Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
 
  26
  27#include <net/netlink.h>
  28#include <net/pkt_sched.h>
  29#include <net/inet_ecn.h>
  30
  31#define VERSION "1.3"
  32
  33/*	Network Emulation Queuing algorithm.
  34	====================================
  35
  36	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  37		 Network Emulation Tool
  38		 [2] Luigi Rizzo, DummyNet for FreeBSD
  39
  40	 ----------------------------------------------------------------
  41
  42	 This started out as a simple way to delay outgoing packets to
  43	 test TCP but has grown to include most of the functionality
  44	 of a full blown network emulator like NISTnet. It can delay
  45	 packets and add random jitter (and correlation). The random
  46	 distribution can be loaded from a table as well to provide
  47	 normal, Pareto, or experimental curves. Packet loss,
  48	 duplication, and reordering can also be emulated.
  49
  50	 This qdisc does not do classification that can be handled in
  51	 layering other disciplines.  It does not need to do bandwidth
  52	 control either since that can be handled by using token
  53	 bucket or other rate control.
  54
  55     Correlated Loss Generator models
  56
  57	Added generation of correlated loss according to the
  58	"Gilbert-Elliot" model, a 4-state markov model.
  59
  60	References:
  61	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  62	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  63	and intuitive loss model for packet networks and its implementation
  64	in the Netem module in the Linux kernel", available in [1]
  65
  66	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  67		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  68*/
  69
  70struct netem_sched_data {
  71	/* internal t(ime)fifo qdisc uses sch->q and sch->limit */
 
  72
  73	/* optional qdisc for classful handling (NULL at netem init) */
  74	struct Qdisc	*qdisc;
  75
  76	struct qdisc_watchdog watchdog;
  77
  78	psched_tdiff_t latency;
  79	psched_tdiff_t jitter;
  80
  81	u32 loss;
  82	u32 ecn;
  83	u32 limit;
  84	u32 counter;
  85	u32 gap;
  86	u32 duplicate;
  87	u32 reorder;
  88	u32 corrupt;
  89	u32 rate;
  90	s32 packet_overhead;
  91	u32 cell_size;
  92	u32 cell_size_reciprocal;
  93	s32 cell_overhead;
  94
  95	struct crndstate {
  96		u32 last;
  97		u32 rho;
  98	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
  99
 100	struct disttable {
 101		u32  size;
 102		s16 table[0];
 103	} *delay_dist;
 104
 105	enum  {
 106		CLG_RANDOM,
 107		CLG_4_STATES,
 108		CLG_GILB_ELL,
 109	} loss_model;
 110
 
 
 
 
 
 
 
 
 
 
 
 
 111	/* Correlated Loss Generation models */
 112	struct clgstate {
 113		/* state of the Markov chain */
 114		u8 state;
 115
 116		/* 4-states and Gilbert-Elliot models */
 117		u32 a1;	/* p13 for 4-states or p for GE */
 118		u32 a2;	/* p31 for 4-states or r for GE */
 119		u32 a3;	/* p32 for 4-states or h for GE */
 120		u32 a4;	/* p14 for 4-states or 1-k for GE */
 121		u32 a5; /* p23 used only in 4-states */
 122	} clg;
 123
 
 
 
 
 
 
 
 124};
 125
 126/* Time stamp put into socket buffer control block
 127 * Only valid when skbs are in our internal t(ime)fifo queue.
 
 
 
 
 128 */
 129struct netem_skb_cb {
 130	psched_time_t	time_to_send;
 131};
 132
 133static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 134{
 
 135	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 136	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 137}
 138
 139/* init_crandom - initialize correlated random number generator
 140 * Use entropy source for initial seed.
 141 */
 142static void init_crandom(struct crndstate *state, unsigned long rho)
 143{
 144	state->rho = rho;
 145	state->last = net_random();
 146}
 147
 148/* get_crandom - correlated random number generator
 149 * Next number depends on last value.
 150 * rho is scaled to avoid floating point.
 151 */
 152static u32 get_crandom(struct crndstate *state)
 153{
 154	u64 value, rho;
 155	unsigned long answer;
 156
 157	if (state->rho == 0)	/* no correlation */
 158		return net_random();
 159
 160	value = net_random();
 161	rho = (u64)state->rho + 1;
 162	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 163	state->last = answer;
 164	return answer;
 165}
 166
 167/* loss_4state - 4-state model loss generator
 168 * Generates losses according to the 4-state Markov chain adopted in
 169 * the GI (General and Intuitive) loss model.
 170 */
 171static bool loss_4state(struct netem_sched_data *q)
 172{
 173	struct clgstate *clg = &q->clg;
 174	u32 rnd = net_random();
 175
 176	/*
 177	 * Makes a comparison between rnd and the transition
 178	 * probabilities outgoing from the current state, then decides the
 179	 * next state and if the next packet has to be transmitted or lost.
 180	 * The four states correspond to:
 181	 *   1 => successfully transmitted packets within a gap period
 182	 *   4 => isolated losses within a gap period
 183	 *   3 => lost packets within a burst period
 184	 *   2 => successfully transmitted packets within a burst period
 185	 */
 186	switch (clg->state) {
 187	case 1:
 188		if (rnd < clg->a4) {
 189			clg->state = 4;
 190			return true;
 191		} else if (clg->a4 < rnd && rnd < clg->a1) {
 192			clg->state = 3;
 193			return true;
 194		} else if (clg->a1 < rnd)
 195			clg->state = 1;
 
 196
 197		break;
 198	case 2:
 199		if (rnd < clg->a5) {
 200			clg->state = 3;
 201			return true;
 202		} else
 203			clg->state = 2;
 
 204
 205		break;
 206	case 3:
 207		if (rnd < clg->a3)
 208			clg->state = 2;
 209		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 210			clg->state = 1;
 211			return true;
 212		} else if (clg->a2 + clg->a3 < rnd) {
 213			clg->state = 3;
 214			return true;
 215		}
 216		break;
 217	case 4:
 218		clg->state = 1;
 219		break;
 220	}
 221
 222	return false;
 223}
 224
 225/* loss_gilb_ell - Gilbert-Elliot model loss generator
 226 * Generates losses according to the Gilbert-Elliot loss model or
 227 * its special cases  (Gilbert or Simple Gilbert)
 228 *
 229 * Makes a comparison between random number and the transition
 230 * probabilities outgoing from the current state, then decides the
 231 * next state. A second random number is extracted and the comparison
 232 * with the loss probability of the current state decides if the next
 233 * packet will be transmitted or lost.
 234 */
 235static bool loss_gilb_ell(struct netem_sched_data *q)
 236{
 237	struct clgstate *clg = &q->clg;
 238
 239	switch (clg->state) {
 240	case 1:
 241		if (net_random() < clg->a1)
 242			clg->state = 2;
 243		if (net_random() < clg->a4)
 244			return true;
 245	case 2:
 246		if (net_random() < clg->a2)
 247			clg->state = 1;
 248		if (clg->a3 > net_random())
 
 249			return true;
 250	}
 251
 252	return false;
 253}
 254
 255static bool loss_event(struct netem_sched_data *q)
 256{
 257	switch (q->loss_model) {
 258	case CLG_RANDOM:
 259		/* Random packet drop 0 => none, ~0 => all */
 260		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 261
 262	case CLG_4_STATES:
 263		/* 4state loss model algorithm (used also for GI model)
 264		* Extracts a value from the markov 4 state loss generator,
 265		* if it is 1 drops a packet and if needed writes the event in
 266		* the kernel logs
 267		*/
 268		return loss_4state(q);
 269
 270	case CLG_GILB_ELL:
 271		/* Gilbert-Elliot loss model algorithm
 272		* Extracts a value from the Gilbert-Elliot loss generator,
 273		* if it is 1 drops a packet and if needed writes the event in
 274		* the kernel logs
 275		*/
 276		return loss_gilb_ell(q);
 277	}
 278
 279	return false;	/* not reached */
 280}
 281
 282
 283/* tabledist - return a pseudo-randomly distributed value with mean mu and
 284 * std deviation sigma.  Uses table lookup to approximate the desired
 285 * distribution, and a uniformly-distributed pseudo-random source.
 286 */
 287static psched_tdiff_t tabledist(psched_tdiff_t mu, psched_tdiff_t sigma,
 288				struct crndstate *state,
 289				const struct disttable *dist)
 290{
 291	psched_tdiff_t x;
 292	long t;
 293	u32 rnd;
 294
 295	if (sigma == 0)
 296		return mu;
 297
 298	rnd = get_crandom(state);
 299
 300	/* default uniform distribution */
 301	if (dist == NULL)
 302		return (rnd % (2*sigma)) - sigma + mu;
 303
 304	t = dist->table[rnd % dist->size];
 305	x = (sigma % NETEM_DIST_SCALE) * t;
 306	if (x >= 0)
 307		x += NETEM_DIST_SCALE/2;
 308	else
 309		x -= NETEM_DIST_SCALE/2;
 310
 311	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 312}
 313
 314static psched_time_t packet_len_2_sched_time(unsigned int len, struct netem_sched_data *q)
 315{
 316	u64 ticks;
 317
 318	len += q->packet_overhead;
 319
 320	if (q->cell_size) {
 321		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 322
 323		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 324			cells++;
 325		len = cells * (q->cell_size + q->cell_overhead);
 326	}
 327
 328	ticks = (u64)len * NSEC_PER_SEC;
 
 
 
 
 
 
 329
 330	do_div(ticks, q->rate);
 331	return PSCHED_NS2TICKS(ticks);
 
 
 
 
 
