Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
 
  26
 
  27#include <net/netlink.h>
  28#include <net/pkt_sched.h>
  29#include <net/inet_ecn.h>
  30
  31#define VERSION "1.3"
  32
  33/*	Network Emulation Queuing algorithm.
  34	====================================
  35
  36	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  37		 Network Emulation Tool
  38		 [2] Luigi Rizzo, DummyNet for FreeBSD
  39
  40	 ----------------------------------------------------------------
  41
  42	 This started out as a simple way to delay outgoing packets to
  43	 test TCP but has grown to include most of the functionality
  44	 of a full blown network emulator like NISTnet. It can delay
  45	 packets and add random jitter (and correlation). The random
  46	 distribution can be loaded from a table as well to provide
  47	 normal, Pareto, or experimental curves. Packet loss,
  48	 duplication, and reordering can also be emulated.
  49
  50	 This qdisc does not do classification that can be handled in
  51	 layering other disciplines.  It does not need to do bandwidth
  52	 control either since that can be handled by using token
  53	 bucket or other rate control.
  54
  55     Correlated Loss Generator models
  56
  57	Added generation of correlated loss according to the
  58	"Gilbert-Elliot" model, a 4-state markov model.
  59
  60	References:
  61	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  62	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  63	and intuitive loss model for packet networks and its implementation
  64	in the Netem module in the Linux kernel", available in [1]
  65
  66	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  67		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  68*/
  69
 
 
 
 
 
  70struct netem_sched_data {
  71	/* internal t(ime)fifo qdisc uses sch->q and sch->limit */
 
 
 
 
 
  72
  73	/* optional qdisc for classful handling (NULL at netem init) */
  74	struct Qdisc	*qdisc;
  75
  76	struct qdisc_watchdog watchdog;
  77
  78	psched_tdiff_t latency;
  79	psched_tdiff_t jitter;
  80
  81	u32 loss;
  82	u32 ecn;
  83	u32 limit;
  84	u32 counter;
  85	u32 gap;
  86	u32 duplicate;
  87	u32 reorder;
  88	u32 corrupt;
  89	u32 rate;
  90	s32 packet_overhead;
  91	u32 cell_size;
  92	u32 cell_size_reciprocal;
  93	s32 cell_overhead;
  94
  95	struct crndstate {
  96		u32 last;
  97		u32 rho;
  98	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
  99
 100	struct disttable {
 101		u32  size;
 102		s16 table[0];
 103	} *delay_dist;
 
 
 104
 105	enum  {
 106		CLG_RANDOM,
 107		CLG_4_STATES,
 108		CLG_GILB_ELL,
 109	} loss_model;
 110
 
 
 
 
 
 
 
 
 
 
 
 
 111	/* Correlated Loss Generation models */
 112	struct clgstate {
 113		/* state of the Markov chain */
 114		u8 state;
 115
 116		/* 4-states and Gilbert-Elliot models */
 117		u32 a1;	/* p13 for 4-states or p for GE */
 118		u32 a2;	/* p31 for 4-states or r for GE */
 119		u32 a3;	/* p32 for 4-states or h for GE */
 120		u32 a4;	/* p14 for 4-states or 1-k for GE */
 121		u32 a5; /* p23 used only in 4-states */
 122	} clg;
 123
 
 
 
 
 
 
 
 
 124};
 125
 126/* Time stamp put into socket buffer control block
 127 * Only valid when skbs are in our internal t(ime)fifo queue.
 
 
 
 
 128 */
 129struct netem_skb_cb {
 130	psched_time_t	time_to_send;
 131};
 132
 133static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 134{
 
 135	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 136	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 137}
 138
 139/* init_crandom - initialize correlated random number generator
 140 * Use entropy source for initial seed.
 141 */
 142static void init_crandom(struct crndstate *state, unsigned long rho)
 143{
 144	state->rho = rho;
 145	state->last = net_random();
 146}
 147
 148/* get_crandom - correlated random number generator
 149 * Next number depends on last value.
 150 * rho is scaled to avoid floating point.
 151 */
 152static u32 get_crandom(struct crndstate *state)
 153{
 154	u64 value, rho;
 155	unsigned long answer;
 
 156
 157	if (state->rho == 0)	/* no correlation */
 158		return net_random();
 159
 160	value = net_random();
 161	rho = (u64)state->rho + 1;
 162	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 163	state->last = answer;
 164	return answer;
 165}
 166
 167/* loss_4state - 4-state model loss generator
 168 * Generates losses according to the 4-state Markov chain adopted in
 169 * the GI (General and Intuitive) loss model.
 170 */
 171static bool loss_4state(struct netem_sched_data *q)
 172{
 173	struct clgstate *clg = &q->clg;
 174	u32 rnd = net_random();
 175
 176	/*
 177	 * Makes a comparison between rnd and the transition
 178	 * probabilities outgoing from the current state, then decides the
 179	 * next state and if the next packet has to be transmitted or lost.
 180	 * The four states correspond to:
 181	 *   1 => successfully transmitted packets within a gap period
 182	 *   4 => isolated losses within a gap period
 183	 *   3 => lost packets within a burst period
 184	 *   2 => successfully transmitted packets within a burst period
 185	 */
 186	switch (clg->state) {
 187	case 1:
 188		if (rnd < clg->a4) {
 189			clg->state = 4;
 190			return true;
 191		} else if (clg->a4 < rnd && rnd < clg->a1) {
 192			clg->state = 3;
 193			return true;
 194		} else if (clg->a1 < rnd)
 195			clg->state = 1;
 
 196
 197		break;
 198	case 2:
 199		if (rnd < clg->a5) {
 200			clg->state = 3;
 201			return true;
 202		} else
 203			clg->state = 2;
 
 204
 205		break;
 206	case 3:
 207		if (rnd < clg->a3)
 208			clg->state = 2;
 209		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 210			clg->state = 1;
 211			return true;
 212		} else if (clg->a2 + clg->a3 < rnd) {
 213			clg->state = 3;
 214			return true;
 215		}
 216		break;
 217	case 4:
 218		clg->state = 1;
 219		break;
 220	}
 221
 222	return false;
 223}
 224
 225/* loss_gilb_ell - Gilbert-Elliot model loss generator
 226 * Generates losses according to the Gilbert-Elliot loss model or
 227 * its special cases  (Gilbert or Simple Gilbert)
 228 *
 229 * Makes a comparison between random number and the transition
 230 * probabilities outgoing from the current state, then decides the
 231 * next state. A second random number is extracted and the comparison
 232 * with the loss probability of the current state decides if the next
 233 * packet will be transmitted or lost.
 234 */
 235static bool loss_gilb_ell(struct netem_sched_data *q)
 236{
 237	struct clgstate *clg = &q->clg;
 
 238
 239	switch (clg->state) {
 240	case 1:
 241		if (net_random() < clg->a1)
 242			clg->state = 2;
 243		if (net_random() < clg->a4)
 244			return true;
 245	case 2:
 246		if (net_random() < clg->a2)
 247			clg->state = 1;
 248		if (clg->a3 > net_random())
 
 249			return true;
 250	}
 251
 252	return false;
 253}
 254
 255static bool loss_event(struct netem_sched_data *q)
 256{
 257	switch (q->loss_model) {
 258	case CLG_RANDOM:
 259		/* Random packet drop 0 => none, ~0 => all */
 260		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 261
 262	case CLG_4_STATES:
 263		/* 4state loss model algorithm (used also for GI model)
 264		* Extracts a value from the markov 4 state loss generator,
 265		* if it is 1 drops a packet and if needed writes the event in
 266		* the kernel logs
 267		*/
 268		return loss_4state(q);
 269
 270	case CLG_GILB_ELL:
 271		/* Gilbert-Elliot loss model algorithm
 272		* Extracts a value from the Gilbert-Elliot loss generator,
 273		* if it is 1 drops a packet and if needed writes the event in
 274		* the kernel logs
 275		*/
 276		return loss_gilb_ell(q);
 277	}
 278
 279	return false;	/* not reached */
 280}
 281
 282
 283/* tabledist - return a pseudo-randomly distributed value with mean mu and
 284 * std deviation sigma.  Uses table lookup to approximate the desired
 285 * distribution, and a uniformly-distributed pseudo-random source.
 286 */
 287static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 288				struct crndstate *state,
 289				const struct disttable *dist)
 
 290{
 291	psched_tdiff_t x;
 292	long t;
 293	u32 rnd;
 294
 295	if (sigma == 0)
 296		return mu;
 297
 298	rnd = get_crandom(state);
 299
 300	/* default uniform distribution */
 301	if (dist == NULL)
 302		return (rnd % (2*sigma)) - sigma + mu;
 303
 304	t = dist->table[rnd % dist->size];
 305	x = (sigma % NETEM_DIST_SCALE) * t;
 306	if (x >= 0)
 307		x += NETEM_DIST_SCALE/2;
 308	else
 309		x -= NETEM_DIST_SCALE/2;
 310
 311	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 312}
 313
 314static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 315{
 316	u64 ticks;
 317
 318	len += q->packet_overhead;
 319
 320	if (q->cell_size) {
 321		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 322
 323		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 324			cells++;
 325		len = cells * (q->cell_size + q->cell_overhead);
 326	}
 327
 328	ticks = (u64)len * NSEC_PER_SEC;
 
