Loading...
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sysrq.h>
22#include <linux/smp.h>
23#include <linux/utsname.h>
24#include <linux/vmalloc.h>
25#include <linux/atomic.h>
26#include <linux/module.h>
27#include <linux/moduleparam.h>
28#include <linux/mm.h>
29#include <linux/init.h>
30#include <linux/kallsyms.h>
31#include <linux/kgdb.h>
32#include <linux/kdb.h>
33#include <linux/notifier.h>
34#include <linux/interrupt.h>
35#include <linux/delay.h>
36#include <linux/nmi.h>
37#include <linux/time.h>
38#include <linux/ptrace.h>
39#include <linux/sysctl.h>
40#include <linux/cpu.h>
41#include <linux/kdebug.h>
42#include <linux/proc_fs.h>
43#include <linux/uaccess.h>
44#include <linux/slab.h>
45#include "kdb_private.h"
46
47#undef MODULE_PARAM_PREFIX
48#define MODULE_PARAM_PREFIX "kdb."
49
50static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
51module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
52
53char kdb_grep_string[KDB_GREP_STRLEN];
54int kdb_grepping_flag;
55EXPORT_SYMBOL(kdb_grepping_flag);
56int kdb_grep_leading;
57int kdb_grep_trailing;
58
59/*
60 * Kernel debugger state flags
61 */
62int kdb_flags;
63
64/*
65 * kdb_lock protects updates to kdb_initial_cpu. Used to
66 * single thread processors through the kernel debugger.
67 */
68int kdb_initial_cpu = -1; /* cpu number that owns kdb */
69int kdb_nextline = 1;
70int kdb_state; /* General KDB state */
71
72struct task_struct *kdb_current_task;
73EXPORT_SYMBOL(kdb_current_task);
74struct pt_regs *kdb_current_regs;
75
76const char *kdb_diemsg;
77static int kdb_go_count;
78#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
79static unsigned int kdb_continue_catastrophic =
80 CONFIG_KDB_CONTINUE_CATASTROPHIC;
81#else
82static unsigned int kdb_continue_catastrophic;
83#endif
84
85/* kdb_commands describes the available commands. */
86static kdbtab_t *kdb_commands;
87#define KDB_BASE_CMD_MAX 50
88static int kdb_max_commands = KDB_BASE_CMD_MAX;
89static kdbtab_t kdb_base_commands[KDB_BASE_CMD_MAX];
90#define for_each_kdbcmd(cmd, num) \
91 for ((cmd) = kdb_base_commands, (num) = 0; \
92 num < kdb_max_commands; \
93 num++, num == KDB_BASE_CMD_MAX ? cmd = kdb_commands : cmd++)
94
95typedef struct _kdbmsg {
96 int km_diag; /* kdb diagnostic */
97 char *km_msg; /* Corresponding message text */
98} kdbmsg_t;
99
100#define KDBMSG(msgnum, text) \
101 { KDB_##msgnum, text }
102
103static kdbmsg_t kdbmsgs[] = {
104 KDBMSG(NOTFOUND, "Command Not Found"),
105 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
106 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
107 "8 is only allowed on 64 bit systems"),
108 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
109 KDBMSG(NOTENV, "Cannot find environment variable"),
110 KDBMSG(NOENVVALUE, "Environment variable should have value"),
111 KDBMSG(NOTIMP, "Command not implemented"),
112 KDBMSG(ENVFULL, "Environment full"),
113 KDBMSG(ENVBUFFULL, "Environment buffer full"),
114 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
115#ifdef CONFIG_CPU_XSCALE
116 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
117#else
118 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
119#endif
120 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
121 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
122 KDBMSG(BADMODE, "Invalid IDMODE"),
123 KDBMSG(BADINT, "Illegal numeric value"),
124 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
125 KDBMSG(BADREG, "Invalid register name"),
126 KDBMSG(BADCPUNUM, "Invalid cpu number"),
127 KDBMSG(BADLENGTH, "Invalid length field"),
128 KDBMSG(NOBP, "No Breakpoint exists"),
129 KDBMSG(BADADDR, "Invalid address"),
130 KDBMSG(NOPERM, "Permission denied"),
131};
132#undef KDBMSG
133
134static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
135
136
137/*
138 * Initial environment. This is all kept static and local to
139 * this file. We don't want to rely on the memory allocation
140 * mechanisms in the kernel, so we use a very limited allocate-only
141 * heap for new and altered environment variables. The entire
142 * environment is limited to a fixed number of entries (add more
143 * to __env[] if required) and a fixed amount of heap (add more to
144 * KDB_ENVBUFSIZE if required).
145 */
146
147static char *__env[] = {
148#if defined(CONFIG_SMP)
149 "PROMPT=[%d]kdb> ",
150#else
151 "PROMPT=kdb> ",
152#endif
153 "MOREPROMPT=more> ",
154 "RADIX=16",
155 "MDCOUNT=8", /* lines of md output */
156 KDB_PLATFORM_ENV,
157 "DTABCOUNT=30",
158 "NOSECT=1",
159 (char *)0,
160 (char *)0,
161 (char *)0,
162 (char *)0,
163 (char *)0,
164 (char *)0,
165 (char *)0,
166 (char *)0,
167 (char *)0,
168 (char *)0,
169 (char *)0,
170 (char *)0,
171 (char *)0,
172 (char *)0,
173 (char *)0,
174 (char *)0,
175 (char *)0,
176 (char *)0,
177 (char *)0,
178 (char *)0,
179 (char *)0,
180 (char *)0,
181 (char *)0,
182 (char *)0,
183};
184
185static const int __nenv = ARRAY_SIZE(__env);
186
187struct task_struct *kdb_curr_task(int cpu)
188{
189 struct task_struct *p = curr_task(cpu);
190#ifdef _TIF_MCA_INIT
191 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
192 p = krp->p;
193#endif
194 return p;
195}
196
197/*
198 * Check whether the flags of the current command and the permissions
199 * of the kdb console has allow a command to be run.
200 */
201static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
202 bool no_args)
203{
204 /* permissions comes from userspace so needs massaging slightly */
205 permissions &= KDB_ENABLE_MASK;
206 permissions |= KDB_ENABLE_ALWAYS_SAFE;
207
208 /* some commands change group when launched with no arguments */
209 if (no_args)
210 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
211
212 flags |= KDB_ENABLE_ALL;
213
214 return permissions & flags;
215}
216
217/*
218 * kdbgetenv - This function will return the character string value of
219 * an environment variable.
220 * Parameters:
221 * match A character string representing an environment variable.
222 * Returns:
223 * NULL No environment variable matches 'match'
224 * char* Pointer to string value of environment variable.
225 */
226char *kdbgetenv(const char *match)
227{
228 char **ep = __env;
229 int matchlen = strlen(match);
230 int i;
231
232 for (i = 0; i < __nenv; i++) {
233 char *e = *ep++;
234
235 if (!e)
236 continue;
237
238 if ((strncmp(match, e, matchlen) == 0)
239 && ((e[matchlen] == '\0')
240 || (e[matchlen] == '='))) {
241 char *cp = strchr(e, '=');
242 return cp ? ++cp : "";
243 }
244 }
245 return NULL;
246}
247
248/*
249 * kdballocenv - This function is used to allocate bytes for
250 * environment entries.
251 * Parameters:
252 * match A character string representing a numeric value
253 * Outputs:
254 * *value the unsigned long representation of the env variable 'match'
255 * Returns:
256 * Zero on success, a kdb diagnostic on failure.
257 * Remarks:
258 * We use a static environment buffer (envbuffer) to hold the values
259 * of dynamically generated environment variables (see kdb_set). Buffer
260 * space once allocated is never free'd, so over time, the amount of space
261 * (currently 512 bytes) will be exhausted if env variables are changed
262 * frequently.
263 */
264static char *kdballocenv(size_t bytes)
265{
266#define KDB_ENVBUFSIZE 512
267 static char envbuffer[KDB_ENVBUFSIZE];
268 static int envbufsize;
269 char *ep = NULL;
270
271 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
272 ep = &envbuffer[envbufsize];
273 envbufsize += bytes;
274 }
275 return ep;
276}
277
278/*
279 * kdbgetulenv - This function will return the value of an unsigned
280 * long-valued environment variable.
281 * Parameters:
282 * match A character string representing a numeric value
283 * Outputs:
284 * *value the unsigned long represntation of the env variable 'match'
285 * Returns:
286 * Zero on success, a kdb diagnostic on failure.
287 */
288static int kdbgetulenv(const char *match, unsigned long *value)
289{
290 char *ep;
291
292 ep = kdbgetenv(match);
293 if (!ep)
294 return KDB_NOTENV;
295 if (strlen(ep) == 0)
296 return KDB_NOENVVALUE;
297
298 *value = simple_strtoul(ep, NULL, 0);
299
300 return 0;
301}
302
303/*
304 * kdbgetintenv - This function will return the value of an
305 * integer-valued environment variable.
306 * Parameters:
307 * match A character string representing an integer-valued env variable
308 * Outputs:
309 * *value the integer representation of the environment variable 'match'
310 * Returns:
311 * Zero on success, a kdb diagnostic on failure.
312 */
313int kdbgetintenv(const char *match, int *value)
314{
315 unsigned long val;
316 int diag;
317
318 diag = kdbgetulenv(match, &val);
319 if (!diag)
320 *value = (int) val;
321 return diag;
322}
323
324/*
325 * kdbgetularg - This function will convert a numeric string into an
326 * unsigned long value.
327 * Parameters:
328 * arg A character string representing a numeric value
329 * Outputs:
330 * *value the unsigned long represntation of arg.
331 * Returns:
332 * Zero on success, a kdb diagnostic on failure.
333 */
334int kdbgetularg(const char *arg, unsigned long *value)
335{
336 char *endp;
337 unsigned long val;
338
339 val = simple_strtoul(arg, &endp, 0);
340
341 if (endp == arg) {
342 /*
343 * Also try base 16, for us folks too lazy to type the
344 * leading 0x...
345 */
346 val = simple_strtoul(arg, &endp, 16);
347 if (endp == arg)
348 return KDB_BADINT;
349 }
350
351 *value = val;
352
353 return 0;
354}
355
356int kdbgetu64arg(const char *arg, u64 *value)
357{
358 char *endp;
359 u64 val;
360
361 val = simple_strtoull(arg, &endp, 0);
362
363 if (endp == arg) {
364
365 val = simple_strtoull(arg, &endp, 16);
366 if (endp == arg)
367 return KDB_BADINT;
368 }
369
370 *value = val;
371
372 return 0;
373}
374
375/*
376 * kdb_set - This function implements the 'set' command. Alter an
377 * existing environment variable or create a new one.
378 */
379int kdb_set(int argc, const char **argv)
380{
381 int i;
382 char *ep;
383 size_t varlen, vallen;
384
385 /*
386 * we can be invoked two ways:
387 * set var=value argv[1]="var", argv[2]="value"
388 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
389 * - if the latter, shift 'em down.
390 */
391 if (argc == 3) {
392 argv[2] = argv[3];
393 argc--;
394 }
395
396 if (argc != 2)
397 return KDB_ARGCOUNT;
398
399 /*
400 * Check for internal variables
401 */
402 if (strcmp(argv[1], "KDBDEBUG") == 0) {
403 unsigned int debugflags;
404 char *cp;
405
406 debugflags = simple_strtoul(argv[2], &cp, 0);
407 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
408 kdb_printf("kdb: illegal debug flags '%s'\n",
409 argv[2]);
410 return 0;
411 }
412 kdb_flags = (kdb_flags &
413 ~(KDB_DEBUG_FLAG_MASK << KDB_DEBUG_FLAG_SHIFT))
414 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
415
416 return 0;
417 }
418
419 /*
420 * Tokenizer squashed the '=' sign. argv[1] is variable
421 * name, argv[2] = value.
422 */
423 varlen = strlen(argv[1]);
424 vallen = strlen(argv[2]);
425 ep = kdballocenv(varlen + vallen + 2);
426 if (ep == (char *)0)
427 return KDB_ENVBUFFULL;
428
429 sprintf(ep, "%s=%s", argv[1], argv[2]);
430
431 ep[varlen+vallen+1] = '\0';
432
433 for (i = 0; i < __nenv; i++) {
434 if (__env[i]
435 && ((strncmp(__env[i], argv[1], varlen) == 0)
436 && ((__env[i][varlen] == '\0')
437 || (__env[i][varlen] == '=')))) {
438 __env[i] = ep;
439 return 0;
440 }
441 }
442
443 /*
444 * Wasn't existing variable. Fit into slot.
445 */
446 for (i = 0; i < __nenv-1; i++) {
447 if (__env[i] == (char *)0) {
448 __env[i] = ep;
449 return 0;
450 }
451 }
452
453 return KDB_ENVFULL;
454}
455
456static int kdb_check_regs(void)
457{
458 if (!kdb_current_regs) {
459 kdb_printf("No current kdb registers."
460 " You may need to select another task\n");
461 return KDB_BADREG;
462 }
463 return 0;
464}
465
466/*
467 * kdbgetaddrarg - This function is responsible for parsing an
468 * address-expression and returning the value of the expression,
469 * symbol name, and offset to the caller.
470 *
471 * The argument may consist of a numeric value (decimal or
472 * hexidecimal), a symbol name, a register name (preceded by the
473 * percent sign), an environment variable with a numeric value
474 * (preceded by a dollar sign) or a simple arithmetic expression
475 * consisting of a symbol name, +/-, and a numeric constant value
476 * (offset).
477 * Parameters:
478 * argc - count of arguments in argv
479 * argv - argument vector
480 * *nextarg - index to next unparsed argument in argv[]
481 * regs - Register state at time of KDB entry
482 * Outputs:
483 * *value - receives the value of the address-expression
484 * *offset - receives the offset specified, if any
485 * *name - receives the symbol name, if any
486 * *nextarg - index to next unparsed argument in argv[]
487 * Returns:
488 * zero is returned on success, a kdb diagnostic code is
489 * returned on error.
490 */
491int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
492 unsigned long *value, long *offset,
493 char **name)
494{
495 unsigned long addr;
496 unsigned long off = 0;
497 int positive;
498 int diag;
499 int found = 0;
500 char *symname;
501 char symbol = '\0';
502 char *cp;
503 kdb_symtab_t symtab;
504
505 /*
506 * If the enable flags prohibit both arbitrary memory access
507 * and flow control then there are no reasonable grounds to
508 * provide symbol lookup.
509 */
510 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
511 kdb_cmd_enabled, false))
512 return KDB_NOPERM;
513
514 /*
515 * Process arguments which follow the following syntax:
516 *
517 * symbol | numeric-address [+/- numeric-offset]
518 * %register
519 * $environment-variable
520 */
521
522 if (*nextarg > argc)
523 return KDB_ARGCOUNT;
524
525 symname = (char *)argv[*nextarg];
526
527 /*
528 * If there is no whitespace between the symbol
529 * or address and the '+' or '-' symbols, we
530 * remember the character and replace it with a
531 * null so the symbol/value can be properly parsed
532 */
533 cp = strpbrk(symname, "+-");
534 if (cp != NULL) {
535 symbol = *cp;
536 *cp++ = '\0';
537 }
538
539 if (symname[0] == '$') {
540 diag = kdbgetulenv(&symname[1], &addr);
541 if (diag)
542 return diag;
543 } else if (symname[0] == '%') {
544 diag = kdb_check_regs();
545 if (diag)
546 return diag;
547 /* Implement register values with % at a later time as it is
548 * arch optional.
549 */
550 return KDB_NOTIMP;
551 } else {
552 found = kdbgetsymval(symname, &symtab);
553 if (found) {
554 addr = symtab.sym_start;
555 } else {
556 diag = kdbgetularg(argv[*nextarg], &addr);
557 if (diag)
558 return diag;
559 }
560 }
561
562 if (!found)
563 found = kdbnearsym(addr, &symtab);
564
565 (*nextarg)++;
566
567 if (name)
568 *name = symname;
569 if (value)
570 *value = addr;
571 if (offset && name && *name)
572 *offset = addr - symtab.sym_start;
573
574 if ((*nextarg > argc)
575 && (symbol == '\0'))
576 return 0;
577
578 /*
579 * check for +/- and offset
580 */
581
582 if (symbol == '\0') {
583 if ((argv[*nextarg][0] != '+')
584 && (argv[*nextarg][0] != '-')) {
585 /*
586 * Not our argument. Return.
587 */
588 return 0;
589 } else {
590 positive = (argv[*nextarg][0] == '+');
591 (*nextarg)++;
592 }
593 } else
594 positive = (symbol == '+');
595
596 /*
597 * Now there must be an offset!
598 */
599 if ((*nextarg > argc)
600 && (symbol == '\0')) {
601 return KDB_INVADDRFMT;
602 }
603
604 if (!symbol) {
605 cp = (char *)argv[*nextarg];
606 (*nextarg)++;
607 }
608
609 diag = kdbgetularg(cp, &off);
610 if (diag)
611 return diag;
612
613 if (!positive)
614 off = -off;
615
616 if (offset)
617 *offset += off;
618
619 if (value)
620 *value += off;
621
622 return 0;
623}
624
625static void kdb_cmderror(int diag)
626{
627 int i;
628
629 if (diag >= 0) {
630 kdb_printf("no error detected (diagnostic is %d)\n", diag);
631 return;
632 }
633
634 for (i = 0; i < __nkdb_err; i++) {
635 if (kdbmsgs[i].km_diag == diag) {
636 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
637 return;
638 }
639 }
640
641 kdb_printf("Unknown diag %d\n", -diag);
642}
643
644/*
645 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
646 * command which defines one command as a set of other commands,
647 * terminated by endefcmd. kdb_defcmd processes the initial
648 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
649 * the following commands until 'endefcmd'.
650 * Inputs:
651 * argc argument count
652 * argv argument vector
653 * Returns:
654 * zero for success, a kdb diagnostic if error
655 */
656struct defcmd_set {
657 int count;
658 int usable;
659 char *name;
660 char *usage;
661 char *help;
662 char **command;
663};
664static struct defcmd_set *defcmd_set;
665static int defcmd_set_count;
666static int defcmd_in_progress;
667
668/* Forward references */
669static int kdb_exec_defcmd(int argc, const char **argv);
670
671static int kdb_defcmd2(const char *cmdstr, const char *argv0)
672{
673 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
674 char **save_command = s->command;
675 if (strcmp(argv0, "endefcmd") == 0) {
676 defcmd_in_progress = 0;
677 if (!s->count)
678 s->usable = 0;
679 if (s->usable)
680 /* macros are always safe because when executed each
681 * internal command re-enters kdb_parse() and is
682 * safety checked individually.
683 */
684 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
685 s->help, 0,
686 KDB_ENABLE_ALWAYS_SAFE);
687 return 0;
688 }
689 if (!s->usable)
690 return KDB_NOTIMP;
691 s->command = kzalloc((s->count + 1) * sizeof(*(s->command)), GFP_KDB);
692 if (!s->command) {
693 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
694 cmdstr);
695 s->usable = 0;
696 return KDB_NOTIMP;
697 }
698 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
699 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
700 kfree(save_command);
701 return 0;
702}
703
704static int kdb_defcmd(int argc, const char **argv)
705{
706 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
707 if (defcmd_in_progress) {
708 kdb_printf("kdb: nested defcmd detected, assuming missing "
709 "endefcmd\n");
710 kdb_defcmd2("endefcmd", "endefcmd");
711 }
712 if (argc == 0) {
713 int i;
714 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
715 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
716 s->usage, s->help);
717 for (i = 0; i < s->count; ++i)
718 kdb_printf("%s", s->command[i]);
719 kdb_printf("endefcmd\n");
720 }
721 return 0;
722 }
723 if (argc != 3)
724 return KDB_ARGCOUNT;
725 if (in_dbg_master()) {
726 kdb_printf("Command only available during kdb_init()\n");
727 return KDB_NOTIMP;
728 }
729 defcmd_set = kmalloc((defcmd_set_count + 1) * sizeof(*defcmd_set),
730 GFP_KDB);
731 if (!defcmd_set)
732 goto fail_defcmd;
733 memcpy(defcmd_set, save_defcmd_set,
734 defcmd_set_count * sizeof(*defcmd_set));
735 s = defcmd_set + defcmd_set_count;
736 memset(s, 0, sizeof(*s));
737 s->usable = 1;
738 s->name = kdb_strdup(argv[1], GFP_KDB);
739 if (!s->name)
740 goto fail_name;
741 s->usage = kdb_strdup(argv[2], GFP_KDB);
742 if (!s->usage)
743 goto fail_usage;
744 s->help = kdb_strdup(argv[3], GFP_KDB);
745 if (!s->help)
746 goto fail_help;
747 if (s->usage[0] == '"') {
748 strcpy(s->usage, argv[2]+1);
749 s->usage[strlen(s->usage)-1] = '\0';
750 }
751 if (s->help[0] == '"') {
752 strcpy(s->help, argv[3]+1);
753 s->help[strlen(s->help)-1] = '\0';
754 }
755 ++defcmd_set_count;
756 defcmd_in_progress = 1;
757 kfree(save_defcmd_set);
758 return 0;
759fail_help:
760 kfree(s->usage);
761fail_usage:
762 kfree(s->name);
763fail_name:
764 kfree(defcmd_set);
765fail_defcmd:
766 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
767 defcmd_set = save_defcmd_set;
768 return KDB_NOTIMP;
769}
770
771/*
772 * kdb_exec_defcmd - Execute the set of commands associated with this
773 * defcmd name.
774 * Inputs:
775 * argc argument count
776 * argv argument vector
777 * Returns:
778 * zero for success, a kdb diagnostic if error
779 */
780static int kdb_exec_defcmd(int argc, const char **argv)
781{
782 int i, ret;
783 struct defcmd_set *s;
784 if (argc != 0)
785 return KDB_ARGCOUNT;
786 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
787 if (strcmp(s->name, argv[0]) == 0)
788 break;
789 }
790 if (i == defcmd_set_count) {
791 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
792 argv[0]);
793 return KDB_NOTIMP;
794 }
795 for (i = 0; i < s->count; ++i) {
796 /* Recursive use of kdb_parse, do not use argv after
797 * this point */
798 argv = NULL;
799 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
800 ret = kdb_parse(s->command[i]);
801 if (ret)
802 return ret;
803 }
804 return 0;
805}
806
807/* Command history */
808#define KDB_CMD_HISTORY_COUNT 32
809#define CMD_BUFLEN 200 /* kdb_printf: max printline
810 * size == 256 */
811static unsigned int cmd_head, cmd_tail;
812static unsigned int cmdptr;
813static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
814static char cmd_cur[CMD_BUFLEN];
815
816/*
817 * The "str" argument may point to something like | grep xyz
818 */
819static void parse_grep(const char *str)
820{
821 int len;
822 char *cp = (char *)str, *cp2;
823
824 /* sanity check: we should have been called with the \ first */
825 if (*cp != '|')
826 return;
827 cp++;
828 while (isspace(*cp))
829 cp++;
830 if (strncmp(cp, "grep ", 5)) {
831 kdb_printf("invalid 'pipe', see grephelp\n");
832 return;
833 }
834 cp += 5;
835 while (isspace(*cp))
836 cp++;
837 cp2 = strchr(cp, '\n');
838 if (cp2)
839 *cp2 = '\0'; /* remove the trailing newline */
840 len = strlen(cp);
841 if (len == 0) {
842 kdb_printf("invalid 'pipe', see grephelp\n");
843 return;
844 }
845 /* now cp points to a nonzero length search string */
846 if (*cp == '"') {
847 /* allow it be "x y z" by removing the "'s - there must
848 be two of them */
849 cp++;
850 cp2 = strchr(cp, '"');
851 if (!cp2) {
852 kdb_printf("invalid quoted string, see grephelp\n");
853 return;
854 }
855 *cp2 = '\0'; /* end the string where the 2nd " was */
856 }
857 kdb_grep_leading = 0;
858 if (*cp == '^') {
859 kdb_grep_leading = 1;
860 cp++;
861 }
862 len = strlen(cp);
863 kdb_grep_trailing = 0;
864 if (*(cp+len-1) == '$') {
865 kdb_grep_trailing = 1;
866 *(cp+len-1) = '\0';
867 }
868 len = strlen(cp);
869 if (!len)
870 return;
871 if (len >= KDB_GREP_STRLEN) {
872 kdb_printf("search string too long\n");
873 return;
874 }
875 strcpy(kdb_grep_string, cp);
876 kdb_grepping_flag++;
877 return;
878}
879
880/*
881 * kdb_parse - Parse the command line, search the command table for a
882 * matching command and invoke the command function. This
883 * function may be called recursively, if it is, the second call
884 * will overwrite argv and cbuf. It is the caller's
885 * responsibility to save their argv if they recursively call
886 * kdb_parse().
