Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
 
 
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
  95				      struct context *tcontext,
  96				      u16 tclass,
  97				      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100	u16 value; /* policy value */
 101	unsigned num_perms;
 102	u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109			       struct security_class_mapping *map,
 110			       struct selinux_mapping **out_map_p,
 111			       u16 *out_map_size)
 112{
 113	struct selinux_mapping *out_map = NULL;
 114	size_t size = sizeof(struct selinux_mapping);
 115	u16 i, j;
 116	unsigned k;
 117	bool print_unknown_handle = false;
 118
 119	/* Find number of classes in the input mapping */
 120	if (!map)
 121		return -EINVAL;
 122	i = 0;
 123	while (map[i].name)
 124		i++;
 125
 126	/* Allocate space for the class records, plus one for class zero */
 127	out_map = kcalloc(++i, size, GFP_ATOMIC);
 128	if (!out_map)
 129		return -ENOMEM;
 130
 131	/* Store the raw class and permission values */
 132	j = 0;
 133	while (map[j].name) {
 134		struct security_class_mapping *p_in = map + (j++);
 135		struct selinux_mapping *p_out = out_map + j;
 136
 137		/* An empty class string skips ahead */
 138		if (!strcmp(p_in->name, "")) {
 139			p_out->num_perms = 0;
 140			continue;
 141		}
 142
 143		p_out->value = string_to_security_class(pol, p_in->name);
 144		if (!p_out->value) {
 145			printk(KERN_INFO
 146			       "SELinux:  Class %s not defined in policy.\n",
 147			       p_in->name);
 148			if (pol->reject_unknown)
 149				goto err;
 150			p_out->num_perms = 0;
 151			print_unknown_handle = true;
 152			continue;
 153		}
 154
 155		k = 0;
 156		while (p_in->perms && p_in->perms[k]) {
 157			/* An empty permission string skips ahead */
 158			if (!*p_in->perms[k]) {
 159				k++;
 160				continue;
 161			}
 162			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163							    p_in->perms[k]);
 164			if (!p_out->perms[k]) {
 165				printk(KERN_INFO
 166				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167				       p_in->perms[k], p_in->name);
 168				if (pol->reject_unknown)
 169					goto err;
 170				print_unknown_handle = true;
 171			}
 172
 173			k++;
 174		}
 175		p_out->num_perms = k;
 176	}
 177
 178	if (print_unknown_handle)
 179		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180		       pol->allow_unknown ? "allowed" : "denied");
 181
 182	*out_map_p = out_map;
 183	*out_map_size = i;
 184	return 0;
 185err:
 186	kfree(out_map);
 
 187	return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196	if (tclass < current_mapping_size)
 197		return current_mapping[tclass].value;
 198
 199	return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207	u16 i;
 208
 209	for (i = 1; i < current_mapping_size; i++) {
 210		if (current_mapping[i].value == pol_value)
 211			return i;
 212	}
 213
 214	return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 
 218			 int allow_unknown)
 219{
 220	if (tclass < current_mapping_size) {
 221		unsigned i, n = current_mapping[tclass].num_perms;
 
 222		u32 result;
 223
 224		for (i = 0, result = 0; i < n; i++) {
 225			if (avd->allowed & current_mapping[tclass].perms[i])
 226				result |= 1<<i;
 227			if (allow_unknown && !current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229		}
 230		avd->allowed = result;
 231
 232		for (i = 0, result = 0; i < n; i++)
 233			if (avd->auditallow & current_mapping[tclass].perms[i])
 234				result |= 1<<i;
 235		avd->auditallow = result;
 236
 237		for (i = 0, result = 0; i < n; i++) {
 238			if (avd->auditdeny & current_mapping[tclass].perms[i])
 239				result |= 1<<i;
 240			if (!allow_unknown && !current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242		}
 243		/*
 244		 * In case the kernel has a bug and requests a permission
 245		 * between num_perms and the maximum permission number, we
 246		 * should audit that denial
 247		 */
 248		for (; i < (sizeof(u32)*8); i++)
 249			result |= 1<<i;
 250		avd->auditdeny = result;
 251	}
 252}
 253
 254int security_mls_enabled(void)
 255{
 256	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 
 271				struct context *tcontext,
 272				struct context *xcontext,
 273				struct constraint_expr *cexpr)
 274{
 275	u32 val1, val2;
 276	struct context *c;
 277	struct role_datum *r1, *r2;
 278	struct mls_level *l1, *l2;
 279	struct constraint_expr *e;
 280	int s[CEXPR_MAXDEPTH];
 281	int sp = -1;
 282
 283	for (e = cexpr; e; e = e->next) {
 284		switch (e->expr_type) {
 285		case CEXPR_NOT:
 286			BUG_ON(sp < 0);
 287			s[sp] = !s[sp];
 288			break;
 289		case CEXPR_AND:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] &= s[sp + 1];
 293			break;
 294		case CEXPR_OR:
 295			BUG_ON(sp < 1);
 296			sp--;
 297			s[sp] |= s[sp + 1];
 298			break;
 299		case CEXPR_ATTR:
 300			if (sp == (CEXPR_MAXDEPTH - 1))
 301				return 0;
 302			switch (e->attr) {
 303			case CEXPR_USER:
 304				val1 = scontext->user;
 305				val2 = tcontext->user;
 306				break;
 307			case CEXPR_TYPE:
 308				val1 = scontext->type;
 309				val2 = tcontext->type;
 310				break;
 311			case CEXPR_ROLE:
 312				val1 = scontext->role;
 313				val2 = tcontext->role;
 314				r1 = policydb.role_val_to_struct[val1 - 1];
 315				r2 = policydb.role_val_to_struct[val2 - 1];
 316				switch (e->op) {
 317				case CEXPR_DOM:
 318					s[++sp] = ebitmap_get_bit(&r1->dominates,
 319								  val2 - 1);
 320					continue;
 321				case CEXPR_DOMBY:
 322					s[++sp] = ebitmap_get_bit(&r2->dominates,
 323								  val1 - 1);
 324					continue;
 325				case CEXPR_INCOMP:
 326					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327								    val2 - 1) &&
 328						   !ebitmap_get_bit(&r2->dominates,
 329								    val1 - 1));
 330					continue;
 331				default:
 332					break;
 333				}
 334				break;
 335			case CEXPR_L1L2:
 336				l1 = &(scontext->range.level[0]);
 337				l2 = &(tcontext->range.level[0]);
 338				goto mls_ops;
 339			case CEXPR_L1H2:
 340				l1 = &(scontext->range.level[0]);
 341				l2 = &(tcontext->range.level[1]);
 342				goto mls_ops;
 343			case CEXPR_H1L2:
 344				l1 = &(scontext->range.level[1]);
 345				l2 = &(tcontext->range.level[0]);
 346				goto mls_ops;
 347			case CEXPR_H1H2:
 348				l1 = &(scontext->range.level[1]);
 349				l2 = &(tcontext->range.level[1]);
 350				goto mls_ops;
 351			case CEXPR_L1H1:
 352				l1 = &(scontext->range.level[0]);
 353				l2 = &(scontext->range.level[1]);
 354				goto mls_ops;
 355			case CEXPR_L2H2:
 356				l1 = &(tcontext->range.level[0]);
 357				l2 = &(tcontext->range.level[1]);
 358				goto mls_ops;
 359mls_ops:
 360			switch (e->op) {
 361			case CEXPR_EQ:
 362				s[++sp] = mls_level_eq(l1, l2);
 363				continue;
 364			case CEXPR_NEQ:
 365				s[++sp] = !mls_level_eq(l1, l2);
 366				continue;
 367			case CEXPR_DOM:
 368				s[++sp] = mls_level_dom(l1, l2);
 369				continue;
 370			case CEXPR_DOMBY:
 371				s[++sp] = mls_level_dom(l2, l1);
 372				continue;
 373			case CEXPR_INCOMP:
 374				s[++sp] = mls_level_incomp(l2, l1);
 375				continue;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380			break;
 381			default:
 382				BUG();
 383				return 0;
 384			}
 385
 386			switch (e->op) {
 387			case CEXPR_EQ:
 388				s[++sp] = (val1 == val2);
 389				break;
 390			case CEXPR_NEQ:
 391				s[++sp] = (val1 != val2);
 392				break;
 393			default:
 394				BUG();
 395				return 0;
 396			}
 397			break;
 398		case CEXPR_NAMES:
 399			if (sp == (CEXPR_MAXDEPTH-1))
 400				return 0;
 401			c = scontext;
 402			if (e->attr & CEXPR_TARGET)
 403				c = tcontext;
 404			else if (e->attr & CEXPR_XTARGET) {
 405				c = xcontext;
 406				if (!c) {
 407					BUG();
 408					return 0;
 409				}
 410			}
 411			if (e->attr & CEXPR_USER)
 412				val1 = c->user;
 413			else if (e->attr & CEXPR_ROLE)
 414				val1 = c->role;
 415			else if (e->attr & CEXPR_TYPE)
 416				val1 = c->type;
 417			else {
 418				BUG();
 419				return 0;
 420			}
 421
 422			switch (e->op) {
 423			case CEXPR_EQ:
 424				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425				break;
 426			case CEXPR_NEQ:
 427				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428				break;
 429			default:
 430				BUG();
 431				return 0;
 432			}
 433			break;
 434		default:
 435			BUG();
 436			return 0;
 437		}
 438	}
 439
 440	BUG_ON(sp != 0);
 441	return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450	struct perm_datum *pdatum = d;
 451	char **permission_names = args;
 452
 453	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455	permission_names[pdatum->value - 1] = (char *)k;
 456
 457	return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551				    scontext->type - 1);
 552	BUG_ON(!source);
 553
 554	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555				    tcontext->type - 1);
 556	BUG_ON(!target);
 557
 558	if (source->bounds) {
 559		memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562		lo_scontext.type = source->bounds;
 563
 564		context_struct_compute_av(&lo_scontext,
 565					  tcontext,
 566					  tclass,
 567					  &lo_avd);
 568		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569			return;		/* no masked permission */
 570		masked = ~lo_avd.allowed & avd->allowed;
 571	}
 572
 573	if (target->bounds) {
 574		memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577		lo_tcontext.type = target->bounds;
 578
 579		context_struct_compute_av(scontext,
 580					  &lo_tcontext,
 581					  tclass,
 582					  &lo_avd);
 583		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584			return;		/* no masked permission */
 585		masked = ~lo_avd.allowed & avd->allowed;
 586	}
 587
 588	if (source->bounds && target->bounds) {
 589		memset(&lo_avd, 0, sizeof(lo_avd));
 590		/*
 591		 * lo_scontext and lo_tcontext are already
 592		 * set up.
 593		 */
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595		context_struct_compute_av(&lo_scontext,
 596					  &lo_tcontext,
 597					  tclass,
 598					  &lo_avd);
 599		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600			return;		/* no masked permission */
 601		masked = ~lo_avd.allowed & avd->allowed;
 602	}
 603
 604	if (masked) {
 605		/* mask violated permissions */
 606		avd->allowed &= ~masked;
 607
 608		/* audit masked permissions */
 609		security_dump_masked_av(scontext, tcontext,
 610					tclass, masked, "bounds");
 
 
 611	}
 
 
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 
 619				      struct context *tcontext,
 620				      u16 tclass,
 621				      struct av_decision *avd)
 
 622{
 623	struct constraint_node *constraint;
 624	struct role_allow *ra;
 625	struct avtab_key avkey;
 626	struct avtab_node *node;
 627	struct class_datum *tclass_datum;
 628	struct ebitmap *sattr, *tattr;
 629	struct ebitmap_node *snode, *tnode;
 630	unsigned int i, j;
 631
 632	avd->allowed = 0;
 633	avd->auditallow = 0;
 634	avd->auditdeny = 0xffffffff;
 
 
 
 
 635
 636	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637		if (printk_ratelimit())
 638			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639		return;
 640	}
 641
 642	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644	/*
 645	 * If a specific type enforcement rule was defined for
 646	 * this permission check, then use it.
 647	 */
 648	avkey.target_class = tclass;
 649	avkey.specified = AVTAB_AV;
 650	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651	BUG_ON(!sattr);
 652	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653	BUG_ON(!tattr);
 654	ebitmap_for_each_positive_bit(sattr, snode, i) {
 655		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656			avkey.source_type = i + 1;
 657			avkey.target_type = j + 1;
 658			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.data;
 
 
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 671
 672		}
 673	}
 674
 675	/*
 676	 * Remove any permissions prohibited by a constraint (this includes
 677	 * the MLS policy).
 678	 */
 679	constraint = tclass_datum->constraints;
 680	while (constraint) {
 681		if ((constraint->permissions & (avd->allowed)) &&
 682		    !constraint_expr_eval(scontext, tcontext, NULL,
 683					  constraint->expr)) {
 684			avd->allowed &= ~(constraint->permissions);
 685		}
 686		constraint = constraint->next;
 687	}
 688
 689	/*
 690	 * If checking process transition permission and the
 691	 * role is changing, then check the (current_role, new_role)
 692	 * pair.
 693	 */
 694	if (tclass == policydb.process_class &&
 695	    (avd->allowed & policydb.process_trans_perms) &&
 696	    scontext->role != tcontext->role) {
 697		for (ra = policydb.role_allow; ra; ra = ra->next) {
 698			if (scontext->role == ra->role &&
 699			    tcontext->role == ra->new_role)
 700				break;
 701		}
 702		if (!ra)
 703			avd->allowed &= ~policydb.process_trans_perms;
 704	}
 705
 706	/*
 707	 * If the given source and target types have boundary
 708	 * constraint, lazy checks have to mask any violated
 709	 * permission and notice it to userspace via audit.
 710	 */
 711	type_attribute_bounds_av(scontext, tcontext,
 712				 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716					   struct context *ncontext,
 717					   struct context *tcontext,
 718					   u16 tclass)
 
 
 719{
 
 
 720	char *o = NULL, *n = NULL, *t = NULL;
 721	u32 olen, nlen, tlen;
 722
 723	if (context_struct_to_string(ocontext, &o, &olen))
 724		goto out;
 725	if (context_struct_to_string(ncontext, &n, &nlen))
 726		goto out;
 727	if (context_struct_to_string(tcontext, &t, &tlen))
 728		goto out;
 729	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730		  "security_validate_transition:  denied for"
 731		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734	kfree(o);
 735	kfree(n);
 736	kfree(t);
 737
 738	if (!selinux_enforcing)
 739		return 0;
 740	return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744				 u16 orig_tclass)
 745{
 746	struct context *ocontext;
 747	struct context *ncontext;
 748	struct context *tcontext;
 
 
 
 
 749	struct class_datum *tclass_datum;
 750	struct constraint_node *constraint;
 751	u16 tclass;
 752	int rc = 0;
 753
 754	if (!ss_initialized)
 
 755		return 0;
 756
 757	read_lock(&policy_rwlock);
 758
 759	tclass = unmap_class(orig_tclass);
 
 
 
 
 
 
 
 760
 761	if (!tclass || tclass > policydb.p_classes.nprim) {
 762		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763			__func__, tclass);
 764		rc = -EINVAL;
 765		goto out;
 766	}
 767	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769	ocontext = sidtab_search(&sidtab, oldsid);
 770	if (!ocontext) {
 771		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772			__func__, oldsid);
 773		rc = -EINVAL;
 774		goto out;
 775	}
 776
 777	ncontext = sidtab_search(&sidtab, newsid);
 778	if (!ncontext) {
 779		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780			__func__, newsid);
 781		rc = -EINVAL;
 782		goto out;
 783	}
 784
 785	tcontext = sidtab_search(&sidtab, tasksid);
 786	if (!tcontext) {
 787		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788			__func__, tasksid);
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792
 793	constraint = tclass_datum->validatetrans;
 794	while (constraint) {
 795		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 796					  constraint->expr)) {
 797			rc = security_validtrans_handle_fail(ocontext, ncontext,
 798							     tcontext, tclass);
 
 
 
 
 
 
 
 799			goto out;
 800		}
 801		constraint = constraint->next;
 802	}
 803
 804out:
 805	read_unlock(&policy_rwlock);
 806	return rc;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 819{
 820	struct context *old_context, *new_context;
 
 
 
 821	struct type_datum *type;
 822	int index;
 823	int rc;
 824
 825	read_lock(&policy_rwlock);
 
 
 
 
 
