Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
 
  26
  27#include <net/netlink.h>
  28#include <net/pkt_sched.h>
  29#include <net/inet_ecn.h>
  30
  31#define VERSION "1.3"
  32
  33/*	Network Emulation Queuing algorithm.
  34	====================================
  35
  36	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  37		 Network Emulation Tool
  38		 [2] Luigi Rizzo, DummyNet for FreeBSD
  39
  40	 ----------------------------------------------------------------
  41
  42	 This started out as a simple way to delay outgoing packets to
  43	 test TCP but has grown to include most of the functionality
  44	 of a full blown network emulator like NISTnet. It can delay
  45	 packets and add random jitter (and correlation). The random
  46	 distribution can be loaded from a table as well to provide
  47	 normal, Pareto, or experimental curves. Packet loss,
  48	 duplication, and reordering can also be emulated.
  49
  50	 This qdisc does not do classification that can be handled in
  51	 layering other disciplines.  It does not need to do bandwidth
  52	 control either since that can be handled by using token
  53	 bucket or other rate control.
  54
  55     Correlated Loss Generator models
  56
  57	Added generation of correlated loss according to the
  58	"Gilbert-Elliot" model, a 4-state markov model.
  59
  60	References:
  61	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  62	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  63	and intuitive loss model for packet networks and its implementation
  64	in the Netem module in the Linux kernel", available in [1]
  65
  66	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  67		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  68*/
  69
  70struct netem_sched_data {
  71	/* internal t(ime)fifo qdisc uses sch->q and sch->limit */
 
  72
  73	/* optional qdisc for classful handling (NULL at netem init) */
  74	struct Qdisc	*qdisc;
  75
  76	struct qdisc_watchdog watchdog;
  77
  78	psched_tdiff_t latency;
  79	psched_tdiff_t jitter;
  80
  81	u32 loss;
  82	u32 ecn;
  83	u32 limit;
  84	u32 counter;
  85	u32 gap;
  86	u32 duplicate;
  87	u32 reorder;
  88	u32 corrupt;
  89	u32 rate;
  90	s32 packet_overhead;
  91	u32 cell_size;
  92	u32 cell_size_reciprocal;
  93	s32 cell_overhead;
  94
  95	struct crndstate {
  96		u32 last;
  97		u32 rho;
  98	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
  99
 100	struct disttable {
 101		u32  size;
 102		s16 table[0];
 103	} *delay_dist;
 104
 105	enum  {
 106		CLG_RANDOM,
 107		CLG_4_STATES,
 108		CLG_GILB_ELL,
 109	} loss_model;
 110
 
 
 
 
 
 
 
 
 
 
 
 
 111	/* Correlated Loss Generation models */
 112	struct clgstate {
 113		/* state of the Markov chain */
 114		u8 state;
 115
 116		/* 4-states and Gilbert-Elliot models */
 117		u32 a1;	/* p13 for 4-states or p for GE */
 118		u32 a2;	/* p31 for 4-states or r for GE */
 119		u32 a3;	/* p32 for 4-states or h for GE */
 120		u32 a4;	/* p14 for 4-states or 1-k for GE */
 121		u32 a5; /* p23 used only in 4-states */
 122	} clg;
 123
 124};
 125
 126/* Time stamp put into socket buffer control block
 127 * Only valid when skbs are in our internal t(ime)fifo queue.
 128 */
 129struct netem_skb_cb {
 130	psched_time_t	time_to_send;
 
 131};
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 134{
 
 135	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 136	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 137}
 138
 139/* init_crandom - initialize correlated random number generator
 140 * Use entropy source for initial seed.
 141 */
 142static void init_crandom(struct crndstate *state, unsigned long rho)
 143{
 144	state->rho = rho;
 145	state->last = net_random();
 146}
 147
 148/* get_crandom - correlated random number generator
 149 * Next number depends on last value.
 150 * rho is scaled to avoid floating point.
 151 */
 152static u32 get_crandom(struct crndstate *state)
 153{
 154	u64 value, rho;
 155	unsigned long answer;
 156
 157	if (state->rho == 0)	/* no correlation */
 158		return net_random();
 159
 160	value = net_random();
 161	rho = (u64)state->rho + 1;
 162	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 163	state->last = answer;
 164	return answer;
 165}
 166
 167/* loss_4state - 4-state model loss generator
 168 * Generates losses according to the 4-state Markov chain adopted in
 169 * the GI (General and Intuitive) loss model.
 170 */
 171static bool loss_4state(struct netem_sched_data *q)
 172{
 173	struct clgstate *clg = &q->clg;
 174	u32 rnd = net_random();
 175
 176	/*
 177	 * Makes a comparison between rnd and the transition
 178	 * probabilities outgoing from the current state, then decides the
 179	 * next state and if the next packet has to be transmitted or lost.
 180	 * The four states correspond to:
 181	 *   1 => successfully transmitted packets within a gap period
 182	 *   4 => isolated losses within a gap period
 183	 *   3 => lost packets within a burst period
 184	 *   2 => successfully transmitted packets within a burst period
 185	 */
 186	switch (clg->state) {
 187	case 1:
 188		if (rnd < clg->a4) {
 189			clg->state = 4;
 190			return true;
 191		} else if (clg->a4 < rnd && rnd < clg->a1) {
 192			clg->state = 3;
 193			return true;
 194		} else if (clg->a1 < rnd)
 195			clg->state = 1;
 
 196
 197		break;
 198	case 2:
 199		if (rnd < clg->a5) {
 200			clg->state = 3;
 201			return true;
 202		} else
 203			clg->state = 2;
 
 204
 205		break;
 206	case 3:
 207		if (rnd < clg->a3)
 208			clg->state = 2;
 209		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 210			clg->state = 1;
 211			return true;
 212		} else if (clg->a2 + clg->a3 < rnd) {
 213			clg->state = 3;
 214			return true;
 215		}
 216		break;
 217	case 4:
 218		clg->state = 1;
 219		break;
 220	}
 221
 222	return false;
 223}
 224
 225/* loss_gilb_ell - Gilbert-Elliot model loss generator
 226 * Generates losses according to the Gilbert-Elliot loss model or
 227 * its special cases  (Gilbert or Simple Gilbert)
 228 *
 229 * Makes a comparison between random number and the transition
 230 * probabilities outgoing from the current state, then decides the
 231 * next state. A second random number is extracted and the comparison
 232 * with the loss probability of the current state decides if the next
 233 * packet will be transmitted or lost.
 234 */
 235static bool loss_gilb_ell(struct netem_sched_data *q)
 236{
 237	struct clgstate *clg = &q->clg;
 238
 239	switch (clg->state) {
 240	case 1:
 241		if (net_random() < clg->a1)
 242			clg->state = 2;
 243		if (net_random() < clg->a4)
 244			return true;
 245	case 2:
 246		if (net_random() < clg->a2)
 247			clg->state = 1;
 248		if (clg->a3 > net_random())
 
