Linux Audio

Check our new training course

Loading...
v4.10.11
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/init.h>
  48#include <asm/types.h>
  49#include <linux/atomic.h>
  50#include <linux/fs.h>
  51#include <linux/namei.h>
  52#include <linux/mm.h>
  53#include <linux/export.h>
  54#include <linux/slab.h>
  55#include <linux/mount.h>
  56#include <linux/socket.h>
  57#include <linux/mqueue.h>
  58#include <linux/audit.h>
  59#include <linux/personality.h>
  60#include <linux/time.h>
  61#include <linux/netlink.h>
  62#include <linux/compiler.h>
  63#include <asm/unistd.h>
  64#include <linux/security.h>
  65#include <linux/list.h>
 
  66#include <linux/binfmts.h>
  67#include <linux/highmem.h>
  68#include <linux/syscalls.h>
  69#include <asm/syscall.h>
  70#include <linux/capability.h>
  71#include <linux/fs_struct.h>
  72#include <linux/compat.h>
  73#include <linux/ctype.h>
  74#include <linux/string.h>
  75#include <linux/uaccess.h>
  76#include <uapi/linux/limits.h>
  77
  78#include "audit.h"
  79
  80/* flags stating the success for a syscall */
  81#define AUDITSC_INVALID 0
  82#define AUDITSC_SUCCESS 1
  83#define AUDITSC_FAILURE 2
  84
  85/* no execve audit message should be longer than this (userspace limits),
  86 * see the note near the top of audit_log_execve_info() about this value */
  87#define MAX_EXECVE_AUDIT_LEN 7500
  88
  89/* max length to print of cmdline/proctitle value during audit */
  90#define MAX_PROCTITLE_AUDIT_LEN 128
  91
  92/* number of audit rules */
  93int audit_n_rules;
  94
  95/* determines whether we collect data for signals sent */
  96int audit_signals;
  97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98struct audit_aux_data {
  99	struct audit_aux_data	*next;
 100	int			type;
 101};
 102
 103#define AUDIT_AUX_IPCPERM	0
 104
 105/* Number of target pids per aux struct. */
 106#define AUDIT_AUX_PIDS	16
 107
 
 
 
 
 
 
 
 108struct audit_aux_data_pids {
 109	struct audit_aux_data	d;
 110	pid_t			target_pid[AUDIT_AUX_PIDS];
 111	kuid_t			target_auid[AUDIT_AUX_PIDS];
 112	kuid_t			target_uid[AUDIT_AUX_PIDS];
 113	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 114	u32			target_sid[AUDIT_AUX_PIDS];
 115	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 116	int			pid_count;
 117};
 118
 119struct audit_aux_data_bprm_fcaps {
 120	struct audit_aux_data	d;
 121	struct audit_cap_data	fcap;
 122	unsigned int		fcap_ver;
 123	struct audit_cap_data	old_pcap;
 124	struct audit_cap_data	new_pcap;
 125};
 126
 
 
 
 
 
 
 127struct audit_tree_refs {
 128	struct audit_tree_refs *next;
 129	struct audit_chunk *c[31];
 130};
 131
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132static int audit_match_perm(struct audit_context *ctx, int mask)
 133{
 134	unsigned n;
 135	if (unlikely(!ctx))
 136		return 0;
 137	n = ctx->major;
 138
 139	switch (audit_classify_syscall(ctx->arch, n)) {
 140	case 0:	/* native */
 141		if ((mask & AUDIT_PERM_WRITE) &&
 142		     audit_match_class(AUDIT_CLASS_WRITE, n))
 143			return 1;
 144		if ((mask & AUDIT_PERM_READ) &&
 145		     audit_match_class(AUDIT_CLASS_READ, n))
 146			return 1;
 147		if ((mask & AUDIT_PERM_ATTR) &&
 148		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 149			return 1;
 150		return 0;
 151	case 1: /* 32bit on biarch */
 152		if ((mask & AUDIT_PERM_WRITE) &&
 153		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 154			return 1;
 155		if ((mask & AUDIT_PERM_READ) &&
 156		     audit_match_class(AUDIT_CLASS_READ_32, n))
 157			return 1;
 158		if ((mask & AUDIT_PERM_ATTR) &&
 159		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 160			return 1;
 161		return 0;
 162	case 2: /* open */
 163		return mask & ACC_MODE(ctx->argv[1]);
 164	case 3: /* openat */
 165		return mask & ACC_MODE(ctx->argv[2]);
 166	case 4: /* socketcall */
 167		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 168	case 5: /* execve */
 169		return mask & AUDIT_PERM_EXEC;
 170	default:
 171		return 0;
 172	}
 173}
 174
 175static int audit_match_filetype(struct audit_context *ctx, int val)
 176{
 177	struct audit_names *n;
 178	umode_t mode = (umode_t)val;
 179
 180	if (unlikely(!ctx))
 181		return 0;
 182
 183	list_for_each_entry(n, &ctx->names_list, list) {
 184		if ((n->ino != AUDIT_INO_UNSET) &&
 185		    ((n->mode & S_IFMT) == mode))
 186			return 1;
 187	}
 188
 189	return 0;
 190}
 191
 192/*
 193 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 194 * ->first_trees points to its beginning, ->trees - to the current end of data.
 195 * ->tree_count is the number of free entries in array pointed to by ->trees.
 196 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 197 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 198 * it's going to remain 1-element for almost any setup) until we free context itself.
 199 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 200 */
 201
 202#ifdef CONFIG_AUDIT_TREE
 203static void audit_set_auditable(struct audit_context *ctx)
 204{
 205	if (!ctx->prio) {
 206		ctx->prio = 1;
 207		ctx->current_state = AUDIT_RECORD_CONTEXT;
 208	}
 209}
 210
 211static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 212{
 213	struct audit_tree_refs *p = ctx->trees;
 214	int left = ctx->tree_count;
 215	if (likely(left)) {
 216		p->c[--left] = chunk;
 217		ctx->tree_count = left;
 218		return 1;
 219	}
 220	if (!p)
 221		return 0;
 222	p = p->next;
 223	if (p) {
 224		p->c[30] = chunk;
 225		ctx->trees = p;
 226		ctx->tree_count = 30;
 227		return 1;
 228	}
 229	return 0;
 230}
 231
 232static int grow_tree_refs(struct audit_context *ctx)
 233{
 234	struct audit_tree_refs *p = ctx->trees;
 235	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 236	if (!ctx->trees) {
 237		ctx->trees = p;
 238		return 0;
 239	}
 240	if (p)
 241		p->next = ctx->trees;
 242	else
 243		ctx->first_trees = ctx->trees;
 244	ctx->tree_count = 31;
 245	return 1;
 246}
 247#endif
 248
 249static void unroll_tree_refs(struct audit_context *ctx,
 250		      struct audit_tree_refs *p, int count)
 251{
 252#ifdef CONFIG_AUDIT_TREE
 253	struct audit_tree_refs *q;
 254	int n;
 255	if (!p) {
 256		/* we started with empty chain */
 257		p = ctx->first_trees;
 258		count = 31;
 259		/* if the very first allocation has failed, nothing to do */
 260		if (!p)
 261			return;
 262	}
 263	n = count;
 264	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 265		while (n--) {
 266			audit_put_chunk(q->c[n]);
 267			q->c[n] = NULL;
 268		}
 269	}
 270	while (n-- > ctx->tree_count) {
 271		audit_put_chunk(q->c[n]);
 272		q->c[n] = NULL;
 273	}
 274	ctx->trees = p;
 275	ctx->tree_count = count;
 276#endif
 277}
 278
 279static void free_tree_refs(struct audit_context *ctx)
 280{
 281	struct audit_tree_refs *p, *q;
 282	for (p = ctx->first_trees; p; p = q) {
 283		q = p->next;
 284		kfree(p);
 285	}
 286}
 287
 288static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 289{
 290#ifdef CONFIG_AUDIT_TREE
 291	struct audit_tree_refs *p;
 292	int n;
 293	if (!tree)
 294		return 0;
 295	/* full ones */
 296	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 297		for (n = 0; n < 31; n++)
 298			if (audit_tree_match(p->c[n], tree))
 299				return 1;
 300	}
 301	/* partial */
 302	if (p) {
 303		for (n = ctx->tree_count; n < 31; n++)
 304			if (audit_tree_match(p->c[n], tree))
 305				return 1;
 306	}
 307#endif
 308	return 0;
 309}
 310
 311static int audit_compare_uid(kuid_t uid,
 312			     struct audit_names *name,
 313			     struct audit_field *f,
 314			     struct audit_context *ctx)
 315{
 316	struct audit_names *n;
 317	int rc;
 318 
 319	if (name) {
 320		rc = audit_uid_comparator(uid, f->op, name->uid);
 321		if (rc)
 322			return rc;
 323	}
 324 
 325	if (ctx) {
 326		list_for_each_entry(n, &ctx->names_list, list) {
 327			rc = audit_uid_comparator(uid, f->op, n->uid);
 328			if (rc)
 329				return rc;
 330		}
 331	}
 332	return 0;
 333}
 334
 335static int audit_compare_gid(kgid_t gid,
 336			     struct audit_names *name,
 337			     struct audit_field *f,
 338			     struct audit_context *ctx)
 339{
 340	struct audit_names *n;
 341	int rc;
 342 
 343	if (name) {
 344		rc = audit_gid_comparator(gid, f->op, name->gid);
 345		if (rc)
 346			return rc;
 347	}
 348 
 349	if (ctx) {
 350		list_for_each_entry(n, &ctx->names_list, list) {
 351			rc = audit_gid_comparator(gid, f->op, n->gid);
 352			if (rc)
 353				return rc;
 354		}
 355	}
 356	return 0;
 357}
 358
 359static int audit_field_compare(struct task_struct *tsk,
 360			       const struct cred *cred,
 361			       struct audit_field *f,
 362			       struct audit_context *ctx,
 363			       struct audit_names *name)
 364{
 365	switch (f->val) {
 366	/* process to file object comparisons */
 367	case AUDIT_COMPARE_UID_TO_OBJ_UID:
 368		return audit_compare_uid(cred->uid, name, f, ctx);
 369	case AUDIT_COMPARE_GID_TO_OBJ_GID:
 370		return audit_compare_gid(cred->gid, name, f, ctx);
 371	case AUDIT_COMPARE_EUID_TO_OBJ_UID:
 372		return audit_compare_uid(cred->euid, name, f, ctx);
 373	case AUDIT_COMPARE_EGID_TO_OBJ_GID:
 374		return audit_compare_gid(cred->egid, name, f, ctx);
 375	case AUDIT_COMPARE_AUID_TO_OBJ_UID:
 376		return audit_compare_uid(tsk->loginuid, name, f, ctx);
 377	case AUDIT_COMPARE_SUID_TO_OBJ_UID:
 378		return audit_compare_uid(cred->suid, name, f, ctx);
 379	case AUDIT_COMPARE_SGID_TO_OBJ_GID:
 380		return audit_compare_gid(cred->sgid, name, f, ctx);
 381	case AUDIT_COMPARE_FSUID_TO_OBJ_UID:
 382		return audit_compare_uid(cred->fsuid, name, f, ctx);
 383	case AUDIT_COMPARE_FSGID_TO_OBJ_GID:
 384		return audit_compare_gid(cred->fsgid, name, f, ctx);
 385	/* uid comparisons */
 386	case AUDIT_COMPARE_UID_TO_AUID:
 387		return audit_uid_comparator(cred->uid, f->op, tsk->loginuid);
 388	case AUDIT_COMPARE_UID_TO_EUID:
 389		return audit_uid_comparator(cred->uid, f->op, cred->euid);
 390	case AUDIT_COMPARE_UID_TO_SUID:
 391		return audit_uid_comparator(cred->uid, f->op, cred->suid);
 392	case AUDIT_COMPARE_UID_TO_FSUID:
 393		return audit_uid_comparator(cred->uid, f->op, cred->fsuid);
 394	/* auid comparisons */
 395	case AUDIT_COMPARE_AUID_TO_EUID:
 396		return audit_uid_comparator(tsk->loginuid, f->op, cred->euid);
 397	case AUDIT_COMPARE_AUID_TO_SUID:
 398		return audit_uid_comparator(tsk->loginuid, f->op, cred->suid);
 399	case AUDIT_COMPARE_AUID_TO_FSUID:
 400		return audit_uid_comparator(tsk->loginuid, f->op, cred->fsuid);
 401	/* euid comparisons */
 402	case AUDIT_COMPARE_EUID_TO_SUID:
 403		return audit_uid_comparator(cred->euid, f->op, cred->suid);
 404	case AUDIT_COMPARE_EUID_TO_FSUID:
 405		return audit_uid_comparator(cred->euid, f->op, cred->fsuid);
 406	/* suid comparisons */
 407	case AUDIT_COMPARE_SUID_TO_FSUID:
 408		return audit_uid_comparator(cred->suid, f->op, cred->fsuid);
 409	/* gid comparisons */
 410	case AUDIT_COMPARE_GID_TO_EGID:
 411		return audit_gid_comparator(cred->gid, f->op, cred->egid);
 412	case AUDIT_COMPARE_GID_TO_SGID:
 413		return audit_gid_comparator(cred->gid, f->op, cred->sgid);
 414	case AUDIT_COMPARE_GID_TO_FSGID:
 415		return audit_gid_comparator(cred->gid, f->op, cred->fsgid);
 416	/* egid comparisons */
 417	case AUDIT_COMPARE_EGID_TO_SGID:
 418		return audit_gid_comparator(cred->egid, f->op, cred->sgid);
 419	case AUDIT_COMPARE_EGID_TO_FSGID:
 420		return audit_gid_comparator(cred->egid, f->op, cred->fsgid);
 421	/* sgid comparison */
 422	case AUDIT_COMPARE_SGID_TO_FSGID:
 423		return audit_gid_comparator(cred->sgid, f->op, cred->fsgid);
 424	default:
 425		WARN(1, "Missing AUDIT_COMPARE define.  Report as a bug\n");
 426		return 0;
 427	}
 428	return 0;
 429}
 430
 431/* Determine if any context name data matches a rule's watch data */
 432/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 433 * otherwise.
 434 *
 435 * If task_creation is true, this is an explicit indication that we are
 436 * filtering a task rule at task creation time.  This and tsk == current are
 437 * the only situations where tsk->cred may be accessed without an rcu read lock.
 438 */
 439static int audit_filter_rules(struct task_struct *tsk,
 440			      struct audit_krule *rule,
 441			      struct audit_context *ctx,
 442			      struct audit_names *name,
 443			      enum audit_state *state,
 444			      bool task_creation)
 445{
 446	const struct cred *cred;
 447	int i, need_sid = 1;
 448	u32 sid;
 449	unsigned int sessionid;
 450
 451	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 452
 453	for (i = 0; i < rule->field_count; i++) {
 454		struct audit_field *f = &rule->fields[i];
 455		struct audit_names *n;
 456		int result = 0;
 457		pid_t pid;
 458
 459		switch (f->type) {
 460		case AUDIT_PID:
 461			pid = task_tgid_nr(tsk);
 462			result = audit_comparator(pid, f->op, f->val);
 463			break;
 464		case AUDIT_PPID:
 465			if (ctx) {
 466				if (!ctx->ppid)
 467					ctx->ppid = task_ppid_nr(tsk);
 468				result = audit_comparator(ctx->ppid, f->op, f->val);
 469			}
 470			break;
 471		case AUDIT_EXE:
 472			result = audit_exe_compare(tsk, rule->exe);
 473			break;
 474		case AUDIT_UID:
 475			result = audit_uid_comparator(cred->uid, f->op, f->uid);
 476			break;
 477		case AUDIT_EUID:
 478			result = audit_uid_comparator(cred->euid, f->op, f->uid);
 479			break;
 480		case AUDIT_SUID:
 481			result = audit_uid_comparator(cred->suid, f->op, f->uid);
 482			break;
 483		case AUDIT_FSUID:
 484			result = audit_uid_comparator(cred->fsuid, f->op, f->uid);
 485			break;
 486		case AUDIT_GID:
 487			result = audit_gid_comparator(cred->gid, f->op, f->gid);
 488			if (f->op == Audit_equal) {
 489				if (!result)
 490					result = in_group_p(f->gid);
 491			} else if (f->op == Audit_not_equal) {
 492				if (result)
 493					result = !in_group_p(f->gid);
 494			}
 495			break;
 496		case AUDIT_EGID:
 497			result = audit_gid_comparator(cred->egid, f->op, f->gid);
 498			if (f->op == Audit_equal) {
 499				if (!result)
 500					result = in_egroup_p(f->gid);
 501			} else if (f->op == Audit_not_equal) {
 502				if (result)
 503					result = !in_egroup_p(f->gid);
 504			}
 505			break;
 506		case AUDIT_SGID:
 507			result = audit_gid_comparator(cred->sgid, f->op, f->gid);
 508			break;
 509		case AUDIT_FSGID:
 510			result = audit_gid_comparator(cred->fsgid, f->op, f->gid);
 511			break;
 512		case AUDIT_SESSIONID:
 513			sessionid = audit_get_sessionid(current);
 514			result = audit_comparator(sessionid, f->op, f->val);
 515			break;
 516		case AUDIT_PERS:
 517			result = audit_comparator(tsk->personality, f->op, f->val);
 518			break;
 519		case AUDIT_ARCH:
 520			if (ctx)
 521				result = audit_comparator(ctx->arch, f->op, f->val);
 522			break;
 523
 524		case AUDIT_EXIT:
 525			if (ctx && ctx->return_valid)
 526				result = audit_comparator(ctx->return_code, f->op, f->val);
 527			break;
 528		case AUDIT_SUCCESS:
 529			if (ctx && ctx->return_valid) {
 530				if (f->val)
 531					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 532				else
 533					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 534			}
 535			break;
 536		case AUDIT_DEVMAJOR:
 537			if (name) {
 538				if (audit_comparator(MAJOR(name->dev), f->op, f->val) ||
 539				    audit_comparator(MAJOR(name->rdev), f->op, f->val))
 540					++result;
 541			} else if (ctx) {
 542				list_for_each_entry(n, &ctx->names_list, list) {
 543					if (audit_comparator(MAJOR(n->dev), f->op, f->val) ||
 544					    audit_comparator(MAJOR(n->rdev), f->op, f->val)) {
 545						++result;
 546						break;
 547					}
 548				}
 549			}
 550			break;
 551		case AUDIT_DEVMINOR:
 552			if (name) {
 553				if (audit_comparator(MINOR(name->dev), f->op, f->val) ||
 554				    audit_comparator(MINOR(name->rdev), f->op, f->val))
 555					++result;
 556			} else if (ctx) {
 557				list_for_each_entry(n, &ctx->names_list, list) {
 558					if (audit_comparator(MINOR(n->dev), f->op, f->val) ||
 559					    audit_comparator(MINOR(n->rdev), f->op, f->val)) {
 560						++result;
 561						break;
 562					}
 563				}
 564			}
 565			break;
 566		case AUDIT_INODE:
 567			if (name)
 568				result = audit_comparator(name->ino, f->op, f->val);
 569			else if (ctx) {
 570				list_for_each_entry(n, &ctx->names_list, list) {
 571					if (audit_comparator(n->ino, f->op, f->val)) {
 572						++result;
 573						break;
 574					}
 575				}
 576			}
 577			break;
 578		case AUDIT_OBJ_UID:
 579			if (name) {
 580				result = audit_uid_comparator(name->uid, f->op, f->uid);
 581			} else if (ctx) {
 582				list_for_each_entry(n, &ctx->names_list, list) {
 583					if (audit_uid_comparator(n->uid, f->op, f->uid)) {
 584						++result;
 585						break;
 586					}
 587				}
 588			}
 589			break;
 590		case AUDIT_OBJ_GID:
 591			if (name) {
 592				result = audit_gid_comparator(name->gid, f->op, f->gid);
 593			} else if (ctx) {
 594				list_for_each_entry(n, &ctx->names_list, list) {
 595					if (audit_gid_comparator(n->gid, f->op, f->gid)) {
 596						++result;
 597						break;
 598					}
 599				}
 600			}
 601			break;
 602		case AUDIT_WATCH:
 603			if (name)
 604				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 605			break;
 606		case AUDIT_DIR:
 607			if (ctx)
 608				result = match_tree_refs(ctx, rule->tree);
 609			break;
 610		case AUDIT_LOGINUID:
 611			result = audit_uid_comparator(tsk->loginuid, f->op, f->uid);
 612			break;
 613		case AUDIT_LOGINUID_SET:
 614			result = audit_comparator(audit_loginuid_set(tsk), f->op, f->val);
 615			break;
 616		case AUDIT_SUBJ_USER:
 617		case AUDIT_SUBJ_ROLE:
 618		case AUDIT_SUBJ_TYPE:
 619		case AUDIT_SUBJ_SEN:
 620		case AUDIT_SUBJ_CLR:
 621			/* NOTE: this may return negative values indicating
 622			   a temporary error.  We simply treat this as a
 623			   match for now to avoid losing information that
 624			   may be wanted.   An error message will also be
 625			   logged upon error */
 626			if (f->lsm_rule) {
 627				if (need_sid) {
 628					security_task_getsecid(tsk, &sid);
 629					need_sid = 0;
 630				}
 631				result = security_audit_rule_match(sid, f->type,
 632				                                  f->op,
 633				                                  f->lsm_rule,
 634				                                  ctx);
 635			}
 636			break;
 637		case AUDIT_OBJ_USER:
 638		case AUDIT_OBJ_ROLE:
 639		case AUDIT_OBJ_TYPE:
 640		case AUDIT_OBJ_LEV_LOW:
 641		case AUDIT_OBJ_LEV_HIGH:
 642			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 643			   also applies here */
 644			if (f->lsm_rule) {
 645				/* Find files that match */
 646				if (name) {
 647					result = security_audit_rule_match(
 648					           name->osid, f->type, f->op,
 649					           f->lsm_rule, ctx);
 650				} else if (ctx) {
 651					list_for_each_entry(n, &ctx->names_list, list) {
 652						if (security_audit_rule_match(n->osid, f->type,
 653									      f->op, f->lsm_rule,
 654									      ctx)) {
 
