Linux Audio

Check our new training course

Loading...
v4.10.11
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
 
 
 
  21#include <linux/sysrq.h>
  22#include <linux/smp.h>
  23#include <linux/utsname.h>
  24#include <linux/vmalloc.h>
  25#include <linux/atomic.h>
  26#include <linux/module.h>
  27#include <linux/moduleparam.h>
  28#include <linux/mm.h>
  29#include <linux/init.h>
  30#include <linux/kallsyms.h>
  31#include <linux/kgdb.h>
  32#include <linux/kdb.h>
 
  33#include <linux/notifier.h>
  34#include <linux/interrupt.h>
  35#include <linux/delay.h>
  36#include <linux/nmi.h>
  37#include <linux/time.h>
  38#include <linux/ptrace.h>
  39#include <linux/sysctl.h>
  40#include <linux/cpu.h>
  41#include <linux/kdebug.h>
  42#include <linux/proc_fs.h>
  43#include <linux/uaccess.h>
  44#include <linux/slab.h>
  45#include "kdb_private.h"
  46
  47#undef	MODULE_PARAM_PREFIX
  48#define	MODULE_PARAM_PREFIX "kdb."
  49
  50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  52
  53char kdb_grep_string[KDB_GREP_STRLEN];
  54int kdb_grepping_flag;
  55EXPORT_SYMBOL(kdb_grepping_flag);
  56int kdb_grep_leading;
  57int kdb_grep_trailing;
  58
  59/*
  60 * Kernel debugger state flags
  61 */
  62int kdb_flags;
  63
  64/*
  65 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  66 * single thread processors through the kernel debugger.
  67 */
  68int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  69int kdb_nextline = 1;
  70int kdb_state;			/* General KDB state */
  71
  72struct task_struct *kdb_current_task;
  73EXPORT_SYMBOL(kdb_current_task);
  74struct pt_regs *kdb_current_regs;
  75
  76const char *kdb_diemsg;
  77static int kdb_go_count;
  78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  79static unsigned int kdb_continue_catastrophic =
  80	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  81#else
  82static unsigned int kdb_continue_catastrophic;
  83#endif
  84
  85/* kdb_commands describes the available commands. */
  86static kdbtab_t *kdb_commands;
  87#define KDB_BASE_CMD_MAX 50
  88static int kdb_max_commands = KDB_BASE_CMD_MAX;
  89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
  90#define for_each_kdbcmd(cmd, num)					\
  91	for ((cmd) = kdb_base_commands, (num) = 0;			\
  92	     num < kdb_max_commands;					\
  93	     num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
  94
  95typedef struct _kdbmsg {
  96	int	km_diag;	/* kdb diagnostic */
  97	char	*km_msg;	/* Corresponding message text */
  98} kdbmsg_t;
  99
 100#define KDBMSG(msgnum, text) \
 101	{ KDB_##msgnum, text }
 102
 103static kdbmsg_t kdbmsgs[] = {
 104	KDBMSG(NOTFOUND, "Command Not Found"),
 105	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 106	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 107	       "8 is only allowed on 64 bit systems"),
 108	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 109	KDBMSG(NOTENV, "Cannot find environment variable"),
 110	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 111	KDBMSG(NOTIMP, "Command not implemented"),
 112	KDBMSG(ENVFULL, "Environment full"),
 113	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 114	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 115#ifdef CONFIG_CPU_XSCALE
 116	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 117#else
 118	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 119#endif
 120	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 121	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 122	KDBMSG(BADMODE, "Invalid IDMODE"),
 123	KDBMSG(BADINT, "Illegal numeric value"),
 124	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 125	KDBMSG(BADREG, "Invalid register name"),
 126	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 127	KDBMSG(BADLENGTH, "Invalid length field"),
 128	KDBMSG(NOBP, "No Breakpoint exists"),
 129	KDBMSG(BADADDR, "Invalid address"),
 130	KDBMSG(NOPERM, "Permission denied"),
 131};
 132#undef KDBMSG
 133
 134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 135
 136
 137/*
 138 * Initial environment.   This is all kept static and local to
 139 * this file.   We don't want to rely on the memory allocation
 140 * mechanisms in the kernel, so we use a very limited allocate-only
 141 * heap for new and altered environment variables.  The entire
 142 * environment is limited to a fixed number of entries (add more
 143 * to __env[] if required) and a fixed amount of heap (add more to
 144 * KDB_ENVBUFSIZE if required).
 145 */
 146
 147static char *__env[] = {
 148#if defined(CONFIG_SMP)
 149 "PROMPT=[%d]kdb> ",
 150#else
 151 "PROMPT=kdb> ",
 152#endif
 153 "MOREPROMPT=more> ",
 154 "RADIX=16",
 155 "MDCOUNT=8",			/* lines of md output */
 156 KDB_PLATFORM_ENV,
 157 "DTABCOUNT=30",
 158 "NOSECT=1",
 159 (char *)0,
 160 (char *)0,
 161 (char *)0,
 162 (char *)0,
 163 (char *)0,
 164 (char *)0,
 165 (char *)0,
 166 (char *)0,
 167 (char *)0,
 168 (char *)0,
 169 (char *)0,
 170 (char *)0,
 171 (char *)0,
 172 (char *)0,
 173 (char *)0,
 174 (char *)0,
 175 (char *)0,
 176 (char *)0,
 177 (char *)0,
 178 (char *)0,
 179 (char *)0,
 180 (char *)0,
 181 (char *)0,
 182 (char *)0,
 183};
 184
 185static const int __nenv = ARRAY_SIZE(__env);
 186
 187struct task_struct *kdb_curr_task(int cpu)
 188{
 189	struct task_struct *p = curr_task(cpu);
 190#ifdef	_TIF_MCA_INIT
 191	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 192		p = krp->p;
 193#endif
 194	return p;
 195}
 196
 197/*
 198 * Check whether the flags of the current command and the permissions
 199 * of the kdb console has allow a command to be run.
 200 */
 201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 202				   bool no_args)
 203{
 204	/* permissions comes from userspace so needs massaging slightly */
 205	permissions &= KDB_ENABLE_MASK;
 206	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 207
 208	/* some commands change group when launched with no arguments */
 209	if (no_args)
 210		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 211
 212	flags |= KDB_ENABLE_ALL;
 213
 214	return permissions & flags;
 215}
 216
 217/*
 218 * kdbgetenv - This function will return the character string value of
 219 *	an environment variable.
 220 * Parameters:
 221 *	match	A character string representing an environment variable.
 222 * Returns:
 223 *	NULL	No environment variable matches 'match'
 224 *	char*	Pointer to string value of environment variable.
 225 */
 226char *kdbgetenv(const char *match)
 227{
 228	char **ep = __env;
 229	int matchlen = strlen(match);
 230	int i;
 231
 232	for (i = 0; i < __nenv; i++) {
 233		char *e = *ep++;
 234
 235		if (!e)
 236			continue;
 237
 238		if ((strncmp(match, e, matchlen) == 0)
 239		 && ((e[matchlen] == '\0')
 240		   || (e[matchlen] == '='))) {
 241			char *cp = strchr(e, '=');
 242			return cp ? ++cp : "";
 243		}
 244	}
 245	return NULL;
 246}
 247
 248/*
 249 * kdballocenv - This function is used to allocate bytes for
 250 *	environment entries.
 251 * Parameters:
 252 *	match	A character string representing a numeric value
 253 * Outputs:
 254 *	*value  the unsigned long representation of the env variable 'match'
 255 * Returns:
 256 *	Zero on success, a kdb diagnostic on failure.
 257 * Remarks:
 258 *	We use a static environment buffer (envbuffer) to hold the values
 259 *	of dynamically generated environment variables (see kdb_set).  Buffer
 260 *	space once allocated is never free'd, so over time, the amount of space
 261 *	(currently 512 bytes) will be exhausted if env variables are changed
 262 *	frequently.
 263 */
 264static char *kdballocenv(size_t bytes)
 265{
 266#define	KDB_ENVBUFSIZE	512
 267	static char envbuffer[KDB_ENVBUFSIZE];
 268	static int envbufsize;
 269	char *ep = NULL;
 270
 271	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 272		ep = &envbuffer[envbufsize];
 273		envbufsize += bytes;
 274	}
 275	return ep;
 276}
 277
 278/*
 279 * kdbgetulenv - This function will return the value of an unsigned
 280 *	long-valued environment variable.
 281 * Parameters:
 282 *	match	A character string representing a numeric value
 283 * Outputs:
 284 *	*value  the unsigned long represntation of the env variable 'match'
 285 * Returns:
 286 *	Zero on success, a kdb diagnostic on failure.
 287 */
 288static int kdbgetulenv(const char *match, unsigned long *value)
 289{
 290	char *ep;
 291
 292	ep = kdbgetenv(match);
 293	if (!ep)
 294		return KDB_NOTENV;
 295	if (strlen(ep) == 0)
 296		return KDB_NOENVVALUE;
 297
 298	*value = simple_strtoul(ep, NULL, 0);
 299
 300	return 0;
 301}
 302
 303/*
 304 * kdbgetintenv - This function will return the value of an
 305 *	integer-valued environment variable.
 306 * Parameters:
 307 *	match	A character string representing an integer-valued env variable
 308 * Outputs:
 309 *	*value  the integer representation of the environment variable 'match'
 310 * Returns:
 311 *	Zero on success, a kdb diagnostic on failure.
 312 */
 313int kdbgetintenv(const char *match, int *value)
 314{
 315	unsigned long val;
 316	int diag;
 317
 318	diag = kdbgetulenv(match, &val);
 319	if (!diag)
 320		*value = (int) val;
 321	return diag;
 322}
 323
 324/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325 * kdbgetularg - This function will convert a numeric string into an
 326 *	unsigned long value.
 327 * Parameters:
 328 *	arg	A character string representing a numeric value
 329 * Outputs:
 330 *	*value  the unsigned long represntation of arg.
 331 * Returns:
 332 *	Zero on success, a kdb diagnostic on failure.
 333 */
 334int kdbgetularg(const char *arg, unsigned long *value)
 335{
 336	char *endp;
 337	unsigned long val;
 338
 339	val = simple_strtoul(arg, &endp, 0);
 340
 341	if (endp == arg) {
 342		/*
 343		 * Also try base 16, for us folks too lazy to type the
 344		 * leading 0x...
 345		 */
 346		val = simple_strtoul(arg, &endp, 16);
 347		if (endp == arg)
 348			return KDB_BADINT;
 349	}
 350
 351	*value = val;
 352
 353	return 0;
 354}
 355
 356int kdbgetu64arg(const char *arg, u64 *value)
 357{
 358	char *endp;
 359	u64 val;
 360
 361	val = simple_strtoull(arg, &endp, 0);
 362
 363	if (endp == arg) {
 364
 365		val = simple_strtoull(arg, &endp, 16);
 366		if (endp == arg)
 367			return KDB_BADINT;
 368	}
 369
 370	*value = val;
 371
 372	return 0;
 373}
 374
 375/*
 376 * kdb_set - This function implements the 'set' command.  Alter an
 377 *	existing environment variable or create a new one.
 378 */
 379int kdb_set(int argc, const char **argv)
 380{
 381	int i;
 382	char *ep;
 383	size_t varlen, vallen;
 384
 385	/*
 386	 * we can be invoked two ways:
 387	 *   set var=value    argv[1]="var", argv[2]="value"
 388	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 389	 * - if the latter, shift 'em down.
 390	 */
 391	if (argc == 3) {
 392		argv[2] = argv[3];
 393		argc--;
 394	}
 395
 396	if (argc != 2)
 397		return KDB_ARGCOUNT;
 398
 399	/*
 
 
 
 
 
 
 
