Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
   5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
   6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
   7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
   8 *
   9 * This software is available to you under a choice of one of two
  10 * licenses.  You may choose to be licensed under the terms of the GNU
  11 * General Public License (GPL) Version 2, available from the file
  12 * COPYING in the main directory of this source tree, or the
  13 * OpenIB.org BSD license below:
  14 *
  15 *     Redistribution and use in source and binary forms, with or
  16 *     without modification, are permitted provided that the following
  17 *     conditions are met:
  18 *
  19 *      - Redistributions of source code must retain the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer.
  22 *
  23 *      - Redistributions in binary form must reproduce the above
  24 *        copyright notice, this list of conditions and the following
  25 *        disclaimer in the documentation and/or other materials
  26 *        provided with the distribution.
  27 *
  28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  35 * SOFTWARE.
  36 */
  37
  38#include <linux/bug.h>
  39#include <linux/sched/signal.h>
  40#include <linux/module.h>
  41#include <linux/splice.h>
  42#include <crypto/aead.h>
  43
  44#include <net/strparser.h>
  45#include <net/tls.h>
  46
  47#include "tls.h"
  48
  49struct tls_decrypt_arg {
  50	struct_group(inargs,
  51	bool zc;
  52	bool async;
  53	u8 tail;
  54	);
  55
  56	struct sk_buff *skb;
  57};
  58
  59struct tls_decrypt_ctx {
  60	u8 iv[MAX_IV_SIZE];
  61	u8 aad[TLS_MAX_AAD_SIZE];
  62	u8 tail;
  63	struct scatterlist sg[];
  64};
  65
  66noinline void tls_err_abort(struct sock *sk, int err)
  67{
  68	WARN_ON_ONCE(err >= 0);
  69	/* sk->sk_err should contain a positive error code. */
  70	sk->sk_err = -err;
  71	sk_error_report(sk);
  72}
  73
  74static int __skb_nsg(struct sk_buff *skb, int offset, int len,
  75                     unsigned int recursion_level)
  76{
  77        int start = skb_headlen(skb);
  78        int i, chunk = start - offset;
  79        struct sk_buff *frag_iter;
  80        int elt = 0;
  81
  82        if (unlikely(recursion_level >= 24))
  83                return -EMSGSIZE;
  84
  85        if (chunk > 0) {
  86                if (chunk > len)
  87                        chunk = len;
  88                elt++;
  89                len -= chunk;
  90                if (len == 0)
  91                        return elt;
  92                offset += chunk;
  93        }
  94
  95        for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  96                int end;
  97
  98                WARN_ON(start > offset + len);
  99
 100                end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
 101                chunk = end - offset;
 102                if (chunk > 0) {
 103                        if (chunk > len)
 104                                chunk = len;
 105                        elt++;
 106                        len -= chunk;
 107                        if (len == 0)
 108                                return elt;
 109                        offset += chunk;
 110                }
 111                start = end;
 112        }
 113
 114        if (unlikely(skb_has_frag_list(skb))) {
 115                skb_walk_frags(skb, frag_iter) {
 116                        int end, ret;
 117
 118                        WARN_ON(start > offset + len);
 119
 120                        end = start + frag_iter->len;
 121                        chunk = end - offset;
 122                        if (chunk > 0) {
 123                                if (chunk > len)
 124                                        chunk = len;
 125                                ret = __skb_nsg(frag_iter, offset - start, chunk,
 126                                                recursion_level + 1);
 127                                if (unlikely(ret < 0))
 128                                        return ret;
 129                                elt += ret;
 130                                len -= chunk;
 131                                if (len == 0)
 132                                        return elt;
 133                                offset += chunk;
 134                        }
 135                        start = end;
 136                }
 137        }
 138        BUG_ON(len);
 139        return elt;
 140}
 141
 142/* Return the number of scatterlist elements required to completely map the
 143 * skb, or -EMSGSIZE if the recursion depth is exceeded.
 144 */
 145static int skb_nsg(struct sk_buff *skb, int offset, int len)
 146{
 147        return __skb_nsg(skb, offset, len, 0);
 148}
 149
 150static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
 151			      struct tls_decrypt_arg *darg)
 152{
 153	struct strp_msg *rxm = strp_msg(skb);
 154	struct tls_msg *tlm = tls_msg(skb);
 155	int sub = 0;
 156
 157	/* Determine zero-padding length */
 158	if (prot->version == TLS_1_3_VERSION) {
 159		int offset = rxm->full_len - TLS_TAG_SIZE - 1;
 160		char content_type = darg->zc ? darg->tail : 0;
 161		int err;
 162
 163		while (content_type == 0) {
 164			if (offset < prot->prepend_size)
 165				return -EBADMSG;
 166			err = skb_copy_bits(skb, rxm->offset + offset,
 167					    &content_type, 1);
 168			if (err)
 169				return err;
 170			if (content_type)
 171				break;
 172			sub++;
 173			offset--;
 174		}
 175		tlm->control = content_type;
 176	}
 177	return sub;
 178}
 179
 180static void tls_decrypt_done(struct crypto_async_request *req, int err)
 181{
 182	struct aead_request *aead_req = (struct aead_request *)req;
 183	struct scatterlist *sgout = aead_req->dst;
 184	struct scatterlist *sgin = aead_req->src;
 185	struct tls_sw_context_rx *ctx;
 186	struct tls_context *tls_ctx;
 187	struct scatterlist *sg;
 188	unsigned int pages;
 189	struct sock *sk;
 190
 191	sk = (struct sock *)req->data;
 192	tls_ctx = tls_get_ctx(sk);
 193	ctx = tls_sw_ctx_rx(tls_ctx);
 194
 195	/* Propagate if there was an err */
 196	if (err) {
 197		if (err == -EBADMSG)
 198			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
 199		ctx->async_wait.err = err;
 200		tls_err_abort(sk, err);
 201	}
 202
 203	/* Free the destination pages if skb was not decrypted inplace */
 204	if (sgout != sgin) {
 205		/* Skip the first S/G entry as it points to AAD */
 206		for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
 207			if (!sg)
 208				break;
 209			put_page(sg_page(sg));
 210		}
 211	}
 212
 213	kfree(aead_req);
 214
 215	spin_lock_bh(&ctx->decrypt_compl_lock);
 216	if (!atomic_dec_return(&ctx->decrypt_pending))
 217		complete(&ctx->async_wait.completion);
 218	spin_unlock_bh(&ctx->decrypt_compl_lock);
 219}
 220
 221static int tls_do_decryption(struct sock *sk,
 222			     struct scatterlist *sgin,
 223			     struct scatterlist *sgout,
 224			     char *iv_recv,
 225			     size_t data_len,
 226			     struct aead_request *aead_req,
 227			     struct tls_decrypt_arg *darg)
 228{
 229	struct tls_context *tls_ctx = tls_get_ctx(sk);
 230	struct tls_prot_info *prot = &tls_ctx->prot_info;
 231	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
 232	int ret;
 233
 234	aead_request_set_tfm(aead_req, ctx->aead_recv);
 235	aead_request_set_ad(aead_req, prot->aad_size);
 236	aead_request_set_crypt(aead_req, sgin, sgout,
 237			       data_len + prot->tag_size,
 238			       (u8 *)iv_recv);
 239
 240	if (darg->async) {
 241		aead_request_set_callback(aead_req,
 242					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 243					  tls_decrypt_done, sk);
 244		atomic_inc(&ctx->decrypt_pending);
 245	} else {
 246		aead_request_set_callback(aead_req,
 247					  CRYPTO_TFM_REQ_MAY_BACKLOG,
 248					  crypto_req_done, &ctx->async_wait);
 249	}
 250
 251	ret = crypto_aead_decrypt(aead_req);
 252	if (ret == -EINPROGRESS) {
 253		if (darg->async)
 254			return 0;
 255
 256		ret = crypto_wait_req(ret, &ctx->async_wait);
 257	}
 258	darg->async = false;
 259
 260	return ret;
 261}
 262
 263static void tls_trim_both_msgs(struct sock *sk, int target_size)
 264{
 265	struct tls_context *tls_ctx = tls_get_ctx(sk);
 266	struct tls_prot_info *prot = &tls_ctx->prot_info;
 267	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 268	struct tls_rec *rec = ctx->open_rec;
 269
 270	sk_msg_trim(sk, &rec->msg_plaintext, target_size);
 271	if (target_size > 0)
 272		target_size += prot->overhead_size;
 273	sk_msg_trim(sk, &rec->msg_encrypted, target_size);
 274}
 275
 276static int tls_alloc_encrypted_msg(struct sock *sk, int len)
 277{
 278	struct tls_context *tls_ctx = tls_get_ctx(sk);
 279	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 280	struct tls_rec *rec = ctx->open_rec;
 281	struct sk_msg *msg_en = &rec->msg_encrypted;
 282
 283	return sk_msg_alloc(sk, msg_en, len, 0);
 284}
 285
 286static int tls_clone_plaintext_msg(struct sock *sk, int required)
 287{
 288	struct tls_context *tls_ctx = tls_get_ctx(sk);
 289	struct tls_prot_info *prot = &tls_ctx->prot_info;
 290	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 291	struct tls_rec *rec = ctx->open_rec;
 292	struct sk_msg *msg_pl = &rec->msg_plaintext;
 293	struct sk_msg *msg_en = &rec->msg_encrypted;
 294	int skip, len;
 295
 296	/* We add page references worth len bytes from encrypted sg
 297	 * at the end of plaintext sg. It is guaranteed that msg_en
 298	 * has enough required room (ensured by caller).
 299	 */
 300	len = required - msg_pl->sg.size;
 301
 302	/* Skip initial bytes in msg_en's data to be able to use
 303	 * same offset of both plain and encrypted data.
 304	 */
 305	skip = prot->prepend_size + msg_pl->sg.size;
 306
 307	return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
 308}
 309
 310static struct tls_rec *tls_get_rec(struct sock *sk)
 311{
 312	struct tls_context *tls_ctx = tls_get_ctx(sk);
 313	struct tls_prot_info *prot = &tls_ctx->prot_info;
 314	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 315	struct sk_msg *msg_pl, *msg_en;
 316	struct tls_rec *rec;
 317	int mem_size;
 318
 319	mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
 320
 321	rec = kzalloc(mem_size, sk->sk_allocation);
 322	if (!rec)
 323		return NULL;
 324
 325	msg_pl = &rec->msg_plaintext;
 326	msg_en = &rec->msg_encrypted;
 327
 328	sk_msg_init(msg_pl);
 329	sk_msg_init(msg_en);
 330
 331	sg_init_table(rec->sg_aead_in, 2);
 332	sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
 333	sg_unmark_end(&rec->sg_aead_in[1]);
 334
 335	sg_init_table(rec->sg_aead_out, 2);
 336	sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
 337	sg_unmark_end(&rec->sg_aead_out[1]);
 338
 339	return rec;
 340}
 341
 342static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
 343{
 344	sk_msg_free(sk, &rec->msg_encrypted);
 345	sk_msg_free(sk, &rec->msg_plaintext);
 346	kfree(rec);
 347}
 348
 349static void tls_free_open_rec(struct sock *sk)
 350{
 351	struct tls_context *tls_ctx = tls_get_ctx(sk);
 352	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 353	struct tls_rec *rec = ctx->open_rec;
 354
 355	if (rec) {
 356		tls_free_rec(sk, rec);
 357		ctx->open_rec = NULL;
 358	}
 359}
 360
 361int tls_tx_records(struct sock *sk, int flags)
 362{
 363	struct tls_context *tls_ctx = tls_get_ctx(sk);
 364	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 365	struct tls_rec *rec, *tmp;
 366	struct sk_msg *msg_en;
 367	int tx_flags, rc = 0;
 368
 369	if (tls_is_partially_sent_record(tls_ctx)) {
 370		rec = list_first_entry(&ctx->tx_list,
 371				       struct tls_rec, list);
 372
 373		if (flags == -1)
 374			tx_flags = rec->tx_flags;
 375		else
 376			tx_flags = flags;
 377
 378		rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
 379		if (rc)
 380			goto tx_err;
 381
 382		/* Full record has been transmitted.
