Linux Audio

Check our new training course

Loading...
v3.5.6
 
  1/*
  2 * check TSC synchronization.
  3 *
  4 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  5 *
  6 * We check whether all boot CPUs have their TSC's synchronized,
  7 * print a warning if not and turn off the TSC clock-source.
  8 *
  9 * The warp-check is point-to-point between two CPUs, the CPU
 10 * initiating the bootup is the 'source CPU', the freshly booting
 11 * CPU is the 'target CPU'.
 12 *
 13 * Only two CPUs may participate - they can enter in any order.
 14 * ( The serial nature of the boot logic and the CPU hotplug lock
 15 *   protects against more than 2 CPUs entering this code. )
 16 */
 
 17#include <linux/spinlock.h>
 18#include <linux/kernel.h>
 19#include <linux/init.h>
 20#include <linux/smp.h>
 21#include <linux/nmi.h>
 22#include <asm/tsc.h>
 23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 24/*
 25 * Entry/exit counters that make sure that both CPUs
 26 * run the measurement code at once:
 27 */
 28static __cpuinitdata atomic_t start_count;
 29static __cpuinitdata atomic_t stop_count;
 
 
 30
 31/*
 32 * We use a raw spinlock in this exceptional case, because
 33 * we want to have the fastest, inlined, non-debug version
 34 * of a critical section, to be able to prove TSC time-warps:
 35 */
 36static __cpuinitdata arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
 37
 38static __cpuinitdata cycles_t last_tsc;
 39static __cpuinitdata cycles_t max_warp;
 40static __cpuinitdata int nr_warps;
 
 41
 42/*
 43 * TSC-warp measurement loop running on both CPUs:
 
 44 */
 45static __cpuinit void check_tsc_warp(unsigned int timeout)
 46{
 47	cycles_t start, now, prev, end;
 48	int i;
 49
 50	rdtsc_barrier();
 51	start = get_cycles();
 52	rdtsc_barrier();
 53	/*
 54	 * The measurement runs for 'timeout' msecs:
 55	 */
 56	end = start + (cycles_t) tsc_khz * timeout;
 57	now = start;
 58
 59	for (i = 0; ; i++) {
 60		/*
 61		 * We take the global lock, measure TSC, save the
 62		 * previous TSC that was measured (possibly on
 63		 * another CPU) and update the previous TSC timestamp.
 64		 */
 65		arch_spin_lock(&sync_lock);
 66		prev = last_tsc;
 67		rdtsc_barrier();
 68		now = get_cycles();
 69		rdtsc_barrier();
 70		last_tsc = now;
 71		arch_spin_unlock(&sync_lock);
 72
 73		/*
 74		 * Be nice every now and then (and also check whether
 75		 * measurement is done [we also insert a 10 million
 76		 * loops safety exit, so we dont lock up in case the
 77		 * TSC readout is totally broken]):
 78		 */
 79		if (unlikely(!(i & 7))) {
 80			if (now > end || i > 10000000)
 81				break;
 82			cpu_relax();
 83			touch_nmi_watchdog();
 84		}
 85		/*
 86		 * Outside the critical section we can now see whether
 87		 * we saw a time-warp of the TSC going backwards:
 88		 */
 89		if (unlikely(prev > now)) {
 90			arch_spin_lock(&sync_lock);
 91			max_warp = max(max_warp, prev - now);
 
 
 
 
 
 
 
 92			nr_warps++;
 
 93			arch_spin_unlock(&sync_lock);
 94		}
 95	}
 96	WARN(!(now-start),
 97		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
 98			now-start, end-start);
 
 99}
100
101/*
102 * If the target CPU coming online doesn't have any of its core-siblings
103 * online, a timeout of 20msec will be used for the TSC-warp measurement
104 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
105 * information about this socket already (and this information grows as we
106 * have more and more logical-siblings in that socket).
107 *
108 * Ideally we should be able to skip the TSC sync check on the other
109 * core-siblings, if the first logical CPU in a socket passed the sync test.
110 * But as the TSC is per-logical CPU and can potentially be modified wrongly
111 * by the bios, TSC sync test for smaller duration should be able
112 * to catch such errors. Also this will catch the condition where all the
113 * cores in the socket doesn't get reset at the same time.
114 */
115static inline unsigned int loop_timeout(int cpu)
116{
117	return (cpumask_weight(cpu_core_mask(cpu)) > 1) ? 2 : 20;
118}
119
120/*
121 * Source CPU calls into this - it waits for the freshly booted
122 * target CPU to arrive and then starts the measurement:
123 */
124void __cpuinit check_tsc_sync_source(int cpu)
125{
126	int cpus = 2;
127
128	/*
129	 * No need to check if we already know that the TSC is not
130	 * synchronized:
131	 */
132	if (unsynchronized_tsc())
133		return;
134
135	if (tsc_clocksource_reliable) {
136		if (cpu == (nr_cpu_ids-1) || system_state != SYSTEM_BOOTING)
137			pr_info(
138			"Skipped synchronization checks as TSC is reliable.\n");
139		return;
140	}
141
142	/*
143	 * Reset it - in case this is a second bootup:
 
