHIC)) {
1774		kdb_printf("Catastrophic error detected\n");
1775		kdb_printf("kdb_continue_catastrophic=%d, ",
1776			kdb_continue_catastrophic);
1777		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1778			kdb_printf("type go a second time if you really want "
1779				   "to continue\n");
1780			return 0;
1781		}
1782		if (kdb_continue_catastrophic == 2) {
1783			kdb_printf("forcing reboot\n");
1784			kdb_reboot(0, NULL);
1785		}
1786		kdb_printf("attempting to continue\n");
1787	}
1788	return diag;
1789}
1790
1791/*
1792 * kdb_rd - This function implements the 'rd' command.
1793 */
1794static int kdb_rd(int argc, const char **argv)
1795{
1796	int len = kdb_check_regs();
1797#if DBG_MAX_REG_NUM > 0
1798	int i;
1799	char *rname;
1800	int rsize;
1801	u64 reg64;
1802	u32 reg32;
1803	u16 reg16;
1804	u8 reg8;
1805
1806	if (len)
1807		return len;
1808
1809	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1810		rsize = dbg_reg_def[i].size * 2;
1811		if (rsize > 16)
1812			rsize = 2;
1813		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1814			len = 0;
1815			kdb_printf("\n");
1816		}
1817		if (len)
1818			len += kdb_printf("  ");
1819		switch(dbg_reg_def[i].size * 8) {
1820		case 8:
1821			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1822			if (!rname)
1823				break;
1824			len += kdb_printf("%s: %02x", rname, reg8);
1825			break;
1826		case 16:
1827			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1828			if (!rname)
1829				break;
1830			len += kdb_printf("%s: %04x", rname, reg16);
1831			break;
1832		case 32:
1833			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1834			if (!rname)
1835				break;
1836			len += kdb_printf("%s: %08x", rname, reg32);
1837			break;
1838		case 64:
1839			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1840			if (!rname)
1841				break;
1842			len += kdb_printf("%s: %016llx", rname, reg64);
1843			break;
1844		default:
1845			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1846		}
1847	}
1848	kdb_printf("\n");
1849#else
1850	if (len)
1851		return len;
1852
1853	kdb_dumpregs(kdb_current_regs);
1854#endif
1855	return 0;
1856}
1857
1858/*
1859 * kdb_rm - This function implements the 'rm' (register modify)  command.
1860 *	rm register-name new-contents
1861 * Remarks:
1862 *	Allows register modification with the same restrictions as gdb
1863 */
1864static int kdb_rm(int argc, const char **argv)
1865{
1866#if DBG_MAX_REG_NUM > 0
1867	int diag;
1868	const char *rname;
1869	int i;
1870	u64 reg64;
1871	u32 reg32;
1872	u16 reg16;
1873	u8 reg8;
1874
1875	if (argc != 2)
1876		return KDB_ARGCOUNT;
1877	/*
1878	 * Allow presence or absence of leading '%' symbol.
1879	 */
1880	rname = argv[1];
1881	if (*rname == '%')
1882		rname++;
1883
1884	diag = kdbgetu64arg(argv[2], &reg64);
1885	if (diag)
1886		return diag;
1887
1888	diag = kdb_check_regs();
1889	if (diag)
1890		return diag;
1891
1892	diag = KDB_BADREG;
1893	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1894		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1895			diag = 0;
1896			break;
1897		}
1898	}
1899	if (!diag) {
1900		switch(dbg_reg_def[i].size * 8) {
1901		case 8:
1902			reg8 = reg64;
1903			dbg_set_reg(i, &reg8, kdb_current_regs);
1904			break;
1905		case 16:
1906			reg16 = reg64;
1907			dbg_set_reg(i, &reg16, kdb_current_regs);
1908			break;
1909		case 32:
1910			reg32 = reg64;
1911			dbg_set_reg(i, &reg32, kdb_current_regs);
1912			break;
1913		case 64:
1914			dbg_set_reg(i, &reg64, kdb_current_regs);
1915			break;
1916		}
1917	}
1918	return diag;
1919#else
1920	kdb_printf("ERROR: Register set currently not implemented\n");
1921    return 0;
1922#endif
1923}
1924
1925#if defined(CONFIG_MAGIC_SYSRQ)
1926/*
1927 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1928 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1929 *		sr <magic-sysrq-code>
1930 */
1931static int kdb_sr(int argc, const char **argv)
1932{
 
 
 
1933	if (argc != 1)
1934		return KDB_ARGCOUNT;
 
