Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
12 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
13 */
14#include <linux/bug.h>
15#include <linux/compiler.h>
16#include <linux/init.h>
17#include <linux/kernel.h>
18#include <linux/module.h>
19#include <linux/mm.h>
20#include <linux/sched.h>
21#include <linux/smp.h>
22#include <linux/spinlock.h>
23#include <linux/kallsyms.h>
24#include <linux/bootmem.h>
25#include <linux/interrupt.h>
26#include <linux/ptrace.h>
27#include <linux/kgdb.h>
28#include <linux/kdebug.h>
29#include <linux/kprobes.h>
30#include <linux/notifier.h>
31#include <linux/kdb.h>
32#include <linux/irq.h>
33#include <linux/perf_event.h>
34
35#include <asm/bootinfo.h>
36#include <asm/branch.h>
37#include <asm/break.h>
38#include <asm/cop2.h>
39#include <asm/cpu.h>
40#include <asm/dsp.h>
41#include <asm/fpu.h>
42#include <asm/fpu_emulator.h>
43#include <asm/mipsregs.h>
44#include <asm/mipsmtregs.h>
45#include <asm/module.h>
46#include <asm/pgtable.h>
47#include <asm/ptrace.h>
48#include <asm/sections.h>
49#include <asm/tlbdebug.h>
50#include <asm/traps.h>
51#include <asm/uaccess.h>
52#include <asm/watch.h>
53#include <asm/mmu_context.h>
54#include <asm/types.h>
55#include <asm/stacktrace.h>
56#include <asm/uasm.h>
57
58extern void check_wait(void);
59extern asmlinkage void r4k_wait(void);
60extern asmlinkage void rollback_handle_int(void);
61extern asmlinkage void handle_int(void);
62extern asmlinkage void handle_tlbm(void);
63extern asmlinkage void handle_tlbl(void);
64extern asmlinkage void handle_tlbs(void);
65extern asmlinkage void handle_adel(void);
66extern asmlinkage void handle_ades(void);
67extern asmlinkage void handle_ibe(void);
68extern asmlinkage void handle_dbe(void);
69extern asmlinkage void handle_sys(void);
70extern asmlinkage void handle_bp(void);
71extern asmlinkage void handle_ri(void);
72extern asmlinkage void handle_ri_rdhwr_vivt(void);
73extern asmlinkage void handle_ri_rdhwr(void);
74extern asmlinkage void handle_cpu(void);
75extern asmlinkage void handle_ov(void);
76extern asmlinkage void handle_tr(void);
77extern asmlinkage void handle_fpe(void);
78extern asmlinkage void handle_mdmx(void);
79extern asmlinkage void handle_watch(void);
80extern asmlinkage void handle_mt(void);
81extern asmlinkage void handle_dsp(void);
82extern asmlinkage void handle_mcheck(void);
83extern asmlinkage void handle_reserved(void);
84
85extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
86 struct mips_fpu_struct *ctx, int has_fpu,
87 void *__user *fault_addr);
88
89void (*board_be_init)(void);
90int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
91void (*board_nmi_handler_setup)(void);
92void (*board_ejtag_handler_setup)(void);
93void (*board_bind_eic_interrupt)(int irq, int regset);
94void (*board_ebase_setup)(void);
95void __cpuinitdata(*board_cache_error_setup)(void);
96
97static void show_raw_backtrace(unsigned long reg29)
98{
99 unsigned long *sp = (unsigned long *)(reg29 & ~3);
100 unsigned long addr;
101
102 printk("Call Trace:");
103#ifdef CONFIG_KALLSYMS
104 printk("\n");
105#endif
106 while (!kstack_end(sp)) {
107 unsigned long __user *p =
108 (unsigned long __user *)(unsigned long)sp++;
109 if (__get_user(addr, p)) {
110 printk(" (Bad stack address)");
111 break;
112 }
113 if (__kernel_text_address(addr))
114 print_ip_sym(addr);
115 }
116 printk("\n");
117}
118
119#ifdef CONFIG_KALLSYMS
120int raw_show_trace;
121static int __init set_raw_show_trace(char *str)
122{
123 raw_show_trace = 1;
124 return 1;
125}
126__setup("raw_show_trace", set_raw_show_trace);
127#endif
128
129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
130{
131 unsigned long sp = regs->regs[29];
132 unsigned long ra = regs->regs[31];
133 unsigned long pc = regs->cp0_epc;
134
135 if (!task)
136 task = current;
137
138 if (raw_show_trace || !__kernel_text_address(pc)) {
139 show_raw_backtrace(sp);
140 return;
141 }
142 printk("Call Trace:\n");
143 do {
144 print_ip_sym(pc);
145 pc = unwind_stack(task, &sp, pc, &ra);
146 } while (pc);
147 printk("\n");
148}
149
150/*
151 * This routine abuses get_user()/put_user() to reference pointers
152 * with at least a bit of error checking ...
153 */
154static void show_stacktrace(struct task_struct *task,
155 const struct pt_regs *regs)
156{
157 const int field = 2 * sizeof(unsigned long);
158 long stackdata;
159 int i;
160 unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
161
162 printk("Stack :");
163 i = 0;
164 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
165 if (i && ((i % (64 / field)) == 0))
166 printk("\n ");
167 if (i > 39) {
168 printk(" ...");
169 break;
170 }
171
172 if (__get_user(stackdata, sp++)) {
173 printk(" (Bad stack address)");
174 break;
175 }
176
177 printk(" %0*lx", field, stackdata);
178 i++;
179 }
180 printk("\n");
181 show_backtrace(task, regs);
182}
183
184void show_stack(struct task_struct *task, unsigned long *sp)
185{
186 struct pt_regs regs;
187 if (sp) {
188 regs.regs[29] = (unsigned long)sp;
189 regs.regs[31] = 0;
190 regs.cp0_epc = 0;
191 } else {
192 if (task && task != current) {
193 regs.regs[29] = task->thread.reg29;
194 regs.regs[31] = 0;
195 regs.cp0_epc = task->thread.reg31;
196#ifdef CONFIG_KGDB_KDB
197 } else if (atomic_read(&kgdb_active) != -1 &&
198 kdb_current_regs) {
199 memcpy(®s, kdb_current_regs, sizeof(regs));
200#endif /* CONFIG_KGDB_KDB */
201 } else {
202 prepare_frametrace(®s);
203 }
204 }
205 show_stacktrace(task, ®s);
206}
207
208/*
209 * The architecture-independent dump_stack generator
210 */
211void dump_stack(void)
212{
213 struct pt_regs regs;
214
215 prepare_frametrace(®s);
216 show_backtrace(current, ®s);
217}
218
219EXPORT_SYMBOL(dump_stack);
220
221static void show_code(unsigned int __user *pc)
222{
223 long i;
224 unsigned short __user *pc16 = NULL;
225
226 printk("\nCode:");
227
228 if ((unsigned long)pc & 1)
229 pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
230 for(i = -3 ; i < 6 ; i++) {
231 unsigned int insn;
232 if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
233 printk(" (Bad address in epc)\n");
234 break;
235 }
236 printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
237 }
238}
239
240static void __show_regs(const struct pt_regs *regs)
241{
242 const int field = 2 * sizeof(unsigned long);
243 unsigned int cause = regs->cp0_cause;
244 int i;
245
246 printk("Cpu %d\n", smp_processor_id());
247
248 /*
249 * Saved main processor registers
250 */
251 for (i = 0; i < 32; ) {
252 if ((i % 4) == 0)
253 printk("$%2d :", i);
254 if (i == 0)
255 printk(" %0*lx", field, 0UL);
256 else if (i == 26 || i == 27)
257 printk(" %*s", field, "");
258 else
259 printk(" %0*lx", field, regs->regs[i]);
260
261 i++;
262 if ((i % 4) == 0)
263 printk("\n");
264 }
265
266#ifdef CONFIG_CPU_HAS_SMARTMIPS
267 printk("Acx : %0*lx\n", field, regs->acx);
268#endif
269 printk("Hi : %0*lx\n", field, regs->hi);
270 printk("Lo : %0*lx\n", field, regs->lo);
271
272 /*
273 * Saved cp0 registers
274 */
275 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
276 (void *) regs->cp0_epc);
277 printk(" %s\n", print_tainted());
278 printk("ra : %0*lx %pS\n", field, regs->regs[31],
279 (void *) regs->regs[31]);
280
281 printk("Status: %08x ", (uint32_t) regs->cp0_status);
282
283 if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
284 if (regs->cp0_status & ST0_KUO)
285 printk("KUo ");
286 if (regs->cp0_status & ST0_IEO)
287 printk("IEo ");
288 if (regs->cp0_status & ST0_KUP)
289 printk("KUp ");
290 if (regs->cp0_status & ST0_IEP)
291 printk("IEp ");
292 if (regs->cp0_status & ST0_KUC)
293 printk("KUc ");
294 if (regs->cp0_status & ST0_IEC)
295 printk("IEc ");
296 } else {
297 if (regs->cp0_status & ST0_KX)
298 printk("KX ");
299 if (regs->cp0_status & ST0_SX)
300 printk("SX ");
301 if (regs->cp0_status & ST0_UX)
302 printk("UX ");
303 switch (regs->cp0_status & ST0_KSU) {
304 case KSU_USER:
305 printk("USER ");
306 break;
307 case KSU_SUPERVISOR:
308 printk("SUPERVISOR ");
309 break;
310 case KSU_KERNEL:
311 printk("KERNEL ");
312 break;
313 default:
314 printk("BAD_MODE ");
315 break;
316 }
317 if (regs->cp0_status & ST0_ERL)
318 printk("ERL ");
319 if (regs->cp0_status & ST0_EXL)
320 printk("EXL ");
321 if (regs->cp0_status & ST0_IE)
322 printk("IE ");
323 }
324 printk("\n");
325
326 printk("Cause : %08x\n", cause);
327
328 cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
329 if (1 <= cause && cause <= 5)
330 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
331
332 printk("PrId : %08x (%s)\n", read_c0_prid(),
333 cpu_name_string());
334}
335
336/*
337 * FIXME: really the generic show_regs should take a const pointer argument.
338 */
339void show_regs(struct pt_regs *regs)
340{
341 __show_regs((struct pt_regs *)regs);
342}
343
344void show_registers(struct pt_regs *regs)
345{
346 const int field = 2 * sizeof(unsigned long);
347
348 __show_regs(regs);
349 print_modules();
350 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
351 current->comm, current->pid, current_thread_info(), current,
352 field, current_thread_info()->tp_value);
353 if (cpu_has_userlocal) {
354 unsigned long tls;
355
356 tls = read_c0_userlocal();
357 if (tls != current_thread_info()->tp_value)
358 printk("*HwTLS: %0*lx\n", field, tls);
359 }
360
361 show_stacktrace(current, regs);
362 show_code((unsigned int __user *) regs->cp0_epc);
363 printk("\n");
364}
365
366static int regs_to_trapnr(struct pt_regs *regs)
367{
368 return (regs->cp0_cause >> 2) & 0x1f;
369}
370
371static DEFINE_RAW_SPINLOCK(die_lock);
372
373void __noreturn die(const char *str, struct pt_regs *regs)
374{
375 static int die_counter;
376 int sig = SIGSEGV;
377#ifdef CONFIG_MIPS_MT_SMTC
378 unsigned long dvpret;
379#endif /* CONFIG_MIPS_MT_SMTC */
380
381 oops_enter();
382
383 if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
384 sig = 0;
385
386 console_verbose();
387 raw_spin_lock_irq(&die_lock);
388#ifdef CONFIG_MIPS_MT_SMTC
389 dvpret = dvpe();
390#endif /* CONFIG_MIPS_MT_SMTC */
391 bust_spinlocks(1);
392#ifdef CONFIG_MIPS_MT_SMTC
393 mips_mt_regdump(dvpret);
394#endif /* CONFIG_MIPS_MT_SMTC */
395
396 printk("%s[#%d]:\n", str, ++die_counter);
397 show_registers(regs);
398 add_taint(TAINT_DIE);
399 raw_spin_unlock_irq(&die_lock);
400
401 oops_exit();
402
403 if (in_interrupt())
404 panic("Fatal exception in interrupt");
405
406 if (panic_on_oops) {
407 printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
408 ssleep(5);
409 panic("Fatal exception");
410 }
411
412 do_exit(sig);
413}
414
415extern struct exception_table_entry __start___dbe_table[];
416extern struct exception_table_entry __stop___dbe_table[];
417
418__asm__(
419" .section __dbe_table, \"a\"\n"
420" .previous \n");
421
422/* Given an address, look for it in the exception tables. */
423static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
424{
425 const struct exception_table_entry *e;
426
427 e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
428 if (!e)
429 e = search_module_dbetables(addr);
430 return e;
431}
432
433asmlinkage void do_be(struct pt_regs *regs)
434{
435 const int field = 2 * sizeof(unsigned long);
436 const struct exception_table_entry *fixup = NULL;
437 int data = regs->cp0_cause & 4;
438 int action = MIPS_BE_FATAL;
439
440 /* XXX For now. Fixme, this searches the wrong table ... */
441 if (data && !user_mode(regs))
442 fixup = search_dbe_tables(exception_epc(regs));
443
444 if (fixup)
445 action = MIPS_BE_FIXUP;
446
447 if (board_be_handler)
448 action = board_be_handler(regs, fixup != NULL);
449
450 switch (action) {
451 case MIPS_BE_DISCARD:
452 return;
453 case MIPS_BE_FIXUP:
454 if (fixup) {
455 regs->cp0_epc = fixup->nextinsn;
456 return;
457 }
458 break;
459 default:
460 break;
461 }
462
463 /*
464 * Assume it would be too dangerous to continue ...
465 */
466 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
467 data ? "Data" : "Instruction",
468 field, regs->cp0_epc, field, regs->regs[31]);
469 if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
470 == NOTIFY_STOP)
471 return;
472
473 die_if_kernel("Oops", regs);
474 force_sig(SIGBUS, current);
475}
476
477/*
478 * ll/sc, rdhwr, sync emulation
479 */
480
481#define OPCODE 0xfc000000
482#define BASE 0x03e00000
483#define RT 0x001f0000
484#define OFFSET 0x0000ffff
485#define LL 0xc0000000
486#define SC 0xe0000000
487#define SPEC0 0x00000000
488#define SPEC3 0x7c000000
489#define RD 0x0000f800
490#define FUNC 0x0000003f
491#define SYNC 0x0000000f
492#define RDHWR 0x0000003b
493
494/*
495 * The ll_bit is cleared by r*_switch.S
496 */
497
498unsigned int ll_bit;
499struct task_struct *ll_task;
500
501static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
502{
503 unsigned long value, __user *vaddr;
504 long offset;
505
506 /*
507 * analyse the ll instruction that just caused a ri exception
508 * and put the referenced address to addr.
509 */
510
511 /* sign extend offset */
512 offset = opcode & OFFSET;
513 offset <<= 16;
514 offset >>= 16;
515
516 vaddr = (unsigned long __user *)
517 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
518
519 if ((unsigned long)vaddr & 3)
520 return SIGBUS;
521 if (get_user(value, vaddr))
522 return SIGSEGV;
523
524 preempt_disable();
525
526 if (ll_task == NULL || ll_task == current) {
527 ll_bit = 1;
528 } else {
529 ll_bit = 0;
530 }
531 ll_task = current;
532
533 preempt_enable();
534
535 regs->regs[(opcode & RT) >> 16] = value;
536
537 return 0;
538}
539
540static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
541{
542 unsigned long __user *vaddr;
543 unsigned long reg;
544 long offset;
545
546 /*
547 * analyse the sc instruction that just caused a ri exception
548 * and put the referenced address to addr.
549 */
550
551 /* sign extend offset */
552 offset = opcode & OFFSET;
553 offset <<= 16;
554 offset >>= 16;
555
556 vaddr = (unsigned long __user *)
557 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
558 reg = (opcode & RT) >> 16;
559
560 if ((unsigned long)vaddr & 3)
561 return SIGBUS;
562
563 preempt_disable();
564
565 if (ll_bit == 0 || ll_task != current) {
566 regs->regs[reg] = 0;
567 preempt_enable();
568 return 0;
569 }
570
571 preempt_enable();
572
573 if (put_user(regs->regs[reg], vaddr))
574 return SIGSEGV;
575
576 regs->regs[reg] = 1;
577
578 return 0;
579}
580
581/*
582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
583 * opcodes are supposed to result in coprocessor unusable exceptions if
584 * executed on ll/sc-less processors. That's the theory. In practice a
585 * few processors such as NEC's VR4100 throw reserved instruction exceptions
586 * instead, so we're doing the emulation thing in both exception handlers.
