Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * check TSC synchronization.
  3 *
  4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  5 *
  6 * We check whether all boot CPUs have their TSC's synchronized,
  7 * print a warning if not and turn off the TSC clock-source.
  8 *
  9 * The warp-check is point-to-point between two CPUs, the CPU
 10 * initiating the bootup is the 'source CPU', the freshly booting
 11 * CPU is the 'target CPU'.
 12 *
 13 * Only two CPUs may participate - they can enter in any order.
 14 * ( The serial nature of the boot logic and the CPU hotplug lock
 15 *   protects against more than 2 CPUs entering this code. )
 16 */
 
 
 17#include <linux/spinlock.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/smp.h>
 21#include <linux/nmi.h>
 22#include <asm/tsc.h>
 23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24/*
 25 * Entry/exit counters that make sure that both CPUs
 26 * run the measurement code at once:
 27 */
 28static __cpuinitdata atomic_t start_count;
 29static __cpuinitdata atomic_t stop_count;
 
 30
 31/*
 32 * We use a raw spinlock in this exceptional case, because
 33 * we want to have the fastest, inlined, non-debug version
 34 * of a critical section, to be able to prove TSC time-warps:
 35 */
 36static __cpuinitdata arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 37
 38static __cpuinitdata cycles_t last_tsc;
 39static __cpuinitdata cycles_t max_warp;
 40static __cpuinitdata int nr_warps;
 
 41
 42/*
 43 * TSC-warp measurement loop running on both CPUs:
 
 44 */
 45static __cpuinit void check_tsc_warp(unsigned int timeout)
 46{
 47	cycles_t start, now, prev, end;
 48	int i;
 49
 50	rdtsc_barrier();
 51	start = get_cycles();
 52	rdtsc_barrier();
 53	/*
 54	 * The measurement runs for 'timeout' msecs:
 55	 */
 56	end = start + (cycles_t) tsc_khz * timeout;
 57	now = start;
 58
 59	for (i = 0; ; i++) {
 60		/*
 61		 * We take the global lock, measure TSC, save the
 62		 * previous TSC that was measured (possibly on
 63		 * another CPU) and update the previous TSC timestamp.
 64		 */
 65		arch_spin_lock(&sync_lock);
 66		prev = last_tsc;
 67		rdtsc_barrier();
 68		now = get_cycles();
 69		rdtsc_barrier();
 70		last_tsc = now;
 71		arch_spin_unlock(&sync_lock);
 72
 73		/*
 74		 * Be nice every now and then (and also check whether
 75		 * measurement is done [we also insert a 10 million
 76		 * loops safety exit, so we dont lock up in case the
 77		 * TSC readout is totally broken]):
 78		 */
 79		if (unlikely(!(i & 7))) {
 80			if (now > end || i > 10000000)
 81				break;
 82			cpu_relax();
 83			touch_nmi_watchdog();
 84		}
 85		/*
 86		 * Outside the critical section we can now see whether
 87		 * we saw a time-warp of the TSC going backwards:
 88		 */
 89		if (unlikely(prev > now)) {
 90			arch_spin_lock(&sync_lock);
 91			max_warp = max(max_warp, prev - now);
 
 
 
 
 
 
 
 92			nr_warps++;
 
 93			arch_spin_unlock(&sync_lock);
 94		}
 95	}
 96	WARN(!(now-start),
 97		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
 98			now-start, end-start);
 
 99}
100
101/*
102 * If the target CPU coming online doesn't have any of its core-siblings
103 * online, a timeout of 20msec will be used for the TSC-warp measurement
104 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
105 * information about this socket already (and this information grows as we
106 * have more and more logical-siblings in that socket).
107 *
108 * Ideally we should be able to skip the TSC sync check on the other
109 * core-siblings, if the first logical CPU in a socket passed the sync test.
110 * But as the TSC is per-logical CPU and can potentially be modified wrongly
111 * by the bios, TSC sync test for smaller duration should be able
112 * to catch such errors. Also this will catch the condition where all the
113 * cores in the socket doesn't get reset at the same time.
114 */
115static inline unsigned int loop_timeout(int cpu)
116{
117	return (cpumask_weight(cpu_core_mask(cpu)) > 1) ? 2 : 20;
118}
119
 