 400	 * Check for internal variables
 401	 */
 402	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 403		unsigned int debugflags;
 404		char *cp;
 405
 406		debugflags = simple_strtoul(argv[2], &cp, 0);
 407		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 408			kdb_printf("kdb: illegal debug flags '%s'\n",
 409				    argv[2]);
 410			return 0;
 411		}
 412		kdb_flags = (kdb_flags &
 413			     ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
 414			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 415
 416		return 0;
 417	}
 418
 419	/*
 420	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 421	 * name, argv[2] = value.
 422	 */
 423	varlen = strlen(argv[1]);
 424	vallen = strlen(argv[2]);
 425	ep = kdballocenv(varlen + vallen + 2);
 426	if (ep == (char *)0)
 427		return KDB_ENVBUFFULL;
 428
 429	sprintf(ep, "%s=%s", argv[1], argv[2]);
 430
 431	ep[varlen+vallen+1] = '\0';
 432
 433	for (i = 0; i < __nenv; i++) {
 434		if (__env[i]
 435		 && ((strncmp(__env[i], argv[1], varlen) == 0)
 436		   && ((__env[i][varlen] == '\0')
 437		    || (__env[i][varlen] == '=')))) {
 438			__env[i] = ep;
 439			return 0;
 440		}
 441	}
 442
 443	/*
 444	 * Wasn't existing variable.  Fit into slot.
 445	 */
 446	for (i = 0; i < __nenv-1; i++) {
 447		if (__env[i] == (char *)0) {
 448			__env[i] = ep;
 449			return 0;
 450		}
 451	}
 452
 453	return KDB_ENVFULL;
 454}
 455
 456static int kdb_check_regs(void)
 457{
 458	if (!kdb_current_regs) {
 459		kdb_printf("No current kdb registers."
 460			   "  You may need to select another task\n");
 461		return KDB_BADREG;
 462	}
 463	return 0;
 464}
 465
 466/*
 467 * kdbgetaddrarg - This function is responsible for parsing an
 468 *	address-expression and returning the value of the expression,
 469 *	symbol name, and offset to the caller.
 470 *
 471 *	The argument may consist of a numeric value (decimal or
 472 *	hexidecimal), a symbol name, a register name (preceded by the
 473 *	percent sign), an environment variable with a numeric value
 474 *	(preceded by a dollar sign) or a simple arithmetic expression
 475 *	consisting of a symbol name, +/-, and a numeric constant value
 476 *	(offset).
 477 * Parameters:
 478 *	argc	- count of arguments in argv
 479 *	argv	- argument vector
 480 *	*nextarg - index to next unparsed argument in argv[]
 481 *	regs	- Register state at time of KDB entry
 482 * Outputs:
 483 *	*value	- receives the value of the address-expression
 484 *	*offset - receives the offset specified, if any
 485 *	*name   - receives the symbol name, if any
 486 *	*nextarg - index to next unparsed argument in argv[]
 487 * Returns:
 488 *	zero is returned on success, a kdb diagnostic code is
 489 *      returned on error.
 490 */
 491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 492		  unsigned long *value,  long *offset,
 493		  char **name)
 494{
 495	unsigned long addr;
 496	unsigned long off = 0;
 497	int positive;
 498	int diag;
 499	int found = 0;
 500	char *symname;
 501	char symbol = '\0';
 502	char *cp;
 503	kdb_symtab_t symtab;
 504
 505	/*
 506	 * If the enable flags prohibit both arbitrary memory access
 507	 * and flow control then there are no reasonable grounds to
 508	 * provide symbol lookup.
 509	 */
 510	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 511			     kdb_cmd_enabled, false))
 512		return KDB_NOPERM;
 513
 514	/*
 515	 * Process arguments which follow the following syntax:
 516	 *
 517	 *  symbol | numeric-address [+/- numeric-offset]
 518	 *  %register
 519	 *  $environment-variable
 520	 */
 521
 522	if (*nextarg > argc)
 523		return KDB_ARGCOUNT;
 524
 525	symname = (char *)argv[*nextarg];
 526
 527	/*
 528	 * If there is no whitespace between the symbol
 529	 * or address and the '+' or '-' symbols, we
 530	 * remember the character and replace it with a
 531	 * null so the symbol/value can be properly parsed
 532	 */
 533	cp = strpbrk(symname, "+-");
 534	if (cp != NULL) {
 535		symbol = *cp;
 536		*cp++ = '\0';
 537	}
 538
 539	if (symname[0] == '$') {
 540		diag = kdbgetulenv(&symname[1], &addr);
 541		if (diag)
 542			return diag;
 543	} else if (symname[0] == '%') {
 544		diag = kdb_check_regs();
 545		if (diag)
 546			return diag;
 547		/* Implement register values with % at a later time as it is
 548		 * arch optional.
 549		 */
 550		return KDB_NOTIMP;
 551	} else {
 552		found = kdbgetsymval(symname, &symtab);
 553		if (found) {
 554			addr = symtab.sym_start;
 555		} else {
 556			diag = kdbgetularg(argv[*nextarg], &addr);
 557			if (diag)
 558				return diag;
 559		}
 560	}
 561
 562	if (!found)
 563		found = kdbnearsym(addr, &symtab);
 564
 565	(*nextarg)++;
 566
 567	if (name)
 568		*name = symname;
 569	if (value)
 570		*value = addr;
 571	if (offset && name && *name)
 572		*offset = addr - symtab.sym_start;
 573
 574	if ((*nextarg > argc)
 575	 && (symbol == '\0'))
 576		return 0;
 577
 578	/*
 579	 * check for +/- and offset
 580	 */
 581
 582	if (symbol == '\0') {
 583		if ((argv[*nextarg][0] != '+')
 584		 && (argv[*nextarg][0] != '-')) {
 585			/*
 586			 * Not our argument.  Return.
 587			 */
 588			return 0;
 589		} else {
 590			positive = (argv[*nextarg][0] == '+');
 591			(*nextarg)++;
 592		}
 593	} else
 594		positive = (symbol == '+');
 595
 596	/*
 597	 * Now there must be an offset!
 598	 */
 599	if ((*nextarg > argc)
 600	 && (symbol == '\0')) {
 601		return KDB_INVADDRFMT;
 602	}
 603
 604	if (!symbol) {
 605		cp = (char *)argv[*nextarg];
 606		(*nextarg)++;
 607	}
 608
 609	diag = kdbgetularg(cp, &off);
 610	if (diag)
 611		return diag;
 612
 613	if (!positive)
 614		off = -off;
 615
 616	if (offset)
 617		*offset += off;
 618
 619	if (value)
 620		*value += off;
 621
 622	return 0;
 623}
 624
 625static void kdb_cmderror(int diag)
 626{
 627	int i;
 628
 629	if (diag >= 0) {
 630		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 631		return;
 632	}
 633
 634	for (i = 0; i < __nkdb_err; i++) {
 635		if (kdbmsgs[i].km_diag == diag) {
 636			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 637			return;
 638		}
 639	}
 640
 641	kdb_printf("Unknown diag %d\n", -diag);
 642}
 643
 644/*
 645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 646 *	command which defines one command as a set of other commands,
 647 *	terminated by endefcmd.  kdb_defcmd processes the initial
 648 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 649 *	the following commands until 'endefcmd'.
 650 * Inputs:
 651 *	argc	argument count
 652 *	argv	argument vector
 653 * Returns:
 654 *	zero for success, a kdb diagnostic if error
 655 */
 656struct defcmd_set {
 657	int count;
 658	int usable;
 659	char *name;
 660	char *usage;
 661	char *help;
 662	char **command;
 663};
 664static struct defcmd_set *defcmd_set;
 665static int defcmd_set_count;
 666static int defcmd_in_progress;
 667
 668/* Forward references */
 669static int kdb_exec_defcmd(int argc, const char **argv);
 670
 671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 672{
 673	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 674	char **save_command = s->command;
 675	if (strcmp(argv0, "endefcmd") == 0) {
 676		defcmd_in_progress = 0;
 677		if (!s->count)
 678			s->usable = 0;
 679		if (s->usable)
 680			/* macros are always safe because when executed each
 681			 * internal command re-enters kdb_parse() and is
 682			 * safety checked individually.
 683			 */
 684			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 685					   s->help, 0,
 686					   KDB_ENABLE_ALWAYS_SAFE);
 687		return 0;
 688	}
 689	if (!s->usable)
 690		return KDB_NOTIMP;
 691	s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
 692	if (!s->command) {
 693		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 694			   cmdstr);
 695		s->usable = 0;
 696		return KDB_NOTIMP;
 697	}
 698	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 699	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 700	kfree(save_command);
 701	return 0;
 702}
 703
 704static int kdb_defcmd(int argc, const char **argv)
 705{
 706	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 707	if (defcmd_in_progress) {
 708		kdb_printf("kdb: nested defcmd detected, assuming missing "
 709			   "endefcmd\n");
 710		kdb_defcmd2("endefcmd", "endefcmd");
 711	}
 712	if (argc == 0) {
 713		int i;
 714		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 715			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 716				   s->usage, s->help);
 717			for (i = 0; i < s->count; ++i)
 718				kdb_printf("%s", s->command[i]);
 719			kdb_printf("endefcmd\n");
 720		}
 721		return 0;
 722	}
 723	if (argc != 3)
 724		return KDB_ARGCOUNT;
 725	if (in_dbg_master()) {
 726		kdb_printf("Command only available during kdb_init()\n");
 727		return KDB_NOTIMP;
 728	}
 729	defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
 730			     GFP_KDB);
 731	if (!defcmd_set)
 732		goto fail_defcmd;
 733	memcpy(defcmd_set, save_defcmd_set,
 734	       defcmd_set_count * sizeof(*defcmd_set));
 735	s = defcmd_set + defcmd_set_count;
 736	memset(s, 0, sizeof(*s));
 737	s->usable = 1;
 738	s->name = kdb_strdup(argv[1], GFP_KDB);
 739	if (!s->name)
 740		goto fail_name;
 741	s->usage = kdb_strdup(argv[2], GFP_KDB);
 742	if (!s->usage)
 743		goto fail_usage;
 744	s->help = kdb_strdup(argv[3], GFP_KDB);
 745	if (!s->help)
 746		goto fail_help;
 747	if (s->usage[0] == '"') {
 748		strcpy(s->usage, argv[2]+1);
 749		s->usage[strlen(s->usage)-1] = '\0';
 750	}
 751	if (s->help[0] == '"') {
 752		strcpy(s->help, argv[3]+1);
 753		s->help[strlen(s->help)-1] = '\0';
 754	}
 755	++defcmd_set_count;
 756	defcmd_in_progress = 1;
 757	kfree(save_defcmd_set);
 758	return 0;
 759fail_help:
 760	kfree(s->usage);
 761fail_usage:
 762	kfree(s->name);
 763fail_name:
 764	kfree(defcmd_set);
 765fail_defcmd:
 766	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 767	defcmd_set = save_defcmd_set;
 768	return KDB_NOTIMP;
 769}
 770
 771/*
 772 * kdb_exec_defcmd - Execute the set of commands associated with this
 773 *	defcmd name.
 774 * Inputs:
 775 *	argc	argument count
 776 *	argv	argument vector
 777 * Returns:
 778 *	zero for success, a kdb diagnostic if error
 779 */
 780static int kdb_exec_defcmd(int argc, const char **argv)
 781{
 782	int i, ret;
 783	struct defcmd_set *s;
 784	if (argc != 0)
 785		return KDB_ARGCOUNT;
 786	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 787		if (strcmp(s->name, argv[0]) == 0)
 788			break;
 789	}
 790	if (i == defcmd_set_count) {
 791		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 792			   argv[0]);
 793		return KDB_NOTIMP;
 794	}
 795	for (i = 0; i < s->count; ++i) {
 796		/* Recursive use of kdb_parse, do not use argv after
 797		 * this point */
 798		argv = NULL;
 799		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 800		ret = kdb_parse(s->command[i]);
 801		if (ret)
 802			return ret;
 803	}
 804	return 0;
 805}
 806
 807/* Command history */
 808#define KDB_CMD_HISTORY_COUNT	32
 809#define CMD_BUFLEN		200	/* kdb_printf: max printline
 810					 * size == 256 */
 811static unsigned int cmd_head, cmd_tail;
 812static unsigned int cmdptr;
 813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 814static char cmd_cur[CMD_BUFLEN];
 815
 816/*
 817 * The "str" argument may point to something like  | grep xyz
 818 */
 819static void parse_grep(const char *str)
 820{
 821	int	len;
 822	char	*cp = (char *)str, *cp2;
 823
 824	/* sanity check: we should have been called with the \ first */
 825	if (*cp != '|')
 826		return;
 827	cp++;
 828	while (isspace(*cp))
 829		cp++;
 830	if (strncmp(cp, "grep ", 5)) {
 831		kdb_printf("invalid 'pipe', see grephelp\n");
 832		return;
 833	}
 834	cp += 5;
 835	while (isspace(*cp))
 836		cp++;
 837	cp2 = strchr(cp, '\n');
 838	if (cp2)
 839		*cp2 = '\0'; /* remove the trailing newline */
 840	len = strlen(cp);
 841	if (len == 0) {
 842		kdb_printf("invalid 'pipe', see grephelp\n");
 843		return;
 844	}
 845	/* now cp points to a nonzero length search string */
 846	if (*cp == '"') {
 847		/* allow it be "x y z" by removing the "'s - there must
 848		   be two of them */
 849		cp++;
 850		cp2 = strchr(cp, '"');
 851		if (!cp2) {
 852			kdb_printf("invalid quoted string, see grephelp\n");
 853			return;
 854		}
 855		*cp2 = '\0'; /* end the string where the 2nd " was */
 856	}
 857	kdb_grep_leading = 0;
 858	if (*cp == '^') {
 859		kdb_grep_leading = 1;
 860		cp++;
 861	}
 862	len = strlen(cp);
 863	kdb_grep_trailing = 0;
 864	if (*(cp+len-1) == '$') {
 865		kdb_grep_trailing = 1;
 866		*(cp+len-1) = '\0';
 867	}
 868	len = strlen(cp);
 869	if (!len)
 870		return;
 871	if (len >= KDB_GREP_STRLEN) {
 872		kdb_printf("search string too long\n");
 873		return;
 874	}
 875	strcpy(kdb_grep_string, cp);
 876	kdb_grepping_flag++;
 877	return;
 878}
 879
 880/*
 881 * kdb_parse - Parse the command line, search the command table for a
 882 *	matching command and invoke the command function.  This
 883 *	function may be called recursively, if it is, the second call
 884 *	will overwrite argv and cbuf.  It is the caller's
 885 *	responsibility to save their argv if they recursively call
 886 *	kdb_parse().
 887 * Parameters:
 888 *      cmdstr	The input command line to be parsed.
 889 *	regs	The registers at the time kdb was entered.
 890 * Returns:
 891 *	Zero for success, a kdb diagnostic if failure.
 892 * Remarks:
 893 *	Limited to 20 tokens.
 894 *
 895 *	Real rudimentary tokenization. Basically only whitespace
 896 *	is considered a token delimeter (but special consideration
 897 *	is taken of the '=' sign as used by the 'set' command).
 898 *
 899 *	The algorithm used to tokenize the input string relies on
 900 *	there being at least one whitespace (or otherwise useless)
 901 *	character between tokens as the character immediately following
 902 *	the token is altered in-place to a null-byte to terminate the
 903 *	token string.
 904 */
 905
 906#define MAXARGC	20
 907
 908int kdb_parse(const char *cmdstr)
 909{
 910	static char *argv[MAXARGC];
 911	static int argc;
 912	static char cbuf[CMD_BUFLEN+2];
 913	char *cp;
 914	char *cpp, quoted;
 915	kdbtab_t *tp;
 916	int i, escaped, ignore_errors = 0, check_grep = 0;
 917
 918	/*
 919	 * First tokenize the command string.
 920	 */
 921	cp = (char *)cmdstr;
 922
 923	if (KDB_FLAG(CMD_INTERRUPT)) {
 924		/* Previous command was interrupted, newline must not
 925		 * repeat the command */
 926		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 927		KDB_STATE_SET(PAGER);
 928		argc = 0;	/* no repeat */
 929	}
 930
 931	if (*cp != '\n' && *cp != '\0') {
 932		argc = 0;
 933		cpp = cbuf;
 934		while (*cp) {
 935			/* skip whitespace */
 936			while (isspace(*cp))
 937				cp++;
 938			if ((*cp == '\0') || (*cp == '\n') ||
 939			    (*cp == '#' && !defcmd_in_progress))
 940				break;
 941			/* special case: check for | grep pattern */
 942			if (*cp == '|') {
 943				check_grep++;
 944				break;
 945			}
 946			if (cpp >= cbuf + CMD_BUFLEN) {
 947				kdb_printf("kdb_parse: command buffer "
 948					   "overflow, command ignored\n%s\n",
 949					   cmdstr);
 950				return KDB_NOTFOUND;
 951			}
 952			if (argc >= MAXARGC - 1) {
 953				kdb_printf("kdb_parse: too many arguments, "
 954					   "command ignored\n%s\n", cmdstr);
 955				return KDB_NOTFOUND;
 956			}
 957			argv[argc++] = cpp;
 958			escaped = 0;
 959			quoted = '\0';
 960			/* Copy to next unquoted and unescaped
 961			 * whitespace or '=' */
 962			while (*cp && *cp != '\n' &&
 963			       (escaped || quoted || !isspace(*cp))) {
 964				if (cpp >= cbuf + CMD_BUFLEN)
 965					break;
 966				if (escaped) {
 967					escaped = 0;
 968					*cpp++ = *cp++;
 969					continue;
 970				}
 971				if (*cp == '\\') {
 972					escaped = 1;
 973					++cp;
 974					continue;
 975				}
 976				if (*cp == quoted)
 977					quoted = '\0';
 978				else if (*cp == '\'' || *cp == '"')
 979					quoted = *cp;
 980				*cpp = *cp++;
 981				if (*cpp == '=' && !quoted)
 982					break;
 983				++cpp;
 984			}
 985			*cpp++ = '\0';	/* Squash a ws or '=' character */
 986		}
 987	}
 988	if (!argc)
 989		return 0;
 990	if (check_grep)
 991		parse_grep(cp);
 992	if (defcmd_in_progress) {
 993		int result = kdb_defcmd2(cmdstr, argv[0]);
 994		if (!defcmd_in_progress) {
 995			argc = 0;	/* avoid repeat on endefcmd */
 996			*(argv[0]) = '\0';
 997		}
 998		return result;
 999	}
1000	if (argv[0][0] == '-' && argv[0][1] &&
1001	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1002		ignore_errors = 1;
1003		++argv[0];
1004	}
1005
1006	for_each_kdbcmd(tp, i) {
1007		if (tp->cmd_name) {
1008			/*
1009			 * If this command is allowed to be abbreviated,
1010			 * check to see if this is it.
1011			 */
1012
1013			if (tp->cmd_minlen
1014			 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015				if (strncmp(argv[0],
1016					    tp->cmd_name,
1017					    tp->cmd_minlen) == 0) {
1018					break;
1019				}
1020			}
1021
1022			if (strcmp(argv[0], tp->cmd_name) == 0)
1023				break;
1024		}
1025	}
1026
1027	/*
1028	 * If we don't find a command by this name, see if the first
1029	 * few characters of this match any of the known commands.
1030	 * e.g., md1c20 should match md.
1031	 */
1032	if (i == kdb_max_commands) {
1033		for_each_kdbcmd(tp, i) {
1034			if (tp->cmd_name) {
1035				if (strncmp(argv[0],
1036					    tp->cmd_name,
1037					    strlen(tp->cmd_name)) == 0) {
1038					break;
1039				}
1040			}
1041		}
1042	}
1043
1044	if (i < kdb_max_commands) {
1045		int result;
1046
1047		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048			return KDB_NOPERM;
1049
1050		KDB_STATE_SET(CMD);
1051		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052		if (result && ignore_errors && result > KDB_CMD_GO)
1053			result = 0;
1054		KDB_STATE_CLEAR(CMD);
1055
1056		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057			return result;
1058
1059		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060		if (argv[argc])
1061			*(argv[argc]) = '\0';
1062		return result;
1063	}
1064
1065	/*
1066	 * If the input with which we were presented does not
1067	 * map to an existing command, attempt to parse it as an
1068	 * address argument and display the result.   Useful for
1069	 * obtaining the address of a variable, or the nearest symbol
1070	 * to an address contained in a register.
1071	 */
1072	{
1073		unsigned long value;
1074		char *name = NULL;
1075		long offset;
1076		int nextarg = 0;
1077
1078		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079				  &value, &offset, &name)) {
1080			return KDB_NOTFOUND;
1081		}
1082
1083		kdb_printf("%s = ", argv[0]);
1084		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085		kdb_printf("\n");
1086		return 0;
1087	}
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P	16
1094#define CTRL_N	14
1095
1096	/* initial situation */
1097	if (cmd_head == cmd_tail)
1098		return 0;
1099	switch (*cmd) {
1100	case CTRL_P:
1101		if (cmdptr != cmd_tail)
1102			cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
 
1104		return 1;
1105	case CTRL_N:
1106		if (cmdptr != cmd_head)
1107			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108		strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109		return 1;
1110	}
1111	return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1116 *	the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120	emergency_restart();
1121	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122	while (1)
1123		cpu_relax();
1124	/* NOTREACHED */
1125	return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130	int old_lvl = console_loglevel;
1131	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132	kdb_trap_printk++;
1133	show_regs(regs);
1134	kdb_trap_printk--;
1135	kdb_printf("\n");
1136	console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141	kdb_current_task = p;
1142
1143	if (kdb_task_has_cpu(p)) {
1144		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145		return;
1146	}
1147	kdb_current_regs = NULL;
1148}
1149
 
 
 
 
 
 
 
 
 
 
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
1292#else
1293		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295		if (defcmd_in_progress)
1296			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298		/*
1299		 * Fetch command from keyboard
1300		 */
1301		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302		if (*cmdbuf != '\n') {
1303			if (*cmdbuf < 32) {
1304				if (cmdptr == cmd_head) {
1305					strncpy(cmd_hist[cmd_head], cmd_cur,
1306						CMD_BUFLEN);
1307					*(cmd_hist[cmd_head] +
1308					  strlen(cmd_hist[cmd_head])-1) = '\0';
1309				}
1310				if (!handle_ctrl_cmd(cmdbuf))
1311					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312				cmdbuf = cmd_cur;
1313				goto do_full_getstr;
1314			} else {
1315				strncpy(cmd_hist[cmd_head], cmd_cur,
1316					CMD_BUFLEN);
1317			}
1318
1319			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320			if (cmd_head == cmd_tail)
1321				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322		}
1323
1324		cmdptr = cmd_head;
1325		diag = kdb_parse(cmdbuf);
1326		if (diag == KDB_NOTFOUND) {
 
1327			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328			diag = 0;
1329		}
1330		if (diag == KDB_CMD_GO
1331		 || diag == KDB_CMD_CPU
1332		 || diag == KDB_CMD_SS
1333		 || diag == KDB_CMD_KGDB)
1334			break;
1335
1336		if (diag)
1337			kdb_cmderror(diag);
1338	}
1339	KDB_DEBUG_STATE("kdb_local 9", diag);
1340	return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 *	for debugging.
1347 * Inputs:
1348 *	text		Identifies the debug point
1349 *	value		Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355		   kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 *	controlling cpu, all cpus are in this loop.  One cpu is in
1361 *	control and will issue the kdb prompt, the others will spin
1362 *	until 'go' or cpu switch.
1363 *
1364 *	To get a consistent view of the kernel stacks for all
1365 *	processes, this routine is invoked from the main kdb code via
1366 *	an architecture specific routine.  kdba_main_loop is
1367 *	responsible for making the kernel stacks consistent for all
1368 *	processes, there should be no difference between a blocked
1369 *	process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 *	reason		The reason KDB was invoked
1372 *	error		The hardware-defined error code
1373 *	reason2		kdb's current reason code.
1374 *			Initially error but can change
1375 *			according to kdb state.
1376 *	db_result	Result code from break or debug point.
1377 *	regs		The exception frame at time of fault/breakpoint.
1378 *			should always be valid.
1379 * Returns:
1380 *	0	KDB was invoked for an event which it wasn't responsible
1381 *	1	KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386	int result = 1;
1387	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1388	while (1) {
1389		/*
1390		 * All processors except the one that is in control
1391		 * will spin here.
1392		 */
1393		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394		while (KDB_STATE(HOLD_CPU)) {
1395			/* state KDB is turned off by kdb_cpu to see if the
1396			 * other cpus are still live, each cpu in this loop
1397			 * turns it back on.
1398			 */
1399			if (!KDB_STATE(KDB))
1400				KDB_STATE_SET(KDB);
1401		}
1402
1403		KDB_STATE_CLEAR(SUPPRESS);
1404		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405		if (KDB_STATE(LEAVING))
1406			break;	/* Another cpu said 'go' */
1407		/* Still using kdb, this processor is in control */
1408		result = kdb_local(reason2, error, regs, db_result);
1409		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411		if (result == KDB_CMD_CPU)
1412			break;
1413
1414		if (result == KDB_CMD_SS) {
1415			KDB_STATE_SET(DOING_SS);
1416			break;
1417		}
1418
1419		if (result == KDB_CMD_KGDB) {
1420			if (!KDB_STATE(DOING_KGDB))
1421				kdb_printf("Entering please attach debugger "
1422					   "or use $D#44+ or $3#33\n");
1423			break;
1424		}
1425		if (result && result != 1 && result != KDB_CMD_GO)
1426			kdb_printf("\nUnexpected kdb_local return code %d\n",
1427				   result);
1428		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429		break;
1430	}
1431	if (KDB_STATE(DOING_SS))
1432		KDB_STATE_CLEAR(SSBPT);
1433
1434	/* Clean up any keyboard devices before leaving */
1435	kdb_kbd_cleanup_state();
1436
1437	return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 *	mdr  <addr arg>,<byte count>
1444 * Inputs:
1445 *	addr	Start address
1446 *	count	Number of bytes
1447 * Returns:
1448 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452	unsigned char c;
1453	while (count--) {
1454		if (kdb_getarea(c, addr))
1455			return 0;
1456		kdb_printf("%02x", c);
1457		addr++;
1458	}
1459	kdb_printf("\n");
1460	return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 *	'md8' 'mdr' and 'mds' commands.
1466 *
1467 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1468 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1469 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1470 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1471 *	mdr  <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474			int symbolic, int nosect, int bytesperword,
1475			int num, int repeat, int phys)
1476{
1477	/* print just one line of data */
1478	kdb_symtab_t symtab;
1479	char cbuf[32];
1480	char *c = cbuf;
1481	int i;
 
1482	unsigned long word;
1483
1484	memset(cbuf, '\0', sizeof(cbuf));
1485	if (phys)
1486		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487	else
1488		kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490	for (i = 0; i < num && repeat--; i++) {
1491		if (phys) {
1492			if (kdb_getphysword(&word, addr, bytesperword))
1493				break;
1494		} else if (kdb_getword(&word, addr, bytesperword))
1495			break;
1496		kdb_printf(fmtstr, word);
1497		if (symbolic)
1498			kdbnearsym(word, &symtab);
1499		else
1500			memset(&symtab, 0, sizeof(symtab));
1501		if (symtab.sym_name) {
1502			kdb_symbol_print(word, &symtab, 0);
1503			if (!nosect) {
1504				kdb_printf("\n");
1505				kdb_printf("                       %s %s "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt " "
1508					   kdb_machreg_fmt, symtab.mod_name,
1509					   symtab.sec_name, symtab.sec_start,
1510					   symtab.sym_start, symtab.sym_end);
1511			}
1512			addr += bytesperword;
1513		} else {
1514			union {
1515				u64 word;
1516				unsigned char c[8];
1517			} wc;
1518			unsigned char *cp;
1519#ifdef	__BIG_ENDIAN
1520			cp = wc.c + 8 - bytesperword;
1521#else
1522			cp = wc.c;
1523#endif
1524			wc.word = word;
1525#define printable_char(c) \
1526	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527			switch (bytesperword) {
1528			case 8:
1529				*c++ = printable_char(*cp++);
1530				*c++ = printable_char(*cp++);
1531				*c++ = printable_char(*cp++);
1532				*c++ = printable_char(*cp++);
1533				addr += 4;
1534			case 4:
1535				*c++ = printable_char(*cp++);
1536				*c++ = printable_char(*cp++);
1537				addr += 2;
1538			case 2:
1539				*c++ = printable_char(*cp++);
1540				addr++;
1541			case 1:
1542				*c++ = printable_char(*cp++);
1543				addr++;
1544				break;
1545			}
1546#undef printable_char
1547		}
1548	}
1549	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550		   " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555	static unsigned long last_addr;
1556	static int last_radix, last_bytesperword, last_repeat;
1557	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558	int nosect = 0;
1559	char fmtchar, fmtstr[64];
1560	unsigned long addr;
1561	unsigned long word;
1562	long offset = 0;
1563	int symbolic = 0;
1564	int valid = 0;
1565	int phys = 0;
 