887 * Parameters:
888 * cmdstr The input command line to be parsed.
889 * regs The registers at the time kdb was entered.
890 * Returns:
891 * Zero for success, a kdb diagnostic if failure.
892 * Remarks:
893 * Limited to 20 tokens.
894 *
895 * Real rudimentary tokenization. Basically only whitespace
896 * is considered a token delimeter (but special consideration
897 * is taken of the '=' sign as used by the 'set' command).
898 *
899 * The algorithm used to tokenize the input string relies on
900 * there being at least one whitespace (or otherwise useless)
901 * character between tokens as the character immediately following
902 * the token is altered in-place to a null-byte to terminate the
903 * token string.
904 */
905
906#define MAXARGC 20
907
908int kdb_parse(const char *cmdstr)
909{
910 static char *argv[MAXARGC];
911 static int argc;
912 static char cbuf[CMD_BUFLEN+2];
913 char *cp;
914 char *cpp, quoted;
915 kdbtab_t *tp;
916 int i, escaped, ignore_errors = 0, check_grep = 0;
917
918 /*
919 * First tokenize the command string.
920 */
921 cp = (char *)cmdstr;
922
923 if (KDB_FLAG(CMD_INTERRUPT)) {
924 /* Previous command was interrupted, newline must not
925 * repeat the command */
926 KDB_FLAG_CLEAR(CMD_INTERRUPT);
927 KDB_STATE_SET(PAGER);
928 argc = 0; /* no repeat */
929 }
930
931 if (*cp != '\n' && *cp != '\0') {
932 argc = 0;
933 cpp = cbuf;
934 while (*cp) {
935 /* skip whitespace */
936 while (isspace(*cp))
937 cp++;
938 if ((*cp == '\0') || (*cp == '\n') ||
939 (*cp == '#' && !defcmd_in_progress))
940 break;
941 /* special case: check for | grep pattern */
942 if (*cp == '|') {
943 check_grep++;
944 break;
945 }
946 if (cpp >= cbuf + CMD_BUFLEN) {
947 kdb_printf("kdb_parse: command buffer "
948 "overflow, command ignored\n%s\n",
949 cmdstr);
950 return KDB_NOTFOUND;
951 }
952 if (argc >= MAXARGC - 1) {
953 kdb_printf("kdb_parse: too many arguments, "
954 "command ignored\n%s\n", cmdstr);
955 return KDB_NOTFOUND;
956 }
957 argv[argc++] = cpp;
958 escaped = 0;
959 quoted = '\0';
960 /* Copy to next unquoted and unescaped
961 * whitespace or '=' */
962 while (*cp && *cp != '\n' &&
963 (escaped || quoted || !isspace(*cp))) {
964 if (cpp >= cbuf + CMD_BUFLEN)
965 break;
966 if (escaped) {
967 escaped = 0;
968 *cpp++ = *cp++;
969 continue;
970 }
971 if (*cp == '\\') {
972 escaped = 1;
973 ++cp;
974 continue;
975 }
976 if (*cp == quoted)
977 quoted = '\0';
978 else if (*cp == '\'' || *cp == '"')
979 quoted = *cp;
980 *cpp = *cp++;
981 if (*cpp == '=' && !quoted)
982 break;
983 ++cpp;
984 }
985 *cpp++ = '\0'; /* Squash a ws or '=' character */
986 }
987 }
988 if (!argc)
989 return 0;
990 if (check_grep)
991 parse_grep(cp);
992 if (defcmd_in_progress) {
993 int result = kdb_defcmd2(cmdstr, argv[0]);
994 if (!defcmd_in_progress) {
995 argc = 0; /* avoid repeat on endefcmd */
996 *(argv[0]) = '\0';
997 }
998 return result;
999 }
1000 if (argv[0][0] == '-' && argv[0][1] &&
1001 (argv[0][1] < '0' || argv[0][1] > '9')) {
1002 ignore_errors = 1;
1003 ++argv[0];
1004 }
1005
1006 for_each_kdbcmd(tp, i) {
1007 if (tp->cmd_name) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012
1013 if (tp->cmd_minlen
1014 && (strlen(argv[0]) <= tp->cmd_minlen)) {
1015 if (strncmp(argv[0],
1016 tp->cmd_name,
1017 tp->cmd_minlen) == 0) {
1018 break;
1019 }
1020 }
1021
1022 if (strcmp(argv[0], tp->cmd_name) == 0)
1023 break;
1024 }
1025 }
1026
1027 /*
1028 * If we don't find a command by this name, see if the first
1029 * few characters of this match any of the known commands.
1030 * e.g., md1c20 should match md.
1031 */
1032 if (i == kdb_max_commands) {
1033 for_each_kdbcmd(tp, i) {
1034 if (tp->cmd_name) {
1035 if (strncmp(argv[0],
1036 tp->cmd_name,
1037 strlen(tp->cmd_name)) == 0) {
1038 break;
1039 }
1040 }
1041 }
1042 }
1043
1044 if (i < kdb_max_commands) {
1045 int result;
1046
1047 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1048 return KDB_NOPERM;
1049
1050 KDB_STATE_SET(CMD);
1051 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1052 if (result && ignore_errors && result > KDB_CMD_GO)
1053 result = 0;
1054 KDB_STATE_CLEAR(CMD);
1055
1056 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1057 return result;
1058
1059 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1060 if (argv[argc])
1061 *(argv[argc]) = '\0';
1062 return result;
1063 }
1064
1065 /*
1066 * If the input with which we were presented does not
1067 * map to an existing command, attempt to parse it as an
1068 * address argument and display the result. Useful for
1069 * obtaining the address of a variable, or the nearest symbol
1070 * to an address contained in a register.
1071 */
1072 {
1073 unsigned long value;
1074 char *name = NULL;
1075 long offset;
1076 int nextarg = 0;
1077
1078 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1079 &value, &offset, &name)) {
1080 return KDB_NOTFOUND;
1081 }
1082
1083 kdb_printf("%s = ", argv[0]);
1084 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1085 kdb_printf("\n");
1086 return 0;
1087 }
1088}
1089
1090
1091static int handle_ctrl_cmd(char *cmd)
1092{
1093#define CTRL_P 16
1094#define CTRL_N 14
1095
1096 /* initial situation */
1097 if (cmd_head == cmd_tail)
1098 return 0;
1099 switch (*cmd) {
1100 case CTRL_P:
1101 if (cmdptr != cmd_tail)
1102 cmdptr = (cmdptr-1) % KDB_CMD_HISTORY_COUNT;
1103 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1104 return 1;
1105 case CTRL_N:
1106 if (cmdptr != cmd_head)
1107 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1108 strncpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1109 return 1;
1110 }
1111 return 0;
1112}
1113
1114/*
1115 * kdb_reboot - This function implements the 'reboot' command. Reboot
1116 * the system immediately, or loop for ever on failure.
1117 */
1118static int kdb_reboot(int argc, const char **argv)
1119{
1120 emergency_restart();
1121 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1122 while (1)
1123 cpu_relax();
1124 /* NOTREACHED */
1125 return 0;
1126}
1127
1128static void kdb_dumpregs(struct pt_regs *regs)
1129{
1130 int old_lvl = console_loglevel;
1131 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1132 kdb_trap_printk++;
1133 show_regs(regs);
1134 kdb_trap_printk--;
1135 kdb_printf("\n");
1136 console_loglevel = old_lvl;
1137}
1138
1139void kdb_set_current_task(struct task_struct *p)
1140{
1141 kdb_current_task = p;
1142
1143 if (kdb_task_has_cpu(p)) {
1144 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1145 return;
1146 }
1147 kdb_current_regs = NULL;
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%p, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%p, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289#if defined(CONFIG_SMP)
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292#else
1293 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"));
1294#endif
1295 if (defcmd_in_progress)
1296 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1297
1298 /*
1299 * Fetch command from keyboard
1300 */
1301 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1302 if (*cmdbuf != '\n') {
1303 if (*cmdbuf < 32) {
1304 if (cmdptr == cmd_head) {
1305 strncpy(cmd_hist[cmd_head], cmd_cur,
1306 CMD_BUFLEN);
1307 *(cmd_hist[cmd_head] +
1308 strlen(cmd_hist[cmd_head])-1) = '\0';
1309 }
1310 if (!handle_ctrl_cmd(cmdbuf))
1311 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1312 cmdbuf = cmd_cur;
1313 goto do_full_getstr;
1314 } else {
1315 strncpy(cmd_hist[cmd_head], cmd_cur,
1316 CMD_BUFLEN);
1317 }
1318
1319 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1320 if (cmd_head == cmd_tail)
1321 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1322 }
1323
1324 cmdptr = cmd_head;
1325 diag = kdb_parse(cmdbuf);
1326 if (diag == KDB_NOTFOUND) {
1327 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1328 diag = 0;
1329 }
1330 if (diag == KDB_CMD_GO
1331 || diag == KDB_CMD_CPU
1332 || diag == KDB_CMD_SS
1333 || diag == KDB_CMD_KGDB)
1334 break;
1335
1336 if (diag)
1337 kdb_cmderror(diag);
1338 }
1339 KDB_DEBUG_STATE("kdb_local 9", diag);
1340 return diag;
1341}
1342
1343
1344/*
1345 * kdb_print_state - Print the state data for the current processor
1346 * for debugging.
1347 * Inputs:
1348 * text Identifies the debug point
1349 * value Any integer value to be printed, e.g. reason code.
1350 */
1351void kdb_print_state(const char *text, int value)
1352{
1353 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1354 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1355 kdb_state);
1356}
1357
1358/*
1359 * kdb_main_loop - After initial setup and assignment of the
1360 * controlling cpu, all cpus are in this loop. One cpu is in
1361 * control and will issue the kdb prompt, the others will spin
1362 * until 'go' or cpu switch.
1363 *
1364 * To get a consistent view of the kernel stacks for all
1365 * processes, this routine is invoked from the main kdb code via
1366 * an architecture specific routine. kdba_main_loop is
1367 * responsible for making the kernel stacks consistent for all
1368 * processes, there should be no difference between a blocked
1369 * process and a running process as far as kdb is concerned.
1370 * Inputs:
1371 * reason The reason KDB was invoked
1372 * error The hardware-defined error code
1373 * reason2 kdb's current reason code.
1374 * Initially error but can change
1375 * according to kdb state.
1376 * db_result Result code from break or debug point.
1377 * regs The exception frame at time of fault/breakpoint.
1378 * should always be valid.
1379 * Returns:
1380 * 0 KDB was invoked for an event which it wasn't responsible
1381 * 1 KDB handled the event for which it was invoked.
1382 */
1383int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1384 kdb_dbtrap_t db_result, struct pt_regs *regs)
1385{
1386 int result = 1;
1387 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1388 while (1) {
1389 /*
1390 * All processors except the one that is in control
1391 * will spin here.
1392 */
1393 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1394 while (KDB_STATE(HOLD_CPU)) {
1395 /* state KDB is turned off by kdb_cpu to see if the
1396 * other cpus are still live, each cpu in this loop
1397 * turns it back on.
1398 */
1399 if (!KDB_STATE(KDB))
1400 KDB_STATE_SET(KDB);
1401 }
1402
1403 KDB_STATE_CLEAR(SUPPRESS);
1404 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1405 if (KDB_STATE(LEAVING))
1406 break; /* Another cpu said 'go' */
1407 /* Still using kdb, this processor is in control */
1408 result = kdb_local(reason2, error, regs, db_result);
1409 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1410
1411 if (result == KDB_CMD_CPU)
1412 break;
1413
1414 if (result == KDB_CMD_SS) {
1415 KDB_STATE_SET(DOING_SS);
1416 break;
1417 }
1418
1419 if (result == KDB_CMD_KGDB) {
1420 if (!KDB_STATE(DOING_KGDB))
1421 kdb_printf("Entering please attach debugger "
1422 "or use $D#44+ or $3#33\n");
1423 break;
1424 }
1425 if (result && result != 1 && result != KDB_CMD_GO)
1426 kdb_printf("\nUnexpected kdb_local return code %d\n",
1427 result);
1428 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1429 break;
1430 }
1431 if (KDB_STATE(DOING_SS))
1432 KDB_STATE_CLEAR(SSBPT);
1433
1434 /* Clean up any keyboard devices before leaving */
1435 kdb_kbd_cleanup_state();
1436
1437 return result;
1438}
1439
1440/*
1441 * kdb_mdr - This function implements the guts of the 'mdr', memory
1442 * read command.
1443 * mdr <addr arg>,<byte count>
1444 * Inputs:
1445 * addr Start address
1446 * count Number of bytes
1447 * Returns:
1448 * Always 0. Any errors are detected and printed by kdb_getarea.
1449 */
1450static int kdb_mdr(unsigned long addr, unsigned int count)
1451{
1452 unsigned char c;
1453 while (count--) {
1454 if (kdb_getarea(c, addr))
1455 return 0;
1456 kdb_printf("%02x", c);
1457 addr++;
1458 }
1459 kdb_printf("\n");
1460 return 0;
1461}
1462
1463/*
1464 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1465 * 'md8' 'mdr' and 'mds' commands.
1466 *
1467 * md|mds [<addr arg> [<line count> [<radix>]]]
1468 * mdWcN [<addr arg> [<line count> [<radix>]]]
1469 * where W = is the width (1, 2, 4 or 8) and N is the count.
1470 * for eg., md1c20 reads 20 bytes, 1 at a time.
1471 * mdr <addr arg>,<byte count>
1472 */
1473static void kdb_md_line(const char *fmtstr, unsigned long addr,
1474 int symbolic, int nosect, int bytesperword,
1475 int num, int repeat, int phys)
1476{
1477 /* print just one line of data */
1478 kdb_symtab_t symtab;
1479 char cbuf[32];
1480 char *c = cbuf;
1481 int i;
1482 unsigned long word;
1483
1484 memset(cbuf, '\0', sizeof(cbuf));
1485 if (phys)
1486 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1487 else
1488 kdb_printf(kdb_machreg_fmt0 " ", addr);
1489
1490 for (i = 0; i < num && repeat--; i++) {
1491 if (phys) {
1492 if (kdb_getphysword(&word, addr, bytesperword))
1493 break;
1494 } else if (kdb_getword(&word, addr, bytesperword))
1495 break;
1496 kdb_printf(fmtstr, word);
1497 if (symbolic)
1498 kdbnearsym(word, &symtab);
1499 else
1500 memset(&symtab, 0, sizeof(symtab));
1501 if (symtab.sym_name) {
1502 kdb_symbol_print(word, &symtab, 0);
1503 if (!nosect) {
1504 kdb_printf("\n");
1505 kdb_printf(" %s %s "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt " "
1508 kdb_machreg_fmt, symtab.mod_name,
1509 symtab.sec_name, symtab.sec_start,
1510 symtab.sym_start, symtab.sym_end);
1511 }
1512 addr += bytesperword;
1513 } else {
1514 union {
1515 u64 word;
1516 unsigned char c[8];
1517 } wc;
1518 unsigned char *cp;
1519#ifdef __BIG_ENDIAN
1520 cp = wc.c + 8 - bytesperword;
1521#else
1522 cp = wc.c;
1523#endif
1524 wc.word = word;
1525#define printable_char(c) \
1526 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1527 switch (bytesperword) {
1528 case 8:
1529 *c++ = printable_char(*cp++);
1530 *c++ = printable_char(*cp++);
1531 *c++ = printable_char(*cp++);
1532 *c++ = printable_char(*cp++);
1533 addr += 4;
1534 case 4:
1535 *c++ = printable_char(*cp++);
1536 *c++ = printable_char(*cp++);
1537 addr += 2;
1538 case 2:
1539 *c++ = printable_char(*cp++);
1540 addr++;
1541 case 1:
1542 *c++ = printable_char(*cp++);
1543 addr++;
1544 break;
1545 }
1546#undef printable_char
1547 }
1548 }
1549 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1550 " ", cbuf);
1551}
1552
1553static int kdb_md(int argc, const char **argv)
1554{
1555 static unsigned long last_addr;
1556 static int last_radix, last_bytesperword, last_repeat;
1557 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1558 int nosect = 0;
1559 char fmtchar, fmtstr[64];
1560 unsigned long addr;
1561 unsigned long word;
1562 long offset = 0;
1563 int symbolic = 0;
1564 int valid = 0;
1565 int phys = 0;
1566
1567 kdbgetintenv("MDCOUNT", &mdcount);
1568 kdbgetintenv("RADIX", &radix);
1569 kdbgetintenv("BYTESPERWORD", &bytesperword);
1570
1571 /* Assume 'md <addr>' and start with environment values */
1572 repeat = mdcount * 16 / bytesperword;
1573
1574 if (strcmp(argv[0], "mdr") == 0) {
1575 if (argc != 2)
1576 return KDB_ARGCOUNT;
1577 valid = 1;
1578 } else if (isdigit(argv[0][2])) {
1579 bytesperword = (int)(argv[0][2] - '0');
1580 if (bytesperword == 0) {
1581 bytesperword = last_bytesperword;
1582 if (bytesperword == 0)
1583 bytesperword = 4;
1584 }
1585 last_bytesperword = bytesperword;
1586 repeat = mdcount * 16 / bytesperword;
1587 if (!argv[0][3])
1588 valid = 1;
1589 else if (argv[0][3] == 'c' && argv[0][4]) {
1590 char *p;
1591 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1592 mdcount = ((repeat * bytesperword) + 15) / 16;
1593 valid = !*p;
1594 }
1595 last_repeat = repeat;
1596 } else if (strcmp(argv[0], "md") == 0)
1597 valid = 1;
1598 else if (strcmp(argv[0], "mds") == 0)
1599 valid = 1;
1600 else if (strcmp(argv[0], "mdp") == 0) {
1601 phys = valid = 1;
1602 }
1603 if (!valid)
1604 return KDB_NOTFOUND;
1605
1606 if (argc == 0) {
1607 if (last_addr == 0)
1608 return KDB_ARGCOUNT;
1609 addr = last_addr;
1610 radix = last_radix;
1611 bytesperword = last_bytesperword;
1612 repeat = last_repeat;
1613 mdcount = ((repeat * bytesperword) + 15) / 16;
1614 }
1615
1616 if (argc) {
1617 unsigned long val;
1618 int diag, nextarg = 1;
1619 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1620 &offset, NULL);
1621 if (diag)
1622 return diag;
1623 if (argc > nextarg+2)
1624 return KDB_ARGCOUNT;
1625
1626 if (argc >= nextarg) {
1627 diag = kdbgetularg(argv[nextarg], &val);
1628 if (!diag) {
1629 mdcount = (int) val;
1630 repeat = mdcount * 16 / bytesperword;
1631 }
1632 }
1633 if (argc >= nextarg+1) {
1634 diag = kdbgetularg(argv[nextarg+1], &val);
1635 if (!diag)
1636 radix = (int) val;
1637 }
1638 }
1639
1640 if (strcmp(argv[0], "mdr") == 0)
1641 return kdb_mdr(addr, mdcount);
1642
1643 switch (radix) {
1644 case 10:
1645 fmtchar = 'd';
1646 break;
1647 case 16:
1648 fmtchar = 'x';
1649 break;
1650 case 8:
1651 fmtchar = 'o';
1652 break;
1653 default:
1654 return KDB_BADRADIX;
1655 }
1656
1657 last_radix = radix;
1658
1659 if (bytesperword > KDB_WORD_SIZE)
1660 return KDB_BADWIDTH;
1661
1662 switch (bytesperword) {
1663 case 8:
1664 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1665 break;
1666 case 4:
1667 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1668 break;
1669 case 2:
1670 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1671 break;
1672 case 1:
1673 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1674 break;
1675 default:
1676 return KDB_BADWIDTH;
1677 }
1678
1679 last_repeat = repeat;
1680 last_bytesperword = bytesperword;
1681
1682 if (strcmp(argv[0], "mds") == 0) {
1683 symbolic = 1;
1684 /* Do not save these changes as last_*, they are temporary mds
1685 * overrides.
1686 */
1687 bytesperword = KDB_WORD_SIZE;
1688 repeat = mdcount;
1689 kdbgetintenv("NOSECT", &nosect);
1690 }
1691
1692 /* Round address down modulo BYTESPERWORD */
1693
1694 addr &= ~(bytesperword-1);
1695
1696 while (repeat > 0) {
1697 unsigned long a;
1698 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1699
1700 if (KDB_FLAG(CMD_INTERRUPT))
1701 return 0;
1702 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1703 if (phys) {
1704 if (kdb_getphysword(&word, a, bytesperword)
1705 || word)
1706 break;
1707 } else if (kdb_getword(&word, a, bytesperword) || word)
1708 break;
1709 }
1710 n = min(num, repeat);
1711 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1712 num, repeat, phys);
1713 addr += bytesperword * n;
1714 repeat -= n;
1715 z = (z + num - 1) / num;
1716 if (z > 2) {
1717 int s = num * (z-2);
1718 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1719 " zero suppressed\n",
1720 addr, addr + bytesperword * s - 1);
1721 addr += bytesperword * s;
1722 repeat -= s;
1723 }
1724 }
1725 last_addr = addr;
1726
1727 return 0;
1728}
1729
1730/*
1731 * kdb_mm - This function implements the 'mm' command.
1732 * mm address-expression new-value
1733 * Remarks:
1734 * mm works on machine words, mmW works on bytes.
1735 */
1736static int kdb_mm(int argc, const char **argv)
1737{
1738 int diag;
1739 unsigned long addr;
1740 long offset = 0;
1741 unsigned long contents;
1742 int nextarg;
1743 int width;
1744
1745 if (argv[0][2] && !isdigit(argv[0][2]))
1746 return KDB_NOTFOUND;
1747
1748 if (argc < 2)
1749 return KDB_ARGCOUNT;
1750
1751 nextarg = 1;
1752 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1753 if (diag)
1754 return diag;
1755
1756 if (nextarg > argc)
1757 return KDB_ARGCOUNT;
1758 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1759 if (diag)
1760 return diag;
1761
1762 if (nextarg != argc + 1)
1763 return KDB_ARGCOUNT;
1764
1765 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1766 diag = kdb_putword(addr, contents, width);
1767 if (diag)
1768 return diag;
1769
1770 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1771
1772 return 0;
1773}
1774
1775/*
1776 * kdb_go - This function implements the 'go' command.
