Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14#include <linux/bug.h>
15#include <linux/compiler.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/spinlock.h>
23#include <linux/kallsyms.h>
24#include <linux/bootmem.h>
25#include <linux/interrupt.h>
26#include <linux/ptrace.h>
27#include <linux/kgdb.h>
28#include <linux/kdebug.h>
29#include <linux/kprobes.h>
30#include <linux/notifier.h>
31#include <linux/kdb.h>
32#include <linux/irq.h>
33#include <linux/perf_event.h>
34
35#include <asm/bootinfo.h>
36#include <asm/branch.h>
37#include <asm/break.h>
38#include <asm/cop2.h>
39#include <asm/cpu.h>
40#include <asm/dsp.h>
41#include <asm/fpu.h>
42#include <asm/fpu_emulator.h>
43#include <asm/mipsregs.h>
44#include <asm/mipsmtregs.h>
45#include <asm/module.h>
46#include <asm/pgtable.h>
47#include <asm/ptrace.h>
48#include <asm/sections.h>
49#include <asm/tlbdebug.h>
50#include <asm/traps.h>
51#include <asm/uaccess.h>
52#include <asm/watch.h>
53#include <asm/mmu_context.h>
54#include <asm/types.h>
55#include <asm/stacktrace.h>
56#include <asm/uasm.h>
57
58extern void check_wait(void);
59extern asmlinkage void r4k_wait(void);
60extern asmlinkage void rollback_handle_int(void);
61extern asmlinkage void handle_int(void);
62extern asmlinkage void handle_tlbm(void);
63extern asmlinkage void handle_tlbl(void);
64extern asmlinkage void handle_tlbs(void);
65extern asmlinkage void handle_adel(void);
66extern asmlinkage void handle_ades(void);
67extern asmlinkage void handle_ibe(void);
68extern asmlinkage void handle_dbe(void);
69extern asmlinkage void handle_sys(void);
70extern asmlinkage void handle_bp(void);
71extern asmlinkage void handle_ri(void);
72extern asmlinkage void handle_ri_rdhwr_vivt(void);
73extern asmlinkage void handle_ri_rdhwr(void);
74extern asmlinkage void handle_cpu(void);
75extern asmlinkage void handle_ov(void);
76extern asmlinkage void handle_tr(void);
77extern asmlinkage void handle_fpe(void);
78extern asmlinkage void handle_mdmx(void);
79extern asmlinkage void handle_watch(void);
80extern asmlinkage void handle_mt(void);
81extern asmlinkage void handle_dsp(void);
82extern asmlinkage void handle_mcheck(void);
83extern asmlinkage void handle_reserved(void);
84
85extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 struct mips_fpu_struct *ctx, int has_fpu,
87 void *__user *fault_addr);
88
89void (*board_be_init)(void);
90int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91void (*board_nmi_handler_setup)(void);
92void (*board_ejtag_handler_setup)(void);
93void (*board_bind_eic_interrupt)(int irq, int regset);
94void (*board_ebase_setup)(void);
95void __cpuinitdata(*board_cache_error_setup)(void);
96
97static void show_raw_backtrace(unsigned long reg29)
98{
99 unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 unsigned long addr;
101
102 printk("Call Trace:");
103#ifdef CONFIG_KALLSYMS
104 printk("\n");
105#endif
106 while (!kstack_end(sp)) {
107 unsigned long __user *p =
108 (unsigned long __user *)(unsigned long)sp++;
109 if (__get_user(addr, p)) {
110 printk(" (Bad stack address)");
111 break;
112 }
113 if (__kernel_text_address(addr))
114 print_ip_sym(addr);
115 }
116 printk("\n");
117}
118
119#ifdef CONFIG_KALLSYMS
120int raw_show_trace;
121static int __init set_raw_show_trace(char *str)
122{
123 raw_show_trace = 1;
124 return 1;
125}
126__setup("raw_show_trace", set_raw_show_trace);
127#endif
128
129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130{
131 unsigned long sp = regs->regs[29];
132 unsigned long ra = regs->regs[31];
133 unsigned long pc = regs->cp0_epc;
134
135 if (!task)
136 task = current;
137
138 if (raw_show_trace || !__kernel_text_address(pc)) {
139 show_raw_backtrace(sp);
140 return;
141 }
142 printk("Call Trace:\n");
143 do {
144 print_ip_sym(pc);
145 pc = unwind_stack(task, &sp, pc, &ra);
146 } while (pc);
147 printk("\n");
148}
149
150/*
151 * This routine abuses get_user()/put_user() to reference pointers
152 * with at least a bit of error checking ...
153 */
154static void show_stacktrace(struct task_struct *task,
155 const struct pt_regs *regs)
156{
157 const int field = 2 * sizeof(unsigned long);
158 long stackdata;
159 int i;
160 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
161
162 printk("Stack :");
163 i = 0;
164 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165 if (i && ((i % (64 / field)) == 0))
166 printk("\n ");
167 if (i > 39) {
168 printk(" ...");
169 break;
170 }
171
172 if (__get_user(stackdata, sp++)) {
173 printk(" (Bad stack address)");
174 break;
175 }
176
177 printk(" %0*lx", field, stackdata);
178 i++;
179 }
180 printk("\n");
181 show_backtrace(task, regs);
182}
183
184void show_stack(struct task_struct *task, unsigned long *sp)
185{
186 struct pt_regs regs;
187 if (sp) {
188 regs.regs[29] = (unsigned long)sp;
189 regs.regs[31] = 0;
190 regs.cp0_epc = 0;
191 } else {
192 if (task && task != current) {
193 regs.regs[29] = task->thread.reg29;
194 regs.regs[31] = 0;
195 regs.cp0_epc = task->thread.reg31;
196#ifdef CONFIG_KGDB_KDB
197 } else if (atomic_read(&kgdb_active) != -1 &&
198 kdb_current_regs) {
199 memcpy(®s, kdb_current_regs, sizeof(regs));
200#endif /* CONFIG_KGDB_KDB */
201 } else {
202 prepare_frametrace(®s);
203 }
204 }
205 show_stacktrace(task, ®s);
206}
207
208/*
209 * The architecture-independent dump_stack generator
210 */
211void dump_stack(void)
212{
213 struct pt_regs regs;
214
215 prepare_frametrace(®s);
216 show_backtrace(current, ®s);
217}
218
219EXPORT_SYMBOL(dump_stack);
220
221static void show_code(unsigned int __user *pc)
222{
223 long i;
224 unsigned short __user *pc16 = NULL;
225
226 printk("\nCode:");
227
228 if ((unsigned long)pc & 1)
229 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
230 for(i = -3 ; i < 6 ; i++) {
231 unsigned int insn;
232 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
233 printk(" (Bad address in epc)\n");
234 break;
235 }
236 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
237 }
238}
239
240static void __show_regs(const struct pt_regs *regs)
241{
242 const int field = 2 * sizeof(unsigned long);
243 unsigned int cause = regs->cp0_cause;
244 int i;
245
246 printk("Cpu %d\n", smp_processor_id());
247
248 /*
249 * Saved main processor registers
250 */
251 for (i = 0; i < 32; ) {
252 if ((i % 4) == 0)
253 printk("$%2d :", i);
254 if (i == 0)
255 printk(" %0*lx", field, 0UL);
256 else if (i == 26 || i == 27)
257 printk(" %*s", field, "");
258 else
259 printk(" %0*lx", field, regs->regs[i]);
260
261 i++;
262 if ((i % 4) == 0)
263 printk("\n");
264 }
265
266#ifdef CONFIG_CPU_HAS_SMARTMIPS
267 printk("Acx : %0*lx\n", field, regs->acx);
268#endif
269 printk("Hi : %0*lx\n", field, regs->hi);
270 printk("Lo : %0*lx\n", field, regs->lo);
271
272 /*
273 * Saved cp0 registers
274 */
275 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
276 (void *) regs->cp0_epc);
277 printk(" %s\n", print_tainted());
278 printk("ra : %0*lx %pS\n", field, regs->regs[31],
279 (void *) regs->regs[31]);
280
281 printk("Status: %08x ", (uint32_t) regs->cp0_status);
282
283 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
284 if (regs->cp0_status & ST0_KUO)
285 printk("KUo ");
286 if (regs->cp0_status & ST0_IEO)
287 printk("IEo ");
288 if (regs->cp0_status & ST0_KUP)
289 printk("KUp ");
290 if (regs->cp0_status & ST0_IEP)
291 printk("IEp ");
292 if (regs->cp0_status & ST0_KUC)
293 printk("KUc ");
294 if (regs->cp0_status & ST0_IEC)
295 printk("IEc ");
296 } else {
297 if (regs->cp0_status & ST0_KX)
298 printk("KX ");
299 if (regs->cp0_status & ST0_SX)
300 printk("SX ");
301 if (regs->cp0_status & ST0_UX)
302 printk("UX ");
303 switch (regs->cp0_status & ST0_KSU) {
304 case KSU_USER:
305 printk("USER ");
306 break;
307 case KSU_SUPERVISOR:
308 printk("SUPERVISOR ");
309 break;
310 case KSU_KERNEL:
311 printk("KERNEL ");
312 break;
313 default:
314 printk("BAD_MODE ");
315 break;
316 }
317 if (regs->cp0_status & ST0_ERL)
318 printk("ERL ");
319 if (regs->cp0_status & ST0_EXL)
320 printk("EXL ");
321 if (regs->cp0_status & ST0_IE)
322 printk("IE ");
323 }
324 printk("\n");
325
326 printk("Cause : %08x\n", cause);
327
328 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 if (1 <= cause && cause <= 5)
330 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
331
332 printk("PrId : %08x (%s)\n", read_c0_prid(),
333 cpu_name_string());
334}
335
336/*
337 * FIXME: really the generic show_regs should take a const pointer argument.
338 */
339void show_regs(struct pt_regs *regs)
340{
341 __show_regs((struct pt_regs *)regs);
342}
343
344void show_registers(struct pt_regs *regs)
345{
346 const int field = 2 * sizeof(unsigned long);
347
348 __show_regs(regs);
349 print_modules();
350 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
351 current->comm, current->pid, current_thread_info(), current,
352 field, current_thread_info()->tp_value);
353 if (cpu_has_userlocal) {
354 unsigned long tls;
355
356 tls = read_c0_userlocal();
357 if (tls != current_thread_info()->tp_value)
358 printk("*HwTLS: %0*lx\n", field, tls);
359 }
360
361 show_stacktrace(current, regs);
362 show_code((unsigned int __user *) regs->cp0_epc);
363 printk("\n");
364}
365
366static int regs_to_trapnr(struct pt_regs *regs)
367{
368 return (regs->cp0_cause >> 2) & 0x1f;
369}
370
371static DEFINE_RAW_SPINLOCK(die_lock);
372
373void __noreturn die(const char *str, struct pt_regs *regs)
374{
375 static int die_counter;
376 int sig = SIGSEGV;
377#ifdef CONFIG_MIPS_MT_SMTC
378 unsigned long dvpret;
379#endif /* CONFIG_MIPS_MT_SMTC */
380
381 oops_enter();
382
383 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
384 sig = 0;
385
386 console_verbose();
387 raw_spin_lock_irq(&die_lock);
388#ifdef CONFIG_MIPS_MT_SMTC
389 dvpret = dvpe();
390#endif /* CONFIG_MIPS_MT_SMTC */
391 bust_spinlocks(1);
392#ifdef CONFIG_MIPS_MT_SMTC
393 mips_mt_regdump(dvpret);
394#endif /* CONFIG_MIPS_MT_SMTC */
395
396 printk("%s[#%d]:\n", str, ++die_counter);
397 show_registers(regs);
398 add_taint(TAINT_DIE);
399 raw_spin_unlock_irq(&die_lock);
400
401 oops_exit();
402
403 if (in_interrupt())
404 panic("Fatal exception in interrupt");
405
406 if (panic_on_oops) {
407 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
408 ssleep(5);
409 panic("Fatal exception");
410 }
411
412 do_exit(sig);
413}
414
415extern struct exception_table_entry __start___dbe_table[];
416extern struct exception_table_entry __stop___dbe_table[];
417
418__asm__(
419" .section __dbe_table, \"a\"\n"
420" .previous \n");
421
422/* Given an address, look for it in the exception tables. */
423static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424{
425 const struct exception_table_entry *e;
426
427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 if (!e)
429 e = search_module_dbetables(addr);
430 return e;
431}
432
433asmlinkage void do_be(struct pt_regs *regs)
434{
435 const int field = 2 * sizeof(unsigned long);
436 const struct exception_table_entry *fixup = NULL;
437 int data = regs->cp0_cause & 4;
438 int action = MIPS_BE_FATAL;
439
440 /* XXX For now. Fixme, this searches the wrong table ... */
441 if (data && !user_mode(regs))
442 fixup = search_dbe_tables(exception_epc(regs));
443
444 if (fixup)
445 action = MIPS_BE_FIXUP;
446
447 if (board_be_handler)
448 action = board_be_handler(regs, fixup != NULL);
449
450 switch (action) {
451 case MIPS_BE_DISCARD:
452 return;
453 case MIPS_BE_FIXUP:
454 if (fixup) {
455 regs->cp0_epc = fixup->nextinsn;
456 return;
457 }
458 break;
459 default:
460 break;
461 }
462
463 /*
464 * Assume it would be too dangerous to continue ...
465 */
466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 data ? "Data" : "Instruction",
468 field, regs->cp0_epc, field, regs->regs[31]);
469 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
470 == NOTIFY_STOP)
471 return;
472
473 die_if_kernel("Oops", regs);
474 force_sig(SIGBUS, current);
475}
476
477/*
478 * ll/sc, rdhwr, sync emulation
479 */
480
481#define OPCODE 0xfc000000
482#define BASE 0x03e00000
483#define RT 0x001f0000
484#define OFFSET 0x0000ffff
485#define LL 0xc0000000
486#define SC 0xe0000000
487#define SPEC0 0x00000000
488#define SPEC3 0x7c000000
489#define RD 0x0000f800
490#define FUNC 0x0000003f
491#define SYNC 0x0000000f
492#define RDHWR 0x0000003b
493
494/*
495 * The ll_bit is cleared by r*_switch.S
496 */
497
498unsigned int ll_bit;
499struct task_struct *ll_task;
500
501static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
502{
503 unsigned long value, __user *vaddr;
504 long offset;
505
506 /*
507 * analyse the ll instruction that just caused a ri exception
508 * and put the referenced address to addr.
509 */
510
511 /* sign extend offset */
512 offset = opcode & OFFSET;
513 offset <<= 16;
514 offset >>= 16;
515
516 vaddr = (unsigned long __user *)
517 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
518
519 if ((unsigned long)vaddr & 3)
520 return SIGBUS;
521 if (get_user(value, vaddr))
522 return SIGSEGV;
523
524 preempt_disable();
525
526 if (ll_task == NULL || ll_task == current) {
527 ll_bit = 1;
528 } else {
529 ll_bit = 0;
530 }
531 ll_task = current;
532
533 preempt_enable();
534
535 regs->regs[(opcode & RT) >> 16] = value;
536
537 return 0;
538}
539
540static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
541{
542 unsigned long __user *vaddr;
543 unsigned long reg;
544 long offset;
545
546 /*
547 * analyse the sc instruction that just caused a ri exception
548 * and put the referenced address to addr.