1935	kdb_trap_printk++;
1936	__handle_sysrq(*argv[1], false);
1937	kdb_trap_printk--;
1938
1939	return 0;
1940}
1941#endif	/* CONFIG_MAGIC_SYSRQ */
1942
1943/*
1944 * kdb_ef - This function implements the 'regs' (display exception
1945 *	frame) command.  This command takes an address and expects to
1946 *	find an exception frame at that address, formats and prints
1947 *	it.
1948 *		regs address-expression
1949 * Remarks:
1950 *	Not done yet.
1951 */
1952static int kdb_ef(int argc, const char **argv)
1953{
1954	int diag;
1955	unsigned long addr;
1956	long offset;
1957	int nextarg;
1958
1959	if (argc != 1)
1960		return KDB_ARGCOUNT;
1961
1962	nextarg = 1;
1963	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1964	if (diag)
1965		return diag;
1966	show_regs((struct pt_regs *)addr);
1967	return 0;
1968}
1969
1970#if defined(CONFIG_MODULES)
1971/*
1972 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
1973 *	currently loaded kernel modules.
1974 *	Mostly taken from userland lsmod.
1975 */
1976static int kdb_lsmod(int argc, const char **argv)
1977{
1978	struct module *mod;
1979
1980	if (argc != 0)
1981		return KDB_ARGCOUNT;
1982
1983	kdb_printf("Module                  Size  modstruct     Used by\n");
1984	list_for_each_entry(mod, kdb_modules, list) {
 
 
1985
1986		kdb_printf("%-20s%8u  0x%p ", mod->name,
1987			   mod->core_size, (void *)mod);
1988#ifdef CONFIG_MODULE_UNLOAD
1989		kdb_printf("%4ld ", module_refcount(mod));
1990#endif
1991		if (mod->state == MODULE_STATE_GOING)
1992			kdb_printf(" (Unloading)");
1993		else if (mod->state == MODULE_STATE_COMING)
1994			kdb_printf(" (Loading)");
1995		else
1996			kdb_printf(" (Live)");
1997		kdb_printf(" 0x%p", mod->module_core);
1998
1999#ifdef CONFIG_MODULE_UNLOAD
2000		{
2001			struct module_use *use;
2002			kdb_printf(" [ ");
2003			list_for_each_entry(use, &mod->source_list,
2004					    source_list)
2005				kdb_printf("%s ", use->target->name);
2006			kdb_printf("]\n");
2007		}
2008#endif
2009	}
2010
2011	return 0;
2012}
2013
2014#endif	/* CONFIG_MODULES */
2015
2016/*
2017 * kdb_env - This function implements the 'env' command.  Display the
2018 *	current environment variables.
2019 */
2020
2021static int kdb_env(int argc, const char **argv)
2022{
2023	int i;
2024
2025	for (i = 0; i < __nenv; i++) {
2026		if (__env[i])
2027			kdb_printf("%s\n", __env[i]);
2028	}
2029
2030	if (KDB_DEBUG(MASK))
2031		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2032
2033	return 0;
2034}
2035
2036#ifdef CONFIG_PRINTK
2037/*
2038 * kdb_dmesg - This function implements the 'dmesg' command to display
2039 *	the contents of the syslog buffer.
2040 *		dmesg [lines] [adjust]
2041 */
2042static int kdb_dmesg(int argc, const char **argv)
2043{
2044	int diag;
2045	int logging;
2046	int lines = 0;
2047	int adjust = 0;
2048	int n = 0;
2049	int skip = 0;
2050	struct kmsg_dumper dumper = { .active = 1 };
2051	size_t len;
2052	char buf[201];
2053
2054	if (argc > 2)
2055		return KDB_ARGCOUNT;
2056	if (argc) {
2057		char *cp;
2058		lines = simple_strtol(argv[1], &cp, 0);
2059		if (*cp)
2060			lines = 0;
2061		if (argc > 1) {
2062			adjust = simple_strtoul(argv[2], &cp, 0);
2063			if (*cp || adjust < 0)
2064				adjust = 0;
2065		}
2066	}
2067
2068	/* disable LOGGING if set */
2069	diag = kdbgetintenv("LOGGING", &logging);
2070	if (!diag && logging) {
2071		const char *setargs[] = { "set", "LOGGING", "0" };
2072		kdb_set(2, setargs);
2073	}
2074
2075	kmsg_dump_rewind_nolock(&dumper);
2076	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2077		n++;
2078
2079	if (lines < 0) {
2080		if (adjust >= n)
2081			kdb_printf("buffer only contains %d lines, nothing "
2082				   "printed\n", n);
2083		else if (adjust - lines >= n)
2084			kdb_printf("buffer only contains %d lines, last %d "
2085				   "lines printed\n", n, n - adjust);
2086		skip = adjust;
2087		lines = abs(lines);
2088	} else if (lines > 0) {
2089		skip = n - lines - adjust;
2090		lines = abs(lines);
2091		if (adjust >= n) {
2092			kdb_printf("buffer only contains %d lines, "
2093				   "nothing printed\n", n);
2094			skip = n;
2095		} else if (skip < 0) {
2096			lines += skip;
2097			skip = 0;
2098			kdb_printf("buffer only contains %d lines, first "
2099				   "%d lines printed\n", n, lines);
2100		}
2101	} else {
2102		lines = n;
2103	}
2104
2105	if (skip >= n || skip < 0)
2106		return 0;
2107
2108	kmsg_dump_rewind_nolock(&dumper);
2109	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2110		if (skip) {
2111			skip--;
2112			continue;
2113		}
2114		if (!lines--)
2115			break;
 
