Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/sched/signal.h>
  39#include <linux/module.h>
  40#include <linux/splice.h>
  41#include <crypto/aead.h>
  42
  43#include <net/strparser.h>
  44#include <net/tls.h>
  45
  46static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  47                     unsigned int recursion_level)
  48{
  49        int start = skb_headlen(skb);
  50        int i, chunk = start - offset;
  51        struct sk_buff *frag_iter;
  52        int elt = 0;
  53
  54        if (unlikely(recursion_level >= 24))
  55                return -EMSGSIZE;
  56
  57        if (chunk > 0) {
  58                if (chunk > len)
  59                        chunk = len;
  60                elt++;
  61                len -= chunk;
  62                if (len == 0)
  63                        return elt;
  64                offset += chunk;
  65        }
  66
  67        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  68                int end;
  69
  70                WARN_ON(start > offset + len);
  71
  72                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
  73                chunk = end - offset;
  74                if (chunk > 0) {
  75                        if (chunk > len)
  76                                chunk = len;
  77                        elt++;
  78                        len -= chunk;
  79                        if (len == 0)
  80                                return elt;
  81                        offset += chunk;
  82                }
  83                start = end;
  84        }
  85
  86        if (unlikely(skb_has_frag_list(skb))) {
  87                skb_walk_frags(skb, frag_iter) {
  88                        int end, ret;
  89
  90                        WARN_ON(start > offset + len);
  91
  92                        end = start + frag_iter->len;
  93                        chunk = end - offset;
  94                        if (chunk > 0) {
  95                                if (chunk > len)
  96                                        chunk = len;
  97                                ret = __skb_nsg(frag_iter, offset - start, chunk,
  98                                                recursion_level + 1);
  99                                if (unlikely(ret < 0))
 100                                        return ret;
 101                                elt += ret;
 102                                len -= chunk;
 103                                if (len == 0)
 104                                        return elt;
 105                                offset += chunk;
 106                        }
 107                        start = end;
 108                }
 109        }
 110        BUG_ON(len);
 111        return elt;
 112}
 113
 114/* Return the number of scatterlist elements required to completely map the
 115 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 116 */
 117static int skb_nsg(struct sk_buff *skb, int offset, int len)
 118{
 119        return __skb_nsg(skb, offset, len, 0);
 120}
 121
 122static int padding_length(struct tls_sw_context_rx *ctx,
 123			  struct tls_prot_info *prot, struct sk_buff *skb)
 124{
 125	struct strp_msg *rxm = strp_msg(skb);
 126	int sub = 0;
 127
 128	/* Determine zero-padding length */
 129	if (prot->version == TLS_1_3_VERSION) {
 130		char content_type = 0;
 131		int err;
 132		int back = 17;
 133
 134		while (content_type == 0) {
 135			if (back > rxm->full_len - prot->prepend_size)
 136				return -EBADMSG;
 137			err = skb_copy_bits(skb,
 138					    rxm->offset + rxm->full_len - back,
 139					    &content_type, 1);
 140			if (err)
 141				return err;
 142			if (content_type)
 143				break;
 144			sub++;
 145			back++;
 146		}
 147		ctx->control = content_type;
 148	}
 149	return sub;
 150}
 151
 152static void tls_decrypt_done(struct crypto_async_request *req, int err)
 153{
 154	struct aead_request *aead_req = (struct aead_request *)req;
 155	struct scatterlist *sgout = aead_req->dst;
 156	struct scatterlist *sgin = aead_req->src;
 157	struct tls_sw_context_rx *ctx;
 158	struct tls_context *tls_ctx;
 159	struct tls_prot_info *prot;
 160	struct scatterlist *sg;
 161	struct sk_buff *skb;
 162	unsigned int pages;
 163	int pending;
 164
 165	skb = (struct sk_buff *)req->data;
 166	tls_ctx = tls_get_ctx(skb->sk);
 167	ctx = tls_sw_ctx_rx(tls_ctx);
 168	prot = &tls_ctx->prot_info;
 169
 170	/* Propagate if there was an err */
 171	if (err) {
 172		if (err == -EBADMSG)
 173			TLS_INC_STATS(sock_net(skb->sk),
 174				      LINUX_MIB_TLSDECRYPTERROR);
 175		ctx->async_wait.err = err;
 176		tls_err_abort(skb->sk, err);
 177	} else {
 178		struct strp_msg *rxm = strp_msg(skb);
 179		int pad;
 180
 181		pad = padding_length(ctx, prot, skb);
 182		if (pad < 0) {
 183			ctx->async_wait.err = pad;
 184			tls_err_abort(skb->sk, pad);
 185		} else {
 186			rxm->full_len -= pad;
 187			rxm->offset += prot->prepend_size;
 188			rxm->full_len -= prot->overhead_size;
 189		}
 190	}
 191
 192	/* After using skb->sk to propagate sk through crypto async callback
 193	 * we need to NULL it again.
 194	 */
 195	skb->sk = NULL;
 196
 197
 198	/* Free the destination pages if skb was not decrypted inplace */
 199	if (sgout != sgin) {
 200		/* Skip the first S/G entry as it points to AAD */
 201		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 202			if (!sg)
 203				break;
 204			put_page(sg_page(sg));
 205		}
 206	}
 207
 208	kfree(aead_req);
 209
 210	spin_lock_bh(&ctx->decrypt_compl_lock);
 211	pending = atomic_dec_return(&ctx->decrypt_pending);
 212
 213	if (!pending && ctx->async_notify)
 214		complete(&ctx->async_wait.completion);
 215	spin_unlock_bh(&ctx->decrypt_compl_lock);
 216}
 217
 218static int tls_do_decryption(struct sock *sk,
 219			     struct sk_buff *skb,
 220			     struct scatterlist *sgin,
 221			     struct scatterlist *sgout,
 222			     char *iv_recv,
 223			     size_t data_len,
 224			     struct aead_request *aead_req,
 225			     bool async)
 226{
 227	struct tls_context *tls_ctx = tls_get_ctx(sk);
 228	struct tls_prot_info *prot = &tls_ctx->prot_info;
 229	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 230	int ret;
 231
 232	aead_request_set_tfm(aead_req, ctx->aead_recv);
 233	aead_request_set_ad(aead_req, prot->aad_size);
 234	aead_request_set_crypt(aead_req, sgin, sgout,
 235			       data_len + prot->tag_size,
 236			       (u8 *)iv_recv);
 237
 238	if (async) {
 239		/* Using skb->sk to push sk through to crypto async callback
 240		 * handler. This allows propagating errors up to the socket
 241		 * if needed. It _must_ be cleared in the async handler
 242		 * before consume_skb is called. We _know_ skb->sk is NULL
 243		 * because it is a clone from strparser.
 244		 */
 245		skb->sk = sk;
 246		aead_request_set_callback(aead_req,
 247					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 248					  tls_decrypt_done, skb);
 249		atomic_inc(&ctx->decrypt_pending);
 250	} else {
 251		aead_request_set_callback(aead_req,
 252					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 253					  crypto_req_done, &ctx->async_wait);
 254	}
 255
 256	ret = crypto_aead_decrypt(aead_req);
 257	if (ret == -EINPROGRESS) {
 258		if (async)
 259			return ret;
 260
 261		ret = crypto_wait_req(ret, &ctx->async_wait);
 262	}
 263
 264	if (async)
 265		atomic_dec(&ctx->decrypt_pending);
 266
 267	return ret;
 268}
 269
 270static void tls_trim_both_msgs(struct sock *sk, int target_size)
 271{
 272	struct tls_context *tls_ctx = tls_get_ctx(sk);
 273	struct tls_prot_info *prot = &tls_ctx->prot_info;
 274	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 275	struct tls_rec *rec = ctx->open_rec;
 276
 277	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 278	if (target_size > 0)
 279		target_size += prot->overhead_size;
 280	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 281}
 282
 283static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 284{
 285	struct tls_context *tls_ctx = tls_get_ctx(sk);
 286	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 287	struct tls_rec *rec = ctx->open_rec;
 288	struct sk_msg *msg_en = &rec->msg_encrypted;
 289
 290	return sk_msg_alloc(sk, msg_en, len, 0);
 291}
 292
 293static int tls_clone_plaintext_msg(struct sock *sk, int required)
 294{
 295	struct tls_context *tls_ctx = tls_get_ctx(sk);
 296	struct tls_prot_info *prot = &tls_ctx->prot_info;
 297	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 298	struct tls_rec *rec = ctx->open_rec;
 299	struct sk_msg *msg_pl = &rec->msg_plaintext;
 300	struct sk_msg *msg_en = &rec->msg_encrypted;
 301	int skip, len;
 302
 303	/* We add page references worth len bytes from encrypted sg
 304	 * at the end of plaintext sg. It is guaranteed that msg_en
 305	 * has enough required room (ensured by caller).
 306	 */
 307	len = required - msg_pl->sg.size;
 308
 309	/* Skip initial bytes in msg_en's data to be able to use
 310	 * same offset of both plain and encrypted data.
