Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/bug.h>
  39#include <linux/sched/signal.h>
  40#include <linux/module.h>
  41#include <linux/kernel.h>
  42#include <linux/splice.h>
  43#include <crypto/aead.h>
  44
  45#include <net/strparser.h>
  46#include <net/tls.h>
  47#include <trace/events/sock.h>
  48
  49#include "tls.h"
  50
  51struct tls_decrypt_arg {
  52	struct_group(inargs,
  53	bool zc;
  54	bool async;
  55	bool async_done;
  56	u8 tail;
  57	);
  58
  59	struct sk_buff *skb;
  60};
  61
  62struct tls_decrypt_ctx {
  63	struct sock *sk;
  64	u8 iv[TLS_MAX_IV_SIZE];
  65	u8 aad[TLS_MAX_AAD_SIZE];
  66	u8 tail;
  67	bool free_sgout;
  68	struct scatterlist sg[];
  69};
  70
  71noinline void tls_err_abort(struct sock *sk, int err)
  72{
  73	WARN_ON_ONCE(err >= 0);
  74	/* sk->sk_err should contain a positive error code. */
  75	WRITE_ONCE(sk->sk_err, -err);
  76	/* Paired with smp_rmb() in tcp_poll() */
  77	smp_wmb();
  78	sk_error_report(sk);
  79}
  80
  81static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  82                     unsigned int recursion_level)
  83{
  84        int start = skb_headlen(skb);
  85        int i, chunk = start - offset;
  86        struct sk_buff *frag_iter;
  87        int elt = 0;
  88
  89        if (unlikely(recursion_level >= 24))
  90                return -EMSGSIZE;
  91
  92        if (chunk > 0) {
  93                if (chunk > len)
  94                        chunk = len;
  95                elt++;
  96                len -= chunk;
  97                if (len == 0)
  98                        return elt;
  99                offset += chunk;
 100        }
 101
 102        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
 103                int end;
 104
 105                WARN_ON(start > offset + len);
 106
 107                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 108                chunk = end - offset;
 109                if (chunk > 0) {
 110                        if (chunk > len)
 111                                chunk = len;
 112                        elt++;
 113                        len -= chunk;
 114                        if (len == 0)
 115                                return elt;
 116                        offset += chunk;
 117                }
 118                start = end;
 119        }
 120
 121        if (unlikely(skb_has_frag_list(skb))) {
 122                skb_walk_frags(skb, frag_iter) {
 123                        int end, ret;
 124
 125                        WARN_ON(start > offset + len);
 126
 127                        end = start + frag_iter->len;
 128                        chunk = end - offset;
 129                        if (chunk > 0) {
 130                                if (chunk > len)
 131                                        chunk = len;
 132                                ret = __skb_nsg(frag_iter, offset - start, chunk,
 133                                                recursion_level + 1);
 134                                if (unlikely(ret < 0))
 135                                        return ret;
 136                                elt += ret;
 137                                len -= chunk;
 138                                if (len == 0)
 139                                        return elt;
 140                                offset += chunk;
 141                        }
 142                        start = end;
 143                }
 144        }
 145        BUG_ON(len);
 146        return elt;
 147}
 148
 149/* Return the number of scatterlist elements required to completely map the
 150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 151 */
 152static int skb_nsg(struct sk_buff *skb, int offset, int len)
 153{
 154        return __skb_nsg(skb, offset, len, 0);
 155}
 156
 157static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
 158			      struct tls_decrypt_arg *darg)
 159{
 160	struct strp_msg *rxm = strp_msg(skb);
 161	struct tls_msg *tlm = tls_msg(skb);
 162	int sub = 0;
 163
 164	/* Determine zero-padding length */
 165	if (prot->version == TLS_1_3_VERSION) {
 166		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
 167		char content_type = darg->zc ? darg->tail : 0;
 168		int err;
 169
 170		while (content_type == 0) {
 171			if (offset < prot->prepend_size)
 172				return -EBADMSG;
 173			err = skb_copy_bits(skb, rxm->offset + offset,
 174					    &content_type, 1);
 175			if (err)
 176				return err;
 177			if (content_type)
 178				break;
 179			sub++;
 180			offset--;
 181		}
 182		tlm->control = content_type;
 183	}
 184	return sub;
 185}
 186
 187static void tls_decrypt_done(void *data, int err)
 188{
 189	struct aead_request *aead_req = data;
 190	struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
 191	struct scatterlist *sgout = aead_req->dst;
 192	struct tls_sw_context_rx *ctx;
 193	struct tls_decrypt_ctx *dctx;
 194	struct tls_context *tls_ctx;
 195	struct scatterlist *sg;
 196	unsigned int pages;
 197	struct sock *sk;
 198	int aead_size;
 199
 200	/* If requests get too backlogged crypto API returns -EBUSY and calls
 201	 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
 202	 * to make waiting for backlog to flush with crypto_wait_req() easier.
 203	 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
 204	 * -EINPROGRESS -> 0.
 205	 * We have a single struct crypto_async_request per direction, this
 206	 * scheme doesn't help us, so just ignore the first ->complete().
 207	 */
 208	if (err == -EINPROGRESS)
 209		return;
 210
 211	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
 212	aead_size = ALIGN(aead_size, __alignof__(*dctx));
 213	dctx = (void *)((u8 *)aead_req + aead_size);
 214
 215	sk = dctx->sk;
 216	tls_ctx = tls_get_ctx(sk);
 217	ctx = tls_sw_ctx_rx(tls_ctx);
 218
 219	/* Propagate if there was an err */
 220	if (err) {
 221		if (err == -EBADMSG)
 222			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
 223		ctx->async_wait.err = err;
 224		tls_err_abort(sk, err);
 225	}
 226
 227	/* Free the destination pages if skb was not decrypted inplace */
 228	if (dctx->free_sgout) {
 229		/* Skip the first S/G entry as it points to AAD */
 230		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 231			if (!sg)
 232				break;
 233			put_page(sg_page(sg));
 234		}
 235	}
 236
 237	kfree(aead_req);
 238
 239	if (atomic_dec_and_test(&ctx->decrypt_pending))
 240		complete(&ctx->async_wait.completion);
 241}
 242
 243static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
 244{
 245	if (!atomic_dec_and_test(&ctx->decrypt_pending))
 246		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
 247	atomic_inc(&ctx->decrypt_pending);
 248
 249	return ctx->async_wait.err;
 250}
 251
 252static int tls_do_decryption(struct sock *sk,
 253			     struct scatterlist *sgin,
 254			     struct scatterlist *sgout,
 255			     char *iv_recv,
 256			     size_t data_len,
 257			     struct aead_request *aead_req,
 258			     struct tls_decrypt_arg *darg)
 259{
 260	struct tls_context *tls_ctx = tls_get_ctx(sk);
 261	struct tls_prot_info *prot = &tls_ctx->prot_info;
 262	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 263	int ret;
 264
 265	aead_request_set_tfm(aead_req, ctx->aead_recv);
 266	aead_request_set_ad(aead_req, prot->aad_size);
 267	aead_request_set_crypt(aead_req, sgin, sgout,
 268			       data_len + prot->tag_size,
 269			       (u8 *)iv_recv);
 270
 271	if (darg->async) {
 272		aead_request_set_callback(aead_req,
 273					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 274					  tls_decrypt_done, aead_req);
 275		DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
 276		atomic_inc(&ctx->decrypt_pending);
 277	} else {
 278		DECLARE_CRYPTO_WAIT(wait);
 279
 280		aead_request_set_callback(aead_req,
 281					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 282					  crypto_req_done, &wait);
 283		ret = crypto_aead_decrypt(aead_req);
 284		if (ret == -EINPROGRESS || ret == -EBUSY)
 285			ret = crypto_wait_req(ret, &wait);
 286		return ret;
 287	}
 288
 289	ret = crypto_aead_decrypt(aead_req);
 290	if (ret == -EINPROGRESS)
 291		return 0;
 292
 293	if (ret == -EBUSY) {
 294		ret = tls_decrypt_async_wait(ctx);
 295		darg->async_done = true;
 296		/* all completions have run, we're not doing async anymore */
 297		darg->async = false;
 298		return ret;
 299	}
 300
 301	atomic_dec(&ctx->decrypt_pending);
 302	darg->async = false;
 303
 304	return ret;
 305}
 306
 307static void tls_trim_both_msgs(struct sock *sk, int target_size)
 308{
 309	struct tls_context *tls_ctx = tls_get_ctx(sk);
 310	struct tls_prot_info *prot = &tls_ctx->prot_info;
 311	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 312	struct tls_rec *rec = ctx->open_rec;
 313
 314	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 315	if (target_size > 0)
 316		target_size += prot->overhead_size;
 317	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 318}
 319
 320static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 321{
 322	struct tls_context *tls_ctx = tls_get_ctx(sk);
 323	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 324	struct tls_rec *rec = ctx->open_rec;
 325	struct sk_msg *msg_en = &rec->msg_encrypted;
 326
 327	return sk_msg_alloc(sk, msg_en, len, 0);
 328}
 329
 330static int tls_clone_plaintext_msg(struct sock *sk, int required)
 331{
 332	struct tls_context *tls_ctx = tls_get_ctx(sk);
 333	struct tls_prot_info *prot = &tls_ctx->prot_info;
 334	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 335	struct tls_rec *rec = ctx->open_rec;
 336	struct sk_msg *msg_pl = &rec->msg_plaintext;
 337	struct sk_msg *msg_en = &rec->msg_encrypted;
 338	int skip, len;
 339
 340	/* We add page references worth len bytes from encrypted sg
 341	 * at the end of plaintext sg. It is guaranteed that msg_en
 342	 * has enough required room (ensured by caller).
 343	 */
 344	len = required - msg_pl->sg.size;
 345
 346	/* Skip initial bytes in msg_en's data to be able to use
 347	 * same offset of both plain and encrypted data.
