Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2010,2015 Broadcom
   4 * Copyright (C) 2012 Stephen Warren
   5 */
   6
   7/**
   8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
   9 *
  10 * The clock tree on the 2835 has several levels.  There's a root
  11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  14 * produce up to 4 channels.  Finally, there is the level of clocks to
  15 * be consumed by other hardware components (like "H264" or "HDMI
  16 * state machine"), which divide off of some subset of the PLL
  17 * channels.
  18 *
  19 * All of the clocks in the tree are exposed in the DT, because the DT
  20 * may want to make assignments of the final layer of clocks to the
  21 * PLL channels, and some components of the hardware will actually
  22 * skip layers of the tree (for example, the pixel clock comes
  23 * directly from the PLLH PIX channel without using a CM_*CTL clock
  24 * generator).
  25 */
  26
  27#include <linux/clk-provider.h>
  28#include <linux/clkdev.h>
  29#include <linux/clk.h>
  30#include <linux/debugfs.h>
  31#include <linux/delay.h>
  32#include <linux/io.h>
  33#include <linux/math.h>
  34#include <linux/module.h>
  35#include <linux/of.h>
  36#include <linux/platform_device.h>
  37#include <linux/slab.h>
  38#include <dt-bindings/clock/bcm2835.h>
  39
  40#define CM_PASSWORD		0x5a000000
  41
  42#define CM_GNRICCTL		0x000
  43#define CM_GNRICDIV		0x004
  44# define CM_DIV_FRAC_BITS	12
  45# define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  46
  47#define CM_VPUCTL		0x008
  48#define CM_VPUDIV		0x00c
  49#define CM_SYSCTL		0x010
  50#define CM_SYSDIV		0x014
  51#define CM_PERIACTL		0x018
  52#define CM_PERIADIV		0x01c
  53#define CM_PERIICTL		0x020
  54#define CM_PERIIDIV		0x024
  55#define CM_H264CTL		0x028
  56#define CM_H264DIV		0x02c
  57#define CM_ISPCTL		0x030
  58#define CM_ISPDIV		0x034
  59#define CM_V3DCTL		0x038
  60#define CM_V3DDIV		0x03c
  61#define CM_CAM0CTL		0x040
  62#define CM_CAM0DIV		0x044
  63#define CM_CAM1CTL		0x048
  64#define CM_CAM1DIV		0x04c
  65#define CM_CCP2CTL		0x050
  66#define CM_CCP2DIV		0x054
  67#define CM_DSI0ECTL		0x058
  68#define CM_DSI0EDIV		0x05c
  69#define CM_DSI0PCTL		0x060
  70#define CM_DSI0PDIV		0x064
  71#define CM_DPICTL		0x068
  72#define CM_DPIDIV		0x06c
  73#define CM_GP0CTL		0x070
  74#define CM_GP0DIV		0x074
  75#define CM_GP1CTL		0x078
  76#define CM_GP1DIV		0x07c
  77#define CM_GP2CTL		0x080
  78#define CM_GP2DIV		0x084
  79#define CM_HSMCTL		0x088
  80#define CM_HSMDIV		0x08c
  81#define CM_OTPCTL		0x090
  82#define CM_OTPDIV		0x094
  83#define CM_PCMCTL		0x098
  84#define CM_PCMDIV		0x09c
  85#define CM_PWMCTL		0x0a0
  86#define CM_PWMDIV		0x0a4
  87#define CM_SLIMCTL		0x0a8
  88#define CM_SLIMDIV		0x0ac
  89#define CM_SMICTL		0x0b0
  90#define CM_SMIDIV		0x0b4
  91/* no definition for 0x0b8  and 0x0bc */
  92#define CM_TCNTCTL		0x0c0
  93# define CM_TCNT_SRC1_SHIFT		12
  94#define CM_TCNTCNT		0x0c4
  95#define CM_TECCTL		0x0c8
  96#define CM_TECDIV		0x0cc
  97#define CM_TD0CTL		0x0d0
  98#define CM_TD0DIV		0x0d4
  99#define CM_TD1CTL		0x0d8
 100#define CM_TD1DIV		0x0dc
 101#define CM_TSENSCTL		0x0e0
 102#define CM_TSENSDIV		0x0e4
 103#define CM_TIMERCTL		0x0e8
 104#define CM_TIMERDIV		0x0ec
 105#define CM_UARTCTL		0x0f0
 106#define CM_UARTDIV		0x0f4
 107#define CM_VECCTL		0x0f8
 108#define CM_VECDIV		0x0fc
 109#define CM_PULSECTL		0x190
 110#define CM_PULSEDIV		0x194
 111#define CM_SDCCTL		0x1a8
 112#define CM_SDCDIV		0x1ac
 113#define CM_ARMCTL		0x1b0
 114#define CM_AVEOCTL		0x1b8
 115#define CM_AVEODIV		0x1bc
 116#define CM_EMMCCTL		0x1c0
 117#define CM_EMMCDIV		0x1c4
 118#define CM_EMMC2CTL		0x1d0
 119#define CM_EMMC2DIV		0x1d4
 120
 121/* General bits for the CM_*CTL regs */
 122# define CM_ENABLE			BIT(4)
 123# define CM_KILL			BIT(5)
 124# define CM_GATE_BIT			6
 125# define CM_GATE			BIT(CM_GATE_BIT)
 126# define CM_BUSY			BIT(7)
 127# define CM_BUSYD			BIT(8)
 128# define CM_FRAC			BIT(9)
 129# define CM_SRC_SHIFT			0
 130# define CM_SRC_BITS			4
 131# define CM_SRC_MASK			0xf
 132# define CM_SRC_GND			0
 133# define CM_SRC_OSC			1
 134# define CM_SRC_TESTDEBUG0		2
 135# define CM_SRC_TESTDEBUG1		3
 136# define CM_SRC_PLLA_CORE		4
 137# define CM_SRC_PLLA_PER		4
 138# define CM_SRC_PLLC_CORE0		5
 139# define CM_SRC_PLLC_PER		5
 140# define CM_SRC_PLLC_CORE1		8
 141# define CM_SRC_PLLD_CORE		6
 142# define CM_SRC_PLLD_PER		6
 143# define CM_SRC_PLLH_AUX		7
 144# define CM_SRC_PLLC_CORE1		8
 145# define CM_SRC_PLLC_CORE2		9
 146
 147#define CM_OSCCOUNT		0x100
 148
 149#define CM_PLLA			0x104
 150# define CM_PLL_ANARST			BIT(8)
 151# define CM_PLLA_HOLDPER		BIT(7)
 152# define CM_PLLA_LOADPER		BIT(6)
 153# define CM_PLLA_HOLDCORE		BIT(5)
 154# define CM_PLLA_LOADCORE		BIT(4)
 155# define CM_PLLA_HOLDCCP2		BIT(3)
 156# define CM_PLLA_LOADCCP2		BIT(2)
 157# define CM_PLLA_HOLDDSI0		BIT(1)
 158# define CM_PLLA_LOADDSI0		BIT(0)
 159
 160#define CM_PLLC			0x108
 161# define CM_PLLC_HOLDPER		BIT(7)
 162# define CM_PLLC_LOADPER		BIT(6)
 163# define CM_PLLC_HOLDCORE2		BIT(5)
 164# define CM_PLLC_LOADCORE2		BIT(4)
 165# define CM_PLLC_HOLDCORE1		BIT(3)
 166# define CM_PLLC_LOADCORE1		BIT(2)
 167# define CM_PLLC_HOLDCORE0		BIT(1)
 168# define CM_PLLC_LOADCORE0		BIT(0)
 169
 170#define CM_PLLD			0x10c
 171# define CM_PLLD_HOLDPER		BIT(7)
 172# define CM_PLLD_LOADPER		BIT(6)
 173# define CM_PLLD_HOLDCORE		BIT(5)
 174# define CM_PLLD_LOADCORE		BIT(4)
 175# define CM_PLLD_HOLDDSI1		BIT(3)
 176# define CM_PLLD_LOADDSI1		BIT(2)
 177# define CM_PLLD_HOLDDSI0		BIT(1)
 178# define CM_PLLD_LOADDSI0		BIT(0)
 179
 180#define CM_PLLH			0x110
 181# define CM_PLLH_LOADRCAL		BIT(2)
 182# define CM_PLLH_LOADAUX		BIT(1)
 183# define CM_PLLH_LOADPIX		BIT(0)
 184
 185#define CM_LOCK			0x114
 186# define CM_LOCK_FLOCKH			BIT(12)
 187# define CM_LOCK_FLOCKD			BIT(11)
 188# define CM_LOCK_FLOCKC			BIT(10)
 189# define CM_LOCK_FLOCKB			BIT(9)
 190# define CM_LOCK_FLOCKA			BIT(8)
 191
 192#define CM_EVENT		0x118
 193#define CM_DSI1ECTL		0x158
 194#define CM_DSI1EDIV		0x15c
 195#define CM_DSI1PCTL		0x160
 196#define CM_DSI1PDIV		0x164
 197#define CM_DFTCTL		0x168
 198#define CM_DFTDIV		0x16c
 199
 200#define CM_PLLB			0x170
 201# define CM_PLLB_HOLDARM		BIT(1)
 202# define CM_PLLB_LOADARM		BIT(0)
 203
 204#define A2W_PLLA_CTRL		0x1100
 205#define A2W_PLLC_CTRL		0x1120
 206#define A2W_PLLD_CTRL		0x1140
 207#define A2W_PLLH_CTRL		0x1160
 208#define A2W_PLLB_CTRL		0x11e0
 209# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
 210# define A2W_PLL_CTRL_PWRDN		BIT(16)
 211# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
 212# define A2W_PLL_CTRL_PDIV_SHIFT	12
 213# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
 214# define A2W_PLL_CTRL_NDIV_SHIFT	0
 215
 216#define A2W_PLLA_ANA0		0x1010
 217#define A2W_PLLC_ANA0		0x1030
 218#define A2W_PLLD_ANA0		0x1050
 219#define A2W_PLLH_ANA0		0x1070
 220#define A2W_PLLB_ANA0		0x10f0
 221
 222#define A2W_PLL_KA_SHIFT	7
 223#define A2W_PLL_KA_MASK		GENMASK(9, 7)
 224#define A2W_PLL_KI_SHIFT	19
 225#define A2W_PLL_KI_MASK		GENMASK(21, 19)
 226#define A2W_PLL_KP_SHIFT	15
 227#define A2W_PLL_KP_MASK		GENMASK(18, 15)
 228
 229#define A2W_PLLH_KA_SHIFT	19
 230#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
 231#define A2W_PLLH_KI_LOW_SHIFT	22
 232#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
 233#define A2W_PLLH_KI_HIGH_SHIFT	0
 234#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
 235#define A2W_PLLH_KP_SHIFT	1
 236#define A2W_PLLH_KP_MASK	GENMASK(4, 1)
 237
 238#define A2W_XOSC_CTRL		0x1190
 239# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
 240# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
 241# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
 242# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
 243# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
 244# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