 
 
 
 
 
 
 
 
 329
 330	do_div(ticks, q->rate);
 331	return PSCHED_NS2TICKS(ticks);
 
 
 
 
 
 
 332}
 333
 334static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 335{
 336	struct sk_buff_head *list = &sch->q;
 337	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 338	struct sk_buff *skb = skb_peek_tail(list);
 339
 340	/* Optimize for add at tail */
 341	if (likely(!skb || tnext >= netem_skb_cb(skb)->time_to_send))
 342		return __skb_queue_tail(list, nskb);
 343
 344	skb_queue_reverse_walk(list, skb) {
 345		if (tnext >= netem_skb_cb(skb)->time_to_send)
 346			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 347	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348
 349	__skb_queue_after(list, skb, nskb);
 
 
 
 
 
 350}
 351
 352/*
 353 * Insert one skb into qdisc.
 354 * Note: parent depends on return value to account for queue length.
 355 * 	NET_XMIT_DROP: queue length didn't change.
 356 *      NET_XMIT_SUCCESS: one skb was queued.
 357 */
 358static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
 359{
 360	struct netem_sched_data *q = qdisc_priv(sch);
 361	/* We don't fill cb now as skb_unshare() may invalidate it */
 362	struct netem_skb_cb *cb;
 363	struct sk_buff *skb2;
 
 
 364	int count = 1;
 
 
 
 
 
 365
 366	/* Random duplication */
 367	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 368		++count;
 369
 370	/* Drop packet? */
 371	if (loss_event(q)) {
 372		if (q->ecn && INET_ECN_set_ce(skb))
 373			sch->qstats.drops++; /* mark packet */
 374		else
 375			--count;
 376	}
 377	if (count == 0) {
 378		sch->qstats.drops++;
 379		kfree_skb(skb);
 380		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 381	}
 382
 383	skb_orphan(skb);
 
 
 
 
 384
 385	/*
 386	 * If we need to duplicate packet, then re-insert at top of the
 387	 * qdisc tree, since parent queuer expects that only one
 388	 * skb will be queued.
 389	 */
 390	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 391		struct Qdisc *rootq = qdisc_root(sch);
 392		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 393		q->duplicate = 0;
 394
 395		qdisc_enqueue_root(skb2, rootq);
 
 396		q->duplicate = dupsave;
 
 397	}
 398
 399	/*
 400	 * Randomized packet corruption.
 401	 * Make copy if needed since we are modifying
 402	 * If packet is going to be hardware checksummed, then
 403	 * do it now in software before we mangle it.
 404	 */
 405	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 406		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 407		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 408		     skb_checksum_help(skb)))
 409			return qdisc_drop(skb, sch);
 
 
 
 
 410
 411		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 412	}
 413
 414	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 415		return qdisc_reshape_fail(skb, sch);
 
 
 
 
 416
 417	sch->qstats.backlog += qdisc_pkt_len(skb);
 418
 419	cb = netem_skb_cb(skb);
 420	if (q->gap == 0 ||		/* not doing reordering */
 421	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 422	    q->reorder < get_crandom(&q->reorder_cor)) {
 423		psched_time_t now;
 424		psched_tdiff_t delay;
 425
 426		delay = tabledist(q->latency, q->jitter,
 427				  &q->delay_cor, q->delay_dist);
 428
 429		now = psched_get_time();
 430
 431		if (q->rate) {
 432			struct sk_buff_head *list = &sch->q;
 433
 434			delay += packet_len_2_sched_time(skb->len, q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436			if (!skb_queue_empty(list)) {
 437				/*
 438				 * Last packet in queue is reference point (now).
 439				 * First packet in queue is already in flight,
 440				 * calculate this time bonus and substract
 441				 * from delay.
 442				 */
 443				delay -= now - netem_skb_cb(skb_peek(list))->time_to_send;
 444				now = netem_skb_cb(skb_peek_tail(list))->time_to_send;
 
 445			}
 
 
 446		}
 447
 448		cb->time_to_send = now + delay;
 449		++q->counter;
 450		tfifo_enqueue(skb, sch);
 451	} else {
 452		/*
 453		 * Do re-ordering by putting one out of N packets at the front
 454		 * of the queue.
 455		 */
 456		cb->time_to_send = psched_get_time();
 457		q->counter = 0;
 458
 459		__skb_queue_head(&sch->q, skb);
 460		sch->qstats.requeues++;
 461	}
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463	return NET_XMIT_SUCCESS;
 464}
 465
 466static unsigned int netem_drop(struct Qdisc *sch)
 
 
 
 
 467{
 468	struct netem_sched_data *q = qdisc_priv(sch);
 469	unsigned int len;
 
 
 
 
 
 
 
 
 
 470
 471	len = qdisc_queue_drop(sch);
 472	if (!len && q->qdisc && q->qdisc->ops->drop)
 473	    len = q->qdisc->ops->drop(q->qdisc);
 474	if (len)
 475		sch->qstats.drops++;
 
 
 
 
 476
 477	return len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478}
 479
 480static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 481{
 482	struct netem_sched_data *q = qdisc_priv(sch);
 483	struct sk_buff *skb;
 484
 485	if (qdisc_is_throttled(sch))
 486		return NULL;
 487
 488tfifo_dequeue:
 489	skb = qdisc_peek_head(sch);
 
 
 
 
 
 
 
 490	if (skb) {
 491		const struct netem_skb_cb *cb = netem_skb_cb(skb);
 
 492
 493		/* if more time remaining? */
 494		if (cb->time_to_send <= psched_get_time()) {
 495			__skb_unlink(skb, &sch->q);
 496			sch->qstats.backlog -= qdisc_pkt_len(skb);
 497
 498#ifdef CONFIG_NET_CLS_ACT
 499			/*
 500			 * If it's at ingress let's pretend the delay is
 501			 * from the network (tstamp will be updated).
 
 
 
 
 502			 */
 503			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 504				skb->tstamp.tv64 = 0;
 505#endif
 506
 507			if (q->qdisc) {
 508				int err = qdisc_enqueue(skb, q->qdisc);
 
 
 
 
 
 509
 510				if (unlikely(err != NET_XMIT_SUCCESS)) {
 511					if (net_xmit_drop_count(err)) {
 512						sch->qstats.drops++;
 513						qdisc_tree_decrease_qlen(sch, 1);
 514					}
 
 
 
 
 
 
 
 515				}
 516				goto tfifo_dequeue;
 517			}
 518deliver:
 519			qdisc_unthrottled(sch);
 520			qdisc_bstats_update(sch, skb);
 521			return skb;
 522		}
 523
 524		if (q->qdisc) {
 525			skb = q->qdisc->ops->dequeue(q->qdisc);
 526			if (skb)
 527				goto deliver;
 528		}
 529		qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
 
 
 
 530	}
 531
 532	if (q->qdisc) {
 533		skb = q->qdisc->ops->dequeue(q->qdisc);
 534		if (skb)
 535			goto deliver;
 536	}
 537	return NULL;
 538}
 539
 540static void netem_reset(struct Qdisc *sch)
 541{
 542	struct netem_sched_data *q = qdisc_priv(sch);
 543
 544	qdisc_reset_queue(sch);
 
 545	if (q->qdisc)
 546		qdisc_reset(q->qdisc);
 547	qdisc_watchdog_cancel(&q->watchdog);
 548}
 549
 550static void dist_free(struct disttable *d)
 551{
 552	if (d) {
 553		if (is_vmalloc_addr(d))
 554			vfree(d);
 555		else
 556			kfree(d);
 557	}
 558}
 559
 560/*
 561 * Distribution data is a variable size payload containing
 562 * signed 16 bit values.
 563 */
 564static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 
 565{
 566	struct netem_sched_data *q = qdisc_priv(sch);
 567	size_t n = nla_len(attr)/sizeof(__s16);
 568	const __s16 *data = nla_data(attr);
 569	spinlock_t *root_lock;
 570	struct disttable *d;
 571	int i;
 572	size_t s;
 573
 574	if (n > NETEM_DIST_MAX)
 575		return -EINVAL;
 576
 577	s = sizeof(struct disttable) + n * sizeof(s16);
 578	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 579	if (!d)
 580		d = vmalloc(s);
 581	if (!d)
 582		return -ENOMEM;
 583
 584	d->size = n;
 585	for (i = 0; i < n; i++)
 586		d->table[i] = data[i];
 587
 588	root_lock = qdisc_root_sleeping_lock(sch);
 