 
2116
2117		kdb_printf("%.*s\n", (int)len - 1, buf);
2118	}
2119
2120	return 0;
2121}
2122#endif /* CONFIG_PRINTK */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123/*
2124 * kdb_cpu - This function implements the 'cpu' command.
2125 *	cpu	[<cpunum>]
2126 * Returns:
2127 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2128 */
2129static void kdb_cpu_status(void)
2130{
2131	int i, start_cpu, first_print = 1;
2132	char state, prev_state = '?';
2133
2134	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2135	kdb_printf("Available cpus: ");
2136	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2137		if (!cpu_online(i)) {
2138			state = 'F';	/* cpu is offline */
 
 
2139		} else {
2140			state = ' ';	/* cpu is responding to kdb */
2141			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2142				state = 'I';	/* idle task */
2143		}
2144		if (state != prev_state) {
2145			if (prev_state != '?') {
2146				if (!first_print)
2147					kdb_printf(", ");
2148				first_print = 0;
2149				kdb_printf("%d", start_cpu);
2150				if (start_cpu < i-1)
2151					kdb_printf("-%d", i-1);
2152				if (prev_state != ' ')
2153					kdb_printf("(%c)", prev_state);
2154			}
2155			prev_state = state;
2156			start_cpu = i;
2157		}
2158	}
2159	/* print the trailing cpus, ignoring them if they are all offline */
2160	if (prev_state != 'F') {
2161		if (!first_print)
2162			kdb_printf(", ");
2163		kdb_printf("%d", start_cpu);
2164		if (start_cpu < i-1)
2165			kdb_printf("-%d", i-1);
2166		if (prev_state != ' ')
2167			kdb_printf("(%c)", prev_state);
2168	}
2169	kdb_printf("\n");
2170}
2171
2172static int kdb_cpu(int argc, const char **argv)
2173{
2174	unsigned long cpunum;
2175	int diag;
2176
2177	if (argc == 0) {
2178		kdb_cpu_status();
2179		return 0;
2180	}
2181
2182	if (argc != 1)
2183		return KDB_ARGCOUNT;
2184
2185	diag = kdbgetularg(argv[1], &cpunum);
2186	if (diag)
2187		return diag;
2188
2189	/*
2190	 * Validate cpunum
2191	 */
2192	if ((cpunum > NR_CPUS) || !cpu_online(cpunum))
2193		return KDB_BADCPUNUM;
2194
2195	dbg_switch_cpu = cpunum;
2196
2197	/*
2198	 * Switch to other cpu
2199	 */
2200	return KDB_CMD_CPU;
2201}
2202
2203/* The user may not realize that ps/bta with no parameters does not print idle
2204 * or sleeping system daemon processes, so tell them how many were suppressed.
2205 */
2206void kdb_ps_suppressed(void)
2207{
2208	int idle = 0, daemon = 0;
2209	unsigned long mask_I = kdb_task_state_string("I"),
2210		      mask_M = kdb_task_state_string("M");
2211	unsigned long cpu;
2212	const struct task_struct *p, *g;
2213	for_each_online_cpu(cpu) {
2214		p = kdb_curr_task(cpu);
2215		if (kdb_task_state(p, mask_I))
2216			++idle;
2217	}
2218	kdb_do_each_thread(g, p) {
2219		if (kdb_task_state(p, mask_M))
2220			++daemon;
2221	} kdb_while_each_thread(g, p);
2222	if (idle || daemon) {
2223		if (idle)
2224			kdb_printf("%d idle process%s (state I)%s\n",
2225				   idle, idle == 1 ? "" : "es",
2226				   daemon ? " and " : "");
2227		if (daemon)
2228			kdb_printf("%d sleeping system daemon (state M) "
2229				   "process%s", daemon,
2230				   daemon == 1 ? "" : "es");
2231		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2232	}
2233}
2234
2235/*
2236 * kdb_ps - This function implements the 'ps' command which shows a
2237 *	list of the active processes.
2238 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2239 */
2240void kdb_ps1(const struct task_struct *p)
2241{
2242	int cpu;
2243	unsigned long tmp;
2244
2245	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2246		return;
2247
2248	cpu = kdb_process_cpu(p);
2249	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2250		   (void *)p, p->pid, p->parent->pid,
2251		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2252		   kdb_task_state_char(p),
2253		   (void *)(&p->thread),
2254		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2255		   p->comm);
2256	if (kdb_task_has_cpu(p)) {
2257		if (!KDB_TSK(cpu)) {
2258			kdb_printf("  Error: no saved data for this cpu\n");