 311	 */
 312	skip = prot->prepend_size + msg_pl->sg.size;
 313
 314	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 315}
 316
 317static struct tls_rec *tls_get_rec(struct sock *sk)
 318{
 319	struct tls_context *tls_ctx = tls_get_ctx(sk);
 320	struct tls_prot_info *prot = &tls_ctx->prot_info;
 321	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 322	struct sk_msg *msg_pl, *msg_en;
 323	struct tls_rec *rec;
 324	int mem_size;
 325
 326	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 327
 328	rec = kzalloc(mem_size, sk->sk_allocation);
 329	if (!rec)
 330		return NULL;
 331
 332	msg_pl = &rec->msg_plaintext;
 333	msg_en = &rec->msg_encrypted;
 334
 335	sk_msg_init(msg_pl);
 336	sk_msg_init(msg_en);
 337
 338	sg_init_table(rec->sg_aead_in, 2);
 339	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 340	sg_unmark_end(&rec->sg_aead_in[1]);
 341
 342	sg_init_table(rec->sg_aead_out, 2);
 343	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 344	sg_unmark_end(&rec->sg_aead_out[1]);
 345
 346	return rec;
 347}
 348
 349static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 350{
 351	sk_msg_free(sk, &rec->msg_encrypted);
 352	sk_msg_free(sk, &rec->msg_plaintext);
 353	kfree(rec);
 354}
 355
 356static void tls_free_open_rec(struct sock *sk)
 357{
 358	struct tls_context *tls_ctx = tls_get_ctx(sk);
 359	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 360	struct tls_rec *rec = ctx->open_rec;
 361
 362	if (rec) {
 363		tls_free_rec(sk, rec);
 364		ctx->open_rec = NULL;
 365	}
 366}
 367
 368int tls_tx_records(struct sock *sk, int flags)
 369{
 370	struct tls_context *tls_ctx = tls_get_ctx(sk);
 371	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 372	struct tls_rec *rec, *tmp;
 373	struct sk_msg *msg_en;
 374	int tx_flags, rc = 0;
 375
 376	if (tls_is_partially_sent_record(tls_ctx)) {
 377		rec = list_first_entry(&ctx->tx_list,
 378				       struct tls_rec, list);
 379
 380		if (flags == -1)
 381			tx_flags = rec->tx_flags;
 382		else
 383			tx_flags = flags;
 384
 385		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 386		if (rc)
 387			goto tx_err;
 388
 389		/* Full record has been transmitted.
 390		 * Remove the head of tx_list
 391		 */
 392		list_del(&rec->list);
 393		sk_msg_free(sk, &rec->msg_plaintext);
 394		kfree(rec);
 395	}
 396
 397	/* Tx all ready records */
 398	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 399		if (READ_ONCE(rec->tx_ready)) {
 400			if (flags == -1)
 401				tx_flags = rec->tx_flags;
 402			else
 403				tx_flags = flags;
 404
 405			msg_en = &rec->msg_encrypted;
 406			rc = tls_push_sg(sk, tls_ctx,
 407					 &msg_en->sg.data[msg_en->sg.curr],
 408					 0, tx_flags);
 409			if (rc)
 410				goto tx_err;
 411
 412			list_del(&rec->list);
 413			sk_msg_free(sk, &rec->msg_plaintext);
 414			kfree(rec);
 415		} else {
 416			break;
 417		}
 418	}
 419
 420tx_err:
 421	if (rc < 0 && rc != -EAGAIN)
 422		tls_err_abort(sk, EBADMSG);
 423
 424	return rc;
 425}
 426
 427static void tls_encrypt_done(struct crypto_async_request *req, int err)
 428{
 429	struct aead_request *aead_req = (struct aead_request *)req;
 430	struct sock *sk = req->data;
 431	struct tls_context *tls_ctx = tls_get_ctx(sk);
 432	struct tls_prot_info *prot = &tls_ctx->prot_info;
 433	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 434	struct scatterlist *sge;
 435	struct sk_msg *msg_en;
 436	struct tls_rec *rec;
 437	bool ready = false;
 438	int pending;
 439
 440	rec = container_of(aead_req, struct tls_rec, aead_req);
 441	msg_en = &rec->msg_encrypted;
 442
 443	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 444	sge->offset -= prot->prepend_size;
 445	sge->length += prot->prepend_size;
 446
 447	/* Check if error is previously set on socket */
 448	if (err || sk->sk_err) {
 449		rec = NULL;
 450
 451		/* If err is already set on socket, return the same code */
 452		if (sk->sk_err) {
 453			ctx->async_wait.err = sk->sk_err;
 454		} else {
 455			ctx->async_wait.err = err;
 456			tls_err_abort(sk, err);
 457		}
 458	}
 459
 460	if (rec) {
 461		struct tls_rec *first_rec;
 462
 463		/* Mark the record as ready for transmission */
 464		smp_store_mb(rec->tx_ready, true);
 465
 466		/* If received record is at head of tx_list, schedule tx */
 467		first_rec = list_first_entry(&ctx->tx_list,
 468					     struct tls_rec, list);
 469		if (rec == first_rec)
 470			ready = true;
 471	}
 472
 473	spin_lock_bh(&ctx->encrypt_compl_lock);
 474	pending = atomic_dec_return(&ctx->encrypt_pending);
 475
 476	if (!pending && ctx->async_notify)
 477		complete(&ctx->async_wait.completion);
 478	spin_unlock_bh(&ctx->encrypt_compl_lock);
 479
 480	if (!ready)
 481		return;
 482
 483	/* Schedule the transmission */
 484	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 485		schedule_delayed_work(&ctx->tx_work.work, 1);
 486}
 487
 488static int tls_do_encryption(struct sock *sk,
 489			     struct tls_context *tls_ctx,
 490			     struct tls_sw_context_tx *ctx,
 491			     struct aead_request *aead_req,
 492			     size_t data_len, u32 start)
 493{
 494	struct tls_prot_info *prot = &tls_ctx->prot_info;
 495	struct tls_rec *rec = ctx->open_rec;
 496	struct sk_msg *msg_en = &rec->msg_encrypted;
 497	struct scatterlist *sge = sk_msg_elem(msg_en, start);
 498	int rc, iv_offset = 0;
 499
 500	/* For CCM based ciphers, first byte of IV is a constant */
 501	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
 502		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 503		iv_offset = 1;
 504	}
 505
 506	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 507	       prot->iv_size + prot->salt_size);
 508
 509	xor_iv_with_seq(prot, rec->iv_data, tls_ctx->tx.rec_seq);
 510
 511	sge->offset += prot->prepend_size;
 512	sge->length -= prot->prepend_size;
 513
 514	msg_en->sg.curr = start;
 515
 516	aead_request_set_tfm(aead_req, ctx->aead_send);
 517	aead_request_set_ad(aead_req, prot->aad_size);
 518	aead_request_set_crypt(aead_req, rec->sg_aead_in,
 519			       rec->sg_aead_out,
 520			       data_len, rec->iv_data);
 521
 522	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 523				  tls_encrypt_done, sk);
 524
 525	/* Add the record in tx_list */
 526	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 527	atomic_inc(&ctx->encrypt_pending);
 528
 529	rc = crypto_aead_encrypt(aead_req);
 530	if (!rc || rc != -EINPROGRESS) {
 531		atomic_dec(&ctx->encrypt_pending);
 532		sge->offset -= prot->prepend_size;
 533		sge->length += prot->prepend_size;
 534	}
 535
 536	if (!rc) {
 537		WRITE_ONCE(rec->tx_ready, true);
 538	} else if (rc != -EINPROGRESS) {
 539		list_del(&rec->list);
 540		return rc;
 541	}
 542
 543	/* Unhook the record from context if encryption is not failure */
 544	ctx->open_rec = NULL;
 545	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 546	return rc;
 547}
 548
 549static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 550				 struct tls_rec **to, struct sk_msg *msg_opl,
 551				 struct sk_msg *msg_oen, u32 split_point,
 552				 u32 tx_overhead_size, u32 *orig_end)
 553{
 554	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 555	struct scatterlist *sge, *osge, *nsge;
 556	u32 orig_size = msg_opl->sg.size;
 557	struct scatterlist tmp = { };
 558	struct sk_msg *msg_npl;
 559	struct tls_rec *new;
 560	int ret;
 561
 562	new = tls_get_rec(sk);
 563	if (!new)
 564		return -ENOMEM;
 565	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 566			   tx_overhead_size, 0);
 567	if (ret < 0) {
 568		tls_free_rec(sk, new);
 569		return ret;
 570	}
 571
 572	*orig_end = msg_opl->sg.end;
 573	i = msg_opl->sg.start;
 574	sge = sk_msg_elem(msg_opl, i);
 575	while (apply && sge->length) {
 576		if (sge->length > apply) {
 577			u32 len = sge->length - apply;
 578
 579			get_page(sg_page(sge));
 580			sg_set_page(&tmp, sg_page(sge), len,
 581				    sge->offset + apply);
 582			sge->length = apply;
 583			bytes += apply;
 584			apply = 0;
 585		} else {
 586			apply -= sge->length;
 587			bytes += sge->length;
 588		}
 589
 590		sk_msg_iter_var_next(i);
 591		if (i == msg_opl->sg.end)
 592			break;
 593		sge = sk_msg_elem(msg_opl, i);
 594	}
 595
 596	msg_opl->sg.end = i;
 597	msg_opl->sg.curr = i;
 598	msg_opl->sg.copybreak = 0;
 599	msg_opl->apply_bytes = 0;
 600	msg_opl->sg.size = bytes;
 601
 602	msg_npl = &new->msg_plaintext;
 603	msg_npl->apply_bytes = apply;
 604	msg_npl->sg.size = orig_size - bytes;
 605
 606	j = msg_npl->sg.start;
 607	nsge = sk_msg_elem(msg_npl, j);
 608	if (tmp.length) {
 609		memcpy(nsge, &tmp, sizeof(*nsge));
 610		sk_msg_iter_var_next(j);
 611		nsge = sk_msg_elem(msg_npl, j);
 612	}
 613
 614	osge = sk_msg_elem(msg_opl, i);
 615	while (osge->length) {
 616		memcpy(nsge, osge, sizeof(*nsge));
 617		sg_unmark_end(nsge);
 618		sk_msg_iter_var_next(i);
 619		sk_msg_iter_var_next(j);
 620		if (i == *orig_end)
 621			break;
 622		osge = sk_msg_elem(msg_opl, i);
 623		nsge = sk_msg_elem(msg_npl, j);
 624	}
 625
 626	msg_npl->sg.end = j;
 627	msg_npl->sg.curr = j;
 628	msg_npl->sg.copybreak = 0;
 629
 630	*to = new;
 631	return 0;
 632}
 633
 634static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 635				  struct tls_rec *from, u32 orig_end)
 636{
 637	struct sk_msg *msg_npl = &from->msg_plaintext;
 638	struct sk_msg *msg_opl = &to->msg_plaintext;
 639	struct scatterlist *osge, *nsge;
 640	u32 i, j;
 641
 642	i = msg_opl->sg.end;
 643	sk_msg_iter_var_prev(i);
 644	j = msg_npl->sg.start;
 645
 646	osge = sk_msg_elem(msg_opl, i);
 647	nsge = sk_msg_elem(msg_npl, j);
 648
 649	if (sg_page(osge) == sg_page(nsge) &&
 650	    osge->offset + osge->length == nsge->offset) {
 651		osge->length += nsge->length;
 652		put_page(sg_page(nsge));
 653	}
 654
 655	msg_opl->sg.end = orig_end;
 656	msg_opl->sg.curr = orig_end;
 657	msg_opl->sg.copybreak = 0;
 658	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 659	msg_opl->sg.size += msg_npl->sg.size;
 660
 661	sk_msg_free(sk, &to->msg_encrypted);
 662	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 663
 664	kfree(from);
 665}
 666
 667static int tls_push_record(struct sock *sk, int flags,
 668			   unsigned char record_type)
 669{
 670	struct tls_context *tls_ctx = tls_get_ctx(sk);
 671	struct tls_prot_info *prot = &tls_ctx->prot_info;
 672	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 673	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 674	u32 i, split_point, orig_end;
 675	struct sk_msg *msg_pl, *msg_en;
 676	struct aead_request *req;
 677	bool split;
 678	int rc;
 679
 680	if (!rec)
 681		return 0;
 682
 683	msg_pl = &rec->msg_plaintext;
 684	msg_en = &rec->msg_encrypted;
 685
 686	split_point = msg_pl->apply_bytes;
 687	split = split_point && split_point < msg_pl->sg.size;
 688	if (unlikely((!split &&
 689		      msg_pl->sg.size +
 690		      prot->overhead_size > msg_en->sg.size) ||
 691		     (split &&
 692		      split_point +
 693		      prot->overhead_size > msg_en->sg.size))) {
 694		split = true;
 695		split_point = msg_en->sg.size;
 696	}
 697	if (split) {
 698		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 699					   split_point, prot->overhead_size,
 700					   &orig_end);
 701		if (rc < 0)
 702			return rc;
 703		/* This can happen if above tls_split_open_record allocates
 704		 * a single large encryption buffer instead of two smaller
 705		 * ones. In this case adjust pointers and continue without
 706		 * split.