 348	 */
 349	skip = prot->prepend_size + msg_pl->sg.size;
 350
 351	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 352}
 353
 354static struct tls_rec *tls_get_rec(struct sock *sk)
 355{
 356	struct tls_context *tls_ctx = tls_get_ctx(sk);
 357	struct tls_prot_info *prot = &tls_ctx->prot_info;
 358	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 359	struct sk_msg *msg_pl, *msg_en;
 360	struct tls_rec *rec;
 361	int mem_size;
 362
 363	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 364
 365	rec = kzalloc(mem_size, sk->sk_allocation);
 366	if (!rec)
 367		return NULL;
 368
 369	msg_pl = &rec->msg_plaintext;
 370	msg_en = &rec->msg_encrypted;
 371
 372	sk_msg_init(msg_pl);
 373	sk_msg_init(msg_en);
 374
 375	sg_init_table(rec->sg_aead_in, 2);
 376	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 377	sg_unmark_end(&rec->sg_aead_in[1]);
 378
 379	sg_init_table(rec->sg_aead_out, 2);
 380	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 381	sg_unmark_end(&rec->sg_aead_out[1]);
 382
 383	rec->sk = sk;
 384
 385	return rec;
 386}
 387
 388static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 389{
 390	sk_msg_free(sk, &rec->msg_encrypted);
 391	sk_msg_free(sk, &rec->msg_plaintext);
 392	kfree(rec);
 393}
 394
 395static void tls_free_open_rec(struct sock *sk)
 396{
 397	struct tls_context *tls_ctx = tls_get_ctx(sk);
 398	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 399	struct tls_rec *rec = ctx->open_rec;
 400
 401	if (rec) {
 402		tls_free_rec(sk, rec);
 403		ctx->open_rec = NULL;
 404	}
 405}
 406
 407int tls_tx_records(struct sock *sk, int flags)
 408{
 409	struct tls_context *tls_ctx = tls_get_ctx(sk);
 410	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 411	struct tls_rec *rec, *tmp;
 412	struct sk_msg *msg_en;
 413	int tx_flags, rc = 0;
 414
 415	if (tls_is_partially_sent_record(tls_ctx)) {
 416		rec = list_first_entry(&ctx->tx_list,
 417				       struct tls_rec, list);
 418
 419		if (flags == -1)
 420			tx_flags = rec->tx_flags;
 421		else
 422			tx_flags = flags;
 423
 424		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 425		if (rc)
 426			goto tx_err;
 427
 428		/* Full record has been transmitted.
 429		 * Remove the head of tx_list
 430		 */
 431		list_del(&rec->list);
 432		sk_msg_free(sk, &rec->msg_plaintext);
 433		kfree(rec);
 434	}
 435
 436	/* Tx all ready records */
 437	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 438		if (READ_ONCE(rec->tx_ready)) {
 439			if (flags == -1)
 440				tx_flags = rec->tx_flags;
 441			else
 442				tx_flags = flags;
 443
 444			msg_en = &rec->msg_encrypted;
 445			rc = tls_push_sg(sk, tls_ctx,
 446					 &msg_en->sg.data[msg_en->sg.curr],
 447					 0, tx_flags);
 448			if (rc)
 449				goto tx_err;
 450
 451			list_del(&rec->list);
 452			sk_msg_free(sk, &rec->msg_plaintext);
 453			kfree(rec);
 454		} else {
 455			break;
 456		}
 457	}
 458
 459tx_err:
 460	if (rc < 0 && rc != -EAGAIN)
 461		tls_err_abort(sk, -EBADMSG);
 462
 463	return rc;
 464}
 465
 466static void tls_encrypt_done(void *data, int err)
 467{
 468	struct tls_sw_context_tx *ctx;
 469	struct tls_context *tls_ctx;
 470	struct tls_prot_info *prot;
 471	struct tls_rec *rec = data;
 472	struct scatterlist *sge;
 473	struct sk_msg *msg_en;
 474	struct sock *sk;
 475
 476	if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
 477		return;
 478
 479	msg_en = &rec->msg_encrypted;
 480
 481	sk = rec->sk;
 482	tls_ctx = tls_get_ctx(sk);
 483	prot = &tls_ctx->prot_info;
 484	ctx = tls_sw_ctx_tx(tls_ctx);
 485
 486	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 487	sge->offset -= prot->prepend_size;
 488	sge->length += prot->prepend_size;
 489
 490	/* Check if error is previously set on socket */
 491	if (err || sk->sk_err) {
 492		rec = NULL;
 493
 494		/* If err is already set on socket, return the same code */
 495		if (sk->sk_err) {
 496			ctx->async_wait.err = -sk->sk_err;
 497		} else {
 498			ctx->async_wait.err = err;
 499			tls_err_abort(sk, err);
 500		}
 501	}
 502
 503	if (rec) {
 504		struct tls_rec *first_rec;
 505
 506		/* Mark the record as ready for transmission */
 507		smp_store_mb(rec->tx_ready, true);
 508
 509		/* If received record is at head of tx_list, schedule tx */
 510		first_rec = list_first_entry(&ctx->tx_list,
 511					     struct tls_rec, list);
 512		if (rec == first_rec) {
 513			/* Schedule the transmission */
 514			if (!test_and_set_bit(BIT_TX_SCHEDULED,
 515					      &ctx->tx_bitmask))
 516				schedule_delayed_work(&ctx->tx_work.work, 1);
 517		}
 518	}
 519
 520	if (atomic_dec_and_test(&ctx->encrypt_pending))
 521		complete(&ctx->async_wait.completion);
 522}
 523
 524static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
 525{
 526	if (!atomic_dec_and_test(&ctx->encrypt_pending))
 527		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
 528	atomic_inc(&ctx->encrypt_pending);
 529
 530	return ctx->async_wait.err;
 531}
 532
 533static int tls_do_encryption(struct sock *sk,
 534			     struct tls_context *tls_ctx,
 535			     struct tls_sw_context_tx *ctx,
 536			     struct aead_request *aead_req,
 537			     size_t data_len, u32 start)
 538{
 539	struct tls_prot_info *prot = &tls_ctx->prot_info;
 540	struct tls_rec *rec = ctx->open_rec;
 541	struct sk_msg *msg_en = &rec->msg_encrypted;
 542	struct scatterlist *sge = sk_msg_elem(msg_en, start);
 543	int rc, iv_offset = 0;
 544
 545	/* For CCM based ciphers, first byte of IV is a constant */
 546	switch (prot->cipher_type) {
 547	case TLS_CIPHER_AES_CCM_128:
 548		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 549		iv_offset = 1;
 550		break;
 551	case TLS_CIPHER_SM4_CCM:
 552		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
 553		iv_offset = 1;
 554		break;
 555	}
 556
 557	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 558	       prot->iv_size + prot->salt_size);
 559
 560	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
 561			    tls_ctx->tx.rec_seq);
 562
 563	sge->offset += prot->prepend_size;
 564	sge->length -= prot->prepend_size;
 565
 566	msg_en->sg.curr = start;
 567
 568	aead_request_set_tfm(aead_req, ctx->aead_send);
 569	aead_request_set_ad(aead_req, prot->aad_size);
 570	aead_request_set_crypt(aead_req, rec->sg_aead_in,
 571			       rec->sg_aead_out,
 572			       data_len, rec->iv_data);
 573
 574	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 575				  tls_encrypt_done, rec);
 576
 577	/* Add the record in tx_list */
 578	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 579	DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
 580	atomic_inc(&ctx->encrypt_pending);
 581
 582	rc = crypto_aead_encrypt(aead_req);
 583	if (rc == -EBUSY) {
 584		rc = tls_encrypt_async_wait(ctx);
 585		rc = rc ?: -EINPROGRESS;
 586	}
 587	if (!rc || rc != -EINPROGRESS) {
 588		atomic_dec(&ctx->encrypt_pending);
 589		sge->offset -= prot->prepend_size;
 590		sge->length += prot->prepend_size;
 591	}
 592
 593	if (!rc) {
 594		WRITE_ONCE(rec->tx_ready, true);
 595	} else if (rc != -EINPROGRESS) {
 596		list_del(&rec->list);
 597		return rc;
 598	}
 599
 600	/* Unhook the record from context if encryption is not failure */
 601	ctx->open_rec = NULL;
 602	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 603	return rc;
 604}
 605
 606static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 607				 struct tls_rec **to, struct sk_msg *msg_opl,
 608				 struct sk_msg *msg_oen, u32 split_point,
 609				 u32 tx_overhead_size, u32 *orig_end)
 610{
 611	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 612	struct scatterlist *sge, *osge, *nsge;
 613	u32 orig_size = msg_opl->sg.size;
 614	struct scatterlist tmp = { };
 615	struct sk_msg *msg_npl;
 616	struct tls_rec *new;
 617	int ret;
 618
 619	new = tls_get_rec(sk);
 620	if (!new)
 621		return -ENOMEM;
 622	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 623			   tx_overhead_size, 0);
 624	if (ret < 0) {
 625		tls_free_rec(sk, new);
 626		return ret;
 627	}
 628
 629	*orig_end = msg_opl->sg.end;
 630	i = msg_opl->sg.start;
 631	sge = sk_msg_elem(msg_opl, i);
 632	while (apply && sge->length) {
 633		if (sge->length > apply) {
 634			u32 len = sge->length - apply;
 635
 636			get_page(sg_page(sge));
 637			sg_set_page(&tmp, sg_page(sge), len,
 638				    sge->offset + apply);
 639			sge->length = apply;
 640			bytes += apply;
 641			apply = 0;
 642		} else {
 643			apply -= sge->length;
 644			bytes += sge->length;
 645		}
 646
 647		sk_msg_iter_var_next(i);
 648		if (i == msg_opl->sg.end)
 649			break;
 650		sge = sk_msg_elem(msg_opl, i);
 651	}
 652
 653	msg_opl->sg.end = i;
 654	msg_opl->sg.curr = i;
 655	msg_opl->sg.copybreak = 0;
 656	msg_opl->apply_bytes = 0;
 657	msg_opl->sg.size = bytes;
 658
 659	msg_npl = &new->msg_plaintext;
 660	msg_npl->apply_bytes = apply;
 661	msg_npl->sg.size = orig_size - bytes;
 662
 663	j = msg_npl->sg.start;
 664	nsge = sk_msg_elem(msg_npl, j);
 665	if (tmp.length) {
 666		memcpy(nsge, &tmp, sizeof(*nsge));
 667		sk_msg_iter_var_next(j);
 668		nsge = sk_msg_elem(msg_npl, j);
 669	}
 670
 671	osge = sk_msg_elem(msg_opl, i);
 672	while (osge->length) {
 673		memcpy(nsge, osge, sizeof(*nsge));
 674		sg_unmark_end(nsge);
 675		sk_msg_iter_var_next(i);
 676		sk_msg_iter_var_next(j);
 677		if (i == *orig_end)
 678			break;
 679		osge = sk_msg_elem(msg_opl, i);
 680		nsge = sk_msg_elem(msg_npl, j);
 681	}
 682
 683	msg_npl->sg.end = j;
 684	msg_npl->sg.curr = j;
 685	msg_npl->sg.copybreak = 0;
 686
 687	*to = new;
 688	return 0;
 689}
 690
 691static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 692				  struct tls_rec *from, u32 orig_end)
 693{
 694	struct sk_msg *msg_npl = &from->msg_plaintext;
 695	struct sk_msg *msg_opl = &to->msg_plaintext;
 696	struct scatterlist *osge, *nsge;
 697	u32 i, j;
 698
 699	i = msg_opl->sg.end;
 700	sk_msg_iter_var_prev(i);
 701	j = msg_npl->sg.start;
 702
 703	osge = sk_msg_elem(msg_opl, i);
 704	nsge = sk_msg_elem(msg_npl, j);
 705
 706	if (sg_page(osge) == sg_page(nsge) &&
 707	    osge->offset + osge->length == nsge->offset) {
 708		osge->length += nsge->length;
 709		put_page(sg_page(nsge));
 710	}
 711
 712	msg_opl->sg.end = orig_end;
 713	msg_opl->sg.curr = orig_end;
 714	msg_opl->sg.copybreak = 0;
 715	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 716	msg_opl->sg.size += msg_npl->sg.size;
 717
 718	sk_msg_free(sk, &to->msg_encrypted);
 719	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 720
 721	kfree(from);
 722}
 723
 724static int tls_push_record(struct sock *sk, int flags,
 725			   unsigned char record_type)
 726{
 727	struct tls_context *tls_ctx = tls_get_ctx(sk);
 728	struct tls_prot_info *prot = &tls_ctx->prot_info;
 729	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 730	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 731	u32 i, split_point, orig_end;
 732	struct sk_msg *msg_pl, *msg_en;
 733	struct aead_request *req;
 734	bool split;
 735	int rc;
 736
 737	if (!rec)
 738		return 0;
 739
 740	msg_pl = &rec->msg_plaintext;
 741	msg_en = &rec->msg_encrypted;
 742
 743	split_point = msg_pl->apply_bytes;
 744	split = split_point && split_point < msg_pl->sg.size;
 745	if (unlikely((!split &&
 746		      msg_pl->sg.size +
 747		      prot->overhead_size > msg_en->sg.size) ||
 748		     (split &&
 749		      split_point +
 750		      prot->overhead_size > msg_en->sg.size))) {
 751		split = true;
 752		split_point = msg_en->sg.size;
 753	}
 754	if (split) {
 755		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 756					   split_point, prot->overhead_size,
 757					   &orig_end);
 758		if (rc < 0)
 759			return rc;
 760		/* This can happen if above tls_split_open_record allocates
 761		 * a single large encryption buffer instead of two smaller
 762		 * ones. In this case adjust pointers and continue without
 763		 * split.