 383		 * Remove the head of tx_list
 384		 */
 385		list_del(&rec->list);
 386		sk_msg_free(sk, &rec->msg_plaintext);
 387		kfree(rec);
 388	}
 389
 390	/* Tx all ready records */
 391	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
 392		if (READ_ONCE(rec->tx_ready)) {
 393			if (flags == -1)
 394				tx_flags = rec->tx_flags;
 395			else
 396				tx_flags = flags;
 397
 398			msg_en = &rec->msg_encrypted;
 399			rc = tls_push_sg(sk, tls_ctx,
 400					 &msg_en->sg.data[msg_en->sg.curr],
 401					 0, tx_flags);
 402			if (rc)
 403				goto tx_err;
 404
 405			list_del(&rec->list);
 406			sk_msg_free(sk, &rec->msg_plaintext);
 407			kfree(rec);
 408		} else {
 409			break;
 410		}
 411	}
 412
 413tx_err:
 414	if (rc < 0 && rc != -EAGAIN)
 415		tls_err_abort(sk, -EBADMSG);
 416
 417	return rc;
 418}
 419
 420static void tls_encrypt_done(struct crypto_async_request *req, int err)
 421{
 422	struct aead_request *aead_req = (struct aead_request *)req;
 423	struct sock *sk = req->data;
 424	struct tls_context *tls_ctx = tls_get_ctx(sk);
 425	struct tls_prot_info *prot = &tls_ctx->prot_info;
 426	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 427	struct scatterlist *sge;
 428	struct sk_msg *msg_en;
 429	struct tls_rec *rec;
 430	bool ready = false;
 431	int pending;
 432
 433	rec = container_of(aead_req, struct tls_rec, aead_req);
 434	msg_en = &rec->msg_encrypted;
 435
 436	sge = sk_msg_elem(msg_en, msg_en->sg.curr);
 437	sge->offset -= prot->prepend_size;
 438	sge->length += prot->prepend_size;
 439
 440	/* Check if error is previously set on socket */
 441	if (err || sk->sk_err) {
 442		rec = NULL;
 443
 444		/* If err is already set on socket, return the same code */
 445		if (sk->sk_err) {
 446			ctx->async_wait.err = -sk->sk_err;
 447		} else {
 448			ctx->async_wait.err = err;
 449			tls_err_abort(sk, err);
 450		}
 451	}
 452
 453	if (rec) {
 454		struct tls_rec *first_rec;
 455
 456		/* Mark the record as ready for transmission */
 457		smp_store_mb(rec->tx_ready, true);
 458
 459		/* If received record is at head of tx_list, schedule tx */
 460		first_rec = list_first_entry(&ctx->tx_list,
 461					     struct tls_rec, list);
 462		if (rec == first_rec)
 463			ready = true;
 464	}
 465
 466	spin_lock_bh(&ctx->encrypt_compl_lock);
 467	pending = atomic_dec_return(&ctx->encrypt_pending);
 468
 469	if (!pending && ctx->async_notify)
 470		complete(&ctx->async_wait.completion);
 471	spin_unlock_bh(&ctx->encrypt_compl_lock);
 472
 473	if (!ready)
 474		return;
 475
 476	/* Schedule the transmission */
 477	if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
 478		schedule_delayed_work(&ctx->tx_work.work, 1);
 479}
 480
 481static int tls_do_encryption(struct sock *sk,
 482			     struct tls_context *tls_ctx,
 483			     struct tls_sw_context_tx *ctx,
 484			     struct aead_request *aead_req,
 485			     size_t data_len, u32 start)
 486{
 487	struct tls_prot_info *prot = &tls_ctx->prot_info;
 488	struct tls_rec *rec = ctx->open_rec;
 489	struct sk_msg *msg_en = &rec->msg_encrypted;
 490	struct scatterlist *sge = sk_msg_elem(msg_en, start);
 491	int rc, iv_offset = 0;
 492
 493	/* For CCM based ciphers, first byte of IV is a constant */
 494	switch (prot->cipher_type) {
 495	case TLS_CIPHER_AES_CCM_128:
 496		rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
 497		iv_offset = 1;
 498		break;
 499	case TLS_CIPHER_SM4_CCM:
 500		rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
 501		iv_offset = 1;
 502		break;
 503	}
 504
 505	memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
 506	       prot->iv_size + prot->salt_size);
 507
 508	tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
 509			    tls_ctx->tx.rec_seq);
 510
 511	sge->offset += prot->prepend_size;
 512	sge->length -= prot->prepend_size;
 513
 514	msg_en->sg.curr = start;
 515
 516	aead_request_set_tfm(aead_req, ctx->aead_send);
 517	aead_request_set_ad(aead_req, prot->aad_size);
 518	aead_request_set_crypt(aead_req, rec->sg_aead_in,
 519			       rec->sg_aead_out,
 520			       data_len, rec->iv_data);
 521
 522	aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 523				  tls_encrypt_done, sk);
 524
 525	/* Add the record in tx_list */
 526	list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
 527	atomic_inc(&ctx->encrypt_pending);
 528
 529	rc = crypto_aead_encrypt(aead_req);
 530	if (!rc || rc != -EINPROGRESS) {
 531		atomic_dec(&ctx->encrypt_pending);
 532		sge->offset -= prot->prepend_size;
 533		sge->length += prot->prepend_size;
 534	}
 535
 536	if (!rc) {
 537		WRITE_ONCE(rec->tx_ready, true);
 538	} else if (rc != -EINPROGRESS) {
 539		list_del(&rec->list);
 540		return rc;
 541	}
 542
 543	/* Unhook the record from context if encryption is not failure */
 544	ctx->open_rec = NULL;
 545	tls_advance_record_sn(sk, prot, &tls_ctx->tx);
 546	return rc;
 547}
 548
 549static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
 550				 struct tls_rec **to, struct sk_msg *msg_opl,
 551				 struct sk_msg *msg_oen, u32 split_point,
 552				 u32 tx_overhead_size, u32 *orig_end)
 553{
 554	u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
 555	struct scatterlist *sge, *osge, *nsge;
 556	u32 orig_size = msg_opl->sg.size;
 557	struct scatterlist tmp = { };
 558	struct sk_msg *msg_npl;
 559	struct tls_rec *new;
 560	int ret;
 561
 562	new = tls_get_rec(sk);
 563	if (!new)
 564		return -ENOMEM;
 565	ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
 566			   tx_overhead_size, 0);
 567	if (ret < 0) {
 568		tls_free_rec(sk, new);
 569		return ret;
 570	}
 571
 572	*orig_end = msg_opl->sg.end;
 573	i = msg_opl->sg.start;
 574	sge = sk_msg_elem(msg_opl, i);
 575	while (apply && sge->length) {
 576		if (sge->length > apply) {
 577			u32 len = sge->length - apply;
 578
 579			get_page(sg_page(sge));
 580			sg_set_page(&tmp, sg_page(sge), len,
 581				    sge->offset + apply);
 582			sge->length = apply;
 583			bytes += apply;
 584			apply = 0;
 585		} else {
 586			apply -= sge->length;
 587			bytes += sge->length;
 588		}
 589
 590		sk_msg_iter_var_next(i);
 591		if (i == msg_opl->sg.end)
 592			break;
 593		sge = sk_msg_elem(msg_opl, i);
 594	}
 595
 596	msg_opl->sg.end = i;
 597	msg_opl->sg.curr = i;
 598	msg_opl->sg.copybreak = 0;
 599	msg_opl->apply_bytes = 0;
 600	msg_opl->sg.size = bytes;
 601
 602	msg_npl = &new->msg_plaintext;
 603	msg_npl->apply_bytes = apply;
 604	msg_npl->sg.size = orig_size - bytes;
 605
 606	j = msg_npl->sg.start;
 607	nsge = sk_msg_elem(msg_npl, j);
 608	if (tmp.length) {
 609		memcpy(nsge, &tmp, sizeof(*nsge));
 610		sk_msg_iter_var_next(j);
 611		nsge = sk_msg_elem(msg_npl, j);
 612	}
 613
 614	osge = sk_msg_elem(msg_opl, i);
 615	while (osge->length) {
 616		memcpy(nsge, osge, sizeof(*nsge));
 617		sg_unmark_end(nsge);
 618		sk_msg_iter_var_next(i);
 619		sk_msg_iter_var_next(j);
 620		if (i == *orig_end)
 621			break;
 622		osge = sk_msg_elem(msg_opl, i);
 623		nsge = sk_msg_elem(msg_npl, j);
 624	}
 625
 626	msg_npl->sg.end = j;
 627	msg_npl->sg.curr = j;
 628	msg_npl->sg.copybreak = 0;
 629
 630	*to = new;
 631	return 0;
 632}
 633
 634static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
 635				  struct tls_rec *from, u32 orig_end)
 636{
 637	struct sk_msg *msg_npl = &from->msg_plaintext;
 638	struct sk_msg *msg_opl = &to->msg_plaintext;
 639	struct scatterlist *osge, *nsge;
 640	u32 i, j;
 641
 642	i = msg_opl->sg.end;
 643	sk_msg_iter_var_prev(i);
 644	j = msg_npl->sg.start;
 645
 646	osge = sk_msg_elem(msg_opl, i);
 647	nsge = sk_msg_elem(msg_npl, j);
 648
 649	if (sg_page(osge) == sg_page(nsge) &&
 650	    osge->offset + osge->length == nsge->offset) {
 651		osge->length += nsge->length;
 652		put_page(sg_page(nsge));
 653	}
 654
 655	msg_opl->sg.end = orig_end;
 656	msg_opl->sg.curr = orig_end;
 657	msg_opl->sg.copybreak = 0;
 658	msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
 659	msg_opl->sg.size += msg_npl->sg.size;
 660
 661	sk_msg_free(sk, &to->msg_encrypted);
 662	sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
 663
 664	kfree(from);
 665}
 666
 667static int tls_push_record(struct sock *sk, int flags,
 668			   unsigned char record_type)
 669{
 670	struct tls_context *tls_ctx = tls_get_ctx(sk);
 671	struct tls_prot_info *prot = &tls_ctx->prot_info;
 672	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 673	struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
 674	u32 i, split_point, orig_end;
 675	struct sk_msg *msg_pl, *msg_en;
 676	struct aead_request *req;
 677	bool split;
 678	int rc;
 679
 680	if (!rec)
 681		return 0;
 682
 683	msg_pl = &rec->msg_plaintext;
 684	msg_en = &rec->msg_encrypted;
 685
 686	split_point = msg_pl->apply_bytes;
 687	split = split_point && split_point < msg_pl->sg.size;
 688	if (unlikely((!split &&
 689		      msg_pl->sg.size +
 690		      prot->overhead_size > msg_en->sg.size) ||
 691		     (split &&
 692		      split_point +
 693		      prot->overhead_size > msg_en->sg.size))) {
 694		split = true;
 695		split_point = msg_en->sg.size;
 696	}
 697	if (split) {
 698		rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
 699					   split_point, prot->overhead_size,
 700					   &orig_end);
 701		if (rc < 0)
 702			return rc;
 703		/* This can happen if above tls_split_open_record allocates
 704		 * a single large encryption buffer instead of two smaller
 705		 * ones. In this case adjust pointers and continue without
 706		 * split.
