Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2000, 01 MIPS Technologies, Inc.
  12 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
 
 
  13 */
 
  14#include <linux/bug.h>
  15#include <linux/compiler.h>
 
 
 
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/module.h>
 
  19#include <linux/mm.h>
  20#include <linux/sched.h>
 
  21#include <linux/smp.h>
  22#include <linux/spinlock.h>
  23#include <linux/kallsyms.h>
  24#include <linux/bootmem.h>
  25#include <linux/interrupt.h>
  26#include <linux/ptrace.h>
  27#include <linux/kgdb.h>
  28#include <linux/kdebug.h>
  29#include <linux/kprobes.h>
  30#include <linux/notifier.h>
  31#include <linux/kdb.h>
  32#include <linux/irq.h>
  33#include <linux/perf_event.h>
  34
 
  35#include <asm/bootinfo.h>
  36#include <asm/branch.h>
  37#include <asm/break.h>
  38#include <asm/cop2.h>
  39#include <asm/cpu.h>
 
  40#include <asm/dsp.h>
  41#include <asm/fpu.h>
  42#include <asm/fpu_emulator.h>
 
 
 
  43#include <asm/mipsregs.h>
  44#include <asm/mipsmtregs.h>
  45#include <asm/module.h>
 
  46#include <asm/pgtable.h>
  47#include <asm/ptrace.h>
  48#include <asm/sections.h>
 
  49#include <asm/tlbdebug.h>
  50#include <asm/traps.h>
  51#include <asm/uaccess.h>
  52#include <asm/watch.h>
  53#include <asm/mmu_context.h>
  54#include <asm/types.h>
  55#include <asm/stacktrace.h>
  56#include <asm/uasm.h>
  57
  58extern void check_wait(void);
  59extern asmlinkage void r4k_wait(void);
  60extern asmlinkage void rollback_handle_int(void);
  61extern asmlinkage void handle_int(void);
  62extern asmlinkage void handle_tlbm(void);
  63extern asmlinkage void handle_tlbl(void);
  64extern asmlinkage void handle_tlbs(void);
  65extern asmlinkage void handle_adel(void);
  66extern asmlinkage void handle_ades(void);
  67extern asmlinkage void handle_ibe(void);
  68extern asmlinkage void handle_dbe(void);
  69extern asmlinkage void handle_sys(void);
  70extern asmlinkage void handle_bp(void);
  71extern asmlinkage void handle_ri(void);
  72extern asmlinkage void handle_ri_rdhwr_vivt(void);
  73extern asmlinkage void handle_ri_rdhwr(void);
  74extern asmlinkage void handle_cpu(void);
  75extern asmlinkage void handle_ov(void);
  76extern asmlinkage void handle_tr(void);
 
  77extern asmlinkage void handle_fpe(void);
 
 
  78extern asmlinkage void handle_mdmx(void);
  79extern asmlinkage void handle_watch(void);
  80extern asmlinkage void handle_mt(void);
  81extern asmlinkage void handle_dsp(void);
  82extern asmlinkage void handle_mcheck(void);
  83extern asmlinkage void handle_reserved(void);
  84
  85extern int fpu_emulator_cop1Handler(struct pt_regs *xcp,
  86				    struct mips_fpu_struct *ctx, int has_fpu,
  87				    void *__user *fault_addr);
  88
  89void (*board_be_init)(void);
  90int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  91void (*board_nmi_handler_setup)(void);
  92void (*board_ejtag_handler_setup)(void);
  93void (*board_bind_eic_interrupt)(int irq, int regset);
  94void (*board_ebase_setup)(void);
  95void __cpuinitdata(*board_cache_error_setup)(void);
  96
  97static void show_raw_backtrace(unsigned long reg29)
  98{
  99	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 100	unsigned long addr;
 101
 102	printk("Call Trace:");
 103#ifdef CONFIG_KALLSYMS
 104	printk("\n");
 105#endif
 106	while (!kstack_end(sp)) {
 107		unsigned long __user *p =
 108			(unsigned long __user *)(unsigned long)sp++;
 109		if (__get_user(addr, p)) {
 110			printk(" (Bad stack address)");
 111			break;
 112		}
 113		if (__kernel_text_address(addr))
 114			print_ip_sym(addr);
 115	}
 116	printk("\n");
 117}
 118
 119#ifdef CONFIG_KALLSYMS
 120int raw_show_trace;
 121static int __init set_raw_show_trace(char *str)
 122{
 123	raw_show_trace = 1;
 124	return 1;
 125}
 126__setup("raw_show_trace", set_raw_show_trace);
 127#endif
 128
 129static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 130{
 131	unsigned long sp = regs->regs[29];
 132	unsigned long ra = regs->regs[31];
 133	unsigned long pc = regs->cp0_epc;
 134
 135	if (!task)
 136		task = current;
 137
 138	if (raw_show_trace || !__kernel_text_address(pc)) {
 139		show_raw_backtrace(sp);
 140		return;
 141	}
 142	printk("Call Trace:\n");
 143	do {
 144		print_ip_sym(pc);
 145		pc = unwind_stack(task, &sp, pc, &ra);
 146	} while (pc);
 147	printk("\n");
 148}
 149
 150/*
 151 * This routine abuses get_user()/put_user() to reference pointers
 152 * with at least a bit of error checking ...
 153 */
 154static void show_stacktrace(struct task_struct *task,
 155	const struct pt_regs *regs)
 156{
 157	const int field = 2 * sizeof(unsigned long);
 158	long stackdata;
 159	int i;
 160	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 161
 162	printk("Stack :");
 163	i = 0;
 164	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 165		if (i && ((i % (64 / field)) == 0))
 166			printk("\n       ");
 
 
 167		if (i > 39) {
 168			printk(" ...");
 169			break;
 170		}
 171
 172		if (__get_user(stackdata, sp++)) {
 173			printk(" (Bad stack address)");
 174			break;
 175		}
 176
 177		printk(" %0*lx", field, stackdata);
 178		i++;
 179	}
 180	printk("\n");
 181	show_backtrace(task, regs);
 182}
 183
 184void show_stack(struct task_struct *task, unsigned long *sp)
 185{
 186	struct pt_regs regs;
 
 
 
 187	if (sp) {
 188		regs.regs[29] = (unsigned long)sp;
 189		regs.regs[31] = 0;
 190		regs.cp0_epc = 0;
 191	} else {
 192		if (task && task != current) {
 193			regs.regs[29] = task->thread.reg29;
 194			regs.regs[31] = 0;
 195			regs.cp0_epc = task->thread.reg31;
 196#ifdef CONFIG_KGDB_KDB
 197		} else if (atomic_read(&kgdb_active) != -1 &&
 198			   kdb_current_regs) {
 199			memcpy(&regs, kdb_current_regs, sizeof(regs));
 200#endif /* CONFIG_KGDB_KDB */
 201		} else {
 202			prepare_frametrace(&regs);
 203		}
 204	}
 
 
 
 
 
 205	show_stacktrace(task, &regs);
 
 206}
 207
 208/*
 209 * The architecture-independent dump_stack generator
 210 */
 211void dump_stack(void)
 212{
 213	struct pt_regs regs;
 214
 215	prepare_frametrace(&regs);
 216	show_backtrace(current, &regs);
 217}
 218
 219EXPORT_SYMBOL(dump_stack);
 220
 221static void show_code(unsigned int __user *pc)
 222{
 223	long i;
 224	unsigned short __user *pc16 = NULL;
 225
 226	printk("\nCode:");
 227
 228	if ((unsigned long)pc & 1)
 229		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 230	for(i = -3 ; i < 6 ; i++) {
 231		unsigned int insn;
 232		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 233			printk(" (Bad address in epc)\n");
 234			break;
 235		}
 236		printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 237	}
 
 238}
 239
 240static void __show_regs(const struct pt_regs *regs)
 241{
 242	const int field = 2 * sizeof(unsigned long);
 243	unsigned int cause = regs->cp0_cause;
 
 244	int i;
 245
 246	printk("Cpu %d\n", smp_processor_id());
 247
 248	/*
 249	 * Saved main processor registers
 250	 */
 251	for (i = 0; i < 32; ) {
 252		if ((i % 4) == 0)
 253			printk("$%2d   :", i);
 254		if (i == 0)
 255			printk(" %0*lx", field, 0UL);
 256		else if (i == 26 || i == 27)
 257			printk(" %*s", field, "");
 258		else
 259			printk(" %0*lx", field, regs->regs[i]);
 260
 261		i++;
 262		if ((i % 4) == 0)
 263			printk("\n");
 264	}
 265
 266#ifdef CONFIG_CPU_HAS_SMARTMIPS
 267	printk("Acx    : %0*lx\n", field, regs->acx);
 268#endif
 269	printk("Hi    : %0*lx\n", field, regs->hi);
 270	printk("Lo    : %0*lx\n", field, regs->lo);
 271
 272	/*
 273	 * Saved cp0 registers
 274	 */
 275	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 276	       (void *) regs->cp0_epc);
 277	printk("    %s\n", print_tainted());
 278	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 279	       (void *) regs->regs[31]);
 280
 281	printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 282
 283	if (current_cpu_data.isa_level == MIPS_CPU_ISA_I) {
 284		if (regs->cp0_status & ST0_KUO)
 285			printk("KUo ");
 286		if (regs->cp0_status & ST0_IEO)
 287			printk("IEo ");
 288		if (regs->cp0_status & ST0_KUP)
 289			printk("KUp ");
 290		if (regs->cp0_status & ST0_IEP)
 291			printk("IEp ");
 292		if (regs->cp0_status & ST0_KUC)
 293			printk("KUc ");
 294		if (regs->cp0_status & ST0_IEC)
 295			printk("IEc ");
 296	} else {
 297		if (regs->cp0_status & ST0_KX)
 298			printk("KX ");
 299		if (regs->cp0_status & ST0_SX)
 300			printk("SX ");
 301		if (regs->cp0_status & ST0_UX)
 302			printk("UX ");
 303		switch (regs->cp0_status & ST0_KSU) {
 304		case KSU_USER:
 305			printk("USER ");
 306			break;
 307		case KSU_SUPERVISOR:
 308			printk("SUPERVISOR ");
 309			break;
 310		case KSU_KERNEL:
 311			printk("KERNEL ");
 312			break;
 313		default:
 314			printk("BAD_MODE ");
 315			break;
 316		}
 317		if (regs->cp0_status & ST0_ERL)
 318			printk("ERL ");
 319		if (regs->cp0_status & ST0_EXL)
 320			printk("EXL ");
 321		if (regs->cp0_status & ST0_IE)
 322			printk("IE ");
 323	}
 324	printk("\n");
 325
 326	printk("Cause : %08x\n", cause);
 
 327
 328	cause = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 329	if (1 <= cause && cause <= 5)
 330		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 331
 332	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 333	       cpu_name_string());
 334}
 335
 336/*
 337 * FIXME: really the generic show_regs should take a const pointer argument.
 338 */
 339void show_regs(struct pt_regs *regs)
 340{
 341	__show_regs((struct pt_regs *)regs);
 342}
 343
 344void show_registers(struct pt_regs *regs)
 345{
 346	const int field = 2 * sizeof(unsigned long);
 
 347
 348	__show_regs(regs);
 349	print_modules();
 350	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 351	       current->comm, current->pid, current_thread_info(), current,
 352	      field, current_thread_info()->tp_value);
 353	if (cpu_has_userlocal) {
 354		unsigned long tls;
 355
 356		tls = read_c0_userlocal();
 357		if (tls != current_thread_info()->tp_value)
 358			printk("*HwTLS: %0*lx\n", field, tls);
 359	}
 360
 
 
 
 361	show_stacktrace(current, regs);
 362	show_code((unsigned int __user *) regs->cp0_epc);
 363	printk("\n");
 364}
 365
 366static int regs_to_trapnr(struct pt_regs *regs)
 367{
 368	return (regs->cp0_cause >> 2) & 0x1f;
 369}
 370
 371static DEFINE_RAW_SPINLOCK(die_lock);
 372
 373void __noreturn die(const char *str, struct pt_regs *regs)
 374{
 375	static int die_counter;
 376	int sig = SIGSEGV;
 377#ifdef CONFIG_MIPS_MT_SMTC
 378	unsigned long dvpret;
 379#endif /* CONFIG_MIPS_MT_SMTC */
 380
 381	oops_enter();
 382
 383	if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs), SIGSEGV) == NOTIFY_STOP)
 
 384		sig = 0;
 385
 386	console_verbose();
 387	raw_spin_lock_irq(&die_lock);
 388#ifdef CONFIG_MIPS_MT_SMTC
 389	dvpret = dvpe();
 390#endif /* CONFIG_MIPS_MT_SMTC */
 391	bust_spinlocks(1);
 392#ifdef CONFIG_MIPS_MT_SMTC
 393	mips_mt_regdump(dvpret);
 394#endif /* CONFIG_MIPS_MT_SMTC */
 395
 396	printk("%s[#%d]:\n", str, ++die_counter);
 397	show_registers(regs);
 398	add_taint(TAINT_DIE);
 399	raw_spin_unlock_irq(&die_lock);
 400
 401	oops_exit();
 402
 403	if (in_interrupt())
 404		panic("Fatal exception in interrupt");
 405
 406	if (panic_on_oops) {
 407		printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 408		ssleep(5);
 409		panic("Fatal exception");
 410	}
 
 
 411
 412	do_exit(sig);
 413}
 414
 415extern struct exception_table_entry __start___dbe_table[];
 416extern struct exception_table_entry __stop___dbe_table[];
 417
 418__asm__(
 419"	.section	__dbe_table, \"a\"\n"
 420"	.previous			\n");
 421
 422/* Given an address, look for it in the exception tables. */
 423static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 424{
 425	const struct exception_table_entry *e;
 426
 427	e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 
 428	if (!e)
 429		e = search_module_dbetables(addr);
 430	return e;
 431}
 432
 433asmlinkage void do_be(struct pt_regs *regs)
 434{
 435	const int field = 2 * sizeof(unsigned long);
 436	const struct exception_table_entry *fixup = NULL;
 437	int data = regs->cp0_cause & 4;
 438	int action = MIPS_BE_FATAL;
 
 439
 440	/* XXX For now.  Fixme, this searches the wrong table ...  */
 
 441	if (data && !user_mode(regs))
 442		fixup = search_dbe_tables(exception_epc(regs));
 443
 444	if (fixup)
 445		action = MIPS_BE_FIXUP;
 446
 447	if (board_be_handler)
 448		action = board_be_handler(regs, fixup != NULL);
 
 
 449
 450	switch (action) {
 451	case MIPS_BE_DISCARD:
 452		return;
 453	case MIPS_BE_FIXUP:
 454		if (fixup) {
 455			regs->cp0_epc = fixup->nextinsn;
 456			return;
 457		}
 458		break;
 459	default:
 460		break;
 461	}
 462
 463	/*
 464	 * Assume it would be too dangerous to continue ...
 465	 */
 466	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 467	       data ? "Data" : "Instruction",
 468	       field, regs->cp0_epc, field, regs->regs[31]);
 469	if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs), SIGBUS)
 470	    == NOTIFY_STOP)
 471		return;
 472
 473	die_if_kernel("Oops", regs);
 474	force_sig(SIGBUS, current);
 
 
 
 475}
 476
 477/*
 478 * ll/sc, rdhwr, sync emulation
 479 */
 480
 481#define OPCODE 0xfc000000
 482#define BASE   0x03e00000
 483#define RT     0x001f0000
 484#define OFFSET 0x0000ffff
 485#define LL     0xc0000000
 486#define SC     0xe0000000
 487#define SPEC0  0x00000000
 488#define SPEC3  0x7c000000
 489#define RD     0x0000f800
 490#define FUNC   0x0000003f
 491#define SYNC   0x0000000f
 492#define RDHWR  0x0000003b
 493
 
 
 
 
 