 764		 */
 765		if (!msg_pl->sg.size) {
 766			tls_merge_open_record(sk, rec, tmp, orig_end);
 767			msg_pl = &rec->msg_plaintext;
 768			msg_en = &rec->msg_encrypted;
 769			split = false;
 770		}
 771		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 772			    prot->overhead_size);
 773	}
 774
 775	rec->tx_flags = flags;
 776	req = &rec->aead_req;
 777
 778	i = msg_pl->sg.end;
 779	sk_msg_iter_var_prev(i);
 780
 781	rec->content_type = record_type;
 782	if (prot->version == TLS_1_3_VERSION) {
 783		/* Add content type to end of message.  No padding added */
 784		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 785		sg_mark_end(&rec->sg_content_type);
 786		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 787			 &rec->sg_content_type);
 788	} else {
 789		sg_mark_end(sk_msg_elem(msg_pl, i));
 790	}
 791
 792	if (msg_pl->sg.end < msg_pl->sg.start) {
 793		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 794			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 795			 msg_pl->sg.data);
 796	}
 797
 798	i = msg_pl->sg.start;
 799	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 800
 801	i = msg_en->sg.end;
 802	sk_msg_iter_var_prev(i);
 803	sg_mark_end(sk_msg_elem(msg_en, i));
 804
 805	i = msg_en->sg.start;
 806	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 807
 808	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 809		     tls_ctx->tx.rec_seq, record_type, prot);
 810
 811	tls_fill_prepend(tls_ctx,
 812			 page_address(sg_page(&msg_en->sg.data[i])) +
 813			 msg_en->sg.data[i].offset,
 814			 msg_pl->sg.size + prot->tail_size,
 815			 record_type);
 816
 817	tls_ctx->pending_open_record_frags = false;
 818
 819	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 820			       msg_pl->sg.size + prot->tail_size, i);
 821	if (rc < 0) {
 822		if (rc != -EINPROGRESS) {
 823			tls_err_abort(sk, -EBADMSG);
 824			if (split) {
 825				tls_ctx->pending_open_record_frags = true;
 826				tls_merge_open_record(sk, rec, tmp, orig_end);
 827			}
 828		}
 829		ctx->async_capable = 1;
 830		return rc;
 831	} else if (split) {
 832		msg_pl = &tmp->msg_plaintext;
 833		msg_en = &tmp->msg_encrypted;
 834		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 835		tls_ctx->pending_open_record_frags = true;
 836		ctx->open_rec = tmp;
 837	}
 838
 839	return tls_tx_records(sk, flags);
 840}
 841
 842static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 843			       bool full_record, u8 record_type,
 844			       ssize_t *copied, int flags)
 845{
 846	struct tls_context *tls_ctx = tls_get_ctx(sk);
 847	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 848	struct sk_msg msg_redir = { };
 849	struct sk_psock *psock;
 850	struct sock *sk_redir;
 851	struct tls_rec *rec;
 852	bool enospc, policy, redir_ingress;
 853	int err = 0, send;
 854	u32 delta = 0;
 855
 856	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 857	psock = sk_psock_get(sk);
 858	if (!psock || !policy) {
 859		err = tls_push_record(sk, flags, record_type);
 860		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
 861			*copied -= sk_msg_free(sk, msg);
 862			tls_free_open_rec(sk);
 863			err = -sk->sk_err;
 864		}
 865		if (psock)
 866			sk_psock_put(sk, psock);
 867		return err;
 868	}
 869more_data:
 870	enospc = sk_msg_full(msg);
 871	if (psock->eval == __SK_NONE) {
 872		delta = msg->sg.size;
 873		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 874		delta -= msg->sg.size;
 875	}
 876	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 877	    !enospc && !full_record) {
 878		err = -ENOSPC;
 879		goto out_err;
 880	}
 881	msg->cork_bytes = 0;
 882	send = msg->sg.size;
 883	if (msg->apply_bytes && msg->apply_bytes < send)
 884		send = msg->apply_bytes;
 885
 886	switch (psock->eval) {
 887	case __SK_PASS:
 888		err = tls_push_record(sk, flags, record_type);
 889		if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
 890			*copied -= sk_msg_free(sk, msg);
 891			tls_free_open_rec(sk);
 892			err = -sk->sk_err;
 893			goto out_err;
 894		}
 895		break;
 896	case __SK_REDIRECT:
 897		redir_ingress = psock->redir_ingress;
 898		sk_redir = psock->sk_redir;
 899		memcpy(&msg_redir, msg, sizeof(*msg));
 900		if (msg->apply_bytes < send)
 901			msg->apply_bytes = 0;
 902		else
 903			msg->apply_bytes -= send;
 904		sk_msg_return_zero(sk, msg, send);
 905		msg->sg.size -= send;
 906		release_sock(sk);
 907		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
 908					    &msg_redir, send, flags);
 909		lock_sock(sk);
 910		if (err < 0) {
 911			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
 912			msg->sg.size = 0;
 913		}
 914		if (msg->sg.size == 0)
 915			tls_free_open_rec(sk);
 916		break;
 917	case __SK_DROP:
 918	default:
 919		sk_msg_free_partial(sk, msg, send);
 920		if (msg->apply_bytes < send)
 921			msg->apply_bytes = 0;
 922		else
 923			msg->apply_bytes -= send;
 924		if (msg->sg.size == 0)
 925			tls_free_open_rec(sk);
 926		*copied -= (send + delta);
 927		err = -EACCES;
 928	}
 929
 930	if (likely(!err)) {
 931		bool reset_eval = !ctx->open_rec;
 932
 933		rec = ctx->open_rec;
 934		if (rec) {
 935			msg = &rec->msg_plaintext;
 936			if (!msg->apply_bytes)
 937				reset_eval = true;
 938		}
 939		if (reset_eval) {
 940			psock->eval = __SK_NONE;
 941			if (psock->sk_redir) {
 942				sock_put(psock->sk_redir);
 943				psock->sk_redir = NULL;
 944			}
 945		}
 946		if (rec)
 947			goto more_data;
 948	}
 949 out_err:
 950	sk_psock_put(sk, psock);
 951	return err;
 952}
 953
 954static int tls_sw_push_pending_record(struct sock *sk, int flags)
 955{
 956	struct tls_context *tls_ctx = tls_get_ctx(sk);
 957	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 958	struct tls_rec *rec = ctx->open_rec;
 959	struct sk_msg *msg_pl;
 960	size_t copied;
 961
 962	if (!rec)
 963		return 0;
 964
 965	msg_pl = &rec->msg_plaintext;
 966	copied = msg_pl->sg.size;
 967	if (!copied)
 968		return 0;
 969
 970	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 971				   &copied, flags);
 972}
 973
 974static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
 975				 struct sk_msg *msg_pl, size_t try_to_copy,
 976				 ssize_t *copied)
 977{
 978	struct page *page = NULL, **pages = &page;
 979
 980	do {
 981		ssize_t part;
 982		size_t off;
 983
 984		part = iov_iter_extract_pages(&msg->msg_iter, &pages,
 985					      try_to_copy, 1, 0, &off);
 986		if (part <= 0)
 987			return part ?: -EIO;
 988
 989		if (WARN_ON_ONCE(!sendpage_ok(page))) {
 990			iov_iter_revert(&msg->msg_iter, part);
 991			return -EIO;
 992		}
 993
 994		sk_msg_page_add(msg_pl, page, part, off);
 995		msg_pl->sg.copybreak = 0;
 996		msg_pl->sg.curr = msg_pl->sg.end;
 997		sk_mem_charge(sk, part);
 998		*copied += part;
 999		try_to_copy -= part;
1000	} while (try_to_copy && !sk_msg_full(msg_pl));
1001
1002	return 0;
1003}
1004
1005static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1006				 size_t size)
1007{
1008	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1009	struct tls_context *tls_ctx = tls_get_ctx(sk);
1010	struct tls_prot_info *prot = &tls_ctx->prot_info;
1011	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1012	bool async_capable = ctx->async_capable;
1013	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1014	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1015	bool eor = !(msg->msg_flags & MSG_MORE);
1016	size_t try_to_copy;
1017	ssize_t copied = 0;
1018	struct sk_msg *msg_pl, *msg_en;
1019	struct tls_rec *rec;
1020	int required_size;
1021	int num_async = 0;
1022	bool full_record;
1023	int record_room;
1024	int num_zc = 0;
1025	int orig_size;
1026	int ret = 0;
1027
1028	if (!eor && (msg->msg_flags & MSG_EOR))
1029		return -EINVAL;
1030
1031	if (unlikely(msg->msg_controllen)) {
1032		ret = tls_process_cmsg(sk, msg, &record_type);
1033		if (ret) {
1034			if (ret == -EINPROGRESS)
1035				num_async++;
1036			else if (ret != -EAGAIN)
1037				goto send_end;
1038		}
1039	}
1040
1041	while (msg_data_left(msg)) {
1042		if (sk->sk_err) {
1043			ret = -sk->sk_err;
1044			goto send_end;
1045		}
1046
1047		if (ctx->open_rec)
1048			rec = ctx->open_rec;
1049		else
1050			rec = ctx->open_rec = tls_get_rec(sk);
1051		if (!rec) {
1052			ret = -ENOMEM;
1053			goto send_end;
1054		}
1055
1056		msg_pl = &rec->msg_plaintext;
1057		msg_en = &rec->msg_encrypted;
1058
1059		orig_size = msg_pl->sg.size;
1060		full_record = false;
1061		try_to_copy = msg_data_left(msg);
1062		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1063		if (try_to_copy >= record_room) {
1064			try_to_copy = record_room;
1065			full_record = true;
1066		}
1067
1068		required_size = msg_pl->sg.size + try_to_copy +
1069				prot->overhead_size;
1070
1071		if (!sk_stream_memory_free(sk))
1072			goto wait_for_sndbuf;
1073
1074alloc_encrypted:
1075		ret = tls_alloc_encrypted_msg(sk, required_size);
1076		if (ret) {
1077			if (ret != -ENOSPC)
1078				goto wait_for_memory;
1079
1080			/* Adjust try_to_copy according to the amount that was
1081			 * actually allocated. The difference is due
1082			 * to max sg elements limit
1083			 */
1084			try_to_copy -= required_size - msg_en->sg.size;
1085			full_record = true;
1086		}
1087
1088		if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1089			ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1090						    try_to_copy, &copied);
1091			if (ret < 0)
1092				goto send_end;
1093			tls_ctx->pending_open_record_frags = true;
1094