 655							++result;
 656							break;
 657						}
 658					}
 659				}
 660				/* Find ipc objects that match */
 661				if (!ctx || ctx->type != AUDIT_IPC)
 662					break;
 663				if (security_audit_rule_match(ctx->ipc.osid,
 664							      f->type, f->op,
 665							      f->lsm_rule, ctx))
 666					++result;
 667			}
 668			break;
 669		case AUDIT_ARG0:
 670		case AUDIT_ARG1:
 671		case AUDIT_ARG2:
 672		case AUDIT_ARG3:
 673			if (ctx)
 674				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 675			break;
 676		case AUDIT_FILTERKEY:
 677			/* ignore this field for filtering */
 678			result = 1;
 679			break;
 680		case AUDIT_PERM:
 681			result = audit_match_perm(ctx, f->val);
 682			break;
 683		case AUDIT_FILETYPE:
 684			result = audit_match_filetype(ctx, f->val);
 685			break;
 686		case AUDIT_FIELD_COMPARE:
 687			result = audit_field_compare(tsk, cred, f, ctx, name);
 688			break;
 689		}
 
 690		if (!result)
 691			return 0;
 692	}
 693
 694	if (ctx) {
 695		if (rule->prio <= ctx->prio)
 696			return 0;
 697		if (rule->filterkey) {
 698			kfree(ctx->filterkey);
 699			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 700		}
 701		ctx->prio = rule->prio;
 702	}
 703	switch (rule->action) {
 704	case AUDIT_NEVER:
 705		*state = AUDIT_DISABLED;
 706		break;
 707	case AUDIT_ALWAYS:
 708		*state = AUDIT_RECORD_CONTEXT;
 709		break;
 710	}
 711	return 1;
 712}
 713
 714/* At process creation time, we can determine if system-call auditing is
 715 * completely disabled for this task.  Since we only have the task
 716 * structure at this point, we can only check uid and gid.
 717 */
 718static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 719{
 720	struct audit_entry *e;
 721	enum audit_state   state;
 722
 723	rcu_read_lock();
 724	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 725		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 726				       &state, true)) {
 727			if (state == AUDIT_RECORD_CONTEXT)
 728				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 729			rcu_read_unlock();
 730			return state;
 731		}
 732	}
 733	rcu_read_unlock();
 734	return AUDIT_BUILD_CONTEXT;
 735}
 736
 737static int audit_in_mask(const struct audit_krule *rule, unsigned long val)
 738{
 739	int word, bit;
 740
 741	if (val > 0xffffffff)
 742		return false;
 743
 744	word = AUDIT_WORD(val);
 745	if (word >= AUDIT_BITMASK_SIZE)
 746		return false;
 747
 748	bit = AUDIT_BIT(val);
 749
 750	return rule->mask[word] & bit;
 751}
 752
 753/* At syscall entry and exit time, this filter is called if the
 754 * audit_state is not low enough that auditing cannot take place, but is
 755 * also not high enough that we already know we have to write an audit
 756 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 757 */
 758static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 759					     struct audit_context *ctx,
 760					     struct list_head *list)
 761{
 762	struct audit_entry *e;
 763	enum audit_state state;
 764
 765	if (auditd_test_task(tsk))
 766		return AUDIT_DISABLED;
 767
 768	rcu_read_lock();
 769	if (!list_empty(list)) {
 
 
 
 770		list_for_each_entry_rcu(e, list, list) {
 771			if (audit_in_mask(&e->rule, ctx->major) &&
 772			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 773					       &state, false)) {
 774				rcu_read_unlock();
 775				ctx->current_state = state;
 776				return state;
 777			}
 778		}
 779	}
 780	rcu_read_unlock();
 781	return AUDIT_BUILD_CONTEXT;
 782}
 783
 784/*
 785 * Given an audit_name check the inode hash table to see if they match.
 786 * Called holding the rcu read lock to protect the use of audit_inode_hash
 787 */
 788static int audit_filter_inode_name(struct task_struct *tsk,
 789				   struct audit_names *n,
 790				   struct audit_context *ctx) {
 791	int h = audit_hash_ino((u32)n->ino);
 792	struct list_head *list = &audit_inode_hash[h];
 793	struct audit_entry *e;
 794	enum audit_state state;
 795
 796	if (list_empty(list))
 797		return 0;
 798
 799	list_for_each_entry_rcu(e, list, list) {
 800		if (audit_in_mask(&e->rule, ctx->major) &&
 801		    audit_filter_rules(tsk, &e->rule, ctx, n, &state, false)) {
 802			ctx->current_state = state;
 803			return 1;
 804		}
 805	}
 806
 807	return 0;
 808}
 809
 810/* At syscall exit time, this filter is called if any audit_names have been
 811 * collected during syscall processing.  We only check rules in sublists at hash
 812 * buckets applicable to the inode numbers in audit_names.
 813 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 814 */
 815void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 816{
 817	struct audit_names *n;
 
 
 818
 819	if (auditd_test_task(tsk))
 820		return;
 821
 822	rcu_read_lock();
 
 
 
 
 
 
 823
 824	list_for_each_entry(n, &ctx->names_list, list) {
 825		if (audit_filter_inode_name(tsk, n, ctx))
 826			break;
 
 
 
 
 
 
 
 
 
 827	}
 828	rcu_read_unlock();
 829}
 830
 831/* Transfer the audit context pointer to the caller, clearing it in the tsk's struct */
 832static inline struct audit_context *audit_take_context(struct task_struct *tsk,
 833						      int return_valid,
 834						      long return_code)
 835{
 836	struct audit_context *context = tsk->audit_context;
 837
 838	if (!context)
 839		return NULL;
 840	context->return_valid = return_valid;
 841
 842	/*
 843	 * we need to fix up the return code in the audit logs if the actual
 844	 * return codes are later going to be fixed up by the arch specific
 845	 * signal handlers
 846	 *
 847	 * This is actually a test for:
 848	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 849	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 850	 *
 851	 * but is faster than a bunch of ||
 852	 */
 853	if (unlikely(return_code <= -ERESTARTSYS) &&
 854	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 855	    (return_code != -ENOIOCTLCMD))
 856		context->return_code = -EINTR;
 857	else
 858		context->return_code  = return_code;
 859
 860	if (context->in_syscall && !context->dummy) {
 861		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 862		audit_filter_inodes(tsk, context);
 863	}
 864
 865	tsk->audit_context = NULL;
 866	return context;
 867}
 868
 869static inline void audit_proctitle_free(struct audit_context *context)
 870{
 871	kfree(context->proctitle.value);
 872	context->proctitle.value = NULL;
 873	context->proctitle.len = 0;
 874}
 875
 876static inline void audit_free_names(struct audit_context *context)
 877{
 878	struct audit_names *n, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879
 880	list_for_each_entry_safe(n, next, &context->names_list, list) {
 881		list_del(&n->list);
 882		if (n->name)
 883			putname(n->name);
 884		if (n->should_free)
 885			kfree(n);
 886	}
 887	context->name_count = 0;
 888	path_put(&context->pwd);
 889	context->pwd.dentry = NULL;
 890	context->pwd.mnt = NULL;
 891}
 892
 893static inline void audit_free_aux(struct audit_context *context)
 894{
 895	struct audit_aux_data *aux;
 896
 897	while ((aux = context->aux)) {
 898		context->aux = aux->next;
 899		kfree(aux);
 900	}
 901	while ((aux = context->aux_pids)) {
 902		context->aux_pids = aux->next;
 903		kfree(aux);
 904	}
 905}
 906
 
 
 
 
 
 
 
 
 907static inline struct audit_context *audit_alloc_context(enum audit_state state)
 908{
 909	struct audit_context *context;
 910
 911	context = kzalloc(sizeof(*context), GFP_KERNEL);
 912	if (!context)
 913		return NULL;
 914	context->state = state;
 915	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 916	INIT_LIST_HEAD(&context->killed_trees);
 917	INIT_LIST_HEAD(&context->names_list);
 918	return context;
 919}
 920
 921/**
 922 * audit_alloc - allocate an audit context block for a task
 923 * @tsk: task
 924 *
 925 * Filter on the task information and allocate a per-task audit context
 926 * if necessary.  Doing so turns on system call auditing for the
 927 * specified task.  This is called from copy_process, so no lock is
 928 * needed.
 929 */
 930int audit_alloc(struct task_struct *tsk)
 931{
 932	struct audit_context *context;
 933	enum audit_state     state;
 934	char *key = NULL;
 935
 936	if (likely(!audit_ever_enabled))
 937		return 0; /* Return if not auditing. */
 938
 939	state = audit_filter_task(tsk, &key);
 940	if (state == AUDIT_DISABLED) {
 941		clear_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 942		return 0;
 943	}
 944
 945	if (!(context = audit_alloc_context(state))) {
 946		kfree(key);
 947		audit_log_lost("out of memory in audit_alloc");
 948		return -ENOMEM;
 949	}
 950	context->filterkey = key;
 951
 952	tsk->audit_context  = context;
 953	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 954	return 0;
 955}
 956
 957static inline void audit_free_context(struct audit_context *context)
 958{
 959	audit_free_names(context);
 960	unroll_tree_refs(context, NULL, 0);
 961	free_tree_refs(context);
 962	audit_free_aux(context);
 963	kfree(context->filterkey);
 964	kfree(context->sockaddr);
 965	audit_proctitle_free(context);
 966	kfree(context);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 967}
 968
 969static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 970				 kuid_t auid, kuid_t uid, unsigned int sessionid,
 971				 u32 sid, char *comm)
 972{
 973	struct audit_buffer *ab;
 974	char *ctx = NULL;
 975	u32 len;
 976	int rc = 0;
 977
 978	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 979	if (!ab)
 980		return rc;
 981
 982	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid,
 983			 from_kuid(&init_user_ns, auid),
 984			 from_kuid(&init_user_ns, uid), sessionid);
 985	if (sid) {
 986		if (security_secid_to_secctx(sid, &ctx, &len)) {
 987			audit_log_format(ab, " obj=(none)");
 988			rc = 1;
 989		} else {
 990			audit_log_format(ab, " obj=%s", ctx);
 991			security_release_secctx(ctx, len);
 992		}
 993	}
 994	audit_log_format(ab, " ocomm=");
 995	audit_log_untrustedstring(ab, comm);
 996	audit_log_end(ab);
 997
 998	return rc;
 999}
1000
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1001static void audit_log_execve_info(struct audit_context *context,
1002				  struct audit_buffer **ab)
 
1003{
1004	long len_max;
1005	long len_rem;
1006	long len_full;
1007	long len_buf;
1008	long len_abuf = 0;
1009	long len_tmp;
1010	bool require_data;
1011	bool encode;
1012	unsigned int iter;
1013	unsigned int arg;
1014	char *buf_head;
1015	char *buf;
1016	const char __user *p = (const char __user *)current->mm->arg_start;
1017
1018	/* NOTE: this buffer needs to be large enough to hold all the non-arg
1019	 *       data we put in the audit record for this argument (see the
1020	 *       code below) ... at this point in time 96 is plenty */
1021	char abuf[96];
1022
1023	/* NOTE: we set MAX_EXECVE_AUDIT_LEN to a rather arbitrary limit, the
1024	 *       current value of 7500 is not as important as the fact that it
1025	 *       is less than 8k, a setting of 7500 gives us plenty of wiggle
1026	 *       room if we go over a little bit in the logging below */
1027	WARN_ON_ONCE(MAX_EXECVE_AUDIT_LEN > 7500);
1028	len_max = MAX_EXECVE_AUDIT_LEN;
1029
1030	/* scratch buffer to hold the userspace args */
1031	buf_head = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1032	if (!buf_head) {
1033		audit_panic("out of memory for argv string");
1034		return;
1035	}
1036	buf = buf_head;
1037
1038	audit_log_format(*ab, "argc=%d", context->execve.argc);
1039
1040	len_rem = len_max;
1041	len_buf = 0;
1042	len_full = 0;
1043	require_data = true;
1044	encode = false;
1045	iter = 0;
1046	arg = 0;
1047	do {
1048		/* NOTE: we don't ever want to trust this value for anything
1049		 *       serious, but the audit record format insists we
1050		 *       provide an argument length for really long arguments,
1051		 *       e.g. > MAX_EXECVE_AUDIT_LEN, so we have no choice but
1052		 *       to use strncpy_from_user() to obtain this value for
1053		 *       recording in the log, although we don't use it
1054		 *       anywhere here to avoid a double-fetch problem */
1055		if (len_full == 0)
1056			len_full = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1057
1058		/* read more data from userspace */
1059		if (require_data) {
1060			/* can we make more room in the buffer? */
1061			if (buf != buf_head) {
1062				memmove(buf_head, buf, len_buf);
1063				buf = buf_head;
1064			}
1065
1066			/* fetch as much as we can of the argument */
1067			len_tmp = strncpy_from_user(&buf_head[len_buf], p,
1068						    len_max - len_buf);
1069			if (len_tmp == -EFAULT) {
1070				/* unable to copy from userspace */
1071				send_sig(SIGKILL, current, 0);
1072				goto out;
1073			} else if (len_tmp == (len_max - len_buf)) {
1074				/* buffer is not large enough */
1075				require_data = true;
1076				/* NOTE: if we are going to span multiple
1077				 *       buffers force the encoding so we stand
1078				 *       a chance at a sane len_full value and
1079				 *       consistent record encoding */
1080				encode = true;
1081				len_full = len_full * 2;
1082				p += len_tmp;
1083			} else {
1084				require_data = false;
1085				if (!encode)
1086					encode = audit_string_contains_control(
1087								buf, len_tmp);
1088				/* try to use a trusted value for len_full */
1089				if (len_full < len_max)
1090					len_full = (encode ?
1091						    len_tmp * 2 : len_tmp);
1092				p += len_tmp + 1;
1093			}
1094			len_buf += len_tmp;
1095			buf_head[len_buf] = '\0';
1096
1097			/* length of the buffer in the audit record? */
1098			len_abuf = (encode ? len_buf * 2 : len_buf + 2);
1099		}
1100
1101		/* write as much as we can to the audit log */
1102		if (len_buf > 0) {
1103			/* NOTE: some magic numbers here - basically if we
1104			 *       can't fit a reasonable amount of data into the
1105			 *       existing audit buffer, flush it and start with
1106			 *       a new buffer */
1107			if ((sizeof(abuf) + 8) > len_rem) {
1108				len_rem = len_max;
1109				audit_log_end(*ab);
1110				*ab = audit_log_start(context,
1111						      GFP_KERNEL, AUDIT_EXECVE);
1112				if (!*ab)
1113					goto out;
1114			}
1115
1116			/* create the non-arg portion of the arg record */
1117			len_tmp = 0;
1118			if (require_data || (iter > 0) ||
1119			    ((len_abuf + sizeof(abuf)) > len_rem)) {
1120				if (iter == 0) {
1121					len_tmp += snprintf(&abuf[len_tmp],
1122							sizeof(abuf) - len_tmp,
1123							" a%d_len=%lu",
1124							arg, len_full);
1125				}
1126				len_tmp += snprintf(&abuf[len_tmp],
1127						    sizeof(abuf) - len_tmp,
1128						    " a%d[%d]=", arg, iter++);
1129			} else
1130				len_tmp += snprintf(&abuf[len_tmp],
1131						    sizeof(abuf) - len_tmp,
1132						    " a%d=", arg);
1133			WARN_ON(len_tmp >= sizeof(abuf));
1134			abuf[sizeof(abuf) - 1] = '\0';
1135
1136			/* log the arg in the audit record */
1137			audit_log_format(*ab, "%s", abuf);
1138			len_rem -= len_tmp;
1139			len_tmp = len_buf;
1140			if (encode) {
1141				if (len_abuf > len_rem)
1142					len_tmp = len_rem / 2; /* encoding */
1143				audit_log_n_hex(*ab, buf, len_tmp);
1144				len_rem -= len_tmp * 2;
1145				len_abuf -= len_tmp * 2;
1146			} else {
1147				if (len_abuf > len_rem)
1148					len_tmp = len_rem - 2; /* quotes */
1149				audit_log_n_string(*ab, buf, len_tmp);
1150				len_rem -= len_tmp + 2;
1151				/* don't subtract the "2" because we still need
1152				 * to add quotes to the remaining string */
1153				len_abuf -= len_tmp;
1154			}
1155			len_buf -= len_tmp;
1156			buf += len_tmp;
1157		}
1158
1159		/* ready to move to the next argument? */
1160		if ((len_buf == 0) && !require_data) {
1161			arg++;
1162			iter = 0;
1163			len_full = 0;
1164			require_data = true;
1165			encode = false;
1166		}
1167	} while (arg < context->execve.argc);
 
 
 
 
 
 
1168
1169	/* NOTE: the caller handles the final audit_log_end() call */
 
 
 
 
 
 
 
1170
1171out:
1172	kfree(buf_head);
1173}
1174
1175static void show_special(struct audit_context *context, int *call_panic)
1176{
1177	struct audit_buffer *ab;
1178	int i;
1179
1180	ab = audit_log_start(context, GFP_KERNEL, context->type);
1181	if (!ab)
1182		return;
1183
1184	switch (context->type) {
1185	case AUDIT_SOCKETCALL: {
1186		int nargs = context->socketcall.nargs;
1187		audit_log_format(ab, "nargs=%d", nargs);
1188		for (i = 0; i < nargs; i++)
1189			audit_log_format(ab, " a%d=%lx", i,
1190				context->socketcall.args[i]);
1191		break; }
1192	case AUDIT_IPC: {
1193		u32 osid = context->ipc.osid;
1194
1195		audit_log_format(ab, "ouid=%u ogid=%u mode=%#ho",
1196				 from_kuid(&init_user_ns, context->ipc.uid),
1197				 from_kgid(&init_user_ns, context->ipc.gid),
1198				 context->ipc.mode);
1199		if (osid) {
1200			char *ctx = NULL;
1201			u32 len;
1202			if (security_secid_to_secctx(osid, &ctx, &len)) {
1203				audit_log_format(ab, " osid=%u", osid);
1204				*call_panic = 1;
1205			} else {
1206				audit_log_format(ab, " obj=%s", ctx);
1207				security_release_secctx(ctx, len);
1208			}
1209		}
1210		if (context->ipc.has_perm) {
1211			audit_log_end(ab);
1212			ab = audit_log_start(context, GFP_KERNEL,
1213					     AUDIT_IPC_SET_PERM);
1214			if (unlikely(!ab))
1215				return;
1216			audit_log_format(ab,
1217				"qbytes=%lx ouid=%u ogid=%u mode=%#ho",
1218				context->ipc.qbytes,
1219				context->ipc.perm_uid,
1220				context->ipc.perm_gid,
1221				context->ipc.perm_mode);
 