 
 494/*
 495 * The ll_bit is cleared by r*_switch.S
 496 */
 497
 498unsigned int ll_bit;
 499struct task_struct *ll_task;
 500
 501static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 502{
 503	unsigned long value, __user *vaddr;
 504	long offset;
 505
 506	/*
 507	 * analyse the ll instruction that just caused a ri exception
 508	 * and put the referenced address to addr.
 509	 */
 510
 511	/* sign extend offset */
 512	offset = opcode & OFFSET;
 513	offset <<= 16;
 514	offset >>= 16;
 515
 516	vaddr = (unsigned long __user *)
 517	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 518
 519	if ((unsigned long)vaddr & 3)
 520		return SIGBUS;
 521	if (get_user(value, vaddr))
 522		return SIGSEGV;
 523
 524	preempt_disable();
 525
 526	if (ll_task == NULL || ll_task == current) {
 527		ll_bit = 1;
 528	} else {
 529		ll_bit = 0;
 530	}
 531	ll_task = current;
 532
 533	preempt_enable();
 534
 535	regs->regs[(opcode & RT) >> 16] = value;
 536
 537	return 0;
 538}
 539
 540static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 541{
 542	unsigned long __user *vaddr;
 543	unsigned long reg;
 544	long offset;
 545
 546	/*
 547	 * analyse the sc instruction that just caused a ri exception
 548	 * and put the referenced address to addr.
 549	 */
 550
 551	/* sign extend offset */
 552	offset = opcode & OFFSET;
 553	offset <<= 16;
 554	offset >>= 16;
 555
 556	vaddr = (unsigned long __user *)
 557	        ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 558	reg = (opcode & RT) >> 16;
 559
 560	if ((unsigned long)vaddr & 3)
 561		return SIGBUS;
 562
 563	preempt_disable();
 564
 565	if (ll_bit == 0 || ll_task != current) {
 566		regs->regs[reg] = 0;
 567		preempt_enable();
 568		return 0;
 569	}
 570
 571	preempt_enable();
 572
 573	if (put_user(regs->regs[reg], vaddr))
 574		return SIGSEGV;
 575
 576	regs->regs[reg] = 1;
 577
 578	return 0;
 579}
 580
 581/*
 582 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 583 * opcodes are supposed to result in coprocessor unusable exceptions if
 584 * executed on ll/sc-less processors.  That's the theory.  In practice a
 585 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 586 * instead, so we're doing the emulation thing in both exception handlers.
 587 */
 588static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 589{
 590	if ((opcode & OPCODE) == LL) {
 591		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 592				1, regs, 0);
 593		return simulate_ll(regs, opcode);
 594	}
 595	if ((opcode & OPCODE) == SC) {
 596		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 597				1, regs, 0);
 598		return simulate_sc(regs, opcode);
 599	}
 600
 601	return -1;			/* Must be something else ... */
 602}
 603
 604/*
 605 * Simulate trapping 'rdhwr' instructions to provide user accessible
 606 * registers not implemented in hardware.
 607 */
 608static int simulate_rdhwr(struct pt_regs *regs, unsigned int opcode)
 609{
 610	struct thread_info *ti = task_thread_info(current);
 611
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 612	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 613		int rd = (opcode & RD) >> 11;
 614		int rt = (opcode & RT) >> 16;
 615		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 616				1, regs, 0);
 617		switch (rd) {
 618		case 0:		/* CPU number */
 619			regs->regs[rt] = smp_processor_id();
 620			return 0;
 621		case 1:		/* SYNCI length */
 622			regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 623					     current_cpu_data.icache.linesz);
 624			return 0;
 625		case 2:		/* Read count register */
 626			regs->regs[rt] = read_c0_count();
 627			return 0;
 628		case 3:		/* Count register resolution */
 629			switch (current_cpu_data.cputype) {
 630			case CPU_20KC:
 631			case CPU_25KF:
 632				regs->regs[rt] = 1;
 633				break;
 634			default:
 635				regs->regs[rt] = 2;
 636			}
 637			return 0;
 638		case 29:
 639			regs->regs[rt] = ti->tp_value;
 640			return 0;
 641		default:
 642			return -1;
 643		}
 644	}
 645
 646	/* Not ours.  */
 647	return -1;
 648}
 649
 650static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 651{
 652	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 653		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 654				1, regs, 0);
 655		return 0;
 656	}
 657
 658	return -1;			/* Must be something else ... */
 659}
 660
 661asmlinkage void do_ov(struct pt_regs *regs)
 662{
 
 663	siginfo_t info;
 664
 
 
 
 
 
 
 665	die_if_kernel("Integer overflow", regs);
 666
 667	info.si_code = FPE_INTOVF;
 668	info.si_signo = SIGFPE;
 669	info.si_errno = 0;
 670	info.si_addr = (void __user *) regs->cp0_epc;
 671	force_sig_info(SIGFPE, &info, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 672}
 673
 674static int process_fpemu_return(int sig, void __user *fault_addr)
 675{
 676	if (sig == SIGSEGV || sig == SIGBUS) {
 677		struct siginfo si = {0};
 
 
 
 
 
 
 
 
 
 
 
 678		si.si_addr = fault_addr;
 679		si.si_signo = sig;
 680		if (sig == SIGSEGV) {
 681			if (find_vma(current->mm, (unsigned long)fault_addr))
 682				si.si_code = SEGV_ACCERR;
 683			else
 684				si.si_code = SEGV_MAPERR;
 685		} else {
 686			si.si_code = BUS_ADRERR;
 687		}
 688		force_sig_info(sig, &si, current);
 689		return 1;
 690	} else if (sig) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691		force_sig(sig, current);
 692		return 1;
 693	} else {
 694		return 0;
 695	}
 696}
 697
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698/*
 699 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 700 */
 701asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 702{
 703	siginfo_t info = {0};
 
 
 
 
 
 
 
 
 
 
 
 704
 705	if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs), SIGFPE)
 706	    == NOTIFY_STOP)
 707		return;
 708	die_if_kernel("FP exception in kernel code", regs);
 709
 710	if (fcr31 & FPU_CSR_UNI_X) {
 711		int sig;
 712		void __user *fault_addr = NULL;
 713
 714		/*
 715		 * Unimplemented operation exception.  If we've got the full
 716		 * software emulator on-board, let's use it...
 717		 *
 718		 * Force FPU to dump state into task/thread context.  We're
 719		 * moving a lot of data here for what is probably a single
 720		 * instruction, but the alternative is to pre-decode the FP
 721		 * register operands before invoking the emulator, which seems
 722		 * a bit extreme for what should be an infrequent event.
 723		 */
 724		/* Ensure 'resume' not overwrite saved fp context again. */
 725		lose_fpu(1);
 726
 727		/* Run the emulator */
 728		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 729					       &fault_addr);
 730
 731		/*
 732		 * We can't allow the emulated instruction to leave any of
 733		 * the cause bit set in $fcr31.
 734		 */
 735		current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 
 736
 737		/* Restore the hardware register state */
 738		own_fpu(1);	/* Using the FPU again.  */
 
 
 
 
 739
 740		/* If something went wrong, signal */
 741		process_fpemu_return(sig, fault_addr);
 742
 743		return;
 744	} else if (fcr31 & FPU_CSR_INV_X)
 745		info.si_code = FPE_FLTINV;
 746	else if (fcr31 & FPU_CSR_DIV_X)
 747		info.si_code = FPE_FLTDIV;
 748	else if (fcr31 & FPU_CSR_OVF_X)
 749		info.si_code = FPE_FLTOVF;
 750	else if (fcr31 & FPU_CSR_UDF_X)
 751		info.si_code = FPE_FLTUND;
 752	else if (fcr31 & FPU_CSR_INE_X)
 753		info.si_code = FPE_FLTRES;
 754	else
 755		info.si_code = __SI_FAULT;
 756	info.si_signo = SIGFPE;
 757	info.si_errno = 0;
 758	info.si_addr = (void __user *) regs->cp0_epc;
 759	force_sig_info(SIGFPE, &info, current);
 760}
 761
 762static void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 763	const char *str)
 764{
 765	siginfo_t info;
 766	char b[40];
 767
 
 768#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 769	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 770		return;
 771#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 772
 773	if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 
 774		return;
 775
 776	/*
 777	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 778	 * insns, even for trap and break codes that indicate arithmetic
 779	 * failures.  Weird ...
 780	 * But should we continue the brokenness???  --macro
 781	 */
 782	switch (code) {
 783	case BRK_OVERFLOW:
 784	case BRK_DIVZERO:
 785		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 786		die_if_kernel(b, regs);
 787		if (code == BRK_DIVZERO)
 788			info.si_code = FPE_INTDIV;
 789		else
 790			info.si_code = FPE_INTOVF;
 791		info.si_signo = SIGFPE;
 792		info.si_errno = 0;
 793		info.si_addr = (void __user *) regs->cp0_epc;
 794		force_sig_info(SIGFPE, &info, current);
 795		break;
 796	case BRK_BUG:
 797		die_if_kernel("Kernel bug detected", regs);
 798		force_sig(SIGTRAP, current);
 799		break;
 800	case BRK_MEMU:
 801		/*
 802		 * Address errors may be deliberately induced by the FPU
 803		 * emulator to retake control of the CPU after executing the
 804		 * instruction in the delay slot of an emulated branch.
 805		 *
 806		 * Terminate if exception was recognized as a delay slot return
 807		 * otherwise handle as normal.
 808		 */
 809		if (do_dsemulret(regs))
 810			return;
 811
 812		die_if_kernel("Math emu break/trap", regs);
 813		force_sig(SIGTRAP, current);
 814		break;
 815	default:
 816		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 817		die_if_kernel(b, regs);
 818		force_sig(SIGTRAP, current);
 
 
 
 
 
 
 819	}
 820}
 821
 822asmlinkage void do_bp(struct pt_regs *regs)
 823{
 
 824	unsigned int opcode, bcode;
 
 
 825
 826	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 827		goto out_sigsegv;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 828
 829	/*
 830	 * There is the ancient bug in the MIPS assemblers that the break
 831	 * code starts left to bit 16 instead to bit 6 in the opcode.
 832	 * Gas is bug-compatible, but not always, grrr...
 833	 * We handle both cases with a simple heuristics.  --macro
 834	 */
 835	bcode = ((opcode >> 6) & ((1 << 20) - 1));
 836	if (bcode >= (1 << 10))
 837		bcode >>= 10;
 838
 839	/*
 840	 * notify the kprobe handlers, if instruction is likely to
 841	 * pertain to them.
 842	 */
 843	switch (bcode) {
 
 
 
 
 
 
 
 
 
 
 
 
 844	case BRK_KPROBE_BP:
 845		if (notify_die(DIE_BREAK, "debug", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 846			return;
 
 847		else
 848			break;
 849	case BRK_KPROBE_SSTEPBP:
 850		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 851			return;
 
 852		else
 853			break;
 854	default:
 855		break;
 856	}
 857
 858	do_trap_or_bp(regs, bcode, "Break");
 
 
 
 
 859	return;
 860
 861out_sigsegv:
 862	force_sig(SIGSEGV, current);
 
 863}
 864
 865asmlinkage void do_tr(struct pt_regs *regs)
 866{
 867	unsigned int opcode, tcode = 0;
 868
 869	if (__get_user(opcode, (unsigned int __user *) exception_epc(regs)))
 870		goto out_sigsegv;
 871
 872	/* Immediate versions don't provide a code.  */
 873	if (!(opcode & OPCODE))
 874		tcode = ((opcode >> 6) & ((1 << 10) - 1));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	do_trap_or_bp(regs, tcode, "Trap");
 
 
 
 
 877	return;
 878
 879out_sigsegv:
 880	force_sig(SIGSEGV, current);
 
 881}
 882
 883asmlinkage void do_ri(struct pt_regs *regs)
 884{
 885	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
 886	unsigned long old_epc = regs->cp0_epc;
 
 
 887	unsigned int opcode = 0;
 888	int status = -1;
 889
 890	if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs), SIGILL)
 891	    == NOTIFY_STOP)
 892		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 893
 894	die_if_kernel("Reserved instruction in kernel code", regs);
 895
 896	if (unlikely(compute_return_epc(regs) < 0))
 897		return;
 
 
 
 
 898
 899	if (unlikely(get_user(opcode, epc) < 0))
 900		status = SIGSEGV;
 901
 902	if (!cpu_has_llsc && status < 0)
 903		status = simulate_llsc(regs, opcode);
 904
 905	if (status < 0)
 906		status = simulate_rdhwr(regs, opcode);
 907
 908	if (status < 0)
 909		status = simulate_sync(regs, opcode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 910
 911	if (status < 0)
 912		status = SIGILL;
 913
 914	if (unlikely(status > 0)) {
 915		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
 
 916		force_sig(status, current);
 917	}
 
 
 
 918}
 919
 920/*
 921 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
 922 * emulated more than some threshold number of instructions, force migration to
 923 * a "CPU" that has FP support.
 924 */
 925static void mt_ase_fp_affinity(void)
 926{
 927#ifdef CONFIG_MIPS_MT_FPAFF
 928	if (mt_fpemul_threshold > 0 &&
 929	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
 930		/*
 931		 * If there's no FPU present, or if the application has already
 932		 * restricted the allowed set to exclude any CPUs with FPUs,
 933		 * we'll skip the procedure.
 934		 */
 935		if (cpus_intersects(current->cpus_allowed, mt_fpu_cpumask)) {
 936			cpumask_t tmask;
 937
 938			current->thread.user_cpus_allowed
 939				= current->cpus_allowed;
 940			cpus_and(tmask, current->cpus_allowed,
 941				mt_fpu_cpumask);
 942			set_cpus_allowed_ptr(current, &tmask);
 943			set_thread_flag(TIF_FPUBOUND);
 944		}
 945	}
 946#endif /* CONFIG_MIPS_MT_FPAFF */
 947}
 948
 949/*
 950 * No lock; only written during early bootup by CPU 0.
 951 */
 952static RAW_NOTIFIER_HEAD(cu2_chain);
 953
 954int __ref register_cu2_notifier(struct notifier_block *nb)
 955{
 956	return raw_notifier_chain_register(&cu2_chain, nb);
 957}
 958
 959int cu2_notifier_call_chain(unsigned long val, void *v)
 960{
 961	return raw_notifier_call_chain(&cu2_chain, val, v);
 962}
 963
 964static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
 965        void *data)
 966{
 967	struct pt_regs *regs = data;
 968
 969	switch (action) {
 970	default:
 971		die_if_kernel("Unhandled kernel unaligned access or invalid "
 972			      "instruction", regs);
 973		/* Fall through  */
 974
 975	case CU2_EXCEPTION:
 976		force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 977	}
 978
 979	return NOTIFY_OK;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980}
 981
 982asmlinkage void do_cpu(struct pt_regs *regs)
 983{
 
 984	unsigned int __user *epc;
 985	unsigned long old_epc;
 
 986	unsigned int opcode;
 
 987	unsigned int cpid;
 988	int status;
 989	unsigned long __maybe_unused flags;
 990
 991	die_if_kernel("do_cpu invoked from kernel context!", regs);
 992
 
 993	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
 994
 
 
 
 995	switch (cpid) {
 996	case 0:
 997		epc = (unsigned int __user *)exception_epc(regs);
 998		old_epc = regs->cp0_epc;
 
 999		opcode = 0;
1000		status = -1;
1001
1002		if (unlikely(compute_return_epc(regs) < 0))
1003			return;
1004
1005		if (unlikely(get_user(opcode, epc) < 0))
1006			status = SIGSEGV;
 
1007
1008		if (!cpu_has_llsc && status < 0)
1009			status = simulate_llsc(regs, opcode);
1010
1011		if (status < 0)
1012			status = simulate_rdhwr(regs, opcode);
1013
1014		if (status < 0)
1015			status = SIGILL;
1016
1017		if (unlikely(status > 0)) {
1018			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
 
1019			force_sig(status, current);
1020		}
1021
1022		return;
1023
1024	case 1:
1025		if (used_math())	/* Using the FPU again.  */
1026			own_fpu(1);
1027		else {			/* First time FPU user.  */
1028			init_fpu();
1029			set_used_math();
 
 
 
 
 
 
 
 
 
 
1030		}
 
1031
1032		if (!raw_cpu_has_fpu) {
1033			int sig;
1034			void __user *fault_addr = NULL;
1035			sig = fpu_emulator_cop1Handler(regs,
1036						       &current->thread.fpu,
1037						       0, &fault_addr);
1038			if (!process_fpemu_return(sig, fault_addr))
1039				mt_ase_fp_affinity();
1040		}
1041
1042		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1043
1044	case 2:
1045		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1046		return;
1047
1048	case 3:
1049		break;
1050	}
1051
1052	force_sig(SIGILL, current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1053}
1054
1055asmlinkage void do_mdmx(struct pt_regs *regs)
1056{
 
 
 
1057	force_sig(SIGILL, current);
 
1058}
1059
1060/*
1061 * Called with interrupts disabled.
1062 */
1063asmlinkage void do_watch(struct pt_regs *regs)
1064{
1065	u32 cause;
 
 
 
 
 
1066
 
1067	/*
1068	 * Clear WP (bit 22) bit of cause register so we don't loop
1069	 * forever.
1070	 */
1071	cause = read_c0_cause();
1072	cause &= ~(1 << 22);
1073	write_c0_cause(cause);
1074
1075	/*
1076	 * If the current thread has the watch registers loaded, save
1077	 * their values and send SIGTRAP.  Otherwise another thread
1078	 * left the registers set, clear them and continue.
1079	 */
1080	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1081		mips_read_watch_registers();
1082		local_irq_enable();
1083		force_sig(SIGTRAP, current);
1084	} else {
1085		mips_clear_watch_registers();
1086		local_irq_enable();
1087	}
 
1088}
1089
1090asmlinkage void do_mcheck(struct pt_regs *regs)
1091{
1092	const int field = 2 * sizeof(unsigned long);
1093	int multi_match = regs->cp0_status & ST0_TS;
 
 
1094
 
1095	show_regs(regs);
1096
1097	if (multi_match) {
1098		printk("Index   : %0x\n", read_c0_index());
1099		printk("Pagemask: %0x\n", read_c0_pagemask());
1100		printk("EntryHi : %0*lx\n", field, read_c0_entryhi());
1101		printk("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1102		printk("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1103		printk("\n");
1104		dump_tlb_all();
1105	}
1106
 
 
 