1095			if (sk_msg_full(msg_pl))
1096				full_record = true;
1097
1098			if (full_record || eor)
1099				goto copied;
1100			continue;
1101		}
1102
1103		if (!is_kvec && (full_record || eor) && !async_capable) {
1104			u32 first = msg_pl->sg.end;
1105
1106			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1107							msg_pl, try_to_copy);
1108			if (ret)
1109				goto fallback_to_reg_send;
1110
1111			num_zc++;
1112			copied += try_to_copy;
1113
1114			sk_msg_sg_copy_set(msg_pl, first);
1115			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1116						  record_type, &copied,
1117						  msg->msg_flags);
1118			if (ret) {
1119				if (ret == -EINPROGRESS)
1120					num_async++;
1121				else if (ret == -ENOMEM)
1122					goto wait_for_memory;
1123				else if (ctx->open_rec && ret == -ENOSPC)
1124					goto rollback_iter;
1125				else if (ret != -EAGAIN)
1126					goto send_end;
1127			}
1128			continue;
1129rollback_iter:
1130			copied -= try_to_copy;
1131			sk_msg_sg_copy_clear(msg_pl, first);
1132			iov_iter_revert(&msg->msg_iter,
1133					msg_pl->sg.size - orig_size);
1134fallback_to_reg_send:
1135			sk_msg_trim(sk, msg_pl, orig_size);
1136		}
1137
1138		required_size = msg_pl->sg.size + try_to_copy;
1139
1140		ret = tls_clone_plaintext_msg(sk, required_size);
1141		if (ret) {
1142			if (ret != -ENOSPC)
1143				goto send_end;
1144
1145			/* Adjust try_to_copy according to the amount that was
1146			 * actually allocated. The difference is due
1147			 * to max sg elements limit
1148			 */
1149			try_to_copy -= required_size - msg_pl->sg.size;
1150			full_record = true;
1151			sk_msg_trim(sk, msg_en,
1152				    msg_pl->sg.size + prot->overhead_size);
1153		}
1154
1155		if (try_to_copy) {
1156			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1157						       msg_pl, try_to_copy);
1158			if (ret < 0)
1159				goto trim_sgl;
1160		}
1161
1162		/* Open records defined only if successfully copied, otherwise
1163		 * we would trim the sg but not reset the open record frags.
1164		 */
1165		tls_ctx->pending_open_record_frags = true;
1166		copied += try_to_copy;
1167copied:
1168		if (full_record || eor) {
1169			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1170						  record_type, &copied,
1171						  msg->msg_flags);
1172			if (ret) {
1173				if (ret == -EINPROGRESS)
1174					num_async++;
1175				else if (ret == -ENOMEM)
1176					goto wait_for_memory;
1177				else if (ret != -EAGAIN) {
1178					if (ret == -ENOSPC)
1179						ret = 0;
1180					goto send_end;
1181				}
1182			}
1183		}
1184
1185		continue;
1186
1187wait_for_sndbuf:
1188		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1189wait_for_memory:
1190		ret = sk_stream_wait_memory(sk, &timeo);
1191		if (ret) {
1192trim_sgl:
1193			if (ctx->open_rec)
1194				tls_trim_both_msgs(sk, orig_size);
1195			goto send_end;
1196		}
1197
1198		if (ctx->open_rec && msg_en->sg.size < required_size)
1199			goto alloc_encrypted;
1200	}
1201
1202	if (!num_async) {
1203		goto send_end;
1204	} else if (num_zc) {
1205		int err;
1206
1207		/* Wait for pending encryptions to get completed */
1208		err = tls_encrypt_async_wait(ctx);
1209		if (err) {
1210			ret = err;
1211			copied = 0;
1212		}
1213	}
1214
1215	/* Transmit if any encryptions have completed */
1216	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1217		cancel_delayed_work(&ctx->tx_work.work);
1218		tls_tx_records(sk, msg->msg_flags);
1219	}
1220
1221send_end:
1222	ret = sk_stream_error(sk, msg->msg_flags, ret);
1223	return copied > 0 ? copied : ret;
1224}
1225
1226int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1227{
1228	struct tls_context *tls_ctx = tls_get_ctx(sk);
1229	int ret;
1230
1231	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1232			       MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1233			       MSG_SENDPAGE_NOPOLICY))
1234		return -EOPNOTSUPP;
1235
1236	ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1237	if (ret)
1238		return ret;
1239	lock_sock(sk);
1240	ret = tls_sw_sendmsg_locked(sk, msg, size);
1241	release_sock(sk);
1242	mutex_unlock(&tls_ctx->tx_lock);
1243	return ret;
1244}
1245
1246/*
1247 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1248 */
1249void tls_sw_splice_eof(struct socket *sock)
1250{
1251	struct sock *sk = sock->sk;
1252	struct tls_context *tls_ctx = tls_get_ctx(sk);
1253	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1254	struct tls_rec *rec;
1255	struct sk_msg *msg_pl;
1256	ssize_t copied = 0;
1257	bool retrying = false;
1258	int ret = 0;
1259
1260	if (!ctx->open_rec)
1261		return;
1262
1263	mutex_lock(&tls_ctx->tx_lock);
1264	lock_sock(sk);
1265
1266retry:
1267	/* same checks as in tls_sw_push_pending_record() */
1268	rec = ctx->open_rec;
1269	if (!rec)
1270		goto unlock;
1271
1272	msg_pl = &rec->msg_plaintext;
1273	if (msg_pl->sg.size == 0)
1274		goto unlock;
1275
1276	/* Check the BPF advisor and perform transmission. */
1277	ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1278				  &copied, 0);
1279	switch (ret) {
1280	case 0:
1281	case -EAGAIN:
1282		if (retrying)
1283			goto unlock;
1284		retrying = true;
1285		goto retry;
1286	case -EINPROGRESS:
1287		break;
1288	default:
1289		goto unlock;
1290	}
1291
1292	/* Wait for pending encryptions to get completed */
1293	if (tls_encrypt_async_wait(ctx))
1294		goto unlock;
1295
1296	/* Transmit if any encryptions have completed */
1297	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1298		cancel_delayed_work(&ctx->tx_work.work);
1299		tls_tx_records(sk, 0);
1300	}
1301
1302unlock:
1303	release_sock(sk);
1304	mutex_unlock(&tls_ctx->tx_lock);
1305}
1306
1307static int
1308tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1309		bool released)
1310{
1311	struct tls_context *tls_ctx = tls_get_ctx(sk);
1312	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1314	int ret = 0;
1315	long timeo;
1316
1317	timeo = sock_rcvtimeo(sk, nonblock);
1318
1319	while (!tls_strp_msg_ready(ctx)) {
1320		if (!sk_psock_queue_empty(psock))
1321			return 0;
1322
1323		if (sk->sk_err)
1324			return sock_error(sk);
1325
1326		if (ret < 0)
1327			return ret;
1328
1329		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1330			tls_strp_check_rcv(&ctx->strp);
1331			if (tls_strp_msg_ready(ctx))
1332				break;
1333		}
1334
1335		if (sk->sk_shutdown & RCV_SHUTDOWN)
1336			return 0;
1337
1338		if (sock_flag(sk, SOCK_DONE))
1339			return 0;
1340
1341		if (!timeo)
1342			return -EAGAIN;
1343
1344		released = true;
1345		add_wait_queue(sk_sleep(sk), &wait);
1346		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1347		ret = sk_wait_event(sk, &timeo,
1348				    tls_strp_msg_ready(ctx) ||
1349				    !sk_psock_queue_empty(psock),
1350				    &wait);
1351		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1352		remove_wait_queue(sk_sleep(sk), &wait);
1353
1354		/* Handle signals */
1355		if (signal_pending(current))
1356			return sock_intr_errno(timeo);
1357	}
1358
1359	tls_strp_msg_load(&ctx->strp, released);
1360
1361	return 1;
1362}
1363
1364static int tls_setup_from_iter(struct iov_iter *from,
1365			       int length, int *pages_used,
1366			       struct scatterlist *to,
1367			       int to_max_pages)
1368{
1369	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1370	struct page *pages[MAX_SKB_FRAGS];
1371	unsigned int size = 0;
1372	ssize_t copied, use;
1373	size_t offset;
1374
1375	while (length > 0) {
1376		i = 0;
1377		maxpages = to_max_pages - num_elem;
1378		if (maxpages == 0) {
1379			rc = -EFAULT;
1380			goto out;
1381		}
1382		copied = iov_iter_get_pages2(from, pages,
1383					    length,
1384					    maxpages, &offset);
1385		if (copied <= 0) {
1386			rc = -EFAULT;
1387			goto out;
1388		}
1389
1390		length -= copied;
1391		size += copied;
1392		while (copied) {
1393			use = min_t(int, copied, PAGE_SIZE - offset);
1394
1395			sg_set_page(&to[num_elem],
1396				    pages[i], use, offset);
1397			sg_unmark_end(&to[num_elem]);
1398			/* We do not uncharge memory from this API */
1399
1400			offset = 0;
1401			copied -= use;
1402
1403			i++;
1404			num_elem++;
1405		}
1406	}
1407	/* Mark the end in the last sg entry if newly added */
1408	if (num_elem > *pages_used)
1409		sg_mark_end(&to[num_elem - 1]);
1410out:
1411	if (rc)
1412		iov_iter_revert(from, size);
1413	*pages_used = num_elem;
1414
1415	return rc;
1416}
1417
1418static struct sk_buff *
1419tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1420		     unsigned int full_len)
1421{
1422	struct strp_msg *clr_rxm;
1423	struct sk_buff *clr_skb;
1424	int err;
1425
1426	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1427				       &err, sk->sk_allocation);
1428	if (!clr_skb)
1429		return NULL;
1430
1431	skb_copy_header(clr_skb, skb);
1432	clr_skb->len = full_len;
1433	clr_skb->data_len = full_len;
1434
1435	clr_rxm = strp_msg(clr_skb);
1436	clr_rxm->offset = 0;
1437
1438	return clr_skb;
1439}
1440
1441/* Decrypt handlers
1442 *
1443 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1444 * They must transform the darg in/out argument are as follows:
1445 *       |          Input            |         Output
1446 * -------------------------------------------------------------------
1447 *    zc | Zero-copy decrypt allowed | Zero-copy performed
1448 * async | Async decrypt allowed     | Async crypto used / in progress
1449 *   skb |            *              | Output skb
1450 *
1451 * If ZC decryption was performed darg.skb will point to the input skb.