 245# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
 246# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
 247
 248#define A2W_PLLA_FRAC		0x1200
 249#define A2W_PLLC_FRAC		0x1220
 250#define A2W_PLLD_FRAC		0x1240
 251#define A2W_PLLH_FRAC		0x1260
 252#define A2W_PLLB_FRAC		0x12e0
 253# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
 254# define A2W_PLL_FRAC_BITS		20
 255
 256#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
 257#define A2W_PLL_DIV_BITS		8
 258#define A2W_PLL_DIV_SHIFT		0
 259
 260#define A2W_PLLA_DSI0		0x1300
 261#define A2W_PLLA_CORE		0x1400
 262#define A2W_PLLA_PER		0x1500
 263#define A2W_PLLA_CCP2		0x1600
 264
 265#define A2W_PLLC_CORE2		0x1320
 266#define A2W_PLLC_CORE1		0x1420
 267#define A2W_PLLC_PER		0x1520
 268#define A2W_PLLC_CORE0		0x1620
 269
 270#define A2W_PLLD_DSI0		0x1340
 271#define A2W_PLLD_CORE		0x1440
 272#define A2W_PLLD_PER		0x1540
 273#define A2W_PLLD_DSI1		0x1640
 274
 275#define A2W_PLLH_AUX		0x1360
 276#define A2W_PLLH_RCAL		0x1460
 277#define A2W_PLLH_PIX		0x1560
 278#define A2W_PLLH_STS		0x1660
 279
 280#define A2W_PLLH_CTRLR		0x1960
 281#define A2W_PLLH_FRACR		0x1a60
 282#define A2W_PLLH_AUXR		0x1b60
 283#define A2W_PLLH_RCALR		0x1c60
 284#define A2W_PLLH_PIXR		0x1d60
 285#define A2W_PLLH_STSR		0x1e60
 286
 287#define A2W_PLLB_ARM		0x13e0
 288#define A2W_PLLB_SP0		0x14e0
 289#define A2W_PLLB_SP1		0x15e0
 290#define A2W_PLLB_SP2		0x16e0
 291
 292#define LOCK_TIMEOUT_NS		100000000
 293#define BCM2835_MAX_FB_RATE	1750000000u
 294
 295#define SOC_BCM2835		BIT(0)
 296#define SOC_BCM2711		BIT(1)
 297#define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
 298
 299/*
 300 * Names of clocks used within the driver that need to be replaced
 301 * with an external parent's name.  This array is in the order that
 302 * the clocks node in the DT references external clocks.
 303 */
 304static const char *const cprman_parent_names[] = {
 305	"xosc",
 306	"dsi0_byte",
 307	"dsi0_ddr2",
 308	"dsi0_ddr",
 309	"dsi1_byte",
 310	"dsi1_ddr2",
 311	"dsi1_ddr",
 312};
 313
 314struct bcm2835_cprman {
 315	struct device *dev;
 316	void __iomem *regs;
 317	spinlock_t regs_lock; /* spinlock for all clocks */
 318	unsigned int soc;
 319
 320	/*
 321	 * Real names of cprman clock parents looked up through
 322	 * of_clk_get_parent_name(), which will be used in the
 323	 * parent_names[] arrays for clock registration.
 324	 */
 325	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 326
 327	/* Must be last */
 328	struct clk_hw_onecell_data onecell;
 329};
 330
 331struct cprman_plat_data {
 332	unsigned int soc;
 333};
 334
 335static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 336{
 337	writel(CM_PASSWORD | val, cprman->regs + reg);
 338}
 339
 340static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 341{
 342	return readl(cprman->regs + reg);
 343}
 344
 345/* Does a cycle of measuring a clock through the TCNT clock, which may
 346 * source from many other clocks in the system.
 347 */
 348static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 349					      u32 tcnt_mux)
 350{
 351	u32 osccount = 19200; /* 1ms */
 352	u32 count;
 353	ktime_t timeout;
 354
 355	spin_lock(&cprman->regs_lock);
 356
 357	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 358
 359	cprman_write(cprman, CM_TCNTCTL,
 360		     (tcnt_mux & CM_SRC_MASK) |
 361		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 362
 363	cprman_write(cprman, CM_OSCCOUNT, osccount);
 364
 365	/* do a kind delay at the start */
 366	mdelay(1);
 367
 368	/* Finish off whatever is left of OSCCOUNT */
 369	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 370	while (cprman_read(cprman, CM_OSCCOUNT)) {
 371		if (ktime_after(ktime_get(), timeout)) {
 372			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 373			count = 0;
 374			goto out;
 375		}
 376		cpu_relax();
 377	}
 378
 379	/* Wait for BUSY to clear. */
 380	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 381	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 382		if (ktime_after(ktime_get(), timeout)) {
 383			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 384			count = 0;
 385			goto out;
 386		}
 387		cpu_relax();
 388	}
 389
 390	count = cprman_read(cprman, CM_TCNTCNT);
 391
 392	cprman_write(cprman, CM_TCNTCTL, 0);
 393
 394out:
 395	spin_unlock(&cprman->regs_lock);
 396
 397	return count * 1000;
 398}
 399
 400static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 401				   const struct debugfs_reg32 *regs,
 402				   size_t nregs, struct dentry *dentry)
 403{
 404	struct debugfs_regset32 *regset;
 405
 406	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 407	if (!regset)
 408		return;
 409
 410	regset->regs = regs;
 411	regset->nregs = nregs;
 412	regset->base = cprman->regs + base;
 413
 414	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 415}
 416
 417struct bcm2835_pll_data {
 418	const char *name;
 419	u32 cm_ctrl_reg;
 420	u32 a2w_ctrl_reg;
 421	u32 frac_reg;
 422	u32 ana_reg_base;
 423	u32 reference_enable_mask;
 424	/* Bit in CM_LOCK to indicate when the PLL has locked. */
 425	u32 lock_mask;
 426	u32 flags;
 427
 428	const struct bcm2835_pll_ana_bits *ana;
 429
 430	unsigned long min_rate;
 431	unsigned long max_rate;
 432	/*
 433	 * Highest rate for the VCO before we have to use the
 434	 * pre-divide-by-2.
 435	 */
 436	unsigned long max_fb_rate;
 437};
 438
 439struct bcm2835_pll_ana_bits {
 440	u32 mask0;
 441	u32 set0;
 442	u32 mask1;
 443	u32 set1;
 444	u32 mask3;
 445	u32 set3;
 446	u32 fb_prediv_mask;
 447};
 448
 449static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 450	.mask0 = 0,
 451	.set0 = 0,
 452	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 453	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 454	.mask3 = A2W_PLL_KA_MASK,
 455	.set3 = (2 << A2W_PLL_KA_SHIFT),
 456	.fb_prediv_mask = BIT(14),
 457};
 458
 459static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 460	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 461	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 462	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 463	.set1 = (6 << A2W_PLLH_KP_SHIFT),
 464	.mask3 = 0,
 465	.set3 = 0,
 466	.fb_prediv_mask = BIT(11),
 467};
 468
 469struct bcm2835_pll_divider_data {
 470	const char *name;
 471	const char *source_pll;
 472
 473	u32 cm_reg;
 474	u32 a2w_reg;
 475
 476	u32 load_mask;
 477	u32 hold_mask;
 478	u32 fixed_divider;
 479	u32 flags;
 480};
 481
 482struct bcm2835_clock_data {
 483	const char *name;
 484
 485	const char *const *parents;
 486	int num_mux_parents;
 487
 488	/* Bitmap encoding which parents accept rate change propagation. */
 489	unsigned int set_rate_parent;
 490
 491	u32 ctl_reg;
 492	u32 div_reg;
 493
 494	/* Number of integer bits in the divider */
 495	u32 int_bits;
 496	/* Number of fractional bits in the divider */
 497	u32 frac_bits;
 498
 499	u32 flags;
 500
 501	bool is_vpu_clock;
 502	bool is_mash_clock;
 503	bool low_jitter;
 504
 505	u32 tcnt_mux;
 506
 507	bool round_up;
 508};
 509
 510struct bcm2835_gate_data {
 511	const char *name;
 512	const char *parent;
 513
 514	u32 ctl_reg;
 515};
 516
 517struct bcm2835_pll {
 518	struct clk_hw hw;
 519	struct bcm2835_cprman *cprman;
 520	const struct bcm2835_pll_data *data;
 521};
 522
 523static int bcm2835_pll_is_on(struct clk_hw *hw)
 524{
 525	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 526	struct bcm2835_cprman *cprman = pll->cprman;
 527	const struct bcm2835_pll_data *data = pll->data;
 528
 529	return cprman_read(cprman, data->a2w_ctrl_reg) &
 530		A2W_PLL_CTRL_PRST_DISABLE;
 531}
 532
 533static u32 bcm2835_pll_get_prediv_mask(struct bcm2835_cprman *cprman,
 534				       const struct bcm2835_pll_data *data)
 535{
 536	/*
 537	 * On BCM2711 there isn't a pre-divisor available in the PLL feedback
 538	 * loop. Bits 13:14 of ANA1 (PLLA,PLLB,PLLC,PLLD) have been re-purposed
 539	 * for to for VCO RANGE bits.