 
 826
 827	rc = -EINVAL;
 828	old_context = sidtab_search(&sidtab, old_sid);
 829	if (!old_context) {
 830		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831		       __func__, old_sid);
 832		goto out;
 833	}
 834
 835	rc = -EINVAL;
 836	new_context = sidtab_search(&sidtab, new_sid);
 837	if (!new_context) {
 838		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839		       __func__, new_sid);
 840		goto out;
 841	}
 842
 843	rc = 0;
 844	/* type/domain unchanged */
 845	if (old_context->type == new_context->type)
 846		goto out;
 847
 848	index = new_context->type;
 849	while (true) {
 850		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851					  index - 1);
 852		BUG_ON(!type);
 853
 854		/* not bounded anymore */
 855		rc = -EPERM;
 856		if (!type->bounds)
 857			break;
 858
 859		/* @newsid is bounded by @oldsid */
 860		rc = 0;
 861		if (type->bounds == old_context->type)
 862			break;
 863
 864		index = type->bounds;
 865	}
 866
 867	if (rc) {
 868		char *old_name = NULL;
 869		char *new_name = NULL;
 870		u32 length;
 871
 872		if (!context_struct_to_string(old_context,
 873					      &old_name, &length) &&
 874		    !context_struct_to_string(new_context,
 875					      &new_name, &length)) {
 876			audit_log(current->audit_context,
 877				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878				  "op=security_bounded_transition "
 879				  "result=denied "
 880				  "oldcontext=%s newcontext=%s",
 881				  old_name, new_name);
 882		}
 883		kfree(new_name);
 884		kfree(old_name);
 885	}
 886out:
 887	read_unlock(&policy_rwlock);
 888
 889	return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894	avd->allowed = 0;
 895	avd->auditallow = 0;
 896	avd->auditdeny = 0xffffffff;
 897	avd->seqno = latest_granting;
 
 
 
 898	avd->flags = 0;
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 
 913			 u32 tsid,
 914			 u16 orig_tclass,
 915			 struct av_decision *avd)
 
 916{
 
 
 
 917	u16 tclass;
 918	struct context *scontext = NULL, *tcontext = NULL;
 919
 920	read_lock(&policy_rwlock);
 921	avd_init(avd);
 922	if (!ss_initialized)
 
 
 923		goto allow;
 924
 925	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 926	if (!scontext) {
 927		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928		       __func__, ssid);
 929		goto out;
 930	}
 931
 932	/* permissive domain? */
 933	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934		avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936	tcontext = sidtab_search(&sidtab, tsid);
 937	if (!tcontext) {
 938		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939		       __func__, tsid);
 940		goto out;
 941	}
 942
 943	tclass = unmap_class(orig_tclass);
 944	if (unlikely(orig_tclass && !tclass)) {
 945		if (policydb.allow_unknown)
 946			goto allow;
 947		goto out;
 948	}
 949	context_struct_compute_av(scontext, tcontext, tclass, avd);
 950	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 951out:
 952	read_unlock(&policy_rwlock);
 953	return;
 954allow:
 955	avd->allowed = 0xffffffff;
 956	goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 
 960			      u32 tsid,
 961			      u16 tclass,
 962			      struct av_decision *avd)
 963{
 
 
 
 964	struct context *scontext = NULL, *tcontext = NULL;
 965
 966	read_lock(&policy_rwlock);
 967	avd_init(avd);
 968	if (!ss_initialized)
 
 969		goto allow;
 970
 971	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 972	if (!scontext) {
 973		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974		       __func__, ssid);
 975		goto out;
 976	}
 977
 978	/* permissive domain? */
 979	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980		avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982	tcontext = sidtab_search(&sidtab, tsid);
 983	if (!tcontext) {
 984		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985		       __func__, tsid);
 986		goto out;
 987	}
 988
 989	if (unlikely(!tclass)) {
 990		if (policydb.allow_unknown)
 991			goto allow;
 992		goto out;
 993	}
 994
 995	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 996 out:
 997	read_unlock(&policy_rwlock);
 998	return;
 999allow:
1000	avd->allowed = 0xffffffff;
1001	goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1012{
1013	char *scontextp;
1014
1015	if (scontext)
1016		*scontext = NULL;
1017	*scontext_len = 0;
1018
1019	if (context->len) {
1020		*scontext_len = context->len;
1021		if (scontext) {
1022			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023			if (!(*scontext))
1024				return -ENOMEM;
1025		}
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#include "initial_sid_to_string.h"
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
 
 
 
 
 
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
 
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
 
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
 
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
 
 
 
 
 
 
 
 
 
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
 
 
 
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
 
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
 
 
 
 
 
 
 
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
 
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
 
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
 
 
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
 
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
 
 
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
 
 
 
 
 
1384}
1385
1386static int security_compute_sid(u32 ssid,
 
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
1394	struct class_datum *cladatum = NULL;
1395	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396	struct role_trans *roletr = NULL;
 
 
 
1397	struct avtab_key avkey;
1398	struct avtab_datum *avdatum;
1399	struct avtab_node *node;
1400	u16 tclass;
1401	int rc = 0;
1402	bool sock;
1403
1404	if (!ss_initialized) {
1405		switch (orig_tclass) {
1406		case SECCLASS_PROCESS: /* kernel value */
1407			*out_sid = ssid;
1408			break;
1409		default:
1410			*out_sid = tsid;
1411			break;
1412		}
1413		goto out;
1414	}
1415
 
 
1416	context_init(&newcontext);
1417
1418	read_lock(&policy_rwlock);
 
 
1419
1420	if (kern) {
1421		tclass = unmap_class(orig_tclass);
1422		sock = security_is_socket_class(orig_tclass);
1423	} else {
1424		tclass = orig_tclass;
1425		sock = security_is_socket_class(map_class(tclass));
 
1426	}
1427
1428	scontext = sidtab_search(&sidtab, ssid);
1429	if (!scontext) {
1430		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1431		       __func__, ssid);
1432		rc = -EINVAL;
1433		goto out_unlock;
1434	}
1435	tcontext = sidtab_search(&sidtab, tsid);
1436	if (!tcontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, tsid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442
1443	if (tclass && tclass <= policydb.p_classes.nprim)
1444		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1445
1446	/* Set the user identity. */
1447	switch (specified) {
1448	case AVTAB_TRANSITION:
1449	case AVTAB_CHANGE:
1450		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451			newcontext.user = tcontext->user;
1452		} else {
1453			/* notice this gets both DEFAULT_SOURCE and unset */
1454			/* Use the process user identity. */
1455			newcontext.user = scontext->user;
1456		}
1457		break;
1458	case AVTAB_MEMBER:
1459		/* Use the related object owner. */
1460		newcontext.user = tcontext->user;
1461		break;
1462	}
1463
1464	/* Set the role to default values. */
1465	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466		newcontext.role = scontext->role;
1467	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468		newcontext.role = tcontext->role;
1469	} else {
1470		if ((tclass == policydb.process_class) || (sock == true))
1471			newcontext.role = scontext->role;
1472		else
1473			newcontext.role = OBJECT_R_VAL;
1474	}
1475
1476	/* Set the type to default values. */
1477	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478		newcontext.type = scontext->type;
1479	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480		newcontext.type = tcontext->type;
1481	} else {
1482		if ((tclass == policydb.process_class) || (sock == true)) {
1483			/* Use the type of process. */
1484			newcontext.type = scontext->type;
1485		} else {
1486			/* Use the type of the related object. */
1487			newcontext.type = tcontext->type;
1488		}
1489	}
1490
1491	/* Look for a type transition/member/change rule. */
1492	avkey.source_type = scontext->type;
1493	avkey.target_type = tcontext->type;
1494	avkey.target_class = tclass;
1495	avkey.specified = specified;
1496	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498	/* If no permanent rule, also check for enabled conditional rules */
1499	if (!avdatum) {
1500		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501		for (; node; node = avtab_search_node_next(node, specified)) {
1502			if (node->key.specified & AVTAB_ENABLED) {
1503				avdatum = &node->datum;
1504				break;
1505			}
1506		}
1507	}
1508
1509	if (avdatum) {
1510		/* Use the type from the type transition/member/change rule. */
1511		newcontext.type = avdatum->data;
1512	}
1513
1514	/* if we have a objname this is a file trans check so check those rules */
1515	if (objname)
1516		filename_compute_type(&policydb, &newcontext, scontext->type,
1517				      tcontext->type, tclass, objname);
1518
1519	/* Check for class-specific changes. */
1520	if (specified & AVTAB_TRANSITION) {
1521		/* Look for a role transition rule. */
1522		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523			if ((roletr->role == scontext->role) &&
1524			    (roletr->type == tcontext->type) &&
1525			    (roletr->tclass == tclass)) {
1526				/* Use the role transition rule. */
1527				newcontext.role = roletr->new_role;
1528				break;
1529			}
1530		}
 
1531	}
1532
1533	/* Set the MLS attributes.
1534	   This is done last because it may allocate memory. */
1535	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536			     &newcontext, sock);
1537	if (rc)
1538		goto out_unlock;
1539
1540	/* Check the validity of the context. */
1541	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542		rc = compute_sid_handle_invalid_context(scontext,
1543							tcontext,
1544							tclass,
1545							&newcontext);
1546		if (rc)
1547			goto out_unlock;
1548	}
1549	/* Obtain the sid for the context. */
1550	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1551out_unlock:
1552	read_unlock(&policy_rwlock);
1553	context_destroy(&newcontext);
1554out:
1555	return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
 
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
 
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1572			    const struct qstr *qstr, u32 *out_sid)
1573{
1574	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1575				    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1579				 const char *objname, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
 
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
 
1599			u32 tsid,
1600			u16 tclass,
1601			u32 *out_sid)
1602{
1603	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1604				    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
 
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
 
1621			u32 tsid,
1622			u16 tclass,
1623			u32 *out_sid)
1624{
1625	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1626				    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631		     struct context *context,
1632		     void *arg)
1633{
1634	struct sidtab *s = arg;
1635
1636	if (sid > SECINITSID_NUM)
1637		return sidtab_insert(s, sid, context);
1638	else
1639		return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
1644	char *s;
1645	u32 len;
1646
1647	if (selinux_enforcing)
1648		return -EINVAL;
1649
1650	if (!context_struct_to_string(context, &s, &len)) {
1651		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1652		kfree(s);
1653	}
1654	return 0;
1655}
1656
1657struct convert_context_args {
1658	struct policydb *oldp;
1659	struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
1668 */
1669static int convert_context(u32 key,
1670			   struct context *c,
1671			   void *p)
1672{
1673	struct convert_context_args *args;
1674	struct context oldc;
1675	struct ocontext *oc;
1676	struct mls_range *range;
1677	struct role_datum *role;
1678	struct type_datum *typdatum;
1679	struct user_datum *usrdatum;
1680	char *s;
1681	u32 len;
1682	int rc = 0;
1683
1684	if (key <= SECINITSID_NUM)
1685		goto out;
1686
1687	args = p;
1688
1689	if (c->str) {
1690		struct context ctx;
1691
1692		rc = -ENOMEM;
1693		s = kstrdup(c->str, GFP_KERNEL);
1694		if (!s)
1695			goto out;
1696
1697		rc = string_to_context_struct(args->newp, NULL, s,
1698					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1699		kfree(s);
1700		if (!rc) {
1701			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702			       c->str);
1703			/* Replace string with mapped representation. */
1704			kfree(c->str);
1705			memcpy(c, &ctx, sizeof(*c));
1706			goto out;
1707		} else if (rc == -EINVAL) {
1708			/* Retain string representation for later mapping. */
1709			rc = 0;
1710			goto out;
1711		} else {
1712			/* Other error condition, e.g. ENOMEM. */
1713			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714			       c->str, -rc);
1715			goto out;
1716		}
 
 
 
1717	}
1718
1719	rc = context_cpy(&oldc, c);
1720	if (rc)
1721		goto out;
1722
1723	/* Convert the user. */
1724	rc = -EINVAL;
1725	usrdatum = hashtab_search(args->newp->p_users.table,
1726				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727	if (!usrdatum)
1728		goto bad;
1729	c->user = usrdatum->value;
1730
1731	/* Convert the role. */
1732	rc = -EINVAL;
1733	role = hashtab_search(args->newp->p_roles.table,
1734			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735	if (!role)
1736		goto bad;
1737	c->role = role->value;
1738
1739	/* Convert the type. */
1740	rc = -EINVAL;
1741	typdatum = hashtab_search(args->newp->p_types.table,
1742				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743	if (!typdatum)
1744		goto bad;
1745	c->type = typdatum->value;
1746
1747	/* Convert the MLS fields if dealing with MLS policies */
1748	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749		rc = mls_convert_context(args->oldp, args->newp, c);
1750		if (rc)
1751			goto bad;
1752	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753		/*
1754		 * Switching between MLS and non-MLS policy:
1755		 * free any storage used by the MLS fields in the
1756		 * context for all existing entries in the sidtab.
1757		 */
1758		mls_context_destroy(c);
1759	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760		/*
1761		 * Switching between non-MLS and MLS policy:
1762		 * ensure that the MLS fields of the context for all
1763		 * existing entries in the sidtab are filled in with a
1764		 * suitable default value, likely taken from one of the
1765		 * initial SIDs.
1766		 */
1767		oc = args->newp->ocontexts[OCON_ISID];
1768		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769			oc = oc->next;
1770		rc = -EINVAL;
1771		if (!oc) {
1772			printk(KERN_ERR "SELinux:  unable to look up"
1773				" the initial SIDs list\n");
1774			goto bad;
1775		}
1776		range = &oc->context[0].range;
1777		rc = mls_range_set(c, range);
1778		if (rc)
1779			goto bad;
1780	}
1781
1782	/* Check the validity of the new context. */
1783	if (!policydb_context_isvalid(args->newp, c)) {
1784		rc = convert_context_handle_invalid_context(&oldc);
 
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	context_destroy(&oldc);
1790
1791	rc = 0;
1792out:
1793	return rc;
1794bad:
1795	/* Map old representation to string and save it. */
1796	rc = context_struct_to_string(&oldc, &s, &len);
1797	if (rc)
1798		return rc;
1799	context_destroy(&oldc);
1800	context_destroy(c);
1801	c->str = s;
1802	c->len = len;
1803	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804	       c->str);
1805	rc = 0;
1806	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808
1809static void security_load_policycaps(void)
1810{
1811	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812						  POLICYDB_CAPABILITY_NETPEER);
1813	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814						  POLICYDB_CAPABILITY_OPENPERM);
1815}
1816
1817static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
 
1821 * @data: binary policy data
1822 * @len: length of data in bytes
 
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
 
1830{
1831	struct policydb oldpolicydb, newpolicydb;
1832	struct sidtab oldsidtab, newsidtab;
1833	struct selinux_mapping *oldmap, *map = NULL;
1834	struct convert_context_args args;
1835	u32 seqno;
1836	u16 map_size;
1837	int rc = 0;
1838	struct policy_file file = { data, len }, *fp = &file;
1839
1840	if (!ss_initialized) {
1841		avtab_cache_init();
1842		rc = policydb_read(&policydb, fp);
1843		if (rc) {
1844			avtab_cache_destroy();
1845			return rc;
1846		}
1847
1848		policydb.len = len;
1849		rc = selinux_set_mapping(&policydb, secclass_map,
1850					 &current_mapping,
1851					 &current_mapping_size);
1852		if (rc) {
1853			policydb_destroy(&policydb);
1854			avtab_cache_destroy();
1855			return rc;
1856		}
1857
1858		rc = policydb_load_isids(&policydb, &sidtab);
1859		if (rc) {
1860			policydb_destroy(&policydb);
1861			avtab_cache_destroy();
1862			return rc;
1863		}
1864
1865		security_load_policycaps();
1866		ss_initialized = 1;
1867		seqno = ++latest_granting;
1868		selinux_complete_init();
1869		avc_ss_reset(seqno);
1870		selnl_notify_policyload(seqno);
1871		selinux_status_update_policyload(seqno);
1872		selinux_netlbl_cache_invalidate();
1873		selinux_xfrm_notify_policyload();
1874		return 0;
1875	}
1876
1877#if 0
1878	sidtab_hash_eval(&sidtab, "sids");
1879#endif
1880
1881	rc = policydb_read(&newpolicydb, fp);
1882	if (rc)
1883		return rc;
1884
1885	newpolicydb.len = len;
1886	/* If switching between different policy types, log MLS status */
1887	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893	if (rc) {
1894		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895		policydb_destroy(&newpolicydb);
1896		return rc;
1897	}
1898
1899	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900	if (rc)
1901		goto err;
1902
1903	rc = security_preserve_bools(&newpolicydb);
1904	if (rc) {
1905		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906		goto err;
1907	}
1908
1909	/* Clone the SID table. */
1910	sidtab_shutdown(&sidtab);
1911
1912	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913	if (rc)
1914		goto err;
 
 
 
1915
1916	/*
1917	 * Convert the internal representations of contexts
1918	 * in the new SID table.
1919	 */
1920	args.oldp = &policydb;
1921	args.newp = &newpolicydb;
1922	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
 
 
 
 
 
