Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.5.6.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Copyright (C) 2010,2015 Broadcom
   4 * Copyright (C) 2012 Stephen Warren
   5 */
   6
   7/**
   8 * DOC: BCM2835 CPRMAN (clock manager for the "audio" domain)
   9 *
  10 * The clock tree on the 2835 has several levels.  There's a root
  11 * oscillator running at 19.2Mhz.  After the oscillator there are 5
  12 * PLLs, roughly divided as "camera", "ARM", "core", "DSI displays",
  13 * and "HDMI displays".  Those 5 PLLs each can divide their output to
  14 * produce up to 4 channels.  Finally, there is the level of clocks to
  15 * be consumed by other hardware components (like "H264" or "HDMI
  16 * state machine"), which divide off of some subset of the PLL
  17 * channels.
  18 *
  19 * All of the clocks in the tree are exposed in the DT, because the DT
  20 * may want to make assignments of the final layer of clocks to the
  21 * PLL channels, and some components of the hardware will actually
  22 * skip layers of the tree (for example, the pixel clock comes
  23 * directly from the PLLH PIX channel without using a CM_*CTL clock
  24 * generator).
  25 */
  26
  27#include <linux/clk-provider.h>
  28#include <linux/clkdev.h>
  29#include <linux/clk.h>
  30#include <linux/debugfs.h>
  31#include <linux/delay.h>
  32#include <linux/io.h>
  33#include <linux/module.h>
  34#include <linux/of_device.h>
  35#include <linux/platform_device.h>
  36#include <linux/slab.h>
  37#include <dt-bindings/clock/bcm2835.h>
  38
  39#define CM_PASSWORD		0x5a000000
  40
  41#define CM_GNRICCTL		0x000
  42#define CM_GNRICDIV		0x004
  43# define CM_DIV_FRAC_BITS	12
  44# define CM_DIV_FRAC_MASK	GENMASK(CM_DIV_FRAC_BITS - 1, 0)
  45
  46#define CM_VPUCTL		0x008
  47#define CM_VPUDIV		0x00c
  48#define CM_SYSCTL		0x010
  49#define CM_SYSDIV		0x014
  50#define CM_PERIACTL		0x018
  51#define CM_PERIADIV		0x01c
  52#define CM_PERIICTL		0x020
  53#define CM_PERIIDIV		0x024
  54#define CM_H264CTL		0x028
  55#define CM_H264DIV		0x02c
  56#define CM_ISPCTL		0x030
  57#define CM_ISPDIV		0x034
  58#define CM_V3DCTL		0x038
  59#define CM_V3DDIV		0x03c
  60#define CM_CAM0CTL		0x040
  61#define CM_CAM0DIV		0x044
  62#define CM_CAM1CTL		0x048
  63#define CM_CAM1DIV		0x04c
  64#define CM_CCP2CTL		0x050
  65#define CM_CCP2DIV		0x054
  66#define CM_DSI0ECTL		0x058
  67#define CM_DSI0EDIV		0x05c
  68#define CM_DSI0PCTL		0x060
  69#define CM_DSI0PDIV		0x064
  70#define CM_DPICTL		0x068
  71#define CM_DPIDIV		0x06c
  72#define CM_GP0CTL		0x070
  73#define CM_GP0DIV		0x074
  74#define CM_GP1CTL		0x078
  75#define CM_GP1DIV		0x07c
  76#define CM_GP2CTL		0x080
  77#define CM_GP2DIV		0x084
  78#define CM_HSMCTL		0x088
  79#define CM_HSMDIV		0x08c
  80#define CM_OTPCTL		0x090
  81#define CM_OTPDIV		0x094
  82#define CM_PCMCTL		0x098
  83#define CM_PCMDIV		0x09c
  84#define CM_PWMCTL		0x0a0
  85#define CM_PWMDIV		0x0a4
  86#define CM_SLIMCTL		0x0a8
  87#define CM_SLIMDIV		0x0ac
  88#define CM_SMICTL		0x0b0
  89#define CM_SMIDIV		0x0b4
  90/* no definition for 0x0b8  and 0x0bc */
  91#define CM_TCNTCTL		0x0c0
  92# define CM_TCNT_SRC1_SHIFT		12
  93#define CM_TCNTCNT		0x0c4
  94#define CM_TECCTL		0x0c8
  95#define CM_TECDIV		0x0cc
  96#define CM_TD0CTL		0x0d0
  97#define CM_TD0DIV		0x0d4
  98#define CM_TD1CTL		0x0d8
  99#define CM_TD1DIV		0x0dc
 100#define CM_TSENSCTL		0x0e0
 101#define CM_TSENSDIV		0x0e4
 102#define CM_TIMERCTL		0x0e8
 103#define CM_TIMERDIV		0x0ec
 104#define CM_UARTCTL		0x0f0
 105#define CM_UARTDIV		0x0f4
 106#define CM_VECCTL		0x0f8
 107#define CM_VECDIV		0x0fc
 108#define CM_PULSECTL		0x190
 109#define CM_PULSEDIV		0x194
 110#define CM_SDCCTL		0x1a8
 111#define CM_SDCDIV		0x1ac
 112#define CM_ARMCTL		0x1b0
 113#define CM_AVEOCTL		0x1b8
 114#define CM_AVEODIV		0x1bc
 115#define CM_EMMCCTL		0x1c0
 116#define CM_EMMCDIV		0x1c4
 117#define CM_EMMC2CTL		0x1d0
 118#define CM_EMMC2DIV		0x1d4
 119
 120/* General bits for the CM_*CTL regs */
 121# define CM_ENABLE			BIT(4)
 122# define CM_KILL			BIT(5)
 123# define CM_GATE_BIT			6
 124# define CM_GATE			BIT(CM_GATE_BIT)
 125# define CM_BUSY			BIT(7)
 126# define CM_BUSYD			BIT(8)
 127# define CM_FRAC			BIT(9)
 128# define CM_SRC_SHIFT			0
 129# define CM_SRC_BITS			4
 130# define CM_SRC_MASK			0xf
 131# define CM_SRC_GND			0
 132# define CM_SRC_OSC			1
 133# define CM_SRC_TESTDEBUG0		2
 134# define CM_SRC_TESTDEBUG1		3
 135# define CM_SRC_PLLA_CORE		4
 136# define CM_SRC_PLLA_PER		4
 137# define CM_SRC_PLLC_CORE0		5
 138# define CM_SRC_PLLC_PER		5
 139# define CM_SRC_PLLC_CORE1		8
 140# define CM_SRC_PLLD_CORE		6
 141# define CM_SRC_PLLD_PER		6
 142# define CM_SRC_PLLH_AUX		7
 143# define CM_SRC_PLLC_CORE1		8
 144# define CM_SRC_PLLC_CORE2		9
 145
 146#define CM_OSCCOUNT		0x100
 147
 148#define CM_PLLA			0x104
 149# define CM_PLL_ANARST			BIT(8)
 150# define CM_PLLA_HOLDPER		BIT(7)
 151# define CM_PLLA_LOADPER		BIT(6)
 152# define CM_PLLA_HOLDCORE		BIT(5)
 153# define CM_PLLA_LOADCORE		BIT(4)
 154# define CM_PLLA_HOLDCCP2		BIT(3)
 155# define CM_PLLA_LOADCCP2		BIT(2)
 156# define CM_PLLA_HOLDDSI0		BIT(1)
 157# define CM_PLLA_LOADDSI0		BIT(0)
 158
 159#define CM_PLLC			0x108
 160# define CM_PLLC_HOLDPER		BIT(7)
 161# define CM_PLLC_LOADPER		BIT(6)
 162# define CM_PLLC_HOLDCORE2		BIT(5)
 163# define CM_PLLC_LOADCORE2		BIT(4)
 164# define CM_PLLC_HOLDCORE1		BIT(3)
 165# define CM_PLLC_LOADCORE1		BIT(2)
 166# define CM_PLLC_HOLDCORE0		BIT(1)
 167# define CM_PLLC_LOADCORE0		BIT(0)
 168
 169#define CM_PLLD			0x10c
 170# define CM_PLLD_HOLDPER		BIT(7)
 171# define CM_PLLD_LOADPER		BIT(6)
 172# define CM_PLLD_HOLDCORE		BIT(5)
 173# define CM_PLLD_LOADCORE		BIT(4)
 174# define CM_PLLD_HOLDDSI1		BIT(3)
 175# define CM_PLLD_LOADDSI1		BIT(2)
 176# define CM_PLLD_HOLDDSI0		BIT(1)
 177# define CM_PLLD_LOADDSI0		BIT(0)
 178
 179#define CM_PLLH			0x110
 180# define CM_PLLH_LOADRCAL		BIT(2)
 181# define CM_PLLH_LOADAUX		BIT(1)
 182# define CM_PLLH_LOADPIX		BIT(0)
 183
 184#define CM_LOCK			0x114
 185# define CM_LOCK_FLOCKH			BIT(12)
 186# define CM_LOCK_FLOCKD			BIT(11)
 187# define CM_LOCK_FLOCKC			BIT(10)
 188# define CM_LOCK_FLOCKB			BIT(9)
 189# define CM_LOCK_FLOCKA			BIT(8)
 190
 191#define CM_EVENT		0x118
 192#define CM_DSI1ECTL		0x158
 193#define CM_DSI1EDIV		0x15c
 194#define CM_DSI1PCTL		0x160
 195#define CM_DSI1PDIV		0x164
 196#define CM_DFTCTL		0x168
 197#define CM_DFTDIV		0x16c
 198
 199#define CM_PLLB			0x170
 200# define CM_PLLB_HOLDARM		BIT(1)
 201# define CM_PLLB_LOADARM		BIT(0)
 202
 203#define A2W_PLLA_CTRL		0x1100
 204#define A2W_PLLC_CTRL		0x1120
 205#define A2W_PLLD_CTRL		0x1140
 206#define A2W_PLLH_CTRL		0x1160
 207#define A2W_PLLB_CTRL		0x11e0
 208# define A2W_PLL_CTRL_PRST_DISABLE	BIT(17)
 209# define A2W_PLL_CTRL_PWRDN		BIT(16)
 210# define A2W_PLL_CTRL_PDIV_MASK		0x000007000
 211# define A2W_PLL_CTRL_PDIV_SHIFT	12
 212# define A2W_PLL_CTRL_NDIV_MASK		0x0000003ff
 213# define A2W_PLL_CTRL_NDIV_SHIFT	0
 214
 215#define A2W_PLLA_ANA0		0x1010
 216#define A2W_PLLC_ANA0		0x1030
 217#define A2W_PLLD_ANA0		0x1050
 218#define A2W_PLLH_ANA0		0x1070
 219#define A2W_PLLB_ANA0		0x10f0
 220
 221#define A2W_PLL_KA_SHIFT	7
 222#define A2W_PLL_KA_MASK		GENMASK(9, 7)
 223#define A2W_PLL_KI_SHIFT	19
 224#define A2W_PLL_KI_MASK		GENMASK(21, 19)
 225#define A2W_PLL_KP_SHIFT	15
 226#define A2W_PLL_KP_MASK		GENMASK(18, 15)
 227
 228#define A2W_PLLH_KA_SHIFT	19
 229#define A2W_PLLH_KA_MASK	GENMASK(21, 19)
 230#define A2W_PLLH_KI_LOW_SHIFT	22
 231#define A2W_PLLH_KI_LOW_MASK	GENMASK(23, 22)
 232#define A2W_PLLH_KI_HIGH_SHIFT	0
 233#define A2W_PLLH_KI_HIGH_MASK	GENMASK(0, 0)
 234#define A2W_PLLH_KP_SHIFT	1
 235#define A2W_PLLH_KP_MASK	GENMASK(4, 1)
 236
 237#define A2W_XOSC_CTRL		0x1190
 238# define A2W_XOSC_CTRL_PLLB_ENABLE	BIT(7)
 239# define A2W_XOSC_CTRL_PLLA_ENABLE	BIT(6)
 240# define A2W_XOSC_CTRL_PLLD_ENABLE	BIT(5)
 241# define A2W_XOSC_CTRL_DDR_ENABLE	BIT(4)
 242# define A2W_XOSC_CTRL_CPR1_ENABLE	BIT(3)
 243# define A2W_XOSC_CTRL_USB_ENABLE	BIT(2)
 244# define A2W_XOSC_CTRL_HDMI_ENABLE	BIT(1)
 245# define A2W_XOSC_CTRL_PLLC_ENABLE	BIT(0)
 246
 247#define A2W_PLLA_FRAC		0x1200
 248#define A2W_PLLC_FRAC		0x1220
 249#define A2W_PLLD_FRAC		0x1240
 250#define A2W_PLLH_FRAC		0x1260
 251#define A2W_PLLB_FRAC		0x12e0
 252# define A2W_PLL_FRAC_MASK		((1 << A2W_PLL_FRAC_BITS) - 1)
 253# define A2W_PLL_FRAC_BITS		20
 254
 255#define A2W_PLL_CHANNEL_DISABLE		BIT(8)
 256#define A2W_PLL_DIV_BITS		8
 257#define A2W_PLL_DIV_SHIFT		0
 258
 259#define A2W_PLLA_DSI0		0x1300
 260#define A2W_PLLA_CORE		0x1400
 261#define A2W_PLLA_PER		0x1500
 262#define A2W_PLLA_CCP2		0x1600
 263
 264#define A2W_PLLC_CORE2		0x1320
 265#define A2W_PLLC_CORE1		0x1420
 266#define A2W_PLLC_PER		0x1520
 267#define A2W_PLLC_CORE0		0x1620
 268
 269#define A2W_PLLD_DSI0		0x1340
 270#define A2W_PLLD_CORE		0x1440
 271#define A2W_PLLD_PER		0x1540
 272#define A2W_PLLD_DSI1		0x1640
 273
 274#define A2W_PLLH_AUX		0x1360
 275#define A2W_PLLH_RCAL		0x1460
 276#define A2W_PLLH_PIX		0x1560
 277#define A2W_PLLH_STS		0x1660
 278
 279#define A2W_PLLH_CTRLR		0x1960
 280#define A2W_PLLH_FRACR		0x1a60
 281#define A2W_PLLH_AUXR		0x1b60
 282#define A2W_PLLH_RCALR		0x1c60
 283#define A2W_PLLH_PIXR		0x1d60
 284#define A2W_PLLH_STSR		0x1e60
 285
 286#define A2W_PLLB_ARM		0x13e0
 287#define A2W_PLLB_SP0		0x14e0
 288#define A2W_PLLB_SP1		0x15e0
 289#define A2W_PLLB_SP2		0x16e0
 290
 291#define LOCK_TIMEOUT_NS		100000000
 292#define BCM2835_MAX_FB_RATE	1750000000u
 293
 294#define SOC_BCM2835		BIT(0)
 295#define SOC_BCM2711		BIT(1)
 296#define SOC_ALL			(SOC_BCM2835 | SOC_BCM2711)
 297
 298/*
 299 * Names of clocks used within the driver that need to be replaced
 300 * with an external parent's name.  This array is in the order that
 301 * the clocks node in the DT references external clocks.