549 */
550
551 /* sign extend offset */
552 offset = opcode & OFFSET;
553 offset <<= 16;
554 offset >>= 16;
555
556 vaddr = (unsigned long __user *)
557 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
558 reg = (opcode & RT) >> 16;
559
560 if ((unsigned long)vaddr & 3)
561 return SIGBUS;
562
563 preempt_disable();
564
565 if (ll_bit == 0 || ll_task != current) {
566 regs->regs[reg] = 0;
567 preempt_enable();
568 return 0;
569 }
570
571 preempt_enable();
572
573 if (put_user(regs->regs[reg], vaddr))
574 return SIGSEGV;
575
576 regs->regs[reg] = 1;
577
578 return 0;
579}
580
581/*
582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
583 * opcodes are supposed to result in coprocessor unusable exceptions if
584 * executed on ll/sc-less processors. That's the theory. In practice a
585 * few processors such as NEC's VR4100 throw reserved instruction exceptions
586 * instead, so we're doing the emulation thing in both exception handlers.
587 */
588static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
589{
590 if ((opcode & OPCODE) == LL) {
591 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
592 1, regs, 0);
593 return simulate_ll(regs, opcode);
594 }
595 if ((opcode & OPCODE) == SC) {
596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 1, regs, 0);
598 return simulate_sc(regs, opcode);
599 }
600
601 return -1; /* Must be something else ... */
602}
603
604/*
605 * Simulate trapping 'rdhwr' instructions to provide user accessible
606 * registers not implemented in hardware.
607 */
608static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
609{
610 struct thread_info *ti = task_thread_info(current);
611
612 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
613 int rd = (opcode & RD) >> 11;
614 int rt = (opcode & RT) >> 16;
615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 1, regs, 0);
617 switch (rd) {
618 case 0: /* CPU number */
619 regs->regs[rt] = smp_processor_id();
620 return 0;
621 case 1: /* SYNCI length */
622 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
623 current_cpu_data.icache.linesz);
624 return 0;
625 case 2: /* Read count register */
626 regs->regs[rt] = read_c0_count();
627 return 0;
628 case 3: /* Count register resolution */
629 switch (current_cpu_data.cputype) {
630 case CPU_20KC:
631 case CPU_25KF:
632 regs->regs[rt] = 1;
633 break;
634 default:
635 regs->regs[rt] = 2;
636 }
637 return 0;
638 case 29:
639 regs->regs[rt] = ti->tp_value;
640 return 0;
641 default:
642 return -1;
643 }
644 }
645
646 /* Not ours. */
647 return -1;
648}
649
650static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
651{
652 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
653 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
654 1, regs, 0);
655 return 0;
656 }
657
658 return -1; /* Must be something else ... */
659}
660
661asmlinkage void do_ov(struct pt_regs *regs)
662{
663 siginfo_t info;
664
665 die_if_kernel("Integer overflow", regs);
666
667 info.si_code = FPE_INTOVF;
668 info.si_signo = SIGFPE;
669 info.si_errno = 0;
670 info.si_addr = (void __user *) regs->cp0_epc;
671 force_sig_info(SIGFPE, &info, current);
672}
673
674static int process_fpemu_return(int sig, void __user *fault_addr)
675{
676 if (sig == SIGSEGV || sig == SIGBUS) {
677 struct siginfo si = {0};
678 si.si_addr = fault_addr;
679 si.si_signo = sig;
680 if (sig == SIGSEGV) {
681 if (find_vma(current->mm, (unsigned long)fault_addr))
682 si.si_code = SEGV_ACCERR;
683 else
684 si.si_code = SEGV_MAPERR;
685 } else {
686 si.si_code = BUS_ADRERR;
687 }
688 force_sig_info(sig, &si, current);
689 return 1;
690 } else if (sig) {
691 force_sig(sig, current);
692 return 1;
693 } else {
694 return 0;
695 }
696}
697
698/*
699 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
700 */
701asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
702{
703 siginfo_t info = {0};
704
705 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
706 == NOTIFY_STOP)
707 return;
708 die_if_kernel("FP exception in kernel code", regs);
709
710 if (fcr31 & FPU_CSR_UNI_X) {
711 int sig;
712 void __user *fault_addr = NULL;
713
714 /*
715 * Unimplemented operation exception. If we've got the full
716 * software emulator on-board, let's use it...
717 *
718 * Force FPU to dump state into task/thread context. We're
719 * moving a lot of data here for what is probably a single
720 * instruction, but the alternative is to pre-decode the FP
721 * register operands before invoking the emulator, which seems
722 * a bit extreme for what should be an infrequent event.
723 */
724 /* Ensure 'resume' not overwrite saved fp context again. */
725 lose_fpu(1);
726
727 /* Run the emulator */
728 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
729 &fault_addr);
730
731 /*
732 * We can't allow the emulated instruction to leave any of
733 * the cause bit set in $fcr31.
734 */
735 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
736
737 /* Restore the hardware register state */
738 own_fpu(1); /* Using the FPU again. */
739
740 /* If something went wrong, signal */
741 process_fpemu_return(sig, fault_addr);
742
743 return;
744 } else if (fcr31 & FPU_CSR_INV_X)
745 info.si_code = FPE_FLTINV;
746 else if (fcr31 & FPU_CSR_DIV_X)
747 info.si_code = FPE_FLTDIV;
748 else if (fcr31 & FPU_CSR_OVF_X)
749 info.si_code = FPE_FLTOVF;
750 else if (fcr31 & FPU_CSR_UDF_X)
751 info.si_code = FPE_FLTUND;
752 else if (fcr31 & FPU_CSR_INE_X)
753 info.si_code = FPE_FLTRES;
754 else
755 info.si_code = __SI_FAULT;
756 info.si_signo = SIGFPE;
757 info.si_errno = 0;
758 info.si_addr = (void __user *) regs->cp0_epc;
759 force_sig_info(SIGFPE, &info, current);
760}
761
762static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
763 const char *str)
764{
765 siginfo_t info;
766 char b[40];
767
768#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
769 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 return;
771#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
772
773 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 return;
775
776 /*
777 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
778 * insns, even for trap and break codes that indicate arithmetic
779 * failures. Weird ...
780 * But should we continue the brokenness??? --macro
781 */
782 switch (code) {
783 case BRK_OVERFLOW:
784 case BRK_DIVZERO:
785 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
786 die_if_kernel(b, regs);
787 if (code == BRK_DIVZERO)
788 info.si_code = FPE_INTDIV;
789 else
790 info.si_code = FPE_INTOVF;
791 info.si_signo = SIGFPE;
792 info.si_errno = 0;
793 info.si_addr = (void __user *) regs->cp0_epc;
794 force_sig_info(SIGFPE, &info, current);
795 break;
796 case BRK_BUG:
797 die_if_kernel("Kernel bug detected", regs);
798 force_sig(SIGTRAP, current);
799 break;
800 case BRK_MEMU:
801 /*
802 * Address errors may be deliberately induced by the FPU
803 * emulator to retake control of the CPU after executing the
804 * instruction in the delay slot of an emulated branch.
805 *
806 * Terminate if exception was recognized as a delay slot return
807 * otherwise handle as normal.
808 */
809 if (do_dsemulret(regs))
810 return;
811
812 die_if_kernel("Math emu break/trap", regs);
813 force_sig(SIGTRAP, current);
814 break;
815 default:
816 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
817 die_if_kernel(b, regs);
818 force_sig(SIGTRAP, current);
819 }
820}
821
822asmlinkage void do_bp(struct pt_regs *regs)
823{
824 unsigned int opcode, bcode;
825
826 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
827 goto out_sigsegv;
828
829 /*
830 * There is the ancient bug in the MIPS assemblers that the break
831 * code starts left to bit 16 instead to bit 6 in the opcode.
832 * Gas is bug-compatible, but not always, grrr...
833 * We handle both cases with a simple heuristics. --macro
834 */
835 bcode = ((opcode >> 6) & ((1 << 20) - 1));
836 if (bcode >= (1 << 10))
837 bcode >>= 10;
838
839 /*
840 * notify the kprobe handlers, if instruction is likely to
841 * pertain to them.
842 */
843 switch (bcode) {
844 case BRK_KPROBE_BP:
845 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
846 return;
847 else
848 break;
849 case BRK_KPROBE_SSTEPBP:
850 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
851 return;
852 else
853 break;
854 default:
855 break;
856 }
857
858 do_trap_or_bp(regs, bcode, "Break");
859 return;
860
861out_sigsegv:
862 force_sig(SIGSEGV, current);
863}
864
865asmlinkage void do_tr(struct pt_regs *regs)
866{
867 unsigned int opcode, tcode = 0;
868
869 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
870 goto out_sigsegv;
871
872 /* Immediate versions don't provide a code. */
873 if (!(opcode & OPCODE))
874 tcode = ((opcode >> 6) & ((1 << 10) - 1));
875
876 do_trap_or_bp(regs, tcode, "Trap");
877 return;
878
879out_sigsegv:
880 force_sig(SIGSEGV, current);
881}
882
883asmlinkage void do_ri(struct pt_regs *regs)
884{
885 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
886 unsigned long old_epc = regs->cp0_epc;
887 unsigned int opcode = 0;
888 int status = -1;
889
890 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
891 == NOTIFY_STOP)
892 return;
893
894 die_if_kernel("Reserved instruction in kernel code", regs);
895
896 if (unlikely(compute_return_epc(regs) < 0))
897 return;
898
899 if (unlikely(get_user(opcode, epc) < 0))
900 status = SIGSEGV;
901
902 if (!cpu_has_llsc && status < 0)
903 status = simulate_llsc(regs, opcode);
904
905 if (status < 0)
906 status = simulate_rdhwr(regs, opcode);
907
908 if (status < 0)
909 status = simulate_sync(regs, opcode);
910
911 if (status < 0)
912 status = SIGILL;
913
914 if (unlikely(status > 0)) {
915 regs->cp0_epc = old_epc; /* Undo skip-over. */
916 force_sig(status, current);
917 }
918}
919
920/*
921 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
922 * emulated more than some threshold number of instructions, force migration to
923 * a "CPU" that has FP support.
924 */
925static void mt_ase_fp_affinity(void)
926{
927#ifdef CONFIG_MIPS_MT_FPAFF
928 if (mt_fpemul_threshold > 0 &&
929 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
930 /*
931 * If there's no FPU present, or if the application has already
932 * restricted the allowed set to exclude any CPUs with FPUs,
933 * we'll skip the procedure.
934 */
935 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
936 cpumask_t tmask;
937
938 current->thread.user_cpus_allowed
939 = current->cpus_allowed;
940 cpus_and(tmask, current->cpus_allowed,
941 mt_fpu_cpumask);
942 set_cpus_allowed_ptr(current, &tmask);
943 set_thread_flag(TIF_FPUBOUND);
944 }
945 }
946#endif /* CONFIG_MIPS_MT_FPAFF */
947}
948
949/*
950 * No lock; only written during early bootup by CPU 0.
951 */
952static RAW_NOTIFIER_HEAD(cu2_chain);
953
954int __ref register_cu2_notifier(struct notifier_block *nb)
955{
956 return raw_notifier_chain_register(&cu2_chain, nb);
957}
958
959int cu2_notifier_call_chain(unsigned long val, void *v)
960{
961 return raw_notifier_call_chain(&cu2_chain, val, v);
962}
963
964static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
965 void *data)
966{
967 struct pt_regs *regs = data;
968
969 switch (action) {
970 default:
971 die_if_kernel("Unhandled kernel unaligned access or invalid "
972 "instruction", regs);
973 /* Fall through */
974
975 case CU2_EXCEPTION:
976 force_sig(SIGILL, current);
977 }
978
979 return NOTIFY_OK;
980}
981
982asmlinkage void do_cpu(struct pt_regs *regs)
983{
984 unsigned int __user *epc;
985 unsigned long old_epc;
986 unsigned int opcode;
987 unsigned int cpid;
988 int status;
989 unsigned long __maybe_unused flags;
990
991 die_if_kernel("do_cpu invoked from kernel context!", regs);
992
993 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
994
995 switch (cpid) {
996 case 0:
997 epc = (unsigned int __user *)exception_epc(regs);
998 old_epc = regs->cp0_epc;
999 opcode = 0;
1000 status = -1;
1001
1002 if (unlikely(compute_return_epc(regs) < 0))
1003 return;
1004
1005 if (unlikely(get_user(opcode, epc) < 0))
1006 status = SIGSEGV;
1007
1008 if (!cpu_has_llsc && status < 0)
1009 status = simulate_llsc(regs, opcode);
1010
1011 if (status < 0)
1012 status = simulate_rdhwr(regs, opcode);
1013
1014 if (status < 0)
1015 status = SIGILL;
1016
1017 if (unlikely(status > 0)) {
1018 regs->cp0_epc = old_epc; /* Undo skip-over. */
1019 force_sig(status, current);
1020 }
1021
1022 return;
1023
1024 case 1:
1025 if (used_math()) /* Using the FPU again. */
1026 own_fpu(1);
1027 else { /* First time FPU user. */
1028 init_fpu();
1029 set_used_math();
1030 }
1031
1032 if (!raw_cpu_has_fpu) {
1033 int sig;
1034 void __user *fault_addr = NULL;
1035 sig = fpu_emulator_cop1Handler(regs,
1036 ¤t->thread.fpu,
1037 0, &fault_addr);
1038 if (!process_fpemu_return(sig, fault_addr))
1039 mt_ase_fp_affinity();
1040 }
1041
1042 return;
1043
1044 case 2:
1045 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046 return;
1047
1048 case 3:
1049 break;
1050 }
1051
1052 force_sig(SIGILL, current);
1053}
1054
1055asmlinkage void do_mdmx(struct pt_regs *regs)
1056{
1057 force_sig(SIGILL, current);
1058}
1059
1060/*
1061 * Called with interrupts disabled.
1062 */
1063asmlinkage void do_watch(struct pt_regs *regs)
1064{
1065 u32 cause;
1066
1067 /*
1068 * Clear WP (bit 22) bit of cause register so we don't loop
1069 * forever.
1070 */
1071 cause = read_c0_cause();
1072 cause &= ~(1 << 22);
1073 write_c0_cause(cause);
1074
1075 /*
1076 * If the current thread has the watch registers loaded, save
1077 * their values and send SIGTRAP. Otherwise another thread
1078 * left the registers set, clear them and continue.
1079 */
1080 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1081 mips_read_watch_registers();
1082 local_irq_enable();
1083 force_sig(SIGTRAP, current);
1084 } else {
1085 mips_clear_watch_registers();
1086 local_irq_enable();
1087 }
1088}
1089
1090asmlinkage void do_mcheck(struct pt_regs *regs)
1091{
1092 const int field = 2 * sizeof(unsigned long);
1093 int multi_match = regs->cp0_status & ST0_TS;
1094
1095 show_regs(regs);
1096
1097 if (multi_match) {
1098 printk("Index : %0x\n", read_c0_index());
1099 printk("Pagemask: %0x\n", read_c0_pagemask());
1100 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103 printk("\n");
1104 dump_tlb_all();
1105 }
1106
1107 show_code((unsigned int __user *) regs->cp0_epc);
1108
1109 /*
1110 * Some chips may have other causes of machine check (e.g. SB1
1111 * graduation timer)
1112 */
1113 panic("Caught Machine Check exception - %scaused by multiple "
1114 "matching entries in the TLB.",
1115 (multi_match) ? "" : "not ");
1116}
1117
1118asmlinkage void do_mt(struct pt_regs *regs)
1119{
1120 int subcode;
1121
1122 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1123 >> VPECONTROL_EXCPT_SHIFT;
1124 switch (subcode) {
1125 case 0:
1126 printk(KERN_DEBUG "Thread Underflow\n");
1127 break;
1128 case 1:
1129 printk(KERN_DEBUG "Thread Overflow\n");
1130 break;
1131 case 2:
1132 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133 break;
1134 case 3:
1135 printk(KERN_DEBUG "Gating Storage Exception\n");
1136 break;
1137 case 4:
1138 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139 break;
1140 case 5:
1141 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142 break;
1143 default:
1144 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145 subcode);
1146 break;
1147 }
1148 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1149
1150 force_sig(SIGILL, current);
1151}
1152
1153
1154asmlinkage void do_dsp(struct pt_regs *regs)
1155{
1156 if (cpu_has_dsp)
1157 panic("Unexpected DSP exception");
1158
1159 force_sig(SIGILL, current);
1160}
1161
1162asmlinkage void do_reserved(struct pt_regs *regs)
1163{
1164 /*
1165 * Game over - no way to handle this if it ever occurs. Most probably
1166 * caused by a new unknown cpu type or after another deadly
1167 * hard/software error.