587 */
588static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
589{
590 if ((opcode & OPCODE) == LL) {
591 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
592 1, regs, 0);
593 return simulate_ll(regs, opcode);
594 }
595 if ((opcode & OPCODE) == SC) {
596 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
597 1, regs, 0);
598 return simulate_sc(regs, opcode);
599 }
600
601 return -1; /* Must be something else ... */
602}
603
604/*
605 * Simulate trapping 'rdhwr' instructions to provide user accessible
606 * registers not implemented in hardware.
607 */
608static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
609{
610 struct thread_info *ti = task_thread_info(current);
611
612 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
613 int rd = (opcode & RD) >> 11;
614 int rt = (opcode & RT) >> 16;
615 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
616 1, regs, 0);
617 switch (rd) {
618 case 0: /* CPU number */
619 regs->regs[rt] = smp_processor_id();
620 return 0;
621 case 1: /* SYNCI length */
622 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
623 current_cpu_data.icache.linesz);
624 return 0;
625 case 2: /* Read count register */
626 regs->regs[rt] = read_c0_count();
627 return 0;
628 case 3: /* Count register resolution */
629 switch (current_cpu_data.cputype) {
630 case CPU_20KC:
631 case CPU_25KF:
632 regs->regs[rt] = 1;
633 break;
634 default:
635 regs->regs[rt] = 2;
636 }
637 return 0;
638 case 29:
639 regs->regs[rt] = ti->tp_value;
640 return 0;
641 default:
642 return -1;
643 }
644 }
645
646 /* Not ours. */
647 return -1;
648}
649
650static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
651{
652 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
653 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
654 1, regs, 0);
655 return 0;
656 }
657
658 return -1; /* Must be something else ... */
659}
660
661asmlinkage void do_ov(struct pt_regs *regs)
662{
663 siginfo_t info;
664
665 die_if_kernel("Integer overflow", regs);
666
667 info.si_code = FPE_INTOVF;
668 info.si_signo = SIGFPE;
669 info.si_errno = 0;
670 info.si_addr = (void __user *) regs->cp0_epc;
671 force_sig_info(SIGFPE, &info, current);
672}
673
674static int process_fpemu_return(int sig, void __user *fault_addr)
675{
676 if (sig == SIGSEGV || sig == SIGBUS) {
677 struct siginfo si = {0};
678 si.si_addr = fault_addr;
679 si.si_signo = sig;
680 if (sig == SIGSEGV) {
681 if (find_vma(current->mm, (unsigned long)fault_addr))
682 si.si_code = SEGV_ACCERR;
683 else
684 si.si_code = SEGV_MAPERR;
685 } else {
686 si.si_code = BUS_ADRERR;
687 }
688 force_sig_info(sig, &si, current);
689 return 1;
690 } else if (sig) {
691 force_sig(sig, current);
692 return 1;
693 } else {
694 return 0;
695 }
696}
697
698/*
699 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
700 */
701asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
702{
703 siginfo_t info = {0};
704
705 if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
706 == NOTIFY_STOP)
707 return;
708 die_if_kernel("FP exception in kernel code", regs);
709
710 if (fcr31 & FPU_CSR_UNI_X) {
711 int sig;
712 void __user *fault_addr = NULL;
713
714 /*
715 * Unimplemented operation exception. If we've got the full
716 * software emulator on-board, let's use it...
717 *
718 * Force FPU to dump state into task/thread context. We're
719 * moving a lot of data here for what is probably a single
720 * instruction, but the alternative is to pre-decode the FP
721 * register operands before invoking the emulator, which seems
722 * a bit extreme for what should be an infrequent event.
723 */
724 /* Ensure 'resume' not overwrite saved fp context again. */
725 lose_fpu(1);
726
727 /* Run the emulator */
728 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
729 &fault_addr);
730
731 /*
732 * We can't allow the emulated instruction to leave any of
733 * the cause bit set in $fcr31.
734 */
735 current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
736
737 /* Restore the hardware register state */
738 own_fpu(1); /* Using the FPU again. */
739
740 /* If something went wrong, signal */
741 process_fpemu_return(sig, fault_addr);
742
743 return;
744 } else if (fcr31 & FPU_CSR_INV_X)
745 info.si_code = FPE_FLTINV;
746 else if (fcr31 & FPU_CSR_DIV_X)
747 info.si_code = FPE_FLTDIV;
748 else if (fcr31 & FPU_CSR_OVF_X)
749 info.si_code = FPE_FLTOVF;
750 else if (fcr31 & FPU_CSR_UDF_X)
751 info.si_code = FPE_FLTUND;
752 else if (fcr31 & FPU_CSR_INE_X)
753 info.si_code = FPE_FLTRES;
754 else
755 info.si_code = __SI_FAULT;
756 info.si_signo = SIGFPE;
757 info.si_errno = 0;
758 info.si_addr = (void __user *) regs->cp0_epc;
759 force_sig_info(SIGFPE, &info, current);
760}
761
762static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
763 const char *str)
764{
765 siginfo_t info;
766 char b[40];
767
768#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
769 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
770 return;
771#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
772
773 if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
774 return;
775
776 /*
777 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
778 * insns, even for trap and break codes that indicate arithmetic
779 * failures. Weird ...
780 * But should we continue the brokenness??? --macro
781 */
782 switch (code) {
783 case BRK_OVERFLOW:
784 case BRK_DIVZERO:
785 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
786 die_if_kernel(b, regs);
787 if (code == BRK_DIVZERO)
788 info.si_code = FPE_INTDIV;
789 else
790 info.si_code = FPE_INTOVF;
791 info.si_signo = SIGFPE;
792 info.si_errno = 0;
793 info.si_addr = (void __user *) regs->cp0_epc;
794 force_sig_info(SIGFPE, &info, current);
795 break;
796 case BRK_BUG:
797 die_if_kernel("Kernel bug detected", regs);
798 force_sig(SIGTRAP, current);
799 break;
800 case BRK_MEMU:
801 /*
802 * Address errors may be deliberately induced by the FPU
803 * emulator to retake control of the CPU after executing the
804 * instruction in the delay slot of an emulated branch.
805 *
806 * Terminate if exception was recognized as a delay slot return
807 * otherwise handle as normal.
808 */
809 if (do_dsemulret(regs))
810 return;
811
812 die_if_kernel("Math emu break/trap", regs);
813 force_sig(SIGTRAP, current);
814 break;
815 default:
816 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
817 die_if_kernel(b, regs);
818 force_sig(SIGTRAP, current);
819 }
820}
821
822asmlinkage void do_bp(struct pt_regs *regs)
823{
824 unsigned int opcode, bcode;
825
826 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
827 goto out_sigsegv;
828
829 /*
830 * There is the ancient bug in the MIPS assemblers that the break
831 * code starts left to bit 16 instead to bit 6 in the opcode.
832 * Gas is bug-compatible, but not always, grrr...
833 * We handle both cases with a simple heuristics. --macro
834 */
835 bcode = ((opcode >> 6) & ((1 << 20) - 1));
836 if (bcode >= (1 << 10))
837 bcode >>= 10;
838
839 /*
840 * notify the kprobe handlers, if instruction is likely to
841 * pertain to them.
842 */
843 switch (bcode) {
844 case BRK_KPROBE_BP:
845 if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
846 return;
847 else
848 break;
849 case BRK_KPROBE_SSTEPBP:
850 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
851 return;
852 else
853 break;
854 default:
855 break;
856 }
857
858 do_trap_or_bp(regs, bcode, "Break");
859 return;
860
861out_sigsegv:
862 force_sig(SIGSEGV, current);
863}
864
865asmlinkage void do_tr(struct pt_regs *regs)
866{
867 unsigned int opcode, tcode = 0;
868
869 if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
870 goto out_sigsegv;
871
872 /* Immediate versions don't provide a code. */
873 if (!(opcode & OPCODE))
874 tcode = ((opcode >> 6) & ((1 << 10) - 1));
875
876 do_trap_or_bp(regs, tcode, "Trap");
877 return;
878
879out_sigsegv:
880 force_sig(SIGSEGV, current);
881}
882
883asmlinkage void do_ri(struct pt_regs *regs)
884{
885 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
886 unsigned long old_epc = regs->cp0_epc;
887 unsigned int opcode = 0;
888 int status = -1;
889
890 if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
891 == NOTIFY_STOP)
892 return;
893
894 die_if_kernel("Reserved instruction in kernel code", regs);
895
896 if (unlikely(compute_return_epc(regs) < 0))
897 return;
898
899 if (unlikely(get_user(opcode, epc) < 0))
900 status = SIGSEGV;
901
902 if (!cpu_has_llsc && status < 0)
903 status = simulate_llsc(regs, opcode);
904
905 if (status < 0)
906 status = simulate_rdhwr(regs, opcode);
907
908 if (status < 0)
909 status = simulate_sync(regs, opcode);
910
911 if (status < 0)
912 status = SIGILL;
913
914 if (unlikely(status > 0)) {
915 regs->cp0_epc = old_epc; /* Undo skip-over. */
916 force_sig(status, current);
917 }
918}
919
920/*
921 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
922 * emulated more than some threshold number of instructions, force migration to
923 * a "CPU" that has FP support.
924 */
925static void mt_ase_fp_affinity(void)
926{
927#ifdef CONFIG_MIPS_MT_FPAFF
928 if (mt_fpemul_threshold > 0 &&
929 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
930 /*
931 * If there's no FPU present, or if the application has already
932 * restricted the allowed set to exclude any CPUs with FPUs,
933 * we'll skip the procedure.
934 */
935 if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
936 cpumask_t tmask;
937
938 current->thread.user_cpus_allowed
939 = current->cpus_allowed;
940 cpus_and(tmask, current->cpus_allowed,
941 mt_fpu_cpumask);
942 set_cpus_allowed_ptr(current, &tmask);
943 set_thread_flag(TIF_FPUBOUND);
944 }
945 }
946#endif /* CONFIG_MIPS_MT_FPAFF */
947}
948
949/*
950 * No lock; only written during early bootup by CPU 0.
951 */
952static RAW_NOTIFIER_HEAD(cu2_chain);
953
954int __ref register_cu2_notifier(struct notifier_block *nb)
955{
956 return raw_notifier_chain_register(&cu2_chain, nb);
957}
958
959int cu2_notifier_call_chain(unsigned long val, void *v)
960{
961 return raw_notifier_call_chain(&cu2_chain, val, v);
962}
963
964static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
965 void *data)
966{
967 struct pt_regs *regs = data;
968
969 switch (action) {
970 default:
971 die_if_kernel("Unhandled kernel unaligned access or invalid "
972 "instruction", regs);
973 /* Fall through */
974
975 case CU2_EXCEPTION:
976 force_sig(SIGILL, current);
977 }
978
979 return NOTIFY_OK;
980}
981
982asmlinkage void do_cpu(struct pt_regs *regs)
983{
984 unsigned int __user *epc;
985 unsigned long old_epc;
986 unsigned int opcode;
987 unsigned int cpid;
988 int status;
989 unsigned long __maybe_unused flags;
990
991 die_if_kernel("do_cpu invoked from kernel context!", regs);
992
993 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
994
995 switch (cpid) {
996 case 0:
997 epc = (unsigned int __user *)exception_epc(regs);
998 old_epc = regs->cp0_epc;
999 opcode = 0;
1000 status = -1;
1001
1002 if (unlikely(compute_return_epc(regs) < 0))
1003 return;
1004
1005 if (unlikely(get_user(opcode, epc) < 0))
1006 status = SIGSEGV;
1007
1008 if (!cpu_has_llsc && status < 0)
1009 status = simulate_llsc(regs, opcode);
1010
1011 if (status < 0)
1012 status = simulate_rdhwr(regs, opcode);
1013
1014 if (status < 0)
1015 status = SIGILL;
1016
1017 if (unlikely(status > 0)) {
1018 regs->cp0_epc = old_epc; /* Undo skip-over. */
1019 force_sig(status, current);
1020 }
1021
1022 return;
1023
1024 case 1:
1025 if (used_math()) /* Using the FPU again. */
1026 own_fpu(1);
1027 else { /* First time FPU user. */
1028 init_fpu();
1029 set_used_math();
1030 }
1031
1032 if (!raw_cpu_has_fpu) {
1033 int sig;
1034 void __user *fault_addr = NULL;
1035 sig = fpu_emulator_cop1Handler(regs,
1036 ¤t->thread.fpu,
1037 0, &fault_addr);
1038 if (!process_fpemu_return(sig, fault_addr))
1039 mt_ase_fp_affinity();
1040 }
1041
1042 return;
1043
1044 case 2:
1045 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046 return;
1047
1048 case 3:
1049 break;
1050 }
1051
1052 force_sig(SIGILL, current);
1053}
1054
1055asmlinkage void do_mdmx(struct pt_regs *regs)
1056{
1057 force_sig(SIGILL, current);
1058}
1059
1060/*
1061 * Called with interrupts disabled.
1062 */
1063asmlinkage void do_watch(struct pt_regs *regs)
1064{
1065 u32 cause;
1066
1067 /*
1068 * Clear WP (bit 22) bit of cause register so we don't loop
1069 * forever.
1070 */
1071 cause = read_c0_cause();
1072 cause &= ~(1 << 22);
1073 write_c0_cause(cause);
1074
1075 /*
1076 * If the current thread has the watch registers loaded, save
1077 * their values and send SIGTRAP. Otherwise another thread
1078 * left the registers set, clear them and continue.
1079 */
1080 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1081 mips_read_watch_registers();
1082 local_irq_enable();
1083 force_sig(SIGTRAP, current);
1084 } else {
1085 mips_clear_watch_registers();
1086 local_irq_enable();
1087 }
1088}
1089
1090asmlinkage void do_mcheck(struct pt_regs *regs)
1091{
1092 const int field = 2 * sizeof(unsigned long);
1093 int multi_match = regs->cp0_status & ST0_TS;
1094
1095 show_regs(regs);
1096
1097 if (multi_match) {
1098 printk("Index : %0x\n", read_c0_index());
1099 printk("Pagemask: %0x\n", read_c0_pagemask());
1100 printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101 printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102 printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103 printk("\n");
1104 dump_tlb_all();
1105 }
1106
1107 show_code((unsigned int __user *) regs->cp0_epc);
1108
1109 /*
1110 * Some chips may have other causes of machine check (e.g. SB1
1111 * graduation timer)
1112 */
1113 panic("Caught Machine Check exception - %scaused by multiple "
1114 "matching entries in the TLB.",
1115 (multi_match) ? "" : "not ");
1116}
1117
1118asmlinkage void do_mt(struct pt_regs *regs)
1119{
1120 int subcode;
1121
1122 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1123 >> VPECONTROL_EXCPT_SHIFT;
1124 switch (subcode) {
1125 case 0:
1126 printk(KERN_DEBUG "Thread Underflow\n");
1127 break;
1128 case 1:
1129 printk(KERN_DEBUG "Thread Overflow\n");
1130 break;
1131 case 2:
1132 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133 break;
1134 case 3:
1135 printk(KERN_DEBUG "Gating Storage Exception\n");
1136 break;
1137 case 4:
1138 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139 break;
1140 case 5:
1141 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142 break;
1143 default:
1144 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145 subcode);
1146 break;
1147 }
1148 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1149
1150 force_sig(SIGILL, current);
1151}
1152
1153
1154asmlinkage void do_dsp(struct pt_regs *regs)
1155{
1156 if (cpu_has_dsp)
1157 panic("Unexpected DSP exception");
1158
1159 force_sig(SIGILL, current);
1160}
1161
1162asmlinkage void do_reserved(struct pt_regs *regs)
1163{
1164 /*
1165 * Game over - no way to handle this if it ever occurs. Most probably
1166 * caused by a new unknown cpu type or after another deadly
1167 * hard/software error.
1168 */
1169 show_regs(regs);
1170 panic("Caught reserved exception %ld - should not happen.",
1171 (regs->cp0_cause & 0x7f) >> 2);
1172}
1173
1174static int __initdata l1parity = 1;
1175static int __init nol1parity(char *s)
1176{
1177 l1parity = 0;
1178 return 1;
1179}
1180__setup("nol1par", nol1parity);
1181static int __initdata l2parity = 1;
1182static int __init nol2parity(char *s)
1183{
1184 l2parity = 0;
1185 return 1;
1186}
1187__setup("nol2par", nol2parity);
1188
1189/*
1190 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191 * it different ways.