2259		} else {
2260			if (KDB_TSK(cpu) != p)
2261				kdb_printf("  Error: does not match running "
2262				   "process table (0x%p)\n", KDB_TSK(cpu));
2263		}
2264	}
2265}
2266
2267static int kdb_ps(int argc, const char **argv)
2268{
2269	struct task_struct *g, *p;
2270	unsigned long mask, cpu;
2271
2272	if (argc == 0)
2273		kdb_ps_suppressed();
2274	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2275		(int)(2*sizeof(void *))+2, "Task Addr",
2276		(int)(2*sizeof(void *))+2, "Thread");
2277	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2278	/* Run the active tasks first */
2279	for_each_online_cpu(cpu) {
2280		if (KDB_FLAG(CMD_INTERRUPT))
2281			return 0;
2282		p = kdb_curr_task(cpu);
2283		if (kdb_task_state(p, mask))
2284			kdb_ps1(p);
2285	}
2286	kdb_printf("\n");
2287	/* Now the real tasks */
2288	kdb_do_each_thread(g, p) {
2289		if (KDB_FLAG(CMD_INTERRUPT))
2290			return 0;
2291		if (kdb_task_state(p, mask))
2292			kdb_ps1(p);
2293	} kdb_while_each_thread(g, p);
2294
2295	return 0;
2296}
2297
2298/*
2299 * kdb_pid - This function implements the 'pid' command which switches
2300 *	the currently active process.
2301 *		pid [<pid> | R]
2302 */
2303static int kdb_pid(int argc, const char **argv)
2304{
2305	struct task_struct *p;
2306	unsigned long val;
2307	int diag;
2308
2309	if (argc > 1)
2310		return KDB_ARGCOUNT;
2311
2312	if (argc) {
2313		if (strcmp(argv[1], "R") == 0) {
2314			p = KDB_TSK(kdb_initial_cpu);
2315		} else {
2316			diag = kdbgetularg(argv[1], &val);
2317			if (diag)
2318				return KDB_BADINT;
2319
2320			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2321			if (!p) {
2322				kdb_printf("No task with pid=%d\n", (pid_t)val);
2323				return 0;
2324			}
2325		}
2326		kdb_set_current_task(p);
2327	}
2328	kdb_printf("KDB current process is %s(pid=%d)\n",
2329		   kdb_current_task->comm,
2330		   kdb_current_task->pid);
2331
2332	return 0;
2333}
2334
2335/*
2336 * kdb_ll - This function implements the 'll' command which follows a
2337 *	linked list and executes an arbitrary command for each
2338 *	element.
2339 */
2340static int kdb_ll(int argc, const char **argv)
2341{
2342	int diag = 0;
2343	unsigned long addr;
2344	long offset = 0;
2345	unsigned long va;
2346	unsigned long linkoffset;
2347	int nextarg;
2348	const char *command;
2349
2350	if (argc != 3)
2351		return KDB_ARGCOUNT;
2352
2353	nextarg = 1;
2354	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
2355	if (diag)
2356		return diag;
2357
2358	diag = kdbgetularg(argv[2], &linkoffset);
2359	if (diag)
2360		return diag;
2361
2362	/*
2363	 * Using the starting address as
2364	 * the first element in the list, and assuming that
2365	 * the list ends with a null pointer.
2366	 */
2367
2368	va = addr;
2369	command = kdb_strdup(argv[3], GFP_KDB);
2370	if (!command) {
2371		kdb_printf("%s: cannot duplicate command\n", __func__);
2372		return 0;
2373	}
2374	/* Recursive use of kdb_parse, do not use argv after this point */
2375	argv = NULL;
2376
2377	while (va) {
2378		char buf[80];
2379
2380		if (KDB_FLAG(CMD_INTERRUPT))
2381			goto out;
2382
2383		sprintf(buf, "%s " kdb_machreg_fmt "\n", command, va);
2384		diag = kdb_parse(buf);
2385		if (diag)
2386			goto out;
2387
2388		addr = va + linkoffset;
2389		if (kdb_getword(&va, addr, sizeof(va)))
2390			goto out;
2391	}
2392
2393out:
2394	kfree(command);
2395	return diag;
2396}
2397
2398static int kdb_kgdb(int argc, const char **argv)
2399{
2400	return KDB_CMD_KGDB;
2401}
2402
2403/*
2404 * kdb_help - This function implements the 'help' and '?' commands.
2405 */
2406static int kdb_help(int argc, const char **argv)
2407{
2408	kdbtab_t *kt;
2409	int i;
2410
2411	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2412	kdb_printf("-----------------------------"
2413		   "-----------------------------\n");
2414	for_each_kdbcmd(kt, i) {
2415		if (kt->cmd_name)
2416			kdb_printf("%-15.15s %-20.20s %s\n", kt->cmd_name,
2417				   kt->cmd_usage, kt->cmd_help);
2418		if (KDB_FLAG(CMD_INTERRUPT))
2419			return 0;
 