1566
1567	kdbgetintenv("MDCOUNT", &mdcount);
1568	kdbgetintenv("RADIX", &radix);
1569	kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571	/* Assume 'md <addr>' and start with environment values */
1572	repeat = mdcount * 16 / bytesperword;
1573
1574	if (strcmp(argv[0], "mdr") == 0) {
1575		if (argc != 2)
 
 
1576			return KDB_ARGCOUNT;
1577		valid = 1;
1578	} else if (isdigit(argv[0][2])) {
1579		bytesperword = (int)(argv[0][2] - '0');
1580		if (bytesperword == 0) {
1581			bytesperword = last_bytesperword;
1582			if (bytesperword == 0)
1583				bytesperword = 4;
1584		}
1585		last_bytesperword = bytesperword;
1586		repeat = mdcount * 16 / bytesperword;
1587		if (!argv[0][3])
1588			valid = 1;
1589		else if (argv[0][3] == 'c' && argv[0][4]) {
1590			char *p;
1591			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592			mdcount = ((repeat * bytesperword) + 15) / 16;
1593			valid = !*p;
1594		}
1595		last_repeat = repeat;
1596	} else if (strcmp(argv[0], "md") == 0)
1597		valid = 1;
1598	else if (strcmp(argv[0], "mds") == 0)
1599		valid = 1;
1600	else if (strcmp(argv[0], "mdp") == 0) {
1601		phys = valid = 1;
1602	}
1603	if (!valid)
1604		return KDB_NOTFOUND;
1605
1606	if (argc == 0) {
1607		if (last_addr == 0)
1608			return KDB_ARGCOUNT;
1609		addr = last_addr;
1610		radix = last_radix;
1611		bytesperword = last_bytesperword;
1612		repeat = last_repeat;
1613		mdcount = ((repeat * bytesperword) + 15) / 16;
 
 
 
1614	}
1615
1616	if (argc) {
1617		unsigned long val;
1618		int diag, nextarg = 1;
1619		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620				     &offset, NULL);
1621		if (diag)
1622			return diag;
1623		if (argc > nextarg+2)
1624			return KDB_ARGCOUNT;
1625
1626		if (argc >= nextarg) {
1627			diag = kdbgetularg(argv[nextarg], &val);
1628			if (!diag) {
1629				mdcount = (int) val;
1630				repeat = mdcount * 16 / bytesperword;
 
 
 
1631			}
1632		}
1633		if (argc >= nextarg+1) {
1634			diag = kdbgetularg(argv[nextarg+1], &val);
1635			if (!diag)
1636				radix = (int) val;
1637		}
1638	}
1639
1640	if (strcmp(argv[0], "mdr") == 0)
1641		return kdb_mdr(addr, mdcount);
 
 
 
 
 
 
 
1642
1643	switch (radix) {
1644	case 10:
1645		fmtchar = 'd';
1646		break;
1647	case 16:
1648		fmtchar = 'x';
1649		break;
1650	case 8:
1651		fmtchar = 'o';
1652		break;
1653	default:
1654		return KDB_BADRADIX;
1655	}
1656
1657	last_radix = radix;
1658
1659	if (bytesperword > KDB_WORD_SIZE)
1660		return KDB_BADWIDTH;
1661
1662	switch (bytesperword) {
1663	case 8:
1664		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665		break;
1666	case 4:
1667		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668		break;
1669	case 2:
1670		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671		break;
1672	case 1:
1673		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674		break;
1675	default:
1676		return KDB_BADWIDTH;
1677	}
1678
1679	last_repeat = repeat;
1680	last_bytesperword = bytesperword;
1681
1682	if (strcmp(argv[0], "mds") == 0) {
1683		symbolic = 1;
1684		/* Do not save these changes as last_*, they are temporary mds
1685		 * overrides.
1686		 */
1687		bytesperword = KDB_WORD_SIZE;
1688		repeat = mdcount;
1689		kdbgetintenv("NOSECT", &nosect);
1690	}
1691
1692	/* Round address down modulo BYTESPERWORD */
1693
1694	addr &= ~(bytesperword-1);
1695
1696	while (repeat > 0) {
1697		unsigned long a;
1698		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700		if (KDB_FLAG(CMD_INTERRUPT))
1701			return 0;
1702		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703			if (phys) {
1704				if (kdb_getphysword(&word, a, bytesperword)
1705						|| word)
1706					break;
1707			} else if (kdb_getword(&word, a, bytesperword) || word)
1708				break;
1709		}
1710		n = min(num, repeat);
1711		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712			    num, repeat, phys);
1713		addr += bytesperword * n;
1714		repeat -= n;
1715		z = (z + num - 1) / num;
1716		if (z > 2) {
1717			int s = num * (z-2);
1718			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719				   " zero suppressed\n",
1720				addr, addr + bytesperword * s - 1);
1721			addr += bytesperword * s;
1722			repeat -= s;
1723		}
1724	}
1725	last_addr = addr;
1726
1727	return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 *	mm address-expression new-value
1733 * Remarks:
1734 *	mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738	int diag;
1739	unsigned long addr;
1740	long offset = 0;
1741	unsigned long contents;
1742	int nextarg;
1743	int width;
1744
1745	if (argv[0][2] && !isdigit(argv[0][2]))
1746		return KDB_NOTFOUND;
1747
1748	if (argc < 2)
1749		return KDB_ARGCOUNT;
1750
1751	nextarg = 1;
1752	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753	if (diag)
1754		return diag;
1755
1756	if (nextarg > argc)
1757		return KDB_ARGCOUNT;
1758	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759	if (diag)
1760		return diag;
1761
1762	if (nextarg != argc + 1)
1763		return KDB_ARGCOUNT;
1764
1765	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766	diag = kdb_putword(addr, contents, width);
1767	if (diag)
1768		return diag;
1769
1770	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772	return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 *	go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781	unsigned long addr;
1782	int diag;
1783	int nextarg;
1784	long offset;
1785
1786	if (raw_smp_processor_id() != kdb_initial_cpu) {
1787		kdb_printf("go must execute on the entry cpu, "
1788			   "please use \"cpu %d\" and then execute go\n",
1789			   kdb_initial_cpu);
1790		return KDB_BADCPUNUM;
1791	}
1792	if (argc == 1) {
1793		nextarg = 1;
1794		diag = kdbgetaddrarg(argc, argv, &nextarg,
1795				     &addr, &offset, NULL);
1796		if (diag)
1797			return diag;
1798	} else if (argc) {
1799		return KDB_ARGCOUNT;
1800	}
1801
1802	diag = KDB_CMD_GO;
1803	if (KDB_FLAG(CATASTROPHIC)) {
1804		kdb_printf("Catastrophic error detected\n");
1805		kdb_printf("kdb_continue_catastrophic=%d, ",
1806			kdb_continue_catastrophic);
1807		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808			kdb_printf("type go a second time if you really want "
1809				   "to continue\n");
1810			return 0;
1811		}
1812		if (kdb_continue_catastrophic == 2) {
1813			kdb_printf("forcing reboot\n");
1814			kdb_reboot(0, NULL);
1815		}
1816		kdb_printf("attempting to continue\n");
1817	}
1818	return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826	int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828	int i;
1829	char *rname;
1830	int rsize;
1831	u64 reg64;
1832	u32 reg32;
1833	u16 reg16;
1834	u8 reg8;
1835
1836	if (len)
1837		return len;
1838
1839	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840		rsize = dbg_reg_def[i].size * 2;
1841		if (rsize > 16)
1842			rsize = 2;
1843		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844			len = 0;
1845			kdb_printf("\n");
1846		}
1847		if (len)
1848			len += kdb_printf("  ");
1849		switch(dbg_reg_def[i].size * 8) {
1850		case 8:
1851			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1852			if (!rname)
1853				break;
1854			len += kdb_printf("%s: %02x", rname, reg8);
1855			break;
1856		case 16:
1857			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1858			if (!rname)
1859				break;
1860			len += kdb_printf("%s: %04x", rname, reg16);
1861			break;
1862		case 32:
1863			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1864			if (!rname)
1865				break;
1866			len += kdb_printf("%s: %08x", rname, reg32);
1867			break;
1868		case 64:
1869			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1870			if (!rname)
1871				break;
1872			len += kdb_printf("%s: %016llx", rname, reg64);
1873			break;
1874		default:
1875			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876		}
1877	}
1878	kdb_printf("\n");
1879#else
1880	if (len)
1881		return len;
1882
1883	kdb_dumpregs(kdb_current_regs);
1884#endif
1885	return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify)  command.
1890 *	rm register-name new-contents
1891 * Remarks:
1892 *	Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897	int diag;
1898	const char *rname;
1899	int i;
1900	u64 reg64;
1901	u32 reg32;
1902	u16 reg16;
1903	u8 reg8;
1904
1905	if (argc != 2)
1906		return KDB_ARGCOUNT;
1907	/*
1908	 * Allow presence or absence of leading '%' symbol.
1909	 */
1910	rname = argv[1];
1911	if (*rname == '%')
1912		rname++;
1913
1914	diag = kdbgetu64arg(argv[2], &reg64);
1915	if (diag)
1916		return diag;
1917
1918	diag = kdb_check_regs();
1919	if (diag)
1920		return diag;
1921
1922	diag = KDB_BADREG;
1923	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925			diag = 0;
1926			break;
1927		}
1928	}
1929	if (!diag) {
1930		switch(dbg_reg_def[i].size * 8) {
1931		case 8:
1932			reg8 = reg64;
1933			dbg_set_reg(i, &reg8, kdb_current_regs);
1934			break;
1935		case 16:
1936			reg16 = reg64;
1937			dbg_set_reg(i, &reg16, kdb_current_regs);
1938			break;
1939		case 32:
1940			reg32 = reg64;
1941			dbg_set_reg(i, &reg32, kdb_current_regs);
1942			break;
1943		case 64:
1944			dbg_set_reg(i, &reg64, kdb_current_regs);
1945			break;
1946		}
1947	}
1948	return diag;
1949#else
1950	kdb_printf("ERROR: Register set currently not implemented\n");
1951    return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 *		sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963	bool check_mask =
1964	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966	if (argc != 1)
1967		return KDB_ARGCOUNT;
1968
1969	kdb_trap_printk++;
1970	__handle_sysrq(*argv[1], check_mask);
1971	kdb_trap_printk--;
1972
1973	return 0;
1974}
1975#endif	/* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 *	frame) command.  This command takes an address and expects to
1980 *	find an exception frame at that address, formats and prints
1981 *	it.
1982 *		regs address-expression
1983 * Remarks:
1984 *	Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988	int diag;
1989	unsigned long addr;
1990	long offset;
1991	int nextarg;
1992
1993	if (argc != 1)
1994		return KDB_ARGCOUNT;
1995
1996	nextarg = 1;
1997	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998	if (diag)
1999		return diag;
2000	show_regs((struct pt_regs *)addr);
2001	return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2007 *	currently loaded kernel modules.
2008 *	Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012	struct module *mod;
2013
2014	if (argc != 0)
2015		return KDB_ARGCOUNT;
2016
2017	kdb_printf("Module                  Size  modstruct     Used by\n");
2018	list_for_each_entry(mod, kdb_modules, list) {
2019		if (mod->state == MODULE_STATE_UNFORMED)
2020			continue;
2021
2022		kdb_printf("%-20s%8u  0x%p ", mod->name,
2023			   mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025		kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027		if (mod->state == MODULE_STATE_GOING)
2028			kdb_printf(" (Unloading)");
2029		else if (mod->state == MODULE_STATE_COMING)
2030			kdb_printf(" (Loading)");
2031		else
2032			kdb_printf(" (Live)");
2033		kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036		{
2037			struct module_use *use;
2038			kdb_printf(" [ ");
2039			list_for_each_entry(use, &mod->source_list,
2040					    source_list)
2041				kdb_printf("%s ", use->target->name);
2042			kdb_printf("]\n");
2043		}
2044#endif
2045	}
2046
2047	return 0;
2048}
2049
2050#endif	/* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command.  Display the
2054 *	current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059	int i;
2060
2061	for (i = 0; i < __nenv; i++) {
2062		if (__env[i])
2063			kdb_printf("%s\n", __env[i]);
2064	}
2065
2066	if (KDB_DEBUG(MASK))
2067		kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
 
2068
2069	return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 *	the contents of the syslog buffer.
2076 *		dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080	int diag;
2081	int logging;
2082	int lines = 0;
2083	int adjust = 0;
2084	int n = 0;
2085	int skip = 0;
2086	struct kmsg_dumper dumper = { .active = 1 };
2087	size_t len;
2088	char buf[201];
2089
2090	if (argc > 2)
2091		return KDB_ARGCOUNT;
2092	if (argc) {
2093		char *cp;
2094		lines = simple_strtol(argv[1], &cp, 0);
2095		if (*cp)
2096			lines = 0;
2097		if (argc > 1) {
2098			adjust = simple_strtoul(argv[2], &cp, 0);
2099			if (*cp || adjust < 0)
2100				adjust = 0;
2101		}
2102	}
2103
2104	/* disable LOGGING if set */
2105	diag = kdbgetintenv("LOGGING", &logging);
2106	if (!diag && logging) {
2107		const char *setargs[] = { "set", "LOGGING", "0" };
2108		kdb_set(2, setargs);
2109	}
2110
2111	kmsg_dump_rewind_nolock(&dumper);
2112	while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113		n++;
2114
2115	if (lines < 0) {
2116		if (adjust >= n)
2117			kdb_printf("buffer only contains %d lines, nothing "
2118				   "printed\n", n);
2119		else if (adjust - lines >= n)
2120			kdb_printf("buffer only contains %d lines, last %d "
2121				   "lines printed\n", n, n - adjust);
2122		skip = adjust;
2123		lines = abs(lines);
2124	} else if (lines > 0) {
2125		skip = n - lines - adjust;
2126		lines = abs(lines);
2127		if (adjust >= n) {
2128			kdb_printf("buffer only contains %d lines, "
2129				   "nothing printed\n", n);
2130			skip = n;
2131		} else if (skip < 0) {
2132			lines += skip;
2133			skip = 0;
2134			kdb_printf("buffer only contains %d lines, first "
2135				   "%d lines printed\n", n, lines);
2136		}
2137	} else {
2138		lines = n;
2139	}
2140
2141	if (skip >= n || skip < 0)
2142		return 0;
2143
2144	kmsg_dump_rewind_nolock(&dumper);
2145	while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146		if (skip) {
2147			skip--;
2148			continue;
2149		}
2150		if (!lines--)
2151			break;
2152		if (KDB_FLAG(CMD_INTERRUPT))
2153			return 0;
2154
2155		kdb_printf("%.*s\n", (int)len - 1, buf);
2156	}
2157
2158	return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167	if (atomic_read(&kdb_nmi_disabled))
2168		return 0;
2169	atomic_set(&kdb_nmi_disabled, 1);
2170	arch_kgdb_ops.enable_nmi(0);
2171	return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177		return -EINVAL;
2178	arch_kgdb_ops.enable_nmi(1);
2179	return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183	.set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 *	cpu	[<cpunum>]
2190 * Returns:
2191 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195	int i, start_cpu, first_print = 1;
2196	char state, prev_state = '?';
2197
2198	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199	kdb_printf("Available cpus: ");
2200	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201		if (!cpu_online(i)) {
2202			state = 'F';	/* cpu is offline */
2203		} else if (!kgdb_info[i].enter_kgdb) {
2204			state = 'D';	/* cpu is online but unresponsive */
2205		} else {
2206			state = ' ';	/* cpu is responding to kdb */
2207			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208				state = 'I';	/* idle task */
2209		}
2210		if (state != prev_state) {
2211			if (prev_state != '?') {
2212				if (!first_print)
2213					kdb_printf(", ");
2214				first_print = 0;
2215				kdb_printf("%d", start_cpu);
2216				if (start_cpu < i-1)
2217					kdb_printf("-%d", i-1);
2218				if (prev_state != ' ')
2219					kdb_printf("(%c)", prev_state);
2220			}
2221			prev_state = state;
2222			start_cpu = i;
2223		}
2224	}
2225	/* print the trailing cpus, ignoring them if they are all offline */
2226	if (prev_state != 'F') {
2227		if (!first_print)
2228			kdb_printf(", ");
2229		kdb_printf("%d", start_cpu);
2230		if (start_cpu < i-1)
2231			kdb_printf("-%d", i-1);
2232		if (prev_state != ' ')
2233			kdb_printf("(%c)", prev_state);
2234	}
2235	kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240	unsigned long cpunum;
2241	int diag;
2242
2243	if (argc == 0) {
2244		kdb_cpu_status();
2245		return 0;
2246	}
2247
2248	if (argc != 1)
2249		return KDB_ARGCOUNT;
2250
2251	diag = kdbgetularg(argv[1], &cpunum);
2252	if (diag)
2253		return diag;
2254
2255	/*
2256	 * Validate cpunum
2257	 */
2258	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259		return KDB_BADCPUNUM;
2260
2261	dbg_switch_cpu = cpunum;
2262
2263	/*
2264	 * Switch to other cpu
2265	 */
2266	return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274	int idle = 0, daemon = 0;
2275	unsigned long mask_I = kdb_task_state_string("I"),
2276		      mask_M = kdb_task_state_string("M");
2277	unsigned long cpu;
2278	const struct task_struct *p, *g;
2279	for_each_online_cpu(cpu) {
2280		p = kdb_curr_task(cpu);
2281		if (kdb_task_state(p, mask_I))
2282			++idle;
2283	}
2284	kdb_do_each_thread(g, p) {
2285		if (kdb_task_state(p, mask_M))
2286			++daemon;
2287	} kdb_while_each_thread(g, p);
2288	if (idle || daemon) {
2289		if (idle)
2290			kdb_printf("%d idle process%s (state I)%s\n",
2291				   idle, idle == 1 ? "" : "es",
2292				   daemon ? " and " : "");
2293		if (daemon)
2294			kdb_printf("%d sleeping system daemon (state M) "
2295				   "process%s", daemon,
2296				   daemon == 1 ? "" : "es");
2297		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298	}
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 *	list of the active processes.
2304 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308	int cpu;
2309	unsigned long tmp;
2310
2311	if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
 