1777 * go [address-expression]
1778 */
1779static int kdb_go(int argc, const char **argv)
1780{
1781 unsigned long addr;
1782 int diag;
1783 int nextarg;
1784 long offset;
1785
1786 if (raw_smp_processor_id() != kdb_initial_cpu) {
1787 kdb_printf("go must execute on the entry cpu, "
1788 "please use \"cpu %d\" and then execute go\n",
1789 kdb_initial_cpu);
1790 return KDB_BADCPUNUM;
1791 }
1792 if (argc == 1) {
1793 nextarg = 1;
1794 diag = kdbgetaddrarg(argc, argv, &nextarg,
1795 &addr, &offset, NULL);
1796 if (diag)
1797 return diag;
1798 } else if (argc) {
1799 return KDB_ARGCOUNT;
1800 }
1801
1802 diag = KDB_CMD_GO;
1803 if (KDB_FLAG(CATASTROPHIC)) {
1804 kdb_printf("Catastrophic error detected\n");
1805 kdb_printf("kdb_continue_catastrophic=%d, ",
1806 kdb_continue_catastrophic);
1807 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1808 kdb_printf("type go a second time if you really want "
1809 "to continue\n");
1810 return 0;
1811 }
1812 if (kdb_continue_catastrophic == 2) {
1813 kdb_printf("forcing reboot\n");
1814 kdb_reboot(0, NULL);
1815 }
1816 kdb_printf("attempting to continue\n");
1817 }
1818 return diag;
1819}
1820
1821/*
1822 * kdb_rd - This function implements the 'rd' command.
1823 */
1824static int kdb_rd(int argc, const char **argv)
1825{
1826 int len = kdb_check_regs();
1827#if DBG_MAX_REG_NUM > 0
1828 int i;
1829 char *rname;
1830 int rsize;
1831 u64 reg64;
1832 u32 reg32;
1833 u16 reg16;
1834 u8 reg8;
1835
1836 if (len)
1837 return len;
1838
1839 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1840 rsize = dbg_reg_def[i].size * 2;
1841 if (rsize > 16)
1842 rsize = 2;
1843 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1844 len = 0;
1845 kdb_printf("\n");
1846 }
1847 if (len)
1848 len += kdb_printf(" ");
1849 switch(dbg_reg_def[i].size * 8) {
1850 case 8:
1851 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1852 if (!rname)
1853 break;
1854 len += kdb_printf("%s: %02x", rname, reg8);
1855 break;
1856 case 16:
1857 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1858 if (!rname)
1859 break;
1860 len += kdb_printf("%s: %04x", rname, reg16);
1861 break;
1862 case 32:
1863 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1864 if (!rname)
1865 break;
1866 len += kdb_printf("%s: %08x", rname, reg32);
1867 break;
1868 case 64:
1869 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1870 if (!rname)
1871 break;
1872 len += kdb_printf("%s: %016llx", rname, reg64);
1873 break;
1874 default:
1875 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1876 }
1877 }
1878 kdb_printf("\n");
1879#else
1880 if (len)
1881 return len;
1882
1883 kdb_dumpregs(kdb_current_regs);
1884#endif
1885 return 0;
1886}
1887
1888/*
1889 * kdb_rm - This function implements the 'rm' (register modify) command.
1890 * rm register-name new-contents
1891 * Remarks:
1892 * Allows register modification with the same restrictions as gdb
1893 */
1894static int kdb_rm(int argc, const char **argv)
1895{
1896#if DBG_MAX_REG_NUM > 0
1897 int diag;
1898 const char *rname;
1899 int i;
1900 u64 reg64;
1901 u32 reg32;
1902 u16 reg16;
1903 u8 reg8;
1904
1905 if (argc != 2)
1906 return KDB_ARGCOUNT;
1907 /*
1908 * Allow presence or absence of leading '%' symbol.
1909 */
1910 rname = argv[1];
1911 if (*rname == '%')
1912 rname++;
1913
1914 diag = kdbgetu64arg(argv[2], ®64);
1915 if (diag)
1916 return diag;
1917
1918 diag = kdb_check_regs();
1919 if (diag)
1920 return diag;
1921
1922 diag = KDB_BADREG;
1923 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1924 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1925 diag = 0;
1926 break;
1927 }
1928 }
1929 if (!diag) {
1930 switch(dbg_reg_def[i].size * 8) {
1931 case 8:
1932 reg8 = reg64;
1933 dbg_set_reg(i, ®8, kdb_current_regs);
1934 break;
1935 case 16:
1936 reg16 = reg64;
1937 dbg_set_reg(i, ®16, kdb_current_regs);
1938 break;
1939 case 32:
1940 reg32 = reg64;
1941 dbg_set_reg(i, ®32, kdb_current_regs);
1942 break;
1943 case 64:
1944 dbg_set_reg(i, ®64, kdb_current_regs);
1945 break;
1946 }
1947 }
1948 return diag;
1949#else
1950 kdb_printf("ERROR: Register set currently not implemented\n");
1951 return 0;
1952#endif
1953}
1954
1955#if defined(CONFIG_MAGIC_SYSRQ)
1956/*
1957 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1958 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1959 * sr <magic-sysrq-code>
1960 */
1961static int kdb_sr(int argc, const char **argv)
1962{
1963 bool check_mask =
1964 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1965
1966 if (argc != 1)
1967 return KDB_ARGCOUNT;
1968
1969 kdb_trap_printk++;
1970 __handle_sysrq(*argv[1], check_mask);
1971 kdb_trap_printk--;
1972
1973 return 0;
1974}
1975#endif /* CONFIG_MAGIC_SYSRQ */
1976
1977/*
1978 * kdb_ef - This function implements the 'regs' (display exception
1979 * frame) command. This command takes an address and expects to
1980 * find an exception frame at that address, formats and prints
1981 * it.
1982 * regs address-expression
1983 * Remarks:
1984 * Not done yet.
1985 */
1986static int kdb_ef(int argc, const char **argv)
1987{
1988 int diag;
1989 unsigned long addr;
1990 long offset;
1991 int nextarg;
1992
1993 if (argc != 1)
1994 return KDB_ARGCOUNT;
1995
1996 nextarg = 1;
1997 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1998 if (diag)
1999 return diag;
2000 show_regs((struct pt_regs *)addr);
2001 return 0;
2002}
2003
2004#if defined(CONFIG_MODULES)
2005/*
2006 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2007 * currently loaded kernel modules.
2008 * Mostly taken from userland lsmod.
2009 */
2010static int kdb_lsmod(int argc, const char **argv)
2011{
2012 struct module *mod;
2013
2014 if (argc != 0)
2015 return KDB_ARGCOUNT;
2016
2017 kdb_printf("Module Size modstruct Used by\n");
2018 list_for_each_entry(mod, kdb_modules, list) {
2019 if (mod->state == MODULE_STATE_UNFORMED)
2020 continue;
2021
2022 kdb_printf("%-20s%8u 0x%p ", mod->name,
2023 mod->core_layout.size, (void *)mod);
2024#ifdef CONFIG_MODULE_UNLOAD
2025 kdb_printf("%4d ", module_refcount(mod));
2026#endif
2027 if (mod->state == MODULE_STATE_GOING)
2028 kdb_printf(" (Unloading)");
2029 else if (mod->state == MODULE_STATE_COMING)
2030 kdb_printf(" (Loading)");
2031 else
2032 kdb_printf(" (Live)");
2033 kdb_printf(" 0x%p", mod->core_layout.base);
2034
2035#ifdef CONFIG_MODULE_UNLOAD
2036 {
2037 struct module_use *use;
2038 kdb_printf(" [ ");
2039 list_for_each_entry(use, &mod->source_list,
2040 source_list)
2041 kdb_printf("%s ", use->target->name);
2042 kdb_printf("]\n");
2043 }
2044#endif
2045 }
2046
2047 return 0;
2048}
2049
2050#endif /* CONFIG_MODULES */
2051
2052/*
2053 * kdb_env - This function implements the 'env' command. Display the
2054 * current environment variables.
2055 */
2056
2057static int kdb_env(int argc, const char **argv)
2058{
2059 int i;
2060
2061 for (i = 0; i < __nenv; i++) {
2062 if (__env[i])
2063 kdb_printf("%s\n", __env[i]);
2064 }
2065
2066 if (KDB_DEBUG(MASK))
2067 kdb_printf("KDBFLAGS=0x%x\n", kdb_flags);
2068
2069 return 0;
2070}
2071
2072#ifdef CONFIG_PRINTK
2073/*
2074 * kdb_dmesg - This function implements the 'dmesg' command to display
2075 * the contents of the syslog buffer.
2076 * dmesg [lines] [adjust]
2077 */
2078static int kdb_dmesg(int argc, const char **argv)
2079{
2080 int diag;
2081 int logging;
2082 int lines = 0;
2083 int adjust = 0;
2084 int n = 0;
2085 int skip = 0;
2086 struct kmsg_dumper dumper = { .active = 1 };
2087 size_t len;
2088 char buf[201];
2089
2090 if (argc > 2)
2091 return KDB_ARGCOUNT;
2092 if (argc) {
2093 char *cp;
2094 lines = simple_strtol(argv[1], &cp, 0);
2095 if (*cp)
2096 lines = 0;
2097 if (argc > 1) {
2098 adjust = simple_strtoul(argv[2], &cp, 0);
2099 if (*cp || adjust < 0)
2100 adjust = 0;
2101 }
2102 }
2103
2104 /* disable LOGGING if set */
2105 diag = kdbgetintenv("LOGGING", &logging);
2106 if (!diag && logging) {
2107 const char *setargs[] = { "set", "LOGGING", "0" };
2108 kdb_set(2, setargs);
2109 }
2110
2111 kmsg_dump_rewind_nolock(&dumper);
2112 while (kmsg_dump_get_line_nolock(&dumper, 1, NULL, 0, NULL))
2113 n++;
2114
2115 if (lines < 0) {
2116 if (adjust >= n)
2117 kdb_printf("buffer only contains %d lines, nothing "
2118 "printed\n", n);
2119 else if (adjust - lines >= n)
2120 kdb_printf("buffer only contains %d lines, last %d "
2121 "lines printed\n", n, n - adjust);
2122 skip = adjust;
2123 lines = abs(lines);
2124 } else if (lines > 0) {
2125 skip = n - lines - adjust;
2126 lines = abs(lines);
2127 if (adjust >= n) {
2128 kdb_printf("buffer only contains %d lines, "
2129 "nothing printed\n", n);
2130 skip = n;
2131 } else if (skip < 0) {
2132 lines += skip;
2133 skip = 0;
2134 kdb_printf("buffer only contains %d lines, first "
2135 "%d lines printed\n", n, lines);
2136 }
2137 } else {
2138 lines = n;
2139 }
2140
2141 if (skip >= n || skip < 0)
2142 return 0;
2143
2144 kmsg_dump_rewind_nolock(&dumper);
2145 while (kmsg_dump_get_line_nolock(&dumper, 1, buf, sizeof(buf), &len)) {
2146 if (skip) {
2147 skip--;
2148 continue;
2149 }
2150 if (!lines--)
2151 break;
2152 if (KDB_FLAG(CMD_INTERRUPT))
2153 return 0;
2154
2155 kdb_printf("%.*s\n", (int)len - 1, buf);
2156 }
2157
2158 return 0;
2159}
2160#endif /* CONFIG_PRINTK */
2161
2162/* Make sure we balance enable/disable calls, must disable first. */
2163static atomic_t kdb_nmi_disabled;
2164
2165static int kdb_disable_nmi(int argc, const char *argv[])
2166{
2167 if (atomic_read(&kdb_nmi_disabled))
2168 return 0;
2169 atomic_set(&kdb_nmi_disabled, 1);
2170 arch_kgdb_ops.enable_nmi(0);
2171 return 0;
2172}
2173
2174static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2175{
2176 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2177 return -EINVAL;
2178 arch_kgdb_ops.enable_nmi(1);
2179 return 0;
2180}
2181
2182static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2183 .set = kdb_param_enable_nmi,
2184};
2185module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2186
2187/*
2188 * kdb_cpu - This function implements the 'cpu' command.
2189 * cpu [<cpunum>]
2190 * Returns:
2191 * KDB_CMD_CPU for success, a kdb diagnostic if error
2192 */
2193static void kdb_cpu_status(void)
2194{
2195 int i, start_cpu, first_print = 1;
2196 char state, prev_state = '?';
2197
2198 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2199 kdb_printf("Available cpus: ");
2200 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2201 if (!cpu_online(i)) {
2202 state = 'F'; /* cpu is offline */
2203 } else if (!kgdb_info[i].enter_kgdb) {
2204 state = 'D'; /* cpu is online but unresponsive */
2205 } else {
2206 state = ' '; /* cpu is responding to kdb */
2207 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2208 state = 'I'; /* idle task */
2209 }
2210 if (state != prev_state) {
2211 if (prev_state != '?') {
2212 if (!first_print)
2213 kdb_printf(", ");
2214 first_print = 0;
2215 kdb_printf("%d", start_cpu);
2216 if (start_cpu < i-1)
2217 kdb_printf("-%d", i-1);
2218 if (prev_state != ' ')
2219 kdb_printf("(%c)", prev_state);
2220 }
2221 prev_state = state;
2222 start_cpu = i;
2223 }
2224 }
2225 /* print the trailing cpus, ignoring them if they are all offline */
2226 if (prev_state != 'F') {
2227 if (!first_print)
2228 kdb_printf(", ");
2229 kdb_printf("%d", start_cpu);
2230 if (start_cpu < i-1)
2231 kdb_printf("-%d", i-1);
2232 if (prev_state != ' ')
2233 kdb_printf("(%c)", prev_state);
2234 }
2235 kdb_printf("\n");
2236}
2237
2238static int kdb_cpu(int argc, const char **argv)
2239{
2240 unsigned long cpunum;
2241 int diag;
2242
2243 if (argc == 0) {
2244 kdb_cpu_status();
2245 return 0;
2246 }
2247
2248 if (argc != 1)
2249 return KDB_ARGCOUNT;
2250
2251 diag = kdbgetularg(argv[1], &cpunum);
2252 if (diag)
2253 return diag;
2254
2255 /*
2256 * Validate cpunum
2257 */
2258 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2259 return KDB_BADCPUNUM;
2260
2261 dbg_switch_cpu = cpunum;
2262
2263 /*
2264 * Switch to other cpu
2265 */
2266 return KDB_CMD_CPU;
2267}
2268
2269/* The user may not realize that ps/bta with no parameters does not print idle
2270 * or sleeping system daemon processes, so tell them how many were suppressed.
2271 */
2272void kdb_ps_suppressed(void)
2273{
2274 int idle = 0, daemon = 0;
2275 unsigned long mask_I = kdb_task_state_string("I"),
2276 mask_M = kdb_task_state_string("M");
2277 unsigned long cpu;
2278 const struct task_struct *p, *g;
2279 for_each_online_cpu(cpu) {
2280 p = kdb_curr_task(cpu);
2281 if (kdb_task_state(p, mask_I))
2282 ++idle;
2283 }
2284 kdb_do_each_thread(g, p) {
2285 if (kdb_task_state(p, mask_M))
2286 ++daemon;
2287 } kdb_while_each_thread(g, p);
2288 if (idle || daemon) {
2289 if (idle)
2290 kdb_printf("%d idle process%s (state I)%s\n",
2291 idle, idle == 1 ? "" : "es",
2292 daemon ? " and " : "");
2293 if (daemon)
2294 kdb_printf("%d sleeping system daemon (state M) "
2295 "process%s", daemon,
2296 daemon == 1 ? "" : "es");
2297 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2298 }
2299}
2300
2301/*
2302 * kdb_ps - This function implements the 'ps' command which shows a
2303 * list of the active processes.
2304 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2305 */
2306void kdb_ps1(const struct task_struct *p)
2307{
2308 int cpu;
2309 unsigned long tmp;
2310
2311 if (!p || probe_kernel_read(&tmp, (char *)p, sizeof(unsigned long)))
2312 return;
2313
2314 cpu = kdb_process_cpu(p);
2315 kdb_printf("0x%p %8d %8d %d %4d %c 0x%p %c%s\n",
2316 (void *)p, p->pid, p->parent->pid,
2317 kdb_task_has_cpu(p), kdb_process_cpu(p),
2318 kdb_task_state_char(p),
2319 (void *)(&p->thread),
2320 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2321 p->comm);
2322 if (kdb_task_has_cpu(p)) {
2323 if (!KDB_TSK(cpu)) {
2324 kdb_printf(" Error: no saved data for this cpu\n");
2325 } else {
2326 if (KDB_TSK(cpu) != p)
2327 kdb_printf(" Error: does not match running "
2328 "process table (0x%p)\n", KDB_TSK(cpu));
2329 }
2330 }
2331}
2332
2333static int kdb_ps(int argc, const char **argv)
2334{
2335 struct task_struct *g, *p;
2336 unsigned long mask, cpu;
2337
2338 if (argc == 0)
2339 kdb_ps_suppressed();
2340 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2341 (int)(2*sizeof(void *))+2, "Task Addr",
2342 (int)(2*sizeof(void *))+2, "Thread");
2343 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2344 /* Run the active tasks first */
2345 for_each_online_cpu(cpu) {
2346 if (KDB_FLAG(CMD_INTERRUPT))
2347 return 0;
2348 p = kdb_curr_task(cpu);
2349 if (kdb_task_state(p, mask))
2350 kdb_ps1(p);
2351 }
2352 kdb_printf("\n");
2353 /* Now the real tasks */
2354 kdb_do_each_thread(g, p) {
2355 if (KDB_FLAG(CMD_INTERRUPT))
2356 return 0;
2357 if (kdb_task_state(p, mask))
2358 kdb_ps1(p);
2359 } kdb_while_each_thread(g, p);
2360
2361 return 0;
2362}
2363
2364/*
2365 * kdb_pid - This function implements the 'pid' command which switches
2366 * the currently active process.
2367 * pid [<pid> | R]
2368 */
2369static int kdb_pid(int argc, const char **argv)
2370{
2371 struct task_struct *p;
2372 unsigned long val;
2373 int diag;
2374
2375 if (argc > 1)
2376 return KDB_ARGCOUNT;
2377
2378 if (argc) {
2379 if (strcmp(argv[1], "R") == 0) {
2380 p = KDB_TSK(kdb_initial_cpu);
2381 } else {
2382 diag = kdbgetularg(argv[1], &val);
2383 if (diag)
2384 return KDB_BADINT;
2385
2386 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2387 if (!p) {
2388 kdb_printf("No task with pid=%d\n", (pid_t)val);
2389 return 0;
2390 }
2391 }
2392 kdb_set_current_task(p);
2393 }
2394 kdb_printf("KDB current process is %s(pid=%d)\n",
2395 kdb_current_task->comm,
2396 kdb_current_task->pid);
2397
2398 return 0;
2399}
2400
2401static int kdb_kgdb(int argc, const char **argv)
2402{
2403 return KDB_CMD_KGDB;
2404}
2405
2406/*
2407 * kdb_help - This function implements the 'help' and '?' commands.
2408 */
2409static int kdb_help(int argc, const char **argv)
2410{
2411 kdbtab_t *kt;
2412 int i;
2413
2414 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2415 kdb_printf("-----------------------------"
2416 "-----------------------------\n");
2417 for_each_kdbcmd(kt, i) {
2418 char *space = "";
2419 if (KDB_FLAG(CMD_INTERRUPT))
2420 return 0;
2421 if (!kt->cmd_name)
2422 continue;
2423 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2424 continue;
2425 if (strlen(kt->cmd_usage) > 20)
2426 space = "\n ";
2427 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2428 kt->cmd_usage, space, kt->cmd_help);
2429 }
2430 return 0;
2431}
2432
2433/*
2434 * kdb_kill - This function implements the 'kill' commands.
2435 */
2436static int kdb_kill(int argc, const char **argv)
2437{
2438 long sig, pid;
2439 char *endp;
2440 struct task_struct *p;
2441 struct siginfo info;
2442
2443 if (argc != 2)
2444 return KDB_ARGCOUNT;
2445
2446 sig = simple_strtol(argv[1], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (sig >= 0) {
2450 kdb_printf("Invalid signal parameter.<-signal>\n");
2451 return 0;
2452 }
2453 sig = -sig;
2454
2455 pid = simple_strtol(argv[2], &endp, 0);
2456 if (*endp)
2457 return KDB_BADINT;
2458 if (pid <= 0) {
2459 kdb_printf("Process ID must be large than 0.\n");
2460 return 0;
2461 }
2462
2463 /* Find the process. */
2464 p = find_task_by_pid_ns(pid, &init_pid_ns);
2465 if (!p) {
2466 kdb_printf("The specified process isn't found.\n");
2467 return 0;
2468 }
2469 p = p->group_leader;
2470 info.si_signo = sig;
2471 info.si_errno = 0;
2472 info.si_code = SI_USER;
2473 info.si_pid = pid; /* same capabilities as process being signalled */
2474 info.si_uid = 0; /* kdb has root authority */
2475 kdb_send_sig_info(p, &info);
2476 return 0;
2477}
2478
2479struct kdb_tm {
2480 int tm_sec; /* seconds */
2481 int tm_min; /* minutes */
2482 int tm_hour; /* hours */
2483 int tm_mday; /* day of the month */
2484 int tm_mon; /* month */
2485 int tm_year; /* year */
2486};
2487
2488static void kdb_gmtime(struct timespec *tv, struct kdb_tm *tm)
2489{
2490 /* This will work from 1970-2099, 2100 is not a leap year */
2491 static int mon_day[] = { 31, 29, 31, 30, 31, 30, 31,
2492 31, 30, 31, 30, 31 };
2493 memset(tm, 0, sizeof(*tm));
2494 tm->tm_sec = tv->tv_sec % (24 * 60 * 60);
2495 tm->tm_mday = tv->tv_sec / (24 * 60 * 60) +
2496 (2 * 365 + 1); /* shift base from 1970 to 1968 */
2497 tm->tm_min = tm->tm_sec / 60 % 60;
2498 tm->tm_hour = tm->tm_sec / 60 / 60;
2499 tm->tm_sec = tm->tm_sec % 60;
2500 tm->tm_year = 68 + 4*(tm->tm_mday / (4*365+1));
2501 tm->tm_mday %= (4*365+1);
2502 mon_day[1] = 29;
2503 while (tm->tm_mday >= mon_day[tm->tm_mon]) {
2504 tm->tm_mday -= mon_day[tm->tm_mon];
2505 if (++tm->tm_mon == 12) {
2506 tm->tm_mon = 0;
2507 ++tm->tm_year;
2508 mon_day[1] = 28;
2509 }
2510 }
2511 ++tm->tm_mday;
2512}
2513
2514/*
2515 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2516 * I cannot call that code directly from kdb, it has an unconditional
2517 * cli()/sti() and calls routines that take locks which can stop the debugger.
2518 */
2519static void kdb_sysinfo(struct sysinfo *val)
2520{
2521 struct timespec uptime;
2522 ktime_get_ts(&uptime);
2523 memset(val, 0, sizeof(*val));
2524 val->uptime = uptime.tv_sec;
2525 val->loads[0] = avenrun[0];
2526 val->loads[1] = avenrun[1];
2527 val->loads[2] = avenrun[2];
2528 val->procs = nr_threads-1;
2529 si_meminfo(val);
2530
2531 return;
2532}
2533
2534/*
2535 * kdb_summary - This function implements the 'summary' command.