 707		 */
 708		if (!msg_pl->sg.size) {
 709			tls_merge_open_record(sk, rec, tmp, orig_end);
 710			msg_pl = &rec->msg_plaintext;
 711			msg_en = &rec->msg_encrypted;
 712			split = false;
 713		}
 714		sk_msg_trim(sk, msg_en, msg_pl->sg.size +
 715			    prot->overhead_size);
 716	}
 717
 718	rec->tx_flags = flags;
 719	req = &rec->aead_req;
 720
 721	i = msg_pl->sg.end;
 722	sk_msg_iter_var_prev(i);
 723
 724	rec->content_type = record_type;
 725	if (prot->version == TLS_1_3_VERSION) {
 726		/* Add content type to end of message.  No padding added */
 727		sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
 728		sg_mark_end(&rec->sg_content_type);
 729		sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
 730			 &rec->sg_content_type);
 731	} else {
 732		sg_mark_end(sk_msg_elem(msg_pl, i));
 733	}
 734
 735	if (msg_pl->sg.end < msg_pl->sg.start) {
 736		sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
 737			 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
 738			 msg_pl->sg.data);
 739	}
 740
 741	i = msg_pl->sg.start;
 742	sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
 743
 744	i = msg_en->sg.end;
 745	sk_msg_iter_var_prev(i);
 746	sg_mark_end(sk_msg_elem(msg_en, i));
 747
 748	i = msg_en->sg.start;
 749	sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
 750
 751	tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
 752		     tls_ctx->tx.rec_seq, record_type, prot);
 753
 754	tls_fill_prepend(tls_ctx,
 755			 page_address(sg_page(&msg_en->sg.data[i])) +
 756			 msg_en->sg.data[i].offset,
 757			 msg_pl->sg.size + prot->tail_size,
 758			 record_type);
 759
 760	tls_ctx->pending_open_record_frags = false;
 761
 762	rc = tls_do_encryption(sk, tls_ctx, ctx, req,
 763			       msg_pl->sg.size + prot->tail_size, i);
 764	if (rc < 0) {
 765		if (rc != -EINPROGRESS) {
 766			tls_err_abort(sk, -EBADMSG);
 767			if (split) {
 768				tls_ctx->pending_open_record_frags = true;
 769				tls_merge_open_record(sk, rec, tmp, orig_end);
 770			}
 771		}
 772		ctx->async_capable = 1;
 773		return rc;
 774	} else if (split) {
 775		msg_pl = &tmp->msg_plaintext;
 776		msg_en = &tmp->msg_encrypted;
 777		sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
 778		tls_ctx->pending_open_record_frags = true;
 779		ctx->open_rec = tmp;
 780	}
 781
 782	return tls_tx_records(sk, flags);
 783}
 784
 785static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
 786			       bool full_record, u8 record_type,
 787			       ssize_t *copied, int flags)
 788{
 789	struct tls_context *tls_ctx = tls_get_ctx(sk);
 790	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 791	struct sk_msg msg_redir = { };
 792	struct sk_psock *psock;
 793	struct sock *sk_redir;
 794	struct tls_rec *rec;
 795	bool enospc, policy, redir_ingress;
 796	int err = 0, send;
 797	u32 delta = 0;
 798
 799	policy = !(flags & MSG_SENDPAGE_NOPOLICY);
 800	psock = sk_psock_get(sk);
 801	if (!psock || !policy) {
 802		err = tls_push_record(sk, flags, record_type);
 803		if (err && sk->sk_err == EBADMSG) {
 804			*copied -= sk_msg_free(sk, msg);
 805			tls_free_open_rec(sk);
 806			err = -sk->sk_err;
 807		}
 808		if (psock)
 809			sk_psock_put(sk, psock);
 810		return err;
 811	}
 812more_data:
 813	enospc = sk_msg_full(msg);
 814	if (psock->eval == __SK_NONE) {
 815		delta = msg->sg.size;
 816		psock->eval = sk_psock_msg_verdict(sk, psock, msg);
 817		delta -= msg->sg.size;
 818	}
 819	if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
 820	    !enospc && !full_record) {
 821		err = -ENOSPC;
 822		goto out_err;
 823	}
 824	msg->cork_bytes = 0;
 825	send = msg->sg.size;
 826	if (msg->apply_bytes && msg->apply_bytes < send)
 827		send = msg->apply_bytes;
 828
 829	switch (psock->eval) {
 830	case __SK_PASS:
 831		err = tls_push_record(sk, flags, record_type);
 832		if (err && sk->sk_err == EBADMSG) {
 833			*copied -= sk_msg_free(sk, msg);
 834			tls_free_open_rec(sk);
 835			err = -sk->sk_err;
 836			goto out_err;
 837		}
 838		break;
 839	case __SK_REDIRECT:
 840		redir_ingress = psock->redir_ingress;
 841		sk_redir = psock->sk_redir;
 842		memcpy(&msg_redir, msg, sizeof(*msg));
 843		if (msg->apply_bytes < send)
 844			msg->apply_bytes = 0;
 845		else
 846			msg->apply_bytes -= send;
 847		sk_msg_return_zero(sk, msg, send);
 848		msg->sg.size -= send;
 849		release_sock(sk);
 850		err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
 851					    &msg_redir, send, flags);
 852		lock_sock(sk);
 853		if (err < 0) {
 854			*copied -= sk_msg_free_nocharge(sk, &msg_redir);
 855			msg->sg.size = 0;
 856		}
 857		if (msg->sg.size == 0)
 858			tls_free_open_rec(sk);
 859		break;
 860	case __SK_DROP:
 861	default:
 862		sk_msg_free_partial(sk, msg, send);
 863		if (msg->apply_bytes < send)
 864			msg->apply_bytes = 0;
 865		else
 866			msg->apply_bytes -= send;
 867		if (msg->sg.size == 0)
 868			tls_free_open_rec(sk);
 869		*copied -= (send + delta);
 870		err = -EACCES;
 871	}
 872
 873	if (likely(!err)) {
 874		bool reset_eval = !ctx->open_rec;
 875
 876		rec = ctx->open_rec;
 877		if (rec) {
 878			msg = &rec->msg_plaintext;
 879			if (!msg->apply_bytes)
 880				reset_eval = true;
 881		}
 882		if (reset_eval) {
 883			psock->eval = __SK_NONE;
 884			if (psock->sk_redir) {
 885				sock_put(psock->sk_redir);
 886				psock->sk_redir = NULL;
 887			}
 888		}
 889		if (rec)
 890			goto more_data;
 891	}
 892 out_err:
 893	sk_psock_put(sk, psock);
 894	return err;
 895}
 896
 897static int tls_sw_push_pending_record(struct sock *sk, int flags)
 898{
 899	struct tls_context *tls_ctx = tls_get_ctx(sk);
 900	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 901	struct tls_rec *rec = ctx->open_rec;
 902	struct sk_msg *msg_pl;
 903	size_t copied;
 904
 905	if (!rec)
 906		return 0;
 907
 908	msg_pl = &rec->msg_plaintext;
 909	copied = msg_pl->sg.size;
 910	if (!copied)
 911		return 0;
 912
 913	return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
 914				   &copied, flags);
 915}
 916
 917int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 918{
 919	long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
 920	struct tls_context *tls_ctx = tls_get_ctx(sk);
 921	struct tls_prot_info *prot = &tls_ctx->prot_info;
 922	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
 923	bool async_capable = ctx->async_capable;
 924	unsigned char record_type = TLS_RECORD_TYPE_DATA;
 925	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
 926	bool eor = !(msg->msg_flags & MSG_MORE);
 927	size_t try_to_copy;
 928	ssize_t copied = 0;
 929	struct sk_msg *msg_pl, *msg_en;
 930	struct tls_rec *rec;
 931	int required_size;
 932	int num_async = 0;
 933	bool full_record;
 934	int record_room;
 935	int num_zc = 0;
 936	int orig_size;
 937	int ret = 0;
 938	int pending;
 939
 940	if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
 941			       MSG_CMSG_COMPAT))
 942		return -EOPNOTSUPP;
 943
 944	mutex_lock(&tls_ctx->tx_lock);
 945	lock_sock(sk);
 946
 947	if (unlikely(msg->msg_controllen)) {
 948		ret = tls_process_cmsg(sk, msg, &record_type);
 949		if (ret) {
 950			if (ret == -EINPROGRESS)
 951				num_async++;
 952			else if (ret != -EAGAIN)
 953				goto send_end;
 954		}
 955	}
 956
 957	while (msg_data_left(msg)) {
 958		if (sk->sk_err) {
 959			ret = -sk->sk_err;
 960			goto send_end;
 961		}
 962
 963		if (ctx->open_rec)
 964			rec = ctx->open_rec;
 965		else
 966			rec = ctx->open_rec = tls_get_rec(sk);
 967		if (!rec) {
 968			ret = -ENOMEM;
 969			goto send_end;
 970		}
 971
 972		msg_pl = &rec->msg_plaintext;
 973		msg_en = &rec->msg_encrypted;
 974
 975		orig_size = msg_pl->sg.size;
 976		full_record = false;
 977		try_to_copy = msg_data_left(msg);
 978		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
 979		if (try_to_copy >= record_room) {
 980			try_to_copy = record_room;
 981			full_record = true;
 982		}
 983
 984		required_size = msg_pl->sg.size + try_to_copy +
 985				prot->overhead_size;
 986
 987		if (!sk_stream_memory_free(sk))
 988			goto wait_for_sndbuf;
 989
 990alloc_encrypted:
 991		ret = tls_alloc_encrypted_msg(sk, required_size);
 992		if (ret) {
 993			if (ret != -ENOSPC)
 994				goto wait_for_memory;
 995
 996			/* Adjust try_to_copy according to the amount that was
 997			 * actually allocated. The difference is due
 998			 * to max sg elements limit
 999			 */
1000			try_to_copy -= required_size - msg_en->sg.size;
1001			full_record = true;
1002		}
1003
1004		if (!is_kvec && (full_record || eor) && !async_capable) {
1005			u32 first = msg_pl->sg.end;
1006
1007			ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1008							msg_pl, try_to_copy);
1009			if (ret)
1010				goto fallback_to_reg_send;
1011
1012			num_zc++;
1013			copied += try_to_copy;
1014
1015			sk_msg_sg_copy_set(msg_pl, first);
1016			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1017						  record_type, &copied,
1018						  msg->msg_flags);
1019			if (ret) {
1020				if (ret == -EINPROGRESS)
1021					num_async++;
1022				else if (ret == -ENOMEM)
1023					goto wait_for_memory;
1024				else if (ctx->open_rec && ret == -ENOSPC)
1025					goto rollback_iter;
1026				else if (ret != -EAGAIN)
1027					goto send_end;
1028			}
1029			continue;
1030rollback_iter:
1031			copied -= try_to_copy;
1032			sk_msg_sg_copy_clear(msg_pl, first);
1033			iov_iter_revert(&msg->msg_iter,
1034					msg_pl->sg.size - orig_size);
1035fallback_to_reg_send:
1036			sk_msg_trim(sk, msg_pl, orig_size);
1037		}
1038
1039		required_size = msg_pl->sg.size + try_to_copy;
1040
1041		ret = tls_clone_plaintext_msg(sk, required_size);
1042		if (ret) {
1043			if (ret != -ENOSPC)
1044				goto send_end;
1045
1046			/* Adjust try_to_copy according to the amount that was
1047			 * actually allocated. The difference is due
1048			 * to max sg elements limit
1049			 */
1050			try_to_copy -= required_size - msg_pl->sg.size;
1051			full_record = true;
1052			sk_msg_trim(sk, msg_en,
1053				    msg_pl->sg.size + prot->overhead_size);
1054		}
1055
1056		if (try_to_copy) {
1057			ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1058						       msg_pl, try_to_copy);
1059			if (ret < 0)
1060				goto trim_sgl;
1061		}
1062
1063		/* Open records defined only if successfully copied, otherwise
1064		 * we would trim the sg but not reset the open record frags.