 
144	 */
145	atomic_set(&stop_count, 0);
146
 
 
 
147	/*
148	 * Wait for the target to arrive:
149	 */
150	while (atomic_read(&start_count) != cpus-1)
 
 
 
 
151		cpu_relax();
 
 
152	/*
153	 * Trigger the target to continue into the measurement too:
154	 */
155	atomic_inc(&start_count);
156
157	check_tsc_warp(loop_timeout(cpu));
158
159	while (atomic_read(&stop_count) != cpus-1)
160		cpu_relax();
161
162	if (nr_warps) {
163		pr_warning("TSC synchronization [CPU#%d -> CPU#%d]:\n",
164			smp_processor_id(), cpu);
165		pr_warning("Measured %Ld cycles TSC warp between CPUs, "
166			   "turning off TSC clock.\n", max_warp);
167		mark_tsc_unstable("check_tsc_sync_source failed");
168	} else {
 
169		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
170			smp_processor_id(), cpu);
 
 
 
 
 
 
 
 
 
 
 
 
171	}
172
173	/*
174	 * Reset it - just in case we boot another CPU later:
175	 */
176	atomic_set(&start_count, 0);
 
177	nr_warps = 0;
178	max_warp = 0;
179	last_tsc = 0;
180
181	/*
182	 * Let the target continue with the bootup:
183	 */
184	atomic_inc(&stop_count);
 
 
 
 
 
 
185}
186
187/*
188 * Freshly booted CPUs call into this:
189 */
190void __cpuinit check_tsc_sync_target(void)
191{
 
 
 
192	int cpus = 2;
193
194	if (unsynchronized_tsc() || tsc_clocksource_reliable)
 
195		return;
196
197	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198	 * Register this CPU's participation and wait for the
199	 * source CPU to start the measurement:
200	 */
201	atomic_inc(&start_count);
202	while (atomic_read(&start_count) != cpus)
203		cpu_relax();
204
205	check_tsc_warp(loop_timeout(smp_processor_id()));
 
 
 
 
 
206
207	/*
208	 * Ok, we are done:
209	 */
210	atomic_inc(&stop_count);
211
212	/*
213	 * Wait for the source CPU to print stuff:
214	 */
215	while (atomic_read(&stop_count) != cpus)
216		cpu_relax();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217}
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * check TSC synchronization.
  4 *
  5 * Copyright (C) 2006, Red Hat, Inc., Ingo Molnar
  6 *
  7 * We check whether all boot CPUs have their TSC's synchronized,
  8 * print a warning if not and turn off the TSC clock-source.
  9 *
 10 * The warp-check is point-to-point between two CPUs, the CPU
 11 * initiating the bootup is the 'source CPU', the freshly booting
 12 * CPU is the 'target CPU'.
 13 *
 14 * Only two CPUs may participate - they can enter in any order.
 15 * ( The serial nature of the boot logic and the CPU hotplug lock
 16 *   protects against more than 2 CPUs entering this code. )
 17 */
 18#include <linux/topology.h>
 19#include <linux/spinlock.h>
 20#include <linux/kernel.h>
 