 
1222		}
1223		break; }
1224	case AUDIT_MQ_OPEN: {
1225		audit_log_format(ab,
1226			"oflag=0x%x mode=%#ho mq_flags=0x%lx mq_maxmsg=%ld "
1227			"mq_msgsize=%ld mq_curmsgs=%ld",
1228			context->mq_open.oflag, context->mq_open.mode,
1229			context->mq_open.attr.mq_flags,
1230			context->mq_open.attr.mq_maxmsg,
1231			context->mq_open.attr.mq_msgsize,
1232			context->mq_open.attr.mq_curmsgs);
1233		break; }
1234	case AUDIT_MQ_SENDRECV: {
1235		audit_log_format(ab,
1236			"mqdes=%d msg_len=%zd msg_prio=%u "
1237			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1238			context->mq_sendrecv.mqdes,
1239			context->mq_sendrecv.msg_len,
1240			context->mq_sendrecv.msg_prio,
1241			context->mq_sendrecv.abs_timeout.tv_sec,
1242			context->mq_sendrecv.abs_timeout.tv_nsec);
1243		break; }
1244	case AUDIT_MQ_NOTIFY: {
1245		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1246				context->mq_notify.mqdes,
1247				context->mq_notify.sigev_signo);
1248		break; }
1249	case AUDIT_MQ_GETSETATTR: {
1250		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1251		audit_log_format(ab,
1252			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1253			"mq_curmsgs=%ld ",
1254			context->mq_getsetattr.mqdes,
1255			attr->mq_flags, attr->mq_maxmsg,
1256			attr->mq_msgsize, attr->mq_curmsgs);
1257		break; }
1258	case AUDIT_CAPSET: {
1259		audit_log_format(ab, "pid=%d", context->capset.pid);
1260		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1261		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1262		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1263		break; }
1264	case AUDIT_MMAP: {
1265		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1266				 context->mmap.flags);
1267		break; }
1268	case AUDIT_EXECVE: {
1269		audit_log_execve_info(context, &ab);
1270		break; }
1271	}
1272	audit_log_end(ab);
1273}
1274
1275static inline int audit_proctitle_rtrim(char *proctitle, int len)
1276{
1277	char *end = proctitle + len - 1;
1278	while (end > proctitle && !isprint(*end))
1279		end--;
1280
1281	/* catch the case where proctitle is only 1 non-print character */
1282	len = end - proctitle + 1;
1283	len -= isprint(proctitle[len-1]) == 0;
1284	return len;
1285}
1286
1287static void audit_log_proctitle(struct task_struct *tsk,
1288			 struct audit_context *context)
1289{
1290	int res;
1291	char *buf;
1292	char *msg = "(null)";
1293	int len = strlen(msg);
1294	struct audit_buffer *ab;
1295
1296	ab = audit_log_start(context, GFP_KERNEL, AUDIT_PROCTITLE);
1297	if (!ab)
1298		return;	/* audit_panic or being filtered */
1299
1300	audit_log_format(ab, "proctitle=");
1301
1302	/* Not  cached */
1303	if (!context->proctitle.value) {
1304		buf = kmalloc(MAX_PROCTITLE_AUDIT_LEN, GFP_KERNEL);
1305		if (!buf)
1306			goto out;
1307		/* Historically called this from procfs naming */
1308		res = get_cmdline(tsk, buf, MAX_PROCTITLE_AUDIT_LEN);
1309		if (res == 0) {
1310			kfree(buf);
1311			goto out;
1312		}
1313		res = audit_proctitle_rtrim(buf, res);
1314		if (res == 0) {
1315			kfree(buf);
1316			goto out;
1317		}
1318		context->proctitle.value = buf;
1319		context->proctitle.len = res;
1320	}
1321	msg = context->proctitle.value;
1322	len = context->proctitle.len;
1323out:
1324	audit_log_n_untrustedstring(ab, msg, len);
1325	audit_log_end(ab);
1326}
1327
1328static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1329{
 
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	struct audit_names *n;
1334
1335	/* tsk == current */
 
 
 
 
 
 
 
 
 
 
 
 
1336	context->personality = tsk->personality;
1337
1338	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1339	if (!ab)
1340		return;		/* audit_panic has been called */
1341	audit_log_format(ab, "arch=%x syscall=%d",
1342			 context->arch, context->major);
1343	if (context->personality != PER_LINUX)
1344		audit_log_format(ab, " per=%lx", context->personality);
1345	if (context->return_valid)
1346		audit_log_format(ab, " success=%s exit=%ld",
1347				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1348				 context->return_code);
1349
 
 
 
 
 
 
 
1350	audit_log_format(ab,
1351			 " a0=%lx a1=%lx a2=%lx a3=%lx items=%d",
1352			 context->argv[0],
1353			 context->argv[1],
1354			 context->argv[2],
1355			 context->argv[3],
1356			 context->name_count);
 
 
 
 
 
 
 
 
 
 
 
 
1357
1358	audit_log_task_info(ab, tsk);
1359	audit_log_key(ab, context->filterkey);
1360	audit_log_end(ab);
1361
1362	for (aux = context->aux; aux; aux = aux->next) {
1363
1364		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1365		if (!ab)
1366			continue; /* audit_panic has been called */
1367
1368		switch (aux->type) {
1369
 
 
 
 
 
1370		case AUDIT_BPRM_FCAPS: {
1371			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1372			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1373			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1374			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1375			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1376			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1377			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1378			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1379			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1380			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1381			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1382			break; }
1383
1384		}
1385		audit_log_end(ab);
1386	}
1387
1388	if (context->type)
1389		show_special(context, &call_panic);
1390
1391	if (context->fds[0] >= 0) {
1392		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1393		if (ab) {
1394			audit_log_format(ab, "fd0=%d fd1=%d",
1395					context->fds[0], context->fds[1]);
1396			audit_log_end(ab);
1397		}
1398	}
1399
1400	if (context->sockaddr_len) {
1401		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1402		if (ab) {
1403			audit_log_format(ab, "saddr=");
1404			audit_log_n_hex(ab, (void *)context->sockaddr,
1405					context->sockaddr_len);
1406			audit_log_end(ab);
1407		}
1408	}
1409
1410	for (aux = context->aux_pids; aux; aux = aux->next) {
1411		struct audit_aux_data_pids *axs = (void *)aux;
1412
1413		for (i = 0; i < axs->pid_count; i++)
1414			if (audit_log_pid_context(context, axs->target_pid[i],
1415						  axs->target_auid[i],
1416						  axs->target_uid[i],
1417						  axs->target_sessionid[i],
1418						  axs->target_sid[i],
1419						  axs->target_comm[i]))
1420				call_panic = 1;
1421	}
1422
1423	if (context->target_pid &&
1424	    audit_log_pid_context(context, context->target_pid,
1425				  context->target_auid, context->target_uid,
1426				  context->target_sessionid,
1427				  context->target_sid, context->target_comm))
1428			call_panic = 1;
1429
1430	if (context->pwd.dentry && context->pwd.mnt) {
1431		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1432		if (ab) {
1433			audit_log_d_path(ab, "cwd=", &context->pwd);
1434			audit_log_end(ab);
1435		}
1436	}
 
 
1437
1438	i = 0;
1439	list_for_each_entry(n, &context->names_list, list) {
1440		if (n->hidden)
1441			continue;
1442		audit_log_name(context, n, NULL, i++, &call_panic);
1443	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1444
1445	audit_log_proctitle(tsk, context);
 
 
 
1446
1447	/* Send end of event record to help user space know we are finished */
1448	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1449	if (ab)
1450		audit_log_end(ab);
1451	if (call_panic)
1452		audit_panic("error converting sid to string");
1453}
1454
1455/**
1456 * audit_free - free a per-task audit context
1457 * @tsk: task whose audit context block to free
1458 *
1459 * Called from copy_process and do_exit
1460 */
1461void __audit_free(struct task_struct *tsk)
1462{
1463	struct audit_context *context;
1464
1465	context = audit_take_context(tsk, 0, 0);
1466	if (!context)
1467		return;
1468
1469	/* Check for system calls that do not go through the exit
1470	 * function (e.g., exit_group), then free context block.
1471	 * We use GFP_ATOMIC here because we might be doing this
1472	 * in the context of the idle thread */
1473	/* that can happen only if we are called from do_exit() */
1474	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1475		audit_log_exit(context, tsk);
1476	if (!list_empty(&context->killed_trees))
1477		audit_kill_trees(&context->killed_trees);
1478
1479	audit_free_context(context);
1480}
1481
1482/**
1483 * audit_syscall_entry - fill in an audit record at syscall entry
 
1484 * @major: major syscall type (function)
1485 * @a1: additional syscall register 1
1486 * @a2: additional syscall register 2
1487 * @a3: additional syscall register 3
1488 * @a4: additional syscall register 4
1489 *
1490 * Fill in audit context at syscall entry.  This only happens if the
1491 * audit context was created when the task was created and the state or
1492 * filters demand the audit context be built.  If the state from the
1493 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1494 * then the record will be written at syscall exit time (otherwise, it
1495 * will only be written if another part of the kernel requests that it
1496 * be written).
1497 */
1498void __audit_syscall_entry(int major, unsigned long a1, unsigned long a2,
1499			   unsigned long a3, unsigned long a4)
 
1500{
1501	struct task_struct *tsk = current;
1502	struct audit_context *context = tsk->audit_context;
1503	enum audit_state     state;
1504
1505	if (!context)
1506		return;
1507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1508	BUG_ON(context->in_syscall || context->name_count);
1509
1510	if (!audit_enabled)
1511		return;
1512
1513	context->arch	    = syscall_get_arch();
1514	context->major      = major;
1515	context->argv[0]    = a1;
1516	context->argv[1]    = a2;
1517	context->argv[2]    = a3;
1518	context->argv[3]    = a4;
1519
1520	state = context->state;
1521	context->dummy = !audit_n_rules;
1522	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1523		context->prio = 0;
1524		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1525	}
1526	if (state == AUDIT_DISABLED)
1527		return;
1528
1529	context->serial     = 0;
1530	context->ctime      = CURRENT_TIME;
1531	context->in_syscall = 1;
1532	context->current_state  = state;
1533	context->ppid       = 0;
1534}
1535
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1536/**
1537 * audit_syscall_exit - deallocate audit context after a system call
1538 * @success: success value of the syscall
1539 * @return_code: return value of the syscall
1540 *
1541 * Tear down after system call.  If the audit context has been marked as
1542 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1543 * filtering, or because some other part of the kernel wrote an audit
1544 * message), then write out the syscall information.  In call cases,
1545 * free the names stored from getname().
1546 */
1547void __audit_syscall_exit(int success, long return_code)
1548{
1549	struct task_struct *tsk = current;
1550	struct audit_context *context;
1551
1552	if (success)
1553		success = AUDITSC_SUCCESS;
1554	else
1555		success = AUDITSC_FAILURE;
1556
1557	context = audit_take_context(tsk, success, return_code);
1558	if (!context)
1559		return;
1560
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563
1564	context->in_syscall = 0;
1565	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1566
1567	if (!list_empty(&context->killed_trees))
1568		audit_kill_trees(&context->killed_trees);
1569
1570	audit_free_names(context);
1571	unroll_tree_refs(context, NULL, 0);
1572	audit_free_aux(context);
1573	context->aux = NULL;
1574	context->aux_pids = NULL;
1575	context->target_pid = 0;
1576	context->target_sid = 0;
1577	context->sockaddr_len = 0;
1578	context->type = 0;
1579	context->fds[0] = -1;
1580	if (context->state != AUDIT_RECORD_CONTEXT) {
1581		kfree(context->filterkey);
1582		context->filterkey = NULL;
 
 
 
 
 
 
 
 
1583	}
1584	tsk->audit_context = context;
1585}
1586
1587static inline void handle_one(const struct inode *inode)
1588{
1589#ifdef CONFIG_AUDIT_TREE
1590	struct audit_context *context;
1591	struct audit_tree_refs *p;
1592	struct audit_chunk *chunk;
1593	int count;
1594	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1595		return;
1596	context = current->audit_context;
1597	p = context->trees;
1598	count = context->tree_count;
1599	rcu_read_lock();
1600	chunk = audit_tree_lookup(inode);
1601	rcu_read_unlock();
1602	if (!chunk)
1603		return;
1604	if (likely(put_tree_ref(context, chunk)))
1605		return;
1606	if (unlikely(!grow_tree_refs(context))) {
1607		pr_warn("out of memory, audit has lost a tree reference\n");
1608		audit_set_auditable(context);
1609		audit_put_chunk(chunk);
1610		unroll_tree_refs(context, p, count);
1611		return;
1612	}
1613	put_tree_ref(context, chunk);
1614#endif
1615}
1616
1617static void handle_path(const struct dentry *dentry)
1618{
1619#ifdef CONFIG_AUDIT_TREE
1620	struct audit_context *context;
1621	struct audit_tree_refs *p;
1622	const struct dentry *d, *parent;
1623	struct audit_chunk *drop;
1624	unsigned long seq;
1625	int count;
1626
1627	context = current->audit_context;
1628	p = context->trees;
1629	count = context->tree_count;
1630retry:
1631	drop = NULL;
1632	d = dentry;
1633	rcu_read_lock();
1634	seq = read_seqbegin(&rename_lock);
1635	for(;;) {
1636		struct inode *inode = d_backing_inode(d);
1637		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1638			struct audit_chunk *chunk;
1639			chunk = audit_tree_lookup(inode);
1640			if (chunk) {
1641				if (unlikely(!put_tree_ref(context, chunk))) {
1642					drop = chunk;
1643					break;
1644				}
1645			}
1646		}
1647		parent = d->d_parent;
1648		if (parent == d)
1649			break;
1650		d = parent;
1651	}
1652	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1653		rcu_read_unlock();
1654		if (!drop) {
1655			/* just a race with rename */
1656			unroll_tree_refs(context, p, count);
1657			goto retry;
1658		}
1659		audit_put_chunk(drop);
1660		if (grow_tree_refs(context)) {
1661			/* OK, got more space */
1662			unroll_tree_refs(context, p, count);
1663			goto retry;
1664		}
1665		/* too bad */
1666		pr_warn("out of memory, audit has lost a tree reference\n");
 
1667		unroll_tree_refs(context, p, count);
1668		audit_set_auditable(context);
1669		return;
1670	}
1671	rcu_read_unlock();
1672#endif
1673}
1674
1675static struct audit_names *audit_alloc_name(struct audit_context *context,
1676						unsigned char type)
 
 
 
 
 
 
1677{
1678	struct audit_names *aname;
1679
1680	if (context->name_count < AUDIT_NAMES) {
1681		aname = &context->preallocated_names[context->name_count];
1682		memset(aname, 0, sizeof(*aname));
1683	} else {
1684		aname = kzalloc(sizeof(*aname), GFP_NOFS);
1685		if (!aname)
1686			return NULL;
1687		aname->should_free = true;
1688	}
1689
1690	aname->ino = AUDIT_INO_UNSET;
1691	aname->type = type;
1692	list_add_tail(&aname->list, &context->names_list);
1693
1694	context->name_count++;
1695	return aname;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1696}
1697
1698/**
1699 * audit_reusename - fill out filename with info from existing entry
1700 * @uptr: userland ptr to pathname
1701 *
1702 * Search the audit_names list for the current audit context. If there is an
1703 * existing entry with a matching "uptr" then return the filename
1704 * associated with that audit_name. If not, return NULL.
1705 */
1706struct filename *
1707__audit_reusename(const __user char *uptr)
1708{
1709	struct audit_context *context = current->audit_context;
1710	struct audit_names *n;
1711
1712	list_for_each_entry(n, &context->names_list, list) {
1713		if (!n->name)
1714			continue;
1715		if (n->name->uptr == uptr) {
1716			n->name->refcnt++;
1717			return n->name;
 
 
 
 
 
1718		}
 
 
1719	}
1720	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1721}
1722
1723/**
1724 * audit_getname - add a name to the list
1725 * @name: name to add
1726 *
1727 * Add a name to the list of audit names for this context.
1728 * Called from fs/namei.c:getname().
1729 */
1730void __audit_getname(struct filename *name)
1731{
1732	struct audit_context *context = current->audit_context;
1733	struct audit_names *n;
 
 
 
 
 
1734
1735	if (!context->in_syscall)
1736		return;
 
 
 
 
 
 
 
 
1737
1738	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1739	if (!n)
1740		return;
1741
1742	n->name = name;
1743	n->name_len = AUDIT_NAME_FULL;
1744	name->aname = n;
1745	name->refcnt++;
 
 
 
 
 
1746
1747	if (!context->pwd.dentry)
1748		get_fs_pwd(current->fs, &context->pwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1749}
1750
1751/**
1752 * __audit_inode - store the inode and device from a lookup
1753 * @name: name being audited
1754 * @dentry: dentry being audited
1755 * @flags: attributes for this particular entry
 
1756 */
1757void __audit_inode(struct filename *name, const struct dentry *dentry,
1758		   unsigned int flags)
1759{
 
1760	struct audit_context *context = current->audit_context;
1761	struct inode *inode = d_backing_inode(dentry);
1762	struct audit_names *n;
1763	bool parent = flags & AUDIT_INODE_PARENT;
1764
1765	if (!context->in_syscall)
1766		return;
1767
1768	if (!name)
1769		goto out_alloc;
1770
1771	/*
1772	 * If we have a pointer to an audit_names entry already, then we can
1773	 * just use it directly if the type is correct.
1774	 */
1775	n = name->aname;
1776	if (n) {
1777		if (parent) {
1778			if (n->type == AUDIT_TYPE_PARENT ||
1779			    n->type == AUDIT_TYPE_UNKNOWN)
1780				goto out;
1781		} else {
1782			if (n->type != AUDIT_TYPE_PARENT)
1783				goto out;
1784		}
1785	}
1786
1787	list_for_each_entry_reverse(n, &context->names_list, list) {
1788		if (n->ino) {
1789			/* valid inode number, use that for the comparison */
1790			if (n->ino != inode->i_ino ||
1791			    n->dev != inode->i_sb->s_dev)
1792				continue;
1793		} else if (n->name) {
1794			/* inode number has not been set, check the name */
1795			if (strcmp(n->name->name, name->name))
1796				continue;
1797		} else
1798			/* no inode and no name (?!) ... this is odd ... */
1799			continue;
1800
1801		/* match the correct record type */
1802		if (parent) {
1803			if (n->type == AUDIT_TYPE_PARENT ||
1804			    n->type == AUDIT_TYPE_UNKNOWN)
1805				goto out;
1806		} else {
1807			if (n->type != AUDIT_TYPE_PARENT)
1808				goto out;
1809		}
1810	}
1811
1812out_alloc:
1813	/* unable to find an entry with both a matching name and type */
1814	n = audit_alloc_name(context, AUDIT_TYPE_UNKNOWN);
1815	if (!n)
1816		return;
1817	if (name) {
1818		n->name = name;
1819		name->refcnt++;
1820	}
1821
1822out:
1823	if (parent) {
1824		n->name_len = n->name ? parent_len(n->name->name) : AUDIT_NAME_FULL;
1825		n->type = AUDIT_TYPE_PARENT;
1826		if (flags & AUDIT_INODE_HIDDEN)
1827			n->hidden = true;
1828	} else {
1829		n->name_len = AUDIT_NAME_FULL;
1830		n->type = AUDIT_TYPE_NORMAL;
1831	}
1832	handle_path(dentry);
1833	audit_copy_inode(n, dentry, inode);
1834}
1835
1836void __audit_file(const struct file *file)
1837{
1838	__audit_inode(NULL, file->f_path.dentry, 0);
1839}
1840
1841/**
1842 * __audit_inode_child - collect inode info for created/removed objects
1843 * @parent: inode of dentry parent
1844 * @dentry: dentry being audited
1845 * @type:   AUDIT_TYPE_* value that we're looking for
1846 *
1847 * For syscalls that create or remove filesystem objects, audit_inode
1848 * can only collect information for the filesystem object's parent.
1849 * This call updates the audit context with the child's information.
1850 * Syscalls that create a new filesystem object must be hooked after
1851 * the object is created.  Syscalls that remove a filesystem object
1852 * must be hooked prior, in order to capture the target inode during
1853 * unsuccessful attempts.
1854 */
1855void __audit_inode_child(struct inode *parent,
1856			 const struct dentry *dentry,
1857			 const unsigned char type)
1858{
 