1168 */
1169 show_regs(regs);
1170 panic("Caught reserved exception %ld - should not happen.",
1171 (regs->cp0_cause & 0x7f) >> 2);
1172}
1173
1174static int __initdata l1parity = 1;
1175static int __init nol1parity(char *s)
1176{
1177 l1parity = 0;
1178 return 1;
1179}
1180__setup("nol1par", nol1parity);
1181static int __initdata l2parity = 1;
1182static int __init nol2parity(char *s)
1183{
1184 l2parity = 0;
1185 return 1;
1186}
1187__setup("nol2par", nol2parity);
1188
1189/*
1190 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191 * it different ways.
1192 */
1193static inline void parity_protection_init(void)
1194{
1195 switch (current_cpu_type()) {
1196 case CPU_24K:
1197 case CPU_34K:
1198 case CPU_74K:
1199 case CPU_1004K:
1200 {
1201#define ERRCTL_PE 0x80000000
1202#define ERRCTL_L2P 0x00800000
1203 unsigned long errctl;
1204 unsigned int l1parity_present, l2parity_present;
1205
1206 errctl = read_c0_ecc();
1207 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1208
1209 /* probe L1 parity support */
1210 write_c0_ecc(errctl | ERRCTL_PE);
1211 back_to_back_c0_hazard();
1212 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1213
1214 /* probe L2 parity support */
1215 write_c0_ecc(errctl|ERRCTL_L2P);
1216 back_to_back_c0_hazard();
1217 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1218
1219 if (l1parity_present && l2parity_present) {
1220 if (l1parity)
1221 errctl |= ERRCTL_PE;
1222 if (l1parity ^ l2parity)
1223 errctl |= ERRCTL_L2P;
1224 } else if (l1parity_present) {
1225 if (l1parity)
1226 errctl |= ERRCTL_PE;
1227 } else if (l2parity_present) {
1228 if (l2parity)
1229 errctl |= ERRCTL_L2P;
1230 } else {
1231 /* No parity available */
1232 }
1233
1234 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1235
1236 write_c0_ecc(errctl);
1237 back_to_back_c0_hazard();
1238 errctl = read_c0_ecc();
1239 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1240
1241 if (l1parity_present)
1242 printk(KERN_INFO "Cache parity protection %sabled\n",
1243 (errctl & ERRCTL_PE) ? "en" : "dis");
1244
1245 if (l2parity_present) {
1246 if (l1parity_present && l1parity)
1247 errctl ^= ERRCTL_L2P;
1248 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249 (errctl & ERRCTL_L2P) ? "en" : "dis");
1250 }
1251 }
1252 break;
1253
1254 case CPU_5KC:
1255 case CPU_5KE:
1256 write_c0_ecc(0x80000000);
1257 back_to_back_c0_hazard();
1258 /* Set the PE bit (bit 31) in the c0_errctl register. */
1259 printk(KERN_INFO "Cache parity protection %sabled\n",
1260 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1261 break;
1262 case CPU_20KC:
1263 case CPU_25KF:
1264 /* Clear the DE bit (bit 16) in the c0_status register. */
1265 printk(KERN_INFO "Enable cache parity protection for "
1266 "MIPS 20KC/25KF CPUs.\n");
1267 clear_c0_status(ST0_DE);
1268 break;
1269 default:
1270 break;
1271 }
1272}
1273
1274asmlinkage void cache_parity_error(void)
1275{
1276 const int field = 2 * sizeof(unsigned long);
1277 unsigned int reg_val;
1278
1279 /* For the moment, report the problem and hang. */
1280 printk("Cache error exception:\n");
1281 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1282 reg_val = read_c0_cacheerr();
1283 printk("c0_cacheerr == %08x\n", reg_val);
1284
1285 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1286 reg_val & (1<<30) ? "secondary" : "primary",
1287 reg_val & (1<<31) ? "data" : "insn");
1288 printk("Error bits: %s%s%s%s%s%s%s\n",
1289 reg_val & (1<<29) ? "ED " : "",
1290 reg_val & (1<<28) ? "ET " : "",
1291 reg_val & (1<<26) ? "EE " : "",
1292 reg_val & (1<<25) ? "EB " : "",
1293 reg_val & (1<<24) ? "EI " : "",
1294 reg_val & (1<<23) ? "E1 " : "",
1295 reg_val & (1<<22) ? "E0 " : "");
1296 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1297
1298#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1299 if (reg_val & (1<<22))
1300 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1301
1302 if (reg_val & (1<<23))
1303 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1304#endif
1305
1306 panic("Can't handle the cache error!");
1307}
1308
1309/*
1310 * SDBBP EJTAG debug exception handler.
1311 * We skip the instruction and return to the next instruction.
1312 */
1313void ejtag_exception_handler(struct pt_regs *regs)
1314{
1315 const int field = 2 * sizeof(unsigned long);
1316 unsigned long depc, old_epc;
1317 unsigned int debug;
1318
1319 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1320 depc = read_c0_depc();
1321 debug = read_c0_debug();
1322 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1323 if (debug & 0x80000000) {
1324 /*
1325 * In branch delay slot.
1326 * We cheat a little bit here and use EPC to calculate the
1327 * debug return address (DEPC). EPC is restored after the
1328 * calculation.
1329 */
1330 old_epc = regs->cp0_epc;
1331 regs->cp0_epc = depc;
1332 __compute_return_epc(regs);
1333 depc = regs->cp0_epc;
1334 regs->cp0_epc = old_epc;
1335 } else
1336 depc += 4;
1337 write_c0_depc(depc);
1338
1339#if 0
1340 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1341 write_c0_debug(debug | 0x100);
1342#endif
1343}
1344
1345/*
1346 * NMI exception handler.
1347 * No lock; only written during early bootup by CPU 0.
1348 */
1349static RAW_NOTIFIER_HEAD(nmi_chain);
1350
1351int register_nmi_notifier(struct notifier_block *nb)
1352{
1353 return raw_notifier_chain_register(&nmi_chain, nb);
1354}
1355
1356void __noreturn nmi_exception_handler(struct pt_regs *regs)
1357{
1358 raw_notifier_call_chain(&nmi_chain, 0, regs);
1359 bust_spinlocks(1);
1360 printk("NMI taken!!!!\n");
1361 die("NMI", regs);
1362}
1363
1364#define VECTORSPACING 0x100 /* for EI/VI mode */
1365
1366unsigned long ebase;
1367unsigned long exception_handlers[32];
1368unsigned long vi_handlers[64];
1369
1370void __init *set_except_vector(int n, void *addr)
1371{
1372 unsigned long handler = (unsigned long) addr;
1373 unsigned long old_handler = exception_handlers[n];
1374
1375 exception_handlers[n] = handler;
1376 if (n == 0 && cpu_has_divec) {
1377 unsigned long jump_mask = ~((1 << 28) - 1);
1378 u32 *buf = (u32 *)(ebase + 0x200);
1379 unsigned int k0 = 26;
1380 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1381 uasm_i_j(&buf, handler & ~jump_mask);
1382 uasm_i_nop(&buf);
1383 } else {
1384 UASM_i_LA(&buf, k0, handler);
1385 uasm_i_jr(&buf, k0);
1386 uasm_i_nop(&buf);
1387 }
1388 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1389 }
1390 return (void *)old_handler;
1391}
1392
1393static asmlinkage void do_default_vi(void)
1394{
1395 show_regs(get_irq_regs());
1396 panic("Caught unexpected vectored interrupt.");
1397}
1398
1399static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1400{
1401 unsigned long handler;
1402 unsigned long old_handler = vi_handlers[n];
1403 int srssets = current_cpu_data.srsets;
1404 u32 *w;
1405 unsigned char *b;
1406
1407 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1408
1409 if (addr == NULL) {
1410 handler = (unsigned long) do_default_vi;
1411 srs = 0;
1412 } else
1413 handler = (unsigned long) addr;
1414 vi_handlers[n] = (unsigned long) addr;
1415
1416 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1417
1418 if (srs >= srssets)
1419 panic("Shadow register set %d not supported", srs);
1420
1421 if (cpu_has_veic) {
1422 if (board_bind_eic_interrupt)
1423 board_bind_eic_interrupt(n, srs);
1424 } else if (cpu_has_vint) {
1425 /* SRSMap is only defined if shadow sets are implemented */
1426 if (srssets > 1)
1427 change_c0_srsmap(0xf << n*4, srs << n*4);
1428 }
1429
1430 if (srs == 0) {
1431 /*
1432 * If no shadow set is selected then use the default handler
1433 * that does normal register saving and a standard interrupt exit
1434 */
1435
1436 extern char except_vec_vi, except_vec_vi_lui;
1437 extern char except_vec_vi_ori, except_vec_vi_end;
1438 extern char rollback_except_vec_vi;
1439 char *vec_start = (cpu_wait == r4k_wait) ?
1440 &rollback_except_vec_vi : &except_vec_vi;
1441#ifdef CONFIG_MIPS_MT_SMTC
1442 /*
1443 * We need to provide the SMTC vectored interrupt handler
1444 * not only with the address of the handler, but with the
1445 * Status.IM bit to be masked before going there.
1446 */
1447 extern char except_vec_vi_mori;
1448 const int mori_offset = &except_vec_vi_mori - vec_start;
1449#endif /* CONFIG_MIPS_MT_SMTC */
1450 const int handler_len = &except_vec_vi_end - vec_start;
1451 const int lui_offset = &except_vec_vi_lui - vec_start;
1452 const int ori_offset = &except_vec_vi_ori - vec_start;
1453
1454 if (handler_len > VECTORSPACING) {
1455 /*
1456 * Sigh... panicing won't help as the console
1457 * is probably not configured :(
1458 */
1459 panic("VECTORSPACING too small");
1460 }
1461
1462 memcpy(b, vec_start, handler_len);
1463#ifdef CONFIG_MIPS_MT_SMTC
1464 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1465
1466 w = (u32 *)(b + mori_offset);
1467 *w = (*w & 0xffff0000) | (0x100 << n);
1468#endif /* CONFIG_MIPS_MT_SMTC */
1469 w = (u32 *)(b + lui_offset);
1470 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1471 w = (u32 *)(b + ori_offset);
1472 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1473 local_flush_icache_range((unsigned long)b,
1474 (unsigned long)(b+handler_len));
1475 }
1476 else {
1477 /*
1478 * In other cases jump directly to the interrupt handler
1479 *
1480 * It is the handlers responsibility to save registers if required
1481 * (eg hi/lo) and return from the exception using "eret"
1482 */
1483 w = (u32 *)b;
1484 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1485 *w = 0;
1486 local_flush_icache_range((unsigned long)b,
1487 (unsigned long)(b+8));
1488 }
1489
1490 return (void *)old_handler;
1491}
1492
1493void *set_vi_handler(int n, vi_handler_t addr)
1494{
1495 return set_vi_srs_handler(n, addr, 0);
1496}
1497
1498extern void tlb_init(void);
1499extern void flush_tlb_handlers(void);
1500
1501/*
1502 * Timer interrupt
1503 */
1504int cp0_compare_irq;
1505EXPORT_SYMBOL_GPL(cp0_compare_irq);
1506int cp0_compare_irq_shift;
1507
1508/*
1509 * Performance counter IRQ or -1 if shared with timer
1510 */
1511int cp0_perfcount_irq;
1512EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1513
1514static int __cpuinitdata noulri;
1515
1516static int __init ulri_disable(char *s)
1517{
1518 pr_info("Disabling ulri\n");
1519 noulri = 1;
1520
1521 return 1;
1522}
1523__setup("noulri", ulri_disable);
1524
1525void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1526{
1527 unsigned int cpu = smp_processor_id();
1528 unsigned int status_set = ST0_CU0;
1529 unsigned int hwrena = cpu_hwrena_impl_bits;
1530#ifdef CONFIG_MIPS_MT_SMTC
1531 int secondaryTC = 0;
1532 int bootTC = (cpu == 0);
1533
1534 /*
1535 * Only do per_cpu_trap_init() for first TC of Each VPE.
1536 * Note that this hack assumes that the SMTC init code
1537 * assigns TCs consecutively and in ascending order.
1538 */
1539
1540 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1541 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1542 secondaryTC = 1;
1543#endif /* CONFIG_MIPS_MT_SMTC */
1544
1545 /*
1546 * Disable coprocessors and select 32-bit or 64-bit addressing
1547 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1548 * flag that some firmware may have left set and the TS bit (for
1549 * IP27). Set XX for ISA IV code to work.
1550 */
1551#ifdef CONFIG_64BIT
1552 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1553#endif
1554 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1555 status_set |= ST0_XX;
1556 if (cpu_has_dsp)
1557 status_set |= ST0_MX;
1558
1559 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1560 status_set);
1561
1562 if (cpu_has_mips_r2)
1563 hwrena |= 0x0000000f;
1564
1565 if (!noulri && cpu_has_userlocal)
1566 hwrena |= (1 << 29);
1567
1568 if (hwrena)
1569 write_c0_hwrena(hwrena);
1570
1571#ifdef CONFIG_MIPS_MT_SMTC
1572 if (!secondaryTC) {
1573#endif /* CONFIG_MIPS_MT_SMTC */
1574
1575 if (cpu_has_veic || cpu_has_vint) {
1576 unsigned long sr = set_c0_status(ST0_BEV);
1577 write_c0_ebase(ebase);
1578 write_c0_status(sr);
1579 /* Setting vector spacing enables EI/VI mode */
1580 change_c0_intctl(0x3e0, VECTORSPACING);
1581 }
1582 if (cpu_has_divec) {
1583 if (cpu_has_mipsmt) {
1584 unsigned int vpflags = dvpe();
1585 set_c0_cause(CAUSEF_IV);
1586 evpe(vpflags);
1587 } else
1588 set_c0_cause(CAUSEF_IV);
1589 }
1590
1591 /*
1592 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1593 *
1594 * o read IntCtl.IPTI to determine the timer interrupt
1595 * o read IntCtl.IPPCI to determine the performance counter interrupt
1596 */
1597 if (cpu_has_mips_r2) {
1598 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1599 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1600 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1601 if (cp0_perfcount_irq == cp0_compare_irq)
1602 cp0_perfcount_irq = -1;
1603 } else {
1604 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1605 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1606 cp0_perfcount_irq = -1;
1607 }
1608
1609#ifdef CONFIG_MIPS_MT_SMTC
1610 }
1611#endif /* CONFIG_MIPS_MT_SMTC */
1612
1613 if (!cpu_data[cpu].asid_cache)
1614 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1615
1616 atomic_inc(&init_mm.mm_count);
1617 current->active_mm = &init_mm;
1618 BUG_ON(current->mm);
1619 enter_lazy_tlb(&init_mm, current);
1620
1621#ifdef CONFIG_MIPS_MT_SMTC
1622 if (bootTC) {
1623#endif /* CONFIG_MIPS_MT_SMTC */
1624 /* Boot CPU's cache setup in setup_arch(). */
1625 if (!is_boot_cpu)
1626 cpu_cache_init();
1627 tlb_init();
1628#ifdef CONFIG_MIPS_MT_SMTC
1629 } else if (!secondaryTC) {
1630 /*
1631 * First TC in non-boot VPE must do subset of tlb_init()
1632 * for MMU countrol registers.