 
1923	if (rc) {
1924		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925			" representation of contexts in the new SID"
1926			" table\n");
1927		goto err;
1928	}
1929
1930	/* Save the old policydb and SID table to free later. */
1931	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932	sidtab_set(&oldsidtab, &sidtab);
1933
1934	/* Install the new policydb and SID table. */
1935	write_lock_irq(&policy_rwlock);
1936	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937	sidtab_set(&sidtab, &newsidtab);
1938	security_load_policycaps();
1939	oldmap = current_mapping;
1940	current_mapping = map;
1941	current_mapping_size = map_size;
1942	seqno = ++latest_granting;
1943	write_unlock_irq(&policy_rwlock);
1944
1945	/* Free the old policydb and SID table. */
1946	policydb_destroy(&oldpolicydb);
1947	sidtab_destroy(&oldsidtab);
1948	kfree(oldmap);
1949
1950	avc_ss_reset(seqno);
1951	selnl_notify_policyload(seqno);
1952	selinux_status_update_policyload(seqno);
1953	selinux_netlbl_cache_invalidate();
1954	selinux_xfrm_notify_policyload();
1955
1956	return 0;
1957
1958err:
1959	kfree(map);
1960	sidtab_destroy(&newsidtab);
1961	policydb_destroy(&newpolicydb);
1962	return rc;
 
 
 
 
 
 
 
1963
 
1964}
1965
1966size_t security_policydb_len(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967{
1968	size_t len;
 
1969
1970	read_lock(&policy_rwlock);
1971	len = policydb.len;
1972	read_unlock(&policy_rwlock);
 
 
 
1973
1974	return len;
 
 
 
 
 
 
 
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
 
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
1984{
 
 
 
1985	struct ocontext *c;
1986	int rc = 0;
 
 
 
 
 
1987
1988	read_lock(&policy_rwlock);
 
 
 
 
 
1989
1990	c = policydb.ocontexts[OCON_PORT];
1991	while (c) {
1992		if (c->u.port.protocol == protocol &&
1993		    c->u.port.low_port <= port &&
1994		    c->u.port.high_port >= port)
1995			break;
1996		c = c->next;
1997	}
1998
1999	if (c) {
2000		if (!c->sid[0]) {
2001			rc = sidtab_context_to_sid(&sidtab,
2002						   &c->context[0],
2003						   &c->sid[0]);
2004			if (rc)
2005				goto out;
2006		}
2007		*out_sid = c->sid[0];
 
2008	} else {
2009		*out_sid = SECINITSID_PORT;
2010	}
2011
2012out:
2013	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
 
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
 
2023{
2024	int rc = 0;
 
 
 
2025	struct ocontext *c;
2026
2027	read_lock(&policy_rwlock);
 
 
 
2028
2029	c = policydb.ocontexts[OCON_NETIF];
 
 
 
 
 
 
 
2030	while (c) {
2031		if (strcmp(name, c->u.name) == 0)
2032			break;
2033		c = c->next;
2034	}
2035
2036	if (c) {
2037		if (!c->sid[0] || !c->sid[1]) {
2038			rc = sidtab_context_to_sid(&sidtab,
2039						  &c->context[0],
2040						  &c->sid[0]);
2041			if (rc)
2042				goto out;
2043			rc = sidtab_context_to_sid(&sidtab,
2044						   &c->context[1],
2045						   &c->sid[1]);
2046			if (rc)
2047				goto out;
2048		}
2049		*if_sid = c->sid[0];
 
2050	} else
2051		*if_sid = SECINITSID_NETIF;
2052
2053out:
2054	read_unlock(&policy_rwlock);
2055	return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060	int i, fail = 0;
2061
2062	for (i = 0; i < 4; i++)
2063		if (addr[i] != (input[i] & mask[i])) {
2064			fail = 1;
2065			break;
2066		}
2067
2068	return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
 
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
 
2079		      void *addrp,
2080		      u32 addrlen,
2081		      u32 *out_sid)
2082{
 
 
 
2083	int rc;
2084	struct ocontext *c;
2085
2086	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2087
2088	switch (domain) {
2089	case AF_INET: {
2090		u32 addr;
2091
2092		rc = -EINVAL;
2093		if (addrlen != sizeof(u32))
2094			goto out;
2095
2096		addr = *((u32 *)addrp);
2097
2098		c = policydb.ocontexts[OCON_NODE];
2099		while (c) {
2100			if (c->u.node.addr == (addr & c->u.node.mask))
2101				break;
2102			c = c->next;
2103		}
2104		break;
2105	}
2106
2107	case AF_INET6:
2108		rc = -EINVAL;
2109		if (addrlen != sizeof(u64) * 2)
2110			goto out;
2111		c = policydb.ocontexts[OCON_NODE6];
2112		while (c) {
2113			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114						c->u.node6.mask))
2115				break;
2116			c = c->next;
2117		}
2118		break;
2119
2120	default:
2121		rc = 0;
2122		*out_sid = SECINITSID_NODE;
2123		goto out;
2124	}
2125
2126	if (c) {
2127		if (!c->sid[0]) {
2128			rc = sidtab_context_to_sid(&sidtab,
2129						   &c->context[0],
2130						   &c->sid[0]);
2131			if (rc)
2132				goto out;
2133		}
2134		*out_sid = c->sid[0];
 
2135	} else {
2136		*out_sid = SECINITSID_NODE;
2137	}
2138
2139	rc = 0;
2140out:
2141	read_unlock(&policy_rwlock);
2142	return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
 
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
 
2162			   char *username,
2163			   u32 **sids,
2164			   u32 *nel)
2165{
 
 
 
2166	struct context *fromcon, usercon;
2167	u32 *mysids = NULL, *mysids2, sid;
2168	u32 mynel = 0, maxnel = SIDS_NEL;
2169	struct user_datum *user;
2170	struct role_datum *role;
2171	struct ebitmap_node *rnode, *tnode;
2172	int rc = 0, i, j;
2173
2174	*sids = NULL;
2175	*nel = 0;
2176
2177	if (!ss_initialized)
2178		goto out;
2179
2180	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2181
2182	context_init(&usercon);
2183
2184	rc = -EINVAL;
2185	fromcon = sidtab_search(&sidtab, fromsid);
2186	if (!fromcon)
2187		goto out_unlock;
2188
2189	rc = -EINVAL;
2190	user = hashtab_search(policydb.p_users.table, username);
2191	if (!user)
2192		goto out_unlock;
2193
2194	usercon.user = user->value;
2195
2196	rc = -ENOMEM;
2197	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198	if (!mysids)
2199		goto out_unlock;
2200
2201	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202		role = policydb.role_val_to_struct[i];
2203		usercon.role = i + 1;
2204		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205			usercon.type = j + 1;
2206
2207			if (mls_setup_user_range(fromcon, user, &usercon))
 
2208				continue;
2209
2210			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2211			if (rc)
2212				goto out_unlock;
2213			if (mynel < maxnel) {
2214				mysids[mynel++] = sid;
2215			} else {
2216				rc = -ENOMEM;
2217				maxnel += SIDS_NEL;
2218				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219				if (!mysids2)
2220					goto out_unlock;
2221				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222				kfree(mysids);
2223				mysids = mysids2;
2224				mysids[mynel++] = sid;
2225			}
2226		}
2227	}
2228	rc = 0;
2229out_unlock:
2230	read_unlock(&policy_rwlock);
2231	if (rc || !mynel) {
2232		kfree(mysids);
2233		goto out;
2234	}
2235
2236	rc = -ENOMEM;
2237	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238	if (!mysids2) {
2239		kfree(mysids);
2240		goto out;
2241	}
2242	for (i = 0, j = 0; i < mynel; i++) {
2243		struct av_decision dummy_avd;
2244		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2245					  SECCLASS_PROCESS, /* kernel value */
2246					  PROCESS__TRANSITION, AVC_STRICT,
2247					  &dummy_avd);
2248		if (!rc)
2249			mysids2[j++] = mysids[i];
2250		cond_resched();
2251	}
2252	rc = 0;
2253	kfree(mysids);
2254	*sids = mysids2;
2255	*nel = j;
2256out:
2257	return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
 
 
 
2270 */
2271int security_genfs_sid(const char *fstype,
2272		       char *path,
2273		       u16 orig_sclass,
2274		       u32 *sid)
 
2275{
 
 
2276	int len;
2277	u16 sclass;
2278	struct genfs *genfs;
2279	struct ocontext *c;
2280	int rc, cmp = 0;
2281
2282	while (path[0] == '/' && path[1] == '/')
2283		path++;
2284
2285	read_lock(&policy_rwlock);
2286
2287	sclass = unmap_class(orig_sclass);
2288	*sid = SECINITSID_UNLABELED;
2289
2290	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291		cmp = strcmp(fstype, genfs->fstype);
2292		if (cmp <= 0)
2293			break;
2294	}
2295
2296	rc = -ENOENT;
2297	if (!genfs || cmp)
2298		goto out;
2299
2300	for (c = genfs->head; c; c = c->next) {
2301		len = strlen(c->u.name);
2302		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303		    (strncmp(c->u.name, path, len) == 0))
2304			break;
2305	}
2306
2307	rc = -ENOENT;
2308	if (!c)
2309		goto out;
2310
2311	if (!c->sid[0]) {
2312		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313		if (rc)
2314			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315	}
2316
2317	*sid = c->sid[0];
2318	rc = 0;
2319out:
2320	read_unlock(&policy_rwlock);
2321	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
2329 */
2330int security_fs_use(
2331	const char *fstype,
2332	unsigned int *behavior,
2333	u32 *sid)
2334{
2335	int rc = 0;
 
 
 
2336	struct ocontext *c;
 
 
 
 
 
 
 
 
2337
2338	read_lock(&policy_rwlock);
 
 
 
 
2339
2340	c = policydb.ocontexts[OCON_FSUSE];
2341	while (c) {
2342		if (strcmp(fstype, c->u.name) == 0)
2343			break;
2344		c = c->next;
2345	}
2346
2347	if (c) {
2348		*behavior = c->v.behavior;
2349		if (!c->sid[0]) {
2350			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351						   &c->sid[0]);
2352			if (rc)
2353				goto out;
2354		}
2355		*sid = c->sid[0];
 
2356	} else {
2357		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
 
 
 
 
2358		if (rc) {
2359			*behavior = SECURITY_FS_USE_NONE;
2360			rc = 0;
2361		} else {
2362			*behavior = SECURITY_FS_USE_GENFS;
2363		}
2364	}
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
 
2372{
2373	int i, rc;
 
 
 
 
2374
2375	read_lock(&policy_rwlock);
2376	*names = NULL;
2377	*values = NULL;
2378
2379	rc = 0;
2380	*len = policydb.p_bools.nprim;
2381	if (!*len)
2382		goto out;
2383
2384	rc = -ENOMEM;
2385	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386	if (!*names)
2387		goto err;
2388
2389	rc = -ENOMEM;
2390	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391	if (!*values)
2392		goto err;
2393
2394	for (i = 0; i < *len; i++) {
2395		size_t name_len;
2396
2397		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400		rc = -ENOMEM;
2401		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2402		if (!(*names)[i])
2403			goto err;
2404
2405		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406		(*names)[i][name_len - 1] = 0;
2407	}
2408	rc = 0;
2409out:
2410	read_unlock(&policy_rwlock);
2411	return rc;
2412err:
2413	if (*names) {
2414		for (i = 0; i < *len; i++)
2415			kfree((*names)[i]);
 
2416	}
2417	kfree(*values);
 
 
 
2418	goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424	int i, rc;
2425	int lenp, seqno = 0;
2426	struct cond_node *cur;
 
 
 
2427
2428	write_lock_irq(&policy_rwlock);
 
2429
2430	rc = -EFAULT;
2431	lenp = policydb.p_bools.nprim;
2432	if (len != lenp)
2433		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
2434
 
2435	for (i = 0; i < len; i++) {
2436		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2438				AUDIT_MAC_CONFIG_CHANGE,
2439				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440				sym_name(&policydb, SYM_BOOLS, i),
2441				!!values[i],
2442				policydb.bool_val_to_struct[i]->state,
2443				audit_get_loginuid(current),
2444				audit_get_sessionid(current));
 
2445		}
2446		if (values[i])
2447			policydb.bool_val_to_struct[i]->state = 1;
2448		else
2449			policydb.bool_val_to_struct[i]->state = 0;
2450	}
2451
2452	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453		rc = evaluate_cond_node(&policydb, cur);
2454		if (rc)
2455			goto out;
2456	}
2457
2458	seqno = ++latest_granting;
2459	rc = 0;
2460out:
2461	write_unlock_irq(&policy_rwlock);
2462	if (!rc) {
2463		avc_ss_reset(seqno);
2464		selnl_notify_policyload(seqno);
2465		selinux_status_update_policyload(seqno);
2466		selinux_xfrm_notify_policyload();
2467	}
2468	return rc;
 
 
 
 
 
 
 
2469}
2470
2471int security_get_bool_value(int bool)
 
2472{
 
 
2473	int rc;
2474	int len;
2475
2476	read_lock(&policy_rwlock);
 
 
 
 
 
2477
2478	rc = -EFAULT;
2479	len = policydb.p_bools.nprim;
2480	if (bool >= len)
2481		goto out;
2482
2483	rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485	read_unlock(&policy_rwlock);
2486	return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
 
2490{
2491	int rc, nbools = 0, *bvalues = NULL, i;
2492	char **bnames = NULL;
2493	struct cond_bool_datum *booldatum;
2494	struct cond_node *cur;
2495
2496	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497	if (rc)
2498		goto out;
2499	for (i = 0; i < nbools; i++) {
2500		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2501		if (booldatum)
2502			booldatum->state = bvalues[i];
2503	}
2504	for (cur = p->cond_list; cur; cur = cur->next) {
2505		rc = evaluate_cond_node(p, cur);
2506		if (rc)
2507			goto out;
2508	}
2509
2510out:
2511	if (bnames) {
2512		for (i = 0; i < nbools; i++)
2513			kfree(bnames[i]);
2514	}
2515	kfree(bnames);
2516	kfree(bvalues);
2517	return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2525{
 
 
 
2526	struct context *context1;
2527	struct context *context2;
2528	struct context newcon;
2529	char *s;
2530	u32 len;
2531	int rc;
2532
2533	rc = 0;
2534	if (!ss_initialized || !policydb.mls_enabled) {
2535		*new_sid = sid;
2536		goto out;
2537	}
2538
 
 
2539	context_init(&newcon);
2540
2541	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2542
2543	rc = -EINVAL;
2544	context1 = sidtab_search(&sidtab, sid);
2545	if (!context1) {
2546		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547			__func__, sid);
2548		goto out_unlock;
2549	}
2550
2551	rc = -EINVAL;
2552	context2 = sidtab_search(&sidtab, mls_sid);
2553	if (!context2) {
2554		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555			__func__, mls_sid);
2556		goto out_unlock;
2557	}
2558
2559	newcon.user = context1->user;
2560	newcon.role = context1->role;
2561	newcon.type = context1->type;
2562	rc = mls_context_cpy(&newcon, context2);
2563	if (rc)
2564		goto out_unlock;
2565
2566	/* Check the validity of the new context. */
2567	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568		rc = convert_context_handle_invalid_context(&newcon);
 
2569		if (rc) {
2570			if (!context_struct_to_string(&newcon, &s, &len)) {
2571				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2573				kfree(s);
2574			}
2575			goto out_unlock;
2576		}
2577	}
2578
2579	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2580out_unlock:
2581	read_unlock(&policy_rwlock);
2582	context_destroy(&newcon);
2583out:
2584	return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
 
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
 
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2608				 u32 xfrm_sid,
2609				 u32 *peer_sid)
2610{
 
 
 
2611	int rc;
2612	struct context *nlbl_ctx;
2613	struct context *xfrm_ctx;
2614
2615	*peer_sid = SECSID_NULL;
2616
2617	/* handle the common (which also happens to be the set of easy) cases
2618	 * right away, these two if statements catch everything involving a
2619	 * single or absent peer SID/label */
2620	if (xfrm_sid == SECSID_NULL) {
2621		*peer_sid = nlbl_sid;
2622		return 0;
2623	}
2624	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626	 * is present */
2627	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628		*peer_sid = xfrm_sid;
2629		return 0;
2630	}
2631
2632	/* we don't need to check ss_initialized here since the only way both
2633	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634	 * security server was initialized and ss_initialized was true */
2635	if (!policydb.mls_enabled)
2636		return 0;
2637
2638	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2639
2640	rc = -EINVAL;
2641	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642	if (!nlbl_ctx) {
2643		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644		       __func__, nlbl_sid);
2645		goto out;
2646	}
2647	rc = -EINVAL;
2648	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649	if (!xfrm_ctx) {
2650		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651		       __func__, xfrm_sid);
2652		goto out;
2653	}
2654	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655	if (rc)
2656		goto out;
2657
2658	/* at present NetLabel SIDs/labels really only carry MLS
2659	 * information so if the MLS portion of the NetLabel SID
2660	 * matches the MLS portion of the labeled XFRM SID/label
2661	 * then pass along the XFRM SID as it is the most
2662	 * expressive */
2663	*peer_sid = xfrm_sid;
2664out:
2665	read_unlock(&policy_rwlock);
2666	return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671	struct class_datum *datum = d;
2672	char *name = k, **classes = args;
2673	int value = datum->value - 1;
2674
2675	classes[value] = kstrdup(name, GFP_ATOMIC);
2676	if (!classes[value])
2677		return -ENOMEM;
2678
2679	return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
 