2312		return;
2313
2314	cpu = kdb_process_cpu(p);
2315	kdb_printf("0x%p %8d %8d  %d %4d   %c  0x%p %c%s\n",
2316		   (void *)p, p->pid, p->parent->pid,
2317		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2318		   kdb_task_state_char(p),
2319		   (void *)(&p->thread),
2320		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321		   p->comm);
2322	if (kdb_task_has_cpu(p)) {
2323		if (!KDB_TSK(cpu)) {
2324			kdb_printf("  Error: no saved data for this cpu\n");
2325		} else {
2326			if (KDB_TSK(cpu) != p)
2327				kdb_printf("  Error: does not match running "
2328				   "process table (0x%p)\n", KDB_TSK(cpu));
2329		}
2330	}
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335	struct task_struct *g, *p;
2336	unsigned long mask, cpu;
2337
2338	if (argc == 0)
2339		kdb_ps_suppressed();
2340	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2341		(int)(2*sizeof(void *))+2, "Task Addr",
2342		(int)(2*sizeof(void *))+2, "Thread");
2343	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344	/* Run the active tasks first */
2345	for_each_online_cpu(cpu) {
2346		if (KDB_FLAG(CMD_INTERRUPT))
2347			return 0;
2348		p = kdb_curr_task(cpu);
2349		if (kdb_task_state(p, mask))
2350			kdb_ps1(p);
2351	}
2352	kdb_printf("\n");
2353	/* Now the real tasks */
2354	kdb_do_each_thread(g, p) {
2355		if (KDB_FLAG(CMD_INTERRUPT))
2356			return 0;
2357		if (kdb_task_state(p, mask))
2358			kdb_ps1(p);
2359	} kdb_while_each_thread(g, p);
2360
2361	return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 *	the currently active process.
2367 *		pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371	struct task_struct *p;
2372	unsigned long val;
2373	int diag;
2374
2375	if (argc > 1)
2376		return KDB_ARGCOUNT;
2377
2378	if (argc) {
2379		if (strcmp(argv[1], "R") == 0) {
2380			p = KDB_TSK(kdb_initial_cpu);
2381		} else {
2382			diag = kdbgetularg(argv[1], &val);
2383			if (diag)
2384				return KDB_BADINT;
2385
2386			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2387			if (!p) {
2388				kdb_printf("No task with pid=%d\n", (pid_t)val);
2389				return 0;
2390			}
2391		}
2392		kdb_set_current_task(p);
2393	}
2394	kdb_printf("KDB current process is %s(pid=%d)\n",
2395		   kdb_current_task->comm,
2396		   kdb_current_task->pid);
2397
2398	return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403	return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411	kdbtab_t *kt;
2412	int i;
2413
2414	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415	kdb_printf("-----------------------------"
2416		   "-----------------------------\n");
2417	for_each_kdbcmd(kt, i) {
2418		char *space = "";
2419		if (KDB_FLAG(CMD_INTERRUPT))
2420			return 0;
2421		if (!kt->cmd_name)
2422			continue;
2423		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424			continue;
2425		if (strlen(kt->cmd_usage) > 20)
2426			space = "\n                                    ";
2427		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428			   kt->cmd_usage, space, kt->cmd_help);
2429	}
2430	return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438	long sig, pid;
2439	char *endp;
2440	struct task_struct *p;
2441	struct siginfo info;
2442
2443	if (argc != 2)
2444		return KDB_ARGCOUNT;
2445
2446	sig = simple_strtol(argv[1], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (sig >= 0) {
2450		kdb_printf("Invalid signal parameter.<-signal>\n");
2451		return 0;
2452	}
2453	sig = -sig;
2454
2455	pid = simple_strtol(argv[2], &endp, 0);
2456	if (*endp)
2457		return KDB_BADINT;
2458	if (pid <= 0) {
2459		kdb_printf("Process ID must be large than 0.\n");
2460		return 0;
2461	}
2462
2463	/* Find the process. */
2464	p = find_task_by_pid_ns(pid, &init_pid_ns);
2465	if (!p) {
2466		kdb_printf("The specified process isn't found.\n");
2467		return 0;
2468	}
2469	p = p->group_leader;
2470	info.si_signo = sig;
2471	info.si_errno = 0;
2472	info.si_code = SI_USER;
2473	info.si_pid = pid;  /* same capabilities as process being signalled */
2474	info.si_uid = 0;    /* kdb has root authority */
2475	kdb_send_sig_info(p, &info);
2476	return 0;
2477}
2478
2479struct kdb_tm {
2480	int tm_sec;	/* seconds */
2481	int tm_min;	/* minutes */
2482	int tm_hour;	/* hours */
2483	int tm_mday;	/* day of the month */
2484	int tm_mon;	/* month */
2485	int tm_year;	/* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490	/* This will work from 1970-2099, 2100 is not a leap year */
2491	static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492				 31, 30, 31, 30, 31 };
2493	memset(tm, 0, sizeof(*tm));
2494	tm->tm_sec  = tv->tv_sec % (24 * 60 * 60);
2495	tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496		(2 * 365 + 1); /* shift base from 1970 to 1968 */
2497	tm->tm_min =  tm->tm_sec / 60 % 60;
2498	tm->tm_hour = tm->tm_sec / 60 / 60;
2499	tm->tm_sec =  tm->tm_sec % 60;
2500	tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501	tm->tm_mday %= (4*365+1);
2502	mon_day[1] = 29;
2503	while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504		tm->tm_mday -= mon_day[tm->tm_mon];
2505		if (++tm->tm_mon == 12) {
2506			tm->tm_mon = 0;
2507			++tm->tm_year;
2508			mon_day[1] = 28;
2509		}
2510	}
2511	++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521	struct timespec uptime;
2522	ktime_get_ts(&uptime);
2523	memset(val, 0, sizeof(*val));
2524	val->uptime = uptime.tv_sec;
2525	val->loads[0] = avenrun[0];
2526	val->loads[1] = avenrun[1];
2527	val->loads[2] = avenrun[2];
2528	val->procs = nr_threads-1;
2529	si_meminfo(val);
2530
2531	return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539	struct timespec now;
2540	struct kdb_tm tm;
2541	struct sysinfo val;
2542
2543	if (argc)
2544		return KDB_ARGCOUNT;
2545
2546	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2547	kdb_printf("release    %s\n", init_uts_ns.name.release);
2548	kdb_printf("version    %s\n", init_uts_ns.name.version);
2549	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2550	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2551	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552	kdb_printf("ccversion  %s\n", __stringify(CCVERSION));
2553
2554	now = __current_kernel_time();
2555	kdb_gmtime(&now, &tm);
2556	kdb_printf("date       %04d-%02d-%02d %02d:%02d:%02d "
2557		   "tz_minuteswest %d\n",
2558		1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559		tm.tm_hour, tm.tm_min, tm.tm_sec,
2560		sys_tz.tz_minuteswest);
2561
 
 
2562	kdb_sysinfo(&val);
2563	kdb_printf("uptime     ");
2564	if (val.uptime > (24*60*60)) {
2565		int days = val.uptime / (24*60*60);
2566		val.uptime %= (24*60*60);
2567		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568	}
2569	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571	/* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581	/* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2584		   "Buffers:        %8lu kB\n",
2585		   K(val.totalram), K(val.freeram), K(val.bufferram));
2586	return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594	char fmtstr[64];
2595	int cpu, diag, nextarg = 1;
2596	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598	if (argc < 1 || argc > 3)
2599		return KDB_ARGCOUNT;
2600
2601	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602	if (diag)
2603		return diag;
2604
2605	if (argc >= 2) {
2606		diag = kdbgetularg(argv[2], &bytesperword);
2607		if (diag)
2608			return diag;
2609	}
2610	if (!bytesperword)
2611		bytesperword = KDB_WORD_SIZE;
2612	else if (bytesperword > KDB_WORD_SIZE)
2613		return KDB_BADWIDTH;
2614	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615	if (argc >= 3) {
2616		diag = kdbgetularg(argv[3], &whichcpu);
2617		if (diag)
2618			return diag;
2619		if (!cpu_online(whichcpu)) {
2620			kdb_printf("cpu %ld is not online\n", whichcpu);
2621			return KDB_BADCPUNUM;
2622		}
2623	}
2624
2625	/* Most architectures use __per_cpu_offset[cpu], some use
2626	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627	 */
2628#ifdef	__per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef	CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637	for_each_online_cpu(cpu) {
2638		if (KDB_FLAG(CMD_INTERRUPT))
2639			return 0;
2640
2641		if (whichcpu != ~0UL && whichcpu != cpu)
2642			continue;
2643		addr = symaddr + KDB_PCU(cpu);
2644		diag = kdb_getword(&val, addr, bytesperword);
2645		if (diag) {
2646			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647				   "read, diag=%d\n", cpu, addr, diag);
2648			continue;
2649		}
2650		kdb_printf("%5d ", cpu);
2651		kdb_md_line(fmtstr, addr,
2652			bytesperword == KDB_WORD_SIZE,
2653			1, bytesperword, 1, 1, 0);
2654	}
2655#undef KDB_PCU
2656	return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664	kdb_printf("Usage of  cmd args | grep pattern:\n");
2665	kdb_printf("  Any command's output may be filtered through an ");
2666	kdb_printf("emulated 'pipe'.\n");
2667	kdb_printf("  'grep' is just a key word.\n");
2668	kdb_printf("  The pattern may include a very limited set of "
2669		   "metacharacters:\n");
2670	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2671	kdb_printf("  And if there are spaces in the pattern, you may "
2672		   "quote it:\n");
2673	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674		   " or \"^pat tern$\"\n");
2675	return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * 	debugger command.
2681 * Inputs:
2682 *	cmd	Command name
2683 *	func	Function to execute the command
2684 *	usage	A simple usage string showing arguments
2685 *	help	A simple help string describing command
2686 *	repeat	Does the command auto repeat on enter?
2687 * Returns:
2688 *	zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50	/* arbitrary */
2691int kdb_register_flags(char *cmd,
2692		       kdb_func_t func,
2693		       char *usage,
2694		       char *help,
2695		       short minlen,
2696		       kdb_cmdflags_t flags)
2697{
2698	int i;
2699	kdbtab_t *kp;
2700
2701	/*
2702	 *  Brute force method to determine duplicates
2703	 */
2704	for_each_kdbcmd(kp, i) {
2705		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706			kdb_printf("Duplicate kdb command registered: "
2707				"%s, func %p help %s\n", cmd, func, help);
2708			return 1;
2709		}
2710	}
2711
2712	/*
2713	 * Insert command into first available location in table
2714	 */
2715	for_each_kdbcmd(kp, i) {
2716		if (kp->cmd_name == NULL)
2717			break;
2718	}
2719
2720	if (i >= kdb_max_commands) {
2721		kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722			 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723		if (!new) {
2724			kdb_printf("Could not allocate new kdb_command "
2725				   "table\n");
2726			return 1;
2727		}
2728		if (kdb_commands) {
2729			memcpy(new, kdb_commands,
2730			  (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731			kfree(kdb_commands);
2732		}
2733		memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734		       kdb_command_extend * sizeof(*new));
2735		kdb_commands = new;
2736		kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737		kdb_max_commands += kdb_command_extend;
2738	}
2739
2740	kp->cmd_name   = cmd;
2741	kp->cmd_func   = func;
2742	kp->cmd_usage  = usage;
2743	kp->cmd_help   = help;
2744	kp->cmd_minlen = minlen;
2745	kp->cmd_flags  = flags;
 
 
 
2746
2747	return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
 
 
 
 
 
 
 
 
 
 
 
 
 
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 *	not need to specify a repeat state.  Equivalent to
2755 *	kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 *	cmd	Command name
2758 *	func	Function to execute the command
2759 *	usage	A simple usage string showing arguments
2760 *	help	A simple help string describing command
2761 * Returns:
2762 *	zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765	     kdb_func_t func,
2766	     char *usage,
2767	     char *help,
2768	     short minlen)
2769{
2770	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 *	debugger command.  It is generally called when a module which
2777 *	implements kdb commands is unloaded.
2778 * Inputs:
2779 *	cmd	Command name
2780 * Returns:
2781 *	zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785	int i;
2786	kdbtab_t *kp;
2787
2788	/*
2789	 *  find the command.
2790	 */
2791	for_each_kdbcmd(kp, i) {
2792		if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793			kp->cmd_name = NULL;
 
 
2794			return 0;
2795		}
2796	}
2797
2798	/* Couldn't find it.  */
2799	return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806	int i;
2807	kdbtab_t *kp;
2808
2809	for_each_kdbcmd(kp, i)
2810		kp->cmd_name = NULL;
2811
2812	kdb_register_flags("md", kdb_md, "<vaddr>",
2813	  "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815	kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816	  "Display Raw Memory", 0,
2817	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818	kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819	  "Display Physical Memory", 0,
2820	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821	kdb_register_flags("mds", kdb_md, "<vaddr>",
2822	  "Display Memory Symbolically", 0,
2823	  KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824	kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825	  "Modify Memory Contents", 0,
2826	  KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827	kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828	  "Continue Execution", 1,
2829	  KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830	kdb_register_flags("rd", kdb_rd, "",
2831	  "Display Registers", 0,
2832	  KDB_ENABLE_REG_READ);
2833	kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834	  "Modify Registers", 0,
2835	  KDB_ENABLE_REG_WRITE);
2836	kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837	  "Display exception frame", 0,
2838	  KDB_ENABLE_MEM_READ);
2839	kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840	  "Stack traceback", 1,
2841	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842	kdb_register_flags("btp", kdb_bt, "<pid>",
2843	  "Display stack for process <pid>", 0,
2844	  KDB_ENABLE_INSPECT);
2845	kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846	  "Backtrace all processes matching state flag", 0,
2847	  KDB_ENABLE_INSPECT);
2848	kdb_register_flags("btc", kdb_bt, "",
2849	  "Backtrace current process on each cpu", 0,
2850	  KDB_ENABLE_INSPECT);
2851	kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852	  "Backtrace process given its struct task address", 0,
2853	  KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854	kdb_register_flags("env", kdb_env, "",
2855	  "Show environment variables", 0,
2856	  KDB_ENABLE_ALWAYS_SAFE);
2857	kdb_register_flags("set", kdb_set, "",
2858	  "Set environment variables", 0,
2859	  KDB_ENABLE_ALWAYS_SAFE);
2860	kdb_register_flags("help", kdb_help, "",
2861	  "Display Help Message", 1,
2862	  KDB_ENABLE_ALWAYS_SAFE);
2863	kdb_register_flags("?", kdb_help, "",
2864	  "Display Help Message", 0,
2865	  KDB_ENABLE_ALWAYS_SAFE);
2866	kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867	  "Switch to new cpu", 0,
2868	  KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869	kdb_register_flags("kgdb", kdb_kgdb, "",
2870	  "Enter kgdb mode", 0, 0);
2871	kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872	  "Display active task list", 0,
2873	  KDB_ENABLE_INSPECT);
2874	kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875	  "Switch to another task", 0,
2876	  KDB_ENABLE_INSPECT);
2877	kdb_register_flags("reboot", kdb_reboot, "",
2878	  "Reboot the machine immediately", 0,
2879	  KDB_ENABLE_REBOOT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2880#if defined(CONFIG_MODULES)
2881	kdb_register_flags("lsmod", kdb_lsmod, "",
2882	  "List loaded kernel modules", 0,
2883	  KDB_ENABLE_INSPECT);
 
 
 
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886	kdb_register_flags("sr", kdb_sr, "<key>",
2887	  "Magic SysRq key", 0,
2888	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2889#endif
2890#if defined(CONFIG_PRINTK)
2891	kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892	  "Display syslog buffer", 0,
2893	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
2894#endif
2895	if (arch_kgdb_ops.enable_nmi) {
2896		kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897		  "Disable NMI entry to KDB", 0,
2898		  KDB_ENABLE_ALWAYS_SAFE);
2899	}
2900	kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901	  "Define a set of commands, down to endefcmd", 0,
2902	  KDB_ENABLE_ALWAYS_SAFE);
2903	kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904	  "Send a signal to a process", 0,
2905	  KDB_ENABLE_SIGNAL);
2906	kdb_register_flags("summary", kdb_summary, "",
2907	  "Summarize the system", 4,
2908	  KDB_ENABLE_ALWAYS_SAFE);
2909	kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910	  "Display per_cpu variables", 3,
2911	  KDB_ENABLE_MEM_READ);
2912	kdb_register_flags("grephelp", kdb_grep_help, "",
2913	  "Display help on | grep", 0,
2914	  KDB_ENABLE_ALWAYS_SAFE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2915}
2916
2917/* Execute any commands defined in kdb_cmds.  */
2918static void __init kdb_cmd_init(void)
2919{
2920	int i, diag;
2921	for (i = 0; kdb_cmds[i]; ++i) {
2922		diag = kdb_parse(kdb_cmds[i]);
2923		if (diag)
2924			kdb_printf("kdb command %s failed, kdb diag %d\n",
2925				kdb_cmds[i], diag);
2926	}
2927	if (defcmd_in_progress) {
2928		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929		kdb_parse("endefcmd");
2930	}
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937	int i;
2938
2939	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940		return;
2941	for (i = kdb_init_lvl; i < lvl; i++) {
2942		switch (i) {
2943		case KDB_NOT_INITIALIZED:
2944			kdb_inittab();		/* Initialize Command Table */
2945			kdb_initbptab();	/* Initialize Breakpoints */
2946			break;
2947		case KDB_INIT_EARLY:
2948			kdb_cmd_init();		/* Build kdb_cmds tables */
2949			break;
2950		}
2951	}
2952	kdb_init_lvl = lvl;
2953}
v5.14.15
   1/*
   2 * Kernel Debugger Architecture Independent Main Code
   3 *
   4 * This file is subject to the terms and conditions of the GNU General Public
   5 * License.  See the file "COPYING" in the main directory of this archive
   6 * for more details.
   7 *
   8 * Copyright (C) 1999-2004 Silicon Graphics, Inc.  All Rights Reserved.
   9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
  10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
  11 * Copyright (c) 2009 Wind River Systems, Inc.  All Rights Reserved.
  12 */
  13
  14#include <linux/ctype.h>
  15#include <linux/types.h>
  16#include <linux/string.h>
  17#include <linux/kernel.h>
  18#include <linux/kmsg_dump.h>
  19#include <linux/reboot.h>
  20#include <linux/sched.h>
  21#include <linux/sched/loadavg.h>
  22#include <linux/sched/stat.h>
  23#include <linux/sched/debug.h>
  24#include <linux/sysrq.h>
  25#include <linux/smp.h>
  26#include <linux/utsname.h>
  27#include <linux/vmalloc.h>
  28#include <linux/atomic.h>
  29#include <linux/module.h>
  30#include <linux/moduleparam.h>
  31#include <linux/mm.h>
  32#include <linux/init.h>
  33#include <linux/kallsyms.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdb.h>
  36#include <linux/list.h>
  37#include <linux/notifier.h>
  38#include <linux/interrupt.h>
  39#include <linux/delay.h>
  40#include <linux/nmi.h>
  41#include <linux/time.h>
  42#include <linux/ptrace.h>
  43#include <linux/sysctl.h>
  44#include <linux/cpu.h>
  45#include <linux/kdebug.h>
  46#include <linux/proc_fs.h>
  47#include <linux/uaccess.h>
  48#include <linux/slab.h>
  49#include "kdb_private.h"
  50
  51#undef	MODULE_PARAM_PREFIX
  52#define	MODULE_PARAM_PREFIX "kdb."
  53
  54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
  55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
  56
  57char kdb_grep_string[KDB_GREP_STRLEN];
  58int kdb_grepping_flag;
  59EXPORT_SYMBOL(kdb_grepping_flag);
  60int kdb_grep_leading;
  61int kdb_grep_trailing;
  62
  63/*
  64 * Kernel debugger state flags
  65 */
  66unsigned int kdb_flags;
  67
  68/*
  69 * kdb_lock protects updates to kdb_initial_cpu.  Used to
  70 * single thread processors through the kernel debugger.
  71 */
  72int kdb_initial_cpu = -1;	/* cpu number that owns kdb */
  73int kdb_nextline = 1;
  74int kdb_state;			/* General KDB state */
  75
  76struct task_struct *kdb_current_task;
 
  77struct pt_regs *kdb_current_regs;
  78
  79const char *kdb_diemsg;
  80static int kdb_go_count;
  81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
  82static unsigned int kdb_continue_catastrophic =
  83	CONFIG_KDB_CONTINUE_CATASTROPHIC;
  84#else
  85static unsigned int kdb_continue_catastrophic;
  86#endif
  87
  88/* kdb_cmds_head describes the available commands. */
  89static LIST_HEAD(kdb_cmds_head);
 
 
 
 
 
 
 