1452 */
1453
1454/* This function decrypts the input skb into either out_iov or in out_sg
1455 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1456 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1457 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1458 * NULL, then the decryption happens inside skb buffers itself, i.e.
1459 * zero-copy gets disabled and 'darg->zc' is updated.
1460 */
1461static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1462			  struct scatterlist *out_sg,
1463			  struct tls_decrypt_arg *darg)
1464{
1465	struct tls_context *tls_ctx = tls_get_ctx(sk);
1466	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1467	struct tls_prot_info *prot = &tls_ctx->prot_info;
1468	int n_sgin, n_sgout, aead_size, err, pages = 0;
1469	struct sk_buff *skb = tls_strp_msg(ctx);
1470	const struct strp_msg *rxm = strp_msg(skb);
1471	const struct tls_msg *tlm = tls_msg(skb);
1472	struct aead_request *aead_req;
1473	struct scatterlist *sgin = NULL;
1474	struct scatterlist *sgout = NULL;
1475	const int data_len = rxm->full_len - prot->overhead_size;
1476	int tail_pages = !!prot->tail_size;
1477	struct tls_decrypt_ctx *dctx;
1478	struct sk_buff *clear_skb;
1479	int iv_offset = 0;
1480	u8 *mem;
1481
1482	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1483			 rxm->full_len - prot->prepend_size);
1484	if (n_sgin < 1)
1485		return n_sgin ?: -EBADMSG;
1486
1487	if (darg->zc && (out_iov || out_sg)) {
1488		clear_skb = NULL;
1489
1490		if (out_iov)
1491			n_sgout = 1 + tail_pages +
1492				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1493		else
1494			n_sgout = sg_nents(out_sg);
1495	} else {
1496		darg->zc = false;
1497
1498		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1499		if (!clear_skb)
1500			return -ENOMEM;
1501
1502		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1503	}
1504
1505	/* Increment to accommodate AAD */
1506	n_sgin = n_sgin + 1;
1507
1508	/* Allocate a single block of memory which contains
1509	 *   aead_req || tls_decrypt_ctx.
1510	 * Both structs are variable length.
1511	 */
1512	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1513	aead_size = ALIGN(aead_size, __alignof__(*dctx));
1514	mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1515		      sk->sk_allocation);
1516	if (!mem) {
1517		err = -ENOMEM;
1518		goto exit_free_skb;
1519	}
1520
1521	/* Segment the allocated memory */
1522	aead_req = (struct aead_request *)mem;
1523	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1524	dctx->sk = sk;
1525	sgin = &dctx->sg[0];
1526	sgout = &dctx->sg[n_sgin];
1527
1528	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1529	switch (prot->cipher_type) {
1530	case TLS_CIPHER_AES_CCM_128:
1531		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1532		iv_offset = 1;
1533		break;
1534	case TLS_CIPHER_SM4_CCM:
1535		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1536		iv_offset = 1;
1537		break;
1538	}
1539
1540	/* Prepare IV */
1541	if (prot->version == TLS_1_3_VERSION ||
1542	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1543		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1544		       prot->iv_size + prot->salt_size);
1545	} else {
1546		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1547				    &dctx->iv[iv_offset] + prot->salt_size,
1548				    prot->iv_size);
1549		if (err < 0)
1550			goto exit_free;
1551		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1552	}
1553	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1554
1555	/* Prepare AAD */
1556	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1557		     prot->tail_size,
1558		     tls_ctx->rx.rec_seq, tlm->control, prot);
1559
1560	/* Prepare sgin */
1561	sg_init_table(sgin, n_sgin);
1562	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1563	err = skb_to_sgvec(skb, &sgin[1],
1564			   rxm->offset + prot->prepend_size,
1565			   rxm->full_len - prot->prepend_size);
1566	if (err < 0)
1567		goto exit_free;
1568
1569	if (clear_skb) {
1570		sg_init_table(sgout, n_sgout);
1571		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1572
1573		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1574				   data_len + prot->tail_size);
1575		if (err < 0)
1576			goto exit_free;
1577	} else if (out_iov) {
1578		sg_init_table(sgout, n_sgout);
1579		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1580
1581		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1582					  (n_sgout - 1 - tail_pages));
1583		if (err < 0)
1584			goto exit_free_pages;
1585
1586		if (prot->tail_size) {
1587			sg_unmark_end(&sgout[pages]);
1588			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1589				   prot->tail_size);
1590			sg_mark_end(&sgout[pages + 1]);
1591		}
1592	} else if (out_sg) {
1593		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1594	}
1595	dctx->free_sgout = !!pages;
1596
1597	/* Prepare and submit AEAD request */
1598	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1599				data_len + prot->tail_size, aead_req, darg);
1600	if (err) {
1601		if (darg->async_done)
1602			goto exit_free_skb;
1603		goto exit_free_pages;
1604	}
1605
1606	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1607	clear_skb = NULL;
1608
1609	if (unlikely(darg->async)) {
1610		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1611		if (err)
1612			__skb_queue_tail(&ctx->async_hold, darg->skb);
1613		return err;
1614	}
1615
1616	if (unlikely(darg->async_done))
1617		return 0;
1618
1619	if (prot->tail_size)
1620		darg->tail = dctx->tail;
1621
1622exit_free_pages:
1623	/* Release the pages in case iov was mapped to pages */
1624	for (; pages > 0; pages--)
1625		put_page(sg_page(&sgout[pages]));
1626exit_free:
1627	kfree(mem);
1628exit_free_skb:
1629	consume_skb(clear_skb);
1630	return err;
1631}
1632
1633static int
1634tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1635	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1636{
1637	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1638	struct tls_prot_info *prot = &tls_ctx->prot_info;
1639	struct strp_msg *rxm;
1640	int pad, err;
1641
1642	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1643	if (err < 0) {
1644		if (err == -EBADMSG)
1645			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1646		return err;
1647	}
1648	/* keep going even for ->async, the code below is TLS 1.3 */
1649
1650	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1651	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1652		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1653		darg->zc = false;
1654		if (!darg->tail)
1655			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1656		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1657		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1658	}
1659
1660	pad = tls_padding_length(prot, darg->skb, darg);
1661	if (pad < 0) {
1662		if (darg->skb != tls_strp_msg(ctx))
1663			consume_skb(darg->skb);
1664		return pad;
1665	}
1666
1667	rxm = strp_msg(darg->skb);
1668	rxm->full_len -= pad;
1669
1670	return 0;
1671}
1672
1673static int
1674tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1675		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1676{
1677	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1678	struct tls_prot_info *prot = &tls_ctx->prot_info;
1679	struct strp_msg *rxm;
1680	int pad, err;
1681
1682	if (tls_ctx->rx_conf != TLS_HW)
1683		return 0;
1684
1685	err = tls_device_decrypted(sk, tls_ctx);
1686	if (err <= 0)
1687		return err;
1688
1689	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1690	if (pad < 0)
1691		return pad;
1692
1693	darg->async = false;
1694	darg->skb = tls_strp_msg(ctx);
1695	/* ->zc downgrade check, in case TLS 1.3 gets here */
1696	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1697		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1698
1699	rxm = strp_msg(darg->skb);
1700	rxm->full_len -= pad;
1701
1702	if (!darg->zc) {
1703		/* Non-ZC case needs a real skb */
1704		darg->skb = tls_strp_msg_detach(ctx);
1705		if (!darg->skb)
1706			return -ENOMEM;
1707	} else {
1708		unsigned int off, len;
1709
1710		/* In ZC case nobody cares about the output skb.
1711		 * Just copy the data here. Note the skb is not fully trimmed.