 
 
 
 
 
 
 
2420	}
2421	return 0;
2422}
2423
2424/*
2425 * kdb_kill - This function implements the 'kill' commands.
2426 */
2427static int kdb_kill(int argc, const char **argv)
2428{
2429	long sig, pid;
2430	char *endp;
2431	struct task_struct *p;
2432	struct siginfo info;
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if (sig >= 0) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	info.si_signo = sig;
2462	info.si_errno = 0;
2463	info.si_code = SI_USER;
2464	info.si_pid = pid;  /* same capabilities as process being signalled */
2465	info.si_uid = 0;    /* kdb has root authority */
2466	kdb_send_sig_info(p, &info);
2467	return 0;
2468}
2469
2470struct kdb_tm {
2471	int tm_sec;	/* seconds */
2472	int tm_min;	/* minutes */
2473	int tm_hour;	/* hours */
2474	int tm_mday;	/* day of the month */
2475	int tm_mon;	/* month */
2476	int tm_year;	/* year */
2477};
2478
2479static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2480{
2481	/* This will work from 1970-2099, 2100 is not a leap year */
2482	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2483				 31, 30, 31, 30, 31 };
2484	memset(tm, 0, sizeof(*tm));
2485	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2486	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2487		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2488	tm->tm_min =  tm->tm_sec / 60 % 60;
2489	tm->tm_hour = tm->tm_sec / 60 / 60;
2490	tm->tm_sec =  tm->tm_sec % 60;
2491	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2492	tm->tm_mday %= (4*365+1);
2493	mon_day[1] = 29;
2494	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2495		tm->tm_mday -= mon_day[tm->tm_mon];
2496		if (++tm->tm_mon == 12) {
2497			tm->tm_mon = 0;
2498			++tm->tm_year;
2499			mon_day[1] = 28;
2500		}
2501	}
2502	++tm->tm_mday;
2503}
2504
2505/*
2506 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2507 * I cannot call that code directly from kdb, it has an unconditional
2508 * cli()/sti() and calls routines that take locks which can stop the debugger.
2509 */
2510static void kdb_sysinfo(struct sysinfo *val)
2511{
2512	struct timespec uptime;
2513	do_posix_clock_monotonic_gettime(&uptime);
2514	memset(val, 0, sizeof(*val));
2515	val->uptime = uptime.tv_sec;
2516	val->loads[0] = avenrun[0];
2517	val->loads[1] = avenrun[1];
2518	val->loads[2] = avenrun[2];
2519	val->procs = nr_threads-1;
2520	si_meminfo(val);
2521
2522	return;
2523}
2524
2525/*
2526 * kdb_summary - This function implements the 'summary' command.
2527 */
2528static int kdb_summary(int argc, const char **argv)
2529{
2530	struct timespec now;
2531	struct kdb_tm tm;
2532	struct sysinfo val;
2533
2534	if (argc)
2535		return KDB_ARGCOUNT;
2536
2537	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2538	kdb_printf("release    %s\n", init_uts_ns.name.release);
2539	kdb_printf("version    %s\n", init_uts_ns.name.version);
2540	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2541	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2542	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2543	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2544
2545	now = __current_kernel_time();
2546	kdb_gmtime(&now, &tm);
2547	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2548		   "tz_minuteswest %d\n",
2549		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2550		tm.tm_hour, tm.tm_min, tm.tm_sec,
2551		sys_tz.tz_minuteswest);
2552
2553	kdb_sysinfo(&val);
2554	kdb_printf("uptime     ");
2555	if (val.uptime > (24*60*60)) {
2556		int days = val.uptime / (24*60*60);
2557		val.uptime %= (24*60*60);
2558		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2559	}
2560	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2561
2562	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2563
2564#define LOAD_INT(x) ((x) >> FSHIFT)
2565#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2566	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2567		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2568		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2569		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2570#undef LOAD_INT