2683{
 
2684	int rc;
2685
2686	read_lock(&policy_rwlock);
2687
2688	rc = -ENOMEM;
2689	*nclasses = policydb.p_classes.nprim;
2690	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691	if (!*classes)
2692		goto out;
2693
2694	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695			*classes);
2696	if (rc) {
2697		int i;
2698		for (i = 0; i < *nclasses; i++)
2699			kfree((*classes)[i]);
2700		kfree(*classes);
2701	}
2702
2703out:
2704	read_unlock(&policy_rwlock);
2705	return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710	struct perm_datum *datum = d;
2711	char *name = k, **perms = args;
2712	int value = datum->value - 1;
2713
2714	perms[value] = kstrdup(name, GFP_ATOMIC);
2715	if (!perms[value])
2716		return -ENOMEM;
2717
2718	return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
 
2722{
 
2723	int rc, i;
2724	struct class_datum *match;
2725
2726	read_lock(&policy_rwlock);
2727
2728	rc = -EINVAL;
2729	match = hashtab_search(policydb.p_classes.table, class);
2730	if (!match) {
2731		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732			__func__, class);
2733		goto out;
2734	}
2735
2736	rc = -ENOMEM;
2737	*nperms = match->permissions.nprim;
2738	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739	if (!*perms)
2740		goto out;
2741
2742	if (match->comdatum) {
2743		rc = hashtab_map(match->comdatum->permissions.table,
2744				get_permissions_callback, *perms);
2745		if (rc)
2746			goto err;
2747	}
2748
2749	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750			*perms);
2751	if (rc)
2752		goto err;
2753
2754out:
2755	read_unlock(&policy_rwlock);
2756	return rc;
2757
2758err:
2759	read_unlock(&policy_rwlock);
2760	for (i = 0; i < *nperms; i++)
2761		kfree((*perms)[i]);
2762	kfree(*perms);
2763	return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
 
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
 
2787{
 
2788	int rc;
2789
2790	read_lock(&policy_rwlock);
2791	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792	read_unlock(&policy_rwlock);
 
 
 
 
2793
2794	return rc;
2795}
2796
2797struct selinux_audit_rule {
2798	u32 au_seqno;
2799	struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804	struct selinux_audit_rule *rule = vrule;
2805
2806	if (rule) {
2807		context_destroy(&rule->au_ctxt);
2808		kfree(rule);
2809	}
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813{
 
 
 
2814	struct selinux_audit_rule *tmprule;
2815	struct role_datum *roledatum;
2816	struct type_datum *typedatum;
2817	struct user_datum *userdatum;
2818	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819	int rc = 0;
2820
2821	*rule = NULL;
2822
2823	if (!ss_initialized)
2824		return -EOPNOTSUPP;
2825
2826	switch (field) {
2827	case AUDIT_SUBJ_USER:
2828	case AUDIT_SUBJ_ROLE:
2829	case AUDIT_SUBJ_TYPE:
2830	case AUDIT_OBJ_USER:
2831	case AUDIT_OBJ_ROLE:
2832	case AUDIT_OBJ_TYPE:
2833		/* only 'equals' and 'not equals' fit user, role, and type */
2834		if (op != Audit_equal && op != Audit_not_equal)
2835			return -EINVAL;
2836		break;
2837	case AUDIT_SUBJ_SEN:
2838	case AUDIT_SUBJ_CLR:
2839	case AUDIT_OBJ_LEV_LOW:
2840	case AUDIT_OBJ_LEV_HIGH:
2841		/* we do not allow a range, indicated by the presence of '-' */
2842		if (strchr(rulestr, '-'))
2843			return -EINVAL;
2844		break;
2845	default:
2846		/* only the above fields are valid */
2847		return -EINVAL;
2848	}
2849
2850	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851	if (!tmprule)
2852		return -ENOMEM;
2853
2854	context_init(&tmprule->au_ctxt);
2855
2856	read_lock(&policy_rwlock);
 
 
2857
2858	tmprule->au_seqno = latest_granting;
2859
2860	switch (field) {
2861	case AUDIT_SUBJ_USER:
2862	case AUDIT_OBJ_USER:
2863		rc = -EINVAL;
2864		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865		if (!userdatum)
2866			goto out;
2867		tmprule->au_ctxt.user = userdatum->value;
2868		break;
2869	case AUDIT_SUBJ_ROLE:
2870	case AUDIT_OBJ_ROLE:
2871		rc = -EINVAL;
2872		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873		if (!roledatum)
2874			goto out;
2875		tmprule->au_ctxt.role = roledatum->value;
2876		break;
2877	case AUDIT_SUBJ_TYPE:
2878	case AUDIT_OBJ_TYPE:
2879		rc = -EINVAL;
2880		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881		if (!typedatum)
2882			goto out;
2883		tmprule->au_ctxt.type = typedatum->value;
2884		break;
2885	case AUDIT_SUBJ_SEN:
2886	case AUDIT_SUBJ_CLR:
2887	case AUDIT_OBJ_LEV_LOW:
2888	case AUDIT_OBJ_LEV_HIGH:
2889		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2890		if (rc)
2891			goto out;
2892		break;
2893	}
2894	rc = 0;
2895out:
2896	read_unlock(&policy_rwlock);
2897
2898	if (rc) {
2899		selinux_audit_rule_free(tmprule);
2900		tmprule = NULL;
2901	}
2902
2903	*rule = tmprule;
2904
2905	return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911	int i;
2912
2913	for (i = 0; i < rule->field_count; i++) {
2914		struct audit_field *f = &rule->fields[i];
2915		switch (f->type) {
2916		case AUDIT_SUBJ_USER:
2917		case AUDIT_SUBJ_ROLE:
2918		case AUDIT_SUBJ_TYPE:
2919		case AUDIT_SUBJ_SEN:
2920		case AUDIT_SUBJ_CLR:
2921		case AUDIT_OBJ_USER:
2922		case AUDIT_OBJ_ROLE:
2923		case AUDIT_OBJ_TYPE:
2924		case AUDIT_OBJ_LEV_LOW:
2925		case AUDIT_OBJ_LEV_HIGH:
2926			return 1;
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934			     struct audit_context *actx)
2935{
 
 
2936	struct context *ctxt;
2937	struct mls_level *level;
2938	struct selinux_audit_rule *rule = vrule;
2939	int match = 0;
2940
2941	if (!rule) {
2942		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943			  "selinux_audit_rule_match: missing rule\n");
2944		return -ENOENT;
2945	}
2946
2947	read_lock(&policy_rwlock);
 
 
 
 
 
2948
2949	if (rule->au_seqno < latest_granting) {
2950		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951			  "selinux_audit_rule_match: stale rule\n");
2952		match = -ESTALE;
2953		goto out;
2954	}
2955
2956	ctxt = sidtab_search(&sidtab, sid);
2957	if (!ctxt) {
2958		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960			  sid);
2961		match = -ENOENT;
2962		goto out;
2963	}
2964
2965	/* a field/op pair that is not caught here will simply fall through
2966	   without a match */
2967	switch (field) {
2968	case AUDIT_SUBJ_USER:
2969	case AUDIT_OBJ_USER:
2970		switch (op) {
2971		case Audit_equal:
2972			match = (ctxt->user == rule->au_ctxt.user);
2973			break;
2974		case Audit_not_equal:
2975			match = (ctxt->user != rule->au_ctxt.user);
2976			break;
2977		}
2978		break;
2979	case AUDIT_SUBJ_ROLE:
2980	case AUDIT_OBJ_ROLE:
2981		switch (op) {
2982		case Audit_equal:
2983			match = (ctxt->role == rule->au_ctxt.role);
2984			break;
2985		case Audit_not_equal:
2986			match = (ctxt->role != rule->au_ctxt.role);
2987			break;
2988		}
2989		break;
2990	case AUDIT_SUBJ_TYPE:
2991	case AUDIT_OBJ_TYPE:
2992		switch (op) {
2993		case Audit_equal:
2994			match = (ctxt->type == rule->au_ctxt.type);
2995			break;
2996		case Audit_not_equal:
2997			match = (ctxt->type != rule->au_ctxt.type);
2998			break;
2999		}
3000		break;
3001	case AUDIT_SUBJ_SEN:
3002	case AUDIT_SUBJ_CLR:
3003	case AUDIT_OBJ_LEV_LOW:
3004	case AUDIT_OBJ_LEV_HIGH:
3005		level = ((field == AUDIT_SUBJ_SEN ||
3006			  field == AUDIT_OBJ_LEV_LOW) ?
3007			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008		switch (op) {
3009		case Audit_equal:
3010			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011					     level);
3012			break;
3013		case Audit_not_equal:
3014			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015					      level);
3016			break;
3017		case Audit_lt:
3018			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019					       level) &&
3020				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021					       level));
3022			break;
3023		case Audit_le:
3024			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025					      level);
3026			break;
3027		case Audit_gt:
3028			match = (mls_level_dom(level,
3029					      &rule->au_ctxt.range.level[0]) &&
3030				 !mls_level_eq(level,
3031					       &rule->au_ctxt.range.level[0]));
3032			break;
3033		case Audit_ge:
3034			match = mls_level_dom(level,
3035					      &rule->au_ctxt.range.level[0]);
3036			break;
3037		}
3038	}
3039
3040out:
3041	read_unlock(&policy_rwlock);
3042	return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
3048{
3049	int err = 0;
3050
3051	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052		err = aurule_callback();
3053	return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058	int err;
3059
3060	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061	if (err)
3062		panic("avc_add_callback() failed, error %d\n", err);
3063
3064	return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081				      u32 sid)
3082{
3083	u32 *sid_cache;
3084
3085	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086	if (sid_cache == NULL)
3087		return;
3088	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089	if (secattr->cache == NULL) {
3090		kfree(sid_cache);
3091		return;
3092	}
3093
3094	*sid_cache = sid;
3095	secattr->cache->free = kfree;
3096	secattr->cache->data = sid_cache;
3097	secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
 
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3116				   u32 *sid)
3117{
 
 
 
3118	int rc;
3119	struct context *ctx;
3120	struct context ctx_new;
3121
3122	if (!ss_initialized) {
3123		*sid = SECSID_NULL;
3124		return 0;
3125	}
3126
3127	read_lock(&policy_rwlock);
 
 
 
 
 
3128
3129	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130		*sid = *(u32 *)secattr->cache->data;
3131	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132		*sid = secattr->attr.secid;
3133	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134		rc = -EIDRM;
3135		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136		if (ctx == NULL)
3137			goto out;
3138
3139		context_init(&ctx_new);
3140		ctx_new.user = ctx->user;
3141		ctx_new.role = ctx->role;
3142		ctx_new.type = ctx->type;
3143		mls_import_netlbl_lvl(&ctx_new, secattr);
3144		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146						   secattr->attr.mls.cat);
3147			if (rc)
3148				goto out;
3149			memcpy(&ctx_new.range.level[1].cat,
3150			       &ctx_new.range.level[0].cat,
3151			       sizeof(ctx_new.range.level[0].cat));
3152		}
3153		rc = -EIDRM;
3154		if (!mls_context_isvalid(&policydb, &ctx_new))
3155			goto out_free;
 
 
3156
3157		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3158		if (rc)
3159			goto out_free;
3160
3161		security_netlbl_cache_add(secattr, *sid);
3162
3163		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164	} else
3165		*sid = SECSID_NULL;
3166
3167	read_unlock(&policy_rwlock);
3168	return 0;
3169out_free:
3170	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172	read_unlock(&policy_rwlock);
3173	return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
 
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3187{
 
 
3188	int rc;
3189	struct context *ctx;
3190
3191	if (!ss_initialized)
3192		return 0;
3193
3194	read_lock(&policy_rwlock);
 
 
3195
3196	rc = -ENOENT;
3197	ctx = sidtab_search(&sidtab, sid);
3198	if (ctx == NULL)
3199		goto out;
3200
3201	rc = -ENOMEM;
3202	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203				  GFP_ATOMIC);
3204	if (secattr->domain == NULL)
3205		goto out;
3206
3207	secattr->attr.secid = sid;
3208	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209	mls_export_netlbl_lvl(ctx, secattr);
3210	rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212	read_unlock(&policy_rwlock);
3213	return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
 
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
 
3224{
3225	int rc;
3226	struct policy_file fp;
3227
3228	if (!ss_initialized)
3229		return -EINVAL;
 
 
 
 
 
 
 
 
3230
3231	*len = security_policydb_len();
 
 
 
 
 
 
 
 
 
 
3232
 
 
 
 
 
 
3233	*data = vmalloc_user(*len);
3234	if (!*data)
3235		return -ENOMEM;
3236
3237	fp.data = *data;
3238	fp.len = *len;
3239
3240	read_lock(&policy_rwlock);
3241	rc = policydb_write(&policydb, &fp);
3242	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3243
3244	if (rc)
3245		return rc;
 
 
3246
3247	*len = (unsigned long)fp.data - (unsigned long)*data;
3248	return 0;
 
 
3249
 
 
 
 
 
 
 
3250}
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
 
  98{
 
 
  99	u16 i, j;
 100	unsigned k;
 101	bool print_unknown_handle = false;
 102
 103	/* Find number of classes in the input mapping */
 104	if (!map)
 105		return -EINVAL;
 106	i = 0;
 107	while (map[i].name)
 108		i++;
 109
 110	/* Allocate space for the class records, plus one for class zero */
 111	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 112	if (!out_map->mapping)
 113		return -ENOMEM;
 114
 115	/* Store the raw class and permission values */
 116	j = 0;
 117	while (map[j].name) {
 118		const struct security_class_mapping *p_in = map + (j++);
 119		struct selinux_mapping *p_out = out_map->mapping + j;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= 1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= 1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= 1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= 1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= 1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= 1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(struct selinux_state *state)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized(state))
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(state->policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 558
 559	if (target->bounds) {
 
 
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * flag which drivers have permissions
 586 * only looking for ioctl based extended permssions
 587 */
 588void services_compute_xperms_drivers(
 589		struct extended_perms *xperms,
 590		struct avtab_node *node)
 591{
 592	unsigned int i;
 593
 594	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 595		/* if one or more driver has all permissions allowed */
 596		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 597			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 598	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 599		/* if allowing permissions within a driver */
 600		security_xperm_set(xperms->drivers.p,
 601					node->datum.u.xperms->driver);
 602	}
 603
 604	xperms->len = 1;
 605}
 606
 607/*
 608 * Compute access vectors and extended permissions based on a context
 609 * structure pair for the permissions in a particular class.
 610 */
 611static void context_struct_compute_av(struct policydb *policydb,
 612				      struct context *scontext,
 613				      struct context *tcontext,
 614				      u16 tclass,
 615				      struct av_decision *avd,
 616				      struct extended_perms *xperms)
 617{
 618	struct constraint_node *constraint;
 619	struct role_allow *ra;
 620	struct avtab_key avkey;
 621	struct avtab_node *node;
 622	struct class_datum *tclass_datum;
 623	struct ebitmap *sattr, *tattr;
 624	struct ebitmap_node *snode, *tnode;
 625	unsigned int i, j;
 626
 627	avd->allowed = 0;
 628	avd->auditallow = 0;
 629	avd->auditdeny = 0xffffffff;
 630	if (xperms) {
 631		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 632		xperms->len = 0;
 633	}
 634
 635	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 636		if (printk_ratelimit())
 637			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 638		return;
 639	}
 640
 641	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 642
 643	/*
 644	 * If a specific type enforcement rule was defined for
 645	 * this permission check, then use it.
 646	 */
 647	avkey.target_class = tclass;
 648	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 649	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 650	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 651	ebitmap_for_each_positive_bit(sattr, snode, i) {
 652		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 653			avkey.source_type = i + 1;
 654			avkey.target_type = j + 1;
 655			for (node = avtab_search_node(&policydb->te_avtab,
 656						      &avkey);
 657			     node;
 658			     node = avtab_search_node_next(node, avkey.specified)) {
 659				if (node->key.specified == AVTAB_ALLOWED)
 660					avd->allowed |= node->datum.u.data;
 661				else if (node->key.specified == AVTAB_AUDITALLOW)
 662					avd->auditallow |= node->datum.u.data;
 663				else if (node->key.specified == AVTAB_AUDITDENY)
 664					avd->auditdeny &= node->datum.u.data;
 665				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 666					services_compute_xperms_drivers(xperms, node);
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 671					avd, xperms);
 672
 673		}
 674	}
 675
 676	/*
 677	 * Remove any permissions prohibited by a constraint (this includes
 678	 * the MLS policy).
 679	 */
 680	constraint = tclass_datum->constraints;
 681	while (constraint) {
 682		if ((constraint->permissions & (avd->allowed)) &&
 683		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 684					  constraint->expr)) {
 685			avd->allowed &= ~(constraint->permissions);
 686		}
 687		constraint = constraint->next;
 688	}
 689
 690	/*
 691	 * If checking process transition permission and the
 692	 * role is changing, then check the (current_role, new_role)
 693	 * pair.
 694	 */
 695	if (tclass == policydb->process_class &&
 696	    (avd->allowed & policydb->process_trans_perms) &&
 697	    scontext->role != tcontext->role) {
 698		for (ra = policydb->role_allow; ra; ra = ra->next) {
 699			if (scontext->role == ra->role &&
 700			    tcontext->role == ra->new_role)
 701				break;
 702		}
 703		if (!ra)
 704			avd->allowed &= ~policydb->process_trans_perms;
 705	}
 706
 707	/*
 708	 * If the given source and target types have boundary
 709	 * constraint, lazy checks have to mask any violated
 710	 * permission and notice it to userspace via audit.
 711	 */
 712	type_attribute_bounds_av(policydb, scontext, tcontext,
 713				 tclass, avd);
 714}
 715
 716static int security_validtrans_handle_fail(struct selinux_state *state,
 717					struct selinux_policy *policy,
 718					struct sidtab_entry *oentry,
 719					struct sidtab_entry *nentry,
 720					struct sidtab_entry *tentry,
 721					u16 tclass)
 722{
 723	struct policydb *p = &policy->policydb;
 724	struct sidtab *sidtab = policy->sidtab;
 725	char *o = NULL, *n = NULL, *t = NULL;
 726	u32 olen, nlen, tlen;
 727
 728	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 729		goto out;
 730	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 731		goto out;
 732	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 733		goto out;
 734	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 735		  "op=security_validate_transition seresult=denied"
 736		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 737		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 738out:
 739	kfree(o);
 740	kfree(n);
 741	kfree(t);
 742
 743	if (!enforcing_enabled(state))
 744		return 0;
 745	return -EPERM;
 746}
 747
 748static int security_compute_validatetrans(struct selinux_state *state,
 749					  u32 oldsid, u32 newsid, u32 tasksid,
 750					  u16 orig_tclass, bool user)
 751{
 752	struct selinux_policy *policy;
 753	struct policydb *policydb;
 754	struct sidtab *sidtab;
 755	struct sidtab_entry *oentry;
 756	struct sidtab_entry *nentry;
 757	struct sidtab_entry *tentry;
 758	struct class_datum *tclass_datum;
 759	struct constraint_node *constraint;
 760	u16 tclass;
 761	int rc = 0;
 762
 763
 764	if (!selinux_initialized(state))
 765		return 0;
 766
 767	rcu_read_lock();
 768
 769	policy = rcu_dereference(state->policy);
 770	policydb = &policy->policydb;
 771	sidtab = policy->sidtab;
 772
 773	if (!user)
 774		tclass = unmap_class(&policy->map, orig_tclass);
 775	else
 776		tclass = orig_tclass;
 777
 778	if (!tclass || tclass > policydb->p_classes.nprim) {
 