1712		 */
1713		off = rxm->offset + prot->prepend_size;
1714		len = rxm->full_len - prot->overhead_size;
1715
1716		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1717		if (err)
1718			return err;
1719	}
1720	return 1;
1721}
1722
1723static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1724			     struct tls_decrypt_arg *darg)
1725{
1726	struct tls_context *tls_ctx = tls_get_ctx(sk);
1727	struct tls_prot_info *prot = &tls_ctx->prot_info;
1728	struct strp_msg *rxm;
1729	int err;
1730
1731	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1732	if (!err)
1733		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1734	if (err < 0)
1735		return err;
1736
1737	rxm = strp_msg(darg->skb);
1738	rxm->offset += prot->prepend_size;
1739	rxm->full_len -= prot->overhead_size;
1740	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1741
1742	return 0;
1743}
1744
1745int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1746{
1747	struct tls_decrypt_arg darg = { .zc = true, };
1748
1749	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1750}
1751
1752static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1753				   u8 *control)
1754{
1755	int err;
1756
1757	if (!*control) {
1758		*control = tlm->control;
1759		if (!*control)
1760			return -EBADMSG;
1761
1762		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1763			       sizeof(*control), control);
1764		if (*control != TLS_RECORD_TYPE_DATA) {
1765			if (err || msg->msg_flags & MSG_CTRUNC)
1766				return -EIO;
1767		}
1768	} else if (*control != tlm->control) {
1769		return 0;
1770	}
1771
1772	return 1;
1773}
1774
1775static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1776{
1777	tls_strp_msg_done(&ctx->strp);
1778}
1779
1780/* This function traverses the rx_list in tls receive context to copies the
1781 * decrypted records into the buffer provided by caller zero copy is not
1782 * true. Further, the records are removed from the rx_list if it is not a peek
1783 * case and the record has been consumed completely.
1784 */
1785static int process_rx_list(struct tls_sw_context_rx *ctx,
1786			   struct msghdr *msg,
1787			   u8 *control,
1788			   size_t skip,
1789			   size_t len,
1790			   bool is_peek,
1791			   bool *more)
1792{
1793	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1794	struct tls_msg *tlm;
1795	ssize_t copied = 0;
1796	int err;
1797
1798	while (skip && skb) {
1799		struct strp_msg *rxm = strp_msg(skb);
1800		tlm = tls_msg(skb);
1801
1802		err = tls_record_content_type(msg, tlm, control);
1803		if (err <= 0)
1804			goto more;
1805
1806		if (skip < rxm->full_len)
1807			break;
1808
1809		skip = skip - rxm->full_len;
1810		skb = skb_peek_next(skb, &ctx->rx_list);
1811	}
1812
1813	while (len && skb) {
1814		struct sk_buff *next_skb;
1815		struct strp_msg *rxm = strp_msg(skb);
1816		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1817
1818		tlm = tls_msg(skb);
1819
1820		err = tls_record_content_type(msg, tlm, control);
1821		if (err <= 0)
1822			goto more;
1823
1824		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1825					    msg, chunk);
1826		if (err < 0)
1827			goto more;
1828
1829		len = len - chunk;
1830		copied = copied + chunk;
1831
1832		/* Consume the data from record if it is non-peek case*/
1833		if (!is_peek) {
1834			rxm->offset = rxm->offset + chunk;
1835			rxm->full_len = rxm->full_len - chunk;
1836
1837			/* Return if there is unconsumed data in the record */
1838			if (rxm->full_len - skip)
1839				break;
1840		}
1841
1842		/* The remaining skip-bytes must lie in 1st record in rx_list.
1843		 * So from the 2nd record, 'skip' should be 0.
1844		 */
1845		skip = 0;
1846
1847		if (msg)
1848			msg->msg_flags |= MSG_EOR;
1849
1850		next_skb = skb_peek_next(skb, &ctx->rx_list);
1851
1852		if (!is_peek) {
1853			__skb_unlink(skb, &ctx->rx_list);
1854			consume_skb(skb);
1855		}
1856
1857		skb = next_skb;
1858	}
1859	err = 0;
1860
1861out:
1862	return copied ? : err;
1863more:
1864	if (more)
1865		*more = true;
1866	goto out;
1867}
1868
1869static bool
1870tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1871		       size_t len_left, size_t decrypted, ssize_t done,
1872		       size_t *flushed_at)
1873{
1874	size_t max_rec;
1875
1876	if (len_left <= decrypted)
1877		return false;
1878
1879	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1880	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1881		return false;
1882
1883	*flushed_at = done;
1884	return sk_flush_backlog(sk);
1885}
1886
1887static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1888				 bool nonblock)
1889{
1890	long timeo;
1891	int ret;
1892
1893	timeo = sock_rcvtimeo(sk, nonblock);
1894
1895	while (unlikely(ctx->reader_present)) {
1896		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1897
1898		ctx->reader_contended = 1;
1899
1900		add_wait_queue(&ctx->wq, &wait);
1901		ret = sk_wait_event(sk, &timeo,
1902				    !READ_ONCE(ctx->reader_present), &wait);
1903		remove_wait_queue(&ctx->wq, &wait);
1904
1905		if (timeo <= 0)
1906			return -EAGAIN;
1907		if (signal_pending(current))
1908			return sock_intr_errno(timeo);
1909		if (ret < 0)
1910			return ret;
1911	}
1912
1913	WRITE_ONCE(ctx->reader_present, 1);
1914
1915	return 0;
1916}
1917
1918static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1919			      bool nonblock)
1920{
1921	int err;
1922
1923	lock_sock(sk);
1924	err = tls_rx_reader_acquire(sk, ctx, nonblock);
1925	if (err)
1926		release_sock(sk);
1927	return err;
1928}
1929
1930static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1931{
1932	if (unlikely(ctx->reader_contended)) {
1933		if (wq_has_sleeper(&ctx->wq))
1934			wake_up(&ctx->wq);
1935		else
1936			ctx->reader_contended = 0;
1937
1938		WARN_ON_ONCE(!ctx->reader_present);
1939	}
1940
1941	WRITE_ONCE(ctx->reader_present, 0);
1942}
1943
1944static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1945{
1946	tls_rx_reader_release(sk, ctx);
1947	release_sock(sk);
1948}
1949
1950int tls_sw_recvmsg(struct sock *sk,
1951		   struct msghdr *msg,
1952		   size_t len,
1953		   int flags,
1954		   int *addr_len)
1955{
1956	struct tls_context *tls_ctx = tls_get_ctx(sk);
1957	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1958	struct tls_prot_info *prot = &tls_ctx->prot_info;
1959	ssize_t decrypted = 0, async_copy_bytes = 0;
1960	struct sk_psock *psock;
1961	unsigned char control = 0;
1962	size_t flushed_at = 0;
1963	struct strp_msg *rxm;
1964	struct tls_msg *tlm;
1965	ssize_t copied = 0;
1966	ssize_t peeked = 0;
1967	bool async = false;
1968	int target, err;
1969	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1970	bool is_peek = flags & MSG_PEEK;
1971	bool rx_more = false;
1972	bool released = true;
1973	bool bpf_strp_enabled;
1974	bool zc_capable;
1975
1976	if (unlikely(flags & MSG_ERRQUEUE))
1977		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1978
1979	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1980	if (err < 0)
1981		return err;
1982	psock = sk_psock_get(sk);
1983	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1984
1985	/* If crypto failed the connection is broken */
1986	err = ctx->async_wait.err;
1987	if (err)
1988		goto end;
1989
1990	/* Process pending decrypted records. It must be non-zero-copy */
1991	err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
1992	if (err < 0)
1993		goto end;
1994
1995	copied = err;
1996	if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
1997		goto end;
1998
1999	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2000	len = len - copied;
2001
2002	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2003		ctx->zc_capable;
2004	decrypted = 0;
2005	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2006		struct tls_decrypt_arg darg;
2007		int to_decrypt, chunk;
2008
2009		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2010				      released);
2011		if (err <= 0) {
2012			if (psock) {
2013				chunk = sk_msg_recvmsg(sk, psock, msg, len,
2014						       flags);
2015				if (chunk > 0) {
2016					decrypted += chunk;
2017					len -= chunk;
2018					continue;
2019				}
2020			}
2021			goto recv_end;
2022		}
2023
2024		memset(&darg.inargs, 0, sizeof(darg.inargs));
2025
2026		rxm = strp_msg(tls_strp_msg(ctx));
2027		tlm = tls_msg(tls_strp_msg(ctx));
2028
2029		to_decrypt = rxm->full_len - prot->overhead_size;
2030
2031		if (zc_capable && to_decrypt <= len &&
2032		    tlm->control == TLS_RECORD_TYPE_DATA)
2033			darg.zc = true;
2034
2035		/* Do not use async mode if record is non-data */
2036		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2037			darg.async = ctx->async_capable;
2038		else
2039			darg.async = false;
2040
2041		err = tls_rx_one_record(sk, msg, &darg);
2042		if (err < 0) {
2043			tls_err_abort(sk, -EBADMSG);
2044			goto recv_end;
2045		}
2046
2047		async |= darg.async;
2048
2049		/* If the type of records being processed is not known yet,
2050		 * set it to record type just dequeued. If it is already known,
2051		 * but does not match the record type just dequeued, go to end.
2052		 * We always get record type here since for tls1.2, record type
2053		 * is known just after record is dequeued from stream parser.
2054		 * For tls1.3, we disable async.