 707		 */
 708		if (!msg_pl->sg.size) {
 709			tls_merge_open_record(sk, rec, tmp, orig_end);
 710			msg_pl = &rec->msg_plaintext;
 711			msg_en = &rec->msg_encrypted;
 712			split = false;
 713		}
 714		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 715			    prot->overhead_size);
 716	}
 717
 718	rec->tx_flags = flags;
 719	req = &rec->aead_req;
 720
 721	i = msg_pl->sg.end;
 722	sk_msg_iter_var_prev(i);
 723
 724	rec->content_type = record_type;
 725	if (prot->version == TLS_1_3_VERSION) {
 726		/* Add content type to end of message.  No padding added */
 727		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 728		sg_mark_end(&rec->sg_content_type);
 729		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 730			 &rec->sg_content_type);
 731	} else {
 732		sg_mark_end(sk_msg_elem(msg_pl, i));
 733	}
 734
 735	if (msg_pl->sg.end < msg_pl->sg.start) {
 736		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 737			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 738			 msg_pl->sg.data);
 739	}
 740
 741	i = msg_pl->sg.start;
 742	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 743
 744	i = msg_en->sg.end;
 745	sk_msg_iter_var_prev(i);
 746	sg_mark_end(sk_msg_elem(msg_en, i));
 747
 748	i = msg_en->sg.start;
 749	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 750
 751	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 752		     tls_ctx->tx.rec_seq, record_type, prot);
 753
 754	tls_fill_prepend(tls_ctx,
 755			 page_address(sg_page(&msg_en->sg.data[i])) +
 756			 msg_en->sg.data[i].offset,
 757			 msg_pl->sg.size + prot->tail_size,
 758			 record_type);
 759
 760	tls_ctx->pending_open_record_frags = false;
 761
 762	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 763			       msg_pl->sg.size + prot->tail_size, i);
 764	if (rc < 0) {
 765		if (rc != -EINPROGRESS) {
 766			tls_err_abort(sk, EBADMSG);
 767			if (split) {
 768				tls_ctx->pending_open_record_frags = true;
 769				tls_merge_open_record(sk, rec, tmp, orig_end);
 770			}
 771		}
 772		ctx->async_capable = 1;
 773		return rc;
 774	} else if (split) {
 775		msg_pl = &tmp->msg_plaintext;
 776		msg_en = &tmp->msg_encrypted;
 777		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 778		tls_ctx->pending_open_record_frags = true;
 779		ctx->open_rec = tmp;
 780	}
 781
 782	return tls_tx_records(sk, flags);
 783}
 784
 785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 786			       bool full_record, u8 record_type,
 787			       ssize_t *copied, int flags)
 788{
 789	struct tls_context *tls_ctx = tls_get_ctx(sk);
 790	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 791	struct sk_msg msg_redir = { };
 792	struct sk_psock *psock;
 793	struct sock *sk_redir;
 794	struct tls_rec *rec;
 795	bool enospc, policy;
 796	int err = 0, send;
 797	u32 delta = 0;
 798
 799	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 800	psock = sk_psock_get(sk);
 801	if (!psock || !policy) {
 802		err = tls_push_record(sk, flags, record_type);
 803		if (err && sk->sk_err == EBADMSG) {
 804			*copied -= sk_msg_free(sk, msg);
 805			tls_free_open_rec(sk);
 806			err = -sk->sk_err;
 807		}
 808		if (psock)
 809			sk_psock_put(sk, psock);
 810		return err;
 811	}
 812more_data:
 813	enospc = sk_msg_full(msg);
 814	if (psock->eval == __SK_NONE) {
 815		delta = msg->sg.size;
 816		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 817		delta -= msg->sg.size;
 818	}
 819	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 820	    !enospc && !full_record) {
 821		err = -ENOSPC;
 822		goto out_err;
 823	}
 824	msg->cork_bytes = 0;
 825	send = msg->sg.size;
 826	if (msg->apply_bytes && msg->apply_bytes < send)
 827		send = msg->apply_bytes;
 828
 829	switch (psock->eval) {
 830	case __SK_PASS:
 831		err = tls_push_record(sk, flags, record_type);
 832		if (err && sk->sk_err == EBADMSG) {
 833			*copied -= sk_msg_free(sk, msg);
 834			tls_free_open_rec(sk);
 835			err = -sk->sk_err;
 836			goto out_err;
 837		}
 838		break;
 839	case __SK_REDIRECT:
 840		sk_redir = psock->sk_redir;
 841		memcpy(&msg_redir, msg, sizeof(*msg));
 842		if (msg->apply_bytes < send)
 843			msg->apply_bytes = 0;
 844		else
 845			msg->apply_bytes -= send;
 846		sk_msg_return_zero(sk, msg, send);
 847		msg->sg.size -= send;
 848		release_sock(sk);
 849		err = tcp_bpf_sendmsg_redir(sk_redir, &msg_redir, send, flags);
 850		lock_sock(sk);
 851		if (err < 0) {
 852			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
 853			msg->sg.size = 0;
 854		}
 855		if (msg->sg.size == 0)
 856			tls_free_open_rec(sk);
 857		break;
 858	case __SK_DROP:
 859	default:
 860		sk_msg_free_partial(sk, msg, send);
 861		if (msg->apply_bytes < send)
 862			msg->apply_bytes = 0;
 863		else
 864			msg->apply_bytes -= send;
 865		if (msg->sg.size == 0)
 866			tls_free_open_rec(sk);
 867		*copied -= (send + delta);
 868		err = -EACCES;
 869	}
 870
 871	if (likely(!err)) {
 872		bool reset_eval = !ctx->open_rec;
 873
 874		rec = ctx->open_rec;
 875		if (rec) {
 876			msg = &rec->msg_plaintext;
 877			if (!msg->apply_bytes)
 878				reset_eval = true;
 879		}
 880		if (reset_eval) {
 881			psock->eval = __SK_NONE;
 882			if (psock->sk_redir) {
 883				sock_put(psock->sk_redir);
 884				psock->sk_redir = NULL;
 885			}
 886		}
 887		if (rec)
 888			goto more_data;
 889	}
 890 out_err:
 891	sk_psock_put(sk, psock);
 892	return err;
 893}
 894
 895static int tls_sw_push_pending_record(struct sock *sk, int flags)
 896{
 897	struct tls_context *tls_ctx = tls_get_ctx(sk);
 898	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 899	struct tls_rec *rec = ctx->open_rec;
 900	struct sk_msg *msg_pl;
 901	size_t copied;
 902
 903	if (!rec)
 904		return 0;
 905
 906	msg_pl = &rec->msg_plaintext;
 907	copied = msg_pl->sg.size;
 908	if (!copied)
 909		return 0;
 910
 911	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 912				   &copied, flags);
 913}
 914
 915int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 916{
 917	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 918	struct tls_context *tls_ctx = tls_get_ctx(sk);
 919	struct tls_prot_info *prot = &tls_ctx->prot_info;
 920	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 921	bool async_capable = ctx->async_capable;
 922	unsigned char record_type = TLS_RECORD_TYPE_DATA;
 923	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 924	bool eor = !(msg->msg_flags & MSG_MORE);
 925	size_t try_to_copy;
 926	ssize_t copied = 0;
 927	struct sk_msg *msg_pl, *msg_en;
 928	struct tls_rec *rec;
 929	int required_size;
 930	int num_async = 0;
 931	bool full_record;
 932	int record_room;
 933	int num_zc = 0;
 934	int orig_size;
 935	int ret = 0;
 936	int pending;
 937
 938	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
 939			       MSG_CMSG_COMPAT))
 940		return -EOPNOTSUPP;
 941
 942	mutex_lock(&tls_ctx->tx_lock);
 943	lock_sock(sk);
 944
 945	if (unlikely(msg->msg_controllen)) {
 946		ret = tls_proccess_cmsg(sk, msg, &record_type);
 947		if (ret) {
 948			if (ret == -EINPROGRESS)
 949				num_async++;
 950			else if (ret != -EAGAIN)
 951				goto send_end;
 952		}
 953	}
 954
 955	while (msg_data_left(msg)) {
 956		if (sk->sk_err) {
 957			ret = -sk->sk_err;
 958			goto send_end;
 959		}
 960
 961		if (ctx->open_rec)
 962			rec = ctx->open_rec;
 963		else
 964			rec = ctx->open_rec = tls_get_rec(sk);
 965		if (!rec) {
 966			ret = -ENOMEM;
 967			goto send_end;
 968		}
 969
 970		msg_pl = &rec->msg_plaintext;
 971		msg_en = &rec->msg_encrypted;
 972
 973		orig_size = msg_pl->sg.size;
 974		full_record = false;
 975		try_to_copy = msg_data_left(msg);
 976		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 977		if (try_to_copy >= record_room) {
 978			try_to_copy = record_room;
 979			full_record = true;
 980		}
 981
 982		required_size = msg_pl->sg.size + try_to_copy +
 983				prot->overhead_size;
 984
 985		if (!sk_stream_memory_free(sk))
 986			goto wait_for_sndbuf;
 987
 988alloc_encrypted:
 989		ret = tls_alloc_encrypted_msg(sk, required_size);
 990		if (ret) {
 991			if (ret != -ENOSPC)
 992				goto wait_for_memory;
 993
 994			/* Adjust try_to_copy according to the amount that was
 995			 * actually allocated. The difference is due
 996			 * to max sg elements limit
 997			 */
 998			try_to_copy -= required_size - msg_en->sg.size;
 999			full_record = true;
1000		}
1001
1002		if (!is_kvec && (full_record || eor) && !async_capable) {
1003			u32 first = msg_pl->sg.end;
1004
1005			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1006							msg_pl, try_to_copy);
1007			if (ret)
1008				goto fallback_to_reg_send;
1009
1010			num_zc++;
1011			copied += try_to_copy;
1012
1013			sk_msg_sg_copy_set(msg_pl, first);
1014			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1015						  record_type, &copied,
1016						  msg->msg_flags);