  90
  91typedef struct _kdbmsg {
  92	int	km_diag;	/* kdb diagnostic */
  93	char	*km_msg;	/* Corresponding message text */
  94} kdbmsg_t;
  95
  96#define KDBMSG(msgnum, text) \
  97	{ KDB_##msgnum, text }
  98
  99static kdbmsg_t kdbmsgs[] = {
 100	KDBMSG(NOTFOUND, "Command Not Found"),
 101	KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
 102	KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
 103	       "8 is only allowed on 64 bit systems"),
 104	KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
 105	KDBMSG(NOTENV, "Cannot find environment variable"),
 106	KDBMSG(NOENVVALUE, "Environment variable should have value"),
 107	KDBMSG(NOTIMP, "Command not implemented"),
 108	KDBMSG(ENVFULL, "Environment full"),
 109	KDBMSG(ENVBUFFULL, "Environment buffer full"),
 110	KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
 111#ifdef CONFIG_CPU_XSCALE
 112	KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
 113#else
 114	KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
 115#endif
 116	KDBMSG(DUPBPT, "Duplicate breakpoint address"),
 117	KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
 118	KDBMSG(BADMODE, "Invalid IDMODE"),
 119	KDBMSG(BADINT, "Illegal numeric value"),
 120	KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
 121	KDBMSG(BADREG, "Invalid register name"),
 122	KDBMSG(BADCPUNUM, "Invalid cpu number"),
 123	KDBMSG(BADLENGTH, "Invalid length field"),
 124	KDBMSG(NOBP, "No Breakpoint exists"),
 125	KDBMSG(BADADDR, "Invalid address"),
 126	KDBMSG(NOPERM, "Permission denied"),
 127};
 128#undef KDBMSG
 129
 130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
 131
 132
 133/*
 134 * Initial environment.   This is all kept static and local to
 135 * this file.   We don't want to rely on the memory allocation
 136 * mechanisms in the kernel, so we use a very limited allocate-only
 137 * heap for new and altered environment variables.  The entire
 138 * environment is limited to a fixed number of entries (add more
 139 * to __env[] if required) and a fixed amount of heap (add more to
 140 * KDB_ENVBUFSIZE if required).
 141 */
 142
 143static char *__env[31] = {
 144#if defined(CONFIG_SMP)
 145	"PROMPT=[%d]kdb> ",
 146#else
 147	"PROMPT=kdb> ",
 148#endif
 149	"MOREPROMPT=more> ",
 150	"RADIX=16",
 151	"MDCOUNT=8",		/* lines of md output */
 152	KDB_PLATFORM_ENV,
 153	"DTABCOUNT=30",
 154	"NOSECT=1",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 155};
 156
 157static const int __nenv = ARRAY_SIZE(__env);
 158
 159struct task_struct *kdb_curr_task(int cpu)
 160{
 161	struct task_struct *p = curr_task(cpu);
 162#ifdef	_TIF_MCA_INIT
 163	if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
 164		p = krp->p;
 165#endif
 166	return p;
 167}
 168
 169/*
 170 * Check whether the flags of the current command and the permissions
 171 * of the kdb console has allow a command to be run.
 172 */
 173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
 174				   bool no_args)
 175{
 176	/* permissions comes from userspace so needs massaging slightly */
 177	permissions &= KDB_ENABLE_MASK;
 178	permissions |= KDB_ENABLE_ALWAYS_SAFE;
 179
 180	/* some commands change group when launched with no arguments */
 181	if (no_args)
 182		permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
 183
 184	flags |= KDB_ENABLE_ALL;
 185
 186	return permissions & flags;
 187}
 188
 189/*
 190 * kdbgetenv - This function will return the character string value of
 191 *	an environment variable.
 192 * Parameters:
 193 *	match	A character string representing an environment variable.
 194 * Returns:
 195 *	NULL	No environment variable matches 'match'
 196 *	char*	Pointer to string value of environment variable.
 197 */
 198char *kdbgetenv(const char *match)
 199{
 200	char **ep = __env;
 201	int matchlen = strlen(match);
 202	int i;
 203
 204	for (i = 0; i < __nenv; i++) {
 205		char *e = *ep++;
 206
 207		if (!e)
 208			continue;
 209
 210		if ((strncmp(match, e, matchlen) == 0)
 211		 && ((e[matchlen] == '\0')
 212		   || (e[matchlen] == '='))) {
 213			char *cp = strchr(e, '=');
 214			return cp ? ++cp : "";
 215		}
 216	}
 217	return NULL;
 218}
 219
 220/*
 221 * kdballocenv - This function is used to allocate bytes for
 222 *	environment entries.
 223 * Parameters:
 224 *	match	A character string representing a numeric value
 225 * Outputs:
 226 *	*value  the unsigned long representation of the env variable 'match'
 227 * Returns:
 228 *	Zero on success, a kdb diagnostic on failure.
 229 * Remarks:
 230 *	We use a static environment buffer (envbuffer) to hold the values
 231 *	of dynamically generated environment variables (see kdb_set).  Buffer
 232 *	space once allocated is never free'd, so over time, the amount of space
 233 *	(currently 512 bytes) will be exhausted if env variables are changed
 234 *	frequently.
 235 */
 236static char *kdballocenv(size_t bytes)
 237{
 238#define	KDB_ENVBUFSIZE	512
 239	static char envbuffer[KDB_ENVBUFSIZE];
 240	static int envbufsize;
 241	char *ep = NULL;
 242
 243	if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
 244		ep = &envbuffer[envbufsize];
 245		envbufsize += bytes;
 246	}
 247	return ep;
 248}
 249
 250/*
 251 * kdbgetulenv - This function will return the value of an unsigned
 252 *	long-valued environment variable.
 253 * Parameters:
 254 *	match	A character string representing a numeric value
 255 * Outputs:
 256 *	*value  the unsigned long representation of the env variable 'match'
 257 * Returns:
 258 *	Zero on success, a kdb diagnostic on failure.
 259 */
 260static int kdbgetulenv(const char *match, unsigned long *value)
 261{
 262	char *ep;
 263
 264	ep = kdbgetenv(match);
 265	if (!ep)
 266		return KDB_NOTENV;
 267	if (strlen(ep) == 0)
 268		return KDB_NOENVVALUE;
 269
 270	*value = simple_strtoul(ep, NULL, 0);
 271
 272	return 0;
 273}
 274
 275/*
 276 * kdbgetintenv - This function will return the value of an
 277 *	integer-valued environment variable.
 278 * Parameters:
 279 *	match	A character string representing an integer-valued env variable
 280 * Outputs:
 281 *	*value  the integer representation of the environment variable 'match'
 282 * Returns:
 283 *	Zero on success, a kdb diagnostic on failure.
 284 */
 285int kdbgetintenv(const char *match, int *value)
 286{
 287	unsigned long val;
 288	int diag;
 289
 290	diag = kdbgetulenv(match, &val);
 291	if (!diag)
 292		*value = (int) val;
 293	return diag;
 294}
 295
 296/*
 297 * kdb_setenv() - Alter an existing environment variable or create a new one.
 298 * @var: Name of the variable
 299 * @val: Value of the variable
 300 *
 301 * Return: Zero on success, a kdb diagnostic on failure.
 302 */
 303static int kdb_setenv(const char *var, const char *val)
 304{
 305	int i;
 306	char *ep;
 307	size_t varlen, vallen;
 308
 309	varlen = strlen(var);
 310	vallen = strlen(val);
 311	ep = kdballocenv(varlen + vallen + 2);
 312	if (ep == (char *)0)
 313		return KDB_ENVBUFFULL;
 314
 315	sprintf(ep, "%s=%s", var, val);
 316
 317	for (i = 0; i < __nenv; i++) {
 318		if (__env[i]
 319		 && ((strncmp(__env[i], var, varlen) == 0)
 320		   && ((__env[i][varlen] == '\0')
 321		    || (__env[i][varlen] == '=')))) {
 322			__env[i] = ep;
 323			return 0;
 324		}
 325	}
 326
 327	/*
 328	 * Wasn't existing variable.  Fit into slot.
 329	 */
 330	for (i = 0; i < __nenv-1; i++) {
 331		if (__env[i] == (char *)0) {
 332			__env[i] = ep;
 333			return 0;
 334		}
 335	}
 336
 337	return KDB_ENVFULL;
 338}
 339
 340/*
 341 * kdb_printenv() - Display the current environment variables.
 342 */
 343static void kdb_printenv(void)
 344{
 345	int i;
 346
 347	for (i = 0; i < __nenv; i++) {
 348		if (__env[i])
 349			kdb_printf("%s\n", __env[i]);
 350	}
 351}
 352
 353/*
 354 * kdbgetularg - This function will convert a numeric string into an
 355 *	unsigned long value.
 356 * Parameters:
 357 *	arg	A character string representing a numeric value
 358 * Outputs:
 359 *	*value  the unsigned long representation of arg.
 360 * Returns:
 361 *	Zero on success, a kdb diagnostic on failure.
 362 */
 363int kdbgetularg(const char *arg, unsigned long *value)
 364{
 365	char *endp;
 366	unsigned long val;
 367
 368	val = simple_strtoul(arg, &endp, 0);
 369
 370	if (endp == arg) {
 371		/*
 372		 * Also try base 16, for us folks too lazy to type the
 373		 * leading 0x...
 374		 */
 375		val = simple_strtoul(arg, &endp, 16);
 376		if (endp == arg)
 377			return KDB_BADINT;
 378	}
 379
 380	*value = val;
 381
 382	return 0;
 383}
 384
 385int kdbgetu64arg(const char *arg, u64 *value)
 386{
 387	char *endp;
 388	u64 val;
 389
 390	val = simple_strtoull(arg, &endp, 0);
 391
 392	if (endp == arg) {
 393
 394		val = simple_strtoull(arg, &endp, 16);
 395		if (endp == arg)
 396			return KDB_BADINT;
 397	}
 398
 399	*value = val;
 400
 401	return 0;
 402}
 403
 404/*
 405 * kdb_set - This function implements the 'set' command.  Alter an
 406 *	existing environment variable or create a new one.
 407 */
 408int kdb_set(int argc, const char **argv)
 409{
 
 
 
 
 410	/*
 411	 * we can be invoked two ways:
 412	 *   set var=value    argv[1]="var", argv[2]="value"
 413	 *   set var = value  argv[1]="var", argv[2]="=", argv[3]="value"
 414	 * - if the latter, shift 'em down.
 415	 */
 416	if (argc == 3) {
 417		argv[2] = argv[3];
 418		argc--;
 419	}
 420
 421	if (argc != 2)
 422		return KDB_ARGCOUNT;
 423
 424	/*
 425	 * Censor sensitive variables
 426	 */
 427	if (strcmp(argv[1], "PROMPT") == 0 &&
 428	    !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
 429		return KDB_NOPERM;
 430
 431	/*
 432	 * Check for internal variables
 433	 */
 434	if (strcmp(argv[1], "KDBDEBUG") == 0) {
 435		unsigned int debugflags;
 436		char *cp;
 437
 438		debugflags = simple_strtoul(argv[2], &cp, 0);
 439		if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
 440			kdb_printf("kdb: illegal debug flags '%s'\n",
 441				    argv[2]);
 442			return 0;
 443		}
 444		kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
 
 445			| (debugflags << KDB_DEBUG_FLAG_SHIFT);
 446
 447		return 0;
 448	}
 449
 450	/*
 451	 * Tokenizer squashed the '=' sign.  argv[1] is variable
 452	 * name, argv[2] = value.
 453	 */
 454	return kdb_setenv(argv[1], argv[2]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 455}
 456
 457static int kdb_check_regs(void)
 458{
 459	if (!kdb_current_regs) {
 460		kdb_printf("No current kdb registers."
 461			   "  You may need to select another task\n");
 462		return KDB_BADREG;
 463	}
 464	return 0;
 465}
 466
 467/*
 468 * kdbgetaddrarg - This function is responsible for parsing an
 469 *	address-expression and returning the value of the expression,
 470 *	symbol name, and offset to the caller.
 471 *
 472 *	The argument may consist of a numeric value (decimal or
 473 *	hexadecimal), a symbol name, a register name (preceded by the
 474 *	percent sign), an environment variable with a numeric value
 475 *	(preceded by a dollar sign) or a simple arithmetic expression
 476 *	consisting of a symbol name, +/-, and a numeric constant value
 477 *	(offset).
 478 * Parameters:
 479 *	argc	- count of arguments in argv
 480 *	argv	- argument vector
 481 *	*nextarg - index to next unparsed argument in argv[]
 482 *	regs	- Register state at time of KDB entry
 483 * Outputs:
 484 *	*value	- receives the value of the address-expression
 485 *	*offset - receives the offset specified, if any
 486 *	*name   - receives the symbol name, if any
 487 *	*nextarg - index to next unparsed argument in argv[]
 488 * Returns:
 489 *	zero is returned on success, a kdb diagnostic code is
 490 *      returned on error.
 491 */
 492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
 493		  unsigned long *value,  long *offset,
 494		  char **name)
 495{
 496	unsigned long addr;
 497	unsigned long off = 0;
 498	int positive;
 499	int diag;
 500	int found = 0;
 501	char *symname;
 502	char symbol = '\0';
 503	char *cp;
 504	kdb_symtab_t symtab;
 505
 506	/*
 507	 * If the enable flags prohibit both arbitrary memory access
 508	 * and flow control then there are no reasonable grounds to
 509	 * provide symbol lookup.
 510	 */
 511	if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
 512			     kdb_cmd_enabled, false))
 513		return KDB_NOPERM;
 514
 515	/*
 516	 * Process arguments which follow the following syntax:
 517	 *
 518	 *  symbol | numeric-address [+/- numeric-offset]
 519	 *  %register
 520	 *  $environment-variable
 521	 */
 522
 523	if (*nextarg > argc)
 524		return KDB_ARGCOUNT;
 525
 526	symname = (char *)argv[*nextarg];
 527
 528	/*
 529	 * If there is no whitespace between the symbol
 530	 * or address and the '+' or '-' symbols, we
 531	 * remember the character and replace it with a
 532	 * null so the symbol/value can be properly parsed
 533	 */
 534	cp = strpbrk(symname, "+-");
 535	if (cp != NULL) {
 536		symbol = *cp;
 537		*cp++ = '\0';
 538	}
 539
 540	if (symname[0] == '$') {
 541		diag = kdbgetulenv(&symname[1], &addr);
 542		if (diag)
 543			return diag;
 544	} else if (symname[0] == '%') {
 545		diag = kdb_check_regs();
 546		if (diag)
 547			return diag;
 548		/* Implement register values with % at a later time as it is
 549		 * arch optional.
 550		 */
 551		return KDB_NOTIMP;
 552	} else {
 553		found = kdbgetsymval(symname, &symtab);
 554		if (found) {
 555			addr = symtab.sym_start;
 556		} else {
 557			diag = kdbgetularg(argv[*nextarg], &addr);
 558			if (diag)
 559				return diag;
 560		}
 561	}
 562
 563	if (!found)
 564		found = kdbnearsym(addr, &symtab);
 565
 566	(*nextarg)++;
 567
 568	if (name)
 569		*name = symname;
 570	if (value)
 571		*value = addr;
 572	if (offset && name && *name)
 573		*offset = addr - symtab.sym_start;
 574
 575	if ((*nextarg > argc)
 576	 && (symbol == '\0'))
 577		return 0;
 578
 579	/*
 580	 * check for +/- and offset
 581	 */
 582
 583	if (symbol == '\0') {
 584		if ((argv[*nextarg][0] != '+')
 585		 && (argv[*nextarg][0] != '-')) {
 586			/*
 587			 * Not our argument.  Return.
 588			 */
 589			return 0;
 590		} else {
 591			positive = (argv[*nextarg][0] == '+');
 592			(*nextarg)++;
 593		}
 594	} else
 595		positive = (symbol == '+');
 596
 597	/*
 598	 * Now there must be an offset!
 599	 */
 600	if ((*nextarg > argc)
 601	 && (symbol == '\0')) {
 602		return KDB_INVADDRFMT;
 603	}
 604
 605	if (!symbol) {
 606		cp = (char *)argv[*nextarg];
 607		(*nextarg)++;
 608	}
 609
 610	diag = kdbgetularg(cp, &off);
 611	if (diag)
 612		return diag;
 613
 614	if (!positive)
 615		off = -off;
 616
 617	if (offset)
 618		*offset += off;
 619
 620	if (value)
 621		*value += off;
 622
 623	return 0;
 624}
 625
 626static void kdb_cmderror(int diag)
 627{
 628	int i;
 629
 630	if (diag >= 0) {
 631		kdb_printf("no error detected (diagnostic is %d)\n", diag);
 632		return;
 633	}
 634
 635	for (i = 0; i < __nkdb_err; i++) {
 636		if (kdbmsgs[i].km_diag == diag) {
 637			kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
 638			return;
 639		}
 640	}
 641
 642	kdb_printf("Unknown diag %d\n", -diag);
 643}
 644
 645/*
 646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
 647 *	command which defines one command as a set of other commands,
 648 *	terminated by endefcmd.  kdb_defcmd processes the initial
 649 *	'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
 650 *	the following commands until 'endefcmd'.
 651 * Inputs:
 652 *	argc	argument count
 653 *	argv	argument vector
 654 * Returns:
 655 *	zero for success, a kdb diagnostic if error
 656 */
 657struct defcmd_set {
 658	int count;
 659	bool usable;
 660	char *name;
 661	char *usage;
 662	char *help;
 663	char **command;
 664};
 665static struct defcmd_set *defcmd_set;
 666static int defcmd_set_count;
 667static bool defcmd_in_progress;
 668
 669/* Forward references */
 670static int kdb_exec_defcmd(int argc, const char **argv);
 671
 672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
 673{
 674	struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
 675	char **save_command = s->command;
 676	if (strcmp(argv0, "endefcmd") == 0) {
 677		defcmd_in_progress = false;
 678		if (!s->count)
 679			s->usable = false;
 680		if (s->usable)
 681			/* macros are always safe because when executed each
 682			 * internal command re-enters kdb_parse() and is
 683			 * safety checked individually.
 684			 */
 685			kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
 686					   s->help, 0,
 687					   KDB_ENABLE_ALWAYS_SAFE);
 688		return 0;
 689	}
 690	if (!s->usable)
 691		return KDB_NOTIMP;
 692	s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
 693	if (!s->command) {
 694		kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
 695			   cmdstr);
 696		s->usable = false;
 697		return KDB_NOTIMP;
 698	}
 699	memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
 700	s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
 701	kfree(save_command);
 702	return 0;
 703}
 704
 705static int kdb_defcmd(int argc, const char **argv)
 706{
 707	struct defcmd_set *save_defcmd_set = defcmd_set, *s;
 708	if (defcmd_in_progress) {
 709		kdb_printf("kdb: nested defcmd detected, assuming missing "
 710			   "endefcmd\n");
 711		kdb_defcmd2("endefcmd", "endefcmd");
 712	}
 713	if (argc == 0) {
 714		int i;
 715		for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
 716			kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
 717				   s->usage, s->help);
 718			for (i = 0; i < s->count; ++i)
 719				kdb_printf("%s", s->command[i]);
 720			kdb_printf("endefcmd\n");
 721		}
 722		return 0;
 723	}
 724	if (argc != 3)
 725		return KDB_ARGCOUNT;
 726	if (in_dbg_master()) {
 727		kdb_printf("Command only available during kdb_init()\n");
 728		return KDB_NOTIMP;
 729	}
 730	defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
 731				   GFP_KDB);
 732	if (!defcmd_set)
 733		goto fail_defcmd;
 734	memcpy(defcmd_set, save_defcmd_set,
 735	       defcmd_set_count * sizeof(*defcmd_set));
 736	s = defcmd_set + defcmd_set_count;
 737	memset(s, 0, sizeof(*s));
 738	s->usable = true;
 739	s->name = kdb_strdup(argv[1], GFP_KDB);
 740	if (!s->name)
 741		goto fail_name;
 742	s->usage = kdb_strdup(argv[2], GFP_KDB);
 743	if (!s->usage)
 744		goto fail_usage;
 745	s->help = kdb_strdup(argv[3], GFP_KDB);
 746	if (!s->help)
 747		goto fail_help;
 748	if (s->usage[0] == '"') {
 749		strcpy(s->usage, argv[2]+1);
 750		s->usage[strlen(s->usage)-1] = '\0';
 751	}
 752	if (s->help[0] == '"') {
 753		strcpy(s->help, argv[3]+1);
 754		s->help[strlen(s->help)-1] = '\0';
 755	}
 756	++defcmd_set_count;
 757	defcmd_in_progress = true;
 758	kfree(save_defcmd_set);
 759	return 0;
 760fail_help:
 761	kfree(s->usage);
 762fail_usage:
 763	kfree(s->name);
 764fail_name:
 765	kfree(defcmd_set);
 766fail_defcmd:
 767	kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
 768	defcmd_set = save_defcmd_set;
 769	return KDB_NOTIMP;
 770}
 771
 772/*
 773 * kdb_exec_defcmd - Execute the set of commands associated with this
 774 *	defcmd name.
 775 * Inputs:
 776 *	argc	argument count
 777 *	argv	argument vector
 778 * Returns:
 779 *	zero for success, a kdb diagnostic if error
 780 */
 781static int kdb_exec_defcmd(int argc, const char **argv)
 782{
 783	int i, ret;
 784	struct defcmd_set *s;
 785	if (argc != 0)
 786		return KDB_ARGCOUNT;
 787	for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
 788		if (strcmp(s->name, argv[0]) == 0)
 789			break;
 790	}
 791	if (i == defcmd_set_count) {
 792		kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
 793			   argv[0]);
 794		return KDB_NOTIMP;
 795	}
 796	for (i = 0; i < s->count; ++i) {
 797		/* Recursive use of kdb_parse, do not use argv after
 798		 * this point */
 799		argv = NULL;
 800		kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
 801		ret = kdb_parse(s->command[i]);
 802		if (ret)
 803			return ret;
 804	}
 805	return 0;
 806}
 807
 808/* Command history */
 809#define KDB_CMD_HISTORY_COUNT	32
 810#define CMD_BUFLEN		200	/* kdb_printf: max printline
 811					 * size == 256 */
 812static unsigned int cmd_head, cmd_tail;
 813static unsigned int cmdptr;
 814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
 815static char cmd_cur[CMD_BUFLEN];
 816
 817/*
 818 * The "str" argument may point to something like  | grep xyz
 819 */
 820static void parse_grep(const char *str)
 821{
 822	int	len;
 823	char	*cp = (char *)str, *cp2;
 824
 825	/* sanity check: we should have been called with the \ first */
 826	if (*cp != '|')
 827		return;
 828	cp++;
 829	while (isspace(*cp))
 830		cp++;
 831	if (!str_has_prefix(cp, "grep ")) {
 832		kdb_printf("invalid 'pipe', see grephelp\n");
 833		return;
 834	}
 835	cp += 5;
 836	while (isspace(*cp))
 837		cp++;
 838	cp2 = strchr(cp, '\n');
 839	if (cp2)
 840		*cp2 = '\0'; /* remove the trailing newline */
 841	len = strlen(cp);
 842	if (len == 0) {
 843		kdb_printf("invalid 'pipe', see grephelp\n");
 844		return;
 845	}
 846	/* now cp points to a nonzero length search string */
 847	if (*cp == '"') {
 848		/* allow it be "x y z" by removing the "'s - there must
 849		   be two of them */
 850		cp++;
 851		cp2 = strchr(cp, '"');
 852		if (!cp2) {
 853			kdb_printf("invalid quoted string, see grephelp\n");
 854			return;
 855		}
 856		*cp2 = '\0'; /* end the string where the 2nd " was */
 857	}
 858	kdb_grep_leading = 0;
 859	if (*cp == '^') {
 860		kdb_grep_leading = 1;
 861		cp++;
 862	}
 863	len = strlen(cp);
 864	kdb_grep_trailing = 0;
 865	if (*(cp+len-1) == '$') {
 866		kdb_grep_trailing = 1;
 867		*(cp+len-1) = '\0';
 868	}
 869	len = strlen(cp);
 870	if (!len)
 871		return;
 872	if (len >= KDB_GREP_STRLEN) {
 873		kdb_printf("search string too long\n");
 874		return;
 875	}
 876	strcpy(kdb_grep_string, cp);
 877	kdb_grepping_flag++;
 878	return;
 879}
 880
 881/*
 882 * kdb_parse - Parse the command line, search the command table for a
 883 *	matching command and invoke the command function.  This
 884 *	function may be called recursively, if it is, the second call
 885 *	will overwrite argv and cbuf.  It is the caller's
 886 *	responsibility to save their argv if they recursively call
 887 *	kdb_parse().
 888 * Parameters:
 889 *      cmdstr	The input command line to be parsed.
 890 *	regs	The registers at the time kdb was entered.
 891 * Returns:
 892 *	Zero for success, a kdb diagnostic if failure.
 893 * Remarks:
 894 *	Limited to 20 tokens.
 895 *
 896 *	Real rudimentary tokenization. Basically only whitespace
 897 *	is considered a token delimiter (but special consideration
 898 *	is taken of the '=' sign as used by the 'set' command).
 899 *
 900 *	The algorithm used to tokenize the input string relies on
 901 *	there being at least one whitespace (or otherwise useless)
 902 *	character between tokens as the character immediately following
 903 *	the token is altered in-place to a null-byte to terminate the
 904 *	token string.
 905 */
 906
 907#define MAXARGC	20
 908
 909int kdb_parse(const char *cmdstr)
 910{
 911	static char *argv[MAXARGC];
 912	static int argc;
 913	static char cbuf[CMD_BUFLEN+2];
 914	char *cp;
 915	char *cpp, quoted;
 916	kdbtab_t *tp;
 917	int escaped, ignore_errors = 0, check_grep = 0;
 918
 919	/*
 920	 * First tokenize the command string.
 921	 */
 922	cp = (char *)cmdstr;
 923
 924	if (KDB_FLAG(CMD_INTERRUPT)) {
 925		/* Previous command was interrupted, newline must not
 926		 * repeat the command */
 927		KDB_FLAG_CLEAR(CMD_INTERRUPT);
 928		KDB_STATE_SET(PAGER);
 929		argc = 0;	/* no repeat */
 930	}
 931
 932	if (*cp != '\n' && *cp != '\0') {
 933		argc = 0;
 934		cpp = cbuf;
 935		while (*cp) {
 936			/* skip whitespace */
 937			while (isspace(*cp))
 938				cp++;
 939			if ((*cp == '\0') || (*cp == '\n') ||
 940			    (*cp == '#' && !defcmd_in_progress))
 941				break;
 942			/* special case: check for | grep pattern */
 943			if (*cp == '|') {
 944				check_grep++;
 945				break;
 946			}
 947			if (cpp >= cbuf + CMD_BUFLEN) {
 948				kdb_printf("kdb_parse: command buffer "
 949					   "overflow, command ignored\n%s\n",
 950					   cmdstr);
 951				return KDB_NOTFOUND;
 952			}
 953			if (argc >= MAXARGC - 1) {
 954				kdb_printf("kdb_parse: too many arguments, "
 955					   "command ignored\n%s\n", cmdstr);
 956				return KDB_NOTFOUND;
 957			}
 958			argv[argc++] = cpp;
 959			escaped = 0;
 960			quoted = '\0';
 961			/* Copy to next unquoted and unescaped
 962			 * whitespace or '=' */
 963			while (*cp && *cp != '\n' &&
 964			       (escaped || quoted || !isspace(*cp))) {
 965				if (cpp >= cbuf + CMD_BUFLEN)
 966					break;
 967				if (escaped) {
 968					escaped = 0;
 969					*cpp++ = *cp++;
 970					continue;
 971				}
 972				if (*cp == '\\') {
 973					escaped = 1;
 974					++cp;
 975					continue;
 976				}
 977				if (*cp == quoted)
 978					quoted = '\0';
 979				else if (*cp == '\'' || *cp == '"')
 980					quoted = *cp;
 981				*cpp = *cp++;
 982				if (*cpp == '=' && !quoted)
 983					break;
 984				++cpp;
 985			}
 986			*cpp++ = '\0';	/* Squash a ws or '=' character */
 987		}
 988	}
 989	if (!argc)
 990		return 0;
 991	if (check_grep)
 992		parse_grep(cp);
 993	if (defcmd_in_progress) {
 994		int result = kdb_defcmd2(cmdstr, argv[0]);
 995		if (!defcmd_in_progress) {
 996			argc = 0;	/* avoid repeat on endefcmd */
 997			*(argv[0]) = '\0';
 998		}
 999		return result;
1000	}
1001	if (argv[0][0] == '-' && argv[0][1] &&
1002	    (argv[0][1] < '0' || argv[0][1] > '9')) {
1003		ignore_errors = 1;
1004		++argv[0];
1005	}
1006
1007	list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008		/*
1009		 * If this command is allowed to be abbreviated,
1010		 * check to see if this is it.
1011		 */
1012		if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013		    (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014			break;
 