 332}
 333
 334static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 335{
 336	struct sk_buff_head *list = &sch->q;
 337	psched_time_t tnext = netem_skb_cb(nskb)->time_to_send;
 338	struct sk_buff *skb = skb_peek_tail(list);
 339
 340	/* Optimize for add at tail */
 341	if (likely(!skb || tnext >= netem_skb_cb(skb)->time_to_send))
 342		return __skb_queue_tail(list, nskb);
 343
 344	skb_queue_reverse_walk(list, skb) {
 
 
 
 
 345		if (tnext >= netem_skb_cb(skb)->time_to_send)
 346			break;
 
 
 347	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348
 349	__skb_queue_after(list, skb, nskb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350}
 351
 352/*
 353 * Insert one skb into qdisc.
 354 * Note: parent depends on return value to account for queue length.
 355 * 	NET_XMIT_DROP: queue length didn't change.
 356 *      NET_XMIT_SUCCESS: one skb was queued.
 357 */
 358static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch)
 
 359{
 360	struct netem_sched_data *q = qdisc_priv(sch);
 361	/* We don't fill cb now as skb_unshare() may invalidate it */
 362	struct netem_skb_cb *cb;
 363	struct sk_buff *skb2;
 
 
 
 364	int count = 1;
 
 365
 366	/* Random duplication */
 367	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 368		++count;
 369
 370	/* Drop packet? */
 371	if (loss_event(q)) {
 372		if (q->ecn && INET_ECN_set_ce(skb))
 373			sch->qstats.drops++; /* mark packet */
 374		else
 375			--count;
 376	}
 377	if (count == 0) {
 378		sch->qstats.drops++;
 379		kfree_skb(skb);
 380		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 381	}
 382
 383	skb_orphan(skb);
 
 
 
 
 384
 385	/*
 386	 * If we need to duplicate packet, then re-insert at top of the
 387	 * qdisc tree, since parent queuer expects that only one
 388	 * skb will be queued.
 389	 */
 390	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 391		struct Qdisc *rootq = qdisc_root(sch);
 392		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 393		q->duplicate = 0;
 394
 395		qdisc_enqueue_root(skb2, rootq);
 
 396		q->duplicate = dupsave;
 397	}
 398
 399	/*
 400	 * Randomized packet corruption.
 401	 * Make copy if needed since we are modifying
 402	 * If packet is going to be hardware checksummed, then
 403	 * do it now in software before we mangle it.
 404	 */
 405	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 406		if (!(skb = skb_unshare(skb, GFP_ATOMIC)) ||
 407		    (skb->ip_summed == CHECKSUM_PARTIAL &&
 408		     skb_checksum_help(skb)))
 409			return qdisc_drop(skb, sch);
 
 
 
 
 
 
 410
 411		skb->data[net_random() % skb_headlen(skb)] ^= 1<<(net_random() % 8);
 
 
 
 
 
 
 
 
 
 
 
 
 412	}
 413
 414	if (unlikely(skb_queue_len(&sch->q) >= sch->limit))
 415		return qdisc_reshape_fail(skb, sch);
 416
 417	sch->qstats.backlog += qdisc_pkt_len(skb);
 418
 419	cb = netem_skb_cb(skb);
 420	if (q->gap == 0 ||		/* not doing reordering */
 421	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 422	    q->reorder < get_crandom(&q->reorder_cor)) {
 423		psched_time_t now;
 424		psched_tdiff_t delay;
 425
 426		delay = tabledist(q->latency, q->jitter,
 427				  &q->delay_cor, q->delay_dist);
 428
 429		now = psched_get_time();
 430
 431		if (q->rate) {
 432			struct sk_buff_head *list = &sch->q;
 433
 434			delay += packet_len_2_sched_time(skb->len, q);
 
 
 
 
 
 
 
 
 
 
 
 
 435
 436			if (!skb_queue_empty(list)) {
 437				/*
 438				 * Last packet in queue is reference point (now).
 439				 * First packet in queue is already in flight,
 440				 * calculate this time bonus and substract
 441				 * from delay.
 442				 */
 443				delay -= now - netem_skb_cb(skb_peek(list))->time_to_send;
 444				now = netem_skb_cb(skb_peek_tail(list))->time_to_send;
 
 445			}
 
 
 446		}
 447
 448		cb->time_to_send = now + delay;
 449		++q->counter;
 450		tfifo_enqueue(skb, sch);
 451	} else {
 452		/*
 453		 * Do re-ordering by putting one out of N packets at the front
 454		 * of the queue.
 455		 */
 456		cb->time_to_send = psched_get_time();
 457		q->counter = 0;
 458
 459		__skb_queue_head(&sch->q, skb);
 460		sch->qstats.requeues++;
 461	}
 462
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463	return NET_XMIT_SUCCESS;
 464}
 465
 466static unsigned int netem_drop(struct Qdisc *sch)
 467{
 468	struct netem_sched_data *q = qdisc_priv(sch);
 469	unsigned int len;
 470
 471	len = qdisc_queue_drop(sch);
 472	if (!len && q->qdisc && q->qdisc->ops->drop)
 473	    len = q->qdisc->ops->drop(q->qdisc);
 474	if (len)
 475		sch->qstats.drops++;
 476
 477	return len;
 
 
 
 
 
 
 
 478}
 479
 480static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 481{
 482	struct netem_sched_data *q = qdisc_priv(sch);
 483	struct sk_buff *skb;
 484
 485	if (qdisc_is_throttled(sch))
 486		return NULL;
 487
 488tfifo_dequeue:
 489	skb = qdisc_peek_head(sch);
 490	if (skb) {
 491		const struct netem_skb_cb *cb = netem_skb_cb(skb);
 
 
 
 
 
 
 
 
 
 
 492
 493		/* if more time remaining? */
 494		if (cb->time_to_send <= psched_get_time()) {
 495			__skb_unlink(skb, &sch->q);
 496			sch->qstats.backlog -= qdisc_pkt_len(skb);
 
 
 
 
 
 
 
 
 
 
 
 497
 498#ifdef CONFIG_NET_CLS_ACT
 499			/*
 500			 * If it's at ingress let's pretend the delay is
 501			 * from the network (tstamp will be updated).
 502			 */
 503			if (G_TC_FROM(skb->tc_verd) & AT_INGRESS)
 504				skb->tstamp.tv64 = 0;
 505#endif
 506
 507			if (q->qdisc) {
 508				int err = qdisc_enqueue(skb, q->qdisc);
 
 
 
 
 
 509
 510				if (unlikely(err != NET_XMIT_SUCCESS)) {
 511					if (net_xmit_drop_count(err)) {
 512						sch->qstats.drops++;
 513						qdisc_tree_decrease_qlen(sch, 1);
 514					}
 
 
 
 
 
 
 
 515				}
 516				goto tfifo_dequeue;
 517			}
 518deliver:
 519			qdisc_unthrottled(sch);
 520			qdisc_bstats_update(sch, skb);
 521			return skb;
 522		}
 523
 524		if (q->qdisc) {
 525			skb = q->qdisc->ops->dequeue(q->qdisc);
 526			if (skb)
 527				goto deliver;
 528		}
 529		qdisc_watchdog_schedule(&q->watchdog, cb->time_to_send);
 
 
 
 530	}
 531
 532	if (q->qdisc) {
 533		skb = q->qdisc->ops->dequeue(q->qdisc);
 534		if (skb)
 535			goto deliver;
 536	}
 537	return NULL;
 538}
 539
 540static void netem_reset(struct Qdisc *sch)
 541{
 542	struct netem_sched_data *q = qdisc_priv(sch);
 543
 544	qdisc_reset_queue(sch);
 
 545	if (q->qdisc)
 546		qdisc_reset(q->qdisc);
 547	qdisc_watchdog_cancel(&q->watchdog);
 548}
 549
 550static void dist_free(struct disttable *d)
 551{
 552	if (d) {
 553		if (is_vmalloc_addr(d))
 554			vfree(d);
 555		else
 556			kfree(d);
 557	}
 558}
 559
 560/*
 561 * Distribution data is a variable size payload containing
 562 * signed 16 bit values.
 563 */
 
 564static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 565{
 566	struct netem_sched_data *q = qdisc_priv(sch);
 567	size_t n = nla_len(attr)/sizeof(__s16);
 568	const __s16 *data = nla_data(attr);
 569	spinlock_t *root_lock;
 570	struct disttable *d;
 571	int i;
 572	size_t s;
 573
 574	if (n > NETEM_DIST_MAX)
 575		return -EINVAL;
 576
 577	s = sizeof(struct disttable) + n * sizeof(s16);
 578	d = kmalloc(s, GFP_KERNEL | __GFP_NOWARN);
 579	if (!d)
 580		d = vmalloc(s);
 581	if (!d)
 582		return -ENOMEM;
 583
 584	d->size = n;
 585	for (i = 0; i < n; i++)
 586		d->table[i] = data[i];
 587
 588	root_lock = qdisc_root_sleeping_lock(sch);
 589
 590	spin_lock_bh(root_lock);
 591	swap(q->delay_dist, d);
 592	spin_unlock_bh(root_lock);
 593
 594	dist_free(d);
 595	return 0;
 596}
 597
 598static void get_correlation(struct Qdisc *sch, const struct nlattr *attr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 599{
 600	struct netem_sched_data *q = qdisc_priv(sch);
 601	const struct tc_netem_corr *c = nla_data(attr);
 602
 603	init_crandom(&q->delay_cor, c->delay_corr);
 604	init_crandom(&q->loss_cor, c->loss_corr);
 605	init_crandom(&q->dup_cor, c->dup_corr);
 606}
 607
 608static void get_reorder(struct Qdisc *sch, const struct nlattr *attr)
 609{
 610	struct netem_sched_data *q = qdisc_priv(sch);
 611	const struct tc_netem_reorder *r = nla_data(attr);
 612
 613	q->reorder = r->probability;
 614	init_crandom(&q->reorder_cor, r->correlation);
 615}
 616
 617static void get_corrupt(struct Qdisc *sch, const struct nlattr *attr)
 618{
 619	struct netem_sched_data *q = qdisc_priv(sch);
 620	const struct tc_netem_corrupt *r = nla_data(attr);
 621
 622	q->corrupt = r->probability;
 623	init_crandom(&q->corrupt_cor, r->correlation);
 624}
 625
 626static void get_rate(struct Qdisc *sch, const struct nlattr *attr)
 627{
 628	struct netem_sched_data *q = qdisc_priv(sch);
 629	const struct tc_netem_rate *r = nla_data(attr);
 630
 631	q->rate = r->rate;
 632	q->packet_overhead = r->packet_overhead;
 633	q->cell_size = r->cell_size;
 