2536 */
2537static int kdb_summary(int argc, const char **argv)
2538{
2539 struct timespec now;
2540 struct kdb_tm tm;
2541 struct sysinfo val;
2542
2543 if (argc)
2544 return KDB_ARGCOUNT;
2545
2546 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2547 kdb_printf("release %s\n", init_uts_ns.name.release);
2548 kdb_printf("version %s\n", init_uts_ns.name.version);
2549 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2550 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2551 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2552 kdb_printf("ccversion %s\n", __stringify(CCVERSION));
2553
2554 now = __current_kernel_time();
2555 kdb_gmtime(&now, &tm);
2556 kdb_printf("date %04d-%02d-%02d %02d:%02d:%02d "
2557 "tz_minuteswest %d\n",
2558 1900+tm.tm_year, tm.tm_mon+1, tm.tm_mday,
2559 tm.tm_hour, tm.tm_min, tm.tm_sec,
2560 sys_tz.tz_minuteswest);
2561
2562 kdb_sysinfo(&val);
2563 kdb_printf("uptime ");
2564 if (val.uptime > (24*60*60)) {
2565 int days = val.uptime / (24*60*60);
2566 val.uptime %= (24*60*60);
2567 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2568 }
2569 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2570
2571 /* lifted from fs/proc/proc_misc.c::loadavg_read_proc() */
2572
2573#define LOAD_INT(x) ((x) >> FSHIFT)
2574#define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
2575 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2576 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2577 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2578 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2579#undef LOAD_INT
2580#undef LOAD_FRAC
2581 /* Display in kilobytes */
2582#define K(x) ((x) << (PAGE_SHIFT - 10))
2583 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2584 "Buffers: %8lu kB\n",
2585 K(val.totalram), K(val.freeram), K(val.bufferram));
2586 return 0;
2587}
2588
2589/*
2590 * kdb_per_cpu - This function implements the 'per_cpu' command.
2591 */
2592static int kdb_per_cpu(int argc, const char **argv)
2593{
2594 char fmtstr[64];
2595 int cpu, diag, nextarg = 1;
2596 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2597
2598 if (argc < 1 || argc > 3)
2599 return KDB_ARGCOUNT;
2600
2601 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2602 if (diag)
2603 return diag;
2604
2605 if (argc >= 2) {
2606 diag = kdbgetularg(argv[2], &bytesperword);
2607 if (diag)
2608 return diag;
2609 }
2610 if (!bytesperword)
2611 bytesperword = KDB_WORD_SIZE;
2612 else if (bytesperword > KDB_WORD_SIZE)
2613 return KDB_BADWIDTH;
2614 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2615 if (argc >= 3) {
2616 diag = kdbgetularg(argv[3], &whichcpu);
2617 if (diag)
2618 return diag;
2619 if (!cpu_online(whichcpu)) {
2620 kdb_printf("cpu %ld is not online\n", whichcpu);
2621 return KDB_BADCPUNUM;
2622 }
2623 }
2624
2625 /* Most architectures use __per_cpu_offset[cpu], some use
2626 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2627 */
2628#ifdef __per_cpu_offset
2629#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2630#else
2631#ifdef CONFIG_SMP
2632#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2633#else
2634#define KDB_PCU(cpu) 0
2635#endif
2636#endif
2637 for_each_online_cpu(cpu) {
2638 if (KDB_FLAG(CMD_INTERRUPT))
2639 return 0;
2640
2641 if (whichcpu != ~0UL && whichcpu != cpu)
2642 continue;
2643 addr = symaddr + KDB_PCU(cpu);
2644 diag = kdb_getword(&val, addr, bytesperword);
2645 if (diag) {
2646 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2647 "read, diag=%d\n", cpu, addr, diag);
2648 continue;
2649 }
2650 kdb_printf("%5d ", cpu);
2651 kdb_md_line(fmtstr, addr,
2652 bytesperword == KDB_WORD_SIZE,
2653 1, bytesperword, 1, 1, 0);
2654 }
2655#undef KDB_PCU
2656 return 0;
2657}
2658
2659/*
2660 * display help for the use of cmd | grep pattern
2661 */
2662static int kdb_grep_help(int argc, const char **argv)
2663{
2664 kdb_printf("Usage of cmd args | grep pattern:\n");
2665 kdb_printf(" Any command's output may be filtered through an ");
2666 kdb_printf("emulated 'pipe'.\n");
2667 kdb_printf(" 'grep' is just a key word.\n");
2668 kdb_printf(" The pattern may include a very limited set of "
2669 "metacharacters:\n");
2670 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2671 kdb_printf(" And if there are spaces in the pattern, you may "
2672 "quote it:\n");
2673 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2674 " or \"^pat tern$\"\n");
2675 return 0;
2676}
2677
2678/*
2679 * kdb_register_flags - This function is used to register a kernel
2680 * debugger command.
2681 * Inputs:
2682 * cmd Command name
2683 * func Function to execute the command
2684 * usage A simple usage string showing arguments
2685 * help A simple help string describing command
2686 * repeat Does the command auto repeat on enter?
2687 * Returns:
2688 * zero for success, one if a duplicate command.
2689 */
2690#define kdb_command_extend 50 /* arbitrary */
2691int kdb_register_flags(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen,
2696 kdb_cmdflags_t flags)
2697{
2698 int i;
2699 kdbtab_t *kp;
2700
2701 /*
2702 * Brute force method to determine duplicates
2703 */
2704 for_each_kdbcmd(kp, i) {
2705 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2706 kdb_printf("Duplicate kdb command registered: "
2707 "%s, func %p help %s\n", cmd, func, help);
2708 return 1;
2709 }
2710 }
2711
2712 /*
2713 * Insert command into first available location in table
2714 */
2715 for_each_kdbcmd(kp, i) {
2716 if (kp->cmd_name == NULL)
2717 break;
2718 }
2719
2720 if (i >= kdb_max_commands) {
2721 kdbtab_t *new = kmalloc((kdb_max_commands - KDB_BASE_CMD_MAX +
2722 kdb_command_extend) * sizeof(*new), GFP_KDB);
2723 if (!new) {
2724 kdb_printf("Could not allocate new kdb_command "
2725 "table\n");
2726 return 1;
2727 }
2728 if (kdb_commands) {
2729 memcpy(new, kdb_commands,
2730 (kdb_max_commands - KDB_BASE_CMD_MAX) * sizeof(*new));
2731 kfree(kdb_commands);
2732 }
2733 memset(new + kdb_max_commands - KDB_BASE_CMD_MAX, 0,
2734 kdb_command_extend * sizeof(*new));
2735 kdb_commands = new;
2736 kp = kdb_commands + kdb_max_commands - KDB_BASE_CMD_MAX;
2737 kdb_max_commands += kdb_command_extend;
2738 }
2739
2740 kp->cmd_name = cmd;
2741 kp->cmd_func = func;
2742 kp->cmd_usage = usage;
2743 kp->cmd_help = help;
2744 kp->cmd_minlen = minlen;
2745 kp->cmd_flags = flags;
2746
2747 return 0;
2748}
2749EXPORT_SYMBOL_GPL(kdb_register_flags);
2750
2751
2752/*
2753 * kdb_register - Compatibility register function for commands that do
2754 * not need to specify a repeat state. Equivalent to
2755 * kdb_register_flags with flags set to 0.
2756 * Inputs:
2757 * cmd Command name
2758 * func Function to execute the command
2759 * usage A simple usage string showing arguments
2760 * help A simple help string describing command
2761 * Returns:
2762 * zero for success, one if a duplicate command.
2763 */
2764int kdb_register(char *cmd,
2765 kdb_func_t func,
2766 char *usage,
2767 char *help,
2768 short minlen)
2769{
2770 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2771}
2772EXPORT_SYMBOL_GPL(kdb_register);
2773
2774/*
2775 * kdb_unregister - This function is used to unregister a kernel
2776 * debugger command. It is generally called when a module which
2777 * implements kdb commands is unloaded.
2778 * Inputs:
2779 * cmd Command name
2780 * Returns:
2781 * zero for success, one command not registered.
2782 */
2783int kdb_unregister(char *cmd)
2784{
2785 int i;
2786 kdbtab_t *kp;
2787
2788 /*
2789 * find the command.
2790 */
2791 for_each_kdbcmd(kp, i) {
2792 if (kp->cmd_name && (strcmp(kp->cmd_name, cmd) == 0)) {
2793 kp->cmd_name = NULL;
2794 return 0;
2795 }
2796 }
2797
2798 /* Couldn't find it. */
2799 return 1;
2800}
2801EXPORT_SYMBOL_GPL(kdb_unregister);
2802
2803/* Initialize the kdb command table. */
2804static void __init kdb_inittab(void)
2805{
2806 int i;
2807 kdbtab_t *kp;
2808
2809 for_each_kdbcmd(kp, i)
2810 kp->cmd_name = NULL;
2811
2812 kdb_register_flags("md", kdb_md, "<vaddr>",
2813 "Display Memory Contents, also mdWcN, e.g. md8c1", 1,
2814 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2815 kdb_register_flags("mdr", kdb_md, "<vaddr> <bytes>",
2816 "Display Raw Memory", 0,
2817 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2818 kdb_register_flags("mdp", kdb_md, "<paddr> <bytes>",
2819 "Display Physical Memory", 0,
2820 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2821 kdb_register_flags("mds", kdb_md, "<vaddr>",
2822 "Display Memory Symbolically", 0,
2823 KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS);
2824 kdb_register_flags("mm", kdb_mm, "<vaddr> <contents>",
2825 "Modify Memory Contents", 0,
2826 KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS);
2827 kdb_register_flags("go", kdb_go, "[<vaddr>]",
2828 "Continue Execution", 1,
2829 KDB_ENABLE_REG_WRITE | KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2830 kdb_register_flags("rd", kdb_rd, "",
2831 "Display Registers", 0,
2832 KDB_ENABLE_REG_READ);
2833 kdb_register_flags("rm", kdb_rm, "<reg> <contents>",
2834 "Modify Registers", 0,
2835 KDB_ENABLE_REG_WRITE);
2836 kdb_register_flags("ef", kdb_ef, "<vaddr>",
2837 "Display exception frame", 0,
2838 KDB_ENABLE_MEM_READ);
2839 kdb_register_flags("bt", kdb_bt, "[<vaddr>]",
2840 "Stack traceback", 1,
2841 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2842 kdb_register_flags("btp", kdb_bt, "<pid>",
2843 "Display stack for process <pid>", 0,
2844 KDB_ENABLE_INSPECT);
2845 kdb_register_flags("bta", kdb_bt, "[D|R|S|T|C|Z|E|U|I|M|A]",
2846 "Backtrace all processes matching state flag", 0,
2847 KDB_ENABLE_INSPECT);
2848 kdb_register_flags("btc", kdb_bt, "",
2849 "Backtrace current process on each cpu", 0,
2850 KDB_ENABLE_INSPECT);
2851 kdb_register_flags("btt", kdb_bt, "<vaddr>",
2852 "Backtrace process given its struct task address", 0,
2853 KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS);
2854 kdb_register_flags("env", kdb_env, "",
2855 "Show environment variables", 0,
2856 KDB_ENABLE_ALWAYS_SAFE);
2857 kdb_register_flags("set", kdb_set, "",
2858 "Set environment variables", 0,
2859 KDB_ENABLE_ALWAYS_SAFE);
2860 kdb_register_flags("help", kdb_help, "",
2861 "Display Help Message", 1,
2862 KDB_ENABLE_ALWAYS_SAFE);
2863 kdb_register_flags("?", kdb_help, "",
2864 "Display Help Message", 0,
2865 KDB_ENABLE_ALWAYS_SAFE);
2866 kdb_register_flags("cpu", kdb_cpu, "<cpunum>",
2867 "Switch to new cpu", 0,
2868 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS);
2869 kdb_register_flags("kgdb", kdb_kgdb, "",
2870 "Enter kgdb mode", 0, 0);
2871 kdb_register_flags("ps", kdb_ps, "[<flags>|A]",
2872 "Display active task list", 0,
2873 KDB_ENABLE_INSPECT);
2874 kdb_register_flags("pid", kdb_pid, "<pidnum>",
2875 "Switch to another task", 0,
2876 KDB_ENABLE_INSPECT);
2877 kdb_register_flags("reboot", kdb_reboot, "",
2878 "Reboot the machine immediately", 0,
2879 KDB_ENABLE_REBOOT);
2880#if defined(CONFIG_MODULES)
2881 kdb_register_flags("lsmod", kdb_lsmod, "",
2882 "List loaded kernel modules", 0,
2883 KDB_ENABLE_INSPECT);
2884#endif
2885#if defined(CONFIG_MAGIC_SYSRQ)
2886 kdb_register_flags("sr", kdb_sr, "<key>",
2887 "Magic SysRq key", 0,
2888 KDB_ENABLE_ALWAYS_SAFE);
2889#endif
2890#if defined(CONFIG_PRINTK)
2891 kdb_register_flags("dmesg", kdb_dmesg, "[lines]",
2892 "Display syslog buffer", 0,
2893 KDB_ENABLE_ALWAYS_SAFE);
2894#endif
2895 if (arch_kgdb_ops.enable_nmi) {
2896 kdb_register_flags("disable_nmi", kdb_disable_nmi, "",
2897 "Disable NMI entry to KDB", 0,
2898 KDB_ENABLE_ALWAYS_SAFE);
2899 }
2900 kdb_register_flags("defcmd", kdb_defcmd, "name \"usage\" \"help\"",
2901 "Define a set of commands, down to endefcmd", 0,
2902 KDB_ENABLE_ALWAYS_SAFE);
2903 kdb_register_flags("kill", kdb_kill, "<-signal> <pid>",
2904 "Send a signal to a process", 0,
2905 KDB_ENABLE_SIGNAL);
2906 kdb_register_flags("summary", kdb_summary, "",
2907 "Summarize the system", 4,
2908 KDB_ENABLE_ALWAYS_SAFE);
2909 kdb_register_flags("per_cpu", kdb_per_cpu, "<sym> [<bytes>] [<cpu>]",
2910 "Display per_cpu variables", 3,
2911 KDB_ENABLE_MEM_READ);
2912 kdb_register_flags("grephelp", kdb_grep_help, "",
2913 "Display help on | grep", 0,
2914 KDB_ENABLE_ALWAYS_SAFE);
2915}
2916
2917/* Execute any commands defined in kdb_cmds. */
2918static void __init kdb_cmd_init(void)
2919{
2920 int i, diag;
2921 for (i = 0; kdb_cmds[i]; ++i) {
2922 diag = kdb_parse(kdb_cmds[i]);
2923 if (diag)
2924 kdb_printf("kdb command %s failed, kdb diag %d\n",
2925 kdb_cmds[i], diag);
2926 }
2927 if (defcmd_in_progress) {
2928 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2929 kdb_parse("endefcmd");
2930 }
2931}
2932
2933/* Initialize kdb_printf, breakpoint tables and kdb state */
2934void __init kdb_init(int lvl)
2935{
2936 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2937 int i;
2938
2939 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2940 return;
2941 for (i = kdb_init_lvl; i < lvl; i++) {
2942 switch (i) {
2943 case KDB_NOT_INITIALIZED:
2944 kdb_inittab(); /* Initialize Command Table */
2945 kdb_initbptab(); /* Initialize Breakpoints */
2946 break;
2947 case KDB_INIT_EARLY:
2948 kdb_cmd_init(); /* Build kdb_cmds tables */
2949 break;
2950 }
2951 }
2952 kdb_init_lvl = lvl;
2953}
1/*
2 * Kernel Debugger Architecture Independent Main Code
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (C) 1999-2004 Silicon Graphics, Inc. All Rights Reserved.
9 * Copyright (C) 2000 Stephane Eranian <eranian@hpl.hp.com>
10 * Xscale (R) modifications copyright (C) 2003 Intel Corporation.
11 * Copyright (c) 2009 Wind River Systems, Inc. All Rights Reserved.
12 */
13
14#include <linux/ctype.h>
15#include <linux/types.h>
16#include <linux/string.h>
17#include <linux/kernel.h>
18#include <linux/kmsg_dump.h>
19#include <linux/reboot.h>
20#include <linux/sched.h>
21#include <linux/sched/loadavg.h>
22#include <linux/sched/stat.h>
23#include <linux/sched/debug.h>
24#include <linux/sysrq.h>
25#include <linux/smp.h>
26#include <linux/utsname.h>
27#include <linux/vmalloc.h>
28#include <linux/atomic.h>
29#include <linux/module.h>
30#include <linux/moduleparam.h>
31#include <linux/mm.h>
32#include <linux/init.h>
33#include <linux/kallsyms.h>
34#include <linux/kgdb.h>
35#include <linux/kdb.h>
36#include <linux/list.h>
37#include <linux/notifier.h>
38#include <linux/interrupt.h>
39#include <linux/delay.h>
40#include <linux/nmi.h>
41#include <linux/time.h>
42#include <linux/ptrace.h>
43#include <linux/sysctl.h>
44#include <linux/cpu.h>
45#include <linux/kdebug.h>
46#include <linux/proc_fs.h>
47#include <linux/uaccess.h>
48#include <linux/slab.h>
49#include "kdb_private.h"
50
51#undef MODULE_PARAM_PREFIX
52#define MODULE_PARAM_PREFIX "kdb."
53
54static int kdb_cmd_enabled = CONFIG_KDB_DEFAULT_ENABLE;
55module_param_named(cmd_enable, kdb_cmd_enabled, int, 0600);
56
57char kdb_grep_string[KDB_GREP_STRLEN];
58int kdb_grepping_flag;
59EXPORT_SYMBOL(kdb_grepping_flag);
60int kdb_grep_leading;
61int kdb_grep_trailing;
62
63/*
64 * Kernel debugger state flags
65 */
66unsigned int kdb_flags;
67
68/*
69 * kdb_lock protects updates to kdb_initial_cpu. Used to
70 * single thread processors through the kernel debugger.
71 */
72int kdb_initial_cpu = -1; /* cpu number that owns kdb */
73int kdb_nextline = 1;
74int kdb_state; /* General KDB state */
75
76struct task_struct *kdb_current_task;
77struct pt_regs *kdb_current_regs;
78
79const char *kdb_diemsg;
80static int kdb_go_count;
81#ifdef CONFIG_KDB_CONTINUE_CATASTROPHIC
82static unsigned int kdb_continue_catastrophic =
83 CONFIG_KDB_CONTINUE_CATASTROPHIC;
84#else
85static unsigned int kdb_continue_catastrophic;
86#endif
87
88/* kdb_cmds_head describes the available commands. */
89static LIST_HEAD(kdb_cmds_head);
90
91typedef struct _kdbmsg {
92 int km_diag; /* kdb diagnostic */
93 char *km_msg; /* Corresponding message text */
94} kdbmsg_t;
95
96#define KDBMSG(msgnum, text) \
97 { KDB_##msgnum, text }
98
99static kdbmsg_t kdbmsgs[] = {
100 KDBMSG(NOTFOUND, "Command Not Found"),
101 KDBMSG(ARGCOUNT, "Improper argument count, see usage."),
102 KDBMSG(BADWIDTH, "Illegal value for BYTESPERWORD use 1, 2, 4 or 8, "
103 "8 is only allowed on 64 bit systems"),
104 KDBMSG(BADRADIX, "Illegal value for RADIX use 8, 10 or 16"),
105 KDBMSG(NOTENV, "Cannot find environment variable"),
106 KDBMSG(NOENVVALUE, "Environment variable should have value"),
107 KDBMSG(NOTIMP, "Command not implemented"),
108 KDBMSG(ENVFULL, "Environment full"),
109 KDBMSG(ENVBUFFULL, "Environment buffer full"),
110 KDBMSG(TOOMANYBPT, "Too many breakpoints defined"),
111#ifdef CONFIG_CPU_XSCALE
112 KDBMSG(TOOMANYDBREGS, "More breakpoints than ibcr registers defined"),
113#else
114 KDBMSG(TOOMANYDBREGS, "More breakpoints than db registers defined"),
115#endif
116 KDBMSG(DUPBPT, "Duplicate breakpoint address"),
117 KDBMSG(BPTNOTFOUND, "Breakpoint not found"),
118 KDBMSG(BADMODE, "Invalid IDMODE"),
119 KDBMSG(BADINT, "Illegal numeric value"),
120 KDBMSG(INVADDRFMT, "Invalid symbolic address format"),
121 KDBMSG(BADREG, "Invalid register name"),
122 KDBMSG(BADCPUNUM, "Invalid cpu number"),
123 KDBMSG(BADLENGTH, "Invalid length field"),
124 KDBMSG(NOBP, "No Breakpoint exists"),
125 KDBMSG(BADADDR, "Invalid address"),
126 KDBMSG(NOPERM, "Permission denied"),
127};
128#undef KDBMSG
129
130static const int __nkdb_err = ARRAY_SIZE(kdbmsgs);
131
132
133/*
134 * Initial environment. This is all kept static and local to
135 * this file. We don't want to rely on the memory allocation
136 * mechanisms in the kernel, so we use a very limited allocate-only
137 * heap for new and altered environment variables. The entire
138 * environment is limited to a fixed number of entries (add more
139 * to __env[] if required) and a fixed amount of heap (add more to
140 * KDB_ENVBUFSIZE if required).
141 */
142
143static char *__env[31] = {
144#if defined(CONFIG_SMP)
145 "PROMPT=[%d]kdb> ",
146#else
147 "PROMPT=kdb> ",
148#endif
149 "MOREPROMPT=more> ",
150 "RADIX=16",
151 "MDCOUNT=8", /* lines of md output */
152 KDB_PLATFORM_ENV,
153 "DTABCOUNT=30",
154 "NOSECT=1",
155};
156
157static const int __nenv = ARRAY_SIZE(__env);
158
159struct task_struct *kdb_curr_task(int cpu)
160{
161 struct task_struct *p = curr_task(cpu);
162#ifdef _TIF_MCA_INIT
163 if ((task_thread_info(p)->flags & _TIF_MCA_INIT) && KDB_TSK(cpu))
164 p = krp->p;
165#endif
166 return p;
167}
168
169/*
170 * Check whether the flags of the current command and the permissions
171 * of the kdb console has allow a command to be run.
172 */
173static inline bool kdb_check_flags(kdb_cmdflags_t flags, int permissions,
174 bool no_args)
175{
176 /* permissions comes from userspace so needs massaging slightly */
177 permissions &= KDB_ENABLE_MASK;
178 permissions |= KDB_ENABLE_ALWAYS_SAFE;
179
180 /* some commands change group when launched with no arguments */
181 if (no_args)
182 permissions |= permissions << KDB_ENABLE_NO_ARGS_SHIFT;
183
184 flags |= KDB_ENABLE_ALL;
185
186 return permissions & flags;
187}
188
189/*
190 * kdbgetenv - This function will return the character string value of
191 * an environment variable.
192 * Parameters:
193 * match A character string representing an environment variable.
194 * Returns:
195 * NULL No environment variable matches 'match'
196 * char* Pointer to string value of environment variable.
197 */
198char *kdbgetenv(const char *match)
199{
200 char **ep = __env;
201 int matchlen = strlen(match);
202 int i;
203
204 for (i = 0; i < __nenv; i++) {
205 char *e = *ep++;
206
207 if (!e)
208 continue;
209
210 if ((strncmp(match, e, matchlen) == 0)
211 && ((e[matchlen] == '\0')
212 || (e[matchlen] == '='))) {
213 char *cp = strchr(e, '=');
214 return cp ? ++cp : "";
215 }
216 }
217 return NULL;
218}
219
220/*
221 * kdballocenv - This function is used to allocate bytes for
222 * environment entries.
223 * Parameters:
224 * match A character string representing a numeric value
225 * Outputs:
226 * *value the unsigned long representation of the env variable 'match'
227 * Returns:
228 * Zero on success, a kdb diagnostic on failure.
229 * Remarks:
230 * We use a static environment buffer (envbuffer) to hold the values
231 * of dynamically generated environment variables (see kdb_set). Buffer
232 * space once allocated is never free'd, so over time, the amount of space
233 * (currently 512 bytes) will be exhausted if env variables are changed
234 * frequently.