 
 589
 590	spin_lock_bh(root_lock);
 591	swap(q->delay_dist, d);
 592	spin_unlock_bh(root_lock);
 593
 594	dist_free(d);
 595	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 596}
 597
 598static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
 599{
 600	struct netem_sched_data *q = qdisc_priv(sch);
 601	const struct tc_netem_corr *c = nla_data(attr);
 602
 603	init_crandom(&q->delay_cor, c->delay_corr);
 604	init_crandom(&q->loss_cor, c->loss_corr);
 605	init_crandom(&q->dup_cor, c->dup_corr);
 606}
 607
 608static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
 609{
 610	struct netem_sched_data *q = qdisc_priv(sch);
 611	const struct tc_netem_reorder *r = nla_data(attr);
 612
 613	q->reorder = r->probability;
 614	init_crandom(&q->reorder_cor, r->correlation);
 615}
 616
 617static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
 618{
 619	struct netem_sched_data *q = qdisc_priv(sch);
 620	const struct tc_netem_corrupt *r = nla_data(attr);
 621
 622	q->corrupt = r->probability;
 623	init_crandom(&q->corrupt_cor, r->correlation);
 624}
 625
 626static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
 627{
 628	struct netem_sched_data *q = qdisc_priv(sch);
 629	const struct tc_netem_rate *r = nla_data(attr);
 630
 631	q->rate = r->rate;
 632	q->packet_overhead = r->packet_overhead;
 633	q->cell_size = r->cell_size;
 
 634	if (q->cell_size)
 635		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 636	q->cell_overhead = r->cell_overhead;
 
 637}
 638
 639static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
 640{
 641	struct netem_sched_data *q = qdisc_priv(sch);
 642	const struct nlattr *la;
 643	int rem;
 644
 645	nla_for_each_nested(la, attr, rem) {
 646		u16 type = nla_type(la);
 647
 648		switch(type) {
 649		case NETEM_LOSS_GI: {
 650			const struct tc_netem_gimodel *gi = nla_data(la);
 651
 652			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 653				pr_info("netem: incorrect gi model size\n");
 654				return -EINVAL;
 655			}
 656
 657			q->loss_model = CLG_4_STATES;
 658
 659			q->clg.state = 1;
 660			q->clg.a1 = gi->p13;
 661			q->clg.a2 = gi->p31;
 662			q->clg.a3 = gi->p32;
 663			q->clg.a4 = gi->p14;
 664			q->clg.a5 = gi->p23;
 665			break;
 666		}
 667
 668		case NETEM_LOSS_GE: {
 669			const struct tc_netem_gemodel *ge = nla_data(la);
 670
 671			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 672				pr_info("netem: incorrect ge model size\n");
 673				return -EINVAL;
 674			}
 675
 676			q->loss_model = CLG_GILB_ELL;
 677			q->clg.state = 1;
 678			q->clg.a1 = ge->p;
 679			q->clg.a2 = ge->r;
 680			q->clg.a3 = ge->h;
 681			q->clg.a4 = ge->k1;
 682			break;
 683		}
 684
 685		default:
 686			pr_info("netem: unknown loss type %u\n", type);
 687			return -EINVAL;
 688		}
 689	}
 690
 691	return 0;
 692}
 693
 694static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 695	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 696	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 697	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 698	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 699	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 700	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 
 
 
 
 
 701};
 702
 703static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 704		      const struct nla_policy *policy, int len)
 705{
 706	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 707
 708	if (nested_len < 0) {
 709		pr_info("netem: invalid attributes len %d\n", nested_len);
 710		return -EINVAL;
 711	}
 712
 713	if (nested_len >= nla_attr_size(0))
 714		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 715				 nested_len, policy);
 
 716
 717	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 718	return 0;
 719}
 720
 721/* Parse netlink message to set options */
 722static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 
 723{
 724	struct netem_sched_data *q = qdisc_priv(sch);
 725	struct nlattr *tb[TCA_NETEM_MAX + 1];
 
 
 726	struct tc_netem_qopt *qopt;
 
 
 727	int ret;
 728
 729	if (opt == NULL)
 730		return -EINVAL;
 731
 732	qopt = nla_data(opt);
 733	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 734	if (ret < 0)
 735		return ret;
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737	sch->limit = qopt->limit;
 738
 739	q->latency = qopt->latency;
 740	q->jitter = qopt->jitter;
 741	q->limit = qopt->limit;
 742	q->gap = qopt->gap;
 743	q->counter = 0;
 744	q->loss = qopt->loss;
 745	q->duplicate = qopt->duplicate;
 746
 747	/* for compatibility with earlier versions.
 748	 * if gap is set, need to assume 100% probability
 749	 */
 750	if (q->gap)
 751		q->reorder = ~0;
 752
 753	if (tb[TCA_NETEM_CORR])
 754		get_correlation(sch, tb[TCA_NETEM_CORR]);
 755
 756	if (tb[TCA_NETEM_DELAY_DIST]) {
 757		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 758		if (ret)
 759			return ret;
 760	}
 761
 762	if (tb[TCA_NETEM_REORDER])
 763		get_reorder(sch, tb[TCA_NETEM_REORDER]);
 764
 765	if (tb[TCA_NETEM_CORRUPT])
 766		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
 767
 768	if (tb[TCA_NETEM_RATE])
 769		get_rate(sch, tb[TCA_NETEM_RATE]);
 
 
 
 
 
 
 
 
 
 
 770
 771	if (tb[TCA_NETEM_ECN])
 772		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 773
 774	q->loss_model = CLG_RANDOM;
 775	if (tb[TCA_NETEM_LOSS])
 776		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
 
 
 
 
 
 
 
 
 777
 
 
 
 
 
 
 778	return ret;
 779}
 780
 781static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 
 782{
 783	struct netem_sched_data *q = qdisc_priv(sch);
 784	int ret;
 785
 
 
 786	if (!opt)
 787		return -EINVAL;
 788
 789	qdisc_watchdog_init(&q->watchdog, sch);
 790
 791	q->loss_model = CLG_RANDOM;
 792	ret = netem_change(sch, opt);
 793	if (ret)
 794		pr_info("netem: change failed\n");
 795	return ret;
 796}
 797
 798static void netem_destroy(struct Qdisc *sch)
 799{
 800	struct netem_sched_data *q = qdisc_priv(sch);
 801
 802	qdisc_watchdog_cancel(&q->watchdog);
 803	if (q->qdisc)
 804		qdisc_destroy(q->qdisc);
 805	dist_free(q->delay_dist);
 
 806}
 807
 808static int dump_loss_model(const struct netem_sched_data *q,
 809			   struct sk_buff *skb)
 810{
 811	struct nlattr *nest;
 812
 813	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 814	if (nest == NULL)
 815		goto nla_put_failure;
 816
 817	switch (q->loss_model) {
 818	case CLG_RANDOM:
 819		/* legacy loss model */
 820		nla_nest_cancel(skb, nest);
 821		return 0;	/* no data */
 822
 823	case CLG_4_STATES: {
 824		struct tc_netem_gimodel gi = {
 825			.p13 = q->clg.a1,
 826			.p31 = q->clg.a2,
 827			.p32 = q->clg.a3,
 828			.p14 = q->clg.a4,
 829			.p23 = q->clg.a5,
 830		};
 831
 832		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 833			goto nla_put_failure;
 834		break;
 835	}
 836	case CLG_GILB_ELL: {
 837		struct tc_netem_gemodel ge = {
 838			.p = q->clg.a1,
 839			.r = q->clg.a2,
 840			.h = q->clg.a3,
 841			.k1 = q->clg.a4,
 842		};
 843
 844		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 845			goto nla_put_failure;
 846		break;
 847	}
 848	}
 849
 850	nla_nest_end(skb, nest);
 851	return 0;
 852
 853nla_put_failure:
 854	nla_nest_cancel(skb, nest);
 855	return -1;
 856}
 857
 858static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 859{
 860	const struct netem_sched_data *q = qdisc_priv(sch);
 861	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 862	struct tc_netem_qopt qopt;
 863	struct tc_netem_corr cor;
 864	struct tc_netem_reorder reorder;
 865	struct tc_netem_corrupt corrupt;
 866	struct tc_netem_rate rate;
 
 867
 868	qopt.latency = q->latency;
 869	qopt.jitter = q->jitter;
 
 
 870	qopt.limit = q->limit;
 871	qopt.loss = q->loss;
 872	qopt.gap = q->gap;
 873	qopt.duplicate = q->duplicate;
 874	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 875		goto nla_put_failure;
 876
 
 
 
 
 
 
 877	cor.delay_corr = q->delay_cor.rho;
 878	cor.loss_corr = q->loss_cor.rho;
 879	cor.dup_corr = q->dup_cor.rho;
 880	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
 881		goto nla_put_failure;
 882
 883	reorder.probability = q->reorder;
 884	reorder.correlation = q->reorder_cor.rho;
 885	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
 886		goto nla_put_failure;
 887
 888	corrupt.probability = q->corrupt;
 889	corrupt.correlation = q->corrupt_cor.rho;
 890	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
 891		goto nla_put_failure;
 892
 893	rate.rate = q->rate;
 
 
 
 
 
 
 