1633 */
1634 write_c0_pagemask(PM_DEFAULT_MASK);
1635 write_c0_wired(0);
1636 }
1637#endif /* CONFIG_MIPS_MT_SMTC */
1638 TLBMISS_HANDLER_SETUP();
1639}
1640
1641/* Install CPU exception handler */
1642void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1643{
1644 memcpy((void *)(ebase + offset), addr, size);
1645 local_flush_icache_range(ebase + offset, ebase + offset + size);
1646}
1647
1648static char panic_null_cerr[] __cpuinitdata =
1649 "Trying to set NULL cache error exception handler";
1650
1651/*
1652 * Install uncached CPU exception handler.
1653 * This is suitable only for the cache error exception which is the only
1654 * exception handler that is being run uncached.
1655 */
1656void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1657 unsigned long size)
1658{
1659 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1660
1661 if (!addr)
1662 panic(panic_null_cerr);
1663
1664 memcpy((void *)(uncached_ebase + offset), addr, size);
1665}
1666
1667static int __initdata rdhwr_noopt;
1668static int __init set_rdhwr_noopt(char *str)
1669{
1670 rdhwr_noopt = 1;
1671 return 1;
1672}
1673
1674__setup("rdhwr_noopt", set_rdhwr_noopt);
1675
1676void __init trap_init(void)
1677{
1678 extern char except_vec3_generic, except_vec3_r4000;
1679 extern char except_vec4;
1680 unsigned long i;
1681 int rollback;
1682
1683 check_wait();
1684 rollback = (cpu_wait == r4k_wait);
1685
1686#if defined(CONFIG_KGDB)
1687 if (kgdb_early_setup)
1688 return; /* Already done */
1689#endif
1690
1691 if (cpu_has_veic || cpu_has_vint) {
1692 unsigned long size = 0x200 + VECTORSPACING*64;
1693 ebase = (unsigned long)
1694 __alloc_bootmem(size, 1 << fls(size), 0);
1695 } else {
1696 ebase = CKSEG0;
1697 if (cpu_has_mips_r2)
1698 ebase += (read_c0_ebase() & 0x3ffff000);
1699 }
1700
1701 if (board_ebase_setup)
1702 board_ebase_setup();
1703 per_cpu_trap_init(true);
1704
1705 /*
1706 * Copy the generic exception handlers to their final destination.
1707 * This will be overriden later as suitable for a particular
1708 * configuration.
1709 */
1710 set_handler(0x180, &except_vec3_generic, 0x80);
1711
1712 /*
1713 * Setup default vectors
1714 */
1715 for (i = 0; i <= 31; i++)
1716 set_except_vector(i, handle_reserved);
1717
1718 /*
1719 * Copy the EJTAG debug exception vector handler code to it's final
1720 * destination.
1721 */
1722 if (cpu_has_ejtag && board_ejtag_handler_setup)
1723 board_ejtag_handler_setup();
1724
1725 /*
1726 * Only some CPUs have the watch exceptions.
1727 */
1728 if (cpu_has_watch)
1729 set_except_vector(23, handle_watch);
1730
1731 /*
1732 * Initialise interrupt handlers
1733 */
1734 if (cpu_has_veic || cpu_has_vint) {
1735 int nvec = cpu_has_veic ? 64 : 8;
1736 for (i = 0; i < nvec; i++)
1737 set_vi_handler(i, NULL);
1738 }
1739 else if (cpu_has_divec)
1740 set_handler(0x200, &except_vec4, 0x8);
1741
1742 /*
1743 * Some CPUs can enable/disable for cache parity detection, but does
1744 * it different ways.
1745 */
1746 parity_protection_init();
1747
1748 /*
1749 * The Data Bus Errors / Instruction Bus Errors are signaled
1750 * by external hardware. Therefore these two exceptions
1751 * may have board specific handlers.
1752 */
1753 if (board_be_init)
1754 board_be_init();
1755
1756 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1757 set_except_vector(1, handle_tlbm);
1758 set_except_vector(2, handle_tlbl);
1759 set_except_vector(3, handle_tlbs);
1760
1761 set_except_vector(4, handle_adel);
1762 set_except_vector(5, handle_ades);
1763
1764 set_except_vector(6, handle_ibe);
1765 set_except_vector(7, handle_dbe);
1766
1767 set_except_vector(8, handle_sys);
1768 set_except_vector(9, handle_bp);
1769 set_except_vector(10, rdhwr_noopt ? handle_ri :
1770 (cpu_has_vtag_icache ?
1771 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1772 set_except_vector(11, handle_cpu);
1773 set_except_vector(12, handle_ov);
1774 set_except_vector(13, handle_tr);
1775
1776 if (current_cpu_type() == CPU_R6000 ||
1777 current_cpu_type() == CPU_R6000A) {
1778 /*
1779 * The R6000 is the only R-series CPU that features a machine
1780 * check exception (similar to the R4000 cache error) and
1781 * unaligned ldc1/sdc1 exception. The handlers have not been
1782 * written yet. Well, anyway there is no R6000 machine on the
1783 * current list of targets for Linux/MIPS.
1784 * (Duh, crap, there is someone with a triple R6k machine)
1785 */
1786 //set_except_vector(14, handle_mc);
1787 //set_except_vector(15, handle_ndc);
1788 }
1789
1790
1791 if (board_nmi_handler_setup)
1792 board_nmi_handler_setup();
1793
1794 if (cpu_has_fpu && !cpu_has_nofpuex)
1795 set_except_vector(15, handle_fpe);
1796
1797 set_except_vector(22, handle_mdmx);
1798
1799 if (cpu_has_mcheck)
1800 set_except_vector(24, handle_mcheck);
1801
1802 if (cpu_has_mipsmt)
1803 set_except_vector(25, handle_mt);
1804
1805 set_except_vector(26, handle_dsp);
1806
1807 if (board_cache_error_setup)
1808 board_cache_error_setup();
1809
1810 if (cpu_has_vce)
1811 /* Special exception: R4[04]00 uses also the divec space. */
1812 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1813 else if (cpu_has_4kex)
1814 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1815 else
1816 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1817
1818 local_flush_icache_range(ebase, ebase + 0x400);
1819 flush_tlb_handlers();
1820
1821 sort_extable(__start___dbe_table, __stop___dbe_table);
1822
1823 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1824}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75#include "access-helper.h"
76
77extern void check_wait(void);
78extern asmlinkage void rollback_handle_int(void);
79extern asmlinkage void handle_int(void);
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88extern asmlinkage void handle_ri_rdhwr(void);
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
92extern asmlinkage void handle_msa_fpe(void);
93extern asmlinkage void handle_fpe(void);
94extern asmlinkage void handle_ftlb(void);
95extern asmlinkage void handle_gsexc(void);
96extern asmlinkage void handle_msa(void);
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
99extern asmlinkage void handle_mt(void);
100extern asmlinkage void handle_dsp(void);
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
103extern void tlb_do_page_fault_0(void);
104
105void (*board_be_init)(void);
106static int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
110void (*board_ebase_setup)(void);
111void(*board_cache_error_setup)(void);
112
113void mips_set_be_handler(int (*handler)(struct pt_regs *regs, int is_fixup))
114{
115 board_be_handler = handler;
116}
117EXPORT_SYMBOL_GPL(mips_set_be_handler);
118
119static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
120 bool user)
121{
122 unsigned long *sp = (unsigned long *)(reg29 & ~3);
123 unsigned long addr;
124
125 printk("%sCall Trace:", loglvl);
126#ifdef CONFIG_KALLSYMS
127 printk("%s\n", loglvl);
128#endif
129 while (!kstack_end(sp)) {
130 if (__get_addr(&addr, sp++, user)) {
131 printk("%s (Bad stack address)", loglvl);
132 break;
133 }
134 if (__kernel_text_address(addr))
135 print_ip_sym(loglvl, addr);
136 }
137 printk("%s\n", loglvl);
138}
139
140#ifdef CONFIG_KALLSYMS
141int raw_show_trace;
142static int __init set_raw_show_trace(char *str)
143{
144 raw_show_trace = 1;
145 return 1;
146}
147__setup("raw_show_trace", set_raw_show_trace);
148#endif
149
150static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
151 const char *loglvl, bool user)
152{
153 unsigned long sp = regs->regs[29];
154 unsigned long ra = regs->regs[31];
155 unsigned long pc = regs->cp0_epc;
156
157 if (!task)
158 task = current;
159
160 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
161 show_raw_backtrace(sp, loglvl, user);
162 return;
163 }
164 printk("%sCall Trace:\n", loglvl);
165 do {
166 print_ip_sym(loglvl, pc);
167 pc = unwind_stack(task, &sp, pc, &ra);
168 } while (pc);
169 pr_cont("\n");
170}
171
172/*
173 * This routine abuses get_user()/put_user() to reference pointers
174 * with at least a bit of error checking ...
175 */
176static void show_stacktrace(struct task_struct *task,
177 const struct pt_regs *regs, const char *loglvl, bool user)
178{
179 const int field = 2 * sizeof(unsigned long);
180 unsigned long stackdata;
181 int i;
182 unsigned long *sp = (unsigned long *)regs->regs[29];
183
184 printk("%sStack :", loglvl);
185 i = 0;
186 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
187 if (i && ((i % (64 / field)) == 0)) {
188 pr_cont("\n");
189 printk("%s ", loglvl);
190 }
191 if (i > 39) {
192 pr_cont(" ...");
193 break;
194 }
195
196 if (__get_addr(&stackdata, sp++, user)) {
197 pr_cont(" (Bad stack address)");
198 break;
199 }
200
201 pr_cont(" %0*lx", field, stackdata);
202 i++;
203 }
204 pr_cont("\n");
205 show_backtrace(task, regs, loglvl, user);
206}
207
208void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
209{
210 struct pt_regs regs;
211
212 regs.cp0_status = KSU_KERNEL;
213 if (sp) {
214 regs.regs[29] = (unsigned long)sp;
215 regs.regs[31] = 0;
216 regs.cp0_epc = 0;
217 } else {
218 if (task && task != current) {
219 regs.regs[29] = task->thread.reg29;
220 regs.regs[31] = 0;
221 regs.cp0_epc = task->thread.reg31;
222 } else {
223 prepare_frametrace(®s);
224 }
225 }
226 show_stacktrace(task, ®s, loglvl, false);
227}
228
229static void show_code(void *pc, bool user)
230{
231 long i;
232 unsigned short *pc16 = NULL;
233
234 printk("Code:");
235
236 if ((unsigned long)pc & 1)
237 pc16 = (u16 *)((unsigned long)pc & ~1);
238
239 for(i = -3 ; i < 6 ; i++) {
240 if (pc16) {
241 u16 insn16;
242
243 if (__get_inst16(&insn16, pc16 + i, user))
244 goto bad_address;
245
246 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
247 } else {
248 u32 insn32;
249
250 if (__get_inst32(&insn32, (u32 *)pc + i, user))
251 goto bad_address;
252
253 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
254 }
255 }
256 pr_cont("\n");
257 return;
258
259bad_address:
260 pr_cont(" (Bad address in epc)\n\n");
261}
262
263static void __show_regs(const struct pt_regs *regs)
264{
265 const int field = 2 * sizeof(unsigned long);
266 unsigned int cause = regs->cp0_cause;
267 unsigned int exccode;
268 int i;
269
270 show_regs_print_info(KERN_DEFAULT);
271
272 /*
273 * Saved main processor registers
274 */
275 for (i = 0; i < 32; ) {
276 if ((i % 4) == 0)
277 printk("$%2d :", i);
278 if (i == 0)
279 pr_cont(" %0*lx", field, 0UL);
280 else if (i == 26 || i == 27)
281 pr_cont(" %*s", field, "");
282 else
283 pr_cont(" %0*lx", field, regs->regs[i]);
284
285 i++;
286 if ((i % 4) == 0)
287 pr_cont("\n");
288 }
289
290#ifdef CONFIG_CPU_HAS_SMARTMIPS
291 printk("Acx : %0*lx\n", field, regs->acx);
292#endif
293 if (MIPS_ISA_REV < 6) {
294 printk("Hi : %0*lx\n", field, regs->hi);
295 printk("Lo : %0*lx\n", field, regs->lo);
296 }
297
298 /*
299 * Saved cp0 registers
300 */
301 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
302 (void *) regs->cp0_epc);
303 printk("ra : %0*lx %pS\n", field, regs->regs[31],
304 (void *) regs->regs[31]);
305
306 printk("Status: %08x ", (uint32_t) regs->cp0_status);
307
308 if (cpu_has_3kex) {
309 if (regs->cp0_status & ST0_KUO)
310 pr_cont("KUo ");
311 if (regs->cp0_status & ST0_IEO)
312 pr_cont("IEo ");
313 if (regs->cp0_status & ST0_KUP)
314 pr_cont("KUp ");
315 if (regs->cp0_status & ST0_IEP)
316 pr_cont("IEp ");
317 if (regs->cp0_status & ST0_KUC)
318 pr_cont("KUc ");
319 if (regs->cp0_status & ST0_IEC)
320 pr_cont("IEc ");
321 } else if (cpu_has_4kex) {
322 if (regs->cp0_status & ST0_KX)
323 pr_cont("KX ");
324 if (regs->cp0_status & ST0_SX)
325 pr_cont("SX ");
326 if (regs->cp0_status & ST0_UX)
327 pr_cont("UX ");
328 switch (regs->cp0_status & ST0_KSU) {
329 case KSU_USER:
330 pr_cont("USER ");
331 break;
332 case KSU_SUPERVISOR:
333 pr_cont("SUPERVISOR ");
334 break;
335 case KSU_KERNEL:
336 pr_cont("KERNEL ");
337 break;
338 default:
339 pr_cont("BAD_MODE ");
340 break;
341 }
342 if (regs->cp0_status & ST0_ERL)
343 pr_cont("ERL ");
344 if (regs->cp0_status & ST0_EXL)
345 pr_cont("EXL ");
346 if (regs->cp0_status & ST0_IE)
347 pr_cont("IE ");
348 }
349 pr_cont("\n");
350
351 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
352 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
353
354 if (1 <= exccode && exccode <= 5)
355 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
356
357 printk("PrId : %08x (%s)\n", read_c0_prid(),
358 cpu_name_string());
359}
360
361/*
362 * FIXME: really the generic show_regs should take a const pointer argument.