 302 */
 303static const char *const cprman_parent_names[] = {
 304	"xosc",
 305	"dsi0_byte",
 306	"dsi0_ddr2",
 307	"dsi0_ddr",
 308	"dsi1_byte",
 309	"dsi1_ddr2",
 310	"dsi1_ddr",
 311};
 312
 313struct bcm2835_cprman {
 314	struct device *dev;
 315	void __iomem *regs;
 316	spinlock_t regs_lock; /* spinlock for all clocks */
 317
 318	/*
 319	 * Real names of cprman clock parents looked up through
 320	 * of_clk_get_parent_name(), which will be used in the
 321	 * parent_names[] arrays for clock registration.
 322	 */
 323	const char *real_parent_names[ARRAY_SIZE(cprman_parent_names)];
 324
 325	/* Must be last */
 326	struct clk_hw_onecell_data onecell;
 327};
 328
 329struct cprman_plat_data {
 330	unsigned int soc;
 331};
 332
 333static inline void cprman_write(struct bcm2835_cprman *cprman, u32 reg, u32 val)
 334{
 335	writel(CM_PASSWORD | val, cprman->regs + reg);
 336}
 337
 338static inline u32 cprman_read(struct bcm2835_cprman *cprman, u32 reg)
 339{
 340	return readl(cprman->regs + reg);
 341}
 342
 343/* Does a cycle of measuring a clock through the TCNT clock, which may
 344 * source from many other clocks in the system.
 345 */
 346static unsigned long bcm2835_measure_tcnt_mux(struct bcm2835_cprman *cprman,
 347					      u32 tcnt_mux)
 348{
 349	u32 osccount = 19200; /* 1ms */
 350	u32 count;
 351	ktime_t timeout;
 352
 353	spin_lock(&cprman->regs_lock);
 354
 355	cprman_write(cprman, CM_TCNTCTL, CM_KILL);
 356
 357	cprman_write(cprman, CM_TCNTCTL,
 358		     (tcnt_mux & CM_SRC_MASK) |
 359		     (tcnt_mux >> CM_SRC_BITS) << CM_TCNT_SRC1_SHIFT);
 360
 361	cprman_write(cprman, CM_OSCCOUNT, osccount);
 362
 363	/* do a kind delay at the start */
 364	mdelay(1);
 365
 366	/* Finish off whatever is left of OSCCOUNT */
 367	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 368	while (cprman_read(cprman, CM_OSCCOUNT)) {
 369		if (ktime_after(ktime_get(), timeout)) {
 370			dev_err(cprman->dev, "timeout waiting for OSCCOUNT\n");
 371			count = 0;
 372			goto out;
 373		}
 374		cpu_relax();
 375	}
 376
 377	/* Wait for BUSY to clear. */
 378	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 379	while (cprman_read(cprman, CM_TCNTCTL) & CM_BUSY) {
 380		if (ktime_after(ktime_get(), timeout)) {
 381			dev_err(cprman->dev, "timeout waiting for !BUSY\n");
 382			count = 0;
 383			goto out;
 384		}
 385		cpu_relax();
 386	}
 387
 388	count = cprman_read(cprman, CM_TCNTCNT);
 389
 390	cprman_write(cprman, CM_TCNTCTL, 0);
 391
 392out:
 393	spin_unlock(&cprman->regs_lock);
 394
 395	return count * 1000;
 396}
 397
 398static void bcm2835_debugfs_regset(struct bcm2835_cprman *cprman, u32 base,
 399				  struct debugfs_reg32 *regs, size_t nregs,
 400				  struct dentry *dentry)
 401{
 402	struct debugfs_regset32 *regset;
 403
 404	regset = devm_kzalloc(cprman->dev, sizeof(*regset), GFP_KERNEL);
 405	if (!regset)
 406		return;
 407
 408	regset->regs = regs;
 409	regset->nregs = nregs;
 410	regset->base = cprman->regs + base;
 411
 412	debugfs_create_regset32("regdump", S_IRUGO, dentry, regset);
 413}
 414
 415struct bcm2835_pll_data {
 416	const char *name;
 417	u32 cm_ctrl_reg;
 418	u32 a2w_ctrl_reg;
 419	u32 frac_reg;
 420	u32 ana_reg_base;
 421	u32 reference_enable_mask;
 422	/* Bit in CM_LOCK to indicate when the PLL has locked. */
 423	u32 lock_mask;
 424
 425	const struct bcm2835_pll_ana_bits *ana;
 426
 427	unsigned long min_rate;
 428	unsigned long max_rate;
 429	/*
 430	 * Highest rate for the VCO before we have to use the
 431	 * pre-divide-by-2.
 432	 */
 433	unsigned long max_fb_rate;
 434};
 435
 436struct bcm2835_pll_ana_bits {
 437	u32 mask0;
 438	u32 set0;
 439	u32 mask1;
 440	u32 set1;
 441	u32 mask3;
 442	u32 set3;
 443	u32 fb_prediv_mask;
 444};
 445
 446static const struct bcm2835_pll_ana_bits bcm2835_ana_default = {
 447	.mask0 = 0,
 448	.set0 = 0,
 449	.mask1 = A2W_PLL_KI_MASK | A2W_PLL_KP_MASK,
 450	.set1 = (2 << A2W_PLL_KI_SHIFT) | (8 << A2W_PLL_KP_SHIFT),
 451	.mask3 = A2W_PLL_KA_MASK,
 452	.set3 = (2 << A2W_PLL_KA_SHIFT),
 453	.fb_prediv_mask = BIT(14),
 454};
 455
 456static const struct bcm2835_pll_ana_bits bcm2835_ana_pllh = {
 457	.mask0 = A2W_PLLH_KA_MASK | A2W_PLLH_KI_LOW_MASK,
 458	.set0 = (2 << A2W_PLLH_KA_SHIFT) | (2 << A2W_PLLH_KI_LOW_SHIFT),
 459	.mask1 = A2W_PLLH_KI_HIGH_MASK | A2W_PLLH_KP_MASK,
 460	.set1 = (6 << A2W_PLLH_KP_SHIFT),
 461	.mask3 = 0,
 462	.set3 = 0,
 463	.fb_prediv_mask = BIT(11),
 464};
 465
 466struct bcm2835_pll_divider_data {
 467	const char *name;
 468	const char *source_pll;
 469
 470	u32 cm_reg;
 471	u32 a2w_reg;
 472
 473	u32 load_mask;
 474	u32 hold_mask;
 475	u32 fixed_divider;
 476	u32 flags;
 477};
 478
 479struct bcm2835_clock_data {
 480	const char *name;
 481
 482	const char *const *parents;
 483	int num_mux_parents;
 484
 485	/* Bitmap encoding which parents accept rate change propagation. */
 486	unsigned int set_rate_parent;
 487
 488	u32 ctl_reg;
 489	u32 div_reg;
 490
 491	/* Number of integer bits in the divider */
 492	u32 int_bits;
 493	/* Number of fractional bits in the divider */
 494	u32 frac_bits;
 495
 496	u32 flags;
 497
 498	bool is_vpu_clock;
 499	bool is_mash_clock;
 500	bool low_jitter;
 501
 502	u32 tcnt_mux;
 503};
 504
 505struct bcm2835_gate_data {
 506	const char *name;
 507	const char *parent;
 508
 509	u32 ctl_reg;
 510};
 511
 512struct bcm2835_pll {
 513	struct clk_hw hw;
 514	struct bcm2835_cprman *cprman;
 515	const struct bcm2835_pll_data *data;
 516};
 517
 518static int bcm2835_pll_is_on(struct clk_hw *hw)
 519{
 520	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 521	struct bcm2835_cprman *cprman = pll->cprman;
 522	const struct bcm2835_pll_data *data = pll->data;
 523
 524	return cprman_read(cprman, data->a2w_ctrl_reg) &
 525		A2W_PLL_CTRL_PRST_DISABLE;
 526}
 527
 528static void bcm2835_pll_choose_ndiv_and_fdiv(unsigned long rate,
 529					     unsigned long parent_rate,
 530					     u32 *ndiv, u32 *fdiv)
 531{
 532	u64 div;
 533
 534	div = (u64)rate << A2W_PLL_FRAC_BITS;
 535	do_div(div, parent_rate);
 536
 537	*ndiv = div >> A2W_PLL_FRAC_BITS;
 538	*fdiv = div & ((1 << A2W_PLL_FRAC_BITS) - 1);
 539}
 540
 541static long bcm2835_pll_rate_from_divisors(unsigned long parent_rate,
 542					   u32 ndiv, u32 fdiv, u32 pdiv)
 543{
 544	u64 rate;
 545
 546	if (pdiv == 0)
 547		return 0;
 548
 549	rate = (u64)parent_rate * ((ndiv << A2W_PLL_FRAC_BITS) + fdiv);
 550	do_div(rate, pdiv);
 551	return rate >> A2W_PLL_FRAC_BITS;
 552}
 553
 554static long bcm2835_pll_round_rate(struct clk_hw *hw, unsigned long rate,
 555				   unsigned long *parent_rate)
 556{
 557	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 558	const struct bcm2835_pll_data *data = pll->data;
 559	u32 ndiv, fdiv;
 560
 561	rate = clamp(rate, data->min_rate, data->max_rate);
 562
 563	bcm2835_pll_choose_ndiv_and_fdiv(rate, *parent_rate, &ndiv, &fdiv);
 564
 565	return bcm2835_pll_rate_from_divisors(*parent_rate, ndiv, fdiv, 1);
 566}
 567
 568static unsigned long bcm2835_pll_get_rate(struct clk_hw *hw,
 569					  unsigned long parent_rate)
 570{
 571	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 572	struct bcm2835_cprman *cprman = pll->cprman;
 573	const struct bcm2835_pll_data *data = pll->data;
 574	u32 a2wctrl = cprman_read(cprman, data->a2w_ctrl_reg);
 575	u32 ndiv, pdiv, fdiv;
 576	bool using_prediv;
 577
 578	if (parent_rate == 0)
 579		return 0;
 580
 581	fdiv = cprman_read(cprman, data->frac_reg) & A2W_PLL_FRAC_MASK;
 582	ndiv = (a2wctrl & A2W_PLL_CTRL_NDIV_MASK) >> A2W_PLL_CTRL_NDIV_SHIFT;
 583	pdiv = (a2wctrl & A2W_PLL_CTRL_PDIV_MASK) >> A2W_PLL_CTRL_PDIV_SHIFT;
 584	using_prediv = cprman_read(cprman, data->ana_reg_base + 4) &
 585		data->ana->fb_prediv_mask;
 586
 587	if (using_prediv) {
 588		ndiv *= 2;
 589		fdiv *= 2;
 590	}
 591
 592	return bcm2835_pll_rate_from_divisors(parent_rate, ndiv, fdiv, pdiv);
 593}
 594
 595static void bcm2835_pll_off(struct clk_hw *hw)
 596{
 597	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 598	struct bcm2835_cprman *cprman = pll->cprman;
 599	const struct bcm2835_pll_data *data = pll->data;
 600
 601	spin_lock(&cprman->regs_lock);
 602	cprman_write(cprman, data->cm_ctrl_reg, CM_PLL_ANARST);
 603	cprman_write(cprman, data->a2w_ctrl_reg,
 604		     cprman_read(cprman, data->a2w_ctrl_reg) |
 605		     A2W_PLL_CTRL_PWRDN);
 606	spin_unlock(&cprman->regs_lock);
 607}
 608
 609static int bcm2835_pll_on(struct clk_hw *hw)
 610{
 611	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 612	struct bcm2835_cprman *cprman = pll->cprman;
 613	const struct bcm2835_pll_data *data = pll->data;
 614	ktime_t timeout;
 615
 616	cprman_write(cprman, data->a2w_ctrl_reg,
 617		     cprman_read(cprman, data->a2w_ctrl_reg) &
 618		     ~A2W_PLL_CTRL_PWRDN);
 619
 620	/* Take the PLL out of reset. */
 621	spin_lock(&cprman->regs_lock);
 622	cprman_write(cprman, data->cm_ctrl_reg,
 623		     cprman_read(cprman, data->cm_ctrl_reg) & ~CM_PLL_ANARST);
 624	spin_unlock(&cprman->regs_lock);
 625
 626	/* Wait for the PLL to lock. */