1107	show_code((unsigned int __user *) regs->cp0_epc);
1108
 
 
1109	/*
1110	 * Some chips may have other causes of machine check (e.g. SB1
1111	 * graduation timer)
1112	 */
1113	panic("Caught Machine Check exception - %scaused by multiple "
1114	      "matching entries in the TLB.",
1115	      (multi_match) ? "" : "not ");
1116}
1117
1118asmlinkage void do_mt(struct pt_regs *regs)
1119{
1120	int subcode;
1121
1122	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1123			>> VPECONTROL_EXCPT_SHIFT;
1124	switch (subcode) {
1125	case 0:
1126		printk(KERN_DEBUG "Thread Underflow\n");
1127		break;
1128	case 1:
1129		printk(KERN_DEBUG "Thread Overflow\n");
1130		break;
1131	case 2:
1132		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1133		break;
1134	case 3:
1135		printk(KERN_DEBUG "Gating Storage Exception\n");
1136		break;
1137	case 4:
1138		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1139		break;
1140	case 5:
1141		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1142		break;
1143	default:
1144		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1145			subcode);
1146		break;
1147	}
1148	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1149
1150	force_sig(SIGILL, current);
1151}
1152
1153
1154asmlinkage void do_dsp(struct pt_regs *regs)
1155{
1156	if (cpu_has_dsp)
1157		panic("Unexpected DSP exception");
1158
1159	force_sig(SIGILL, current);
1160}
1161
1162asmlinkage void do_reserved(struct pt_regs *regs)
1163{
1164	/*
1165	 * Game over - no way to handle this if it ever occurs.  Most probably
1166	 * caused by a new unknown cpu type or after another deadly
1167	 * hard/software error.
1168	 */
1169	show_regs(regs);
1170	panic("Caught reserved exception %ld - should not happen.",
1171	      (regs->cp0_cause & 0x7f) >> 2);
1172}
1173
1174static int __initdata l1parity = 1;
1175static int __init nol1parity(char *s)
1176{
1177	l1parity = 0;
1178	return 1;
1179}
1180__setup("nol1par", nol1parity);
1181static int __initdata l2parity = 1;
1182static int __init nol2parity(char *s)
1183{
1184	l2parity = 0;
1185	return 1;
1186}
1187__setup("nol2par", nol2parity);
1188
1189/*
1190 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1191 * it different ways.
1192 */
1193static inline void parity_protection_init(void)
1194{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	switch (current_cpu_type()) {
1196	case CPU_24K:
1197	case CPU_34K:
1198	case CPU_74K:
1199	case CPU_1004K:
 
 
 
 
 
 
1200		{
1201#define ERRCTL_PE	0x80000000
1202#define ERRCTL_L2P	0x00800000
1203			unsigned long errctl;
1204			unsigned int l1parity_present, l2parity_present;
1205
1206			errctl = read_c0_ecc();
1207			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1208
1209			/* probe L1 parity support */
1210			write_c0_ecc(errctl | ERRCTL_PE);
1211			back_to_back_c0_hazard();
1212			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1213
1214			/* probe L2 parity support */
1215			write_c0_ecc(errctl|ERRCTL_L2P);
1216			back_to_back_c0_hazard();
1217			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1218
1219			if (l1parity_present && l2parity_present) {
1220				if (l1parity)
1221					errctl |= ERRCTL_PE;
1222				if (l1parity ^ l2parity)
1223					errctl |= ERRCTL_L2P;
1224			} else if (l1parity_present) {
1225				if (l1parity)
1226					errctl |= ERRCTL_PE;
1227			} else if (l2parity_present) {
1228				if (l2parity)
1229					errctl |= ERRCTL_L2P;
1230			} else {
1231				/* No parity available */
1232			}
1233
1234			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1235
1236			write_c0_ecc(errctl);
1237			back_to_back_c0_hazard();
1238			errctl = read_c0_ecc();
1239			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1240
1241			if (l1parity_present)
1242				printk(KERN_INFO "Cache parity protection %sabled\n",
1243				       (errctl & ERRCTL_PE) ? "en" : "dis");
1244
1245			if (l2parity_present) {
1246				if (l1parity_present && l1parity)
1247					errctl ^= ERRCTL_L2P;
1248				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1249				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1250			}
1251		}
1252		break;
1253
1254	case CPU_5KC:
1255	case CPU_5KE:
 
1256		write_c0_ecc(0x80000000);
1257		back_to_back_c0_hazard();
1258		/* Set the PE bit (bit 31) in the c0_errctl register. */
1259		printk(KERN_INFO "Cache parity protection %sabled\n",
1260		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1261		break;
1262	case CPU_20KC:
1263	case CPU_25KF:
1264		/* Clear the DE bit (bit 16) in the c0_status register. */
1265		printk(KERN_INFO "Enable cache parity protection for "
1266		       "MIPS 20KC/25KF CPUs.\n");
1267		clear_c0_status(ST0_DE);
1268		break;
1269	default:
1270		break;
1271	}
1272}
1273
1274asmlinkage void cache_parity_error(void)
1275{
1276	const int field = 2 * sizeof(unsigned long);
1277	unsigned int reg_val;
1278
1279	/* For the moment, report the problem and hang. */
1280	printk("Cache error exception:\n");
1281	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1282	reg_val = read_c0_cacheerr();
1283	printk("c0_cacheerr == %08x\n", reg_val);
1284
1285	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1286	       reg_val & (1<<30) ? "secondary" : "primary",
1287	       reg_val & (1<<31) ? "data" : "insn");
1288	printk("Error bits: %s%s%s%s%s%s%s\n",
1289	       reg_val & (1<<29) ? "ED " : "",
1290	       reg_val & (1<<28) ? "ET " : "",
1291	       reg_val & (1<<26) ? "EE " : "",
1292	       reg_val & (1<<25) ? "EB " : "",
1293	       reg_val & (1<<24) ? "EI " : "",
1294	       reg_val & (1<<23) ? "E1 " : "",
1295	       reg_val & (1<<22) ? "E0 " : "");
 
 
 
 
 
 
 
 
 
 
 
 
 
1296	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1297
1298#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1299	if (reg_val & (1<<22))
1300		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1301
1302	if (reg_val & (1<<23))
1303		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1304#endif
1305
1306	panic("Can't handle the cache error!");
1307}
1308
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1309/*
1310 * SDBBP EJTAG debug exception handler.
1311 * We skip the instruction and return to the next instruction.
1312 */
1313void ejtag_exception_handler(struct pt_regs *regs)
1314{
1315	const int field = 2 * sizeof(unsigned long);
1316	unsigned long depc, old_epc;
1317	unsigned int debug;
1318
1319	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1320	depc = read_c0_depc();
1321	debug = read_c0_debug();
1322	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1323	if (debug & 0x80000000) {
1324		/*
1325		 * In branch delay slot.
1326		 * We cheat a little bit here and use EPC to calculate the
1327		 * debug return address (DEPC). EPC is restored after the
1328		 * calculation.
1329		 */
1330		old_epc = regs->cp0_epc;
 
1331		regs->cp0_epc = depc;
1332		__compute_return_epc(regs);
1333		depc = regs->cp0_epc;
1334		regs->cp0_epc = old_epc;
 
1335	} else
1336		depc += 4;
1337	write_c0_depc(depc);
1338
1339#if 0
1340	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1341	write_c0_debug(debug | 0x100);
1342#endif
1343}
1344
1345/*
1346 * NMI exception handler.
1347 * No lock; only written during early bootup by CPU 0.
1348 */
1349static RAW_NOTIFIER_HEAD(nmi_chain);
1350
1351int register_nmi_notifier(struct notifier_block *nb)
1352{
1353	return raw_notifier_chain_register(&nmi_chain, nb);
1354}
1355
1356void __noreturn nmi_exception_handler(struct pt_regs *regs)
1357{
 
 
 
1358	raw_notifier_call_chain(&nmi_chain, 0, regs);
1359	bust_spinlocks(1);
1360	printk("NMI taken!!!!\n");
1361	die("NMI", regs);
 
 
 
1362}
1363
1364#define VECTORSPACING 0x100	/* for EI/VI mode */
1365
1366unsigned long ebase;
 
1367unsigned long exception_handlers[32];
1368unsigned long vi_handlers[64];
1369
1370void __init *set_except_vector(int n, void *addr)
1371{
1372	unsigned long handler = (unsigned long) addr;
1373	unsigned long old_handler = exception_handlers[n];
 
 
 
 
 
 
 
 
 
 
 
 
 
1374
1375	exception_handlers[n] = handler;
1376	if (n == 0 && cpu_has_divec) {
 
 
 
1377		unsigned long jump_mask = ~((1 << 28) - 1);
 
1378		u32 *buf = (u32 *)(ebase + 0x200);
1379		unsigned int k0 = 26;
1380		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1381			uasm_i_j(&buf, handler & ~jump_mask);
1382			uasm_i_nop(&buf);
1383		} else {
1384			UASM_i_LA(&buf, k0, handler);
1385			uasm_i_jr(&buf, k0);
1386			uasm_i_nop(&buf);
1387		}
1388		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1389	}
1390	return (void *)old_handler;
1391}
1392
1393static asmlinkage void do_default_vi(void)
1394{
1395	show_regs(get_irq_regs());
1396	panic("Caught unexpected vectored interrupt.");
1397}
1398
1399static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1400{
1401	unsigned long handler;
1402	unsigned long old_handler = vi_handlers[n];
1403	int srssets = current_cpu_data.srsets;
1404	u32 *w;
1405	unsigned char *b;
1406
1407	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1408
1409	if (addr == NULL) {
1410		handler = (unsigned long) do_default_vi;
1411		srs = 0;
1412	} else
1413		handler = (unsigned long) addr;
1414	vi_handlers[n] = (unsigned long) addr;
1415
1416	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1417
1418	if (srs >= srssets)
1419		panic("Shadow register set %d not supported", srs);
1420
1421	if (cpu_has_veic) {
1422		if (board_bind_eic_interrupt)
1423			board_bind_eic_interrupt(n, srs);
1424	} else if (cpu_has_vint) {
1425		/* SRSMap is only defined if shadow sets are implemented */
1426		if (srssets > 1)
1427			change_c0_srsmap(0xf << n*4, srs << n*4);
1428	}
1429
1430	if (srs == 0) {
1431		/*
1432		 * If no shadow set is selected then use the default handler
1433		 * that does normal register saving and a standard interrupt exit
1434		 */
1435
1436		extern char except_vec_vi, except_vec_vi_lui;
1437		extern char except_vec_vi_ori, except_vec_vi_end;
1438		extern char rollback_except_vec_vi;
1439		char *vec_start = (cpu_wait == r4k_wait) ?
1440			&rollback_except_vec_vi : &except_vec_vi;
1441#ifdef CONFIG_MIPS_MT_SMTC
1442		/*
1443		 * We need to provide the SMTC vectored interrupt handler
1444		 * not only with the address of the handler, but with the
1445		 * Status.IM bit to be masked before going there.
1446		 */
1447		extern char except_vec_vi_mori;
1448		const int mori_offset = &except_vec_vi_mori - vec_start;
1449#endif /* CONFIG_MIPS_MT_SMTC */
1450		const int handler_len = &except_vec_vi_end - vec_start;
1451		const int lui_offset = &except_vec_vi_lui - vec_start;
1452		const int ori_offset = &except_vec_vi_ori - vec_start;
 
 
1453
1454		if (handler_len > VECTORSPACING) {
1455			/*
1456			 * Sigh... panicing won't help as the console
1457			 * is probably not configured :(
1458			 */
1459			panic("VECTORSPACING too small");
1460		}
1461
1462		memcpy(b, vec_start, handler_len);
1463#ifdef CONFIG_MIPS_MT_SMTC
1464		BUG_ON(n > 7);	/* Vector index %d exceeds SMTC maximum. */
1465
1466		w = (u32 *)(b + mori_offset);
1467		*w = (*w & 0xffff0000) | (0x100 << n);
1468#endif /* CONFIG_MIPS_MT_SMTC */
1469		w = (u32 *)(b + lui_offset);
1470		*w = (*w & 0xffff0000) | (((u32)handler >> 16) & 0xffff);
1471		w = (u32 *)(b + ori_offset);
1472		*w = (*w & 0xffff0000) | ((u32)handler & 0xffff);
1473		local_flush_icache_range((unsigned long)b,
1474					 (unsigned long)(b+handler_len));
1475	}
1476	else {
1477		/*
1478		 * In other cases jump directly to the interrupt handler
1479		 *
1480		 * It is the handlers responsibility to save registers if required
1481		 * (eg hi/lo) and return from the exception using "eret"
1482		 */
1483		w = (u32 *)b;
1484		*w++ = 0x08000000 | (((u32)handler >> 2) & 0x03fffff); /* j handler */
1485		*w = 0;
 
 
 
 
 
 
 
 
 
 
1486		local_flush_icache_range((unsigned long)b,
1487					 (unsigned long)(b+8));
1488	}
1489
1490	return (void *)old_handler;
1491}
1492
1493void *set_vi_handler(int n, vi_handler_t addr)
1494{
1495	return set_vi_srs_handler(n, addr, 0);
1496}
1497
1498extern void tlb_init(void);
1499extern void flush_tlb_handlers(void);
1500
1501/*
1502 * Timer interrupt
1503 */
1504int cp0_compare_irq;
1505EXPORT_SYMBOL_GPL(cp0_compare_irq);
1506int cp0_compare_irq_shift;
1507
1508/*
1509 * Performance counter IRQ or -1 if shared with timer
1510 */
1511int cp0_perfcount_irq;
1512EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
1513
1514static int __cpuinitdata noulri;
 
 
 
 
 
 
1515
1516static int __init ulri_disable(char *s)
1517{
1518	pr_info("Disabling ulri\n");
1519	noulri = 1;
1520
1521	return 1;
1522}
1523__setup("noulri", ulri_disable);
1524
1525void __cpuinit per_cpu_trap_init(bool is_boot_cpu)
 
1526{
1527	unsigned int cpu = smp_processor_id();
1528	unsigned int status_set = ST0_CU0;
1529	unsigned int hwrena = cpu_hwrena_impl_bits;
1530#ifdef CONFIG_MIPS_MT_SMTC
1531	int secondaryTC = 0;
1532	int bootTC = (cpu == 0);
1533
1534	/*
1535	 * Only do per_cpu_trap_init() for first TC of Each VPE.
1536	 * Note that this hack assumes that the SMTC init code
1537	 * assigns TCs consecutively and in ascending order.
1538	 */
1539
1540	if (((read_c0_tcbind() & TCBIND_CURTC) != 0) &&
1541	    ((read_c0_tcbind() & TCBIND_CURVPE) == cpu_data[cpu - 1].vpe_id))
1542		secondaryTC = 1;
1543#endif /* CONFIG_MIPS_MT_SMTC */
1544
1545	/*
1546	 * Disable coprocessors and select 32-bit or 64-bit addressing
1547	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
1548	 * flag that some firmware may have left set and the TS bit (for
1549	 * IP27).  Set XX for ISA IV code to work.
1550	 */
 
1551#ifdef CONFIG_64BIT
1552	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
1553#endif
1554	if (current_cpu_data.isa_level == MIPS_CPU_ISA_IV)
1555		status_set |= ST0_XX;
1556	if (cpu_has_dsp)
1557		status_set |= ST0_MX;
1558
1559	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
1560			 status_set);
 
1561
1562	if (cpu_has_mips_r2)
1563		hwrena |= 0x0000000f;
 
 
 
 
 
 
 
 
 
 
 
1564
1565	if (!noulri && cpu_has_userlocal)
1566		hwrena |= (1 << 29);
1567
1568	if (hwrena)
1569		write_c0_hwrena(hwrena);
 
1570
1571#ifdef CONFIG_MIPS_MT_SMTC
1572	if (!secondaryTC) {
1573#endif /* CONFIG_MIPS_MT_SMTC */
1574
1575	if (cpu_has_veic || cpu_has_vint) {
1576		unsigned long sr = set_c0_status(ST0_BEV);
 
 
 
 
 
 
 
 
1577		write_c0_ebase(ebase);
1578		write_c0_status(sr);
1579		/* Setting vector spacing enables EI/VI mode  */
1580		change_c0_intctl(0x3e0, VECTORSPACING);
1581	}
1582	if (cpu_has_divec) {
1583		if (cpu_has_mipsmt) {
1584			unsigned int vpflags = dvpe();
1585			set_c0_cause(CAUSEF_IV);
1586			evpe(vpflags);
1587		} else
1588			set_c0_cause(CAUSEF_IV);
1589	}
 
 
 
 
 
 
 
 
 
 
1590
1591	/*
1592	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
1593	 *
1594	 *  o read IntCtl.IPTI to determine the timer interrupt
1595	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
 
1596	 */
1597	if (cpu_has_mips_r2) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
1599		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
1600		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
1601		if (cp0_perfcount_irq == cp0_compare_irq)
1602			cp0_perfcount_irq = -1;
 
 
1603	} else {
1604		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
1605		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
1606		cp0_perfcount_irq = -1;
 
1607	}
1608
1609#ifdef CONFIG_MIPS_MT_SMTC
1610	}
1611#endif /* CONFIG_MIPS_MT_SMTC */
1612
1613	if (!cpu_data[cpu].asid_cache)
1614		cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
1615
1616	atomic_inc(&init_mm.mm_count);
1617	current->active_mm = &init_mm;
1618	BUG_ON(current->mm);
1619	enter_lazy_tlb(&init_mm, current);
1620
1621#ifdef CONFIG_MIPS_MT_SMTC
1622	if (bootTC) {
1623#endif /* CONFIG_MIPS_MT_SMTC */
1624		/* Boot CPU's cache setup in setup_arch(). */
1625		if (!is_boot_cpu)
1626			cpu_cache_init();
1627		tlb_init();
1628#ifdef CONFIG_MIPS_MT_SMTC
1629	} else if (!secondaryTC) {
1630		/*
1631		 * First TC in non-boot VPE must do subset of tlb_init()
1632		 * for MMU countrol registers.
1633		 */
1634		write_c0_pagemask(PM_DEFAULT_MASK);
1635		write_c0_wired(0);
1636	}
1637#endif /* CONFIG_MIPS_MT_SMTC */
1638	TLBMISS_HANDLER_SETUP();
1639}
1640
1641/* Install CPU exception handler */
1642void __cpuinit set_handler(unsigned long offset, void *addr, unsigned long size)
1643{
 