 634	if (q->cell_size)
 635		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 636	q->cell_overhead = r->cell_overhead;
 
 637}
 638
 639static int get_loss_clg(struct Qdisc *sch, const struct nlattr *attr)
 640{
 641	struct netem_sched_data *q = qdisc_priv(sch);
 642	const struct nlattr *la;
 643	int rem;
 644
 645	nla_for_each_nested(la, attr, rem) {
 646		u16 type = nla_type(la);
 647
 648		switch(type) {
 649		case NETEM_LOSS_GI: {
 650			const struct tc_netem_gimodel *gi = nla_data(la);
 651
 652			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 653				pr_info("netem: incorrect gi model size\n");
 654				return -EINVAL;
 655			}
 656
 657			q->loss_model = CLG_4_STATES;
 658
 659			q->clg.state = 1;
 660			q->clg.a1 = gi->p13;
 661			q->clg.a2 = gi->p31;
 662			q->clg.a3 = gi->p32;
 663			q->clg.a4 = gi->p14;
 664			q->clg.a5 = gi->p23;
 665			break;
 666		}
 667
 668		case NETEM_LOSS_GE: {
 669			const struct tc_netem_gemodel *ge = nla_data(la);
 670
 671			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 672				pr_info("netem: incorrect ge model size\n");
 673				return -EINVAL;
 674			}
 675
 676			q->loss_model = CLG_GILB_ELL;
 677			q->clg.state = 1;
 678			q->clg.a1 = ge->p;
 679			q->clg.a2 = ge->r;
 680			q->clg.a3 = ge->h;
 681			q->clg.a4 = ge->k1;
 682			break;
 683		}
 684
 685		default:
 686			pr_info("netem: unknown loss type %u\n", type);
 687			return -EINVAL;
 688		}
 689	}
 690
 691	return 0;
 692}
 693
 694static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 695	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 696	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 697	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 698	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 699	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 700	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 
 
 
 
 701};
 702
 703static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 704		      const struct nla_policy *policy, int len)
 705{
 706	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 707
 708	if (nested_len < 0) {
 709		pr_info("netem: invalid attributes len %d\n", nested_len);
 710		return -EINVAL;
 711	}
 712
 713	if (nested_len >= nla_attr_size(0))
 714		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 715				 nested_len, policy);
 716
 717	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 718	return 0;
 719}
 720
 721/* Parse netlink message to set options */
 722static int netem_change(struct Qdisc *sch, struct nlattr *opt)
 
 723{
 724	struct netem_sched_data *q = qdisc_priv(sch);
 725	struct nlattr *tb[TCA_NETEM_MAX + 1];
 726	struct tc_netem_qopt *qopt;
 
 
 727	int ret;
 728
 729	if (opt == NULL)
 730		return -EINVAL;
 731
 732	qopt = nla_data(opt);
 733	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 734	if (ret < 0)
 735		return ret;
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737	sch->limit = qopt->limit;
 738
 739	q->latency = qopt->latency;
 740	q->jitter = qopt->jitter;
 741	q->limit = qopt->limit;
 742	q->gap = qopt->gap;
 743	q->counter = 0;
 744	q->loss = qopt->loss;
 745	q->duplicate = qopt->duplicate;
 746
 747	/* for compatibility with earlier versions.
 748	 * if gap is set, need to assume 100% probability
 749	 */
 750	if (q->gap)
 751		q->reorder = ~0;
 752
 753	if (tb[TCA_NETEM_CORR])
 754		get_correlation(sch, tb[TCA_NETEM_CORR]);
 755
 756	if (tb[TCA_NETEM_DELAY_DIST]) {
 757		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 758		if (ret)
 759			return ret;
 760	}
 761
 762	if (tb[TCA_NETEM_REORDER])
 763		get_reorder(sch, tb[TCA_NETEM_REORDER]);
 764
 765	if (tb[TCA_NETEM_CORRUPT])
 766		get_corrupt(sch, tb[TCA_NETEM_CORRUPT]);
 767
 768	if (tb[TCA_NETEM_RATE])
 769		get_rate(sch, tb[TCA_NETEM_RATE]);
 
 
 
 
 
 
 
 
 
 
 770
 771	if (tb[TCA_NETEM_ECN])
 772		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 773
 774	q->loss_model = CLG_RANDOM;
 775	if (tb[TCA_NETEM_LOSS])
 776		ret = get_loss_clg(sch, tb[TCA_NETEM_LOSS]);
 777
 778	return ret;
 779}
 780
 781static int netem_init(struct Qdisc *sch, struct nlattr *opt)
 
 782{
 783	struct netem_sched_data *q = qdisc_priv(sch);
 784	int ret;
 785
 
 
 786	if (!opt)
 787		return -EINVAL;
 788
 789	qdisc_watchdog_init(&q->watchdog, sch);
 790
 791	q->loss_model = CLG_RANDOM;
 792	ret = netem_change(sch, opt);
 793	if (ret)
 794		pr_info("netem: change failed\n");
 795	return ret;
 796}
 797
 798static void netem_destroy(struct Qdisc *sch)
 799{
 800	struct netem_sched_data *q = qdisc_priv(sch);
 801
 802	qdisc_watchdog_cancel(&q->watchdog);
 803	if (q->qdisc)
 804		qdisc_destroy(q->qdisc);
 805	dist_free(q->delay_dist);
 806}
 807
 808static int dump_loss_model(const struct netem_sched_data *q,
 809			   struct sk_buff *skb)
 810{
 811	struct nlattr *nest;
 812
 813	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
 814	if (nest == NULL)
 815		goto nla_put_failure;
 816
 817	switch (q->loss_model) {
 818	case CLG_RANDOM:
 819		/* legacy loss model */
 820		nla_nest_cancel(skb, nest);
 821		return 0;	/* no data */
 822
 823	case CLG_4_STATES: {
 824		struct tc_netem_gimodel gi = {
 825			.p13 = q->clg.a1,
 826			.p31 = q->clg.a2,
 827			.p32 = q->clg.a3,
 828			.p14 = q->clg.a4,
 829			.p23 = q->clg.a5,
 830		};
 831
 832		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
 833			goto nla_put_failure;
 834		break;
 835	}
 836	case CLG_GILB_ELL: {
 837		struct tc_netem_gemodel ge = {
 838			.p = q->clg.a1,
 839			.r = q->clg.a2,
 840			.h = q->clg.a3,
 841			.k1 = q->clg.a4,
 842		};
 843
 844		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
 845			goto nla_put_failure;
 846		break;
 847	}
 848	}
 849
 850	nla_nest_end(skb, nest);
 851	return 0;
 852
 853nla_put_failure:
 854	nla_nest_cancel(skb, nest);
 855	return -1;
 856}
 857
 858static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
 859{
 860	const struct netem_sched_data *q = qdisc_priv(sch);
 861	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
 862	struct tc_netem_qopt qopt;
 863	struct tc_netem_corr cor;
 864	struct tc_netem_reorder reorder;
 865	struct tc_netem_corrupt corrupt;
 866	struct tc_netem_rate rate;
 
 867
 868	qopt.latency = q->latency;
 869	qopt.jitter = q->jitter;
 
 
 870	qopt.limit = q->limit;
 871	qopt.loss = q->loss;
 872	qopt.gap = q->gap;
 873	qopt.duplicate = q->duplicate;
 874	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
 875		goto nla_put_failure;
 876
 
 
 
 
 
 
 877	cor.delay_corr = q->delay_cor.rho;
 878	cor.loss_corr = q->loss_cor.rho;
 879	cor.dup_corr = q->dup_cor.rho;
 880	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
 881		goto nla_put_failure;
 882
 883	reorder.probability = q->reorder;
 884	reorder.correlation = q->reorder_cor.rho;
 885	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
 886		goto nla_put_failure;
 887
 888	corrupt.probability = q->corrupt;
 889	corrupt.correlation = q->corrupt_cor.rho;
 890	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
 891		goto nla_put_failure;
 892
 893	rate.rate = q->rate;
 
 
 
 
 
 
 
 894	rate.packet_overhead = q->packet_overhead;
 895	rate.cell_size = q->cell_size;
 896	rate.cell_overhead = q->cell_overhead;
 897	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
 898		goto nla_put_failure;
 899
 900	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
 901		goto nla_put_failure;
 902
 903	if (dump_loss_model(q, skb) != 0)
 904		goto nla_put_failure;
 905
 
 
 
 
 
 
 
 
 