 894	rate.packet_overhead = q->packet_overhead;
 895	rate.cell_size = q->cell_size;
 896	rate.cell_overhead = q->cell_overhead;
 897	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
 898		goto nla_put_failure;
 899
 900	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
 901		goto nla_put_failure;
 902
 903	if (dump_loss_model(q, skb) != 0)
 904		goto nla_put_failure;
 905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 906	return nla_nest_end(skb, nla);
 907
 908nla_put_failure:
 909	nlmsg_trim(skb, nla);
 910	return -1;
 911}
 912
 913static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
 914			  struct sk_buff *skb, struct tcmsg *tcm)
 915{
 916	struct netem_sched_data *q = qdisc_priv(sch);
 917
 918	if (cl != 1 || !q->qdisc) 	/* only one class */
 919		return -ENOENT;
 920
 921	tcm->tcm_handle |= TC_H_MIN(1);
 922	tcm->tcm_info = q->qdisc->handle;
 923
 924	return 0;
 925}
 926
 927static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 928		     struct Qdisc **old)
 929{
 930	struct netem_sched_data *q = qdisc_priv(sch);
 931
 932	sch_tree_lock(sch);
 933	*old = q->qdisc;
 934	q->qdisc = new;
 935	if (*old) {
 936		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 937		qdisc_reset(*old);
 938	}
 939	sch_tree_unlock(sch);
 940
 941	return 0;
 942}
 943
 944static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
 945{
 946	struct netem_sched_data *q = qdisc_priv(sch);
 947	return q->qdisc;
 948}
 949
 950static unsigned long netem_get(struct Qdisc *sch, u32 classid)
 951{
 952	return 1;
 953}
 954
 955static void netem_put(struct Qdisc *sch, unsigned long arg)
 956{
 957}
 958
 959static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 960{
 961	if (!walker->stop) {
 962		if (walker->count >= walker->skip)
 963			if (walker->fn(sch, 1, walker) < 0) {
 964				walker->stop = 1;
 965				return;
 966			}
 967		walker->count++;
 968	}
 969}
 970
 971static const struct Qdisc_class_ops netem_class_ops = {
 972	.graft		=	netem_graft,
 973	.leaf		=	netem_leaf,
 974	.get		=	netem_get,
 975	.put		=	netem_put,
 976	.walk		=	netem_walk,
 977	.dump		=	netem_dump_class,
 978};
 979
 980static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
 981	.id		=	"netem",
 982	.cl_ops		=	&netem_class_ops,
 983	.priv_size	=	sizeof(struct netem_sched_data),
 984	.enqueue	=	netem_enqueue,
 985	.dequeue	=	netem_dequeue,
 986	.peek		=	qdisc_peek_dequeued,
 987	.drop		=	netem_drop,
 988	.init		=	netem_init,
 989	.reset		=	netem_reset,
 990	.destroy	=	netem_destroy,
 991	.change		=	netem_change,
 992	.dump		=	netem_dump,
 993	.owner		=	THIS_MODULE,
 994};
 995
 996
 997static int __init netem_module_init(void)
 998{
 999	pr_info("netem: version " VERSION "\n");
1000	return register_qdisc(&netem_qdisc_ops);
1001}
1002static void __exit netem_module_exit(void)
1003{
1004	unregister_qdisc(&netem_qdisc_ops);
1005}
1006module_init(netem_module_init)
1007module_exit(netem_module_exit)
1008MODULE_LICENSE("GPL");
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * net/sched/sch_netem.c	Network emulator
   4 *
 
 
 
 
 
   5 *  		Many of the algorithms and ideas for this came from
   6 *		NIST Net which is not copyrighted.
   7 *
   8 * Authors:	Stephen Hemminger <shemminger@osdl.org>
   9 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  10 */
  11
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/slab.h>
  15#include <linux/types.h>
  16#include <linux/kernel.h>
  17#include <linux/errno.h>
  18#include <linux/skbuff.h>
  19#include <linux/vmalloc.h>
  20#include <linux/rtnetlink.h>
  21#include <linux/reciprocal_div.h>
  22#include <linux/rbtree.h>
  23
  24#include <net/gso.h>
  25#include <net/netlink.h>
  26#include <net/pkt_sched.h>
  27#include <net/inet_ecn.h>
  28
  29#define VERSION "1.3"
  30
  31/*	Network Emulation Queuing algorithm.
  32	====================================
  33
  34	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  35		 Network Emulation Tool
  36		 [2] Luigi Rizzo, DummyNet for FreeBSD
  37
  38	 ----------------------------------------------------------------
  39
  40	 This started out as a simple way to delay outgoing packets to
  41	 test TCP but has grown to include most of the functionality
  42	 of a full blown network emulator like NISTnet. It can delay
  43	 packets and add random jitter (and correlation). The random
  44	 distribution can be loaded from a table as well to provide
  45	 normal, Pareto, or experimental curves. Packet loss,
  46	 duplication, and reordering can also be emulated.
  47
  48	 This qdisc does not do classification that can be handled in
  49	 layering other disciplines.  It does not need to do bandwidth
  50	 control either since that can be handled by using token
  51	 bucket or other rate control.
  52
  53     Correlated Loss Generator models
  54
  55	Added generation of correlated loss according to the
  56	"Gilbert-Elliot" model, a 4-state markov model.
  57
  58	References:
  59	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  60	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  61	and intuitive loss model for packet networks and its implementation
  62	in the Netem module in the Linux kernel", available in [1]
  63
  64	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  65		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  66*/
  67
  68struct disttable {
  69	u32  size;
  70	s16 table[] __counted_by(size);
  71};
  72
  73struct netem_sched_data {
  74	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  75	struct rb_root t_root;
  76
  77	/* a linear queue; reduces rbtree rebalancing when jitter is low */
  78	struct sk_buff	*t_head;
  79	struct sk_buff	*t_tail;
  80
  81	/* optional qdisc for classful handling (NULL at netem init) */
  82	struct Qdisc	*qdisc;
  83
  84	struct qdisc_watchdog watchdog;
  85
  86	s64 latency;
  87	s64 jitter;
  88
  89	u32 loss;
  90	u32 ecn;
  91	u32 limit;
  92	u32 counter;
  93	u32 gap;
  94	u32 duplicate;
  95	u32 reorder;
  96	u32 corrupt;
  97	u64 rate;
  98	s32 packet_overhead;
  99	u32 cell_size;
 100	struct reciprocal_value cell_size_reciprocal;
 101	s32 cell_overhead;
 102
 103	struct crndstate {
 104		u32 last;
 105		u32 rho;
 106	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 107
 108	struct prng  {
 109		u64 seed;
 110		struct rnd_state prng_state;
 111	} prng;
 112
 113	struct disttable *delay_dist;
 114
 115	enum  {
 116		CLG_RANDOM,
 117		CLG_4_STATES,
 118		CLG_GILB_ELL,
 119	} loss_model;
 120
 121	enum {
 122		TX_IN_GAP_PERIOD = 1,
 123		TX_IN_BURST_PERIOD,
 124		LOST_IN_GAP_PERIOD,
 125		LOST_IN_BURST_PERIOD,
 126	} _4_state_model;
 127
 128	enum {
 129		GOOD_STATE = 1,
 130		BAD_STATE,
 131	} GE_state_model;
 132
 133	/* Correlated Loss Generation models */
 134	struct clgstate {
 135		/* state of the Markov chain */
 136		u8 state;
 137
 138		/* 4-states and Gilbert-Elliot models */
 139		u32 a1;	/* p13 for 4-states or p for GE */
 140		u32 a2;	/* p31 for 4-states or r for GE */
 141		u32 a3;	/* p32 for 4-states or h for GE */
 142		u32 a4;	/* p14 for 4-states or 1-k for GE */
 143		u32 a5; /* p23 used only in 4-states */
 144	} clg;
 145
 146	struct tc_netem_slot slot_config;
 147	struct slotstate {
 148		u64 slot_next;
 149		s32 packets_left;
 150		s32 bytes_left;
 151	} slot;
 152
 153	struct disttable *slot_dist;
 154};
 155
 156/* Time stamp put into socket buffer control block
 157 * Only valid when skbs are in our internal t(ime)fifo queue.
 158 *
 159 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 160 * and skb->next & skb->prev are scratch space for a qdisc,
 161 * we save skb->tstamp value in skb->cb[] before destroying it.
 162 */
 163struct netem_skb_cb {
 164	u64	        time_to_send;
 165};
 166
 167static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 168{
 169	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 170	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 171	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 172}
 173
 174/* init_crandom - initialize correlated random number generator
 175 * Use entropy source for initial seed.
 176 */
 177static void init_crandom(struct crndstate *state, unsigned long rho)
 178{
 179	state->rho = rho;
 180	state->last = get_random_u32();
 181}
 182
 183/* get_crandom - correlated random number generator
 184 * Next number depends on last value.
 185 * rho is scaled to avoid floating point.
 186 */
 187static u32 get_crandom(struct crndstate *state, struct prng *p)
 188{
 189	u64 value, rho;
 190	unsigned long answer;
 191	struct rnd_state *s = &p->prng_state;
 192
 193	if (!state || state->rho == 0)	/* no correlation */
 194		return prandom_u32_state(s);
 195
 196	value = prandom_u32_state(s);
 197	rho = (u64)state->rho + 1;
 198	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 199	state->last = answer;
 200	return answer;
 201}
 202
 203/* loss_4state - 4-state model loss generator
 204 * Generates losses according to the 4-state Markov chain adopted in
 205 * the GI (General and Intuitive) loss model.
 206 */
 207static bool loss_4state(struct netem_sched_data *q)
 208{
 209	struct clgstate *clg = &q->clg;
 210	u32 rnd = prandom_u32_state(&q->prng.prng_state);
 211
 212	/*
 213	 * Makes a comparison between rnd and the transition
 214	 * probabilities outgoing from the current state, then decides the
 215	 * next state and if the next packet has to be transmitted or lost.
 216	 * The four states correspond to:
 217	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 218	 *   LOST_IN_GAP_PERIOD => isolated losses within a gap period
 219	 *   LOST_IN_BURST_PERIOD => lost packets within a burst period
 220	 *   TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
 221	 */
 222	switch (clg->state) {
 223	case TX_IN_GAP_PERIOD:
 224		if (rnd < clg->a4) {
 225			clg->state = LOST_IN_GAP_PERIOD;
 226			return true;
 227		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a1 + clg->a4 < rnd) {
 231			clg->state = TX_IN_GAP_PERIOD;
 232		}
 233
 234		break;
 235	case TX_IN_BURST_PERIOD:
 236		if (rnd < clg->a5) {
 237			clg->state = LOST_IN_BURST_PERIOD;
 238			return true;
 239		} else {
 240			clg->state = TX_IN_BURST_PERIOD;
 241		}
 242
 243		break;
 244	case LOST_IN_BURST_PERIOD:
 245		if (rnd < clg->a3)
 246			clg->state = TX_IN_BURST_PERIOD;
 247		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 248			clg->state = TX_IN_GAP_PERIOD;
 