 540	 */
 541	if (cprman->soc & SOC_BCM2711)
 542		return 0;
 543
 544	return data->ana->fb_prediv_mask;
 545}
 546
 547static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 548					     unsigned long parent_rate,
 549					     u32 *ndiv, u32 *fdiv)
 550{
 551	u64 div;
 552
 553	div = (u64)rate << A2W_PLL_FRAC_BITS;
 554	do_div(div, parent_rate);
 555
 556	*ndiv = div >> A2W_PLL_FRAC_BITS;
 557	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 558}
 559
 560static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 561					   u32 ndiv, u32 fdiv, u32 pdiv)
 562{
 563	u64 rate;
 564
 565	if (pdiv == 0)
 566		return 0;
 567
 568	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 569	do_div(rate, pdiv);
 570	return rate >> A2W_PLL_FRAC_BITS;
 571}
 572
 573static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 574				   unsigned long *parent_rate)
 575{
 576	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 577	const struct bcm2835_pll_data *data = pll->data;
 578	u32 ndiv, fdiv;
 579
 580	rate = clamp(rate, data->min_rate, data->max_rate);
 581
 582	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 583
 584	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 585}
 586
 587static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 588					  unsigned long parent_rate)
 589{
 590	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 591	struct bcm2835_cprman *cprman = pll->cprman;
 592	const struct bcm2835_pll_data *data = pll->data;
 593	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 594	u32 ndiv, pdiv, fdiv;
 595	bool using_prediv;
 596
 597	if (parent_rate == 0)
 598		return 0;
 599
 600	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 601	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 602	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 603	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 604		       bcm2835_pll_get_prediv_mask(cprman, data);
 605
 606	if (using_prediv) {
 607		ndiv *= 2;
 608		fdiv *= 2;
 609	}
 610
 611	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 612}
 613
 614static void bcm2835_pll_off(struct clk_hw *hw)
 615{
 616	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 617	struct bcm2835_cprman *cprman = pll->cprman;
 618	const struct bcm2835_pll_data *data = pll->data;
 619
 620	spin_lock(&cprman->regs_lock);
 621	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 622	cprman_write(cprman, data->a2w_ctrl_reg,
 623		     cprman_read(cprman, data->a2w_ctrl_reg) |
 624		     A2W_PLL_CTRL_PWRDN);
 625	spin_unlock(&cprman->regs_lock);
 626}
 627
 628static int bcm2835_pll_on(struct clk_hw *hw)
 629{
 630	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 631	struct bcm2835_cprman *cprman = pll->cprman;
 632	const struct bcm2835_pll_data *data = pll->data;
 633	ktime_t timeout;
 634
 635	cprman_write(cprman, data->a2w_ctrl_reg,
 636		     cprman_read(cprman, data->a2w_ctrl_reg) &
 637		     ~A2W_PLL_CTRL_PWRDN);
 638
 639	/* Take the PLL out of reset. */
 640	spin_lock(&cprman->regs_lock);
 641	cprman_write(cprman, data->cm_ctrl_reg,
 642		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 643	spin_unlock(&cprman->regs_lock);
 644
 645	/* Wait for the PLL to lock. */
 646	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 647	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 648		if (ktime_after(ktime_get(), timeout)) {
 649			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 650				clk_hw_get_name(hw));
 651			return -ETIMEDOUT;
 652		}
 653
 654		cpu_relax();
 655	}
 656
 657	cprman_write(cprman, data->a2w_ctrl_reg,
 658		     cprman_read(cprman, data->a2w_ctrl_reg) |
 659		     A2W_PLL_CTRL_PRST_DISABLE);
 660
 661	return 0;
 662}
 663
 664static void
 665bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 666{
 667	int i;
 668
 669	/*
 670	 * ANA register setup is done as a series of writes to
 671	 * ANA3-ANA0, in that order.  This lets us write all 4
 672	 * registers as a single cycle of the serdes interface (taking
 673	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
 674	 * 3 individually through their partial-write registers, each
 675	 * would be their own serdes cycle.
 676	 */
 677	for (i = 3; i >= 0; i--)
 678		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 679}
 680
 681static int bcm2835_pll_set_rate(struct clk_hw *hw,
 682				unsigned long rate, unsigned long parent_rate)
 683{
 684	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 685	struct bcm2835_cprman *cprman = pll->cprman;
 686	const struct bcm2835_pll_data *data = pll->data;
 687	u32 prediv_mask = bcm2835_pll_get_prediv_mask(cprman, data);
 688	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 689	u32 ndiv, fdiv, a2w_ctl;
 690	u32 ana[4];
 691	int i;
 692
 693	if (rate > data->max_fb_rate) {
 694		use_fb_prediv = true;
 695		rate /= 2;
 696	} else {
 697		use_fb_prediv = false;
 698	}
 699
 700	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 701
 702	for (i = 3; i >= 0; i--)
 703		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 704
 705	was_using_prediv = ana[1] & prediv_mask;
 706
 707	ana[0] &= ~data->ana->mask0;
 708	ana[0] |= data->ana->set0;
 709	ana[1] &= ~data->ana->mask1;
 710	ana[1] |= data->ana->set1;
 711	ana[3] &= ~data->ana->mask3;
 712	ana[3] |= data->ana->set3;
 713
 714	if (was_using_prediv && !use_fb_prediv) {
 715		ana[1] &= ~prediv_mask;
 716		do_ana_setup_first = true;
 717	} else if (!was_using_prediv && use_fb_prediv) {
 718		ana[1] |= prediv_mask;
 719		do_ana_setup_first = false;
 720	} else {
 721		do_ana_setup_first = true;
 722	}
 723
 724	/* Unmask the reference clock from the oscillator. */
 725	spin_lock(&cprman->regs_lock);
 726	cprman_write(cprman, A2W_XOSC_CTRL,
 727		     cprman_read(cprman, A2W_XOSC_CTRL) |
 728		     data->reference_enable_mask);
 729	spin_unlock(&cprman->regs_lock);
 730
 731	if (do_ana_setup_first)
 732		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 733
 734	/* Set the PLL multiplier from the oscillator. */
 735	cprman_write(cprman, data->frac_reg, fdiv);
 736
 737	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 738	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 739	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 740	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 741	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 742	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 743
 744	if (!do_ana_setup_first)
 745		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 746
 747	return 0;
 748}
 749
 750static void bcm2835_pll_debug_init(struct clk_hw *hw,
 751				  struct dentry *dentry)
 752{
 753	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 754	struct bcm2835_cprman *cprman = pll->cprman;
 755	const struct bcm2835_pll_data *data = pll->data;
 756	struct debugfs_reg32 *regs;
 757
 758	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 759	if (!regs)
 760		return;
 761
 762	regs[0].name = "cm_ctrl";
 763	regs[0].offset = data->cm_ctrl_reg;
 764	regs[1].name = "a2w_ctrl";
 765	regs[1].offset = data->a2w_ctrl_reg;
 766	regs[2].name = "frac";
 767	regs[2].offset = data->frac_reg;
 768	regs[3].name = "ana0";
 769	regs[3].offset = data->ana_reg_base + 0 * 4;
 770	regs[4].name = "ana1";
 771	regs[4].offset = data->ana_reg_base + 1 * 4;
 772	regs[5].name = "ana2";
 773	regs[5].offset = data->ana_reg_base + 2 * 4;
 774	regs[6].name = "ana3";
 775	regs[6].offset = data->ana_reg_base + 3 * 4;
 776
 777	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 778}
 779
 780static const struct clk_ops bcm2835_pll_clk_ops = {
 781	.is_prepared = bcm2835_pll_is_on,
 782	.prepare = bcm2835_pll_on,
 783	.unprepare = bcm2835_pll_off,
 784	.recalc_rate = bcm2835_pll_get_rate,
 785	.set_rate = bcm2835_pll_set_rate,
 786	.round_rate = bcm2835_pll_round_rate,
 787	.debug_init = bcm2835_pll_debug_init,
 788};
 789
 790struct bcm2835_pll_divider {
 791	struct clk_divider div;
 792	struct bcm2835_cprman *cprman;
 793	const struct bcm2835_pll_divider_data *data;
 794};
 795
 796static struct bcm2835_pll_divider *
 797bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 798{
 799	return container_of(hw, struct bcm2835_pll_divider, div.hw);
 800}
 801
 802static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 803{
 804	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 805	struct bcm2835_cprman *cprman = divider->cprman;
 806	const struct bcm2835_pll_divider_data *data = divider->data;
 807
 808	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 809}
 810
 811static int bcm2835_pll_divider_determine_rate(struct clk_hw *hw,
 812					      struct clk_rate_request *req)
 813{
 814	return clk_divider_ops.determine_rate(hw, req);
 815}
 816
 817static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 818						  unsigned long parent_rate)
 819{
 820	return clk_divider_ops.recalc_rate(hw, parent_rate);
 821}
 822
 823static void bcm2835_pll_divider_off(struct clk_hw *hw)
 824{
 825	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 826	struct bcm2835_cprman *cprman = divider->cprman;
 827	const struct bcm2835_pll_divider_data *data = divider->data;
 828
 829	spin_lock(&cprman->regs_lock);
 830	cprman_write(cprman, data->cm_reg,
 831		     (cprman_read(cprman, data->cm_reg) &
 832		      ~data->load_mask) | data->hold_mask);
 833	cprman_write(cprman, data->a2w_reg,
 834		     cprman_read(cprman, data->a2w_reg) |
 835		     A2W_PLL_CHANNEL_DISABLE);
 836	spin_unlock(&cprman->regs_lock);
 837}
 838
 839static int bcm2835_pll_divider_on(struct clk_hw *hw)
 840{
 841	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 842	struct bcm2835_cprman *cprman = divider->cprman;
 843	const struct bcm2835_pll_divider_data *data = divider->data;
 844
 845	spin_lock(&cprman->regs_lock);
 846	cprman_write(cprman, data->a2w_reg,
 847		     cprman_read(cprman, data->a2w_reg) &
 848		     ~A2W_PLL_CHANNEL_DISABLE);
 849
 850	cprman_write(cprman, data->cm_reg,
 851		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 852	spin_unlock(&cprman->regs_lock);
 853
 854	return 0;
 855}
 856
 857static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 858					unsigned long rate,
 859					unsigned long parent_rate)
 860{
 861	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 862	struct bcm2835_cprman *cprman = divider->cprman;
 863	const struct bcm2835_pll_divider_data *data = divider->data;
 864	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 865
 866	div = DIV_ROUND_UP_ULL(parent_rate, rate);
 867
 868	div = min(div, max_div);
 869	if (div == max_div)
 870		div = 0;
 871
 872	cprman_write(cprman, data->a2w_reg, div);
 873	cm = cprman_read(cprman, data->cm_reg);
 874	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 875	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 876
 877	return 0;
 878}
 879
 880static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 881					   struct dentry *dentry)
 882{
 883	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 884	struct bcm2835_cprman *cprman = divider->cprman;
 885	const struct bcm2835_pll_divider_data *data = divider->data;
 886	struct debugfs_reg32 *regs;
 887
 888	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 889	if (!regs)
 890		return;
 891
 892	regs[0].name = "cm";
 893	regs[0].offset = data->cm_reg;
 894	regs[1].name = "a2w";
 895	regs[1].offset = data->a2w_reg;
 896
 897	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 898}
 899
 900static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 901	.is_prepared = bcm2835_pll_divider_is_on,
 902	.prepare = bcm2835_pll_divider_on,
 903	.unprepare = bcm2835_pll_divider_off,
 904	.recalc_rate = bcm2835_pll_divider_get_rate,
 905	.set_rate = bcm2835_pll_divider_set_rate,
 906	.determine_rate = bcm2835_pll_divider_determine_rate,
 907	.debug_init = bcm2835_pll_divider_debug_init,
 908};
 909
 910/*
 911 * The CM dividers do fixed-point division, so we can't use the
 912 * generic integer divider code like the PLL dividers do (and we can't
 913 * fake it by having some fixed shifts preceding it in the clock tree,
 914 * because we'd run out of bits in a 32-bit unsigned long).