1065		 */
1066		tls_ctx->pending_open_record_frags = true;
1067		copied += try_to_copy;
1068		if (full_record || eor) {
1069			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1070						  record_type, &copied,
1071						  msg->msg_flags);
1072			if (ret) {
1073				if (ret == -EINPROGRESS)
1074					num_async++;
1075				else if (ret == -ENOMEM)
1076					goto wait_for_memory;
1077				else if (ret != -EAGAIN) {
1078					if (ret == -ENOSPC)
1079						ret = 0;
1080					goto send_end;
1081				}
1082			}
1083		}
1084
1085		continue;
1086
1087wait_for_sndbuf:
1088		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1089wait_for_memory:
1090		ret = sk_stream_wait_memory(sk, &timeo);
1091		if (ret) {
1092trim_sgl:
1093			if (ctx->open_rec)
1094				tls_trim_both_msgs(sk, orig_size);
1095			goto send_end;
1096		}
1097
1098		if (ctx->open_rec && msg_en->sg.size < required_size)
1099			goto alloc_encrypted;
1100	}
1101
1102	if (!num_async) {
1103		goto send_end;
1104	} else if (num_zc) {
1105		/* Wait for pending encryptions to get completed */
1106		spin_lock_bh(&ctx->encrypt_compl_lock);
1107		ctx->async_notify = true;
1108
1109		pending = atomic_read(&ctx->encrypt_pending);
1110		spin_unlock_bh(&ctx->encrypt_compl_lock);
1111		if (pending)
1112			crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
1113		else
1114			reinit_completion(&ctx->async_wait.completion);
1115
1116		/* There can be no concurrent accesses, since we have no
1117		 * pending encrypt operations
1118		 */
1119		WRITE_ONCE(ctx->async_notify, false);
1120
1121		if (ctx->async_wait.err) {
1122			ret = ctx->async_wait.err;
1123			copied = 0;
1124		}
1125	}
1126
1127	/* Transmit if any encryptions have completed */
1128	if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1129		cancel_delayed_work(&ctx->tx_work.work);
1130		tls_tx_records(sk, msg->msg_flags);
1131	}
1132
1133send_end:
1134	ret = sk_stream_error(sk, msg->msg_flags, ret);
1135
1136	release_sock(sk);
1137	mutex_unlock(&tls_ctx->tx_lock);
1138	return copied > 0 ? copied : ret;
1139}
1140
1141static int tls_sw_do_sendpage(struct sock *sk, struct page *page,
1142			      int offset, size_t size, int flags)
1143{
1144	long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1145	struct tls_context *tls_ctx = tls_get_ctx(sk);
1146	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1147	struct tls_prot_info *prot = &tls_ctx->prot_info;
1148	unsigned char record_type = TLS_RECORD_TYPE_DATA;
1149	struct sk_msg *msg_pl;
1150	struct tls_rec *rec;
1151	int num_async = 0;
1152	ssize_t copied = 0;
1153	bool full_record;
1154	int record_room;
1155	int ret = 0;
1156	bool eor;
1157
1158	eor = !(flags & MSG_SENDPAGE_NOTLAST);
1159	sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1160
1161	/* Call the sk_stream functions to manage the sndbuf mem. */
1162	while (size > 0) {
1163		size_t copy, required_size;
1164
1165		if (sk->sk_err) {
1166			ret = -sk->sk_err;
1167			goto sendpage_end;
1168		}
1169
1170		if (ctx->open_rec)
1171			rec = ctx->open_rec;
1172		else
1173			rec = ctx->open_rec = tls_get_rec(sk);
1174		if (!rec) {
1175			ret = -ENOMEM;
1176			goto sendpage_end;
1177		}
1178
1179		msg_pl = &rec->msg_plaintext;
1180
1181		full_record = false;
1182		record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1183		copy = size;
1184		if (copy >= record_room) {
1185			copy = record_room;
1186			full_record = true;
1187		}
1188
1189		required_size = msg_pl->sg.size + copy + prot->overhead_size;
1190
1191		if (!sk_stream_memory_free(sk))
1192			goto wait_for_sndbuf;
1193alloc_payload:
1194		ret = tls_alloc_encrypted_msg(sk, required_size);
1195		if (ret) {
1196			if (ret != -ENOSPC)
1197				goto wait_for_memory;
1198
1199			/* Adjust copy according to the amount that was
1200			 * actually allocated. The difference is due
1201			 * to max sg elements limit
1202			 */
1203			copy -= required_size - msg_pl->sg.size;
1204			full_record = true;
1205		}
1206
1207		sk_msg_page_add(msg_pl, page, copy, offset);
1208		sk_mem_charge(sk, copy);
1209
1210		offset += copy;
1211		size -= copy;
1212		copied += copy;
1213
1214		tls_ctx->pending_open_record_frags = true;
1215		if (full_record || eor || sk_msg_full(msg_pl)) {
1216			ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1217						  record_type, &copied, flags);
1218			if (ret) {
1219				if (ret == -EINPROGRESS)
1220					num_async++;
1221				else if (ret == -ENOMEM)
1222					goto wait_for_memory;
1223				else if (ret != -EAGAIN) {
1224					if (ret == -ENOSPC)
1225						ret = 0;
1226					goto sendpage_end;
1227				}
1228			}
1229		}
1230		continue;
1231wait_for_sndbuf:
1232		set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1233wait_for_memory:
1234		ret = sk_stream_wait_memory(sk, &timeo);
1235		if (ret) {
1236			if (ctx->open_rec)
1237				tls_trim_both_msgs(sk, msg_pl->sg.size);
1238			goto sendpage_end;
1239		}
1240
1241		if (ctx->open_rec)
1242			goto alloc_payload;
1243	}
1244
1245	if (num_async) {
1246		/* Transmit if any encryptions have completed */
1247		if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1248			cancel_delayed_work(&ctx->tx_work.work);
1249			tls_tx_records(sk, flags);
1250		}
1251	}
1252sendpage_end:
1253	ret = sk_stream_error(sk, flags, ret);
1254	return copied > 0 ? copied : ret;
1255}
1256
1257int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
1258			   int offset, size_t size, int flags)
1259{
1260	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1261		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY |
1262		      MSG_NO_SHARED_FRAGS))
1263		return -EOPNOTSUPP;
1264
1265	return tls_sw_do_sendpage(sk, page, offset, size, flags);
1266}
1267
1268int tls_sw_sendpage(struct sock *sk, struct page *page,
1269		    int offset, size_t size, int flags)
1270{
1271	struct tls_context *tls_ctx = tls_get_ctx(sk);
1272	int ret;
1273
1274	if (flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1275		      MSG_SENDPAGE_NOTLAST | MSG_SENDPAGE_NOPOLICY))
1276		return -EOPNOTSUPP;
1277
1278	mutex_lock(&tls_ctx->tx_lock);
1279	lock_sock(sk);
1280	ret = tls_sw_do_sendpage(sk, page, offset, size, flags);
1281	release_sock(sk);
1282	mutex_unlock(&tls_ctx->tx_lock);
1283	return ret;
1284}
1285
1286static int
1287tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1288		bool released)
1289{
1290	struct tls_context *tls_ctx = tls_get_ctx(sk);
1291	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1292	DEFINE_WAIT_FUNC(wait, woken_wake_function);
1293	long timeo;
1294
1295	timeo = sock_rcvtimeo(sk, nonblock);
1296
1297	while (!tls_strp_msg_ready(ctx)) {
1298		if (!sk_psock_queue_empty(psock))
1299			return 0;
1300
1301		if (sk->sk_err)
1302			return sock_error(sk);
1303
1304		if (!skb_queue_empty(&sk->sk_receive_queue)) {
1305			tls_strp_check_rcv(&ctx->strp);
1306			if (tls_strp_msg_ready(ctx))
1307				break;
1308		}
1309
1310		if (sk->sk_shutdown & RCV_SHUTDOWN)
1311			return 0;
1312
1313		if (sock_flag(sk, SOCK_DONE))
1314			return 0;
1315
1316		if (!timeo)
1317			return -EAGAIN;
1318
1319		released = true;
1320		add_wait_queue(sk_sleep(sk), &wait);
1321		sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1322		sk_wait_event(sk, &timeo,
1323			      tls_strp_msg_ready(ctx) ||
1324			      !sk_psock_queue_empty(psock),
1325			      &wait);
1326		sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1327		remove_wait_queue(sk_sleep(sk), &wait);
1328
1329		/* Handle signals */
1330		if (signal_pending(current))
1331			return sock_intr_errno(timeo);
1332	}
1333
1334	tls_strp_msg_load(&ctx->strp, released);
1335
1336	return 1;
1337}
1338
1339static int tls_setup_from_iter(struct iov_iter *from,
1340			       int length, int *pages_used,
1341			       struct scatterlist *to,
1342			       int to_max_pages)
1343{
1344	int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1345	struct page *pages[MAX_SKB_FRAGS];
1346	unsigned int size = 0;
1347	ssize_t copied, use;
1348	size_t offset;
1349
1350	while (length > 0) {
1351		i = 0;
1352		maxpages = to_max_pages - num_elem;
1353		if (maxpages == 0) {
1354			rc = -EFAULT;
1355			goto out;
1356		}
1357		copied = iov_iter_get_pages2(from, pages,
1358					    length,
1359					    maxpages, &offset);
1360		if (copied <= 0) {
1361			rc = -EFAULT;
1362			goto out;
1363		}
1364
1365		length -= copied;
1366		size += copied;
1367		while (copied) {
1368			use = min_t(int, copied, PAGE_SIZE - offset);
1369
1370			sg_set_page(&to[num_elem],
1371				    pages[i], use, offset);
1372			sg_unmark_end(&to[num_elem]);
1373			/* We do not uncharge memory from this API */
1374
1375			offset = 0;
1376			copied -= use;
1377
1378			i++;
1379			num_elem++;
1380		}
1381	}
1382	/* Mark the end in the last sg entry if newly added */
1383	if (num_elem > *pages_used)
1384		sg_mark_end(&to[num_elem - 1]);
1385out:
1386	if (rc)
1387		iov_iter_revert(from, size);
1388	*pages_used = num_elem;
1389
1390	return rc;
1391}
1392
1393static struct sk_buff *
1394tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1395		     unsigned int full_len)
1396{
1397	struct strp_msg *clr_rxm;
1398	struct sk_buff *clr_skb;
1399	int err;
1400
1401	clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1402				       &err, sk->sk_allocation);
1403	if (!clr_skb)
1404		return NULL;
1405
1406	skb_copy_header(clr_skb, skb);
1407	clr_skb->len = full_len;
1408	clr_skb->data_len = full_len;
1409
1410	clr_rxm = strp_msg(clr_skb);
1411	clr_rxm->offset = 0;
1412
1413	return clr_skb;
1414}
1415
1416/* Decrypt handlers
1417 *
1418 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1419 * They must transform the darg in/out argument are as follows:
1420 *       |          Input            |         Output
1421 * -------------------------------------------------------------------
1422 *    zc | Zero-copy decrypt allowed | Zero-copy performed
1423 * async | Async decrypt allowed     | Async crypto used / in progress
1424 *   skb |            *              | Output skb
1425 *
1426 * If ZC decryption was performed darg.skb will point to the input skb.