 
 906	return nla_nest_end(skb, nla);
 907
 908nla_put_failure:
 909	nlmsg_trim(skb, nla);
 910	return -1;
 911}
 912
 913static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
 914			  struct sk_buff *skb, struct tcmsg *tcm)
 915{
 916	struct netem_sched_data *q = qdisc_priv(sch);
 917
 918	if (cl != 1 || !q->qdisc) 	/* only one class */
 919		return -ENOENT;
 920
 921	tcm->tcm_handle |= TC_H_MIN(1);
 922	tcm->tcm_info = q->qdisc->handle;
 923
 924	return 0;
 925}
 926
 927static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
 928		     struct Qdisc **old)
 929{
 930	struct netem_sched_data *q = qdisc_priv(sch);
 931
 932	sch_tree_lock(sch);
 933	*old = q->qdisc;
 934	q->qdisc = new;
 935	if (*old) {
 936		qdisc_tree_decrease_qlen(*old, (*old)->q.qlen);
 937		qdisc_reset(*old);
 938	}
 939	sch_tree_unlock(sch);
 940
 941	return 0;
 942}
 943
 944static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
 945{
 946	struct netem_sched_data *q = qdisc_priv(sch);
 947	return q->qdisc;
 948}
 949
 950static unsigned long netem_get(struct Qdisc *sch, u32 classid)
 951{
 952	return 1;
 953}
 954
 955static void netem_put(struct Qdisc *sch, unsigned long arg)
 956{
 957}
 958
 959static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
 960{
 961	if (!walker->stop) {
 962		if (walker->count >= walker->skip)
 963			if (walker->fn(sch, 1, walker) < 0) {
 964				walker->stop = 1;
 965				return;
 966			}
 967		walker->count++;
 968	}
 969}
 970
 971static const struct Qdisc_class_ops netem_class_ops = {
 972	.graft		=	netem_graft,
 973	.leaf		=	netem_leaf,
 974	.get		=	netem_get,
 975	.put		=	netem_put,
 976	.walk		=	netem_walk,
 977	.dump		=	netem_dump_class,
 978};
 979
 980static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
 981	.id		=	"netem",
 982	.cl_ops		=	&netem_class_ops,
 983	.priv_size	=	sizeof(struct netem_sched_data),
 984	.enqueue	=	netem_enqueue,
 985	.dequeue	=	netem_dequeue,
 986	.peek		=	qdisc_peek_dequeued,
 987	.drop		=	netem_drop,
 988	.init		=	netem_init,
 989	.reset		=	netem_reset,
 990	.destroy	=	netem_destroy,
 991	.change		=	netem_change,
 992	.dump		=	netem_dump,
 993	.owner		=	THIS_MODULE,
 994};
 995
 996
 997static int __init netem_module_init(void)
 998{
 999	pr_info("netem: version " VERSION "\n");
1000	return register_qdisc(&netem_qdisc_ops);
1001}
1002static void __exit netem_module_exit(void)
1003{
1004	unregister_qdisc(&netem_qdisc_ops);
1005}
1006module_init(netem_module_init)
1007module_exit(netem_module_exit)
1008MODULE_LICENSE("GPL");
v4.17
   1/*
   2 * net/sched/sch_netem.c	Network emulator
   3 *
   4 * 		This program is free software; you can redistribute it and/or
   5 * 		modify it under the terms of the GNU General Public License
   6 * 		as published by the Free Software Foundation; either version
   7 * 		2 of the License.
   8 *
   9 *  		Many of the algorithms and ideas for this came from
  10 *		NIST Net which is not copyrighted.
  11 *
  12 * Authors:	Stephen Hemminger <shemminger@osdl.org>
  13 *		Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
  14 */
  15
  16#include <linux/mm.h>
  17#include <linux/module.h>
  18#include <linux/slab.h>
  19#include <linux/types.h>
  20#include <linux/kernel.h>
  21#include <linux/errno.h>
  22#include <linux/skbuff.h>
  23#include <linux/vmalloc.h>
  24#include <linux/rtnetlink.h>
  25#include <linux/reciprocal_div.h>
  26#include <linux/rbtree.h>
  27
  28#include <net/netlink.h>
  29#include <net/pkt_sched.h>
  30#include <net/inet_ecn.h>
  31
  32#define VERSION "1.3"
  33
  34/*	Network Emulation Queuing algorithm.
  35	====================================
  36
  37	Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
  38		 Network Emulation Tool
  39		 [2] Luigi Rizzo, DummyNet for FreeBSD
  40
  41	 ----------------------------------------------------------------
  42
  43	 This started out as a simple way to delay outgoing packets to
  44	 test TCP but has grown to include most of the functionality
  45	 of a full blown network emulator like NISTnet. It can delay
  46	 packets and add random jitter (and correlation). The random
  47	 distribution can be loaded from a table as well to provide
  48	 normal, Pareto, or experimental curves. Packet loss,
  49	 duplication, and reordering can also be emulated.
  50
  51	 This qdisc does not do classification that can be handled in
  52	 layering other disciplines.  It does not need to do bandwidth
  53	 control either since that can be handled by using token
  54	 bucket or other rate control.
  55
  56     Correlated Loss Generator models
  57
  58	Added generation of correlated loss according to the
  59	"Gilbert-Elliot" model, a 4-state markov model.
  60
  61	References:
  62	[1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
  63	[2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
  64	and intuitive loss model for packet networks and its implementation
  65	in the Netem module in the Linux kernel", available in [1]
  66
  67	Authors: Stefano Salsano <stefano.salsano at uniroma2.it
  68		 Fabio Ludovici <fabio.ludovici at yahoo.it>
  69*/
  70
  71struct netem_sched_data {
  72	/* internal t(ime)fifo qdisc uses t_root and sch->limit */
  73	struct rb_root t_root;
  74
  75	/* optional qdisc for classful handling (NULL at netem init) */
  76	struct Qdisc	*qdisc;
  77
  78	struct qdisc_watchdog watchdog;
  79
  80	s64 latency;
  81	s64 jitter;
  82
  83	u32 loss;
  84	u32 ecn;
  85	u32 limit;
  86	u32 counter;
  87	u32 gap;
  88	u32 duplicate;
  89	u32 reorder;
  90	u32 corrupt;
  91	u64 rate;
  92	s32 packet_overhead;
  93	u32 cell_size;
  94	struct reciprocal_value cell_size_reciprocal;
  95	s32 cell_overhead;
  96
  97	struct crndstate {
  98		u32 last;
  99		u32 rho;
 100	} delay_cor, loss_cor, dup_cor, reorder_cor, corrupt_cor;
 101
 102	struct disttable {
 103		u32  size;
 104		s16 table[0];
 105	} *delay_dist;
 106
 107	enum  {
 108		CLG_RANDOM,
 109		CLG_4_STATES,
 110		CLG_GILB_ELL,
 111	} loss_model;
 112
 113	enum {
 114		TX_IN_GAP_PERIOD = 1,
 115		TX_IN_BURST_PERIOD,
 116		LOST_IN_GAP_PERIOD,
 117		LOST_IN_BURST_PERIOD,
 118	} _4_state_model;
 119
 120	enum {
 121		GOOD_STATE = 1,
 122		BAD_STATE,
 123	} GE_state_model;
 124
 125	/* Correlated Loss Generation models */
 126	struct clgstate {
 127		/* state of the Markov chain */
 128		u8 state;
 129
 130		/* 4-states and Gilbert-Elliot models */
 131		u32 a1;	/* p13 for 4-states or p for GE */
 132		u32 a2;	/* p31 for 4-states or r for GE */
 133		u32 a3;	/* p32 for 4-states or h for GE */
 134		u32 a4;	/* p14 for 4-states or 1-k for GE */
 135		u32 a5; /* p23 used only in 4-states */
 136	} clg;
 137
 138	struct tc_netem_slot slot_config;
 139	struct slotstate {
 140		u64 slot_next;
 141		s32 packets_left;
 142		s32 bytes_left;
 143	} slot;
 144
 145};
 146
 147/* Time stamp put into socket buffer control block
 148 * Only valid when skbs are in our internal t(ime)fifo queue.
 149 *
 150 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
 151 * and skb->next & skb->prev are scratch space for a qdisc,
 152 * we save skb->tstamp value in skb->cb[] before destroying it.
 153 */
 154struct netem_skb_cb {
 155	u64	        time_to_send;
 156};
 157
 158static inline struct netem_skb_cb *netem_skb_cb(struct sk_buff *skb)
 159{
 160	/* we assume we can use skb next/prev/tstamp as storage for rb_node */
 161	qdisc_cb_private_validate(skb, sizeof(struct netem_skb_cb));
 162	return (struct netem_skb_cb *)qdisc_skb_cb(skb)->data;
 163}
 164
 165/* init_crandom - initialize correlated random number generator
 166 * Use entropy source for initial seed.
 167 */
 168static void init_crandom(struct crndstate *state, unsigned long rho)
 169{
 170	state->rho = rho;
 171	state->last = prandom_u32();
 172}
 173
 174/* get_crandom - correlated random number generator
 175 * Next number depends on last value.
 176 * rho is scaled to avoid floating point.
 177 */
 178static u32 get_crandom(struct crndstate *state)
 179{
 180	u64 value, rho;
 181	unsigned long answer;
 182
 183	if (state->rho == 0)	/* no correlation */
 184		return prandom_u32();
 185
 186	value = prandom_u32();
 187	rho = (u64)state->rho + 1;
 188	answer = (value * ((1ull<<32) - rho) + state->last * rho) >> 32;
 189	state->last = answer;
 190	return answer;
 191}
 192
 193/* loss_4state - 4-state model loss generator
 194 * Generates losses according to the 4-state Markov chain adopted in
 195 * the GI (General and Intuitive) loss model.
 196 */
 197static bool loss_4state(struct netem_sched_data *q)
 198{
 199	struct clgstate *clg = &q->clg;
 200	u32 rnd = prandom_u32();
 201
 202	/*
 203	 * Makes a comparison between rnd and the transition
 204	 * probabilities outgoing from the current state, then decides the
 205	 * next state and if the next packet has to be transmitted or lost.
 206	 * The four states correspond to:
 207	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
 208	 *   LOST_IN_BURST_PERIOD => isolated losses within a gap period
 209	 *   LOST_IN_GAP_PERIOD => lost packets within a burst period
 210	 *   TX_IN_GAP_PERIOD => successfully transmitted packets within a burst period
 211	 */
 212	switch (clg->state) {
 213	case TX_IN_GAP_PERIOD:
 214		if (rnd < clg->a4) {
 215			clg->state = LOST_IN_BURST_PERIOD;
 216			return true;
 217		} else if (clg->a4 < rnd && rnd < clg->a1 + clg->a4) {
 218			clg->state = LOST_IN_GAP_PERIOD;
 219			return true;
 220		} else if (clg->a1 + clg->a4 < rnd) {
 221			clg->state = TX_IN_GAP_PERIOD;
 222		}
 223
 224		break;
 225	case TX_IN_BURST_PERIOD:
 226		if (rnd < clg->a5) {
 227			clg->state = LOST_IN_GAP_PERIOD;
 228			return true;
 229		} else {
 230			clg->state = TX_IN_BURST_PERIOD;
 231		}
 232
 233		break;
 234	case LOST_IN_GAP_PERIOD:
 235		if (rnd < clg->a3)
 236			clg->state = TX_IN_BURST_PERIOD;
 237		else if (clg->a3 < rnd && rnd < clg->a2 + clg->a3) {
 238			clg->state = TX_IN_GAP_PERIOD;
 