 
 
 
 
 
 
120/*
121 * Source CPU calls into this - it waits for the freshly booted
122 * target CPU to arrive and then starts the measurement:
123 */
124void __cpuinit check_tsc_sync_source(int cpu)
125{
 
126	int cpus = 2;
127
128	/*
129	 * No need to check if we already know that the TSC is not
130	 * synchronized:
 
131	 */
132	if (unsynchronized_tsc())
133		return;
134
135	if (tsc_clocksource_reliable) {
136		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
137			pr_info(
138			"Skipped synchronization checks as TSC is reliable.\n");
139		return;
140	}
141
142	/*
143	 * Reset it - in case this is a second bootup:
144	 */
145	atomic_set(&stop_count, 0);
146
147	/*
148	 * Wait for the target to arrive:
149	 */
150	while (atomic_read(&start_count) != cpus-1)
151		cpu_relax();
 
152	/*
153	 * Trigger the target to continue into the measurement too:
154	 */
155	atomic_inc(&start_count);
156
157	check_tsc_warp(loop_timeout(cpu));
158
159	while (atomic_read(&stop_count) != cpus-1)
160		cpu_relax();
161
162	if (nr_warps) {
163		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
 
 
 
 
 
 
 
164			smp_processor_id(), cpu);
165		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
166			   "turning off TSC clock.\n", max_warp);
167		mark_tsc_unstable("check_tsc_sync_source failed");
168	} else {
169		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
 
170			smp_processor_id(), cpu);
 
 
 
 
 
171	}
172
173	/*
174	 * Reset it - just in case we boot another CPU later:
175	 */
176	atomic_set(&start_count, 0);
 
177	nr_warps = 0;
178	max_warp = 0;
179	last_tsc = 0;
180
181	/*
182	 * Let the target continue with the bootup:
183	 */
184	atomic_inc(&stop_count);
 
 
 
 
 
 
185}
186
187/*
188 * Freshly booted CPUs call into this:
189 */
190void __cpuinit check_tsc_sync_target(void)
191{
 
 
 
192	int cpus = 2;
193
194	if (unsynchronized_tsc() || tsc_clocksource_reliable)
 
 
 
 
 
 
 
 
 
 
 
 
 
195		return;
196
 
 
 
 
197	/*
198	 * Register this CPU's participation and wait for the
199	 * source CPU to start the measurement:
200	 */
201	atomic_inc(&start_count);
202	while (atomic_read(&start_count) != cpus)
203		cpu_relax();
204
205	check_tsc_warp(loop_timeout(smp_processor_id()));
 
 
 
 
 
206
207	/*
208	 * Ok, we are done:
209	 */
210	atomic_inc(&stop_count);
211
212	/*
213	 * Wait for the source CPU to print stuff:
214	 */
215	while (atomic_read(&stop_count) != cpus)
216		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
v6.8
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * check TSC synchronization.
  4 *
  5 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  6 *
  7 * We check whether all boot CPUs have their TSC's synchronized,
  8 * print a warning if not and turn off the TSC clock-source.
  9 *
 10 * The warp-check is point-to-point between two CPUs, the CPU
 11 * initiating the bootup is the 'source CPU', the freshly booting
 12 * CPU is the 'target CPU'.
 13 *
 14 * Only two CPUs may participate - they can enter in any order.
 15 * ( The serial nature of the boot logic and the CPU hotplug lock
 16 *   protects against more than 2 CPUs entering this code. )
 17 */
 18#include <linux/workqueue.h>
 19#include <linux/topology.h>
 20#include <linux/spinlock.h>
 21#include <linux/kernel.h>
 