 249		} else if (clg->a2 + clg->a3 < rnd) {
 250			clg->state = LOST_IN_BURST_PERIOD;
 251			return true;
 252		}
 253		break;
 254	case LOST_IN_GAP_PERIOD:
 255		clg->state = TX_IN_GAP_PERIOD;
 256		break;
 257	}
 258
 259	return false;
 260}
 261
 262/* loss_gilb_ell - Gilbert-Elliot model loss generator
 263 * Generates losses according to the Gilbert-Elliot loss model or
 264 * its special cases  (Gilbert or Simple Gilbert)
 265 *
 266 * Makes a comparison between random number and the transition
 267 * probabilities outgoing from the current state, then decides the
 268 * next state. A second random number is extracted and the comparison
 269 * with the loss probability of the current state decides if the next
 270 * packet will be transmitted or lost.
 271 */
 272static bool loss_gilb_ell(struct netem_sched_data *q)
 273{
 274	struct clgstate *clg = &q->clg;
 275	struct rnd_state *s = &q->prng.prng_state;
 276
 277	switch (clg->state) {
 278	case GOOD_STATE:
 279		if (prandom_u32_state(s) < clg->a1)
 280			clg->state = BAD_STATE;
 281		if (prandom_u32_state(s) < clg->a4)
 282			return true;
 283		break;
 284	case BAD_STATE:
 285		if (prandom_u32_state(s) < clg->a2)
 286			clg->state = GOOD_STATE;
 287		if (prandom_u32_state(s) > clg->a3)
 288			return true;
 289	}
 290
 291	return false;
 292}
 293
 294static bool loss_event(struct netem_sched_data *q)
 295{
 296	switch (q->loss_model) {
 297	case CLG_RANDOM:
 298		/* Random packet drop 0 => none, ~0 => all */
 299		return q->loss && q->loss >= get_crandom(&q->loss_cor, &q->prng);
 300
 301	case CLG_4_STATES:
 302		/* 4state loss model algorithm (used also for GI model)
 303		* Extracts a value from the markov 4 state loss generator,
 304		* if it is 1 drops a packet and if needed writes the event in
 305		* the kernel logs
 306		*/
 307		return loss_4state(q);
 308
 309	case CLG_GILB_ELL:
 310		/* Gilbert-Elliot loss model algorithm
 311		* Extracts a value from the Gilbert-Elliot loss generator,
 312		* if it is 1 drops a packet and if needed writes the event in
 313		* the kernel logs
 314		*/
 315		return loss_gilb_ell(q);
 316	}
 317
 318	return false;	/* not reached */
 319}
 320
 321
 322/* tabledist - return a pseudo-randomly distributed value with mean mu and
 323 * std deviation sigma.  Uses table lookup to approximate the desired
 324 * distribution, and a uniformly-distributed pseudo-random source.
 325 */
 326static s64 tabledist(s64 mu, s32 sigma,
 327		     struct crndstate *state,
 328		     struct prng *prng,
 329		     const struct disttable *dist)
 330{
 331	s64 x;
 332	long t;
 333	u32 rnd;
 334
 335	if (sigma == 0)
 336		return mu;
 337
 338	rnd = get_crandom(state, prng);
 339
 340	/* default uniform distribution */
 341	if (dist == NULL)
 342		return ((rnd % (2 * (u32)sigma)) + mu) - sigma;
 343
 344	t = dist->table[rnd % dist->size];
 345	x = (sigma % NETEM_DIST_SCALE) * t;
 346	if (x >= 0)
 347		x += NETEM_DIST_SCALE/2;
 348	else
 349		x -= NETEM_DIST_SCALE/2;
 350
 351	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 352}
 353
 354static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 355{
 
 
 356	len += q->packet_overhead;
 357
 358	if (q->cell_size) {
 359		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 360
 361		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 362			cells++;
 363		len = cells * (q->cell_size + q->cell_overhead);
 364	}
 365
 366	return div64_u64(len * NSEC_PER_SEC, q->rate);
 367}
 368
 369static void tfifo_reset(struct Qdisc *sch)
 370{
 371	struct netem_sched_data *q = qdisc_priv(sch);
 372	struct rb_node *p = rb_first(&q->t_root);
 373
 374	while (p) {
 375		struct sk_buff *skb = rb_to_skb(p);
 376
 377		p = rb_next(p);
 378		rb_erase(&skb->rbnode, &q->t_root);
 379		rtnl_kfree_skbs(skb, skb);
 380	}
 381
 382	rtnl_kfree_skbs(q->t_head, q->t_tail);
 383	q->t_head = NULL;
 384	q->t_tail = NULL;
 385}
 386
 387static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 388{
 389	struct netem_sched_data *q = qdisc_priv(sch);
 390	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 
 
 
 