1192 */
1193static inline void parity_protection_init(void)
1194{
1195 switch (current_cpu_type()) {
1196 case CPU_24K:
1197 case CPU_34K:
1198 case CPU_74K:
1199 case CPU_1004K:
1200 {
1201#define ERRCTL_PE 0x80000000
1202#define ERRCTL_L2P 0x00800000
1203 unsigned long errctl;
1204 unsigned int l1parity_present, l2parity_present;
1205
1206 errctl = read_c0_ecc();
1207 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1208
1209 /* probe L1 parity support */
1210 write_c0_ecc(errctl | ERRCTL_PE);
1211 back_to_back_c0_hazard();
1212 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1213
1214 /* probe L2 parity support */
1215 write_c0_ecc(errctl|ERRCTL_L2P);
1216 back_to_back_c0_hazard();
1217 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1218
1219 if (l1parity_present && l2parity_present) {
1220 if (l1parity)
1221 errctl |= ERRCTL_PE;
1222 if (l1parity ^ l2parity)
1223 errctl |= ERRCTL_L2P;
1224 } else if (l1parity_present) {
1225 if (l1parity)
1226 errctl |= ERRCTL_PE;
1227 } else if (l2parity_present) {
1228 if (l2parity)
1229 errctl |= ERRCTL_L2P;
1230 } else {
1231 /* No parity available */
1232 }
1233
1234 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1235
1236 write_c0_ecc(errctl);
1237 back_to_back_c0_hazard();
1238 errctl = read_c0_ecc();
1239 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1240
1241 if (l1parity_present)
1242 printk(KERN_INFO "Cache parity protection %sabled\n",
1243 (errctl & ERRCTL_PE) ? "en" : "dis");
1244
1245 if (l2parity_present) {
1246 if (l1parity_present && l1parity)
1247 errctl ^= ERRCTL_L2P;
1248 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249 (errctl & ERRCTL_L2P) ? "en" : "dis");
1250 }
1251 }
1252 break;
1253
1254 case CPU_5KC:
1255 case CPU_5KE:
1256 write_c0_ecc(0x80000000);
1257 back_to_back_c0_hazard();
1258 /* Set the PE bit (bit 31) in the c0_errctl register. */
1259 printk(KERN_INFO "Cache parity protection %sabled\n",
1260 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1261 break;
1262 case CPU_20KC:
1263 case CPU_25KF:
1264 /* Clear the DE bit (bit 16) in the c0_status register. */
1265 printk(KERN_INFO "Enable cache parity protection for "
1266 "MIPS 20KC/25KF CPUs.\n");
1267 clear_c0_status(ST0_DE);
1268 break;
1269 default:
1270 break;
1271 }
1272}
1273
1274asmlinkage void cache_parity_error(void)
1275{
1276 const int field = 2 * sizeof(unsigned long);
1277 unsigned int reg_val;
1278
1279 /* For the moment, report the problem and hang. */
1280 printk("Cache error exception:\n");
1281 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1282 reg_val = read_c0_cacheerr();
1283 printk("c0_cacheerr == %08x\n", reg_val);
1284
1285 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1286 reg_val & (1<<30) ? "secondary" : "primary",
1287 reg_val & (1<<31) ? "data" : "insn");
1288 printk("Error bits: %s%s%s%s%s%s%s\n",
1289 reg_val & (1<<29) ? "ED " : "",
1290 reg_val & (1<<28) ? "ET " : "",
1291 reg_val & (1<<26) ? "EE " : "",
1292 reg_val & (1<<25) ? "EB " : "",
1293 reg_val & (1<<24) ? "EI " : "",
1294 reg_val & (1<<23) ? "E1 " : "",
1295 reg_val & (1<<22) ? "E0 " : "");
1296 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1297
1298#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1299 if (reg_val & (1<<22))
1300 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1301
1302 if (reg_val & (1<<23))
1303 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1304#endif
1305
1306 panic("Can't handle the cache error!");
1307}
1308
1309/*
1310 * SDBBP EJTAG debug exception handler.
1311 * We skip the instruction and return to the next instruction.
1312 */
1313void ejtag_exception_handler(struct pt_regs *regs)
1314{
1315 const int field = 2 * sizeof(unsigned long);
1316 unsigned long depc, old_epc;
1317 unsigned int debug;
1318
1319 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1320 depc = read_c0_depc();
1321 debug = read_c0_debug();
1322 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1323 if (debug & 0x80000000) {
1324 /*
1325 * In branch delay slot.
1326 * We cheat a little bit here and use EPC to calculate the
1327 * debug return address (DEPC). EPC is restored after the
1328 * calculation.
1329 */
1330 old_epc = regs->cp0_epc;
1331 regs->cp0_epc = depc;
1332 __compute_return_epc(regs);
1333 depc = regs->cp0_epc;
1334 regs->cp0_epc = old_epc;
1335 } else
1336 depc += 4;
1337 write_c0_depc(depc);
1338
1339#if 0
1340 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1341 write_c0_debug(debug | 0x100);
1342#endif
1343}
1344
1345/*
1346 * NMI exception handler.
1347 * No lock; only written during early bootup by CPU 0.
1348 */
1349static RAW_NOTIFIER_HEAD(nmi_chain);
1350
1351int register_nmi_notifier(struct notifier_block *nb)
1352{
1353 return raw_notifier_chain_register(&nmi_chain, nb);
1354}
1355
1356void __noreturn nmi_exception_handler(struct pt_regs *regs)
1357{
1358 raw_notifier_call_chain(&nmi_chain, 0, regs);
1359 bust_spinlocks(1);
1360 printk("NMI taken!!!!\n");
1361 die("NMI", regs);
1362}
1363
1364#define VECTORSPACING 0x100 /* for EI/VI mode */
1365
1366unsigned long ebase;
1367unsigned long exception_handlers[32];
1368unsigned long vi_handlers[64];
1369
1370void __init *set_except_vector(int n, void *addr)
1371{
1372 unsigned long handler = (unsigned long) addr;
1373 unsigned long old_handler = exception_handlers[n];
1374
1375 exception_handlers[n] = handler;
1376 if (n == 0 && cpu_has_divec) {
1377 unsigned long jump_mask = ~((1 << 28) - 1);
1378 u32 *buf = (u32 *)(ebase + 0x200);
1379 unsigned int k0 = 26;
1380 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1381 uasm_i_j(&buf, handler & ~jump_mask);
1382 uasm_i_nop(&buf);
1383 } else {
1384 UASM_i_LA(&buf, k0, handler);
1385 uasm_i_jr(&buf, k0);
1386 uasm_i_nop(&buf);
1387 }
1388 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1389 }
1390 return (void *)old_handler;
1391}
1392
1393static asmlinkage void do_default_vi(void)
1394{
1395 show_regs(get_irq_regs());
1396 panic("Caught unexpected vectored interrupt.");
1397}
1398
1399static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1400{
1401 unsigned long handler;
1402 unsigned long old_handler = vi_handlers[n];
1403 int srssets = current_cpu_data.srsets;
1404 u32 *w;
1405 unsigned char *b;
1406
1407 BUG_ON(!cpu_has_veic && !cpu_has_vint);
1408
1409 if (addr == NULL) {
1410 handler = (unsigned long) do_default_vi;
1411 srs = 0;
1412 } else
1413 handler = (unsigned long) addr;
1414 vi_handlers[n] = (unsigned long) addr;
1415
1416 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1417
1418 if (srs >= srssets)
1419 panic("Shadow register set %d not supported", srs);
1420
1421 if (cpu_has_veic) {
1422 if (board_bind_eic_interrupt)
1423 board_bind_eic_interrupt(n, srs);
1424 } else if (cpu_has_vint) {
1425 /* SRSMap is only defined if shadow sets are implemented */
1426 if (srssets > 1)
1427 change_c0_srsmap(0xf << n*4, srs << n*4);
1428 }
1429
1430 if (srs == 0) {
1431 /*
1432 * If no shadow set is selected then use the default handler
1433 * that does normal register saving and a standard interrupt exit
1434 */
1435
1436 extern char except_vec_vi, except_vec_vi_lui;
1437 extern char except_vec_vi_ori, except_vec_vi_end;
1438 extern char rollback_except_vec_vi;
1439 char *vec_start = (cpu_wait == r4k_wait) ?
1440 &rollback_except_vec_vi : &except_vec_vi;
1441#ifdef CONFIG_MIPS_MT_SMTC
1442 /*
1443 * We need to provide the SMTC vectored interrupt handler
1444 * not only with the address of the handler, but with the
1445 * Status.IM bit to be masked before going there.
1446 */
1447 extern char except_vec_vi_mori;
1448 const int mori_offset = &except_vec_vi_mori - vec_start;
1449#endif /* CONFIG_MIPS_MT_SMTC */
1450 const int handler_len = &except_vec_vi_end - vec_start;
1451 const int lui_offset = &except_vec_vi_lui - vec_start;
1452 const int ori_offset = &except_vec_vi_ori - vec_start;
1453
1454 if (handler_len > VECTORSPACING) {
1455 /*
1456 * Sigh... panicing won't help as the console
1457 * is probably not configured :(
1458 */
1459 panic("VECTORSPACING too small");
1460 }
1461
1462 memcpy(b, vec_start, handler_len);
1463#ifdef CONFIG_MIPS_MT_SMTC
1464 BUG_ON(n > 7); /* Vector index %d exceeds SMTC maximum. */
1465
1466 w = (u32 *)(b + mori_offset);
1467 *w = (*w & 0xffff0000) | (0x100 << n);
1468#endif /* CONFIG_MIPS_MT_SMTC */
1469 w = (u32 *)(b + lui_offset);
1470 *w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1471 w = (u32 *)(b + ori_offset);
1472 *w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1473 local_flush_icache_range((unsigned long)b,
1474 (unsigned long)(b+handler_len));
1475 }
1476 else {
1477 /*
1478 * In other cases jump directly to the interrupt handler
1479 *
1480 * It is the handlers responsibility to save registers if required
1481 * (eg hi/lo) and return from the exception using "eret"
1482 */
1483 w = (u32 *)b;
1484 *w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1485 *w = 0;
1486 local_flush_icache_range((unsigned long)b,
1487 (unsigned long)(b+8));
1488 }
1489
1490 return (void *)old_handler;
1491}
1492
1493void *set_vi_handler(int n, vi_handler_t addr)
1494{
1495 return set_vi_srs_handler(n, addr, 0);
1496}
1497
1498extern void tlb_init(void);
1499extern void flush_tlb_handlers(void);
1500
1501/*
1502 * Timer interrupt
1503 */
1504int cp0_compare_irq;
1505EXPORT_SYMBOL_GPL(cp0_compare_irq);
1506int cp0_compare_irq_shift;
1507
1508/*
1509 * Performance counter IRQ or -1 if shared with timer
1510 */
1511int cp0_perfcount_irq;
1512EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1513
1514static int __cpuinitdata noulri;
1515
1516static int __init ulri_disable(char *s)
1517{
1518 pr_info("Disabling ulri\n");
1519 noulri = 1;
1520
1521 return 1;
1522}
1523__setup("noulri", ulri_disable);
1524
1525void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
1526{
1527 unsigned int cpu = smp_processor_id();
1528 unsigned int status_set = ST0_CU0;
1529 unsigned int hwrena = cpu_hwrena_impl_bits;
1530#ifdef CONFIG_MIPS_MT_SMTC
1531 int secondaryTC = 0;
1532 int bootTC = (cpu == 0);
1533
1534 /*
1535 * Only do per_cpu_trap_init() for first TC of Each VPE.
1536 * Note that this hack assumes that the SMTC init code
1537 * assigns TCs consecutively and in ascending order.
1538 */
1539
1540 if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1541 ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1542 secondaryTC = 1;
1543#endif /* CONFIG_MIPS_MT_SMTC */
1544
1545 /*
1546 * Disable coprocessors and select 32-bit or 64-bit addressing
1547 * and the 16/32 or 32/32 FPR register model. Reset the BEV
1548 * flag that some firmware may have left set and the TS bit (for
1549 * IP27). Set XX for ISA IV code to work.
1550 */
1551#ifdef CONFIG_64BIT
1552 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1553#endif
1554 if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1555 status_set |= ST0_XX;
1556 if (cpu_has_dsp)
1557 status_set |= ST0_MX;
1558
1559 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1560 status_set);
1561
1562 if (cpu_has_mips_r2)
1563 hwrena |= 0x0000000f;
1564
1565 if (!noulri && cpu_has_userlocal)
1566 hwrena |= (1 << 29);
1567
1568 if (hwrena)
1569 write_c0_hwrena(hwrena);
1570
1571#ifdef CONFIG_MIPS_MT_SMTC
1572 if (!secondaryTC) {
1573#endif /* CONFIG_MIPS_MT_SMTC */
1574
1575 if (cpu_has_veic || cpu_has_vint) {
1576 unsigned long sr = set_c0_status(ST0_BEV);
1577 write_c0_ebase(ebase);
1578 write_c0_status(sr);
1579 /* Setting vector spacing enables EI/VI mode */
1580 change_c0_intctl(0x3e0, VECTORSPACING);
1581 }
1582 if (cpu_has_divec) {
1583 if (cpu_has_mipsmt) {
1584 unsigned int vpflags = dvpe();
1585 set_c0_cause(CAUSEF_IV);
1586 evpe(vpflags);
1587 } else
1588 set_c0_cause(CAUSEF_IV);
1589 }
1590
1591 /*
1592 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1593 *
1594 * o read IntCtl.IPTI to determine the timer interrupt
1595 * o read IntCtl.IPPCI to determine the performance counter interrupt
1596 */
1597 if (cpu_has_mips_r2) {
1598 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1599 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1600 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1601 if (cp0_perfcount_irq == cp0_compare_irq)
1602 cp0_perfcount_irq = -1;
1603 } else {
1604 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1605 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1606 cp0_perfcount_irq = -1;
1607 }
1608
1609#ifdef CONFIG_MIPS_MT_SMTC
1610 }
1611#endif /* CONFIG_MIPS_MT_SMTC */
1612
1613 if (!cpu_data[cpu].asid_cache)
1614 cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1615
1616 atomic_inc(&init_mm.mm_count);
1617 current->active_mm = &init_mm;
1618 BUG_ON(current->mm);
1619 enter_lazy_tlb(&init_mm, current);
1620
1621#ifdef CONFIG_MIPS_MT_SMTC
1622 if (bootTC) {
1623#endif /* CONFIG_MIPS_MT_SMTC */
1624 /* Boot CPU's cache setup in setup_arch(). */
1625 if (!is_boot_cpu)
1626 cpu_cache_init();
1627 tlb_init();
1628#ifdef CONFIG_MIPS_MT_SMTC
1629 } else if (!secondaryTC) {
1630 /*
1631 * First TC in non-boot VPE must do subset of tlb_init()
1632 * for MMU countrol registers.
1633 */
1634 write_c0_pagemask(PM_DEFAULT_MASK);
1635 write_c0_wired(0);
1636 }
1637#endif /* CONFIG_MIPS_MT_SMTC */
1638 TLBMISS_HANDLER_SETUP();
1639}
1640
1641/* Install CPU exception handler */
1642void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1643{
1644 memcpy((void *)(ebase + offset), addr, size);
1645 local_flush_icache_range(ebase + offset, ebase + offset + size);
1646}
1647
1648static char panic_null_cerr[] __cpuinitdata =
1649 "Trying to set NULL cache error exception handler";
1650
1651/*
1652 * Install uncached CPU exception handler.
1653 * This is suitable only for the cache error exception which is the only
1654 * exception handler that is being run uncached.
1655 */
1656void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1657 unsigned long size)
1658{
1659 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1660
1661 if (!addr)
1662 panic(panic_null_cerr);
1663
1664 memcpy((void *)(uncached_ebase + offset), addr, size);
1665}
1666
1667static int __initdata rdhwr_noopt;
1668static int __init set_rdhwr_noopt(char *str)
1669{
1670 rdhwr_noopt = 1;
1671 return 1;
1672}
1673
1674__setup("rdhwr_noopt", set_rdhwr_noopt);
1675
1676void __init trap_init(void)
1677{
1678 extern char except_vec3_generic, except_vec3_r4000;
1679 extern char except_vec4;
1680 unsigned long i;
1681 int rollback;
1682
1683 check_wait();
1684 rollback = (cpu_wait == r4k_wait);
1685
1686#if defined(CONFIG_KGDB)
1687 if (kgdb_early_setup)
1688 return; /* Already done */
1689#endif
1690
1691 if (cpu_has_veic || cpu_has_vint) {
1692 unsigned long size = 0x200 + VECTORSPACING*64;
1693 ebase = (unsigned long)
1694 __alloc_bootmem(size, 1 << fls(size), 0);
1695 } else {
1696 ebase = CKSEG0;
1697 if (cpu_has_mips_r2)
1698 ebase += (read_c0_ebase() & 0x3ffff000);
1699 }
1700
1701 if (board_ebase_setup)
1702 board_ebase_setup();
1703 per_cpu_trap_init(true);
1704
1705 /*
1706 * Copy the generic exception handlers to their final destination.