1017			if (ret) {
1018				if (ret == -EINPROGRESS)
1019					num_async++;
1020				else if (ret == -ENOMEM)
1021					goto wait_for_memory;
1022				else if (ctx->open_rec && ret == -ENOSPC)
1023					goto rollback_iter;
1024				else if (ret != -EAGAIN)
1025					goto send_end;
1026			}
1027			continue;
1028rollback_iter:
1029			copied -= try_to_copy;
1030			sk_msg_sg_copy_clear(msg_pl, first);
1031			iov_iter_revert(&msg->msg_iter,
1032					msg_pl->sg.size - orig_size);
1033fallback_to_reg_send:
1034			sk_msg_trim(sk, msg_pl, orig_size);
1035		}
1036
1037		required_size = msg_pl->sg.size + try_to_copy;
1038
1039		ret = tls_clone_plaintext_msg(sk, required_size);
1040		if (ret) {
1041			if (ret != -ENOSPC)
1042				goto send_end;
1043
1044			/* Adjust try_to_copy according to the amount that was
1045			 * actually allocated. The difference is due
1046			 * to max sg elements limit
1047			 */
1048			try_to_copy -= required_size - msg_pl->sg.size;
1049			full_record = true;
1050			sk_msg_trim(sk, msg_en,
1051				    msg_pl->sg.size + prot->overhead_size);
1052		}
1053
1054		if (try_to_copy) {
1055			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1056						       msg_pl, try_to_copy);
1057			if (ret < 0)
1058				goto trim_sgl;
1059		}
1060
1061		/* Open records defined only if successfully copied, otherwise
1062		 * we would trim the sg but not reset the open record frags.
1063		 */
1064		tls_ctx->pending_open_record_frags = true;
1065		copied += try_to_copy;
1066		if (full_record || eor) {
1067			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1068						  record_type, &copied,
1069						  msg->msg_flags);
1070			if (ret) {
1071				if (ret == -EINPROGRESS)
1072					num_async++;
1073				else if (ret == -ENOMEM)
1074					goto wait_for_memory;
1075				else if (ret != -EAGAIN) {
1076					if (ret == -ENOSPC)
1077						ret = 0;
1078					goto send_end;
1079				}
1080			}
1081		}
1082
1083		continue;
1084
1085wait_for_sndbuf:
1086		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1087wait_for_memory:
1088		ret = sk_stream_wait_memory(sk, &timeo);
1089		if (ret) {
1090trim_sgl:
1091			if (ctx->open_rec)
1092				tls_trim_both_msgs(sk, orig_size);
1093			goto send_end;
1094		}
1095
1096		if (ctx->open_rec && msg_en->sg.size < required_size)
1097			goto alloc_encrypted;
1098	}
1099
1100	if (!num_async) {
1101		goto send_end;
1102	} else if (num_zc) {
1103		/* Wait for pending encryptions to get completed */
1104		spin_lock_bh(&ctx->encrypt_compl_lock);
1105		ctx->async_notify = true;
1106
1107		pending = atomic_read(&ctx->encrypt_pending);
1108		spin_unlock_bh(&ctx->encrypt_compl_lock);
1109		if (pending)
1110			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1111		else
1112			reinit_completion(&ctx->async_wait.completion);
1113
1114		/* There can be no concurrent accesses, since we have no
1115		 * pending encrypt operations
1116		 */
1117		WRITE_ONCE(ctx->async_notify, false);
1118
1119		if (ctx->async_wait.err) {
1120			ret = ctx->async_wait.err;
1121			copied = 0;
1122		}
1123	}
1124
1125	/* Transmit if any encryptions have completed */
1126	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1127		cancel_delayed_work(&ctx->tx_work.work);
1128		tls_tx_records(sk, msg->msg_flags);
1129	}
1130
1131send_end:
1132	ret = sk_stream_error(sk, msg->msg_flags, ret);
1133
1134	release_sock(sk);
1135	mutex_unlock(&tls_ctx->tx_lock);
1136	return copied > 0 ? copied : ret;
1137}
1138
1139static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1140			      int offset, size_t size, int flags)
1141{
1142	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1143	struct tls_context *tls_ctx = tls_get_ctx(sk);
1144	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1145	struct tls_prot_info *prot = &tls_ctx->prot_info;
1146	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1147	struct sk_msg *msg_pl;
1148	struct tls_rec *rec;
1149	int num_async = 0;
1150	ssize_t copied = 0;
1151	bool full_record;
1152	int record_room;
1153	int ret = 0;
1154	bool eor;
1155
1156	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1157	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1158
1159	/* Call the sk_stream functions to manage the sndbuf mem. */
1160	while (size > 0) {
1161		size_t copy, required_size;
1162
1163		if (sk->sk_err) {
1164			ret = -sk->sk_err;
1165			goto sendpage_end;
1166		}
1167
1168		if (ctx->open_rec)
1169			rec = ctx->open_rec;
1170		else
1171			rec = ctx->open_rec = tls_get_rec(sk);
1172		if (!rec) {
1173			ret = -ENOMEM;
1174			goto sendpage_end;
1175		}
1176
1177		msg_pl = &rec->msg_plaintext;
1178
1179		full_record = false;
1180		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1181		copy = size;
1182		if (copy >= record_room) {
1183			copy = record_room;
1184			full_record = true;
1185		}
1186
1187		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1188
1189		if (!sk_stream_memory_free(sk))
1190			goto wait_for_sndbuf;
1191alloc_payload:
1192		ret = tls_alloc_encrypted_msg(sk, required_size);
1193		if (ret) {
1194			if (ret != -ENOSPC)
1195				goto wait_for_memory;
1196
1197			/* Adjust copy according to the amount that was
1198			 * actually allocated. The difference is due
1199			 * to max sg elements limit
1200			 */
1201			copy -= required_size - msg_pl->sg.size;
1202			full_record = true;
1203		}
1204
1205		sk_msg_page_add(msg_pl, page, copy, offset);
1206		sk_mem_charge(sk, copy);
1207
1208		offset += copy;
1209		size -= copy;
1210		copied += copy;
1211
1212		tls_ctx->pending_open_record_frags = true;
1213		if (full_record || eor || sk_msg_full(msg_pl)) {
1214			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1215						  record_type, &copied, flags);
1216			if (ret) {
1217				if (ret == -EINPROGRESS)
1218					num_async++;
1219				else if (ret == -ENOMEM)
1220					goto wait_for_memory;
1221				else if (ret != -EAGAIN) {
1222					if (ret == -ENOSPC)
1223						ret = 0;
1224					goto sendpage_end;
1225				}
1226			}
1227		}
1228		continue;
1229wait_for_sndbuf:
1230		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1231wait_for_memory:
1232		ret = sk_stream_wait_memory(sk, &timeo);
1233		if (ret) {
1234			if (ctx->open_rec)
1235				tls_trim_both_msgs(sk, msg_pl->sg.size);
1236			goto sendpage_end;
1237		}
1238
1239		if (ctx->open_rec)
1240			goto alloc_payload;
1241	}
1242
1243	if (num_async) {
1244		/* Transmit if any encryptions have completed */
1245		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1246			cancel_delayed_work(&ctx->tx_work.work);
1247			tls_tx_records(sk, flags);
1248		}
1249	}
1250sendpage_end:
1251	ret = sk_stream_error(sk, flags, ret);
1252	return copied > 0 ? copied : ret;
1253}
1254
1255int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1256			   int offset, size_t size, int flags)
1257{
1258	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1259		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1260		      MSG_NO_SHARED_FRAGS))
1261		return -EOPNOTSUPP;
1262
1263	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1264}
1265
1266int tls_sw_sendpage(struct sock *sk, struct page *page,
1267		    int offset, size_t size, int flags)
1268{
1269	struct tls_context *tls_ctx = tls_get_ctx(sk);
1270	int ret;
1271
1272	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1273		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1274		return -EOPNOTSUPP;
1275
1276	mutex_lock(&tls_ctx->tx_lock);
1277	lock_sock(sk);
1278	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1279	release_sock(sk);
1280	mutex_unlock(&tls_ctx->tx_lock);
1281	return ret;
1282}
1283
1284static struct sk_buff *tls_wait_data(struct sock *sk, struct sk_psock *psock,
1285				     bool nonblock, long timeo, int *err)
1286{
1287	struct tls_context *tls_ctx = tls_get_ctx(sk);
1288	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1289	struct sk_buff *skb;
1290	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1291
1292	while (!(skb = ctx->recv_pkt) && sk_psock_queue_empty(psock)) {
1293		if (sk->sk_err) {
1294			*err = sock_error(sk);
1295			return NULL;
1296		}
1297
1298		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1299			__strp_unpause(&ctx->strp);
1300			if (ctx->recv_pkt)
1301				return ctx->recv_pkt;
1302		}
1303
1304		if (sk->sk_shutdown & RCV_SHUTDOWN)
1305			return NULL;
1306
1307		if (sock_flag(sk, SOCK_DONE))
1308			return NULL;
1309
1310		if (nonblock || !timeo) {
1311			*err = -EAGAIN;
1312			return NULL;
1313		}
1314
1315		add_wait_queue(sk_sleep(sk), &wait);
1316		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1317		sk_wait_event(sk, &timeo,
1318			      ctx->recv_pkt != skb ||
1319			      !sk_psock_queue_empty(psock),
1320			      &wait);
1321		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322		remove_wait_queue(sk_sleep(sk), &wait);
1323
1324		/* Handle signals */