1427 */
1428
1429/* This function decrypts the input skb into either out_iov or in out_sg
1430 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1431 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1432 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1433 * NULL, then the decryption happens inside skb buffers itself, i.e.
1434 * zero-copy gets disabled and 'darg->zc' is updated.
1435 */
1436static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1437			  struct scatterlist *out_sg,
1438			  struct tls_decrypt_arg *darg)
1439{
1440	struct tls_context *tls_ctx = tls_get_ctx(sk);
1441	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1442	struct tls_prot_info *prot = &tls_ctx->prot_info;
1443	int n_sgin, n_sgout, aead_size, err, pages = 0;
1444	struct sk_buff *skb = tls_strp_msg(ctx);
1445	const struct strp_msg *rxm = strp_msg(skb);
1446	const struct tls_msg *tlm = tls_msg(skb);
1447	struct aead_request *aead_req;
1448	struct scatterlist *sgin = NULL;
1449	struct scatterlist *sgout = NULL;
1450	const int data_len = rxm->full_len - prot->overhead_size;
1451	int tail_pages = !!prot->tail_size;
1452	struct tls_decrypt_ctx *dctx;
1453	struct sk_buff *clear_skb;
1454	int iv_offset = 0;
1455	u8 *mem;
1456
1457	n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1458			 rxm->full_len - prot->prepend_size);
1459	if (n_sgin < 1)
1460		return n_sgin ?: -EBADMSG;
1461
1462	if (darg->zc && (out_iov || out_sg)) {
1463		clear_skb = NULL;
1464
1465		if (out_iov)
1466			n_sgout = 1 + tail_pages +
1467				iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1468		else
1469			n_sgout = sg_nents(out_sg);
1470	} else {
1471		darg->zc = false;
1472
1473		clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1474		if (!clear_skb)
1475			return -ENOMEM;
1476
1477		n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1478	}
1479
1480	/* Increment to accommodate AAD */
1481	n_sgin = n_sgin + 1;
1482
1483	/* Allocate a single block of memory which contains
1484	 *   aead_req || tls_decrypt_ctx.
1485	 * Both structs are variable length.
1486	 */
1487	aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1488	mem = kmalloc(aead_size + struct_size(dctx, sg, n_sgin + n_sgout),
1489		      sk->sk_allocation);
1490	if (!mem) {
1491		err = -ENOMEM;
1492		goto exit_free_skb;
1493	}
1494
1495	/* Segment the allocated memory */
1496	aead_req = (struct aead_request *)mem;
1497	dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1498	sgin = &dctx->sg[0];
1499	sgout = &dctx->sg[n_sgin];
1500
1501	/* For CCM based ciphers, first byte of nonce+iv is a constant */
1502	switch (prot->cipher_type) {
1503	case TLS_CIPHER_AES_CCM_128:
1504		dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1505		iv_offset = 1;
1506		break;
1507	case TLS_CIPHER_SM4_CCM:
1508		dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1509		iv_offset = 1;
1510		break;
1511	}
1512
1513	/* Prepare IV */
1514	if (prot->version == TLS_1_3_VERSION ||
1515	    prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1516		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1517		       prot->iv_size + prot->salt_size);
1518	} else {
1519		err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1520				    &dctx->iv[iv_offset] + prot->salt_size,
1521				    prot->iv_size);
1522		if (err < 0)
1523			goto exit_free;
1524		memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1525	}
1526	tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1527
1528	/* Prepare AAD */
1529	tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1530		     prot->tail_size,
1531		     tls_ctx->rx.rec_seq, tlm->control, prot);
1532
1533	/* Prepare sgin */
1534	sg_init_table(sgin, n_sgin);
1535	sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1536	err = skb_to_sgvec(skb, &sgin[1],
1537			   rxm->offset + prot->prepend_size,
1538			   rxm->full_len - prot->prepend_size);
1539	if (err < 0)
1540		goto exit_free;
1541
1542	if (clear_skb) {
1543		sg_init_table(sgout, n_sgout);
1544		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1545
1546		err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1547				   data_len + prot->tail_size);
1548		if (err < 0)
1549			goto exit_free;
1550	} else if (out_iov) {
1551		sg_init_table(sgout, n_sgout);
1552		sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1553
1554		err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1555					  (n_sgout - 1 - tail_pages));
1556		if (err < 0)
1557			goto exit_free_pages;
1558
1559		if (prot->tail_size) {
1560			sg_unmark_end(&sgout[pages]);
1561			sg_set_buf(&sgout[pages + 1], &dctx->tail,
1562				   prot->tail_size);
1563			sg_mark_end(&sgout[pages + 1]);
1564		}
1565	} else if (out_sg) {
1566		memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1567	}
1568
1569	/* Prepare and submit AEAD request */
1570	err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1571				data_len + prot->tail_size, aead_req, darg);
1572	if (err)
1573		goto exit_free_pages;
1574
1575	darg->skb = clear_skb ?: tls_strp_msg(ctx);
1576	clear_skb = NULL;
1577
1578	if (unlikely(darg->async)) {
1579		err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1580		if (err)
1581			__skb_queue_tail(&ctx->async_hold, darg->skb);
1582		return err;
1583	}
1584
1585	if (prot->tail_size)
1586		darg->tail = dctx->tail;
1587
1588exit_free_pages:
1589	/* Release the pages in case iov was mapped to pages */
1590	for (; pages > 0; pages--)
1591		put_page(sg_page(&sgout[pages]));
1592exit_free:
1593	kfree(mem);
1594exit_free_skb:
1595	consume_skb(clear_skb);
1596	return err;
1597}
1598
1599static int
1600tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1601	       struct msghdr *msg, struct tls_decrypt_arg *darg)
1602{
1603	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1604	struct tls_prot_info *prot = &tls_ctx->prot_info;
1605	struct strp_msg *rxm;
1606	int pad, err;
1607
1608	err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1609	if (err < 0) {
1610		if (err == -EBADMSG)
1611			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1612		return err;
1613	}
1614	/* keep going even for ->async, the code below is TLS 1.3 */
1615
1616	/* If opportunistic TLS 1.3 ZC failed retry without ZC */
1617	if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1618		     darg->tail != TLS_RECORD_TYPE_DATA)) {
1619		darg->zc = false;
1620		if (!darg->tail)
1621			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1622		TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1623		return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1624	}
1625
1626	pad = tls_padding_length(prot, darg->skb, darg);
1627	if (pad < 0) {
1628		if (darg->skb != tls_strp_msg(ctx))
1629			consume_skb(darg->skb);
1630		return pad;
1631	}
1632
1633	rxm = strp_msg(darg->skb);
1634	rxm->full_len -= pad;
1635
1636	return 0;
1637}
1638
1639static int
1640tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1641		   struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1642{
1643	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1644	struct tls_prot_info *prot = &tls_ctx->prot_info;
1645	struct strp_msg *rxm;
1646	int pad, err;
1647
1648	if (tls_ctx->rx_conf != TLS_HW)
1649		return 0;
1650
1651	err = tls_device_decrypted(sk, tls_ctx);
1652	if (err <= 0)
1653		return err;
1654
1655	pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1656	if (pad < 0)
1657		return pad;
1658
1659	darg->async = false;
1660	darg->skb = tls_strp_msg(ctx);
1661	/* ->zc downgrade check, in case TLS 1.3 gets here */
1662	darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1663		      tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1664
1665	rxm = strp_msg(darg->skb);
1666	rxm->full_len -= pad;
1667
1668	if (!darg->zc) {
1669		/* Non-ZC case needs a real skb */
1670		darg->skb = tls_strp_msg_detach(ctx);
1671		if (!darg->skb)
1672			return -ENOMEM;
1673	} else {
1674		unsigned int off, len;
1675
1676		/* In ZC case nobody cares about the output skb.
1677		 * Just copy the data here. Note the skb is not fully trimmed.
1678		 */
1679		off = rxm->offset + prot->prepend_size;
1680		len = rxm->full_len - prot->overhead_size;
1681
1682		err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1683		if (err)
1684			return err;
1685	}
1686	return 1;
1687}
1688
1689static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1690			     struct tls_decrypt_arg *darg)
1691{
1692	struct tls_context *tls_ctx = tls_get_ctx(sk);
1693	struct tls_prot_info *prot = &tls_ctx->prot_info;
1694	struct strp_msg *rxm;
1695	int err;
1696
1697	err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1698	if (!err)
1699		err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1700	if (err < 0)
1701		return err;
1702
1703	rxm = strp_msg(darg->skb);
1704	rxm->offset += prot->prepend_size;
1705	rxm->full_len -= prot->overhead_size;
1706	tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1707
1708	return 0;
1709}
1710
1711int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1712{
1713	struct tls_decrypt_arg darg = { .zc = true, };
1714
1715	return tls_decrypt_sg(sk, NULL, sgout, &darg);
1716}
1717
1718static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1719				   u8 *control)
1720{
1721	int err;
1722
1723	if (!*control) {
1724		*control = tlm->control;
1725		if (!*control)
1726			return -EBADMSG;
1727
1728		err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1729			       sizeof(*control), control);
1730		if (*control != TLS_RECORD_TYPE_DATA) {
1731			if (err || msg->msg_flags & MSG_CTRUNC)
1732				return -EIO;
1733		}
1734	} else if (*control != tlm->control) {
1735		return 0;
1736	}
1737
1738	return 1;
1739}
1740
1741static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1742{
1743	tls_strp_msg_done(&ctx->strp);
1744}
1745
1746/* This function traverses the rx_list in tls receive context to copies the
1747 * decrypted records into the buffer provided by caller zero copy is not
1748 * true. Further, the records are removed from the rx_list if it is not a peek
1749 * case and the record has been consumed completely.