 249			return true;
 250	}
 251
 252	return false;
 253}
 254
 255static bool loss_event(struct netem_sched_data *q)
 256{
 257	switch (q->loss_model) {
 258	case CLG_RANDOM:
 259		/* Random packet drop 0 => none, ~0 => all */
 260		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 261
 262	case CLG_4_STATES:
 263		/* 4state loss model algorithm (used also for GI model)
 264		* Extracts a value from the markov 4 state loss generator,
 265		* if it is 1 drops a packet and if needed writes the event in
 266		* the kernel logs
 267		*/
 268		return loss_4state(q);
 269
 270	case CLG_GILB_ELL:
 271		/* Gilbert-Elliot loss model algorithm
 272		* Extracts a value from the Gilbert-Elliot loss generator,
 273		* if it is 1 drops a packet and if needed writes the event in
 274		* the kernel logs
 275		*/
 276		return loss_gilb_ell(q);
 277	}
 278
 279	return false;	/* not reached */
 280}
 281
 282
 283/* tabledist - return a pseudo-randomly distributed value with mean mu and
 284 * std deviation sigma.  Uses table lookup to approximate the desired
 285 * distribution, and a uniformly-distributed pseudo-random source.
 286 */
 287static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 288				struct crndstate *state,
 289				const struct disttable *dist)
 290{
 291	psched_tdiff_t x;
 292	long t;
 293	u32 rnd;
 294
 295	if (sigma == 0)
 296		return mu;
 297
 298	rnd = get_crandom(state);
 299
 300	/* default uniform distribution */
 301	if (dist == NULL)
 302		return (rnd % (2*sigma)) - sigma + mu;
 303
 304	t = dist->table[rnd % dist->size];
 305	x = (sigma % NETEM_DIST_SCALE) * t;
 306	if (x >= 0)
 307		x += NETEM_DIST_SCALE/2;
 308	else
 309		x -= NETEM_DIST_SCALE/2;
 310
 311	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 312}
 313
 314static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 315{
 316	u64 ticks;
 317
 318	len += q->packet_overhead;
 319
 320	if (q->cell_size) {
 321		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 322
 323		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 324			cells++;
 325		len = cells * (q->cell_size + q->cell_overhead);
 326	}
 327
 328	ticks = (u64)len * NSEC_PER_SEC;
 329
 330	do_div(ticks, q->rate);
 331	return PSCHED_NS2TICKS(ticks);
 332}
 333
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 334static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 335{
 336	struct sk_buff_head *list = &sch->q;
 337	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 338	struct sk_buff *skb = skb_peek_tail(list);
 339
 340	/* Optimize for add at tail */
 341	if (likely(!skb || tnext >= netem_skb_cb(skb)->time_to_send))
 342		return __skb_queue_tail(list, nskb);
 343
 344	skb_queue_reverse_walk(list, skb) {
 
 345		if (tnext >= netem_skb_cb(skb)->time_to_send)
 346			break;
 
 
 347	}
 348
 349	__skb_queue_after(list, skb, nskb);
 
 350}
 351
 352/*
 353 * Insert one skb into qdisc.
 354 * Note: parent depends on return value to account for queue length.
 355 * 	NET_XMIT_DROP: queue length didn't change.
 356 *      NET_XMIT_SUCCESS: one skb was queued.
 357 */
 358static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 359{
 360	struct netem_sched_data *q = qdisc_priv(sch);
 361	/* We don't fill cb now as skb_unshare() may invalidate it */
 362	struct netem_skb_cb *cb;
 363	struct sk_buff *skb2;
 364	int count = 1;
 365
 366	/* Random duplication */
 367	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 368		++count;
 369
 370	/* Drop packet? */
 371	if (loss_event(q)) {
 372		if (q->ecn && INET_ECN_set_ce(skb))
 373			sch->qstats.drops++; /* mark packet */
 374		else
 375			--count;
 376	}
 377	if (count == 0) {
 378		sch->qstats.drops++;
 379		kfree_skb(skb);
 380		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 381	}
 382
 383	skb_orphan(skb);
 
 
 
 
 384
 385	/*
 386	 * If we need to duplicate packet, then re-insert at top of the
 387	 * qdisc tree, since parent queuer expects that only one
 388	 * skb will be queued.
 389	 */
 390	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 391		struct Qdisc *rootq = qdisc_root(sch);
 392		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 393		q->duplicate = 0;
 394
 395		qdisc_enqueue_root(skb2, rootq);
 396		q->duplicate = dupsave;
 397	}
 398
 399	/*
 400	 * Randomized packet corruption.
 401	 * Make copy if needed since we are modifying
 402	 * If packet is going to be hardware checksummed, then
 403	 * do it now in software before we mangle it.
 404	 */
 405	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 406		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 407		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 408		     skb_checksum_help(skb)))
 409			return qdisc_drop(skb, sch);
 410
 411		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
 
 412	}
 413
 414	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 415		return qdisc_reshape_fail(skb, sch);
 416
 417	sch->qstats.backlog += qdisc_pkt_len(skb);
 418
 419	cb = netem_skb_cb(skb);
 420	if (q->gap == 0 ||		/* not doing reordering */
 421	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 422	    q->reorder < get_crandom(&q->reorder_cor)) {
 423		psched_time_t now;
 424		psched_tdiff_t delay;
 425
 426		delay = tabledist(q->latency, q->jitter,
 427				  &q->delay_cor, q->delay_dist);
 428
 429		now = psched_get_time();
 430
 431		if (q->rate) {
 432			struct sk_buff_head *list = &sch->q;
 433
 434			delay += packet_len_2_sched_time(skb->len, q);
 435
 436			if (!skb_queue_empty(list)) {
 
 
 437				/*
 438				 * Last packet in queue is reference point (now).
 439				 * First packet in queue is already in flight,
 440				 * calculate this time bonus and substract
 441				 * from delay.
 442				 */
 443				delay -= now - netem_skb_cb(skb_peek(list))->time_to_send;
 444				now = netem_skb_cb(skb_peek_tail(list))->time_to_send;
 
 445			}
 
 
 446		}
 447
 448		cb->time_to_send = now + delay;
 
 449		++q->counter;
 450		tfifo_enqueue(skb, sch);
 451	} else {
 452		/*
 453		 * Do re-ordering by putting one out of N packets at the front
 454		 * of the queue.
 455		 */
 456		cb->time_to_send = psched_get_time();
 457		q->counter = 0;
 458
 459		__skb_queue_head(&sch->q, skb);
 460		sch->qstats.requeues++;
 461	}
 462
 463	return NET_XMIT_SUCCESS;
 464}
 465
 466static unsigned int netem_drop(struct Qdisc *sch)
 467{
 468	struct netem_sched_data *q = qdisc_priv(sch);
 469	unsigned int len;
 470
 471	len = qdisc_queue_drop(sch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472	if (!len && q->qdisc && q->qdisc->ops->drop)
 473	    len = q->qdisc->ops->drop(q->qdisc);
 474	if (len)
 475		sch->qstats.drops++;
 476
 477	return len;
 478}
 479
 480static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 481{
 482	struct netem_sched_data *q = qdisc_priv(sch);
 483	struct sk_buff *skb;
 
 484
 485	if (qdisc_is_throttled(sch))
 486		return NULL;
 487
 488tfifo_dequeue:
 489	skb = qdisc_peek_head(sch);
 490	if (skb) {
 491		const struct netem_skb_cb *cb = netem_skb_cb(skb);
 
 
 
 
 
 
 
 
 
 
 492
 493		/* if more time remaining? */
 494		if (cb->time_to_send <= psched_get_time()) {
 495			__skb_unlink(skb, &sch->q);
 496			sch->qstats.backlog -= qdisc_pkt_len(skb);
 
 
 
 
 