363 */
364void show_regs(struct pt_regs *regs)
365{
366 __show_regs(regs);
367 dump_stack();
368}
369
370void show_registers(struct pt_regs *regs)
371{
372 const int field = 2 * sizeof(unsigned long);
373
374 __show_regs(regs);
375 print_modules();
376 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
377 current->comm, current->pid, current_thread_info(), current,
378 field, current_thread_info()->tp_value);
379 if (cpu_has_userlocal) {
380 unsigned long tls;
381
382 tls = read_c0_userlocal();
383 if (tls != current_thread_info()->tp_value)
384 printk("*HwTLS: %0*lx\n", field, tls);
385 }
386
387 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
388 show_code((void *)regs->cp0_epc, user_mode(regs));
389 printk("\n");
390}
391
392static DEFINE_RAW_SPINLOCK(die_lock);
393
394void __noreturn die(const char *str, struct pt_regs *regs)
395{
396 static int die_counter;
397 int sig = SIGSEGV;
398
399 oops_enter();
400
401 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
402 SIGSEGV) == NOTIFY_STOP)
403 sig = 0;
404
405 console_verbose();
406 raw_spin_lock_irq(&die_lock);
407 bust_spinlocks(1);
408
409 printk("%s[#%d]:\n", str, ++die_counter);
410 show_registers(regs);
411 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
412 raw_spin_unlock_irq(&die_lock);
413
414 oops_exit();
415
416 if (in_interrupt())
417 panic("Fatal exception in interrupt");
418
419 if (panic_on_oops)
420 panic("Fatal exception");
421
422 if (regs && kexec_should_crash(current))
423 crash_kexec(regs);
424
425 make_task_dead(sig);
426}
427
428extern struct exception_table_entry __start___dbe_table[];
429extern struct exception_table_entry __stop___dbe_table[];
430
431__asm__(
432" .section __dbe_table, \"a\"\n"
433" .previous \n");
434
435/* Given an address, look for it in the exception tables. */
436static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
437{
438 const struct exception_table_entry *e;
439
440 e = search_extable(__start___dbe_table,
441 __stop___dbe_table - __start___dbe_table, addr);
442 if (!e)
443 e = search_module_dbetables(addr);
444 return e;
445}
446
447asmlinkage void do_be(struct pt_regs *regs)
448{
449 const int field = 2 * sizeof(unsigned long);
450 const struct exception_table_entry *fixup = NULL;
451 int data = regs->cp0_cause & 4;
452 int action = MIPS_BE_FATAL;
453 enum ctx_state prev_state;
454
455 prev_state = exception_enter();
456 /* XXX For now. Fixme, this searches the wrong table ... */
457 if (data && !user_mode(regs))
458 fixup = search_dbe_tables(exception_epc(regs));
459
460 if (fixup)
461 action = MIPS_BE_FIXUP;
462
463 if (board_be_handler)
464 action = board_be_handler(regs, fixup != NULL);
465 else
466 mips_cm_error_report();
467
468 switch (action) {
469 case MIPS_BE_DISCARD:
470 goto out;
471 case MIPS_BE_FIXUP:
472 if (fixup) {
473 regs->cp0_epc = fixup->nextinsn;
474 goto out;
475 }
476 break;
477 default:
478 break;
479 }
480
481 /*
482 * Assume it would be too dangerous to continue ...
483 */
484 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
485 data ? "Data" : "Instruction",
486 field, regs->cp0_epc, field, regs->regs[31]);
487 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
488 SIGBUS) == NOTIFY_STOP)
489 goto out;
490
491 die_if_kernel("Oops", regs);
492 force_sig(SIGBUS);
493
494out:
495 exception_exit(prev_state);
496}
497
498/*
499 * ll/sc, rdhwr, sync emulation
500 */
501
502#define OPCODE 0xfc000000
503#define BASE 0x03e00000
504#define RT 0x001f0000
505#define OFFSET 0x0000ffff
506#define LL 0xc0000000
507#define SC 0xe0000000
508#define SPEC0 0x00000000
509#define SPEC3 0x7c000000
510#define RD 0x0000f800
511#define FUNC 0x0000003f
512#define SYNC 0x0000000f
513#define RDHWR 0x0000003b
514
515/* microMIPS definitions */
516#define MM_POOL32A_FUNC 0xfc00ffff
517#define MM_RDHWR 0x00006b3c
518#define MM_RS 0x001f0000
519#define MM_RT 0x03e00000
520
521/*
522 * The ll_bit is cleared by r*_switch.S
523 */
524
525unsigned int ll_bit;
526struct task_struct *ll_task;
527
528static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
529{
530 unsigned long value, __user *vaddr;
531 long offset;
532
533 /*
534 * analyse the ll instruction that just caused a ri exception
535 * and put the referenced address to addr.
536 */
537
538 /* sign extend offset */
539 offset = opcode & OFFSET;
540 offset <<= 16;
541 offset >>= 16;
542
543 vaddr = (unsigned long __user *)
544 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
545
546 if ((unsigned long)vaddr & 3)
547 return SIGBUS;
548 if (get_user(value, vaddr))
549 return SIGSEGV;
550
551 preempt_disable();
552
553 if (ll_task == NULL || ll_task == current) {
554 ll_bit = 1;
555 } else {
556 ll_bit = 0;
557 }
558 ll_task = current;
559
560 preempt_enable();
561
562 regs->regs[(opcode & RT) >> 16] = value;
563
564 return 0;
565}
566
567static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
568{
569 unsigned long __user *vaddr;
570 unsigned long reg;
571 long offset;
572
573 /*
574 * analyse the sc instruction that just caused a ri exception
575 * and put the referenced address to addr.
576 */
577
578 /* sign extend offset */
579 offset = opcode & OFFSET;
580 offset <<= 16;
581 offset >>= 16;
582
583 vaddr = (unsigned long __user *)
584 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
585 reg = (opcode & RT) >> 16;
586
587 if ((unsigned long)vaddr & 3)
588 return SIGBUS;
589
590 preempt_disable();
591
592 if (ll_bit == 0 || ll_task != current) {
593 regs->regs[reg] = 0;
594 preempt_enable();
595 return 0;
596 }
597
598 preempt_enable();
599
600 if (put_user(regs->regs[reg], vaddr))
601 return SIGSEGV;
602
603 regs->regs[reg] = 1;
604
605 return 0;
606}
607
608/*
609 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
610 * opcodes are supposed to result in coprocessor unusable exceptions if
611 * executed on ll/sc-less processors. That's the theory. In practice a
612 * few processors such as NEC's VR4100 throw reserved instruction exceptions
613 * instead, so we're doing the emulation thing in both exception handlers.
614 */
615static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
616{
617 if ((opcode & OPCODE) == LL) {
618 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
619 1, regs, 0);
620 return simulate_ll(regs, opcode);
621 }
622 if ((opcode & OPCODE) == SC) {
623 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
624 1, regs, 0);
625 return simulate_sc(regs, opcode);
626 }
627
628 return -1; /* Must be something else ... */
629}
630
631/*
632 * Simulate trapping 'rdhwr' instructions to provide user accessible
633 * registers not implemented in hardware.
634 */
635static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
636{
637 struct thread_info *ti = task_thread_info(current);
638
639 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
640 1, regs, 0);
641 switch (rd) {
642 case MIPS_HWR_CPUNUM: /* CPU number */
643 regs->regs[rt] = smp_processor_id();
644 return 0;
645 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
646 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
647 current_cpu_data.icache.linesz);
648 return 0;
649 case MIPS_HWR_CC: /* Read count register */
650 regs->regs[rt] = read_c0_count();
651 return 0;
652 case MIPS_HWR_CCRES: /* Count register resolution */
653 switch (current_cpu_type()) {
654 case CPU_20KC:
655 case CPU_25KF:
656 regs->regs[rt] = 1;
657 break;
658 default:
659 regs->regs[rt] = 2;
660 }
661 return 0;
662 case MIPS_HWR_ULR: /* Read UserLocal register */
663 regs->regs[rt] = ti->tp_value;
664 return 0;
665 default:
666 return -1;
667 }
668}
669
670static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
671{
672 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
673 int rd = (opcode & RD) >> 11;
674 int rt = (opcode & RT) >> 16;
675
676 simulate_rdhwr(regs, rd, rt);
677 return 0;
678 }
679
680 /* Not ours. */
681 return -1;
682}
683
684static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
685{
686 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
687 int rd = (opcode & MM_RS) >> 16;
688 int rt = (opcode & MM_RT) >> 21;
689 simulate_rdhwr(regs, rd, rt);
690 return 0;
691 }
692
693 /* Not ours. */
694 return -1;
695}
696
697static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
698{
699 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
700 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
701 1, regs, 0);
702 return 0;
703 }
704
705 return -1; /* Must be something else ... */
706}
707
708/*
709 * Loongson-3 CSR instructions emulation
710 */
711
712#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
713
714#define LWC2 0xc8000000
715#define RS BASE
716#define CSR_OPCODE2 0x00000118
717#define CSR_OPCODE2_MASK 0x000007ff
718#define CSR_FUNC_MASK RT
719#define CSR_FUNC_CPUCFG 0x8
720
721static int simulate_loongson3_cpucfg(struct pt_regs *regs,
722 unsigned int opcode)
723{
724 int op = opcode & OPCODE;
725 int op2 = opcode & CSR_OPCODE2_MASK;
726 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
727
728 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
729 int rd = (opcode & RD) >> 11;
730 int rs = (opcode & RS) >> 21;
731 __u64 sel = regs->regs[rs];
732
733 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
734
735 /* Do not emulate on unsupported core models. */
736 preempt_disable();
737 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
738 preempt_enable();
739 return -1;
740 }
741 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
742 ¤t_cpu_data, sel);
743 preempt_enable();
744 return 0;
745 }
746
747 /* Not ours. */
748 return -1;
749}
750#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
751
752asmlinkage void do_ov(struct pt_regs *regs)
753{
754 enum ctx_state prev_state;
755
756 prev_state = exception_enter();
757 die_if_kernel("Integer overflow", regs);
758
759 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
760 exception_exit(prev_state);
761}
762
763#ifdef CONFIG_MIPS_FP_SUPPORT
764
765/*
766 * Send SIGFPE according to FCSR Cause bits, which must have already
767 * been masked against Enable bits. This is impotant as Inexact can
768 * happen together with Overflow or Underflow, and `ptrace' can set
769 * any bits.
770 */
771void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
772 struct task_struct *tsk)
773{
774 int si_code = FPE_FLTUNK;
775
776 if (fcr31 & FPU_CSR_INV_X)
777 si_code = FPE_FLTINV;
778 else if (fcr31 & FPU_CSR_DIV_X)
779 si_code = FPE_FLTDIV;
780 else if (fcr31 & FPU_CSR_OVF_X)
781 si_code = FPE_FLTOVF;
782 else if (fcr31 & FPU_CSR_UDF_X)
783 si_code = FPE_FLTUND;
784 else if (fcr31 & FPU_CSR_INE_X)
785 si_code = FPE_FLTRES;
786
787 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
788}
789
790int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
791{
792 int si_code;
793
794 switch (sig) {
795 case 0:
796 return 0;
797
798 case SIGFPE:
799 force_fcr31_sig(fcr31, fault_addr, current);
800 return 1;
801
802 case SIGBUS:
803 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
804 return 1;
805
806 case SIGSEGV:
807 mmap_read_lock(current->mm);
808 if (vma_lookup(current->mm, (unsigned long)fault_addr))
809 si_code = SEGV_ACCERR;
810 else
811 si_code = SEGV_MAPERR;
812 mmap_read_unlock(current->mm);
813 force_sig_fault(SIGSEGV, si_code, fault_addr);
814 return 1;
815
816 default:
817 force_sig(sig);
818 return 1;
819 }
820}
821
822static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
823 unsigned long old_epc, unsigned long old_ra)
824{
825 union mips_instruction inst = { .word = opcode };
826 void __user *fault_addr;
827 unsigned long fcr31;
828 int sig;
829
830 /* If it's obviously not an FP instruction, skip it */
831 switch (inst.i_format.opcode) {
832 case cop1_op:
833 case cop1x_op:
834 case lwc1_op:
835 case ldc1_op:
836 case swc1_op:
837 case sdc1_op:
838 break;
839
840 default:
841 return -1;
842 }
843
844 /*
845 * do_ri skipped over the instruction via compute_return_epc, undo
846 * that for the FPU emulator.
847 */
848 regs->cp0_epc = old_epc;
849 regs->regs[31] = old_ra;
850
851 /* Run the emulator */
852 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
853 &fault_addr);
854
855 /*
856 * We can't allow the emulated instruction to leave any
857 * enabled Cause bits set in $fcr31.
858 */
859 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
860 current->thread.fpu.fcr31 &= ~fcr31;
861
862 /* Restore the hardware register state */
863 own_fpu(1);
864
865 /* Send a signal if required. */
866 process_fpemu_return(sig, fault_addr, fcr31);
867
868 return 0;
869}
870
871/*
872 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
873 */
874asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
875{
876 enum ctx_state prev_state;
877 void __user *fault_addr;
878 int sig;
879
880 prev_state = exception_enter();
881 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
882 SIGFPE) == NOTIFY_STOP)
883 goto out;
884
885 /* Clear FCSR.Cause before enabling interrupts */
886 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
887 local_irq_enable();
888
889 die_if_kernel("FP exception in kernel code", regs);
890
891 if (fcr31 & FPU_CSR_UNI_X) {
892 /*
893 * Unimplemented operation exception. If we've got the full
894 * software emulator on-board, let's use it...
895 *
896 * Force FPU to dump state into task/thread context. We're
897 * moving a lot of data here for what is probably a single
898 * instruction, but the alternative is to pre-decode the FP
899 * register operands before invoking the emulator, which seems
900 * a bit extreme for what should be an infrequent event.
901 */
902
903 /* Run the emulator */
904 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
905 &fault_addr);
906
907 /*
908 * We can't allow the emulated instruction to leave any
909 * enabled Cause bits set in $fcr31.
910 */
911 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
912 current->thread.fpu.fcr31 &= ~fcr31;
913
914 /* Restore the hardware register state */
915 own_fpu(1); /* Using the FPU again. */
916 } else {
917 sig = SIGFPE;
918 fault_addr = (void __user *) regs->cp0_epc;
919 }
920
921 /* Send a signal if required. */
922 process_fpemu_return(sig, fault_addr, fcr31);
923
924out:
925 exception_exit(prev_state);
926}
927
928/*
929 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
930 * emulated more than some threshold number of instructions, force migration to
931 * a "CPU" that has FP support.
932 */
933static void mt_ase_fp_affinity(void)
934{
935#ifdef CONFIG_MIPS_MT_FPAFF
936 if (mt_fpemul_threshold > 0 &&
937 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
938 /*
939 * If there's no FPU present, or if the application has already
940 * restricted the allowed set to exclude any CPUs with FPUs,
941 * we'll skip the procedure.
942 */
943 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
944 cpumask_t tmask;
945
946 current->thread.user_cpus_allowed
947 = current->cpus_mask;
948 cpumask_and(&tmask, ¤t->cpus_mask,
949 &mt_fpu_cpumask);
950 set_cpus_allowed_ptr(current, &tmask);
951 set_thread_flag(TIF_FPUBOUND);
952 }
953 }
954#endif /* CONFIG_MIPS_MT_FPAFF */
955}
956
957#else /* !CONFIG_MIPS_FP_SUPPORT */
958
959static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
960 unsigned long old_epc, unsigned long old_ra)
961{
962 return -1;
963}
964
965#endif /* !CONFIG_MIPS_FP_SUPPORT */
966
967void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
968 const char *str)
969{
970 char b[40];
971
972#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
973 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
974 SIGTRAP) == NOTIFY_STOP)
975 return;
976#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
977
978 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
979 SIGTRAP) == NOTIFY_STOP)
980 return;
981
982 /*
983 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
984 * insns, even for trap and break codes that indicate arithmetic
985 * failures. Weird ...