 
 391
 392	if (!q->t_tail || tnext >= netem_skb_cb(q->t_tail)->time_to_send) {
 393		if (q->t_tail)
 394			q->t_tail->next = nskb;
 395		else
 396			q->t_head = nskb;
 397		q->t_tail = nskb;
 398	} else {
 399		struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 400
 401		while (*p) {
 402			struct sk_buff *skb;
 403
 404			parent = *p;
 405			skb = rb_to_skb(parent);
 406			if (tnext >= netem_skb_cb(skb)->time_to_send)
 407				p = &parent->rb_right;
 408			else
 409				p = &parent->rb_left;
 410		}
 411		rb_link_node(&nskb->rbnode, parent, p);
 412		rb_insert_color(&nskb->rbnode, &q->t_root);
 413	}
 414	sch->q.qlen++;
 415}
 416
 417/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 418 * when we statistically choose to corrupt one, we instead segment it, returning
 419 * the first packet to be corrupted, and re-enqueue the remaining frames
 420 */
 421static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 422				     struct sk_buff **to_free)
 423{
 424	struct sk_buff *segs;
 425	netdev_features_t features = netif_skb_features(skb);
 426
 427	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 428
 429	if (IS_ERR_OR_NULL(segs)) {
 430		qdisc_drop(skb, sch, to_free);
 431		return NULL;
 432	}
 433	consume_skb(skb);
 434	return segs;
 435}
 436
 437/*
 438 * Insert one skb into qdisc.
 439 * Note: parent depends on return value to account for queue length.
 440 * 	NET_XMIT_DROP: queue length didn't change.
 441 *      NET_XMIT_SUCCESS: one skb was queued.
 442 */
 443static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 444			 struct sk_buff **to_free)
 445{
 446	struct netem_sched_data *q = qdisc_priv(sch);
 447	/* We don't fill cb now as skb_unshare() may invalidate it */
 448	struct netem_skb_cb *cb;
 449	struct sk_buff *skb2;
 450	struct sk_buff *segs = NULL;
 451	unsigned int prev_len = qdisc_pkt_len(skb);
 452	int count = 1;
 453	int rc = NET_XMIT_SUCCESS;
 454	int rc_drop = NET_XMIT_DROP;
 455
 456	/* Do not fool qdisc_drop_all() */
 457	skb->prev = NULL;
 458
 459	/* Random duplication */
 460	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor, &q->prng))
 461		++count;
 462
 463	/* Drop packet? */
 464	if (loss_event(q)) {
 465		if (q->ecn && INET_ECN_set_ce(skb))
 466			qdisc_qstats_drop(sch); /* mark packet */
 467		else
 468			--count;
 469	}
 470	if (count == 0) {
 471		qdisc_qstats_drop(sch);
 472		__qdisc_drop(skb, to_free);
 473		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 474	}
 475
 476	/* If a delay is expected, orphan the skb. (orphaning usually takes
 477	 * place at TX completion time, so _before_ the link transit delay)
 478	 */
 479	if (q->latency || q->jitter || q->rate)
 480		skb_orphan_partial(skb);
 481
 482	/*
 483	 * If we need to duplicate packet, then re-insert at top of the
 484	 * qdisc tree, since parent queuer expects that only one
 485	 * skb will be queued.
 486	 */
 487	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 488		struct Qdisc *rootq = qdisc_root_bh(sch);
 489		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 
 490
 491		q->duplicate = 0;
 492		rootq->enqueue(skb2, rootq, to_free);
 493		q->duplicate = dupsave;
 494		rc_drop = NET_XMIT_SUCCESS;
 495	}
 496
 497	/*
 498	 * Randomized packet corruption.
 499	 * Make copy if needed since we are modifying
 500	 * If packet is going to be hardware checksummed, then
 501	 * do it now in software before we mangle it.
 502	 */
 503	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor, &q->prng)) {
 504		if (skb_is_gso(skb)) {
 505			skb = netem_segment(skb, sch, to_free);
 506			if (!skb)
 507				return rc_drop;
 508			segs = skb->next;
 509			skb_mark_not_on_list(skb);
 510			qdisc_skb_cb(skb)->pkt_len = skb->len;
 511		}
 512
 513		skb = skb_unshare(skb, GFP_ATOMIC);
 514		if (unlikely(!skb)) {
 515			qdisc_qstats_drop(sch);
 516			goto finish_segs;
 517		}
 518		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 519		    skb_checksum_help(skb)) {
 520			qdisc_drop(skb, sch, to_free);
 521			skb = NULL;
 522			goto finish_segs;
 523		}
 524
 525		skb->data[get_random_u32_below(skb_headlen(skb))] ^=
 526			1<<get_random_u32_below(8);
 527	}
 528
 529	if (unlikely(sch->q.qlen >= sch->limit)) {
 530		/* re-link segs, so that qdisc_drop_all() frees them all */
 531		skb->next = segs;
 532		qdisc_drop_all(skb, sch, to_free);
 533		return rc_drop;
 534	}
 535
 536	qdisc_qstats_backlog_inc(sch, skb);
 537
 538	cb = netem_skb_cb(skb);
 539	if (q->gap == 0 ||		/* not doing reordering */
 540	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 541	    q->reorder < get_crandom(&q->reorder_cor, &q->prng)) {
 542		u64 now;
 543		s64 delay;
 544
 545		delay = tabledist(q->latency, q->jitter,
 546				  &q->delay_cor, &q->prng, q->delay_dist);
 547
 548		now = ktime_get_ns();
 549
 550		if (q->rate) {
 551			struct netem_skb_cb *last = NULL;
 552
 553			if (sch->q.tail)
 554				last = netem_skb_cb(sch->q.tail);
 555			if (q->t_root.rb_node) {
 556				struct sk_buff *t_skb;
 557				struct netem_skb_cb *t_last;
 558
 559				t_skb = skb_rb_last(&q->t_root);
 560				t_last = netem_skb_cb(t_skb);
 561				if (!last ||
 562				    t_last->time_to_send > last->time_to_send)
 563					last = t_last;
 564			}
 565			if (q->t_tail) {
 566				struct netem_skb_cb *t_last =
 567					netem_skb_cb(q->t_tail);
 568
 569				if (!last ||
 570				    t_last->time_to_send > last->time_to_send)
 571					last = t_last;
 572			}
 573
 574			if (last) {
 575				/*
 576				 * Last packet in queue is reference point (now),
 577				 * calculate this time bonus and subtract
 
 578				 * from delay.
 579				 */
 580				delay -= last->time_to_send - now;
 581				delay = max_t(s64, 0, delay);
 582				now = last->time_to_send;
 583			}
 584
 585			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 586		}
 587
 588		cb->time_to_send = now + delay;
 589		++q->counter;
 590		tfifo_enqueue(skb, sch);
 591	} else {
 592		/*
 593		 * Do re-ordering by putting one out of N packets at the front
 594		 * of the queue.
 595		 */
 596		cb->time_to_send = ktime_get_ns();
 597		q->counter = 0;
 598
 599		__qdisc_enqueue_head(skb, &sch->q);
 600		sch->qstats.requeues++;
 601	}
 602
 603finish_segs:
 604	if (segs) {
 605		unsigned int len, last_len;
 606		int nb;
 607
 608		len = skb ? skb->len : 0;
 609		nb = skb ? 1 : 0;
 610
 611		while (segs) {
 612			skb2 = segs->next;
 613			skb_mark_not_on_list(segs);
 614			qdisc_skb_cb(segs)->pkt_len = segs->len;
 615			last_len = segs->len;
 616			rc = qdisc_enqueue(segs, sch, to_free);
 617			if (rc != NET_XMIT_SUCCESS) {
 618				if (net_xmit_drop_count(rc))
 619					qdisc_qstats_drop(sch);
 620			} else {
 621				nb++;
 622				len += last_len;
 623			}
 624			segs = skb2;
 625		}
 626		/* Parent qdiscs accounted for 1 skb of size @prev_len */
 627		qdisc_tree_reduce_backlog(sch, -(nb - 1), -(len - prev_len));
 628	} else if (!skb) {
 629		return NET_XMIT_DROP;
 630	}
 631	return NET_XMIT_SUCCESS;
 632}
 633
 634/* Delay the next round with a new future slot with a
 635 * correct number of bytes and packets.
 636 */
 637
 638static void get_slot_next(struct netem_sched_data *q, u64 now)
 639{
 640	s64 next_delay;
 641
 642	if (!q->slot_dist)
 643		next_delay = q->slot_config.min_delay +
 644				(get_random_u32() *
 645				 (q->slot_config.max_delay -
 646				  q->slot_config.min_delay) >> 32);
 647	else
 648		next_delay = tabledist(q->slot_config.dist_delay,
 649				       (s32)(q->slot_config.dist_jitter),
 650				       NULL, &q->prng, q->slot_dist);
 651
 652	q->slot.slot_next = now + next_delay;
 653	q->slot.packets_left = q->slot_config.max_packets;
 654	q->slot.bytes_left = q->slot_config.max_bytes;
 655}
 656
 657static struct sk_buff *netem_peek(struct netem_sched_data *q)
 658{
 659	struct sk_buff *skb = skb_rb_first(&q->t_root);
 660	u64 t1, t2;
 661
 662	if (!skb)
 663		return q->t_head;
 664	if (!q->t_head)
 665		return skb;
 666
 667	t1 = netem_skb_cb(skb)->time_to_send;
 668	t2 = netem_skb_cb(q->t_head)->time_to_send;
 669	if (t1 < t2)
 670		return skb;
 671	return q->t_head;
 672}
 673
 674static void netem_erase_head(struct netem_sched_data *q, struct sk_buff *skb)
 675{
 676	if (skb == q->t_head) {
 677		q->t_head = skb->next;
 678		if (!q->t_head)
 679			q->t_tail = NULL;
 680	} else {
 681		rb_erase(&skb->rbnode, &q->t_root);
 682	}
 683}
 684
 685static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 686{
 687	struct netem_sched_data *q = qdisc_priv(sch);
 688	struct sk_buff *skb;
 689
 
 
 
 690tfifo_dequeue:
 691	skb = __qdisc_dequeue_head(&sch->q);
 692	if (skb) {
 693		qdisc_qstats_backlog_dec(sch, skb);
 694deliver:
 695		qdisc_bstats_update(sch, skb);
 696		return skb;
 697	}
 698	skb = netem_peek(q);
 699	if (skb) {
 700		u64 time_to_send;
 701		u64 now = ktime_get_ns();
 702
 703		/* if more time remaining? */
 704		time_to_send = netem_skb_cb(skb)->time_to_send;
 705		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 706			get_slot_next(q, now);
 707
 708		if (time_to_send <= now && q->slot.slot_next <= now) {
 709			netem_erase_head(q, skb);
 710			sch->q.qlen--;
 711			qdisc_qstats_backlog_dec(sch, skb);
 712			skb->next = NULL;
 713			skb->prev = NULL;
 714			/* skb->dev shares skb->rbnode area,
 715			 * we need to restore its value.
 716			 */
 717			skb->dev = qdisc_dev(sch);
 
 
 718
 719			if (q->slot.slot_next) {
 720				q->slot.packets_left--;
 721				q->slot.bytes_left -= qdisc_pkt_len(skb);
 722				if (q->slot.packets_left <= 0 ||
 723				    q->slot.bytes_left <= 0)
 724					get_slot_next(q, now);
 725			}
 726
 727			if (q->qdisc) {
 728				unsigned int pkt_len = qdisc_pkt_len(skb);
 729				struct sk_buff *to_free = NULL;
 730				int err;
 731
 732				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 733				kfree_skb_list(to_free);
 734				if (err != NET_XMIT_SUCCESS &&
 735				    net_xmit_drop_count(err)) {
 736					qdisc_qstats_drop(sch);
 737					qdisc_tree_reduce_backlog(sch, 1,
 738								  pkt_len);
 739				}
 740				goto tfifo_dequeue;
 741			}
 742			goto deliver;
 