 
 
1644	memcpy((void *)(ebase + offset), addr, size);
 
1645	local_flush_icache_range(ebase + offset, ebase + offset + size);
1646}
1647
1648static char panic_null_cerr[] __cpuinitdata =
1649	"Trying to set NULL cache error exception handler";
1650
1651/*
1652 * Install uncached CPU exception handler.
1653 * This is suitable only for the cache error exception which is the only
1654 * exception handler that is being run uncached.
1655 */
1656void __cpuinit set_uncached_handler(unsigned long offset, void *addr,
1657	unsigned long size)
1658{
1659	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
1660
1661	if (!addr)
1662		panic(panic_null_cerr);
1663
1664	memcpy((void *)(uncached_ebase + offset), addr, size);
1665}
1666
1667static int __initdata rdhwr_noopt;
1668static int __init set_rdhwr_noopt(char *str)
1669{
1670	rdhwr_noopt = 1;
1671	return 1;
1672}
1673
1674__setup("rdhwr_noopt", set_rdhwr_noopt);
1675
1676void __init trap_init(void)
1677{
1678	extern char except_vec3_generic, except_vec3_r4000;
1679	extern char except_vec4;
 
1680	unsigned long i;
1681	int rollback;
1682
1683	check_wait();
1684	rollback = (cpu_wait == r4k_wait);
1685
1686#if defined(CONFIG_KGDB)
1687	if (kgdb_early_setup)
1688		return;	/* Already done */
1689#endif
1690
1691	if (cpu_has_veic || cpu_has_vint) {
1692		unsigned long size = 0x200 + VECTORSPACING*64;
 
 
1693		ebase = (unsigned long)
1694			__alloc_bootmem(size, 1 << fls(size), 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1695	} else {
1696		ebase = CKSEG0;
1697		if (cpu_has_mips_r2)
1698			ebase += (read_c0_ebase() & 0x3ffff000);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699	}
1700
1701	if (board_ebase_setup)
1702		board_ebase_setup();
1703	per_cpu_trap_init(true);
1704
1705	/*
1706	 * Copy the generic exception handlers to their final destination.
1707	 * This will be overriden later as suitable for a particular
1708	 * configuration.
1709	 */
1710	set_handler(0x180, &except_vec3_generic, 0x80);
1711
1712	/*
1713	 * Setup default vectors
1714	 */
1715	for (i = 0; i <= 31; i++)
1716		set_except_vector(i, handle_reserved);
1717
1718	/*
1719	 * Copy the EJTAG debug exception vector handler code to it's final
1720	 * destination.
1721	 */
1722	if (cpu_has_ejtag && board_ejtag_handler_setup)
1723		board_ejtag_handler_setup();
1724
1725	/*
1726	 * Only some CPUs have the watch exceptions.
1727	 */
1728	if (cpu_has_watch)
1729		set_except_vector(23, handle_watch);
1730
1731	/*
1732	 * Initialise interrupt handlers
1733	 */
1734	if (cpu_has_veic || cpu_has_vint) {
1735		int nvec = cpu_has_veic ? 64 : 8;
1736		for (i = 0; i < nvec; i++)
1737			set_vi_handler(i, NULL);
1738	}
1739	else if (cpu_has_divec)
1740		set_handler(0x200, &except_vec4, 0x8);
1741
1742	/*
1743	 * Some CPUs can enable/disable for cache parity detection, but does
1744	 * it different ways.
1745	 */
1746	parity_protection_init();
1747
1748	/*
1749	 * The Data Bus Errors / Instruction Bus Errors are signaled
1750	 * by external hardware.  Therefore these two exceptions
1751	 * may have board specific handlers.
1752	 */
1753	if (board_be_init)
1754		board_be_init();
1755
1756	set_except_vector(0, rollback ? rollback_handle_int : handle_int);
1757	set_except_vector(1, handle_tlbm);
1758	set_except_vector(2, handle_tlbl);
1759	set_except_vector(3, handle_tlbs);
1760
1761	set_except_vector(4, handle_adel);
1762	set_except_vector(5, handle_ades);
1763
1764	set_except_vector(6, handle_ibe);
1765	set_except_vector(7, handle_dbe);
1766
1767	set_except_vector(8, handle_sys);
1768	set_except_vector(9, handle_bp);
1769	set_except_vector(10, rdhwr_noopt ? handle_ri :
1770			  (cpu_has_vtag_icache ?
1771			   handle_ri_rdhwr_vivt : handle_ri_rdhwr));
1772	set_except_vector(11, handle_cpu);
1773	set_except_vector(12, handle_ov);
1774	set_except_vector(13, handle_tr);
1775
1776	if (current_cpu_type() == CPU_R6000 ||
1777	    current_cpu_type() == CPU_R6000A) {
1778		/*
1779		 * The R6000 is the only R-series CPU that features a machine
1780		 * check exception (similar to the R4000 cache error) and
1781		 * unaligned ldc1/sdc1 exception.  The handlers have not been
1782		 * written yet.  Well, anyway there is no R6000 machine on the
1783		 * current list of targets for Linux/MIPS.
1784		 * (Duh, crap, there is someone with a triple R6k machine)
1785		 */
1786		//set_except_vector(14, handle_mc);
1787		//set_except_vector(15, handle_ndc);
 
 
 
1788	}
1789
 
 
 
 
1790
1791	if (board_nmi_handler_setup)
1792		board_nmi_handler_setup();
1793
1794	if (cpu_has_fpu && !cpu_has_nofpuex)
1795		set_except_vector(15, handle_fpe);
 
 
1796
1797	set_except_vector(22, handle_mdmx);
 
 
 
 
 
 
1798
1799	if (cpu_has_mcheck)
1800		set_except_vector(24, handle_mcheck);
1801
1802	if (cpu_has_mipsmt)
1803		set_except_vector(25, handle_mt);
1804
1805	set_except_vector(26, handle_dsp);
1806
1807	if (board_cache_error_setup)
1808		board_cache_error_setup();
1809
1810	if (cpu_has_vce)
1811		/* Special exception: R4[04]00 uses also the divec space. */
1812		memcpy((void *)(ebase + 0x180), &except_vec3_r4000, 0x100);
1813	else if (cpu_has_4kex)
1814		memcpy((void *)(ebase + 0x180), &except_vec3_generic, 0x80);
1815	else
1816		memcpy((void *)(ebase + 0x080), &except_vec3_generic, 0x80);
1817
1818	local_flush_icache_range(ebase, ebase + 0x400);
1819	flush_tlb_handlers();
1820
1821	sort_extable(__start___dbe_table, __stop___dbe_table);
1822
1823	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
1824}
v4.17
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
 
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/extable.h>
  25#include <linux/mm.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/debug.h>
  28#include <linux/smp.h>
  29#include <linux/spinlock.h>
  30#include <linux/kallsyms.h>
  31#include <linux/bootmem.h>
  32#include <linux/interrupt.h>
  33#include <linux/ptrace.h>
  34#include <linux/kgdb.h>
  35#include <linux/kdebug.h>
  36#include <linux/kprobes.h>
  37#include <linux/notifier.h>
  38#include <linux/kdb.h>
  39#include <linux/irq.h>
  40#include <linux/perf_event.h>
  41
  42#include <asm/addrspace.h>
  43#include <asm/bootinfo.h>
  44#include <asm/branch.h>
  45#include <asm/break.h>
  46#include <asm/cop2.h>
  47#include <asm/cpu.h>
  48#include <asm/cpu-type.h>
  49#include <asm/dsp.h>
  50#include <asm/fpu.h>
  51#include <asm/fpu_emulator.h>
  52#include <asm/idle.h>
  53#include <asm/mips-cps.h>
  54#include <asm/mips-r2-to-r6-emul.h>
  55#include <asm/mipsregs.h>
  56#include <asm/mipsmtregs.h>
  57#include <asm/module.h>
  58#include <asm/msa.h>
  59#include <asm/pgtable.h>
  60#include <asm/ptrace.h>
  61#include <asm/sections.h>
  62#include <asm/siginfo.h>
  63#include <asm/tlbdebug.h>
  64#include <asm/traps.h>
  65#include <linux/uaccess.h>
  66#include <asm/watch.h>
  67#include <asm/mmu_context.h>
  68#include <asm/types.h>
  69#include <asm/stacktrace.h>
  70#include <asm/uasm.h>
  71
  72extern void check_wait(void);
 
  73extern asmlinkage void rollback_handle_int(void);
  74extern asmlinkage void handle_int(void);
  75extern u32 handle_tlbl[];
  76extern u32 handle_tlbs[];
  77extern u32 handle_tlbm[];
  78extern asmlinkage void handle_adel(void);
  79extern asmlinkage void handle_ades(void);
  80extern asmlinkage void handle_ibe(void);
  81extern asmlinkage void handle_dbe(void);
  82extern asmlinkage void handle_sys(void);
  83extern asmlinkage void handle_bp(void);
  84extern asmlinkage void handle_ri(void);
  85extern asmlinkage void handle_ri_rdhwr_tlbp(void);
  86extern asmlinkage void handle_ri_rdhwr(void);
  87extern asmlinkage void handle_cpu(void);
  88extern asmlinkage void handle_ov(void);
  89extern asmlinkage void handle_tr(void);
  90extern asmlinkage void handle_msa_fpe(void);
  91extern asmlinkage void handle_fpe(void);
  92extern asmlinkage void handle_ftlb(void);
  93extern asmlinkage void handle_msa(void);
  94extern asmlinkage void handle_mdmx(void);
  95extern asmlinkage void handle_watch(void);
  96extern asmlinkage void handle_mt(void);
  97extern asmlinkage void handle_dsp(void);
  98extern asmlinkage void handle_mcheck(void);
  99extern asmlinkage void handle_reserved(void);
 100extern void tlb_do_page_fault_0(void);
 
 
 
 101
 102void (*board_be_init)(void);
 103int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
 104void (*board_nmi_handler_setup)(void);
 105void (*board_ejtag_handler_setup)(void);
 106void (*board_bind_eic_interrupt)(int irq, int regset);
 107void (*board_ebase_setup)(void);
 108void(*board_cache_error_setup)(void);
 109
 110static void show_raw_backtrace(unsigned long reg29)
 111{
 112	unsigned long *sp = (unsigned long *)(reg29 & ~3);
 113	unsigned long addr;
 114
 115	printk("Call Trace:");
 116#ifdef CONFIG_KALLSYMS
 117	printk("\n");
 118#endif
 119	while (!kstack_end(sp)) {
 120		unsigned long __user *p =
 121			(unsigned long __user *)(unsigned long)sp++;
 122		if (__get_user(addr, p)) {
 123			printk(" (Bad stack address)");
 124			break;
 125		}
 126		if (__kernel_text_address(addr))
 127			print_ip_sym(addr);
 128	}
 129	printk("\n");
 130}
 131
 132#ifdef CONFIG_KALLSYMS
 133int raw_show_trace;
 134static int __init set_raw_show_trace(char *str)
 135{
 136	raw_show_trace = 1;
 137	return 1;
 138}
 139__setup("raw_show_trace", set_raw_show_trace);
 140#endif
 141
 142static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 143{
 144	unsigned long sp = regs->regs[29];
 145	unsigned long ra = regs->regs[31];
 146	unsigned long pc = regs->cp0_epc;
 147
 148	if (!task)
 149		task = current;
 150
 151	if (raw_show_trace || user_mode(regs) || !__kernel_text_address(pc)) {
 152		show_raw_backtrace(sp);
 153		return;
 154	}
 155	printk("Call Trace:\n");
 156	do {
 157		print_ip_sym(pc);
 158		pc = unwind_stack(task, &sp, pc, &ra);
 159	} while (pc);
 160	pr_cont("\n");
 161}
 162
 163/*
 164 * This routine abuses get_user()/put_user() to reference pointers
 165 * with at least a bit of error checking ...
 166 */
 167static void show_stacktrace(struct task_struct *task,
 168	const struct pt_regs *regs)
 169{
 170	const int field = 2 * sizeof(unsigned long);
 171	long stackdata;
 172	int i;
 173	unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 174
 175	printk("Stack :");
 176	i = 0;
 177	while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 178		if (i && ((i % (64 / field)) == 0)) {
 179			pr_cont("\n");
 180			printk("       ");
 181		}
 182		if (i > 39) {
 183			pr_cont(" ...");
 184			break;
 185		}
 186
 187		if (__get_user(stackdata, sp++)) {
 188			pr_cont(" (Bad stack address)");
 189			break;
 190		}
 191
 192		pr_cont(" %0*lx", field, stackdata);
 193		i++;
 194	}
 195	pr_cont("\n");
 196	show_backtrace(task, regs);
 197}
 198
 199void show_stack(struct task_struct *task, unsigned long *sp)
 200{
 201	struct pt_regs regs;
 202	mm_segment_t old_fs = get_fs();
 203
 204	regs.cp0_status = KSU_KERNEL;
 205	if (sp) {
 206		regs.regs[29] = (unsigned long)sp;
 207		regs.regs[31] = 0;
 208		regs.cp0_epc = 0;
 209	} else {
 210		if (task && task != current) {
 211			regs.regs[29] = task->thread.reg29;
 212			regs.regs[31] = 0;
 213			regs.cp0_epc = task->thread.reg31;
 214#ifdef CONFIG_KGDB_KDB
 215		} else if (atomic_read(&kgdb_active) != -1 &&
 216			   kdb_current_regs) {
 217			memcpy(&regs, kdb_current_regs, sizeof(regs));
 218#endif /* CONFIG_KGDB_KDB */
 219		} else {
 220			prepare_frametrace(&regs);
 221		}
 222	}
 223	/*
 224	 * show_stack() deals exclusively with kernel mode, so be sure to access
 225	 * the stack in the kernel (not user) address space.
 226	 */
 227	set_fs(KERNEL_DS);
 228	show_stacktrace(task, &regs);
 229	set_fs(old_fs);
 230}
 231
 
 
 
 
 
 
 
 
 
 
 
 
 
 232static void show_code(unsigned int __user *pc)
 233{
 234	long i;
 235	unsigned short __user *pc16 = NULL;
 236
 237	printk("Code:");
 238
 239	if ((unsigned long)pc & 1)
 240		pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 241	for(i = -3 ; i < 6 ; i++) {
 242		unsigned int insn;
 243		if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 244			pr_cont(" (Bad address in epc)\n");
 245			break;
 246		}
 247		pr_cont("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 248	}
 249	pr_cont("\n");
 250}
 251
 252static void __show_regs(const struct pt_regs *regs)
 253{
 254	const int field = 2 * sizeof(unsigned long);
 255	unsigned int cause = regs->cp0_cause;
 256	unsigned int exccode;
 257	int i;
 258
 259	show_regs_print_info(KERN_DEFAULT);
 260
 261	/*
 262	 * Saved main processor registers
 263	 */
 264	for (i = 0; i < 32; ) {
 265		if ((i % 4) == 0)
 266			printk("$%2d   :", i);
 267		if (i == 0)
 268			pr_cont(" %0*lx", field, 0UL);
 269		else if (i == 26 || i == 27)
 270			pr_cont(" %*s", field, "");
 271		else
 272			pr_cont(" %0*lx", field, regs->regs[i]);
 273
 274		i++;
 275		if ((i % 4) == 0)
 276			pr_cont("\n");
 277	}
 278
 279#ifdef CONFIG_CPU_HAS_SMARTMIPS
 280	printk("Acx    : %0*lx\n", field, regs->acx);
 281#endif
 282	printk("Hi    : %0*lx\n", field, regs->hi);
 283	printk("Lo    : %0*lx\n", field, regs->lo);
 284
 285	/*
 286	 * Saved cp0 registers
 287	 */
 288	printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 289	       (void *) regs->cp0_epc);
 
 290	printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 291	       (void *) regs->regs[31]);
 292
 293	printk("Status: %08x	", (uint32_t) regs->cp0_status);
 294
 295	if (cpu_has_3kex) {
 296		if (regs->cp0_status & ST0_KUO)
 297			pr_cont("KUo ");
 298		if (regs->cp0_status & ST0_IEO)
 299			pr_cont("IEo ");
 300		if (regs->cp0_status & ST0_KUP)
 301			pr_cont("KUp ");
 302		if (regs->cp0_status & ST0_IEP)
 303			pr_cont("IEp ");
 304		if (regs->cp0_status & ST0_KUC)
 305			pr_cont("KUc ");
 306		if (regs->cp0_status & ST0_IEC)
 307			pr_cont("IEc ");
 308	} else if (cpu_has_4kex) {
 309		if (regs->cp0_status & ST0_KX)
 310			pr_cont("KX ");
 311		if (regs->cp0_status & ST0_SX)
 312			pr_cont("SX ");
 313		if (regs->cp0_status & ST0_UX)
 314			pr_cont("UX ");
 315		switch (regs->cp0_status & ST0_KSU) {
 316		case KSU_USER:
 317			pr_cont("USER ");
 318			break;
 319		case KSU_SUPERVISOR:
 320			pr_cont("SUPERVISOR ");
 321			break;
 322		case KSU_KERNEL:
 323			pr_cont("KERNEL ");
 324			break;
 325		default:
 326			pr_cont("BAD_MODE ");
 327			break;
 328		}
 329		if (regs->cp0_status & ST0_ERL)
 330			pr_cont("ERL ");
 331		if (regs->cp0_status & ST0_EXL)
 332			pr_cont("EXL ");
 333		if (regs->cp0_status & ST0_IE)
 334			pr_cont("IE ");
 335	}
 336	pr_cont("\n");
 337
 338	exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 339	printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 340
 341	if (1 <= exccode && exccode <= 5)
 