986 * But should we continue the brokenness??? --macro
987 */
988 switch (code) {
989 case BRK_OVERFLOW:
990 case BRK_DIVZERO:
991 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
992 die_if_kernel(b, regs);
993 force_sig_fault(SIGFPE,
994 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
995 (void __user *) regs->cp0_epc);
996 break;
997 case BRK_BUG:
998 die_if_kernel("Kernel bug detected", regs);
999 force_sig(SIGTRAP);
1000 break;
1001 case BRK_MEMU:
1002 /*
1003 * This breakpoint code is used by the FPU emulator to retake
1004 * control of the CPU after executing the instruction from the
1005 * delay slot of an emulated branch.
1006 *
1007 * Terminate if exception was recognized as a delay slot return
1008 * otherwise handle as normal.
1009 */
1010 if (do_dsemulret(regs))
1011 return;
1012
1013 die_if_kernel("Math emu break/trap", regs);
1014 force_sig(SIGTRAP);
1015 break;
1016 default:
1017 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1018 die_if_kernel(b, regs);
1019 if (si_code) {
1020 force_sig_fault(SIGTRAP, si_code, NULL);
1021 } else {
1022 force_sig(SIGTRAP);
1023 }
1024 }
1025}
1026
1027asmlinkage void do_bp(struct pt_regs *regs)
1028{
1029 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1030 unsigned int opcode, bcode;
1031 enum ctx_state prev_state;
1032 bool user = user_mode(regs);
1033
1034 prev_state = exception_enter();
1035 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1036 if (get_isa16_mode(regs->cp0_epc)) {
1037 u16 instr[2];
1038
1039 if (__get_inst16(&instr[0], (u16 *)epc, user))
1040 goto out_sigsegv;
1041
1042 if (!cpu_has_mmips) {
1043 /* MIPS16e mode */
1044 bcode = (instr[0] >> 5) & 0x3f;
1045 } else if (mm_insn_16bit(instr[0])) {
1046 /* 16-bit microMIPS BREAK */
1047 bcode = instr[0] & 0xf;
1048 } else {
1049 /* 32-bit microMIPS BREAK */
1050 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1051 goto out_sigsegv;
1052 opcode = (instr[0] << 16) | instr[1];
1053 bcode = (opcode >> 6) & ((1 << 20) - 1);
1054 }
1055 } else {
1056 if (__get_inst32(&opcode, (u32 *)epc, user))
1057 goto out_sigsegv;
1058 bcode = (opcode >> 6) & ((1 << 20) - 1);
1059 }
1060
1061 /*
1062 * There is the ancient bug in the MIPS assemblers that the break
1063 * code starts left to bit 16 instead to bit 6 in the opcode.
1064 * Gas is bug-compatible, but not always, grrr...
1065 * We handle both cases with a simple heuristics. --macro
1066 */
1067 if (bcode >= (1 << 10))
1068 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1069
1070 /*
1071 * notify the kprobe handlers, if instruction is likely to
1072 * pertain to them.
1073 */
1074 switch (bcode) {
1075 case BRK_UPROBE:
1076 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
1081 case BRK_UPROBE_XOL:
1082 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 goto out;
1085 else
1086 break;
1087 case BRK_KPROBE_BP:
1088 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 goto out;
1091 else
1092 break;
1093 case BRK_KPROBE_SSTEPBP:
1094 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1095 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1096 goto out;
1097 else
1098 break;
1099 default:
1100 break;
1101 }
1102
1103 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1104
1105out:
1106 exception_exit(prev_state);
1107 return;
1108
1109out_sigsegv:
1110 force_sig(SIGSEGV);
1111 goto out;
1112}
1113
1114asmlinkage void do_tr(struct pt_regs *regs)
1115{
1116 u32 opcode, tcode = 0;
1117 enum ctx_state prev_state;
1118 u16 instr[2];
1119 bool user = user_mode(regs);
1120 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1121
1122 prev_state = exception_enter();
1123 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1124 if (get_isa16_mode(regs->cp0_epc)) {
1125 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1126 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1127 goto out_sigsegv;
1128 opcode = (instr[0] << 16) | instr[1];
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 12) & ((1 << 4) - 1);
1132 } else {
1133 if (__get_inst32(&opcode, (u32 *)epc, user))
1134 goto out_sigsegv;
1135 /* Immediate versions don't provide a code. */
1136 if (!(opcode & OPCODE))
1137 tcode = (opcode >> 6) & ((1 << 10) - 1);
1138 }
1139
1140 do_trap_or_bp(regs, tcode, 0, "Trap");
1141
1142out:
1143 exception_exit(prev_state);
1144 return;
1145
1146out_sigsegv:
1147 force_sig(SIGSEGV);
1148 goto out;
1149}
1150
1151asmlinkage void do_ri(struct pt_regs *regs)
1152{
1153 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1154 unsigned long old_epc = regs->cp0_epc;
1155 unsigned long old31 = regs->regs[31];
1156 enum ctx_state prev_state;
1157 unsigned int opcode = 0;
1158 int status = -1;
1159
1160 /*
1161 * Avoid any kernel code. Just emulate the R2 instruction
1162 * as quickly as possible.
1163 */
1164 if (mipsr2_emulation && cpu_has_mips_r6 &&
1165 likely(user_mode(regs)) &&
1166 likely(get_user(opcode, epc) >= 0)) {
1167 unsigned long fcr31 = 0;
1168
1169 status = mipsr2_decoder(regs, opcode, &fcr31);
1170 switch (status) {
1171 case 0:
1172 case SIGEMT:
1173 return;
1174 case SIGILL:
1175 goto no_r2_instr;
1176 default:
1177 process_fpemu_return(status,
1178 ¤t->thread.cp0_baduaddr,
1179 fcr31);
1180 return;
1181 }
1182 }
1183
1184no_r2_instr:
1185
1186 prev_state = exception_enter();
1187 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1188
1189 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1190 SIGILL) == NOTIFY_STOP)
1191 goto out;
1192
1193 die_if_kernel("Reserved instruction in kernel code", regs);
1194
1195 if (unlikely(compute_return_epc(regs) < 0))
1196 goto out;
1197
1198 if (!get_isa16_mode(regs->cp0_epc)) {
1199 if (unlikely(get_user(opcode, epc) < 0))
1200 status = SIGSEGV;
1201
1202 if (!cpu_has_llsc && status < 0)
1203 status = simulate_llsc(regs, opcode);
1204
1205 if (status < 0)
1206 status = simulate_rdhwr_normal(regs, opcode);
1207
1208 if (status < 0)
1209 status = simulate_sync(regs, opcode);
1210
1211 if (status < 0)
1212 status = simulate_fp(regs, opcode, old_epc, old31);
1213
1214#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1215 if (status < 0)
1216 status = simulate_loongson3_cpucfg(regs, opcode);
1217#endif
1218 } else if (cpu_has_mmips) {
1219 unsigned short mmop[2] = { 0 };
1220
1221 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1222 status = SIGSEGV;
1223 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1224 status = SIGSEGV;
1225 opcode = mmop[0];
1226 opcode = (opcode << 16) | mmop[1];
1227
1228 if (status < 0)
1229 status = simulate_rdhwr_mm(regs, opcode);
1230 }
1231
1232 if (status < 0)
1233 status = SIGILL;
1234
1235 if (unlikely(status > 0)) {
1236 regs->cp0_epc = old_epc; /* Undo skip-over. */
1237 regs->regs[31] = old31;
1238 force_sig(status);
1239 }
1240
1241out:
1242 exception_exit(prev_state);
1243}
1244
1245/*
1246 * No lock; only written during early bootup by CPU 0.
1247 */
1248static RAW_NOTIFIER_HEAD(cu2_chain);
1249
1250int __ref register_cu2_notifier(struct notifier_block *nb)
1251{
1252 return raw_notifier_chain_register(&cu2_chain, nb);
1253}
1254
1255int cu2_notifier_call_chain(unsigned long val, void *v)
1256{
1257 return raw_notifier_call_chain(&cu2_chain, val, v);
1258}
1259
1260static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1261 void *data)
1262{
1263 struct pt_regs *regs = data;
1264
1265 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1266 "instruction", regs);
1267 force_sig(SIGILL);
1268
1269 return NOTIFY_OK;
1270}
1271
1272#ifdef CONFIG_MIPS_FP_SUPPORT
1273
1274static int enable_restore_fp_context(int msa)
1275{
1276 int err, was_fpu_owner, prior_msa;
1277 bool first_fp;
1278
1279 /* Initialize context if it hasn't been used already */
1280 first_fp = init_fp_ctx(current);
1281
1282 if (first_fp) {
1283 preempt_disable();
1284 err = own_fpu_inatomic(1);
1285 if (msa && !err) {
1286 enable_msa();
1287 /*
1288 * with MSA enabled, userspace can see MSACSR
1289 * and MSA regs, but the values in them are from
1290 * other task before current task, restore them
1291 * from saved fp/msa context
1292 */
1293 write_msa_csr(current->thread.fpu.msacsr);
1294 /*
1295 * own_fpu_inatomic(1) just restore low 64bit,
1296 * fix the high 64bit
1297 */
1298 init_msa_upper();
1299 set_thread_flag(TIF_USEDMSA);
1300 set_thread_flag(TIF_MSA_CTX_LIVE);
1301 }
1302 preempt_enable();
1303 return err;
1304 }
1305
1306 /*
1307 * This task has formerly used the FP context.
1308 *
1309 * If this thread has no live MSA vector context then we can simply
1310 * restore the scalar FP context. If it has live MSA vector context
1311 * (that is, it has or may have used MSA since last performing a
1312 * function call) then we'll need to restore the vector context. This
1313 * applies even if we're currently only executing a scalar FP
1314 * instruction. This is because if we were to later execute an MSA
1315 * instruction then we'd either have to:
1316 *
1317 * - Restore the vector context & clobber any registers modified by
1318 * scalar FP instructions between now & then.
1319 *
1320 * or
1321 *
1322 * - Not restore the vector context & lose the most significant bits
1323 * of all vector registers.
1324 *
1325 * Neither of those options is acceptable. We cannot restore the least
1326 * significant bits of the registers now & only restore the most
1327 * significant bits later because the most significant bits of any
1328 * vector registers whose aliased FP register is modified now will have
1329 * been zeroed. We'd have no way to know that when restoring the vector
1330 * context & thus may load an outdated value for the most significant
1331 * bits of a vector register.
1332 */
1333 if (!msa && !thread_msa_context_live())
1334 return own_fpu(1);
1335
1336 /*
1337 * This task is using or has previously used MSA. Thus we require
1338 * that Status.FR == 1.
1339 */
1340 preempt_disable();
1341 was_fpu_owner = is_fpu_owner();
1342 err = own_fpu_inatomic(0);
1343 if (err)
1344 goto out;
1345
1346 enable_msa();
1347 write_msa_csr(current->thread.fpu.msacsr);
1348 set_thread_flag(TIF_USEDMSA);
1349
1350 /*
1351 * If this is the first time that the task is using MSA and it has
1352 * previously used scalar FP in this time slice then we already nave
1353 * FP context which we shouldn't clobber. We do however need to clear
1354 * the upper 64b of each vector register so that this task has no
1355 * opportunity to see data left behind by another.
1356 */
1357 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1358 if (!prior_msa && was_fpu_owner) {
1359 init_msa_upper();
1360
1361 goto out;
1362 }
1363
1364 if (!prior_msa) {
1365 /*
1366 * Restore the least significant 64b of each vector register
1367 * from the existing scalar FP context.
1368 */
1369 _restore_fp(current);
1370
1371 /*
1372 * The task has not formerly used MSA, so clear the upper 64b
1373 * of each vector register such that it cannot see data left
1374 * behind by another task.
1375 */
1376 init_msa_upper();
1377 } else {
1378 /* We need to restore the vector context. */
1379 restore_msa(current);
1380
1381 /* Restore the scalar FP control & status register */
1382 if (!was_fpu_owner)
1383 write_32bit_cp1_register(CP1_STATUS,
1384 current->thread.fpu.fcr31);
1385 }
1386
1387out:
1388 preempt_enable();
1389
1390 return 0;
1391}
1392
1393#else /* !CONFIG_MIPS_FP_SUPPORT */
1394
1395static int enable_restore_fp_context(int msa)
1396{
1397 return SIGILL;
1398}
1399
1400#endif /* CONFIG_MIPS_FP_SUPPORT */
1401
1402asmlinkage void do_cpu(struct pt_regs *regs)
1403{
1404 enum ctx_state prev_state;
1405 unsigned int __user *epc;
1406 unsigned long old_epc, old31;
1407 unsigned int opcode;
1408 unsigned int cpid;
1409 int status;
1410
1411 prev_state = exception_enter();
1412 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1413
1414 if (cpid != 2)
1415 die_if_kernel("do_cpu invoked from kernel context!", regs);
1416
1417 switch (cpid) {
1418 case 0:
1419 epc = (unsigned int __user *)exception_epc(regs);
1420 old_epc = regs->cp0_epc;
1421 old31 = regs->regs[31];
1422 opcode = 0;
1423 status = -1;
1424
1425 if (unlikely(compute_return_epc(regs) < 0))
1426 break;
1427
1428 if (!get_isa16_mode(regs->cp0_epc)) {
1429 if (unlikely(get_user(opcode, epc) < 0))
1430 status = SIGSEGV;
1431
1432 if (!cpu_has_llsc && status < 0)
1433 status = simulate_llsc(regs, opcode);
1434 }
1435
1436 if (status < 0)
1437 status = SIGILL;
1438
1439 if (unlikely(status > 0)) {
1440 regs->cp0_epc = old_epc; /* Undo skip-over. */
1441 regs->regs[31] = old31;
1442 force_sig(status);
1443 }
1444
1445 break;
1446
1447#ifdef CONFIG_MIPS_FP_SUPPORT
1448 case 3:
1449 /*
1450 * The COP3 opcode space and consequently the CP0.Status.CU3
1451 * bit and the CP0.Cause.CE=3 encoding have been removed as
1452 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1453 * up the space has been reused for COP1X instructions, that
1454 * are enabled by the CP0.Status.CU1 bit and consequently
1455 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1456 * exceptions. Some FPU-less processors that implement one
1457 * of these ISAs however use this code erroneously for COP1X
1458 * instructions. Therefore we redirect this trap to the FP
1459 * emulator too.
1460 */
1461 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1462 force_sig(SIGILL);
1463 break;
1464 }
1465 fallthrough;
1466 case 1: {
1467 void __user *fault_addr;
1468 unsigned long fcr31;
1469 int err, sig;
1470
1471 err = enable_restore_fp_context(0);
1472
1473 if (raw_cpu_has_fpu && !err)
1474 break;
1475
1476 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1477 &fault_addr);
1478
1479 /*
1480 * We can't allow the emulated instruction to leave
1481 * any enabled Cause bits set in $fcr31.