 21#include <linux/smp.h>
 22#include <linux/nmi.h>
 23#include <asm/tsc.h>
 24
 25struct tsc_adjust {
 26	s64		bootval;
 27	s64		adjusted;
 28	unsigned long	nextcheck;
 29	bool		warned;
 30};
 31
 32static DEFINE_PER_CPU(struct tsc_adjust, tsc_adjust);
 33static struct timer_list tsc_sync_check_timer;
 34
 35/*
 36 * TSC's on different sockets may be reset asynchronously.
 37 * This may cause the TSC ADJUST value on socket 0 to be NOT 0.
 38 */
 39bool __read_mostly tsc_async_resets;
 40
 41void mark_tsc_async_resets(char *reason)
 42{
 43	if (tsc_async_resets)
 44		return;
 45	tsc_async_resets = true;
 46	pr_info("tsc: Marking TSC async resets true due to %s\n", reason);
 47}
 48
 49void tsc_verify_tsc_adjust(bool resume)
 50{
 51	struct tsc_adjust *adj = this_cpu_ptr(&tsc_adjust);
 52	s64 curval;
 53
 54	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
 55		return;
 56
 57	/* Skip unnecessary error messages if TSC already unstable */
 58	if (check_tsc_unstable())
 59		return;
 60
 61	/* Rate limit the MSR check */
 62	if (!resume && time_before(jiffies, adj->nextcheck))
 63		return;
 64
 65	adj->nextcheck = jiffies + HZ;
 66
 67	rdmsrl(MSR_IA32_TSC_ADJUST, curval);
 68	if (adj->adjusted == curval)
 69		return;
 70
 71	/* Restore the original value */
 72	wrmsrl(MSR_IA32_TSC_ADJUST, adj->adjusted);
 73
 74	if (!adj->warned || resume) {
 75		pr_warn(FW_BUG "TSC ADJUST differs: CPU%u %lld --> %lld. Restoring\n",
 76			smp_processor_id(), adj->adjusted, curval);
 77		adj->warned = true;
 78	}
 79}
 80
 81/*
 82 * Normally the tsc_sync will be checked every time system enters idle
 83 * state, but there is still caveat that a system won't enter idle,
 84 * either because it's too busy or configured purposely to not enter
 85 * idle.
 86 *
 87 * So setup a periodic timer (every 10 minutes) to make sure the check
 88 * is always on.
 89 */
 90
 91#define SYNC_CHECK_INTERVAL		(HZ * 600)
 92
 93static void tsc_sync_check_timer_fn(struct timer_list *unused)
 94{
 95	int next_cpu;
 96
 97	tsc_verify_tsc_adjust(false);
 98
 99	/* Run the check for all onlined CPUs in turn */
100	next_cpu = cpumask_next(raw_smp_processor_id(), cpu_online_mask);
101	if (next_cpu >= nr_cpu_ids)
102		next_cpu = cpumask_first(cpu_online_mask);
103
104	tsc_sync_check_timer.expires += SYNC_CHECK_INTERVAL;
105	add_timer_on(&tsc_sync_check_timer, next_cpu);
106}
107
108static int __init start_sync_check_timer(void)
109{
110	if (!cpu_feature_enabled(X86_FEATURE_TSC_ADJUST) || tsc_clocksource_reliable)
111		return 0;
112
113	timer_setup(&tsc_sync_check_timer, tsc_sync_check_timer_fn, 0);
114	tsc_sync_check_timer.expires = jiffies + SYNC_CHECK_INTERVAL;
115	add_timer(&tsc_sync_check_timer);
116
117	return 0;
118}
119late_initcall(start_sync_check_timer);
120
121static void tsc_sanitize_first_cpu(struct tsc_adjust *cur, s64 bootval,
122				   unsigned int cpu, bool bootcpu)
123{
124	/*
125	 * First online CPU in a package stores the boot value in the
126	 * adjustment value. This value might change later via the sync
127	 * mechanism. If that fails we still can yell about boot values not
128	 * being consistent.
129	 *
130	 * On the boot cpu we just force set the ADJUST value to 0 if it's
131	 * non zero. We don't do that on non boot cpus because physical
132	 * hotplug should have set the ADJUST register to a value > 0 so
133	 * the TSC is in sync with the already running cpus.
134	 *
135	 * Also don't force the ADJUST value to zero if that is a valid value
136	 * for socket 0 as determined by the system arch.  This is required
137	 * when multiple sockets are reset asynchronously with each other
138	 * and socket 0 may not have an TSC ADJUST value of 0.
139	 */
140	if (bootcpu && bootval != 0) {
141		if (likely(!tsc_async_resets)) {
142			pr_warn(FW_BUG "TSC ADJUST: CPU%u: %lld force to 0\n",