2055		 */
2056		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2057		if (err <= 0) {
2058			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2059			tls_rx_rec_done(ctx);
2060put_on_rx_list_err:
2061			__skb_queue_tail(&ctx->rx_list, darg.skb);
2062			goto recv_end;
2063		}
2064
2065		/* periodically flush backlog, and feed strparser */
2066		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2067						  decrypted + copied,
2068						  &flushed_at);
2069
2070		/* TLS 1.3 may have updated the length by more than overhead */
2071		rxm = strp_msg(darg.skb);
2072		chunk = rxm->full_len;
2073		tls_rx_rec_done(ctx);
2074
2075		if (!darg.zc) {
2076			bool partially_consumed = chunk > len;
2077			struct sk_buff *skb = darg.skb;
2078
2079			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2080
2081			if (async) {
2082				/* TLS 1.2-only, to_decrypt must be text len */
2083				chunk = min_t(int, to_decrypt, len);
2084				async_copy_bytes += chunk;
2085put_on_rx_list:
2086				decrypted += chunk;
2087				len -= chunk;
2088				__skb_queue_tail(&ctx->rx_list, skb);
2089				if (unlikely(control != TLS_RECORD_TYPE_DATA))
2090					break;
2091				continue;
2092			}
2093
2094			if (bpf_strp_enabled) {
2095				released = true;
2096				err = sk_psock_tls_strp_read(psock, skb);
2097				if (err != __SK_PASS) {
2098					rxm->offset = rxm->offset + rxm->full_len;
2099					rxm->full_len = 0;
2100					if (err == __SK_DROP)
2101						consume_skb(skb);
2102					continue;
2103				}
2104			}
2105
2106			if (partially_consumed)
2107				chunk = len;
2108
2109			err = skb_copy_datagram_msg(skb, rxm->offset,
2110						    msg, chunk);
2111			if (err < 0)
2112				goto put_on_rx_list_err;
2113
2114			if (is_peek) {
2115				peeked += chunk;
2116				goto put_on_rx_list;
2117			}
2118
2119			if (partially_consumed) {
2120				rxm->offset += chunk;
2121				rxm->full_len -= chunk;
2122				goto put_on_rx_list;
2123			}
2124
2125			consume_skb(skb);
2126		}
2127
2128		decrypted += chunk;
2129		len -= chunk;
2130
2131		/* Return full control message to userspace before trying
2132		 * to parse another message type
2133		 */
2134		msg->msg_flags |= MSG_EOR;
2135		if (control != TLS_RECORD_TYPE_DATA)
2136			break;
2137	}
2138
2139recv_end:
2140	if (async) {
2141		int ret;
2142
2143		/* Wait for all previously submitted records to be decrypted */
2144		ret = tls_decrypt_async_wait(ctx);
2145		__skb_queue_purge(&ctx->async_hold);
2146
2147		if (ret) {
2148			if (err >= 0 || err == -EINPROGRESS)
2149				err = ret;
2150			decrypted = 0;
2151			goto end;
2152		}
2153
2154		/* Drain records from the rx_list & copy if required */
2155		if (is_peek)
2156			err = process_rx_list(ctx, msg, &control, copied + peeked,
2157					      decrypted - peeked, is_peek, NULL);
2158		else
2159			err = process_rx_list(ctx, msg, &control, 0,
2160					      async_copy_bytes, is_peek, NULL);
2161
2162		/* we could have copied less than we wanted, and possibly nothing */
2163		decrypted += max(err, 0) - async_copy_bytes;
2164	}
2165
2166	copied += decrypted;
2167
2168end:
2169	tls_rx_reader_unlock(sk, ctx);
2170	if (psock)
2171		sk_psock_put(sk, psock);
2172	return copied ? : err;
2173}
2174
2175ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2176			   struct pipe_inode_info *pipe,
2177			   size_t len, unsigned int flags)
2178{
2179	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2180	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2181	struct strp_msg *rxm = NULL;
2182	struct sock *sk = sock->sk;
2183	struct tls_msg *tlm;
2184	struct sk_buff *skb;
2185	ssize_t copied = 0;
2186	int chunk;
2187	int err;
2188
2189	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2190	if (err < 0)
2191		return err;
2192
2193	if (!skb_queue_empty(&ctx->rx_list)) {
2194		skb = __skb_dequeue(&ctx->rx_list);
2195	} else {
2196		struct tls_decrypt_arg darg;
2197
2198		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2199				      true);
2200		if (err <= 0)
2201			goto splice_read_end;
2202
2203		memset(&darg.inargs, 0, sizeof(darg.inargs));
2204
2205		err = tls_rx_one_record(sk, NULL, &darg);
2206		if (err < 0) {
2207			tls_err_abort(sk, -EBADMSG);
2208			goto splice_read_end;
2209		}
2210
2211		tls_rx_rec_done(ctx);
2212		skb = darg.skb;
2213	}
2214
2215	rxm = strp_msg(skb);
2216	tlm = tls_msg(skb);
2217
2218	/* splice does not support reading control messages */
2219	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2220		err = -EINVAL;
2221		goto splice_requeue;
2222	}
2223
2224	chunk = min_t(unsigned int, rxm->full_len, len);
2225	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2226	if (copied < 0)
2227		goto splice_requeue;
2228
2229	if (chunk < rxm->full_len) {
2230		rxm->offset += len;
2231		rxm->full_len -= len;
2232		goto splice_requeue;
2233	}
2234
2235	consume_skb(skb);
2236
2237splice_read_end:
2238	tls_rx_reader_unlock(sk, ctx);
2239	return copied ? : err;
2240
2241splice_requeue:
2242	__skb_queue_head(&ctx->rx_list, skb);
2243	goto splice_read_end;
2244}
2245
2246int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2247		     sk_read_actor_t read_actor)
2248{
2249	struct tls_context *tls_ctx = tls_get_ctx(sk);
2250	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2251	struct tls_prot_info *prot = &tls_ctx->prot_info;
2252	struct strp_msg *rxm = NULL;
2253	struct sk_buff *skb = NULL;
2254	struct sk_psock *psock;
2255	size_t flushed_at = 0;
2256	bool released = true;
2257	struct tls_msg *tlm;
2258	ssize_t copied = 0;
2259	ssize_t decrypted;
2260	int err, used;
2261
2262	psock = sk_psock_get(sk);
2263	if (psock) {
2264		sk_psock_put(sk, psock);
2265		return -EINVAL;
2266	}
2267	err = tls_rx_reader_acquire(sk, ctx, true);
2268	if (err < 0)
2269		return err;
2270
2271	/* If crypto failed the connection is broken */
2272	err = ctx->async_wait.err;
2273	if (err)
2274		goto read_sock_end;
2275
2276	decrypted = 0;
2277	do {
2278		if (!skb_queue_empty(&ctx->rx_list)) {
2279			skb = __skb_dequeue(&ctx->rx_list);
2280			rxm = strp_msg(skb);
2281			tlm = tls_msg(skb);
2282		} else {
2283			struct tls_decrypt_arg darg;
2284
2285			err = tls_rx_rec_wait(sk, NULL, true, released);
2286			if (err <= 0)
2287				goto read_sock_end;
2288
2289			memset(&darg.inargs, 0, sizeof(darg.inargs));
2290
2291			err = tls_rx_one_record(sk, NULL, &darg);
2292			if (err < 0) {
2293				tls_err_abort(sk, -EBADMSG);
2294				goto read_sock_end;
2295			}
2296
2297			released = tls_read_flush_backlog(sk, prot, INT_MAX,
2298							  0, decrypted,
2299							  &flushed_at);
2300			skb = darg.skb;
2301			rxm = strp_msg(skb);
2302			tlm = tls_msg(skb);
2303			decrypted += rxm->full_len;
2304
2305			tls_rx_rec_done(ctx);
2306		}
2307
2308		/* read_sock does not support reading control messages */
2309		if (tlm->control != TLS_RECORD_TYPE_DATA) {
2310			err = -EINVAL;
2311			goto read_sock_requeue;
2312		}
2313
2314		used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2315		if (used <= 0) {
2316			if (!copied)
2317				err = used;
2318			goto read_sock_requeue;
2319		}
2320		copied += used;
2321		if (used < rxm->full_len) {
2322			rxm->offset += used;
2323			rxm->full_len -= used;
2324			if (!desc->count)
2325				goto read_sock_requeue;
2326		} else {
2327			consume_skb(skb);
2328			if (!desc->count)
2329				skb = NULL;
2330		}
2331	} while (skb);
2332
2333read_sock_end:
2334	tls_rx_reader_release(sk, ctx);
2335	return copied ? : err;
2336
2337read_sock_requeue:
2338	__skb_queue_head(&ctx->rx_list, skb);
2339	goto read_sock_end;
2340}
2341
2342bool tls_sw_sock_is_readable(struct sock *sk)
2343{
2344	struct tls_context *tls_ctx = tls_get_ctx(sk);
2345	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2346	bool ingress_empty = true;
2347	struct sk_psock *psock;
2348
2349	rcu_read_lock();
2350	psock = sk_psock(sk);
2351	if (psock)
2352		ingress_empty = list_empty(&psock->ingress_msg);
2353	rcu_read_unlock();
2354
2355	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2356		!skb_queue_empty(&ctx->rx_list);
2357}
2358
2359int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2360{
2361	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2362	struct tls_prot_info *prot = &tls_ctx->prot_info;
2363	char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2364	size_t cipher_overhead;
2365	size_t data_len = 0;
2366	int ret;
2367
2368	/* Verify that we have a full TLS header, or wait for more data */
2369	if (strp->stm.offset + prot->prepend_size > skb->len)
2370		return 0;
2371
2372	/* Sanity-check size of on-stack buffer. */
2373	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2374		ret = -EINVAL;
2375		goto read_failure;
2376	}
2377
2378	/* Linearize header to local buffer */
2379	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2380	if (ret < 0)
2381		goto read_failure;
2382
2383	strp->mark = header[0];
2384
2385	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2386
2387	cipher_overhead = prot->tag_size;
2388	if (prot->version != TLS_1_3_VERSION &&
2389	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2390		cipher_overhead += prot->iv_size;
2391
2392	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2393	    prot->tail_size) {
2394		ret = -EMSGSIZE;
2395		goto read_failure;
2396	}
2397	if (data_len < cipher_overhead) {
2398		ret = -EBADMSG;
2399		goto read_failure;
2400	}
2401
2402	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2403	if (header[1] != TLS_1_2_VERSION_MINOR ||
2404	    header[2] != TLS_1_2_VERSION_MAJOR) {
2405		ret = -EINVAL;
2406		goto read_failure;
2407	}
2408
2409	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2410				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2411	return data_len + TLS_HEADER_SIZE;
2412
2413read_failure:
2414	tls_err_abort(strp->sk, ret);
2415
2416	return ret;
2417}
2418
2419void tls_rx_msg_ready(struct tls_strparser *strp)
2420{
2421	struct tls_sw_context_rx *ctx;
2422
2423	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2424	ctx->saved_data_ready(strp->sk);
2425}
2426
2427static void tls_data_ready(struct sock *sk)
2428{
2429	struct tls_context *tls_ctx = tls_get_ctx(sk);
2430	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2431	struct sk_psock *psock;
2432	gfp_t alloc_save;
2433
2434	trace_sk_data_ready(sk);
2435
2436	alloc_save = sk->sk_allocation;
2437	sk->sk_allocation = GFP_ATOMIC;
2438	tls_strp_data_ready(&ctx->strp);
2439	sk->sk_allocation = alloc_save;
2440
2441	psock = sk_psock_get(sk);
2442	if (psock) {
2443		if (!list_empty(&psock->ingress_msg))
2444			ctx->saved_data_ready(sk);
2445		sk_psock_put(sk, psock);
2446	}
2447}
2448
2449void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2450{
2451	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2452
2453	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2454	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2455	cancel_delayed_work_sync(&ctx->tx_work.work);
2456}
2457
2458void tls_sw_release_resources_tx(struct sock *sk)
2459{
2460	struct tls_context *tls_ctx = tls_get_ctx(sk);
2461	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2462	struct tls_rec *rec, *tmp;
2463
2464	/* Wait for any pending async encryptions to complete */
2465	tls_encrypt_async_wait(ctx);
2466
2467	tls_tx_records(sk, -1);
2468
2469	/* Free up un-sent records in tx_list. First, free
2470	 * the partially sent record if any at head of tx_list.