1859	struct audit_context *context = current->audit_context;
1860	struct inode *inode = d_backing_inode(dentry);
 
1861	const char *dname = dentry->d_name.name;
1862	struct audit_names *n, *found_parent = NULL, *found_child = NULL;
1863
1864	if (!context->in_syscall)
1865		return;
1866
1867	if (inode)
1868		handle_one(inode);
1869
1870	/* look for a parent entry first */
1871	list_for_each_entry(n, &context->names_list, list) {
1872		if (!n->name ||
1873		    (n->type != AUDIT_TYPE_PARENT &&
1874		     n->type != AUDIT_TYPE_UNKNOWN))
1875			continue;
1876
1877		if (n->ino == parent->i_ino && n->dev == parent->i_sb->s_dev &&
1878		    !audit_compare_dname_path(dname,
1879					      n->name->name, n->name_len)) {
1880			if (n->type == AUDIT_TYPE_UNKNOWN)
1881				n->type = AUDIT_TYPE_PARENT;
1882			found_parent = n;
1883			break;
1884		}
1885	}
1886
1887	/* is there a matching child entry? */
1888	list_for_each_entry(n, &context->names_list, list) {
1889		/* can only match entries that have a name */
1890		if (!n->name ||
1891		    (n->type != type && n->type != AUDIT_TYPE_UNKNOWN))
1892			continue;
1893
1894		if (!strcmp(dname, n->name->name) ||
1895		    !audit_compare_dname_path(dname, n->name->name,
1896						found_parent ?
1897						found_parent->name_len :
1898						AUDIT_NAME_FULL)) {
1899			if (n->type == AUDIT_TYPE_UNKNOWN)
1900				n->type = type;
1901			found_child = n;
1902			break;
1903		}
1904	}
1905
 
1906	if (!found_parent) {
1907		/* create a new, "anonymous" parent record */
1908		n = audit_alloc_name(context, AUDIT_TYPE_PARENT);
1909		if (!n)
1910			return;
1911		audit_copy_inode(n, NULL, parent);
 
 
1912	}
1913
1914	if (!found_child) {
1915		found_child = audit_alloc_name(context, type);
1916		if (!found_child)
1917			return;
 
1918
1919		/* Re-use the name belonging to the slot for a matching parent
1920		 * directory. All names for this context are relinquished in
1921		 * audit_free_names() */
1922		if (found_parent) {
1923			found_child->name = found_parent->name;
1924			found_child->name_len = AUDIT_NAME_FULL;
1925			found_child->name->refcnt++;
 
 
 
1926		}
1927	}
1928
1929	if (inode)
1930		audit_copy_inode(found_child, dentry, inode);
1931	else
1932		found_child->ino = AUDIT_INO_UNSET;
 
1933}
1934EXPORT_SYMBOL_GPL(__audit_inode_child);
1935
1936/**
1937 * auditsc_get_stamp - get local copies of audit_context values
1938 * @ctx: audit_context for the task
1939 * @t: timespec to store time recorded in the audit_context
1940 * @serial: serial value that is recorded in the audit_context
1941 *
1942 * Also sets the context as auditable.
1943 */
1944int auditsc_get_stamp(struct audit_context *ctx,
1945		       struct timespec *t, unsigned int *serial)
1946{
1947	if (!ctx->in_syscall)
1948		return 0;
1949	if (!ctx->serial)
1950		ctx->serial = audit_serial();
1951	t->tv_sec  = ctx->ctime.tv_sec;
1952	t->tv_nsec = ctx->ctime.tv_nsec;
1953	*serial    = ctx->serial;
1954	if (!ctx->prio) {
1955		ctx->prio = 1;
1956		ctx->current_state = AUDIT_RECORD_CONTEXT;
1957	}
1958	return 1;
1959}
1960
1961/* global counter which is incremented every time something logs in */
1962static atomic_t session_id = ATOMIC_INIT(0);
1963
1964static int audit_set_loginuid_perm(kuid_t loginuid)
1965{
1966	/* if we are unset, we don't need privs */
1967	if (!audit_loginuid_set(current))
1968		return 0;
1969	/* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
1970	if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
1971		return -EPERM;
1972	/* it is set, you need permission */
1973	if (!capable(CAP_AUDIT_CONTROL))
1974		return -EPERM;
1975	/* reject if this is not an unset and we don't allow that */
1976	if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID) && uid_valid(loginuid))
1977		return -EPERM;
1978	return 0;
1979}
1980
1981static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
1982				   unsigned int oldsessionid, unsigned int sessionid,
1983				   int rc)
1984{
1985	struct audit_buffer *ab;
1986	uid_t uid, oldloginuid, loginuid;
1987	struct tty_struct *tty;
1988
1989	if (!audit_enabled)
1990		return;
1991
1992	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
1993	if (!ab)
1994		return;
1995
1996	uid = from_kuid(&init_user_ns, task_uid(current));
1997	oldloginuid = from_kuid(&init_user_ns, koldloginuid);
1998	loginuid = from_kuid(&init_user_ns, kloginuid),
1999	tty = audit_get_tty(current);
2000
2001	audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2002	audit_log_task_context(ab);
2003	audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2004			 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2005			 oldsessionid, sessionid, !rc);
2006	audit_put_tty(tty);
2007	audit_log_end(ab);
2008}
2009
2010/**
2011 * audit_set_loginuid - set current task's audit_context loginuid
 
2012 * @loginuid: loginuid value
2013 *
2014 * Returns 0.
2015 *
2016 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2017 */
2018int audit_set_loginuid(kuid_t loginuid)
2019{
2020	struct task_struct *task = current;
2021	unsigned int oldsessionid, sessionid = (unsigned int)-1;
2022	kuid_t oldloginuid;
2023	int rc;
2024
2025	oldloginuid = audit_get_loginuid(current);
2026	oldsessionid = audit_get_sessionid(current);
2027
2028	rc = audit_set_loginuid_perm(loginuid);
2029	if (rc)
2030		goto out;
2031
2032	/* are we setting or clearing? */
2033	if (uid_valid(loginuid)) {
2034		sessionid = (unsigned int)atomic_inc_return(&session_id);
2035		if (unlikely(sessionid == (unsigned int)-1))
2036			sessionid = (unsigned int)atomic_inc_return(&session_id);
 
2037	}
2038
2039	task->sessionid = sessionid;
2040	task->loginuid = loginuid;
2041out:
2042	audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2043	return rc;
2044}
2045
2046/**
2047 * __audit_mq_open - record audit data for a POSIX MQ open
2048 * @oflag: open flag
2049 * @mode: mode bits
2050 * @attr: queue attributes
2051 *
2052 */
2053void __audit_mq_open(int oflag, umode_t mode, struct mq_attr *attr)
2054{
2055	struct audit_context *context = current->audit_context;
2056
2057	if (attr)
2058		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2059	else
2060		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2061
2062	context->mq_open.oflag = oflag;
2063	context->mq_open.mode = mode;
2064
2065	context->type = AUDIT_MQ_OPEN;
2066}
2067
2068/**
2069 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2070 * @mqdes: MQ descriptor
2071 * @msg_len: Message length
2072 * @msg_prio: Message priority
2073 * @abs_timeout: Message timeout in absolute time
2074 *
2075 */
2076void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2077			const struct timespec *abs_timeout)
2078{
2079	struct audit_context *context = current->audit_context;
2080	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2081
2082	if (abs_timeout)
2083		memcpy(p, abs_timeout, sizeof(struct timespec));
2084	else
2085		memset(p, 0, sizeof(struct timespec));
2086
2087	context->mq_sendrecv.mqdes = mqdes;
2088	context->mq_sendrecv.msg_len = msg_len;
2089	context->mq_sendrecv.msg_prio = msg_prio;
2090
2091	context->type = AUDIT_MQ_SENDRECV;
2092}
2093
2094/**
2095 * __audit_mq_notify - record audit data for a POSIX MQ notify
2096 * @mqdes: MQ descriptor
2097 * @notification: Notification event
2098 *
2099 */
2100
2101void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2102{
2103	struct audit_context *context = current->audit_context;
2104
2105	if (notification)
2106		context->mq_notify.sigev_signo = notification->sigev_signo;
2107	else
2108		context->mq_notify.sigev_signo = 0;
2109
2110	context->mq_notify.mqdes = mqdes;
2111	context->type = AUDIT_MQ_NOTIFY;
2112}
2113
2114/**
2115 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2116 * @mqdes: MQ descriptor
2117 * @mqstat: MQ flags
2118 *
2119 */
2120void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2121{
2122	struct audit_context *context = current->audit_context;
2123	context->mq_getsetattr.mqdes = mqdes;
2124	context->mq_getsetattr.mqstat = *mqstat;
2125	context->type = AUDIT_MQ_GETSETATTR;
2126}
2127
2128/**
2129 * audit_ipc_obj - record audit data for ipc object
2130 * @ipcp: ipc permissions
2131 *
2132 */
2133void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2134{
2135	struct audit_context *context = current->audit_context;
2136	context->ipc.uid = ipcp->uid;
2137	context->ipc.gid = ipcp->gid;
2138	context->ipc.mode = ipcp->mode;
2139	context->ipc.has_perm = 0;
2140	security_ipc_getsecid(ipcp, &context->ipc.osid);
2141	context->type = AUDIT_IPC;
2142}
2143
2144/**
2145 * audit_ipc_set_perm - record audit data for new ipc permissions
2146 * @qbytes: msgq bytes
2147 * @uid: msgq user id
2148 * @gid: msgq group id
2149 * @mode: msgq mode (permissions)
2150 *
2151 * Called only after audit_ipc_obj().
2152 */
2153void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, umode_t mode)
2154{
2155	struct audit_context *context = current->audit_context;
2156
2157	context->ipc.qbytes = qbytes;
2158	context->ipc.perm_uid = uid;
2159	context->ipc.perm_gid = gid;
2160	context->ipc.perm_mode = mode;
2161	context->ipc.has_perm = 1;
2162}
2163
2164void __audit_bprm(struct linux_binprm *bprm)
2165{
 
2166	struct audit_context *context = current->audit_context;
2167
2168	context->type = AUDIT_EXECVE;
2169	context->execve.argc = bprm->argc;
 
 
 
 
 
 
 
 
 
 
 
 
2170}
2171
2172
2173/**
2174 * audit_socketcall - record audit data for sys_socketcall
2175 * @nargs: number of args, which should not be more than AUDITSC_ARGS.
2176 * @args: args array
2177 *
2178 */
2179int __audit_socketcall(int nargs, unsigned long *args)
2180{
2181	struct audit_context *context = current->audit_context;
2182
2183	if (nargs <= 0 || nargs > AUDITSC_ARGS || !args)
2184		return -EINVAL;
 
2185	context->type = AUDIT_SOCKETCALL;
2186	context->socketcall.nargs = nargs;
2187	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
2188	return 0;
2189}
2190
2191/**
2192 * __audit_fd_pair - record audit data for pipe and socketpair
2193 * @fd1: the first file descriptor
2194 * @fd2: the second file descriptor
2195 *
2196 */
2197void __audit_fd_pair(int fd1, int fd2)
2198{
2199	struct audit_context *context = current->audit_context;
2200	context->fds[0] = fd1;
2201	context->fds[1] = fd2;
2202}
2203
2204/**
2205 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2206 * @len: data length in user space
2207 * @a: data address in kernel space
2208 *
2209 * Returns 0 for success or NULL context or < 0 on error.
2210 */
2211int __audit_sockaddr(int len, void *a)
2212{
2213	struct audit_context *context = current->audit_context;
2214
 
 
 
2215	if (!context->sockaddr) {
2216		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2217		if (!p)
2218			return -ENOMEM;
2219		context->sockaddr = p;
2220	}
2221
2222	context->sockaddr_len = len;
2223	memcpy(context->sockaddr, a, len);
2224	return 0;
2225}
2226
2227void __audit_ptrace(struct task_struct *t)
2228{
2229	struct audit_context *context = current->audit_context;
2230
2231	context->target_pid = task_tgid_nr(t);
2232	context->target_auid = audit_get_loginuid(t);
2233	context->target_uid = task_uid(t);
2234	context->target_sessionid = audit_get_sessionid(t);
2235	security_task_getsecid(t, &context->target_sid);
2236	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2237}
2238
2239/**
2240 * audit_signal_info - record signal info for shutting down audit subsystem
2241 * @sig: signal value
2242 * @t: task being signaled
2243 *
2244 * If the audit subsystem is being terminated, record the task (pid)
2245 * and uid that is doing that.
2246 */
2247int __audit_signal_info(int sig, struct task_struct *t)
2248{
2249	struct audit_aux_data_pids *axp;
2250	struct task_struct *tsk = current;
2251	struct audit_context *ctx = tsk->audit_context;
2252	kuid_t uid = current_uid(), t_uid = task_uid(t);
2253
2254	if (auditd_test_task(t)) {
2255		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2256			audit_sig_pid = task_tgid_nr(tsk);
2257			if (uid_valid(tsk->loginuid))
2258				audit_sig_uid = tsk->loginuid;
2259			else
2260				audit_sig_uid = uid;
2261			security_task_getsecid(tsk, &audit_sig_sid);
2262		}
2263		if (!audit_signals || audit_dummy_context())
2264			return 0;
2265	}
2266
2267	/* optimize the common case by putting first signal recipient directly
2268	 * in audit_context */
2269	if (!ctx->target_pid) {
2270		ctx->target_pid = task_tgid_nr(t);
2271		ctx->target_auid = audit_get_loginuid(t);
2272		ctx->target_uid = t_uid;
2273		ctx->target_sessionid = audit_get_sessionid(t);
2274		security_task_getsecid(t, &ctx->target_sid);
2275		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2276		return 0;
2277	}
2278
2279	axp = (void *)ctx->aux_pids;
2280	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2281		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2282		if (!axp)
2283			return -ENOMEM;
2284
2285		axp->d.type = AUDIT_OBJ_PID;
2286		axp->d.next = ctx->aux_pids;
2287		ctx->aux_pids = (void *)axp;
2288	}
2289	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2290
2291	axp->target_pid[axp->pid_count] = task_tgid_nr(t);
2292	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2293	axp->target_uid[axp->pid_count] = t_uid;
2294	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2295	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2296	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2297	axp->pid_count++;
2298
2299	return 0;
2300}
2301
2302/**
2303 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2304 * @bprm: pointer to the bprm being processed
2305 * @new: the proposed new credentials
2306 * @old: the old credentials
2307 *
2308 * Simply check if the proc already has the caps given by the file and if not
2309 * store the priv escalation info for later auditing at the end of the syscall
2310 *
2311 * -Eric
2312 */
2313int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2314			   const struct cred *new, const struct cred *old)
2315{
2316	struct audit_aux_data_bprm_fcaps *ax;
2317	struct audit_context *context = current->audit_context;
2318	struct cpu_vfs_cap_data vcaps;
 
2319
2320	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2321	if (!ax)
2322		return -ENOMEM;
2323
2324	ax->d.type = AUDIT_BPRM_FCAPS;
2325	ax->d.next = context->aux;
2326	context->aux = (void *)ax;
2327
2328	get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
 
 
2329
2330	ax->fcap.permitted = vcaps.permitted;
2331	ax->fcap.inheritable = vcaps.inheritable;
2332	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2333	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2334
2335	ax->old_pcap.permitted   = old->cap_permitted;
2336	ax->old_pcap.inheritable = old->cap_inheritable;
2337	ax->old_pcap.effective   = old->cap_effective;
2338
2339	ax->new_pcap.permitted   = new->cap_permitted;
2340	ax->new_pcap.inheritable = new->cap_inheritable;
2341	ax->new_pcap.effective   = new->cap_effective;
2342	return 0;
2343}
2344
2345/**
2346 * __audit_log_capset - store information about the arguments to the capset syscall
 
2347 * @new: the new credentials
2348 * @old: the old (current) credentials
2349 *
2350 * Record the arguments userspace sent to sys_capset for later printing by the
2351 * audit system if applicable
2352 */
2353void __audit_log_capset(const struct cred *new, const struct cred *old)
 
2354{
2355	struct audit_context *context = current->audit_context;
2356	context->capset.pid = task_tgid_nr(current);
2357	context->capset.cap.effective   = new->cap_effective;
2358	context->capset.cap.inheritable = new->cap_effective;
2359	context->capset.cap.permitted   = new->cap_permitted;
2360	context->type = AUDIT_CAPSET;
2361}
2362
2363void __audit_mmap_fd(int fd, int flags)
2364{
2365	struct audit_context *context = current->audit_context;
2366	context->mmap.fd = fd;
2367	context->mmap.flags = flags;
2368	context->type = AUDIT_MMAP;
2369}
2370
2371static void audit_log_task(struct audit_buffer *ab)
2372{
2373	kuid_t auid, uid;
2374	kgid_t gid;
2375	unsigned int sessionid;
2376	char comm[sizeof(current->comm)];
2377
2378	auid = audit_get_loginuid(current);
2379	sessionid = audit_get_sessionid(current);
2380	current_uid_gid(&uid, &gid);
2381
2382	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2383			 from_kuid(&init_user_ns, auid),
2384			 from_kuid(&init_user_ns, uid),
2385			 from_kgid(&init_user_ns, gid),
2386			 sessionid);
2387	audit_log_task_context(ab);
2388	audit_log_format(ab, " pid=%d comm=", task_tgid_nr(current));
2389	audit_log_untrustedstring(ab, get_task_comm(comm, current));
2390	audit_log_d_path_exe(ab, current->mm);
2391}
2392
2393/**
2394 * audit_core_dumps - record information about processes that end abnormally
2395 * @signr: signal value
2396 *
2397 * If a process ends with a core dump, something fishy is going on and we
2398 * should record the event for investigation.
2399 */
2400void audit_core_dumps(long signr)
2401{
2402	struct audit_buffer *ab;
 
 
 
 
2403
2404	if (!audit_enabled)
2405		return;
2406
2407	if (signr == SIGQUIT)	/* don't care for those */
2408		return;
2409
2410	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2411	if (unlikely(!ab))
2412		return;
2413	audit_log_task(ab);
2414	audit_log_format(ab, " sig=%ld", signr);
2415	audit_log_end(ab);
2416}
2417
2418void __audit_seccomp(unsigned long syscall, long signr, int code)
2419{
2420	struct audit_buffer *ab;
2421
2422	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_SECCOMP);
2423	if (unlikely(!ab))
2424		return;
2425	audit_log_task(ab);
2426	audit_log_format(ab, " sig=%ld arch=%x syscall=%ld compat=%d ip=0x%lx code=0x%x",
2427			 signr, syscall_get_arch(), syscall,
2428			 in_compat_syscall(), KSTK_EIP(current), code);
 
 
 
2429	audit_log_end(ab);
2430}
2431
2432struct list_head *audit_killed_trees(void)
2433{
2434	struct audit_context *ctx = current->audit_context;
2435	if (likely(!ctx || !ctx->in_syscall))
2436		return NULL;
2437	return &ctx->killed_trees;
2438}
v3.1
   1/* auditsc.c -- System-call auditing support
   2 * Handles all system-call specific auditing features.
   3 *
   4 * Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
   5 * Copyright 2005 Hewlett-Packard Development Company, L.P.
   6 * Copyright (C) 2005, 2006 IBM Corporation
   7 * All Rights Reserved.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License as published by
  11 * the Free Software Foundation; either version 2 of the License, or
  12 * (at your option) any later version.
  13 *
  14 * This program is distributed in the hope that it will be useful,
  15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  17 * GNU General Public License for more details.
  18 *
  19 * You should have received a copy of the GNU General Public License
  20 * along with this program; if not, write to the Free Software
  21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  22 *
  23 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  24 *
  25 * Many of the ideas implemented here are from Stephen C. Tweedie,
  26 * especially the idea of avoiding a copy by using getname.
  27 *
  28 * The method for actual interception of syscall entry and exit (not in
  29 * this file -- see entry.S) is based on a GPL'd patch written by
  30 * okir@suse.de and Copyright 2003 SuSE Linux AG.
  31 *
  32 * POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
  33 * 2006.
  34 *
  35 * The support of additional filter rules compares (>, <, >=, <=) was
  36 * added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
  37 *
  38 * Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
  39 * filesystem information.
  40 *
  41 * Subject and object context labeling support added by <danjones@us.ibm.com>
  42 * and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
  43 */
  44
 