2571#undef LOAD_FRAC
2572	/* Display in kilobytes */
2573#define K(x) ((x) << (PAGE_SHIFT - 10))
2574	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2575		   "Buffers:        %8lu kB\n",
2576		   val.totalram, val.freeram, val.bufferram);
2577	return 0;
2578}
2579
2580/*
2581 * kdb_per_cpu - This function implements the 'per_cpu' command.
2582 */
2583static int kdb_per_cpu(int argc, const char **argv)
2584{
2585	char fmtstr[64];
2586	int cpu, diag, nextarg = 1;
2587	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2588
2589	if (argc < 1 || argc > 3)
2590		return KDB_ARGCOUNT;
2591
2592	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2593	if (diag)
2594		return diag;
2595
2596	if (argc >= 2) {
2597		diag = kdbgetularg(argv[2], &bytesperword);
2598		if (diag)
2599			return diag;
2600	}
2601	if (!bytesperword)
2602		bytesperword = KDB_WORD_SIZE;
2603	else if (bytesperword > KDB_WORD_SIZE)
2604		return KDB_BADWIDTH;
2605	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2606	if (argc >= 3) {
2607		diag = kdbgetularg(argv[3], &whichcpu);
2608		if (diag)
2609			return diag;
2610		if (!cpu_online(whichcpu)) {
2611			kdb_printf("cpu %ld is not online\n", whichcpu);
2612			return KDB_BADCPUNUM;
2613		}
2614	}
2615
2616	/* Most architectures use __per_cpu_offset[cpu], some use
2617	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2618	 */
2619#ifdef	__per_cpu_offset
2620#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2621#else
2622#ifdef	CONFIG_SMP
2623#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2624#else
2625#define KDB_PCU(cpu) 0
2626#endif
2627#endif
2628	for_each_online_cpu(cpu) {
2629		if (KDB_FLAG(CMD_INTERRUPT))
2630			return 0;
2631
2632		if (whichcpu != ~0UL && whichcpu != cpu)
2633			continue;
2634		addr = symaddr + KDB_PCU(cpu);
2635		diag = kdb_getword(&val, addr, bytesperword);
2636		if (diag) {
2637			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2638				   "read, diag=%d\n", cpu, addr, diag);
2639			continue;
2640		}
2641		kdb_printf("%5d ", cpu);
2642		kdb_md_line(fmtstr, addr,
2643			bytesperword == KDB_WORD_SIZE,
2644			1, bytesperword, 1, 1, 0);
2645	}
2646#undef KDB_PCU
2647	return 0;
2648}
2649
2650/*
2651 * display help for the use of cmd | grep pattern
2652 */
2653static int kdb_grep_help(int argc, const char **argv)
2654{
2655	kdb_printf("Usage of  cmd args | grep pattern:\n");
2656	kdb_printf("  Any command's output may be filtered through an ");
2657	kdb_printf("emulated 'pipe'.\n");
2658	kdb_printf("  'grep' is just a key word.\n");
2659	kdb_printf("  The pattern may include a very limited set of "
2660		   "metacharacters:\n");
2661	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2662	kdb_printf("  And if there are spaces in the pattern, you may "
2663		   "quote it:\n");
2664	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2665		   " or \"^pat tern$\"\n");
2666	return 0;
2667}
2668
2669/*
2670 * kdb_register_repeat - This function is used to register a kernel
2671 * 	debugger command.
2672 * Inputs:
2673 *	cmd	Command name
2674 *	func	Function to execute the command
2675 *	usage	A simple usage string showing arguments
2676 *	help	A simple help string describing command
2677 *	repeat	Does the command auto repeat on enter?
2678 * Returns:
2679 *	zero for success, one if a duplicate command.
2680 */
2681#define kdb_command_extend 50	/* arbitrary */
2682int kdb_register_repeat(char *cmd,
2683			kdb_func_t func,
2684			char *usage,
2685			char *help,
2686			short minlen,
2687			kdb_repeat_t repeat)
2688{
2689	int i;
2690	kdbtab_t *kp;
2691
2692	/*
2693	 *  Brute force method to determine duplicates
2694	 */
2695	for_each_kdbcmd(kp, i) {
2696		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2697			kdb_printf("Duplicate kdb command registered: "
2698				"%s, func %p help %s\n", cmd, func, help);
2699			return 1;
2700		}
2701	}
2702
2703	/*
2704	 * Insert command into first available location in table
2705	 */
2706	for_each_kdbcmd(kp, i) {
2707		if (kp->cmd_name == NULL)