1482 */
1483 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1484 current->thread.fpu.fcr31 &= ~fcr31;
1485
1486 /* Send a signal if required. */
1487 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1488 mt_ase_fp_affinity();
1489
1490 break;
1491 }
1492#else /* CONFIG_MIPS_FP_SUPPORT */
1493 case 1:
1494 case 3:
1495 force_sig(SIGILL);
1496 break;
1497#endif /* CONFIG_MIPS_FP_SUPPORT */
1498
1499 case 2:
1500 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1501 break;
1502 }
1503
1504 exception_exit(prev_state);
1505}
1506
1507asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1508{
1509 enum ctx_state prev_state;
1510
1511 prev_state = exception_enter();
1512 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1513 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1514 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1515 goto out;
1516
1517 /* Clear MSACSR.Cause before enabling interrupts */
1518 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1519 local_irq_enable();
1520
1521 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1522 force_sig(SIGFPE);
1523out:
1524 exception_exit(prev_state);
1525}
1526
1527asmlinkage void do_msa(struct pt_regs *regs)
1528{
1529 enum ctx_state prev_state;
1530 int err;
1531
1532 prev_state = exception_enter();
1533
1534 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1535 force_sig(SIGILL);
1536 goto out;
1537 }
1538
1539 die_if_kernel("do_msa invoked from kernel context!", regs);
1540
1541 err = enable_restore_fp_context(1);
1542 if (err)
1543 force_sig(SIGILL);
1544out:
1545 exception_exit(prev_state);
1546}
1547
1548asmlinkage void do_mdmx(struct pt_regs *regs)
1549{
1550 enum ctx_state prev_state;
1551
1552 prev_state = exception_enter();
1553 force_sig(SIGILL);
1554 exception_exit(prev_state);
1555}
1556
1557/*
1558 * Called with interrupts disabled.
1559 */
1560asmlinkage void do_watch(struct pt_regs *regs)
1561{
1562 enum ctx_state prev_state;
1563
1564 prev_state = exception_enter();
1565 /*
1566 * Clear WP (bit 22) bit of cause register so we don't loop
1567 * forever.
1568 */
1569 clear_c0_cause(CAUSEF_WP);
1570
1571 /*
1572 * If the current thread has the watch registers loaded, save
1573 * their values and send SIGTRAP. Otherwise another thread
1574 * left the registers set, clear them and continue.
1575 */
1576 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1577 mips_read_watch_registers();
1578 local_irq_enable();
1579 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1580 } else {
1581 mips_clear_watch_registers();
1582 local_irq_enable();
1583 }
1584 exception_exit(prev_state);
1585}
1586
1587asmlinkage void do_mcheck(struct pt_regs *regs)
1588{
1589 int multi_match = regs->cp0_status & ST0_TS;
1590 enum ctx_state prev_state;
1591
1592 prev_state = exception_enter();
1593 show_regs(regs);
1594
1595 if (multi_match) {
1596 dump_tlb_regs();
1597 pr_info("\n");
1598 dump_tlb_all();
1599 }
1600
1601 show_code((void *)regs->cp0_epc, user_mode(regs));
1602
1603 /*
1604 * Some chips may have other causes of machine check (e.g. SB1
1605 * graduation timer)
1606 */
1607 panic("Caught Machine Check exception - %scaused by multiple "
1608 "matching entries in the TLB.",
1609 (multi_match) ? "" : "not ");
1610}
1611
1612asmlinkage void do_mt(struct pt_regs *regs)
1613{
1614 int subcode;
1615
1616 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1617 >> VPECONTROL_EXCPT_SHIFT;
1618 switch (subcode) {
1619 case 0:
1620 printk(KERN_DEBUG "Thread Underflow\n");
1621 break;
1622 case 1:
1623 printk(KERN_DEBUG "Thread Overflow\n");
1624 break;
1625 case 2:
1626 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1627 break;
1628 case 3:
1629 printk(KERN_DEBUG "Gating Storage Exception\n");
1630 break;
1631 case 4:
1632 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1633 break;
1634 case 5:
1635 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1636 break;
1637 default:
1638 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1639 subcode);
1640 break;
1641 }
1642 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1643
1644 force_sig(SIGILL);
1645}
1646
1647
1648asmlinkage void do_dsp(struct pt_regs *regs)
1649{
1650 if (cpu_has_dsp)
1651 panic("Unexpected DSP exception");
1652
1653 force_sig(SIGILL);
1654}
1655
1656asmlinkage void do_reserved(struct pt_regs *regs)
1657{
1658 /*
1659 * Game over - no way to handle this if it ever occurs. Most probably
1660 * caused by a new unknown cpu type or after another deadly
1661 * hard/software error.
1662 */
1663 show_regs(regs);
1664 panic("Caught reserved exception %ld - should not happen.",
1665 (regs->cp0_cause & 0x7f) >> 2);
1666}
1667
1668static int __initdata l1parity = 1;
1669static int __init nol1parity(char *s)
1670{
1671 l1parity = 0;
1672 return 1;
1673}
1674__setup("nol1par", nol1parity);
1675static int __initdata l2parity = 1;
1676static int __init nol2parity(char *s)
1677{
1678 l2parity = 0;
1679 return 1;
1680}
1681__setup("nol2par", nol2parity);
1682
1683/*
1684 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1685 * it different ways.
1686 */
1687static inline __init void parity_protection_init(void)
1688{
1689#define ERRCTL_PE 0x80000000
1690#define ERRCTL_L2P 0x00800000
1691
1692 if (mips_cm_revision() >= CM_REV_CM3) {
1693 ulong gcr_ectl, cp0_ectl;
1694
1695 /*
1696 * With CM3 systems we need to ensure that the L1 & L2
1697 * parity enables are set to the same value, since this
1698 * is presumed by the hardware engineers.
1699 *
1700 * If the user disabled either of L1 or L2 ECC checking,
1701 * disable both.
1702 */
1703 l1parity &= l2parity;
1704 l2parity &= l1parity;
1705
1706 /* Probe L1 ECC support */
1707 cp0_ectl = read_c0_ecc();
1708 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1709 back_to_back_c0_hazard();
1710 cp0_ectl = read_c0_ecc();
1711
1712 /* Probe L2 ECC support */
1713 gcr_ectl = read_gcr_err_control();
1714
1715 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1716 !(cp0_ectl & ERRCTL_PE)) {
1717 /*
1718 * One of L1 or L2 ECC checking isn't supported,
1719 * so we cannot enable either.
1720 */
1721 l1parity = l2parity = 0;
1722 }
1723
1724 /* Configure L1 ECC checking */
1725 if (l1parity)
1726 cp0_ectl |= ERRCTL_PE;
1727 else
1728 cp0_ectl &= ~ERRCTL_PE;
1729 write_c0_ecc(cp0_ectl);
1730 back_to_back_c0_hazard();
1731 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1732
1733 /* Configure L2 ECC checking */
1734 if (l2parity)
1735 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1736 else
1737 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1738 write_gcr_err_control(gcr_ectl);
1739 gcr_ectl = read_gcr_err_control();
1740 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1741 WARN_ON(!!gcr_ectl != l2parity);
1742
1743 pr_info("Cache parity protection %sabled\n",
1744 l1parity ? "en" : "dis");
1745 return;
1746 }
1747
1748 switch (current_cpu_type()) {
1749 case CPU_24K:
1750 case CPU_34K:
1751 case CPU_74K:
1752 case CPU_1004K:
1753 case CPU_1074K:
1754 case CPU_INTERAPTIV:
1755 case CPU_PROAPTIV:
1756 case CPU_P5600:
1757 case CPU_QEMU_GENERIC:
1758 case CPU_P6600:
1759 {
1760 unsigned long errctl;
1761 unsigned int l1parity_present, l2parity_present;
1762
1763 errctl = read_c0_ecc();
1764 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1765
1766 /* probe L1 parity support */
1767 write_c0_ecc(errctl | ERRCTL_PE);
1768 back_to_back_c0_hazard();
1769 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1770
1771 /* probe L2 parity support */
1772 write_c0_ecc(errctl|ERRCTL_L2P);
1773 back_to_back_c0_hazard();
1774 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1775
1776 if (l1parity_present && l2parity_present) {
1777 if (l1parity)
1778 errctl |= ERRCTL_PE;
1779 if (l1parity ^ l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else if (l1parity_present) {
1782 if (l1parity)
1783 errctl |= ERRCTL_PE;
1784 } else if (l2parity_present) {
1785 if (l2parity)
1786 errctl |= ERRCTL_L2P;
1787 } else {
1788 /* No parity available */
1789 }
1790
1791 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1792
1793 write_c0_ecc(errctl);
1794 back_to_back_c0_hazard();
1795 errctl = read_c0_ecc();
1796 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1797
1798 if (l1parity_present)
1799 printk(KERN_INFO "Cache parity protection %sabled\n",
1800 (errctl & ERRCTL_PE) ? "en" : "dis");
1801
1802 if (l2parity_present) {
1803 if (l1parity_present && l1parity)
1804 errctl ^= ERRCTL_L2P;
1805 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1806 (errctl & ERRCTL_L2P) ? "en" : "dis");
1807 }
1808 }
1809 break;
1810
1811 case CPU_5KC:
1812 case CPU_5KE:
1813 case CPU_LOONGSON32:
1814 write_c0_ecc(0x80000000);
1815 back_to_back_c0_hazard();
1816 /* Set the PE bit (bit 31) in the c0_errctl register. */
1817 printk(KERN_INFO "Cache parity protection %sabled\n",
1818 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1819 break;
1820 case CPU_20KC:
1821 case CPU_25KF:
1822 /* Clear the DE bit (bit 16) in the c0_status register. */
1823 printk(KERN_INFO "Enable cache parity protection for "
1824 "MIPS 20KC/25KF CPUs.\n");
1825 clear_c0_status(ST0_DE);
1826 break;
1827 default:
1828 break;
1829 }
1830}
1831
1832asmlinkage void cache_parity_error(void)
1833{
1834 const int field = 2 * sizeof(unsigned long);
1835 unsigned int reg_val;
1836
1837 /* For the moment, report the problem and hang. */
1838 printk("Cache error exception:\n");
1839 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1840 reg_val = read_c0_cacheerr();
1841 printk("c0_cacheerr == %08x\n", reg_val);
1842
1843 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1844 reg_val & (1<<30) ? "secondary" : "primary",
1845 reg_val & (1<<31) ? "data" : "insn");
1846 if ((cpu_has_mips_r2_r6) &&
1847 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1848 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1849 reg_val & (1<<29) ? "ED " : "",
1850 reg_val & (1<<28) ? "ET " : "",
1851 reg_val & (1<<27) ? "ES " : "",
1852 reg_val & (1<<26) ? "EE " : "",
1853 reg_val & (1<<25) ? "EB " : "",
1854 reg_val & (1<<24) ? "EI " : "",
1855 reg_val & (1<<23) ? "E1 " : "",
1856 reg_val & (1<<22) ? "E0 " : "");
1857 } else {
1858 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1859 reg_val & (1<<29) ? "ED " : "",
1860 reg_val & (1<<28) ? "ET " : "",
1861 reg_val & (1<<26) ? "EE " : "",
1862 reg_val & (1<<25) ? "EB " : "",
1863 reg_val & (1<<24) ? "EI " : "",
1864 reg_val & (1<<23) ? "E1 " : "",
1865 reg_val & (1<<22) ? "E0 " : "");
1866 }
1867 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1868
1869#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1870 if (reg_val & (1<<22))
1871 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1872
1873 if (reg_val & (1<<23))
1874 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1875#endif
1876
1877 panic("Can't handle the cache error!");
1878}
1879
1880asmlinkage void do_ftlb(void)
1881{
1882 const int field = 2 * sizeof(unsigned long);
1883 unsigned int reg_val;
1884
1885 /* For the moment, report the problem and hang. */
1886 if ((cpu_has_mips_r2_r6) &&
1887 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1888 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1889 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1890 read_c0_ecc());
1891 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1892 reg_val = read_c0_cacheerr();
1893 pr_err("c0_cacheerr == %08x\n", reg_val);
1894
1895 if ((reg_val & 0xc0000000) == 0xc0000000) {
1896 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1897 } else {
1898 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1899 reg_val & (1<<30) ? "secondary" : "primary",
1900 reg_val & (1<<31) ? "data" : "insn");
1901 }
1902 } else {
1903 pr_err("FTLB error exception\n");
1904 }
1905 /* Just print the cacheerr bits for now */
1906 cache_parity_error();
1907}
1908
1909asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1910{
1911 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1912 LOONGSON_DIAG1_EXCCODE_SHIFT;
1913 enum ctx_state prev_state;
1914
1915 prev_state = exception_enter();
1916
1917 switch (exccode) {
1918 case 0x08:
1919 /* Undocumented exception, will trigger on certain
1920 * also-undocumented instructions accessible from userspace.
1921 * Processor state is not otherwise corrupted, but currently
1922 * we don't know how to proceed. Maybe there is some
1923 * undocumented control flag to enable the instructions?
1924 */
1925 force_sig(SIGILL);
1926 break;
1927
1928 default:
1929 /* None of the other exceptions, documented or not, have
1930 * further details given; none are encountered in the wild
1931 * either. Panic in case some of them turn out to be fatal.
1932 */
1933 show_regs(regs);
1934 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1935 }
1936
1937 exception_exit(prev_state);
1938}
1939
1940/*
1941 * SDBBP EJTAG debug exception handler.
1942 * We skip the instruction and return to the next instruction.
1943 */
1944void ejtag_exception_handler(struct pt_regs *regs)
1945{
1946 const int field = 2 * sizeof(unsigned long);
1947 unsigned long depc, old_epc, old_ra;
1948 unsigned int debug;
1949
1950 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1951 depc = read_c0_depc();
1952 debug = read_c0_debug();
1953 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1954 if (debug & 0x80000000) {
1955 /*
1956 * In branch delay slot.
1957 * We cheat a little bit here and use EPC to calculate the
1958 * debug return address (DEPC). EPC is restored after the
1959 * calculation.
1960 */
1961 old_epc = regs->cp0_epc;
1962 old_ra = regs->regs[31];
1963 regs->cp0_epc = depc;
1964 compute_return_epc(regs);
1965 depc = regs->cp0_epc;
1966 regs->cp0_epc = old_epc;
1967 regs->regs[31] = old_ra;
1968 } else
1969 depc += 4;
1970 write_c0_depc(depc);
1971
1972#if 0
1973 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1974 write_c0_debug(debug | 0x100);
1975#endif
1976}
1977
1978/*
1979 * NMI exception handler.
1980 * No lock; only written during early bootup by CPU 0.
1981 */
1982static RAW_NOTIFIER_HEAD(nmi_chain);
1983
1984int register_nmi_notifier(struct notifier_block *nb)
1985{
1986 return raw_notifier_chain_register(&nmi_chain, nb);
1987}
1988
1989void __noreturn nmi_exception_handler(struct pt_regs *regs)
1990{
1991 char str[100];
1992
1993 nmi_enter();
1994 raw_notifier_call_chain(&nmi_chain, 0, regs);
1995 bust_spinlocks(1);
1996 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1997 smp_processor_id(), regs->cp0_epc);
1998 regs->cp0_epc = read_c0_errorepc();
1999 die(str, regs);
2000 nmi_exit();
2001}
2002
2003unsigned long ebase;
2004EXPORT_SYMBOL_GPL(ebase);
2005unsigned long exception_handlers[32];
2006unsigned long vi_handlers[64];
2007
2008void reserve_exception_space(phys_addr_t addr, unsigned long size)
2009{
2010 /*
2011 * reserve exception space on CPUs other than CPU0
2012 * is too late, since memblock is unavailable when APs
2013 * up
2014 */
2015 if (smp_processor_id() == 0)
2016 memblock_reserve(addr, size);
2017}
2018
2019void __init *set_except_vector(int n, void *addr)
2020{
2021 unsigned long handler = (unsigned long) addr;
2022 unsigned long old_handler;
2023
2024#ifdef CONFIG_CPU_MICROMIPS
2025 /*
2026 * Only the TLB handlers are cache aligned with an even
2027 * address. All other handlers are on an odd address and
2028 * require no modification. Otherwise, MIPS32 mode will
2029 * be entered when handling any TLB exceptions. That
2030 * would be bad...since we must stay in microMIPS mode.