 
 
 
 
 
 
1015
1016		if (strcmp(argv[0], tp->cmd_name) == 0)
1017			break;
 
1018	}
1019
1020	/*
1021	 * If we don't find a command by this name, see if the first
1022	 * few characters of this match any of the known commands.
1023	 * e.g., md1c20 should match md.
1024	 */
1025	if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026		list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027			if (strncmp(argv[0], tp->cmd_name,
1028				    strlen(tp->cmd_name)) == 0)
1029				break;
 
 
 
 
1030		}
1031	}
1032
1033	if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034		int result;
1035
1036		if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037			return KDB_NOPERM;
1038
1039		KDB_STATE_SET(CMD);
1040		result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041		if (result && ignore_errors && result > KDB_CMD_GO)
1042			result = 0;
1043		KDB_STATE_CLEAR(CMD);
1044
1045		if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046			return result;
1047
1048		argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049		if (argv[argc])
1050			*(argv[argc]) = '\0';
1051		return result;
1052	}
1053
1054	/*
1055	 * If the input with which we were presented does not
1056	 * map to an existing command, attempt to parse it as an
1057	 * address argument and display the result.   Useful for
1058	 * obtaining the address of a variable, or the nearest symbol
1059	 * to an address contained in a register.
1060	 */
1061	{
1062		unsigned long value;
1063		char *name = NULL;
1064		long offset;
1065		int nextarg = 0;
1066
1067		if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068				  &value, &offset, &name)) {
1069			return KDB_NOTFOUND;
1070		}
1071
1072		kdb_printf("%s = ", argv[0]);
1073		kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074		kdb_printf("\n");
1075		return 0;
1076	}
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P	16
1083#define CTRL_N	14
1084
1085	/* initial situation */
1086	if (cmd_head == cmd_tail)
1087		return 0;
1088	switch (*cmd) {
1089	case CTRL_P:
1090		if (cmdptr != cmd_tail)
1091			cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092				 KDB_CMD_HISTORY_COUNT;
1093		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094		return 1;
1095	case CTRL_N:
1096		if (cmdptr != cmd_head)
1097			cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098		strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099		return 1;
1100	}
1101	return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command.  Reboot
1106 *	the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110	emergency_restart();
1111	kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112	while (1)
1113		cpu_relax();
1114	/* NOTREACHED */
1115	return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120	int old_lvl = console_loglevel;
1121	console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122	kdb_trap_printk++;
1123	show_regs(regs);
1124	kdb_trap_printk--;
1125	kdb_printf("\n");
1126	console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131	kdb_current_task = p;
1132
1133	if (kdb_task_has_cpu(p)) {
1134		kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135		return;
1136	}
1137	kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142	size_t len = strlen(buf);
1143
1144	if (len == 0)
1145		return;
1146	if (*(buf + len - 1) == '\n')
1147		*(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb.  This routine is invoked on a
1152 *	specific processor, it is not global.  The main kdb() routine
1153 *	ensures that only one processor at a time is in this routine.
1154 *	This code is called with the real reason code on the first
1155 *	entry to a kdb session, thereafter it is called with reason
1156 *	SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 *	reason		The reason KDB was invoked
1159 *	error		The hardware-defined error code
1160 *	regs		The exception frame at time of fault/breakpoint.
1161 *	db_result	Result code from the break or debug point.
1162 * Returns:
1163 *	0	KDB was invoked for an event which it wasn't responsible
1164 *	1	KDB handled the event for which it was invoked.
1165 *	KDB_CMD_GO	User typed 'go'.
1166 *	KDB_CMD_CPU	User switched to another cpu.
1167 *	KDB_CMD_SS	Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170		     kdb_dbtrap_t db_result)
1171{
1172	char *cmdbuf;
1173	int diag;
1174	struct task_struct *kdb_current =
1175		kdb_curr_task(raw_smp_processor_id());
1176
1177	KDB_DEBUG_STATE("kdb_local 1", reason);
1178	kdb_go_count = 0;
1179	if (reason == KDB_REASON_DEBUG) {
1180		/* special case below */
1181	} else {
1182		kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183			   kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185		kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187	}
1188
1189	switch (reason) {
1190	case KDB_REASON_DEBUG:
1191	{
1192		/*
1193		 * If re-entering kdb after a single step
1194		 * command, don't print the message.
1195		 */
1196		switch (db_result) {
1197		case KDB_DB_BPT:
1198			kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199				   kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201			kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203			kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204				   instruction_pointer(regs));
1205			break;
1206		case KDB_DB_SS:
1207			break;
1208		case KDB_DB_SSBPT:
1209			KDB_DEBUG_STATE("kdb_local 4", reason);
1210			return 1;	/* kdba_db_trap did the work */
1211		default:
1212			kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213				   db_result);
1214			break;
1215		}
1216
1217	}
1218		break;
1219	case KDB_REASON_ENTER:
1220		if (KDB_STATE(KEYBOARD))
1221			kdb_printf("due to Keyboard Entry\n");
1222		else
1223			kdb_printf("due to KDB_ENTER()\n");
1224		break;
1225	case KDB_REASON_KEYBOARD:
1226		KDB_STATE_SET(KEYBOARD);
1227		kdb_printf("due to Keyboard Entry\n");
1228		break;
1229	case KDB_REASON_ENTER_SLAVE:
1230		/* drop through, slaves only get released via cpu switch */
1231	case KDB_REASON_SWITCH:
1232		kdb_printf("due to cpu switch\n");
1233		break;
1234	case KDB_REASON_OOPS:
1235		kdb_printf("Oops: %s\n", kdb_diemsg);
1236		kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237			   instruction_pointer(regs));
1238		kdb_dumpregs(regs);
1239		break;
1240	case KDB_REASON_SYSTEM_NMI:
1241		kdb_printf("due to System NonMaskable Interrupt\n");
1242		break;
1243	case KDB_REASON_NMI:
1244		kdb_printf("due to NonMaskable Interrupt @ "
1245			   kdb_machreg_fmt "\n",
1246			   instruction_pointer(regs));
1247		break;
1248	case KDB_REASON_SSTEP:
1249	case KDB_REASON_BREAK:
1250		kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251			   reason == KDB_REASON_BREAK ?
1252			   "Breakpoint" : "SS trap", instruction_pointer(regs));
1253		/*
1254		 * Determine if this breakpoint is one that we
1255		 * are interested in.
1256		 */
1257		if (db_result != KDB_DB_BPT) {
1258			kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259				   db_result);
1260			KDB_DEBUG_STATE("kdb_local 6", reason);
1261			return 0;	/* Not for us, dismiss it */
1262		}
1263		break;
1264	case KDB_REASON_RECURSE:
1265		kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266			   instruction_pointer(regs));
1267		break;
1268	default:
1269		kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270		KDB_DEBUG_STATE("kdb_local 8", reason);
1271		return 0;	/* Not for us, dismiss it */
1272	}
1273
1274	while (1) {
1275		/*
1276		 * Initialize pager context.
1277		 */
1278		kdb_nextline = 1;
1279		KDB_STATE_CLEAR(SUPPRESS);
1280		kdb_grepping_flag = 0;
1281		/* ensure the old search does not leak into '/' commands */
1282		kdb_grep_string[0] = '\0';
1283
1284		cmdbuf = cmd_cur;
1285		*cmdbuf = '\0';
1286		*(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289		/* PROMPT can only be set if we have MEM_READ permission. */
1290		snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291			 raw_smp_processor_id());
 
 
 
1292		if (defcmd_in_progress)
1293			strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295		/*
1296		 * Fetch command from keyboard
1297		 */
1298		cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299		if (*cmdbuf != '\n') {
1300			if (*cmdbuf < 32) {
1301				if (cmdptr == cmd_head) {
1302					strscpy(cmd_hist[cmd_head], cmd_cur,
1303						CMD_BUFLEN);
1304					*(cmd_hist[cmd_head] +
1305					  strlen(cmd_hist[cmd_head])-1) = '\0';
1306				}
1307				if (!handle_ctrl_cmd(cmdbuf))
1308					*(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309				cmdbuf = cmd_cur;
1310				goto do_full_getstr;
1311			} else {
1312				strscpy(cmd_hist[cmd_head], cmd_cur,
1313					CMD_BUFLEN);
1314			}
1315
1316			cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317			if (cmd_head == cmd_tail)
1318				cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319		}
1320
1321		cmdptr = cmd_head;
1322		diag = kdb_parse(cmdbuf);
1323		if (diag == KDB_NOTFOUND) {
1324			drop_newline(cmdbuf);
1325			kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326			diag = 0;
1327		}
1328		if (diag == KDB_CMD_GO
1329		 || diag == KDB_CMD_CPU
1330		 || diag == KDB_CMD_SS
1331		 || diag == KDB_CMD_KGDB)
1332			break;
1333
1334		if (diag)
1335			kdb_cmderror(diag);
1336	}
1337	KDB_DEBUG_STATE("kdb_local 9", diag);
1338	return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 *	for debugging.
1345 * Inputs:
1346 *	text		Identifies the debug point
1347 *	value		Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351	kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352		   text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353		   kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 *	controlling cpu, all cpus are in this loop.  One cpu is in
1359 *	control and will issue the kdb prompt, the others will spin
1360 *	until 'go' or cpu switch.
1361 *
1362 *	To get a consistent view of the kernel stacks for all
1363 *	processes, this routine is invoked from the main kdb code via
1364 *	an architecture specific routine.  kdba_main_loop is
1365 *	responsible for making the kernel stacks consistent for all
1366 *	processes, there should be no difference between a blocked
1367 *	process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 *	reason		The reason KDB was invoked
1370 *	error		The hardware-defined error code
1371 *	reason2		kdb's current reason code.
1372 *			Initially error but can change
1373 *			according to kdb state.
1374 *	db_result	Result code from break or debug point.
1375 *	regs		The exception frame at time of fault/breakpoint.
1376 *			should always be valid.
1377 * Returns:
1378 *	0	KDB was invoked for an event which it wasn't responsible
1379 *	1	KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382	      kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384	int result = 1;
1385	/* Stay in kdb() until 'go', 'ss[b]' or an error */
1386	while (1) {
1387		/*
1388		 * All processors except the one that is in control
1389		 * will spin here.
1390		 */
1391		KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392		while (KDB_STATE(HOLD_CPU)) {
1393			/* state KDB is turned off by kdb_cpu to see if the
1394			 * other cpus are still live, each cpu in this loop
1395			 * turns it back on.
1396			 */
1397			if (!KDB_STATE(KDB))
1398				KDB_STATE_SET(KDB);
1399		}
1400
1401		KDB_STATE_CLEAR(SUPPRESS);
1402		KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403		if (KDB_STATE(LEAVING))
1404			break;	/* Another cpu said 'go' */
1405		/* Still using kdb, this processor is in control */
1406		result = kdb_local(reason2, error, regs, db_result);
1407		KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409		if (result == KDB_CMD_CPU)
1410			break;
1411
1412		if (result == KDB_CMD_SS) {
1413			KDB_STATE_SET(DOING_SS);
1414			break;
1415		}
1416
1417		if (result == KDB_CMD_KGDB) {
1418			if (!KDB_STATE(DOING_KGDB))
1419				kdb_printf("Entering please attach debugger "
1420					   "or use $D#44+ or $3#33\n");
1421			break;
1422		}
1423		if (result && result != 1 && result != KDB_CMD_GO)
1424			kdb_printf("\nUnexpected kdb_local return code %d\n",
1425				   result);
1426		KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427		break;
1428	}
1429	if (KDB_STATE(DOING_SS))
1430		KDB_STATE_CLEAR(SSBPT);
1431
1432	/* Clean up any keyboard devices before leaving */
1433	kdb_kbd_cleanup_state();
1434
1435	return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 *	mdr  <addr arg>,<byte count>
1442 * Inputs:
1443 *	addr	Start address
1444 *	count	Number of bytes
1445 * Returns:
1446 *	Always 0.  Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450	unsigned char c;
1451	while (count--) {
1452		if (kdb_getarea(c, addr))
1453			return 0;
1454		kdb_printf("%02x", c);
1455		addr++;
1456	}
1457	kdb_printf("\n");
1458	return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 *	'md8' 'mdr' and 'mds' commands.
1464 *
1465 *	md|mds  [<addr arg> [<line count> [<radix>]]]
1466 *	mdWcN	[<addr arg> [<line count> [<radix>]]]
1467 *		where W = is the width (1, 2, 4 or 8) and N is the count.
1468 *		for eg., md1c20 reads 20 bytes, 1 at a time.
1469 *	mdr  <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472			int symbolic, int nosect, int bytesperword,
1473			int num, int repeat, int phys)
1474{
1475	/* print just one line of data */
1476	kdb_symtab_t symtab;
1477	char cbuf[32];
1478	char *c = cbuf;
1479	int i;
1480	int j;
1481	unsigned long word;
1482
1483	memset(cbuf, '\0', sizeof(cbuf));
1484	if (phys)
1485		kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486	else
1487		kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489	for (i = 0; i < num && repeat--; i++) {
1490		if (phys) {
1491			if (kdb_getphysword(&word, addr, bytesperword))
1492				break;
1493		} else if (kdb_getword(&word, addr, bytesperword))
1494			break;
1495		kdb_printf(fmtstr, word);
1496		if (symbolic)
1497			kdbnearsym(word, &symtab);
1498		else
1499			memset(&symtab, 0, sizeof(symtab));
1500		if (symtab.sym_name) {
1501			kdb_symbol_print(word, &symtab, 0);
1502			if (!nosect) {
1503				kdb_printf("\n");
1504				kdb_printf("                       %s %s "
1505					   kdb_machreg_fmt " "
1506					   kdb_machreg_fmt " "
1507					   kdb_machreg_fmt, symtab.mod_name,
1508					   symtab.sec_name, symtab.sec_start,
1509					   symtab.sym_start, symtab.sym_end);
1510			}
1511			addr += bytesperword;
1512		} else {
1513			union {
1514				u64 word;
1515				unsigned char c[8];
1516			} wc;
1517			unsigned char *cp;
1518#ifdef	__BIG_ENDIAN
1519			cp = wc.c + 8 - bytesperword;
1520#else
1521			cp = wc.c;
1522#endif
1523			wc.word = word;
1524#define printable_char(c) \
1525	({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526			for (j = 0; j < bytesperword; j++)
 