1707 * This will be overriden later as suitable for a particular
1708 * configuration.
1709 */
1710 set_handler(0x180, &except_vec3_generic, 0x80);
1711
1712 /*
1713 * Setup default vectors
1714 */
1715 for (i = 0; i <= 31; i++)
1716 set_except_vector(i, handle_reserved);
1717
1718 /*
1719 * Copy the EJTAG debug exception vector handler code to it's final
1720 * destination.
1721 */
1722 if (cpu_has_ejtag && board_ejtag_handler_setup)
1723 board_ejtag_handler_setup();
1724
1725 /*
1726 * Only some CPUs have the watch exceptions.
1727 */
1728 if (cpu_has_watch)
1729 set_except_vector(23, handle_watch);
1730
1731 /*
1732 * Initialise interrupt handlers
1733 */
1734 if (cpu_has_veic || cpu_has_vint) {
1735 int nvec = cpu_has_veic ? 64 : 8;
1736 for (i = 0; i < nvec; i++)
1737 set_vi_handler(i, NULL);
1738 }
1739 else if (cpu_has_divec)
1740 set_handler(0x200, &except_vec4, 0x8);
1741
1742 /*
1743 * Some CPUs can enable/disable for cache parity detection, but does
1744 * it different ways.
1745 */
1746 parity_protection_init();
1747
1748 /*
1749 * The Data Bus Errors / Instruction Bus Errors are signaled
1750 * by external hardware. Therefore these two exceptions
1751 * may have board specific handlers.
1752 */
1753 if (board_be_init)
1754 board_be_init();
1755
1756 set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1757 set_except_vector(1, handle_tlbm);
1758 set_except_vector(2, handle_tlbl);
1759 set_except_vector(3, handle_tlbs);
1760
1761 set_except_vector(4, handle_adel);
1762 set_except_vector(5, handle_ades);
1763
1764 set_except_vector(6, handle_ibe);
1765 set_except_vector(7, handle_dbe);
1766
1767 set_except_vector(8, handle_sys);
1768 set_except_vector(9, handle_bp);
1769 set_except_vector(10, rdhwr_noopt ? handle_ri :
1770 (cpu_has_vtag_icache ?
1771 handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1772 set_except_vector(11, handle_cpu);
1773 set_except_vector(12, handle_ov);
1774 set_except_vector(13, handle_tr);
1775
1776 if (current_cpu_type() == CPU_R6000 ||
1777 current_cpu_type() == CPU_R6000A) {
1778 /*
1779 * The R6000 is the only R-series CPU that features a machine
1780 * check exception (similar to the R4000 cache error) and
1781 * unaligned ldc1/sdc1 exception. The handlers have not been
1782 * written yet. Well, anyway there is no R6000 machine on the
1783 * current list of targets for Linux/MIPS.
1784 * (Duh, crap, there is someone with a triple R6k machine)
1785 */
1786 //set_except_vector(14, handle_mc);
1787 //set_except_vector(15, handle_ndc);
1788 }
1789
1790
1791 if (board_nmi_handler_setup)
1792 board_nmi_handler_setup();
1793
1794 if (cpu_has_fpu && !cpu_has_nofpuex)
1795 set_except_vector(15, handle_fpe);
1796
1797 set_except_vector(22, handle_mdmx);
1798
1799 if (cpu_has_mcheck)
1800 set_except_vector(24, handle_mcheck);
1801
1802 if (cpu_has_mipsmt)
1803 set_except_vector(25, handle_mt);
1804
1805 set_except_vector(26, handle_dsp);
1806
1807 if (board_cache_error_setup)
1808 board_cache_error_setup();
1809
1810 if (cpu_has_vce)
1811 /* Special exception: R4[04]00 uses also the divec space. */
1812 memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1813 else if (cpu_has_4kex)
1814 memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1815 else
1816 memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1817
1818 local_flush_icache_range(ebase, ebase + 0x400);
1819 flush_tlb_handlers();
1820
1821 sort_extable(__start___dbe_table, __stop___dbe_table);
1822
1823 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
1824}
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
7 * Copyright (C) 1995, 1996 Paul M. Antoine
8 * Copyright (C) 1998 Ulf Carlsson
9 * Copyright (C) 1999 Silicon Graphics, Inc.
10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
11 * Copyright (C) 2002, 2003, 2004, 2005, 2007 Maciej W. Rozycki
12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc. All rights reserved.
13 * Copyright (C) 2014, Imagination Technologies Ltd.
14 */
15#include <linux/bitops.h>
16#include <linux/bug.h>
17#include <linux/compiler.h>
18#include <linux/context_tracking.h>
19#include <linux/cpu_pm.h>
20#include <linux/kexec.h>
21#include <linux/init.h>
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/extable.h>
25#include <linux/mm.h>
26#include <linux/sched/mm.h>
27#include <linux/sched/debug.h>
28#include <linux/smp.h>
29#include <linux/spinlock.h>
30#include <linux/kallsyms.h>
31#include <linux/memblock.h>
32#include <linux/interrupt.h>
33#include <linux/ptrace.h>
34#include <linux/kgdb.h>
35#include <linux/kdebug.h>
36#include <linux/kprobes.h>
37#include <linux/notifier.h>
38#include <linux/kdb.h>
39#include <linux/irq.h>
40#include <linux/perf_event.h>
41
42#include <asm/addrspace.h>
43#include <asm/bootinfo.h>
44#include <asm/branch.h>
45#include <asm/break.h>
46#include <asm/cop2.h>
47#include <asm/cpu.h>
48#include <asm/cpu-type.h>
49#include <asm/dsp.h>
50#include <asm/fpu.h>
51#include <asm/fpu_emulator.h>
52#include <asm/idle.h>
53#include <asm/isa-rev.h>
54#include <asm/mips-cps.h>
55#include <asm/mips-r2-to-r6-emul.h>
56#include <asm/mipsregs.h>
57#include <asm/mipsmtregs.h>
58#include <asm/module.h>
59#include <asm/msa.h>
60#include <asm/ptrace.h>
61#include <asm/sections.h>
62#include <asm/siginfo.h>
63#include <asm/tlbdebug.h>
64#include <asm/traps.h>
65#include <linux/uaccess.h>
66#include <asm/watch.h>
67#include <asm/mmu_context.h>
68#include <asm/types.h>
69#include <asm/stacktrace.h>
70#include <asm/tlbex.h>
71#include <asm/uasm.h>
72
73#include <asm/mach-loongson64/cpucfg-emul.h>
74
75#include "access-helper.h"
76
77extern void check_wait(void);
78extern asmlinkage void rollback_handle_int(void);
79extern asmlinkage void handle_int(void);
80extern asmlinkage void handle_adel(void);
81extern asmlinkage void handle_ades(void);
82extern asmlinkage void handle_ibe(void);
83extern asmlinkage void handle_dbe(void);
84extern asmlinkage void handle_sys(void);
85extern asmlinkage void handle_bp(void);
86extern asmlinkage void handle_ri(void);
87extern asmlinkage void handle_ri_rdhwr_tlbp(void);
88extern asmlinkage void handle_ri_rdhwr(void);
89extern asmlinkage void handle_cpu(void);
90extern asmlinkage void handle_ov(void);
91extern asmlinkage void handle_tr(void);
92extern asmlinkage void handle_msa_fpe(void);
93extern asmlinkage void handle_fpe(void);
94extern asmlinkage void handle_ftlb(void);
95extern asmlinkage void handle_gsexc(void);
96extern asmlinkage void handle_msa(void);
97extern asmlinkage void handle_mdmx(void);
98extern asmlinkage void handle_watch(void);
99extern asmlinkage void handle_mt(void);
100extern asmlinkage void handle_dsp(void);
101extern asmlinkage void handle_mcheck(void);
102extern asmlinkage void handle_reserved(void);
103extern void tlb_do_page_fault_0(void);
104
105void (*board_be_init)(void);
106int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
107void (*board_nmi_handler_setup)(void);
108void (*board_ejtag_handler_setup)(void);
109void (*board_bind_eic_interrupt)(int irq, int regset);
110void (*board_ebase_setup)(void);
111void(*board_cache_error_setup)(void);
112
113static void show_raw_backtrace(unsigned long reg29, const char *loglvl,
114 bool user)
115{
116 unsigned long *sp = (unsigned long *)(reg29 & ~3);
117 unsigned long addr;
118
119 printk("%sCall Trace:", loglvl);
120#ifdef CONFIG_KALLSYMS
121 printk("%s\n", loglvl);
122#endif
123 while (!kstack_end(sp)) {
124 if (__get_addr(&addr, sp++, user)) {
125 printk("%s (Bad stack address)", loglvl);
126 break;
127 }
128 if (__kernel_text_address(addr))
129 print_ip_sym(loglvl, addr);
130 }
131 printk("%s\n", loglvl);
132}
133
134#ifdef CONFIG_KALLSYMS
135int raw_show_trace;
136static int __init set_raw_show_trace(char *str)
137{
138 raw_show_trace = 1;
139 return 1;
140}
141__setup("raw_show_trace", set_raw_show_trace);
142#endif
143
144static void show_backtrace(struct task_struct *task, const struct pt_regs *regs,
145 const char *loglvl, bool user)
146{
147 unsigned long sp = regs->regs[29];
148 unsigned long ra = regs->regs[31];
149 unsigned long pc = regs->cp0_epc;
150
151 if (!task)
152 task = current;
153
154 if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
155 show_raw_backtrace(sp, loglvl, user);
156 return;
157 }
158 printk("%sCall Trace:\n", loglvl);
159 do {
160 print_ip_sym(loglvl, pc);
161 pc = unwind_stack(task, &sp, pc, &ra);
162 } while (pc);
163 pr_cont("\n");
164}
165
166/*
167 * This routine abuses get_user()/put_user() to reference pointers
168 * with at least a bit of error checking ...
169 */
170static void show_stacktrace(struct task_struct *task,
171 const struct pt_regs *regs, const char *loglvl, bool user)
172{
173 const int field = 2 * sizeof(unsigned long);
174 unsigned long stackdata;
175 int i;
176 unsigned long *sp = (unsigned long *)regs->regs[29];
177
178 printk("%sStack :", loglvl);
179 i = 0;
180 while ((unsigned long) sp & (PAGE_SIZE - 1)) {
181 if (i && ((i % (64 / field)) == 0)) {
182 pr_cont("\n");
183 printk("%s ", loglvl);
184 }
185 if (i > 39) {
186 pr_cont(" ...");
187 break;
188 }
189
190 if (__get_addr(&stackdata, sp++, user)) {
191 pr_cont(" (Bad stack address)");
192 break;
193 }
194
195 pr_cont(" %0*lx", field, stackdata);
196 i++;
197 }
198 pr_cont("\n");
199 show_backtrace(task, regs, loglvl, user);
200}
201
202void show_stack(struct task_struct *task, unsigned long *sp, const char *loglvl)
203{
204 struct pt_regs regs;
205
206 regs.cp0_status = KSU_KERNEL;
207 if (sp) {
208 regs.regs[29] = (unsigned long)sp;
209 regs.regs[31] = 0;
210 regs.cp0_epc = 0;
211 } else {
212 if (task && task != current) {
213 regs.regs[29] = task->thread.reg29;
214 regs.regs[31] = 0;
215 regs.cp0_epc = task->thread.reg31;
216 } else {
217 prepare_frametrace(®s);
218 }
219 }
220 show_stacktrace(task, ®s, loglvl, false);
221}
222
223static void show_code(void *pc, bool user)
224{
225 long i;
226 unsigned short *pc16 = NULL;
227
228 printk("Code:");
229
230 if ((unsigned long)pc & 1)
231 pc16 = (u16 *)((unsigned long)pc & ~1);
232
233 for(i = -3 ; i < 6 ; i++) {
234 if (pc16) {
235 u16 insn16;
236
237 if (__get_inst16(&insn16, pc16 + i, user))
238 goto bad_address;
239
240 pr_cont("%c%04x%c", (i?' ':'<'), insn16, (i?' ':'>'));
241 } else {
242 u32 insn32;
243
244 if (__get_inst32(&insn32, (u32 *)pc + i, user))
245 goto bad_address;
246
247 pr_cont("%c%08x%c", (i?' ':'<'), insn32, (i?' ':'>'));
248 }
249 }
250 pr_cont("\n");
251 return;
252
253bad_address:
254 pr_cont(" (Bad address in epc)\n\n");
255}
256
257static void __show_regs(const struct pt_regs *regs)
258{
259 const int field = 2 * sizeof(unsigned long);
260 unsigned int cause = regs->cp0_cause;
261 unsigned int exccode;
262 int i;
263
264 show_regs_print_info(KERN_DEFAULT);
265
266 /*
267 * Saved main processor registers
268 */
269 for (i = 0; i < 32; ) {
270 if ((i % 4) == 0)
271 printk("$%2d :", i);
272 if (i == 0)
273 pr_cont(" %0*lx", field, 0UL);
274 else if (i == 26 || i == 27)
275 pr_cont(" %*s", field, "");
276 else
277 pr_cont(" %0*lx", field, regs->regs[i]);
278
279 i++;
280 if ((i % 4) == 0)
281 pr_cont("\n");
282 }
283
284#ifdef CONFIG_CPU_HAS_SMARTMIPS
285 printk("Acx : %0*lx\n", field, regs->acx);
286#endif
287 if (MIPS_ISA_REV < 6) {
288 printk("Hi : %0*lx\n", field, regs->hi);
289 printk("Lo : %0*lx\n", field, regs->lo);
290 }
291
292 /*
293 * Saved cp0 registers
294 */
295 printk("epc : %0*lx %pS\n", field, regs->cp0_epc,
296 (void *) regs->cp0_epc);
297 printk("ra : %0*lx %pS\n", field, regs->regs[31],
298 (void *) regs->regs[31]);
299
300 printk("Status: %08x ", (uint32_t) regs->cp0_status);
301
302 if (cpu_has_3kex) {
303 if (regs->cp0_status & ST0_KUO)
304 pr_cont("KUo ");
305 if (regs->cp0_status & ST0_IEO)
306 pr_cont("IEo ");
307 if (regs->cp0_status & ST0_KUP)
308 pr_cont("KUp ");
309 if (regs->cp0_status & ST0_IEP)
310 pr_cont("IEp ");
311 if (regs->cp0_status & ST0_KUC)
312 pr_cont("KUc ");
313 if (regs->cp0_status & ST0_IEC)
314 pr_cont("IEc ");
315 } else if (cpu_has_4kex) {
316 if (regs->cp0_status & ST0_KX)
317 pr_cont("KX ");
318 if (regs->cp0_status & ST0_SX)
319 pr_cont("SX ");
320 if (regs->cp0_status & ST0_UX)
321 pr_cont("UX ");
322 switch (regs->cp0_status & ST0_KSU) {
323 case KSU_USER:
324 pr_cont("USER ");
325 break;
326 case KSU_SUPERVISOR:
327 pr_cont("SUPERVISOR ");
328 break;
329 case KSU_KERNEL:
330 pr_cont("KERNEL ");
331 break;
332 default:
333 pr_cont("BAD_MODE ");
334 break;
335 }
336 if (regs->cp0_status & ST0_ERL)
337 pr_cont("ERL ");
338 if (regs->cp0_status & ST0_EXL)
339 pr_cont("EXL ");
340 if (regs->cp0_status & ST0_IE)
341 pr_cont("IE ");
342 }
343 pr_cont("\n");
344
345 exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
346 printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
347
348 if (1 <= exccode && exccode <= 5)
349 printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
350
351 printk("PrId : %08x (%s)\n", read_c0_prid(),
352 cpu_name_string());
353}
354
355/*
356 * FIXME: really the generic show_regs should take a const pointer argument.