1325		if (signal_pending(current)) {
1326			*err = sock_intr_errno(timeo);
1327			return NULL;
1328		}
1329	}
1330
1331	return skb;
1332}
1333
1334static int tls_setup_from_iter(struct sock *sk, struct iov_iter *from,
1335			       int length, int *pages_used,
1336			       unsigned int *size_used,
1337			       struct scatterlist *to,
1338			       int to_max_pages)
1339{
1340	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1341	struct page *pages[MAX_SKB_FRAGS];
1342	unsigned int size = *size_used;
1343	ssize_t copied, use;
1344	size_t offset;
1345
1346	while (length > 0) {
1347		i = 0;
1348		maxpages = to_max_pages - num_elem;
1349		if (maxpages == 0) {
1350			rc = -EFAULT;
1351			goto out;
1352		}
1353		copied = iov_iter_get_pages(from, pages,
1354					    length,
1355					    maxpages, &offset);
1356		if (copied <= 0) {
1357			rc = -EFAULT;
1358			goto out;
1359		}
1360
1361		iov_iter_advance(from, copied);
1362
1363		length -= copied;
1364		size += copied;
1365		while (copied) {
1366			use = min_t(int, copied, PAGE_SIZE - offset);
1367
1368			sg_set_page(&to[num_elem],
1369				    pages[i], use, offset);
1370			sg_unmark_end(&to[num_elem]);
1371			/* We do not uncharge memory from this API */
1372
1373			offset = 0;
1374			copied -= use;
1375
1376			i++;
1377			num_elem++;
1378		}
1379	}
1380	/* Mark the end in the last sg entry if newly added */
1381	if (num_elem > *pages_used)
1382		sg_mark_end(&to[num_elem - 1]);
1383out:
1384	if (rc)
1385		iov_iter_revert(from, size - *size_used);
1386	*size_used = size;
1387	*pages_used = num_elem;
1388
1389	return rc;
1390}
1391
1392/* This function decrypts the input skb into either out_iov or in out_sg
1393 * or in skb buffers itself. The input parameter 'zc' indicates if
1394 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1395 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1396 * NULL, then the decryption happens inside skb buffers itself, i.e.
1397 * zero-copy gets disabled and 'zc' is updated.
1398 */
1399
1400static int decrypt_internal(struct sock *sk, struct sk_buff *skb,
1401			    struct iov_iter *out_iov,
1402			    struct scatterlist *out_sg,
1403			    int *chunk, bool *zc, bool async)
1404{
1405	struct tls_context *tls_ctx = tls_get_ctx(sk);
1406	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1407	struct tls_prot_info *prot = &tls_ctx->prot_info;
1408	struct strp_msg *rxm = strp_msg(skb);
1409	int n_sgin, n_sgout, nsg, mem_size, aead_size, err, pages = 0;
1410	struct aead_request *aead_req;
1411	struct sk_buff *unused;
1412	u8 *aad, *iv, *mem = NULL;
1413	struct scatterlist *sgin = NULL;
1414	struct scatterlist *sgout = NULL;
1415	const int data_len = rxm->full_len - prot->overhead_size +
1416			     prot->tail_size;
1417	int iv_offset = 0;
1418
1419	if (*zc && (out_iov || out_sg)) {
1420		if (out_iov)
1421			n_sgout = iov_iter_npages(out_iov, INT_MAX) + 1;
1422		else
1423			n_sgout = sg_nents(out_sg);
1424		n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1425				 rxm->full_len - prot->prepend_size);
1426	} else {
1427		n_sgout = 0;
1428		*zc = false;
1429		n_sgin = skb_cow_data(skb, 0, &unused);
1430	}
1431
1432	if (n_sgin < 1)
1433		return -EBADMSG;
1434
1435	/* Increment to accommodate AAD */
1436	n_sgin = n_sgin + 1;
1437
1438	nsg = n_sgin + n_sgout;
1439
1440	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1441	mem_size = aead_size + (nsg * sizeof(struct scatterlist));
1442	mem_size = mem_size + prot->aad_size;
1443	mem_size = mem_size + crypto_aead_ivsize(ctx->aead_recv);
1444
1445	/* Allocate a single block of memory which contains
1446	 * aead_req || sgin[] || sgout[] || aad || iv.
1447	 * This order achieves correct alignment for aead_req, sgin, sgout.
1448	 */
1449	mem = kmalloc(mem_size, sk->sk_allocation);
1450	if (!mem)
1451		return -ENOMEM;
1452
1453	/* Segment the allocated memory */
1454	aead_req = (struct aead_request *)mem;
1455	sgin = (struct scatterlist *)(mem + aead_size);
1456	sgout = sgin + n_sgin;
1457	aad = (u8 *)(sgout + n_sgout);
1458	iv = aad + prot->aad_size;
1459
1460	/* For CCM based ciphers, first byte of nonce+iv is always '2' */
1461	if (prot->cipher_type == TLS_CIPHER_AES_CCM_128) {
1462		iv[0] = 2;
1463		iv_offset = 1;
1464	}
1465
1466	/* Prepare IV */
1467	err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1468			    iv + iv_offset + prot->salt_size,
1469			    prot->iv_size);
1470	if (err < 0) {
1471		kfree(mem);
1472		return err;
1473	}
1474	if (prot->version == TLS_1_3_VERSION ||
1475	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305)
1476		memcpy(iv + iv_offset, tls_ctx->rx.iv,
1477		       crypto_aead_ivsize(ctx->aead_recv));
1478	else
1479		memcpy(iv + iv_offset, tls_ctx->rx.iv, prot->salt_size);
1480
1481	xor_iv_with_seq(prot, iv, tls_ctx->rx.rec_seq);
1482
1483	/* Prepare AAD */
1484	tls_make_aad(aad, rxm->full_len - prot->overhead_size +
1485		     prot->tail_size,
1486		     tls_ctx->rx.rec_seq, ctx->control, prot);
1487
1488	/* Prepare sgin */
1489	sg_init_table(sgin, n_sgin);
1490	sg_set_buf(&sgin[0], aad, prot->aad_size);
1491	err = skb_to_sgvec(skb, &sgin[1],
1492			   rxm->offset + prot->prepend_size,
1493			   rxm->full_len - prot->prepend_size);
1494	if (err < 0) {
1495		kfree(mem);
1496		return err;
1497	}
1498
1499	if (n_sgout) {
1500		if (out_iov) {
1501			sg_init_table(sgout, n_sgout);
1502			sg_set_buf(&sgout[0], aad, prot->aad_size);
1503
1504			*chunk = 0;
1505			err = tls_setup_from_iter(sk, out_iov, data_len,
1506						  &pages, chunk, &sgout[1],
1507						  (n_sgout - 1));
1508			if (err < 0)
1509				goto fallback_to_reg_recv;
1510		} else if (out_sg) {
1511			memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1512		} else {
1513			goto fallback_to_reg_recv;
1514		}
1515	} else {
1516fallback_to_reg_recv:
1517		sgout = sgin;
1518		pages = 0;
1519		*chunk = data_len;
1520		*zc = false;
1521	}
1522
1523	/* Prepare and submit AEAD request */
1524	err = tls_do_decryption(sk, skb, sgin, sgout, iv,
1525				data_len, aead_req, async);
1526	if (err == -EINPROGRESS)
1527		return err;
1528
1529	/* Release the pages in case iov was mapped to pages */
1530	for (; pages > 0; pages--)
1531		put_page(sg_page(&sgout[pages]));
1532
1533	kfree(mem);
1534	return err;
1535}
1536
1537static int decrypt_skb_update(struct sock *sk, struct sk_buff *skb,
1538			      struct iov_iter *dest, int *chunk, bool *zc,
1539			      bool async)
1540{
1541	struct tls_context *tls_ctx = tls_get_ctx(sk);
1542	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1543	struct tls_prot_info *prot = &tls_ctx->prot_info;
1544	struct strp_msg *rxm = strp_msg(skb);
1545	int pad, err = 0;
1546
1547	if (!ctx->decrypted) {
1548		if (tls_ctx->rx_conf == TLS_HW) {
1549			err = tls_device_decrypted(sk, tls_ctx, skb, rxm);
1550			if (err < 0)
1551				return err;
1552		}
1553
1554		/* Still not decrypted after tls_device */
1555		if (!ctx->decrypted) {
1556			err = decrypt_internal(sk, skb, dest, NULL, chunk, zc,
1557					       async);
1558			if (err < 0) {
1559				if (err == -EINPROGRESS)
1560					tls_advance_record_sn(sk, prot,
1561							      &tls_ctx->rx);
1562				else if (err == -EBADMSG)
1563					TLS_INC_STATS(sock_net(sk),
1564						      LINUX_MIB_TLSDECRYPTERROR);
1565				return err;
1566			}
1567		} else {
1568			*zc = false;
1569		}
1570
1571		pad = padding_length(ctx, prot, skb);
1572		if (pad < 0)
1573			return pad;
1574
1575		rxm->full_len -= pad;
1576		rxm->offset += prot->prepend_size;
1577		rxm->full_len -= prot->overhead_size;
1578		tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1579		ctx->decrypted = 1;
1580		ctx->saved_data_ready(sk);
1581	} else {
1582		*zc = false;
1583	}
1584
1585	return err;
1586}
1587
1588int decrypt_skb(struct sock *sk, struct sk_buff *skb,
1589		struct scatterlist *sgout)
1590{
1591	bool zc = true;
1592	int chunk;
1593
1594	return decrypt_internal(sk, skb, NULL, sgout, &chunk, &zc, false);
1595}
1596
1597static bool tls_sw_advance_skb(struct sock *sk, struct sk_buff *skb,
1598			       unsigned int len)
1599{
1600	struct tls_context *tls_ctx = tls_get_ctx(sk);
1601	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1602
1603	if (skb) {
1604		struct strp_msg *rxm = strp_msg(skb);
1605
1606		if (len < rxm->full_len) {
1607			rxm->offset += len;
1608			rxm->full_len -= len;
1609			return false;
1610		}
1611		consume_skb(skb);
1612	}
1613
1614	/* Finished with message */
1615	ctx->recv_pkt = NULL;
1616	__strp_unpause(&ctx->strp);
1617
1618	return true;
1619}
1620
1621/* This function traverses the rx_list in tls receive context to copies the
1622 * decrypted records into the buffer provided by caller zero copy is not
1623 * true. Further, the records are removed from the rx_list if it is not a peek
1624 * case and the record has been consumed completely.