 627	timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
 628	while (!(cprman_read(cprman, CM_LOCK) & data->lock_mask)) {
 629		if (ktime_after(ktime_get(), timeout)) {
 630			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
 631				clk_hw_get_name(hw));
 632			return -ETIMEDOUT;
 633		}
 634
 635		cpu_relax();
 636	}
 637
 638	cprman_write(cprman, data->a2w_ctrl_reg,
 639		     cprman_read(cprman, data->a2w_ctrl_reg) |
 640		     A2W_PLL_CTRL_PRST_DISABLE);
 641
 642	return 0;
 643}
 644
 645static void
 646bcm2835_pll_write_ana(struct bcm2835_cprman *cprman, u32 ana_reg_base, u32 *ana)
 647{
 648	int i;
 649
 650	/*
 651	 * ANA register setup is done as a series of writes to
 652	 * ANA3-ANA0, in that order.  This lets us write all 4
 653	 * registers as a single cycle of the serdes interface (taking
 654	 * 100 xosc clocks), whereas if we were to update ana0, 1, and
 655	 * 3 individually through their partial-write registers, each
 656	 * would be their own serdes cycle.
 657	 */
 658	for (i = 3; i >= 0; i--)
 659		cprman_write(cprman, ana_reg_base + i * 4, ana[i]);
 660}
 661
 662static int bcm2835_pll_set_rate(struct clk_hw *hw,
 663				unsigned long rate, unsigned long parent_rate)
 664{
 665	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 666	struct bcm2835_cprman *cprman = pll->cprman;
 667	const struct bcm2835_pll_data *data = pll->data;
 668	bool was_using_prediv, use_fb_prediv, do_ana_setup_first;
 669	u32 ndiv, fdiv, a2w_ctl;
 670	u32 ana[4];
 671	int i;
 672
 673	if (rate > data->max_fb_rate) {
 674		use_fb_prediv = true;
 675		rate /= 2;
 676	} else {
 677		use_fb_prediv = false;
 678	}
 679
 680	bcm2835_pll_choose_ndiv_and_fdiv(rate, parent_rate, &ndiv, &fdiv);
 681
 682	for (i = 3; i >= 0; i--)
 683		ana[i] = cprman_read(cprman, data->ana_reg_base + i * 4);
 684
 685	was_using_prediv = ana[1] & data->ana->fb_prediv_mask;
 686
 687	ana[0] &= ~data->ana->mask0;
 688	ana[0] |= data->ana->set0;
 689	ana[1] &= ~data->ana->mask1;
 690	ana[1] |= data->ana->set1;
 691	ana[3] &= ~data->ana->mask3;
 692	ana[3] |= data->ana->set3;
 693
 694	if (was_using_prediv && !use_fb_prediv) {
 695		ana[1] &= ~data->ana->fb_prediv_mask;
 696		do_ana_setup_first = true;
 697	} else if (!was_using_prediv && use_fb_prediv) {
 698		ana[1] |= data->ana->fb_prediv_mask;
 699		do_ana_setup_first = false;
 700	} else {
 701		do_ana_setup_first = true;
 702	}
 703
 704	/* Unmask the reference clock from the oscillator. */
 705	spin_lock(&cprman->regs_lock);
 706	cprman_write(cprman, A2W_XOSC_CTRL,
 707		     cprman_read(cprman, A2W_XOSC_CTRL) |
 708		     data->reference_enable_mask);
 709	spin_unlock(&cprman->regs_lock);
 710
 711	if (do_ana_setup_first)
 712		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 713
 714	/* Set the PLL multiplier from the oscillator. */
 715	cprman_write(cprman, data->frac_reg, fdiv);
 716
 717	a2w_ctl = cprman_read(cprman, data->a2w_ctrl_reg);
 718	a2w_ctl &= ~A2W_PLL_CTRL_NDIV_MASK;
 719	a2w_ctl |= ndiv << A2W_PLL_CTRL_NDIV_SHIFT;
 720	a2w_ctl &= ~A2W_PLL_CTRL_PDIV_MASK;
 721	a2w_ctl |= 1 << A2W_PLL_CTRL_PDIV_SHIFT;
 722	cprman_write(cprman, data->a2w_ctrl_reg, a2w_ctl);
 723
 724	if (!do_ana_setup_first)
 725		bcm2835_pll_write_ana(cprman, data->ana_reg_base, ana);
 726
 727	return 0;
 728}
 729
 730static void bcm2835_pll_debug_init(struct clk_hw *hw,
 731				  struct dentry *dentry)
 732{
 733	struct bcm2835_pll *pll = container_of(hw, struct bcm2835_pll, hw);
 734	struct bcm2835_cprman *cprman = pll->cprman;
 735	const struct bcm2835_pll_data *data = pll->data;
 736	struct debugfs_reg32 *regs;
 737
 738	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 739	if (!regs)
 740		return;
 741
 742	regs[0].name = "cm_ctrl";
 743	regs[0].offset = data->cm_ctrl_reg;
 744	regs[1].name = "a2w_ctrl";
 745	regs[1].offset = data->a2w_ctrl_reg;
 746	regs[2].name = "frac";
 747	regs[2].offset = data->frac_reg;
 748	regs[3].name = "ana0";
 749	regs[3].offset = data->ana_reg_base + 0 * 4;
 750	regs[4].name = "ana1";
 751	regs[4].offset = data->ana_reg_base + 1 * 4;
 752	regs[5].name = "ana2";
 753	regs[5].offset = data->ana_reg_base + 2 * 4;
 754	regs[6].name = "ana3";
 755	regs[6].offset = data->ana_reg_base + 3 * 4;
 756
 757	bcm2835_debugfs_regset(cprman, 0, regs, 7, dentry);
 758}
 759
 760static const struct clk_ops bcm2835_pll_clk_ops = {
 761	.is_prepared = bcm2835_pll_is_on,
 762	.prepare = bcm2835_pll_on,
 763	.unprepare = bcm2835_pll_off,
 764	.recalc_rate = bcm2835_pll_get_rate,
 765	.set_rate = bcm2835_pll_set_rate,
 766	.round_rate = bcm2835_pll_round_rate,
 767	.debug_init = bcm2835_pll_debug_init,
 768};
 769
 770struct bcm2835_pll_divider {
 771	struct clk_divider div;
 772	struct bcm2835_cprman *cprman;
 773	const struct bcm2835_pll_divider_data *data;
 774};
 775
 776static struct bcm2835_pll_divider *
 777bcm2835_pll_divider_from_hw(struct clk_hw *hw)
 778{
 779	return container_of(hw, struct bcm2835_pll_divider, div.hw);
 780}
 781
 782static int bcm2835_pll_divider_is_on(struct clk_hw *hw)
 783{
 784	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 785	struct bcm2835_cprman *cprman = divider->cprman;
 786	const struct bcm2835_pll_divider_data *data = divider->data;
 787
 788	return !(cprman_read(cprman, data->a2w_reg) & A2W_PLL_CHANNEL_DISABLE);
 789}
 790
 791static long bcm2835_pll_divider_round_rate(struct clk_hw *hw,
 792					   unsigned long rate,
 793					   unsigned long *parent_rate)
 794{
 795	return clk_divider_ops.round_rate(hw, rate, parent_rate);
 796}
 797
 798static unsigned long bcm2835_pll_divider_get_rate(struct clk_hw *hw,
 799						  unsigned long parent_rate)
 800{
 801	return clk_divider_ops.recalc_rate(hw, parent_rate);
 802}
 803
 804static void bcm2835_pll_divider_off(struct clk_hw *hw)
 805{
 806	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 807	struct bcm2835_cprman *cprman = divider->cprman;
 808	const struct bcm2835_pll_divider_data *data = divider->data;
 809
 810	spin_lock(&cprman->regs_lock);
 811	cprman_write(cprman, data->cm_reg,
 812		     (cprman_read(cprman, data->cm_reg) &
 813		      ~data->load_mask) | data->hold_mask);
 814	cprman_write(cprman, data->a2w_reg,
 815		     cprman_read(cprman, data->a2w_reg) |
 816		     A2W_PLL_CHANNEL_DISABLE);
 817	spin_unlock(&cprman->regs_lock);
 818}
 819
 820static int bcm2835_pll_divider_on(struct clk_hw *hw)
 821{
 822	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 823	struct bcm2835_cprman *cprman = divider->cprman;
 824	const struct bcm2835_pll_divider_data *data = divider->data;
 825
 826	spin_lock(&cprman->regs_lock);
 827	cprman_write(cprman, data->a2w_reg,
 828		     cprman_read(cprman, data->a2w_reg) &
 829		     ~A2W_PLL_CHANNEL_DISABLE);
 830
 831	cprman_write(cprman, data->cm_reg,
 832		     cprman_read(cprman, data->cm_reg) & ~data->hold_mask);
 833	spin_unlock(&cprman->regs_lock);
 834
 835	return 0;
 836}
 837
 838static int bcm2835_pll_divider_set_rate(struct clk_hw *hw,
 839					unsigned long rate,
 840					unsigned long parent_rate)
 841{
 842	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 843	struct bcm2835_cprman *cprman = divider->cprman;
 844	const struct bcm2835_pll_divider_data *data = divider->data;
 845	u32 cm, div, max_div = 1 << A2W_PLL_DIV_BITS;
 846
 847	div = DIV_ROUND_UP_ULL(parent_rate, rate);
 848
 849	div = min(div, max_div);
 850	if (div == max_div)
 851		div = 0;
 852
 853	cprman_write(cprman, data->a2w_reg, div);
 854	cm = cprman_read(cprman, data->cm_reg);
 855	cprman_write(cprman, data->cm_reg, cm | data->load_mask);
 856	cprman_write(cprman, data->cm_reg, cm & ~data->load_mask);
 857
 858	return 0;
 859}
 860
 861static void bcm2835_pll_divider_debug_init(struct clk_hw *hw,
 862					   struct dentry *dentry)
 863{
 864	struct bcm2835_pll_divider *divider = bcm2835_pll_divider_from_hw(hw);
 865	struct bcm2835_cprman *cprman = divider->cprman;
 866	const struct bcm2835_pll_divider_data *data = divider->data;
 867	struct debugfs_reg32 *regs;
 868
 869	regs = devm_kcalloc(cprman->dev, 7, sizeof(*regs), GFP_KERNEL);
 870	if (!regs)
 871		return;
 872
 873	regs[0].name = "cm";
 874	regs[0].offset = data->cm_reg;
 875	regs[1].name = "a2w";
 876	regs[1].offset = data->a2w_reg;
 877
 878	bcm2835_debugfs_regset(cprman, 0, regs, 2, dentry);
 879}
 880
 881static const struct clk_ops bcm2835_pll_divider_clk_ops = {
 882	.is_prepared = bcm2835_pll_divider_is_on,
 883	.prepare = bcm2835_pll_divider_on,
 884	.unprepare = bcm2835_pll_divider_off,
 885	.recalc_rate = bcm2835_pll_divider_get_rate,
 886	.set_rate = bcm2835_pll_divider_set_rate,
 887	.round_rate = bcm2835_pll_divider_round_rate,
 888	.debug_init = bcm2835_pll_divider_debug_init,
 889};
 890
 891/*
 892 * The CM dividers do fixed-point division, so we can't use the
 893 * generic integer divider code like the PLL dividers do (and we can't
 894 * fake it by having some fixed shifts preceding it in the clock tree,
 895 * because we'd run out of bits in a 32-bit unsigned long).