2708			break;
2709	}
2710
2711	if (i >= kdb_max_commands) {
2712		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2713			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2714		if (!new) {
2715			kdb_printf("Could not allocate new kdb_command "
2716				   "table\n");
2717			return 1;
2718		}
2719		if (kdb_commands) {
2720			memcpy(new, kdb_commands,
2721			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2722			kfree(kdb_commands);
2723		}
2724		memset(new + kdb_max_commands, 0,
2725		       kdb_command_extend * sizeof(*new));
2726		kdb_commands = new;
2727		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2728		kdb_max_commands += kdb_command_extend;
2729	}
2730
2731	kp->cmd_name   = cmd;
2732	kp->cmd_func   = func;
2733	kp->cmd_usage  = usage;
2734	kp->cmd_help   = help;
2735	kp->cmd_flags  = 0;
2736	kp->cmd_minlen = minlen;
2737	kp->cmd_repeat = repeat;
2738
2739	return 0;
2740}
2741EXPORT_SYMBOL_GPL(kdb_register_repeat);
2742
2743
2744/*
2745 * kdb_register - Compatibility register function for commands that do
2746 *	not need to specify a repeat state.  Equivalent to
2747 *	kdb_register_repeat with KDB_REPEAT_NONE.
2748 * Inputs:
2749 *	cmd	Command name
2750 *	func	Function to execute the command
2751 *	usage	A simple usage string showing arguments
2752 *	help	A simple help string describing command
2753 * Returns:
2754 *	zero for success, one if a duplicate command.
2755 */
2756int kdb_register(char *cmd,
2757	     kdb_func_t func,
2758	     char *usage,
2759	     char *help,
2760	     short minlen)
2761{
2762	return kdb_register_repeat(cmd, func, usage, help, minlen,
2763				   KDB_REPEAT_NONE);
2764}
2765EXPORT_SYMBOL_GPL(kdb_register);
2766
2767/*
2768 * kdb_unregister - This function is used to unregister a kernel
2769 *	debugger command.  It is generally called when a module which
2770 *	implements kdb commands is unloaded.
2771 * Inputs:
2772 *	cmd	Command name
2773 * Returns:
2774 *	zero for success, one command not registered.
2775 */
2776int kdb_unregister(char *cmd)
2777{
2778	int i;
2779	kdbtab_t *kp;
2780
2781	/*
2782	 *  find the command.
2783	 */
2784	for_each_kdbcmd(kp, i) {
2785		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2786			kp->cmd_name = NULL;
2787			return 0;
2788		}
2789	}
2790
2791	/* Couldn't find it.  */
2792	return 1;
2793}
2794EXPORT_SYMBOL_GPL(kdb_unregister);
2795
2796/* Initialize the kdb command table. */
2797static void __init kdb_inittab(void)
2798{
2799	int i;
2800	kdbtab_t *kp;
2801
2802	for_each_kdbcmd(kp, i)
2803		kp->cmd_name = NULL;
2804
2805	kdb_register_repeat("md", kdb_md, "<vaddr>",
2806	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2807			    KDB_REPEAT_NO_ARGS);
2808	kdb_register_repeat("mdr", kdb_md, "<vaddr> <bytes>",
2809	  "Display Raw Memory", 0, KDB_REPEAT_NO_ARGS);
2810	kdb_register_repeat("mdp", kdb_md, "<paddr> <bytes>",
2811	  "Display Physical Memory", 0, KDB_REPEAT_NO_ARGS);
2812	kdb_register_repeat("mds", kdb_md, "<vaddr>",
2813	  "Display Memory Symbolically", 0, KDB_REPEAT_NO_ARGS);
2814	kdb_register_repeat("mm", kdb_mm, "<vaddr> <contents>",
2815	  "Modify Memory Contents", 0, KDB_REPEAT_NO_ARGS);
2816	kdb_register_repeat("go", kdb_go, "[<vaddr>]",
2817	  "Continue Execution", 1, KDB_REPEAT_NONE);
2818	kdb_register_repeat("rd", kdb_rd, "",
2819	  "Display Registers", 0, KDB_REPEAT_NONE);
2820	kdb_register_repeat("rm", kdb_rm, "<reg> <contents>",
2821	  "Modify Registers", 0, KDB_REPEAT_NONE);
2822	kdb_register_repeat("ef", kdb_ef, "<vaddr>",
2823	  "Display exception frame", 0, KDB_REPEAT_NONE);
2824	kdb_register_repeat("bt", kdb_bt, "[<vaddr>]",
2825	  "Stack traceback", 1, KDB_REPEAT_NONE);
2826	kdb_register_repeat("btp", kdb_bt, "<pid>",
2827	  "Display stack for process <pid>", 0, KDB_REPEAT_NONE);
2828	kdb_register_repeat("bta", kdb_bt, "[DRSTCZEUIMA]",
2829	  "Display stack all processes", 0, KDB_REPEAT_NONE);
2830	kdb_register_repeat("btc", kdb_bt, "",
2831	  "Backtrace current process on each cpu", 0, KDB_REPEAT_NONE);
2832	kdb_register_repeat("btt", kdb_bt, "<vaddr>",
 