 915 */
 916struct bcm2835_clock {
 917	struct clk_hw hw;
 918	struct bcm2835_cprman *cprman;
 919	const struct bcm2835_clock_data *data;
 920};
 921
 922static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 923{
 924	return container_of(hw, struct bcm2835_clock, hw);
 925}
 926
 927static int bcm2835_clock_is_on(struct clk_hw *hw)
 928{
 929	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 930	struct bcm2835_cprman *cprman = clock->cprman;
 931	const struct bcm2835_clock_data *data = clock->data;
 932
 933	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 934}
 935
 936static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 937				    unsigned long rate,
 938				    unsigned long parent_rate)
 939{
 940	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 941	const struct bcm2835_clock_data *data = clock->data;
 942	u32 unused_frac_mask =
 943		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 944	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 945	u32 div, mindiv, maxdiv;
 946
 947	do_div(temp, rate);
 948	div = temp;
 949	div &= ~unused_frac_mask;
 950
 951	/* different clamping limits apply for a mash clock */
 952	if (data->is_mash_clock) {
 953		/* clamp to min divider of 2 */
 954		mindiv = 2 << CM_DIV_FRAC_BITS;
 955		/* clamp to the highest possible integer divider */
 956		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 957	} else {
 958		/* clamp to min divider of 1 */
 959		mindiv = 1 << CM_DIV_FRAC_BITS;
 960		/* clamp to the highest possible fractional divider */
 961		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 962				 CM_DIV_FRAC_BITS - data->frac_bits);
 963	}
 964
 965	/* apply the clamping  limits */
 966	div = max_t(u32, div, mindiv);
 967	div = min_t(u32, div, maxdiv);
 968
 969	return div;
 970}
 971
 972static unsigned long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 973						     unsigned long parent_rate,
 974						     u32 div)
 975{
 976	const struct bcm2835_clock_data *data = clock->data;
 977	u64 temp;
 978
 979	if (data->int_bits == 0 && data->frac_bits == 0)
 980		return parent_rate;
 981
 982	/*
 983	 * The divisor is a 12.12 fixed point field, but only some of
 984	 * the bits are populated in any given clock.
 985	 */
 986	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 987	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 988
 989	if (div == 0)
 990		return 0;
 991
 992	temp = (u64)parent_rate << data->frac_bits;
 993
 994	do_div(temp, div);
 995
 996	return temp;
 997}
 998
 999static unsigned long bcm2835_round_rate(unsigned long rate)
1000{
1001	unsigned long scaler;
1002	unsigned long limit;
1003
1004	limit = rate / 100000;
1005
1006	scaler = 1;
1007	while (scaler < limit)
1008		scaler *= 10;
1009
1010	/*
1011	 * If increasing a clock by less than 0.1% changes it
1012	 * from ..999.. to ..000.., round up.
1013	 */
1014	if ((rate + scaler - 1) / scaler % 1000 == 0)
1015		rate = roundup(rate, scaler);
1016
1017	return rate;
1018}
1019
1020static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
1021					    unsigned long parent_rate)
1022{
1023	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1024	struct bcm2835_cprman *cprman = clock->cprman;
1025	const struct bcm2835_clock_data *data = clock->data;
1026	unsigned long rate;
1027	u32 div;
1028
1029	if (data->int_bits == 0 && data->frac_bits == 0)
1030		return parent_rate;
1031
1032	div = cprman_read(cprman, data->div_reg);
1033
1034	rate = bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1035
1036	if (data->round_up)
1037		rate = bcm2835_round_rate(rate);
1038
1039	return rate;
1040}
1041
1042static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1043{
1044	struct bcm2835_cprman *cprman = clock->cprman;
1045	const struct bcm2835_clock_data *data = clock->data;
1046	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1047
1048	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1049		if (ktime_after(ktime_get(), timeout)) {
1050			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1051				clk_hw_get_name(&clock->hw));
1052			return;
1053		}
1054		cpu_relax();
1055	}
1056}
1057
1058static void bcm2835_clock_off(struct clk_hw *hw)
1059{
1060	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1061	struct bcm2835_cprman *cprman = clock->cprman;
1062	const struct bcm2835_clock_data *data = clock->data;
1063
1064	spin_lock(&cprman->regs_lock);
1065	cprman_write(cprman, data->ctl_reg,
1066		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1067	spin_unlock(&cprman->regs_lock);
1068
1069	/* BUSY will remain high until the divider completes its cycle. */
1070	bcm2835_clock_wait_busy(clock);
1071}
1072
1073static int bcm2835_clock_on(struct clk_hw *hw)
1074{
1075	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1076	struct bcm2835_cprman *cprman = clock->cprman;
1077	const struct bcm2835_clock_data *data = clock->data;
1078
1079	spin_lock(&cprman->regs_lock);
1080	cprman_write(cprman, data->ctl_reg,
1081		     cprman_read(cprman, data->ctl_reg) |
1082		     CM_ENABLE |
1083		     CM_GATE);
1084	spin_unlock(&cprman->regs_lock);
1085
1086	/* Debug code to measure the clock once it's turned on to see
1087	 * if it's ticking at the rate we expect.
1088	 */
1089	if (data->tcnt_mux && false) {
1090		dev_info(cprman->dev,
1091			 "clk %s: rate %ld, measure %ld\n",
1092			 data->name,
1093			 clk_hw_get_rate(hw),
1094			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1095	}
1096
1097	return 0;
1098}
1099
1100static int bcm2835_clock_set_rate(struct clk_hw *hw,
1101				  unsigned long rate, unsigned long parent_rate)
1102{
1103	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1104	struct bcm2835_cprman *cprman = clock->cprman;
1105	const struct bcm2835_clock_data *data = clock->data;
1106	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate);
1107	u32 ctl;
1108
1109	spin_lock(&cprman->regs_lock);
1110
1111	/*
1112	 * Setting up frac support
1113	 *
1114	 * In principle it is recommended to stop/start the clock first,
1115	 * but as we set CLK_SET_RATE_GATE during registration of the
1116	 * clock this requirement should be take care of by the
1117	 * clk-framework.
1118	 */
1119	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1120	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1121	cprman_write(cprman, data->ctl_reg, ctl);
1122
1123	cprman_write(cprman, data->div_reg, div);
1124
1125	spin_unlock(&cprman->regs_lock);
1126
1127	return 0;
1128}
1129
1130static bool
1131bcm2835_clk_is_pllc(struct clk_hw *hw)
1132{
1133	if (!hw)
1134		return false;
1135
1136	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1137}
1138
1139static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1140							int parent_idx,
1141							unsigned long rate,
1142							u32 *div,
1143							unsigned long *prate,
1144							unsigned long *avgrate)
1145{
1146	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1147	struct bcm2835_cprman *cprman = clock->cprman;
1148	const struct bcm2835_clock_data *data = clock->data;
1149	unsigned long best_rate = 0;
1150	u32 curdiv, mindiv, maxdiv;
1151	struct clk_hw *parent;
1152
1153	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1154
1155	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1156		*prate = clk_hw_get_rate(parent);
1157		*div = bcm2835_clock_choose_div(hw, rate, *prate);
1158
1159		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1160
1161		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1162			unsigned long high, low;
1163			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1164
1165			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1166							       int_div);
1167			int_div += CM_DIV_FRAC_MASK + 1;
1168			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1169							      int_div);
1170
1171			/*
1172			 * Return a value which is the maximum deviation
1173			 * below the ideal rate, for use as a metric.