 896 */
 897struct bcm2835_clock {
 898	struct clk_hw hw;
 899	struct bcm2835_cprman *cprman;
 900	const struct bcm2835_clock_data *data;
 901};
 902
 903static struct bcm2835_clock *bcm2835_clock_from_hw(struct clk_hw *hw)
 904{
 905	return container_of(hw, struct bcm2835_clock, hw);
 906}
 907
 908static int bcm2835_clock_is_on(struct clk_hw *hw)
 909{
 910	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 911	struct bcm2835_cprman *cprman = clock->cprman;
 912	const struct bcm2835_clock_data *data = clock->data;
 913
 914	return (cprman_read(cprman, data->ctl_reg) & CM_ENABLE) != 0;
 915}
 916
 917static u32 bcm2835_clock_choose_div(struct clk_hw *hw,
 918				    unsigned long rate,
 919				    unsigned long parent_rate,
 920				    bool round_up)
 921{
 922	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 923	const struct bcm2835_clock_data *data = clock->data;
 924	u32 unused_frac_mask =
 925		GENMASK(CM_DIV_FRAC_BITS - data->frac_bits, 0) >> 1;
 926	u64 temp = (u64)parent_rate << CM_DIV_FRAC_BITS;
 927	u64 rem;
 928	u32 div, mindiv, maxdiv;
 929
 930	rem = do_div(temp, rate);
 931	div = temp;
 932
 933	/* Round up and mask off the unused bits */
 934	if (round_up && ((div & unused_frac_mask) != 0 || rem != 0))
 935		div += unused_frac_mask + 1;
 936	div &= ~unused_frac_mask;
 937
 938	/* different clamping limits apply for a mash clock */
 939	if (data->is_mash_clock) {
 940		/* clamp to min divider of 2 */
 941		mindiv = 2 << CM_DIV_FRAC_BITS;
 942		/* clamp to the highest possible integer divider */
 943		maxdiv = (BIT(data->int_bits) - 1) << CM_DIV_FRAC_BITS;
 944	} else {
 945		/* clamp to min divider of 1 */
 946		mindiv = 1 << CM_DIV_FRAC_BITS;
 947		/* clamp to the highest possible fractional divider */
 948		maxdiv = GENMASK(data->int_bits + CM_DIV_FRAC_BITS - 1,
 949				 CM_DIV_FRAC_BITS - data->frac_bits);
 950	}
 951
 952	/* apply the clamping  limits */
 953	div = max_t(u32, div, mindiv);
 954	div = min_t(u32, div, maxdiv);
 955
 956	return div;
 957}
 958
 959static long bcm2835_clock_rate_from_divisor(struct bcm2835_clock *clock,
 960					    unsigned long parent_rate,
 961					    u32 div)
 962{
 963	const struct bcm2835_clock_data *data = clock->data;
 964	u64 temp;
 965
 966	if (data->int_bits == 0 && data->frac_bits == 0)
 967		return parent_rate;
 968
 969	/*
 970	 * The divisor is a 12.12 fixed point field, but only some of
 971	 * the bits are populated in any given clock.
 972	 */
 973	div >>= CM_DIV_FRAC_BITS - data->frac_bits;
 974	div &= (1 << (data->int_bits + data->frac_bits)) - 1;
 975
 976	if (div == 0)
 977		return 0;
 978
 979	temp = (u64)parent_rate << data->frac_bits;
 980
 981	do_div(temp, div);
 982
 983	return temp;
 984}
 985
 986static unsigned long bcm2835_clock_get_rate(struct clk_hw *hw,
 987					    unsigned long parent_rate)
 988{
 989	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
 990	struct bcm2835_cprman *cprman = clock->cprman;
 991	const struct bcm2835_clock_data *data = clock->data;
 992	u32 div;
 993
 994	if (data->int_bits == 0 && data->frac_bits == 0)
 995		return parent_rate;
 996
 997	div = cprman_read(cprman, data->div_reg);
 998
 999	return bcm2835_clock_rate_from_divisor(clock, parent_rate, div);
1000}
1001
1002static void bcm2835_clock_wait_busy(struct bcm2835_clock *clock)
1003{
1004	struct bcm2835_cprman *cprman = clock->cprman;
1005	const struct bcm2835_clock_data *data = clock->data;
1006	ktime_t timeout = ktime_add_ns(ktime_get(), LOCK_TIMEOUT_NS);
1007
1008	while (cprman_read(cprman, data->ctl_reg) & CM_BUSY) {
1009		if (ktime_after(ktime_get(), timeout)) {
1010			dev_err(cprman->dev, "%s: couldn't lock PLL\n",
1011				clk_hw_get_name(&clock->hw));
1012			return;
1013		}
1014		cpu_relax();
1015	}
1016}
1017
1018static void bcm2835_clock_off(struct clk_hw *hw)
1019{
1020	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1021	struct bcm2835_cprman *cprman = clock->cprman;
1022	const struct bcm2835_clock_data *data = clock->data;
1023
1024	spin_lock(&cprman->regs_lock);
1025	cprman_write(cprman, data->ctl_reg,
1026		     cprman_read(cprman, data->ctl_reg) & ~CM_ENABLE);
1027	spin_unlock(&cprman->regs_lock);
1028
1029	/* BUSY will remain high until the divider completes its cycle. */
1030	bcm2835_clock_wait_busy(clock);
1031}
1032
1033static int bcm2835_clock_on(struct clk_hw *hw)
1034{
1035	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1036	struct bcm2835_cprman *cprman = clock->cprman;
1037	const struct bcm2835_clock_data *data = clock->data;
1038
1039	spin_lock(&cprman->regs_lock);
1040	cprman_write(cprman, data->ctl_reg,
1041		     cprman_read(cprman, data->ctl_reg) |
1042		     CM_ENABLE |
1043		     CM_GATE);
1044	spin_unlock(&cprman->regs_lock);
1045
1046	/* Debug code to measure the clock once it's turned on to see
1047	 * if it's ticking at the rate we expect.
1048	 */
1049	if (data->tcnt_mux && false) {
1050		dev_info(cprman->dev,
1051			 "clk %s: rate %ld, measure %ld\n",
1052			 data->name,
1053			 clk_hw_get_rate(hw),
1054			 bcm2835_measure_tcnt_mux(cprman, data->tcnt_mux));
1055	}
1056
1057	return 0;
1058}
1059
1060static int bcm2835_clock_set_rate(struct clk_hw *hw,
1061				  unsigned long rate, unsigned long parent_rate)
1062{
1063	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1064	struct bcm2835_cprman *cprman = clock->cprman;
1065	const struct bcm2835_clock_data *data = clock->data;
1066	u32 div = bcm2835_clock_choose_div(hw, rate, parent_rate, false);
1067	u32 ctl;
1068
1069	spin_lock(&cprman->regs_lock);
1070
1071	/*
1072	 * Setting up frac support
1073	 *
1074	 * In principle it is recommended to stop/start the clock first,
1075	 * but as we set CLK_SET_RATE_GATE during registration of the
1076	 * clock this requirement should be take care of by the
1077	 * clk-framework.
1078	 */
1079	ctl = cprman_read(cprman, data->ctl_reg) & ~CM_FRAC;
1080	ctl |= (div & CM_DIV_FRAC_MASK) ? CM_FRAC : 0;
1081	cprman_write(cprman, data->ctl_reg, ctl);
1082
1083	cprman_write(cprman, data->div_reg, div);
1084
1085	spin_unlock(&cprman->regs_lock);
1086
1087	return 0;
1088}
1089
1090static bool
1091bcm2835_clk_is_pllc(struct clk_hw *hw)
1092{
1093	if (!hw)
1094		return false;
1095
1096	return strncmp(clk_hw_get_name(hw), "pllc", 4) == 0;
1097}
1098
1099static unsigned long bcm2835_clock_choose_div_and_prate(struct clk_hw *hw,
1100							int parent_idx,
1101							unsigned long rate,
1102							u32 *div,
1103							unsigned long *prate,
1104							unsigned long *avgrate)
1105{
1106	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1107	struct bcm2835_cprman *cprman = clock->cprman;
1108	const struct bcm2835_clock_data *data = clock->data;
1109	unsigned long best_rate = 0;
1110	u32 curdiv, mindiv, maxdiv;
1111	struct clk_hw *parent;
1112
1113	parent = clk_hw_get_parent_by_index(hw, parent_idx);
1114
1115	if (!(BIT(parent_idx) & data->set_rate_parent)) {
1116		*prate = clk_hw_get_rate(parent);
1117		*div = bcm2835_clock_choose_div(hw, rate, *prate, true);
1118
1119		*avgrate = bcm2835_clock_rate_from_divisor(clock, *prate, *div);
1120
1121		if (data->low_jitter && (*div & CM_DIV_FRAC_MASK)) {
1122			unsigned long high, low;
1123			u32 int_div = *div & ~CM_DIV_FRAC_MASK;
1124
1125			high = bcm2835_clock_rate_from_divisor(clock, *prate,
1126							       int_div);
1127			int_div += CM_DIV_FRAC_MASK + 1;
1128			low = bcm2835_clock_rate_from_divisor(clock, *prate,
1129							      int_div);
1130
1131			/*
1132			 * Return a value which is the maximum deviation
1133			 * below the ideal rate, for use as a metric.