2031 */
2032 if (!(handler & 0x1))
2033 handler |= 1;
2034#endif
2035 old_handler = xchg(&exception_handlers[n], handler);
2036
2037 if (n == 0 && cpu_has_divec) {
2038#ifdef CONFIG_CPU_MICROMIPS
2039 unsigned long jump_mask = ~((1 << 27) - 1);
2040#else
2041 unsigned long jump_mask = ~((1 << 28) - 1);
2042#endif
2043 u32 *buf = (u32 *)(ebase + 0x200);
2044 unsigned int k0 = 26;
2045 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2046 uasm_i_j(&buf, handler & ~jump_mask);
2047 uasm_i_nop(&buf);
2048 } else {
2049 UASM_i_LA(&buf, k0, handler);
2050 uasm_i_jr(&buf, k0);
2051 uasm_i_nop(&buf);
2052 }
2053 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2054 }
2055 return (void *)old_handler;
2056}
2057
2058static void do_default_vi(void)
2059{
2060 show_regs(get_irq_regs());
2061 panic("Caught unexpected vectored interrupt.");
2062}
2063
2064void *set_vi_handler(int n, vi_handler_t addr)
2065{
2066 extern const u8 except_vec_vi[];
2067 extern const u8 except_vec_vi_ori[], except_vec_vi_end[];
2068 extern const u8 rollback_except_vec_vi[];
2069 unsigned long handler;
2070 unsigned long old_handler = vi_handlers[n];
2071 int srssets = current_cpu_data.srsets;
2072 u16 *h;
2073 unsigned char *b;
2074 const u8 *vec_start;
2075 int ori_offset;
2076 int handler_len;
2077
2078 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2079
2080 if (addr == NULL) {
2081 handler = (unsigned long) do_default_vi;
2082 } else
2083 handler = (unsigned long) addr;
2084 vi_handlers[n] = handler;
2085
2086 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2087
2088 if (cpu_has_veic) {
2089 if (board_bind_eic_interrupt)
2090 board_bind_eic_interrupt(n, 0);
2091 } else if (cpu_has_vint) {
2092 /* SRSMap is only defined if shadow sets are implemented */
2093 if (srssets > 1)
2094 change_c0_srsmap(0xf << n*4, 0 << n*4);
2095 }
2096
2097 vec_start = using_rollback_handler() ? rollback_except_vec_vi :
2098 except_vec_vi;
2099#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2100 ori_offset = except_vec_vi_ori - vec_start + 2;
2101#else
2102 ori_offset = except_vec_vi_ori - vec_start;
2103#endif
2104 handler_len = except_vec_vi_end - vec_start;
2105
2106 if (handler_len > VECTORSPACING) {
2107 /*
2108 * Sigh... panicing won't help as the console
2109 * is probably not configured :(
2110 */
2111 panic("VECTORSPACING too small");
2112 }
2113
2114 set_handler(((unsigned long)b - ebase), vec_start,
2115#ifdef CONFIG_CPU_MICROMIPS
2116 (handler_len - 1));
2117#else
2118 handler_len);
2119#endif
2120 /* insert offset into vi_handlers[] */
2121 h = (u16 *)(b + ori_offset);
2122 *h = n * sizeof(handler);
2123 local_flush_icache_range((unsigned long)b,
2124 (unsigned long)(b+handler_len));
2125
2126 return (void *)old_handler;
2127}
2128
2129/*
2130 * Timer interrupt
2131 */
2132int cp0_compare_irq;
2133EXPORT_SYMBOL_GPL(cp0_compare_irq);
2134int cp0_compare_irq_shift;
2135
2136/*
2137 * Performance counter IRQ or -1 if shared with timer
2138 */
2139int cp0_perfcount_irq;
2140EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2141
2142/*
2143 * Fast debug channel IRQ or -1 if not present
2144 */
2145int cp0_fdc_irq;
2146EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2147
2148static int noulri;
2149
2150static int __init ulri_disable(char *s)
2151{
2152 pr_info("Disabling ulri\n");
2153 noulri = 1;
2154
2155 return 1;
2156}
2157__setup("noulri", ulri_disable);
2158
2159/* configure STATUS register */
2160static void configure_status(void)
2161{
2162 /*
2163 * Disable coprocessors and select 32-bit or 64-bit addressing
2164 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2165 * flag that some firmware may have left set and the TS bit (for
2166 * IP27). Set XX for ISA IV code to work.
2167 */
2168 unsigned int status_set = ST0_KERNEL_CUMASK;
2169#ifdef CONFIG_64BIT
2170 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2171#endif
2172 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2173 status_set |= ST0_XX;
2174 if (cpu_has_dsp)
2175 status_set |= ST0_MX;
2176
2177 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2178 status_set);
2179 back_to_back_c0_hazard();
2180}
2181
2182unsigned int hwrena;
2183EXPORT_SYMBOL_GPL(hwrena);
2184
2185/* configure HWRENA register */
2186static void configure_hwrena(void)
2187{
2188 hwrena = cpu_hwrena_impl_bits;
2189
2190 if (cpu_has_mips_r2_r6)
2191 hwrena |= MIPS_HWRENA_CPUNUM |
2192 MIPS_HWRENA_SYNCISTEP |
2193 MIPS_HWRENA_CC |
2194 MIPS_HWRENA_CCRES;
2195
2196 if (!noulri && cpu_has_userlocal)
2197 hwrena |= MIPS_HWRENA_ULR;
2198
2199 if (hwrena)
2200 write_c0_hwrena(hwrena);
2201}
2202
2203static void configure_exception_vector(void)
2204{
2205 if (cpu_has_mips_r2_r6) {
2206 unsigned long sr = set_c0_status(ST0_BEV);
2207 /* If available, use WG to set top bits of EBASE */
2208 if (cpu_has_ebase_wg) {
2209#ifdef CONFIG_64BIT
2210 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2211#else
2212 write_c0_ebase(ebase | MIPS_EBASE_WG);
2213#endif
2214 }
2215 write_c0_ebase(ebase);
2216 write_c0_status(sr);
2217 }
2218 if (cpu_has_veic || cpu_has_vint) {
2219 /* Setting vector spacing enables EI/VI mode */
2220 change_c0_intctl(0x3e0, VECTORSPACING);
2221 }
2222 if (cpu_has_divec) {
2223 if (cpu_has_mipsmt) {
2224 unsigned int vpflags = dvpe();
2225 set_c0_cause(CAUSEF_IV);
2226 evpe(vpflags);
2227 } else
2228 set_c0_cause(CAUSEF_IV);
2229 }
2230}
2231
2232void per_cpu_trap_init(bool is_boot_cpu)
2233{
2234 unsigned int cpu = smp_processor_id();
2235
2236 configure_status();
2237 configure_hwrena();
2238
2239 configure_exception_vector();
2240
2241 /*
2242 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2243 *
2244 * o read IntCtl.IPTI to determine the timer interrupt
2245 * o read IntCtl.IPPCI to determine the performance counter interrupt
2246 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2247 */
2248 if (cpu_has_mips_r2_r6) {
2249 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2250 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2251 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2252 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2253 if (!cp0_fdc_irq)
2254 cp0_fdc_irq = -1;
2255
2256 } else {
2257 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2258 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2259 cp0_perfcount_irq = -1;
2260 cp0_fdc_irq = -1;
2261 }
2262
2263 if (cpu_has_mmid)
2264 cpu_data[cpu].asid_cache = 0;
2265 else if (!cpu_data[cpu].asid_cache)
2266 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2267
2268 mmgrab(&init_mm);
2269 current->active_mm = &init_mm;
2270 BUG_ON(current->mm);
2271 enter_lazy_tlb(&init_mm, current);
2272
2273 /* Boot CPU's cache setup in setup_arch(). */
2274 if (!is_boot_cpu)
2275 cpu_cache_init();
2276 tlb_init();
2277 TLBMISS_HANDLER_SETUP();
2278}
2279
2280/* Install CPU exception handler */
2281void set_handler(unsigned long offset, const void *addr, unsigned long size)
2282{
2283#ifdef CONFIG_CPU_MICROMIPS
2284 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2285#else
2286 memcpy((void *)(ebase + offset), addr, size);
2287#endif
2288 local_flush_icache_range(ebase + offset, ebase + offset + size);
2289}
2290
2291static const char panic_null_cerr[] =
2292 "Trying to set NULL cache error exception handler\n";
2293
2294/*
2295 * Install uncached CPU exception handler.
2296 * This is suitable only for the cache error exception which is the only
2297 * exception handler that is being run uncached.
2298 */
2299void set_uncached_handler(unsigned long offset, void *addr,
2300 unsigned long size)
2301{
2302 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2303
2304 if (!addr)
2305 panic(panic_null_cerr);
2306
2307 memcpy((void *)(uncached_ebase + offset), addr, size);
2308}
2309
2310static int __initdata rdhwr_noopt;
2311static int __init set_rdhwr_noopt(char *str)
2312{
2313 rdhwr_noopt = 1;
2314 return 1;
2315}
2316
2317__setup("rdhwr_noopt", set_rdhwr_noopt);
2318
2319void __init trap_init(void)
2320{
2321 extern char except_vec3_generic;
2322 extern char except_vec4;
2323 extern char except_vec3_r4000;
2324 unsigned long i, vec_size;
2325 phys_addr_t ebase_pa;
2326
2327 check_wait();
2328
2329 if (!cpu_has_mips_r2_r6) {
2330 ebase = CAC_BASE;
2331 vec_size = 0x400;
2332 } else {
2333 if (cpu_has_veic || cpu_has_vint)
2334 vec_size = 0x200 + VECTORSPACING*64;
2335 else
2336 vec_size = PAGE_SIZE;
2337
2338 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2339 if (!ebase_pa)
2340 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2341 __func__, vec_size, 1 << fls(vec_size));
2342
2343 /*
2344 * Try to ensure ebase resides in KSeg0 if possible.
2345 *
2346 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2347 * hitting a poorly defined exception base for Cache Errors.
2348 * The allocation is likely to be in the low 512MB of physical,
2349 * in which case we should be able to convert to KSeg0.
2350 *
2351 * EVA is special though as it allows segments to be rearranged
2352 * and to become uncached during cache error handling.
2353 */
2354 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2355 ebase = CKSEG0ADDR(ebase_pa);
2356 else
2357 ebase = (unsigned long)phys_to_virt(ebase_pa);
2358 }
2359
2360 if (cpu_has_mmips) {
2361 unsigned int config3 = read_c0_config3();
2362
2363 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2364 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2365 else
2366 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2367 }
2368
2369 if (board_ebase_setup)
2370 board_ebase_setup();
2371 per_cpu_trap_init(true);
2372 memblock_set_bottom_up(false);
2373
2374 /*
2375 * Copy the generic exception handlers to their final destination.
2376 * This will be overridden later as suitable for a particular
2377 * configuration.
2378 */
2379 set_handler(0x180, &except_vec3_generic, 0x80);
2380
2381 /*
2382 * Setup default vectors
2383 */
2384 for (i = 0; i <= 31; i++)
2385 set_except_vector(i, handle_reserved);
2386
2387 /*
2388 * Copy the EJTAG debug exception vector handler code to its final
2389 * destination.
2390 */
2391 if (cpu_has_ejtag && board_ejtag_handler_setup)
2392 board_ejtag_handler_setup();
2393
2394 /*
2395 * Only some CPUs have the watch exceptions.
2396 */
2397 if (cpu_has_watch)
2398 set_except_vector(EXCCODE_WATCH, handle_watch);
2399
2400 /*
2401 * Initialise interrupt handlers
2402 */
2403 if (cpu_has_veic || cpu_has_vint) {
2404 int nvec = cpu_has_veic ? 64 : 8;
2405 for (i = 0; i < nvec; i++)
2406 set_vi_handler(i, NULL);
2407 }
2408 else if (cpu_has_divec)
2409 set_handler(0x200, &except_vec4, 0x8);
2410
2411 /*
2412 * Some CPUs can enable/disable for cache parity detection, but does
2413 * it different ways.
2414 */
2415 parity_protection_init();
2416
2417 /*
2418 * The Data Bus Errors / Instruction Bus Errors are signaled
2419 * by external hardware. Therefore these two exceptions
2420 * may have board specific handlers.
2421 */
2422 if (board_be_init)
2423 board_be_init();
2424
2425 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2426 rollback_handle_int : handle_int);
2427 set_except_vector(EXCCODE_MOD, handle_tlbm);
2428 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2429 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2430
2431 set_except_vector(EXCCODE_ADEL, handle_adel);
2432 set_except_vector(EXCCODE_ADES, handle_ades);
2433
2434 set_except_vector(EXCCODE_IBE, handle_ibe);
2435 set_except_vector(EXCCODE_DBE, handle_dbe);
2436
2437 set_except_vector(EXCCODE_SYS, handle_sys);
2438 set_except_vector(EXCCODE_BP, handle_bp);
2439
2440 if (rdhwr_noopt)
2441 set_except_vector(EXCCODE_RI, handle_ri);
2442 else {
2443 if (cpu_has_vtag_icache)
2444 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2445 else if (current_cpu_type() == CPU_LOONGSON64)
2446 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2447 else
2448 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2449 }
2450
2451 set_except_vector(EXCCODE_CPU, handle_cpu);
2452 set_except_vector(EXCCODE_OV, handle_ov);
2453 set_except_vector(EXCCODE_TR, handle_tr);
2454 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2455
2456 if (board_nmi_handler_setup)
2457 board_nmi_handler_setup();
2458
2459 if (cpu_has_fpu && !cpu_has_nofpuex)
2460 set_except_vector(EXCCODE_FPE, handle_fpe);
2461
2462 if (cpu_has_ftlbparex)
2463 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2464
2465 if (cpu_has_gsexcex)
2466 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2467
2468 if (cpu_has_rixiex) {
2469 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2470 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2471 }
2472
2473 set_except_vector(EXCCODE_MSADIS, handle_msa);
2474 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2475
2476 if (cpu_has_mcheck)
2477 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2478
2479 if (cpu_has_mipsmt)
2480 set_except_vector(EXCCODE_THREAD, handle_mt);
2481
2482 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2483
2484 if (board_cache_error_setup)
2485 board_cache_error_setup();
2486
2487 if (cpu_has_vce)
2488 /* Special exception: R4[04]00 uses also the divec space. */
2489 set_handler(0x180, &except_vec3_r4000, 0x100);
2490 else if (cpu_has_4kex)
2491 set_handler(0x180, &except_vec3_generic, 0x80);
2492 else
2493 set_handler(0x080, &except_vec3_generic, 0x80);
2494
2495 local_flush_icache_range(ebase, ebase + vec_size);
2496
2497 sort_extable(__start___dbe_table, __stop___dbe_table);
2498
2499 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2500}
2501
2502static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2503 void *v)
2504{
2505 switch (cmd) {
2506 case CPU_PM_ENTER_FAILED:
2507 case CPU_PM_EXIT:
2508 configure_status();
2509 configure_hwrena();
2510 configure_exception_vector();
2511
2512 /* Restore register with CPU number for TLB handlers */
2513 TLBMISS_HANDLER_RESTORE();
2514
2515 break;
2516 }
2517
2518 return NOTIFY_OK;
2519}
2520
2521static struct notifier_block trap_pm_notifier_block = {
2522 .notifier_call = trap_pm_notifier,
2523};
2524
2525static int __init trap_pm_init(void)
2526{
2527 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2528}
2529arch_initcall(trap_pm_init);