 
 779		rc = -EINVAL;
 780		goto out;
 781	}
 782	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 783
 784	oentry = sidtab_search_entry(sidtab, oldsid);
 785	if (!oentry) {
 786		pr_err("SELinux: %s:  unrecognized SID %d\n",
 787			__func__, oldsid);
 788		rc = -EINVAL;
 789		goto out;
 790	}
 791
 792	nentry = sidtab_search_entry(sidtab, newsid);
 793	if (!nentry) {
 794		pr_err("SELinux: %s:  unrecognized SID %d\n",
 795			__func__, newsid);
 796		rc = -EINVAL;
 797		goto out;
 798	}
 799
 800	tentry = sidtab_search_entry(sidtab, tasksid);
 801	if (!tentry) {
 802		pr_err("SELinux: %s:  unrecognized SID %d\n",
 803			__func__, tasksid);
 804		rc = -EINVAL;
 805		goto out;
 806	}
 807
 808	constraint = tclass_datum->validatetrans;
 809	while (constraint) {
 810		if (!constraint_expr_eval(policydb, &oentry->context,
 811					  &nentry->context, &tentry->context,
 812					  constraint->expr)) {
 813			if (user)
 814				rc = -EPERM;
 815			else
 816				rc = security_validtrans_handle_fail(state,
 817								policy,
 818								oentry,
 819								nentry,
 820								tentry,
 821								tclass);
 822			goto out;
 823		}
 824		constraint = constraint->next;
 825	}
 826
 827out:
 828	rcu_read_unlock();
 829	return rc;
 830}
 831
 832int security_validate_transition_user(struct selinux_state *state,
 833				      u32 oldsid, u32 newsid, u32 tasksid,
 834				      u16 tclass)
 835{
 836	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 837					      tclass, true);
 838}
 839
 840int security_validate_transition(struct selinux_state *state,
 841				 u32 oldsid, u32 newsid, u32 tasksid,
 842				 u16 orig_tclass)
 843{
 844	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 845					      orig_tclass, false);
 846}
 847
 848/*
 849 * security_bounded_transition - check whether the given
 850 * transition is directed to bounded, or not.
 851 * It returns 0, if @newsid is bounded by @oldsid.
 852 * Otherwise, it returns error code.
 853 *
 854 * @state: SELinux state
 855 * @oldsid : current security identifier
 856 * @newsid : destinated security identifier
 857 */
 858int security_bounded_transition(struct selinux_state *state,
 859				u32 old_sid, u32 new_sid)
 860{
 861	struct selinux_policy *policy;
 862	struct policydb *policydb;
 863	struct sidtab *sidtab;
 864	struct sidtab_entry *old_entry, *new_entry;
 865	struct type_datum *type;
 866	int index;
 867	int rc;
 868
 869	if (!selinux_initialized(state))
 870		return 0;
 871
 872	rcu_read_lock();
 873	policy = rcu_dereference(state->policy);
 874	policydb = &policy->policydb;
 875	sidtab = policy->sidtab;
 876
 877	rc = -EINVAL;
 878	old_entry = sidtab_search_entry(sidtab, old_sid);
 879	if (!old_entry) {
 880		pr_err("SELinux: %s: unrecognized SID %u\n",
 881		       __func__, old_sid);
 882		goto out;
 883	}
 884
 885	rc = -EINVAL;
 886	new_entry = sidtab_search_entry(sidtab, new_sid);
 887	if (!new_entry) {
 888		pr_err("SELinux: %s: unrecognized SID %u\n",
 889		       __func__, new_sid);
 890		goto out;
 891	}
 892
 893	rc = 0;
 894	/* type/domain unchanged */
 895	if (old_entry->context.type == new_entry->context.type)
 896		goto out;
 897
 898	index = new_entry->context.type;
 899	while (true) {
 900		type = policydb->type_val_to_struct[index - 1];
 
 901		BUG_ON(!type);
 902
 903		/* not bounded anymore */
 904		rc = -EPERM;
 905		if (!type->bounds)
 906			break;
 907
 908		/* @newsid is bounded by @oldsid */
 909		rc = 0;
 910		if (type->bounds == old_entry->context.type)
 911			break;
 912
 913		index = type->bounds;
 914	}
 915
 916	if (rc) {
 917		char *old_name = NULL;
 918		char *new_name = NULL;
 919		u32 length;
 920
 921		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 922					    &old_name, &length) &&
 923		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 924					    &new_name, &length)) {
 925			audit_log(audit_context(),
 926				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 927				  "op=security_bounded_transition "
 928				  "seresult=denied "
 929				  "oldcontext=%s newcontext=%s",
 930				  old_name, new_name);
 931		}
 932		kfree(new_name);
 933		kfree(old_name);
 934	}
 935out:
 936	rcu_read_unlock();
 937
 938	return rc;
 939}
 940
 941static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 942{
 943	avd->allowed = 0;
 944	avd->auditallow = 0;
 945	avd->auditdeny = 0xffffffff;
 946	if (policy)
 947		avd->seqno = policy->latest_granting;
 948	else
 949		avd->seqno = 0;
 950	avd->flags = 0;
 951}
 952
 953void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 954					struct avtab_node *node)
 955{
 956	unsigned int i;
 957
 958	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 959		if (xpermd->driver != node->datum.u.xperms->driver)
 960			return;
 961	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 962		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 963					xpermd->driver))
 964			return;
 965	} else {
 966		BUG();
 967	}
 968
 969	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 970		xpermd->used |= XPERMS_ALLOWED;
 971		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 972			memset(xpermd->allowed->p, 0xff,
 973					sizeof(xpermd->allowed->p));
 974		}
 975		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 976			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 977				xpermd->allowed->p[i] |=
 978					node->datum.u.xperms->perms.p[i];
 979		}
 980	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 981		xpermd->used |= XPERMS_AUDITALLOW;
 982		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 983			memset(xpermd->auditallow->p, 0xff,
 984					sizeof(xpermd->auditallow->p));
 985		}
 986		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 987			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 988				xpermd->auditallow->p[i] |=
 989					node->datum.u.xperms->perms.p[i];
 990		}
 991	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 992		xpermd->used |= XPERMS_DONTAUDIT;
 993		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 994			memset(xpermd->dontaudit->p, 0xff,
 995					sizeof(xpermd->dontaudit->p));
 996		}
 997		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 998			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 999				xpermd->dontaudit->p[i] |=
1000					node->datum.u.xperms->perms.p[i];
1001		}
1002	} else {
1003		BUG();
1004	}
1005}
1006
1007void security_compute_xperms_decision(struct selinux_state *state,
1008				      u32 ssid,
1009				      u32 tsid,
1010				      u16 orig_tclass,
1011				      u8 driver,
1012				      struct extended_perms_decision *xpermd)
1013{
1014	struct selinux_policy *policy;
1015	struct policydb *policydb;
1016	struct sidtab *sidtab;
1017	u16 tclass;
1018	struct context *scontext, *tcontext;
1019	struct avtab_key avkey;
1020	struct avtab_node *node;
1021	struct ebitmap *sattr, *tattr;
1022	struct ebitmap_node *snode, *tnode;
1023	unsigned int i, j;
1024
1025	xpermd->driver = driver;
1026	xpermd->used = 0;
1027	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1028	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1029	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1030
1031	rcu_read_lock();
1032	if (!selinux_initialized(state))
1033		goto allow;
1034
1035	policy = rcu_dereference(state->policy);
1036	policydb = &policy->policydb;
1037	sidtab = policy->sidtab;
1038
1039	scontext = sidtab_search(sidtab, ssid);
1040	if (!scontext) {
1041		pr_err("SELinux: %s:  unrecognized SID %d\n",
1042		       __func__, ssid);
1043		goto out;
1044	}
1045
1046	tcontext = sidtab_search(sidtab, tsid);
1047	if (!tcontext) {
1048		pr_err("SELinux: %s:  unrecognized SID %d\n",
1049		       __func__, tsid);
1050		goto out;
1051	}
1052
1053	tclass = unmap_class(&policy->map, orig_tclass);
1054	if (unlikely(orig_tclass && !tclass)) {
1055		if (policydb->allow_unknown)
1056			goto allow;
1057		goto out;
1058	}
1059
1060
1061	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1062		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1063		goto out;
1064	}
1065
1066	avkey.target_class = tclass;
1067	avkey.specified = AVTAB_XPERMS;
1068	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1069	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1070	ebitmap_for_each_positive_bit(sattr, snode, i) {
1071		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1072			avkey.source_type = i + 1;
1073			avkey.target_type = j + 1;
1074			for (node = avtab_search_node(&policydb->te_avtab,
1075						      &avkey);
1076			     node;
1077			     node = avtab_search_node_next(node, avkey.specified))
1078				services_compute_xperms_decision(xpermd, node);
1079
1080			cond_compute_xperms(&policydb->te_cond_avtab,
1081						&avkey, xpermd);
1082		}
1083	}
1084out:
1085	rcu_read_unlock();
1086	return;
1087allow:
1088	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1089	goto out;
1090}
1091
1092/**
1093 * security_compute_av - Compute access vector decisions.
1094 * @state: SELinux state
1095 * @ssid: source security identifier
1096 * @tsid: target security identifier
1097 * @orig_tclass: target security class
1098 * @avd: access vector decisions
1099 * @xperms: extended permissions
1100 *
1101 * Compute a set of access vector decisions based on the
1102 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1103 */
1104void security_compute_av(struct selinux_state *state,
1105			 u32 ssid,
1106			 u32 tsid,
1107			 u16 orig_tclass,
1108			 struct av_decision *avd,
1109			 struct extended_perms *xperms)
1110{
1111	struct selinux_policy *policy;
1112	struct policydb *policydb;
1113	struct sidtab *sidtab;
1114	u16 tclass;
1115	struct context *scontext = NULL, *tcontext = NULL;
1116
1117	rcu_read_lock();
1118	policy = rcu_dereference(state->policy);
1119	avd_init(policy, avd);
1120	xperms->len = 0;
1121	if (!selinux_initialized(state))
1122		goto allow;
1123
1124	policydb = &policy->policydb;
1125	sidtab = policy->sidtab;
1126
1127	scontext = sidtab_search(sidtab, ssid);
1128	if (!scontext) {
1129		pr_err("SELinux: %s:  unrecognized SID %d\n",
1130		       __func__, ssid);
1131		goto out;
1132	}
1133
1134	/* permissive domain? */
1135	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1136		avd->flags |= AVD_FLAGS_PERMISSIVE;
1137
1138	tcontext = sidtab_search(sidtab, tsid);
1139	if (!tcontext) {
1140		pr_err("SELinux: %s:  unrecognized SID %d\n",
1141		       __func__, tsid);
1142		goto out;
1143	}
1144
1145	tclass = unmap_class(&policy->map, orig_tclass);
1146	if (unlikely(orig_tclass && !tclass)) {
1147		if (policydb->allow_unknown)
1148			goto allow;
1149		goto out;
1150	}
1151	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1152				  xperms);
1153	map_decision(&policy->map, orig_tclass, avd,
1154		     policydb->allow_unknown);
1155out:
1156	rcu_read_unlock();
1157	return;
1158allow:
1159	avd->allowed = 0xffffffff;
1160	goto out;
1161}
1162
1163void security_compute_av_user(struct selinux_state *state,
1164			      u32 ssid,
1165			      u32 tsid,
1166			      u16 tclass,
1167			      struct av_decision *avd)
1168{
1169	struct selinux_policy *policy;
1170	struct policydb *policydb;
1171	struct sidtab *sidtab;
1172	struct context *scontext = NULL, *tcontext = NULL;
1173
1174	rcu_read_lock();
1175	policy = rcu_dereference(state->policy);
1176	avd_init(policy, avd);
1177	if (!selinux_initialized(state))
1178		goto allow;
1179
1180	policydb = &policy->policydb;
1181	sidtab = policy->sidtab;
1182
1183	scontext = sidtab_search(sidtab, ssid);
1184	if (!scontext) {
1185		pr_err("SELinux: %s:  unrecognized SID %d\n",
1186		       __func__, ssid);
1187		goto out;
1188	}
1189
1190	/* permissive domain? */
1191	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1192		avd->flags |= AVD_FLAGS_PERMISSIVE;
1193
1194	tcontext = sidtab_search(sidtab, tsid);
1195	if (!tcontext) {
1196		pr_err("SELinux: %s:  unrecognized SID %d\n",
1197		       __func__, tsid);
1198		goto out;
1199	}
1200
1201	if (unlikely(!tclass)) {
1202		if (policydb->allow_unknown)
1203			goto allow;
1204		goto out;
1205	}
1206
1207	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1208				  NULL);
1209 out:
1210	rcu_read_unlock();
1211	return;
1212allow:
1213	avd->allowed = 0xffffffff;
1214	goto out;
1215}
1216
1217/*
1218 * Write the security context string representation of
1219 * the context structure `context' into a dynamically
1220 * allocated string of the correct size.  Set `*scontext'
1221 * to point to this string and set `*scontext_len' to
1222 * the length of the string.
1223 */
1224static int context_struct_to_string(struct policydb *p,
1225				    struct context *context,
1226				    char **scontext, u32 *scontext_len)
1227{
1228	char *scontextp;
1229
1230	if (scontext)
1231		*scontext = NULL;
1232	*scontext_len = 0;
1233
1234	if (context->len) {
1235		*scontext_len = context->len;
1236		if (scontext) {
1237			*scontext = kstrdup(context->str, GFP_ATOMIC);
1238			if (!(*scontext))
1239				return -ENOMEM;
1240		}
1241		return 0;
1242	}
1243
1244	/* Compute the size of the context. */
1245	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1246	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1247	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1248	*scontext_len += mls_compute_context_len(p, context);
1249
1250	if (!scontext)
1251		return 0;
1252
1253	/* Allocate space for the context; caller must free this space. */
1254	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1255	if (!scontextp)
1256		return -ENOMEM;
1257	*scontext = scontextp;
1258
1259	/*
1260	 * Copy the user name, role name and type name into the context.
1261	 */
1262	scontextp += sprintf(scontextp, "%s:%s:%s",
1263		sym_name(p, SYM_USERS, context->user - 1),
1264		sym_name(p, SYM_ROLES, context->role - 1),
1265		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1266
1267	mls_sid_to_context(p, context, &scontextp);
1268
1269	*scontextp = 0;
1270
1271	return 0;
1272}
1273
1274static int sidtab_entry_to_string(struct policydb *p,
1275				  struct sidtab *sidtab,
1276				  struct sidtab_entry *entry,
1277				  char **scontext, u32 *scontext_len)
1278{
1279	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1280
1281	if (rc != -ENOENT)
1282		return rc;
1283
1284	rc = context_struct_to_string(p, &entry->context, scontext,
1285				      scontext_len);
1286	if (!rc && scontext)
1287		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1288	return rc;
1289}
1290
1291#include "initial_sid_to_string.h"
1292
1293int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1294{
1295	struct selinux_policy *policy;
1296	int rc;
1297
1298	if (!selinux_initialized(state)) {
1299		pr_err("SELinux: %s:  called before initial load_policy\n",
1300		       __func__);
1301		return -EINVAL;
1302	}
1303
1304	rcu_read_lock();
1305	policy = rcu_dereference(state->policy);
1306	rc = sidtab_hash_stats(policy->sidtab, page);
1307	rcu_read_unlock();
1308
1309	return rc;
1310}
1311
1312const char *security_get_initial_sid_context(u32 sid)
1313{
1314	if (unlikely(sid > SECINITSID_NUM))
1315		return NULL;
1316	return initial_sid_to_string[sid];
1317}
1318
1319static int security_sid_to_context_core(struct selinux_state *state,
1320					u32 sid, char **scontext,
1321					u32 *scontext_len, int force,
1322					int only_invalid)
1323{
1324	struct selinux_policy *policy;
1325	struct policydb *policydb;
1326	struct sidtab *sidtab;
1327	struct sidtab_entry *entry;
1328	int rc = 0;
1329
1330	if (scontext)
1331		*scontext = NULL;
1332	*scontext_len  = 0;
1333
1334	if (!selinux_initialized(state)) {
1335		if (sid <= SECINITSID_NUM) {
1336			char *scontextp;
1337			const char *s = initial_sid_to_string[sid];
1338
1339			if (!s)
1340				return -EINVAL;
1341			*scontext_len = strlen(s) + 1;
1342			if (!scontext)
1343				return 0;
1344			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1345			if (!scontextp)
1346				return -ENOMEM;
 