 
  45#include <linux/init.h>
  46#include <asm/types.h>
  47#include <linux/atomic.h>
  48#include <linux/fs.h>
  49#include <linux/namei.h>
  50#include <linux/mm.h>
  51#include <linux/module.h>
  52#include <linux/slab.h>
  53#include <linux/mount.h>
  54#include <linux/socket.h>
  55#include <linux/mqueue.h>
  56#include <linux/audit.h>
  57#include <linux/personality.h>
  58#include <linux/time.h>
  59#include <linux/netlink.h>
  60#include <linux/compiler.h>
  61#include <asm/unistd.h>
  62#include <linux/security.h>
  63#include <linux/list.h>
  64#include <linux/tty.h>
  65#include <linux/binfmts.h>
  66#include <linux/highmem.h>
  67#include <linux/syscalls.h>
 
  68#include <linux/capability.h>
  69#include <linux/fs_struct.h>
 
 
 
 
 
  70
  71#include "audit.h"
  72
  73/* AUDIT_NAMES is the number of slots we reserve in the audit_context
  74 * for saving names from getname(). */
  75#define AUDIT_NAMES    20
 
  76
  77/* Indicates that audit should log the full pathname. */
  78#define AUDIT_NAME_FULL -1
 
  79
  80/* no execve audit message should be longer than this (userspace limits) */
  81#define MAX_EXECVE_AUDIT_LEN 7500
  82
  83/* number of audit rules */
  84int audit_n_rules;
  85
  86/* determines whether we collect data for signals sent */
  87int audit_signals;
  88
  89struct audit_cap_data {
  90	kernel_cap_t		permitted;
  91	kernel_cap_t		inheritable;
  92	union {
  93		unsigned int	fE;		/* effective bit of a file capability */
  94		kernel_cap_t	effective;	/* effective set of a process */
  95	};
  96};
  97
  98/* When fs/namei.c:getname() is called, we store the pointer in name and
  99 * we don't let putname() free it (instead we free all of the saved
 100 * pointers at syscall exit time).
 101 *
 102 * Further, in fs/namei.c:path_lookup() we store the inode and device. */
 103struct audit_names {
 104	const char	*name;
 105	int		name_len;	/* number of name's characters to log */
 106	unsigned	name_put;	/* call __putname() for this name */
 107	unsigned long	ino;
 108	dev_t		dev;
 109	umode_t		mode;
 110	uid_t		uid;
 111	gid_t		gid;
 112	dev_t		rdev;
 113	u32		osid;
 114	struct audit_cap_data fcap;
 115	unsigned int	fcap_ver;
 116};
 117
 118struct audit_aux_data {
 119	struct audit_aux_data	*next;
 120	int			type;
 121};
 122
 123#define AUDIT_AUX_IPCPERM	0
 124
 125/* Number of target pids per aux struct. */
 126#define AUDIT_AUX_PIDS	16
 127
 128struct audit_aux_data_execve {
 129	struct audit_aux_data	d;
 130	int argc;
 131	int envc;
 132	struct mm_struct *mm;
 133};
 134
 135struct audit_aux_data_pids {
 136	struct audit_aux_data	d;
 137	pid_t			target_pid[AUDIT_AUX_PIDS];
 138	uid_t			target_auid[AUDIT_AUX_PIDS];
 139	uid_t			target_uid[AUDIT_AUX_PIDS];
 140	unsigned int		target_sessionid[AUDIT_AUX_PIDS];
 141	u32			target_sid[AUDIT_AUX_PIDS];
 142	char 			target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
 143	int			pid_count;
 144};
 145
 146struct audit_aux_data_bprm_fcaps {
 147	struct audit_aux_data	d;
 148	struct audit_cap_data	fcap;
 149	unsigned int		fcap_ver;
 150	struct audit_cap_data	old_pcap;
 151	struct audit_cap_data	new_pcap;
 152};
 153
 154struct audit_aux_data_capset {
 155	struct audit_aux_data	d;
 156	pid_t			pid;
 157	struct audit_cap_data	cap;
 158};
 159
 160struct audit_tree_refs {
 161	struct audit_tree_refs *next;
 162	struct audit_chunk *c[31];
 163};
 164
 165/* The per-task audit context. */
 166struct audit_context {
 167	int		    dummy;	/* must be the first element */
 168	int		    in_syscall;	/* 1 if task is in a syscall */
 169	enum audit_state    state, current_state;
 170	unsigned int	    serial;     /* serial number for record */
 171	int		    major;      /* syscall number */
 172	struct timespec	    ctime;      /* time of syscall entry */
 173	unsigned long	    argv[4];    /* syscall arguments */
 174	long		    return_code;/* syscall return code */
 175	u64		    prio;
 176	int		    return_valid; /* return code is valid */
 177	int		    name_count;
 178	struct audit_names  names[AUDIT_NAMES];
 179	char *		    filterkey;	/* key for rule that triggered record */
 180	struct path	    pwd;
 181	struct audit_context *previous; /* For nested syscalls */
 182	struct audit_aux_data *aux;
 183	struct audit_aux_data *aux_pids;
 184	struct sockaddr_storage *sockaddr;
 185	size_t sockaddr_len;
 186				/* Save things to print about task_struct */
 187	pid_t		    pid, ppid;
 188	uid_t		    uid, euid, suid, fsuid;
 189	gid_t		    gid, egid, sgid, fsgid;
 190	unsigned long	    personality;
 191	int		    arch;
 192
 193	pid_t		    target_pid;
 194	uid_t		    target_auid;
 195	uid_t		    target_uid;
 196	unsigned int	    target_sessionid;
 197	u32		    target_sid;
 198	char		    target_comm[TASK_COMM_LEN];
 199
 200	struct audit_tree_refs *trees, *first_trees;
 201	struct list_head killed_trees;
 202	int tree_count;
 203
 204	int type;
 205	union {
 206		struct {
 207			int nargs;
 208			long args[6];
 209		} socketcall;
 210		struct {
 211			uid_t			uid;
 212			gid_t			gid;
 213			mode_t			mode;
 214			u32			osid;
 215			int			has_perm;
 216			uid_t			perm_uid;
 217			gid_t			perm_gid;
 218			mode_t			perm_mode;
 219			unsigned long		qbytes;
 220		} ipc;
 221		struct {
 222			mqd_t			mqdes;
 223			struct mq_attr 		mqstat;
 224		} mq_getsetattr;
 225		struct {
 226			mqd_t			mqdes;
 227			int			sigev_signo;
 228		} mq_notify;
 229		struct {
 230			mqd_t			mqdes;
 231			size_t			msg_len;
 232			unsigned int		msg_prio;
 233			struct timespec		abs_timeout;
 234		} mq_sendrecv;
 235		struct {
 236			int			oflag;
 237			mode_t			mode;
 238			struct mq_attr		attr;
 239		} mq_open;
 240		struct {
 241			pid_t			pid;
 242			struct audit_cap_data	cap;
 243		} capset;
 244		struct {
 245			int			fd;
 246			int			flags;
 247		} mmap;
 248	};
 249	int fds[2];
 250
 251#if AUDIT_DEBUG
 252	int		    put_count;
 253	int		    ino_count;
 254#endif
 255};
 256
 257static inline int open_arg(int flags, int mask)
 258{
 259	int n = ACC_MODE(flags);
 260	if (flags & (O_TRUNC | O_CREAT))
 261		n |= AUDIT_PERM_WRITE;
 262	return n & mask;
 263}
 264
 265static int audit_match_perm(struct audit_context *ctx, int mask)
 266{
 267	unsigned n;
 268	if (unlikely(!ctx))
 269		return 0;
 270	n = ctx->major;
 271
 272	switch (audit_classify_syscall(ctx->arch, n)) {
 273	case 0:	/* native */
 274		if ((mask & AUDIT_PERM_WRITE) &&
 275		     audit_match_class(AUDIT_CLASS_WRITE, n))
 276			return 1;
 277		if ((mask & AUDIT_PERM_READ) &&
 278		     audit_match_class(AUDIT_CLASS_READ, n))
 279			return 1;
 280		if ((mask & AUDIT_PERM_ATTR) &&
 281		     audit_match_class(AUDIT_CLASS_CHATTR, n))
 282			return 1;
 283		return 0;
 284	case 1: /* 32bit on biarch */
 285		if ((mask & AUDIT_PERM_WRITE) &&
 286		     audit_match_class(AUDIT_CLASS_WRITE_32, n))
 287			return 1;
 288		if ((mask & AUDIT_PERM_READ) &&
 289		     audit_match_class(AUDIT_CLASS_READ_32, n))
 290			return 1;
 291		if ((mask & AUDIT_PERM_ATTR) &&
 292		     audit_match_class(AUDIT_CLASS_CHATTR_32, n))
 293			return 1;
 294		return 0;
 295	case 2: /* open */
 296		return mask & ACC_MODE(ctx->argv[1]);
 297	case 3: /* openat */
 298		return mask & ACC_MODE(ctx->argv[2]);
 299	case 4: /* socketcall */
 300		return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
 301	case 5: /* execve */
 302		return mask & AUDIT_PERM_EXEC;
 303	default:
 304		return 0;
 305	}
 306}
 307
 308static int audit_match_filetype(struct audit_context *ctx, int which)
 309{
 310	unsigned index = which & ~S_IFMT;
 311	mode_t mode = which & S_IFMT;
 312
 313	if (unlikely(!ctx))
 314		return 0;
 315
 316	if (index >= ctx->name_count)
 317		return 0;
 318	if (ctx->names[index].ino == -1)
 319		return 0;
 320	if ((ctx->names[index].mode ^ mode) & S_IFMT)
 321		return 0;
 322	return 1;
 323}
 324
 325/*
 326 * We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
 327 * ->first_trees points to its beginning, ->trees - to the current end of data.
 328 * ->tree_count is the number of free entries in array pointed to by ->trees.
 329 * Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
 330 * "empty" becomes (p, p, 31) afterwards.  We don't shrink the list (and seriously,
 331 * it's going to remain 1-element for almost any setup) until we free context itself.
 332 * References in it _are_ dropped - at the same time we free/drop aux stuff.
 333 */
 334
 335#ifdef CONFIG_AUDIT_TREE
 336static void audit_set_auditable(struct audit_context *ctx)
 337{
 338	if (!ctx->prio) {
 339		ctx->prio = 1;
 340		ctx->current_state = AUDIT_RECORD_CONTEXT;
 341	}
 342}
 343
 344static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
 345{
 346	struct audit_tree_refs *p = ctx->trees;
 347	int left = ctx->tree_count;
 348	if (likely(left)) {
 349		p->c[--left] = chunk;
 350		ctx->tree_count = left;
 351		return 1;
 352	}
 353	if (!p)
 354		return 0;
 355	p = p->next;
 356	if (p) {
 357		p->c[30] = chunk;
 358		ctx->trees = p;
 359		ctx->tree_count = 30;
 360		return 1;
 361	}
 362	return 0;
 363}
 364
 365static int grow_tree_refs(struct audit_context *ctx)
 366{
 367	struct audit_tree_refs *p = ctx->trees;
 368	ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
 369	if (!ctx->trees) {
 370		ctx->trees = p;
 371		return 0;
 372	}
 373	if (p)
 374		p->next = ctx->trees;
 375	else
 376		ctx->first_trees = ctx->trees;
 377	ctx->tree_count = 31;
 378	return 1;
 379}
 380#endif
 381
 382static void unroll_tree_refs(struct audit_context *ctx,
 383		      struct audit_tree_refs *p, int count)
 384{
 385#ifdef CONFIG_AUDIT_TREE
 386	struct audit_tree_refs *q;
 387	int n;
 388	if (!p) {
 389		/* we started with empty chain */
 390		p = ctx->first_trees;
 391		count = 31;
 392		/* if the very first allocation has failed, nothing to do */
 393		if (!p)
 394			return;
 395	}
 396	n = count;
 397	for (q = p; q != ctx->trees; q = q->next, n = 31) {
 398		while (n--) {
 399			audit_put_chunk(q->c[n]);
 400			q->c[n] = NULL;
 401		}
 402	}
 403	while (n-- > ctx->tree_count) {
 404		audit_put_chunk(q->c[n]);
 405		q->c[n] = NULL;
 406	}
 407	ctx->trees = p;
 408	ctx->tree_count = count;
 409#endif
 410}
 411
 412static void free_tree_refs(struct audit_context *ctx)
 413{
 414	struct audit_tree_refs *p, *q;
 415	for (p = ctx->first_trees; p; p = q) {
 416		q = p->next;
 417		kfree(p);
 418	}
 419}
 420
 421static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
 422{
 423#ifdef CONFIG_AUDIT_TREE
 424	struct audit_tree_refs *p;
 425	int n;
 426	if (!tree)
 427		return 0;
 428	/* full ones */
 429	for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
 430		for (n = 0; n < 31; n++)
 431			if (audit_tree_match(p->c[n], tree))
 432				return 1;
 433	}
 434	/* partial */
 435	if (p) {
 436		for (n = ctx->tree_count; n < 31; n++)
 437			if (audit_tree_match(p->c[n], tree))
 438				return 1;
 439	}
 440#endif
 441	return 0;
 442}
 443
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 444/* Determine if any context name data matches a rule's watch data */
 445/* Compare a task_struct with an audit_rule.  Return 1 on match, 0
 446 * otherwise.
 447 *
 448 * If task_creation is true, this is an explicit indication that we are
 449 * filtering a task rule at task creation time.  This and tsk == current are
 450 * the only situations where tsk->cred may be accessed without an rcu read lock.
 451 */
 452static int audit_filter_rules(struct task_struct *tsk,
 453			      struct audit_krule *rule,
 454			      struct audit_context *ctx,
 455			      struct audit_names *name,
 456			      enum audit_state *state,
 457			      bool task_creation)
 458{
 459	const struct cred *cred;
 460	int i, j, need_sid = 1;
 461	u32 sid;
 
 462
 463	cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
 464
 465	for (i = 0; i < rule->field_count; i++) {
 466		struct audit_field *f = &rule->fields[i];
 
 467		int result = 0;
 
 468
 469		switch (f->type) {
 470		case AUDIT_PID:
 471			result = audit_comparator(tsk->pid, f->op, f->val);
 
 472			break;
 473		case AUDIT_PPID:
 474			if (ctx) {
 475				if (!ctx->ppid)
 476					ctx->ppid = sys_getppid();
 477				result = audit_comparator(ctx->ppid, f->op, f->val);
 478			}
 479			break;
 
 
 
 480		case AUDIT_UID:
 481			result = audit_comparator(cred->uid, f->op, f->val);
 482			break;
 483		case AUDIT_EUID:
 484			result = audit_comparator(cred->euid, f->op, f->val);
 485			break;
 486		case AUDIT_SUID:
 487			result = audit_comparator(cred->suid, f->op, f->val);
 488			break;
 489		case AUDIT_FSUID:
 490			result = audit_comparator(cred->fsuid, f->op, f->val);
 491			break;
 492		case AUDIT_GID:
 493			result = audit_comparator(cred->gid, f->op, f->val);
 
 
 
 
 
 
 
 494			break;
 495		case AUDIT_EGID:
 496			result = audit_comparator(cred->egid, f->op, f->val);
 
 
 
 
 
 
 
 497			break;
 498		case AUDIT_SGID:
 499			result = audit_comparator(cred->sgid, f->op, f->val);
 500			break;
 501		case AUDIT_FSGID:
 502			result = audit_comparator(cred->fsgid, f->op, f->val);
 
 
 
 
 503			break;
 504		case AUDIT_PERS:
 505			result = audit_comparator(tsk->personality, f->op, f->val);
 506			break;
 507		case AUDIT_ARCH:
 508			if (ctx)
 509				result = audit_comparator(ctx->arch, f->op, f->val);
 510			break;
 511
 512		case AUDIT_EXIT:
 513			if (ctx && ctx->return_valid)
 514				result = audit_comparator(ctx->return_code, f->op, f->val);
 515			break;
 516		case AUDIT_SUCCESS:
 517			if (ctx && ctx->return_valid) {
 518				if (f->val)
 519					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
 520				else
 521					result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
 522			}
 523			break;
 524		case AUDIT_DEVMAJOR:
 525			if (name)
 526				result = audit_comparator(MAJOR(name->dev),
 527							  f->op, f->val);
 528			else if (ctx) {
 529				for (j = 0; j < ctx->name_count; j++) {
 530					if (audit_comparator(MAJOR(ctx->names[j].dev),	f->op, f->val)) {
 
 
 531						++result;
 532						break;
 533					}
 534				}
 535			}
 536			break;
 537		case AUDIT_DEVMINOR:
 538			if (name)
 539				result = audit_comparator(MINOR(name->dev),
 540							  f->op, f->val);
 541			else if (ctx) {
 542				for (j = 0; j < ctx->name_count; j++) {
 543					if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
 
 
 544						++result;
 545						break;
 546					}
 547				}
 548			}
 549			break;
 550		case AUDIT_INODE:
 551			if (name)
 552				result = (name->ino == f->val);
 553			else if (ctx) {
 554				for (j = 0; j < ctx->name_count; j++) {
 555					if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 556						++result;
 557						break;
 558					}
 559				}
 560			}
 561			break;
 562		case AUDIT_WATCH:
 563			if (name)
 564				result = audit_watch_compare(rule->watch, name->ino, name->dev);
 565			break;
 566		case AUDIT_DIR:
 567			if (ctx)
 568				result = match_tree_refs(ctx, rule->tree);
 569			break;
 570		case AUDIT_LOGINUID:
 571			result = 0;
 572			if (ctx)
 573				result = audit_comparator(tsk->loginuid, f->op, f->val);
 
 574			break;
 575		case AUDIT_SUBJ_USER:
 576		case AUDIT_SUBJ_ROLE:
 577		case AUDIT_SUBJ_TYPE:
 578		case AUDIT_SUBJ_SEN:
 579		case AUDIT_SUBJ_CLR:
 580			/* NOTE: this may return negative values indicating
 581			   a temporary error.  We simply treat this as a
 582			   match for now to avoid losing information that
 583			   may be wanted.   An error message will also be
 584			   logged upon error */
 585			if (f->lsm_rule) {
 586				if (need_sid) {
 587					security_task_getsecid(tsk, &sid);
 588					need_sid = 0;
 589				}
 590				result = security_audit_rule_match(sid, f->type,
 591				                                  f->op,
 592				                                  f->lsm_rule,
 593				                                  ctx);
 594			}
 595			break;
 596		case AUDIT_OBJ_USER:
 597		case AUDIT_OBJ_ROLE:
 598		case AUDIT_OBJ_TYPE:
 599		case AUDIT_OBJ_LEV_LOW:
 600		case AUDIT_OBJ_LEV_HIGH:
 601			/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
 602			   also applies here */
 603			if (f->lsm_rule) {
 604				/* Find files that match */
 605				if (name) {
 606					result = security_audit_rule_match(
 607					           name->osid, f->type, f->op,
 608					           f->lsm_rule, ctx);
 609				} else if (ctx) {
 610					for (j = 0; j < ctx->name_count; j++) {
 611						if (security_audit_rule_match(
 612						      ctx->names[j].osid,
 613						      f->type, f->op,
 614						      f->lsm_rule, ctx)) {
 615							++result;
 616							break;
 617						}
 618					}
 619				}
 620				/* Find ipc objects that match */
 621				if (!ctx || ctx->type != AUDIT_IPC)
 622					break;
 623				if (security_audit_rule_match(ctx->ipc.osid,
 624							      f->type, f->op,
 625							      f->lsm_rule, ctx))
 626					++result;
 627			}
 628			break;
 629		case AUDIT_ARG0:
 630		case AUDIT_ARG1:
 631		case AUDIT_ARG2:
 632		case AUDIT_ARG3:
 633			if (ctx)
 634				result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
 635			break;
 636		case AUDIT_FILTERKEY:
 637			/* ignore this field for filtering */
 638			result = 1;
 639			break;
 640		case AUDIT_PERM:
 641			result = audit_match_perm(ctx, f->val);
 642			break;
 643		case AUDIT_FILETYPE:
 644			result = audit_match_filetype(ctx, f->val);
 645			break;
 
 
 
 646		}
 647
 648		if (!result)
 649			return 0;
 650	}
 651
 652	if (ctx) {
 653		if (rule->prio <= ctx->prio)
 654			return 0;
 655		if (rule->filterkey) {
 656			kfree(ctx->filterkey);
 657			ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
 658		}
 659		ctx->prio = rule->prio;
 660	}
 661	switch (rule->action) {
 662	case AUDIT_NEVER:    *state = AUDIT_DISABLED;	    break;
 663	case AUDIT_ALWAYS:   *state = AUDIT_RECORD_CONTEXT; break;
 