1625 */
1626static int process_rx_list(struct tls_sw_context_rx *ctx,
1627			   struct msghdr *msg,
1628			   u8 *control,
1629			   bool *cmsg,
1630			   size_t skip,
1631			   size_t len,
1632			   bool zc,
1633			   bool is_peek)
1634{
1635	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1636	u8 ctrl = *control;
1637	u8 msgc = *cmsg;
1638	struct tls_msg *tlm;
1639	ssize_t copied = 0;
1640
1641	/* Set the record type in 'control' if caller didn't pass it */
1642	if (!ctrl && skb) {
1643		tlm = tls_msg(skb);
1644		ctrl = tlm->control;
1645	}
1646
1647	while (skip && skb) {
1648		struct strp_msg *rxm = strp_msg(skb);
1649		tlm = tls_msg(skb);
1650
1651		/* Cannot process a record of different type */
1652		if (ctrl != tlm->control)
1653			return 0;
1654
1655		if (skip < rxm->full_len)
1656			break;
1657
1658		skip = skip - rxm->full_len;
1659		skb = skb_peek_next(skb, &ctx->rx_list);
1660	}
1661
1662	while (len && skb) {
1663		struct sk_buff *next_skb;
1664		struct strp_msg *rxm = strp_msg(skb);
1665		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1666
1667		tlm = tls_msg(skb);
1668
1669		/* Cannot process a record of different type */
1670		if (ctrl != tlm->control)
1671			return 0;
1672
1673		/* Set record type if not already done. For a non-data record,
1674		 * do not proceed if record type could not be copied.
1675		 */
1676		if (!msgc) {
1677			int cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1678					    sizeof(ctrl), &ctrl);
1679			msgc = true;
1680			if (ctrl != TLS_RECORD_TYPE_DATA) {
1681				if (cerr || msg->msg_flags & MSG_CTRUNC)
1682					return -EIO;
1683
1684				*cmsg = msgc;
1685			}
1686		}
1687
1688		if (!zc || (rxm->full_len - skip) > len) {
1689			int err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1690						    msg, chunk);
1691			if (err < 0)
1692				return err;
1693		}
1694
1695		len = len - chunk;
1696		copied = copied + chunk;
1697
1698		/* Consume the data from record if it is non-peek case*/
1699		if (!is_peek) {
1700			rxm->offset = rxm->offset + chunk;
1701			rxm->full_len = rxm->full_len - chunk;
1702
1703			/* Return if there is unconsumed data in the record */
1704			if (rxm->full_len - skip)
1705				break;
1706		}
1707
1708		/* The remaining skip-bytes must lie in 1st record in rx_list.
1709		 * So from the 2nd record, 'skip' should be 0.
1710		 */
1711		skip = 0;
1712
1713		if (msg)
1714			msg->msg_flags |= MSG_EOR;
1715
1716		next_skb = skb_peek_next(skb, &ctx->rx_list);
1717
1718		if (!is_peek) {
1719			skb_unlink(skb, &ctx->rx_list);
1720			consume_skb(skb);
1721		}
1722
1723		skb = next_skb;
1724	}
1725
1726	*control = ctrl;
1727	return copied;
1728}
1729
1730int tls_sw_recvmsg(struct sock *sk,
1731		   struct msghdr *msg,
1732		   size_t len,
1733		   int nonblock,
1734		   int flags,
1735		   int *addr_len)
1736{
1737	struct tls_context *tls_ctx = tls_get_ctx(sk);
1738	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1739	struct tls_prot_info *prot = &tls_ctx->prot_info;
1740	struct sk_psock *psock;
1741	unsigned char control = 0;
1742	ssize_t decrypted = 0;
1743	struct strp_msg *rxm;
1744	struct tls_msg *tlm;
1745	struct sk_buff *skb;
1746	ssize_t copied = 0;
1747	bool cmsg = false;
1748	int target, err = 0;
1749	long timeo;
1750	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1751	bool is_peek = flags & MSG_PEEK;
1752	bool bpf_strp_enabled;
1753	int num_async = 0;
1754	int pending;
1755
1756	flags |= nonblock;
1757
1758	if (unlikely(flags & MSG_ERRQUEUE))
1759		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1760
1761	psock = sk_psock_get(sk);
1762	lock_sock(sk);
1763	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1764
1765	/* Process pending decrypted records. It must be non-zero-copy */
1766	err = process_rx_list(ctx, msg, &control, &cmsg, 0, len, false,
1767			      is_peek);
1768	if (err < 0) {
1769		tls_err_abort(sk, err);
1770		goto end;
1771	} else {
1772		copied = err;
1773	}
1774
1775	if (len <= copied)
1776		goto recv_end;
1777
1778	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1779	len = len - copied;
1780	timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1781
1782	while (len && (decrypted + copied < target || ctx->recv_pkt)) {
1783		bool retain_skb = false;
1784		bool zc = false;
1785		int to_decrypt;
1786		int chunk = 0;
1787		bool async_capable;
1788		bool async = false;
1789
1790		skb = tls_wait_data(sk, psock, flags & MSG_DONTWAIT, timeo, &err);
1791		if (!skb) {
1792			if (psock) {
1793				int ret = sk_msg_recvmsg(sk, psock, msg, len,
1794							 flags);
1795
1796				if (ret > 0) {
1797					decrypted += ret;
1798					len -= ret;
1799					continue;
1800				}
1801			}
1802			goto recv_end;
1803		} else {
1804			tlm = tls_msg(skb);
1805			if (prot->version == TLS_1_3_VERSION)
1806				tlm->control = 0;
1807			else
1808				tlm->control = ctx->control;
1809		}
1810
1811		rxm = strp_msg(skb);
1812
1813		to_decrypt = rxm->full_len - prot->overhead_size;
1814
1815		if (to_decrypt <= len && !is_kvec && !is_peek &&
1816		    ctx->control == TLS_RECORD_TYPE_DATA &&
1817		    prot->version != TLS_1_3_VERSION &&
1818		    !bpf_strp_enabled)
1819			zc = true;
1820
1821		/* Do not use async mode if record is non-data */
1822		if (ctx->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1823			async_capable = ctx->async_capable;
1824		else
1825			async_capable = false;
1826
1827		err = decrypt_skb_update(sk, skb, &msg->msg_iter,
1828					 &chunk, &zc, async_capable);
1829		if (err < 0 && err != -EINPROGRESS) {
1830			tls_err_abort(sk, EBADMSG);
1831			goto recv_end;
1832		}
1833
1834		if (err == -EINPROGRESS) {
1835			async = true;
1836			num_async++;
1837		} else if (prot->version == TLS_1_3_VERSION) {
1838			tlm->control = ctx->control;
1839		}
1840
1841		/* If the type of records being processed is not known yet,
1842		 * set it to record type just dequeued. If it is already known,
1843		 * but does not match the record type just dequeued, go to end.
1844		 * We always get record type here since for tls1.2, record type
1845		 * is known just after record is dequeued from stream parser.
1846		 * For tls1.3, we disable async.