143				cpu, bootval);
144			wrmsrl(MSR_IA32_TSC_ADJUST, 0);
145			bootval = 0;
146		} else {
147			pr_info("TSC ADJUST: CPU%u: %lld NOT forced to 0\n",
148				cpu, bootval);
149		}
150	}
151	cur->adjusted = bootval;
152}
153
154#ifndef CONFIG_SMP
155bool __init tsc_store_and_check_tsc_adjust(bool bootcpu)
156{
157	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
158	s64 bootval;
159
160	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
161		return false;
162
163	/* Skip unnecessary error messages if TSC already unstable */
164	if (check_tsc_unstable())
165		return false;
166
167	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
168	cur->bootval = bootval;
169	cur->nextcheck = jiffies + HZ;
170	tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(), bootcpu);
171	return false;
172}
173
174#else /* !CONFIG_SMP */
175
176/*
177 * Store and check the TSC ADJUST MSR if available
178 */
179bool tsc_store_and_check_tsc_adjust(bool bootcpu)
180{
181	struct tsc_adjust *ref, *cur = this_cpu_ptr(&tsc_adjust);
182	unsigned int refcpu, cpu = smp_processor_id();
183	struct cpumask *mask;
184	s64 bootval;
185
186	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
187		return false;
188
189	rdmsrl(MSR_IA32_TSC_ADJUST, bootval);
190	cur->bootval = bootval;
191	cur->nextcheck = jiffies + HZ;
192	cur->warned = false;
193
194	/*
195	 * If a non-zero TSC value for socket 0 may be valid then the default
196	 * adjusted value cannot assumed to be zero either.
197	 */
198	if (tsc_async_resets)
199		cur->adjusted = bootval;
200
201	/*
202	 * Check whether this CPU is the first in a package to come up. In
203	 * this case do not check the boot value against another package
204	 * because the new package might have been physically hotplugged,
205	 * where TSC_ADJUST is expected to be different. When called on the
206	 * boot CPU topology_core_cpumask() might not be available yet.
207	 */
208	mask = topology_core_cpumask(cpu);
209	refcpu = mask ? cpumask_any_but(mask, cpu) : nr_cpu_ids;
210
211	if (refcpu >= nr_cpu_ids) {
212		tsc_sanitize_first_cpu(cur, bootval, smp_processor_id(),
213				       bootcpu);
214		return false;
215	}
216
217	ref = per_cpu_ptr(&tsc_adjust, refcpu);
218	/*
219	 * Compare the boot value and complain if it differs in the
220	 * package.
221	 */
222	if (bootval != ref->bootval)
223		printk_once(FW_BUG "TSC ADJUST differs within socket(s), fixing all errors\n");
224
225	/*
226	 * The TSC_ADJUST values in a package must be the same. If the boot
227	 * value on this newly upcoming CPU differs from the adjustment
228	 * value of the already online CPU in this package, set it to that
229	 * adjusted value.
230	 */
231	if (bootval != ref->adjusted) {
232		cur->adjusted = ref->adjusted;
233		wrmsrl(MSR_IA32_TSC_ADJUST, ref->adjusted);
234	}
235	/*
236	 * We have the TSCs forced to be in sync on this package. Skip sync
237	 * test:
238	 */
239	return true;
240}
241
242/*
243 * Entry/exit counters that make sure that both CPUs
244 * run the measurement code at once:
245 */
246static atomic_t start_count;
247static atomic_t stop_count;
248static atomic_t skip_test;
249static atomic_t test_runs;
250
251/*
252 * We use a raw spinlock in this exceptional case, because
253 * we want to have the fastest, inlined, non-debug version
254 * of a critical section, to be able to prove TSC time-warps:
255 */
256static arch_spinlock_t sync_lock = __ARCH_SPIN_LOCK_UNLOCKED;
257
258static cycles_t last_tsc;
259static cycles_t max_warp;
260static int nr_warps;
261static int random_warps;
262
263/*
264 * TSC-warp measurement loop running on both CPUs.  This is not called
265 * if there is no TSC.
266 */
267static cycles_t check_tsc_warp(unsigned int timeout)
268{
269	cycles_t start, now, prev, end, cur_max_warp = 0;
270	int i, cur_warps = 0;
271
272	start = rdtsc_ordered();
 