 
 
1347			*scontext = scontextp;
1348			return 0;
1349		}
1350		pr_err("SELinux: %s:  called before initial "
1351		       "load_policy on unknown SID %d\n", __func__, sid);
1352		return -EINVAL;
 
1353	}
1354	rcu_read_lock();
1355	policy = rcu_dereference(state->policy);
1356	policydb = &policy->policydb;
1357	sidtab = policy->sidtab;
1358
1359	if (force)
1360		entry = sidtab_search_entry_force(sidtab, sid);
1361	else
1362		entry = sidtab_search_entry(sidtab, sid);
1363	if (!entry) {
1364		pr_err("SELinux: %s:  unrecognized SID %d\n",
1365			__func__, sid);
1366		rc = -EINVAL;
1367		goto out_unlock;
1368	}
1369	if (only_invalid && !entry->context.len)
1370		goto out_unlock;
1371
1372	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1373				    scontext_len);
1374
1375out_unlock:
1376	rcu_read_unlock();
 
1377	return rc;
1378
1379}
1380
1381/**
1382 * security_sid_to_context - Obtain a context for a given SID.
1383 * @state: SELinux state
1384 * @sid: security identifier, SID
1385 * @scontext: security context
1386 * @scontext_len: length in bytes
1387 *
1388 * Write the string representation of the context associated with @sid
1389 * into a dynamically allocated string of the correct size.  Set @scontext
1390 * to point to this string and set @scontext_len to the length of the string.
1391 */
1392int security_sid_to_context(struct selinux_state *state,
1393			    u32 sid, char **scontext, u32 *scontext_len)
1394{
1395	return security_sid_to_context_core(state, sid, scontext,
1396					    scontext_len, 0, 0);
1397}
1398
1399int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1400				  char **scontext, u32 *scontext_len)
1401{
1402	return security_sid_to_context_core(state, sid, scontext,
1403					    scontext_len, 1, 0);
1404}
1405
1406/**
1407 * security_sid_to_context_inval - Obtain a context for a given SID if it
1408 *                                 is invalid.
1409 * @state: SELinux state
1410 * @sid: security identifier, SID
1411 * @scontext: security context
1412 * @scontext_len: length in bytes
1413 *
1414 * Write the string representation of the context associated with @sid
1415 * into a dynamically allocated string of the correct size, but only if the
1416 * context is invalid in the current policy.  Set @scontext to point to
1417 * this string (or NULL if the context is valid) and set @scontext_len to
1418 * the length of the string (or 0 if the context is valid).
1419 */
1420int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1421				  char **scontext, u32 *scontext_len)
1422{
1423	return security_sid_to_context_core(state, sid, scontext,
1424					    scontext_len, 1, 1);
1425}
1426
1427/*
1428 * Caveat:  Mutates scontext.
1429 */
1430static int string_to_context_struct(struct policydb *pol,
1431				    struct sidtab *sidtabp,
1432				    char *scontext,
 
1433				    struct context *ctx,
1434				    u32 def_sid)
1435{
1436	struct role_datum *role;
1437	struct type_datum *typdatum;
1438	struct user_datum *usrdatum;
1439	char *scontextp, *p, oldc;
1440	int rc = 0;
1441
1442	context_init(ctx);
1443
1444	/* Parse the security context. */
1445
1446	rc = -EINVAL;
1447	scontextp = scontext;
1448
1449	/* Extract the user. */
1450	p = scontextp;
1451	while (*p && *p != ':')
1452		p++;
1453
1454	if (*p == 0)
1455		goto out;
1456
1457	*p++ = 0;
1458
1459	usrdatum = symtab_search(&pol->p_users, scontextp);
1460	if (!usrdatum)
1461		goto out;
1462
1463	ctx->user = usrdatum->value;
1464
1465	/* Extract role. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469
1470	if (*p == 0)
1471		goto out;
1472
1473	*p++ = 0;
1474
1475	role = symtab_search(&pol->p_roles, scontextp);
1476	if (!role)
1477		goto out;
1478	ctx->role = role->value;
1479
1480	/* Extract type. */
1481	scontextp = p;
1482	while (*p && *p != ':')
1483		p++;
1484	oldc = *p;
1485	*p++ = 0;
1486
1487	typdatum = symtab_search(&pol->p_types, scontextp);
1488	if (!typdatum || typdatum->attribute)
1489		goto out;
1490
1491	ctx->type = typdatum->value;
1492
1493	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1494	if (rc)
1495		goto out;
1496
 
 
 
 
1497	/* Check the validity of the new context. */
1498	rc = -EINVAL;
1499	if (!policydb_context_isvalid(pol, ctx))
1500		goto out;
1501	rc = 0;
1502out:
1503	if (rc)
1504		context_destroy(ctx);
1505	return rc;
1506}
1507
1508static int security_context_to_sid_core(struct selinux_state *state,
1509					const char *scontext, u32 scontext_len,
1510					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1511					int force)
1512{
1513	struct selinux_policy *policy;
1514	struct policydb *policydb;
1515	struct sidtab *sidtab;
1516	char *scontext2, *str = NULL;
1517	struct context context;
1518	int rc = 0;
1519
1520	/* An empty security context is never valid. */
1521	if (!scontext_len)
1522		return -EINVAL;
1523
1524	/* Copy the string to allow changes and ensure a NUL terminator */
1525	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1526	if (!scontext2)
1527		return -ENOMEM;
1528
1529	if (!selinux_initialized(state)) {
1530		int i;
1531
1532		for (i = 1; i < SECINITSID_NUM; i++) {
1533			const char *s = initial_sid_to_string[i];
1534
1535			if (s && !strcmp(s, scontext2)) {
1536				*sid = i;
1537				goto out;
1538			}
1539		}
1540		*sid = SECINITSID_KERNEL;
1541		goto out;
1542	}
1543	*sid = SECSID_NULL;
1544
 
 
 
 
 
 
 
1545	if (force) {
1546		/* Save another copy for storing in uninterpreted form */
1547		rc = -ENOMEM;
1548		str = kstrdup(scontext2, gfp_flags);
1549		if (!str)
1550			goto out;
1551	}
1552retry:
1553	rcu_read_lock();
1554	policy = rcu_dereference(state->policy);
1555	policydb = &policy->policydb;
1556	sidtab = policy->sidtab;
1557	rc = string_to_context_struct(policydb, sidtab, scontext2,
1558				      &context, def_sid);
1559	if (rc == -EINVAL && force) {
1560		context.str = str;
1561		context.len = strlen(str) + 1;
1562		str = NULL;
1563	} else if (rc)
1564		goto out_unlock;
1565	rc = sidtab_context_to_sid(sidtab, &context, sid);
1566	if (rc == -ESTALE) {
1567		rcu_read_unlock();
1568		if (context.str) {
1569			str = context.str;
1570			context.str = NULL;
1571		}
1572		context_destroy(&context);
1573		goto retry;
1574	}
1575	context_destroy(&context);
1576out_unlock:
1577	rcu_read_unlock();
1578out:
1579	kfree(scontext2);
1580	kfree(str);
1581	return rc;
1582}
1583
1584/**
1585 * security_context_to_sid - Obtain a SID for a given security context.
1586 * @state: SELinux state
1587 * @scontext: security context
1588 * @scontext_len: length in bytes
1589 * @sid: security identifier, SID
1590 * @gfp: context for the allocation
1591 *
1592 * Obtains a SID associated with the security context that
1593 * has the string representation specified by @scontext.
1594 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1595 * memory is available, or 0 on success.
1596 */
1597int security_context_to_sid(struct selinux_state *state,
1598			    const char *scontext, u32 scontext_len, u32 *sid,
1599			    gfp_t gfp)
1600{
1601	return security_context_to_sid_core(state, scontext, scontext_len,
1602					    sid, SECSID_NULL, gfp, 0);
1603}
1604
1605int security_context_str_to_sid(struct selinux_state *state,
1606				const char *scontext, u32 *sid, gfp_t gfp)
1607{
1608	return security_context_to_sid(state, scontext, strlen(scontext),
1609				       sid, gfp);
1610}
1611
1612/**
1613 * security_context_to_sid_default - Obtain a SID for a given security context,
1614 * falling back to specified default if needed.
1615 *
1616 * @state: SELinux state
1617 * @scontext: security context
1618 * @scontext_len: length in bytes
1619 * @sid: security identifier, SID
1620 * @def_sid: default SID to assign on error
1621 * @gfp_flags: the allocator get-free-page (GFP) flags
1622 *
1623 * Obtains a SID associated with the security context that
1624 * has the string representation specified by @scontext.
1625 * The default SID is passed to the MLS layer to be used to allow
1626 * kernel labeling of the MLS field if the MLS field is not present
1627 * (for upgrading to MLS without full relabel).
1628 * Implicitly forces adding of the context even if it cannot be mapped yet.
1629 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1630 * memory is available, or 0 on success.
1631 */
1632int security_context_to_sid_default(struct selinux_state *state,
1633				    const char *scontext, u32 scontext_len,
1634				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1635{
1636	return security_context_to_sid_core(state, scontext, scontext_len,
1637					    sid, def_sid, gfp_flags, 1);
1638}
1639
1640int security_context_to_sid_force(struct selinux_state *state,
1641				  const char *scontext, u32 scontext_len,
1642				  u32 *sid)
1643{
1644	return security_context_to_sid_core(state, scontext, scontext_len,
1645					    sid, SECSID_NULL, GFP_KERNEL, 1);
1646}
1647
1648static int compute_sid_handle_invalid_context(
1649	struct selinux_state *state,
1650	struct selinux_policy *policy,
1651	struct sidtab_entry *sentry,
1652	struct sidtab_entry *tentry,
1653	u16 tclass,
1654	struct context *newcontext)
1655{
1656	struct policydb *policydb = &policy->policydb;
1657	struct sidtab *sidtab = policy->sidtab;
1658	char *s = NULL, *t = NULL, *n = NULL;
1659	u32 slen, tlen, nlen;
1660	struct audit_buffer *ab;
1661
1662	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1663		goto out;
1664	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1665		goto out;
1666	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1667		goto out;
1668	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1669	if (!ab)
1670		goto out;
1671	audit_log_format(ab,
1672			 "op=security_compute_sid invalid_context=");
1673	/* no need to record the NUL with untrusted strings */
1674	audit_log_n_untrustedstring(ab, n, nlen - 1);
1675	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1676			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1677	audit_log_end(ab);
1678out:
1679	kfree(s);
1680	kfree(t);
1681	kfree(n);
1682	if (!enforcing_enabled(state))
1683		return 0;
1684	return -EACCES;
1685}
1686
1687static void filename_compute_type(struct policydb *policydb,
1688				  struct context *newcontext,
1689				  u32 stype, u32 ttype, u16 tclass,
1690				  const char *objname)
1691{
1692	struct filename_trans_key ft;
1693	struct filename_trans_datum *datum;
1694
1695	/*
1696	 * Most filename trans rules are going to live in specific directories
1697	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1698	 * if the ttype does not contain any rules.
1699	 */
1700	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1701		return;
1702
 
1703	ft.ttype = ttype;
1704	ft.tclass = tclass;
1705	ft.name = objname;
1706
1707	datum = policydb_filenametr_search(policydb, &ft);
1708	while (datum) {
1709		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1710			newcontext->type = datum->otype;
1711			return;
1712		}
1713		datum = datum->next;
1714	}
1715}
1716
1717static int security_compute_sid(struct selinux_state *state,
1718				u32 ssid,
1719				u32 tsid,
1720				u16 orig_tclass,
1721				u32 specified,
1722				const char *objname,
1723				u32 *out_sid,
1724				bool kern)
1725{
1726	struct selinux_policy *policy;
1727	struct policydb *policydb;
1728	struct sidtab *sidtab;
1729	struct class_datum *cladatum;
1730	struct context *scontext, *tcontext, newcontext;
1731	struct sidtab_entry *sentry, *tentry;
1732	struct avtab_key avkey;
1733	struct avtab_datum *avdatum;
1734	struct avtab_node *node;
1735	u16 tclass;
1736	int rc = 0;
1737	bool sock;
1738
1739	if (!selinux_initialized(state)) {
1740		switch (orig_tclass) {
1741		case SECCLASS_PROCESS: /* kernel value */
1742			*out_sid = ssid;
1743			break;
1744		default:
1745			*out_sid = tsid;
1746			break;
1747		}
1748		goto out;
1749	}
1750
1751retry:
1752	cladatum = NULL;
1753	context_init(&newcontext);
1754
1755	rcu_read_lock();
1756
1757	policy = rcu_dereference(state->policy);
1758
1759	if (kern) {
1760		tclass = unmap_class(&policy->map, orig_tclass);
1761		sock = security_is_socket_class(orig_tclass);
1762	} else {
1763		tclass = orig_tclass;
1764		sock = security_is_socket_class(map_class(&policy->map,
1765							  tclass));
1766	}
1767
1768	policydb = &policy->policydb;
1769	sidtab = policy->sidtab;
1770
1771	sentry = sidtab_search_entry(sidtab, ssid);
1772	if (!sentry) {
1773		pr_err("SELinux: %s:  unrecognized SID %d\n",
1774		       __func__, ssid);
1775		rc = -EINVAL;
1776		goto out_unlock;
1777	}
1778	tentry = sidtab_search_entry(sidtab, tsid);
1779	if (!tentry) {
1780		pr_err("SELinux: %s:  unrecognized SID %d\n",
1781		       __func__, tsid);
1782		rc = -EINVAL;
1783		goto out_unlock;
1784	}
1785
1786	scontext = &sentry->context;
1787	tcontext = &tentry->context;
1788
1789	if (tclass && tclass <= policydb->p_classes.nprim)
1790		cladatum = policydb->class_val_to_struct[tclass - 1];
1791
1792	/* Set the user identity. */
1793	switch (specified) {
1794	case AVTAB_TRANSITION:
1795	case AVTAB_CHANGE:
1796		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1797			newcontext.user = tcontext->user;
1798		} else {
1799			/* notice this gets both DEFAULT_SOURCE and unset */
1800			/* Use the process user identity. */
1801			newcontext.user = scontext->user;
1802		}
1803		break;
1804	case AVTAB_MEMBER:
1805		/* Use the related object owner. */
1806		newcontext.user = tcontext->user;
1807		break;
1808	}
1809
1810	/* Set the role to default values. */
1811	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1812		newcontext.role = scontext->role;
1813	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1814		newcontext.role = tcontext->role;
1815	} else {
1816		if ((tclass == policydb->process_class) || sock)
1817			newcontext.role = scontext->role;
1818		else
1819			newcontext.role = OBJECT_R_VAL;
1820	}
1821
1822	/* Set the type to default values. */
1823	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1824		newcontext.type = scontext->type;
1825	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1826		newcontext.type = tcontext->type;
1827	} else {
1828		if ((tclass == policydb->process_class) || sock) {
1829			/* Use the type of process. */
1830			newcontext.type = scontext->type;
1831		} else {
1832			/* Use the type of the related object. */
1833			newcontext.type = tcontext->type;
1834		}
1835	}
1836
1837	/* Look for a type transition/member/change rule. */
1838	avkey.source_type = scontext->type;
1839	avkey.target_type = tcontext->type;
1840	avkey.target_class = tclass;
1841	avkey.specified = specified;
1842	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1843
1844	/* If no permanent rule, also check for enabled conditional rules */
1845	if (!avdatum) {
1846		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1847		for (; node; node = avtab_search_node_next(node, specified)) {
1848			if (node->key.specified & AVTAB_ENABLED) {
1849				avdatum = &node->datum;
1850				break;
1851			}
1852		}
1853	}
1854
1855	if (avdatum) {
1856		/* Use the type from the type transition/member/change rule. */
1857		newcontext.type = avdatum->u.data;
1858	}
1859
1860	/* if we have a objname this is a file trans check so check those rules */
1861	if (objname)
1862		filename_compute_type(policydb, &newcontext, scontext->type,
1863				      tcontext->type, tclass, objname);
1864
1865	/* Check for class-specific changes. */
1866	if (specified & AVTAB_TRANSITION) {
1867		/* Look for a role transition rule. */
1868		struct role_trans_datum *rtd;
1869		struct role_trans_key rtk = {
1870			.role = scontext->role,
1871			.type = tcontext->type,
1872			.tclass = tclass,
1873		};
1874
1875		rtd = policydb_roletr_search(policydb, &rtk);
1876		if (rtd)
1877			newcontext.role = rtd->new_role;
1878	}
1879
1880	/* Set the MLS attributes.
1881	   This is done last because it may allocate memory. */
1882	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1883			     &newcontext, sock);
1884	if (rc)
1885		goto out_unlock;
1886
1887	/* Check the validity of the context. */
1888	if (!policydb_context_isvalid(policydb, &newcontext)) {
1889		rc = compute_sid_handle_invalid_context(state, policy, sentry,
1890							tentry, tclass,
 