1847		 */
1848
1849		if (!control)
1850			control = tlm->control;
1851		else if (control != tlm->control)
1852			goto recv_end;
1853
1854		if (!cmsg) {
1855			int cerr;
1856
1857			cerr = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1858					sizeof(control), &control);
1859			cmsg = true;
1860			if (control != TLS_RECORD_TYPE_DATA) {
1861				if (cerr || msg->msg_flags & MSG_CTRUNC) {
1862					err = -EIO;
1863					goto recv_end;
1864				}
1865			}
1866		}
1867
1868		if (async)
1869			goto pick_next_record;
1870
1871		if (!zc) {
1872			if (bpf_strp_enabled) {
1873				err = sk_psock_tls_strp_read(psock, skb);
1874				if (err != __SK_PASS) {
1875					rxm->offset = rxm->offset + rxm->full_len;
1876					rxm->full_len = 0;
1877					if (err == __SK_DROP)
1878						consume_skb(skb);
1879					ctx->recv_pkt = NULL;
1880					__strp_unpause(&ctx->strp);
1881					continue;
1882				}
1883			}
1884
1885			if (rxm->full_len > len) {
1886				retain_skb = true;
1887				chunk = len;
1888			} else {
1889				chunk = rxm->full_len;
1890			}
1891
1892			err = skb_copy_datagram_msg(skb, rxm->offset,
1893						    msg, chunk);
1894			if (err < 0)
1895				goto recv_end;
1896
1897			if (!is_peek) {
1898				rxm->offset = rxm->offset + chunk;
1899				rxm->full_len = rxm->full_len - chunk;
1900			}
1901		}
1902
1903pick_next_record:
1904		if (chunk > len)
1905			chunk = len;
1906
1907		decrypted += chunk;
1908		len -= chunk;
1909
1910		/* For async or peek case, queue the current skb */
1911		if (async || is_peek || retain_skb) {
1912			skb_queue_tail(&ctx->rx_list, skb);
1913			skb = NULL;
1914		}
1915
1916		if (tls_sw_advance_skb(sk, skb, chunk)) {
1917			/* Return full control message to
1918			 * userspace before trying to parse
1919			 * another message type
1920			 */
1921			msg->msg_flags |= MSG_EOR;
1922			if (control != TLS_RECORD_TYPE_DATA)
1923				goto recv_end;
1924		} else {
1925			break;
1926		}
1927	}
1928
1929recv_end:
1930	if (num_async) {
1931		/* Wait for all previously submitted records to be decrypted */
1932		spin_lock_bh(&ctx->decrypt_compl_lock);
1933		ctx->async_notify = true;
1934		pending = atomic_read(&ctx->decrypt_pending);
1935		spin_unlock_bh(&ctx->decrypt_compl_lock);
1936		if (pending) {
1937			err = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1938			if (err) {
1939				/* one of async decrypt failed */
1940				tls_err_abort(sk, err);
1941				copied = 0;
1942				decrypted = 0;
1943				goto end;
1944			}
1945		} else {
1946			reinit_completion(&ctx->async_wait.completion);
1947		}
1948
1949		/* There can be no concurrent accesses, since we have no
1950		 * pending decrypt operations
1951		 */
1952		WRITE_ONCE(ctx->async_notify, false);
1953
1954		/* Drain records from the rx_list & copy if required */
1955		if (is_peek || is_kvec)
1956			err = process_rx_list(ctx, msg, &control, &cmsg, copied,
1957					      decrypted, false, is_peek);
1958		else
1959			err = process_rx_list(ctx, msg, &control, &cmsg, 0,
1960					      decrypted, true, is_peek);
1961		if (err < 0) {
1962			tls_err_abort(sk, err);
1963			copied = 0;
1964			goto end;
1965		}
1966	}
1967
1968	copied += decrypted;
1969
1970end:
1971	release_sock(sk);
1972	if (psock)
1973		sk_psock_put(sk, psock);
1974	return copied ? : err;
1975}
1976
1977ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
1978			   struct pipe_inode_info *pipe,
1979			   size_t len, unsigned int flags)
1980{
1981	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
1982	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1983	struct strp_msg *rxm = NULL;
1984	struct sock *sk = sock->sk;
1985	struct sk_buff *skb;
1986	ssize_t copied = 0;
1987	int err = 0;
1988	long timeo;
1989	int chunk;
1990	bool zc = false;
1991
1992	lock_sock(sk);
1993
1994	timeo = sock_rcvtimeo(sk, flags & SPLICE_F_NONBLOCK);
1995
1996	skb = tls_wait_data(sk, NULL, flags & SPLICE_F_NONBLOCK, timeo, &err);
1997	if (!skb)
1998		goto splice_read_end;
1999
2000	if (!ctx->decrypted) {
2001		err = decrypt_skb_update(sk, skb, NULL, &chunk, &zc, false);
2002
2003		/* splice does not support reading control messages */
2004		if (ctx->control != TLS_RECORD_TYPE_DATA) {
2005			err = -EINVAL;
2006			goto splice_read_end;
2007		}
2008
2009		if (err < 0) {
2010			tls_err_abort(sk, EBADMSG);
2011			goto splice_read_end;
2012		}
2013		ctx->decrypted = 1;
2014	}
2015	rxm = strp_msg(skb);
2016
2017	chunk = min_t(unsigned int, rxm->full_len, len);
2018	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2019	if (copied < 0)
2020		goto splice_read_end;
2021
2022	tls_sw_advance_skb(sk, skb, copied);
2023
2024splice_read_end:
2025	release_sock(sk);
2026	return copied ? : err;
2027}
2028
2029bool tls_sw_stream_read(const struct sock *sk)
2030{
2031	struct tls_context *tls_ctx = tls_get_ctx(sk);
2032	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2033	bool ingress_empty = true;
2034	struct sk_psock *psock;
2035
2036	rcu_read_lock();
2037	psock = sk_psock(sk);
2038	if (psock)
2039		ingress_empty = list_empty(&psock->ingress_msg);
2040	rcu_read_unlock();
2041
2042	return !ingress_empty || ctx->recv_pkt ||
2043		!skb_queue_empty(&ctx->rx_list);
2044}
2045
2046static int tls_read_size(struct strparser *strp, struct sk_buff *skb)
2047{
2048	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2049	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2050	struct tls_prot_info *prot = &tls_ctx->prot_info;
2051	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2052	struct strp_msg *rxm = strp_msg(skb);
2053	size_t cipher_overhead;
2054	size_t data_len = 0;
2055	int ret;
2056
2057	/* Verify that we have a full TLS header, or wait for more data */
2058	if (rxm->offset + prot->prepend_size > skb->len)
2059		return 0;
2060
2061	/* Sanity-check size of on-stack buffer. */
2062	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2063		ret = -EINVAL;
2064		goto read_failure;
2065	}
2066
2067	/* Linearize header to local buffer */
2068	ret = skb_copy_bits(skb, rxm->offset, header, prot->prepend_size);
2069
2070	if (ret < 0)
2071		goto read_failure;
2072
2073	ctx->control = header[0];
2074
2075	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2076
2077	cipher_overhead = prot->tag_size;
2078	if (prot->version != TLS_1_3_VERSION &&
2079	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2080		cipher_overhead += prot->iv_size;
2081
2082	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2083	    prot->tail_size) {
2084		ret = -EMSGSIZE;
2085		goto read_failure;
2086	}
2087	if (data_len < cipher_overhead) {
2088		ret = -EBADMSG;
2089		goto read_failure;
2090	}
2091
2092	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2093	if (header[1] != TLS_1_2_VERSION_MINOR ||
2094	    header[2] != TLS_1_2_VERSION_MAJOR) {
2095		ret = -EINVAL;
2096		goto read_failure;
2097	}
2098
2099	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2100				     TCP_SKB_CB(skb)->seq + rxm->offset);
2101	return data_len + TLS_HEADER_SIZE;
2102
2103read_failure:
2104	tls_err_abort(strp->sk, ret);
2105
2106	return ret;
2107}
2108
2109static void tls_queue(struct strparser *strp, struct sk_buff *skb)
2110{
2111	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2112	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2113
2114	ctx->decrypted = 0;
2115
2116	ctx->recv_pkt = skb;
2117	strp_pause(strp);
2118
2119	ctx->saved_data_ready(strp->sk);
2120}
2121
2122static void tls_data_ready(struct sock *sk)
2123{
2124	struct tls_context *tls_ctx = tls_get_ctx(sk);
2125	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2126	struct sk_psock *psock;
2127
2128	strp_data_ready(&ctx->strp);
2129
2130	psock = sk_psock_get(sk);
2131	if (psock) {
2132		if (!list_empty(&psock->ingress_msg))
2133			ctx->saved_data_ready(sk);
2134		sk_psock_put(sk, psock);
2135	}
2136}
2137
2138void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2139{
2140	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2141
2142	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2143	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2144	cancel_delayed_work_sync(&ctx->tx_work.work);
2145}
2146
2147void tls_sw_release_resources_tx(struct sock *sk)
2148{
2149	struct tls_context *tls_ctx = tls_get_ctx(sk);
2150	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2151	struct tls_rec *rec, *tmp;
2152	int pending;
2153
2154	/* Wait for any pending async encryptions to complete */
2155	spin_lock_bh(&ctx->encrypt_compl_lock);
2156	ctx->async_notify = true;
2157	pending = atomic_read(&ctx->encrypt_pending);
2158	spin_unlock_bh(&ctx->encrypt_compl_lock);
2159
2160	if (pending)
2161		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2162
2163	tls_tx_records(sk, -1);
2164
2165	/* Free up un-sent records in tx_list. First, free
2166	 * the partially sent record if any at head of tx_list.
2167	 */
2168	if (tls_ctx->partially_sent_record) {
2169		tls_free_partial_record(sk, tls_ctx);
2170		rec = list_first_entry(&ctx->tx_list,
2171				       struct tls_rec, list);
2172		list_del(&rec->list);
2173		sk_msg_free(sk, &rec->msg_plaintext);
2174		kfree(rec);
2175	}
2176
2177	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2178		list_del(&rec->list);
2179		sk_msg_free(sk, &rec->msg_encrypted);
2180		sk_msg_free(sk, &rec->msg_plaintext);
2181		kfree(rec);
2182	}
2183
2184	crypto_free_aead(ctx->aead_send);
2185	tls_free_open_rec(sk);
2186}
2187
2188void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2189{
2190	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2191
2192	kfree(ctx);
2193}
2194
2195void tls_sw_release_resources_rx(struct sock *sk)
2196{
2197	struct tls_context *tls_ctx = tls_get_ctx(sk);
2198	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2199
2200	kfree(tls_ctx->rx.rec_seq);
2201	kfree(tls_ctx->rx.iv);
2202
2203	if (ctx->aead_recv) {
2204		kfree_skb(ctx->recv_pkt);
2205		ctx->recv_pkt = NULL;
2206		skb_queue_purge(&ctx->rx_list);
2207		crypto_free_aead(ctx->aead_recv);
2208		strp_stop(&ctx->strp);
2209		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2210		 * we still want to strp_stop(), but sk->sk_data_ready was
2211		 * never swapped.