 497
 498#ifdef CONFIG_NET_CLS_ACT
 499			/*
 500			 * If it's at ingress let's pretend the delay is
 501			 * from the network (tstamp will be updated).
 502			 */
 503			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 504				skb->tstamp.tv64 = 0;
 505#endif
 506
 507			if (q->qdisc) {
 508				int err = qdisc_enqueue(skb, q->qdisc);
 509
 510				if (unlikely(err != NET_XMIT_SUCCESS)) {
 511					if (net_xmit_drop_count(err)) {
 512						sch->qstats.drops++;
 513						qdisc_tree_decrease_qlen(sch, 1);
 514					}
 515				}
 516				goto tfifo_dequeue;
 517			}
 518deliver:
 519			qdisc_unthrottled(sch);
 520			qdisc_bstats_update(sch, skb);
 521			return skb;
 522		}
 523
 524		if (q->qdisc) {
 525			skb = q->qdisc->ops->dequeue(q->qdisc);
 526			if (skb)
 527				goto deliver;
 528		}
 529		qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
 530	}
 531
 532	if (q->qdisc) {
 533		skb = q->qdisc->ops->dequeue(q->qdisc);
 534		if (skb)
 535			goto deliver;
 536	}
 537	return NULL;
 538}
 539
 540static void netem_reset(struct Qdisc *sch)
 541{
 542	struct netem_sched_data *q = qdisc_priv(sch);
 543
 544	qdisc_reset_queue(sch);
 
 545	if (q->qdisc)
 546		qdisc_reset(q->qdisc);
 547	qdisc_watchdog_cancel(&q->watchdog);
 548}
 549
 550static void dist_free(struct disttable *d)
 551{
 552	if (d) {
 553		if (is_vmalloc_addr(d))
 554			vfree(d);
 555		else
 556			kfree(d);
 557	}
 558}
 559
 560/*
 561 * Distribution data is a variable size payload containing
 562 * signed 16 bit values.
 563 */
 564static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 565{
 566	struct netem_sched_data *q = qdisc_priv(sch);
 567	size_t n = nla_len(attr)/sizeof(__s16);
 568	const __s16 *data = nla_data(attr);
 569	spinlock_t *root_lock;
 570	struct disttable *d;
 571	int i;
 572	size_t s;
 573
 574	if (n > NETEM_DIST_MAX)
 575		return -EINVAL;
 576
 577	s = sizeof(struct disttable) + n * sizeof(s16);
 578	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 579	if (!d)
 580		d = vmalloc(s);
 581	if (!d)
 582		return -ENOMEM;
 583
 584	d->size = n;
 585	for (i = 0; i < n; i++)
 586		d->table[i] = data[i];
 587
 588	root_lock = qdisc_root_sleeping_lock(sch);
 589
 590	spin_lock_bh(root_lock);
 591	swap(q->delay_dist, d);
 592	spin_unlock_bh(root_lock);
 593
 594	dist_free(d);
 595	return 0;
 596}
 597
 598static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
 599{
 600	struct netem_sched_data *q = qdisc_priv(sch);
 601	const struct tc_netem_corr *c = nla_data(attr);
 602
 603	init_crandom(&q->delay_cor, c->delay_corr);
 604	init_crandom(&q->loss_cor, c->loss_corr);
 605	init_crandom(&q->dup_cor, c->dup_corr);
 606}
 607
 608static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
 609{
 610	struct netem_sched_data *q = qdisc_priv(sch);
 611	const struct tc_netem_reorder *r = nla_data(attr);
 612
 613	q->reorder = r->probability;
 614	init_crandom(&q->reorder_cor, r->correlation);
 615}
 616
 617static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
 618{
 619	struct netem_sched_data *q = qdisc_priv(sch);
 620	const struct tc_netem_corrupt *r = nla_data(attr);
 621
 622	q->corrupt = r->probability;
 623	init_crandom(&q->corrupt_cor, r->correlation);
 624}
 625
 626static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
 627{
 628	struct netem_sched_data *q = qdisc_priv(sch);
 629	const struct tc_netem_rate *r = nla_data(attr);
 630
 631	q->rate = r->rate;
 632	q->packet_overhead = r->packet_overhead;
 633	q->cell_size = r->cell_size;
 
 634	if (q->cell_size)
 635		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 636	q->cell_overhead = r->cell_overhead;
 
 637}
 638
 639static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
 640{
 641	struct netem_sched_data *q = qdisc_priv(sch);
 642	const struct nlattr *la;
 643	int rem;
 644
 645	nla_for_each_nested(la, attr, rem) {
 646		u16 type = nla_type(la);
 647
 648		switch(type) {
 649		case NETEM_LOSS_GI: {
 650			const struct tc_netem_gimodel *gi = nla_data(la);
 651
 652			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 653				pr_info("netem: incorrect gi model size\n");
 654				return -EINVAL;
 655			}
 656
 657			q->loss_model = CLG_4_STATES;
 658
 659			q->clg.state = 1;
 660			q->clg.a1 = gi->p13;
 661			q->clg.a2 = gi->p31;
 662			q->clg.a3 = gi->p32;
 663			q->clg.a4 = gi->p14;
 664			q->clg.a5 = gi->p23;
 665			break;
 666		}
 667
 668		case NETEM_LOSS_GE: {
 669			const struct tc_netem_gemodel *ge = nla_data(la);
 670
 671			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 672				pr_info("netem: incorrect ge model size\n");
 673				return -EINVAL;
 674			}
 675
 676			q->loss_model = CLG_GILB_ELL;
 677			q->clg.state = 1;
 678			q->clg.a1 = ge->p;
 679			q->clg.a2 = ge->r;
 680			q->clg.a3 = ge->h;
 681			q->clg.a4 = ge->k1;
 682			break;
 683		}
 684
 685		default:
 686			pr_info("netem: unknown loss type %u\n", type);
 687			return -EINVAL;
 688		}
 689	}
 690
 691	return 0;
 692}
 693
 694static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 695	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 696	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 697	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 698	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 699	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 700	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 
 701};
 702
 703static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 704		      const struct nla_policy *policy, int len)
 705{
 706	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 707
 708	if (nested_len < 0) {
 709		pr_info("netem: invalid attributes len %d\n", nested_len);
 710		return -EINVAL;
 711	}
 712
 713	if (nested_len >= nla_attr_size(0))
 714		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 715				 nested_len, policy);
 716
 717	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 718	return 0;
 719}
 720
 721/* Parse netlink message to set options */
 722static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 723{
 724	struct netem_sched_data *q = qdisc_priv(sch);
 725	struct nlattr *tb[TCA_NETEM_MAX + 1];
 726	struct tc_netem_qopt *qopt;
 
 
 727	int ret;
 728
 729	if (opt == NULL)
 730		return -EINVAL;
 731
 732	qopt = nla_data(opt);
 733	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 734	if (ret < 0)
 735		return ret;
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737	sch->limit = qopt->limit;
 738
 739	q->latency = qopt->latency;
 740	q->jitter = qopt->jitter;
 741	q->limit = qopt->limit;
 742	q->gap = qopt->gap;
 743	q->counter = 0;
 744	q->loss = qopt->loss;
 745	q->duplicate = qopt->duplicate;
 746
 747	/* for compatibility with earlier versions.
 748	 * if gap is set, need to assume 100% probability
 749	 */
 750	if (q->gap)
 751		q->reorder = ~0;
 752
 753	if (tb[TCA_NETEM_CORR])
 754		get_correlation(sch, tb[TCA_NETEM_CORR]);
 755
 756	if (tb[TCA_NETEM_DELAY_DIST]) {
 757		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 758		if (ret)
 759			return ret;
 760	}
 761
 762	if (tb[TCA_NETEM_REORDER])
 763		get_reorder(sch, tb[TCA_NETEM_REORDER]);
 764
 765	if (tb[TCA_NETEM_CORRUPT])
 766		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
 767
 768	if (tb[TCA_NETEM_RATE])
 769		get_rate(sch, tb[TCA_NETEM_RATE]);
 
 
 