1750 */
1751static int process_rx_list(struct tls_sw_context_rx *ctx,
1752			   struct msghdr *msg,
1753			   u8 *control,
1754			   size_t skip,
1755			   size_t len,
1756			   bool is_peek)
1757{
1758	struct sk_buff *skb = skb_peek(&ctx->rx_list);
1759	struct tls_msg *tlm;
1760	ssize_t copied = 0;
1761	int err;
1762
1763	while (skip && skb) {
1764		struct strp_msg *rxm = strp_msg(skb);
1765		tlm = tls_msg(skb);
1766
1767		err = tls_record_content_type(msg, tlm, control);
1768		if (err <= 0)
1769			goto out;
1770
1771		if (skip < rxm->full_len)
1772			break;
1773
1774		skip = skip - rxm->full_len;
1775		skb = skb_peek_next(skb, &ctx->rx_list);
1776	}
1777
1778	while (len && skb) {
1779		struct sk_buff *next_skb;
1780		struct strp_msg *rxm = strp_msg(skb);
1781		int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1782
1783		tlm = tls_msg(skb);
1784
1785		err = tls_record_content_type(msg, tlm, control);
1786		if (err <= 0)
1787			goto out;
1788
1789		err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1790					    msg, chunk);
1791		if (err < 0)
1792			goto out;
1793
1794		len = len - chunk;
1795		copied = copied + chunk;
1796
1797		/* Consume the data from record if it is non-peek case*/
1798		if (!is_peek) {
1799			rxm->offset = rxm->offset + chunk;
1800			rxm->full_len = rxm->full_len - chunk;
1801
1802			/* Return if there is unconsumed data in the record */
1803			if (rxm->full_len - skip)
1804				break;
1805		}
1806
1807		/* The remaining skip-bytes must lie in 1st record in rx_list.
1808		 * So from the 2nd record, 'skip' should be 0.
1809		 */
1810		skip = 0;
1811
1812		if (msg)
1813			msg->msg_flags |= MSG_EOR;
1814
1815		next_skb = skb_peek_next(skb, &ctx->rx_list);
1816
1817		if (!is_peek) {
1818			__skb_unlink(skb, &ctx->rx_list);
1819			consume_skb(skb);
1820		}
1821
1822		skb = next_skb;
1823	}
1824	err = 0;
1825
1826out:
1827	return copied ? : err;
1828}
1829
1830static bool
1831tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1832		       size_t len_left, size_t decrypted, ssize_t done,
1833		       size_t *flushed_at)
1834{
1835	size_t max_rec;
1836
1837	if (len_left <= decrypted)
1838		return false;
1839
1840	max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1841	if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1842		return false;
1843
1844	*flushed_at = done;
1845	return sk_flush_backlog(sk);
1846}
1847
1848static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1849			      bool nonblock)
1850{
1851	long timeo;
1852	int err;
1853
1854	lock_sock(sk);
1855
1856	timeo = sock_rcvtimeo(sk, nonblock);
1857
1858	while (unlikely(ctx->reader_present)) {
1859		DEFINE_WAIT_FUNC(wait, woken_wake_function);
1860
1861		ctx->reader_contended = 1;
1862
1863		add_wait_queue(&ctx->wq, &wait);
1864		sk_wait_event(sk, &timeo,
1865			      !READ_ONCE(ctx->reader_present), &wait);
1866		remove_wait_queue(&ctx->wq, &wait);
1867
1868		if (timeo <= 0) {
1869			err = -EAGAIN;
1870			goto err_unlock;
1871		}
1872		if (signal_pending(current)) {
1873			err = sock_intr_errno(timeo);
1874			goto err_unlock;
1875		}
1876	}
1877
1878	WRITE_ONCE(ctx->reader_present, 1);
1879
1880	return 0;
1881
1882err_unlock:
1883	release_sock(sk);
1884	return err;
1885}
1886
1887static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1888{
1889	if (unlikely(ctx->reader_contended)) {
1890		if (wq_has_sleeper(&ctx->wq))
1891			wake_up(&ctx->wq);
1892		else
1893			ctx->reader_contended = 0;
1894
1895		WARN_ON_ONCE(!ctx->reader_present);
1896	}
1897
1898	WRITE_ONCE(ctx->reader_present, 0);
1899	release_sock(sk);
1900}
1901
1902int tls_sw_recvmsg(struct sock *sk,
1903		   struct msghdr *msg,
1904		   size_t len,
1905		   int flags,
1906		   int *addr_len)
1907{
1908	struct tls_context *tls_ctx = tls_get_ctx(sk);
1909	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1910	struct tls_prot_info *prot = &tls_ctx->prot_info;
1911	ssize_t decrypted = 0, async_copy_bytes = 0;
1912	struct sk_psock *psock;
1913	unsigned char control = 0;
1914	size_t flushed_at = 0;
1915	struct strp_msg *rxm;
1916	struct tls_msg *tlm;
1917	ssize_t copied = 0;
1918	bool async = false;
1919	int target, err;
1920	bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1921	bool is_peek = flags & MSG_PEEK;
1922	bool released = true;
1923	bool bpf_strp_enabled;
1924	bool zc_capable;
1925
1926	if (unlikely(flags & MSG_ERRQUEUE))
1927		return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1928
1929	psock = sk_psock_get(sk);
1930	err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1931	if (err < 0)
1932		return err;
1933	bpf_strp_enabled = sk_psock_strp_enabled(psock);
1934
1935	/* If crypto failed the connection is broken */
1936	err = ctx->async_wait.err;
1937	if (err)
1938		goto end;
1939
1940	/* Process pending decrypted records. It must be non-zero-copy */
1941	err = process_rx_list(ctx, msg, &control, 0, len, is_peek);
1942	if (err < 0)
1943		goto end;
1944
1945	copied = err;
1946	if (len <= copied)
1947		goto end;
1948
1949	target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
1950	len = len - copied;
1951
1952	zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
1953		ctx->zc_capable;
1954	decrypted = 0;
1955	while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
1956		struct tls_decrypt_arg darg;
1957		int to_decrypt, chunk;
1958
1959		err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
1960				      released);
1961		if (err <= 0) {
1962			if (psock) {
1963				chunk = sk_msg_recvmsg(sk, psock, msg, len,
1964						       flags);
1965				if (chunk > 0) {
1966					decrypted += chunk;
1967					len -= chunk;
1968					continue;
1969				}
1970			}
1971			goto recv_end;
1972		}
1973
1974		memset(&darg.inargs, 0, sizeof(darg.inargs));
1975
1976		rxm = strp_msg(tls_strp_msg(ctx));
1977		tlm = tls_msg(tls_strp_msg(ctx));
1978
1979		to_decrypt = rxm->full_len - prot->overhead_size;
1980
1981		if (zc_capable && to_decrypt <= len &&
1982		    tlm->control == TLS_RECORD_TYPE_DATA)
1983			darg.zc = true;
1984
1985		/* Do not use async mode if record is non-data */
1986		if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
1987			darg.async = ctx->async_capable;
1988		else
1989			darg.async = false;
1990
1991		err = tls_rx_one_record(sk, msg, &darg);
1992		if (err < 0) {
1993			tls_err_abort(sk, -EBADMSG);
1994			goto recv_end;
1995		}
1996
1997		async |= darg.async;
1998
1999		/* If the type of records being processed is not known yet,
2000		 * set it to record type just dequeued. If it is already known,
2001		 * but does not match the record type just dequeued, go to end.
2002		 * We always get record type here since for tls1.2, record type
2003		 * is known just after record is dequeued from stream parser.
2004		 * For tls1.3, we disable async.
2005		 */
2006		err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2007		if (err <= 0) {
2008			DEBUG_NET_WARN_ON_ONCE(darg.zc);
2009			tls_rx_rec_done(ctx);
2010put_on_rx_list_err:
2011			__skb_queue_tail(&ctx->rx_list, darg.skb);
2012			goto recv_end;
2013		}
2014
2015		/* periodically flush backlog, and feed strparser */
2016		released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2017						  decrypted + copied,
2018						  &flushed_at);
2019
2020		/* TLS 1.3 may have updated the length by more than overhead */
2021		rxm = strp_msg(darg.skb);
2022		chunk = rxm->full_len;
2023		tls_rx_rec_done(ctx);
2024
2025		if (!darg.zc) {
2026			bool partially_consumed = chunk > len;
2027			struct sk_buff *skb = darg.skb;
2028
2029			DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2030
2031			if (async) {
2032				/* TLS 1.2-only, to_decrypt must be text len */
2033				chunk = min_t(int, to_decrypt, len);
2034				async_copy_bytes += chunk;
2035put_on_rx_list:
2036				decrypted += chunk;
2037				len -= chunk;
2038				__skb_queue_tail(&ctx->rx_list, skb);
2039				continue;
2040			}
2041
2042			if (bpf_strp_enabled) {
2043				released = true;
2044				err = sk_psock_tls_strp_read(psock, skb);
2045				if (err != __SK_PASS) {
2046					rxm->offset = rxm->offset + rxm->full_len;
2047					rxm->full_len = 0;
2048					if (err == __SK_DROP)
2049						consume_skb(skb);
2050					continue;
2051				}
2052			}
2053
2054			if (partially_consumed)
2055				chunk = len;
2056
2057			err = skb_copy_datagram_msg(skb, rxm->offset,
2058						    msg, chunk);
2059			if (err < 0)
2060				goto put_on_rx_list_err;
2061
2062			if (is_peek)
2063				goto put_on_rx_list;
2064
2065			if (partially_consumed) {
2066				rxm->offset += chunk;
2067				rxm->full_len -= chunk;
2068				goto put_on_rx_list;
2069			}
2070
2071			consume_skb(skb);
2072		}
2073
2074		decrypted += chunk;
2075		len -= chunk;
2076
2077		/* Return full control message to userspace before trying
2078		 * to parse another message type
2079		 */
2080		msg->msg_flags |= MSG_EOR;
2081		if (control != TLS_RECORD_TYPE_DATA)
2082			break;
2083	}
2084
2085recv_end:
2086	if (async) {
2087		int ret, pending;
2088
2089		/* Wait for all previously submitted records to be decrypted */
2090		spin_lock_bh(&ctx->decrypt_compl_lock);
2091		reinit_completion(&ctx->async_wait.completion);
2092		pending = atomic_read(&ctx->decrypt_pending);
2093		spin_unlock_bh(&ctx->decrypt_compl_lock);
2094		ret = 0;
2095		if (pending)
2096			ret = crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2097		__skb_queue_purge(&ctx->async_hold);
2098
2099		if (ret) {
2100			if (err >= 0 || err == -EINPROGRESS)
2101				err = ret;
2102			decrypted = 0;
2103			goto end;
2104		}
2105
2106		/* Drain records from the rx_list & copy if required */
2107		if (is_peek || is_kvec)
2108			err = process_rx_list(ctx, msg, &control, copied,
2109					      decrypted, is_peek);
2110		else
2111			err = process_rx_list(ctx, msg, &control, 0,
2112					      async_copy_bytes, is_peek);
2113		decrypted = max(err, 0);
2114	}
2115
2116	copied += decrypted;
2117
2118end:
2119	tls_rx_reader_unlock(sk, ctx);
2120	if (psock)
2121		sk_psock_put(sk, psock);
2122	return copied ? : err;