 342		printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 343
 344	printk("PrId  : %08x (%s)\n", read_c0_prid(),
 345	       cpu_name_string());
 346}
 347
 348/*
 349 * FIXME: really the generic show_regs should take a const pointer argument.
 350 */
 351void show_regs(struct pt_regs *regs)
 352{
 353	__show_regs((struct pt_regs *)regs);
 354}
 355
 356void show_registers(struct pt_regs *regs)
 357{
 358	const int field = 2 * sizeof(unsigned long);
 359	mm_segment_t old_fs = get_fs();
 360
 361	__show_regs(regs);
 362	print_modules();
 363	printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 364	       current->comm, current->pid, current_thread_info(), current,
 365	      field, current_thread_info()->tp_value);
 366	if (cpu_has_userlocal) {
 367		unsigned long tls;
 368
 369		tls = read_c0_userlocal();
 370		if (tls != current_thread_info()->tp_value)
 371			printk("*HwTLS: %0*lx\n", field, tls);
 372	}
 373
 374	if (!user_mode(regs))
 375		/* Necessary for getting the correct stack content */
 376		set_fs(KERNEL_DS);
 377	show_stacktrace(current, regs);
 378	show_code((unsigned int __user *) regs->cp0_epc);
 379	printk("\n");
 380	set_fs(old_fs);
 
 
 
 
 381}
 382
 383static DEFINE_RAW_SPINLOCK(die_lock);
 384
 385void __noreturn die(const char *str, struct pt_regs *regs)
 386{
 387	static int die_counter;
 388	int sig = SIGSEGV;
 
 
 
 389
 390	oops_enter();
 391
 392	if (notify_die(DIE_OOPS, str, regs, 0, current->thread.trap_nr,
 393		       SIGSEGV) == NOTIFY_STOP)
 394		sig = 0;
 395
 396	console_verbose();
 397	raw_spin_lock_irq(&die_lock);
 
 
 
 398	bust_spinlocks(1);
 
 
 
 399
 400	printk("%s[#%d]:\n", str, ++die_counter);
 401	show_registers(regs);
 402	add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 403	raw_spin_unlock_irq(&die_lock);
 404
 405	oops_exit();
 406
 407	if (in_interrupt())
 408		panic("Fatal exception in interrupt");
 409
 410	if (panic_on_oops)
 
 
 411		panic("Fatal exception");
 412
 413	if (regs && kexec_should_crash(current))
 414		crash_kexec(regs);
 415
 416	do_exit(sig);
 417}
 418
 419extern struct exception_table_entry __start___dbe_table[];
 420extern struct exception_table_entry __stop___dbe_table[];
 421
 422__asm__(
 423"	.section	__dbe_table, \"a\"\n"
 424"	.previous			\n");
 425
 426/* Given an address, look for it in the exception tables. */
 427static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 428{
 429	const struct exception_table_entry *e;
 430
 431	e = search_extable(__start___dbe_table,
 432			   __stop___dbe_table - __start___dbe_table, addr);
 433	if (!e)
 434		e = search_module_dbetables(addr);
 435	return e;
 436}
 437
 438asmlinkage void do_be(struct pt_regs *regs)
 439{
 440	const int field = 2 * sizeof(unsigned long);
 441	const struct exception_table_entry *fixup = NULL;
 442	int data = regs->cp0_cause & 4;
 443	int action = MIPS_BE_FATAL;
 444	enum ctx_state prev_state;
 445
 446	prev_state = exception_enter();
 447	/* XXX For now.	 Fixme, this searches the wrong table ...  */
 448	if (data && !user_mode(regs))
 449		fixup = search_dbe_tables(exception_epc(regs));
 450
 451	if (fixup)
 452		action = MIPS_BE_FIXUP;
 453
 454	if (board_be_handler)
 455		action = board_be_handler(regs, fixup != NULL);
 456	else
 457		mips_cm_error_report();
 458
 459	switch (action) {
 460	case MIPS_BE_DISCARD:
 461		goto out;
 462	case MIPS_BE_FIXUP:
 463		if (fixup) {
 464			regs->cp0_epc = fixup->nextinsn;
 465			goto out;
 466		}
 467		break;
 468	default:
 469		break;
 470	}
 471
 472	/*
 473	 * Assume it would be too dangerous to continue ...
 474	 */
 475	printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 476	       data ? "Data" : "Instruction",
 477	       field, regs->cp0_epc, field, regs->regs[31]);
 478	if (notify_die(DIE_OOPS, "bus error", regs, 0, current->thread.trap_nr,
 479		       SIGBUS) == NOTIFY_STOP)
 480		goto out;
 481
 482	die_if_kernel("Oops", regs);
 483	force_sig(SIGBUS, current);
 484
 485out:
 486	exception_exit(prev_state);
 487}
 488
 489/*
 490 * ll/sc, rdhwr, sync emulation
 491 */
 492
 493#define OPCODE 0xfc000000
 494#define BASE   0x03e00000
 495#define RT     0x001f0000
 496#define OFFSET 0x0000ffff
 497#define LL     0xc0000000
 498#define SC     0xe0000000
 499#define SPEC0  0x00000000
 500#define SPEC3  0x7c000000
 501#define RD     0x0000f800
 502#define FUNC   0x0000003f
 503#define SYNC   0x0000000f
 504#define RDHWR  0x0000003b
 505
 506/*  microMIPS definitions   */
 507#define MM_POOL32A_FUNC 0xfc00ffff
 508#define MM_RDHWR        0x00006b3c
 509#define MM_RS           0x001f0000
 510#define MM_RT           0x03e00000
 511
 512/*
 513 * The ll_bit is cleared by r*_switch.S
 514 */
 515
 516unsigned int ll_bit;
 517struct task_struct *ll_task;
 518
 519static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 520{
 521	unsigned long value, __user *vaddr;
 522	long offset;
 523
 524	/*
 525	 * analyse the ll instruction that just caused a ri exception
 526	 * and put the referenced address to addr.
 527	 */
 528
 529	/* sign extend offset */
 530	offset = opcode & OFFSET;
 531	offset <<= 16;
 532	offset >>= 16;
 533
 534	vaddr = (unsigned long __user *)
 535		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 536
 537	if ((unsigned long)vaddr & 3)
 538		return SIGBUS;
 539	if (get_user(value, vaddr))
 540		return SIGSEGV;
 541
 542	preempt_disable();
 543
 544	if (ll_task == NULL || ll_task == current) {
 545		ll_bit = 1;
 546	} else {
 547		ll_bit = 0;
 548	}
 549	ll_task = current;
 550
 551	preempt_enable();
 552
 553	regs->regs[(opcode & RT) >> 16] = value;
 554
 555	return 0;
 556}
 557
 558static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 559{
 560	unsigned long __user *vaddr;
 561	unsigned long reg;
 562	long offset;
 563
 564	/*
 565	 * analyse the sc instruction that just caused a ri exception
 566	 * and put the referenced address to addr.
 567	 */
 568
 569	/* sign extend offset */
 570	offset = opcode & OFFSET;
 571	offset <<= 16;
 572	offset >>= 16;
 573
 574	vaddr = (unsigned long __user *)
 575		((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 576	reg = (opcode & RT) >> 16;
 577
 578	if ((unsigned long)vaddr & 3)
 579		return SIGBUS;
 580
 581	preempt_disable();
 582
 583	if (ll_bit == 0 || ll_task != current) {
 584		regs->regs[reg] = 0;
 585		preempt_enable();
 586		return 0;
 587	}
 588
 589	preempt_enable();
 590
 591	if (put_user(regs->regs[reg], vaddr))
 592		return SIGSEGV;
 593
 594	regs->regs[reg] = 1;
 595
 596	return 0;
 597}
 598
 599/*
 600 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 601 * opcodes are supposed to result in coprocessor unusable exceptions if
 602 * executed on ll/sc-less processors.  That's the theory.  In practice a
 603 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 604 * instead, so we're doing the emulation thing in both exception handlers.
 605 */
 606static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 607{
 608	if ((opcode & OPCODE) == LL) {
 609		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 610				1, regs, 0);
 611		return simulate_ll(regs, opcode);
 612	}
 613	if ((opcode & OPCODE) == SC) {
 614		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 615				1, regs, 0);
 616		return simulate_sc(regs, opcode);
 617	}
 618
 619	return -1;			/* Must be something else ... */
 620}
 621
 622/*
 623 * Simulate trapping 'rdhwr' instructions to provide user accessible
 624 * registers not implemented in hardware.
 625 */
 626static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 627{
 628	struct thread_info *ti = task_thread_info(current);
 629
 630	perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 631			1, regs, 0);
 632	switch (rd) {
 633	case MIPS_HWR_CPUNUM:		/* CPU number */
 634		regs->regs[rt] = smp_processor_id();
 635		return 0;
 636	case MIPS_HWR_SYNCISTEP:	/* SYNCI length */
 637		regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 638				     current_cpu_data.icache.linesz);
 639		return 0;
 640	case MIPS_HWR_CC:		/* Read count register */
 641		regs->regs[rt] = read_c0_count();
 642		return 0;
 643	case MIPS_HWR_CCRES:		/* Count register resolution */
 644		switch (current_cpu_type()) {
 645		case CPU_20KC:
 646		case CPU_25KF:
 647			regs->regs[rt] = 1;
 648			break;
 649		default:
 650			regs->regs[rt] = 2;
 651		}
 652		return 0;
 653	case MIPS_HWR_ULR:		/* Read UserLocal register */
 654		regs->regs[rt] = ti->tp_value;
 655		return 0;
 656	default:
 657		return -1;
 658	}
 659}
 660
 661static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 662{
 663	if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 664		int rd = (opcode & RD) >> 11;
 665		int rt = (opcode & RT) >> 16;
 666
 667		simulate_rdhwr(regs, rd, rt);
 668		return 0;
 669	}
 670
 671	/* Not ours.  */
 672	return -1;
 673}
 674
 675static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned int opcode)
 676{
 677	if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 678		int rd = (opcode & MM_RS) >> 16;
 679		int rt = (opcode & MM_RT) >> 21;
 680		simulate_rdhwr(regs, rd, rt);
 681		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 682	}
 683
 684	/* Not ours.  */
 685	return -1;
 686}
 687
 688static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 689{
 690	if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 691		perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 692				1, regs, 0);
 693		return 0;
 694	}
 695
 696	return -1;			/* Must be something else ... */
 697}
 698
 699asmlinkage void do_ov(struct pt_regs *regs)
 700{
 701	enum ctx_state prev_state;
 702	siginfo_t info;
 703
 704	clear_siginfo(&info);
 705	info.si_signo = SIGFPE;
 706	info.si_code = FPE_INTOVF;
 707	info.si_addr = (void __user *)regs->cp0_epc;
 708
 709	prev_state = exception_enter();
 710	die_if_kernel("Integer overflow", regs);
 711
 
 
 
 
 712	force_sig_info(SIGFPE, &info, current);
 713	exception_exit(prev_state);
 714}
 715
 716/*
 717 * Send SIGFPE according to FCSR Cause bits, which must have already
 718 * been masked against Enable bits.  This is impotant as Inexact can
 719 * happen together with Overflow or Underflow, and `ptrace' can set
 720 * any bits.
 721 */
 722void force_fcr31_sig(unsigned long fcr31, void __user *fault_addr,
 723		     struct task_struct *tsk)
 724{
 725	struct siginfo si;
 726
 727	clear_siginfo(&si);
 728	si.si_addr = fault_addr;
 729	si.si_signo = SIGFPE;
 730
 731	if (fcr31 & FPU_CSR_INV_X)
 732		si.si_code = FPE_FLTINV;
 733	else if (fcr31 & FPU_CSR_DIV_X)
 734		si.si_code = FPE_FLTDIV;
 735	else if (fcr31 & FPU_CSR_OVF_X)
 736		si.si_code = FPE_FLTOVF;
 737	else if (fcr31 & FPU_CSR_UDF_X)
 738		si.si_code = FPE_FLTUND;
 739	else if (fcr31 & FPU_CSR_INE_X)
 740		si.si_code = FPE_FLTRES;
 741
 742	force_sig_info(SIGFPE, &si, tsk);
 743}
 744
 745int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 746{
 747	struct siginfo si;
 748	struct vm_area_struct *vma;
 749
 750	clear_siginfo(&si);
 751	switch (sig) {
 752	case 0:
 753		return 0;
 754
 755	case SIGFPE:
 756		force_fcr31_sig(fcr31, fault_addr, current);
 757		return 1;
 758
 759	case SIGBUS:
 760		si.si_addr = fault_addr;
 761		si.si_signo = sig;
 762		si.si_code = BUS_ADRERR;
 
 
 
 
 
 
 
 763		force_sig_info(sig, &si, current);
 764		return 1;
 765
 766	case SIGSEGV:
 767		si.si_addr = fault_addr;
 768		si.si_signo = sig;
 769		down_read(&current->mm->mmap_sem);
 770		vma = find_vma(current->mm, (unsigned long)fault_addr);
 771		if (vma && (vma->vm_start <= (unsigned long)fault_addr))
 772			si.si_code = SEGV_ACCERR;
 773		else
 774			si.si_code = SEGV_MAPERR;
 775		up_read(&current->mm->mmap_sem);
 776		force_sig_info(sig, &si, current);
 777		return 1;
 778
 779	default:
 780		force_sig(sig, current);
 781		return 1;
 
 
 782	}
 783}
 784
 785static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 786		       unsigned long old_epc, unsigned long old_ra)
 787{
 788	union mips_instruction inst = { .word = opcode };
 789	void __user *fault_addr;
 790	unsigned long fcr31;
 791	int sig;
 792
 793	/* If it's obviously not an FP instruction, skip it */
 794	switch (inst.i_format.opcode) {
 795	case cop1_op:
 796	case cop1x_op:
 797	case lwc1_op:
 798	case ldc1_op:
 799	case swc1_op:
 800	case sdc1_op:
 801		break;
 802
 803	default:
 804		return -1;
 805	}
 806
 807	/*
 808	 * do_ri skipped over the instruction via compute_return_epc, undo
 809	 * that for the FPU emulator.
 810	 */
 811	regs->cp0_epc = old_epc;
 812	regs->regs[31] = old_ra;
 813
 814	/* Save the FP context to struct thread_struct */
 815	lose_fpu(1);
 816
 817	/* Run the emulator */
 818	sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 819				       &fault_addr);
 820
 821	/*
 822	 * We can't allow the emulated instruction to leave any
 823	 * enabled Cause bits set in $fcr31.
 824	 */
 825	fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 826	current->thread.fpu.fcr31 &= ~fcr31;
 827
 828	/* Restore the hardware register state */
 829	own_fpu(1);
 830
 831	/* Send a signal if required.  */
 832	process_fpemu_return(sig, fault_addr, fcr31);
 833
 834	return 0;
 835}
 836
 837/*
 838 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 839 */
 840asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 841{
 842	enum ctx_state prev_state;
 843	void __user *fault_addr;
 844	int sig;
 845
 846	prev_state = exception_enter();
 847	if (notify_die(DIE_FP, "FP exception", regs, 0, current->thread.trap_nr,
 848		       SIGFPE) == NOTIFY_STOP)
 849		goto out;
 850
 851	/* Clear FCSR.Cause before enabling interrupts */
 852	write_32bit_cp1_register(CP1_STATUS, fcr31 & ~mask_fcr31_x(fcr31));
 853	local_irq_enable();
 854
 
 
 
 855	die_if_kernel("FP exception in kernel code", regs);
 856
 857	if (fcr31 & FPU_CSR_UNI_X) {
 
 
 
 858		/*
 859		 * Unimplemented operation exception.  If we've got the full
 860		 * software emulator on-board, let's use it...
 861		 *
 862		 * Force FPU to dump state into task/thread context.  We're
 863		 * moving a lot of data here for what is probably a single
 864		 * instruction, but the alternative is to pre-decode the FP
 865		 * register operands before invoking the emulator, which seems
 866		 * a bit extreme for what should be an infrequent event.
 867		 */
 868		/* Ensure 'resume' not overwrite saved fp context again. */
 869		lose_fpu(1);
 870
 871		/* Run the emulator */
 872		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 873					       &fault_addr);
 874
 875		/*
 876		 * We can't allow the emulated instruction to leave any
 877		 * enabled Cause bits set in $fcr31.
 878		 */
 879		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
 880		current->thread.fpu.fcr31 &= ~fcr31;
 881
 882		/* Restore the hardware register state */
 883		own_fpu(1);	/* Using the FPU again.	 */
 884	} else {
 885		sig = SIGFPE;
 886		fault_addr = (void __user *) regs->cp0_epc;
 887	}
 888
 889	/* Send a signal if required.  */
 890	process_fpemu_return(sig, fault_addr, fcr31);
 891
 892out:
 893	exception_exit(prev_state);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894}
 895
 896void do_trap_or_bp(struct pt_regs *regs, unsigned int code, int si_code,
 897	const char *str)
 898{
 899	siginfo_t info;
 900	char b[40];
 901
 902	clear_siginfo(&info);
 903#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 904	if (kgdb_ll_trap(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 905			 SIGTRAP) == NOTIFY_STOP)
 906		return;
 907#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 908
 909	if (notify_die(DIE_TRAP, str, regs, code, current->thread.trap_nr,
 910		       SIGTRAP) == NOTIFY_STOP)
 911		return;
 912
 913	/*
 914	 * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 915	 * insns, even for trap and break codes that indicate arithmetic
 916	 * failures.  Weird ...
 917	 * But should we continue the brokenness???  --macro
 918	 */
 919	switch (code) {
 920	case BRK_OVERFLOW:
 921	case BRK_DIVZERO:
 922		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 923		die_if_kernel(b, regs);
 924		if (code == BRK_DIVZERO)
 925			info.si_code = FPE_INTDIV;
 926		else
 927			info.si_code = FPE_INTOVF;
 928		info.si_signo = SIGFPE;
 