 22#include <linux/smp.h>
 23#include <linux/nmi.h>
 24#include <asm/tsc.h>
 25
 26struct tsc_adjust {
 27	s64		bootval;
 28	s64		adjusted;
 29	unsigned long	nextcheck;
 30	bool		warned;
 31};
 32
 33static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
 34static struct timer_list tsc_sync_check_timer;
 35
 36/*
 37 * TSC's on different sockets may be reset asynchronously.
 38 * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
 39 */
 40bool __read_mostly tsc_async_resets;
 41
 42void mark_tsc_async_resets(char *reason)
 43{
 44	if (tsc_async_resets)
 45		return;
 46	tsc_async_resets = true;
 47	pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
 48}
 49
 50void tsc_verify_tsc_adjust(bool resume)
 51{
 52	struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
 53	s64 curval;
 54
 55	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
 56		return;
 57
 58	/* Skip unnecessary error messages if TSC already unstable */
 59	if (check_tsc_unstable())
 60		return;
 61
 62	/* Rate limit the MSR check */
 63	if (!resume && time_before(jiffies, adj->nextcheck))
 64		return;
 65
 66	adj->nextcheck = jiffies + HZ;
 67
 68	rdmsrl(MSR_IA32_TSC_ADJUST, curval);
 69	if (adj->adjusted == curval)
 70		return;
 71
 72	/* Restore the original value */
 73	wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
 74
 75	if (!adj->warned || resume) {
 76		pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
 77			smp_processor_id(), adj->adjusted, curval);
 78		adj->warned = true;
 79	}
 80}
 81
 82/*
 83 * Normally the tsc_sync will be checked every time system enters idle
 84 * state, but there is still caveat that a system won't enter idle,
 85 * either because it's too busy or configured purposely to not enter
 86 * idle.
 87 *
 88 * So setup a periodic timer (every 10 minutes) to make sure the check
 89 * is always on.
 90 */
 91
 92#define SYNC_CHECK_INTERVAL		(HZ * 600)
 93
 94static void tsc_sync_check_timer_fn(struct timer_list *unused)
 95{
 96	int next_cpu;
 97
 98	tsc_verify_tsc_adjust(false);
 99
100	/* Run the check for all onlined CPUs in turn */
101	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
102	if (next_cpu >= nr_cpu_ids)
103		next_cpu = cpumask_first(cpu_online_mask);
104
105	tsc_sync_check_timer.expires += SYNC_CHECK_INTERVAL;
106	add_timer_on(&tsc_sync_check_timer, next_cpu);
107}
108
109static int __init start_sync_check_timer(void)
110{
111	if (!cpu_feature_enabled(X86_FEATURE_TSC_ADJUST) || tsc_clocksource_reliable)
112		return 0;
113
114	timer_setup(&tsc_sync_check_timer, tsc_sync_check_timer_fn, 0);
115	tsc_sync_check_timer.expires = jiffies + SYNC_CHECK_INTERVAL;
116	add_timer(&tsc_sync_check_timer);
117
118	return 0;
119}
120late_initcall(start_sync_check_timer);
121
122static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
123				   unsigned int cpu, bool bootcpu)
124{
125	/*
126	 * First online CPU in a package stores the boot value in the
127	 * adjustment value. This value might change later via the sync
128	 * mechanism. If that fails we still can yell about boot values not
129	 * being consistent.
130	 *
131	 * On the boot cpu we just force set the ADJUST value to 0 if it's
132	 * non zero. We don't do that on non boot cpus because physical
133	 * hotplug should have set the ADJUST register to a value > 0 so
134	 * the TSC is in sync with the already running cpus.
135	 *
136	 * Also don't force the ADJUST value to zero if that is a valid value
137	 * for socket 0 as determined by the system arch.  This is required
138	 * when multiple sockets are reset asynchronously with each other
139	 * and socket 0 may not have an TSC ADJUST value of 0.
140	 */
141	if (bootcpu && bootval != 0) {
142		if (likely(!tsc_async_resets)) {
143			pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