235 */
236static char *kdballocenv(size_t bytes)
237{
238#define KDB_ENVBUFSIZE 512
239 static char envbuffer[KDB_ENVBUFSIZE];
240 static int envbufsize;
241 char *ep = NULL;
242
243 if ((KDB_ENVBUFSIZE - envbufsize) >= bytes) {
244 ep = &envbuffer[envbufsize];
245 envbufsize += bytes;
246 }
247 return ep;
248}
249
250/*
251 * kdbgetulenv - This function will return the value of an unsigned
252 * long-valued environment variable.
253 * Parameters:
254 * match A character string representing a numeric value
255 * Outputs:
256 * *value the unsigned long representation of the env variable 'match'
257 * Returns:
258 * Zero on success, a kdb diagnostic on failure.
259 */
260static int kdbgetulenv(const char *match, unsigned long *value)
261{
262 char *ep;
263
264 ep = kdbgetenv(match);
265 if (!ep)
266 return KDB_NOTENV;
267 if (strlen(ep) == 0)
268 return KDB_NOENVVALUE;
269
270 *value = simple_strtoul(ep, NULL, 0);
271
272 return 0;
273}
274
275/*
276 * kdbgetintenv - This function will return the value of an
277 * integer-valued environment variable.
278 * Parameters:
279 * match A character string representing an integer-valued env variable
280 * Outputs:
281 * *value the integer representation of the environment variable 'match'
282 * Returns:
283 * Zero on success, a kdb diagnostic on failure.
284 */
285int kdbgetintenv(const char *match, int *value)
286{
287 unsigned long val;
288 int diag;
289
290 diag = kdbgetulenv(match, &val);
291 if (!diag)
292 *value = (int) val;
293 return diag;
294}
295
296/*
297 * kdb_setenv() - Alter an existing environment variable or create a new one.
298 * @var: Name of the variable
299 * @val: Value of the variable
300 *
301 * Return: Zero on success, a kdb diagnostic on failure.
302 */
303static int kdb_setenv(const char *var, const char *val)
304{
305 int i;
306 char *ep;
307 size_t varlen, vallen;
308
309 varlen = strlen(var);
310 vallen = strlen(val);
311 ep = kdballocenv(varlen + vallen + 2);
312 if (ep == (char *)0)
313 return KDB_ENVBUFFULL;
314
315 sprintf(ep, "%s=%s", var, val);
316
317 for (i = 0; i < __nenv; i++) {
318 if (__env[i]
319 && ((strncmp(__env[i], var, varlen) == 0)
320 && ((__env[i][varlen] == '\0')
321 || (__env[i][varlen] == '=')))) {
322 __env[i] = ep;
323 return 0;
324 }
325 }
326
327 /*
328 * Wasn't existing variable. Fit into slot.
329 */
330 for (i = 0; i < __nenv-1; i++) {
331 if (__env[i] == (char *)0) {
332 __env[i] = ep;
333 return 0;
334 }
335 }
336
337 return KDB_ENVFULL;
338}
339
340/*
341 * kdb_printenv() - Display the current environment variables.
342 */
343static void kdb_printenv(void)
344{
345 int i;
346
347 for (i = 0; i < __nenv; i++) {
348 if (__env[i])
349 kdb_printf("%s\n", __env[i]);
350 }
351}
352
353/*
354 * kdbgetularg - This function will convert a numeric string into an
355 * unsigned long value.
356 * Parameters:
357 * arg A character string representing a numeric value
358 * Outputs:
359 * *value the unsigned long representation of arg.
360 * Returns:
361 * Zero on success, a kdb diagnostic on failure.
362 */
363int kdbgetularg(const char *arg, unsigned long *value)
364{
365 char *endp;
366 unsigned long val;
367
368 val = simple_strtoul(arg, &endp, 0);
369
370 if (endp == arg) {
371 /*
372 * Also try base 16, for us folks too lazy to type the
373 * leading 0x...
374 */
375 val = simple_strtoul(arg, &endp, 16);
376 if (endp == arg)
377 return KDB_BADINT;
378 }
379
380 *value = val;
381
382 return 0;
383}
384
385int kdbgetu64arg(const char *arg, u64 *value)
386{
387 char *endp;
388 u64 val;
389
390 val = simple_strtoull(arg, &endp, 0);
391
392 if (endp == arg) {
393
394 val = simple_strtoull(arg, &endp, 16);
395 if (endp == arg)
396 return KDB_BADINT;
397 }
398
399 *value = val;
400
401 return 0;
402}
403
404/*
405 * kdb_set - This function implements the 'set' command. Alter an
406 * existing environment variable or create a new one.
407 */
408int kdb_set(int argc, const char **argv)
409{
410 /*
411 * we can be invoked two ways:
412 * set var=value argv[1]="var", argv[2]="value"
413 * set var = value argv[1]="var", argv[2]="=", argv[3]="value"
414 * - if the latter, shift 'em down.
415 */
416 if (argc == 3) {
417 argv[2] = argv[3];
418 argc--;
419 }
420
421 if (argc != 2)
422 return KDB_ARGCOUNT;
423
424 /*
425 * Censor sensitive variables
426 */
427 if (strcmp(argv[1], "PROMPT") == 0 &&
428 !kdb_check_flags(KDB_ENABLE_MEM_READ, kdb_cmd_enabled, false))
429 return KDB_NOPERM;
430
431 /*
432 * Check for internal variables
433 */
434 if (strcmp(argv[1], "KDBDEBUG") == 0) {
435 unsigned int debugflags;
436 char *cp;
437
438 debugflags = simple_strtoul(argv[2], &cp, 0);
439 if (cp == argv[2] || debugflags & ~KDB_DEBUG_FLAG_MASK) {
440 kdb_printf("kdb: illegal debug flags '%s'\n",
441 argv[2]);
442 return 0;
443 }
444 kdb_flags = (kdb_flags & ~KDB_DEBUG(MASK))
445 | (debugflags << KDB_DEBUG_FLAG_SHIFT);
446
447 return 0;
448 }
449
450 /*
451 * Tokenizer squashed the '=' sign. argv[1] is variable
452 * name, argv[2] = value.
453 */
454 return kdb_setenv(argv[1], argv[2]);
455}
456
457static int kdb_check_regs(void)
458{
459 if (!kdb_current_regs) {
460 kdb_printf("No current kdb registers."
461 " You may need to select another task\n");
462 return KDB_BADREG;
463 }
464 return 0;
465}
466
467/*
468 * kdbgetaddrarg - This function is responsible for parsing an
469 * address-expression and returning the value of the expression,
470 * symbol name, and offset to the caller.
471 *
472 * The argument may consist of a numeric value (decimal or
473 * hexadecimal), a symbol name, a register name (preceded by the
474 * percent sign), an environment variable with a numeric value
475 * (preceded by a dollar sign) or a simple arithmetic expression
476 * consisting of a symbol name, +/-, and a numeric constant value
477 * (offset).
478 * Parameters:
479 * argc - count of arguments in argv
480 * argv - argument vector
481 * *nextarg - index to next unparsed argument in argv[]
482 * regs - Register state at time of KDB entry
483 * Outputs:
484 * *value - receives the value of the address-expression
485 * *offset - receives the offset specified, if any
486 * *name - receives the symbol name, if any
487 * *nextarg - index to next unparsed argument in argv[]
488 * Returns:
489 * zero is returned on success, a kdb diagnostic code is
490 * returned on error.
491 */
492int kdbgetaddrarg(int argc, const char **argv, int *nextarg,
493 unsigned long *value, long *offset,
494 char **name)
495{
496 unsigned long addr;
497 unsigned long off = 0;
498 int positive;
499 int diag;
500 int found = 0;
501 char *symname;
502 char symbol = '\0';
503 char *cp;
504 kdb_symtab_t symtab;
505
506 /*
507 * If the enable flags prohibit both arbitrary memory access
508 * and flow control then there are no reasonable grounds to
509 * provide symbol lookup.
510 */
511 if (!kdb_check_flags(KDB_ENABLE_MEM_READ | KDB_ENABLE_FLOW_CTRL,
512 kdb_cmd_enabled, false))
513 return KDB_NOPERM;
514
515 /*
516 * Process arguments which follow the following syntax:
517 *
518 * symbol | numeric-address [+/- numeric-offset]
519 * %register
520 * $environment-variable
521 */
522
523 if (*nextarg > argc)
524 return KDB_ARGCOUNT;
525
526 symname = (char *)argv[*nextarg];
527
528 /*
529 * If there is no whitespace between the symbol
530 * or address and the '+' or '-' symbols, we
531 * remember the character and replace it with a
532 * null so the symbol/value can be properly parsed
533 */
534 cp = strpbrk(symname, "+-");
535 if (cp != NULL) {
536 symbol = *cp;
537 *cp++ = '\0';
538 }
539
540 if (symname[0] == '$') {
541 diag = kdbgetulenv(&symname[1], &addr);
542 if (diag)
543 return diag;
544 } else if (symname[0] == '%') {
545 diag = kdb_check_regs();
546 if (diag)
547 return diag;
548 /* Implement register values with % at a later time as it is
549 * arch optional.
550 */
551 return KDB_NOTIMP;
552 } else {
553 found = kdbgetsymval(symname, &symtab);
554 if (found) {
555 addr = symtab.sym_start;
556 } else {
557 diag = kdbgetularg(argv[*nextarg], &addr);
558 if (diag)
559 return diag;
560 }
561 }
562
563 if (!found)
564 found = kdbnearsym(addr, &symtab);
565
566 (*nextarg)++;
567
568 if (name)
569 *name = symname;
570 if (value)
571 *value = addr;
572 if (offset && name && *name)
573 *offset = addr - symtab.sym_start;
574
575 if ((*nextarg > argc)
576 && (symbol == '\0'))
577 return 0;
578
579 /*
580 * check for +/- and offset
581 */
582
583 if (symbol == '\0') {
584 if ((argv[*nextarg][0] != '+')
585 && (argv[*nextarg][0] != '-')) {
586 /*
587 * Not our argument. Return.
588 */
589 return 0;
590 } else {
591 positive = (argv[*nextarg][0] == '+');
592 (*nextarg)++;
593 }
594 } else
595 positive = (symbol == '+');
596
597 /*
598 * Now there must be an offset!
599 */
600 if ((*nextarg > argc)
601 && (symbol == '\0')) {
602 return KDB_INVADDRFMT;
603 }
604
605 if (!symbol) {
606 cp = (char *)argv[*nextarg];
607 (*nextarg)++;
608 }
609
610 diag = kdbgetularg(cp, &off);
611 if (diag)
612 return diag;
613
614 if (!positive)
615 off = -off;
616
617 if (offset)
618 *offset += off;
619
620 if (value)
621 *value += off;
622
623 return 0;
624}
625
626static void kdb_cmderror(int diag)
627{
628 int i;
629
630 if (diag >= 0) {
631 kdb_printf("no error detected (diagnostic is %d)\n", diag);
632 return;
633 }
634
635 for (i = 0; i < __nkdb_err; i++) {
636 if (kdbmsgs[i].km_diag == diag) {
637 kdb_printf("diag: %d: %s\n", diag, kdbmsgs[i].km_msg);
638 return;
639 }
640 }
641
642 kdb_printf("Unknown diag %d\n", -diag);
643}
644
645/*
646 * kdb_defcmd, kdb_defcmd2 - This function implements the 'defcmd'
647 * command which defines one command as a set of other commands,
648 * terminated by endefcmd. kdb_defcmd processes the initial
649 * 'defcmd' command, kdb_defcmd2 is invoked from kdb_parse for
650 * the following commands until 'endefcmd'.
651 * Inputs:
652 * argc argument count
653 * argv argument vector
654 * Returns:
655 * zero for success, a kdb diagnostic if error
656 */
657struct defcmd_set {
658 int count;
659 bool usable;
660 char *name;
661 char *usage;
662 char *help;
663 char **command;
664};
665static struct defcmd_set *defcmd_set;
666static int defcmd_set_count;
667static bool defcmd_in_progress;
668
669/* Forward references */
670static int kdb_exec_defcmd(int argc, const char **argv);
671
672static int kdb_defcmd2(const char *cmdstr, const char *argv0)
673{
674 struct defcmd_set *s = defcmd_set + defcmd_set_count - 1;
675 char **save_command = s->command;
676 if (strcmp(argv0, "endefcmd") == 0) {
677 defcmd_in_progress = false;
678 if (!s->count)
679 s->usable = false;
680 if (s->usable)
681 /* macros are always safe because when executed each
682 * internal command re-enters kdb_parse() and is
683 * safety checked individually.
684 */
685 kdb_register_flags(s->name, kdb_exec_defcmd, s->usage,
686 s->help, 0,
687 KDB_ENABLE_ALWAYS_SAFE);
688 return 0;
689 }
690 if (!s->usable)
691 return KDB_NOTIMP;
692 s->command = kcalloc(s->count + 1, sizeof(*(s->command)), GFP_KDB);
693 if (!s->command) {
694 kdb_printf("Could not allocate new kdb_defcmd table for %s\n",
695 cmdstr);
696 s->usable = false;
697 return KDB_NOTIMP;
698 }
699 memcpy(s->command, save_command, s->count * sizeof(*(s->command)));
700 s->command[s->count++] = kdb_strdup(cmdstr, GFP_KDB);
701 kfree(save_command);
702 return 0;
703}
704
705static int kdb_defcmd(int argc, const char **argv)
706{
707 struct defcmd_set *save_defcmd_set = defcmd_set, *s;
708 if (defcmd_in_progress) {
709 kdb_printf("kdb: nested defcmd detected, assuming missing "
710 "endefcmd\n");
711 kdb_defcmd2("endefcmd", "endefcmd");
712 }
713 if (argc == 0) {
714 int i;
715 for (s = defcmd_set; s < defcmd_set + defcmd_set_count; ++s) {
716 kdb_printf("defcmd %s \"%s\" \"%s\"\n", s->name,
717 s->usage, s->help);
718 for (i = 0; i < s->count; ++i)
719 kdb_printf("%s", s->command[i]);
720 kdb_printf("endefcmd\n");
721 }
722 return 0;
723 }
724 if (argc != 3)
725 return KDB_ARGCOUNT;
726 if (in_dbg_master()) {
727 kdb_printf("Command only available during kdb_init()\n");
728 return KDB_NOTIMP;
729 }
730 defcmd_set = kmalloc_array(defcmd_set_count + 1, sizeof(*defcmd_set),
731 GFP_KDB);
732 if (!defcmd_set)
733 goto fail_defcmd;
734 memcpy(defcmd_set, save_defcmd_set,
735 defcmd_set_count * sizeof(*defcmd_set));
736 s = defcmd_set + defcmd_set_count;
737 memset(s, 0, sizeof(*s));
738 s->usable = true;
739 s->name = kdb_strdup(argv[1], GFP_KDB);
740 if (!s->name)
741 goto fail_name;
742 s->usage = kdb_strdup(argv[2], GFP_KDB);
743 if (!s->usage)
744 goto fail_usage;
745 s->help = kdb_strdup(argv[3], GFP_KDB);
746 if (!s->help)
747 goto fail_help;
748 if (s->usage[0] == '"') {
749 strcpy(s->usage, argv[2]+1);
750 s->usage[strlen(s->usage)-1] = '\0';
751 }
752 if (s->help[0] == '"') {
753 strcpy(s->help, argv[3]+1);
754 s->help[strlen(s->help)-1] = '\0';
755 }
756 ++defcmd_set_count;
757 defcmd_in_progress = true;
758 kfree(save_defcmd_set);
759 return 0;
760fail_help:
761 kfree(s->usage);
762fail_usage:
763 kfree(s->name);
764fail_name:
765 kfree(defcmd_set);
766fail_defcmd:
767 kdb_printf("Could not allocate new defcmd_set entry for %s\n", argv[1]);
768 defcmd_set = save_defcmd_set;
769 return KDB_NOTIMP;
770}
771
772/*
773 * kdb_exec_defcmd - Execute the set of commands associated with this
774 * defcmd name.
775 * Inputs:
776 * argc argument count
777 * argv argument vector
778 * Returns:
779 * zero for success, a kdb diagnostic if error
780 */
781static int kdb_exec_defcmd(int argc, const char **argv)
782{
783 int i, ret;
784 struct defcmd_set *s;
785 if (argc != 0)
786 return KDB_ARGCOUNT;
787 for (s = defcmd_set, i = 0; i < defcmd_set_count; ++i, ++s) {
788 if (strcmp(s->name, argv[0]) == 0)
789 break;
790 }
791 if (i == defcmd_set_count) {
792 kdb_printf("kdb_exec_defcmd: could not find commands for %s\n",
793 argv[0]);
794 return KDB_NOTIMP;
795 }
796 for (i = 0; i < s->count; ++i) {
797 /* Recursive use of kdb_parse, do not use argv after
798 * this point */
799 argv = NULL;
800 kdb_printf("[%s]kdb> %s\n", s->name, s->command[i]);
801 ret = kdb_parse(s->command[i]);
802 if (ret)
803 return ret;
804 }
805 return 0;
806}
807
808/* Command history */
809#define KDB_CMD_HISTORY_COUNT 32
810#define CMD_BUFLEN 200 /* kdb_printf: max printline
811 * size == 256 */
812static unsigned int cmd_head, cmd_tail;
813static unsigned int cmdptr;
814static char cmd_hist[KDB_CMD_HISTORY_COUNT][CMD_BUFLEN];
815static char cmd_cur[CMD_BUFLEN];
816
817/*
818 * The "str" argument may point to something like | grep xyz
819 */
820static void parse_grep(const char *str)
821{
822 int len;
823 char *cp = (char *)str, *cp2;
824
825 /* sanity check: we should have been called with the \ first */
826 if (*cp != '|')
827 return;
828 cp++;
829 while (isspace(*cp))
830 cp++;
831 if (!str_has_prefix(cp, "grep ")) {
832 kdb_printf("invalid 'pipe', see grephelp\n");
833 return;
834 }
835 cp += 5;
836 while (isspace(*cp))
837 cp++;
838 cp2 = strchr(cp, '\n');
839 if (cp2)
840 *cp2 = '\0'; /* remove the trailing newline */
841 len = strlen(cp);
842 if (len == 0) {
843 kdb_printf("invalid 'pipe', see grephelp\n");
844 return;
845 }
846 /* now cp points to a nonzero length search string */
847 if (*cp == '"') {
848 /* allow it be "x y z" by removing the "'s - there must
849 be two of them */
850 cp++;
851 cp2 = strchr(cp, '"');
852 if (!cp2) {
853 kdb_printf("invalid quoted string, see grephelp\n");
854 return;
855 }
856 *cp2 = '\0'; /* end the string where the 2nd " was */
857 }
858 kdb_grep_leading = 0;
859 if (*cp == '^') {
860 kdb_grep_leading = 1;
861 cp++;
862 }
863 len = strlen(cp);
864 kdb_grep_trailing = 0;
865 if (*(cp+len-1) == '$') {
866 kdb_grep_trailing = 1;
867 *(cp+len-1) = '\0';
868 }
869 len = strlen(cp);
870 if (!len)
871 return;
872 if (len >= KDB_GREP_STRLEN) {
873 kdb_printf("search string too long\n");
874 return;
875 }
876 strcpy(kdb_grep_string, cp);
877 kdb_grepping_flag++;
878 return;
879}
880
881/*
882 * kdb_parse - Parse the command line, search the command table for a
883 * matching command and invoke the command function. This
884 * function may be called recursively, if it is, the second call
885 * will overwrite argv and cbuf. It is the caller's
886 * responsibility to save their argv if they recursively call
887 * kdb_parse().
888 * Parameters:
889 * cmdstr The input command line to be parsed.
890 * regs The registers at the time kdb was entered.
891 * Returns:
892 * Zero for success, a kdb diagnostic if failure.
893 * Remarks:
894 * Limited to 20 tokens.
895 *
896 * Real rudimentary tokenization. Basically only whitespace
897 * is considered a token delimiter (but special consideration
898 * is taken of the '=' sign as used by the 'set' command).
899 *
900 * The algorithm used to tokenize the input string relies on
901 * there being at least one whitespace (or otherwise useless)
902 * character between tokens as the character immediately following
903 * the token is altered in-place to a null-byte to terminate the
904 * token string.
905 */
906
907#define MAXARGC 20
908
909int kdb_parse(const char *cmdstr)
910{
911 static char *argv[MAXARGC];
912 static int argc;
913 static char cbuf[CMD_BUFLEN+2];
914 char *cp;
915 char *cpp, quoted;
916 kdbtab_t *tp;
917 int escaped, ignore_errors = 0, check_grep = 0;
918
919 /*
920 * First tokenize the command string.
921 */
922 cp = (char *)cmdstr;
923
924 if (KDB_FLAG(CMD_INTERRUPT)) {
925 /* Previous command was interrupted, newline must not
926 * repeat the command */
927 KDB_FLAG_CLEAR(CMD_INTERRUPT);
928 KDB_STATE_SET(PAGER);
929 argc = 0; /* no repeat */
930 }
931
932 if (*cp != '\n' && *cp != '\0') {
933 argc = 0;
934 cpp = cbuf;
935 while (*cp) {
936 /* skip whitespace */
937 while (isspace(*cp))
938 cp++;
939 if ((*cp == '\0') || (*cp == '\n') ||
940 (*cp == '#' && !defcmd_in_progress))
941 break;
942 /* special case: check for | grep pattern */
943 if (*cp == '|') {
944 check_grep++;
945 break;
946 }
947 if (cpp >= cbuf + CMD_BUFLEN) {
948 kdb_printf("kdb_parse: command buffer "
949 "overflow, command ignored\n%s\n",
950 cmdstr);
951 return KDB_NOTFOUND;
952 }
953 if (argc >= MAXARGC - 1) {
954 kdb_printf("kdb_parse: too many arguments, "
955 "command ignored\n%s\n", cmdstr);
956 return KDB_NOTFOUND;
957 }
958 argv[argc++] = cpp;
959 escaped = 0;
960 quoted = '\0';
961 /* Copy to next unquoted and unescaped
962 * whitespace or '=' */
963 while (*cp && *cp != '\n' &&
964 (escaped || quoted || !isspace(*cp))) {
965 if (cpp >= cbuf + CMD_BUFLEN)
966 break;
967 if (escaped) {
968 escaped = 0;
969 *cpp++ = *cp++;
970 continue;
971 }
972 if (*cp == '\\') {
973 escaped = 1;
974 ++cp;
975 continue;
976 }
977 if (*cp == quoted)
978 quoted = '\0';
979 else if (*cp == '\'' || *cp == '"')
980 quoted = *cp;
981 *cpp = *cp++;
982 if (*cpp == '=' && !quoted)
983 break;
984 ++cpp;
985 }
986 *cpp++ = '\0'; /* Squash a ws or '=' character */
987 }
988 }
989 if (!argc)
990 return 0;
991 if (check_grep)
992 parse_grep(cp);
993 if (defcmd_in_progress) {
994 int result = kdb_defcmd2(cmdstr, argv[0]);
995 if (!defcmd_in_progress) {
996 argc = 0; /* avoid repeat on endefcmd */
997 *(argv[0]) = '\0';
998 }
999 return result;
1000 }
1001 if (argv[0][0] == '-' && argv[0][1] &&
1002 (argv[0][1] < '0' || argv[0][1] > '9')) {
1003 ignore_errors = 1;
1004 ++argv[0];
1005 }
1006
1007 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1008 /*
1009 * If this command is allowed to be abbreviated,
1010 * check to see if this is it.