2212		 */
2213		if (ctx->saved_data_ready) {
2214			write_lock_bh(&sk->sk_callback_lock);
2215			sk->sk_data_ready = ctx->saved_data_ready;
2216			write_unlock_bh(&sk->sk_callback_lock);
2217		}
2218	}
2219}
2220
2221void tls_sw_strparser_done(struct tls_context *tls_ctx)
2222{
2223	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2224
2225	strp_done(&ctx->strp);
2226}
2227
2228void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2229{
2230	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2231
2232	kfree(ctx);
2233}
2234
2235void tls_sw_free_resources_rx(struct sock *sk)
2236{
2237	struct tls_context *tls_ctx = tls_get_ctx(sk);
2238
2239	tls_sw_release_resources_rx(sk);
2240	tls_sw_free_ctx_rx(tls_ctx);
2241}
2242
2243/* The work handler to transmitt the encrypted records in tx_list */
2244static void tx_work_handler(struct work_struct *work)
2245{
2246	struct delayed_work *delayed_work = to_delayed_work(work);
2247	struct tx_work *tx_work = container_of(delayed_work,
2248					       struct tx_work, work);
2249	struct sock *sk = tx_work->sk;
2250	struct tls_context *tls_ctx = tls_get_ctx(sk);
2251	struct tls_sw_context_tx *ctx;
2252
2253	if (unlikely(!tls_ctx))
2254		return;
2255
2256	ctx = tls_sw_ctx_tx(tls_ctx);
2257	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2258		return;
2259
2260	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2261		return;
2262	mutex_lock(&tls_ctx->tx_lock);
2263	lock_sock(sk);
2264	tls_tx_records(sk, -1);
2265	release_sock(sk);
2266	mutex_unlock(&tls_ctx->tx_lock);
2267}
2268
2269void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2270{
2271	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2272
2273	/* Schedule the transmission if tx list is ready */
2274	if (is_tx_ready(tx_ctx) &&
2275	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2276		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2277}
2278
2279void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2280{
2281	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2282
2283	write_lock_bh(&sk->sk_callback_lock);
2284	rx_ctx->saved_data_ready = sk->sk_data_ready;
2285	sk->sk_data_ready = tls_data_ready;
2286	write_unlock_bh(&sk->sk_callback_lock);
2287
2288	strp_check_rcv(&rx_ctx->strp);
2289}
2290
2291int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2292{
2293	struct tls_context *tls_ctx = tls_get_ctx(sk);
2294	struct tls_prot_info *prot = &tls_ctx->prot_info;
2295	struct tls_crypto_info *crypto_info;
2296	struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2297	struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2298	struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2299	struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2300	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2301	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2302	struct cipher_context *cctx;
2303	struct crypto_aead **aead;
2304	struct strp_callbacks cb;
2305	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2306	struct crypto_tfm *tfm;
2307	char *iv, *rec_seq, *key, *salt, *cipher_name;
2308	size_t keysize;
2309	int rc = 0;
2310
2311	if (!ctx) {
2312		rc = -EINVAL;
2313		goto out;
2314	}
2315
2316	if (tx) {
2317		if (!ctx->priv_ctx_tx) {
2318			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2319			if (!sw_ctx_tx) {
2320				rc = -ENOMEM;
2321				goto out;
2322			}
2323			ctx->priv_ctx_tx = sw_ctx_tx;
2324		} else {
2325			sw_ctx_tx =
2326				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2327		}
2328	} else {
2329		if (!ctx->priv_ctx_rx) {
2330			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2331			if (!sw_ctx_rx) {
2332				rc = -ENOMEM;
2333				goto out;
2334			}
2335			ctx->priv_ctx_rx = sw_ctx_rx;
2336		} else {
2337			sw_ctx_rx =
2338				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2339		}
2340	}
2341
2342	if (tx) {
2343		crypto_init_wait(&sw_ctx_tx->async_wait);
2344		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2345		crypto_info = &ctx->crypto_send.info;
2346		cctx = &ctx->tx;
2347		aead = &sw_ctx_tx->aead_send;
2348		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2349		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2350		sw_ctx_tx->tx_work.sk = sk;
2351	} else {
2352		crypto_init_wait(&sw_ctx_rx->async_wait);
2353		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2354		crypto_info = &ctx->crypto_recv.info;
2355		cctx = &ctx->rx;
2356		skb_queue_head_init(&sw_ctx_rx->rx_list);
2357		aead = &sw_ctx_rx->aead_recv;
2358	}
2359
2360	switch (crypto_info->cipher_type) {
2361	case TLS_CIPHER_AES_GCM_128: {
2362		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2363		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2364		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2365		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
2366		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2367		rec_seq =
2368		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
2369		gcm_128_info =
2370			(struct tls12_crypto_info_aes_gcm_128 *)crypto_info;
2371		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2372		key = gcm_128_info->key;
2373		salt = gcm_128_info->salt;
2374		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2375		cipher_name = "gcm(aes)";
2376		break;
2377	}
2378	case TLS_CIPHER_AES_GCM_256: {
2379		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2380		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2381		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2382		iv = ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->iv;
2383		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2384		rec_seq =
2385		 ((struct tls12_crypto_info_aes_gcm_256 *)crypto_info)->rec_seq;
2386		gcm_256_info =
2387			(struct tls12_crypto_info_aes_gcm_256 *)crypto_info;
2388		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2389		key = gcm_256_info->key;
2390		salt = gcm_256_info->salt;
2391		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2392		cipher_name = "gcm(aes)";
2393		break;
2394	}
2395	case TLS_CIPHER_AES_CCM_128: {
2396		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2397		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2398		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2399		iv = ((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->iv;
2400		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2401		rec_seq =
2402		((struct tls12_crypto_info_aes_ccm_128 *)crypto_info)->rec_seq;
2403		ccm_128_info =
2404		(struct tls12_crypto_info_aes_ccm_128 *)crypto_info;
2405		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2406		key = ccm_128_info->key;
2407		salt = ccm_128_info->salt;
2408		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2409		cipher_name = "ccm(aes)";
2410		break;
2411	}
2412	case TLS_CIPHER_CHACHA20_POLY1305: {
2413		chacha20_poly1305_info = (void *)crypto_info;
2414		nonce_size = 0;
2415		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2416		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2417		iv = chacha20_poly1305_info->iv;
2418		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2419		rec_seq = chacha20_poly1305_info->rec_seq;
2420		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2421		key = chacha20_poly1305_info->key;
2422		salt = chacha20_poly1305_info->salt;
2423		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2424		cipher_name = "rfc7539(chacha20,poly1305)";
2425		break;
2426	}
2427	default:
2428		rc = -EINVAL;
2429		goto free_priv;
2430	}
2431
2432	/* Sanity-check the sizes for stack allocations. */
2433	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2434	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
2435		rc = -EINVAL;
2436		goto free_priv;
2437	}
2438
2439	if (crypto_info->version == TLS_1_3_VERSION) {
2440		nonce_size = 0;
2441		prot->aad_size = TLS_HEADER_SIZE;
2442		prot->tail_size = 1;
2443	} else {
2444		prot->aad_size = TLS_AAD_SPACE_SIZE;
2445		prot->tail_size = 0;
2446	}
2447
2448	prot->version = crypto_info->version;
2449	prot->cipher_type = crypto_info->cipher_type;
2450	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2451	prot->tag_size = tag_size;
2452	prot->overhead_size = prot->prepend_size +
2453			      prot->tag_size + prot->tail_size;
2454	prot->iv_size = iv_size;
2455	prot->salt_size = salt_size;
2456	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2457	if (!cctx->iv) {
2458		rc = -ENOMEM;
2459		goto free_priv;
2460	}
2461	/* Note: 128 & 256 bit salt are the same size */
2462	prot->rec_seq_size = rec_seq_size;
2463	memcpy(cctx->iv, salt, salt_size);
2464	memcpy(cctx->iv + salt_size, iv, iv_size);
2465	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2466	if (!cctx->rec_seq) {
2467		rc = -ENOMEM;
2468		goto free_iv;
2469	}
2470
2471	if (!*aead) {
2472		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2473		if (IS_ERR(*aead)) {
2474			rc = PTR_ERR(*aead);
2475			*aead = NULL;
2476			goto free_rec_seq;
2477		}
2478	}
2479
2480	ctx->push_pending_record = tls_sw_push_pending_record;
2481
2482	rc = crypto_aead_setkey(*aead, key, keysize);
2483
2484	if (rc)
2485		goto free_aead;
2486
2487	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2488	if (rc)
2489		goto free_aead;
2490
2491	if (sw_ctx_rx) {
2492		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2493
2494		if (crypto_info->version == TLS_1_3_VERSION)
2495			sw_ctx_rx->async_capable = 0;
2496		else
2497			sw_ctx_rx->async_capable =
2498				!!(tfm->__crt_alg->cra_flags &
2499				   CRYPTO_ALG_ASYNC);
2500
2501		/* Set up strparser */
2502		memset(&cb, 0, sizeof(cb));
2503		cb.rcv_msg = tls_queue;
2504		cb.parse_msg = tls_read_size;
2505
2506		strp_init(&sw_ctx_rx->strp, sk, &cb);
2507	}
2508
2509	goto out;
2510
2511free_aead:
2512	crypto_free_aead(*aead);
2513	*aead = NULL;
2514free_rec_seq:
2515	kfree(cctx->rec_seq);
2516	cctx->rec_seq = NULL;
2517free_iv:
2518	kfree(cctx->iv);
2519	cctx->iv = NULL;
2520free_priv:
2521	if (tx) {
2522		kfree(ctx->priv_ctx_tx);
2523		ctx->priv_ctx_tx = NULL;
2524	} else {
2525		kfree(ctx->priv_ctx_rx);
2526		ctx->priv_ctx_rx = NULL;
2527	}
2528out:
2529	return rc;
2530}