1134			 */
1135			return *avgrate - max(*avgrate - low, high - *avgrate);
1136		}
1137		return *avgrate;
1138	}
1139
1140	if (data->frac_bits)
1141		dev_warn(cprman->dev,
1142			"frac bits are not used when propagating rate change");
1143
1144	/* clamp to min divider of 2 if we're dealing with a mash clock */
1145	mindiv = data->is_mash_clock ? 2 : 1;
1146	maxdiv = BIT(data->int_bits) - 1;
1147
1148	/* TODO: Be smart, and only test a subset of the available divisors. */
1149	for (curdiv = mindiv; curdiv <= maxdiv; curdiv++) {
1150		unsigned long tmp_rate;
1151
1152		tmp_rate = clk_hw_round_rate(parent, rate * curdiv);
1153		tmp_rate /= curdiv;
1154		if (curdiv == mindiv ||
1155		    (tmp_rate > best_rate && tmp_rate <= rate))
1156			best_rate = tmp_rate;
1157
1158		if (best_rate == rate)
1159			break;
1160	}
1161
1162	*div = curdiv << CM_DIV_FRAC_BITS;
1163	*prate = curdiv * best_rate;
1164	*avgrate = best_rate;
1165
1166	return best_rate;
1167}
1168
1169static int bcm2835_clock_determine_rate(struct clk_hw *hw,
1170					struct clk_rate_request *req)
1171{
1172	struct clk_hw *parent, *best_parent = NULL;
1173	bool current_parent_is_pllc;
1174	unsigned long rate, best_rate = 0;
1175	unsigned long prate, best_prate = 0;
1176	unsigned long avgrate, best_avgrate = 0;
1177	size_t i;
1178	u32 div;
1179
1180	current_parent_is_pllc = bcm2835_clk_is_pllc(clk_hw_get_parent(hw));
1181
1182	/*
1183	 * Select parent clock that results in the closest but lower rate
1184	 */
1185	for (i = 0; i < clk_hw_get_num_parents(hw); ++i) {
1186		parent = clk_hw_get_parent_by_index(hw, i);
1187		if (!parent)
1188			continue;
1189
1190		/*
1191		 * Don't choose a PLLC-derived clock as our parent
1192		 * unless it had been manually set that way.  PLLC's
1193		 * frequency gets adjusted by the firmware due to
1194		 * over-temp or under-voltage conditions, without
1195		 * prior notification to our clock consumer.
1196		 */
1197		if (bcm2835_clk_is_pllc(parent) && !current_parent_is_pllc)
1198			continue;
1199
1200		rate = bcm2835_clock_choose_div_and_prate(hw, i, req->rate,
1201							  &div, &prate,
1202							  &avgrate);
1203		if (rate > best_rate && rate <= req->rate) {
1204			best_parent = parent;
1205			best_prate = prate;
1206			best_rate = rate;
1207			best_avgrate = avgrate;
1208		}
1209	}
1210
1211	if (!best_parent)
1212		return -EINVAL;
1213
1214	req->best_parent_hw = best_parent;
1215	req->best_parent_rate = best_prate;
1216
1217	req->rate = best_avgrate;
1218
1219	return 0;
1220}
1221
1222static int bcm2835_clock_set_parent(struct clk_hw *hw, u8 index)
1223{
1224	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1225	struct bcm2835_cprman *cprman = clock->cprman;
1226	const struct bcm2835_clock_data *data = clock->data;
1227	u8 src = (index << CM_SRC_SHIFT) & CM_SRC_MASK;
1228
1229	cprman_write(cprman, data->ctl_reg, src);
1230	return 0;
1231}
1232
1233static u8 bcm2835_clock_get_parent(struct clk_hw *hw)
1234{
1235	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1236	struct bcm2835_cprman *cprman = clock->cprman;
1237	const struct bcm2835_clock_data *data = clock->data;
1238	u32 src = cprman_read(cprman, data->ctl_reg);
1239
1240	return (src & CM_SRC_MASK) >> CM_SRC_SHIFT;
1241}
1242
1243static struct debugfs_reg32 bcm2835_debugfs_clock_reg32[] = {
1244	{
1245		.name = "ctl",
1246		.offset = 0,
1247	},
1248	{
1249		.name = "div",
1250		.offset = 4,
1251	},
1252};
1253
1254static void bcm2835_clock_debug_init(struct clk_hw *hw,
1255				    struct dentry *dentry)
1256{
1257	struct bcm2835_clock *clock = bcm2835_clock_from_hw(hw);
1258	struct bcm2835_cprman *cprman = clock->cprman;
1259	const struct bcm2835_clock_data *data = clock->data;
1260
1261	bcm2835_debugfs_regset(cprman, data->ctl_reg,
1262		bcm2835_debugfs_clock_reg32,
1263		ARRAY_SIZE(bcm2835_debugfs_clock_reg32),
1264		dentry);
1265}
1266
1267static const struct clk_ops bcm2835_clock_clk_ops = {
1268	.is_prepared = bcm2835_clock_is_on,
1269	.prepare = bcm2835_clock_on,
1270	.unprepare = bcm2835_clock_off,
1271	.recalc_rate = bcm2835_clock_get_rate,
1272	.set_rate = bcm2835_clock_set_rate,
1273	.determine_rate = bcm2835_clock_determine_rate,
1274	.set_parent = bcm2835_clock_set_parent,
1275	.get_parent = bcm2835_clock_get_parent,
1276	.debug_init = bcm2835_clock_debug_init,
1277};
1278
1279static int bcm2835_vpu_clock_is_on(struct clk_hw *hw)
1280{
1281	return true;
1282}
1283
1284/*
1285 * The VPU clock can never be disabled (it doesn't have an ENABLE
1286 * bit), so it gets its own set of clock ops.
1287 */
1288static const struct clk_ops bcm2835_vpu_clock_clk_ops = {
1289	.is_prepared = bcm2835_vpu_clock_is_on,
1290	.recalc_rate = bcm2835_clock_get_rate,
1291	.set_rate = bcm2835_clock_set_rate,
1292	.determine_rate = bcm2835_clock_determine_rate,
1293	.set_parent = bcm2835_clock_set_parent,
1294	.get_parent = bcm2835_clock_get_parent,
1295	.debug_init = bcm2835_clock_debug_init,
1296};
1297
1298static struct clk_hw *bcm2835_register_pll(struct bcm2835_cprman *cprman,
1299					   const struct bcm2835_pll_data *data)
1300{
1301	struct bcm2835_pll *pll;
1302	struct clk_init_data init;
1303	int ret;
1304
1305	memset(&init, 0, sizeof(init));
1306
1307	/* All of the PLLs derive from the external oscillator. */
1308	init.parent_names = &cprman->real_parent_names[0];
1309	init.num_parents = 1;
1310	init.name = data->name;
1311	init.ops = &bcm2835_pll_clk_ops;
1312	init.flags = CLK_IGNORE_UNUSED;
1313
1314	pll = kzalloc(sizeof(*pll), GFP_KERNEL);
1315	if (!pll)
1316		return NULL;
1317
1318	pll->cprman = cprman;
1319	pll->data = data;
1320	pll->hw.init = &init;
1321
1322	ret = devm_clk_hw_register(cprman->dev, &pll->hw);
1323	if (ret)
1324		return NULL;
1325	return &pll->hw;
1326}
1327
1328static struct clk_hw *
1329bcm2835_register_pll_divider(struct bcm2835_cprman *cprman,
1330			     const struct bcm2835_pll_divider_data *data)
1331{
1332	struct bcm2835_pll_divider *divider;
1333	struct clk_init_data init;
1334	const char *divider_name;
1335	int ret;
1336
1337	if (data->fixed_divider != 1) {
1338		divider_name = devm_kasprintf(cprman->dev, GFP_KERNEL,
1339					      "%s_prediv", data->name);
1340		if (!divider_name)
1341			return NULL;
1342	} else {
1343		divider_name = data->name;
1344	}
1345
1346	memset(&init, 0, sizeof(init));
1347
1348	init.parent_names = &data->source_pll;
1349	init.num_parents = 1;
1350	init.name = divider_name;
1351	init.ops = &bcm2835_pll_divider_clk_ops;
1352	init.flags = data->flags | CLK_IGNORE_UNUSED;
1353
1354	divider = devm_kzalloc(cprman->dev, sizeof(*divider), GFP_KERNEL);
1355	if (!divider)
1356		return NULL;
1357
1358	divider->div.reg = cprman->regs + data->a2w_reg;
1359	divider->div.shift = A2W_PLL_DIV_SHIFT;
1360	divider->div.width = A2W_PLL_DIV_BITS;
1361	divider->div.flags = CLK_DIVIDER_MAX_AT_ZERO;
1362	divider->div.lock = &cprman->regs_lock;
1363	divider->div.hw.init = &init;
1364	divider->div.table = NULL;
1365
1366	divider->cprman = cprman;
1367	divider->data = data;
1368
1369	ret = devm_clk_hw_register(cprman->dev, &divider->div.hw);
1370	if (ret)
1371		return ERR_PTR(ret);
1372
1373	/*
1374	 * PLLH's channels have a fixed divide by 10 afterwards, which
1375	 * is what our consumers are actually using.
1376	 */
1377	if (data->fixed_divider != 1) {
1378		return clk_hw_register_fixed_factor(cprman->dev, data->name,
1379						    divider_name,
1380						    CLK_SET_RATE_PARENT,
1381						    1,
1382						    data->fixed_divider);
1383	}
1384
1385	return &divider->div.hw;
1386}
1387
1388static struct clk_hw *bcm2835_register_clock(struct bcm2835_cprman *cprman,
1389					  const struct bcm2835_clock_data *data)
1390{
1391	struct bcm2835_clock *clock;
1392	struct clk_init_data init;
1393	const char *parents[1 << CM_SRC_BITS];
1394	size_t i;
1395	int ret;
1396
1397	/*
1398	 * Replace our strings referencing parent clocks with the
1399	 * actual clock-output-name of the parent.
1400	 */
1401	for (i = 0; i < data->num_mux_parents; i++) {
1402		parents[i] = data->parents[i];
1403
1404		ret = match_string(cprman_parent_names,
1405				   ARRAY_SIZE(cprman_parent_names),
1406				   parents[i]);
1407		if (ret >= 0)
1408			parents[i] = cprman->real_parent_names[ret];
1409	}
1410
1411	memset(&init, 0, sizeof(init));
1412	init.parent_names = parents;
1413	init.num_parents = data->num_mux_parents;
1414	init.name = data->name;
1415	init.flags = data->flags | CLK_IGNORE_UNUSED;
1416
1417	/*
1418	 * Pass the CLK_SET_RATE_PARENT flag if we are allowed to propagate
1419	 * rate changes on at least of the parents.
1420	 */
1421	if (data->set_rate_parent)
1422		init.flags |= CLK_SET_RATE_PARENT;
1423
1424	if (data->is_vpu_clock) {
1425		init.ops = &bcm2835_vpu_clock_clk_ops;
1426	} else {
1427		init.ops = &bcm2835_clock_clk_ops;
1428		init.flags |= CLK_SET_RATE_GATE | CLK_SET_PARENT_GATE;
1429
1430		/* If the clock wasn't actually enabled at boot, it's not
1431		 * critical.