 
 
 
 664	}
 665	return 1;
 666}
 667
 668/* At process creation time, we can determine if system-call auditing is
 669 * completely disabled for this task.  Since we only have the task
 670 * structure at this point, we can only check uid and gid.
 671 */
 672static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
 673{
 674	struct audit_entry *e;
 675	enum audit_state   state;
 676
 677	rcu_read_lock();
 678	list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
 679		if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
 680				       &state, true)) {
 681			if (state == AUDIT_RECORD_CONTEXT)
 682				*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
 683			rcu_read_unlock();
 684			return state;
 685		}
 686	}
 687	rcu_read_unlock();
 688	return AUDIT_BUILD_CONTEXT;
 689}
 690
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691/* At syscall entry and exit time, this filter is called if the
 692 * audit_state is not low enough that auditing cannot take place, but is
 693 * also not high enough that we already know we have to write an audit
 694 * record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
 695 */
 696static enum audit_state audit_filter_syscall(struct task_struct *tsk,
 697					     struct audit_context *ctx,
 698					     struct list_head *list)
 699{
 700	struct audit_entry *e;
 701	enum audit_state state;
 702
 703	if (audit_pid && tsk->tgid == audit_pid)
 704		return AUDIT_DISABLED;
 705
 706	rcu_read_lock();
 707	if (!list_empty(list)) {
 708		int word = AUDIT_WORD(ctx->major);
 709		int bit  = AUDIT_BIT(ctx->major);
 710
 711		list_for_each_entry_rcu(e, list, list) {
 712			if ((e->rule.mask[word] & bit) == bit &&
 713			    audit_filter_rules(tsk, &e->rule, ctx, NULL,
 714					       &state, false)) {
 715				rcu_read_unlock();
 716				ctx->current_state = state;
 717				return state;
 718			}
 719		}
 720	}
 721	rcu_read_unlock();
 722	return AUDIT_BUILD_CONTEXT;
 723}
 724
 725/* At syscall exit time, this filter is called if any audit_names[] have been
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 726 * collected during syscall processing.  We only check rules in sublists at hash
 727 * buckets applicable to the inode numbers in audit_names[].
 728 * Regarding audit_state, same rules apply as for audit_filter_syscall().
 729 */
 730void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
 731{
 732	int i;
 733	struct audit_entry *e;
 734	enum audit_state state;
 735
 736	if (audit_pid && tsk->tgid == audit_pid)
 737		return;
 738
 739	rcu_read_lock();
 740	for (i = 0; i < ctx->name_count; i++) {
 741		int word = AUDIT_WORD(ctx->major);
 742		int bit  = AUDIT_BIT(ctx->major);
 743		struct audit_names *n = &ctx->names[i];
 744		int h = audit_hash_ino((u32)n->ino);
 745		struct list_head *list = &audit_inode_hash[h];
 746
 747		if (list_empty(list))
 748			continue;
 749
 750		list_for_each_entry_rcu(e, list, list) {
 751			if ((e->rule.mask[word] & bit) == bit &&
 752			    audit_filter_rules(tsk, &e->rule, ctx, n,
 753				    	       &state, false)) {
 754				rcu_read_unlock();
 755				ctx->current_state = state;
 756				return;
 757			}
 758		}
 759	}
 760	rcu_read_unlock();
 761}
 762
 763static inline struct audit_context *audit_get_context(struct task_struct *tsk,
 
 764						      int return_valid,
 765						      long return_code)
 766{
 767	struct audit_context *context = tsk->audit_context;
 768
 769	if (likely(!context))
 770		return NULL;
 771	context->return_valid = return_valid;
 772
 773	/*
 774	 * we need to fix up the return code in the audit logs if the actual
 775	 * return codes are later going to be fixed up by the arch specific
 776	 * signal handlers
 777	 *
 778	 * This is actually a test for:
 779	 * (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
 780	 * (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
 781	 *
 782	 * but is faster than a bunch of ||
 783	 */
 784	if (unlikely(return_code <= -ERESTARTSYS) &&
 785	    (return_code >= -ERESTART_RESTARTBLOCK) &&
 786	    (return_code != -ENOIOCTLCMD))
 787		context->return_code = -EINTR;
 788	else
 789		context->return_code  = return_code;
 790
 791	if (context->in_syscall && !context->dummy) {
 792		audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
 793		audit_filter_inodes(tsk, context);
 794	}
 795
 796	tsk->audit_context = NULL;
 797	return context;
 798}
 799
 
 
 
 
 
 
 
 800static inline void audit_free_names(struct audit_context *context)
 801{
 802	int i;
 803
 804#if AUDIT_DEBUG == 2
 805	if (context->put_count + context->ino_count != context->name_count) {
 806		printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
 807		       " name_count=%d put_count=%d"
 808		       " ino_count=%d [NOT freeing]\n",
 809		       __FILE__, __LINE__,
 810		       context->serial, context->major, context->in_syscall,
 811		       context->name_count, context->put_count,
 812		       context->ino_count);
 813		for (i = 0; i < context->name_count; i++) {
 814			printk(KERN_ERR "names[%d] = %p = %s\n", i,
 815			       context->names[i].name,
 816			       context->names[i].name ?: "(null)");
 817		}
 818		dump_stack();
 819		return;
 820	}
 821#endif
 822#if AUDIT_DEBUG
 823	context->put_count  = 0;
 824	context->ino_count  = 0;
 825#endif
 826
 827	for (i = 0; i < context->name_count; i++) {
 828		if (context->names[i].name && context->names[i].name_put)
 829			__putname(context->names[i].name);
 
 
 
 830	}
 831	context->name_count = 0;
 832	path_put(&context->pwd);
 833	context->pwd.dentry = NULL;
 834	context->pwd.mnt = NULL;
 835}
 836
 837static inline void audit_free_aux(struct audit_context *context)
 838{
 839	struct audit_aux_data *aux;
 840
 841	while ((aux = context->aux)) {
 842		context->aux = aux->next;
 843		kfree(aux);
 844	}
 845	while ((aux = context->aux_pids)) {
 846		context->aux_pids = aux->next;
 847		kfree(aux);
 848	}
 849}
 850
 851static inline void audit_zero_context(struct audit_context *context,
 852				      enum audit_state state)
 853{
 854	memset(context, 0, sizeof(*context));
 855	context->state      = state;
 856	context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
 857}
 858
 859static inline struct audit_context *audit_alloc_context(enum audit_state state)
 860{
 861	struct audit_context *context;
 862
 863	if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
 
 864		return NULL;
 865	audit_zero_context(context, state);
 
 866	INIT_LIST_HEAD(&context->killed_trees);
 
 867	return context;
 868}
 869
 870/**
 871 * audit_alloc - allocate an audit context block for a task
 872 * @tsk: task
 873 *
 874 * Filter on the task information and allocate a per-task audit context
 875 * if necessary.  Doing so turns on system call auditing for the
 876 * specified task.  This is called from copy_process, so no lock is
 877 * needed.
 878 */
 879int audit_alloc(struct task_struct *tsk)
 880{
 881	struct audit_context *context;
 882	enum audit_state     state;
 883	char *key = NULL;
 884
 885	if (likely(!audit_ever_enabled))
 886		return 0; /* Return if not auditing. */
 887
 888	state = audit_filter_task(tsk, &key);
 889	if (likely(state == AUDIT_DISABLED))
 
 890		return 0;
 
 891
 892	if (!(context = audit_alloc_context(state))) {
 893		kfree(key);
 894		audit_log_lost("out of memory in audit_alloc");
 895		return -ENOMEM;
 896	}
 897	context->filterkey = key;
 898
 899	tsk->audit_context  = context;
 900	set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
 901	return 0;
 902}
 903
 904static inline void audit_free_context(struct audit_context *context)
 905{
 906	struct audit_context *previous;
 907	int		     count = 0;
 908
 909	do {
 910		previous = context->previous;
 911		if (previous || (count &&  count < 10)) {
 912			++count;
 913			printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
 914			       " freeing multiple contexts (%d)\n",
 915			       context->serial, context->major,
 916			       context->name_count, count);
 917		}
 918		audit_free_names(context);
 919		unroll_tree_refs(context, NULL, 0);
 920		free_tree_refs(context);
 921		audit_free_aux(context);
 922		kfree(context->filterkey);
 923		kfree(context->sockaddr);
 924		kfree(context);
 925		context  = previous;
 926	} while (context);
 927	if (count >= 10)
 928		printk(KERN_ERR "audit: freed %d contexts\n", count);
 929}
 930
 931void audit_log_task_context(struct audit_buffer *ab)
 932{
 933	char *ctx = NULL;
 934	unsigned len;
 935	int error;
 936	u32 sid;
 937
 938	security_task_getsecid(current, &sid);
 939	if (!sid)
 940		return;
 941
 942	error = security_secid_to_secctx(sid, &ctx, &len);
 943	if (error) {
 944		if (error != -EINVAL)
 945			goto error_path;
 946		return;
 947	}
 948
 949	audit_log_format(ab, " subj=%s", ctx);
 950	security_release_secctx(ctx, len);
 951	return;
 952
 953error_path:
 954	audit_panic("error in audit_log_task_context");
 955	return;
 956}
 957
 958EXPORT_SYMBOL(audit_log_task_context);
 959
 960static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
 961{
 962	char name[sizeof(tsk->comm)];
 963	struct mm_struct *mm = tsk->mm;
 964	struct vm_area_struct *vma;
 965
 966	/* tsk == current */
 967
 968	get_task_comm(name, tsk);
 969	audit_log_format(ab, " comm=");
 970	audit_log_untrustedstring(ab, name);
 971
 972	if (mm) {
 973		down_read(&mm->mmap_sem);
 974		vma = mm->mmap;
 975		while (vma) {
 976			if ((vma->vm_flags & VM_EXECUTABLE) &&
 977			    vma->vm_file) {
 978				audit_log_d_path(ab, "exe=",
 979						 &vma->vm_file->f_path);
 980				break;
 981			}
 982			vma = vma->vm_next;
 983		}
 984		up_read(&mm->mmap_sem);
 985	}
 986	audit_log_task_context(ab);
 987}
 988
 989static int audit_log_pid_context(struct audit_context *context, pid_t pid,
 990				 uid_t auid, uid_t uid, unsigned int sessionid,
 991				 u32 sid, char *comm)
 992{
 993	struct audit_buffer *ab;
 994	char *ctx = NULL;
 995	u32 len;
 996	int rc = 0;
 997
 998	ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
 999	if (!ab)
1000		return rc;
1001
1002	audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
1003			 uid, sessionid);
1004	if (security_secid_to_secctx(sid, &ctx, &len)) {
1005		audit_log_format(ab, " obj=(none)");
1006		rc = 1;
1007	} else {
1008		audit_log_format(ab, " obj=%s", ctx);
1009		security_release_secctx(ctx, len);
 
 
 
1010	}
1011	audit_log_format(ab, " ocomm=");
1012	audit_log_untrustedstring(ab, comm);
1013	audit_log_end(ab);
1014
1015	return rc;
1016}
1017
1018/*
1019 * to_send and len_sent accounting are very loose estimates.  We aren't
1020 * really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
1021 * within about 500 bytes (next page boundary)
1022 *
1023 * why snprintf?  an int is up to 12 digits long.  if we just assumed when
1024 * logging that a[%d]= was going to be 16 characters long we would be wasting
1025 * space in every audit message.  In one 7500 byte message we can log up to
1026 * about 1000 min size arguments.  That comes down to about 50% waste of space
1027 * if we didn't do the snprintf to find out how long arg_num_len was.
1028 */
1029static int audit_log_single_execve_arg(struct audit_context *context,
1030					struct audit_buffer **ab,
1031					int arg_num,
1032					size_t *len_sent,
1033					const char __user *p,
1034					char *buf)
1035{
1036	char arg_num_len_buf[12];
1037	const char __user *tmp_p = p;
1038	/* how many digits are in arg_num? 5 is the length of ' a=""' */
1039	size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
1040	size_t len, len_left, to_send;
1041	size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
1042	unsigned int i, has_cntl = 0, too_long = 0;
1043	int ret;
1044
1045	/* strnlen_user includes the null we don't want to send */
1046	len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
1047
1048	/*
1049	 * We just created this mm, if we can't find the strings
1050	 * we just copied into it something is _very_ wrong. Similar
1051	 * for strings that are too long, we should not have created
1052	 * any.
1053	 */
1054	if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
1055		WARN_ON(1);
1056		send_sig(SIGKILL, current, 0);
1057		return -1;
1058	}
1059
1060	/* walk the whole argument looking for non-ascii chars */
1061	do {
1062		if (len_left > MAX_EXECVE_AUDIT_LEN)
1063			to_send = MAX_EXECVE_AUDIT_LEN;
1064		else
1065			to_send = len_left;
1066		ret = copy_from_user(buf, tmp_p, to_send);
1067		/*
1068		 * There is no reason for this copy to be short. We just
1069		 * copied them here, and the mm hasn't been exposed to user-
1070		 * space yet.
1071		 */
1072		if (ret) {
1073			WARN_ON(1);
1074			send_sig(SIGKILL, current, 0);
1075			return -1;
1076		}
1077		buf[to_send] = '\0';
1078		has_cntl = audit_string_contains_control(buf, to_send);
1079		if (has_cntl) {
1080			/*
1081			 * hex messages get logged as 2 bytes, so we can only
1082			 * send half as much in each message
1083			 */
1084			max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
1085			break;
1086		}
1087		len_left -= to_send;
1088		tmp_p += to_send;
1089	} while (len_left > 0);
1090
1091	len_left = len;
1092
1093	if (len > max_execve_audit_len)
1094		too_long = 1;
1095
1096	/* rewalk the argument actually logging the message */
1097	for (i = 0; len_left > 0; i++) {
1098		int room_left;
1099
1100		if (len_left > max_execve_audit_len)
1101			to_send = max_execve_audit_len;
1102		else
1103			to_send = len_left;
1104
1105		/* do we have space left to send this argument in this ab? */
1106		room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
1107		if (has_cntl)
1108			room_left -= (to_send * 2);
1109		else
1110			room_left -= to_send;
1111		if (room_left < 0) {
1112			*len_sent = 0;
1113			audit_log_end(*ab);
1114			*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
1115			if (!*ab)
1116				return 0;
1117		}
1118
1119		/*
1120		 * first record needs to say how long the original string was
1121		 * so we can be sure nothing was lost.
1122		 */
1123		if ((i == 0) && (too_long))
1124			audit_log_format(*ab, " a%d_len=%zu", arg_num,
1125					 has_cntl ? 2*len : len);
1126
1127		/*
1128		 * normally arguments are small enough to fit and we already
1129		 * filled buf above when we checked for control characters
1130		 * so don't bother with another copy_from_user
1131		 */
1132		if (len >= max_execve_audit_len)
1133			ret = copy_from_user(buf, p, to_send);
1134		else
1135			ret = 0;
1136		if (ret) {
1137			WARN_ON(1);
1138			send_sig(SIGKILL, current, 0);
1139			return -1;
1140		}
1141		buf[to_send] = '\0';
1142
1143		/* actually log it */
1144		audit_log_format(*ab, " a%d", arg_num);
1145		if (too_long)
1146			audit_log_format(*ab, "[%d]", i);
1147		audit_log_format(*ab, "=");
1148		if (has_cntl)
1149			audit_log_n_hex(*ab, buf, to_send);
1150		else
1151			audit_log_string(*ab, buf);
1152
1153		p += to_send;
1154		len_left -= to_send;
1155		*len_sent += arg_num_len;
1156		if (has_cntl)
1157			*len_sent += to_send * 2;
1158		else
1159			*len_sent += to_send;
1160	}
1161	/* include the null we didn't log */
1162	return len + 1;
1163}
1164
1165static void audit_log_execve_info(struct audit_context *context,
1166				  struct audit_buffer **ab,
1167				  struct audit_aux_data_execve *axi)
1168{
1169	int i;
1170	size_t len, len_sent = 0;
1171	const char __user *p;
 
 
 
 
 
 
 
 
1172	char *buf;
 
1173
1174	if (axi->mm != current->mm)
1175		return; /* execve failed, no additional info */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1176
1177	p = (const char __user *)axi->mm->arg_start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1178
1179	audit_log_format(*ab, "argc=%d", axi->argc);
 
 
1180
1181	/*
1182	 * we need some kernel buffer to hold the userspace args.  Just
1183	 * allocate one big one rather than allocating one of the right size
1184	 * for every single argument inside audit_log_single_execve_arg()
1185	 * should be <8k allocation so should be pretty safe.
1186	 */
1187	buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
1188	if (!buf) {
1189		audit_panic("out of memory for argv string\n");
1190		return;
1191	}
 
 
 
1192
1193	for (i = 0; i < axi->argc; i++) {
1194		len = audit_log_single_execve_arg(context, ab, i,
1195						  &len_sent, p, buf);
1196		if (len <= 0)
1197			break;
1198		p += len;
1199	}
1200	kfree(buf);
1201}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202
1203static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
1204{
1205	int i;
1206
1207	audit_log_format(ab, " %s=", prefix);
1208	CAP_FOR_EACH_U32(i) {
1209		audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
1210	}
1211}
1212
1213static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
1214{
1215	kernel_cap_t *perm = &name->fcap.permitted;
1216	kernel_cap_t *inh = &name->fcap.inheritable;
1217	int log = 0;
1218
1219	if (!cap_isclear(*perm)) {
1220		audit_log_cap(ab, "cap_fp", perm);
1221		log = 1;
1222	}
1223	if (!cap_isclear(*inh)) {
1224		audit_log_cap(ab, "cap_fi", inh);
1225		log = 1;
1226	}
1227
1228	if (log)
1229		audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
1230}
1231
1232static void show_special(struct audit_context *context, int *call_panic)
1233{
1234	struct audit_buffer *ab;
1235	int i;
1236
1237	ab = audit_log_start(context, GFP_KERNEL, context->type);
1238	if (!ab)
1239		return;
1240
1241	switch (context->type) {
1242	case AUDIT_SOCKETCALL: {
1243		int nargs = context->socketcall.nargs;
1244		audit_log_format(ab, "nargs=%d", nargs);
1245		for (i = 0; i < nargs; i++)
1246			audit_log_format(ab, " a%d=%lx", i,
1247				context->socketcall.args[i]);
1248		break; }
1249	case AUDIT_IPC: {
1250		u32 osid = context->ipc.osid;
1251
1252		audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
1253			 context->ipc.uid, context->ipc.gid, context->ipc.mode);
 
 
1254		if (osid) {
1255			char *ctx = NULL;
1256			u32 len;
1257			if (security_secid_to_secctx(osid, &ctx, &len)) {
1258				audit_log_format(ab, " osid=%u", osid);
1259				*call_panic = 1;
1260			} else {
1261				audit_log_format(ab, " obj=%s", ctx);
1262				security_release_secctx(ctx, len);
1263			}
1264		}
1265		if (context->ipc.has_perm) {
1266			audit_log_end(ab);
1267			ab = audit_log_start(context, GFP_KERNEL,
1268					     AUDIT_IPC_SET_PERM);
 
 
1269			audit_log_format(ab,
1270				"qbytes=%lx ouid=%u ogid=%u mode=%#o",
1271				context->ipc.qbytes,
1272				context->ipc.perm_uid,
1273				context->ipc.perm_gid,
1274				context->ipc.perm_mode);
1275			if (!ab)
1276				return;
1277		}
1278		break; }
1279	case AUDIT_MQ_OPEN: {
1280		audit_log_format(ab,
1281			"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
1282			"mq_msgsize=%ld mq_curmsgs=%ld",
1283			context->mq_open.oflag, context->mq_open.mode,
1284			context->mq_open.attr.mq_flags,
1285			context->mq_open.attr.mq_maxmsg,
1286			context->mq_open.attr.mq_msgsize,
1287			context->mq_open.attr.mq_curmsgs);
1288		break; }
1289	case AUDIT_MQ_SENDRECV: {
1290		audit_log_format(ab,
1291			"mqdes=%d msg_len=%zd msg_prio=%u "
1292			"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
1293			context->mq_sendrecv.mqdes,
1294			context->mq_sendrecv.msg_len,
1295			context->mq_sendrecv.msg_prio,
1296			context->mq_sendrecv.abs_timeout.tv_sec,
1297			context->mq_sendrecv.abs_timeout.tv_nsec);
1298		break; }
1299	case AUDIT_MQ_NOTIFY: {
1300		audit_log_format(ab, "mqdes=%d sigev_signo=%d",
1301				context->mq_notify.mqdes,
1302				context->mq_notify.sigev_signo);
1303		break; }
1304	case AUDIT_MQ_GETSETATTR: {
1305		struct mq_attr *attr = &context->mq_getsetattr.mqstat;
1306		audit_log_format(ab,
1307			"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
1308			"mq_curmsgs=%ld ",
1309			context->mq_getsetattr.mqdes,
1310			attr->mq_flags, attr->mq_maxmsg,
1311			attr->mq_msgsize, attr->mq_curmsgs);
1312		break; }
1313	case AUDIT_CAPSET: {
1314		audit_log_format(ab, "pid=%d", context->capset.pid);
1315		audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
1316		audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
1317		audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
1318		break; }
1319	case AUDIT_MMAP: {
1320		audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
1321				 context->mmap.flags);
1322		break; }
 