1174			 */
1175			return *avgrate - max(*avgrate - low, high - *avgrate);
1176		}
1177		return *avgrate;
1178	}
1179
1180	if (data->frac_bits)
1181		dev_warn(cprman->dev,
1182			"frac bits are not used when propagating rate change");
1183
1184	/* clamp to min divider of 2 if we're dealing with a mash clock */
1185	mindiv = data->is_mash_clock ? 2 : 1;
1186	maxdiv = BIT(data->int_bits) - 1;
1187
1188	/* TODO: Be smart, and only test a subset of the available divisors. */
1189	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1190		unsigned long tmp_rate;
1191
1192		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1193		tmp_rate /= curdiv;
1194		if (curdiv == mindiv ||
1195		    (tmp_rate > best_rate && tmp_rate <= rate))
1196			best_rate = tmp_rate;
1197
1198		if (best_rate == rate)
1199			break;
1200	}
1201
1202	*div = curdiv << CM_DIV_FRAC_BITS;
1203	*prate = curdiv * best_rate;
1204	*avgrate = best_rate;
1205
1206	return best_rate;
1207}
1208
1209static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1210					struct clk_rate_request *req)
1211{
1212	struct clk_hw *parent, *best_parent = NULL;
1213	bool current_parent_is_pllc;
1214	unsigned long rate, best_rate = 0;
1215	unsigned long prate, best_prate = 0;
1216	unsigned long avgrate, best_avgrate = 0;
1217	size_t i;
1218	u32 div;
1219
1220	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1221
1222	/*
1223	 * Select parent clock that results in the closest but lower rate
1224	 */
1225	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1226		parent = clk_hw_get_parent_by_index(hw, i);
1227		if (!parent)
1228			continue;
1229
1230		/*
1231		 * Don't choose a PLLC-derived clock as our parent
1232		 * unless it had been manually set that way.  PLLC's
1233		 * frequency gets adjusted by the firmware due to
1234		 * over-temp or under-voltage conditions, without
1235		 * prior notification to our clock consumer.
1236		 */
1237		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1238			continue;
1239
1240		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1241							  &div, &prate,
1242							  &avgrate);
1243		if (abs(req->rate - rate) < abs(req->rate - best_rate)) {
1244			best_parent = parent;
1245			best_prate = prate;
1246			best_rate = rate;
1247			best_avgrate = avgrate;
1248		}
1249	}
1250
1251	if (!best_parent)
1252		return -EINVAL;
1253
1254	req->best_parent_hw = best_parent;
1255	req->best_parent_rate = best_prate;
1256
1257	req->rate = best_avgrate;
1258
1259	return 0;
1260}
1261
1262static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1263{
1264	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1265	struct bcm2835_cprman *cprman = clock->cprman;
1266	const struct bcm2835_clock_data *data = clock->data;
1267	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1268
1269	cprman_write(cprman, data->ctl_reg, src);
1270	return 0;
1271}
1272
1273static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1274{
1275	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1276	struct bcm2835_cprman *cprman = clock->cprman;
1277	const struct bcm2835_clock_data *data = clock->data;
1278	u32 src = cprman_read(cprman, data->ctl_reg);
1279
1280	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1281}
1282
1283static const struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1284	{
1285		.name = "ctl",
1286		.offset = 0,
1287	},
1288	{
1289		.name = "div",
1290		.offset = 4,
1291	},
1292};
1293
1294static void bcm2835_clock_debug_init(struct clk_hw *hw,
1295				    struct dentry *dentry)
1296{
1297	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1298	struct bcm2835_cprman *cprman = clock->cprman;
1299	const struct bcm2835_clock_data *data = clock->data;
1300
1301	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1302		bcm2835_debugfs_clock_reg32,
1303		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1304		dentry);
1305}
1306
1307static const struct clk_ops bcm2835_clock_clk_ops = {
1308	.is_prepared = bcm2835_clock_is_on,
1309	.prepare = bcm2835_clock_on,
1310	.unprepare = bcm2835_clock_off,
1311	.recalc_rate = bcm2835_clock_get_rate,
1312	.set_rate = bcm2835_clock_set_rate,
1313	.determine_rate = bcm2835_clock_determine_rate,
1314	.set_parent = bcm2835_clock_set_parent,
1315	.get_parent = bcm2835_clock_get_parent,
1316	.debug_init = bcm2835_clock_debug_init,
1317};
1318
1319static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1320{
1321	return true;
1322}
1323
1324/*
1325 * The VPU clock can never be disabled (it doesn't have an ENABLE
1326 * bit), so it gets its own set of clock ops.
1327 */
1328static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1329	.is_prepared = bcm2835_vpu_clock_is_on,
1330	.recalc_rate = bcm2835_clock_get_rate,
1331	.set_rate = bcm2835_clock_set_rate,
1332	.determine_rate = bcm2835_clock_determine_rate,
1333	.set_parent = bcm2835_clock_set_parent,
1334	.get_parent = bcm2835_clock_get_parent,
1335	.debug_init = bcm2835_clock_debug_init,
1336};
1337
1338static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1339					   const void *data)
1340{
1341	const struct bcm2835_pll_data *pll_data = data;
1342	struct bcm2835_pll *pll;
1343	struct clk_init_data init;
1344	int ret;
1345
1346	memset(&init, 0, sizeof(init));
1347
1348	/* All of the PLLs derive from the external oscillator. */
1349	init.parent_names = &cprman->real_parent_names[0];
1350	init.num_parents = 1;
1351	init.name = pll_data->name;
1352	init.ops = &bcm2835_pll_clk_ops;
1353	init.flags = pll_data->flags | CLK_IGNORE_UNUSED;
1354
1355	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1356	if (!pll)
1357		return NULL;
1358
1359	pll->cprman = cprman;
1360	pll->data = pll_data;
1361	pll->hw.init = &init;
1362
1363	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1364	if (ret) {
1365		kfree(pll);
1366		return NULL;
1367	}
1368	return &pll->hw;
1369}
1370
1371static struct clk_hw *
1372bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1373			     const void *data)
1374{
1375	const struct bcm2835_pll_divider_data *divider_data = data;
1376	struct bcm2835_pll_divider *divider;
1377	struct clk_init_data init;
1378	const char *divider_name;
1379	int ret;
1380
1381	if (divider_data->fixed_divider != 1) {
1382		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1383					      "%s_prediv", divider_data->name);
1384		if (!divider_name)
1385			return NULL;
1386	} else {
1387		divider_name = divider_data->name;
1388	}
1389
1390	memset(&init, 0, sizeof(init));
1391
1392	init.parent_names = &divider_data->source_pll;
1393	init.num_parents = 1;
1394	init.name = divider_name;
1395	init.ops = &bcm2835_pll_divider_clk_ops;
1396	init.flags = divider_data->flags | CLK_IGNORE_UNUSED;
1397
1398	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1399	if (!divider)
1400		return NULL;
1401
1402	divider->div.reg = cprman->regs + divider_data->a2w_reg;
1403	divider->div.shift = A2W_PLL_DIV_SHIFT;
1404	divider->div.width = A2W_PLL_DIV_BITS;
1405	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1406	divider->div.lock = &cprman->regs_lock;
1407	divider->div.hw.init = &init;
1408	divider->div.table = NULL;
1409
1410	divider->cprman = cprman;
1411	divider->data = divider_data;
1412
1413	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1414	if (ret)
1415		return ERR_PTR(ret);
1416
1417	/*
1418	 * PLLH's channels have a fixed divide by 10 afterwards, which
1419	 * is what our consumers are actually using.
1420	 */
1421	if (divider_data->fixed_divider != 1) {
1422		return clk_hw_register_fixed_factor(cprman->dev,
1423						    divider_data->name,
1424						    divider_name,
1425						    CLK_SET_RATE_PARENT,
1426						    1,
1427						    divider_data->fixed_divider);
1428	}
1429
1430	return &divider->div.hw;
1431}
1432
1433static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1434					     const void *data)
1435{
1436	const struct bcm2835_clock_data *clock_data = data;
1437	struct bcm2835_clock *clock;
1438	struct clk_init_data init;
1439	const char *parents[1 << CM_SRC_BITS];
1440	size_t i;
1441	int ret;
1442
1443	/*
1444	 * Replace our strings referencing parent clocks with the
1445	 * actual clock-output-name of the parent.
1446	 */
1447	for (i = 0; i < clock_data->num_mux_parents; i++) {
1448		parents[i] = clock_data->parents[i];
1449
1450		ret = match_string(cprman_parent_names,
1451				   ARRAY_SIZE(cprman_parent_names),
1452				   parents[i]);
1453		if (ret >= 0)
1454			parents[i] = cprman->real_parent_names[ret];
1455	}
1456
1457	memset(&init, 0, sizeof(init));
1458	init.parent_names = parents;
1459	init.num_parents = clock_data->num_mux_parents;
1460	init.name = clock_data->name;
1461	init.flags = clock_data->flags | CLK_IGNORE_UNUSED;
1462
1463	/*
1464	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1465	 * rate changes on at least of the parents.
1466	 */
1467	if (clock_data->set_rate_parent)
1468		init.flags |= CLK_SET_RATE_PARENT;
1469
1470	if (clock_data->is_vpu_clock) {
1471		init.ops = &bcm2835_vpu_clock_clk_ops;
1472	} else {
1473		init.ops = &bcm2835_clock_clk_ops;
1474		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1475
1476		/* If the clock wasn't actually enabled at boot, it's not
1477		 * critical.