 
 770
 771	if (tb[TCA_NETEM_ECN])
 772		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 773
 774	q->loss_model = CLG_RANDOM;
 775	if (tb[TCA_NETEM_LOSS])
 776		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
 777
 778	return ret;
 779}
 780
 781static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 782{
 783	struct netem_sched_data *q = qdisc_priv(sch);
 784	int ret;
 785
 786	if (!opt)
 787		return -EINVAL;
 788
 789	qdisc_watchdog_init(&q->watchdog, sch);
 790
 791	q->loss_model = CLG_RANDOM;
 792	ret = netem_change(sch, opt);
 793	if (ret)
 794		pr_info("netem: change failed\n");
 795	return ret;
 796}
 797
 798static void netem_destroy(struct Qdisc *sch)
 799{
 800	struct netem_sched_data *q = qdisc_priv(sch);
 801
 802	qdisc_watchdog_cancel(&q->watchdog);
 803	if (q->qdisc)
 804		qdisc_destroy(q->qdisc);
 805	dist_free(q->delay_dist);
 806}
 807
 808static int dump_loss_model(const struct netem_sched_data *q,
 809			   struct sk_buff *skb)
 810{
 811	struct nlattr *nest;
 812
 813	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 814	if (nest == NULL)
 815		goto nla_put_failure;
 816
 817	switch (q->loss_model) {
 818	case CLG_RANDOM:
 819		/* legacy loss model */
 820		nla_nest_cancel(skb, nest);
 821		return 0;	/* no data */
 822
 823	case CLG_4_STATES: {
 824		struct tc_netem_gimodel gi = {
 825			.p13 = q->clg.a1,
 826			.p31 = q->clg.a2,
 827			.p32 = q->clg.a3,
 828			.p14 = q->clg.a4,
 829			.p23 = q->clg.a5,
 830		};
 831
 832		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 833			goto nla_put_failure;
 834		break;
 835	}
 836	case CLG_GILB_ELL: {
 837		struct tc_netem_gemodel ge = {
 838			.p = q->clg.a1,
 839			.r = q->clg.a2,
 840			.h = q->clg.a3,
 841			.k1 = q->clg.a4,
 842		};
 843
 844		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 845			goto nla_put_failure;
 846		break;
 847	}
 848	}
 849
 850	nla_nest_end(skb, nest);
 851	return 0;
 852
 853nla_put_failure:
 854	nla_nest_cancel(skb, nest);
 855	return -1;
 856}
 857
 858static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 859{
 860	const struct netem_sched_data *q = qdisc_priv(sch);
 861	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 862	struct tc_netem_qopt qopt;
 863	struct tc_netem_corr cor;
 864	struct tc_netem_reorder reorder;
 865	struct tc_netem_corrupt corrupt;
 866	struct tc_netem_rate rate;
 867
 868	qopt.latency = q->latency;
 869	qopt.jitter = q->jitter;
 870	qopt.limit = q->limit;
 871	qopt.loss = q->loss;
 872	qopt.gap = q->gap;
 873	qopt.duplicate = q->duplicate;
 874	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 875		goto nla_put_failure;
 876
 877	cor.delay_corr = q->delay_cor.rho;
 878	cor.loss_corr = q->loss_cor.rho;
 879	cor.dup_corr = q->dup_cor.rho;
 880	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
 881		goto nla_put_failure;
 882
 883	reorder.probability = q->reorder;
 884	reorder.correlation = q->reorder_cor.rho;
 885	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
 886		goto nla_put_failure;
 887
 888	corrupt.probability = q->corrupt;
 889	corrupt.correlation = q->corrupt_cor.rho;
 890	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
 891		goto nla_put_failure;
 892
 893	rate.rate = q->rate;
 
 
 
 
 
 
 894	rate.packet_overhead = q->packet_overhead;
 895	rate.cell_size = q->cell_size;
 896	rate.cell_overhead = q->cell_overhead;
 897	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
 898		goto nla_put_failure;
 899
 900	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
 901		goto nla_put_failure;
 902
 903	if (dump_loss_model(q, skb) != 0)
 904		goto nla_put_failure;
 905
 906	return nla_nest_end(skb, nla);
 907
 908nla_put_failure:
 909	nlmsg_trim(skb, nla);
 910	return -1;
 911}
 912
 913static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
 914			  struct sk_buff *skb, struct tcmsg *tcm)
 915{
 916	struct netem_sched_data *q = qdisc_priv(sch);
 917
 918	if (cl != 1 || !q->qdisc) 	/* only one class */
 919		return -ENOENT;
 920
 921	tcm->tcm_handle |= TC_H_MIN(1);
 922	tcm->tcm_info = q->qdisc->handle;
 923
 924	return 0;
 925}
 926
 927static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 928		     struct Qdisc **old)
 929{
 930	struct netem_sched_data *q = qdisc_priv(sch);
 931
 932	sch_tree_lock(sch);
 933	*old = q->qdisc;
 934	q->qdisc = new;
 935	if (*old) {
 936		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 937		qdisc_reset(*old);
 938	}
 939	sch_tree_unlock(sch);
 940
 941	return 0;
 942}
 943
 944static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
 945{
 946	struct netem_sched_data *q = qdisc_priv(sch);
 947	return q->qdisc;
 948}
 949
 950static unsigned long netem_get(struct Qdisc *sch, u32 classid)
 951{
 952	return 1;
 953}
 954
 955static void netem_put(struct Qdisc *sch, unsigned long arg)
 956{
 957}
 958
 959static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 960{
 961	if (!walker->stop) {
 962		if (walker->count >= walker->skip)
 963			if (walker->fn(sch, 1, walker) < 0) {
 964				walker->stop = 1;
 965				return;
 966			}
 967		walker->count++;
 968	}
 969}
 970
 971static const struct Qdisc_class_ops netem_class_ops = {
 972	.graft		=	netem_graft,
 973	.leaf		=	netem_leaf,
 974	.get		=	netem_get,
 975	.put		=	netem_put,
 976	.walk		=	netem_walk,
 977	.dump		=	netem_dump_class,
 978};
 979
 980static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
 981	.id		=	"netem",
 982	.cl_ops		=	&netem_class_ops,
 983	.priv_size	=	sizeof(struct netem_sched_data),
 984	.enqueue	=	netem_enqueue,
 985	.dequeue	=	netem_dequeue,
 986	.peek		=	qdisc_peek_dequeued,
 987	.drop		=	netem_drop,
 988	.init		=	netem_init,
 989	.reset		=	netem_reset,
 990	.destroy	=	netem_destroy,
 991	.change		=	netem_change,
 992	.dump		=	netem_dump,
 993	.owner		=	THIS_MODULE,
 994};
 995
 996
 997static int __init netem_module_init(void)
 998{
 999	pr_info("netem: version " VERSION "\n");
1000	return register_qdisc(&netem_qdisc_ops);
1001}
1002static void __exit netem_module_exit(void)
1003{
1004	unregister_qdisc(&netem_qdisc_ops);
1005}
1006module_init(netem_module_init)
1007module_exit(netem_module_exit)
1008MODULE_LICENSE("GPL");
v3.15
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	psched_tdiff_t latency;
  81	psched_tdiff_t jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 138};
 139
 140/* Time stamp put into socket buffer control block
 141 * Only valid when skbs are in our internal t(ime)fifo queue.
 142 */
 143struct netem_skb_cb {
 144	psched_time_t	time_to_send;
 145	ktime_t		tstamp_save;
 146};
 147
 148/* Because space in skb->cb[] is tight, netem overloads skb->next/prev/tstamp
 149 * to hold a rb_node structure.
 150 *
 151 * If struct sk_buff layout is changed, the following checks will complain.
 152 */
 153static struct rb_node *netem_rb_node(struct sk_buff *skb)
 154{
 155	BUILD_BUG_ON(offsetof(struct sk_buff, next) != 0);
 156	BUILD_BUG_ON(offsetof(struct sk_buff, prev) !=
 157		     offsetof(struct sk_buff, next) + sizeof(skb->next));
 158	BUILD_BUG_ON(offsetof(struct sk_buff, tstamp) !=
 159		     offsetof(struct sk_buff, prev) + sizeof(skb->prev));
 160	BUILD_BUG_ON(sizeof(struct rb_node) > sizeof(skb->next) +
 161					      sizeof(skb->prev) +
 162					      sizeof(skb->tstamp));
 163	return (struct rb_node *)&skb->next;
 164}
 165
 166static struct sk_buff *netem_rb_to_skb(struct rb_node *rb)
 167{
 168	return (struct sk_buff *)rb;
 169}
 170
 171static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 172{
 173	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 174	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 175	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 176}
 177
 178/* init_crandom - initialize correlated random number generator
 179 * Use entropy source for initial seed.
 180 */
 181static void init_crandom(struct crndstate *state, unsigned long rho)
 182{
 183	state->rho = rho;
 184	state->last = prandom_u32();
 185}
 186
 187/* get_crandom - correlated random number generator
 188 * Next number depends on last value.
 189 * rho is scaled to avoid floating point.
 190 */
 191static u32 get_crandom(struct crndstate *state)
 192{
 193	u64 value, rho;
 194	unsigned long answer;
 195
 196	if (state->rho == 0)	/* no correlation */
 197		return prandom_u32();
 198
 199	value = prandom_u32();
 200	rho = (u64)state->rho + 1;
 201	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 202	state->last = answer;
 203	return answer;
 204}
 205
 206/* loss_4state - 4-state model loss generator
 207 * Generates losses according to the 4-state Markov chain adopted in
 208 * the GI (General and Intuitive) loss model.
 209 */
 210static bool loss_4state(struct netem_sched_data *q)
 211{
 212	struct clgstate *clg = &q->clg;
 213	u32 rnd = prandom_u32();
 214
 215	/*
 216	 * Makes a comparison between rnd and the transition
 217	 * probabilities outgoing from the current state, then decides the
 218	 * next state and if the next packet has to be transmitted or lost.
 219	 * The four states correspond to:
 220	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 221	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 222	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 223	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 224	 */
 225	switch (clg->state) {
 226	case TX_IN_GAP_PERIOD:
 227		if (rnd < clg->a4) {
 228			clg->state = LOST_IN_BURST_PERIOD;
 229			return true;
 230		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 231			clg->state = LOST_IN_GAP_PERIOD;
 232			return true;
 233		} else if (clg->a1 + clg->a4 < rnd) {
 234			clg->state = TX_IN_GAP_PERIOD;
 235		}
 236
 237		break;
 238	case TX_IN_BURST_PERIOD:
 239		if (rnd < clg->a5) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		} else {
 243			clg->state = TX_IN_BURST_PERIOD;
 244		}
 245
 246		break;
 247	case LOST_IN_GAP_PERIOD:
 248		if (rnd < clg->a3)
 249			clg->state = TX_IN_BURST_PERIOD;
 250		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 251			clg->state = TX_IN_GAP_PERIOD;
 