357 */
358void show_regs(struct pt_regs *regs)
359{
360 __show_regs(regs);
361 dump_stack();
362}
363
364void show_registers(struct pt_regs *regs)
365{
366 const int field = 2 * sizeof(unsigned long);
367
368 __show_regs(regs);
369 print_modules();
370 printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
371 current->comm, current->pid, current_thread_info(), current,
372 field, current_thread_info()->tp_value);
373 if (cpu_has_userlocal) {
374 unsigned long tls;
375
376 tls = read_c0_userlocal();
377 if (tls != current_thread_info()->tp_value)
378 printk("*HwTLS: %0*lx\n", field, tls);
379 }
380
381 show_stacktrace(current, regs, KERN_DEFAULT, user_mode(regs));
382 show_code((void *)regs->cp0_epc, user_mode(regs));
383 printk("\n");
384}
385
386static DEFINE_RAW_SPINLOCK(die_lock);
387
388void __noreturn die(const char *str, struct pt_regs *regs)
389{
390 static int die_counter;
391 int sig = SIGSEGV;
392
393 oops_enter();
394
395 if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
396 SIGSEGV) == NOTIFY_STOP)
397 sig = 0;
398
399 console_verbose();
400 raw_spin_lock_irq(&die_lock);
401 bust_spinlocks(1);
402
403 printk("%s[#%d]:\n", str, ++die_counter);
404 show_registers(regs);
405 add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
406 raw_spin_unlock_irq(&die_lock);
407
408 oops_exit();
409
410 if (in_interrupt())
411 panic("Fatal exception in interrupt");
412
413 if (panic_on_oops)
414 panic("Fatal exception");
415
416 if (regs && kexec_should_crash(current))
417 crash_kexec(regs);
418
419 do_exit(sig);
420}
421
422extern struct exception_table_entry __start___dbe_table[];
423extern struct exception_table_entry __stop___dbe_table[];
424
425__asm__(
426" .section __dbe_table, \"a\"\n"
427" .previous \n");
428
429/* Given an address, look for it in the exception tables. */
430static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
431{
432 const struct exception_table_entry *e;
433
434 e = search_extable(__start___dbe_table,
435 __stop___dbe_table - __start___dbe_table, addr);
436 if (!e)
437 e = search_module_dbetables(addr);
438 return e;
439}
440
441asmlinkage void do_be(struct pt_regs *regs)
442{
443 const int field = 2 * sizeof(unsigned long);
444 const struct exception_table_entry *fixup = NULL;
445 int data = regs->cp0_cause & 4;
446 int action = MIPS_BE_FATAL;
447 enum ctx_state prev_state;
448
449 prev_state = exception_enter();
450 /* XXX For now. Fixme, this searches the wrong table ... */
451 if (data && !user_mode(regs))
452 fixup = search_dbe_tables(exception_epc(regs));
453
454 if (fixup)
455 action = MIPS_BE_FIXUP;
456
457 if (board_be_handler)
458 action = board_be_handler(regs, fixup != NULL);
459 else
460 mips_cm_error_report();
461
462 switch (action) {
463 case MIPS_BE_DISCARD:
464 goto out;
465 case MIPS_BE_FIXUP:
466 if (fixup) {
467 regs->cp0_epc = fixup->nextinsn;
468 goto out;
469 }
470 break;
471 default:
472 break;
473 }
474
475 /*
476 * Assume it would be too dangerous to continue ...
477 */
478 printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
479 data ? "Data" : "Instruction",
480 field, regs->cp0_epc, field, regs->regs[31]);
481 if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
482 SIGBUS) == NOTIFY_STOP)
483 goto out;
484
485 die_if_kernel("Oops", regs);
486 force_sig(SIGBUS);
487
488out:
489 exception_exit(prev_state);
490}
491
492/*
493 * ll/sc, rdhwr, sync emulation
494 */
495
496#define OPCODE 0xfc000000
497#define BASE 0x03e00000
498#define RT 0x001f0000
499#define OFFSET 0x0000ffff
500#define LL 0xc0000000
501#define SC 0xe0000000
502#define SPEC0 0x00000000
503#define SPEC3 0x7c000000
504#define RD 0x0000f800
505#define FUNC 0x0000003f
506#define SYNC 0x0000000f
507#define RDHWR 0x0000003b
508
509/* microMIPS definitions */
510#define MM_POOL32A_FUNC 0xfc00ffff
511#define MM_RDHWR 0x00006b3c
512#define MM_RS 0x001f0000
513#define MM_RT 0x03e00000
514
515/*
516 * The ll_bit is cleared by r*_switch.S
517 */
518
519unsigned int ll_bit;
520struct task_struct *ll_task;
521
522static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
523{
524 unsigned long value, __user *vaddr;
525 long offset;
526
527 /*
528 * analyse the ll instruction that just caused a ri exception
529 * and put the referenced address to addr.
530 */
531
532 /* sign extend offset */
533 offset = opcode & OFFSET;
534 offset <<= 16;
535 offset >>= 16;
536
537 vaddr = (unsigned long __user *)
538 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
539
540 if ((unsigned long)vaddr & 3)
541 return SIGBUS;
542 if (get_user(value, vaddr))
543 return SIGSEGV;
544
545 preempt_disable();
546
547 if (ll_task == NULL || ll_task == current) {
548 ll_bit = 1;
549 } else {
550 ll_bit = 0;
551 }
552 ll_task = current;
553
554 preempt_enable();
555
556 regs->regs[(opcode & RT) >> 16] = value;
557
558 return 0;
559}
560
561static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
562{
563 unsigned long __user *vaddr;
564 unsigned long reg;
565 long offset;
566
567 /*
568 * analyse the sc instruction that just caused a ri exception
569 * and put the referenced address to addr.
570 */
571
572 /* sign extend offset */
573 offset = opcode & OFFSET;
574 offset <<= 16;
575 offset >>= 16;
576
577 vaddr = (unsigned long __user *)
578 ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
579 reg = (opcode & RT) >> 16;
580
581 if ((unsigned long)vaddr & 3)
582 return SIGBUS;
583
584 preempt_disable();
585
586 if (ll_bit == 0 || ll_task != current) {
587 regs->regs[reg] = 0;
588 preempt_enable();
589 return 0;
590 }
591
592 preempt_enable();
593
594 if (put_user(regs->regs[reg], vaddr))
595 return SIGSEGV;
596
597 regs->regs[reg] = 1;
598
599 return 0;
600}
601
602/*
603 * ll uses the opcode of lwc0 and sc uses the opcode of swc0. That is both
604 * opcodes are supposed to result in coprocessor unusable exceptions if
605 * executed on ll/sc-less processors. That's the theory. In practice a
606 * few processors such as NEC's VR4100 throw reserved instruction exceptions
607 * instead, so we're doing the emulation thing in both exception handlers.
608 */
609static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
610{
611 if ((opcode & OPCODE) == LL) {
612 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
613 1, regs, 0);
614 return simulate_ll(regs, opcode);
615 }
616 if ((opcode & OPCODE) == SC) {
617 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
618 1, regs, 0);
619 return simulate_sc(regs, opcode);
620 }
621
622 return -1; /* Must be something else ... */
623}
624
625/*
626 * Simulate trapping 'rdhwr' instructions to provide user accessible
627 * registers not implemented in hardware.
628 */
629static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
630{
631 struct thread_info *ti = task_thread_info(current);
632
633 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
634 1, regs, 0);
635 switch (rd) {
636 case MIPS_HWR_CPUNUM: /* CPU number */
637 regs->regs[rt] = smp_processor_id();
638 return 0;
639 case MIPS_HWR_SYNCISTEP: /* SYNCI length */
640 regs->regs[rt] = min(current_cpu_data.dcache.linesz,
641 current_cpu_data.icache.linesz);
642 return 0;
643 case MIPS_HWR_CC: /* Read count register */
644 regs->regs[rt] = read_c0_count();
645 return 0;
646 case MIPS_HWR_CCRES: /* Count register resolution */
647 switch (current_cpu_type()) {
648 case CPU_20KC:
649 case CPU_25KF:
650 regs->regs[rt] = 1;
651 break;
652 default:
653 regs->regs[rt] = 2;
654 }
655 return 0;
656 case MIPS_HWR_ULR: /* Read UserLocal register */
657 regs->regs[rt] = ti->tp_value;
658 return 0;
659 default:
660 return -1;
661 }
662}
663
664static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
665{
666 if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
667 int rd = (opcode & RD) >> 11;
668 int rt = (opcode & RT) >> 16;
669
670 simulate_rdhwr(regs, rd, rt);
671 return 0;
672 }
673
674 /* Not ours. */
675 return -1;
676}
677
678static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
679{
680 if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
681 int rd = (opcode & MM_RS) >> 16;
682 int rt = (opcode & MM_RT) >> 21;
683 simulate_rdhwr(regs, rd, rt);
684 return 0;
685 }
686
687 /* Not ours. */
688 return -1;
689}
690
691static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
692{
693 if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
694 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
695 1, regs, 0);
696 return 0;
697 }
698
699 return -1; /* Must be something else ... */
700}
701
702/*
703 * Loongson-3 CSR instructions emulation
704 */
705
706#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
707
708#define LWC2 0xc8000000
709#define RS BASE
710#define CSR_OPCODE2 0x00000118
711#define CSR_OPCODE2_MASK 0x000007ff
712#define CSR_FUNC_MASK RT
713#define CSR_FUNC_CPUCFG 0x8
714
715static int simulate_loongson3_cpucfg(struct pt_regs *regs,
716 unsigned int opcode)
717{
718 int op = opcode & OPCODE;
719 int op2 = opcode & CSR_OPCODE2_MASK;
720 int csr_func = (opcode & CSR_FUNC_MASK) >> 16;
721
722 if (op == LWC2 && op2 == CSR_OPCODE2 && csr_func == CSR_FUNC_CPUCFG) {
723 int rd = (opcode & RD) >> 11;
724 int rs = (opcode & RS) >> 21;
725 __u64 sel = regs->regs[rs];
726
727 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS, 1, regs, 0);
728
729 /* Do not emulate on unsupported core models. */
730 preempt_disable();
731 if (!loongson3_cpucfg_emulation_enabled(¤t_cpu_data)) {
732 preempt_enable();
733 return -1;
734 }
735 regs->regs[rd] = loongson3_cpucfg_read_synthesized(
736 ¤t_cpu_data, sel);
737 preempt_enable();
738 return 0;
739 }
740
741 /* Not ours. */
742 return -1;
743}
744#endif /* CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION */
745
746asmlinkage void do_ov(struct pt_regs *regs)
747{
748 enum ctx_state prev_state;
749
750 prev_state = exception_enter();
751 die_if_kernel("Integer overflow", regs);
752
753 force_sig_fault(SIGFPE, FPE_INTOVF, (void __user *)regs->cp0_epc);
754 exception_exit(prev_state);
755}
756
757#ifdef CONFIG_MIPS_FP_SUPPORT
758
759/*
760 * Send SIGFPE according to FCSR Cause bits, which must have already
761 * been masked against Enable bits. This is impotant as Inexact can
762 * happen together with Overflow or Underflow, and `ptrace' can set
763 * any bits.
764 */
765void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
766 struct task_struct *tsk)
767{
768 int si_code = FPE_FLTUNK;
769
770 if (fcr31 & FPU_CSR_INV_X)
771 si_code = FPE_FLTINV;
772 else if (fcr31 & FPU_CSR_DIV_X)
773 si_code = FPE_FLTDIV;
774 else if (fcr31 & FPU_CSR_OVF_X)
775 si_code = FPE_FLTOVF;
776 else if (fcr31 & FPU_CSR_UDF_X)
777 si_code = FPE_FLTUND;
778 else if (fcr31 & FPU_CSR_INE_X)
779 si_code = FPE_FLTRES;
780
781 force_sig_fault_to_task(SIGFPE, si_code, fault_addr, tsk);
782}
783
784int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
785{
786 int si_code;
787
788 switch (sig) {
789 case 0:
790 return 0;
791
792 case SIGFPE:
793 force_fcr31_sig(fcr31, fault_addr, current);
794 return 1;
795
796 case SIGBUS:
797 force_sig_fault(SIGBUS, BUS_ADRERR, fault_addr);
798 return 1;
799
800 case SIGSEGV:
801 mmap_read_lock(current->mm);
802 if (vma_lookup(current->mm, (unsigned long)fault_addr))
803 si_code = SEGV_ACCERR;
804 else
805 si_code = SEGV_MAPERR;
806 mmap_read_unlock(current->mm);
807 force_sig_fault(SIGSEGV, si_code, fault_addr);
808 return 1;
809
810 default:
811 force_sig(sig);
812 return 1;
813 }
814}
815
816static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
817 unsigned long old_epc, unsigned long old_ra)
818{
819 union mips_instruction inst = { .word = opcode };
820 void __user *fault_addr;
821 unsigned long fcr31;
822 int sig;
823
824 /* If it's obviously not an FP instruction, skip it */
825 switch (inst.i_format.opcode) {
826 case cop1_op:
827 case cop1x_op:
828 case lwc1_op:
829 case ldc1_op:
830 case swc1_op:
831 case sdc1_op:
832 break;
833
834 default:
835 return -1;
836 }
837
838 /*
839 * do_ri skipped over the instruction via compute_return_epc, undo
840 * that for the FPU emulator.
841 */
842 regs->cp0_epc = old_epc;
843 regs->regs[31] = old_ra;
844
845 /* Run the emulator */
846 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
847 &fault_addr);
848
849 /*
850 * We can't allow the emulated instruction to leave any
851 * enabled Cause bits set in $fcr31.
852 */
853 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
854 current->thread.fpu.fcr31 &= ~fcr31;
855
856 /* Restore the hardware register state */
857 own_fpu(1);
858
859 /* Send a signal if required. */
860 process_fpemu_return(sig, fault_addr, fcr31);
861
862 return 0;
863}
864
865/*
866 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
867 */
868asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
869{
870 enum ctx_state prev_state;
871 void __user *fault_addr;
872 int sig;
873
874 prev_state = exception_enter();
875 if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
876 SIGFPE) == NOTIFY_STOP)
877 goto out;
878
879 /* Clear FCSR.Cause before enabling interrupts */
880 write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
881 local_irq_enable();
882
883 die_if_kernel("FP exception in kernel code", regs);
884
885 if (fcr31 & FPU_CSR_UNI_X) {
886 /*
887 * Unimplemented operation exception. If we've got the full
888 * software emulator on-board, let's use it...
889 *
890 * Force FPU to dump state into task/thread context. We're
891 * moving a lot of data here for what is probably a single
892 * instruction, but the alternative is to pre-decode the FP
893 * register operands before invoking the emulator, which seems
894 * a bit extreme for what should be an infrequent event.
895 */
896
897 /* Run the emulator */
898 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 1,
899 &fault_addr);
900
901 /*
902 * We can't allow the emulated instruction to leave any
903 * enabled Cause bits set in $fcr31.
904 */
905 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
906 current->thread.fpu.fcr31 &= ~fcr31;
907
908 /* Restore the hardware register state */
909 own_fpu(1); /* Using the FPU again. */
910 } else {
911 sig = SIGFPE;
912 fault_addr = (void __user *) regs->cp0_epc;
913 }
914
915 /* Send a signal if required. */
916 process_fpemu_return(sig, fault_addr, fcr31);
917
918out:
919 exception_exit(prev_state);
920}
921
922/*
923 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
924 * emulated more than some threshold number of instructions, force migration to
925 * a "CPU" that has FP support.
926 */
927static void mt_ase_fp_affinity(void)
928{
929#ifdef CONFIG_MIPS_MT_FPAFF
930 if (mt_fpemul_threshold > 0 &&
931 ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
932 /*
933 * If there's no FPU present, or if the application has already
934 * restricted the allowed set to exclude any CPUs with FPUs,
935 * we'll skip the procedure.
936 */
937 if (cpumask_intersects(¤t->cpus_mask, &mt_fpu_cpumask)) {
938 cpumask_t tmask;
939
940 current->thread.user_cpus_allowed
941 = current->cpus_mask;
942 cpumask_and(&tmask, ¤t->cpus_mask,
943 &mt_fpu_cpumask);
944 set_cpus_allowed_ptr(current, &tmask);
945 set_thread_flag(TIF_FPUBOUND);
946 }
947 }
948#endif /* CONFIG_MIPS_MT_FPAFF */
949}
950
951#else /* !CONFIG_MIPS_FP_SUPPORT */
952
953static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
954 unsigned long old_epc, unsigned long old_ra)
955{
956 return -1;
957}
958
959#endif /* !CONFIG_MIPS_FP_SUPPORT */
960
961void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
962 const char *str)
963{
964 char b[40];
965
966#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
967 if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
968 SIGTRAP) == NOTIFY_STOP)
969 return;
970#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
971
972 if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
973 SIGTRAP) == NOTIFY_STOP)
974 return;
975
976 /*
977 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
978 * insns, even for trap and break codes that indicate arithmetic
979 * failures. Weird ...