2123}
2124
2125ssize_t tls_sw_splice_read(struct socket *sock,  loff_t *ppos,
2126			   struct pipe_inode_info *pipe,
2127			   size_t len, unsigned int flags)
2128{
2129	struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2130	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2131	struct strp_msg *rxm = NULL;
2132	struct sock *sk = sock->sk;
2133	struct tls_msg *tlm;
2134	struct sk_buff *skb;
2135	ssize_t copied = 0;
2136	int chunk;
2137	int err;
2138
2139	err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2140	if (err < 0)
2141		return err;
2142
2143	if (!skb_queue_empty(&ctx->rx_list)) {
2144		skb = __skb_dequeue(&ctx->rx_list);
2145	} else {
2146		struct tls_decrypt_arg darg;
2147
2148		err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2149				      true);
2150		if (err <= 0)
2151			goto splice_read_end;
2152
2153		memset(&darg.inargs, 0, sizeof(darg.inargs));
2154
2155		err = tls_rx_one_record(sk, NULL, &darg);
2156		if (err < 0) {
2157			tls_err_abort(sk, -EBADMSG);
2158			goto splice_read_end;
2159		}
2160
2161		tls_rx_rec_done(ctx);
2162		skb = darg.skb;
2163	}
2164
2165	rxm = strp_msg(skb);
2166	tlm = tls_msg(skb);
2167
2168	/* splice does not support reading control messages */
2169	if (tlm->control != TLS_RECORD_TYPE_DATA) {
2170		err = -EINVAL;
2171		goto splice_requeue;
2172	}
2173
2174	chunk = min_t(unsigned int, rxm->full_len, len);
2175	copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2176	if (copied < 0)
2177		goto splice_requeue;
2178
2179	if (chunk < rxm->full_len) {
2180		rxm->offset += len;
2181		rxm->full_len -= len;
2182		goto splice_requeue;
2183	}
2184
2185	consume_skb(skb);
2186
2187splice_read_end:
2188	tls_rx_reader_unlock(sk, ctx);
2189	return copied ? : err;
2190
2191splice_requeue:
2192	__skb_queue_head(&ctx->rx_list, skb);
2193	goto splice_read_end;
2194}
2195
2196bool tls_sw_sock_is_readable(struct sock *sk)
2197{
2198	struct tls_context *tls_ctx = tls_get_ctx(sk);
2199	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2200	bool ingress_empty = true;
2201	struct sk_psock *psock;
2202
2203	rcu_read_lock();
2204	psock = sk_psock(sk);
2205	if (psock)
2206		ingress_empty = list_empty(&psock->ingress_msg);
2207	rcu_read_unlock();
2208
2209	return !ingress_empty || tls_strp_msg_ready(ctx) ||
2210		!skb_queue_empty(&ctx->rx_list);
2211}
2212
2213int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2214{
2215	struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2216	struct tls_prot_info *prot = &tls_ctx->prot_info;
2217	char header[TLS_HEADER_SIZE + MAX_IV_SIZE];
2218	size_t cipher_overhead;
2219	size_t data_len = 0;
2220	int ret;
2221
2222	/* Verify that we have a full TLS header, or wait for more data */
2223	if (strp->stm.offset + prot->prepend_size > skb->len)
2224		return 0;
2225
2226	/* Sanity-check size of on-stack buffer. */
2227	if (WARN_ON(prot->prepend_size > sizeof(header))) {
2228		ret = -EINVAL;
2229		goto read_failure;
2230	}
2231
2232	/* Linearize header to local buffer */
2233	ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2234	if (ret < 0)
2235		goto read_failure;
2236
2237	strp->mark = header[0];
2238
2239	data_len = ((header[4] & 0xFF) | (header[3] << 8));
2240
2241	cipher_overhead = prot->tag_size;
2242	if (prot->version != TLS_1_3_VERSION &&
2243	    prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2244		cipher_overhead += prot->iv_size;
2245
2246	if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2247	    prot->tail_size) {
2248		ret = -EMSGSIZE;
2249		goto read_failure;
2250	}
2251	if (data_len < cipher_overhead) {
2252		ret = -EBADMSG;
2253		goto read_failure;
2254	}
2255
2256	/* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2257	if (header[1] != TLS_1_2_VERSION_MINOR ||
2258	    header[2] != TLS_1_2_VERSION_MAJOR) {
2259		ret = -EINVAL;
2260		goto read_failure;
2261	}
2262
2263	tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2264				     TCP_SKB_CB(skb)->seq + strp->stm.offset);
2265	return data_len + TLS_HEADER_SIZE;
2266
2267read_failure:
2268	tls_err_abort(strp->sk, ret);
2269
2270	return ret;
2271}
2272
2273void tls_rx_msg_ready(struct tls_strparser *strp)
2274{
2275	struct tls_sw_context_rx *ctx;
2276
2277	ctx = container_of(strp, struct tls_sw_context_rx, strp);
2278	ctx->saved_data_ready(strp->sk);
2279}
2280
2281static void tls_data_ready(struct sock *sk)
2282{
2283	struct tls_context *tls_ctx = tls_get_ctx(sk);
2284	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2285	struct sk_psock *psock;
2286
2287	tls_strp_data_ready(&ctx->strp);
2288
2289	psock = sk_psock_get(sk);
2290	if (psock) {
2291		if (!list_empty(&psock->ingress_msg))
2292			ctx->saved_data_ready(sk);
2293		sk_psock_put(sk, psock);
2294	}
2295}
2296
2297void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2298{
2299	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2300
2301	set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2302	set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2303	cancel_delayed_work_sync(&ctx->tx_work.work);
2304}
2305
2306void tls_sw_release_resources_tx(struct sock *sk)
2307{
2308	struct tls_context *tls_ctx = tls_get_ctx(sk);
2309	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2310	struct tls_rec *rec, *tmp;
2311	int pending;
2312
2313	/* Wait for any pending async encryptions to complete */
2314	spin_lock_bh(&ctx->encrypt_compl_lock);
2315	ctx->async_notify = true;
2316	pending = atomic_read(&ctx->encrypt_pending);
2317	spin_unlock_bh(&ctx->encrypt_compl_lock);
2318
2319	if (pending)
2320		crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
2321
2322	tls_tx_records(sk, -1);
2323
2324	/* Free up un-sent records in tx_list. First, free
2325	 * the partially sent record if any at head of tx_list.
2326	 */
2327	if (tls_ctx->partially_sent_record) {
2328		tls_free_partial_record(sk, tls_ctx);
2329		rec = list_first_entry(&ctx->tx_list,
2330				       struct tls_rec, list);
2331		list_del(&rec->list);
2332		sk_msg_free(sk, &rec->msg_plaintext);
2333		kfree(rec);
2334	}
2335
2336	list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2337		list_del(&rec->list);
2338		sk_msg_free(sk, &rec->msg_encrypted);
2339		sk_msg_free(sk, &rec->msg_plaintext);
2340		kfree(rec);
2341	}
2342
2343	crypto_free_aead(ctx->aead_send);
2344	tls_free_open_rec(sk);
2345}
2346
2347void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2348{
2349	struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2350
2351	kfree(ctx);
2352}
2353
2354void tls_sw_release_resources_rx(struct sock *sk)
2355{
2356	struct tls_context *tls_ctx = tls_get_ctx(sk);
2357	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2358
2359	kfree(tls_ctx->rx.rec_seq);
2360	kfree(tls_ctx->rx.iv);
2361
2362	if (ctx->aead_recv) {
2363		__skb_queue_purge(&ctx->rx_list);
2364		crypto_free_aead(ctx->aead_recv);
2365		tls_strp_stop(&ctx->strp);
2366		/* If tls_sw_strparser_arm() was not called (cleanup paths)
2367		 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2368		 * never swapped.
2369		 */
2370		if (ctx->saved_data_ready) {
2371			write_lock_bh(&sk->sk_callback_lock);
2372			sk->sk_data_ready = ctx->saved_data_ready;
2373			write_unlock_bh(&sk->sk_callback_lock);
2374		}
2375	}
2376}
2377
2378void tls_sw_strparser_done(struct tls_context *tls_ctx)
2379{
2380	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2381
2382	tls_strp_done(&ctx->strp);
2383}
2384
2385void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2386{
2387	struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2388
2389	kfree(ctx);
2390}
2391
2392void tls_sw_free_resources_rx(struct sock *sk)
2393{
2394	struct tls_context *tls_ctx = tls_get_ctx(sk);
2395
2396	tls_sw_release_resources_rx(sk);
2397	tls_sw_free_ctx_rx(tls_ctx);
2398}
2399
2400/* The work handler to transmitt the encrypted records in tx_list */
2401static void tx_work_handler(struct work_struct *work)
2402{
2403	struct delayed_work *delayed_work = to_delayed_work(work);
2404	struct tx_work *tx_work = container_of(delayed_work,
2405					       struct tx_work, work);
2406	struct sock *sk = tx_work->sk;
2407	struct tls_context *tls_ctx = tls_get_ctx(sk);
2408	struct tls_sw_context_tx *ctx;
2409
2410	if (unlikely(!tls_ctx))
2411		return;
2412
2413	ctx = tls_sw_ctx_tx(tls_ctx);
2414	if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2415		return;
2416
2417	if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2418		return;
2419	mutex_lock(&tls_ctx->tx_lock);
2420	lock_sock(sk);
2421	tls_tx_records(sk, -1);
2422	release_sock(sk);
2423	mutex_unlock(&tls_ctx->tx_lock);
2424}
2425
2426static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2427{
2428	struct tls_rec *rec;
2429
2430	rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2431	if (!rec)
2432		return false;
2433
2434	return READ_ONCE(rec->tx_ready);
2435}
2436
2437void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2438{
2439	struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2440
2441	/* Schedule the transmission if tx list is ready */
2442	if (tls_is_tx_ready(tx_ctx) &&
2443	    !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2444		schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2445}
2446
2447void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2448{
2449	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2450
2451	write_lock_bh(&sk->sk_callback_lock);
2452	rx_ctx->saved_data_ready = sk->sk_data_ready;
2453	sk->sk_data_ready = tls_data_ready;
2454	write_unlock_bh(&sk->sk_callback_lock);
2455}
2456
2457void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2458{
2459	struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2460
2461	rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2462		tls_ctx->prot_info.version != TLS_1_3_VERSION;
2463}
2464
2465int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx)
2466{
2467	struct tls_context *tls_ctx = tls_get_ctx(sk);
2468	struct tls_prot_info *prot = &tls_ctx->prot_info;
2469	struct tls_crypto_info *crypto_info;