 252		} else if (clg->a2 + clg->a3 < rnd) {
 253			clg->state = LOST_IN_GAP_PERIOD;
 254			return true;
 255		}
 256		break;
 257	case LOST_IN_BURST_PERIOD:
 258		clg->state = TX_IN_GAP_PERIOD;
 259		break;
 260	}
 261
 262	return false;
 263}
 264
 265/* loss_gilb_ell - Gilbert-Elliot model loss generator
 266 * Generates losses according to the Gilbert-Elliot loss model or
 267 * its special cases  (Gilbert or Simple Gilbert)
 268 *
 269 * Makes a comparison between random number and the transition
 270 * probabilities outgoing from the current state, then decides the
 271 * next state. A second random number is extracted and the comparison
 272 * with the loss probability of the current state decides if the next
 273 * packet will be transmitted or lost.
 274 */
 275static bool loss_gilb_ell(struct netem_sched_data *q)
 276{
 277	struct clgstate *clg = &q->clg;
 278
 279	switch (clg->state) {
 280	case GOOD_STATE:
 281		if (prandom_u32() < clg->a1)
 282			clg->state = BAD_STATE;
 283		if (prandom_u32() < clg->a4)
 284			return true;
 285		break;
 286	case BAD_STATE:
 287		if (prandom_u32() < clg->a2)
 288			clg->state = GOOD_STATE;
 289		if (prandom_u32() > clg->a3)
 290			return true;
 291	}
 292
 293	return false;
 294}
 295
 296static bool loss_event(struct netem_sched_data *q)
 297{
 298	switch (q->loss_model) {
 299	case CLG_RANDOM:
 300		/* Random packet drop 0 => none, ~0 => all */
 301		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 302
 303	case CLG_4_STATES:
 304		/* 4state loss model algorithm (used also for GI model)
 305		* Extracts a value from the markov 4 state loss generator,
 306		* if it is 1 drops a packet and if needed writes the event in
 307		* the kernel logs
 308		*/
 309		return loss_4state(q);
 310
 311	case CLG_GILB_ELL:
 312		/* Gilbert-Elliot loss model algorithm
 313		* Extracts a value from the Gilbert-Elliot loss generator,
 314		* if it is 1 drops a packet and if needed writes the event in
 315		* the kernel logs
 316		*/
 317		return loss_gilb_ell(q);
 318	}
 319
 320	return false;	/* not reached */
 321}
 322
 323
 324/* tabledist - return a pseudo-randomly distributed value with mean mu and
 325 * std deviation sigma.  Uses table lookup to approximate the desired
 326 * distribution, and a uniformly-distributed pseudo-random source.
 327 */
 328static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 329				struct crndstate *state,
 330				const struct disttable *dist)
 331{
 332	psched_tdiff_t x;
 333	long t;
 334	u32 rnd;
 335
 336	if (sigma == 0)
 337		return mu;
 338
 339	rnd = get_crandom(state);
 340
 341	/* default uniform distribution */
 342	if (dist == NULL)
 343		return (rnd % (2*sigma)) - sigma + mu;
 344
 345	t = dist->table[rnd % dist->size];
 346	x = (sigma % NETEM_DIST_SCALE) * t;
 347	if (x >= 0)
 348		x += NETEM_DIST_SCALE/2;
 349	else
 350		x -= NETEM_DIST_SCALE/2;
 351
 352	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 353}
 354
 355static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 356{
 357	u64 ticks;
 358
 359	len += q->packet_overhead;
 360
 361	if (q->cell_size) {
 362		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 363
 364		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 365			cells++;
 366		len = cells * (q->cell_size + q->cell_overhead);
 367	}
 368
 369	ticks = (u64)len * NSEC_PER_SEC;
 370
 371	do_div(ticks, q->rate);
 372	return PSCHED_NS2TICKS(ticks);
 373}
 374
 375static void tfifo_reset(struct Qdisc *sch)
 376{
 377	struct netem_sched_data *q = qdisc_priv(sch);
 378	struct rb_node *p;
 379
 380	while ((p = rb_first(&q->t_root))) {
 381		struct sk_buff *skb = netem_rb_to_skb(p);
 382
 383		rb_erase(p, &q->t_root);
 384		skb->next = NULL;
 385		skb->prev = NULL;
 386		kfree_skb(skb);
 387	}
 388}
 389
 390static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 391{
 392	struct netem_sched_data *q = qdisc_priv(sch);
 393	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 394	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 395
 396	while (*p) {
 397		struct sk_buff *skb;
 