2471	 */
2472	if (tls_ctx->partially_sent_record) {
2473		tls_free_partial_record(sk, tls_ctx);
2474		rec = list_first_entry(&ctx->tx_list,
2475				       struct tls_rec, list);
2476		list_del(&rec->list);
2477		sk_msg_free(sk, &rec->msg_plaintext);
2478		kfree(rec);
2479	}
2480
2481	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2482		list_del(&rec->list);
2483		sk_msg_free(sk, &rec->msg_encrypted);
2484		sk_msg_free(sk, &rec->msg_plaintext);
2485		kfree(rec);
2486	}
2487
2488	crypto_free_aead(ctx->aead_send);
2489	tls_free_open_rec(sk);
2490}
2491
2492void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2493{
2494	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2495
2496	kfree(ctx);
2497}
2498
2499void tls_sw_release_resources_rx(struct sock *sk)
2500{
2501	struct tls_context *tls_ctx = tls_get_ctx(sk);
2502	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2503
2504	if (ctx->aead_recv) {
2505		__skb_queue_purge(&ctx->rx_list);
2506		crypto_free_aead(ctx->aead_recv);
2507		tls_strp_stop(&ctx->strp);
2508		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2509		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2510		 * never swapped.
2511		 */
2512		if (ctx->saved_data_ready) {
2513			write_lock_bh(&sk->sk_callback_lock);
2514			sk->sk_data_ready = ctx->saved_data_ready;
2515			write_unlock_bh(&sk->sk_callback_lock);
2516		}
2517	}
2518}
2519
2520void tls_sw_strparser_done(struct tls_context *tls_ctx)
2521{
2522	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2523
2524	tls_strp_done(&ctx->strp);
2525}
2526
2527void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2528{
2529	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2530
2531	kfree(ctx);
2532}
2533
2534void tls_sw_free_resources_rx(struct sock *sk)
2535{
2536	struct tls_context *tls_ctx = tls_get_ctx(sk);
2537
2538	tls_sw_release_resources_rx(sk);
2539	tls_sw_free_ctx_rx(tls_ctx);
2540}
2541
2542/* The work handler to transmitt the encrypted records in tx_list */
2543static void tx_work_handler(struct work_struct *work)
2544{
2545	struct delayed_work *delayed_work = to_delayed_work(work);
2546	struct tx_work *tx_work = container_of(delayed_work,
2547					       struct tx_work, work);
2548	struct sock *sk = tx_work->sk;
2549	struct tls_context *tls_ctx = tls_get_ctx(sk);
2550	struct tls_sw_context_tx *ctx;
2551
2552	if (unlikely(!tls_ctx))
2553		return;
2554
2555	ctx = tls_sw_ctx_tx(tls_ctx);
2556	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2557		return;
2558
2559	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2560		return;
2561
2562	if (mutex_trylock(&tls_ctx->tx_lock)) {
2563		lock_sock(sk);
2564		tls_tx_records(sk, -1);
2565		release_sock(sk);
2566		mutex_unlock(&tls_ctx->tx_lock);
2567	} else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2568		/* Someone is holding the tx_lock, they will likely run Tx
2569		 * and cancel the work on their way out of the lock section.
2570		 * Schedule a long delay just in case.
2571		 */
2572		schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2573	}
2574}
2575
2576static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2577{
2578	struct tls_rec *rec;
2579
2580	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2581	if (!rec)
2582		return false;
2583
2584	return READ_ONCE(rec->tx_ready);
2585}
2586
2587void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2588{
2589	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2590
2591	/* Schedule the transmission if tx list is ready */
2592	if (tls_is_tx_ready(tx_ctx) &&
2593	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2594		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2595}
2596
2597void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2598{
2599	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2600
2601	write_lock_bh(&sk->sk_callback_lock);
2602	rx_ctx->saved_data_ready = sk->sk_data_ready;
2603	sk->sk_data_ready = tls_data_ready;
2604	write_unlock_bh(&sk->sk_callback_lock);
2605}
2606
2607void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2608{
2609	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2610
2611	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2612		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2613}
2614
2615static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2616{
2617	struct tls_sw_context_tx *sw_ctx_tx;
2618
2619	if (!ctx->priv_ctx_tx) {
2620		sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2621		if (!sw_ctx_tx)
2622			return NULL;
2623	} else {
2624		sw_ctx_tx = ctx->priv_ctx_tx;
2625	}
2626
2627	crypto_init_wait(&sw_ctx_tx->async_wait);
2628	atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2629	INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2630	INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2631	sw_ctx_tx->tx_work.sk = sk;
2632
2633	return sw_ctx_tx;
2634}
2635
2636static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2637{
2638	struct tls_sw_context_rx *sw_ctx_rx;
2639
2640	if (!ctx->priv_ctx_rx) {
2641		sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2642		if (!sw_ctx_rx)
2643			return NULL;
2644	} else {
2645		sw_ctx_rx = ctx->priv_ctx_rx;
2646	}
2647
2648	crypto_init_wait(&sw_ctx_rx->async_wait);
2649	atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2650	init_waitqueue_head(&sw_ctx_rx->wq);
2651	skb_queue_head_init(&sw_ctx_rx->rx_list);
2652	skb_queue_head_init(&sw_ctx_rx->async_hold);
2653
2654	return sw_ctx_rx;
2655}
2656
2657int init_prot_info(struct tls_prot_info *prot,
2658		   const struct tls_crypto_info *crypto_info,
2659		   const struct tls_cipher_desc *cipher_desc)
2660{
2661	u16 nonce_size = cipher_desc->nonce;
2662
2663	if (crypto_info->version == TLS_1_3_VERSION) {
2664		nonce_size = 0;
2665		prot->aad_size = TLS_HEADER_SIZE;
2666		prot->tail_size = 1;
2667	} else {
2668		prot->aad_size = TLS_AAD_SPACE_SIZE;
2669		prot->tail_size = 0;
2670	}
2671
2672	/* Sanity-check the sizes for stack allocations. */
2673	if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2674		return -EINVAL;
2675
2676	prot->version = crypto_info->version;
2677	prot->cipher_type = crypto_info->cipher_type;
2678	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2679	prot->tag_size = cipher_desc->tag;
2680	prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2681	prot->iv_size = cipher_desc->iv;
2682	prot->salt_size = cipher_desc->salt;
2683	prot->rec_seq_size = cipher_desc->rec_seq;
2684
2685	return 0;
2686}
2687
2688int tls_set_sw_offload(struct sock *sk, int tx)
2689{
2690	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2691	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2692	const struct tls_cipher_desc *cipher_desc;
2693	struct tls_crypto_info *crypto_info;
2694	char *iv, *rec_seq, *key, *salt;
2695	struct cipher_context *cctx;
2696	struct tls_prot_info *prot;
2697	struct crypto_aead **aead;
2698	struct tls_context *ctx;
2699	struct crypto_tfm *tfm;
2700	int rc = 0;
2701
2702	ctx = tls_get_ctx(sk);
2703	prot = &ctx->prot_info;
2704
2705	if (tx) {
2706		ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2707		if (!ctx->priv_ctx_tx)
2708			return -ENOMEM;
2709
2710		sw_ctx_tx = ctx->priv_ctx_tx;
2711		crypto_info = &ctx->crypto_send.info;
2712		cctx = &ctx->tx;
2713		aead = &sw_ctx_tx->aead_send;
2714	} else {
2715		ctx->priv_ctx_rx = init_ctx_rx(ctx);
2716		if (!ctx->priv_ctx_rx)
2717			return -ENOMEM;
2718
2719		sw_ctx_rx = ctx->priv_ctx_rx;
2720		crypto_info = &ctx->crypto_recv.info;
2721		cctx = &ctx->rx;
2722		aead = &sw_ctx_rx->aead_recv;
2723	}
2724
2725	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2726	if (!cipher_desc) {
2727		rc = -EINVAL;
2728		goto free_priv;
2729	}
2730
2731	rc = init_prot_info(prot, crypto_info, cipher_desc);
2732	if (rc)
2733		goto free_priv;
2734
2735	iv = crypto_info_iv(crypto_info, cipher_desc);
2736	key = crypto_info_key(crypto_info, cipher_desc);
2737	salt = crypto_info_salt(crypto_info, cipher_desc);
2738	rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2739
2740	memcpy(cctx->iv, salt, cipher_desc->salt);
2741	memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2742	memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2743
2744	if (!*aead) {
2745		*aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2746		if (IS_ERR(*aead)) {
2747			rc = PTR_ERR(*aead);
2748			*aead = NULL;
2749			goto free_priv;
2750		}
2751	}
2752
2753	ctx->push_pending_record = tls_sw_push_pending_record;
2754
2755	rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2756	if (rc)
2757		goto free_aead;
2758
2759	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2760	if (rc)
2761		goto free_aead;
2762
2763	if (sw_ctx_rx) {
2764		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2765
2766		tls_update_rx_zc_capable(ctx);
2767		sw_ctx_rx->async_capable =
2768			crypto_info->version != TLS_1_3_VERSION &&
2769			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2770
2771		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2772		if (rc)
2773			goto free_aead;
2774	}
2775
2776	goto out;
2777
2778free_aead:
2779	crypto_free_aead(*aead);
2780	*aead = NULL;
2781free_priv:
2782	if (tx) {
2783		kfree(ctx->priv_ctx_tx);
2784		ctx->priv_ctx_tx = NULL;
2785	} else {
2786		kfree(ctx->priv_ctx_rx);
2787		ctx->priv_ctx_rx = NULL;
2788	}
2789out:
2790	return rc;
2791}