 239		} else if (clg->a2 + clg->a3 < rnd) {
 240			clg->state = LOST_IN_GAP_PERIOD;
 241			return true;
 242		}
 243		break;
 244	case LOST_IN_BURST_PERIOD:
 245		clg->state = TX_IN_GAP_PERIOD;
 246		break;
 247	}
 248
 249	return false;
 250}
 251
 252/* loss_gilb_ell - Gilbert-Elliot model loss generator
 253 * Generates losses according to the Gilbert-Elliot loss model or
 254 * its special cases  (Gilbert or Simple Gilbert)
 255 *
 256 * Makes a comparison between random number and the transition
 257 * probabilities outgoing from the current state, then decides the
 258 * next state. A second random number is extracted and the comparison
 259 * with the loss probability of the current state decides if the next
 260 * packet will be transmitted or lost.
 261 */
 262static bool loss_gilb_ell(struct netem_sched_data *q)
 263{
 264	struct clgstate *clg = &q->clg;
 265
 266	switch (clg->state) {
 267	case GOOD_STATE:
 268		if (prandom_u32() < clg->a1)
 269			clg->state = BAD_STATE;
 270		if (prandom_u32() < clg->a4)
 271			return true;
 272		break;
 273	case BAD_STATE:
 274		if (prandom_u32() < clg->a2)
 275			clg->state = GOOD_STATE;
 276		if (prandom_u32() > clg->a3)
 277			return true;
 278	}
 279
 280	return false;
 281}
 282
 283static bool loss_event(struct netem_sched_data *q)
 284{
 285	switch (q->loss_model) {
 286	case CLG_RANDOM:
 287		/* Random packet drop 0 => none, ~0 => all */
 288		return q->loss && q->loss >= get_crandom(&q->loss_cor);
 289
 290	case CLG_4_STATES:
 291		/* 4state loss model algorithm (used also for GI model)
 292		* Extracts a value from the markov 4 state loss generator,
 293		* if it is 1 drops a packet and if needed writes the event in
 294		* the kernel logs
 295		*/
 296		return loss_4state(q);
 297
 298	case CLG_GILB_ELL:
 299		/* Gilbert-Elliot loss model algorithm
 300		* Extracts a value from the Gilbert-Elliot loss generator,
 301		* if it is 1 drops a packet and if needed writes the event in
 302		* the kernel logs
 303		*/
 304		return loss_gilb_ell(q);
 305	}
 306
 307	return false;	/* not reached */
 308}
 309
 310
 311/* tabledist - return a pseudo-randomly distributed value with mean mu and
 312 * std deviation sigma.  Uses table lookup to approximate the desired
 313 * distribution, and a uniformly-distributed pseudo-random source.
 314 */
 315static s64 tabledist(s64 mu, s32 sigma,
 316		     struct crndstate *state,
 317		     const struct disttable *dist)
 318{
 319	s64 x;
 320	long t;
 321	u32 rnd;
 322
 323	if (sigma == 0)
 324		return mu;
 325
 326	rnd = get_crandom(state);
 327
 328	/* default uniform distribution */
 329	if (dist == NULL)
 330		return ((rnd % (2 * sigma)) + mu) - sigma;
 331
 332	t = dist->table[rnd % dist->size];
 333	x = (sigma % NETEM_DIST_SCALE) * t;
 334	if (x >= 0)
 335		x += NETEM_DIST_SCALE/2;
 336	else
 337		x -= NETEM_DIST_SCALE/2;
 338
 339	return  x / NETEM_DIST_SCALE + (sigma / NETEM_DIST_SCALE) * t + mu;
 340}
 341
 342static u64 packet_time_ns(u64 len, const struct netem_sched_data *q)
 343{
 
 
 344	len += q->packet_overhead;
 345
 346	if (q->cell_size) {
 347		u32 cells = reciprocal_divide(len, q->cell_size_reciprocal);
 348
 349		if (len > cells * q->cell_size)	/* extra cell needed for remainder */
 350			cells++;
 351		len = cells * (q->cell_size + q->cell_overhead);
 352	}
 353
 354	return div64_u64(len * NSEC_PER_SEC, q->rate);
 355}
 356
 357static void tfifo_reset(struct Qdisc *sch)
 358{
 359	struct netem_sched_data *q = qdisc_priv(sch);
 360	struct rb_node *p = rb_first(&q->t_root);
 361
 362	while (p) {
 363		struct sk_buff *skb = rb_to_skb(p);
 364
 365		p = rb_next(p);
 366		rb_erase(&skb->rbnode, &q->t_root);
 367		rtnl_kfree_skbs(skb, skb);
 368	}
 369}
 370
 371static void tfifo_enqueue(struct sk_buff *nskb, struct Qdisc *sch)
 372{
 373	struct netem_sched_data *q = qdisc_priv(sch);
 374	u64 tnext = netem_skb_cb(nskb)->time_to_send;
 375	struct rb_node **p = &q->t_root.rb_node, *parent = NULL;
 
 
 
 
 376
 377	while (*p) {
 378		struct sk_buff *skb;
 379
 380		parent = *p;
 381		skb = rb_to_skb(parent);
 382		if (tnext >= netem_skb_cb(skb)->time_to_send)
 383			p = &parent->rb_right;
 384		else
 385			p = &parent->rb_left;
 386	}
 387	rb_link_node(&nskb->rbnode, parent, p);
 388	rb_insert_color(&nskb->rbnode, &q->t_root);
 389	sch->q.qlen++;
 390}
 391
 392/* netem can't properly corrupt a megapacket (like we get from GSO), so instead
 393 * when we statistically choose to corrupt one, we instead segment it, returning
 394 * the first packet to be corrupted, and re-enqueue the remaining frames
 395 */
 396static struct sk_buff *netem_segment(struct sk_buff *skb, struct Qdisc *sch,
 397				     struct sk_buff **to_free)
 398{
 399	struct sk_buff *segs;
 400	netdev_features_t features = netif_skb_features(skb);
 401
 402	segs = skb_gso_segment(skb, features & ~NETIF_F_GSO_MASK);
 403
 404	if (IS_ERR_OR_NULL(segs)) {
 405		qdisc_drop(skb, sch, to_free);
 406		return NULL;
 407	}
 408	consume_skb(skb);
 409	return segs;
 410}
 411
 412static void netem_enqueue_skb_head(struct qdisc_skb_head *qh, struct sk_buff *skb)
 413{
 414	skb->next = qh->head;
 415
 416	if (!qh->head)
 417		qh->tail = skb;
 418	qh->head = skb;
 419	qh->qlen++;
 420}
 421
 422/*
 423 * Insert one skb into qdisc.
 424 * Note: parent depends on return value to account for queue length.
 425 * 	NET_XMIT_DROP: queue length didn't change.
 426 *      NET_XMIT_SUCCESS: one skb was queued.
 427 */
 428static int netem_enqueue(struct sk_buff *skb, struct Qdisc *sch,
 429			 struct sk_buff **to_free)
 430{
 431	struct netem_sched_data *q = qdisc_priv(sch);
 432	/* We don't fill cb now as skb_unshare() may invalidate it */
 433	struct netem_skb_cb *cb;
 434	struct sk_buff *skb2;
 435	struct sk_buff *segs = NULL;
 436	unsigned int len = 0, last_len, prev_len = qdisc_pkt_len(skb);
 437	int nb = 0;
 438	int count = 1;
 439	int rc = NET_XMIT_SUCCESS;
 440
 441	/* Random duplication */
 442	if (q->duplicate && q->duplicate >= get_crandom(&q->dup_cor))
 443		++count;
 444
 445	/* Drop packet? */
 446	if (loss_event(q)) {
 447		if (q->ecn && INET_ECN_set_ce(skb))
 448			qdisc_qstats_drop(sch); /* mark packet */
 449		else
 450			--count;
 451	}
 452	if (count == 0) {
 453		qdisc_qstats_drop(sch);
 454		__qdisc_drop(skb, to_free);
 455		return NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
 456	}
 457
 458	/* If a delay is expected, orphan the skb. (orphaning usually takes
 459	 * place at TX completion time, so _before_ the link transit delay)
 460	 */
 461	if (q->latency || q->jitter || q->rate)
 462		skb_orphan_partial(skb);
 463
 464	/*
 465	 * If we need to duplicate packet, then re-insert at top of the
 466	 * qdisc tree, since parent queuer expects that only one
 467	 * skb will be queued.
 468	 */
 469	if (count > 1 && (skb2 = skb_clone(skb, GFP_ATOMIC)) != NULL) {
 470		struct Qdisc *rootq = qdisc_root(sch);
 471		u32 dupsave = q->duplicate; /* prevent duplicating a dup... */
 