144				cpu, bootval);
145			wrmsrl(MSR_IA32_TSC_ADJUST, 0);
146			bootval = 0;
147		} else {
148			pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
149				cpu, bootval);
150		}
151	}
152	cur->adjusted = bootval;
153}
154
155#ifndef CONFIG_SMP
156bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
157{
158	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
159	s64 bootval;
160
161	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
162		return false;
163
164	/* Skip unnecessary error messages if TSC already unstable */
165	if (check_tsc_unstable())
166		return false;
167
168	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
169	cur->bootval = bootval;
170	cur->nextcheck = jiffies + HZ;
171	tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
172	return false;
173}
174
175#else /* !CONFIG_SMP */
176
177/*
178 * Store and check the TSC ADJUST MSR if available
179 */
180bool tsc_store_and_check_tsc_adjust(bool bootcpu)
181{
182	struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
183	unsigned int refcpu, cpu = smp_processor_id();
184	struct cpumask *mask;
185	s64 bootval;
186
187	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
188		return false;
189
190	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
191	cur->bootval = bootval;
192	cur->nextcheck = jiffies + HZ;
193	cur->warned = false;
194
195	/*
196	 * If a non-zero TSC value for socket 0 may be valid then the default
197	 * adjusted value cannot assumed to be zero either.
198	 */
199	if (tsc_async_resets)
200		cur->adjusted = bootval;
201
202	/*
203	 * Check whether this CPU is the first in a package to come up. In
204	 * this case do not check the boot value against another package
205	 * because the new package might have been physically hotplugged,
206	 * where TSC_ADJUST is expected to be different. When called on the
207	 * boot CPU topology_core_cpumask() might not be available yet.
208	 */
209	mask = topology_core_cpumask(cpu);
210	refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
211
212	if (refcpu >= nr_cpu_ids) {
213		tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
214				       bootcpu);
215		return false;
216	}
217
218	ref = per_cpu_ptr(&tsc_adjust, refcpu);
219	/*
220	 * Compare the boot value and complain if it differs in the
221	 * package.
222	 */
223	if (bootval != ref->bootval)
224		printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
225
226	/*
227	 * The TSC_ADJUST values in a package must be the same. If the boot
228	 * value on this newly upcoming CPU differs from the adjustment
229	 * value of the already online CPU in this package, set it to that
230	 * adjusted value.
231	 */
232	if (bootval != ref->adjusted) {
233		cur->adjusted = ref->adjusted;
234		wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
235	}
236	/*
237	 * We have the TSCs forced to be in sync on this package. Skip sync
238	 * test:
239	 */
240	return true;
241}
242
243/*
244 * Entry/exit counters that make sure that both CPUs
245 * run the measurement code at once:
246 */
247static atomic_t start_count;
248static atomic_t stop_count;
249static atomic_t test_runs;
250
251/*
252 * We use a raw spinlock in this exceptional case, because
253 * we want to have the fastest, inlined, non-debug version
254 * of a critical section, to be able to prove TSC time-warps:
255 */
256static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
257
258static cycles_t last_tsc;
259static cycles_t max_warp;
260static int nr_warps;
261static int random_warps;
262
263/*
264 * TSC-warp measurement loop running on both CPUs.  This is not called
265 * if there is no TSC.
266 */
267static cycles_t check_tsc_warp(unsigned int timeout)
268{
269	cycles_t start, now, prev, end, cur_max_warp = 0;
270	int i, cur_warps = 0;
271
272	start = rdtsc_ordered();
 