 398
 399		parent = *p;
 400		skb = netem_rb_to_skb(parent);
 401		if (tnext >= netem_skb_cb(skb)->time_to_send)
 402			p = &parent->rb_right;
 403		else
 404			p = &parent->rb_left;
 405	}
 406	rb_link_node(netem_rb_node(nskb), parent, p);
 407	rb_insert_color(netem_rb_node(nskb), &q->t_root);
 408	sch->q.qlen++;
 409}
 410
 411/*
 412 * Insert one skb into qdisc.
 413 * Note: parent depends on return value to account for queue length.
 414 * 	NET_XMIT_DROP: queue length didn't change.
 415 *      NET_XMIT_SUCCESS: one skb was queued.
 416 */
 417static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 418{
 419	struct netem_sched_data *q = qdisc_priv(sch);
 420	/* We don't fill cb now as skb_unshare() may invalidate it */
 421	struct netem_skb_cb *cb;
 422	struct sk_buff *skb2;
 423	int count = 1;
 424
 425	/* Random duplication */
 426	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 427		++count;
 428
 429	/* Drop packet? */
 430	if (loss_event(q)) {
 431		if (q->ecn && INET_ECN_set_ce(skb))
 432			sch->qstats.drops++; /* mark packet */
 433		else
 434			--count;
 435	}
 436	if (count == 0) {
 437		sch->qstats.drops++;
 438		kfree_skb(skb);
 439		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 440	}
 441
 442	/* If a delay is expected, orphan the skb. (orphaning usually takes
 443	 * place at TX completion time, so _before_ the link transit delay)
 444	 */
 445	if (q->latency || q->jitter)
 446		skb_orphan_partial(skb);
 447
 448	/*
 449	 * If we need to duplicate packet, then re-insert at top of the
 450	 * qdisc tree, since parent queuer expects that only one
 451	 * skb will be queued.
 452	 */
 453	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 454		struct Qdisc *rootq = qdisc_root(sch);
 455		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 456		q->duplicate = 0;
 457
 458		qdisc_enqueue_root(skb2, rootq);
 459		q->duplicate = dupsave;
 460	}
 461
 462	/*
 463	 * Randomized packet corruption.
 464	 * Make copy if needed since we are modifying
 465	 * If packet is going to be hardware checksummed, then
 466	 * do it now in software before we mangle it.
 467	 */
 468	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 469		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 470		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 471		     skb_checksum_help(skb)))
 472			return qdisc_drop(skb, sch);
 473
 474		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 475			1<<(prandom_u32() % 8);
 476	}
 477
 478	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 479		return qdisc_reshape_fail(skb, sch);
 480
 481	sch->qstats.backlog += qdisc_pkt_len(skb);
 482
 483	cb = netem_skb_cb(skb);
 484	if (q->gap == 0 ||		/* not doing reordering */
 485	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 486	    q->reorder < get_crandom(&q->reorder_cor)) {
 487		psched_time_t now;
 488		psched_tdiff_t delay;
 489
 490		delay = tabledist(q->latency, q->jitter,
 491				  &q->delay_cor, q->delay_dist);
 492
 493		now = psched_get_time();
 494
 495		if (q->rate) {
 496			struct sk_buff *last;
 497
 498			if (!skb_queue_empty(&sch->q))
 499				last = skb_peek_tail(&sch->q);
 500			else
 501				last = netem_rb_to_skb(rb_last(&q->t_root));
 502			if (last) {
 503				/*
 504				 * Last packet in queue is reference point (now),
 505				 * calculate this time bonus and subtract
 
 506				 * from delay.
 507				 */
 508				delay -= netem_skb_cb(last)->time_to_send - now;
 509				delay = max_t(psched_tdiff_t, 0, delay);
 510				now = netem_skb_cb(last)->time_to_send;
 511			}
 512
 513			delay += packet_len_2_sched_time(qdisc_pkt_len(skb), q);
 514		}
 515
 516		cb->time_to_send = now + delay;
 517		cb->tstamp_save = skb->tstamp;
 518		++q->counter;
 519		tfifo_enqueue(skb, sch);
 520	} else {
 521		/*
 522		 * Do re-ordering by putting one out of N packets at the front
 523		 * of the queue.
 524		 */
 525		cb->time_to_send = psched_get_time();
 526		q->counter = 0;
 527
 528		__skb_queue_head(&sch->q, skb);
 529		sch->qstats.requeues++;
 530	}
 531
 532	return NET_XMIT_SUCCESS;
 533}
 534
 535static unsigned int netem_drop(struct Qdisc *sch)
 536{
 537	struct netem_sched_data *q = qdisc_priv(sch);
 538	unsigned int len;
 539
 540	len = qdisc_queue_drop(sch);
 541
 542	if (!len) {
 543		struct rb_node *p = rb_first(&q->t_root);
 544
 545		if (p) {
 546			struct sk_buff *skb = netem_rb_to_skb(p);
 547
 548			rb_erase(p, &q->t_root);
 549			sch->q.qlen--;
 550			skb->next = NULL;
 551			skb->prev = NULL;
 552			len = qdisc_pkt_len(skb);
 553			sch->qstats.backlog -= len;
 554			kfree_skb(skb);
 555		}
 556	}
 557	if (!len && q->qdisc && q->qdisc->ops->drop)
 558	    len = q->qdisc->ops->drop(q->qdisc);
 559	if (len)
 560		sch->qstats.drops++;
 561
 562	return len;
 563}
 564
 565static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 566{
 567	struct netem_sched_data *q = qdisc_priv(sch);
 568	struct sk_buff *skb;
 569	struct rb_node *p;
 570
 571	if (qdisc_is_throttled(sch))
 572		return NULL;
 573
 574tfifo_dequeue:
 575	skb = __skb_dequeue(&sch->q);
 576	if (skb) {
 577deliver:
 578		sch->qstats.backlog -= qdisc_pkt_len(skb);
 579		qdisc_unthrottled(sch);
 580		qdisc_bstats_update(sch, skb);
 581		return skb;
 582	}
 583	p = rb_first(&q->t_root);
 584	if (p) {
 585		psched_time_t time_to_send;
 586
 587		skb = netem_rb_to_skb(p);
 588
 589		/* if more time remaining? */
 590		time_to_send = netem_skb_cb(skb)->time_to_send;
 591		if (time_to_send <= psched_get_time()) {
 592			rb_erase(p, &q->t_root);
 593
 594			sch->q.qlen--;
 595			skb->next = NULL;
 596			skb->prev = NULL;
 597			skb->tstamp = netem_skb_cb(skb)->tstamp_save;
 598
 599#ifdef CONFIG_NET_CLS_ACT
 600			/*
 601			 * If it's at ingress let's pretend the delay is
 602			 * from the network (tstamp will be updated).
 603			 */
 604			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 605				skb->tstamp.tv64 = 0;
 606#endif
 607
 608			if (q->qdisc) {
 609				int err = qdisc_enqueue(skb, q->qdisc);
 610
 611				if (unlikely(err != NET_XMIT_SUCCESS)) {
 612					if (net_xmit_drop_count(err)) {
 613						sch->qstats.drops++;
 614						qdisc_tree_decrease_qlen(sch, 1);
 615					}
 616				}
 617				goto tfifo_dequeue;
 618			}
 619			goto deliver;
 
 
 