 472
 473		q->duplicate = 0;
 474		rootq->enqueue(skb2, rootq, to_free);
 475		q->duplicate = dupsave;
 476	}
 477
 478	/*
 479	 * Randomized packet corruption.
 480	 * Make copy if needed since we are modifying
 481	 * If packet is going to be hardware checksummed, then
 482	 * do it now in software before we mangle it.
 483	 */
 484	if (q->corrupt && q->corrupt >= get_crandom(&q->corrupt_cor)) {
 485		if (skb_is_gso(skb)) {
 486			segs = netem_segment(skb, sch, to_free);
 487			if (!segs)
 488				return NET_XMIT_DROP;
 489		} else {
 490			segs = skb;
 491		}
 492
 493		skb = segs;
 494		segs = segs->next;
 495
 496		skb = skb_unshare(skb, GFP_ATOMIC);
 497		if (unlikely(!skb)) {
 498			qdisc_qstats_drop(sch);
 499			goto finish_segs;
 500		}
 501		if (skb->ip_summed == CHECKSUM_PARTIAL &&
 502		    skb_checksum_help(skb)) {
 503			qdisc_drop(skb, sch, to_free);
 504			goto finish_segs;
 505		}
 506
 507		skb->data[prandom_u32() % skb_headlen(skb)] ^=
 508			1<<(prandom_u32() % 8);
 509	}
 510
 511	if (unlikely(sch->q.qlen >= sch->limit))
 512		return qdisc_drop_all(skb, sch, to_free);
 513
 514	qdisc_qstats_backlog_inc(sch, skb);
 515
 516	cb = netem_skb_cb(skb);
 517	if (q->gap == 0 ||		/* not doing reordering */
 518	    q->counter < q->gap - 1 ||	/* inside last reordering gap */
 519	    q->reorder < get_crandom(&q->reorder_cor)) {
 520		u64 now;
 521		s64 delay;
 522
 523		delay = tabledist(q->latency, q->jitter,
 524				  &q->delay_cor, q->delay_dist);
 525
 526		now = ktime_get_ns();
 527
 528		if (q->rate) {
 529			struct netem_skb_cb *last = NULL;
 530
 531			if (sch->q.tail)
 532				last = netem_skb_cb(sch->q.tail);
 533			if (q->t_root.rb_node) {
 534				struct sk_buff *t_skb;
 535				struct netem_skb_cb *t_last;
 536
 537				t_skb = skb_rb_last(&q->t_root);
 538				t_last = netem_skb_cb(t_skb);
 539				if (!last ||
 540				    t_last->time_to_send > last->time_to_send) {
 541					last = t_last;
 542				}
 543			}
 544
 545			if (last) {
 546				/*
 547				 * Last packet in queue is reference point (now),
 548				 * calculate this time bonus and subtract
 
 549				 * from delay.
 550				 */
 551				delay -= last->time_to_send - now;
 552				delay = max_t(s64, 0, delay);
 553				now = last->time_to_send;
 554			}
 555
 556			delay += packet_time_ns(qdisc_pkt_len(skb), q);
 557		}
 558
 559		cb->time_to_send = now + delay;
 560		++q->counter;
 561		tfifo_enqueue(skb, sch);
 562	} else {
 563		/*
 564		 * Do re-ordering by putting one out of N packets at the front
 565		 * of the queue.
 566		 */
 567		cb->time_to_send = ktime_get_ns();
 568		q->counter = 0;
 569
 570		netem_enqueue_skb_head(&sch->q, skb);
 571		sch->qstats.requeues++;
 572	}
 573
 574finish_segs:
 575	if (segs) {
 576		while (segs) {
 577			skb2 = segs->next;
 578			segs->next = NULL;
 579			qdisc_skb_cb(segs)->pkt_len = segs->len;
 580			last_len = segs->len;
 581			rc = qdisc_enqueue(segs, sch, to_free);
 582			if (rc != NET_XMIT_SUCCESS) {
 583				if (net_xmit_drop_count(rc))
 584					qdisc_qstats_drop(sch);
 585			} else {
 586				nb++;
 587				len += last_len;
 588			}
 589			segs = skb2;
 590		}
 591		sch->q.qlen += nb;
 592		if (nb > 1)
 593			qdisc_tree_reduce_backlog(sch, 1 - nb, prev_len - len);
 594	}
 595	return NET_XMIT_SUCCESS;
 596}
 597
 598/* Delay the next round with a new future slot with a
 599 * correct number of bytes and packets.
 600 */
 
 
 
 
 
 
 
 601
 602static void get_slot_next(struct netem_sched_data *q, u64 now)
 603{
 604	q->slot.slot_next = now + q->slot_config.min_delay +
 605		(prandom_u32() *
 606			(q->slot_config.max_delay -
 607				q->slot_config.min_delay) >> 32);
 608	q->slot.packets_left = q->slot_config.max_packets;
 609	q->slot.bytes_left = q->slot_config.max_bytes;
 610}
 611
 612static struct sk_buff *netem_dequeue(struct Qdisc *sch)
 613{
 614	struct netem_sched_data *q = qdisc_priv(sch);
 615	struct sk_buff *skb;
 616	struct rb_node *p;
 
 
 617
 618tfifo_dequeue:
 619	skb = __qdisc_dequeue_head(&sch->q);
 620	if (skb) {
 621		qdisc_qstats_backlog_dec(sch, skb);
 622deliver:
 623		qdisc_bstats_update(sch, skb);
 624		return skb;
 625	}
 626	p = rb_first(&q->t_root);
 627	if (p) {
 628		u64 time_to_send;
 629		u64 now = ktime_get_ns();
 630
 631		skb = rb_to_skb(p);
 632
 633		/* if more time remaining? */
 634		time_to_send = netem_skb_cb(skb)->time_to_send;
 635		if (q->slot.slot_next && q->slot.slot_next < time_to_send)
 636			get_slot_next(q, now);
 637
 638		if (time_to_send <= now &&  q->slot.slot_next <= now) {
 639			rb_erase(p, &q->t_root);
 640			sch->q.qlen--;
 641			qdisc_qstats_backlog_dec(sch, skb);
 642			skb->next = NULL;
 643			skb->prev = NULL;
 644			/* skb->dev shares skb->rbnode area,
 645			 * we need to restore its value.
 646			 */
 647			skb->dev = qdisc_dev(sch);
 648
 649#ifdef CONFIG_NET_CLS_ACT
 650			/*
 651			 * If it's at ingress let's pretend the delay is
 652			 * from the network (tstamp will be updated).
 653			 */
 654			if (skb->tc_redirected && skb->tc_from_ingress)
 655				skb->tstamp = 0;
 656#endif
 657
 658			if (q->slot.slot_next) {
 659				q->slot.packets_left--;
 660				q->slot.bytes_left -= qdisc_pkt_len(skb);
 661				if (q->slot.packets_left <= 0 ||
 662				    q->slot.bytes_left <= 0)
 663					get_slot_next(q, now);
 664			}
 665
 666			if (q->qdisc) {
 667				unsigned int pkt_len = qdisc_pkt_len(skb);
 668				struct sk_buff *to_free = NULL;
 669				int err;
 670
 671				err = qdisc_enqueue(skb, q->qdisc, &to_free);
 672				kfree_skb_list(to_free);
 673				if (err != NET_XMIT_SUCCESS &&
 674				    net_xmit_drop_count(err)) {
 675					qdisc_qstats_drop(sch);
 676					qdisc_tree_reduce_backlog(sch, 1,
 677								  pkt_len);
 678				}
 679				goto tfifo_dequeue;
 680			}
 681			goto deliver;
 
 
 
 682		}
 683
 684		if (q->qdisc) {
 685			skb = q->qdisc->ops->dequeue(q->qdisc);
 686			if (skb)
 687				goto deliver;
 688		}
 689
 690		qdisc_watchdog_schedule_ns(&q->watchdog,
 691					   max(time_to_send,
 692					       q->slot.slot_next));
 693	}
 694
 695	if (q->qdisc) {
 696		skb = q->qdisc->ops->dequeue(q->qdisc);
 697		if (skb)
 698			goto deliver;
 699	}
 700	return NULL;
 701}
 702
 703static void netem_reset(struct Qdisc *sch)
 704{
 705	struct netem_sched_data *q = qdisc_priv(sch);
 706
 707	qdisc_reset_queue(sch);
 708	tfifo_reset(sch);
 709	if (q->qdisc)
 710		qdisc_reset(q->qdisc);
 711	qdisc_watchdog_cancel(&q->watchdog);
 712}
 713
 714static void dist_free(struct disttable *d)
 715{
 716	kvfree(d);
 
 
 
 
 
 717}
 718
 719/*
 720 * Distribution data is a variable size payload containing
 721 * signed 16 bit values.
 722 */
 723
 724static int get_dist_table(struct Qdisc *sch, const struct nlattr *attr)
 725{
 726	struct netem_sched_data *q = qdisc_priv(sch);
 727	size_t n = nla_len(attr)/sizeof(__s16);
 728	const __s16 *data = nla_data(attr);
 729	spinlock_t *root_lock;
 730	struct disttable *d;
 731	int i;
 
 732
 733	if (n > NETEM_DIST_MAX)
 734		return -EINVAL;
 735
 736	d = kvmalloc(sizeof(struct disttable) + n * sizeof(s16), GFP_KERNEL);
 