 
 
1323	}
1324	audit_log_end(ab);
1325}
1326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
1328{
1329	const struct cred *cred;
1330	int i, call_panic = 0;
1331	struct audit_buffer *ab;
1332	struct audit_aux_data *aux;
1333	const char *tty;
1334
1335	/* tsk == current */
1336	context->pid = tsk->pid;
1337	if (!context->ppid)
1338		context->ppid = sys_getppid();
1339	cred = current_cred();
1340	context->uid   = cred->uid;
1341	context->gid   = cred->gid;
1342	context->euid  = cred->euid;
1343	context->suid  = cred->suid;
1344	context->fsuid = cred->fsuid;
1345	context->egid  = cred->egid;
1346	context->sgid  = cred->sgid;
1347	context->fsgid = cred->fsgid;
1348	context->personality = tsk->personality;
1349
1350	ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
1351	if (!ab)
1352		return;		/* audit_panic has been called */
1353	audit_log_format(ab, "arch=%x syscall=%d",
1354			 context->arch, context->major);
1355	if (context->personality != PER_LINUX)
1356		audit_log_format(ab, " per=%lx", context->personality);
1357	if (context->return_valid)
1358		audit_log_format(ab, " success=%s exit=%ld",
1359				 (context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
1360				 context->return_code);
1361
1362	spin_lock_irq(&tsk->sighand->siglock);
1363	if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
1364		tty = tsk->signal->tty->name;
1365	else
1366		tty = "(none)";
1367	spin_unlock_irq(&tsk->sighand->siglock);
1368
1369	audit_log_format(ab,
1370		  " a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
1371		  " ppid=%d pid=%d auid=%u uid=%u gid=%u"
1372		  " euid=%u suid=%u fsuid=%u"
1373		  " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
1374		  context->argv[0],
1375		  context->argv[1],
1376		  context->argv[2],
1377		  context->argv[3],
1378		  context->name_count,
1379		  context->ppid,
1380		  context->pid,
1381		  tsk->loginuid,
1382		  context->uid,
1383		  context->gid,
1384		  context->euid, context->suid, context->fsuid,
1385		  context->egid, context->sgid, context->fsgid, tty,
1386		  tsk->sessionid);
1387
1388
1389	audit_log_task_info(ab, tsk);
1390	audit_log_key(ab, context->filterkey);
1391	audit_log_end(ab);
1392
1393	for (aux = context->aux; aux; aux = aux->next) {
1394
1395		ab = audit_log_start(context, GFP_KERNEL, aux->type);
1396		if (!ab)
1397			continue; /* audit_panic has been called */
1398
1399		switch (aux->type) {
1400
1401		case AUDIT_EXECVE: {
1402			struct audit_aux_data_execve *axi = (void *)aux;
1403			audit_log_execve_info(context, &ab, axi);
1404			break; }
1405
1406		case AUDIT_BPRM_FCAPS: {
1407			struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
1408			audit_log_format(ab, "fver=%x", axs->fcap_ver);
1409			audit_log_cap(ab, "fp", &axs->fcap.permitted);
1410			audit_log_cap(ab, "fi", &axs->fcap.inheritable);
1411			audit_log_format(ab, " fe=%d", axs->fcap.fE);
1412			audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
1413			audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
1414			audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
1415			audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
1416			audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
1417			audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
1418			break; }
1419
1420		}
1421		audit_log_end(ab);
1422	}
1423
1424	if (context->type)
1425		show_special(context, &call_panic);
1426
1427	if (context->fds[0] >= 0) {
1428		ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
1429		if (ab) {
1430			audit_log_format(ab, "fd0=%d fd1=%d",
1431					context->fds[0], context->fds[1]);
1432			audit_log_end(ab);
1433		}
1434	}
1435
1436	if (context->sockaddr_len) {
1437		ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
1438		if (ab) {
1439			audit_log_format(ab, "saddr=");
1440			audit_log_n_hex(ab, (void *)context->sockaddr,
1441					context->sockaddr_len);
1442			audit_log_end(ab);
1443		}
1444	}
1445
1446	for (aux = context->aux_pids; aux; aux = aux->next) {
1447		struct audit_aux_data_pids *axs = (void *)aux;
1448
1449		for (i = 0; i < axs->pid_count; i++)
1450			if (audit_log_pid_context(context, axs->target_pid[i],
1451						  axs->target_auid[i],
1452						  axs->target_uid[i],
1453						  axs->target_sessionid[i],
1454						  axs->target_sid[i],
1455						  axs->target_comm[i]))
1456				call_panic = 1;
1457	}
1458
1459	if (context->target_pid &&
1460	    audit_log_pid_context(context, context->target_pid,
1461				  context->target_auid, context->target_uid,
1462				  context->target_sessionid,
1463				  context->target_sid, context->target_comm))
1464			call_panic = 1;
1465
1466	if (context->pwd.dentry && context->pwd.mnt) {
1467		ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
1468		if (ab) {
1469			audit_log_d_path(ab, "cwd=", &context->pwd);
1470			audit_log_end(ab);
1471		}
1472	}
1473	for (i = 0; i < context->name_count; i++) {
1474		struct audit_names *n = &context->names[i];
1475
1476		ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
1477		if (!ab)
1478			continue; /* audit_panic has been called */
1479
1480		audit_log_format(ab, "item=%d", i);
1481
1482		if (n->name) {
1483			switch(n->name_len) {
1484			case AUDIT_NAME_FULL:
1485				/* log the full path */
1486				audit_log_format(ab, " name=");
1487				audit_log_untrustedstring(ab, n->name);
1488				break;
1489			case 0:
1490				/* name was specified as a relative path and the
1491				 * directory component is the cwd */
1492				audit_log_d_path(ab, "name=", &context->pwd);
1493				break;
1494			default:
1495				/* log the name's directory component */
1496				audit_log_format(ab, " name=");
1497				audit_log_n_untrustedstring(ab, n->name,
1498							    n->name_len);
1499			}
1500		} else
1501			audit_log_format(ab, " name=(null)");
1502
1503		if (n->ino != (unsigned long)-1) {
1504			audit_log_format(ab, " inode=%lu"
1505					 " dev=%02x:%02x mode=%#o"
1506					 " ouid=%u ogid=%u rdev=%02x:%02x",
1507					 n->ino,
1508					 MAJOR(n->dev),
1509					 MINOR(n->dev),
1510					 n->mode,
1511					 n->uid,
1512					 n->gid,
1513					 MAJOR(n->rdev),
1514					 MINOR(n->rdev));
1515		}
1516		if (n->osid != 0) {
1517			char *ctx = NULL;
1518			u32 len;
1519			if (security_secid_to_secctx(
1520				n->osid, &ctx, &len)) {
1521				audit_log_format(ab, " osid=%u", n->osid);
1522				call_panic = 2;
1523			} else {
1524				audit_log_format(ab, " obj=%s", ctx);
1525				security_release_secctx(ctx, len);
1526			}
1527		}
1528
1529		audit_log_fcaps(ab, n);
1530
1531		audit_log_end(ab);
1532	}
1533
1534	/* Send end of event record to help user space know we are finished */
1535	ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
1536	if (ab)
1537		audit_log_end(ab);
1538	if (call_panic)
1539		audit_panic("error converting sid to string");
1540}
1541
1542/**
1543 * audit_free - free a per-task audit context
1544 * @tsk: task whose audit context block to free
1545 *
1546 * Called from copy_process and do_exit
1547 */
1548void audit_free(struct task_struct *tsk)
1549{
1550	struct audit_context *context;
1551
1552	context = audit_get_context(tsk, 0, 0);
1553	if (likely(!context))
1554		return;
1555
1556	/* Check for system calls that do not go through the exit
1557	 * function (e.g., exit_group), then free context block.
1558	 * We use GFP_ATOMIC here because we might be doing this
1559	 * in the context of the idle thread */
1560	/* that can happen only if we are called from do_exit() */
1561	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1562		audit_log_exit(context, tsk);
1563	if (!list_empty(&context->killed_trees))
1564		audit_kill_trees(&context->killed_trees);
1565
1566	audit_free_context(context);
1567}
1568
1569/**
1570 * audit_syscall_entry - fill in an audit record at syscall entry
1571 * @arch: architecture type
1572 * @major: major syscall type (function)
1573 * @a1: additional syscall register 1
1574 * @a2: additional syscall register 2
1575 * @a3: additional syscall register 3
1576 * @a4: additional syscall register 4
1577 *
1578 * Fill in audit context at syscall entry.  This only happens if the
1579 * audit context was created when the task was created and the state or
1580 * filters demand the audit context be built.  If the state from the
1581 * per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
1582 * then the record will be written at syscall exit time (otherwise, it
1583 * will only be written if another part of the kernel requests that it
1584 * be written).
1585 */
1586void audit_syscall_entry(int arch, int major,
1587			 unsigned long a1, unsigned long a2,
1588			 unsigned long a3, unsigned long a4)
1589{
1590	struct task_struct *tsk = current;
1591	struct audit_context *context = tsk->audit_context;
1592	enum audit_state     state;
1593
1594	if (unlikely(!context))
1595		return;
1596
1597	/*
1598	 * This happens only on certain architectures that make system
1599	 * calls in kernel_thread via the entry.S interface, instead of
1600	 * with direct calls.  (If you are porting to a new
1601	 * architecture, hitting this condition can indicate that you
1602	 * got the _exit/_leave calls backward in entry.S.)
1603	 *
1604	 * i386     no
1605	 * x86_64   no
1606	 * ppc64    yes (see arch/powerpc/platforms/iseries/misc.S)
1607	 *
1608	 * This also happens with vm86 emulation in a non-nested manner
1609	 * (entries without exits), so this case must be caught.
1610	 */
1611	if (context->in_syscall) {
1612		struct audit_context *newctx;
1613
1614#if AUDIT_DEBUG
1615		printk(KERN_ERR
1616		       "audit(:%d) pid=%d in syscall=%d;"
1617		       " entering syscall=%d\n",
1618		       context->serial, tsk->pid, context->major, major);
1619#endif
1620		newctx = audit_alloc_context(context->state);
1621		if (newctx) {
1622			newctx->previous   = context;
1623			context		   = newctx;
1624			tsk->audit_context = newctx;
1625		} else	{
1626			/* If we can't alloc a new context, the best we
1627			 * can do is to leak memory (any pending putname
1628			 * will be lost).  The only other alternative is
1629			 * to abandon auditing. */
1630			audit_zero_context(context, context->state);
1631		}
1632	}
1633	BUG_ON(context->in_syscall || context->name_count);
1634
1635	if (!audit_enabled)
1636		return;
1637
1638	context->arch	    = arch;
1639	context->major      = major;
1640	context->argv[0]    = a1;
1641	context->argv[1]    = a2;
1642	context->argv[2]    = a3;
1643	context->argv[3]    = a4;
1644
1645	state = context->state;
1646	context->dummy = !audit_n_rules;
1647	if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
1648		context->prio = 0;
1649		state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
1650	}
1651	if (likely(state == AUDIT_DISABLED))
1652		return;
1653
1654	context->serial     = 0;
1655	context->ctime      = CURRENT_TIME;
1656	context->in_syscall = 1;
1657	context->current_state  = state;
1658	context->ppid       = 0;
1659}
1660
1661void audit_finish_fork(struct task_struct *child)
1662{
1663	struct audit_context *ctx = current->audit_context;
1664	struct audit_context *p = child->audit_context;
1665	if (!p || !ctx)
1666		return;
1667	if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
1668		return;
1669	p->arch = ctx->arch;
1670	p->major = ctx->major;
1671	memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
1672	p->ctime = ctx->ctime;
1673	p->dummy = ctx->dummy;
1674	p->in_syscall = ctx->in_syscall;
1675	p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
1676	p->ppid = current->pid;
1677	p->prio = ctx->prio;
1678	p->current_state = ctx->current_state;
1679}
1680
1681/**
1682 * audit_syscall_exit - deallocate audit context after a system call
1683 * @valid: success/failure flag
1684 * @return_code: syscall return value
1685 *
1686 * Tear down after system call.  If the audit context has been marked as
1687 * auditable (either because of the AUDIT_RECORD_CONTEXT state from
1688 * filtering, or because some other part of the kernel write an audit
1689 * message), then write out the syscall information.  In call cases,
1690 * free the names stored from getname().
1691 */
1692void audit_syscall_exit(int valid, long return_code)
1693{
1694	struct task_struct *tsk = current;
1695	struct audit_context *context;
1696
1697	context = audit_get_context(tsk, valid, return_code);
 
 
 
1698
1699	if (likely(!context))
 
1700		return;
1701
1702	if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
1703		audit_log_exit(context, tsk);
1704
1705	context->in_syscall = 0;
1706	context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
1707
1708	if (!list_empty(&context->killed_trees))
1709		audit_kill_trees(&context->killed_trees);
1710
1711	if (context->previous) {
1712		struct audit_context *new_context = context->previous;
1713		context->previous  = NULL;
1714		audit_free_context(context);
1715		tsk->audit_context = new_context;
1716	} else {
1717		audit_free_names(context);
1718		unroll_tree_refs(context, NULL, 0);
1719		audit_free_aux(context);
1720		context->aux = NULL;
1721		context->aux_pids = NULL;
1722		context->target_pid = 0;
1723		context->target_sid = 0;
1724		context->sockaddr_len = 0;
1725		context->type = 0;
1726		context->fds[0] = -1;
1727		if (context->state != AUDIT_RECORD_CONTEXT) {
1728			kfree(context->filterkey);
1729			context->filterkey = NULL;
1730		}
1731		tsk->audit_context = context;
1732	}
 
1733}
1734
1735static inline void handle_one(const struct inode *inode)
1736{
1737#ifdef CONFIG_AUDIT_TREE
1738	struct audit_context *context;
1739	struct audit_tree_refs *p;
1740	struct audit_chunk *chunk;
1741	int count;
1742	if (likely(hlist_empty(&inode->i_fsnotify_marks)))
1743		return;
1744	context = current->audit_context;
1745	p = context->trees;
1746	count = context->tree_count;
1747	rcu_read_lock();
1748	chunk = audit_tree_lookup(inode);
1749	rcu_read_unlock();
1750	if (!chunk)
1751		return;
1752	if (likely(put_tree_ref(context, chunk)))
1753		return;
1754	if (unlikely(!grow_tree_refs(context))) {
1755		printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
1756		audit_set_auditable(context);
1757		audit_put_chunk(chunk);
1758		unroll_tree_refs(context, p, count);
1759		return;
1760	}
1761	put_tree_ref(context, chunk);
1762#endif
1763}
1764
1765static void handle_path(const struct dentry *dentry)
1766{
1767#ifdef CONFIG_AUDIT_TREE
1768	struct audit_context *context;
1769	struct audit_tree_refs *p;
1770	const struct dentry *d, *parent;
1771	struct audit_chunk *drop;
1772	unsigned long seq;
1773	int count;
1774
1775	context = current->audit_context;
1776	p = context->trees;
1777	count = context->tree_count;
1778retry:
1779	drop = NULL;
1780	d = dentry;
1781	rcu_read_lock();
1782	seq = read_seqbegin(&rename_lock);
1783	for(;;) {
1784		struct inode *inode = d->d_inode;
1785		if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
1786			struct audit_chunk *chunk;
1787			chunk = audit_tree_lookup(inode);
1788			if (chunk) {
1789				if (unlikely(!put_tree_ref(context, chunk))) {
1790					drop = chunk;
1791					break;
1792				}
1793			}
1794		}
1795		parent = d->d_parent;
1796		if (parent == d)
1797			break;
1798		d = parent;
1799	}
1800	if (unlikely(read_seqretry(&rename_lock, seq) || drop)) {  /* in this order */
1801		rcu_read_unlock();
1802		if (!drop) {
1803			/* just a race with rename */
1804			unroll_tree_refs(context, p, count);
1805			goto retry;
1806		}
1807		audit_put_chunk(drop);
1808		if (grow_tree_refs(context)) {
1809			/* OK, got more space */
1810			unroll_tree_refs(context, p, count);
1811			goto retry;
1812		}
1813		/* too bad */
1814		printk(KERN_WARNING
1815			"out of memory, audit has lost a tree reference\n");
1816		unroll_tree_refs(context, p, count);
1817		audit_set_auditable(context);
1818		return;
1819	}
1820	rcu_read_unlock();
1821#endif
1822}
1823
1824/**
1825 * audit_getname - add a name to the list
1826 * @name: name to add
1827 *
1828 * Add a name to the list of audit names for this context.
1829 * Called from fs/namei.c:getname().
1830 */
1831void __audit_getname(const char *name)
1832{
1833	struct audit_context *context = current->audit_context;
 
 
 
 
 
 
 
 
 
 
1834
1835	if (IS_ERR(name) || !name)
1836		return;
 
1837
1838	if (!context->in_syscall) {
1839#if AUDIT_DEBUG == 2
1840		printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
1841		       __FILE__, __LINE__, context->serial, name);
1842		dump_stack();
1843#endif
1844		return;
1845	}
1846	BUG_ON(context->name_count >= AUDIT_NAMES);
1847	context->names[context->name_count].name = name;
1848	context->names[context->name_count].name_len = AUDIT_NAME_FULL;
1849	context->names[context->name_count].name_put = 1;
1850	context->names[context->name_count].ino  = (unsigned long)-1;
1851	context->names[context->name_count].osid = 0;
1852	++context->name_count;
1853	if (!context->pwd.dentry)
1854		get_fs_pwd(current->fs, &context->pwd);
1855}
1856
1857/* audit_putname - intercept a putname request
1858 * @name: name to intercept and delay for putname
 
1859 *
1860 * If we have stored the name from getname in the audit context,
1861 * then we delay the putname until syscall exit.
1862 * Called from include/linux/fs.h:putname().
1863 */
1864void audit_putname(const char *name)
 
1865{
1866	struct audit_context *context = current->audit_context;
 
1867
1868	BUG_ON(!context);
1869	if (!context->in_syscall) {
1870#if AUDIT_DEBUG == 2
1871		printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
1872		       __FILE__, __LINE__, context->serial, name);
1873		if (context->name_count) {
1874			int i;
1875			for (i = 0; i < context->name_count; i++)
1876				printk(KERN_ERR "name[%d] = %p = %s\n", i,
1877				       context->names[i].name,
1878				       context->names[i].name ?: "(null)");
1879		}
1880#endif
1881		__putname(name);
1882	}
1883#if AUDIT_DEBUG
1884	else {
1885		++context->put_count;
1886		if (context->put_count > context->name_count) {
1887			printk(KERN_ERR "%s:%d(:%d): major=%d"
1888			       " in_syscall=%d putname(%p) name_count=%d"
1889			       " put_count=%d\n",
1890			       __FILE__, __LINE__,
1891			       context->serial, context->major,
1892			       context->in_syscall, name, context->name_count,
1893			       context->put_count);
1894			dump_stack();
1895		}
1896	}
1897#endif
1898}
1899
1900static int audit_inc_name_count(struct audit_context *context,
1901				const struct inode *inode)
 
 
 
 
 
 
1902{
1903	if (context->name_count >= AUDIT_NAMES) {
1904		if (inode)
1905			printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
1906			       "dev=%02x:%02x, inode=%lu\n",
1907			       MAJOR(inode->i_sb->s_dev),
1908			       MINOR(inode->i_sb->s_dev),
1909			       inode->i_ino);
1910
1911		else
1912			printk(KERN_DEBUG "name_count maxed, losing inode data\n");
1913		return 1;
1914	}
1915	context->name_count++;
1916#if AUDIT_DEBUG
1917	context->ino_count++;
1918#endif
1919	return 0;
1920}
1921
 