1478		 */
1479		if (!(cprman_read(cprman, clock_data->ctl_reg) & CM_ENABLE))
1480			init.flags &= ~CLK_IS_CRITICAL;
1481	}
1482
1483	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1484	if (!clock)
1485		return NULL;
1486
1487	clock->cprman = cprman;
1488	clock->data = clock_data;
1489	clock->hw.init = &init;
1490
1491	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1492	if (ret)
1493		return ERR_PTR(ret);
1494	return &clock->hw;
1495}
1496
1497static struct clk_hw *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1498					    const void *data)
1499{
1500	const struct bcm2835_gate_data *gate_data = data;
1501
1502	return clk_hw_register_gate(cprman->dev, gate_data->name,
1503				    gate_data->parent,
1504				    CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1505				    cprman->regs + gate_data->ctl_reg,
1506				    CM_GATE_BIT, 0, &cprman->regs_lock);
1507}
1508
1509struct bcm2835_clk_desc {
1510	struct clk_hw *(*clk_register)(struct bcm2835_cprman *cprman,
1511				       const void *data);
1512	unsigned int supported;
1513	const void *data;
1514};
1515
1516/* assignment helper macros for different clock types */
1517#define _REGISTER(f, s, ...) { .clk_register = f, \
1518			       .supported = s,				\
1519			       .data = __VA_ARGS__ }
1520#define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1521					  s,				\
1522					  &(struct bcm2835_pll_data)	\
1523					  {__VA_ARGS__})
1524#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1525					   s,				  \
1526					   &(struct bcm2835_pll_divider_data) \
1527					   {__VA_ARGS__})
1528#define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1529					  s,				\
1530					  &(struct bcm2835_clock_data)	\
1531					  {__VA_ARGS__})
1532#define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1533					  s,				\
1534					  &(struct bcm2835_gate_data)	\
1535					  {__VA_ARGS__})
1536
1537/* parent mux arrays plus helper macros */
1538
1539/* main oscillator parent mux */
1540static const char *const bcm2835_clock_osc_parents[] = {
1541	"gnd",
1542	"xosc",
1543	"testdebug0",
1544	"testdebug1"
1545};
1546
1547#define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1548	s,								\
1549	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1550	.parents = bcm2835_clock_osc_parents,				\
1551	__VA_ARGS__)
1552
1553/* main peripherial parent mux */
1554static const char *const bcm2835_clock_per_parents[] = {
1555	"gnd",
1556	"xosc",
1557	"testdebug0",
1558	"testdebug1",
1559	"plla_per",
1560	"pllc_per",
1561	"plld_per",
1562	"pllh_aux",
1563};
1564
1565#define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1566	s,								\
1567	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1568	.parents = bcm2835_clock_per_parents,				\
1569	__VA_ARGS__)
1570
1571/*
1572 * Restrict clock sources for the PCM peripheral to the oscillator and
1573 * PLLD_PER because other source may have varying rates or be switched
1574 * off.
1575 *
1576 * Prevent other sources from being selected by replacing their names in
1577 * the list of potential parents with dummy entries (entry index is
1578 * significant).
1579 */
1580static const char *const bcm2835_pcm_per_parents[] = {
1581	"-",
1582	"xosc",
1583	"-",
1584	"-",
1585	"-",
1586	"-",
1587	"plld_per",
1588	"-",
1589};
1590
1591#define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1592	s,								\
1593	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1594	.parents = bcm2835_pcm_per_parents,				\
1595	__VA_ARGS__)
1596
1597/* main vpu parent mux */
1598static const char *const bcm2835_clock_vpu_parents[] = {
1599	"gnd",
1600	"xosc",
1601	"testdebug0",
1602	"testdebug1",
1603	"plla_core",
1604	"pllc_core0",
1605	"plld_core",
1606	"pllh_aux",
1607	"pllc_core1",
1608	"pllc_core2",
1609};
1610
1611#define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1612	s,								\
1613	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1614	.parents = bcm2835_clock_vpu_parents,				\
1615	__VA_ARGS__)
1616
1617/*
1618 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1619 * analog PHY.  The _inv variants are generated internally to cprman,
1620 * but we don't use them so they aren't hooked up.
1621 */
1622static const char *const bcm2835_clock_dsi0_parents[] = {
1623	"gnd",
1624	"xosc",
1625	"testdebug0",
1626	"testdebug1",
1627	"dsi0_ddr",
1628	"dsi0_ddr_inv",
1629	"dsi0_ddr2",
1630	"dsi0_ddr2_inv",
1631	"dsi0_byte",
1632	"dsi0_byte_inv",
1633};
1634
1635static const char *const bcm2835_clock_dsi1_parents[] = {
1636	"gnd",
1637	"xosc",
1638	"testdebug0",
1639	"testdebug1",
1640	"dsi1_ddr",
1641	"dsi1_ddr_inv",
1642	"dsi1_ddr2",
1643	"dsi1_ddr2_inv",
1644	"dsi1_byte",
1645	"dsi1_byte_inv",
1646};
1647
1648#define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1649	s,								\
1650	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1651	.parents = bcm2835_clock_dsi0_parents,				\
1652	__VA_ARGS__)
1653
1654#define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1655	s,								\
1656	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1657	.parents = bcm2835_clock_dsi1_parents,				\
1658	__VA_ARGS__)
1659
1660/*
1661 * the real definition of all the pll, pll_dividers and clocks
1662 * these make use of the above REGISTER_* macros
1663 */
1664static const struct bcm2835_clk_desc clk_desc_array[] = {
1665	/* the PLL + PLL dividers */
1666
1667	/*
1668	 * PLLA is the auxiliary PLL, used to drive the CCP2
1669	 * (Compact Camera Port 2) transmitter clock.
1670	 *
1671	 * It is in the PX LDO power domain, which is on when the
1672	 * AUDIO domain is on.
1673	 */
1674	[BCM2835_PLLA]		= REGISTER_PLL(
1675		SOC_ALL,
1676		.name = "plla",
1677		.cm_ctrl_reg = CM_PLLA,
1678		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1679		.frac_reg = A2W_PLLA_FRAC,
1680		.ana_reg_base = A2W_PLLA_ANA0,
1681		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1682		.lock_mask = CM_LOCK_FLOCKA,
1683
1684		.ana = &bcm2835_ana_default,
1685
1686		.min_rate = 600000000u,
1687		.max_rate = 2400000000u,
1688		.max_fb_rate = BCM2835_MAX_FB_RATE),
1689	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1690		SOC_ALL,
1691		.name = "plla_core",
1692		.source_pll = "plla",
1693		.cm_reg = CM_PLLA,
1694		.a2w_reg = A2W_PLLA_CORE,
1695		.load_mask = CM_PLLA_LOADCORE,
1696		.hold_mask = CM_PLLA_HOLDCORE,
1697		.fixed_divider = 1,
1698		.flags = CLK_SET_RATE_PARENT),
1699	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1700		SOC_ALL,
1701		.name = "plla_per",
1702		.source_pll = "plla",
1703		.cm_reg = CM_PLLA,
1704		.a2w_reg = A2W_PLLA_PER,
1705		.load_mask = CM_PLLA_LOADPER,
1706		.hold_mask = CM_PLLA_HOLDPER,
1707		.fixed_divider = 1,
1708		.flags = CLK_SET_RATE_PARENT),
1709	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1710		SOC_ALL,
1711		.name = "plla_dsi0",
1712		.source_pll = "plla",
1713		.cm_reg = CM_PLLA,
1714		.a2w_reg = A2W_PLLA_DSI0,
1715		.load_mask = CM_PLLA_LOADDSI0,
1716		.hold_mask = CM_PLLA_HOLDDSI0,
1717		.fixed_divider = 1),
1718	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1719		SOC_ALL,
1720		.name = "plla_ccp2",
1721		.source_pll = "plla",
1722		.cm_reg = CM_PLLA,
1723		.a2w_reg = A2W_PLLA_CCP2,
1724		.load_mask = CM_PLLA_LOADCCP2,
1725		.hold_mask = CM_PLLA_HOLDCCP2,
1726		.fixed_divider = 1,
1727		.flags = CLK_SET_RATE_PARENT),
1728
1729	/* PLLB is used for the ARM's clock. */
1730	[BCM2835_PLLB]		= REGISTER_PLL(
1731		SOC_ALL,
1732		.name = "pllb",
1733		.cm_ctrl_reg = CM_PLLB,
1734		.a2w_ctrl_reg = A2W_PLLB_CTRL,
1735		.frac_reg = A2W_PLLB_FRAC,
1736		.ana_reg_base = A2W_PLLB_ANA0,
1737		.reference_enable_mask = A2W_XOSC_CTRL_PLLB_ENABLE,
1738		.lock_mask = CM_LOCK_FLOCKB,
1739
1740		.ana = &bcm2835_ana_default,
1741
1742		.min_rate = 600000000u,
1743		.max_rate = 3000000000u,
1744		.max_fb_rate = BCM2835_MAX_FB_RATE,
1745		.flags = CLK_GET_RATE_NOCACHE),
1746	[BCM2835_PLLB_ARM]	= REGISTER_PLL_DIV(
1747		SOC_ALL,
1748		.name = "pllb_arm",
1749		.source_pll = "pllb",
1750		.cm_reg = CM_PLLB,
1751		.a2w_reg = A2W_PLLB_ARM,
1752		.load_mask = CM_PLLB_LOADARM,
1753		.hold_mask = CM_PLLB_HOLDARM,
1754		.fixed_divider = 1,
1755		.flags = CLK_SET_RATE_PARENT | CLK_GET_RATE_NOCACHE),
1756
1757	/*
1758	 * PLLC is the core PLL, used to drive the core VPU clock.
1759	 *
1760	 * It is in the PX LDO power domain, which is on when the
1761	 * AUDIO domain is on.