 929		info.si_addr = (void __user *) regs->cp0_epc;
 930		force_sig_info(SIGFPE, &info, current);
 931		break;
 932	case BRK_BUG:
 933		die_if_kernel("Kernel bug detected", regs);
 934		force_sig(SIGTRAP, current);
 935		break;
 936	case BRK_MEMU:
 937		/*
 938		 * This breakpoint code is used by the FPU emulator to retake
 939		 * control of the CPU after executing the instruction from the
 940		 * delay slot of an emulated branch.
 941		 *
 942		 * Terminate if exception was recognized as a delay slot return
 943		 * otherwise handle as normal.
 944		 */
 945		if (do_dsemulret(regs))
 946			return;
 947
 948		die_if_kernel("Math emu break/trap", regs);
 949		force_sig(SIGTRAP, current);
 950		break;
 951	default:
 952		scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 953		die_if_kernel(b, regs);
 954		if (si_code) {
 955			info.si_signo = SIGTRAP;
 956			info.si_code = si_code;
 957			force_sig_info(SIGTRAP, &info, current);
 958		} else {
 959			force_sig(SIGTRAP, current);
 960		}
 961	}
 962}
 963
 964asmlinkage void do_bp(struct pt_regs *regs)
 965{
 966	unsigned long epc = msk_isa16_mode(exception_epc(regs));
 967	unsigned int opcode, bcode;
 968	enum ctx_state prev_state;
 969	mm_segment_t seg;
 970
 971	seg = get_fs();
 972	if (!user_mode(regs))
 973		set_fs(KERNEL_DS);
 974
 975	prev_state = exception_enter();
 976	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
 977	if (get_isa16_mode(regs->cp0_epc)) {
 978		u16 instr[2];
 979
 980		if (__get_user(instr[0], (u16 __user *)epc))
 981			goto out_sigsegv;
 982
 983		if (!cpu_has_mmips) {
 984			/* MIPS16e mode */
 985			bcode = (instr[0] >> 5) & 0x3f;
 986		} else if (mm_insn_16bit(instr[0])) {
 987			/* 16-bit microMIPS BREAK */
 988			bcode = instr[0] & 0xf;
 989		} else {
 990			/* 32-bit microMIPS BREAK */
 991			if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 992				goto out_sigsegv;
 993			opcode = (instr[0] << 16) | instr[1];
 994			bcode = (opcode >> 6) & ((1 << 20) - 1);
 995		}
 996	} else {
 997		if (__get_user(opcode, (unsigned int __user *)epc))
 998			goto out_sigsegv;
 999		bcode = (opcode >> 6) & ((1 << 20) - 1);
1000	}
1001
1002	/*
1003	 * There is the ancient bug in the MIPS assemblers that the break
1004	 * code starts left to bit 16 instead to bit 6 in the opcode.
1005	 * Gas is bug-compatible, but not always, grrr...
1006	 * We handle both cases with a simple heuristics.  --macro
1007	 */
 
1008	if (bcode >= (1 << 10))
1009		bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
1010
1011	/*
1012	 * notify the kprobe handlers, if instruction is likely to
1013	 * pertain to them.
1014	 */
1015	switch (bcode) {
1016	case BRK_UPROBE:
1017		if (notify_die(DIE_UPROBE, "uprobe", regs, bcode,
1018			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1019			goto out;
1020		else
1021			break;
1022	case BRK_UPROBE_XOL:
1023		if (notify_die(DIE_UPROBE_XOL, "uprobe_xol", regs, bcode,
1024			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1025			goto out;
1026		else
1027			break;
1028	case BRK_KPROBE_BP:
1029		if (notify_die(DIE_BREAK, "debug", regs, bcode,
1030			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1031			goto out;
1032		else
1033			break;
1034	case BRK_KPROBE_SSTEPBP:
1035		if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
1036			       current->thread.trap_nr, SIGTRAP) == NOTIFY_STOP)
1037			goto out;
1038		else
1039			break;
1040	default:
1041		break;
1042	}
1043
1044	do_trap_or_bp(regs, bcode, TRAP_BRKPT, "Break");
1045
1046out:
1047	set_fs(seg);
1048	exception_exit(prev_state);
1049	return;
1050
1051out_sigsegv:
1052	force_sig(SIGSEGV, current);
1053	goto out;
1054}
1055
1056asmlinkage void do_tr(struct pt_regs *regs)
1057{
1058	u32 opcode, tcode = 0;
1059	enum ctx_state prev_state;
1060	u16 instr[2];
1061	mm_segment_t seg;
1062	unsigned long epc = msk_isa16_mode(exception_epc(regs));
1063
1064	seg = get_fs();
1065	if (!user_mode(regs))
1066		set_fs(get_ds());
1067
1068	prev_state = exception_enter();
1069	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1070	if (get_isa16_mode(regs->cp0_epc)) {
1071		if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1072		    __get_user(instr[1], (u16 __user *)(epc + 2)))
1073			goto out_sigsegv;
1074		opcode = (instr[0] << 16) | instr[1];
1075		/* Immediate versions don't provide a code.  */
1076		if (!(opcode & OPCODE))
1077			tcode = (opcode >> 12) & ((1 << 4) - 1);
1078	} else {
1079		if (__get_user(opcode, (u32 __user *)epc))
1080			goto out_sigsegv;
1081		/* Immediate versions don't provide a code.  */
1082		if (!(opcode & OPCODE))
1083			tcode = (opcode >> 6) & ((1 << 10) - 1);
1084	}
1085
1086	do_trap_or_bp(regs, tcode, 0, "Trap");
1087
1088out:
1089	set_fs(seg);
1090	exception_exit(prev_state);
1091	return;
1092
1093out_sigsegv:
1094	force_sig(SIGSEGV, current);
1095	goto out;
1096}
1097
1098asmlinkage void do_ri(struct pt_regs *regs)
1099{
1100	unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1101	unsigned long old_epc = regs->cp0_epc;
1102	unsigned long old31 = regs->regs[31];
1103	enum ctx_state prev_state;
1104	unsigned int opcode = 0;
1105	int status = -1;
1106
1107	/*
1108	 * Avoid any kernel code. Just emulate the R2 instruction
1109	 * as quickly as possible.
1110	 */
1111	if (mipsr2_emulation && cpu_has_mips_r6 &&
1112	    likely(user_mode(regs)) &&
1113	    likely(get_user(opcode, epc) >= 0)) {
1114		unsigned long fcr31 = 0;
1115
1116		status = mipsr2_decoder(regs, opcode, &fcr31);
1117		switch (status) {
1118		case 0:
1119		case SIGEMT:
1120			return;
1121		case SIGILL:
1122			goto no_r2_instr;
1123		default:
1124			process_fpemu_return(status,
1125					     &current->thread.cp0_baduaddr,
1126					     fcr31);
1127			return;
1128		}
1129	}
1130
1131no_r2_instr:
1132
1133	prev_state = exception_enter();
1134	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1135
1136	if (notify_die(DIE_RI, "RI Fault", regs, 0, current->thread.trap_nr,
1137		       SIGILL) == NOTIFY_STOP)
1138		goto out;
1139
1140	die_if_kernel("Reserved instruction in kernel code", regs);
1141
1142	if (unlikely(compute_return_epc(regs) < 0))
1143		goto out;
1144
1145	if (!get_isa16_mode(regs->cp0_epc)) {
1146		if (unlikely(get_user(opcode, epc) < 0))
1147			status = SIGSEGV;
1148
1149		if (!cpu_has_llsc && status < 0)
1150			status = simulate_llsc(regs, opcode);
1151
1152		if (status < 0)
1153			status = simulate_rdhwr_normal(regs, opcode);
1154
1155		if (status < 0)
1156			status = simulate_sync(regs, opcode);
1157
1158		if (status < 0)
1159			status = simulate_fp(regs, opcode, old_epc, old31);
1160	} else if (cpu_has_mmips) {
1161		unsigned short mmop[2] = { 0 };
1162
1163		if (unlikely(get_user(mmop[0], (u16 __user *)epc + 0) < 0))
1164			status = SIGSEGV;
1165		if (unlikely(get_user(mmop[1], (u16 __user *)epc + 1) < 0))
1166			status = SIGSEGV;
1167		opcode = mmop[0];
1168		opcode = (opcode << 16) | mmop[1];
1169
1170		if (status < 0)
1171			status = simulate_rdhwr_mm(regs, opcode);
1172	}
1173
1174	if (status < 0)
1175		status = SIGILL;
1176
1177	if (unlikely(status > 0)) {
1178		regs->cp0_epc = old_epc;		/* Undo skip-over.  */
1179		regs->regs[31] = old31;
1180		force_sig(status, current);
1181	}
1182
1183out:
1184	exception_exit(prev_state);
1185}
1186
1187/*
1188 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1189 * emulated more than some threshold number of instructions, force migration to
1190 * a "CPU" that has FP support.
1191 */
1192static void mt_ase_fp_affinity(void)
1193{
1194#ifdef CONFIG_MIPS_MT_FPAFF
1195	if (mt_fpemul_threshold > 0 &&
1196	     ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1197		/*
1198		 * If there's no FPU present, or if the application has already
1199		 * restricted the allowed set to exclude any CPUs with FPUs,
1200		 * we'll skip the procedure.
1201		 */
1202		if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1203			cpumask_t tmask;
1204
1205			current->thread.user_cpus_allowed
1206				= current->cpus_allowed;
1207			cpumask_and(&tmask, &current->cpus_allowed,
1208				    &mt_fpu_cpumask);
1209			set_cpus_allowed_ptr(current, &tmask);
1210			set_thread_flag(TIF_FPUBOUND);
1211		}
1212	}
1213#endif /* CONFIG_MIPS_MT_FPAFF */
1214}
1215
1216/*
1217 * No lock; only written during early bootup by CPU 0.
1218 */
1219static RAW_NOTIFIER_HEAD(cu2_chain);
1220
1221int __ref register_cu2_notifier(struct notifier_block *nb)
1222{
1223	return raw_notifier_chain_register(&cu2_chain, nb);
1224}
1225
1226int cu2_notifier_call_chain(unsigned long val, void *v)
1227{
1228	return raw_notifier_call_chain(&cu2_chain, val, v);
1229}
1230
1231static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1232	void *data)
1233{
1234	struct pt_regs *regs = data;
1235
1236	die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
 
 
1237			      "instruction", regs);
1238	force_sig(SIGILL, current);
1239
1240	return NOTIFY_OK;
1241}
1242
1243static int enable_restore_fp_context(int msa)
1244{
1245	int err, was_fpu_owner, prior_msa;
1246
1247	/*
1248	 * If an FP mode switch is currently underway, wait for it to
1249	 * complete before proceeding.
1250	 */
1251	wait_var_event(&current->mm->context.fp_mode_switching,
1252		       !atomic_read(&current->mm->context.fp_mode_switching));
1253
1254	if (!used_math()) {
1255		/* First time FP context user. */
1256		preempt_disable();
1257		err = init_fpu();
1258		if (msa && !err) {
1259			enable_msa();
1260			init_msa_upper();
1261			set_thread_flag(TIF_USEDMSA);
1262			set_thread_flag(TIF_MSA_CTX_LIVE);
1263		}
1264		preempt_enable();
1265		if (!err)
1266			set_used_math();
1267		return err;
1268	}
1269
1270	/*
1271	 * This task has formerly used the FP context.
1272	 *
1273	 * If this thread has no live MSA vector context then we can simply
1274	 * restore the scalar FP context. If it has live MSA vector context
1275	 * (that is, it has or may have used MSA since last performing a
1276	 * function call) then we'll need to restore the vector context. This
1277	 * applies even if we're currently only executing a scalar FP
1278	 * instruction. This is because if we were to later execute an MSA
1279	 * instruction then we'd either have to:
1280	 *
1281	 *  - Restore the vector context & clobber any registers modified by
1282	 *    scalar FP instructions between now & then.
1283	 *
1284	 * or
1285	 *
1286	 *  - Not restore the vector context & lose the most significant bits
1287	 *    of all vector registers.
1288	 *
1289	 * Neither of those options is acceptable. We cannot restore the least
1290	 * significant bits of the registers now & only restore the most
1291	 * significant bits later because the most significant bits of any
1292	 * vector registers whose aliased FP register is modified now will have
1293	 * been zeroed. We'd have no way to know that when restoring the vector
1294	 * context & thus may load an outdated value for the most significant
1295	 * bits of a vector register.
1296	 */
1297	if (!msa && !thread_msa_context_live())
1298		return own_fpu(1);
1299
1300	/*
1301	 * This task is using or has previously used MSA. Thus we require
1302	 * that Status.FR == 1.
1303	 */
1304	preempt_disable();
1305	was_fpu_owner = is_fpu_owner();
1306	err = own_fpu_inatomic(0);
1307	if (err)
1308		goto out;
1309
1310	enable_msa();
1311	write_msa_csr(current->thread.fpu.msacsr);
1312	set_thread_flag(TIF_USEDMSA);
1313
1314	/*
1315	 * If this is the first time that the task is using MSA and it has
1316	 * previously used scalar FP in this time slice then we already nave
1317	 * FP context which we shouldn't clobber. We do however need to clear
1318	 * the upper 64b of each vector register so that this task has no
1319	 * opportunity to see data left behind by another.
1320	 */
1321	prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1322	if (!prior_msa && was_fpu_owner) {
1323		init_msa_upper();
1324
1325		goto out;
1326	}
1327
1328	if (!prior_msa) {
1329		/*
1330		 * Restore the least significant 64b of each vector register
1331		 * from the existing scalar FP context.
1332		 */
1333		_restore_fp(current);
1334
1335		/*
1336		 * The task has not formerly used MSA, so clear the upper 64b
1337		 * of each vector register such that it cannot see data left
1338		 * behind by another task.
1339		 */
1340		init_msa_upper();
1341	} else {
1342		/* We need to restore the vector context. */
1343		restore_msa(current);
1344
1345		/* Restore the scalar FP control & status register */
1346		if (!was_fpu_owner)
1347			write_32bit_cp1_register(CP1_STATUS,
1348						 current->thread.fpu.fcr31);
1349	}
1350
1351out:
1352	preempt_enable();
1353
1354	return 0;
1355}
1356
1357asmlinkage void do_cpu(struct pt_regs *regs)
1358{
1359	enum ctx_state prev_state;
1360	unsigned int __user *epc;
1361	unsigned long old_epc, old31;
1362	void __user *fault_addr;
1363	unsigned int opcode;
1364	unsigned long fcr31;
1365	unsigned int cpid;
1366	int status, err;
1367	int sig;
 
 
1368
1369	prev_state = exception_enter();
1370	cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1371
1372	if (cpid != 2)
1373		die_if_kernel("do_cpu invoked from kernel context!", regs);
1374
1375	switch (cpid) {
1376	case 0:
1377		epc = (unsigned int __user *)exception_epc(regs);
1378		old_epc = regs->cp0_epc;
1379		old31 = regs->regs[31];
1380		opcode = 0;
1381		status = -1;
1382
1383		if (unlikely(compute_return_epc(regs) < 0))
1384			break;
1385
1386		if (!get_isa16_mode(regs->cp0_epc)) {
1387			if (unlikely(get_user(opcode, epc) < 0))
1388				status = SIGSEGV;
1389
1390			if (!cpu_has_llsc && status < 0)
1391				status = simulate_llsc(regs, opcode);
1392		}
 
 
1393
1394		if (status < 0)
1395			status = SIGILL;
1396
1397		if (unlikely(status > 0)) {
1398			regs->cp0_epc = old_epc;	/* Undo skip-over.  */
1399			regs->regs[31] = old31;
1400			force_sig(status, current);
1401		}
1402
1403		break;
1404
1405	case 3:
1406		/*
1407		 * The COP3 opcode space and consequently the CP0.Status.CU3
1408		 * bit and the CP0.Cause.CE=3 encoding have been removed as
1409		 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1410		 * up the space has been reused for COP1X instructions, that
1411		 * are enabled by the CP0.Status.CU1 bit and consequently
1412		 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1413		 * exceptions.  Some FPU-less processors that implement one
1414		 * of these ISAs however use this code erroneously for COP1X
1415		 * instructions.  Therefore we redirect this trap to the FP
1416		 * emulator too.
1417		 */
1418		if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1419			force_sig(SIGILL, current);
1420			break;
1421		}
1422		/* Fall through.  */
1423
1424	case 1:
1425		err = enable_restore_fp_context(0);
 
 
 
 
 
 
 
1426
1427		if (raw_cpu_has_fpu && !err)
1428			break;
1429
1430		sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1431					       &fault_addr);
1432
1433		/*
1434		 * We can't allow the emulated instruction to leave
1435		 * any enabled Cause bits set in $fcr31.
1436		 */
1437		fcr31 = mask_fcr31_x(current->thread.fpu.fcr31);
1438		current->thread.fpu.fcr31 &= ~fcr31;
1439
1440		/* Send a signal if required.  */
1441		if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1442			mt_ase_fp_affinity();
1443
1444		break;
1445
1446	case 2:
1447		raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
 