 
 
 
1527				*c++ = printable_char(*cp++);
1528			addr += bytesperword;
 
 
 
 
 
 
 
 
 
 
 
 
1529#undef printable_char
1530		}
1531	}
1532	kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533		   " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538	static unsigned long last_addr;
1539	static int last_radix, last_bytesperword, last_repeat;
1540	int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541	int nosect = 0;
1542	char fmtchar, fmtstr[64];
1543	unsigned long addr;
1544	unsigned long word;
1545	long offset = 0;
1546	int symbolic = 0;
1547	int valid = 0;
1548	int phys = 0;
1549	int raw = 0;
1550
1551	kdbgetintenv("MDCOUNT", &mdcount);
1552	kdbgetintenv("RADIX", &radix);
1553	kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555	/* Assume 'md <addr>' and start with environment values */
1556	repeat = mdcount * 16 / bytesperword;
1557
1558	if (strcmp(argv[0], "mdr") == 0) {
1559		if (argc == 2 || (argc == 0 && last_addr != 0))
1560			valid = raw = 1;
1561		else
1562			return KDB_ARGCOUNT;
 
1563	} else if (isdigit(argv[0][2])) {
1564		bytesperword = (int)(argv[0][2] - '0');
1565		if (bytesperword == 0) {
1566			bytesperword = last_bytesperword;
1567			if (bytesperword == 0)
1568				bytesperword = 4;
1569		}
1570		last_bytesperword = bytesperword;
1571		repeat = mdcount * 16 / bytesperword;
1572		if (!argv[0][3])
1573			valid = 1;
1574		else if (argv[0][3] == 'c' && argv[0][4]) {
1575			char *p;
1576			repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577			mdcount = ((repeat * bytesperword) + 15) / 16;
1578			valid = !*p;
1579		}
1580		last_repeat = repeat;
1581	} else if (strcmp(argv[0], "md") == 0)
1582		valid = 1;
1583	else if (strcmp(argv[0], "mds") == 0)
1584		valid = 1;
1585	else if (strcmp(argv[0], "mdp") == 0) {
1586		phys = valid = 1;
1587	}
1588	if (!valid)
1589		return KDB_NOTFOUND;
1590
1591	if (argc == 0) {
1592		if (last_addr == 0)
1593			return KDB_ARGCOUNT;
1594		addr = last_addr;
1595		radix = last_radix;
1596		bytesperword = last_bytesperword;
1597		repeat = last_repeat;
1598		if (raw)
1599			mdcount = repeat;
1600		else
1601			mdcount = ((repeat * bytesperword) + 15) / 16;
1602	}
1603
1604	if (argc) {
1605		unsigned long val;
1606		int diag, nextarg = 1;
1607		diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608				     &offset, NULL);
1609		if (diag)
1610			return diag;
1611		if (argc > nextarg+2)
1612			return KDB_ARGCOUNT;
1613
1614		if (argc >= nextarg) {
1615			diag = kdbgetularg(argv[nextarg], &val);
1616			if (!diag) {
1617				mdcount = (int) val;
1618				if (raw)
1619					repeat = mdcount;
1620				else
1621					repeat = mdcount * 16 / bytesperword;
1622			}
1623		}
1624		if (argc >= nextarg+1) {
1625			diag = kdbgetularg(argv[nextarg+1], &val);
1626			if (!diag)
1627				radix = (int) val;
1628		}
1629	}
1630
1631	if (strcmp(argv[0], "mdr") == 0) {
1632		int ret;
1633		last_addr = addr;
1634		ret = kdb_mdr(addr, mdcount);
1635		last_addr += mdcount;
1636		last_repeat = mdcount;
1637		last_bytesperword = bytesperword; // to make REPEAT happy
1638		return ret;
1639	}
1640
1641	switch (radix) {
1642	case 10:
1643		fmtchar = 'd';
1644		break;
1645	case 16:
1646		fmtchar = 'x';
1647		break;
1648	case 8:
1649		fmtchar = 'o';
1650		break;
1651	default:
1652		return KDB_BADRADIX;
1653	}
1654
1655	last_radix = radix;
1656
1657	if (bytesperword > KDB_WORD_SIZE)
1658		return KDB_BADWIDTH;
1659
1660	switch (bytesperword) {
1661	case 8:
1662		sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663		break;
1664	case 4:
1665		sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666		break;
1667	case 2:
1668		sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669		break;
1670	case 1:
1671		sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672		break;
1673	default:
1674		return KDB_BADWIDTH;
1675	}
1676
1677	last_repeat = repeat;
1678	last_bytesperword = bytesperword;
1679
1680	if (strcmp(argv[0], "mds") == 0) {
1681		symbolic = 1;
1682		/* Do not save these changes as last_*, they are temporary mds
1683		 * overrides.
1684		 */
1685		bytesperword = KDB_WORD_SIZE;
1686		repeat = mdcount;
1687		kdbgetintenv("NOSECT", &nosect);
1688	}
1689
1690	/* Round address down modulo BYTESPERWORD */
1691
1692	addr &= ~(bytesperword-1);
1693
1694	while (repeat > 0) {
1695		unsigned long a;
1696		int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698		if (KDB_FLAG(CMD_INTERRUPT))
1699			return 0;
1700		for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701			if (phys) {
1702				if (kdb_getphysword(&word, a, bytesperword)
1703						|| word)
1704					break;
1705			} else if (kdb_getword(&word, a, bytesperword) || word)
1706				break;
1707		}
1708		n = min(num, repeat);
1709		kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710			    num, repeat, phys);
1711		addr += bytesperword * n;
1712		repeat -= n;
1713		z = (z + num - 1) / num;
1714		if (z > 2) {
1715			int s = num * (z-2);
1716			kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717				   " zero suppressed\n",
1718				addr, addr + bytesperword * s - 1);
1719			addr += bytesperword * s;
1720			repeat -= s;
1721		}
1722	}
1723	last_addr = addr;
1724
1725	return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 *	mm address-expression new-value
1731 * Remarks:
1732 *	mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736	int diag;
1737	unsigned long addr;
1738	long offset = 0;
1739	unsigned long contents;
1740	int nextarg;
1741	int width;
1742
1743	if (argv[0][2] && !isdigit(argv[0][2]))
1744		return KDB_NOTFOUND;
1745
1746	if (argc < 2)
1747		return KDB_ARGCOUNT;
1748
1749	nextarg = 1;
1750	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751	if (diag)
1752		return diag;
1753
1754	if (nextarg > argc)
1755		return KDB_ARGCOUNT;
1756	diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757	if (diag)
1758		return diag;
1759
1760	if (nextarg != argc + 1)
1761		return KDB_ARGCOUNT;
1762
1763	width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764	diag = kdb_putword(addr, contents, width);
1765	if (diag)
1766		return diag;
1767
1768	kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770	return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 *	go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779	unsigned long addr;
1780	int diag;
1781	int nextarg;
1782	long offset;
1783
1784	if (raw_smp_processor_id() != kdb_initial_cpu) {
1785		kdb_printf("go must execute on the entry cpu, "
1786			   "please use \"cpu %d\" and then execute go\n",
1787			   kdb_initial_cpu);
1788		return KDB_BADCPUNUM;
1789	}
1790	if (argc == 1) {
1791		nextarg = 1;
1792		diag = kdbgetaddrarg(argc, argv, &nextarg,
1793				     &addr, &offset, NULL);
1794		if (diag)
1795			return diag;
1796	} else if (argc) {
1797		return KDB_ARGCOUNT;
1798	}
1799
1800	diag = KDB_CMD_GO;
1801	if (KDB_FLAG(CATASTROPHIC)) {
1802		kdb_printf("Catastrophic error detected\n");
1803		kdb_printf("kdb_continue_catastrophic=%d, ",
1804			kdb_continue_catastrophic);
1805		if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806			kdb_printf("type go a second time if you really want "
1807				   "to continue\n");
1808			return 0;
1809		}
1810		if (kdb_continue_catastrophic == 2) {
1811			kdb_printf("forcing reboot\n");
1812			kdb_reboot(0, NULL);
1813		}
1814		kdb_printf("attempting to continue\n");
1815	}
1816	return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824	int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826	int i;
1827	char *rname;
1828	int rsize;
1829	u64 reg64;
1830	u32 reg32;
1831	u16 reg16;
1832	u8 reg8;
1833
1834	if (len)
1835		return len;
1836
1837	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838		rsize = dbg_reg_def[i].size * 2;
1839		if (rsize > 16)
1840			rsize = 2;
1841		if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842			len = 0;
1843			kdb_printf("\n");
1844		}
1845		if (len)
1846			len += kdb_printf("  ");
1847		switch(dbg_reg_def[i].size * 8) {
1848		case 8:
1849			rname = dbg_get_reg(i, &reg8, kdb_current_regs);
1850			if (!rname)
1851				break;
1852			len += kdb_printf("%s: %02x", rname, reg8);
1853			break;
1854		case 16:
1855			rname = dbg_get_reg(i, &reg16, kdb_current_regs);
1856			if (!rname)
1857				break;
1858			len += kdb_printf("%s: %04x", rname, reg16);
1859			break;
1860		case 32:
1861			rname = dbg_get_reg(i, &reg32, kdb_current_regs);
1862			if (!rname)
1863				break;
1864			len += kdb_printf("%s: %08x", rname, reg32);
1865			break;
1866		case 64:
1867			rname = dbg_get_reg(i, &reg64, kdb_current_regs);
1868			if (!rname)
1869				break;
1870			len += kdb_printf("%s: %016llx", rname, reg64);
1871			break;
1872		default:
1873			len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874		}
1875	}
1876	kdb_printf("\n");
1877#else
1878	if (len)
1879		return len;
1880
1881	kdb_dumpregs(kdb_current_regs);
1882#endif
1883	return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify)  command.
1888 *	rm register-name new-contents
1889 * Remarks:
1890 *	Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895	int diag;
1896	const char *rname;
1897	int i;
1898	u64 reg64;
1899	u32 reg32;
1900	u16 reg16;
1901	u8 reg8;
1902
1903	if (argc != 2)
1904		return KDB_ARGCOUNT;
1905	/*
1906	 * Allow presence or absence of leading '%' symbol.
1907	 */
1908	rname = argv[1];
1909	if (*rname == '%')
1910		rname++;
1911
1912	diag = kdbgetu64arg(argv[2], &reg64);
1913	if (diag)
1914		return diag;
1915
1916	diag = kdb_check_regs();
1917	if (diag)
1918		return diag;
1919
1920	diag = KDB_BADREG;
1921	for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922		if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923			diag = 0;
1924			break;
1925		}
1926	}
1927	if (!diag) {
1928		switch(dbg_reg_def[i].size * 8) {
1929		case 8:
1930			reg8 = reg64;
1931			dbg_set_reg(i, &reg8, kdb_current_regs);
1932			break;
1933		case 16:
1934			reg16 = reg64;
1935			dbg_set_reg(i, &reg16, kdb_current_regs);
1936			break;
1937		case 32:
1938			reg32 = reg64;
1939			dbg_set_reg(i, &reg32, kdb_current_regs);
1940			break;
1941		case 64:
1942			dbg_set_reg(i, &reg64, kdb_current_regs);
1943			break;
1944		}
1945	}
1946	return diag;
1947#else
1948	kdb_printf("ERROR: Register set currently not implemented\n");
1949    return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 *	which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 *		sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961	bool check_mask =
1962	    !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964	if (argc != 1)
1965		return KDB_ARGCOUNT;
1966
1967	kdb_trap_printk++;
1968	__handle_sysrq(*argv[1], check_mask);
1969	kdb_trap_printk--;
1970
1971	return 0;
1972}
1973#endif	/* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 *	frame) command.  This command takes an address and expects to
1978 *	find an exception frame at that address, formats and prints
1979 *	it.
1980 *		regs address-expression
1981 * Remarks:
1982 *	Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986	int diag;
1987	unsigned long addr;
1988	long offset;
1989	int nextarg;
1990
1991	if (argc != 1)
1992		return KDB_ARGCOUNT;
1993
1994	nextarg = 1;
1995	diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996	if (diag)
1997		return diag;
1998	show_regs((struct pt_regs *)addr);
1999	return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command.  Lists
2005 *	currently loaded kernel modules.
2006 *	Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010	struct module *mod;
2011
2012	if (argc != 0)
2013		return KDB_ARGCOUNT;
2014
2015	kdb_printf("Module                  Size  modstruct     Used by\n");
2016	list_for_each_entry(mod, kdb_modules, list) {
2017		if (mod->state == MODULE_STATE_UNFORMED)
2018			continue;
2019
2020		kdb_printf("%-20s%8u  0x%px ", mod->name,
2021			   mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023		kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025		if (mod->state == MODULE_STATE_GOING)
2026			kdb_printf(" (Unloading)");
2027		else if (mod->state == MODULE_STATE_COMING)
2028			kdb_printf(" (Loading)");
2029		else
2030			kdb_printf(" (Live)");
2031		kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034		{
2035			struct module_use *use;
2036			kdb_printf(" [ ");
2037			list_for_each_entry(use, &mod->source_list,
2038					    source_list)
2039				kdb_printf("%s ", use->target->name);
2040			kdb_printf("]\n");
2041		}
2042#endif
2043	}
2044
2045	return 0;
2046}
2047
2048#endif	/* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command.  Display the
2052 *	current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057	kdb_printenv();
 
 
 
 
 
2058
2059	if (KDB_DEBUG(MASK))
2060		kdb_printf("KDBDEBUG=0x%x\n",
2061			(kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063	return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 *	the contents of the syslog buffer.
2070 *		dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074	int diag;
2075	int logging;
2076	int lines = 0;
2077	int adjust = 0;
2078	int n = 0;
2079	int skip = 0;
2080	struct kmsg_dump_iter iter;
2081	size_t len;
2082	char buf[201];
2083
2084	if (argc > 2)
2085		return KDB_ARGCOUNT;
2086	if (argc) {
2087		char *cp;
2088		lines = simple_strtol(argv[1], &cp, 0);
2089		if (*cp)
2090			lines = 0;
2091		if (argc > 1) {
2092			adjust = simple_strtoul(argv[2], &cp, 0);
2093			if (*cp || adjust < 0)
2094				adjust = 0;
2095		}
2096	}
2097
2098	/* disable LOGGING if set */
2099	diag = kdbgetintenv("LOGGING", &logging);
2100	if (!diag && logging) {
2101		const char *setargs[] = { "set", "LOGGING", "0" };
2102		kdb_set(2, setargs);
2103	}
2104
2105	kmsg_dump_rewind(&iter);
2106	while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107		n++;
2108
2109	if (lines < 0) {
2110		if (adjust >= n)
2111			kdb_printf("buffer only contains %d lines, nothing "
2112				   "printed\n", n);
2113		else if (adjust - lines >= n)
2114			kdb_printf("buffer only contains %d lines, last %d "
2115				   "lines printed\n", n, n - adjust);
2116		skip = adjust;
2117		lines = abs(lines);
2118	} else if (lines > 0) {
2119		skip = n - lines - adjust;
2120		lines = abs(lines);
2121		if (adjust >= n) {
2122			kdb_printf("buffer only contains %d lines, "
2123				   "nothing printed\n", n);
2124			skip = n;
2125		} else if (skip < 0) {
2126			lines += skip;
2127			skip = 0;
2128			kdb_printf("buffer only contains %d lines, first "
2129				   "%d lines printed\n", n, lines);
2130		}
2131	} else {
2132		lines = n;
2133	}
2134
2135	if (skip >= n || skip < 0)
2136		return 0;
2137
2138	kmsg_dump_rewind(&iter);
2139	while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140		if (skip) {
2141			skip--;
2142			continue;
2143		}
2144		if (!lines--)
2145			break;
2146		if (KDB_FLAG(CMD_INTERRUPT))
2147			return 0;
2148
2149		kdb_printf("%.*s\n", (int)len - 1, buf);
2150	}
2151
2152	return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161	if (atomic_read(&kdb_nmi_disabled))
2162		return 0;
2163	atomic_set(&kdb_nmi_disabled, 1);
2164	arch_kgdb_ops.enable_nmi(0);
2165	return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170	if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171		return -EINVAL;
2172	arch_kgdb_ops.enable_nmi(1);
2173	return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177	.set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 *	cpu	[<cpunum>]
2184 * Returns:
2185 *	KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189	int i, start_cpu, first_print = 1;
2190	char state, prev_state = '?';
2191
2192	kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193	kdb_printf("Available cpus: ");
2194	for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195		if (!cpu_online(i)) {
2196			state = 'F';	/* cpu is offline */
2197		} else if (!kgdb_info[i].enter_kgdb) {
2198			state = 'D';	/* cpu is online but unresponsive */
2199		} else {
2200			state = ' ';	/* cpu is responding to kdb */
2201			if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202				state = 'I';	/* idle task */
2203		}
2204		if (state != prev_state) {
2205			if (prev_state != '?') {
2206				if (!first_print)
2207					kdb_printf(", ");
2208				first_print = 0;
2209				kdb_printf("%d", start_cpu);
2210				if (start_cpu < i-1)
2211					kdb_printf("-%d", i-1);
2212				if (prev_state != ' ')
2213					kdb_printf("(%c)", prev_state);
2214			}
2215			prev_state = state;
2216			start_cpu = i;
2217		}
2218	}
2219	/* print the trailing cpus, ignoring them if they are all offline */
2220	if (prev_state != 'F') {
2221		if (!first_print)
2222			kdb_printf(", ");
2223		kdb_printf("%d", start_cpu);
2224		if (start_cpu < i-1)
2225			kdb_printf("-%d", i-1);
2226		if (prev_state != ' ')
2227			kdb_printf("(%c)", prev_state);
2228	}
2229	kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234	unsigned long cpunum;
2235	int diag;
2236
2237	if (argc == 0) {
2238		kdb_cpu_status();
2239		return 0;
2240	}
2241
2242	if (argc != 1)
2243		return KDB_ARGCOUNT;
2244
2245	diag = kdbgetularg(argv[1], &cpunum);
2246	if (diag)
2247		return diag;
2248
2249	/*
2250	 * Validate cpunum
2251	 */
2252	if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253		return KDB_BADCPUNUM;
2254
2255	dbg_switch_cpu = cpunum;
2256
2257	/*
2258	 * Switch to other cpu
2259	 */
2260	return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268	int idle = 0, daemon = 0;
2269	unsigned long mask_I = kdb_task_state_string("I"),
2270		      mask_M = kdb_task_state_string("M");
2271	unsigned long cpu;
2272	const struct task_struct *p, *g;
2273	for_each_online_cpu(cpu) {
2274		p = kdb_curr_task(cpu);
2275		if (kdb_task_state(p, mask_I))
2276			++idle;
2277	}
2278	for_each_process_thread(g, p) {
2279		if (kdb_task_state(p, mask_M))
2280			++daemon;
2281	}
2282	if (idle || daemon) {
2283		if (idle)
2284			kdb_printf("%d idle process%s (state I)%s\n",
2285				   idle, idle == 1 ? "" : "es",
2286				   daemon ? " and " : "");
2287		if (daemon)
2288			kdb_printf("%d sleeping system daemon (state M) "
2289				   "process%s", daemon,
2290				   daemon == 1 ? "" : "es");
2291		kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292	}
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 *	list of the active processes.
2298 *		ps [DRSTCZEUIMA]   All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302	int cpu;
2303	unsigned long tmp;
2304
2305	if (!p ||
2306	    copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307		return;
2308
2309	cpu = kdb_process_cpu(p);
2310	kdb_printf("0x%px %8d %8d  %d %4d   %c  0x%px %c%s\n",
2311		   (void *)p, p->pid, p->parent->pid,
2312		   kdb_task_has_cpu(p), kdb_process_cpu(p),
2313		   kdb_task_state_char(p),
2314		   (void *)(&p->thread),
2315		   p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316		   p->comm);
2317	if (kdb_task_has_cpu(p)) {
2318		if (!KDB_TSK(cpu)) {
2319			kdb_printf("  Error: no saved data for this cpu\n");
2320		} else {
2321			if (KDB_TSK(cpu) != p)
2322				kdb_printf("  Error: does not match running "
2323				   "process table (0x%px)\n", KDB_TSK(cpu));
2324		}
2325	}
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330	struct task_struct *g, *p;
2331	unsigned long mask, cpu;
2332
2333	if (argc == 0)
2334		kdb_ps_suppressed();
2335	kdb_printf("%-*s      Pid   Parent [*] cpu State %-*s Command\n",
2336		(int)(2*sizeof(void *))+2, "Task Addr",
2337		(int)(2*sizeof(void *))+2, "Thread");
2338	mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339	/* Run the active tasks first */
2340	for_each_online_cpu(cpu) {
2341		if (KDB_FLAG(CMD_INTERRUPT))
2342			return 0;
2343		p = kdb_curr_task(cpu);
2344		if (kdb_task_state(p, mask))
2345			kdb_ps1(p);
2346	}
2347	kdb_printf("\n");
2348	/* Now the real tasks */
2349	for_each_process_thread(g, p) {
2350		if (KDB_FLAG(CMD_INTERRUPT))
2351			return 0;
2352		if (kdb_task_state(p, mask))
2353			kdb_ps1(p);
2354	}
2355
2356	return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 *	the currently active process.
2362 *		pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366	struct task_struct *p;
2367	unsigned long val;
2368	int diag;
2369
2370	if (argc > 1)
2371		return KDB_ARGCOUNT;
2372
2373	if (argc) {
2374		if (strcmp(argv[1], "R") == 0) {
2375			p = KDB_TSK(kdb_initial_cpu);
2376		} else {
2377			diag = kdbgetularg(argv[1], &val);
2378			if (diag)
2379				return KDB_BADINT;
2380
2381			p = find_task_by_pid_ns((pid_t)val,	&init_pid_ns);
2382			if (!p) {
2383				kdb_printf("No task with pid=%d\n", (pid_t)val);
2384				return 0;
2385			}
2386		}
2387		kdb_set_current_task(p);
2388	}
2389	kdb_printf("KDB current process is %s(pid=%d)\n",
2390		   kdb_current_task->comm,
2391		   kdb_current_task->pid);
2392
2393	return 0;
2394}
2395
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398	return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406	kdbtab_t *kt;
 