1762	 */
1763	[BCM2835_PLLC]		= REGISTER_PLL(
1764		SOC_ALL,
1765		.name = "pllc",
1766		.cm_ctrl_reg = CM_PLLC,
1767		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1768		.frac_reg = A2W_PLLC_FRAC,
1769		.ana_reg_base = A2W_PLLC_ANA0,
1770		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1771		.lock_mask = CM_LOCK_FLOCKC,
1772
1773		.ana = &bcm2835_ana_default,
1774
1775		.min_rate = 600000000u,
1776		.max_rate = 3000000000u,
1777		.max_fb_rate = BCM2835_MAX_FB_RATE),
1778	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1779		SOC_ALL,
1780		.name = "pllc_core0",
1781		.source_pll = "pllc",
1782		.cm_reg = CM_PLLC,
1783		.a2w_reg = A2W_PLLC_CORE0,
1784		.load_mask = CM_PLLC_LOADCORE0,
1785		.hold_mask = CM_PLLC_HOLDCORE0,
1786		.fixed_divider = 1,
1787		.flags = CLK_SET_RATE_PARENT),
1788	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1789		SOC_ALL,
1790		.name = "pllc_core1",
1791		.source_pll = "pllc",
1792		.cm_reg = CM_PLLC,
1793		.a2w_reg = A2W_PLLC_CORE1,
1794		.load_mask = CM_PLLC_LOADCORE1,
1795		.hold_mask = CM_PLLC_HOLDCORE1,
1796		.fixed_divider = 1,
1797		.flags = CLK_SET_RATE_PARENT),
1798	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1799		SOC_ALL,
1800		.name = "pllc_core2",
1801		.source_pll = "pllc",
1802		.cm_reg = CM_PLLC,
1803		.a2w_reg = A2W_PLLC_CORE2,
1804		.load_mask = CM_PLLC_LOADCORE2,
1805		.hold_mask = CM_PLLC_HOLDCORE2,
1806		.fixed_divider = 1,
1807		.flags = CLK_SET_RATE_PARENT),
1808	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1809		SOC_ALL,
1810		.name = "pllc_per",
1811		.source_pll = "pllc",
1812		.cm_reg = CM_PLLC,
1813		.a2w_reg = A2W_PLLC_PER,
1814		.load_mask = CM_PLLC_LOADPER,
1815		.hold_mask = CM_PLLC_HOLDPER,
1816		.fixed_divider = 1,
1817		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1818
1819	/*
1820	 * PLLD is the display PLL, used to drive DSI display panels.
1821	 *
1822	 * It is in the PX LDO power domain, which is on when the
1823	 * AUDIO domain is on.
1824	 */
1825	[BCM2835_PLLD]		= REGISTER_PLL(
1826		SOC_ALL,
1827		.name = "plld",
1828		.cm_ctrl_reg = CM_PLLD,
1829		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1830		.frac_reg = A2W_PLLD_FRAC,
1831		.ana_reg_base = A2W_PLLD_ANA0,
1832		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1833		.lock_mask = CM_LOCK_FLOCKD,
1834
1835		.ana = &bcm2835_ana_default,
1836
1837		.min_rate = 600000000u,
1838		.max_rate = 2400000000u,
1839		.max_fb_rate = BCM2835_MAX_FB_RATE),
1840	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1841		SOC_ALL,
1842		.name = "plld_core",
1843		.source_pll = "plld",
1844		.cm_reg = CM_PLLD,
1845		.a2w_reg = A2W_PLLD_CORE,
1846		.load_mask = CM_PLLD_LOADCORE,
1847		.hold_mask = CM_PLLD_HOLDCORE,
1848		.fixed_divider = 1,
1849		.flags = CLK_SET_RATE_PARENT),
1850	/*
1851	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1852	 * Otherwise this could cause firmware lookups. That's why we mark
1853	 * it as critical.
1854	 */
1855	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1856		SOC_ALL,
1857		.name = "plld_per",
1858		.source_pll = "plld",
1859		.cm_reg = CM_PLLD,
1860		.a2w_reg = A2W_PLLD_PER,
1861		.load_mask = CM_PLLD_LOADPER,
1862		.hold_mask = CM_PLLD_HOLDPER,
1863		.fixed_divider = 1,
1864		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1865	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1866		SOC_ALL,
1867		.name = "plld_dsi0",
1868		.source_pll = "plld",
1869		.cm_reg = CM_PLLD,
1870		.a2w_reg = A2W_PLLD_DSI0,
1871		.load_mask = CM_PLLD_LOADDSI0,
1872		.hold_mask = CM_PLLD_HOLDDSI0,
1873		.fixed_divider = 1),
1874	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1875		SOC_ALL,
1876		.name = "plld_dsi1",
1877		.source_pll = "plld",
1878		.cm_reg = CM_PLLD,
1879		.a2w_reg = A2W_PLLD_DSI1,
1880		.load_mask = CM_PLLD_LOADDSI1,
1881		.hold_mask = CM_PLLD_HOLDDSI1,
1882		.fixed_divider = 1),
1883
1884	/*
1885	 * PLLH is used to supply the pixel clock or the AUX clock for the
1886	 * TV encoder.
1887	 *
1888	 * It is in the HDMI power domain.
1889	 */
1890	[BCM2835_PLLH]		= REGISTER_PLL(
1891		SOC_BCM2835,
1892		"pllh",
1893		.cm_ctrl_reg = CM_PLLH,
1894		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1895		.frac_reg = A2W_PLLH_FRAC,
1896		.ana_reg_base = A2W_PLLH_ANA0,
1897		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1898		.lock_mask = CM_LOCK_FLOCKH,
1899
1900		.ana = &bcm2835_ana_pllh,
1901
1902		.min_rate = 600000000u,
1903		.max_rate = 3000000000u,
1904		.max_fb_rate = BCM2835_MAX_FB_RATE),
1905	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1906		SOC_BCM2835,
1907		.name = "pllh_rcal",
1908		.source_pll = "pllh",
1909		.cm_reg = CM_PLLH,
1910		.a2w_reg = A2W_PLLH_RCAL,
1911		.load_mask = CM_PLLH_LOADRCAL,
1912		.hold_mask = 0,
1913		.fixed_divider = 10,
1914		.flags = CLK_SET_RATE_PARENT),
1915	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1916		SOC_BCM2835,
1917		.name = "pllh_aux",
1918		.source_pll = "pllh",
1919		.cm_reg = CM_PLLH,
1920		.a2w_reg = A2W_PLLH_AUX,
1921		.load_mask = CM_PLLH_LOADAUX,
1922		.hold_mask = 0,
1923		.fixed_divider = 1,
1924		.flags = CLK_SET_RATE_PARENT),
1925	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1926		SOC_BCM2835,
1927		.name = "pllh_pix",
1928		.source_pll = "pllh",
1929		.cm_reg = CM_PLLH,
1930		.a2w_reg = A2W_PLLH_PIX,
1931		.load_mask = CM_PLLH_LOADPIX,
1932		.hold_mask = 0,
1933		.fixed_divider = 10,
1934		.flags = CLK_SET_RATE_PARENT),
1935
1936	/* the clocks */
1937
1938	/* clocks with oscillator parent mux */
1939
1940	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1941	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1942		SOC_ALL,
1943		.name = "otp",
1944		.ctl_reg = CM_OTPCTL,
1945		.div_reg = CM_OTPDIV,
1946		.int_bits = 4,
1947		.frac_bits = 0,
1948		.tcnt_mux = 6),
1949	/*
1950	 * Used for a 1Mhz clock for the system clocksource, and also used
1951	 * bythe watchdog timer and the camera pulse generator.
1952	 */
1953	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1954		SOC_ALL,
1955		.name = "timer",
1956		.ctl_reg = CM_TIMERCTL,
1957		.div_reg = CM_TIMERDIV,
1958		.int_bits = 6,
1959		.frac_bits = 12),
1960	/*
1961	 * Clock for the temperature sensor.
1962	 * Generally run at 2Mhz, max 5Mhz.
1963	 */
1964	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1965		SOC_ALL,
1966		.name = "tsens",
1967		.ctl_reg = CM_TSENSCTL,
1968		.div_reg = CM_TSENSDIV,
1969		.int_bits = 5,
1970		.frac_bits = 0),
1971	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1972		SOC_ALL,
1973		.name = "tec",
1974		.ctl_reg = CM_TECCTL,
1975		.div_reg = CM_TECDIV,
1976		.int_bits = 6,
1977		.frac_bits = 0),
1978
1979	/* clocks with vpu parent mux */
1980	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1981		SOC_ALL,
1982		.name = "h264",
1983		.ctl_reg = CM_H264CTL,
1984		.div_reg = CM_H264DIV,
1985		.int_bits = 4,
1986		.frac_bits = 8,
1987		.tcnt_mux = 1),
1988	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1989		SOC_ALL,
1990		.name = "isp",
1991		.ctl_reg = CM_ISPCTL,
1992		.div_reg = CM_ISPDIV,
1993		.int_bits = 4,
1994		.frac_bits = 8,
1995		.tcnt_mux = 2),
1996
1997	/*
1998	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1999	 * in the SDRAM controller can't be used.
2000	 */
2001	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
2002		SOC_ALL,
2003		.name = "sdram",
2004		.ctl_reg = CM_SDCCTL,
2005		.div_reg = CM_SDCDIV,
2006		.int_bits = 6,
2007		.frac_bits = 0,
2008		.tcnt_mux = 3),
2009	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
2010		SOC_ALL,
2011		.name = "v3d",
2012		.ctl_reg = CM_V3DCTL,
2013		.div_reg = CM_V3DDIV,
2014		.int_bits = 4,
2015		.frac_bits = 8,
2016		.tcnt_mux = 4),
2017	/*
2018	 * VPU clock.  This doesn't have an enable bit, since it drives
2019	 * the bus for everything else, and is special so it doesn't need
2020	 * to be gated for rate changes.  It is also known as "clk_audio"
2021	 * in various hardware documentation.