 
 
1448		break;
1449	}
1450
1451	exception_exit(prev_state);
1452}
1453
1454asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1455{
1456	enum ctx_state prev_state;
1457
1458	prev_state = exception_enter();
1459	current->thread.trap_nr = (regs->cp0_cause >> 2) & 0x1f;
1460	if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1461		       current->thread.trap_nr, SIGFPE) == NOTIFY_STOP)
1462		goto out;
1463
1464	/* Clear MSACSR.Cause before enabling interrupts */
1465	write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1466	local_irq_enable();
1467
1468	die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1469	force_sig(SIGFPE, current);
1470out:
1471	exception_exit(prev_state);
1472}
1473
1474asmlinkage void do_msa(struct pt_regs *regs)
1475{
1476	enum ctx_state prev_state;
1477	int err;
1478
1479	prev_state = exception_enter();
1480
1481	if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1482		force_sig(SIGILL, current);
1483		goto out;
1484	}
1485
1486	die_if_kernel("do_msa invoked from kernel context!", regs);
1487
1488	err = enable_restore_fp_context(1);
1489	if (err)
1490		force_sig(SIGILL, current);
1491out:
1492	exception_exit(prev_state);
1493}
1494
1495asmlinkage void do_mdmx(struct pt_regs *regs)
1496{
1497	enum ctx_state prev_state;
1498
1499	prev_state = exception_enter();
1500	force_sig(SIGILL, current);
1501	exception_exit(prev_state);
1502}
1503
1504/*
1505 * Called with interrupts disabled.
1506 */
1507asmlinkage void do_watch(struct pt_regs *regs)
1508{
1509	siginfo_t info;
1510	enum ctx_state prev_state;
1511
1512	clear_siginfo(&info);
1513	info.si_signo = SIGTRAP;
1514	info.si_code = TRAP_HWBKPT;
1515
1516	prev_state = exception_enter();
1517	/*
1518	 * Clear WP (bit 22) bit of cause register so we don't loop
1519	 * forever.
1520	 */
1521	clear_c0_cause(CAUSEF_WP);
 
 
1522
1523	/*
1524	 * If the current thread has the watch registers loaded, save
1525	 * their values and send SIGTRAP.  Otherwise another thread
1526	 * left the registers set, clear them and continue.
1527	 */
1528	if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1529		mips_read_watch_registers();
1530		local_irq_enable();
1531		force_sig_info(SIGTRAP, &info, current);
1532	} else {
1533		mips_clear_watch_registers();
1534		local_irq_enable();
1535	}
1536	exception_exit(prev_state);
1537}
1538
1539asmlinkage void do_mcheck(struct pt_regs *regs)
1540{
 
1541	int multi_match = regs->cp0_status & ST0_TS;
1542	enum ctx_state prev_state;
1543	mm_segment_t old_fs = get_fs();
1544
1545	prev_state = exception_enter();
1546	show_regs(regs);
1547
1548	if (multi_match) {
1549		dump_tlb_regs();
1550		pr_info("\n");
 
 
 
 
1551		dump_tlb_all();
1552	}
1553
1554	if (!user_mode(regs))
1555		set_fs(KERNEL_DS);
1556
1557	show_code((unsigned int __user *) regs->cp0_epc);
1558
1559	set_fs(old_fs);
1560
1561	/*
1562	 * Some chips may have other causes of machine check (e.g. SB1
1563	 * graduation timer)
1564	 */
1565	panic("Caught Machine Check exception - %scaused by multiple "
1566	      "matching entries in the TLB.",
1567	      (multi_match) ? "" : "not ");
1568}
1569
1570asmlinkage void do_mt(struct pt_regs *regs)
1571{
1572	int subcode;
1573
1574	subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1575			>> VPECONTROL_EXCPT_SHIFT;
1576	switch (subcode) {
1577	case 0:
1578		printk(KERN_DEBUG "Thread Underflow\n");
1579		break;
1580	case 1:
1581		printk(KERN_DEBUG "Thread Overflow\n");
1582		break;
1583	case 2:
1584		printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1585		break;
1586	case 3:
1587		printk(KERN_DEBUG "Gating Storage Exception\n");
1588		break;
1589	case 4:
1590		printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1591		break;
1592	case 5:
1593		printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1594		break;
1595	default:
1596		printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1597			subcode);
1598		break;
1599	}
1600	die_if_kernel("MIPS MT Thread exception in kernel", regs);
1601
1602	force_sig(SIGILL, current);
1603}
1604
1605
1606asmlinkage void do_dsp(struct pt_regs *regs)
1607{
1608	if (cpu_has_dsp)
1609		panic("Unexpected DSP exception");
1610
1611	force_sig(SIGILL, current);
1612}
1613
1614asmlinkage void do_reserved(struct pt_regs *regs)
1615{
1616	/*
1617	 * Game over - no way to handle this if it ever occurs.	 Most probably
1618	 * caused by a new unknown cpu type or after another deadly
1619	 * hard/software error.
1620	 */
1621	show_regs(regs);
1622	panic("Caught reserved exception %ld - should not happen.",
1623	      (regs->cp0_cause & 0x7f) >> 2);
1624}
1625
1626static int __initdata l1parity = 1;
1627static int __init nol1parity(char *s)
1628{
1629	l1parity = 0;
1630	return 1;
1631}
1632__setup("nol1par", nol1parity);
1633static int __initdata l2parity = 1;
1634static int __init nol2parity(char *s)
1635{
1636	l2parity = 0;
1637	return 1;
1638}
1639__setup("nol2par", nol2parity);
1640
1641/*
1642 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1643 * it different ways.
1644 */
1645static inline void parity_protection_init(void)
1646{
1647#define ERRCTL_PE	0x80000000
1648#define ERRCTL_L2P	0x00800000
1649
1650	if (mips_cm_revision() >= CM_REV_CM3) {
1651		ulong gcr_ectl, cp0_ectl;
1652
1653		/*
1654		 * With CM3 systems we need to ensure that the L1 & L2
1655		 * parity enables are set to the same value, since this
1656		 * is presumed by the hardware engineers.
1657		 *
1658		 * If the user disabled either of L1 or L2 ECC checking,
1659		 * disable both.
1660		 */
1661		l1parity &= l2parity;
1662		l2parity &= l1parity;
1663
1664		/* Probe L1 ECC support */
1665		cp0_ectl = read_c0_ecc();
1666		write_c0_ecc(cp0_ectl | ERRCTL_PE);
1667		back_to_back_c0_hazard();
1668		cp0_ectl = read_c0_ecc();
1669
1670		/* Probe L2 ECC support */
1671		gcr_ectl = read_gcr_err_control();
1672
1673		if (!(gcr_ectl & CM_GCR_ERR_CONTROL_L2_ECC_SUPPORT) ||
1674		    !(cp0_ectl & ERRCTL_PE)) {
1675			/*
1676			 * One of L1 or L2 ECC checking isn't supported,
1677			 * so we cannot enable either.
1678			 */
1679			l1parity = l2parity = 0;
1680		}
1681
1682		/* Configure L1 ECC checking */
1683		if (l1parity)
1684			cp0_ectl |= ERRCTL_PE;
1685		else
1686			cp0_ectl &= ~ERRCTL_PE;
1687		write_c0_ecc(cp0_ectl);
1688		back_to_back_c0_hazard();
1689		WARN_ON(!!(read_c0_ecc() & ERRCTL_PE) != l1parity);
1690
1691		/* Configure L2 ECC checking */
1692		if (l2parity)
1693			gcr_ectl |= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1694		else
1695			gcr_ectl &= ~CM_GCR_ERR_CONTROL_L2_ECC_EN;
1696		write_gcr_err_control(gcr_ectl);
1697		gcr_ectl = read_gcr_err_control();
1698		gcr_ectl &= CM_GCR_ERR_CONTROL_L2_ECC_EN;
1699		WARN_ON(!!gcr_ectl != l2parity);
1700
1701		pr_info("Cache parity protection %sabled\n",
1702			l1parity ? "en" : "dis");
1703		return;
1704	}
1705
1706	switch (current_cpu_type()) {
1707	case CPU_24K:
1708	case CPU_34K:
1709	case CPU_74K:
1710	case CPU_1004K:
1711	case CPU_1074K:
1712	case CPU_INTERAPTIV:
1713	case CPU_PROAPTIV:
1714	case CPU_P5600:
1715	case CPU_QEMU_GENERIC:
1716	case CPU_P6600:
1717		{
 
 
1718			unsigned long errctl;
1719			unsigned int l1parity_present, l2parity_present;
1720
1721			errctl = read_c0_ecc();
1722			errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1723
1724			/* probe L1 parity support */
1725			write_c0_ecc(errctl | ERRCTL_PE);
1726			back_to_back_c0_hazard();
1727			l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1728
1729			/* probe L2 parity support */
1730			write_c0_ecc(errctl|ERRCTL_L2P);
1731			back_to_back_c0_hazard();
1732			l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1733
1734			if (l1parity_present && l2parity_present) {
1735				if (l1parity)
1736					errctl |= ERRCTL_PE;
1737				if (l1parity ^ l2parity)
1738					errctl |= ERRCTL_L2P;
1739			} else if (l1parity_present) {
1740				if (l1parity)
1741					errctl |= ERRCTL_PE;
1742			} else if (l2parity_present) {
1743				if (l2parity)
1744					errctl |= ERRCTL_L2P;
1745			} else {
1746				/* No parity available */
1747			}
1748
1749			printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1750
1751			write_c0_ecc(errctl);
1752			back_to_back_c0_hazard();
1753			errctl = read_c0_ecc();
1754			printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1755
1756			if (l1parity_present)
1757				printk(KERN_INFO "Cache parity protection %sabled\n",
1758				       (errctl & ERRCTL_PE) ? "en" : "dis");
1759
1760			if (l2parity_present) {
1761				if (l1parity_present && l1parity)
1762					errctl ^= ERRCTL_L2P;
1763				printk(KERN_INFO "L2 cache parity protection %sabled\n",
1764				       (errctl & ERRCTL_L2P) ? "en" : "dis");
1765			}
1766		}
1767		break;
1768
1769	case CPU_5KC:
1770	case CPU_5KE:
1771	case CPU_LOONGSON1:
1772		write_c0_ecc(0x80000000);
1773		back_to_back_c0_hazard();
1774		/* Set the PE bit (bit 31) in the c0_errctl register. */
1775		printk(KERN_INFO "Cache parity protection %sabled\n",
1776		       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1777		break;
1778	case CPU_20KC:
1779	case CPU_25KF:
1780		/* Clear the DE bit (bit 16) in the c0_status register. */
1781		printk(KERN_INFO "Enable cache parity protection for "
1782		       "MIPS 20KC/25KF CPUs.\n");
1783		clear_c0_status(ST0_DE);
1784		break;
1785	default:
1786		break;
1787	}
1788}
1789
1790asmlinkage void cache_parity_error(void)
1791{
1792	const int field = 2 * sizeof(unsigned long);
1793	unsigned int reg_val;
1794
1795	/* For the moment, report the problem and hang. */
1796	printk("Cache error exception:\n");
1797	printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1798	reg_val = read_c0_cacheerr();
1799	printk("c0_cacheerr == %08x\n", reg_val);
1800
1801	printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1802	       reg_val & (1<<30) ? "secondary" : "primary",
1803	       reg_val & (1<<31) ? "data" : "insn");
1804	if ((cpu_has_mips_r2_r6) &&
1805	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1806		pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1807			reg_val & (1<<29) ? "ED " : "",
1808			reg_val & (1<<28) ? "ET " : "",
1809			reg_val & (1<<27) ? "ES " : "",
1810			reg_val & (1<<26) ? "EE " : "",
1811			reg_val & (1<<25) ? "EB " : "",
1812			reg_val & (1<<24) ? "EI " : "",
1813			reg_val & (1<<23) ? "E1 " : "",
1814			reg_val & (1<<22) ? "E0 " : "");
1815	} else {
1816		pr_err("Error bits: %s%s%s%s%s%s%s\n",
1817			reg_val & (1<<29) ? "ED " : "",
1818			reg_val & (1<<28) ? "ET " : "",
1819			reg_val & (1<<26) ? "EE " : "",
1820			reg_val & (1<<25) ? "EB " : "",
1821			reg_val & (1<<24) ? "EI " : "",
1822			reg_val & (1<<23) ? "E1 " : "",
1823			reg_val & (1<<22) ? "E0 " : "");
1824	}
1825	printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1826
1827#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1828	if (reg_val & (1<<22))
1829		printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1830
1831	if (reg_val & (1<<23))
1832		printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1833#endif
1834
1835	panic("Can't handle the cache error!");
1836}
1837
1838asmlinkage void do_ftlb(void)
1839{
1840	const int field = 2 * sizeof(unsigned long);
1841	unsigned int reg_val;
1842
1843	/* For the moment, report the problem and hang. */
1844	if ((cpu_has_mips_r2_r6) &&
1845	    (((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS) ||
1846	    ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_LOONGSON))) {
1847		pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1848		       read_c0_ecc());
1849		pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1850		reg_val = read_c0_cacheerr();
1851		pr_err("c0_cacheerr == %08x\n", reg_val);
1852
1853		if ((reg_val & 0xc0000000) == 0xc0000000) {
1854			pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1855		} else {
1856			pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1857			       reg_val & (1<<30) ? "secondary" : "primary",
1858			       reg_val & (1<<31) ? "data" : "insn");
1859		}
1860	} else {
1861		pr_err("FTLB error exception\n");
1862	}
1863	/* Just print the cacheerr bits for now */
1864	cache_parity_error();
1865}
1866
1867/*
1868 * SDBBP EJTAG debug exception handler.
1869 * We skip the instruction and return to the next instruction.
1870 */
1871void ejtag_exception_handler(struct pt_regs *regs)
1872{
1873	const int field = 2 * sizeof(unsigned long);
1874	unsigned long depc, old_epc, old_ra;
1875	unsigned int debug;
1876
1877	printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1878	depc = read_c0_depc();
1879	debug = read_c0_debug();
1880	printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1881	if (debug & 0x80000000) {
1882		/*
1883		 * In branch delay slot.
1884		 * We cheat a little bit here and use EPC to calculate the
1885		 * debug return address (DEPC). EPC is restored after the
1886		 * calculation.
1887		 */
1888		old_epc = regs->cp0_epc;
1889		old_ra = regs->regs[31];
1890		regs->cp0_epc = depc;
1891		compute_return_epc(regs);
1892		depc = regs->cp0_epc;
1893		regs->cp0_epc = old_epc;
1894		regs->regs[31] = old_ra;
1895	} else
1896		depc += 4;
1897	write_c0_depc(depc);
1898
1899#if 0
1900	printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1901	write_c0_debug(debug | 0x100);
1902#endif
1903}
1904
1905/*
1906 * NMI exception handler.
1907 * No lock; only written during early bootup by CPU 0.
1908 */
1909static RAW_NOTIFIER_HEAD(nmi_chain);
1910
1911int register_nmi_notifier(struct notifier_block *nb)
1912{
1913	return raw_notifier_chain_register(&nmi_chain, nb);
1914}
1915
1916void __noreturn nmi_exception_handler(struct pt_regs *regs)
1917{
1918	char str[100];
1919
1920	nmi_enter();
1921	raw_notifier_call_chain(&nmi_chain, 0, regs);
1922	bust_spinlocks(1);
1923	snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1924		 smp_processor_id(), regs->cp0_epc);
1925	regs->cp0_epc = read_c0_errorepc();
1926	die(str, regs);
1927	nmi_exit();
1928}
1929
1930#define VECTORSPACING 0x100	/* for EI/VI mode */
1931
1932unsigned long ebase;
1933EXPORT_SYMBOL_GPL(ebase);
1934unsigned long exception_handlers[32];
1935unsigned long vi_handlers[64];
1936
1937void __init *set_except_vector(int n, void *addr)
1938{
1939	unsigned long handler = (unsigned long) addr;
1940	unsigned long old_handler;
1941
1942#ifdef CONFIG_CPU_MICROMIPS
1943	/*
1944	 * Only the TLB handlers are cache aligned with an even
1945	 * address. All other handlers are on an odd address and
1946	 * require no modification. Otherwise, MIPS32 mode will
1947	 * be entered when handling any TLB exceptions. That
1948	 * would be bad...since we must stay in microMIPS mode.
1949	 */
1950	if (!(handler & 0x1))
1951		handler |= 1;
1952#endif
1953	old_handler = xchg(&exception_handlers[n], handler);
1954
 
1955	if (n == 0 && cpu_has_divec) {
1956#ifdef CONFIG_CPU_MICROMIPS
1957		unsigned long jump_mask = ~((1 << 27) - 1);
1958#else
1959		unsigned long jump_mask = ~((1 << 28) - 1);
1960#endif
1961		u32 *buf = (u32 *)(ebase + 0x200);
1962		unsigned int k0 = 26;
1963		if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1964			uasm_i_j(&buf, handler & ~jump_mask);
1965			uasm_i_nop(&buf);
1966		} else {
1967			UASM_i_LA(&buf, k0, handler);
1968			uasm_i_jr(&buf, k0);
1969			uasm_i_nop(&buf);
1970		}
1971		local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1972	}
1973	return (void *)old_handler;
1974}
1975
1976static void do_default_vi(void)
1977{
1978	show_regs(get_irq_regs());
1979	panic("Caught unexpected vectored interrupt.");
1980}
1981
1982static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1983{
1984	unsigned long handler;
1985	unsigned long old_handler = vi_handlers[n];
1986	int srssets = current_cpu_data.srsets;
1987	u16 *h;
1988	unsigned char *b;
1989
1990	BUG_ON(!cpu_has_veic && !cpu_has_vint);
1991
1992	if (addr == NULL) {
1993		handler = (unsigned long) do_default_vi;
1994		srs = 0;
1995	} else
1996		handler = (unsigned long) addr;
1997	vi_handlers[n] = handler;
1998
1999	b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
2000
2001	if (srs >= srssets)
2002		panic("Shadow register set %d not supported", srs);
2003
2004	if (cpu_has_veic) {
2005		if (board_bind_eic_interrupt)
2006			board_bind_eic_interrupt(n, srs);
2007	} else if (cpu_has_vint) {
2008		/* SRSMap is only defined if shadow sets are implemented */
2009		if (srssets > 1)
2010			change_c0_srsmap(0xf << n*4, srs << n*4);
2011	}
2012
2013	if (srs == 0) {
2014		/*
2015		 * If no shadow set is selected then use the default handler
2016		 * that does normal register saving and standard interrupt exit
2017		 */
 