1891							&newcontext);
1892		if (rc)
1893			goto out_unlock;
1894	}
1895	/* Obtain the sid for the context. */
1896	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1897	if (rc == -ESTALE) {
1898		rcu_read_unlock();
1899		context_destroy(&newcontext);
1900		goto retry;
1901	}
1902out_unlock:
1903	rcu_read_unlock();
1904	context_destroy(&newcontext);
1905out:
1906	return rc;
1907}
1908
1909/**
1910 * security_transition_sid - Compute the SID for a new subject/object.
1911 * @state: SELinux state
1912 * @ssid: source security identifier
1913 * @tsid: target security identifier
1914 * @tclass: target security class
1915 * @qstr: object name
1916 * @out_sid: security identifier for new subject/object
1917 *
1918 * Compute a SID to use for labeling a new subject or object in the
1919 * class @tclass based on a SID pair (@ssid, @tsid).
1920 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1921 * if insufficient memory is available, or %0 if the new SID was
1922 * computed successfully.
1923 */
1924int security_transition_sid(struct selinux_state *state,
1925			    u32 ssid, u32 tsid, u16 tclass,
1926			    const struct qstr *qstr, u32 *out_sid)
1927{
1928	return security_compute_sid(state, ssid, tsid, tclass,
1929				    AVTAB_TRANSITION,
1930				    qstr ? qstr->name : NULL, out_sid, true);
1931}
1932
1933int security_transition_sid_user(struct selinux_state *state,
1934				 u32 ssid, u32 tsid, u16 tclass,
1935				 const char *objname, u32 *out_sid)
1936{
1937	return security_compute_sid(state, ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    objname, out_sid, false);
1940}
1941
1942/**
1943 * security_member_sid - Compute the SID for member selection.
1944 * @state: SELinux state
1945 * @ssid: source security identifier
1946 * @tsid: target security identifier
1947 * @tclass: target security class
1948 * @out_sid: security identifier for selected member
1949 *
1950 * Compute a SID to use when selecting a member of a polyinstantiated
1951 * object of class @tclass based on a SID pair (@ssid, @tsid).
1952 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1953 * if insufficient memory is available, or %0 if the SID was
1954 * computed successfully.
1955 */
1956int security_member_sid(struct selinux_state *state,
1957			u32 ssid,
1958			u32 tsid,
1959			u16 tclass,
1960			u32 *out_sid)
1961{
1962	return security_compute_sid(state, ssid, tsid, tclass,
1963				    AVTAB_MEMBER, NULL,
1964				    out_sid, false);
1965}
1966
1967/**
1968 * security_change_sid - Compute the SID for object relabeling.
1969 * @state: SELinux state
1970 * @ssid: source security identifier
1971 * @tsid: target security identifier
1972 * @tclass: target security class
1973 * @out_sid: security identifier for selected member
1974 *
1975 * Compute a SID to use for relabeling an object of class @tclass
1976 * based on a SID pair (@ssid, @tsid).
1977 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1978 * if insufficient memory is available, or %0 if the SID was
1979 * computed successfully.
1980 */
1981int security_change_sid(struct selinux_state *state,
1982			u32 ssid,
1983			u32 tsid,
1984			u16 tclass,
1985			u32 *out_sid)
1986{
1987	return security_compute_sid(state,
1988				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1989				    out_sid, false);
1990}
1991
1992static inline int convert_context_handle_invalid_context(
1993	struct selinux_state *state,
1994	struct policydb *policydb,
1995	struct context *context)
 
 
 
 
 
 
 
 
 
 
1996{
1997	char *s;
1998	u32 len;
1999
2000	if (enforcing_enabled(state))
2001		return -EINVAL;
2002
2003	if (!context_struct_to_string(policydb, context, &s, &len)) {
2004		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2005			s);
2006		kfree(s);
2007	}
2008	return 0;
2009}
2010
2011/**
2012 * services_convert_context - Convert a security context across policies.
2013 * @args: populated convert_context_args struct
2014 * @oldc: original context
2015 * @newc: converted context
2016 * @gfp_flags: allocation flags
2017 *
2018 * Convert the values in the security context structure @oldc from the values
2019 * specified in the policy @args->oldp to the values specified in the policy
2020 * @args->newp, storing the new context in @newc, and verifying that the
2021 * context is valid under the new policy.
2022 */
2023int services_convert_context(struct convert_context_args *args,
2024			     struct context *oldc, struct context *newc,
2025			     gfp_t gfp_flags)
2026{
 
 
2027	struct ocontext *oc;
 
2028	struct role_datum *role;
2029	struct type_datum *typdatum;
2030	struct user_datum *usrdatum;
2031	char *s;
2032	u32 len;
2033	int rc;
 
 
 
 
 
 
 
 
2034
2035	if (oldc->str) {
2036		s = kstrdup(oldc->str, gfp_flags);
2037		if (!s)
2038			return -ENOMEM;
2039
2040		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2041		if (rc == -EINVAL) {
2042			/*
2043			 * Retain string representation for later mapping.
2044			 *
2045			 * IMPORTANT: We need to copy the contents of oldc->str
2046			 * back into s again because string_to_context_struct()
2047			 * may have garbled it.
2048			 */
2049			memcpy(s, oldc->str, oldc->len);
2050			context_init(newc);
2051			newc->str = s;
2052			newc->len = oldc->len;
2053			return 0;
2054		}
2055		kfree(s);
2056		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2057			/* Other error condition, e.g. ENOMEM. */
2058			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2059			       oldc->str, -rc);
2060			return rc;
2061		}
2062		pr_info("SELinux:  Context %s became valid (mapped).\n",
2063			oldc->str);
2064		return 0;
2065	}
2066
2067	context_init(newc);
 
 
2068
2069	/* Convert the user. */
2070	usrdatum = symtab_search(&args->newp->p_users,
2071				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2072	if (!usrdatum)
2073		goto bad;
2074	newc->user = usrdatum->value;
2075
2076	/* Convert the role. */
2077	role = symtab_search(&args->newp->p_roles,
2078			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2079	if (!role)
2080		goto bad;
2081	newc->role = role->value;
2082
2083	/* Convert the type. */
2084	typdatum = symtab_search(&args->newp->p_types,
2085				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2086	if (!typdatum)
2087		goto bad;
2088	newc->type = typdatum->value;
2089
2090	/* Convert the MLS fields if dealing with MLS policies */
2091	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2092		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2093		if (rc)
2094			goto bad;
 
 
 
 
 
 
 
2095	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2096		/*
2097		 * Switching between non-MLS and MLS policy:
2098		 * ensure that the MLS fields of the context for all
2099		 * existing entries in the sidtab are filled in with a
2100		 * suitable default value, likely taken from one of the
2101		 * initial SIDs.
2102		 */
2103		oc = args->newp->ocontexts[OCON_ISID];
2104		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2105			oc = oc->next;
 
2106		if (!oc) {
2107			pr_err("SELinux:  unable to look up"
2108				" the initial SIDs list\n");
2109			goto bad;
2110		}
2111		rc = mls_range_set(newc, &oc->context[0].range);
 
2112		if (rc)
2113			goto bad;
2114	}
2115
2116	/* Check the validity of the new context. */
2117	if (!policydb_context_isvalid(args->newp, newc)) {
2118		rc = convert_context_handle_invalid_context(args->state,
2119							    args->oldp, oldc);
2120		if (rc)
2121			goto bad;
2122	}
2123
2124	return 0;
 
 
 
 
2125bad:
2126	/* Map old representation to string and save it. */
2127	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2128	if (rc)
2129		return rc;
2130	context_destroy(newc);
2131	newc->str = s;
2132	newc->len = len;
2133	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2134		newc->str);
2135	return 0;
2136}
2137
2138static void security_load_policycaps(struct selinux_state *state,
2139				struct selinux_policy *policy)
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2148		WRITE_ONCE(state->policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
 
 
2182}
2183
2184void selinux_policy_cancel(struct selinux_state *state,
2185			   struct selinux_load_state *load_state)
2186{
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(struct selinux_state *state,
2198					u32 seqno)
2199{
2200	/* Flush external caches and notify userspace of policy load */
2201	avc_ss_reset(state->avc, seqno);
2202	selnl_notify_policyload(seqno);
2203	selinux_status_update_policyload(state, seqno);
2204	selinux_netlbl_cache_invalidate();
2205	selinux_xfrm_notify_policyload();
2206	selinux_ima_measure_state_locked(state);
2207}
2208
2209void selinux_policy_commit(struct selinux_state *state,
2210			   struct selinux_load_state *load_state)
2211{
2212	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2213	unsigned long flags;
2214	u32 seqno;
2215
2216	oldpolicy = rcu_dereference_protected(state->policy,
2217					lockdep_is_held(&state->policy_mutex));
2218
2219	/* If switching between different policy types, log MLS status */
2220	if (oldpolicy) {
2221		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2222			pr_info("SELinux: Disabling MLS support...\n");
2223		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2224			pr_info("SELinux: Enabling MLS support...\n");
2225	}
2226
2227	/* Set latest granting seqno for new policy. */
2228	if (oldpolicy)
2229		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2230	else
2231		newpolicy->latest_granting = 1;
2232	seqno = newpolicy->latest_granting;
2233
2234	/* Install the new policy. */
2235	if (oldpolicy) {
2236		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2237		rcu_assign_pointer(state->policy, newpolicy);
2238		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2239	} else {
2240		rcu_assign_pointer(state->policy, newpolicy);
2241	}
2242
2243	/* Load the policycaps from the new policy */
2244	security_load_policycaps(state, newpolicy);
2245
2246	if (!selinux_initialized(state)) {
2247		/*
2248		 * After first policy load, the security server is
2249		 * marked as initialized and ready to handle requests and
2250		 * any objects created prior to policy load are then labeled.
2251		 */
2252		selinux_mark_initialized(state);
2253		selinux_complete_init();
2254	}
2255
2256	/* Free the old policy */
2257	synchronize_rcu();
2258	selinux_policy_free(oldpolicy);
2259	kfree(load_state->convert_data);
2260
2261	/* Notify others of the policy change */
2262	selinux_notify_policy_change(state, seqno);
2263}
2264
2265/**
2266 * security_load_policy - Load a security policy configuration.
2267 * @state: SELinux state
2268 * @data: binary policy data
2269 * @len: length of data in bytes
2270 * @load_state: policy load state
2271 *
2272 * Load a new set of security policy configuration data,
2273 * validate it and convert the SID table as necessary.
2274 * This function will flush the access vector cache after
2275 * loading the new policy.
2276 */
2277int security_load_policy(struct selinux_state *state, void *data, size_t len,
2278			 struct selinux_load_state *load_state)
2279{
2280	struct selinux_policy *newpolicy, *oldpolicy;
2281	struct selinux_policy_convert_data *convert_data;
 
 
 
 
2282	int rc = 0;
2283	struct policy_file file = { data, len }, *fp = &file;
2284
2285	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2286	if (!newpolicy)
2287		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2288
2289	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2290	if (!newpolicy->sidtab) {
2291		rc = -ENOMEM;
2292		goto err_policy;
 
 
 
 
 
 
2293	}
2294
2295	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2296	if (rc)
2297		goto err_sidtab;
2298
2299	newpolicy->policydb.len = len;
2300	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2301				&newpolicy->map);
2302	if (rc)
2303		goto err_policydb;
 
2304
2305	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2306	if (rc) {
2307		pr_err("SELinux:  unable to load the initial SIDs\n");
2308		goto err_mapping;
 
2309	}
2310
2311	if (!selinux_initialized(state)) {
2312		/* First policy load, so no need to preserve state from old policy */
2313		load_state->policy = newpolicy;
2314		load_state->convert_data = NULL;
2315		return 0;
 
 
 
2316	}
2317
2318	oldpolicy = rcu_dereference_protected(state->policy,
2319					lockdep_is_held(&state->policy_mutex));
2320
2321	/* Preserve active boolean values from the old policy */
2322	rc = security_preserve_bools(oldpolicy, newpolicy);
2323	if (rc) {
2324		pr_err("SELinux:  unable to preserve booleans\n");
2325		goto err_free_isids;
2326	}
2327
2328	/*
2329	 * Convert the internal representations of contexts
2330	 * in the new SID table.
2331	 */
2332
2333	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2334	if (!convert_data) {
2335		rc = -ENOMEM;
2336		goto err_free_isids;
2337	}
2338
2339	convert_data->args.state = state;
2340	convert_data->args.oldp = &oldpolicy->policydb;
2341	convert_data->args.newp = &newpolicy->policydb;
2342
2343	convert_data->sidtab_params.args = &convert_data->args;
2344	convert_data->sidtab_params.target = newpolicy->sidtab;
2345
2346	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2347	if (rc) {
2348		pr_err("SELinux:  unable to convert the internal"
2349			" representation of contexts in the new SID"
2350			" table\n");
2351		goto err_free_convert_data;
2352	}
2353
2354	load_state->policy = newpolicy;
2355	load_state->convert_data = convert_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2356	return 0;
2357
2358err_free_convert_data:
2359	kfree(convert_data);
2360err_free_isids:
2361	sidtab_destroy(newpolicy->sidtab);
2362err_mapping:
2363	kfree(newpolicy->map.mapping);
2364err_policydb:
2365	policydb_destroy(&newpolicy->policydb);
2366err_sidtab:
2367	kfree(newpolicy->sidtab);
2368err_policy:
2369	kfree(newpolicy);
2370
2371	return rc;
2372}
2373
2374/**
2375 * ocontext_to_sid - Helper to safely get sid for an ocontext
2376 * @sidtab: SID table
2377 * @c: ocontext structure
2378 * @index: index of the context entry (0 or 1)
2379 * @out_sid: pointer to the resulting SID value
2380 *
2381 * For all ocontexts except OCON_ISID the SID fields are populated
2382 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2383 * operation, this helper must be used to do that safely.
2384 *
2385 * WARNING: This function may return -ESTALE, indicating that the caller
2386 * must retry the operation after re-acquiring the policy pointer!
2387 */
2388static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2389			   size_t index, u32 *out_sid)
2390{
2391	int rc;
2392	u32 sid;
2393
2394	/* Ensure the associated sidtab entry is visible to this thread. */
2395	sid = smp_load_acquire(&c->sid[index]);
2396	if (!sid) {
2397		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2398		if (rc)
2399			return rc;
2400
2401		/*
2402		 * Ensure the new sidtab entry is visible to other threads
2403		 * when they see the SID.
2404		 */
2405		smp_store_release(&c->sid[index], sid);
2406	}
2407	*out_sid = sid;
2408	return 0;
2409}
2410
2411/**
2412 * security_port_sid - Obtain the SID for a port.
2413 * @state: SELinux state
2414 * @protocol: protocol number
2415 * @port: port number
2416 * @out_sid: security identifier
2417 */
2418int security_port_sid(struct selinux_state *state,
2419		      u8 protocol, u16 port, u32 *out_sid)
2420{
2421	struct selinux_policy *policy;
2422	struct policydb *policydb;
2423	struct sidtab *sidtab;
2424	struct ocontext *c;
2425	int rc;
2426
2427	if (!selinux_initialized(state)) {
2428		*out_sid = SECINITSID_PORT;
2429		return 0;
2430	}
2431
2432retry:
2433	rc = 0;
2434	rcu_read_lock();
2435	policy = rcu_dereference(state->policy);
2436	policydb = &policy->policydb;
2437	sidtab = policy->sidtab;
2438
2439	c = policydb->ocontexts[OCON_PORT];
2440	while (c) {
2441		if (c->u.port.protocol == protocol &&
2442		    c->u.port.low_port <= port &&
2443		    c->u.port.high_port >= port)
2444			break;
2445		c = c->next;
2446	}
2447
2448	if (c) {
2449		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2450		if (rc == -ESTALE) {
2451			rcu_read_unlock();
2452			goto retry;
 