1432		 */
1433		if (!(cprman_read(cprman, data->ctl_reg) & CM_ENABLE))
1434			init.flags &= ~CLK_IS_CRITICAL;
1435	}
1436
1437	clock = devm_kzalloc(cprman->dev, sizeof(*clock), GFP_KERNEL);
1438	if (!clock)
1439		return NULL;
1440
1441	clock->cprman = cprman;
1442	clock->data = data;
1443	clock->hw.init = &init;
1444
1445	ret = devm_clk_hw_register(cprman->dev, &clock->hw);
1446	if (ret)
1447		return ERR_PTR(ret);
1448	return &clock->hw;
1449}
1450
1451static struct clk *bcm2835_register_gate(struct bcm2835_cprman *cprman,
1452					 const struct bcm2835_gate_data *data)
1453{
1454	return clk_register_gate(cprman->dev, data->name, data->parent,
1455				 CLK_IGNORE_UNUSED | CLK_SET_RATE_GATE,
1456				 cprman->regs + data->ctl_reg,
1457				 CM_GATE_BIT, 0, &cprman->regs_lock);
1458}
1459
1460typedef struct clk_hw *(*bcm2835_clk_register)(struct bcm2835_cprman *cprman,
1461					       const void *data);
1462struct bcm2835_clk_desc {
1463	bcm2835_clk_register clk_register;
1464	unsigned int supported;
1465	const void *data;
1466};
1467
1468/* assignment helper macros for different clock types */
1469#define _REGISTER(f, s, ...) { .clk_register = (bcm2835_clk_register)f, \
1470			       .supported = s,				\
1471			       .data = __VA_ARGS__ }
1472#define REGISTER_PLL(s, ...)	_REGISTER(&bcm2835_register_pll,	\
1473					  s,				\
1474					  &(struct bcm2835_pll_data)	\
1475					  {__VA_ARGS__})
1476#define REGISTER_PLL_DIV(s, ...) _REGISTER(&bcm2835_register_pll_divider, \
1477					   s,				  \
1478					   &(struct bcm2835_pll_divider_data) \
1479					   {__VA_ARGS__})
1480#define REGISTER_CLK(s, ...)	_REGISTER(&bcm2835_register_clock,	\
1481					  s,				\
1482					  &(struct bcm2835_clock_data)	\
1483					  {__VA_ARGS__})
1484#define REGISTER_GATE(s, ...)	_REGISTER(&bcm2835_register_gate,	\
1485					  s,				\
1486					  &(struct bcm2835_gate_data)	\
1487					  {__VA_ARGS__})
1488
1489/* parent mux arrays plus helper macros */
1490
1491/* main oscillator parent mux */
1492static const char *const bcm2835_clock_osc_parents[] = {
1493	"gnd",
1494	"xosc",
1495	"testdebug0",
1496	"testdebug1"
1497};
1498
1499#define REGISTER_OSC_CLK(s, ...)	REGISTER_CLK(			\
1500	s,								\
1501	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_osc_parents),	\
1502	.parents = bcm2835_clock_osc_parents,				\
1503	__VA_ARGS__)
1504
1505/* main peripherial parent mux */
1506static const char *const bcm2835_clock_per_parents[] = {
1507	"gnd",
1508	"xosc",
1509	"testdebug0",
1510	"testdebug1",
1511	"plla_per",
1512	"pllc_per",
1513	"plld_per",
1514	"pllh_aux",
1515};
1516
1517#define REGISTER_PER_CLK(s, ...)	REGISTER_CLK(			\
1518	s,								\
1519	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_per_parents),	\
1520	.parents = bcm2835_clock_per_parents,				\
1521	__VA_ARGS__)
1522
1523/*
1524 * Restrict clock sources for the PCM peripheral to the oscillator and
1525 * PLLD_PER because other source may have varying rates or be switched
1526 * off.
1527 *
1528 * Prevent other sources from being selected by replacing their names in
1529 * the list of potential parents with dummy entries (entry index is
1530 * significant).
1531 */
1532static const char *const bcm2835_pcm_per_parents[] = {
1533	"-",
1534	"xosc",
1535	"-",
1536	"-",
1537	"-",
1538	"-",
1539	"plld_per",
1540	"-",
1541};
1542
1543#define REGISTER_PCM_CLK(s, ...)	REGISTER_CLK(			\
1544	s,								\
1545	.num_mux_parents = ARRAY_SIZE(bcm2835_pcm_per_parents),		\
1546	.parents = bcm2835_pcm_per_parents,				\
1547	__VA_ARGS__)
1548
1549/* main vpu parent mux */
1550static const char *const bcm2835_clock_vpu_parents[] = {
1551	"gnd",
1552	"xosc",
1553	"testdebug0",
1554	"testdebug1",
1555	"plla_core",
1556	"pllc_core0",
1557	"plld_core",
1558	"pllh_aux",
1559	"pllc_core1",
1560	"pllc_core2",
1561};
1562
1563#define REGISTER_VPU_CLK(s, ...)	REGISTER_CLK(			\
1564	s,								\
1565	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_vpu_parents),	\
1566	.parents = bcm2835_clock_vpu_parents,				\
1567	__VA_ARGS__)
1568
1569/*
1570 * DSI parent clocks.  The DSI byte/DDR/DDR2 clocks come from the DSI
1571 * analog PHY.  The _inv variants are generated internally to cprman,
1572 * but we don't use them so they aren't hooked up.
1573 */
1574static const char *const bcm2835_clock_dsi0_parents[] = {
1575	"gnd",
1576	"xosc",
1577	"testdebug0",
1578	"testdebug1",
1579	"dsi0_ddr",
1580	"dsi0_ddr_inv",
1581	"dsi0_ddr2",
1582	"dsi0_ddr2_inv",
1583	"dsi0_byte",
1584	"dsi0_byte_inv",
1585};
1586
1587static const char *const bcm2835_clock_dsi1_parents[] = {
1588	"gnd",
1589	"xosc",
1590	"testdebug0",
1591	"testdebug1",
1592	"dsi1_ddr",
1593	"dsi1_ddr_inv",
1594	"dsi1_ddr2",
1595	"dsi1_ddr2_inv",
1596	"dsi1_byte",
1597	"dsi1_byte_inv",
1598};
1599
1600#define REGISTER_DSI0_CLK(s, ...)	REGISTER_CLK(			\
1601	s,								\
1602	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi0_parents),	\
1603	.parents = bcm2835_clock_dsi0_parents,				\
1604	__VA_ARGS__)
1605
1606#define REGISTER_DSI1_CLK(s, ...)	REGISTER_CLK(			\
1607	s,								\
1608	.num_mux_parents = ARRAY_SIZE(bcm2835_clock_dsi1_parents),	\
1609	.parents = bcm2835_clock_dsi1_parents,				\
1610	__VA_ARGS__)
1611
1612/*
1613 * the real definition of all the pll, pll_dividers and clocks
1614 * these make use of the above REGISTER_* macros
1615 */
1616static const struct bcm2835_clk_desc clk_desc_array[] = {
1617	/* the PLL + PLL dividers */
1618
1619	/*
1620	 * PLLA is the auxiliary PLL, used to drive the CCP2
1621	 * (Compact Camera Port 2) transmitter clock.
1622	 *
1623	 * It is in the PX LDO power domain, which is on when the
1624	 * AUDIO domain is on.
1625	 */
1626	[BCM2835_PLLA]		= REGISTER_PLL(
1627		SOC_ALL,
1628		.name = "plla",
1629		.cm_ctrl_reg = CM_PLLA,
1630		.a2w_ctrl_reg = A2W_PLLA_CTRL,
1631		.frac_reg = A2W_PLLA_FRAC,
1632		.ana_reg_base = A2W_PLLA_ANA0,
1633		.reference_enable_mask = A2W_XOSC_CTRL_PLLA_ENABLE,
1634		.lock_mask = CM_LOCK_FLOCKA,
1635
1636		.ana = &bcm2835_ana_default,
1637
1638		.min_rate = 600000000u,
1639		.max_rate = 2400000000u,
1640		.max_fb_rate = BCM2835_MAX_FB_RATE),
1641	[BCM2835_PLLA_CORE]	= REGISTER_PLL_DIV(
1642		SOC_ALL,
1643		.name = "plla_core",
1644		.source_pll = "plla",
1645		.cm_reg = CM_PLLA,
1646		.a2w_reg = A2W_PLLA_CORE,
1647		.load_mask = CM_PLLA_LOADCORE,
1648		.hold_mask = CM_PLLA_HOLDCORE,
1649		.fixed_divider = 1,
1650		.flags = CLK_SET_RATE_PARENT),
1651	[BCM2835_PLLA_PER]	= REGISTER_PLL_DIV(
1652		SOC_ALL,
1653		.name = "plla_per",
1654		.source_pll = "plla",
1655		.cm_reg = CM_PLLA,
1656		.a2w_reg = A2W_PLLA_PER,
1657		.load_mask = CM_PLLA_LOADPER,
1658		.hold_mask = CM_PLLA_HOLDPER,
1659		.fixed_divider = 1,
1660		.flags = CLK_SET_RATE_PARENT),
1661	[BCM2835_PLLA_DSI0]	= REGISTER_PLL_DIV(
1662		SOC_ALL,
1663		.name = "plla_dsi0",
1664		.source_pll = "plla",
1665		.cm_reg = CM_PLLA,
1666		.a2w_reg = A2W_PLLA_DSI0,
1667		.load_mask = CM_PLLA_LOADDSI0,
1668		.hold_mask = CM_PLLA_HOLDDSI0,
1669		.fixed_divider = 1),
1670	[BCM2835_PLLA_CCP2]	= REGISTER_PLL_DIV(
1671		SOC_ALL,
1672		.name = "plla_ccp2",
1673		.source_pll = "plla",
1674		.cm_reg = CM_PLLA,
1675		.a2w_reg = A2W_PLLA_CCP2,
1676		.load_mask = CM_PLLA_LOADCCP2,
1677		.hold_mask = CM_PLLA_HOLDCCP2,
1678		.fixed_divider = 1,
1679		.flags = CLK_SET_RATE_PARENT),
1680
1681	/*
1682	 * PLLB is used for the ARM's clock. Controlled by firmware, see
1683	 * clk-raspberrypi.c.
1684	 */
1685
1686	/*
1687	 * PLLC is the core PLL, used to drive the core VPU clock.
1688	 *
1689	 * It is in the PX LDO power domain, which is on when the
1690	 * AUDIO domain is on.
1691	 */
1692	[BCM2835_PLLC]		= REGISTER_PLL(
1693		SOC_ALL,
1694		.name = "pllc",
1695		.cm_ctrl_reg = CM_PLLC,
1696		.a2w_ctrl_reg = A2W_PLLC_CTRL,
1697		.frac_reg = A2W_PLLC_FRAC,
1698		.ana_reg_base = A2W_PLLC_ANA0,
1699		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1700		.lock_mask = CM_LOCK_FLOCKC,
1701
1702		.ana = &bcm2835_ana_default,
1703
1704		.min_rate = 600000000u,
1705		.max_rate = 3000000000u,
1706		.max_fb_rate = BCM2835_MAX_FB_RATE),
1707	[BCM2835_PLLC_CORE0]	= REGISTER_PLL_DIV(
1708		SOC_ALL,
1709		.name = "pllc_core0",
1710		.source_pll = "pllc",
1711		.cm_reg = CM_PLLC,
1712		.a2w_reg = A2W_PLLC_CORE0,
1713		.load_mask = CM_PLLC_LOADCORE0,
1714		.hold_mask = CM_PLLC_HOLDCORE0,
1715		.fixed_divider = 1,
1716		.flags = CLK_SET_RATE_PARENT),
1717	[BCM2835_PLLC_CORE1]	= REGISTER_PLL_DIV(
1718		SOC_ALL,
1719		.name = "pllc_core1",
1720		.source_pll = "pllc",
1721		.cm_reg = CM_PLLC,
1722		.a2w_reg = A2W_PLLC_CORE1,
1723		.load_mask = CM_PLLC_LOADCORE1,
1724		.hold_mask = CM_PLLC_HOLDCORE1,
1725		.fixed_divider = 1,
1726		.flags = CLK_SET_RATE_PARENT),
1727	[BCM2835_PLLC_CORE2]	= REGISTER_PLL_DIV(
1728		SOC_ALL,
1729		.name = "pllc_core2",
1730		.source_pll = "pllc",
1731		.cm_reg = CM_PLLC,
1732		.a2w_reg = A2W_PLLC_CORE2,
1733		.load_mask = CM_PLLC_LOADCORE2,
1734		.hold_mask = CM_PLLC_HOLDCORE2,
1735		.fixed_divider = 1,
1736		.flags = CLK_SET_RATE_PARENT),
1737	[BCM2835_PLLC_PER]	= REGISTER_PLL_DIV(
1738		SOC_ALL,
1739		.name = "pllc_per",
1740		.source_pll = "pllc",
1741		.cm_reg = CM_PLLC,
1742		.a2w_reg = A2W_PLLC_PER,
1743		.load_mask = CM_PLLC_LOADPER,
1744		.hold_mask = CM_PLLC_HOLDPER,
1745		.fixed_divider = 1,
1746		.flags = CLK_SET_RATE_PARENT),
1747
1748	/*
1749	 * PLLD is the display PLL, used to drive DSI display panels.