2018		extern char except_vec_vi, except_vec_vi_lui;
2019		extern char except_vec_vi_ori, except_vec_vi_end;
2020		extern char rollback_except_vec_vi;
2021		char *vec_start = using_rollback_handler() ?
2022			&rollback_except_vec_vi : &except_vec_vi;
2023#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
2024		const int lui_offset = &except_vec_vi_lui - vec_start + 2;
2025		const int ori_offset = &except_vec_vi_ori - vec_start + 2;
2026#else
 
 
 
 
 
 
2027		const int lui_offset = &except_vec_vi_lui - vec_start;
2028		const int ori_offset = &except_vec_vi_ori - vec_start;
2029#endif
2030		const int handler_len = &except_vec_vi_end - vec_start;
2031
2032		if (handler_len > VECTORSPACING) {
2033			/*
2034			 * Sigh... panicing won't help as the console
2035			 * is probably not configured :(
2036			 */
2037			panic("VECTORSPACING too small");
2038		}
2039
2040		set_handler(((unsigned long)b - ebase), vec_start,
2041#ifdef CONFIG_CPU_MICROMIPS
2042				(handler_len - 1));
2043#else
2044				handler_len);
2045#endif
2046		h = (u16 *)(b + lui_offset);
2047		*h = (handler >> 16) & 0xffff;
2048		h = (u16 *)(b + ori_offset);
2049		*h = (handler & 0xffff);
 
2050		local_flush_icache_range((unsigned long)b,
2051					 (unsigned long)(b+handler_len));
2052	}
2053	else {
2054		/*
2055		 * In other cases jump directly to the interrupt handler. It
2056		 * is the handler's responsibility to save registers if required
2057		 * (eg hi/lo) and return from the exception using "eret".
 
2058		 */
2059		u32 insn;
2060
2061		h = (u16 *)b;
2062		/* j handler */
2063#ifdef CONFIG_CPU_MICROMIPS
2064		insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2065#else
2066		insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2067#endif
2068		h[0] = (insn >> 16) & 0xffff;
2069		h[1] = insn & 0xffff;
2070		h[2] = 0;
2071		h[3] = 0;
2072		local_flush_icache_range((unsigned long)b,
2073					 (unsigned long)(b+8));
2074	}
2075
2076	return (void *)old_handler;
2077}
2078
2079void *set_vi_handler(int n, vi_handler_t addr)
2080{
2081	return set_vi_srs_handler(n, addr, 0);
2082}
2083
2084extern void tlb_init(void);
 
2085
2086/*
2087 * Timer interrupt
2088 */
2089int cp0_compare_irq;
2090EXPORT_SYMBOL_GPL(cp0_compare_irq);
2091int cp0_compare_irq_shift;
2092
2093/*
2094 * Performance counter IRQ or -1 if shared with timer
2095 */
2096int cp0_perfcount_irq;
2097EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2098
2099/*
2100 * Fast debug channel IRQ or -1 if not present
2101 */
2102int cp0_fdc_irq;
2103EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2104
2105static int noulri;
2106
2107static int __init ulri_disable(char *s)
2108{
2109	pr_info("Disabling ulri\n");
2110	noulri = 1;
2111
2112	return 1;
2113}
2114__setup("noulri", ulri_disable);
2115
2116/* configure STATUS register */
2117static void configure_status(void)
2118{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2119	/*
2120	 * Disable coprocessors and select 32-bit or 64-bit addressing
2121	 * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2122	 * flag that some firmware may have left set and the TS bit (for
2123	 * IP27).  Set XX for ISA IV code to work.
2124	 */
2125	unsigned int status_set = ST0_CU0;
2126#ifdef CONFIG_64BIT
2127	status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2128#endif
2129	if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2130		status_set |= ST0_XX;
2131	if (cpu_has_dsp)
2132		status_set |= ST0_MX;
2133
2134	change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2135			 status_set);
2136}
2137
2138unsigned int hwrena;
2139EXPORT_SYMBOL_GPL(hwrena);
2140
2141/* configure HWRENA register */
2142static void configure_hwrena(void)
2143{
2144	hwrena = cpu_hwrena_impl_bits;
2145
2146	if (cpu_has_mips_r2_r6)
2147		hwrena |= MIPS_HWRENA_CPUNUM |
2148			  MIPS_HWRENA_SYNCISTEP |
2149			  MIPS_HWRENA_CC |
2150			  MIPS_HWRENA_CCRES;
2151
2152	if (!noulri && cpu_has_userlocal)
2153		hwrena |= MIPS_HWRENA_ULR;
2154
2155	if (hwrena)
2156		write_c0_hwrena(hwrena);
2157}
2158
2159static void configure_exception_vector(void)
2160{
 
 
2161	if (cpu_has_veic || cpu_has_vint) {
2162		unsigned long sr = set_c0_status(ST0_BEV);
2163		/* If available, use WG to set top bits of EBASE */
2164		if (cpu_has_ebase_wg) {
2165#ifdef CONFIG_64BIT
2166			write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2167#else
2168			write_c0_ebase(ebase | MIPS_EBASE_WG);
2169#endif
2170		}
2171		write_c0_ebase(ebase);
2172		write_c0_status(sr);
2173		/* Setting vector spacing enables EI/VI mode  */
2174		change_c0_intctl(0x3e0, VECTORSPACING);
2175	}
2176	if (cpu_has_divec) {
2177		if (cpu_has_mipsmt) {
2178			unsigned int vpflags = dvpe();
2179			set_c0_cause(CAUSEF_IV);
2180			evpe(vpflags);
2181		} else
2182			set_c0_cause(CAUSEF_IV);
2183	}
2184}
2185
2186void per_cpu_trap_init(bool is_boot_cpu)
2187{
2188	unsigned int cpu = smp_processor_id();
2189
2190	configure_status();
2191	configure_hwrena();
2192
2193	configure_exception_vector();
2194
2195	/*
2196	 * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2197	 *
2198	 *  o read IntCtl.IPTI to determine the timer interrupt
2199	 *  o read IntCtl.IPPCI to determine the performance counter interrupt
2200	 *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2201	 */
2202	if (cpu_has_mips_r2_r6) {
2203		/*
2204		 * We shouldn't trust a secondary core has a sane EBASE register
2205		 * so use the one calculated by the boot CPU.
2206		 */
2207		if (!is_boot_cpu) {
2208			/* If available, use WG to set top bits of EBASE */
2209			if (cpu_has_ebase_wg) {
2210#ifdef CONFIG_64BIT
2211				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
2212#else
2213				write_c0_ebase(ebase | MIPS_EBASE_WG);
2214#endif
2215			}
2216			write_c0_ebase(ebase);
2217		}
2218
2219		cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2220		cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2221		cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2222		cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2223		if (!cp0_fdc_irq)
2224			cp0_fdc_irq = -1;
2225
2226	} else {
2227		cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2228		cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2229		cp0_perfcount_irq = -1;
2230		cp0_fdc_irq = -1;
2231	}
2232
 
 
 
 
2233	if (!cpu_data[cpu].asid_cache)
2234		cpu_data[cpu].asid_cache = asid_first_version(cpu);
2235
2236	mmgrab(&init_mm);
2237	current->active_mm = &init_mm;
2238	BUG_ON(current->mm);
2239	enter_lazy_tlb(&init_mm, current);
2240
2241	/* Boot CPU's cache setup in setup_arch(). */
2242	if (!is_boot_cpu)
2243		cpu_cache_init();
2244	tlb_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
2245	TLBMISS_HANDLER_SETUP();
2246}
2247
2248/* Install CPU exception handler */
2249void set_handler(unsigned long offset, void *addr, unsigned long size)
2250{
2251#ifdef CONFIG_CPU_MICROMIPS
2252	memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2253#else
2254	memcpy((void *)(ebase + offset), addr, size);
2255#endif
2256	local_flush_icache_range(ebase + offset, ebase + offset + size);
2257}
2258
2259static const char panic_null_cerr[] =
2260	"Trying to set NULL cache error exception handler\n";
2261
2262/*
2263 * Install uncached CPU exception handler.
2264 * This is suitable only for the cache error exception which is the only
2265 * exception handler that is being run uncached.
2266 */
2267void set_uncached_handler(unsigned long offset, void *addr,
2268	unsigned long size)
2269{
2270	unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2271
2272	if (!addr)
2273		panic(panic_null_cerr);
2274
2275	memcpy((void *)(uncached_ebase + offset), addr, size);
2276}
2277
2278static int __initdata rdhwr_noopt;
2279static int __init set_rdhwr_noopt(char *str)
2280{
2281	rdhwr_noopt = 1;
2282	return 1;
2283}
2284
2285__setup("rdhwr_noopt", set_rdhwr_noopt);
2286
2287void __init trap_init(void)
2288{
2289	extern char except_vec3_generic;
2290	extern char except_vec4;
2291	extern char except_vec3_r4000;
2292	unsigned long i;
 
2293
2294	check_wait();
 
 
 
 
 
 
2295
2296	if (cpu_has_veic || cpu_has_vint) {
2297		unsigned long size = 0x200 + VECTORSPACING*64;
2298		phys_addr_t ebase_pa;
2299
2300		ebase = (unsigned long)
2301			__alloc_bootmem(size, 1 << fls(size), 0);
2302
2303		/*
2304		 * Try to ensure ebase resides in KSeg0 if possible.
2305		 *
2306		 * It shouldn't generally be in XKPhys on MIPS64 to avoid
2307		 * hitting a poorly defined exception base for Cache Errors.
2308		 * The allocation is likely to be in the low 512MB of physical,
2309		 * in which case we should be able to convert to KSeg0.
2310		 *
2311		 * EVA is special though as it allows segments to be rearranged
2312		 * and to become uncached during cache error handling.
2313		 */
2314		ebase_pa = __pa(ebase);
2315		if (!IS_ENABLED(CONFIG_EVA) && !WARN_ON(ebase_pa >= 0x20000000))
2316			ebase = CKSEG0ADDR(ebase_pa);
2317	} else {
2318		ebase = CAC_BASE;
2319
2320		if (cpu_has_mips_r2_r6) {
2321			if (cpu_has_ebase_wg) {
2322#ifdef CONFIG_64BIT
2323				ebase = (read_c0_ebase_64() & ~0xfff);
2324#else
2325				ebase = (read_c0_ebase() & ~0xfff);
2326#endif
2327			} else {
2328				ebase += (read_c0_ebase() & 0x3ffff000);
2329			}
2330		}
2331	}
2332
2333	if (cpu_has_mmips) {
2334		unsigned int config3 = read_c0_config3();
2335
2336		if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2337			write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2338		else
2339			write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2340	}
2341
2342	if (board_ebase_setup)
2343		board_ebase_setup();
2344	per_cpu_trap_init(true);
2345
2346	/*
2347	 * Copy the generic exception handlers to their final destination.
2348	 * This will be overridden later as suitable for a particular
2349	 * configuration.
2350	 */
2351	set_handler(0x180, &except_vec3_generic, 0x80);
2352
2353	/*
2354	 * Setup default vectors
2355	 */
2356	for (i = 0; i <= 31; i++)
2357		set_except_vector(i, handle_reserved);
2358
2359	/*
2360	 * Copy the EJTAG debug exception vector handler code to it's final
2361	 * destination.
2362	 */
2363	if (cpu_has_ejtag && board_ejtag_handler_setup)
2364		board_ejtag_handler_setup();
2365
2366	/*
2367	 * Only some CPUs have the watch exceptions.
2368	 */
2369	if (cpu_has_watch)
2370		set_except_vector(EXCCODE_WATCH, handle_watch);
2371
2372	/*
2373	 * Initialise interrupt handlers
2374	 */
2375	if (cpu_has_veic || cpu_has_vint) {
2376		int nvec = cpu_has_veic ? 64 : 8;
2377		for (i = 0; i < nvec; i++)
2378			set_vi_handler(i, NULL);
2379	}
2380	else if (cpu_has_divec)
2381		set_handler(0x200, &except_vec4, 0x8);
2382
2383	/*
2384	 * Some CPUs can enable/disable for cache parity detection, but does
2385	 * it different ways.
2386	 */
2387	parity_protection_init();
2388
2389	/*
2390	 * The Data Bus Errors / Instruction Bus Errors are signaled
2391	 * by external hardware.  Therefore these two exceptions
2392	 * may have board specific handlers.
2393	 */
2394	if (board_be_init)
2395		board_be_init();
2396
2397	set_except_vector(EXCCODE_INT, using_rollback_handler() ?
2398					rollback_handle_int : handle_int);
2399	set_except_vector(EXCCODE_MOD, handle_tlbm);
2400	set_except_vector(EXCCODE_TLBL, handle_tlbl);
2401	set_except_vector(EXCCODE_TLBS, handle_tlbs);
2402
2403	set_except_vector(EXCCODE_ADEL, handle_adel);
2404	set_except_vector(EXCCODE_ADES, handle_ades);
 
 
 
 
 
 
 
 
 
 
 
2405
2406	set_except_vector(EXCCODE_IBE, handle_ibe);
2407	set_except_vector(EXCCODE_DBE, handle_dbe);
2408
2409	set_except_vector(EXCCODE_SYS, handle_sys);
2410	set_except_vector(EXCCODE_BP, handle_bp);
2411
2412	if (rdhwr_noopt)
2413		set_except_vector(EXCCODE_RI, handle_ri);
2414	else {
2415		if (cpu_has_vtag_icache)
2416			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2417		else if (current_cpu_type() == CPU_LOONGSON3)
2418			set_except_vector(EXCCODE_RI, handle_ri_rdhwr_tlbp);
2419		else
2420			set_except_vector(EXCCODE_RI, handle_ri_rdhwr);
2421	}
2422
2423	set_except_vector(EXCCODE_CPU, handle_cpu);
2424	set_except_vector(EXCCODE_OV, handle_ov);
2425	set_except_vector(EXCCODE_TR, handle_tr);
2426	set_except_vector(EXCCODE_MSAFPE, handle_msa_fpe);
2427
2428	if (board_nmi_handler_setup)
2429		board_nmi_handler_setup();
2430
2431	if (cpu_has_fpu && !cpu_has_nofpuex)
2432		set_except_vector(EXCCODE_FPE, handle_fpe);
2433
2434	set_except_vector(MIPS_EXCCODE_TLBPAR, handle_ftlb);
2435
2436	if (cpu_has_rixiex) {
2437		set_except_vector(EXCCODE_TLBRI, tlb_do_page_fault_0);
2438		set_except_vector(EXCCODE_TLBXI, tlb_do_page_fault_0);
2439	}
2440
2441	set_except_vector(EXCCODE_MSADIS, handle_msa);
2442	set_except_vector(EXCCODE_MDMX, handle_mdmx);
2443
2444	if (cpu_has_mcheck)
2445		set_except_vector(EXCCODE_MCHECK, handle_mcheck);
2446
2447	if (cpu_has_mipsmt)
2448		set_except_vector(EXCCODE_THREAD, handle_mt);
2449
2450	set_except_vector(EXCCODE_DSPDIS, handle_dsp);
2451
2452	if (board_cache_error_setup)
2453		board_cache_error_setup();
2454
2455	if (cpu_has_vce)
2456		/* Special exception: R4[04]00 uses also the divec space. */
2457		set_handler(0x180, &except_vec3_r4000, 0x100);
2458	else if (cpu_has_4kex)
2459		set_handler(0x180, &except_vec3_generic, 0x80);
2460	else
2461		set_handler(0x080, &except_vec3_generic, 0x80);
2462
2463	local_flush_icache_range(ebase, ebase + 0x400);
 
2464
2465	sort_extable(__start___dbe_table, __stop___dbe_table);
2466
2467	cu2_notifier(default_cu2_call, 0x80000000);	/* Run last  */
2468}
2469
2470static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2471			    void *v)
2472{
2473	switch (cmd) {
2474	case CPU_PM_ENTER_FAILED:
2475	case CPU_PM_EXIT:
2476		configure_status();
2477		configure_hwrena();
2478		configure_exception_vector();
2479
2480		/* Restore register with CPU number for TLB handlers */
2481		TLBMISS_HANDLER_RESTORE();
2482
2483		break;
2484	}
2485
2486	return NOTIFY_OK;
2487}
2488
2489static struct notifier_block trap_pm_notifier_block = {
2490	.notifier_call = trap_pm_notifier,
2491};
2492
2493static int __init trap_pm_init(void)
2494{
2495	return cpu_pm_register_notifier(&trap_pm_notifier_block);
2496}
2497arch_initcall(trap_pm_init);