2407
2408	kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409	kdb_printf("-----------------------------"
2410		   "-----------------------------\n");
2411	list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412		char *space = "";
2413		if (KDB_FLAG(CMD_INTERRUPT))
2414			return 0;
 
 
2415		if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416			continue;
2417		if (strlen(kt->cmd_usage) > 20)
2418			space = "\n                                    ";
2419		kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420			   kt->cmd_usage, space, kt->cmd_help);
2421	}
2422	return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430	long sig, pid;
2431	char *endp;
2432	struct task_struct *p;
 
2433
2434	if (argc != 2)
2435		return KDB_ARGCOUNT;
2436
2437	sig = simple_strtol(argv[1], &endp, 0);
2438	if (*endp)
2439		return KDB_BADINT;
2440	if ((sig >= 0) || !valid_signal(-sig)) {
2441		kdb_printf("Invalid signal parameter.<-signal>\n");
2442		return 0;
2443	}
2444	sig = -sig;
2445
2446	pid = simple_strtol(argv[2], &endp, 0);
2447	if (*endp)
2448		return KDB_BADINT;
2449	if (pid <= 0) {
2450		kdb_printf("Process ID must be large than 0.\n");
2451		return 0;
2452	}
2453
2454	/* Find the process. */
2455	p = find_task_by_pid_ns(pid, &init_pid_ns);
2456	if (!p) {
2457		kdb_printf("The specified process isn't found.\n");
2458		return 0;
2459	}
2460	p = p->group_leader;
2461	kdb_send_sig(p, sig);
 
 
 
 
 
2462	return 0;
2463}
2464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472	u64 uptime = ktime_get_mono_fast_ns();
2473
2474	memset(val, 0, sizeof(*val));
2475	val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476	val->loads[0] = avenrun[0];
2477	val->loads[1] = avenrun[1];
2478	val->loads[2] = avenrun[2];
2479	val->procs = nr_threads-1;
2480	si_meminfo(val);
2481
2482	return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490	time64_t now;
 
2491	struct sysinfo val;
2492
2493	if (argc)
2494		return KDB_ARGCOUNT;
2495
2496	kdb_printf("sysname    %s\n", init_uts_ns.name.sysname);
2497	kdb_printf("release    %s\n", init_uts_ns.name.release);
2498	kdb_printf("version    %s\n", init_uts_ns.name.version);
2499	kdb_printf("machine    %s\n", init_uts_ns.name.machine);
2500	kdb_printf("nodename   %s\n", init_uts_ns.name.nodename);
2501	kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
 
 
 
 
 
 
 
 
 
2502
2503	now = __ktime_get_real_seconds();
2504	kdb_printf("date       %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505	kdb_sysinfo(&val);
2506	kdb_printf("uptime     ");
2507	if (val.uptime > (24*60*60)) {
2508		int days = val.uptime / (24*60*60);
2509		val.uptime %= (24*60*60);
2510		kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511	}
2512	kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
 
 
 
 
2514	kdb_printf("load avg   %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515		LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516		LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517		LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
 
2519	/* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521	kdb_printf("\nMemTotal:       %8lu kB\nMemFree:        %8lu kB\n"
2522		   "Buffers:        %8lu kB\n",
2523		   K(val.totalram), K(val.freeram), K(val.bufferram));
2524	return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532	char fmtstr[64];
2533	int cpu, diag, nextarg = 1;
2534	unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536	if (argc < 1 || argc > 3)
2537		return KDB_ARGCOUNT;
2538
2539	diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540	if (diag)
2541		return diag;
2542
2543	if (argc >= 2) {
2544		diag = kdbgetularg(argv[2], &bytesperword);
2545		if (diag)
2546			return diag;
2547	}
2548	if (!bytesperword)
2549		bytesperword = KDB_WORD_SIZE;
2550	else if (bytesperword > KDB_WORD_SIZE)
2551		return KDB_BADWIDTH;
2552	sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553	if (argc >= 3) {
2554		diag = kdbgetularg(argv[3], &whichcpu);
2555		if (diag)
2556			return diag;
2557		if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558			kdb_printf("cpu %ld is not online\n", whichcpu);
2559			return KDB_BADCPUNUM;
2560		}
2561	}
2562
2563	/* Most architectures use __per_cpu_offset[cpu], some use
2564	 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565	 */
2566#ifdef	__per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef	CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575	for_each_online_cpu(cpu) {
2576		if (KDB_FLAG(CMD_INTERRUPT))
2577			return 0;
2578
2579		if (whichcpu != ~0UL && whichcpu != cpu)
2580			continue;
2581		addr = symaddr + KDB_PCU(cpu);
2582		diag = kdb_getword(&val, addr, bytesperword);
2583		if (diag) {
2584			kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585				   "read, diag=%d\n", cpu, addr, diag);
2586			continue;
2587		}
2588		kdb_printf("%5d ", cpu);
2589		kdb_md_line(fmtstr, addr,
2590			bytesperword == KDB_WORD_SIZE,
2591			1, bytesperword, 1, 1, 0);
2592	}
2593#undef KDB_PCU
2594	return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602	kdb_printf("Usage of  cmd args | grep pattern:\n");
2603	kdb_printf("  Any command's output may be filtered through an ");
2604	kdb_printf("emulated 'pipe'.\n");
2605	kdb_printf("  'grep' is just a key word.\n");
2606	kdb_printf("  The pattern may include a very limited set of "
2607		   "metacharacters:\n");
2608	kdb_printf("   pattern or ^pattern or pattern$ or ^pattern$\n");
2609	kdb_printf("  And if there are spaces in the pattern, you may "
2610		   "quote it:\n");
2611	kdb_printf("   \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612		   " or \"^pat tern$\"\n");
2613	return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * 	debugger command.
2619 * Inputs:
2620 *	cmd	Command name
2621 *	func	Function to execute the command
2622 *	usage	A simple usage string showing arguments
2623 *	help	A simple help string describing command
2624 *	repeat	Does the command auto repeat on enter?
2625 * Returns:
2626 *	zero for success, one if a duplicate command.
2627 */
 
2628int kdb_register_flags(char *cmd,
2629		       kdb_func_t func,
2630		       char *usage,
2631		       char *help,
2632		       short minlen,
2633		       kdb_cmdflags_t flags)
2634{
 
2635	kdbtab_t *kp;
2636
2637	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638		if (strcmp(kp->cmd_name, cmd) == 0) {
 
 
 
2639			kdb_printf("Duplicate kdb command registered: "
2640				"%s, func %px help %s\n", cmd, func, help);
2641			return 1;
2642		}
2643	}
2644
2645	kp = kmalloc(sizeof(*kp), GFP_KDB);
2646	if (!kp) {
2647		kdb_printf("Could not allocate new kdb_command table\n");
2648		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2649	}
2650
2651	kp->cmd_name   = cmd;
2652	kp->cmd_func   = func;
2653	kp->cmd_usage  = usage;
2654	kp->cmd_help   = help;
2655	kp->cmd_minlen = minlen;
2656	kp->cmd_flags  = flags;
2657	kp->is_dynamic = true;
2658
2659	list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661	return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 *                        table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673	while (len--) {
2674		list_add_tail(&kp->list_node, &kdb_cmds_head);
2675		kp++;
2676	}
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 *	not need to specify a repeat state.  Equivalent to
2682 *	kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 *	cmd	Command name
2685 *	func	Function to execute the command
2686 *	usage	A simple usage string showing arguments
2687 *	help	A simple help string describing command
2688 * Returns:
2689 *	zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692	     kdb_func_t func,
2693	     char *usage,
2694	     char *help,
2695	     short minlen)
2696{
2697	return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 *	debugger command.  It is generally called when a module which
2704 *	implements kdb commands is unloaded.
2705 * Inputs:
2706 *	cmd	Command name
2707 * Returns:
2708 *	zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
 
2712	kdbtab_t *kp;
2713
2714	/*
2715	 *  find the command.
2716	 */
2717	list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718		if (strcmp(kp->cmd_name, cmd) == 0) {
2719			list_del(&kp->list_node);
2720			if (kp->is_dynamic)
2721				kfree(kp);
2722			return 0;
2723		}
2724	}
2725
2726	/* Couldn't find it.  */
2727	return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732	{	.cmd_name = "md",
2733		.cmd_func = kdb_md,
2734		.cmd_usage = "<vaddr>",
2735		.cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736		.cmd_minlen = 1,
2737		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738	},
2739	{	.cmd_name = "mdr",
2740		.cmd_func = kdb_md,
2741		.cmd_usage = "<vaddr> <bytes>",
2742		.cmd_help = "Display Raw Memory",
2743		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744	},
2745	{	.cmd_name = "mdp",
2746		.cmd_func = kdb_md,
2747		.cmd_usage = "<paddr> <bytes>",
2748		.cmd_help = "Display Physical Memory",
2749		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750	},
2751	{	.cmd_name = "mds",
2752		.cmd_func = kdb_md,
2753		.cmd_usage = "<vaddr>",
2754		.cmd_help = "Display Memory Symbolically",
2755		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756	},
2757	{	.cmd_name = "mm",
2758		.cmd_func = kdb_mm,
2759		.cmd_usage = "<vaddr> <contents>",
2760		.cmd_help = "Modify Memory Contents",
2761		.cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762	},
2763	{	.cmd_name = "go",
2764		.cmd_func = kdb_go,
2765		.cmd_usage = "[<vaddr>]",
2766		.cmd_help = "Continue Execution",
2767		.cmd_minlen = 1,
2768		.cmd_flags = KDB_ENABLE_REG_WRITE |
2769			     KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770	},
2771	{	.cmd_name = "rd",
2772		.cmd_func = kdb_rd,
2773		.cmd_usage = "",
2774		.cmd_help = "Display Registers",
2775		.cmd_flags = KDB_ENABLE_REG_READ,
2776	},
2777	{	.cmd_name = "rm",
2778		.cmd_func = kdb_rm,
2779		.cmd_usage = "<reg> <contents>",
2780		.cmd_help = "Modify Registers",
2781		.cmd_flags = KDB_ENABLE_REG_WRITE,
2782	},
2783	{	.cmd_name = "ef",
2784		.cmd_func = kdb_ef,
2785		.cmd_usage = "<vaddr>",
2786		.cmd_help = "Display exception frame",
2787		.cmd_flags = KDB_ENABLE_MEM_READ,
2788	},
2789	{	.cmd_name = "bt",
2790		.cmd_func = kdb_bt,
2791		.cmd_usage = "[<vaddr>]",
2792		.cmd_help = "Stack traceback",
2793		.cmd_minlen = 1,
2794		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795	},
2796	{	.cmd_name = "btp",
2797		.cmd_func = kdb_bt,
2798		.cmd_usage = "<pid>",
2799		.cmd_help = "Display stack for process <pid>",
2800		.cmd_flags = KDB_ENABLE_INSPECT,
2801	},
2802	{	.cmd_name = "bta",
2803		.cmd_func = kdb_bt,
2804		.cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805		.cmd_help = "Backtrace all processes matching state flag",
2806		.cmd_flags = KDB_ENABLE_INSPECT,
2807	},
2808	{	.cmd_name = "btc",
2809		.cmd_func = kdb_bt,
2810		.cmd_usage = "",
2811		.cmd_help = "Backtrace current process on each cpu",
2812		.cmd_flags = KDB_ENABLE_INSPECT,
2813	},
2814	{	.cmd_name = "btt",
2815		.cmd_func = kdb_bt,
2816		.cmd_usage = "<vaddr>",
2817		.cmd_help = "Backtrace process given its struct task address",
2818		.cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819	},
2820	{	.cmd_name = "env",
2821		.cmd_func = kdb_env,
2822		.cmd_usage = "",
2823		.cmd_help = "Show environment variables",
2824		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825	},
2826	{	.cmd_name = "set",
2827		.cmd_func = kdb_set,
2828		.cmd_usage = "",
2829		.cmd_help = "Set environment variables",
2830		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831	},
2832	{	.cmd_name = "help",
2833		.cmd_func = kdb_help,
2834		.cmd_usage = "",
2835		.cmd_help = "Display Help Message",
2836		.cmd_minlen = 1,
2837		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838	},
2839	{	.cmd_name = "?",
2840		.cmd_func = kdb_help,
2841		.cmd_usage = "",
2842		.cmd_help = "Display Help Message",
2843		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844	},
2845	{	.cmd_name = "cpu",
2846		.cmd_func = kdb_cpu,
2847		.cmd_usage = "<cpunum>",
2848		.cmd_help = "Switch to new cpu",
2849		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850	},
2851	{	.cmd_name = "kgdb",
2852		.cmd_func = kdb_kgdb,
2853		.cmd_usage = "",
2854		.cmd_help = "Enter kgdb mode",
2855		.cmd_flags = 0,
2856	},
2857	{	.cmd_name = "ps",
2858		.cmd_func = kdb_ps,
2859		.cmd_usage = "[<flags>|A]",
2860		.cmd_help = "Display active task list",
2861		.cmd_flags = KDB_ENABLE_INSPECT,
2862	},
2863	{	.cmd_name = "pid",
2864		.cmd_func = kdb_pid,
2865		.cmd_usage = "<pidnum>",
2866		.cmd_help = "Switch to another task",
2867		.cmd_flags = KDB_ENABLE_INSPECT,
2868	},
2869	{	.cmd_name = "reboot",
2870		.cmd_func = kdb_reboot,
2871		.cmd_usage = "",
2872		.cmd_help = "Reboot the machine immediately",
2873		.cmd_flags = KDB_ENABLE_REBOOT,
2874	},
2875#if defined(CONFIG_MODULES)
2876	{	.cmd_name = "lsmod",
2877		.cmd_func = kdb_lsmod,
2878		.cmd_usage = "",
2879		.cmd_help = "List loaded kernel modules",
2880		.cmd_flags = KDB_ENABLE_INSPECT,
2881	},
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884	{	.cmd_name = "sr",
2885		.cmd_func = kdb_sr,
2886		.cmd_usage = "<key>",
2887		.cmd_help = "Magic SysRq key",
2888		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889	},
2890#endif
2891#if defined(CONFIG_PRINTK)
2892	{	.cmd_name = "dmesg",
2893		.cmd_func = kdb_dmesg,
2894		.cmd_usage = "[lines]",
2895		.cmd_help = "Display syslog buffer",
2896		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897	},
2898#endif
2899	{	.cmd_name = "defcmd",
2900		.cmd_func = kdb_defcmd,
2901		.cmd_usage = "name \"usage\" \"help\"",
2902		.cmd_help = "Define a set of commands, down to endefcmd",
2903		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904	},
2905	{	.cmd_name = "kill",
2906		.cmd_func = kdb_kill,
2907		.cmd_usage = "<-signal> <pid>",
2908		.cmd_help = "Send a signal to a process",
2909		.cmd_flags = KDB_ENABLE_SIGNAL,
2910	},
2911	{	.cmd_name = "summary",
2912		.cmd_func = kdb_summary,
2913		.cmd_usage = "",
2914		.cmd_help = "Summarize the system",
2915		.cmd_minlen = 4,
2916		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917	},
2918	{	.cmd_name = "per_cpu",
2919		.cmd_func = kdb_per_cpu,
2920		.cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921		.cmd_help = "Display per_cpu variables",
2922		.cmd_minlen = 3,
2923		.cmd_flags = KDB_ENABLE_MEM_READ,
2924	},
2925	{	.cmd_name = "grephelp",
2926		.cmd_func = kdb_grep_help,
2927		.cmd_usage = "",
2928		.cmd_help = "Display help on | grep",
2929		.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930	},
2931};
2932
2933static kdbtab_t nmicmd = {
2934	.cmd_name = "disable_nmi",
2935	.cmd_func = kdb_disable_nmi,
2936	.cmd_usage = "",
2937	.cmd_help = "Disable NMI entry to KDB",
2938	.cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944	kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945	if (arch_kgdb_ops.enable_nmi)
2946		kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds.  */
2950static void __init kdb_cmd_init(void)
2951{
2952	int i, diag;
2953	for (i = 0; kdb_cmds[i]; ++i) {
2954		diag = kdb_parse(kdb_cmds[i]);
2955		if (diag)
2956			kdb_printf("kdb command %s failed, kdb diag %d\n",
2957				kdb_cmds[i], diag);
2958	}
2959	if (defcmd_in_progress) {
2960		kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961		kdb_parse("endefcmd");
2962	}
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968	static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969	int i;
2970
2971	if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972		return;
2973	for (i = kdb_init_lvl; i < lvl; i++) {
2974		switch (i) {
2975		case KDB_NOT_INITIALIZED:
2976			kdb_inittab();		/* Initialize Command Table */
2977			kdb_initbptab();	/* Initialize Breakpoints */
2978			break;
2979		case KDB_INIT_EARLY:
2980			kdb_cmd_init();		/* Build kdb_cmds tables */
2981			break;
2982		}
2983	}
2984	kdb_init_lvl = lvl;
2985}