2022	 */
2023	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
2024		SOC_ALL,
2025		.name = "vpu",
2026		.ctl_reg = CM_VPUCTL,
2027		.div_reg = CM_VPUDIV,
2028		.int_bits = 12,
2029		.frac_bits = 8,
2030		.flags = CLK_IS_CRITICAL,
2031		.is_vpu_clock = true,
2032		.tcnt_mux = 5),
2033
2034	/* clocks with per parent mux */
2035	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
2036		SOC_ALL,
2037		.name = "aveo",
2038		.ctl_reg = CM_AVEOCTL,
2039		.div_reg = CM_AVEODIV,
2040		.int_bits = 4,
2041		.frac_bits = 0,
2042		.tcnt_mux = 38),
2043	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
2044		SOC_ALL,
2045		.name = "cam0",
2046		.ctl_reg = CM_CAM0CTL,
2047		.div_reg = CM_CAM0DIV,
2048		.int_bits = 4,
2049		.frac_bits = 8,
2050		.tcnt_mux = 14),
2051	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
2052		SOC_ALL,
2053		.name = "cam1",
2054		.ctl_reg = CM_CAM1CTL,
2055		.div_reg = CM_CAM1DIV,
2056		.int_bits = 4,
2057		.frac_bits = 8,
2058		.tcnt_mux = 15),
2059	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
2060		SOC_ALL,
2061		.name = "dft",
2062		.ctl_reg = CM_DFTCTL,
2063		.div_reg = CM_DFTDIV,
2064		.int_bits = 5,
2065		.frac_bits = 0),
2066	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
2067		SOC_ALL,
2068		.name = "dpi",
2069		.ctl_reg = CM_DPICTL,
2070		.div_reg = CM_DPIDIV,
2071		.int_bits = 4,
2072		.frac_bits = 8,
2073		.tcnt_mux = 17),
2074
2075	/* Arasan EMMC clock */
2076	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2077		SOC_ALL,
2078		.name = "emmc",
2079		.ctl_reg = CM_EMMCCTL,
2080		.div_reg = CM_EMMCDIV,
2081		.int_bits = 4,
2082		.frac_bits = 8,
2083		.tcnt_mux = 39),
2084
2085	/* EMMC2 clock (only available for BCM2711) */
2086	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2087		SOC_BCM2711,
2088		.name = "emmc2",
2089		.ctl_reg = CM_EMMC2CTL,
2090		.div_reg = CM_EMMC2DIV,
2091		.int_bits = 4,
2092		.frac_bits = 8,
2093		.tcnt_mux = 42),
2094
2095	/* General purpose (GPIO) clocks */
2096	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2097		SOC_ALL,
2098		.name = "gp0",
2099		.ctl_reg = CM_GP0CTL,
2100		.div_reg = CM_GP0DIV,
2101		.int_bits = 12,
2102		.frac_bits = 12,
2103		.is_mash_clock = true,
2104		.tcnt_mux = 20),
2105	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2106		SOC_ALL,
2107		.name = "gp1",
2108		.ctl_reg = CM_GP1CTL,
2109		.div_reg = CM_GP1DIV,
2110		.int_bits = 12,
2111		.frac_bits = 12,
2112		.flags = CLK_IS_CRITICAL,
2113		.is_mash_clock = true,
2114		.tcnt_mux = 21),
2115	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2116		SOC_ALL,
2117		.name = "gp2",
2118		.ctl_reg = CM_GP2CTL,
2119		.div_reg = CM_GP2DIV,
2120		.int_bits = 12,
2121		.frac_bits = 12,
2122		.flags = CLK_IS_CRITICAL),
2123
2124	/* HDMI state machine */
2125	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2126		SOC_ALL,
2127		.name = "hsm",
2128		.ctl_reg = CM_HSMCTL,
2129		.div_reg = CM_HSMDIV,
2130		.int_bits = 4,
2131		.frac_bits = 8,
2132		.tcnt_mux = 22),
2133	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2134		SOC_ALL,
2135		.name = "pcm",
2136		.ctl_reg = CM_PCMCTL,
2137		.div_reg = CM_PCMDIV,
2138		.int_bits = 12,
2139		.frac_bits = 12,
2140		.is_mash_clock = true,
2141		.low_jitter = true,
2142		.tcnt_mux = 23),
2143	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2144		SOC_ALL,
2145		.name = "pwm",
2146		.ctl_reg = CM_PWMCTL,
2147		.div_reg = CM_PWMDIV,
2148		.int_bits = 12,
2149		.frac_bits = 12,
2150		.is_mash_clock = true,
2151		.tcnt_mux = 24),
2152	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2153		SOC_ALL,
2154		.name = "slim",
2155		.ctl_reg = CM_SLIMCTL,
2156		.div_reg = CM_SLIMDIV,
2157		.int_bits = 12,
2158		.frac_bits = 12,
2159		.is_mash_clock = true,
2160		.tcnt_mux = 25),
2161	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2162		SOC_ALL,
2163		.name = "smi",
2164		.ctl_reg = CM_SMICTL,
2165		.div_reg = CM_SMIDIV,
2166		.int_bits = 4,
2167		.frac_bits = 8,
2168		.tcnt_mux = 27),
2169	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2170		SOC_ALL,
2171		.name = "uart",
2172		.ctl_reg = CM_UARTCTL,
2173		.div_reg = CM_UARTDIV,
2174		.int_bits = 10,
2175		.frac_bits = 12,
2176		.tcnt_mux = 28,
2177		.round_up = true),
2178
2179	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2180	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2181		SOC_ALL,
2182		.name = "vec",
2183		.ctl_reg = CM_VECCTL,
2184		.div_reg = CM_VECDIV,
2185		.int_bits = 4,
2186		.frac_bits = 0,
2187		/*
2188		 * Allow rate change propagation only on PLLH_AUX which is
2189		 * assigned index 7 in the parent array.
2190		 */
2191		.set_rate_parent = BIT(7),
2192		.tcnt_mux = 29),
2193
2194	/* dsi clocks */
2195	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2196		SOC_ALL,
2197		.name = "dsi0e",
2198		.ctl_reg = CM_DSI0ECTL,
2199		.div_reg = CM_DSI0EDIV,
2200		.int_bits = 4,
2201		.frac_bits = 8,
2202		.tcnt_mux = 18),
2203	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2204		SOC_ALL,
2205		.name = "dsi1e",
2206		.ctl_reg = CM_DSI1ECTL,
2207		.div_reg = CM_DSI1EDIV,
2208		.int_bits = 4,
2209		.frac_bits = 8,
2210		.tcnt_mux = 19),
2211	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2212		SOC_ALL,
2213		.name = "dsi0p",
2214		.ctl_reg = CM_DSI0PCTL,
2215		.div_reg = CM_DSI0PDIV,
2216		.int_bits = 0,
2217		.frac_bits = 0,
2218		.tcnt_mux = 12),
2219	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2220		SOC_ALL,
2221		.name = "dsi1p",
2222		.ctl_reg = CM_DSI1PCTL,
2223		.div_reg = CM_DSI1PDIV,
2224		.int_bits = 0,
2225		.frac_bits = 0,
2226		.tcnt_mux = 13),
2227
2228	/* the gates */
2229
2230	/*
2231	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2232	 * you have the debug bit set in the power manager, which we
2233	 * don't bother exposing) are individual gates off of the
2234	 * non-stop vpu clock.
2235	 */
2236	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2237		SOC_ALL,
2238		.name = "peri_image",
2239		.parent = "vpu",
2240		.ctl_reg = CM_PERIICTL),
2241};
2242
2243/*
2244 * Permanently take a reference on the parent of the SDRAM clock.
2245 *
2246 * While the SDRAM is being driven by its dedicated PLL most of the
2247 * time, there is a little loop running in the firmware that
2248 * periodically switches the SDRAM to using our CM clock to do PVT
2249 * recalibration, with the assumption that the previously configured
2250 * SDRAM parent is still enabled and running.
2251 */
2252static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2253{
2254	struct clk *parent = clk_get_parent(sdc);
2255
2256	if (IS_ERR(parent))
2257		return PTR_ERR(parent);
2258
2259	return clk_prepare_enable(parent);
2260}
2261
2262static int bcm2835_clk_probe(struct platform_device *pdev)
2263{
2264	struct device *dev = &pdev->dev;
2265	struct clk_hw **hws;
2266	struct bcm2835_cprman *cprman;
2267	const struct bcm2835_clk_desc *desc;
2268	const size_t asize = ARRAY_SIZE(clk_desc_array);
2269	const struct cprman_plat_data *pdata;
2270	size_t i;
2271	int ret;
2272
2273	pdata = of_device_get_match_data(&pdev->dev);
2274	if (!pdata)
2275		return -ENODEV;
2276
2277	cprman = devm_kzalloc(dev,
2278			      struct_size(cprman, onecell.hws, asize),
2279			      GFP_KERNEL);
2280	if (!cprman)
2281		return -ENOMEM;
2282
2283	spin_lock_init(&cprman->regs_lock);
2284	cprman->dev = dev;
2285	cprman->regs = devm_platform_ioremap_resource(pdev, 0);
2286	if (IS_ERR(cprman->regs))
2287		return PTR_ERR(cprman->regs);
2288
2289	memcpy(cprman->real_parent_names, cprman_parent_names,
2290	       sizeof(cprman_parent_names));
2291	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2292			   ARRAY_SIZE(cprman_parent_names));
2293
2294	/*
2295	 * Make sure the external oscillator has been registered.
2296	 *
2297	 * The other (DSI) clocks are not present on older device
2298	 * trees, which we still need to support for backwards
2299	 * compatibility.
2300	 */
2301	if (!cprman->real_parent_names[0])
2302		return -ENODEV;
2303
2304	platform_set_drvdata(pdev, cprman);
2305
2306	cprman->onecell.num = asize;
2307	cprman->soc = pdata->soc;
2308	hws = cprman->onecell.hws;
2309
2310	for (i = 0; i < asize; i++) {
2311		desc = &clk_desc_array[i];
2312		if (desc->clk_register && desc->data &&
2313		    (desc->supported & pdata->soc)) {
2314			hws[i] = desc->clk_register(cprman, desc->data);
2315		}
2316	}
2317
2318	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2319	if (ret)
2320		return ret;
2321
2322	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2323				      &cprman->onecell);
2324}
2325
2326static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2327	.soc = SOC_BCM2835,
2328};
2329
2330static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2331	.soc = SOC_BCM2711,
2332};
2333
2334static const struct of_device_id bcm2835_clk_of_match[] = {
2335	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2336	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2337	{}
2338};
2339MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2340
2341static struct platform_driver bcm2835_clk_driver = {
2342	.driver = {
2343		.name = "bcm2835-clk",
2344		.of_match_table = bcm2835_clk_of_match,
2345	},
2346	.probe          = bcm2835_clk_probe,
2347};
2348
2349builtin_platform_driver(bcm2835_clk_driver);
2350
2351MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2352MODULE_DESCRIPTION("BCM2835 clock driver");