1011 */
1012 if (tp->cmd_minlen && (strlen(argv[0]) <= tp->cmd_minlen) &&
1013 (strncmp(argv[0], tp->cmd_name, tp->cmd_minlen) == 0))
1014 break;
1015
1016 if (strcmp(argv[0], tp->cmd_name) == 0)
1017 break;
1018 }
1019
1020 /*
1021 * If we don't find a command by this name, see if the first
1022 * few characters of this match any of the known commands.
1023 * e.g., md1c20 should match md.
1024 */
1025 if (list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1026 list_for_each_entry(tp, &kdb_cmds_head, list_node) {
1027 if (strncmp(argv[0], tp->cmd_name,
1028 strlen(tp->cmd_name)) == 0)
1029 break;
1030 }
1031 }
1032
1033 if (!list_entry_is_head(tp, &kdb_cmds_head, list_node)) {
1034 int result;
1035
1036 if (!kdb_check_flags(tp->cmd_flags, kdb_cmd_enabled, argc <= 1))
1037 return KDB_NOPERM;
1038
1039 KDB_STATE_SET(CMD);
1040 result = (*tp->cmd_func)(argc-1, (const char **)argv);
1041 if (result && ignore_errors && result > KDB_CMD_GO)
1042 result = 0;
1043 KDB_STATE_CLEAR(CMD);
1044
1045 if (tp->cmd_flags & KDB_REPEAT_WITH_ARGS)
1046 return result;
1047
1048 argc = tp->cmd_flags & KDB_REPEAT_NO_ARGS ? 1 : 0;
1049 if (argv[argc])
1050 *(argv[argc]) = '\0';
1051 return result;
1052 }
1053
1054 /*
1055 * If the input with which we were presented does not
1056 * map to an existing command, attempt to parse it as an
1057 * address argument and display the result. Useful for
1058 * obtaining the address of a variable, or the nearest symbol
1059 * to an address contained in a register.
1060 */
1061 {
1062 unsigned long value;
1063 char *name = NULL;
1064 long offset;
1065 int nextarg = 0;
1066
1067 if (kdbgetaddrarg(0, (const char **)argv, &nextarg,
1068 &value, &offset, &name)) {
1069 return KDB_NOTFOUND;
1070 }
1071
1072 kdb_printf("%s = ", argv[0]);
1073 kdb_symbol_print(value, NULL, KDB_SP_DEFAULT);
1074 kdb_printf("\n");
1075 return 0;
1076 }
1077}
1078
1079
1080static int handle_ctrl_cmd(char *cmd)
1081{
1082#define CTRL_P 16
1083#define CTRL_N 14
1084
1085 /* initial situation */
1086 if (cmd_head == cmd_tail)
1087 return 0;
1088 switch (*cmd) {
1089 case CTRL_P:
1090 if (cmdptr != cmd_tail)
1091 cmdptr = (cmdptr + KDB_CMD_HISTORY_COUNT - 1) %
1092 KDB_CMD_HISTORY_COUNT;
1093 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1094 return 1;
1095 case CTRL_N:
1096 if (cmdptr != cmd_head)
1097 cmdptr = (cmdptr+1) % KDB_CMD_HISTORY_COUNT;
1098 strscpy(cmd_cur, cmd_hist[cmdptr], CMD_BUFLEN);
1099 return 1;
1100 }
1101 return 0;
1102}
1103
1104/*
1105 * kdb_reboot - This function implements the 'reboot' command. Reboot
1106 * the system immediately, or loop for ever on failure.
1107 */
1108static int kdb_reboot(int argc, const char **argv)
1109{
1110 emergency_restart();
1111 kdb_printf("Hmm, kdb_reboot did not reboot, spinning here\n");
1112 while (1)
1113 cpu_relax();
1114 /* NOTREACHED */
1115 return 0;
1116}
1117
1118static void kdb_dumpregs(struct pt_regs *regs)
1119{
1120 int old_lvl = console_loglevel;
1121 console_loglevel = CONSOLE_LOGLEVEL_MOTORMOUTH;
1122 kdb_trap_printk++;
1123 show_regs(regs);
1124 kdb_trap_printk--;
1125 kdb_printf("\n");
1126 console_loglevel = old_lvl;
1127}
1128
1129static void kdb_set_current_task(struct task_struct *p)
1130{
1131 kdb_current_task = p;
1132
1133 if (kdb_task_has_cpu(p)) {
1134 kdb_current_regs = KDB_TSKREGS(kdb_process_cpu(p));
1135 return;
1136 }
1137 kdb_current_regs = NULL;
1138}
1139
1140static void drop_newline(char *buf)
1141{
1142 size_t len = strlen(buf);
1143
1144 if (len == 0)
1145 return;
1146 if (*(buf + len - 1) == '\n')
1147 *(buf + len - 1) = '\0';
1148}
1149
1150/*
1151 * kdb_local - The main code for kdb. This routine is invoked on a
1152 * specific processor, it is not global. The main kdb() routine
1153 * ensures that only one processor at a time is in this routine.
1154 * This code is called with the real reason code on the first
1155 * entry to a kdb session, thereafter it is called with reason
1156 * SWITCH, even if the user goes back to the original cpu.
1157 * Inputs:
1158 * reason The reason KDB was invoked
1159 * error The hardware-defined error code
1160 * regs The exception frame at time of fault/breakpoint.
1161 * db_result Result code from the break or debug point.
1162 * Returns:
1163 * 0 KDB was invoked for an event which it wasn't responsible
1164 * 1 KDB handled the event for which it was invoked.
1165 * KDB_CMD_GO User typed 'go'.
1166 * KDB_CMD_CPU User switched to another cpu.
1167 * KDB_CMD_SS Single step.
1168 */
1169static int kdb_local(kdb_reason_t reason, int error, struct pt_regs *regs,
1170 kdb_dbtrap_t db_result)
1171{
1172 char *cmdbuf;
1173 int diag;
1174 struct task_struct *kdb_current =
1175 kdb_curr_task(raw_smp_processor_id());
1176
1177 KDB_DEBUG_STATE("kdb_local 1", reason);
1178 kdb_go_count = 0;
1179 if (reason == KDB_REASON_DEBUG) {
1180 /* special case below */
1181 } else {
1182 kdb_printf("\nEntering kdb (current=0x%px, pid %d) ",
1183 kdb_current, kdb_current ? kdb_current->pid : 0);
1184#if defined(CONFIG_SMP)
1185 kdb_printf("on processor %d ", raw_smp_processor_id());
1186#endif
1187 }
1188
1189 switch (reason) {
1190 case KDB_REASON_DEBUG:
1191 {
1192 /*
1193 * If re-entering kdb after a single step
1194 * command, don't print the message.
1195 */
1196 switch (db_result) {
1197 case KDB_DB_BPT:
1198 kdb_printf("\nEntering kdb (0x%px, pid %d) ",
1199 kdb_current, kdb_current->pid);
1200#if defined(CONFIG_SMP)
1201 kdb_printf("on processor %d ", raw_smp_processor_id());
1202#endif
1203 kdb_printf("due to Debug @ " kdb_machreg_fmt "\n",
1204 instruction_pointer(regs));
1205 break;
1206 case KDB_DB_SS:
1207 break;
1208 case KDB_DB_SSBPT:
1209 KDB_DEBUG_STATE("kdb_local 4", reason);
1210 return 1; /* kdba_db_trap did the work */
1211 default:
1212 kdb_printf("kdb: Bad result from kdba_db_trap: %d\n",
1213 db_result);
1214 break;
1215 }
1216
1217 }
1218 break;
1219 case KDB_REASON_ENTER:
1220 if (KDB_STATE(KEYBOARD))
1221 kdb_printf("due to Keyboard Entry\n");
1222 else
1223 kdb_printf("due to KDB_ENTER()\n");
1224 break;
1225 case KDB_REASON_KEYBOARD:
1226 KDB_STATE_SET(KEYBOARD);
1227 kdb_printf("due to Keyboard Entry\n");
1228 break;
1229 case KDB_REASON_ENTER_SLAVE:
1230 /* drop through, slaves only get released via cpu switch */
1231 case KDB_REASON_SWITCH:
1232 kdb_printf("due to cpu switch\n");
1233 break;
1234 case KDB_REASON_OOPS:
1235 kdb_printf("Oops: %s\n", kdb_diemsg);
1236 kdb_printf("due to oops @ " kdb_machreg_fmt "\n",
1237 instruction_pointer(regs));
1238 kdb_dumpregs(regs);
1239 break;
1240 case KDB_REASON_SYSTEM_NMI:
1241 kdb_printf("due to System NonMaskable Interrupt\n");
1242 break;
1243 case KDB_REASON_NMI:
1244 kdb_printf("due to NonMaskable Interrupt @ "
1245 kdb_machreg_fmt "\n",
1246 instruction_pointer(regs));
1247 break;
1248 case KDB_REASON_SSTEP:
1249 case KDB_REASON_BREAK:
1250 kdb_printf("due to %s @ " kdb_machreg_fmt "\n",
1251 reason == KDB_REASON_BREAK ?
1252 "Breakpoint" : "SS trap", instruction_pointer(regs));
1253 /*
1254 * Determine if this breakpoint is one that we
1255 * are interested in.
1256 */
1257 if (db_result != KDB_DB_BPT) {
1258 kdb_printf("kdb: error return from kdba_bp_trap: %d\n",
1259 db_result);
1260 KDB_DEBUG_STATE("kdb_local 6", reason);
1261 return 0; /* Not for us, dismiss it */
1262 }
1263 break;
1264 case KDB_REASON_RECURSE:
1265 kdb_printf("due to Recursion @ " kdb_machreg_fmt "\n",
1266 instruction_pointer(regs));
1267 break;
1268 default:
1269 kdb_printf("kdb: unexpected reason code: %d\n", reason);
1270 KDB_DEBUG_STATE("kdb_local 8", reason);
1271 return 0; /* Not for us, dismiss it */
1272 }
1273
1274 while (1) {
1275 /*
1276 * Initialize pager context.
1277 */
1278 kdb_nextline = 1;
1279 KDB_STATE_CLEAR(SUPPRESS);
1280 kdb_grepping_flag = 0;
1281 /* ensure the old search does not leak into '/' commands */
1282 kdb_grep_string[0] = '\0';
1283
1284 cmdbuf = cmd_cur;
1285 *cmdbuf = '\0';
1286 *(cmd_hist[cmd_head]) = '\0';
1287
1288do_full_getstr:
1289 /* PROMPT can only be set if we have MEM_READ permission. */
1290 snprintf(kdb_prompt_str, CMD_BUFLEN, kdbgetenv("PROMPT"),
1291 raw_smp_processor_id());
1292 if (defcmd_in_progress)
1293 strncat(kdb_prompt_str, "[defcmd]", CMD_BUFLEN);
1294
1295 /*
1296 * Fetch command from keyboard
1297 */
1298 cmdbuf = kdb_getstr(cmdbuf, CMD_BUFLEN, kdb_prompt_str);
1299 if (*cmdbuf != '\n') {
1300 if (*cmdbuf < 32) {
1301 if (cmdptr == cmd_head) {
1302 strscpy(cmd_hist[cmd_head], cmd_cur,
1303 CMD_BUFLEN);
1304 *(cmd_hist[cmd_head] +
1305 strlen(cmd_hist[cmd_head])-1) = '\0';
1306 }
1307 if (!handle_ctrl_cmd(cmdbuf))
1308 *(cmd_cur+strlen(cmd_cur)-1) = '\0';
1309 cmdbuf = cmd_cur;
1310 goto do_full_getstr;
1311 } else {
1312 strscpy(cmd_hist[cmd_head], cmd_cur,
1313 CMD_BUFLEN);
1314 }
1315
1316 cmd_head = (cmd_head+1) % KDB_CMD_HISTORY_COUNT;
1317 if (cmd_head == cmd_tail)
1318 cmd_tail = (cmd_tail+1) % KDB_CMD_HISTORY_COUNT;
1319 }
1320
1321 cmdptr = cmd_head;
1322 diag = kdb_parse(cmdbuf);
1323 if (diag == KDB_NOTFOUND) {
1324 drop_newline(cmdbuf);
1325 kdb_printf("Unknown kdb command: '%s'\n", cmdbuf);
1326 diag = 0;
1327 }
1328 if (diag == KDB_CMD_GO
1329 || diag == KDB_CMD_CPU
1330 || diag == KDB_CMD_SS
1331 || diag == KDB_CMD_KGDB)
1332 break;
1333
1334 if (diag)
1335 kdb_cmderror(diag);
1336 }
1337 KDB_DEBUG_STATE("kdb_local 9", diag);
1338 return diag;
1339}
1340
1341
1342/*
1343 * kdb_print_state - Print the state data for the current processor
1344 * for debugging.
1345 * Inputs:
1346 * text Identifies the debug point
1347 * value Any integer value to be printed, e.g. reason code.
1348 */
1349void kdb_print_state(const char *text, int value)
1350{
1351 kdb_printf("state: %s cpu %d value %d initial %d state %x\n",
1352 text, raw_smp_processor_id(), value, kdb_initial_cpu,
1353 kdb_state);
1354}
1355
1356/*
1357 * kdb_main_loop - After initial setup and assignment of the
1358 * controlling cpu, all cpus are in this loop. One cpu is in
1359 * control and will issue the kdb prompt, the others will spin
1360 * until 'go' or cpu switch.
1361 *
1362 * To get a consistent view of the kernel stacks for all
1363 * processes, this routine is invoked from the main kdb code via
1364 * an architecture specific routine. kdba_main_loop is
1365 * responsible for making the kernel stacks consistent for all
1366 * processes, there should be no difference between a blocked
1367 * process and a running process as far as kdb is concerned.
1368 * Inputs:
1369 * reason The reason KDB was invoked
1370 * error The hardware-defined error code
1371 * reason2 kdb's current reason code.
1372 * Initially error but can change
1373 * according to kdb state.
1374 * db_result Result code from break or debug point.
1375 * regs The exception frame at time of fault/breakpoint.
1376 * should always be valid.
1377 * Returns:
1378 * 0 KDB was invoked for an event which it wasn't responsible
1379 * 1 KDB handled the event for which it was invoked.
1380 */
1381int kdb_main_loop(kdb_reason_t reason, kdb_reason_t reason2, int error,
1382 kdb_dbtrap_t db_result, struct pt_regs *regs)
1383{
1384 int result = 1;
1385 /* Stay in kdb() until 'go', 'ss[b]' or an error */
1386 while (1) {
1387 /*
1388 * All processors except the one that is in control
1389 * will spin here.
1390 */
1391 KDB_DEBUG_STATE("kdb_main_loop 1", reason);
1392 while (KDB_STATE(HOLD_CPU)) {
1393 /* state KDB is turned off by kdb_cpu to see if the
1394 * other cpus are still live, each cpu in this loop
1395 * turns it back on.
1396 */
1397 if (!KDB_STATE(KDB))
1398 KDB_STATE_SET(KDB);
1399 }
1400
1401 KDB_STATE_CLEAR(SUPPRESS);
1402 KDB_DEBUG_STATE("kdb_main_loop 2", reason);
1403 if (KDB_STATE(LEAVING))
1404 break; /* Another cpu said 'go' */
1405 /* Still using kdb, this processor is in control */
1406 result = kdb_local(reason2, error, regs, db_result);
1407 KDB_DEBUG_STATE("kdb_main_loop 3", result);
1408
1409 if (result == KDB_CMD_CPU)
1410 break;
1411
1412 if (result == KDB_CMD_SS) {
1413 KDB_STATE_SET(DOING_SS);
1414 break;
1415 }
1416
1417 if (result == KDB_CMD_KGDB) {
1418 if (!KDB_STATE(DOING_KGDB))
1419 kdb_printf("Entering please attach debugger "
1420 "or use $D#44+ or $3#33\n");
1421 break;
1422 }
1423 if (result && result != 1 && result != KDB_CMD_GO)
1424 kdb_printf("\nUnexpected kdb_local return code %d\n",
1425 result);
1426 KDB_DEBUG_STATE("kdb_main_loop 4", reason);
1427 break;
1428 }
1429 if (KDB_STATE(DOING_SS))
1430 KDB_STATE_CLEAR(SSBPT);
1431
1432 /* Clean up any keyboard devices before leaving */
1433 kdb_kbd_cleanup_state();
1434
1435 return result;
1436}
1437
1438/*
1439 * kdb_mdr - This function implements the guts of the 'mdr', memory
1440 * read command.
1441 * mdr <addr arg>,<byte count>
1442 * Inputs:
1443 * addr Start address
1444 * count Number of bytes
1445 * Returns:
1446 * Always 0. Any errors are detected and printed by kdb_getarea.
1447 */
1448static int kdb_mdr(unsigned long addr, unsigned int count)
1449{
1450 unsigned char c;
1451 while (count--) {
1452 if (kdb_getarea(c, addr))
1453 return 0;
1454 kdb_printf("%02x", c);
1455 addr++;
1456 }
1457 kdb_printf("\n");
1458 return 0;
1459}
1460
1461/*
1462 * kdb_md - This function implements the 'md', 'md1', 'md2', 'md4',
1463 * 'md8' 'mdr' and 'mds' commands.
1464 *
1465 * md|mds [<addr arg> [<line count> [<radix>]]]
1466 * mdWcN [<addr arg> [<line count> [<radix>]]]
1467 * where W = is the width (1, 2, 4 or 8) and N is the count.
1468 * for eg., md1c20 reads 20 bytes, 1 at a time.
1469 * mdr <addr arg>,<byte count>
1470 */
1471static void kdb_md_line(const char *fmtstr, unsigned long addr,
1472 int symbolic, int nosect, int bytesperword,
1473 int num, int repeat, int phys)
1474{
1475 /* print just one line of data */
1476 kdb_symtab_t symtab;
1477 char cbuf[32];
1478 char *c = cbuf;
1479 int i;
1480 int j;
1481 unsigned long word;
1482
1483 memset(cbuf, '\0', sizeof(cbuf));
1484 if (phys)
1485 kdb_printf("phys " kdb_machreg_fmt0 " ", addr);
1486 else
1487 kdb_printf(kdb_machreg_fmt0 " ", addr);
1488
1489 for (i = 0; i < num && repeat--; i++) {
1490 if (phys) {
1491 if (kdb_getphysword(&word, addr, bytesperword))
1492 break;
1493 } else if (kdb_getword(&word, addr, bytesperword))
1494 break;
1495 kdb_printf(fmtstr, word);
1496 if (symbolic)
1497 kdbnearsym(word, &symtab);
1498 else
1499 memset(&symtab, 0, sizeof(symtab));
1500 if (symtab.sym_name) {
1501 kdb_symbol_print(word, &symtab, 0);
1502 if (!nosect) {
1503 kdb_printf("\n");
1504 kdb_printf(" %s %s "
1505 kdb_machreg_fmt " "
1506 kdb_machreg_fmt " "
1507 kdb_machreg_fmt, symtab.mod_name,
1508 symtab.sec_name, symtab.sec_start,
1509 symtab.sym_start, symtab.sym_end);
1510 }
1511 addr += bytesperword;
1512 } else {
1513 union {
1514 u64 word;
1515 unsigned char c[8];
1516 } wc;
1517 unsigned char *cp;
1518#ifdef __BIG_ENDIAN
1519 cp = wc.c + 8 - bytesperword;
1520#else
1521 cp = wc.c;
1522#endif
1523 wc.word = word;
1524#define printable_char(c) \
1525 ({unsigned char __c = c; isascii(__c) && isprint(__c) ? __c : '.'; })
1526 for (j = 0; j < bytesperword; j++)
1527 *c++ = printable_char(*cp++);
1528 addr += bytesperword;
1529#undef printable_char
1530 }
1531 }
1532 kdb_printf("%*s %s\n", (int)((num-i)*(2*bytesperword + 1)+1),
1533 " ", cbuf);
1534}
1535
1536static int kdb_md(int argc, const char **argv)
1537{
1538 static unsigned long last_addr;
1539 static int last_radix, last_bytesperword, last_repeat;
1540 int radix = 16, mdcount = 8, bytesperword = KDB_WORD_SIZE, repeat;
1541 int nosect = 0;
1542 char fmtchar, fmtstr[64];
1543 unsigned long addr;
1544 unsigned long word;
1545 long offset = 0;
1546 int symbolic = 0;
1547 int valid = 0;
1548 int phys = 0;
1549 int raw = 0;
1550
1551 kdbgetintenv("MDCOUNT", &mdcount);
1552 kdbgetintenv("RADIX", &radix);
1553 kdbgetintenv("BYTESPERWORD", &bytesperword);
1554
1555 /* Assume 'md <addr>' and start with environment values */
1556 repeat = mdcount * 16 / bytesperword;
1557
1558 if (strcmp(argv[0], "mdr") == 0) {
1559 if (argc == 2 || (argc == 0 && last_addr != 0))
1560 valid = raw = 1;
1561 else
1562 return KDB_ARGCOUNT;
1563 } else if (isdigit(argv[0][2])) {
1564 bytesperword = (int)(argv[0][2] - '0');
1565 if (bytesperword == 0) {
1566 bytesperword = last_bytesperword;
1567 if (bytesperword == 0)
1568 bytesperword = 4;
1569 }
1570 last_bytesperword = bytesperword;
1571 repeat = mdcount * 16 / bytesperword;
1572 if (!argv[0][3])
1573 valid = 1;
1574 else if (argv[0][3] == 'c' && argv[0][4]) {
1575 char *p;
1576 repeat = simple_strtoul(argv[0] + 4, &p, 10);
1577 mdcount = ((repeat * bytesperword) + 15) / 16;
1578 valid = !*p;
1579 }
1580 last_repeat = repeat;
1581 } else if (strcmp(argv[0], "md") == 0)
1582 valid = 1;
1583 else if (strcmp(argv[0], "mds") == 0)
1584 valid = 1;
1585 else if (strcmp(argv[0], "mdp") == 0) {
1586 phys = valid = 1;
1587 }
1588 if (!valid)
1589 return KDB_NOTFOUND;
1590
1591 if (argc == 0) {
1592 if (last_addr == 0)
1593 return KDB_ARGCOUNT;
1594 addr = last_addr;
1595 radix = last_radix;
1596 bytesperword = last_bytesperword;
1597 repeat = last_repeat;
1598 if (raw)
1599 mdcount = repeat;
1600 else
1601 mdcount = ((repeat * bytesperword) + 15) / 16;
1602 }
1603
1604 if (argc) {
1605 unsigned long val;
1606 int diag, nextarg = 1;
1607 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr,
1608 &offset, NULL);
1609 if (diag)
1610 return diag;
1611 if (argc > nextarg+2)
1612 return KDB_ARGCOUNT;
1613
1614 if (argc >= nextarg) {
1615 diag = kdbgetularg(argv[nextarg], &val);
1616 if (!diag) {
1617 mdcount = (int) val;
1618 if (raw)
1619 repeat = mdcount;
1620 else
1621 repeat = mdcount * 16 / bytesperword;
1622 }
1623 }
1624 if (argc >= nextarg+1) {
1625 diag = kdbgetularg(argv[nextarg+1], &val);
1626 if (!diag)
1627 radix = (int) val;
1628 }
1629 }
1630
1631 if (strcmp(argv[0], "mdr") == 0) {
1632 int ret;
1633 last_addr = addr;
1634 ret = kdb_mdr(addr, mdcount);
1635 last_addr += mdcount;
1636 last_repeat = mdcount;
1637 last_bytesperword = bytesperword; // to make REPEAT happy
1638 return ret;
1639 }
1640
1641 switch (radix) {
1642 case 10:
1643 fmtchar = 'd';
1644 break;
1645 case 16:
1646 fmtchar = 'x';
1647 break;
1648 case 8:
1649 fmtchar = 'o';
1650 break;
1651 default:
1652 return KDB_BADRADIX;
1653 }
1654
1655 last_radix = radix;
1656
1657 if (bytesperword > KDB_WORD_SIZE)
1658 return KDB_BADWIDTH;
1659
1660 switch (bytesperword) {
1661 case 8:
1662 sprintf(fmtstr, "%%16.16l%c ", fmtchar);
1663 break;
1664 case 4:
1665 sprintf(fmtstr, "%%8.8l%c ", fmtchar);
1666 break;
1667 case 2:
1668 sprintf(fmtstr, "%%4.4l%c ", fmtchar);
1669 break;
1670 case 1:
1671 sprintf(fmtstr, "%%2.2l%c ", fmtchar);
1672 break;
1673 default:
1674 return KDB_BADWIDTH;
1675 }
1676
1677 last_repeat = repeat;
1678 last_bytesperword = bytesperword;
1679
1680 if (strcmp(argv[0], "mds") == 0) {
1681 symbolic = 1;
1682 /* Do not save these changes as last_*, they are temporary mds
1683 * overrides.