 
 
1922
1923static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
1924{
1925	struct cpu_vfs_cap_data caps;
1926	int rc;
1927
1928	memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
1929	memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
1930	name->fcap.fE = 0;
1931	name->fcap_ver = 0;
1932
1933	if (!dentry)
1934		return 0;
1935
1936	rc = get_vfs_caps_from_disk(dentry, &caps);
1937	if (rc)
1938		return rc;
1939
1940	name->fcap.permitted = caps.permitted;
1941	name->fcap.inheritable = caps.inheritable;
1942	name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
1943	name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
1944
1945	return 0;
1946}
1947
1948
1949/* Copy inode data into an audit_names. */
1950static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
1951			     const struct inode *inode)
1952{
1953	name->ino   = inode->i_ino;
1954	name->dev   = inode->i_sb->s_dev;
1955	name->mode  = inode->i_mode;
1956	name->uid   = inode->i_uid;
1957	name->gid   = inode->i_gid;
1958	name->rdev  = inode->i_rdev;
1959	security_inode_getsecid(inode, &name->osid);
1960	audit_copy_fcaps(name, dentry);
1961}
1962
1963/**
1964 * audit_inode - store the inode and device from a lookup
1965 * @name: name being audited
1966 * @dentry: dentry being audited
1967 *
1968 * Called from fs/namei.c:path_lookup().
1969 */
1970void __audit_inode(const char *name, const struct dentry *dentry)
 
1971{
1972	int idx;
1973	struct audit_context *context = current->audit_context;
1974	const struct inode *inode = dentry->d_inode;
 
 
1975
1976	if (!context->in_syscall)
1977		return;
1978	if (context->name_count
1979	    && context->names[context->name_count-1].name
1980	    && context->names[context->name_count-1].name == name)
1981		idx = context->name_count - 1;
1982	else if (context->name_count > 1
1983		 && context->names[context->name_count-2].name
1984		 && context->names[context->name_count-2].name == name)
1985		idx = context->name_count - 2;
1986	else {
1987		/* FIXME: how much do we care about inodes that have no
1988		 * associated name? */
1989		if (audit_inc_name_count(context, inode))
1990			return;
1991		idx = context->name_count - 1;
1992		context->names[idx].name = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993	}
1994	handle_path(dentry);
1995	audit_copy_inode(&context->names[idx], dentry, inode);
 
 
 
 
 
1996}
1997
1998/**
1999 * audit_inode_child - collect inode info for created/removed objects
 
2000 * @dentry: dentry being audited
2001 * @parent: inode of dentry parent
2002 *
2003 * For syscalls that create or remove filesystem objects, audit_inode
2004 * can only collect information for the filesystem object's parent.
2005 * This call updates the audit context with the child's information.
2006 * Syscalls that create a new filesystem object must be hooked after
2007 * the object is created.  Syscalls that remove a filesystem object
2008 * must be hooked prior, in order to capture the target inode during
2009 * unsuccessful attempts.
2010 */
2011void __audit_inode_child(const struct dentry *dentry,
2012			 const struct inode *parent)
 
2013{
2014	int idx;
2015	struct audit_context *context = current->audit_context;
2016	const char *found_parent = NULL, *found_child = NULL;
2017	const struct inode *inode = dentry->d_inode;
2018	const char *dname = dentry->d_name.name;
2019	int dirlen = 0;
2020
2021	if (!context->in_syscall)
2022		return;
2023
2024	if (inode)
2025		handle_one(inode);
2026
2027	/* parent is more likely, look for it first */
2028	for (idx = 0; idx < context->name_count; idx++) {
2029		struct audit_names *n = &context->names[idx];
2030
2031		if (!n->name)
2032			continue;
2033
2034		if (n->ino == parent->i_ino &&
2035		    !audit_compare_dname_path(dname, n->name, &dirlen)) {
2036			n->name_len = dirlen; /* update parent data in place */
2037			found_parent = n->name;
2038			goto add_names;
 
 
2039		}
2040	}
2041
2042	/* no matching parent, look for matching child */
2043	for (idx = 0; idx < context->name_count; idx++) {
2044		struct audit_names *n = &context->names[idx];
2045
2046		if (!n->name)
2047			continue;
2048
2049		/* strcmp() is the more likely scenario */
2050		if (!strcmp(dname, n->name) ||
2051		     !audit_compare_dname_path(dname, n->name, &dirlen)) {
2052			if (inode)
2053				audit_copy_inode(n, NULL, inode);
2054			else
2055				n->ino = (unsigned long)-1;
2056			found_child = n->name;
2057			goto add_names;
2058		}
2059	}
2060
2061add_names:
2062	if (!found_parent) {
2063		if (audit_inc_name_count(context, parent))
 
 
2064			return;
2065		idx = context->name_count - 1;
2066		context->names[idx].name = NULL;
2067		audit_copy_inode(&context->names[idx], NULL, parent);
2068	}
2069
2070	if (!found_child) {
2071		if (audit_inc_name_count(context, inode))
 
2072			return;
2073		idx = context->name_count - 1;
2074
2075		/* Re-use the name belonging to the slot for a matching parent
2076		 * directory. All names for this context are relinquished in
2077		 * audit_free_names() */
2078		if (found_parent) {
2079			context->names[idx].name = found_parent;
2080			context->names[idx].name_len = AUDIT_NAME_FULL;
2081			/* don't call __putname() */
2082			context->names[idx].name_put = 0;
2083		} else {
2084			context->names[idx].name = NULL;
2085		}
 
2086
2087		if (inode)
2088			audit_copy_inode(&context->names[idx], NULL, inode);
2089		else
2090			context->names[idx].ino = (unsigned long)-1;
2091	}
2092}
2093EXPORT_SYMBOL_GPL(__audit_inode_child);
2094
2095/**
2096 * auditsc_get_stamp - get local copies of audit_context values
2097 * @ctx: audit_context for the task
2098 * @t: timespec to store time recorded in the audit_context
2099 * @serial: serial value that is recorded in the audit_context
2100 *
2101 * Also sets the context as auditable.
2102 */
2103int auditsc_get_stamp(struct audit_context *ctx,
2104		       struct timespec *t, unsigned int *serial)
2105{
2106	if (!ctx->in_syscall)
2107		return 0;
2108	if (!ctx->serial)
2109		ctx->serial = audit_serial();
2110	t->tv_sec  = ctx->ctime.tv_sec;
2111	t->tv_nsec = ctx->ctime.tv_nsec;
2112	*serial    = ctx->serial;
2113	if (!ctx->prio) {
2114		ctx->prio = 1;
2115		ctx->current_state = AUDIT_RECORD_CONTEXT;
2116	}
2117	return 1;
2118}
2119
2120/* global counter which is incremented every time something logs in */
2121static atomic_t session_id = ATOMIC_INIT(0);
2122
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2123/**
2124 * audit_set_loginuid - set a task's audit_context loginuid
2125 * @task: task whose audit context is being modified
2126 * @loginuid: loginuid value
2127 *
2128 * Returns 0.
2129 *
2130 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2131 */
2132int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
2133{
2134	unsigned int sessionid = atomic_inc_return(&session_id);
2135	struct audit_context *context = task->audit_context;
 
 
2136
2137	if (context && context->in_syscall) {
2138		struct audit_buffer *ab;
2139
2140		ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
2141		if (ab) {
2142			audit_log_format(ab, "login pid=%d uid=%u "
2143				"old auid=%u new auid=%u"
2144				" old ses=%u new ses=%u",
2145				task->pid, task_uid(task),
2146				task->loginuid, loginuid,
2147				task->sessionid, sessionid);
2148			audit_log_end(ab);
2149		}
2150	}
 
2151	task->sessionid = sessionid;
2152	task->loginuid = loginuid;
2153	return 0;
 
 
2154}
2155
2156/**
2157 * __audit_mq_open - record audit data for a POSIX MQ open
2158 * @oflag: open flag
2159 * @mode: mode bits
2160 * @attr: queue attributes
2161 *
2162 */
2163void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
2164{
2165	struct audit_context *context = current->audit_context;
2166
2167	if (attr)
2168		memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
2169	else
2170		memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
2171
2172	context->mq_open.oflag = oflag;
2173	context->mq_open.mode = mode;
2174
2175	context->type = AUDIT_MQ_OPEN;
2176}
2177
2178/**
2179 * __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
2180 * @mqdes: MQ descriptor
2181 * @msg_len: Message length
2182 * @msg_prio: Message priority
2183 * @abs_timeout: Message timeout in absolute time
2184 *
2185 */
2186void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
2187			const struct timespec *abs_timeout)
2188{
2189	struct audit_context *context = current->audit_context;
2190	struct timespec *p = &context->mq_sendrecv.abs_timeout;
2191
2192	if (abs_timeout)
2193		memcpy(p, abs_timeout, sizeof(struct timespec));
2194	else
2195		memset(p, 0, sizeof(struct timespec));
2196
2197	context->mq_sendrecv.mqdes = mqdes;
2198	context->mq_sendrecv.msg_len = msg_len;
2199	context->mq_sendrecv.msg_prio = msg_prio;
2200
2201	context->type = AUDIT_MQ_SENDRECV;
2202}
2203
2204/**
2205 * __audit_mq_notify - record audit data for a POSIX MQ notify
2206 * @mqdes: MQ descriptor
2207 * @notification: Notification event
2208 *
2209 */
2210
2211void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
2212{
2213	struct audit_context *context = current->audit_context;
2214
2215	if (notification)
2216		context->mq_notify.sigev_signo = notification->sigev_signo;
2217	else
2218		context->mq_notify.sigev_signo = 0;
2219
2220	context->mq_notify.mqdes = mqdes;
2221	context->type = AUDIT_MQ_NOTIFY;
2222}
2223
2224/**
2225 * __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
2226 * @mqdes: MQ descriptor
2227 * @mqstat: MQ flags
2228 *
2229 */
2230void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
2231{
2232	struct audit_context *context = current->audit_context;
2233	context->mq_getsetattr.mqdes = mqdes;
2234	context->mq_getsetattr.mqstat = *mqstat;
2235	context->type = AUDIT_MQ_GETSETATTR;
2236}
2237
2238/**
2239 * audit_ipc_obj - record audit data for ipc object
2240 * @ipcp: ipc permissions
2241 *
2242 */
2243void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
2244{
2245	struct audit_context *context = current->audit_context;
2246	context->ipc.uid = ipcp->uid;
2247	context->ipc.gid = ipcp->gid;
2248	context->ipc.mode = ipcp->mode;
2249	context->ipc.has_perm = 0;
2250	security_ipc_getsecid(ipcp, &context->ipc.osid);
2251	context->type = AUDIT_IPC;
2252}
2253
2254/**
2255 * audit_ipc_set_perm - record audit data for new ipc permissions
2256 * @qbytes: msgq bytes
2257 * @uid: msgq user id
2258 * @gid: msgq group id
2259 * @mode: msgq mode (permissions)
2260 *
2261 * Called only after audit_ipc_obj().
2262 */
2263void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
2264{
2265	struct audit_context *context = current->audit_context;
2266
2267	context->ipc.qbytes = qbytes;
2268	context->ipc.perm_uid = uid;
2269	context->ipc.perm_gid = gid;
2270	context->ipc.perm_mode = mode;
2271	context->ipc.has_perm = 1;
2272}
2273
2274int audit_bprm(struct linux_binprm *bprm)
2275{
2276	struct audit_aux_data_execve *ax;
2277	struct audit_context *context = current->audit_context;
2278
2279	if (likely(!audit_enabled || !context || context->dummy))
2280		return 0;
2281
2282	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2283	if (!ax)
2284		return -ENOMEM;
2285
2286	ax->argc = bprm->argc;
2287	ax->envc = bprm->envc;
2288	ax->mm = bprm->mm;
2289	ax->d.type = AUDIT_EXECVE;
2290	ax->d.next = context->aux;
2291	context->aux = (void *)ax;
2292	return 0;
2293}
2294
2295
2296/**
2297 * audit_socketcall - record audit data for sys_socketcall
2298 * @nargs: number of args
2299 * @args: args array
2300 *
2301 */
2302void audit_socketcall(int nargs, unsigned long *args)
2303{
2304	struct audit_context *context = current->audit_context;
2305
2306	if (likely(!context || context->dummy))
2307		return;
2308
2309	context->type = AUDIT_SOCKETCALL;
2310	context->socketcall.nargs = nargs;
2311	memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
 
2312}
2313
2314/**
2315 * __audit_fd_pair - record audit data for pipe and socketpair
2316 * @fd1: the first file descriptor
2317 * @fd2: the second file descriptor
2318 *
2319 */
2320void __audit_fd_pair(int fd1, int fd2)
2321{
2322	struct audit_context *context = current->audit_context;
2323	context->fds[0] = fd1;
2324	context->fds[1] = fd2;
2325}
2326
2327/**
2328 * audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
2329 * @len: data length in user space
2330 * @a: data address in kernel space
2331 *
2332 * Returns 0 for success or NULL context or < 0 on error.
2333 */
2334int audit_sockaddr(int len, void *a)
2335{
2336	struct audit_context *context = current->audit_context;
2337
2338	if (likely(!context || context->dummy))
2339		return 0;
2340
2341	if (!context->sockaddr) {
2342		void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
2343		if (!p)
2344			return -ENOMEM;
2345		context->sockaddr = p;
2346	}
2347
2348	context->sockaddr_len = len;
2349	memcpy(context->sockaddr, a, len);
2350	return 0;
2351}
2352
2353void __audit_ptrace(struct task_struct *t)
2354{
2355	struct audit_context *context = current->audit_context;
2356
2357	context->target_pid = t->pid;
2358	context->target_auid = audit_get_loginuid(t);
2359	context->target_uid = task_uid(t);
2360	context->target_sessionid = audit_get_sessionid(t);
2361	security_task_getsecid(t, &context->target_sid);
2362	memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
2363}
2364
2365/**
2366 * audit_signal_info - record signal info for shutting down audit subsystem
2367 * @sig: signal value
2368 * @t: task being signaled
2369 *
2370 * If the audit subsystem is being terminated, record the task (pid)
2371 * and uid that is doing that.
2372 */
2373int __audit_signal_info(int sig, struct task_struct *t)
2374{
2375	struct audit_aux_data_pids *axp;
2376	struct task_struct *tsk = current;
2377	struct audit_context *ctx = tsk->audit_context;
2378	uid_t uid = current_uid(), t_uid = task_uid(t);
2379
2380	if (audit_pid && t->tgid == audit_pid) {
2381		if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
2382			audit_sig_pid = tsk->pid;
2383			if (tsk->loginuid != -1)
2384				audit_sig_uid = tsk->loginuid;
2385			else
2386				audit_sig_uid = uid;
2387			security_task_getsecid(tsk, &audit_sig_sid);
2388		}
2389		if (!audit_signals || audit_dummy_context())
2390			return 0;
2391	}
2392
2393	/* optimize the common case by putting first signal recipient directly
2394	 * in audit_context */
2395	if (!ctx->target_pid) {
2396		ctx->target_pid = t->tgid;
2397		ctx->target_auid = audit_get_loginuid(t);
2398		ctx->target_uid = t_uid;
2399		ctx->target_sessionid = audit_get_sessionid(t);
2400		security_task_getsecid(t, &ctx->target_sid);
2401		memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
2402		return 0;
2403	}
2404
2405	axp = (void *)ctx->aux_pids;
2406	if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
2407		axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
2408		if (!axp)
2409			return -ENOMEM;
2410
2411		axp->d.type = AUDIT_OBJ_PID;
2412		axp->d.next = ctx->aux_pids;
2413		ctx->aux_pids = (void *)axp;
2414	}
2415	BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
2416
2417	axp->target_pid[axp->pid_count] = t->tgid;
2418	axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
2419	axp->target_uid[axp->pid_count] = t_uid;
2420	axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
2421	security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
2422	memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
2423	axp->pid_count++;
2424
2425	return 0;
2426}
2427
2428/**
2429 * __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
2430 * @bprm: pointer to the bprm being processed
2431 * @new: the proposed new credentials
2432 * @old: the old credentials
2433 *
2434 * Simply check if the proc already has the caps given by the file and if not
2435 * store the priv escalation info for later auditing at the end of the syscall
2436 *
2437 * -Eric
2438 */
2439int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
2440			   const struct cred *new, const struct cred *old)
2441{
2442	struct audit_aux_data_bprm_fcaps *ax;
2443	struct audit_context *context = current->audit_context;
2444	struct cpu_vfs_cap_data vcaps;
2445	struct dentry *dentry;
2446
2447	ax = kmalloc(sizeof(*ax), GFP_KERNEL);
2448	if (!ax)
2449		return -ENOMEM;
2450
2451	ax->d.type = AUDIT_BPRM_FCAPS;
2452	ax->d.next = context->aux;
2453	context->aux = (void *)ax;
2454
2455	dentry = dget(bprm->file->f_dentry);
2456	get_vfs_caps_from_disk(dentry, &vcaps);
2457	dput(dentry);
2458
2459	ax->fcap.permitted = vcaps.permitted;
2460	ax->fcap.inheritable = vcaps.inheritable;
2461	ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2462	ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
2463
2464	ax->old_pcap.permitted   = old->cap_permitted;
2465	ax->old_pcap.inheritable = old->cap_inheritable;
2466	ax->old_pcap.effective   = old->cap_effective;
2467
2468	ax->new_pcap.permitted   = new->cap_permitted;
2469	ax->new_pcap.inheritable = new->cap_inheritable;
2470	ax->new_pcap.effective   = new->cap_effective;
2471	return 0;
2472}
2473
2474/**
2475 * __audit_log_capset - store information about the arguments to the capset syscall
2476 * @pid: target pid of the capset call
2477 * @new: the new credentials
2478 * @old: the old (current) credentials
2479 *
2480 * Record the aguments userspace sent to sys_capset for later printing by the
2481 * audit system if applicable
2482 */
2483void __audit_log_capset(pid_t pid,
2484		       const struct cred *new, const struct cred *old)
2485{
2486	struct audit_context *context = current->audit_context;
2487	context->capset.pid = pid;
2488	context->capset.cap.effective   = new->cap_effective;
2489	context->capset.cap.inheritable = new->cap_effective;
2490	context->capset.cap.permitted   = new->cap_permitted;
2491	context->type = AUDIT_CAPSET;
2492}
2493
2494void __audit_mmap_fd(int fd, int flags)
2495{
2496	struct audit_context *context = current->audit_context;
2497	context->mmap.fd = fd;
2498	context->mmap.flags = flags;
2499	context->type = AUDIT_MMAP;
2500}
2501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2502/**
2503 * audit_core_dumps - record information about processes that end abnormally
2504 * @signr: signal value
2505 *
2506 * If a process ends with a core dump, something fishy is going on and we
2507 * should record the event for investigation.
2508 */
2509void audit_core_dumps(long signr)
2510{
2511	struct audit_buffer *ab;
2512	u32 sid;
2513	uid_t auid = audit_get_loginuid(current), uid;
2514	gid_t gid;
2515	unsigned int sessionid = audit_get_sessionid(current);
2516
2517	if (!audit_enabled)
2518		return;
2519
2520	if (signr == SIGQUIT)	/* don't care for those */
2521		return;
2522
2523	ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
2524	current_uid_gid(&uid, &gid);
2525	audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
2526			 auid, uid, gid, sessionid);
2527	security_task_getsecid(current, &sid);
2528	if (sid) {
2529		char *ctx = NULL;
2530		u32 len;
 
 
 
2531
2532		if (security_secid_to_secctx(sid, &ctx, &len))
2533			audit_log_format(ab, " ssid=%u", sid);
2534		else {
2535			audit_log_format(ab, " subj=%s", ctx);
2536			security_release_secctx(ctx, len);
2537		}
2538	}
2539	audit_log_format(ab, " pid=%d comm=", current->pid);
2540	audit_log_untrustedstring(ab, current->comm);
2541	audit_log_format(ab, " sig=%ld", signr);
2542	audit_log_end(ab);
2543}
2544
2545struct list_head *audit_killed_trees(void)
2546{
2547	struct audit_context *ctx = current->audit_context;
2548	if (likely(!ctx || !ctx->in_syscall))
2549		return NULL;
2550	return &ctx->killed_trees;
2551}