 620		}
 621
 622		if (q->qdisc) {
 623			skb = q->qdisc->ops->dequeue(q->qdisc);
 624			if (skb)
 625				goto deliver;
 626		}
 627		qdisc_watchdog_schedule(&q->watchdog, time_to_send);
 628	}
 629
 630	if (q->qdisc) {
 631		skb = q->qdisc->ops->dequeue(q->qdisc);
 632		if (skb)
 633			goto deliver;
 634	}
 635	return NULL;
 636}
 637
 638static void netem_reset(struct Qdisc *sch)
 639{
 640	struct netem_sched_data *q = qdisc_priv(sch);
 641
 642	qdisc_reset_queue(sch);
 643	tfifo_reset(sch);
 644	if (q->qdisc)
 645		qdisc_reset(q->qdisc);
 646	qdisc_watchdog_cancel(&q->watchdog);
 647}
 648
 649static void dist_free(struct disttable *d)
 650{
 651	if (d) {
 652		if (is_vmalloc_addr(d))
 653			vfree(d);
 654		else
 655			kfree(d);
 656	}
 657}
 658
 659/*
 660 * Distribution data is a variable size payload containing
 661 * signed 16 bit values.
 662 */
 663static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 664{
 665	struct netem_sched_data *q = qdisc_priv(sch);
 666	size_t n = nla_len(attr)/sizeof(__s16);
 667	const __s16 *data = nla_data(attr);
 668	spinlock_t *root_lock;
 669	struct disttable *d;
 670	int i;
 671	size_t s;
 672
 673	if (n > NETEM_DIST_MAX)
 674		return -EINVAL;
 675
 676	s = sizeof(struct disttable) + n * sizeof(s16);
 677	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 678	if (!d)
 679		d = vmalloc(s);
 680	if (!d)
 681		return -ENOMEM;
 682
 683	d->size = n;
 684	for (i = 0; i < n; i++)
 685		d->table[i] = data[i];
 686
 687	root_lock = qdisc_root_sleeping_lock(sch);
 688
 689	spin_lock_bh(root_lock);
 690	swap(q->delay_dist, d);
 691	spin_unlock_bh(root_lock);
 692
 693	dist_free(d);
 694	return 0;
 695}
 696
 697static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 698{
 
 699	const struct tc_netem_corr *c = nla_data(attr);
 700
 701	init_crandom(&q->delay_cor, c->delay_corr);
 702	init_crandom(&q->loss_cor, c->loss_corr);
 703	init_crandom(&q->dup_cor, c->dup_corr);
 704}
 705
 706static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 707{
 
 708	const struct tc_netem_reorder *r = nla_data(attr);
 709
 710	q->reorder = r->probability;
 711	init_crandom(&q->reorder_cor, r->correlation);
 712}
 713
 714static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 715{
 
 716	const struct tc_netem_corrupt *r = nla_data(attr);
 717
 718	q->corrupt = r->probability;
 719	init_crandom(&q->corrupt_cor, r->correlation);
 720}
 721
 722static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 723{
 
 724	const struct tc_netem_rate *r = nla_data(attr);
 725
 726	q->rate = r->rate;
 727	q->packet_overhead = r->packet_overhead;
 728	q->cell_size = r->cell_size;
 729	q->cell_overhead = r->cell_overhead;
 730	if (q->cell_size)
 731		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 732	else
 733		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 734}
 735
 736static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 737{
 
 738	const struct nlattr *la;
 739	int rem;
 740
 741	nla_for_each_nested(la, attr, rem) {
 742		u16 type = nla_type(la);
 743
 744		switch (type) {
 745		case NETEM_LOSS_GI: {
 746			const struct tc_netem_gimodel *gi = nla_data(la);
 747
 748			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 749				pr_info("netem: incorrect gi model size\n");
 750				return -EINVAL;
 751			}
 752
 753			q->loss_model = CLG_4_STATES;
 754
 755			q->clg.state = TX_IN_GAP_PERIOD;
 756			q->clg.a1 = gi->p13;
 757			q->clg.a2 = gi->p31;
 758			q->clg.a3 = gi->p32;
 759			q->clg.a4 = gi->p14;
 760			q->clg.a5 = gi->p23;
 761			break;
 762		}
 763
 764		case NETEM_LOSS_GE: {
 765			const struct tc_netem_gemodel *ge = nla_data(la);
 766
 767			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 768				pr_info("netem: incorrect ge model size\n");
 769				return -EINVAL;
 770			}
 771
 772			q->loss_model = CLG_GILB_ELL;
 773			q->clg.state = GOOD_STATE;
 774			q->clg.a1 = ge->p;
 775			q->clg.a2 = ge->r;
 776			q->clg.a3 = ge->h;
 777			q->clg.a4 = ge->k1;
 778			break;
 779		}
 780
 781		default:
 782			pr_info("netem: unknown loss type %u\n", type);
 783			return -EINVAL;
 784		}
 785	}
 786
 787	return 0;
 788}
 789
 790static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 791	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 792	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 793	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 794	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 795	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 796	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 797	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 798};
 799
 800static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 801		      const struct nla_policy *policy, int len)
 802{
 803	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 804
 805	if (nested_len < 0) {
 806		pr_info("netem: invalid attributes len %d\n", nested_len);
 807		return -EINVAL;
 808	}
 809
 810	if (nested_len >= nla_attr_size(0))
 811		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 812				 nested_len, policy);
 813
 814	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 815	return 0;
 816}
 817
 818/* Parse netlink message to set options */
 819static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 820{
 821	struct netem_sched_data *q = qdisc_priv(sch);
 822	struct nlattr *tb[TCA_NETEM_MAX + 1];
 823	struct tc_netem_qopt *qopt;
 824	struct clgstate old_clg;
 825	int old_loss_model = CLG_RANDOM;
 826	int ret;
 827
 828	if (opt == NULL)
 829		return -EINVAL;
 830
 831	qopt = nla_data(opt);
 832	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 833	if (ret < 0)
 834		return ret;
 835
 836	/* backup q->clg and q->loss_model */
 837	old_clg = q->clg;
 838	old_loss_model = q->loss_model;
 839
 840	if (tb[TCA_NETEM_LOSS]) {
 841		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 842		if (ret) {
 843			q->loss_model = old_loss_model;
 844			return ret;
 845		}
 846	} else {
 847		q->loss_model = CLG_RANDOM;
 848	}
 849
 850	if (tb[TCA_NETEM_DELAY_DIST]) {
 851		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 852		if (ret) {
 853			/* recover clg and loss_model, in case of
 854			 * q->clg and q->loss_model were modified
 855			 * in get_loss_clg()
 856			 */
 857			q->clg = old_clg;
 858			q->loss_model = old_loss_model;
 859			return ret;
 860		}
 861	}
 862
 863	sch->limit = qopt->limit;
 864
 865	q->latency = qopt->latency;
 866	q->jitter = qopt->jitter;
 867	q->limit = qopt->limit;
 868	q->gap = qopt->gap;
 869	q->counter = 0;
 870	q->loss = qopt->loss;
 871	q->duplicate = qopt->duplicate;
 872
 873	/* for compatibility with earlier versions.
 874	 * if gap is set, need to assume 100% probability
 875	 */
 876	if (q->gap)
 877		q->reorder = ~0;
 878
 879	if (tb[TCA_NETEM_CORR])
 880		get_correlation(q, tb[TCA_NETEM_CORR]);
 
 
 
 
 