1684 */
1685 bytesperword = KDB_WORD_SIZE;
1686 repeat = mdcount;
1687 kdbgetintenv("NOSECT", &nosect);
1688 }
1689
1690 /* Round address down modulo BYTESPERWORD */
1691
1692 addr &= ~(bytesperword-1);
1693
1694 while (repeat > 0) {
1695 unsigned long a;
1696 int n, z, num = (symbolic ? 1 : (16 / bytesperword));
1697
1698 if (KDB_FLAG(CMD_INTERRUPT))
1699 return 0;
1700 for (a = addr, z = 0; z < repeat; a += bytesperword, ++z) {
1701 if (phys) {
1702 if (kdb_getphysword(&word, a, bytesperword)
1703 || word)
1704 break;
1705 } else if (kdb_getword(&word, a, bytesperword) || word)
1706 break;
1707 }
1708 n = min(num, repeat);
1709 kdb_md_line(fmtstr, addr, symbolic, nosect, bytesperword,
1710 num, repeat, phys);
1711 addr += bytesperword * n;
1712 repeat -= n;
1713 z = (z + num - 1) / num;
1714 if (z > 2) {
1715 int s = num * (z-2);
1716 kdb_printf(kdb_machreg_fmt0 "-" kdb_machreg_fmt0
1717 " zero suppressed\n",
1718 addr, addr + bytesperword * s - 1);
1719 addr += bytesperword * s;
1720 repeat -= s;
1721 }
1722 }
1723 last_addr = addr;
1724
1725 return 0;
1726}
1727
1728/*
1729 * kdb_mm - This function implements the 'mm' command.
1730 * mm address-expression new-value
1731 * Remarks:
1732 * mm works on machine words, mmW works on bytes.
1733 */
1734static int kdb_mm(int argc, const char **argv)
1735{
1736 int diag;
1737 unsigned long addr;
1738 long offset = 0;
1739 unsigned long contents;
1740 int nextarg;
1741 int width;
1742
1743 if (argv[0][2] && !isdigit(argv[0][2]))
1744 return KDB_NOTFOUND;
1745
1746 if (argc < 2)
1747 return KDB_ARGCOUNT;
1748
1749 nextarg = 1;
1750 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1751 if (diag)
1752 return diag;
1753
1754 if (nextarg > argc)
1755 return KDB_ARGCOUNT;
1756 diag = kdbgetaddrarg(argc, argv, &nextarg, &contents, NULL, NULL);
1757 if (diag)
1758 return diag;
1759
1760 if (nextarg != argc + 1)
1761 return KDB_ARGCOUNT;
1762
1763 width = argv[0][2] ? (argv[0][2] - '0') : (KDB_WORD_SIZE);
1764 diag = kdb_putword(addr, contents, width);
1765 if (diag)
1766 return diag;
1767
1768 kdb_printf(kdb_machreg_fmt " = " kdb_machreg_fmt "\n", addr, contents);
1769
1770 return 0;
1771}
1772
1773/*
1774 * kdb_go - This function implements the 'go' command.
1775 * go [address-expression]
1776 */
1777static int kdb_go(int argc, const char **argv)
1778{
1779 unsigned long addr;
1780 int diag;
1781 int nextarg;
1782 long offset;
1783
1784 if (raw_smp_processor_id() != kdb_initial_cpu) {
1785 kdb_printf("go must execute on the entry cpu, "
1786 "please use \"cpu %d\" and then execute go\n",
1787 kdb_initial_cpu);
1788 return KDB_BADCPUNUM;
1789 }
1790 if (argc == 1) {
1791 nextarg = 1;
1792 diag = kdbgetaddrarg(argc, argv, &nextarg,
1793 &addr, &offset, NULL);
1794 if (diag)
1795 return diag;
1796 } else if (argc) {
1797 return KDB_ARGCOUNT;
1798 }
1799
1800 diag = KDB_CMD_GO;
1801 if (KDB_FLAG(CATASTROPHIC)) {
1802 kdb_printf("Catastrophic error detected\n");
1803 kdb_printf("kdb_continue_catastrophic=%d, ",
1804 kdb_continue_catastrophic);
1805 if (kdb_continue_catastrophic == 0 && kdb_go_count++ == 0) {
1806 kdb_printf("type go a second time if you really want "
1807 "to continue\n");
1808 return 0;
1809 }
1810 if (kdb_continue_catastrophic == 2) {
1811 kdb_printf("forcing reboot\n");
1812 kdb_reboot(0, NULL);
1813 }
1814 kdb_printf("attempting to continue\n");
1815 }
1816 return diag;
1817}
1818
1819/*
1820 * kdb_rd - This function implements the 'rd' command.
1821 */
1822static int kdb_rd(int argc, const char **argv)
1823{
1824 int len = kdb_check_regs();
1825#if DBG_MAX_REG_NUM > 0
1826 int i;
1827 char *rname;
1828 int rsize;
1829 u64 reg64;
1830 u32 reg32;
1831 u16 reg16;
1832 u8 reg8;
1833
1834 if (len)
1835 return len;
1836
1837 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1838 rsize = dbg_reg_def[i].size * 2;
1839 if (rsize > 16)
1840 rsize = 2;
1841 if (len + strlen(dbg_reg_def[i].name) + 4 + rsize > 80) {
1842 len = 0;
1843 kdb_printf("\n");
1844 }
1845 if (len)
1846 len += kdb_printf(" ");
1847 switch(dbg_reg_def[i].size * 8) {
1848 case 8:
1849 rname = dbg_get_reg(i, ®8, kdb_current_regs);
1850 if (!rname)
1851 break;
1852 len += kdb_printf("%s: %02x", rname, reg8);
1853 break;
1854 case 16:
1855 rname = dbg_get_reg(i, ®16, kdb_current_regs);
1856 if (!rname)
1857 break;
1858 len += kdb_printf("%s: %04x", rname, reg16);
1859 break;
1860 case 32:
1861 rname = dbg_get_reg(i, ®32, kdb_current_regs);
1862 if (!rname)
1863 break;
1864 len += kdb_printf("%s: %08x", rname, reg32);
1865 break;
1866 case 64:
1867 rname = dbg_get_reg(i, ®64, kdb_current_regs);
1868 if (!rname)
1869 break;
1870 len += kdb_printf("%s: %016llx", rname, reg64);
1871 break;
1872 default:
1873 len += kdb_printf("%s: ??", dbg_reg_def[i].name);
1874 }
1875 }
1876 kdb_printf("\n");
1877#else
1878 if (len)
1879 return len;
1880
1881 kdb_dumpregs(kdb_current_regs);
1882#endif
1883 return 0;
1884}
1885
1886/*
1887 * kdb_rm - This function implements the 'rm' (register modify) command.
1888 * rm register-name new-contents
1889 * Remarks:
1890 * Allows register modification with the same restrictions as gdb
1891 */
1892static int kdb_rm(int argc, const char **argv)
1893{
1894#if DBG_MAX_REG_NUM > 0
1895 int diag;
1896 const char *rname;
1897 int i;
1898 u64 reg64;
1899 u32 reg32;
1900 u16 reg16;
1901 u8 reg8;
1902
1903 if (argc != 2)
1904 return KDB_ARGCOUNT;
1905 /*
1906 * Allow presence or absence of leading '%' symbol.
1907 */
1908 rname = argv[1];
1909 if (*rname == '%')
1910 rname++;
1911
1912 diag = kdbgetu64arg(argv[2], ®64);
1913 if (diag)
1914 return diag;
1915
1916 diag = kdb_check_regs();
1917 if (diag)
1918 return diag;
1919
1920 diag = KDB_BADREG;
1921 for (i = 0; i < DBG_MAX_REG_NUM; i++) {
1922 if (strcmp(rname, dbg_reg_def[i].name) == 0) {
1923 diag = 0;
1924 break;
1925 }
1926 }
1927 if (!diag) {
1928 switch(dbg_reg_def[i].size * 8) {
1929 case 8:
1930 reg8 = reg64;
1931 dbg_set_reg(i, ®8, kdb_current_regs);
1932 break;
1933 case 16:
1934 reg16 = reg64;
1935 dbg_set_reg(i, ®16, kdb_current_regs);
1936 break;
1937 case 32:
1938 reg32 = reg64;
1939 dbg_set_reg(i, ®32, kdb_current_regs);
1940 break;
1941 case 64:
1942 dbg_set_reg(i, ®64, kdb_current_regs);
1943 break;
1944 }
1945 }
1946 return diag;
1947#else
1948 kdb_printf("ERROR: Register set currently not implemented\n");
1949 return 0;
1950#endif
1951}
1952
1953#if defined(CONFIG_MAGIC_SYSRQ)
1954/*
1955 * kdb_sr - This function implements the 'sr' (SYSRQ key) command
1956 * which interfaces to the soi-disant MAGIC SYSRQ functionality.
1957 * sr <magic-sysrq-code>
1958 */
1959static int kdb_sr(int argc, const char **argv)
1960{
1961 bool check_mask =
1962 !kdb_check_flags(KDB_ENABLE_ALL, kdb_cmd_enabled, false);
1963
1964 if (argc != 1)
1965 return KDB_ARGCOUNT;
1966
1967 kdb_trap_printk++;
1968 __handle_sysrq(*argv[1], check_mask);
1969 kdb_trap_printk--;
1970
1971 return 0;
1972}
1973#endif /* CONFIG_MAGIC_SYSRQ */
1974
1975/*
1976 * kdb_ef - This function implements the 'regs' (display exception
1977 * frame) command. This command takes an address and expects to
1978 * find an exception frame at that address, formats and prints
1979 * it.
1980 * regs address-expression
1981 * Remarks:
1982 * Not done yet.
1983 */
1984static int kdb_ef(int argc, const char **argv)
1985{
1986 int diag;
1987 unsigned long addr;
1988 long offset;
1989 int nextarg;
1990
1991 if (argc != 1)
1992 return KDB_ARGCOUNT;
1993
1994 nextarg = 1;
1995 diag = kdbgetaddrarg(argc, argv, &nextarg, &addr, &offset, NULL);
1996 if (diag)
1997 return diag;
1998 show_regs((struct pt_regs *)addr);
1999 return 0;
2000}
2001
2002#if defined(CONFIG_MODULES)
2003/*
2004 * kdb_lsmod - This function implements the 'lsmod' command. Lists
2005 * currently loaded kernel modules.
2006 * Mostly taken from userland lsmod.
2007 */
2008static int kdb_lsmod(int argc, const char **argv)
2009{
2010 struct module *mod;
2011
2012 if (argc != 0)
2013 return KDB_ARGCOUNT;
2014
2015 kdb_printf("Module Size modstruct Used by\n");
2016 list_for_each_entry(mod, kdb_modules, list) {
2017 if (mod->state == MODULE_STATE_UNFORMED)
2018 continue;
2019
2020 kdb_printf("%-20s%8u 0x%px ", mod->name,
2021 mod->core_layout.size, (void *)mod);
2022#ifdef CONFIG_MODULE_UNLOAD
2023 kdb_printf("%4d ", module_refcount(mod));
2024#endif
2025 if (mod->state == MODULE_STATE_GOING)
2026 kdb_printf(" (Unloading)");
2027 else if (mod->state == MODULE_STATE_COMING)
2028 kdb_printf(" (Loading)");
2029 else
2030 kdb_printf(" (Live)");
2031 kdb_printf(" 0x%px", mod->core_layout.base);
2032
2033#ifdef CONFIG_MODULE_UNLOAD
2034 {
2035 struct module_use *use;
2036 kdb_printf(" [ ");
2037 list_for_each_entry(use, &mod->source_list,
2038 source_list)
2039 kdb_printf("%s ", use->target->name);
2040 kdb_printf("]\n");
2041 }
2042#endif
2043 }
2044
2045 return 0;
2046}
2047
2048#endif /* CONFIG_MODULES */
2049
2050/*
2051 * kdb_env - This function implements the 'env' command. Display the
2052 * current environment variables.
2053 */
2054
2055static int kdb_env(int argc, const char **argv)
2056{
2057 kdb_printenv();
2058
2059 if (KDB_DEBUG(MASK))
2060 kdb_printf("KDBDEBUG=0x%x\n",
2061 (kdb_flags & KDB_DEBUG(MASK)) >> KDB_DEBUG_FLAG_SHIFT);
2062
2063 return 0;
2064}
2065
2066#ifdef CONFIG_PRINTK
2067/*
2068 * kdb_dmesg - This function implements the 'dmesg' command to display
2069 * the contents of the syslog buffer.
2070 * dmesg [lines] [adjust]
2071 */
2072static int kdb_dmesg(int argc, const char **argv)
2073{
2074 int diag;
2075 int logging;
2076 int lines = 0;
2077 int adjust = 0;
2078 int n = 0;
2079 int skip = 0;
2080 struct kmsg_dump_iter iter;
2081 size_t len;
2082 char buf[201];
2083
2084 if (argc > 2)
2085 return KDB_ARGCOUNT;
2086 if (argc) {
2087 char *cp;
2088 lines = simple_strtol(argv[1], &cp, 0);
2089 if (*cp)
2090 lines = 0;
2091 if (argc > 1) {
2092 adjust = simple_strtoul(argv[2], &cp, 0);
2093 if (*cp || adjust < 0)
2094 adjust = 0;
2095 }
2096 }
2097
2098 /* disable LOGGING if set */
2099 diag = kdbgetintenv("LOGGING", &logging);
2100 if (!diag && logging) {
2101 const char *setargs[] = { "set", "LOGGING", "0" };
2102 kdb_set(2, setargs);
2103 }
2104
2105 kmsg_dump_rewind(&iter);
2106 while (kmsg_dump_get_line(&iter, 1, NULL, 0, NULL))
2107 n++;
2108
2109 if (lines < 0) {
2110 if (adjust >= n)
2111 kdb_printf("buffer only contains %d lines, nothing "
2112 "printed\n", n);
2113 else if (adjust - lines >= n)
2114 kdb_printf("buffer only contains %d lines, last %d "
2115 "lines printed\n", n, n - adjust);
2116 skip = adjust;
2117 lines = abs(lines);
2118 } else if (lines > 0) {
2119 skip = n - lines - adjust;
2120 lines = abs(lines);
2121 if (adjust >= n) {
2122 kdb_printf("buffer only contains %d lines, "
2123 "nothing printed\n", n);
2124 skip = n;
2125 } else if (skip < 0) {
2126 lines += skip;
2127 skip = 0;
2128 kdb_printf("buffer only contains %d lines, first "
2129 "%d lines printed\n", n, lines);
2130 }
2131 } else {
2132 lines = n;
2133 }
2134
2135 if (skip >= n || skip < 0)
2136 return 0;
2137
2138 kmsg_dump_rewind(&iter);
2139 while (kmsg_dump_get_line(&iter, 1, buf, sizeof(buf), &len)) {
2140 if (skip) {
2141 skip--;
2142 continue;
2143 }
2144 if (!lines--)
2145 break;
2146 if (KDB_FLAG(CMD_INTERRUPT))
2147 return 0;
2148
2149 kdb_printf("%.*s\n", (int)len - 1, buf);
2150 }
2151
2152 return 0;
2153}
2154#endif /* CONFIG_PRINTK */
2155
2156/* Make sure we balance enable/disable calls, must disable first. */
2157static atomic_t kdb_nmi_disabled;
2158
2159static int kdb_disable_nmi(int argc, const char *argv[])
2160{
2161 if (atomic_read(&kdb_nmi_disabled))
2162 return 0;
2163 atomic_set(&kdb_nmi_disabled, 1);
2164 arch_kgdb_ops.enable_nmi(0);
2165 return 0;
2166}
2167
2168static int kdb_param_enable_nmi(const char *val, const struct kernel_param *kp)
2169{
2170 if (!atomic_add_unless(&kdb_nmi_disabled, -1, 0))
2171 return -EINVAL;
2172 arch_kgdb_ops.enable_nmi(1);
2173 return 0;
2174}
2175
2176static const struct kernel_param_ops kdb_param_ops_enable_nmi = {
2177 .set = kdb_param_enable_nmi,
2178};
2179module_param_cb(enable_nmi, &kdb_param_ops_enable_nmi, NULL, 0600);
2180
2181/*
2182 * kdb_cpu - This function implements the 'cpu' command.
2183 * cpu [<cpunum>]
2184 * Returns:
2185 * KDB_CMD_CPU for success, a kdb diagnostic if error
2186 */
2187static void kdb_cpu_status(void)
2188{
2189 int i, start_cpu, first_print = 1;
2190 char state, prev_state = '?';
2191
2192 kdb_printf("Currently on cpu %d\n", raw_smp_processor_id());
2193 kdb_printf("Available cpus: ");
2194 for (start_cpu = -1, i = 0; i < NR_CPUS; i++) {
2195 if (!cpu_online(i)) {
2196 state = 'F'; /* cpu is offline */
2197 } else if (!kgdb_info[i].enter_kgdb) {
2198 state = 'D'; /* cpu is online but unresponsive */
2199 } else {
2200 state = ' '; /* cpu is responding to kdb */
2201 if (kdb_task_state_char(KDB_TSK(i)) == 'I')
2202 state = 'I'; /* idle task */
2203 }
2204 if (state != prev_state) {
2205 if (prev_state != '?') {
2206 if (!first_print)
2207 kdb_printf(", ");
2208 first_print = 0;
2209 kdb_printf("%d", start_cpu);
2210 if (start_cpu < i-1)
2211 kdb_printf("-%d", i-1);
2212 if (prev_state != ' ')
2213 kdb_printf("(%c)", prev_state);
2214 }
2215 prev_state = state;
2216 start_cpu = i;
2217 }
2218 }
2219 /* print the trailing cpus, ignoring them if they are all offline */
2220 if (prev_state != 'F') {
2221 if (!first_print)
2222 kdb_printf(", ");
2223 kdb_printf("%d", start_cpu);
2224 if (start_cpu < i-1)
2225 kdb_printf("-%d", i-1);
2226 if (prev_state != ' ')
2227 kdb_printf("(%c)", prev_state);
2228 }
2229 kdb_printf("\n");
2230}
2231
2232static int kdb_cpu(int argc, const char **argv)
2233{
2234 unsigned long cpunum;
2235 int diag;
2236
2237 if (argc == 0) {
2238 kdb_cpu_status();
2239 return 0;
2240 }
2241
2242 if (argc != 1)
2243 return KDB_ARGCOUNT;
2244
2245 diag = kdbgetularg(argv[1], &cpunum);
2246 if (diag)
2247 return diag;
2248
2249 /*
2250 * Validate cpunum
2251 */
2252 if ((cpunum >= CONFIG_NR_CPUS) || !kgdb_info[cpunum].enter_kgdb)
2253 return KDB_BADCPUNUM;
2254
2255 dbg_switch_cpu = cpunum;
2256
2257 /*
2258 * Switch to other cpu
2259 */
2260 return KDB_CMD_CPU;
2261}
2262
2263/* The user may not realize that ps/bta with no parameters does not print idle
2264 * or sleeping system daemon processes, so tell them how many were suppressed.
2265 */
2266void kdb_ps_suppressed(void)
2267{
2268 int idle = 0, daemon = 0;
2269 unsigned long mask_I = kdb_task_state_string("I"),
2270 mask_M = kdb_task_state_string("M");
2271 unsigned long cpu;
2272 const struct task_struct *p, *g;
2273 for_each_online_cpu(cpu) {
2274 p = kdb_curr_task(cpu);
2275 if (kdb_task_state(p, mask_I))
2276 ++idle;
2277 }
2278 for_each_process_thread(g, p) {
2279 if (kdb_task_state(p, mask_M))
2280 ++daemon;
2281 }
2282 if (idle || daemon) {
2283 if (idle)
2284 kdb_printf("%d idle process%s (state I)%s\n",
2285 idle, idle == 1 ? "" : "es",
2286 daemon ? " and " : "");
2287 if (daemon)
2288 kdb_printf("%d sleeping system daemon (state M) "
2289 "process%s", daemon,
2290 daemon == 1 ? "" : "es");
2291 kdb_printf(" suppressed,\nuse 'ps A' to see all.\n");
2292 }
2293}
2294
2295/*
2296 * kdb_ps - This function implements the 'ps' command which shows a
2297 * list of the active processes.
2298 * ps [DRSTCZEUIMA] All processes, optionally filtered by state
2299 */
2300void kdb_ps1(const struct task_struct *p)
2301{
2302 int cpu;
2303 unsigned long tmp;
2304
2305 if (!p ||
2306 copy_from_kernel_nofault(&tmp, (char *)p, sizeof(unsigned long)))
2307 return;
2308
2309 cpu = kdb_process_cpu(p);
2310 kdb_printf("0x%px %8d %8d %d %4d %c 0x%px %c%s\n",
2311 (void *)p, p->pid, p->parent->pid,
2312 kdb_task_has_cpu(p), kdb_process_cpu(p),
2313 kdb_task_state_char(p),
2314 (void *)(&p->thread),
2315 p == kdb_curr_task(raw_smp_processor_id()) ? '*' : ' ',
2316 p->comm);
2317 if (kdb_task_has_cpu(p)) {
2318 if (!KDB_TSK(cpu)) {
2319 kdb_printf(" Error: no saved data for this cpu\n");
2320 } else {
2321 if (KDB_TSK(cpu) != p)
2322 kdb_printf(" Error: does not match running "
2323 "process table (0x%px)\n", KDB_TSK(cpu));
2324 }
2325 }
2326}
2327
2328static int kdb_ps(int argc, const char **argv)
2329{
2330 struct task_struct *g, *p;
2331 unsigned long mask, cpu;
2332
2333 if (argc == 0)
2334 kdb_ps_suppressed();
2335 kdb_printf("%-*s Pid Parent [*] cpu State %-*s Command\n",
2336 (int)(2*sizeof(void *))+2, "Task Addr",
2337 (int)(2*sizeof(void *))+2, "Thread");
2338 mask = kdb_task_state_string(argc ? argv[1] : NULL);
2339 /* Run the active tasks first */
2340 for_each_online_cpu(cpu) {
2341 if (KDB_FLAG(CMD_INTERRUPT))
2342 return 0;
2343 p = kdb_curr_task(cpu);
2344 if (kdb_task_state(p, mask))
2345 kdb_ps1(p);
2346 }
2347 kdb_printf("\n");
2348 /* Now the real tasks */
2349 for_each_process_thread(g, p) {
2350 if (KDB_FLAG(CMD_INTERRUPT))
2351 return 0;
2352 if (kdb_task_state(p, mask))
2353 kdb_ps1(p);
2354 }
2355
2356 return 0;
2357}
2358
2359/*
2360 * kdb_pid - This function implements the 'pid' command which switches
2361 * the currently active process.