 
 
 737	if (!d)
 738		return -ENOMEM;
 739
 740	d->size = n;
 741	for (i = 0; i < n; i++)
 742		d->table[i] = data[i];
 743
 744	root_lock = qdisc_root_sleeping_lock(sch);
 745
 746	spin_lock_bh(root_lock);
 747	swap(q->delay_dist, d);
 748	spin_unlock_bh(root_lock);
 749
 750	dist_free(d);
 751	return 0;
 752}
 753
 754static void get_slot(struct netem_sched_data *q, const struct nlattr *attr)
 755{
 756	const struct tc_netem_slot *c = nla_data(attr);
 757
 758	q->slot_config = *c;
 759	if (q->slot_config.max_packets == 0)
 760		q->slot_config.max_packets = INT_MAX;
 761	if (q->slot_config.max_bytes == 0)
 762		q->slot_config.max_bytes = INT_MAX;
 763	q->slot.packets_left = q->slot_config.max_packets;
 764	q->slot.bytes_left = q->slot_config.max_bytes;
 765	if (q->slot_config.min_delay | q->slot_config.max_delay)
 766		q->slot.slot_next = ktime_get_ns();
 767	else
 768		q->slot.slot_next = 0;
 769}
 770
 771static void get_correlation(struct netem_sched_data *q, const struct nlattr *attr)
 772{
 
 773	const struct tc_netem_corr *c = nla_data(attr);
 774
 775	init_crandom(&q->delay_cor, c->delay_corr);
 776	init_crandom(&q->loss_cor, c->loss_corr);
 777	init_crandom(&q->dup_cor, c->dup_corr);
 778}
 779
 780static void get_reorder(struct netem_sched_data *q, const struct nlattr *attr)
 781{
 
 782	const struct tc_netem_reorder *r = nla_data(attr);
 783
 784	q->reorder = r->probability;
 785	init_crandom(&q->reorder_cor, r->correlation);
 786}
 787
 788static void get_corrupt(struct netem_sched_data *q, const struct nlattr *attr)
 789{
 
 790	const struct tc_netem_corrupt *r = nla_data(attr);
 791
 792	q->corrupt = r->probability;
 793	init_crandom(&q->corrupt_cor, r->correlation);
 794}
 795
 796static void get_rate(struct netem_sched_data *q, const struct nlattr *attr)
 797{
 
 798	const struct tc_netem_rate *r = nla_data(attr);
 799
 800	q->rate = r->rate;
 801	q->packet_overhead = r->packet_overhead;
 802	q->cell_size = r->cell_size;
 803	q->cell_overhead = r->cell_overhead;
 804	if (q->cell_size)
 805		q->cell_size_reciprocal = reciprocal_value(q->cell_size);
 806	else
 807		q->cell_size_reciprocal = (struct reciprocal_value) { 0 };
 808}
 809
 810static int get_loss_clg(struct netem_sched_data *q, const struct nlattr *attr)
 811{
 
 812	const struct nlattr *la;
 813	int rem;
 814
 815	nla_for_each_nested(la, attr, rem) {
 816		u16 type = nla_type(la);
 817
 818		switch (type) {
 819		case NETEM_LOSS_GI: {
 820			const struct tc_netem_gimodel *gi = nla_data(la);
 821
 822			if (nla_len(la) < sizeof(struct tc_netem_gimodel)) {
 823				pr_info("netem: incorrect gi model size\n");
 824				return -EINVAL;
 825			}
 826
 827			q->loss_model = CLG_4_STATES;
 828
 829			q->clg.state = TX_IN_GAP_PERIOD;
 830			q->clg.a1 = gi->p13;
 831			q->clg.a2 = gi->p31;
 832			q->clg.a3 = gi->p32;
 833			q->clg.a4 = gi->p14;
 834			q->clg.a5 = gi->p23;
 835			break;
 836		}
 837
 838		case NETEM_LOSS_GE: {
 839			const struct tc_netem_gemodel *ge = nla_data(la);
 840
 841			if (nla_len(la) < sizeof(struct tc_netem_gemodel)) {
 842				pr_info("netem: incorrect ge model size\n");
 843				return -EINVAL;
 844			}
 845
 846			q->loss_model = CLG_GILB_ELL;
 847			q->clg.state = GOOD_STATE;
 848			q->clg.a1 = ge->p;
 849			q->clg.a2 = ge->r;
 850			q->clg.a3 = ge->h;
 851			q->clg.a4 = ge->k1;
 852			break;
 853		}
 854
 855		default:
 856			pr_info("netem: unknown loss type %u\n", type);
 857			return -EINVAL;
 858		}
 859	}
 860
 861	return 0;
 862}
 863
 864static const struct nla_policy netem_policy[TCA_NETEM_MAX + 1] = {
 865	[TCA_NETEM_CORR]	= { .len = sizeof(struct tc_netem_corr) },
 866	[TCA_NETEM_REORDER]	= { .len = sizeof(struct tc_netem_reorder) },
 867	[TCA_NETEM_CORRUPT]	= { .len = sizeof(struct tc_netem_corrupt) },
 868	[TCA_NETEM_RATE]	= { .len = sizeof(struct tc_netem_rate) },
 869	[TCA_NETEM_LOSS]	= { .type = NLA_NESTED },
 870	[TCA_NETEM_ECN]		= { .type = NLA_U32 },
 871	[TCA_NETEM_RATE64]	= { .type = NLA_U64 },
 872	[TCA_NETEM_LATENCY64]	= { .type = NLA_S64 },
 873	[TCA_NETEM_JITTER64]	= { .type = NLA_S64 },
 874	[TCA_NETEM_SLOT]	= { .len = sizeof(struct tc_netem_slot) },
 875};
 876
 877static int parse_attr(struct nlattr *tb[], int maxtype, struct nlattr *nla,
 878		      const struct nla_policy *policy, int len)
 879{
 880	int nested_len = nla_len(nla) - NLA_ALIGN(len);
 881
 882	if (nested_len < 0) {
 883		pr_info("netem: invalid attributes len %d\n", nested_len);
 884		return -EINVAL;
 885	}
 886
 887	if (nested_len >= nla_attr_size(0))
 888		return nla_parse(tb, maxtype, nla_data(nla) + NLA_ALIGN(len),
 889				 nested_len, policy, NULL);
 890
 891	memset(tb, 0, sizeof(struct nlattr *) * (maxtype + 1));
 892	return 0;
 893}
 894
 895/* Parse netlink message to set options */
 896static int netem_change(struct Qdisc *sch, struct nlattr *opt,
 897			struct netlink_ext_ack *extack)
 898{
 899	struct netem_sched_data *q = qdisc_priv(sch);
 900	struct nlattr *tb[TCA_NETEM_MAX + 1];
 901	struct tc_netem_qopt *qopt;
 902	struct clgstate old_clg;
 903	int old_loss_model = CLG_RANDOM;
 904	int ret;
 905
 906	if (opt == NULL)
 907		return -EINVAL;
 908
 909	qopt = nla_data(opt);
 910	ret = parse_attr(tb, TCA_NETEM_MAX, opt, netem_policy, sizeof(*qopt));
 911	if (ret < 0)
 912		return ret;
 913
 914	/* backup q->clg and q->loss_model */
 915	old_clg = q->clg;
 916	old_loss_model = q->loss_model;
 917
 918	if (tb[TCA_NETEM_LOSS]) {
 919		ret = get_loss_clg(q, tb[TCA_NETEM_LOSS]);
 920		if (ret) {
 921			q->loss_model = old_loss_model;
 922			return ret;
 923		}
 924	} else {
 925		q->loss_model = CLG_RANDOM;
 926	}
 927
 928	if (tb[TCA_NETEM_DELAY_DIST]) {
 929		ret = get_dist_table(sch, tb[TCA_NETEM_DELAY_DIST]);
 930		if (ret) {
 931			/* recover clg and loss_model, in case of
 932			 * q->clg and q->loss_model were modified
 933			 * in get_loss_clg()
 934			 */
 935			q->clg = old_clg;
 936			q->loss_model = old_loss_model;
 937			return ret;
 938		}
 939	}
 940
 941	sch->limit = qopt->limit;
 942
 943	q->latency = PSCHED_TICKS2NS(qopt->latency);
 944	q->jitter = PSCHED_TICKS2NS(qopt->jitter);
 945	q->limit = qopt->limit;
 946	q->gap = qopt->gap;
 947	q->counter = 0;
 948	q->loss = qopt->loss;
 949	q->duplicate = qopt->duplicate;
 950
 951	/* for compatibility with earlier versions.
 952	 * if gap is set, need to assume 100% probability
 953	 */
 954	if (q->gap)
 955		q->reorder = ~0;
 956
 957	if (tb[TCA_NETEM_CORR])
 958		get_correlation(q, tb[TCA_NETEM_CORR]);
 
 
 
 
 
 
 959
 960	if (tb[TCA_NETEM_REORDER])
 961		get_reorder(q, tb[TCA_NETEM_REORDER]);
 962
 963	if (tb[TCA_NETEM_CORRUPT])
 964		get_corrupt(q, tb[TCA_NETEM_CORRUPT]);
 965
 966	if (tb[TCA_NETEM_RATE])
 967		get_rate(q, tb[TCA_NETEM_RATE]);
 968
 969	if (tb[TCA_NETEM_RATE64])
 970		q->rate = max_t(u64, q->rate,
 971				nla_get_u64(tb[TCA_NETEM_RATE64]));
 972
 973	if (tb[TCA_NETEM_LATENCY64])
 974		q->latency = nla_get_s64(tb[TCA_NETEM_LATENCY64]);
 975
 976	if (tb[TCA_NETEM_JITTER64])
 977		q->jitter = nla_get_s64(tb[TCA_NETEM_JITTER64]);
 978
 979	if (tb[TCA_NETEM_ECN])
 980		q->ecn = nla_get_u32(tb[TCA_NETEM_ECN]);
 981
 982	if (tb[TCA_NETEM_SLOT])
 983		get_slot(q, tb[TCA_NETEM_SLOT]);
 