2470	struct tls_sw_context_tx *sw_ctx_tx = NULL;
2471	struct tls_sw_context_rx *sw_ctx_rx = NULL;
2472	struct cipher_context *cctx;
2473	struct crypto_aead **aead;
2474	u16 nonce_size, tag_size, iv_size, rec_seq_size, salt_size;
2475	struct crypto_tfm *tfm;
2476	char *iv, *rec_seq, *key, *salt, *cipher_name;
2477	size_t keysize;
2478	int rc = 0;
2479
2480	if (!ctx) {
2481		rc = -EINVAL;
2482		goto out;
2483	}
2484
2485	if (tx) {
2486		if (!ctx->priv_ctx_tx) {
2487			sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2488			if (!sw_ctx_tx) {
2489				rc = -ENOMEM;
2490				goto out;
2491			}
2492			ctx->priv_ctx_tx = sw_ctx_tx;
2493		} else {
2494			sw_ctx_tx =
2495				(struct tls_sw_context_tx *)ctx->priv_ctx_tx;
2496		}
2497	} else {
2498		if (!ctx->priv_ctx_rx) {
2499			sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2500			if (!sw_ctx_rx) {
2501				rc = -ENOMEM;
2502				goto out;
2503			}
2504			ctx->priv_ctx_rx = sw_ctx_rx;
2505		} else {
2506			sw_ctx_rx =
2507				(struct tls_sw_context_rx *)ctx->priv_ctx_rx;
2508		}
2509	}
2510
2511	if (tx) {
2512		crypto_init_wait(&sw_ctx_tx->async_wait);
2513		spin_lock_init(&sw_ctx_tx->encrypt_compl_lock);
2514		crypto_info = &ctx->crypto_send.info;
2515		cctx = &ctx->tx;
2516		aead = &sw_ctx_tx->aead_send;
2517		INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2518		INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2519		sw_ctx_tx->tx_work.sk = sk;
2520	} else {
2521		crypto_init_wait(&sw_ctx_rx->async_wait);
2522		spin_lock_init(&sw_ctx_rx->decrypt_compl_lock);
2523		init_waitqueue_head(&sw_ctx_rx->wq);
2524		crypto_info = &ctx->crypto_recv.info;
2525		cctx = &ctx->rx;
2526		skb_queue_head_init(&sw_ctx_rx->rx_list);
2527		skb_queue_head_init(&sw_ctx_rx->async_hold);
2528		aead = &sw_ctx_rx->aead_recv;
2529	}
2530
2531	switch (crypto_info->cipher_type) {
2532	case TLS_CIPHER_AES_GCM_128: {
2533		struct tls12_crypto_info_aes_gcm_128 *gcm_128_info;
2534
2535		gcm_128_info = (void *)crypto_info;
2536		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2537		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
2538		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
2539		iv = gcm_128_info->iv;
2540		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
2541		rec_seq = gcm_128_info->rec_seq;
2542		keysize = TLS_CIPHER_AES_GCM_128_KEY_SIZE;
2543		key = gcm_128_info->key;
2544		salt = gcm_128_info->salt;
2545		salt_size = TLS_CIPHER_AES_GCM_128_SALT_SIZE;
2546		cipher_name = "gcm(aes)";
2547		break;
2548	}
2549	case TLS_CIPHER_AES_GCM_256: {
2550		struct tls12_crypto_info_aes_gcm_256 *gcm_256_info;
2551
2552		gcm_256_info = (void *)crypto_info;
2553		nonce_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2554		tag_size = TLS_CIPHER_AES_GCM_256_TAG_SIZE;
2555		iv_size = TLS_CIPHER_AES_GCM_256_IV_SIZE;
2556		iv = gcm_256_info->iv;
2557		rec_seq_size = TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE;
2558		rec_seq = gcm_256_info->rec_seq;
2559		keysize = TLS_CIPHER_AES_GCM_256_KEY_SIZE;
2560		key = gcm_256_info->key;
2561		salt = gcm_256_info->salt;
2562		salt_size = TLS_CIPHER_AES_GCM_256_SALT_SIZE;
2563		cipher_name = "gcm(aes)";
2564		break;
2565	}
2566	case TLS_CIPHER_AES_CCM_128: {
2567		struct tls12_crypto_info_aes_ccm_128 *ccm_128_info;
2568
2569		ccm_128_info = (void *)crypto_info;
2570		nonce_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2571		tag_size = TLS_CIPHER_AES_CCM_128_TAG_SIZE;
2572		iv_size = TLS_CIPHER_AES_CCM_128_IV_SIZE;
2573		iv = ccm_128_info->iv;
2574		rec_seq_size = TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE;
2575		rec_seq = ccm_128_info->rec_seq;
2576		keysize = TLS_CIPHER_AES_CCM_128_KEY_SIZE;
2577		key = ccm_128_info->key;
2578		salt = ccm_128_info->salt;
2579		salt_size = TLS_CIPHER_AES_CCM_128_SALT_SIZE;
2580		cipher_name = "ccm(aes)";
2581		break;
2582	}
2583	case TLS_CIPHER_CHACHA20_POLY1305: {
2584		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305_info;
2585
2586		chacha20_poly1305_info = (void *)crypto_info;
2587		nonce_size = 0;
2588		tag_size = TLS_CIPHER_CHACHA20_POLY1305_TAG_SIZE;
2589		iv_size = TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE;
2590		iv = chacha20_poly1305_info->iv;
2591		rec_seq_size = TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE;
2592		rec_seq = chacha20_poly1305_info->rec_seq;
2593		keysize = TLS_CIPHER_CHACHA20_POLY1305_KEY_SIZE;
2594		key = chacha20_poly1305_info->key;
2595		salt = chacha20_poly1305_info->salt;
2596		salt_size = TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE;
2597		cipher_name = "rfc7539(chacha20,poly1305)";
2598		break;
2599	}
2600	case TLS_CIPHER_SM4_GCM: {
2601		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info;
2602
2603		sm4_gcm_info = (void *)crypto_info;
2604		nonce_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2605		tag_size = TLS_CIPHER_SM4_GCM_TAG_SIZE;
2606		iv_size = TLS_CIPHER_SM4_GCM_IV_SIZE;
2607		iv = sm4_gcm_info->iv;
2608		rec_seq_size = TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE;
2609		rec_seq = sm4_gcm_info->rec_seq;
2610		keysize = TLS_CIPHER_SM4_GCM_KEY_SIZE;
2611		key = sm4_gcm_info->key;
2612		salt = sm4_gcm_info->salt;
2613		salt_size = TLS_CIPHER_SM4_GCM_SALT_SIZE;
2614		cipher_name = "gcm(sm4)";
2615		break;
2616	}
2617	case TLS_CIPHER_SM4_CCM: {
2618		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info;
2619
2620		sm4_ccm_info = (void *)crypto_info;
2621		nonce_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2622		tag_size = TLS_CIPHER_SM4_CCM_TAG_SIZE;
2623		iv_size = TLS_CIPHER_SM4_CCM_IV_SIZE;
2624		iv = sm4_ccm_info->iv;
2625		rec_seq_size = TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE;
2626		rec_seq = sm4_ccm_info->rec_seq;
2627		keysize = TLS_CIPHER_SM4_CCM_KEY_SIZE;
2628		key = sm4_ccm_info->key;
2629		salt = sm4_ccm_info->salt;
2630		salt_size = TLS_CIPHER_SM4_CCM_SALT_SIZE;
2631		cipher_name = "ccm(sm4)";
2632		break;
2633	}
2634	case TLS_CIPHER_ARIA_GCM_128: {
2635		struct tls12_crypto_info_aria_gcm_128 *aria_gcm_128_info;
2636
2637		aria_gcm_128_info = (void *)crypto_info;
2638		nonce_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2639		tag_size = TLS_CIPHER_ARIA_GCM_128_TAG_SIZE;
2640		iv_size = TLS_CIPHER_ARIA_GCM_128_IV_SIZE;
2641		iv = aria_gcm_128_info->iv;
2642		rec_seq_size = TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE;
2643		rec_seq = aria_gcm_128_info->rec_seq;
2644		keysize = TLS_CIPHER_ARIA_GCM_128_KEY_SIZE;
2645		key = aria_gcm_128_info->key;
2646		salt = aria_gcm_128_info->salt;
2647		salt_size = TLS_CIPHER_ARIA_GCM_128_SALT_SIZE;
2648		cipher_name = "gcm(aria)";
2649		break;
2650	}
2651	case TLS_CIPHER_ARIA_GCM_256: {
2652		struct tls12_crypto_info_aria_gcm_256 *gcm_256_info;
2653
2654		gcm_256_info = (void *)crypto_info;
2655		nonce_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2656		tag_size = TLS_CIPHER_ARIA_GCM_256_TAG_SIZE;
2657		iv_size = TLS_CIPHER_ARIA_GCM_256_IV_SIZE;
2658		iv = gcm_256_info->iv;
2659		rec_seq_size = TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE;
2660		rec_seq = gcm_256_info->rec_seq;
2661		keysize = TLS_CIPHER_ARIA_GCM_256_KEY_SIZE;
2662		key = gcm_256_info->key;
2663		salt = gcm_256_info->salt;
2664		salt_size = TLS_CIPHER_ARIA_GCM_256_SALT_SIZE;
2665		cipher_name = "gcm(aria)";
2666		break;
2667	}
2668	default:
2669		rc = -EINVAL;
2670		goto free_priv;
2671	}
2672
2673	if (crypto_info->version == TLS_1_3_VERSION) {
2674		nonce_size = 0;
2675		prot->aad_size = TLS_HEADER_SIZE;
2676		prot->tail_size = 1;
2677	} else {
2678		prot->aad_size = TLS_AAD_SPACE_SIZE;
2679		prot->tail_size = 0;
2680	}
2681
2682	/* Sanity-check the sizes for stack allocations. */
2683	if (iv_size > MAX_IV_SIZE || nonce_size > MAX_IV_SIZE ||
2684	    rec_seq_size > TLS_MAX_REC_SEQ_SIZE || tag_size != TLS_TAG_SIZE ||
2685	    prot->aad_size > TLS_MAX_AAD_SIZE) {
2686		rc = -EINVAL;
2687		goto free_priv;
2688	}
2689
2690	prot->version = crypto_info->version;
2691	prot->cipher_type = crypto_info->cipher_type;
2692	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2693	prot->tag_size = tag_size;
2694	prot->overhead_size = prot->prepend_size +
2695			      prot->tag_size + prot->tail_size;
2696	prot->iv_size = iv_size;
2697	prot->salt_size = salt_size;
2698	cctx->iv = kmalloc(iv_size + salt_size, GFP_KERNEL);
2699	if (!cctx->iv) {
2700		rc = -ENOMEM;
2701		goto free_priv;
2702	}
2703	/* Note: 128 & 256 bit salt are the same size */
2704	prot->rec_seq_size = rec_seq_size;
2705	memcpy(cctx->iv, salt, salt_size);
2706	memcpy(cctx->iv + salt_size, iv, iv_size);
2707	cctx->rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
2708	if (!cctx->rec_seq) {
2709		rc = -ENOMEM;
2710		goto free_iv;
2711	}
2712
2713	if (!*aead) {
2714		*aead = crypto_alloc_aead(cipher_name, 0, 0);
2715		if (IS_ERR(*aead)) {
2716			rc = PTR_ERR(*aead);
2717			*aead = NULL;
2718			goto free_rec_seq;
2719		}
2720	}
2721
2722	ctx->push_pending_record = tls_sw_push_pending_record;
2723
2724	rc = crypto_aead_setkey(*aead, key, keysize);
2725
2726	if (rc)
2727		goto free_aead;
2728
2729	rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2730	if (rc)
2731		goto free_aead;
2732
2733	if (sw_ctx_rx) {
2734		tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2735
2736		tls_update_rx_zc_capable(ctx);
2737		sw_ctx_rx->async_capable =
2738			crypto_info->version != TLS_1_3_VERSION &&
2739			!!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2740
2741		rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2742		if (rc)
2743			goto free_aead;
2744	}
2745
2746	goto out;
2747
2748free_aead:
2749	crypto_free_aead(*aead);
2750	*aead = NULL;
2751free_rec_seq:
2752	kfree(cctx->rec_seq);
2753	cctx->rec_seq = NULL;
2754free_iv:
2755	kfree(cctx->iv);
2756	cctx->iv = NULL;
2757free_priv:
2758	if (tx) {
2759		kfree(ctx->priv_ctx_tx);
2760		ctx->priv_ctx_tx = NULL;
2761	} else {
2762		kfree(ctx->priv_ctx_rx);
2763		ctx->priv_ctx_rx = NULL;
2764	}
2765out:
2766	return rc;
2767}