980 * But should we continue the brokenness??? --macro
981 */
982 switch (code) {
983 case BRK_OVERFLOW:
984 case BRK_DIVZERO:
985 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
986 die_if_kernel(b, regs);
987 force_sig_fault(SIGFPE,
988 code == BRK_DIVZERO ? FPE_INTDIV : FPE_INTOVF,
989 (void __user *) regs->cp0_epc);
990 break;
991 case BRK_BUG:
992 die_if_kernel("Kernel bug detected", regs);
993 force_sig(SIGTRAP);
994 break;
995 case BRK_MEMU:
996 /*
997 * This breakpoint code is used by the FPU emulator to retake
998 * control of the CPU after executing the instruction from the
999 * delay slot of an emulated branch.
1000 *
1001 * Terminate if exception was recognized as a delay slot return
1002 * otherwise handle as normal.
1003 */
1004 if (do_dsemulret(regs))
1005 return;
1006
1007 die_if_kernel("Math emu break/trap", regs);
1008 force_sig(SIGTRAP);
1009 break;
1010 default:
1011 scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
1012 die_if_kernel(b, regs);
1013 if (si_code) {
1014 force_sig_fault(SIGTRAP, si_code, NULL);
1015 } else {
1016 force_sig(SIGTRAP);
1017 }
1018 }
1019}
1020
1021asmlinkage void do_bp(struct pt_regs *regs)
1022{
1023 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1024 unsigned int opcode, bcode;
1025 enum ctx_state prev_state;
1026 bool user = user_mode(regs);
1027
1028 prev_state = exception_enter();
1029 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1030 if (get_isa16_mode(regs->cp0_epc)) {
1031 u16 instr[2];
1032
1033 if (__get_inst16(&instr[0], (u16 *)epc, user))
1034 goto out_sigsegv;
1035
1036 if (!cpu_has_mmips) {
1037 /* MIPS16e mode */
1038 bcode = (instr[0] >> 5) & 0x3f;
1039 } else if (mm_insn_16bit(instr[0])) {
1040 /* 16-bit microMIPS BREAK */
1041 bcode = instr[0] & 0xf;
1042 } else {
1043 /* 32-bit microMIPS BREAK */
1044 if (__get_inst16(&instr[1], (u16 *)(epc + 2), user))
1045 goto out_sigsegv;
1046 opcode = (instr[0] << 16) | instr[1];
1047 bcode = (opcode >> 6) & ((1 << 20) - 1);
1048 }
1049 } else {
1050 if (__get_inst32(&opcode, (u32 *)epc, user))
1051 goto out_sigsegv;
1052 bcode = (opcode >> 6) & ((1 << 20) - 1);
1053 }
1054
1055 /*
1056 * There is the ancient bug in the MIPS assemblers that the break
1057 * code starts left to bit 16 instead to bit 6 in the opcode.
1058 * Gas is bug-compatible, but not always, grrr...
1059 * We handle both cases with a simple heuristics. --macro
1060 */
1061 if (bcode >= (1 << 10))
1062 bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1063
1064 /*
1065 * notify the kprobe handlers, if instruction is likely to
1066 * pertain to them.
1067 */
1068 switch (bcode) {
1069 case BRK_UPROBE:
1070 if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1071 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1072 goto out;
1073 else
1074 break;
1075 case BRK_UPROBE_XOL:
1076 if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1077 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1078 goto out;
1079 else
1080 break;
1081 case BRK_KPROBE_BP:
1082 if (notify_die(DIE_BREAK, "debug", regs, bcode,
1083 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1084 goto out;
1085 else
1086 break;
1087 case BRK_KPROBE_SSTEPBP:
1088 if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1089 current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1090 goto out;
1091 else
1092 break;
1093 default:
1094 break;
1095 }
1096
1097 do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1098
1099out:
1100 exception_exit(prev_state);
1101 return;
1102
1103out_sigsegv:
1104 force_sig(SIGSEGV);
1105 goto out;
1106}
1107
1108asmlinkage void do_tr(struct pt_regs *regs)
1109{
1110 u32 opcode, tcode = 0;
1111 enum ctx_state prev_state;
1112 u16 instr[2];
1113 bool user = user_mode(regs);
1114 unsigned long epc = msk_isa16_mode(exception_epc(regs));
1115
1116 prev_state = exception_enter();
1117 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1118 if (get_isa16_mode(regs->cp0_epc)) {
1119 if (__get_inst16(&instr[0], (u16 *)(epc + 0), user) ||
1120 __get_inst16(&instr[1], (u16 *)(epc + 2), user))
1121 goto out_sigsegv;
1122 opcode = (instr[0] << 16) | instr[1];
1123 /* Immediate versions don't provide a code. */
1124 if (!(opcode & OPCODE))
1125 tcode = (opcode >> 12) & ((1 << 4) - 1);
1126 } else {
1127 if (__get_inst32(&opcode, (u32 *)epc, user))
1128 goto out_sigsegv;
1129 /* Immediate versions don't provide a code. */
1130 if (!(opcode & OPCODE))
1131 tcode = (opcode >> 6) & ((1 << 10) - 1);
1132 }
1133
1134 do_trap_or_bp(regs, tcode, 0, "Trap");
1135
1136out:
1137 exception_exit(prev_state);
1138 return;
1139
1140out_sigsegv:
1141 force_sig(SIGSEGV);
1142 goto out;
1143}
1144
1145asmlinkage void do_ri(struct pt_regs *regs)
1146{
1147 unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1148 unsigned long old_epc = regs->cp0_epc;
1149 unsigned long old31 = regs->regs[31];
1150 enum ctx_state prev_state;
1151 unsigned int opcode = 0;
1152 int status = -1;
1153
1154 /*
1155 * Avoid any kernel code. Just emulate the R2 instruction
1156 * as quickly as possible.
1157 */
1158 if (mipsr2_emulation && cpu_has_mips_r6 &&
1159 likely(user_mode(regs)) &&
1160 likely(get_user(opcode, epc) >= 0)) {
1161 unsigned long fcr31 = 0;
1162
1163 status = mipsr2_decoder(regs, opcode, &fcr31);
1164 switch (status) {
1165 case 0:
1166 case SIGEMT:
1167 return;
1168 case SIGILL:
1169 goto no_r2_instr;
1170 default:
1171 process_fpemu_return(status,
1172 ¤t->thread.cp0_baduaddr,
1173 fcr31);
1174 return;
1175 }
1176 }
1177
1178no_r2_instr:
1179
1180 prev_state = exception_enter();
1181 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1182
1183 if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1184 SIGILL) == NOTIFY_STOP)
1185 goto out;
1186
1187 die_if_kernel("Reserved instruction in kernel code", regs);
1188
1189 if (unlikely(compute_return_epc(regs) < 0))
1190 goto out;
1191
1192 if (!get_isa16_mode(regs->cp0_epc)) {
1193 if (unlikely(get_user(opcode, epc) < 0))
1194 status = SIGSEGV;
1195
1196 if (!cpu_has_llsc && status < 0)
1197 status = simulate_llsc(regs, opcode);
1198
1199 if (status < 0)
1200 status = simulate_rdhwr_normal(regs, opcode);
1201
1202 if (status < 0)
1203 status = simulate_sync(regs, opcode);
1204
1205 if (status < 0)
1206 status = simulate_fp(regs, opcode, old_epc, old31);
1207
1208#ifdef CONFIG_CPU_LOONGSON3_CPUCFG_EMULATION
1209 if (status < 0)
1210 status = simulate_loongson3_cpucfg(regs, opcode);
1211#endif
1212 } else if (cpu_has_mmips) {
1213 unsigned short mmop[2] = { 0 };
1214
1215 if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1216 status = SIGSEGV;
1217 if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1218 status = SIGSEGV;
1219 opcode = mmop[0];
1220 opcode = (opcode << 16) | mmop[1];
1221
1222 if (status < 0)
1223 status = simulate_rdhwr_mm(regs, opcode);
1224 }
1225
1226 if (status < 0)
1227 status = SIGILL;
1228
1229 if (unlikely(status > 0)) {
1230 regs->cp0_epc = old_epc; /* Undo skip-over. */
1231 regs->regs[31] = old31;
1232 force_sig(status);
1233 }
1234
1235out:
1236 exception_exit(prev_state);
1237}
1238
1239/*
1240 * No lock; only written during early bootup by CPU 0.
1241 */
1242static RAW_NOTIFIER_HEAD(cu2_chain);
1243
1244int __ref register_cu2_notifier(struct notifier_block *nb)
1245{
1246 return raw_notifier_chain_register(&cu2_chain, nb);
1247}
1248
1249int cu2_notifier_call_chain(unsigned long val, void *v)
1250{
1251 return raw_notifier_call_chain(&cu2_chain, val, v);
1252}
1253
1254static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1255 void *data)
1256{
1257 struct pt_regs *regs = data;
1258
1259 die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1260 "instruction", regs);
1261 force_sig(SIGILL);
1262
1263 return NOTIFY_OK;
1264}
1265
1266#ifdef CONFIG_MIPS_FP_SUPPORT
1267
1268static int enable_restore_fp_context(int msa)
1269{
1270 int err, was_fpu_owner, prior_msa;
1271 bool first_fp;
1272
1273 /* Initialize context if it hasn't been used already */
1274 first_fp = init_fp_ctx(current);
1275
1276 if (first_fp) {
1277 preempt_disable();
1278 err = own_fpu_inatomic(1);
1279 if (msa && !err) {
1280 enable_msa();
1281 /*
1282 * with MSA enabled, userspace can see MSACSR
1283 * and MSA regs, but the values in them are from
1284 * other task before current task, restore them
1285 * from saved fp/msa context
1286 */
1287 write_msa_csr(current->thread.fpu.msacsr);
1288 /*
1289 * own_fpu_inatomic(1) just restore low 64bit,
1290 * fix the high 64bit
1291 */
1292 init_msa_upper();
1293 set_thread_flag(TIF_USEDMSA);
1294 set_thread_flag(TIF_MSA_CTX_LIVE);
1295 }
1296 preempt_enable();
1297 return err;
1298 }
1299
1300 /*
1301 * This task has formerly used the FP context.
1302 *
1303 * If this thread has no live MSA vector context then we can simply
1304 * restore the scalar FP context. If it has live MSA vector context
1305 * (that is, it has or may have used MSA since last performing a
1306 * function call) then we'll need to restore the vector context. This
1307 * applies even if we're currently only executing a scalar FP
1308 * instruction. This is because if we were to later execute an MSA
1309 * instruction then we'd either have to:
1310 *
1311 * - Restore the vector context & clobber any registers modified by
1312 * scalar FP instructions between now & then.
1313 *
1314 * or
1315 *
1316 * - Not restore the vector context & lose the most significant bits
1317 * of all vector registers.
1318 *
1319 * Neither of those options is acceptable. We cannot restore the least
1320 * significant bits of the registers now & only restore the most
1321 * significant bits later because the most significant bits of any
1322 * vector registers whose aliased FP register is modified now will have
1323 * been zeroed. We'd have no way to know that when restoring the vector
1324 * context & thus may load an outdated value for the most significant
1325 * bits of a vector register.
1326 */
1327 if (!msa && !thread_msa_context_live())
1328 return own_fpu(1);
1329
1330 /*
1331 * This task is using or has previously used MSA. Thus we require
1332 * that Status.FR == 1.
1333 */
1334 preempt_disable();
1335 was_fpu_owner = is_fpu_owner();
1336 err = own_fpu_inatomic(0);
1337 if (err)
1338 goto out;
1339
1340 enable_msa();
1341 write_msa_csr(current->thread.fpu.msacsr);
1342 set_thread_flag(TIF_USEDMSA);
1343
1344 /*
1345 * If this is the first time that the task is using MSA and it has
1346 * previously used scalar FP in this time slice then we already nave
1347 * FP context which we shouldn't clobber. We do however need to clear
1348 * the upper 64b of each vector register so that this task has no
1349 * opportunity to see data left behind by another.
1350 */
1351 prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1352 if (!prior_msa && was_fpu_owner) {
1353 init_msa_upper();
1354
1355 goto out;
1356 }
1357
1358 if (!prior_msa) {
1359 /*
1360 * Restore the least significant 64b of each vector register
1361 * from the existing scalar FP context.
1362 */
1363 _restore_fp(current);
1364
1365 /*
1366 * The task has not formerly used MSA, so clear the upper 64b
1367 * of each vector register such that it cannot see data left
1368 * behind by another task.
1369 */
1370 init_msa_upper();
1371 } else {
1372 /* We need to restore the vector context. */
1373 restore_msa(current);
1374
1375 /* Restore the scalar FP control & status register */
1376 if (!was_fpu_owner)
1377 write_32bit_cp1_register(CP1_STATUS,
1378 current->thread.fpu.fcr31);
1379 }
1380
1381out:
1382 preempt_enable();
1383
1384 return 0;
1385}
1386
1387#else /* !CONFIG_MIPS_FP_SUPPORT */
1388
1389static int enable_restore_fp_context(int msa)
1390{
1391 return SIGILL;
1392}
1393
1394#endif /* CONFIG_MIPS_FP_SUPPORT */
1395
1396asmlinkage void do_cpu(struct pt_regs *regs)
1397{
1398 enum ctx_state prev_state;
1399 unsigned int __user *epc;
1400 unsigned long old_epc, old31;
1401 unsigned int opcode;
1402 unsigned int cpid;
1403 int status;
1404
1405 prev_state = exception_enter();
1406 cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1407
1408 if (cpid != 2)
1409 die_if_kernel("do_cpu invoked from kernel context!", regs);
1410
1411 switch (cpid) {
1412 case 0:
1413 epc = (unsigned int __user *)exception_epc(regs);
1414 old_epc = regs->cp0_epc;
1415 old31 = regs->regs[31];
1416 opcode = 0;
1417 status = -1;
1418
1419 if (unlikely(compute_return_epc(regs) < 0))
1420 break;
1421
1422 if (!get_isa16_mode(regs->cp0_epc)) {
1423 if (unlikely(get_user(opcode, epc) < 0))
1424 status = SIGSEGV;
1425
1426 if (!cpu_has_llsc && status < 0)
1427 status = simulate_llsc(regs, opcode);
1428 }
1429
1430 if (status < 0)
1431 status = SIGILL;
1432
1433 if (unlikely(status > 0)) {
1434 regs->cp0_epc = old_epc; /* Undo skip-over. */
1435 regs->regs[31] = old31;
1436 force_sig(status);
1437 }
1438
1439 break;
1440
1441#ifdef CONFIG_MIPS_FP_SUPPORT
1442 case 3:
1443 /*
1444 * The COP3 opcode space and consequently the CP0.Status.CU3
1445 * bit and the CP0.Cause.CE=3 encoding have been removed as
1446 * of the MIPS III ISA. From the MIPS IV and MIPS32r2 ISAs
1447 * up the space has been reused for COP1X instructions, that
1448 * are enabled by the CP0.Status.CU1 bit and consequently
1449 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1450 * exceptions. Some FPU-less processors that implement one
1451 * of these ISAs however use this code erroneously for COP1X
1452 * instructions. Therefore we redirect this trap to the FP
1453 * emulator too.
1454 */
1455 if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1456 force_sig(SIGILL);
1457 break;
1458 }
1459 fallthrough;
1460 case 1: {
1461 void __user *fault_addr;
1462 unsigned long fcr31;
1463 int err, sig;
1464
1465 err = enable_restore_fp_context(0);
1466
1467 if (raw_cpu_has_fpu && !err)
1468 break;
1469
1470 sig = fpu_emulator_cop1Handler(regs, ¤t->thread.fpu, 0,
1471 &fault_addr);
1472
1473 /*
1474 * We can't allow the emulated instruction to leave
1475 * any enabled Cause bits set in $fcr31.
1476 */
1477 fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1478 current->thread.fpu.fcr31 &= ~fcr31;
1479
1480 /* Send a signal if required. */
1481 if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1482 mt_ase_fp_affinity();
1483
1484 break;
1485 }
1486#else /* CONFIG_MIPS_FP_SUPPORT */
1487 case 1:
1488 case 3:
1489 force_sig(SIGILL);
1490 break;
1491#endif /* CONFIG_MIPS_FP_SUPPORT */
1492
1493 case 2:
1494 raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1495 break;
1496 }
1497
1498 exception_exit(prev_state);
1499}
1500
1501asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1502{
1503 enum ctx_state prev_state;
1504
1505 prev_state = exception_enter();
1506 current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1507 if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1508 current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1509 goto out;
1510
1511 /* Clear MSACSR.Cause before enabling interrupts */
1512 write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1513 local_irq_enable();
1514
1515 die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1516 force_sig(SIGFPE);
1517out:
1518 exception_exit(prev_state);
1519}
1520
1521asmlinkage void do_msa(struct pt_regs *regs)
1522{
1523 enum ctx_state prev_state;
1524 int err;
1525
1526 prev_state = exception_enter();
1527
1528 if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1529 force_sig(SIGILL);
1530 goto out;
1531 }
1532
1533 die_if_kernel("do_msa invoked from kernel context!", regs);
1534
1535 err = enable_restore_fp_context(1);
1536 if (err)
1537 force_sig(SIGILL);
1538out:
1539 exception_exit(prev_state);
1540}
1541
1542asmlinkage void do_mdmx(struct pt_regs *regs)
1543{
1544 enum ctx_state prev_state;
1545
1546 prev_state = exception_enter();
1547 force_sig(SIGILL);
1548 exception_exit(prev_state);
1549}
1550
1551/*
1552 * Called with interrupts disabled.