 
 881
 882	if (tb[TCA_NETEM_REORDER])
 883		get_reorder(q, tb[TCA_NETEM_REORDER]);
 884
 885	if (tb[TCA_NETEM_CORRUPT])
 886		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 887
 888	if (tb[TCA_NETEM_RATE])
 889		get_rate(q, tb[TCA_NETEM_RATE]);
 890
 891	if (tb[TCA_NETEM_RATE64])
 892		q->rate = max_t(u64, q->rate,
 893				nla_get_u64(tb[TCA_NETEM_RATE64]));
 894
 895	if (tb[TCA_NETEM_ECN])
 896		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 897
 
 
 
 
 898	return ret;
 899}
 900
 901static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 902{
 903	struct netem_sched_data *q = qdisc_priv(sch);
 904	int ret;
 905
 906	if (!opt)
 907		return -EINVAL;
 908
 909	qdisc_watchdog_init(&q->watchdog, sch);
 910
 911	q->loss_model = CLG_RANDOM;
 912	ret = netem_change(sch, opt);
 913	if (ret)
 914		pr_info("netem: change failed\n");
 915	return ret;
 916}
 917
 918static void netem_destroy(struct Qdisc *sch)
 919{
 920	struct netem_sched_data *q = qdisc_priv(sch);
 921
 922	qdisc_watchdog_cancel(&q->watchdog);
 923	if (q->qdisc)
 924		qdisc_destroy(q->qdisc);
 925	dist_free(q->delay_dist);
 926}
 927
 928static int dump_loss_model(const struct netem_sched_data *q,
 929			   struct sk_buff *skb)
 930{
 931	struct nlattr *nest;
 932
 933	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 934	if (nest == NULL)
 935		goto nla_put_failure;
 936
 937	switch (q->loss_model) {
 938	case CLG_RANDOM:
 939		/* legacy loss model */
 940		nla_nest_cancel(skb, nest);
 941		return 0;	/* no data */
 942
 943	case CLG_4_STATES: {
 944		struct tc_netem_gimodel gi = {
 945			.p13 = q->clg.a1,
 946			.p31 = q->clg.a2,
 947			.p32 = q->clg.a3,
 948			.p14 = q->clg.a4,
 949			.p23 = q->clg.a5,
 950		};
 951
 952		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 953			goto nla_put_failure;
 954		break;
 955	}
 956	case CLG_GILB_ELL: {
 957		struct tc_netem_gemodel ge = {
 958			.p = q->clg.a1,
 959			.r = q->clg.a2,
 960			.h = q->clg.a3,
 961			.k1 = q->clg.a4,
 962		};
 963
 964		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 965			goto nla_put_failure;
 966		break;
 967	}
 968	}
 969
 970	nla_nest_end(skb, nest);
 971	return 0;
 972
 973nla_put_failure:
 974	nla_nest_cancel(skb, nest);
 975	return -1;
 976}
 977
 978static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 979{
 980	const struct netem_sched_data *q = qdisc_priv(sch);
 981	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 982	struct tc_netem_qopt qopt;
 983	struct tc_netem_corr cor;
 984	struct tc_netem_reorder reorder;
 985	struct tc_netem_corrupt corrupt;
 986	struct tc_netem_rate rate;
 987
 988	qopt.latency = q->latency;
 989	qopt.jitter = q->jitter;
 990	qopt.limit = q->limit;
 991	qopt.loss = q->loss;
 992	qopt.gap = q->gap;
 993	qopt.duplicate = q->duplicate;
 994	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 995		goto nla_put_failure;
 996
 997	cor.delay_corr = q->delay_cor.rho;
 998	cor.loss_corr = q->loss_cor.rho;
 999	cor.dup_corr = q->dup_cor.rho;
1000	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1001		goto nla_put_failure;
1002
1003	reorder.probability = q->reorder;
1004	reorder.correlation = q->reorder_cor.rho;
1005	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1006		goto nla_put_failure;
1007
1008	corrupt.probability = q->corrupt;
1009	corrupt.correlation = q->corrupt_cor.rho;
1010	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1011		goto nla_put_failure;
1012
1013	if (q->rate >= (1ULL << 32)) {
1014		if (nla_put_u64(skb, TCA_NETEM_RATE64, q->rate))
1015			goto nla_put_failure;
1016		rate.rate = ~0U;
1017	} else {
1018		rate.rate = q->rate;
1019	}
1020	rate.packet_overhead = q->packet_overhead;
1021	rate.cell_size = q->cell_size;
1022	rate.cell_overhead = q->cell_overhead;
1023	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1024		goto nla_put_failure;
1025
1026	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1027		goto nla_put_failure;
1028
1029	if (dump_loss_model(q, skb) != 0)
1030		goto nla_put_failure;
1031
1032	return nla_nest_end(skb, nla);
1033
1034nla_put_failure:
1035	nlmsg_trim(skb, nla);
1036	return -1;
1037}
1038
1039static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1040			  struct sk_buff *skb, struct tcmsg *tcm)
1041{
1042	struct netem_sched_data *q = qdisc_priv(sch);
1043
1044	if (cl != 1 || !q->qdisc) 	/* only one class */
1045		return -ENOENT;
1046
1047	tcm->tcm_handle |= TC_H_MIN(1);
1048	tcm->tcm_info = q->qdisc->handle;
1049
1050	return 0;
1051}
1052
1053static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1054		     struct Qdisc **old)
1055{
1056	struct netem_sched_data *q = qdisc_priv(sch);
1057
1058	sch_tree_lock(sch);
1059	*old = q->qdisc;
1060	q->qdisc = new;
1061	if (*old) {
1062		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
1063		qdisc_reset(*old);
1064	}
1065	sch_tree_unlock(sch);
1066
1067	return 0;
1068}
1069
1070static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1071{
1072	struct netem_sched_data *q = qdisc_priv(sch);
1073	return q->qdisc;
1074}
1075
1076static unsigned long netem_get(struct Qdisc *sch, u32 classid)
1077{
1078	return 1;
1079}
1080
1081static void netem_put(struct Qdisc *sch, unsigned long arg)
1082{
1083}
1084
1085static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1086{
1087	if (!walker->stop) {
1088		if (walker->count >= walker->skip)
1089			if (walker->fn(sch, 1, walker) < 0) {
1090				walker->stop = 1;
1091				return;
1092			}
1093		walker->count++;
1094	}
1095}
1096
1097static const struct Qdisc_class_ops netem_class_ops = {
1098	.graft		=	netem_graft,
1099	.leaf		=	netem_leaf,
1100	.get		=	netem_get,
1101	.put		=	netem_put,
1102	.walk		=	netem_walk,
1103	.dump		=	netem_dump_class,
1104};
1105
1106static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1107	.id		=	"netem",
1108	.cl_ops		=	&netem_class_ops,
1109	.priv_size	=	sizeof(struct netem_sched_data),
1110	.enqueue	=	netem_enqueue,
1111	.dequeue	=	netem_dequeue,
1112	.peek		=	qdisc_peek_dequeued,
1113	.drop		=	netem_drop,
1114	.init		=	netem_init,
1115	.reset		=	netem_reset,
1116	.destroy	=	netem_destroy,
1117	.change		=	netem_change,
1118	.dump		=	netem_dump,
1119	.owner		=	THIS_MODULE,
1120};
1121
1122
1123static int __init netem_module_init(void)
1124{
1125	pr_info("netem: version " VERSION "\n");
1126	return register_qdisc(&netem_qdisc_ops);
1127}
1128static void __exit netem_module_exit(void)
1129{
1130	unregister_qdisc(&netem_qdisc_ops);
1131}
1132module_init(netem_module_init)
1133module_exit(netem_module_exit)
1134MODULE_LICENSE("GPL");