 984
 985	return ret;
 986}
 987
 988static int netem_init(struct Qdisc *sch, struct nlattr *opt,
 989		      struct netlink_ext_ack *extack)
 990{
 991	struct netem_sched_data *q = qdisc_priv(sch);
 992	int ret;
 993
 994	qdisc_watchdog_init(&q->watchdog, sch);
 995
 996	if (!opt)
 997		return -EINVAL;
 998
 
 
 999	q->loss_model = CLG_RANDOM;
1000	ret = netem_change(sch, opt, extack);
1001	if (ret)
1002		pr_info("netem: change failed\n");
1003	return ret;
1004}
1005
1006static void netem_destroy(struct Qdisc *sch)
1007{
1008	struct netem_sched_data *q = qdisc_priv(sch);
1009
1010	qdisc_watchdog_cancel(&q->watchdog);
1011	if (q->qdisc)
1012		qdisc_destroy(q->qdisc);
1013	dist_free(q->delay_dist);
1014}
1015
1016static int dump_loss_model(const struct netem_sched_data *q,
1017			   struct sk_buff *skb)
1018{
1019	struct nlattr *nest;
1020
1021	nest = nla_nest_start(skb, TCA_NETEM_LOSS);
1022	if (nest == NULL)
1023		goto nla_put_failure;
1024
1025	switch (q->loss_model) {
1026	case CLG_RANDOM:
1027		/* legacy loss model */
1028		nla_nest_cancel(skb, nest);
1029		return 0;	/* no data */
1030
1031	case CLG_4_STATES: {
1032		struct tc_netem_gimodel gi = {
1033			.p13 = q->clg.a1,
1034			.p31 = q->clg.a2,
1035			.p32 = q->clg.a3,
1036			.p14 = q->clg.a4,
1037			.p23 = q->clg.a5,
1038		};
1039
1040		if (nla_put(skb, NETEM_LOSS_GI, sizeof(gi), &gi))
1041			goto nla_put_failure;
1042		break;
1043	}
1044	case CLG_GILB_ELL: {
1045		struct tc_netem_gemodel ge = {
1046			.p = q->clg.a1,
1047			.r = q->clg.a2,
1048			.h = q->clg.a3,
1049			.k1 = q->clg.a4,
1050		};
1051
1052		if (nla_put(skb, NETEM_LOSS_GE, sizeof(ge), &ge))
1053			goto nla_put_failure;
1054		break;
1055	}
1056	}
1057
1058	nla_nest_end(skb, nest);
1059	return 0;
1060
1061nla_put_failure:
1062	nla_nest_cancel(skb, nest);
1063	return -1;
1064}
1065
1066static int netem_dump(struct Qdisc *sch, struct sk_buff *skb)
1067{
1068	const struct netem_sched_data *q = qdisc_priv(sch);
1069	struct nlattr *nla = (struct nlattr *) skb_tail_pointer(skb);
1070	struct tc_netem_qopt qopt;
1071	struct tc_netem_corr cor;
1072	struct tc_netem_reorder reorder;
1073	struct tc_netem_corrupt corrupt;
1074	struct tc_netem_rate rate;
1075	struct tc_netem_slot slot;
1076
1077	qopt.latency = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->latency),
1078			     UINT_MAX);
1079	qopt.jitter = min_t(psched_tdiff_t, PSCHED_NS2TICKS(q->jitter),
1080			    UINT_MAX);
1081	qopt.limit = q->limit;
1082	qopt.loss = q->loss;
1083	qopt.gap = q->gap;
1084	qopt.duplicate = q->duplicate;
1085	if (nla_put(skb, TCA_OPTIONS, sizeof(qopt), &qopt))
1086		goto nla_put_failure;
1087
1088	if (nla_put(skb, TCA_NETEM_LATENCY64, sizeof(q->latency), &q->latency))
1089		goto nla_put_failure;
1090
1091	if (nla_put(skb, TCA_NETEM_JITTER64, sizeof(q->jitter), &q->jitter))
1092		goto nla_put_failure;
1093
1094	cor.delay_corr = q->delay_cor.rho;
1095	cor.loss_corr = q->loss_cor.rho;
1096	cor.dup_corr = q->dup_cor.rho;
1097	if (nla_put(skb, TCA_NETEM_CORR, sizeof(cor), &cor))
1098		goto nla_put_failure;
1099
1100	reorder.probability = q->reorder;
1101	reorder.correlation = q->reorder_cor.rho;
1102	if (nla_put(skb, TCA_NETEM_REORDER, sizeof(reorder), &reorder))
1103		goto nla_put_failure;
1104
1105	corrupt.probability = q->corrupt;
1106	corrupt.correlation = q->corrupt_cor.rho;
1107	if (nla_put(skb, TCA_NETEM_CORRUPT, sizeof(corrupt), &corrupt))
1108		goto nla_put_failure;
1109
1110	if (q->rate >= (1ULL << 32)) {
1111		if (nla_put_u64_64bit(skb, TCA_NETEM_RATE64, q->rate,
1112				      TCA_NETEM_PAD))
1113			goto nla_put_failure;
1114		rate.rate = ~0U;
1115	} else {
1116		rate.rate = q->rate;
1117	}
1118	rate.packet_overhead = q->packet_overhead;
1119	rate.cell_size = q->cell_size;
1120	rate.cell_overhead = q->cell_overhead;
1121	if (nla_put(skb, TCA_NETEM_RATE, sizeof(rate), &rate))
1122		goto nla_put_failure;
1123
1124	if (q->ecn && nla_put_u32(skb, TCA_NETEM_ECN, q->ecn))
1125		goto nla_put_failure;
1126
1127	if (dump_loss_model(q, skb) != 0)
1128		goto nla_put_failure;
1129
1130	if (q->slot_config.min_delay | q->slot_config.max_delay) {
1131		slot = q->slot_config;
1132		if (slot.max_packets == INT_MAX)
1133			slot.max_packets = 0;
1134		if (slot.max_bytes == INT_MAX)
1135			slot.max_bytes = 0;
1136		if (nla_put(skb, TCA_NETEM_SLOT, sizeof(slot), &slot))
1137			goto nla_put_failure;
1138	}
1139
1140	return nla_nest_end(skb, nla);
1141
1142nla_put_failure:
1143	nlmsg_trim(skb, nla);
1144	return -1;
1145}
1146
1147static int netem_dump_class(struct Qdisc *sch, unsigned long cl,
1148			  struct sk_buff *skb, struct tcmsg *tcm)
1149{
1150	struct netem_sched_data *q = qdisc_priv(sch);
1151
1152	if (cl != 1 || !q->qdisc) 	/* only one class */
1153		return -ENOENT;
1154
1155	tcm->tcm_handle |= TC_H_MIN(1);
1156	tcm->tcm_info = q->qdisc->handle;
1157
1158	return 0;
1159}
1160
1161static int netem_graft(struct Qdisc *sch, unsigned long arg, struct Qdisc *new,
1162		     struct Qdisc **old, struct netlink_ext_ack *extack)
1163{
1164	struct netem_sched_data *q = qdisc_priv(sch);
1165
1166	*old = qdisc_replace(sch, new, &q->qdisc);
 
 
 
 
 
 
 
 
1167	return 0;
1168}
1169
1170static struct Qdisc *netem_leaf(struct Qdisc *sch, unsigned long arg)
1171{
1172	struct netem_sched_data *q = qdisc_priv(sch);
1173	return q->qdisc;
1174}
1175
1176static unsigned long netem_find(struct Qdisc *sch, u32 classid)
1177{
1178	return 1;
1179}
1180
 
 
 
 
1181static void netem_walk(struct Qdisc *sch, struct qdisc_walker *walker)
1182{
1183	if (!walker->stop) {
1184		if (walker->count >= walker->skip)
1185			if (walker->fn(sch, 1, walker) < 0) {
1186				walker->stop = 1;
1187				return;
1188			}
1189		walker->count++;
1190	}
1191}
1192
1193static const struct Qdisc_class_ops netem_class_ops = {
1194	.graft		=	netem_graft,
1195	.leaf		=	netem_leaf,
1196	.find		=	netem_find,
 
1197	.walk		=	netem_walk,
1198	.dump		=	netem_dump_class,
1199};
1200
1201static struct Qdisc_ops netem_qdisc_ops __read_mostly = {
1202	.id		=	"netem",
1203	.cl_ops		=	&netem_class_ops,
1204	.priv_size	=	sizeof(struct netem_sched_data),
1205	.enqueue	=	netem_enqueue,
1206	.dequeue	=	netem_dequeue,
1207	.peek		=	qdisc_peek_dequeued,
 
1208	.init		=	netem_init,
1209	.reset		=	netem_reset,
1210	.destroy	=	netem_destroy,
1211	.change		=	netem_change,
1212	.dump		=	netem_dump,
1213	.owner		=	THIS_MODULE,
1214};
1215
1216
1217static int __init netem_module_init(void)
1218{
1219	pr_info("netem: version " VERSION "\n");
1220	return register_qdisc(&netem_qdisc_ops);
1221}
1222static void __exit netem_module_exit(void)
1223{
1224	unregister_qdisc(&netem_qdisc_ops);
1225}
1226module_init(netem_module_init)
1227module_exit(netem_module_exit)
1228MODULE_LICENSE("GPL");