1553 */
1554asmlinkage void do_watch(struct pt_regs *regs)
1555{
1556 enum ctx_state prev_state;
1557
1558 prev_state = exception_enter();
1559 /*
1560 * Clear WP (bit 22) bit of cause register so we don't loop
1561 * forever.
1562 */
1563 clear_c0_cause(CAUSEF_WP);
1564
1565 /*
1566 * If the current thread has the watch registers loaded, save
1567 * their values and send SIGTRAP. Otherwise another thread
1568 * left the registers set, clear them and continue.
1569 */
1570 if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1571 mips_read_watch_registers();
1572 local_irq_enable();
1573 force_sig_fault(SIGTRAP, TRAP_HWBKPT, NULL);
1574 } else {
1575 mips_clear_watch_registers();
1576 local_irq_enable();
1577 }
1578 exception_exit(prev_state);
1579}
1580
1581asmlinkage void do_mcheck(struct pt_regs *regs)
1582{
1583 int multi_match = regs->cp0_status & ST0_TS;
1584 enum ctx_state prev_state;
1585
1586 prev_state = exception_enter();
1587 show_regs(regs);
1588
1589 if (multi_match) {
1590 dump_tlb_regs();
1591 pr_info("\n");
1592 dump_tlb_all();
1593 }
1594
1595 show_code((void *)regs->cp0_epc, user_mode(regs));
1596
1597 /*
1598 * Some chips may have other causes of machine check (e.g. SB1
1599 * graduation timer)
1600 */
1601 panic("Caught Machine Check exception - %scaused by multiple "
1602 "matching entries in the TLB.",
1603 (multi_match) ? "" : "not ");
1604}
1605
1606asmlinkage void do_mt(struct pt_regs *regs)
1607{
1608 int subcode;
1609
1610 subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1611 >> VPECONTROL_EXCPT_SHIFT;
1612 switch (subcode) {
1613 case 0:
1614 printk(KERN_DEBUG "Thread Underflow\n");
1615 break;
1616 case 1:
1617 printk(KERN_DEBUG "Thread Overflow\n");
1618 break;
1619 case 2:
1620 printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1621 break;
1622 case 3:
1623 printk(KERN_DEBUG "Gating Storage Exception\n");
1624 break;
1625 case 4:
1626 printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1627 break;
1628 case 5:
1629 printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1630 break;
1631 default:
1632 printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1633 subcode);
1634 break;
1635 }
1636 die_if_kernel("MIPS MT Thread exception in kernel", regs);
1637
1638 force_sig(SIGILL);
1639}
1640
1641
1642asmlinkage void do_dsp(struct pt_regs *regs)
1643{
1644 if (cpu_has_dsp)
1645 panic("Unexpected DSP exception");
1646
1647 force_sig(SIGILL);
1648}
1649
1650asmlinkage void do_reserved(struct pt_regs *regs)
1651{
1652 /*
1653 * Game over - no way to handle this if it ever occurs. Most probably
1654 * caused by a new unknown cpu type or after another deadly
1655 * hard/software error.
1656 */
1657 show_regs(regs);
1658 panic("Caught reserved exception %ld - should not happen.",
1659 (regs->cp0_cause & 0x7f) >> 2);
1660}
1661
1662static int __initdata l1parity = 1;
1663static int __init nol1parity(char *s)
1664{
1665 l1parity = 0;
1666 return 1;
1667}
1668__setup("nol1par", nol1parity);
1669static int __initdata l2parity = 1;
1670static int __init nol2parity(char *s)
1671{
1672 l2parity = 0;
1673 return 1;
1674}
1675__setup("nol2par", nol2parity);
1676
1677/*
1678 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1679 * it different ways.
1680 */
1681static inline __init void parity_protection_init(void)
1682{
1683#define ERRCTL_PE 0x80000000
1684#define ERRCTL_L2P 0x00800000
1685
1686 if (mips_cm_revision() >= CM_REV_CM3) {
1687 ulong gcr_ectl, cp0_ectl;
1688
1689 /*
1690 * With CM3 systems we need to ensure that the L1 & L2
1691 * parity enables are set to the same value, since this
1692 * is presumed by the hardware engineers.
1693 *
1694 * If the user disabled either of L1 or L2 ECC checking,
1695 * disable both.
1696 */
1697 l1parity &= l2parity;
1698 l2parity &= l1parity;
1699
1700 /* Probe L1 ECC support */
1701 cp0_ectl = read_c0_ecc();
1702 write_c0_ecc(cp0_ectl | ERRCTL_PE);
1703 back_to_back_c0_hazard();
1704 cp0_ectl = read_c0_ecc();
1705
1706 /* Probe L2 ECC support */
1707 gcr_ectl = read_gcr_err_control();
1708
1709 if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1710 !(cp0_ectl & ERRCTL_PE)) {
1711 /*
1712 * One of L1 or L2 ECC checking isn't supported,
1713 * so we cannot enable either.
1714 */
1715 l1parity = l2parity = 0;
1716 }
1717
1718 /* Configure L1 ECC checking */
1719 if (l1parity)
1720 cp0_ectl |= ERRCTL_PE;
1721 else
1722 cp0_ectl &= ~ERRCTL_PE;
1723 write_c0_ecc(cp0_ectl);
1724 back_to_back_c0_hazard();
1725 WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1726
1727 /* Configure L2 ECC checking */
1728 if (l2parity)
1729 gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1730 else
1731 gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1732 write_gcr_err_control(gcr_ectl);
1733 gcr_ectl = read_gcr_err_control();
1734 gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1735 WARN_ON(!!gcr_ectl != l2parity);
1736
1737 pr_info("Cache parity protection %sabled\n",
1738 l1parity ? "en" : "dis");
1739 return;
1740 }
1741
1742 switch (current_cpu_type()) {
1743 case CPU_24K:
1744 case CPU_34K:
1745 case CPU_74K:
1746 case CPU_1004K:
1747 case CPU_1074K:
1748 case CPU_INTERAPTIV:
1749 case CPU_PROAPTIV:
1750 case CPU_P5600:
1751 case CPU_QEMU_GENERIC:
1752 case CPU_P6600:
1753 {
1754 unsigned long errctl;
1755 unsigned int l1parity_present, l2parity_present;
1756
1757 errctl = read_c0_ecc();
1758 errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1759
1760 /* probe L1 parity support */
1761 write_c0_ecc(errctl | ERRCTL_PE);
1762 back_to_back_c0_hazard();
1763 l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1764
1765 /* probe L2 parity support */
1766 write_c0_ecc(errctl|ERRCTL_L2P);
1767 back_to_back_c0_hazard();
1768 l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1769
1770 if (l1parity_present && l2parity_present) {
1771 if (l1parity)
1772 errctl |= ERRCTL_PE;
1773 if (l1parity ^ l2parity)
1774 errctl |= ERRCTL_L2P;
1775 } else if (l1parity_present) {
1776 if (l1parity)
1777 errctl |= ERRCTL_PE;
1778 } else if (l2parity_present) {
1779 if (l2parity)
1780 errctl |= ERRCTL_L2P;
1781 } else {
1782 /* No parity available */
1783 }
1784
1785 printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1786
1787 write_c0_ecc(errctl);
1788 back_to_back_c0_hazard();
1789 errctl = read_c0_ecc();
1790 printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1791
1792 if (l1parity_present)
1793 printk(KERN_INFO "Cache parity protection %sabled\n",
1794 (errctl & ERRCTL_PE) ? "en" : "dis");
1795
1796 if (l2parity_present) {
1797 if (l1parity_present && l1parity)
1798 errctl ^= ERRCTL_L2P;
1799 printk(KERN_INFO "L2 cache parity protection %sabled\n",
1800 (errctl & ERRCTL_L2P) ? "en" : "dis");
1801 }
1802 }
1803 break;
1804
1805 case CPU_5KC:
1806 case CPU_5KE:
1807 case CPU_LOONGSON32:
1808 write_c0_ecc(0x80000000);
1809 back_to_back_c0_hazard();
1810 /* Set the PE bit (bit 31) in the c0_errctl register. */
1811 printk(KERN_INFO "Cache parity protection %sabled\n",
1812 (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1813 break;
1814 case CPU_20KC:
1815 case CPU_25KF:
1816 /* Clear the DE bit (bit 16) in the c0_status register. */
1817 printk(KERN_INFO "Enable cache parity protection for "
1818 "MIPS 20KC/25KF CPUs.\n");
1819 clear_c0_status(ST0_DE);
1820 break;
1821 default:
1822 break;
1823 }
1824}
1825
1826asmlinkage void cache_parity_error(void)
1827{
1828 const int field = 2 * sizeof(unsigned long);
1829 unsigned int reg_val;
1830
1831 /* For the moment, report the problem and hang. */
1832 printk("Cache error exception:\n");
1833 printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1834 reg_val = read_c0_cacheerr();
1835 printk("c0_cacheerr == %08x\n", reg_val);
1836
1837 printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1838 reg_val & (1<<30) ? "secondary" : "primary",
1839 reg_val & (1<<31) ? "data" : "insn");
1840 if ((cpu_has_mips_r2_r6) &&
1841 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1842 pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1843 reg_val & (1<<29) ? "ED " : "",
1844 reg_val & (1<<28) ? "ET " : "",
1845 reg_val & (1<<27) ? "ES " : "",
1846 reg_val & (1<<26) ? "EE " : "",
1847 reg_val & (1<<25) ? "EB " : "",
1848 reg_val & (1<<24) ? "EI " : "",
1849 reg_val & (1<<23) ? "E1 " : "",
1850 reg_val & (1<<22) ? "E0 " : "");
1851 } else {
1852 pr_err("Error bits: %s%s%s%s%s%s%s\n",
1853 reg_val & (1<<29) ? "ED " : "",
1854 reg_val & (1<<28) ? "ET " : "",
1855 reg_val & (1<<26) ? "EE " : "",
1856 reg_val & (1<<25) ? "EB " : "",
1857 reg_val & (1<<24) ? "EI " : "",
1858 reg_val & (1<<23) ? "E1 " : "",
1859 reg_val & (1<<22) ? "E0 " : "");
1860 }
1861 printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1862
1863#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1864 if (reg_val & (1<<22))
1865 printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1866
1867 if (reg_val & (1<<23))
1868 printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1869#endif
1870
1871 panic("Can't handle the cache error!");
1872}
1873
1874asmlinkage void do_ftlb(void)
1875{
1876 const int field = 2 * sizeof(unsigned long);
1877 unsigned int reg_val;
1878
1879 /* For the moment, report the problem and hang. */
1880 if ((cpu_has_mips_r2_r6) &&
1881 (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1882 ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1883 pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1884 read_c0_ecc());
1885 pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1886 reg_val = read_c0_cacheerr();
1887 pr_err("c0_cacheerr == %08x\n", reg_val);
1888
1889 if ((reg_val & 0xc0000000) == 0xc0000000) {
1890 pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1891 } else {
1892 pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1893 reg_val & (1<<30) ? "secondary" : "primary",
1894 reg_val & (1<<31) ? "data" : "insn");
1895 }
1896 } else {
1897 pr_err("FTLB error exception\n");
1898 }
1899 /* Just print the cacheerr bits for now */
1900 cache_parity_error();
1901}
1902
1903asmlinkage void do_gsexc(struct pt_regs *regs, u32 diag1)
1904{
1905 u32 exccode = (diag1 & LOONGSON_DIAG1_EXCCODE) >>
1906 LOONGSON_DIAG1_EXCCODE_SHIFT;
1907 enum ctx_state prev_state;
1908
1909 prev_state = exception_enter();
1910
1911 switch (exccode) {
1912 case 0x08:
1913 /* Undocumented exception, will trigger on certain
1914 * also-undocumented instructions accessible from userspace.
1915 * Processor state is not otherwise corrupted, but currently
1916 * we don't know how to proceed. Maybe there is some
1917 * undocumented control flag to enable the instructions?
1918 */
1919 force_sig(SIGILL);
1920 break;
1921
1922 default:
1923 /* None of the other exceptions, documented or not, have
1924 * further details given; none are encountered in the wild
1925 * either. Panic in case some of them turn out to be fatal.
1926 */
1927 show_regs(regs);
1928 panic("Unhandled Loongson exception - GSCause = %08x", diag1);
1929 }
1930
1931 exception_exit(prev_state);
1932}
1933
1934/*
1935 * SDBBP EJTAG debug exception handler.
1936 * We skip the instruction and return to the next instruction.
1937 */
1938void ejtag_exception_handler(struct pt_regs *regs)
1939{
1940 const int field = 2 * sizeof(unsigned long);
1941 unsigned long depc, old_epc, old_ra;
1942 unsigned int debug;
1943
1944 printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1945 depc = read_c0_depc();
1946 debug = read_c0_debug();
1947 printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1948 if (debug & 0x80000000) {
1949 /*
1950 * In branch delay slot.
1951 * We cheat a little bit here and use EPC to calculate the
1952 * debug return address (DEPC). EPC is restored after the
1953 * calculation.
1954 */
1955 old_epc = regs->cp0_epc;
1956 old_ra = regs->regs[31];
1957 regs->cp0_epc = depc;
1958 compute_return_epc(regs);
1959 depc = regs->cp0_epc;
1960 regs->cp0_epc = old_epc;
1961 regs->regs[31] = old_ra;
1962 } else
1963 depc += 4;
1964 write_c0_depc(depc);
1965
1966#if 0
1967 printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1968 write_c0_debug(debug | 0x100);
1969#endif
1970}
1971
1972/*
1973 * NMI exception handler.
1974 * No lock; only written during early bootup by CPU 0.
1975 */
1976static RAW_NOTIFIER_HEAD(nmi_chain);
1977
1978int register_nmi_notifier(struct notifier_block *nb)
1979{
1980 return raw_notifier_chain_register(&nmi_chain, nb);
1981}
1982
1983void __noreturn nmi_exception_handler(struct pt_regs *regs)
1984{
1985 char str[100];
1986
1987 nmi_enter();
1988 raw_notifier_call_chain(&nmi_chain, 0, regs);
1989 bust_spinlocks(1);
1990 snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1991 smp_processor_id(), regs->cp0_epc);
1992 regs->cp0_epc = read_c0_errorepc();
1993 die(str, regs);
1994 nmi_exit();
1995}
1996
1997unsigned long ebase;
1998EXPORT_SYMBOL_GPL(ebase);
1999unsigned long exception_handlers[32];
2000unsigned long vi_handlers[64];
2001
2002void reserve_exception_space(phys_addr_t addr, unsigned long size)
2003{
2004 memblock_reserve(addr, size);
2005}
2006
2007void __init *set_except_vector(int n, void *addr)
2008{
2009 unsigned long handler = (unsigned long) addr;
2010 unsigned long old_handler;
2011
2012#ifdef CONFIG_CPU_MICROMIPS
2013 /*
2014 * Only the TLB handlers are cache aligned with an even
2015 * address. All other handlers are on an odd address and
2016 * require no modification. Otherwise, MIPS32 mode will
2017 * be entered when handling any TLB exceptions. That
2018 * would be bad...since we must stay in microMIPS mode.