 
273	/*
274	 * The measurement runs for 'timeout' msecs:
275	 */
276	end = start + (cycles_t) tsc_khz * timeout;
 
277
278	for (i = 0; ; i++) {
279		/*
280		 * We take the global lock, measure TSC, save the
281		 * previous TSC that was measured (possibly on
282		 * another CPU) and update the previous TSC timestamp.
283		 */
284		arch_spin_lock(&sync_lock);
285		prev = last_tsc;
286		now = rdtsc_ordered();
 
 
287		last_tsc = now;
288		arch_spin_unlock(&sync_lock);
289
290		/*
291		 * Be nice every now and then (and also check whether
292		 * measurement is done [we also insert a 10 million
293		 * loops safety exit, so we dont lock up in case the
294		 * TSC readout is totally broken]):
295		 */
296		if (unlikely(!(i & 7))) {
297			if (now > end || i > 10000000)
298				break;
299			cpu_relax();
300			touch_nmi_watchdog();
301		}
302		/*
303		 * Outside the critical section we can now see whether
304		 * we saw a time-warp of the TSC going backwards:
305		 */
306		if (unlikely(prev > now)) {
307			arch_spin_lock(&sync_lock);
308			max_warp = max(max_warp, prev - now);
309			cur_max_warp = max_warp;
310			/*
311			 * Check whether this bounces back and forth. Only
312			 * one CPU should observe time going backwards.
313			 */
314			if (cur_warps != nr_warps)
315				random_warps++;
316			nr_warps++;
317			cur_warps = nr_warps;
318			arch_spin_unlock(&sync_lock);
319		}
320	}
321	WARN(!(now-start),
322		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
323			now-start, end-start);
324	return cur_max_warp;
325}
326
327/*
328 * If the target CPU coming online doesn't have any of its core-siblings
329 * online, a timeout of 20msec will be used for the TSC-warp measurement
330 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
331 * information about this socket already (and this information grows as we
332 * have more and more logical-siblings in that socket).
333 *
334 * Ideally we should be able to skip the TSC sync check on the other
335 * core-siblings, if the first logical CPU in a socket passed the sync test.
336 * But as the TSC is per-logical CPU and can potentially be modified wrongly
337 * by the bios, TSC sync test for smaller duration should be able
338 * to catch such errors. Also this will catch the condition where all the
339 * cores in the socket don't get reset at the same time.
340 */
341static inline unsigned int loop_timeout(int cpu)
342{
343	return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
344}
345
346static void tsc_sync_mark_tsc_unstable(struct work_struct *work)
347{
348	mark_tsc_unstable("check_tsc_sync_source failed");
349}
350
351static DECLARE_WORK(tsc_sync_work, tsc_sync_mark_tsc_unstable);
352
353/*
354 * The freshly booted CPU initiates this via an async SMP function call.
 
355 */
356static void check_tsc_sync_source(void *__cpu)
357{
358	unsigned int cpu = (unsigned long)__cpu;
359	int cpus = 2;
360
361	/*
362	 * Set the maximum number of test runs to
363	 *  1 if the CPU does not provide the TSC_ADJUST MSR
364	 *  3 if the MSR is available, so the target can try to adjust
365	 */
366	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
367		atomic_set(&test_runs, 1);
368	else
369		atomic_set(&test_runs, 3);
370retry:
371	/* Wait for the target to start. */
372	while (atomic_read(&start_count) != cpus - 1)
 
 
 
 
 
 
 
 
 
 
 