 
273	/*
274	 * The measurement runs for 'timeout' msecs:
275	 */
276	end = start + (cycles_t) tsc_khz * timeout;
 
277
278	for (i = 0; ; i++) {
279		/*
280		 * We take the global lock, measure TSC, save the
281		 * previous TSC that was measured (possibly on
282		 * another CPU) and update the previous TSC timestamp.
283		 */
284		arch_spin_lock(&sync_lock);
285		prev = last_tsc;
286		now = rdtsc_ordered();
 
 
287		last_tsc = now;
288		arch_spin_unlock(&sync_lock);
289
290		/*
291		 * Be nice every now and then (and also check whether
292		 * measurement is done [we also insert a 10 million
293		 * loops safety exit, so we dont lock up in case the
294		 * TSC readout is totally broken]):
295		 */
296		if (unlikely(!(i & 7))) {
297			if (now > end || i > 10000000)
298				break;
299			cpu_relax();
300			touch_nmi_watchdog();
301		}
302		/*
303		 * Outside the critical section we can now see whether
304		 * we saw a time-warp of the TSC going backwards:
305		 */
306		if (unlikely(prev > now)) {
307			arch_spin_lock(&sync_lock);
308			max_warp = max(max_warp, prev - now);
309			cur_max_warp = max_warp;
310			/*
311			 * Check whether this bounces back and forth. Only
312			 * one CPU should observe time going backwards.
313			 */
314			if (cur_warps != nr_warps)
315				random_warps++;
316			nr_warps++;
317			cur_warps = nr_warps;
318			arch_spin_unlock(&sync_lock);
319		}
320	}
321	WARN(!(now-start),
322		"Warning: zero tsc calibration delta: %Ld [max: %Ld]\n",
323			now-start, end-start);
324	return cur_max_warp;
325}
326
327/*
328 * If the target CPU coming online doesn't have any of its core-siblings
329 * online, a timeout of 20msec will be used for the TSC-warp measurement
330 * loop. Otherwise a smaller timeout of 2msec will be used, as we have some
331 * information about this socket already (and this information grows as we
332 * have more and more logical-siblings in that socket).
333 *
334 * Ideally we should be able to skip the TSC sync check on the other
335 * core-siblings, if the first logical CPU in a socket passed the sync test.
336 * But as the TSC is per-logical CPU and can potentially be modified wrongly
337 * by the bios, TSC sync test for smaller duration should be able
338 * to catch such errors. Also this will catch the condition where all the
339 * cores in the socket don't get reset at the same time.
340 */
341static inline unsigned int loop_timeout(int cpu)
342{
343	return (cpumask_weight(topology_core_cpumask(cpu)) > 1) ? 2 : 20;
344}
345
346/*
347 * Source CPU calls into this - it waits for the freshly booted
348 * target CPU to arrive and then starts the measurement:
349 */
350void check_tsc_sync_source(int cpu)
351{
352	int cpus = 2;
353
354	/*
355	 * No need to check if we already know that the TSC is not
356	 * synchronized or if we have no TSC.
357	 */
358	if (unsynchronized_tsc())
359		return;
360
 
 
 
 
 
 
 