1750	 *
1751	 * It is in the PX LDO power domain, which is on when the
1752	 * AUDIO domain is on.
1753	 */
1754	[BCM2835_PLLD]		= REGISTER_PLL(
1755		SOC_ALL,
1756		.name = "plld",
1757		.cm_ctrl_reg = CM_PLLD,
1758		.a2w_ctrl_reg = A2W_PLLD_CTRL,
1759		.frac_reg = A2W_PLLD_FRAC,
1760		.ana_reg_base = A2W_PLLD_ANA0,
1761		.reference_enable_mask = A2W_XOSC_CTRL_DDR_ENABLE,
1762		.lock_mask = CM_LOCK_FLOCKD,
1763
1764		.ana = &bcm2835_ana_default,
1765
1766		.min_rate = 600000000u,
1767		.max_rate = 2400000000u,
1768		.max_fb_rate = BCM2835_MAX_FB_RATE),
1769	[BCM2835_PLLD_CORE]	= REGISTER_PLL_DIV(
1770		SOC_ALL,
1771		.name = "plld_core",
1772		.source_pll = "plld",
1773		.cm_reg = CM_PLLD,
1774		.a2w_reg = A2W_PLLD_CORE,
1775		.load_mask = CM_PLLD_LOADCORE,
1776		.hold_mask = CM_PLLD_HOLDCORE,
1777		.fixed_divider = 1,
1778		.flags = CLK_SET_RATE_PARENT),
1779	/*
1780	 * VPU firmware assumes that PLLD_PER isn't disabled by the ARM core.
1781	 * Otherwise this could cause firmware lookups. That's why we mark
1782	 * it as critical.
1783	 */
1784	[BCM2835_PLLD_PER]	= REGISTER_PLL_DIV(
1785		SOC_ALL,
1786		.name = "plld_per",
1787		.source_pll = "plld",
1788		.cm_reg = CM_PLLD,
1789		.a2w_reg = A2W_PLLD_PER,
1790		.load_mask = CM_PLLD_LOADPER,
1791		.hold_mask = CM_PLLD_HOLDPER,
1792		.fixed_divider = 1,
1793		.flags = CLK_IS_CRITICAL | CLK_SET_RATE_PARENT),
1794	[BCM2835_PLLD_DSI0]	= REGISTER_PLL_DIV(
1795		SOC_ALL,
1796		.name = "plld_dsi0",
1797		.source_pll = "plld",
1798		.cm_reg = CM_PLLD,
1799		.a2w_reg = A2W_PLLD_DSI0,
1800		.load_mask = CM_PLLD_LOADDSI0,
1801		.hold_mask = CM_PLLD_HOLDDSI0,
1802		.fixed_divider = 1),
1803	[BCM2835_PLLD_DSI1]	= REGISTER_PLL_DIV(
1804		SOC_ALL,
1805		.name = "plld_dsi1",
1806		.source_pll = "plld",
1807		.cm_reg = CM_PLLD,
1808		.a2w_reg = A2W_PLLD_DSI1,
1809		.load_mask = CM_PLLD_LOADDSI1,
1810		.hold_mask = CM_PLLD_HOLDDSI1,
1811		.fixed_divider = 1),
1812
1813	/*
1814	 * PLLH is used to supply the pixel clock or the AUX clock for the
1815	 * TV encoder.
1816	 *
1817	 * It is in the HDMI power domain.
1818	 */
1819	[BCM2835_PLLH]		= REGISTER_PLL(
1820		SOC_BCM2835,
1821		"pllh",
1822		.cm_ctrl_reg = CM_PLLH,
1823		.a2w_ctrl_reg = A2W_PLLH_CTRL,
1824		.frac_reg = A2W_PLLH_FRAC,
1825		.ana_reg_base = A2W_PLLH_ANA0,
1826		.reference_enable_mask = A2W_XOSC_CTRL_PLLC_ENABLE,
1827		.lock_mask = CM_LOCK_FLOCKH,
1828
1829		.ana = &bcm2835_ana_pllh,
1830
1831		.min_rate = 600000000u,
1832		.max_rate = 3000000000u,
1833		.max_fb_rate = BCM2835_MAX_FB_RATE),
1834	[BCM2835_PLLH_RCAL]	= REGISTER_PLL_DIV(
1835		SOC_BCM2835,
1836		.name = "pllh_rcal",
1837		.source_pll = "pllh",
1838		.cm_reg = CM_PLLH,
1839		.a2w_reg = A2W_PLLH_RCAL,
1840		.load_mask = CM_PLLH_LOADRCAL,
1841		.hold_mask = 0,
1842		.fixed_divider = 10,
1843		.flags = CLK_SET_RATE_PARENT),
1844	[BCM2835_PLLH_AUX]	= REGISTER_PLL_DIV(
1845		SOC_BCM2835,
1846		.name = "pllh_aux",
1847		.source_pll = "pllh",
1848		.cm_reg = CM_PLLH,
1849		.a2w_reg = A2W_PLLH_AUX,
1850		.load_mask = CM_PLLH_LOADAUX,
1851		.hold_mask = 0,
1852		.fixed_divider = 1,
1853		.flags = CLK_SET_RATE_PARENT),
1854	[BCM2835_PLLH_PIX]	= REGISTER_PLL_DIV(
1855		SOC_BCM2835,
1856		.name = "pllh_pix",
1857		.source_pll = "pllh",
1858		.cm_reg = CM_PLLH,
1859		.a2w_reg = A2W_PLLH_PIX,
1860		.load_mask = CM_PLLH_LOADPIX,
1861		.hold_mask = 0,
1862		.fixed_divider = 10,
1863		.flags = CLK_SET_RATE_PARENT),
1864
1865	/* the clocks */
1866
1867	/* clocks with oscillator parent mux */
1868
1869	/* One Time Programmable Memory clock.  Maximum 10Mhz. */
1870	[BCM2835_CLOCK_OTP]	= REGISTER_OSC_CLK(
1871		SOC_ALL,
1872		.name = "otp",
1873		.ctl_reg = CM_OTPCTL,
1874		.div_reg = CM_OTPDIV,
1875		.int_bits = 4,
1876		.frac_bits = 0,
1877		.tcnt_mux = 6),
1878	/*
1879	 * Used for a 1Mhz clock for the system clocksource, and also used
1880	 * bythe watchdog timer and the camera pulse generator.
1881	 */
1882	[BCM2835_CLOCK_TIMER]	= REGISTER_OSC_CLK(
1883		SOC_ALL,
1884		.name = "timer",
1885		.ctl_reg = CM_TIMERCTL,
1886		.div_reg = CM_TIMERDIV,
1887		.int_bits = 6,
1888		.frac_bits = 12),
1889	/*
1890	 * Clock for the temperature sensor.
1891	 * Generally run at 2Mhz, max 5Mhz.
1892	 */
1893	[BCM2835_CLOCK_TSENS]	= REGISTER_OSC_CLK(
1894		SOC_ALL,
1895		.name = "tsens",
1896		.ctl_reg = CM_TSENSCTL,
1897		.div_reg = CM_TSENSDIV,
1898		.int_bits = 5,
1899		.frac_bits = 0),
1900	[BCM2835_CLOCK_TEC]	= REGISTER_OSC_CLK(
1901		SOC_ALL,
1902		.name = "tec",
1903		.ctl_reg = CM_TECCTL,
1904		.div_reg = CM_TECDIV,
1905		.int_bits = 6,
1906		.frac_bits = 0),
1907
1908	/* clocks with vpu parent mux */
1909	[BCM2835_CLOCK_H264]	= REGISTER_VPU_CLK(
1910		SOC_ALL,
1911		.name = "h264",
1912		.ctl_reg = CM_H264CTL,
1913		.div_reg = CM_H264DIV,
1914		.int_bits = 4,
1915		.frac_bits = 8,
1916		.tcnt_mux = 1),
1917	[BCM2835_CLOCK_ISP]	= REGISTER_VPU_CLK(
1918		SOC_ALL,
1919		.name = "isp",
1920		.ctl_reg = CM_ISPCTL,
1921		.div_reg = CM_ISPDIV,
1922		.int_bits = 4,
1923		.frac_bits = 8,
1924		.tcnt_mux = 2),
1925
1926	/*
1927	 * Secondary SDRAM clock.  Used for low-voltage modes when the PLL
1928	 * in the SDRAM controller can't be used.
1929	 */
1930	[BCM2835_CLOCK_SDRAM]	= REGISTER_VPU_CLK(
1931		SOC_ALL,
1932		.name = "sdram",
1933		.ctl_reg = CM_SDCCTL,
1934		.div_reg = CM_SDCDIV,
1935		.int_bits = 6,
1936		.frac_bits = 0,
1937		.tcnt_mux = 3),
1938	[BCM2835_CLOCK_V3D]	= REGISTER_VPU_CLK(
1939		SOC_ALL,
1940		.name = "v3d",
1941		.ctl_reg = CM_V3DCTL,
1942		.div_reg = CM_V3DDIV,
1943		.int_bits = 4,
1944		.frac_bits = 8,
1945		.tcnt_mux = 4),
1946	/*
1947	 * VPU clock.  This doesn't have an enable bit, since it drives
1948	 * the bus for everything else, and is special so it doesn't need
1949	 * to be gated for rate changes.  It is also known as "clk_audio"
1950	 * in various hardware documentation.