 
 
 743		}
 744
 745		if (q->qdisc) {
 746			skb = q->qdisc->ops->dequeue(q->qdisc);
 747			if (skb)
 748				goto deliver;
 749		}
 750
 751		qdisc_watchdog_schedule_ns(&q->watchdog,
 752					   max(time_to_send,
 753					       q->slot.slot_next));
 754	}
 755
 756	if (q->qdisc) {
 757		skb = q->qdisc->ops->dequeue(q->qdisc);
 758		if (skb)
 759			goto deliver;
 760	}
 761	return NULL;
 762}
 763
 764static void netem_reset(struct Qdisc *sch)
 765{
 766	struct netem_sched_data *q = qdisc_priv(sch);
 767
 768	qdisc_reset_queue(sch);
 769	tfifo_reset(sch);
 770	if (q->qdisc)
 771		qdisc_reset(q->qdisc);
 772	qdisc_watchdog_cancel(&q->watchdog);
 773}
 774
 775static void dist_free(struct disttable *d)
 776{
 777	kvfree(d);
 
 
 
 
 
 778}
 779
 780/*
 781 * Distribution data is a variable size payload containing
 782 * signed 16 bit values.
 783 */
 784
 785static int get_dist_table(struct disttable **tbl, const struct nlattr *attr)
 786{
 
 787	size_t n = nla_len(attr)/sizeof(__s16);
 788	const __s16 *data = nla_data(attr);
 
 789	struct disttable *d;
 790	int i;
 
 791
 792	if (!n || n > NETEM_DIST_MAX)
 793		return -EINVAL;
 794
 795	d = kvmalloc(struct_size(d, table, n), GFP_KERNEL);
 
 
 
 796	if (!d)
 797		return -ENOMEM;
 798
 799	d->size = n;
 800	for (i = 0; i < n; i++)
 801		d->table[i] = data[i];
 802
 803	*tbl = d;
 804	return 0;
 805}
 806
 807static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 808{
 809	const struct tc_netem_slot *c = nla_data(attr);
 810
 811	q->slot_config = *c;
 812	if (q->slot_config.max_packets == 0)
 813		q->slot_config.max_packets = INT_MAX;
 814	if (q->slot_config.max_bytes == 0)
 815		q->slot_config.max_bytes = INT_MAX;
 816
 817	/* capping dist_jitter to the range acceptable by tabledist() */
 818	q->slot_config.dist_jitter = min_t(__s64, INT_MAX, abs(q->slot_config.dist_jitter));
 819
 820	q->slot.packets_left = q->slot_config.max_packets;
 821	q->slot.bytes_left = q->slot_config.max_bytes;
 822	if (q->slot_config.min_delay | q->slot_config.max_delay |
 823	    q->slot_config.dist_jitter)
 824		q->slot.slot_next = ktime_get_ns();
 825	else
 826		q->slot.slot_next = 0;
 827}
 828
 829static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 830{
 
 831	const struct tc_netem_corr *c = nla_data(attr);
 832
 833	init_crandom(&q->delay_cor, c->delay_corr);
 834	init_crandom(&q->loss_cor, c->loss_corr);
 835	init_crandom(&q->dup_cor, c->dup_corr);
 836}
 837
 838static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 839{
 
 840	const struct tc_netem_reorder *r = nla_data(attr);
 841
 842	q->reorder = r->probability;
 843	init_crandom(&q->reorder_cor, r->correlation);
 844}
 845
 846static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 847{
 
 848	const struct tc_netem_corrupt *r = nla_data(attr);
 849
 850	q->corrupt = r->probability;
 851	init_crandom(&q->corrupt_cor, r->correlation);
 852}
 853
 854static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 855{
 
 856	const struct tc_netem_rate *r = nla_data(attr);
 857
 858	q->rate = r->rate;
 859	q->packet_overhead = r->packet_overhead;
 860	q->cell_size = r->cell_size;
 861	q->cell_overhead = r->cell_overhead;
 862	if (q->cell_size)
 863		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 864	else
 865		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 866}
 867
 868static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 869{
 
 870	const struct nlattr *la;
 871	int rem;
 872
 873	nla_for_each_nested(la, attr, rem) {
 874		u16 type = nla_type(la);
 875
 876		switch (type) {
 877		case NETEM_LOSS_GI: {
 878			const struct tc_netem_gimodel *gi = nla_data(la);
 879
 880			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 881				pr_info("netem: incorrect gi model size\n");
 882				return -EINVAL;
 883			}
 884
 885			q->loss_model = CLG_4_STATES;
 886
 887			q->clg.state = TX_IN_GAP_PERIOD;
 888			q->clg.a1 = gi->p13;
 889			q->clg.a2 = gi->p31;
 890			q->clg.a3 = gi->p32;
 891			q->clg.a4 = gi->p14;
 892			q->clg.a5 = gi->p23;
 893			break;
 894		}
 895
 896		case NETEM_LOSS_GE: {
 897			const struct tc_netem_gemodel *ge = nla_data(la);
 898
 899			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 900				pr_info("netem: incorrect ge model size\n");
 901				return -EINVAL;
 902			}
 903
 904			q->loss_model = CLG_GILB_ELL;
 905			q->clg.state = GOOD_STATE;
 906			q->clg.a1 = ge->p;
 907			q->clg.a2 = ge->r;
 908			q->clg.a3 = ge->h;
 909			q->clg.a4 = ge->k1;
 910			break;
 911		}
 912
 913		default:
 914			pr_info("netem: unknown loss type %u\n", type);
 915			return -EINVAL;
 916		}
 917	}
 918
 919	return 0;
 920}
 921
 922static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 923	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 924	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 925	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 926	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 927	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 928	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 929	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 930	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 931	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 932	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 933	[TCA_NETEM_PRNG_SEED]	= { .type = NLA_U64 },
 934};
 935
 936static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 937		      const struct nla_policy *policy, int len)
 938{
 939	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 940
 941	if (nested_len < 0) {
 942		pr_info("netem: invalid attributes len %d\n", nested_len);
 943		return -EINVAL;
 944	}
 945
 946	if (nested_len >= nla_attr_size(0))
 947		return nla_parse_deprecated(tb, maxtype,
 948					    nla_data(nla) + NLA_ALIGN(len),
 949					    nested_len, policy, NULL);
 950
 951	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 952	return 0;
 953}
 954
 955/* Parse netlink message to set options */
 956static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 957			struct netlink_ext_ack *extack)
 958{
 959	struct netem_sched_data *q = qdisc_priv(sch);
 960	struct nlattr *tb[TCA_NETEM_MAX + 1];
 961	struct disttable *delay_dist = NULL;
 962	struct disttable *slot_dist = NULL;
 963	struct tc_netem_qopt *qopt;
 964	struct clgstate old_clg;
 965	int old_loss_model = CLG_RANDOM;
 966	int ret;
 967
 
 
 
 968	qopt = nla_data(opt);
 969	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 970	if (ret < 0)
 971		return ret;
 972
 973	if (tb[TCA_NETEM_DELAY_DIST]) {
 974		ret = get_dist_table(&delay_dist, tb[TCA_NETEM_DELAY_DIST]);
 975		if (ret)
 976			goto table_free;
 977	}
 978
 979	if (tb[TCA_NETEM_SLOT_DIST]) {
 980		ret = get_dist_table(&slot_dist, tb[TCA_NETEM_SLOT_DIST]);
 981		if (ret)
 982			goto table_free;
 983	}
 984
 985	sch_tree_lock(sch);
 986	/* backup q->clg and q->loss_model */
 987	old_clg = q->clg;
 988	old_loss_model = q->loss_model;
 989
 990	if (tb[TCA_NETEM_LOSS]) {
 991		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 992		if (ret) {
 993			q->loss_model = old_loss_model;
 994			q->clg = old_clg;
 995			goto unlock;
 996		}
 997	} else {
 998		q->loss_model = CLG_RANDOM;
 999	}
1000
1001	if (delay_dist)
1002		swap(q->delay_dist, delay_dist);
1003	if (slot_dist)
1004		swap(q->slot_dist, slot_dist);
1005	sch->limit = qopt->limit;
1006
1007	q->latency = PSCHED_TICKS2NS(qopt->latency);
1008	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
1009	q->limit = qopt->limit;
1010	q->gap = qopt->gap;
1011	q->counter = 0;
1012	q->loss = qopt->loss;
1013	q->duplicate = qopt->duplicate;
1014
1015	/* for compatibility with earlier versions.
1016	 * if gap is set, need to assume 100% probability
1017	 */
1018	if (q->gap)
1019		q->reorder = ~0;
1020
1021	if (tb[TCA_NETEM_CORR])
1022		get_correlation(q, tb[TCA_NETEM_CORR]);
 
 
 
 
 