 
 
 
 
 
 
 
 
 
 
 
2833	  "Backtrace process given its struct task address", 0,
2834			    KDB_REPEAT_NONE);
2835	kdb_register_repeat("ll", kdb_ll, "<first-element> <linkoffset> <cmd>",
2836	  "Execute cmd for each element in linked list", 0, KDB_REPEAT_NONE);
2837	kdb_register_repeat("env", kdb_env, "",
2838	  "Show environment variables", 0, KDB_REPEAT_NONE);
2839	kdb_register_repeat("set", kdb_set, "",
2840	  "Set environment variables", 0, KDB_REPEAT_NONE);
2841	kdb_register_repeat("help", kdb_help, "",
2842	  "Display Help Message", 1, KDB_REPEAT_NONE);
2843	kdb_register_repeat("?", kdb_help, "",
2844	  "Display Help Message", 0, KDB_REPEAT_NONE);
2845	kdb_register_repeat("cpu", kdb_cpu, "<cpunum>",
2846	  "Switch to new cpu", 0, KDB_REPEAT_NONE);
2847	kdb_register_repeat("kgdb", kdb_kgdb, "",
2848	  "Enter kgdb mode", 0, KDB_REPEAT_NONE);
2849	kdb_register_repeat("ps", kdb_ps, "[<flags>|A]",
2850	  "Display active task list", 0, KDB_REPEAT_NONE);
2851	kdb_register_repeat("pid", kdb_pid, "<pidnum>",
2852	  "Switch to another task", 0, KDB_REPEAT_NONE);
2853	kdb_register_repeat("reboot", kdb_reboot, "",
2854	  "Reboot the machine immediately", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
2855#if defined(CONFIG_MODULES)
2856	kdb_register_repeat("lsmod", kdb_lsmod, "",
2857	  "List loaded kernel modules", 0, KDB_REPEAT_NONE);
 
2858#endif
2859#if defined(CONFIG_MAGIC_SYSRQ)
2860	kdb_register_repeat("sr", kdb_sr, "<key>",
2861	  "Magic SysRq key", 0, KDB_REPEAT_NONE);
 
2862#endif
2863#if defined(CONFIG_PRINTK)
2864	kdb_register_repeat("dmesg", kdb_dmesg, "[lines]",
2865	  "Display syslog buffer", 0, KDB_REPEAT_NONE);
 
2866#endif
2867	kdb_register_repeat("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2868	  "Define a set of commands, down to endefcmd", 0, KDB_REPEAT_NONE);
2869	kdb_register_repeat("kill", kdb_kill, "<-signal> <pid>",
2870	  "Send a signal to a process", 0, KDB_REPEAT_NONE);
2871	kdb_register_repeat("summary", kdb_summary, "",
2872	  "Summarize the system", 4, KDB_REPEAT_NONE);
2873	kdb_register_repeat("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2874	  "Display per_cpu variables", 3, KDB_REPEAT_NONE);
2875	kdb_register_repeat("grephelp", kdb_grep_help, "",
2876	  "Display help on | grep", 0, KDB_REPEAT_NONE);
 
 
 
 
 
 
 
 
 
 
2877}
2878
2879/* Execute any commands defined in kdb_cmds.  */
2880static void __init kdb_cmd_init(void)
2881{
2882	int i, diag;
2883	for (i = 0; kdb_cmds[i]; ++i) {
2884		diag = kdb_parse(kdb_cmds[i]);
2885		if (diag)
2886			kdb_printf("kdb command %s failed, kdb diag %d\n",
2887				kdb_cmds[i], diag);
2888	}
2889	if (defcmd_in_progress) {
2890		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2891		kdb_parse("endefcmd");
2892	}
2893}
2894
2895/* Initialize kdb_printf, breakpoint tables and kdb state */
2896void __init kdb_init(int lvl)
2897{
2898	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2899	int i;
2900
2901	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2902		return;
2903	for (i = kdb_init_lvl; i < lvl; i++) {
2904		switch (i) {
2905		case KDB_NOT_INITIALIZED:
2906			kdb_inittab();		/* Initialize Command Table */
2907			kdb_initbptab();	/* Initialize Breakpoints */
2908			break;
2909		case KDB_INIT_EARLY:
2910			kdb_cmd_init();		/* Build kdb_cmds tables */
2911			break;
2912		}
2913	}
2914	kdb_init_lvl = lvl;
2915}