1951	 */
1952	[BCM2835_CLOCK_VPU]	= REGISTER_VPU_CLK(
1953		SOC_ALL,
1954		.name = "vpu",
1955		.ctl_reg = CM_VPUCTL,
1956		.div_reg = CM_VPUDIV,
1957		.int_bits = 12,
1958		.frac_bits = 8,
1959		.flags = CLK_IS_CRITICAL,
1960		.is_vpu_clock = true,
1961		.tcnt_mux = 5),
1962
1963	/* clocks with per parent mux */
1964	[BCM2835_CLOCK_AVEO]	= REGISTER_PER_CLK(
1965		SOC_ALL,
1966		.name = "aveo",
1967		.ctl_reg = CM_AVEOCTL,
1968		.div_reg = CM_AVEODIV,
1969		.int_bits = 4,
1970		.frac_bits = 0,
1971		.tcnt_mux = 38),
1972	[BCM2835_CLOCK_CAM0]	= REGISTER_PER_CLK(
1973		SOC_ALL,
1974		.name = "cam0",
1975		.ctl_reg = CM_CAM0CTL,
1976		.div_reg = CM_CAM0DIV,
1977		.int_bits = 4,
1978		.frac_bits = 8,
1979		.tcnt_mux = 14),
1980	[BCM2835_CLOCK_CAM1]	= REGISTER_PER_CLK(
1981		SOC_ALL,
1982		.name = "cam1",
1983		.ctl_reg = CM_CAM1CTL,
1984		.div_reg = CM_CAM1DIV,
1985		.int_bits = 4,
1986		.frac_bits = 8,
1987		.tcnt_mux = 15),
1988	[BCM2835_CLOCK_DFT]	= REGISTER_PER_CLK(
1989		SOC_ALL,
1990		.name = "dft",
1991		.ctl_reg = CM_DFTCTL,
1992		.div_reg = CM_DFTDIV,
1993		.int_bits = 5,
1994		.frac_bits = 0),
1995	[BCM2835_CLOCK_DPI]	= REGISTER_PER_CLK(
1996		SOC_ALL,
1997		.name = "dpi",
1998		.ctl_reg = CM_DPICTL,
1999		.div_reg = CM_DPIDIV,
2000		.int_bits = 4,
2001		.frac_bits = 8,
2002		.tcnt_mux = 17),
2003
2004	/* Arasan EMMC clock */
2005	[BCM2835_CLOCK_EMMC]	= REGISTER_PER_CLK(
2006		SOC_ALL,
2007		.name = "emmc",
2008		.ctl_reg = CM_EMMCCTL,
2009		.div_reg = CM_EMMCDIV,
2010		.int_bits = 4,
2011		.frac_bits = 8,
2012		.tcnt_mux = 39),
2013
2014	/* EMMC2 clock (only available for BCM2711) */
2015	[BCM2711_CLOCK_EMMC2]	= REGISTER_PER_CLK(
2016		SOC_BCM2711,
2017		.name = "emmc2",
2018		.ctl_reg = CM_EMMC2CTL,
2019		.div_reg = CM_EMMC2DIV,
2020		.int_bits = 4,
2021		.frac_bits = 8,
2022		.tcnt_mux = 42),
2023
2024	/* General purpose (GPIO) clocks */
2025	[BCM2835_CLOCK_GP0]	= REGISTER_PER_CLK(
2026		SOC_ALL,
2027		.name = "gp0",
2028		.ctl_reg = CM_GP0CTL,
2029		.div_reg = CM_GP0DIV,
2030		.int_bits = 12,
2031		.frac_bits = 12,
2032		.is_mash_clock = true,
2033		.tcnt_mux = 20),
2034	[BCM2835_CLOCK_GP1]	= REGISTER_PER_CLK(
2035		SOC_ALL,
2036		.name = "gp1",
2037		.ctl_reg = CM_GP1CTL,
2038		.div_reg = CM_GP1DIV,
2039		.int_bits = 12,
2040		.frac_bits = 12,
2041		.flags = CLK_IS_CRITICAL,
2042		.is_mash_clock = true,
2043		.tcnt_mux = 21),
2044	[BCM2835_CLOCK_GP2]	= REGISTER_PER_CLK(
2045		SOC_ALL,
2046		.name = "gp2",
2047		.ctl_reg = CM_GP2CTL,
2048		.div_reg = CM_GP2DIV,
2049		.int_bits = 12,
2050		.frac_bits = 12,
2051		.flags = CLK_IS_CRITICAL),
2052
2053	/* HDMI state machine */
2054	[BCM2835_CLOCK_HSM]	= REGISTER_PER_CLK(
2055		SOC_ALL,
2056		.name = "hsm",
2057		.ctl_reg = CM_HSMCTL,
2058		.div_reg = CM_HSMDIV,
2059		.int_bits = 4,
2060		.frac_bits = 8,
2061		.tcnt_mux = 22),
2062	[BCM2835_CLOCK_PCM]	= REGISTER_PCM_CLK(
2063		SOC_ALL,
2064		.name = "pcm",
2065		.ctl_reg = CM_PCMCTL,
2066		.div_reg = CM_PCMDIV,
2067		.int_bits = 12,
2068		.frac_bits = 12,
2069		.is_mash_clock = true,
2070		.low_jitter = true,
2071		.tcnt_mux = 23),
2072	[BCM2835_CLOCK_PWM]	= REGISTER_PER_CLK(
2073		SOC_ALL,
2074		.name = "pwm",
2075		.ctl_reg = CM_PWMCTL,
2076		.div_reg = CM_PWMDIV,
2077		.int_bits = 12,
2078		.frac_bits = 12,
2079		.is_mash_clock = true,
2080		.tcnt_mux = 24),
2081	[BCM2835_CLOCK_SLIM]	= REGISTER_PER_CLK(
2082		SOC_ALL,
2083		.name = "slim",
2084		.ctl_reg = CM_SLIMCTL,
2085		.div_reg = CM_SLIMDIV,
2086		.int_bits = 12,
2087		.frac_bits = 12,
2088		.is_mash_clock = true,
2089		.tcnt_mux = 25),
2090	[BCM2835_CLOCK_SMI]	= REGISTER_PER_CLK(
2091		SOC_ALL,
2092		.name = "smi",
2093		.ctl_reg = CM_SMICTL,
2094		.div_reg = CM_SMIDIV,
2095		.int_bits = 4,
2096		.frac_bits = 8,
2097		.tcnt_mux = 27),
2098	[BCM2835_CLOCK_UART]	= REGISTER_PER_CLK(
2099		SOC_ALL,
2100		.name = "uart",
2101		.ctl_reg = CM_UARTCTL,
2102		.div_reg = CM_UARTDIV,
2103		.int_bits = 10,
2104		.frac_bits = 12,
2105		.tcnt_mux = 28),
2106
2107	/* TV encoder clock.  Only operating frequency is 108Mhz.  */
2108	[BCM2835_CLOCK_VEC]	= REGISTER_PER_CLK(
2109		SOC_ALL,
2110		.name = "vec",
2111		.ctl_reg = CM_VECCTL,
2112		.div_reg = CM_VECDIV,
2113		.int_bits = 4,
2114		.frac_bits = 0,
2115		/*
2116		 * Allow rate change propagation only on PLLH_AUX which is
2117		 * assigned index 7 in the parent array.
2118		 */
2119		.set_rate_parent = BIT(7),
2120		.tcnt_mux = 29),
2121
2122	/* dsi clocks */
2123	[BCM2835_CLOCK_DSI0E]	= REGISTER_PER_CLK(
2124		SOC_ALL,
2125		.name = "dsi0e",
2126		.ctl_reg = CM_DSI0ECTL,
2127		.div_reg = CM_DSI0EDIV,
2128		.int_bits = 4,
2129		.frac_bits = 8,
2130		.tcnt_mux = 18),
2131	[BCM2835_CLOCK_DSI1E]	= REGISTER_PER_CLK(
2132		SOC_ALL,
2133		.name = "dsi1e",
2134		.ctl_reg = CM_DSI1ECTL,
2135		.div_reg = CM_DSI1EDIV,
2136		.int_bits = 4,
2137		.frac_bits = 8,
2138		.tcnt_mux = 19),
2139	[BCM2835_CLOCK_DSI0P]	= REGISTER_DSI0_CLK(
2140		SOC_ALL,
2141		.name = "dsi0p",
2142		.ctl_reg = CM_DSI0PCTL,
2143		.div_reg = CM_DSI0PDIV,
2144		.int_bits = 0,
2145		.frac_bits = 0,
2146		.tcnt_mux = 12),
2147	[BCM2835_CLOCK_DSI1P]	= REGISTER_DSI1_CLK(
2148		SOC_ALL,
2149		.name = "dsi1p",
2150		.ctl_reg = CM_DSI1PCTL,
2151		.div_reg = CM_DSI1PDIV,
2152		.int_bits = 0,
2153		.frac_bits = 0,
2154		.tcnt_mux = 13),
2155
2156	/* the gates */
2157
2158	/*
2159	 * CM_PERIICTL (and CM_PERIACTL, CM_SYSCTL and CM_VPUCTL if
2160	 * you have the debug bit set in the power manager, which we
2161	 * don't bother exposing) are individual gates off of the
2162	 * non-stop vpu clock.
2163	 */
2164	[BCM2835_CLOCK_PERI_IMAGE] = REGISTER_GATE(
2165		SOC_ALL,
2166		.name = "peri_image",
2167		.parent = "vpu",
2168		.ctl_reg = CM_PERIICTL),
2169};
2170
2171/*
2172 * Permanently take a reference on the parent of the SDRAM clock.
2173 *
2174 * While the SDRAM is being driven by its dedicated PLL most of the
2175 * time, there is a little loop running in the firmware that
2176 * periodically switches the SDRAM to using our CM clock to do PVT
2177 * recalibration, with the assumption that the previously configured
2178 * SDRAM parent is still enabled and running.
2179 */
2180static int bcm2835_mark_sdc_parent_critical(struct clk *sdc)
2181{
2182	struct clk *parent = clk_get_parent(sdc);
2183
2184	if (IS_ERR(parent))
2185		return PTR_ERR(parent);
2186
2187	return clk_prepare_enable(parent);
2188}
2189
2190static int bcm2835_clk_probe(struct platform_device *pdev)
2191{
2192	struct device *dev = &pdev->dev;
2193	struct clk_hw **hws;
2194	struct bcm2835_cprman *cprman;
2195	struct resource *res;
2196	const struct bcm2835_clk_desc *desc;
2197	const size_t asize = ARRAY_SIZE(clk_desc_array);
2198	const struct cprman_plat_data *pdata;
2199	size_t i;
2200	int ret;
2201
2202	pdata = of_device_get_match_data(&pdev->dev);
2203	if (!pdata)
2204		return -ENODEV;
2205
2206	cprman = devm_kzalloc(dev,
2207			      struct_size(cprman, onecell.hws, asize),
2208			      GFP_KERNEL);
2209	if (!cprman)
2210		return -ENOMEM;
2211
2212	spin_lock_init(&cprman->regs_lock);
2213	cprman->dev = dev;
2214	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2215	cprman->regs = devm_ioremap_resource(dev, res);
2216	if (IS_ERR(cprman->regs))
2217		return PTR_ERR(cprman->regs);
2218
2219	memcpy(cprman->real_parent_names, cprman_parent_names,
2220	       sizeof(cprman_parent_names));
2221	of_clk_parent_fill(dev->of_node, cprman->real_parent_names,
2222			   ARRAY_SIZE(cprman_parent_names));
2223
2224	/*
2225	 * Make sure the external oscillator has been registered.
2226	 *
2227	 * The other (DSI) clocks are not present on older device
2228	 * trees, which we still need to support for backwards
2229	 * compatibility.
2230	 */
2231	if (!cprman->real_parent_names[0])
2232		return -ENODEV;
2233
2234	platform_set_drvdata(pdev, cprman);
2235
2236	cprman->onecell.num = asize;
2237	hws = cprman->onecell.hws;
2238
2239	for (i = 0; i < asize; i++) {
2240		desc = &clk_desc_array[i];
2241		if (desc->clk_register && desc->data &&
2242		    (desc->supported & pdata->soc)) {
2243			hws[i] = desc->clk_register(cprman, desc->data);
2244		}
2245	}
2246
2247	ret = bcm2835_mark_sdc_parent_critical(hws[BCM2835_CLOCK_SDRAM]->clk);
2248	if (ret)
2249		return ret;
2250
2251	return of_clk_add_hw_provider(dev->of_node, of_clk_hw_onecell_get,
2252				      &cprman->onecell);
2253}
2254
2255static const struct cprman_plat_data cprman_bcm2835_plat_data = {
2256	.soc = SOC_BCM2835,
2257};
2258
2259static const struct cprman_plat_data cprman_bcm2711_plat_data = {
2260	.soc = SOC_BCM2711,
2261};
2262
2263static const struct of_device_id bcm2835_clk_of_match[] = {
2264	{ .compatible = "brcm,bcm2835-cprman", .data = &cprman_bcm2835_plat_data },
2265	{ .compatible = "brcm,bcm2711-cprman", .data = &cprman_bcm2711_plat_data },
2266	{}
2267};
2268MODULE_DEVICE_TABLE(of, bcm2835_clk_of_match);
2269
2270static struct platform_driver bcm2835_clk_driver = {
2271	.driver = {
2272		.name = "bcm2835-clk",
2273		.of_match_table = bcm2835_clk_of_match,
2274	},
2275	.probe          = bcm2835_clk_probe,
2276};
2277
2278builtin_platform_driver(bcm2835_clk_driver);
2279
2280MODULE_AUTHOR("Eric Anholt <eric@anholt.net>");
2281MODULE_DESCRIPTION("BCM2835 clock driver");
2282MODULE_LICENSE("GPL");