 
1023
1024	if (tb[TCA_NETEM_REORDER])
1025		get_reorder(q, tb[TCA_NETEM_REORDER]);
1026
1027	if (tb[TCA_NETEM_CORRUPT])
1028		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
1029
1030	if (tb[TCA_NETEM_RATE])
1031		get_rate(q, tb[TCA_NETEM_RATE]);
1032
1033	if (tb[TCA_NETEM_RATE64])
1034		q->rate = max_t(u64, q->rate,
1035				nla_get_u64(tb[TCA_NETEM_RATE64]));
1036
1037	if (tb[TCA_NETEM_LATENCY64])
1038		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
1039
1040	if (tb[TCA_NETEM_JITTER64])
1041		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
1042
1043	if (tb[TCA_NETEM_ECN])
1044		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
1045
1046	if (tb[TCA_NETEM_SLOT])
1047		get_slot(q, tb[TCA_NETEM_SLOT]);
1048
1049	/* capping jitter to the range acceptable by tabledist() */
1050	q->jitter = min_t(s64, abs(q->jitter), INT_MAX);
1051
1052	if (tb[TCA_NETEM_PRNG_SEED])
1053		q->prng.seed = nla_get_u64(tb[TCA_NETEM_PRNG_SEED]);
1054	else
1055		q->prng.seed = get_random_u64();
1056	prandom_seed_state(&q->prng.prng_state, q->prng.seed);
1057
1058unlock:
1059	sch_tree_unlock(sch);
1060
1061table_free:
1062	dist_free(delay_dist);
1063	dist_free(slot_dist);
1064	return ret;
1065}
1066
1067static int netem_init(struct Qdisc *sch, struct nlattr *opt,
1068		      struct netlink_ext_ack *extack)
1069{
1070	struct netem_sched_data *q = qdisc_priv(sch);
1071	int ret;
1072
1073	qdisc_watchdog_init(&q->watchdog, sch);
1074
1075	if (!opt)
1076		return -EINVAL;
1077
 
 
1078	q->loss_model = CLG_RANDOM;
1079	ret = netem_change(sch, opt, extack);
1080	if (ret)
1081		pr_info("netem: change failed\n");
1082	return ret;
1083}
1084
1085static void netem_destroy(struct Qdisc *sch)
1086{
1087	struct netem_sched_data *q = qdisc_priv(sch);
1088
1089	qdisc_watchdog_cancel(&q->watchdog);
1090	if (q->qdisc)
1091		qdisc_put(q->qdisc);
1092	dist_free(q->delay_dist);
1093	dist_free(q->slot_dist);
1094}
1095
1096static int dump_loss_model(const struct netem_sched_data *q,
1097			   struct sk_buff *skb)
1098{
1099	struct nlattr *nest;
1100
1101	nest = nla_nest_start_noflag(skb, TCA_NETEM_LOSS);
1102	if (nest == NULL)
1103		goto nla_put_failure;
1104
1105	switch (q->loss_model) {
1106	case CLG_RANDOM:
1107		/* legacy loss model */
1108		nla_nest_cancel(skb, nest);
1109		return 0;	/* no data */
1110
1111	case CLG_4_STATES: {
1112		struct tc_netem_gimodel gi = {
1113			.p13 = q->clg.a1,
1114			.p31 = q->clg.a2,
1115			.p32 = q->clg.a3,
1116			.p14 = q->clg.a4,
1117			.p23 = q->clg.a5,
1118		};
1119
1120		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1121			goto nla_put_failure;
1122		break;
1123	}
1124	case CLG_GILB_ELL: {
1125		struct tc_netem_gemodel ge = {
1126			.p = q->clg.a1,
1127			.r = q->clg.a2,
1128			.h = q->clg.a3,
1129			.k1 = q->clg.a4,
1130		};
1131
1132		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1133			goto nla_put_failure;
1134		break;
1135	}
1136	}
1137
1138	nla_nest_end(skb, nest);
1139	return 0;
1140
1141nla_put_failure:
1142	nla_nest_cancel(skb, nest);
1143	return -1;
1144}
1145
1146static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1147{
1148	const struct netem_sched_data *q = qdisc_priv(sch);
1149	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1150	struct tc_netem_qopt qopt;
1151	struct tc_netem_corr cor;
1152	struct tc_netem_reorder reorder;
1153	struct tc_netem_corrupt corrupt;
1154	struct tc_netem_rate rate;
1155	struct tc_netem_slot slot;
1156
1157	qopt.latency = min_t(psched_time_t, PSCHED_NS2TICKS(q->latency),
1158			     UINT_MAX);
1159	qopt.jitter = min_t(psched_time_t, PSCHED_NS2TICKS(q->jitter),
1160			    UINT_MAX);
1161	qopt.limit = q->limit;
1162	qopt.loss = q->loss;
1163	qopt.gap = q->gap;
1164	qopt.duplicate = q->duplicate;
1165	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1166		goto nla_put_failure;
1167
1168	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1169		goto nla_put_failure;
1170
1171	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1172		goto nla_put_failure;
1173
1174	cor.delay_corr = q->delay_cor.rho;
1175	cor.loss_corr = q->loss_cor.rho;
1176	cor.dup_corr = q->dup_cor.rho;
1177	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1178		goto nla_put_failure;
1179
1180	reorder.probability = q->reorder;
1181	reorder.correlation = q->reorder_cor.rho;
1182	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1183		goto nla_put_failure;
1184
1185	corrupt.probability = q->corrupt;
1186	corrupt.correlation = q->corrupt_cor.rho;
1187	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1188		goto nla_put_failure;
1189
1190	if (q->rate >= (1ULL << 32)) {
1191		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1192				      TCA_NETEM_PAD))
1193			goto nla_put_failure;
1194		rate.rate = ~0U;
1195	} else {
1196		rate.rate = q->rate;
1197	}
1198	rate.packet_overhead = q->packet_overhead;
1199	rate.cell_size = q->cell_size;
1200	rate.cell_overhead = q->cell_overhead;
1201	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1202		goto nla_put_failure;
1203
1204	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1205		goto nla_put_failure;
1206
1207	if (dump_loss_model(q, skb) != 0)
1208		goto nla_put_failure;
1209
1210	if (q->slot_config.min_delay | q->slot_config.max_delay |
1211	    q->slot_config.dist_jitter) {
1212		slot = q->slot_config;
1213		if (slot.max_packets == INT_MAX)
1214			slot.max_packets = 0;
1215		if (slot.max_bytes == INT_MAX)
1216			slot.max_bytes = 0;
1217		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1218			goto nla_put_failure;
1219	}
1220
1221	if (nla_put_u64_64bit(skb, TCA_NETEM_PRNG_SEED, q->prng.seed,
1222			      TCA_NETEM_PAD))
1223		goto nla_put_failure;
1224
1225	return nla_nest_end(skb, nla);
1226
1227nla_put_failure:
1228	nlmsg_trim(skb, nla);
1229	return -1;
1230}
1231
1232static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1233			  struct sk_buff *skb, struct tcmsg *tcm)
1234{
1235	struct netem_sched_data *q = qdisc_priv(sch);
1236
1237	if (cl != 1 || !q->qdisc) 	/* only one class */
1238		return -ENOENT;
1239
1240	tcm->tcm_handle |= TC_H_MIN(1);
1241	tcm->tcm_info = q->qdisc->handle;
1242
1243	return 0;
1244}
1245
1246static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1247		     struct Qdisc **old, struct netlink_ext_ack *extack)
1248{
1249	struct netem_sched_data *q = qdisc_priv(sch);
1250
1251	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
 
 
 
 
 
 
1252	return 0;
1253}
1254
1255static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1256{
1257	struct netem_sched_data *q = qdisc_priv(sch);
1258	return q->qdisc;
1259}
1260
1261static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1262{
1263	return 1;
1264}
1265
 
 
 
 
1266static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1267{
1268	if (!walker->stop) {
1269		if (!tc_qdisc_stats_dump(sch, 1, walker))
1270			return;
 
 
 
 
1271	}
1272}
1273
1274static const struct Qdisc_class_ops netem_class_ops = {
1275	.graft		=	netem_graft,
1276	.leaf		=	netem_leaf,
1277	.find		=	netem_find,
 
1278	.walk		=	netem_walk,
1279	.dump		=	netem_dump_class,
1280};
1281
1282static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1283	.id		=	"netem",
1284	.cl_ops		=	&netem_class_ops,
1285	.priv_size	=	sizeof(struct netem_sched_data),
1286	.enqueue	=	netem_enqueue,
1287	.dequeue	=	netem_dequeue,
1288	.peek		=	qdisc_peek_dequeued,
 
1289	.init		=	netem_init,
1290	.reset		=	netem_reset,
1291	.destroy	=	netem_destroy,
1292	.change		=	netem_change,
1293	.dump		=	netem_dump,
1294	.owner		=	THIS_MODULE,
1295};
1296
1297
1298static int __init netem_module_init(void)
1299{
1300	pr_info("netem: version " VERSION "\n");
1301	return register_qdisc(&netem_qdisc_ops);
1302}
1303static void __exit netem_module_exit(void)
1304{
1305	unregister_qdisc(&netem_qdisc_ops);
1306}
1307module_init(netem_module_init)
1308module_exit(netem_module_exit)
1309MODULE_LICENSE("GPL");
1310MODULE_DESCRIPTION("Network characteristics emulator qdisc");