2362 * pid [<pid> | R]
2363 */
2364static int kdb_pid(int argc, const char **argv)
2365{
2366 struct task_struct *p;
2367 unsigned long val;
2368 int diag;
2369
2370 if (argc > 1)
2371 return KDB_ARGCOUNT;
2372
2373 if (argc) {
2374 if (strcmp(argv[1], "R") == 0) {
2375 p = KDB_TSK(kdb_initial_cpu);
2376 } else {
2377 diag = kdbgetularg(argv[1], &val);
2378 if (diag)
2379 return KDB_BADINT;
2380
2381 p = find_task_by_pid_ns((pid_t)val, &init_pid_ns);
2382 if (!p) {
2383 kdb_printf("No task with pid=%d\n", (pid_t)val);
2384 return 0;
2385 }
2386 }
2387 kdb_set_current_task(p);
2388 }
2389 kdb_printf("KDB current process is %s(pid=%d)\n",
2390 kdb_current_task->comm,
2391 kdb_current_task->pid);
2392
2393 return 0;
2394}
2395
2396static int kdb_kgdb(int argc, const char **argv)
2397{
2398 return KDB_CMD_KGDB;
2399}
2400
2401/*
2402 * kdb_help - This function implements the 'help' and '?' commands.
2403 */
2404static int kdb_help(int argc, const char **argv)
2405{
2406 kdbtab_t *kt;
2407
2408 kdb_printf("%-15.15s %-20.20s %s\n", "Command", "Usage", "Description");
2409 kdb_printf("-----------------------------"
2410 "-----------------------------\n");
2411 list_for_each_entry(kt, &kdb_cmds_head, list_node) {
2412 char *space = "";
2413 if (KDB_FLAG(CMD_INTERRUPT))
2414 return 0;
2415 if (!kdb_check_flags(kt->cmd_flags, kdb_cmd_enabled, true))
2416 continue;
2417 if (strlen(kt->cmd_usage) > 20)
2418 space = "\n ";
2419 kdb_printf("%-15.15s %-20s%s%s\n", kt->cmd_name,
2420 kt->cmd_usage, space, kt->cmd_help);
2421 }
2422 return 0;
2423}
2424
2425/*
2426 * kdb_kill - This function implements the 'kill' commands.
2427 */
2428static int kdb_kill(int argc, const char **argv)
2429{
2430 long sig, pid;
2431 char *endp;
2432 struct task_struct *p;
2433
2434 if (argc != 2)
2435 return KDB_ARGCOUNT;
2436
2437 sig = simple_strtol(argv[1], &endp, 0);
2438 if (*endp)
2439 return KDB_BADINT;
2440 if ((sig >= 0) || !valid_signal(-sig)) {
2441 kdb_printf("Invalid signal parameter.<-signal>\n");
2442 return 0;
2443 }
2444 sig = -sig;
2445
2446 pid = simple_strtol(argv[2], &endp, 0);
2447 if (*endp)
2448 return KDB_BADINT;
2449 if (pid <= 0) {
2450 kdb_printf("Process ID must be large than 0.\n");
2451 return 0;
2452 }
2453
2454 /* Find the process. */
2455 p = find_task_by_pid_ns(pid, &init_pid_ns);
2456 if (!p) {
2457 kdb_printf("The specified process isn't found.\n");
2458 return 0;
2459 }
2460 p = p->group_leader;
2461 kdb_send_sig(p, sig);
2462 return 0;
2463}
2464
2465/*
2466 * Most of this code has been lifted from kernel/timer.c::sys_sysinfo().
2467 * I cannot call that code directly from kdb, it has an unconditional
2468 * cli()/sti() and calls routines that take locks which can stop the debugger.
2469 */
2470static void kdb_sysinfo(struct sysinfo *val)
2471{
2472 u64 uptime = ktime_get_mono_fast_ns();
2473
2474 memset(val, 0, sizeof(*val));
2475 val->uptime = div_u64(uptime, NSEC_PER_SEC);
2476 val->loads[0] = avenrun[0];
2477 val->loads[1] = avenrun[1];
2478 val->loads[2] = avenrun[2];
2479 val->procs = nr_threads-1;
2480 si_meminfo(val);
2481
2482 return;
2483}
2484
2485/*
2486 * kdb_summary - This function implements the 'summary' command.
2487 */
2488static int kdb_summary(int argc, const char **argv)
2489{
2490 time64_t now;
2491 struct sysinfo val;
2492
2493 if (argc)
2494 return KDB_ARGCOUNT;
2495
2496 kdb_printf("sysname %s\n", init_uts_ns.name.sysname);
2497 kdb_printf("release %s\n", init_uts_ns.name.release);
2498 kdb_printf("version %s\n", init_uts_ns.name.version);
2499 kdb_printf("machine %s\n", init_uts_ns.name.machine);
2500 kdb_printf("nodename %s\n", init_uts_ns.name.nodename);
2501 kdb_printf("domainname %s\n", init_uts_ns.name.domainname);
2502
2503 now = __ktime_get_real_seconds();
2504 kdb_printf("date %ptTs tz_minuteswest %d\n", &now, sys_tz.tz_minuteswest);
2505 kdb_sysinfo(&val);
2506 kdb_printf("uptime ");
2507 if (val.uptime > (24*60*60)) {
2508 int days = val.uptime / (24*60*60);
2509 val.uptime %= (24*60*60);
2510 kdb_printf("%d day%s ", days, days == 1 ? "" : "s");
2511 }
2512 kdb_printf("%02ld:%02ld\n", val.uptime/(60*60), (val.uptime/60)%60);
2513
2514 kdb_printf("load avg %ld.%02ld %ld.%02ld %ld.%02ld\n",
2515 LOAD_INT(val.loads[0]), LOAD_FRAC(val.loads[0]),
2516 LOAD_INT(val.loads[1]), LOAD_FRAC(val.loads[1]),
2517 LOAD_INT(val.loads[2]), LOAD_FRAC(val.loads[2]));
2518
2519 /* Display in kilobytes */
2520#define K(x) ((x) << (PAGE_SHIFT - 10))
2521 kdb_printf("\nMemTotal: %8lu kB\nMemFree: %8lu kB\n"
2522 "Buffers: %8lu kB\n",
2523 K(val.totalram), K(val.freeram), K(val.bufferram));
2524 return 0;
2525}
2526
2527/*
2528 * kdb_per_cpu - This function implements the 'per_cpu' command.
2529 */
2530static int kdb_per_cpu(int argc, const char **argv)
2531{
2532 char fmtstr[64];
2533 int cpu, diag, nextarg = 1;
2534 unsigned long addr, symaddr, val, bytesperword = 0, whichcpu = ~0UL;
2535
2536 if (argc < 1 || argc > 3)
2537 return KDB_ARGCOUNT;
2538
2539 diag = kdbgetaddrarg(argc, argv, &nextarg, &symaddr, NULL, NULL);
2540 if (diag)
2541 return diag;
2542
2543 if (argc >= 2) {
2544 diag = kdbgetularg(argv[2], &bytesperword);
2545 if (diag)
2546 return diag;
2547 }
2548 if (!bytesperword)
2549 bytesperword = KDB_WORD_SIZE;
2550 else if (bytesperword > KDB_WORD_SIZE)
2551 return KDB_BADWIDTH;
2552 sprintf(fmtstr, "%%0%dlx ", (int)(2*bytesperword));
2553 if (argc >= 3) {
2554 diag = kdbgetularg(argv[3], &whichcpu);
2555 if (diag)
2556 return diag;
2557 if (whichcpu >= nr_cpu_ids || !cpu_online(whichcpu)) {
2558 kdb_printf("cpu %ld is not online\n", whichcpu);
2559 return KDB_BADCPUNUM;
2560 }
2561 }
2562
2563 /* Most architectures use __per_cpu_offset[cpu], some use
2564 * __per_cpu_offset(cpu), smp has no __per_cpu_offset.
2565 */
2566#ifdef __per_cpu_offset
2567#define KDB_PCU(cpu) __per_cpu_offset(cpu)
2568#else
2569#ifdef CONFIG_SMP
2570#define KDB_PCU(cpu) __per_cpu_offset[cpu]
2571#else
2572#define KDB_PCU(cpu) 0
2573#endif
2574#endif
2575 for_each_online_cpu(cpu) {
2576 if (KDB_FLAG(CMD_INTERRUPT))
2577 return 0;
2578
2579 if (whichcpu != ~0UL && whichcpu != cpu)
2580 continue;
2581 addr = symaddr + KDB_PCU(cpu);
2582 diag = kdb_getword(&val, addr, bytesperword);
2583 if (diag) {
2584 kdb_printf("%5d " kdb_bfd_vma_fmt0 " - unable to "
2585 "read, diag=%d\n", cpu, addr, diag);
2586 continue;
2587 }
2588 kdb_printf("%5d ", cpu);
2589 kdb_md_line(fmtstr, addr,
2590 bytesperword == KDB_WORD_SIZE,
2591 1, bytesperword, 1, 1, 0);
2592 }
2593#undef KDB_PCU
2594 return 0;
2595}
2596
2597/*
2598 * display help for the use of cmd | grep pattern
2599 */
2600static int kdb_grep_help(int argc, const char **argv)
2601{
2602 kdb_printf("Usage of cmd args | grep pattern:\n");
2603 kdb_printf(" Any command's output may be filtered through an ");
2604 kdb_printf("emulated 'pipe'.\n");
2605 kdb_printf(" 'grep' is just a key word.\n");
2606 kdb_printf(" The pattern may include a very limited set of "
2607 "metacharacters:\n");
2608 kdb_printf(" pattern or ^pattern or pattern$ or ^pattern$\n");
2609 kdb_printf(" And if there are spaces in the pattern, you may "
2610 "quote it:\n");
2611 kdb_printf(" \"pat tern\" or \"^pat tern\" or \"pat tern$\""
2612 " or \"^pat tern$\"\n");
2613 return 0;
2614}
2615
2616/*
2617 * kdb_register_flags - This function is used to register a kernel
2618 * debugger command.
2619 * Inputs:
2620 * cmd Command name
2621 * func Function to execute the command
2622 * usage A simple usage string showing arguments
2623 * help A simple help string describing command
2624 * repeat Does the command auto repeat on enter?
2625 * Returns:
2626 * zero for success, one if a duplicate command.
2627 */
2628int kdb_register_flags(char *cmd,
2629 kdb_func_t func,
2630 char *usage,
2631 char *help,
2632 short minlen,
2633 kdb_cmdflags_t flags)
2634{
2635 kdbtab_t *kp;
2636
2637 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2638 if (strcmp(kp->cmd_name, cmd) == 0) {
2639 kdb_printf("Duplicate kdb command registered: "
2640 "%s, func %px help %s\n", cmd, func, help);
2641 return 1;
2642 }
2643 }
2644
2645 kp = kmalloc(sizeof(*kp), GFP_KDB);
2646 if (!kp) {
2647 kdb_printf("Could not allocate new kdb_command table\n");
2648 return 1;
2649 }
2650
2651 kp->cmd_name = cmd;
2652 kp->cmd_func = func;
2653 kp->cmd_usage = usage;
2654 kp->cmd_help = help;
2655 kp->cmd_minlen = minlen;
2656 kp->cmd_flags = flags;
2657 kp->is_dynamic = true;
2658
2659 list_add_tail(&kp->list_node, &kdb_cmds_head);
2660
2661 return 0;
2662}
2663EXPORT_SYMBOL_GPL(kdb_register_flags);
2664
2665/*
2666 * kdb_register_table() - This function is used to register a kdb command
2667 * table.
2668 * @kp: pointer to kdb command table
2669 * @len: length of kdb command table
2670 */
2671void kdb_register_table(kdbtab_t *kp, size_t len)
2672{
2673 while (len--) {
2674 list_add_tail(&kp->list_node, &kdb_cmds_head);
2675 kp++;
2676 }
2677}
2678
2679/*
2680 * kdb_register - Compatibility register function for commands that do
2681 * not need to specify a repeat state. Equivalent to
2682 * kdb_register_flags with flags set to 0.
2683 * Inputs:
2684 * cmd Command name
2685 * func Function to execute the command
2686 * usage A simple usage string showing arguments
2687 * help A simple help string describing command
2688 * Returns:
2689 * zero for success, one if a duplicate command.
2690 */
2691int kdb_register(char *cmd,
2692 kdb_func_t func,
2693 char *usage,
2694 char *help,
2695 short minlen)
2696{
2697 return kdb_register_flags(cmd, func, usage, help, minlen, 0);
2698}
2699EXPORT_SYMBOL_GPL(kdb_register);
2700
2701/*
2702 * kdb_unregister - This function is used to unregister a kernel
2703 * debugger command. It is generally called when a module which
2704 * implements kdb commands is unloaded.
2705 * Inputs:
2706 * cmd Command name
2707 * Returns:
2708 * zero for success, one command not registered.
2709 */
2710int kdb_unregister(char *cmd)
2711{
2712 kdbtab_t *kp;
2713
2714 /*
2715 * find the command.
2716 */
2717 list_for_each_entry(kp, &kdb_cmds_head, list_node) {
2718 if (strcmp(kp->cmd_name, cmd) == 0) {
2719 list_del(&kp->list_node);
2720 if (kp->is_dynamic)
2721 kfree(kp);
2722 return 0;
2723 }
2724 }
2725
2726 /* Couldn't find it. */
2727 return 1;
2728}
2729EXPORT_SYMBOL_GPL(kdb_unregister);
2730
2731static kdbtab_t maintab[] = {
2732 { .cmd_name = "md",
2733 .cmd_func = kdb_md,
2734 .cmd_usage = "<vaddr>",
2735 .cmd_help = "Display Memory Contents, also mdWcN, e.g. md8c1",
2736 .cmd_minlen = 1,
2737 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2738 },
2739 { .cmd_name = "mdr",
2740 .cmd_func = kdb_md,
2741 .cmd_usage = "<vaddr> <bytes>",
2742 .cmd_help = "Display Raw Memory",
2743 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2744 },
2745 { .cmd_name = "mdp",
2746 .cmd_func = kdb_md,
2747 .cmd_usage = "<paddr> <bytes>",
2748 .cmd_help = "Display Physical Memory",
2749 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2750 },
2751 { .cmd_name = "mds",
2752 .cmd_func = kdb_md,
2753 .cmd_usage = "<vaddr>",
2754 .cmd_help = "Display Memory Symbolically",
2755 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_REPEAT_NO_ARGS,
2756 },
2757 { .cmd_name = "mm",
2758 .cmd_func = kdb_mm,
2759 .cmd_usage = "<vaddr> <contents>",
2760 .cmd_help = "Modify Memory Contents",
2761 .cmd_flags = KDB_ENABLE_MEM_WRITE | KDB_REPEAT_NO_ARGS,
2762 },
2763 { .cmd_name = "go",
2764 .cmd_func = kdb_go,
2765 .cmd_usage = "[<vaddr>]",
2766 .cmd_help = "Continue Execution",
2767 .cmd_minlen = 1,
2768 .cmd_flags = KDB_ENABLE_REG_WRITE |
2769 KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2770 },
2771 { .cmd_name = "rd",
2772 .cmd_func = kdb_rd,
2773 .cmd_usage = "",
2774 .cmd_help = "Display Registers",
2775 .cmd_flags = KDB_ENABLE_REG_READ,
2776 },
2777 { .cmd_name = "rm",
2778 .cmd_func = kdb_rm,
2779 .cmd_usage = "<reg> <contents>",
2780 .cmd_help = "Modify Registers",
2781 .cmd_flags = KDB_ENABLE_REG_WRITE,
2782 },
2783 { .cmd_name = "ef",
2784 .cmd_func = kdb_ef,
2785 .cmd_usage = "<vaddr>",
2786 .cmd_help = "Display exception frame",
2787 .cmd_flags = KDB_ENABLE_MEM_READ,
2788 },
2789 { .cmd_name = "bt",
2790 .cmd_func = kdb_bt,
2791 .cmd_usage = "[<vaddr>]",
2792 .cmd_help = "Stack traceback",
2793 .cmd_minlen = 1,
2794 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2795 },
2796 { .cmd_name = "btp",
2797 .cmd_func = kdb_bt,
2798 .cmd_usage = "<pid>",
2799 .cmd_help = "Display stack for process <pid>",
2800 .cmd_flags = KDB_ENABLE_INSPECT,
2801 },
2802 { .cmd_name = "bta",
2803 .cmd_func = kdb_bt,
2804 .cmd_usage = "[D|R|S|T|C|Z|E|U|I|M|A]",
2805 .cmd_help = "Backtrace all processes matching state flag",
2806 .cmd_flags = KDB_ENABLE_INSPECT,
2807 },
2808 { .cmd_name = "btc",
2809 .cmd_func = kdb_bt,
2810 .cmd_usage = "",
2811 .cmd_help = "Backtrace current process on each cpu",
2812 .cmd_flags = KDB_ENABLE_INSPECT,
2813 },
2814 { .cmd_name = "btt",
2815 .cmd_func = kdb_bt,
2816 .cmd_usage = "<vaddr>",
2817 .cmd_help = "Backtrace process given its struct task address",
2818 .cmd_flags = KDB_ENABLE_MEM_READ | KDB_ENABLE_INSPECT_NO_ARGS,
2819 },
2820 { .cmd_name = "env",
2821 .cmd_func = kdb_env,
2822 .cmd_usage = "",
2823 .cmd_help = "Show environment variables",
2824 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2825 },
2826 { .cmd_name = "set",
2827 .cmd_func = kdb_set,
2828 .cmd_usage = "",
2829 .cmd_help = "Set environment variables",
2830 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2831 },
2832 { .cmd_name = "help",
2833 .cmd_func = kdb_help,
2834 .cmd_usage = "",
2835 .cmd_help = "Display Help Message",
2836 .cmd_minlen = 1,
2837 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2838 },
2839 { .cmd_name = "?",
2840 .cmd_func = kdb_help,
2841 .cmd_usage = "",
2842 .cmd_help = "Display Help Message",
2843 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2844 },
2845 { .cmd_name = "cpu",
2846 .cmd_func = kdb_cpu,
2847 .cmd_usage = "<cpunum>",
2848 .cmd_help = "Switch to new cpu",
2849 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE_NO_ARGS,
2850 },
2851 { .cmd_name = "kgdb",
2852 .cmd_func = kdb_kgdb,
2853 .cmd_usage = "",
2854 .cmd_help = "Enter kgdb mode",
2855 .cmd_flags = 0,
2856 },
2857 { .cmd_name = "ps",
2858 .cmd_func = kdb_ps,
2859 .cmd_usage = "[<flags>|A]",
2860 .cmd_help = "Display active task list",
2861 .cmd_flags = KDB_ENABLE_INSPECT,
2862 },
2863 { .cmd_name = "pid",
2864 .cmd_func = kdb_pid,
2865 .cmd_usage = "<pidnum>",
2866 .cmd_help = "Switch to another task",
2867 .cmd_flags = KDB_ENABLE_INSPECT,
2868 },
2869 { .cmd_name = "reboot",
2870 .cmd_func = kdb_reboot,
2871 .cmd_usage = "",
2872 .cmd_help = "Reboot the machine immediately",
2873 .cmd_flags = KDB_ENABLE_REBOOT,
2874 },
2875#if defined(CONFIG_MODULES)
2876 { .cmd_name = "lsmod",
2877 .cmd_func = kdb_lsmod,
2878 .cmd_usage = "",
2879 .cmd_help = "List loaded kernel modules",
2880 .cmd_flags = KDB_ENABLE_INSPECT,
2881 },
2882#endif
2883#if defined(CONFIG_MAGIC_SYSRQ)
2884 { .cmd_name = "sr",
2885 .cmd_func = kdb_sr,
2886 .cmd_usage = "<key>",
2887 .cmd_help = "Magic SysRq key",
2888 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2889 },
2890#endif
2891#if defined(CONFIG_PRINTK)
2892 { .cmd_name = "dmesg",
2893 .cmd_func = kdb_dmesg,
2894 .cmd_usage = "[lines]",
2895 .cmd_help = "Display syslog buffer",
2896 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2897 },
2898#endif
2899 { .cmd_name = "defcmd",
2900 .cmd_func = kdb_defcmd,
2901 .cmd_usage = "name \"usage\" \"help\"",
2902 .cmd_help = "Define a set of commands, down to endefcmd",
2903 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2904 },
2905 { .cmd_name = "kill",
2906 .cmd_func = kdb_kill,
2907 .cmd_usage = "<-signal> <pid>",
2908 .cmd_help = "Send a signal to a process",
2909 .cmd_flags = KDB_ENABLE_SIGNAL,
2910 },
2911 { .cmd_name = "summary",
2912 .cmd_func = kdb_summary,
2913 .cmd_usage = "",
2914 .cmd_help = "Summarize the system",
2915 .cmd_minlen = 4,
2916 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2917 },
2918 { .cmd_name = "per_cpu",
2919 .cmd_func = kdb_per_cpu,
2920 .cmd_usage = "<sym> [<bytes>] [<cpu>]",
2921 .cmd_help = "Display per_cpu variables",
2922 .cmd_minlen = 3,
2923 .cmd_flags = KDB_ENABLE_MEM_READ,
2924 },
2925 { .cmd_name = "grephelp",
2926 .cmd_func = kdb_grep_help,
2927 .cmd_usage = "",
2928 .cmd_help = "Display help on | grep",
2929 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2930 },
2931};
2932
2933static kdbtab_t nmicmd = {
2934 .cmd_name = "disable_nmi",
2935 .cmd_func = kdb_disable_nmi,
2936 .cmd_usage = "",
2937 .cmd_help = "Disable NMI entry to KDB",
2938 .cmd_flags = KDB_ENABLE_ALWAYS_SAFE,
2939};
2940
2941/* Initialize the kdb command table. */
2942static void __init kdb_inittab(void)
2943{
2944 kdb_register_table(maintab, ARRAY_SIZE(maintab));
2945 if (arch_kgdb_ops.enable_nmi)
2946 kdb_register_table(&nmicmd, 1);
2947}
2948
2949/* Execute any commands defined in kdb_cmds. */
2950static void __init kdb_cmd_init(void)
2951{
2952 int i, diag;
2953 for (i = 0; kdb_cmds[i]; ++i) {
2954 diag = kdb_parse(kdb_cmds[i]);
2955 if (diag)
2956 kdb_printf("kdb command %s failed, kdb diag %d\n",
2957 kdb_cmds[i], diag);
2958 }
2959 if (defcmd_in_progress) {
2960 kdb_printf("Incomplete 'defcmd' set, forcing endefcmd\n");
2961 kdb_parse("endefcmd");
2962 }
2963}
2964
2965/* Initialize kdb_printf, breakpoint tables and kdb state */
2966void __init kdb_init(int lvl)
2967{
2968 static int kdb_init_lvl = KDB_NOT_INITIALIZED;
2969 int i;
2970
2971 if (kdb_init_lvl == KDB_INIT_FULL || lvl <= kdb_init_lvl)
2972 return;
2973 for (i = kdb_init_lvl; i < lvl; i++) {
2974 switch (i) {
2975 case KDB_NOT_INITIALIZED:
2976 kdb_inittab(); /* Initialize Command Table */
2977 kdb_initbptab(); /* Initialize Breakpoints */
2978 break;
2979 case KDB_INIT_EARLY:
2980 kdb_cmd_init(); /* Build kdb_cmds tables */
2981 break;
2982 }
2983 }
2984 kdb_init_lvl = lvl;
2985}