361	/*
362	 * Set the maximum number of test runs to
363	 *  1 if the CPU does not provide the TSC_ADJUST MSR
364	 *  3 if the MSR is available, so the target can try to adjust
365	 */
366	if (!boot_cpu_has(X86_FEATURE_TSC_ADJUST))
367		atomic_set(&test_runs, 1);
368	else
369		atomic_set(&test_runs, 3);
370retry:
371	/*
372	 * Wait for the target to start or to skip the test:
373	 */
374	while (atomic_read(&start_count) != cpus - 1) {
375		if (atomic_read(&skip_test) > 0) {
376			atomic_set(&skip_test, 0);
377			return;
378		}
379		cpu_relax();
380	}
381
382	/*
383	 * Trigger the target to continue into the measurement too:
384	 */
385	atomic_inc(&start_count);
386
387	check_tsc_warp(loop_timeout(cpu));
388
389	while (atomic_read(&stop_count) != cpus-1)
390		cpu_relax();
391
392	/*
393	 * If the test was successful set the number of runs to zero and
394	 * stop. If not, decrement the number of runs an check if we can
395	 * retry. In case of random warps no retry is attempted.
396	 */
397	if (!nr_warps) {
398		atomic_set(&test_runs, 0);
399
400		pr_debug("TSC synchronization [CPU#%d -> CPU#%d]: passed\n",
401			smp_processor_id(), cpu);
402
403	} else if (atomic_dec_and_test(&test_runs) || random_warps) {
404		/* Force it to 0 if random warps brought us here */
405		atomic_set(&test_runs, 0);
406
407		pr_warn("TSC synchronization [CPU#%d -> CPU#%d]:\n",
408			smp_processor_id(), cpu);
409		pr_warn("Measured %Ld cycles TSC warp between CPUs, "
410			"turning off TSC clock.\n", max_warp);
411		if (random_warps)
412			pr_warn("TSC warped randomly between CPUs\n");
413		mark_tsc_unstable("check_tsc_sync_source failed");
414	}
415
416	/*
417	 * Reset it - just in case we boot another CPU later:
418	 */
419	atomic_set(&start_count, 0);
420	random_warps = 0;
421	nr_warps = 0;
422	max_warp = 0;
423	last_tsc = 0;
424
425	/*
426	 * Let the target continue with the bootup:
427	 */
428	atomic_inc(&stop_count);
429
430	/*
431	 * Retry, if there is a chance to do so.
432	 */
433	if (atomic_read(&test_runs) > 0)
434		goto retry;
435}
436
437/*
438 * Freshly booted CPUs call into this:
439 */
440void check_tsc_sync_target(void)
441{
442	struct tsc_adjust *cur = this_cpu_ptr(&tsc_adjust);
443	unsigned int cpu = smp_processor_id();
444	cycles_t cur_max_warp, gbl_max_warp;
445	int cpus = 2;
446
447	/* Also aborts if there is no TSC. */
448	if (unsynchronized_tsc())
449		return;
450
451	/*
452	 * Store, verify and sanitize the TSC adjust register. If
453	 * successful skip the test.
454	 *
455	 * The test is also skipped when the TSC is marked reliable. This
456	 * is true for SoCs which have no fallback clocksource. On these
457	 * SoCs the TSC is frequency synchronized, but still the TSC ADJUST
458	 * register might have been wreckaged by the BIOS..
459	 */
460	if (tsc_store_and_check_tsc_adjust(false) || tsc_clocksource_reliable) {
461		atomic_inc(&skip_test);
462		return;
463	}
464
465retry:
466	/*
467	 * Register this CPU's participation and wait for the
468	 * source CPU to start the measurement:
469	 */
470	atomic_inc(&start_count);
471	while (atomic_read(&start_count) != cpus)
472		cpu_relax();
473
474	cur_max_warp = check_tsc_warp(loop_timeout(cpu));
475
476	/*
477	 * Store the maximum observed warp value for a potential retry:
478	 */
479	gbl_max_warp = max_warp;
480
481	/*
482	 * Ok, we are done:
483	 */
484	atomic_inc(&stop_count);
485
486	/*
487	 * Wait for the source CPU to print stuff:
488	 */
489	while (atomic_read(&stop_count) != cpus)
490		cpu_relax();
491
492	/*
493	 * Reset it for the next sync test:
494	 */
495	atomic_set(&stop_count, 0);
496
497	/*
498	 * Check the number of remaining test runs. If not zero, the test
499	 * failed and a retry with adjusted TSC is possible. If zero the
500	 * test was either successful or failed terminally.
501	 */
502	if (!atomic_read(&test_runs))
503		return;
504
505	/*
506	 * If the warp value of this CPU is 0, then the other CPU
507	 * observed time going backwards so this TSC was ahead and
508	 * needs to move backwards.
509	 */
510	if (!cur_max_warp)
511		cur_max_warp = -gbl_max_warp;
512
513	/*
514	 * Add the result to the previous adjustment value.
515	 *
516	 * The adjustment value is slightly off by the overhead of the
517	 * sync mechanism (observed values are ~200 TSC cycles), but this
518	 * really depends on CPU, node distance and frequency. So
519	 * compensating for this is hard to get right. Experiments show
520	 * that the warp is not longer detectable when the observed warp
521	 * value is used. In the worst case the adjustment needs to go
522	 * through a 3rd run for fine tuning.
523	 */
524	cur->adjusted += cur_max_warp;
525
526	pr_warn("TSC ADJUST compensate: CPU%u observed %lld warp. Adjust: %lld\n",
527		cpu, cur_max_warp, cur->adjusted);
528
529	wrmsrl(MSR_IA32_TSC_ADJUST, cur->adjusted);
530	goto retry;
531
532}
533
534#endif /* CONFIG_SMP */