2019 */
2020 if (!(handler & 0x1))
2021 handler |= 1;
2022#endif
2023 old_handler = xchg(&exception_handlers[n], handler);
2024
2025 if (n == 0 && cpu_has_divec) {
2026#ifdef CONFIG_CPU_MICROMIPS
2027 unsigned long jump_mask = ~((1 << 27) - 1);
2028#else
2029 unsigned long jump_mask = ~((1 << 28) - 1);
2030#endif
2031 u32 *buf = (u32 *)(ebase + 0x200);
2032 unsigned int k0 = 26;
2033 if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
2034 uasm_i_j(&buf, handler & ~jump_mask);
2035 uasm_i_nop(&buf);
2036 } else {
2037 UASM_i_LA(&buf, k0, handler);
2038 uasm_i_jr(&buf, k0);
2039 uasm_i_nop(&buf);
2040 }
2041 local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
2042 }
2043 return (void *)old_handler;
2044}
2045
2046static void do_default_vi(void)
2047{
2048 show_regs(get_irq_regs());
2049 panic("Caught unexpected vectored interrupt.");
2050}
2051
2052static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
2053{
2054 unsigned long handler;
2055 unsigned long old_handler = vi_handlers[n];
2056 int srssets = current_cpu_data.srsets;
2057 u16 *h;
2058 unsigned char *b;
2059
2060 BUG_ON(!cpu_has_veic && !cpu_has_vint);
2061
2062 if (addr == NULL) {
2063 handler = (unsigned long) do_default_vi;
2064 srs = 0;
2065 } else
2066 handler = (unsigned long) addr;
2067 vi_handlers[n] = handler;
2068
2069 b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2070
2071 if (srs >= srssets)
2072 panic("Shadow register set %d not supported", srs);
2073
2074 if (cpu_has_veic) {
2075 if (board_bind_eic_interrupt)
2076 board_bind_eic_interrupt(n, srs);
2077 } else if (cpu_has_vint) {
2078 /* SRSMap is only defined if shadow sets are implemented */
2079 if (srssets > 1)
2080 change_c0_srsmap(0xf << n*4, srs << n*4);
2081 }
2082
2083 if (srs == 0) {
2084 /*
2085 * If no shadow set is selected then use the default handler
2086 * that does normal register saving and standard interrupt exit
2087 */
2088 extern char except_vec_vi, except_vec_vi_lui;
2089 extern char except_vec_vi_ori, except_vec_vi_end;
2090 extern char rollback_except_vec_vi;
2091 char *vec_start = using_rollback_handler() ?
2092 &rollback_except_vec_vi : &except_vec_vi;
2093#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2094 const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2095 const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2096#else
2097 const int lui_offset = &except_vec_vi_lui - vec_start;
2098 const int ori_offset = &except_vec_vi_ori - vec_start;
2099#endif
2100 const int handler_len = &except_vec_vi_end - vec_start;
2101
2102 if (handler_len > VECTORSPACING) {
2103 /*
2104 * Sigh... panicing won't help as the console
2105 * is probably not configured :(
2106 */
2107 panic("VECTORSPACING too small");
2108 }
2109
2110 set_handler(((unsigned long)b - ebase), vec_start,
2111#ifdef CONFIG_CPU_MICROMIPS
2112 (handler_len - 1));
2113#else
2114 handler_len);
2115#endif
2116 h = (u16 *)(b + lui_offset);
2117 *h = (handler >> 16) & 0xffff;
2118 h = (u16 *)(b + ori_offset);
2119 *h = (handler & 0xffff);
2120 local_flush_icache_range((unsigned long)b,
2121 (unsigned long)(b+handler_len));
2122 }
2123 else {
2124 /*
2125 * In other cases jump directly to the interrupt handler. It
2126 * is the handler's responsibility to save registers if required
2127 * (eg hi/lo) and return from the exception using "eret".
2128 */
2129 u32 insn;
2130
2131 h = (u16 *)b;
2132 /* j handler */
2133#ifdef CONFIG_CPU_MICROMIPS
2134 insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2135#else
2136 insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2137#endif
2138 h[0] = (insn >> 16) & 0xffff;
2139 h[1] = insn & 0xffff;
2140 h[2] = 0;
2141 h[3] = 0;
2142 local_flush_icache_range((unsigned long)b,
2143 (unsigned long)(b+8));
2144 }
2145
2146 return (void *)old_handler;
2147}
2148
2149void *set_vi_handler(int n, vi_handler_t addr)
2150{
2151 return set_vi_srs_handler(n, addr, 0);
2152}
2153
2154extern void tlb_init(void);
2155
2156/*
2157 * Timer interrupt
2158 */
2159int cp0_compare_irq;
2160EXPORT_SYMBOL_GPL(cp0_compare_irq);
2161int cp0_compare_irq_shift;
2162
2163/*
2164 * Performance counter IRQ or -1 if shared with timer
2165 */
2166int cp0_perfcount_irq;
2167EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2168
2169/*
2170 * Fast debug channel IRQ or -1 if not present
2171 */
2172int cp0_fdc_irq;
2173EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2174
2175static int noulri;
2176
2177static int __init ulri_disable(char *s)
2178{
2179 pr_info("Disabling ulri\n");
2180 noulri = 1;
2181
2182 return 1;
2183}
2184__setup("noulri", ulri_disable);
2185
2186/* configure STATUS register */
2187static void configure_status(void)
2188{
2189 /*
2190 * Disable coprocessors and select 32-bit or 64-bit addressing
2191 * and the 16/32 or 32/32 FPR register model. Reset the BEV
2192 * flag that some firmware may have left set and the TS bit (for
2193 * IP27). Set XX for ISA IV code to work.
2194 */
2195 unsigned int status_set = ST0_KERNEL_CUMASK;
2196#ifdef CONFIG_64BIT
2197 status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2198#endif
2199 if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2200 status_set |= ST0_XX;
2201 if (cpu_has_dsp)
2202 status_set |= ST0_MX;
2203
2204 change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2205 status_set);
2206 back_to_back_c0_hazard();
2207}
2208
2209unsigned int hwrena;
2210EXPORT_SYMBOL_GPL(hwrena);
2211
2212/* configure HWRENA register */
2213static void configure_hwrena(void)
2214{
2215 hwrena = cpu_hwrena_impl_bits;
2216
2217 if (cpu_has_mips_r2_r6)
2218 hwrena |= MIPS_HWRENA_CPUNUM |
2219 MIPS_HWRENA_SYNCISTEP |
2220 MIPS_HWRENA_CC |
2221 MIPS_HWRENA_CCRES;
2222
2223 if (!noulri && cpu_has_userlocal)
2224 hwrena |= MIPS_HWRENA_ULR;
2225
2226 if (hwrena)
2227 write_c0_hwrena(hwrena);
2228}
2229
2230static void configure_exception_vector(void)
2231{
2232 if (cpu_has_mips_r2_r6) {
2233 unsigned long sr = set_c0_status(ST0_BEV);
2234 /* If available, use WG to set top bits of EBASE */
2235 if (cpu_has_ebase_wg) {
2236#ifdef CONFIG_64BIT
2237 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2238#else
2239 write_c0_ebase(ebase | MIPS_EBASE_WG);
2240#endif
2241 }
2242 write_c0_ebase(ebase);
2243 write_c0_status(sr);
2244 }
2245 if (cpu_has_veic || cpu_has_vint) {
2246 /* Setting vector spacing enables EI/VI mode */
2247 change_c0_intctl(0x3e0, VECTORSPACING);
2248 }
2249 if (cpu_has_divec) {
2250 if (cpu_has_mipsmt) {
2251 unsigned int vpflags = dvpe();
2252 set_c0_cause(CAUSEF_IV);
2253 evpe(vpflags);
2254 } else
2255 set_c0_cause(CAUSEF_IV);
2256 }
2257}
2258
2259void per_cpu_trap_init(bool is_boot_cpu)
2260{
2261 unsigned int cpu = smp_processor_id();
2262
2263 configure_status();
2264 configure_hwrena();
2265
2266 configure_exception_vector();
2267
2268 /*
2269 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2270 *
2271 * o read IntCtl.IPTI to determine the timer interrupt
2272 * o read IntCtl.IPPCI to determine the performance counter interrupt
2273 * o read IntCtl.IPFDC to determine the fast debug channel interrupt
2274 */
2275 if (cpu_has_mips_r2_r6) {
2276 cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2277 cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2278 cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2279 cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2280 if (!cp0_fdc_irq)
2281 cp0_fdc_irq = -1;
2282
2283 } else {
2284 cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2285 cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2286 cp0_perfcount_irq = -1;
2287 cp0_fdc_irq = -1;
2288 }
2289
2290 if (cpu_has_mmid)
2291 cpu_data[cpu].asid_cache = 0;
2292 else if (!cpu_data[cpu].asid_cache)
2293 cpu_data[cpu].asid_cache = asid_first_version(cpu);
2294
2295 mmgrab(&init_mm);
2296 current->active_mm = &init_mm;
2297 BUG_ON(current->mm);
2298 enter_lazy_tlb(&init_mm, current);
2299
2300 /* Boot CPU's cache setup in setup_arch(). */
2301 if (!is_boot_cpu)
2302 cpu_cache_init();
2303 tlb_init();
2304 TLBMISS_HANDLER_SETUP();
2305}
2306
2307/* Install CPU exception handler */
2308void set_handler(unsigned long offset, void *addr, unsigned long size)
2309{
2310#ifdef CONFIG_CPU_MICROMIPS
2311 memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2312#else
2313 memcpy((void *)(ebase + offset), addr, size);
2314#endif
2315 local_flush_icache_range(ebase + offset, ebase + offset + size);
2316}
2317
2318static const char panic_null_cerr[] =
2319 "Trying to set NULL cache error exception handler\n";
2320
2321/*
2322 * Install uncached CPU exception handler.
2323 * This is suitable only for the cache error exception which is the only
2324 * exception handler that is being run uncached.
2325 */
2326void set_uncached_handler(unsigned long offset, void *addr,
2327 unsigned long size)
2328{
2329 unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2330
2331 if (!addr)
2332 panic(panic_null_cerr);
2333
2334 memcpy((void *)(uncached_ebase + offset), addr, size);
2335}
2336
2337static int __initdata rdhwr_noopt;
2338static int __init set_rdhwr_noopt(char *str)
2339{
2340 rdhwr_noopt = 1;
2341 return 1;
2342}
2343
2344__setup("rdhwr_noopt", set_rdhwr_noopt);
2345
2346void __init trap_init(void)
2347{
2348 extern char except_vec3_generic;
2349 extern char except_vec4;
2350 extern char except_vec3_r4000;
2351 unsigned long i, vec_size;
2352 phys_addr_t ebase_pa;
2353
2354 check_wait();
2355
2356 if (!cpu_has_mips_r2_r6) {
2357 ebase = CAC_BASE;
2358 vec_size = 0x400;
2359 } else {
2360 if (cpu_has_veic || cpu_has_vint)
2361 vec_size = 0x200 + VECTORSPACING*64;
2362 else
2363 vec_size = PAGE_SIZE;
2364
2365 ebase_pa = memblock_phys_alloc(vec_size, 1 << fls(vec_size));
2366 if (!ebase_pa)
2367 panic("%s: Failed to allocate %lu bytes align=0x%x\n",
2368 __func__, vec_size, 1 << fls(vec_size));
2369
2370 /*
2371 * Try to ensure ebase resides in KSeg0 if possible.
2372 *
2373 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2374 * hitting a poorly defined exception base for Cache Errors.
2375 * The allocation is likely to be in the low 512MB of physical,
2376 * in which case we should be able to convert to KSeg0.
2377 *
2378 * EVA is special though as it allows segments to be rearranged
2379 * and to become uncached during cache error handling.
2380 */
2381 if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2382 ebase = CKSEG0ADDR(ebase_pa);
2383 else
2384 ebase = (unsigned long)phys_to_virt(ebase_pa);
2385 }
2386
2387 if (cpu_has_mmips) {
2388 unsigned int config3 = read_c0_config3();
2389
2390 if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2391 write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2392 else
2393 write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2394 }
2395
2396 if (board_ebase_setup)
2397 board_ebase_setup();
2398 per_cpu_trap_init(true);
2399 memblock_set_bottom_up(false);
2400
2401 /*
2402 * Copy the generic exception handlers to their final destination.
2403 * This will be overridden later as suitable for a particular
2404 * configuration.
2405 */
2406 set_handler(0x180, &except_vec3_generic, 0x80);
2407
2408 /*
2409 * Setup default vectors
2410 */
2411 for (i = 0; i <= 31; i++)
2412 set_except_vector(i, handle_reserved);
2413
2414 /*
2415 * Copy the EJTAG debug exception vector handler code to it's final
2416 * destination.
2417 */
2418 if (cpu_has_ejtag && board_ejtag_handler_setup)
2419 board_ejtag_handler_setup();
2420
2421 /*
2422 * Only some CPUs have the watch exceptions.
2423 */
2424 if (cpu_has_watch)
2425 set_except_vector(EXCCODE_WATCH, handle_watch);
2426
2427 /*
2428 * Initialise interrupt handlers
2429 */
2430 if (cpu_has_veic || cpu_has_vint) {
2431 int nvec = cpu_has_veic ? 64 : 8;
2432 for (i = 0; i < nvec; i++)
2433 set_vi_handler(i, NULL);
2434 }
2435 else if (cpu_has_divec)
2436 set_handler(0x200, &except_vec4, 0x8);
2437
2438 /*
2439 * Some CPUs can enable/disable for cache parity detection, but does
2440 * it different ways.
2441 */
2442 parity_protection_init();
2443
2444 /*
2445 * The Data Bus Errors / Instruction Bus Errors are signaled
2446 * by external hardware. Therefore these two exceptions
2447 * may have board specific handlers.
2448 */
2449 if (board_be_init)
2450 board_be_init();
2451
2452 set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2453 rollback_handle_int : handle_int);
2454 set_except_vector(EXCCODE_MOD, handle_tlbm);
2455 set_except_vector(EXCCODE_TLBL, handle_tlbl);
2456 set_except_vector(EXCCODE_TLBS, handle_tlbs);
2457
2458 set_except_vector(EXCCODE_ADEL, handle_adel);
2459 set_except_vector(EXCCODE_ADES, handle_ades);
2460
2461 set_except_vector(EXCCODE_IBE, handle_ibe);
2462 set_except_vector(EXCCODE_DBE, handle_dbe);
2463
2464 set_except_vector(EXCCODE_SYS, handle_sys);
2465 set_except_vector(EXCCODE_BP, handle_bp);
2466
2467 if (rdhwr_noopt)
2468 set_except_vector(EXCCODE_RI, handle_ri);
2469 else {
2470 if (cpu_has_vtag_icache)
2471 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2472 else if (current_cpu_type() == CPU_LOONGSON64)
2473 set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2474 else
2475 set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2476 }
2477
2478 set_except_vector(EXCCODE_CPU, handle_cpu);
2479 set_except_vector(EXCCODE_OV, handle_ov);
2480 set_except_vector(EXCCODE_TR, handle_tr);
2481 set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2482
2483 if (board_nmi_handler_setup)
2484 board_nmi_handler_setup();
2485
2486 if (cpu_has_fpu && !cpu_has_nofpuex)
2487 set_except_vector(EXCCODE_FPE, handle_fpe);
2488
2489 if (cpu_has_ftlbparex)
2490 set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2491
2492 if (cpu_has_gsexcex)
2493 set_except_vector(LOONGSON_EXCCODE_GSEXC, handle_gsexc);
2494
2495 if (cpu_has_rixiex) {
2496 set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2497 set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2498 }
2499
2500 set_except_vector(EXCCODE_MSADIS, handle_msa);
2501 set_except_vector(EXCCODE_MDMX, handle_mdmx);
2502
2503 if (cpu_has_mcheck)
2504 set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2505
2506 if (cpu_has_mipsmt)
2507 set_except_vector(EXCCODE_THREAD, handle_mt);
2508
2509 set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2510
2511 if (board_cache_error_setup)
2512 board_cache_error_setup();
2513
2514 if (cpu_has_vce)
2515 /* Special exception: R4[04]00 uses also the divec space. */
2516 set_handler(0x180, &except_vec3_r4000, 0x100);
2517 else if (cpu_has_4kex)
2518 set_handler(0x180, &except_vec3_generic, 0x80);
2519 else
2520 set_handler(0x080, &except_vec3_generic, 0x80);
2521
2522 local_flush_icache_range(ebase, ebase + vec_size);
2523
2524 sort_extable(__start___dbe_table, __stop___dbe_table);
2525
2526 cu2_notifier(default_cu2_call, 0x80000000); /* Run last */
2527}
2528
2529static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2530 void *v)
2531{
2532 switch (cmd) {
2533 case CPU_PM_ENTER_FAILED:
2534 case CPU_PM_EXIT:
2535 configure_status();
2536 configure_hwrena();
2537 configure_exception_vector();
2538
2539 /* Restore register with CPU number for TLB handlers */
2540 TLBMISS_HANDLER_RESTORE();
2541
2542 break;
2543 }
2544
2545 return NOTIFY_OK;
2546}
2547
2548static struct notifier_block trap_pm_notifier_block = {
2549 .notifier_call = trap_pm_notifier,
2550};
2551
2552static int __init trap_pm_init(void)
2553{
2554 return cpu_pm_register_notifier(&trap_pm_notifier_block);
2555}
2556arch_initcall(trap_pm_init);