 
373		cpu_relax();
374
375	/*
376	 * Trigger the target to continue into the measurement too:
377	 */
378	atomic_inc(&start_count);
379
380	check_tsc_warp(loop_timeout(cpu));
381
382	while (atomic_read(&stop_count) != cpus-1)
383		cpu_relax();
384
385	/*
386	 * If the test was successful set the number of runs to zero and
387	 * stop. If not, decrement the number of runs an check if we can
388	 * retry. In case of random warps no retry is attempted.
389	 */
390	if (!nr_warps) {
391		atomic_set(&test_runs, 0);
392
393		pr_debug("TSC synchronization [CPU#%d -> CPU#%u]: passed\n",
394			smp_processor_id(), cpu);
395
396	} else if (atomic_dec_and_test(&test_runs) || random_warps) {
397		/* Force it to 0 if random warps brought us here */
398		atomic_set(&test_runs, 0);
399
400		pr_warn("TSC synchronization [CPU#%d -> CPU#%u]:\n",
401			smp_processor_id(), cpu);
402		pr_warn("Measured %Ld cycles TSC warp between CPUs, "
403			"turning off TSC clock.\n", max_warp);
404		if (random_warps)
405			pr_warn("TSC warped randomly between CPUs\n");
406		schedule_work(&tsc_sync_work);
407	}
408
409	/*
410	 * Reset it - just in case we boot another CPU later:
411	 */
412	atomic_set(&start_count, 0);
413	random_warps = 0;
414	nr_warps = 0;
415	max_warp = 0;
416	last_tsc = 0;
417
418	/*
419	 * Let the target continue with the bootup:
420	 */
421	atomic_inc(&stop_count);
422
423	/*
424	 * Retry, if there is a chance to do so.
425	 */
426	if (atomic_read(&test_runs) > 0)
427		goto retry;
428}
429
430/*
431 * Freshly booted CPUs call into this:
432 */
433void check_tsc_sync_target(void)
434{
435	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
436	unsigned int cpu = smp_processor_id();
437	cycles_t cur_max_warp, gbl_max_warp;
438	int cpus = 2;
439
440	/* Also aborts if there is no TSC. */
441	if (unsynchronized_tsc())
442		return;
443
444	/*
445	 * Store, verify and sanitize the TSC adjust register. If
446	 * successful skip the test.
447	 *
448	 * The test is also skipped when the TSC is marked reliable. This
449	 * is true for SoCs which have no fallback clocksource. On these
450	 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
451	 * register might have been wreckaged by the BIOS..
452	 */
453	if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable)
454		return;
455
456	/* Kick the control CPU into the TSC synchronization function */
457	smp_call_function_single(cpumask_first(cpu_online_mask), check_tsc_sync_source,
458				 (unsigned long *)(unsigned long)cpu, 0);
459retry:
460	/*
461	 * Register this CPU's participation and wait for the
462	 * source CPU to start the measurement:
463	 */
464	atomic_inc(&start_count);
465	while (atomic_read(&start_count) != cpus)
466		cpu_relax();
467
468	cur_max_warp = check_tsc_warp(loop_timeout(cpu));
469
470	/*
471	 * Store the maximum observed warp value for a potential retry:
472	 */
473	gbl_max_warp = max_warp;
474
475	/*
476	 * Ok, we are done:
477	 */
478	atomic_inc(&stop_count);
479
480	/*
481	 * Wait for the source CPU to print stuff:
482	 */
483	while (atomic_read(&stop_count) != cpus)
484		cpu_relax();
485
486	/*
487	 * Reset it for the next sync test:
488	 */
489	atomic_set(&stop_count, 0);
490
491	/*
492	 * Check the number of remaining test runs. If not zero, the test
493	 * failed and a retry with adjusted TSC is possible. If zero the
494	 * test was either successful or failed terminally.
495	 */
496	if (!atomic_read(&test_runs))
497		return;
498
499	/*
500	 * If the warp value of this CPU is 0, then the other CPU
501	 * observed time going backwards so this TSC was ahead and
502	 * needs to move backwards.
503	 */
504	if (!cur_max_warp)
505		cur_max_warp = -gbl_max_warp;
506
507	/*
508	 * Add the result to the previous adjustment value.
509	 *
510	 * The adjustment value is slightly off by the overhead of the
511	 * sync mechanism (observed values are ~200 TSC cycles), but this
512	 * really depends on CPU, node distance and frequency. So
513	 * compensating for this is hard to get right. Experiments show
514	 * that the warp is not longer detectable when the observed warp
515	 * value is used. In the worst case the adjustment needs to go
516	 * through a 3rd run for fine tuning.
517	 */
518	cur->adjusted += cur_max_warp;
519
520	pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
521		cpu, cur_max_warp, cur->adjusted);
522
523	wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
524	goto retry;
525
526}
527
528#endif /* CONFIG_SMP */