 
2453		}
2454		if (rc)
2455			goto out;
2456	} else {
2457		*out_sid = SECINITSID_PORT;
2458	}
2459
2460out:
2461	rcu_read_unlock();
2462	return rc;
2463}
2464
2465/**
2466 * security_ib_pkey_sid - Obtain the SID for a pkey.
2467 * @state: SELinux state
2468 * @subnet_prefix: Subnet Prefix
2469 * @pkey_num: pkey number
2470 * @out_sid: security identifier
2471 */
2472int security_ib_pkey_sid(struct selinux_state *state,
2473			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2474{
2475	struct selinux_policy *policy;
2476	struct policydb *policydb;
2477	struct sidtab *sidtab;
2478	struct ocontext *c;
2479	int rc;
2480
2481	if (!selinux_initialized(state)) {
2482		*out_sid = SECINITSID_UNLABELED;
2483		return 0;
2484	}
2485
2486retry:
2487	rc = 0;
2488	rcu_read_lock();
2489	policy = rcu_dereference(state->policy);
2490	policydb = &policy->policydb;
2491	sidtab = policy->sidtab;
2492
2493	c = policydb->ocontexts[OCON_IBPKEY];
2494	while (c) {
2495		if (c->u.ibpkey.low_pkey <= pkey_num &&
2496		    c->u.ibpkey.high_pkey >= pkey_num &&
2497		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2498			break;
2499
2500		c = c->next;
2501	}
2502
2503	if (c) {
2504		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2505		if (rc == -ESTALE) {
2506			rcu_read_unlock();
2507			goto retry;
2508		}
2509		if (rc)
2510			goto out;
2511	} else
2512		*out_sid = SECINITSID_UNLABELED;
2513
2514out:
2515	rcu_read_unlock();
2516	return rc;
2517}
2518
2519/**
2520 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2521 * @state: SELinux state
2522 * @dev_name: device name
2523 * @port_num: port number
2524 * @out_sid: security identifier
2525 */
2526int security_ib_endport_sid(struct selinux_state *state,
2527			    const char *dev_name, u8 port_num, u32 *out_sid)
2528{
2529	struct selinux_policy *policy;
2530	struct policydb *policydb;
2531	struct sidtab *sidtab;
2532	struct ocontext *c;
2533	int rc;
2534
2535	if (!selinux_initialized(state)) {
2536		*out_sid = SECINITSID_UNLABELED;
2537		return 0;
2538	}
2539
2540retry:
2541	rc = 0;
2542	rcu_read_lock();
2543	policy = rcu_dereference(state->policy);
2544	policydb = &policy->policydb;
2545	sidtab = policy->sidtab;
2546
2547	c = policydb->ocontexts[OCON_IBENDPORT];
2548	while (c) {
2549		if (c->u.ibendport.port == port_num &&
2550		    !strncmp(c->u.ibendport.dev_name,
2551			     dev_name,
2552			     IB_DEVICE_NAME_MAX))
2553			break;
2554
2555		c = c->next;
2556	}
2557
2558	if (c) {
2559		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2560		if (rc == -ESTALE) {
2561			rcu_read_unlock();
2562			goto retry;
2563		}
2564		if (rc)
2565			goto out;
2566	} else
2567		*out_sid = SECINITSID_UNLABELED;
2568
2569out:
2570	rcu_read_unlock();
2571	return rc;
2572}
2573
2574/**
2575 * security_netif_sid - Obtain the SID for a network interface.
2576 * @state: SELinux state
2577 * @name: interface name
2578 * @if_sid: interface SID
2579 */
2580int security_netif_sid(struct selinux_state *state,
2581		       char *name, u32 *if_sid)
2582{
2583	struct selinux_policy *policy;
2584	struct policydb *policydb;
2585	struct sidtab *sidtab;
2586	int rc;
2587	struct ocontext *c;
2588
2589	if (!selinux_initialized(state)) {
2590		*if_sid = SECINITSID_NETIF;
2591		return 0;
2592	}
2593
2594retry:
2595	rc = 0;
2596	rcu_read_lock();
2597	policy = rcu_dereference(state->policy);
2598	policydb = &policy->policydb;
2599	sidtab = policy->sidtab;
2600
2601	c = policydb->ocontexts[OCON_NETIF];
2602	while (c) {
2603		if (strcmp(name, c->u.name) == 0)
2604			break;
2605		c = c->next;
2606	}
2607
2608	if (c) {
2609		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2610		if (rc == -ESTALE) {
2611			rcu_read_unlock();
2612			goto retry;
 
 
 
 
 
 
 
2613		}
2614		if (rc)
2615			goto out;
2616	} else
2617		*if_sid = SECINITSID_NETIF;
2618
2619out:
2620	rcu_read_unlock();
2621	return rc;
2622}
2623
2624static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2625{
2626	int i, fail = 0;
2627
2628	for (i = 0; i < 4; i++)
2629		if (addr[i] != (input[i] & mask[i])) {
2630			fail = 1;
2631			break;
2632		}
2633
2634	return !fail;
2635}
2636
2637/**
2638 * security_node_sid - Obtain the SID for a node (host).
2639 * @state: SELinux state
2640 * @domain: communication domain aka address family
2641 * @addrp: address
2642 * @addrlen: address length in bytes
2643 * @out_sid: security identifier
2644 */
2645int security_node_sid(struct selinux_state *state,
2646		      u16 domain,
2647		      void *addrp,
2648		      u32 addrlen,
2649		      u32 *out_sid)
2650{
2651	struct selinux_policy *policy;
2652	struct policydb *policydb;
2653	struct sidtab *sidtab;
2654	int rc;
2655	struct ocontext *c;
2656
2657	if (!selinux_initialized(state)) {
2658		*out_sid = SECINITSID_NODE;
2659		return 0;
2660	}
2661
2662retry:
2663	rcu_read_lock();
2664	policy = rcu_dereference(state->policy);
2665	policydb = &policy->policydb;
2666	sidtab = policy->sidtab;
2667
2668	switch (domain) {
2669	case AF_INET: {
2670		u32 addr;
2671
2672		rc = -EINVAL;
2673		if (addrlen != sizeof(u32))
2674			goto out;
2675
2676		addr = *((u32 *)addrp);
2677
2678		c = policydb->ocontexts[OCON_NODE];
2679		while (c) {
2680			if (c->u.node.addr == (addr & c->u.node.mask))
2681				break;
2682			c = c->next;
2683		}
2684		break;
2685	}
2686
2687	case AF_INET6:
2688		rc = -EINVAL;
2689		if (addrlen != sizeof(u64) * 2)
2690			goto out;
2691		c = policydb->ocontexts[OCON_NODE6];
2692		while (c) {
2693			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2694						c->u.node6.mask))
2695				break;
2696			c = c->next;
2697		}
2698		break;
2699
2700	default:
2701		rc = 0;
2702		*out_sid = SECINITSID_NODE;
2703		goto out;
2704	}
2705
2706	if (c) {
2707		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2708		if (rc == -ESTALE) {
2709			rcu_read_unlock();
2710			goto retry;
 
 
2711		}
2712		if (rc)
2713			goto out;
2714	} else {
2715		*out_sid = SECINITSID_NODE;
2716	}
2717
2718	rc = 0;
2719out:
2720	rcu_read_unlock();
2721	return rc;
2722}
2723
2724#define SIDS_NEL 25
2725
2726/**
2727 * security_get_user_sids - Obtain reachable SIDs for a user.
2728 * @state: SELinux state
2729 * @fromsid: starting SID
2730 * @username: username
2731 * @sids: array of reachable SIDs for user
2732 * @nel: number of elements in @sids
2733 *
2734 * Generate the set of SIDs for legal security contexts
2735 * for a given user that can be reached by @fromsid.
2736 * Set *@sids to point to a dynamically allocated
2737 * array containing the set of SIDs.  Set *@nel to the
2738 * number of elements in the array.
2739 */
2740
2741int security_get_user_sids(struct selinux_state *state,
2742			   u32 fromsid,
2743			   char *username,
2744			   u32 **sids,
2745			   u32 *nel)
2746{
2747	struct selinux_policy *policy;
2748	struct policydb *policydb;
2749	struct sidtab *sidtab;
2750	struct context *fromcon, usercon;
2751	u32 *mysids = NULL, *mysids2, sid;
2752	u32 i, j, mynel, maxnel = SIDS_NEL;
2753	struct user_datum *user;
2754	struct role_datum *role;
2755	struct ebitmap_node *rnode, *tnode;
2756	int rc;
2757
2758	*sids = NULL;
2759	*nel = 0;
2760
2761	if (!selinux_initialized(state))
2762		return 0;
2763
2764	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2765	if (!mysids)
2766		return -ENOMEM;
2767
2768retry:
2769	mynel = 0;
2770	rcu_read_lock();
2771	policy = rcu_dereference(state->policy);
2772	policydb = &policy->policydb;
2773	sidtab = policy->sidtab;
2774
2775	context_init(&usercon);
2776
2777	rc = -EINVAL;
2778	fromcon = sidtab_search(sidtab, fromsid);
2779	if (!fromcon)
2780		goto out_unlock;
2781
2782	rc = -EINVAL;
2783	user = symtab_search(&policydb->p_users, username);
2784	if (!user)
2785		goto out_unlock;
2786
2787	usercon.user = user->value;
2788
 
 
 
 
 
2789	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2790		role = policydb->role_val_to_struct[i];
2791		usercon.role = i + 1;
2792		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2793			usercon.type = j + 1;
2794
2795			if (mls_setup_user_range(policydb, fromcon, user,
2796						 &usercon))
2797				continue;
2798
2799			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2800			if (rc == -ESTALE) {
2801				rcu_read_unlock();
2802				goto retry;
2803			}
2804			if (rc)
2805				goto out_unlock;
2806			if (mynel < maxnel) {
2807				mysids[mynel++] = sid;
2808			} else {
2809				rc = -ENOMEM;
2810				maxnel += SIDS_NEL;
2811				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2812				if (!mysids2)
2813					goto out_unlock;
2814				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2815				kfree(mysids);
2816				mysids = mysids2;
2817				mysids[mynel++] = sid;
2818			}
2819		}
2820	}
2821	rc = 0;
2822out_unlock:
2823	rcu_read_unlock();
2824	if (rc || !mynel) {
2825		kfree(mysids);
2826		return rc;
2827	}
2828
2829	rc = -ENOMEM;
2830	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2831	if (!mysids2) {
2832		kfree(mysids);
2833		return rc;
2834	}
2835	for (i = 0, j = 0; i < mynel; i++) {
2836		struct av_decision dummy_avd;
2837		rc = avc_has_perm_noaudit(state,
2838					  fromsid, mysids[i],
2839					  SECCLASS_PROCESS, /* kernel value */
2840					  PROCESS__TRANSITION, AVC_STRICT,
2841					  &dummy_avd);
2842		if (!rc)
2843			mysids2[j++] = mysids[i];
2844		cond_resched();
2845	}
 
2846	kfree(mysids);
2847	*sids = mysids2;
2848	*nel = j;
2849	return 0;
 
2850}
2851
2852/**
2853 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2854 * @policy: policy
2855 * @fstype: filesystem type
2856 * @path: path from root of mount
2857 * @orig_sclass: file security class
2858 * @sid: SID for path
2859 *
2860 * Obtain a SID to use for a file in a filesystem that
2861 * cannot support xattr or use a fixed labeling behavior like
2862 * transition SIDs or task SIDs.
2863 *
2864 * WARNING: This function may return -ESTALE, indicating that the caller
2865 * must retry the operation after re-acquiring the policy pointer!
2866 */
2867static inline int __security_genfs_sid(struct selinux_policy *policy,
2868				       const char *fstype,
2869				       const char *path,
2870				       u16 orig_sclass,
2871				       u32 *sid)
2872{
2873	struct policydb *policydb = &policy->policydb;
2874	struct sidtab *sidtab = policy->sidtab;
2875	int len;
2876	u16 sclass;
2877	struct genfs *genfs;
2878	struct ocontext *c;
2879	int cmp = 0;
2880
2881	while (path[0] == '/' && path[1] == '/')
2882		path++;
2883
2884	sclass = unmap_class(&policy->map, orig_sclass);
 
 
2885	*sid = SECINITSID_UNLABELED;
2886
2887	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2888		cmp = strcmp(fstype, genfs->fstype);
2889		if (cmp <= 0)
2890			break;
2891	}
2892
 
2893	if (!genfs || cmp)
2894		return -ENOENT;
2895
2896	for (c = genfs->head; c; c = c->next) {
2897		len = strlen(c->u.name);
2898		if ((!c->v.sclass || sclass == c->v.sclass) &&
2899		    (strncmp(c->u.name, path, len) == 0))
2900			break;
2901	}
2902
 
2903	if (!c)
2904		return -ENOENT;
2905
2906	return ocontext_to_sid(sidtab, c, 0, sid);
2907}
2908
2909/**
2910 * security_genfs_sid - Obtain a SID for a file in a filesystem
2911 * @state: SELinux state
2912 * @fstype: filesystem type
2913 * @path: path from root of mount
2914 * @orig_sclass: file security class
2915 * @sid: SID for path
2916 *
2917 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2918 * it afterward.
2919 */
2920int security_genfs_sid(struct selinux_state *state,
2921		       const char *fstype,
2922		       const char *path,
2923		       u16 orig_sclass,
2924		       u32 *sid)
2925{
2926	struct selinux_policy *policy;
2927	int retval;
2928
2929	if (!selinux_initialized(state)) {
2930		*sid = SECINITSID_UNLABELED;
2931		return 0;
2932	}
2933
2934	do {
2935		rcu_read_lock();
2936		policy = rcu_dereference(state->policy);
2937		retval = __security_genfs_sid(policy, fstype, path,
2938					      orig_sclass, sid);
2939		rcu_read_unlock();
2940	} while (retval == -ESTALE);
2941	return retval;
2942}
2943
2944int selinux_policy_genfs_sid(struct selinux_policy *policy,
2945			const char *fstype,
2946			const char *path,
2947			u16 orig_sclass,
2948			u32 *sid)
2949{
2950	/* no lock required, policy is not yet accessible by other threads */
2951	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2952}
2953
2954/**
2955 * security_fs_use - Determine how to handle labeling for a filesystem.
2956 * @state: SELinux state
2957 * @sb: superblock in question
 
2958 */
2959int security_fs_use(struct selinux_state *state, struct super_block *sb)
 
 
 
2960{
2961	struct selinux_policy *policy;
2962	struct policydb *policydb;
2963	struct sidtab *sidtab;
2964	int rc;
2965	struct ocontext *c;
2966	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2967	const char *fstype = sb->s_type->name;
2968
2969	if (!selinux_initialized(state)) {
2970		sbsec->behavior = SECURITY_FS_USE_NONE;
2971		sbsec->sid = SECINITSID_UNLABELED;
2972		return 0;
2973	}
2974
2975retry:
2976	rcu_read_lock();
2977	policy = rcu_dereference(state->policy);
2978	policydb = &policy->policydb;
2979	sidtab = policy->sidtab;
2980
2981	c = policydb->ocontexts[OCON_FSUSE];
2982	while (c) {
2983		if (strcmp(fstype, c->u.name) == 0)
2984			break;
2985		c = c->next;
2986	}
2987
2988	if (c) {
2989		sbsec->behavior = c->v.behavior;
2990		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2991		if (rc == -ESTALE) {
2992			rcu_read_unlock();
2993			goto retry;
 
2994		}
2995		if (rc)
2996			goto out;
2997	} else {
2998		rc = __security_genfs_sid(policy, fstype, "/",
2999					SECCLASS_DIR, &sbsec->sid);
3000		if (rc == -ESTALE) {
3001			rcu_read_unlock();
3002			goto retry;
3003		}
3004		if (rc) {
3005			sbsec->behavior = SECURITY_FS_USE_NONE;
3006			rc = 0;
3007		} else {
3008			sbsec->behavior = SECURITY_FS_USE_GENFS;
3009		}
3010	}
3011
3012out:
3013	rcu_read_unlock();
3014	return rc;
3015}
3016
3017int security_get_bools(struct selinux_policy *policy,
3018		       u32 *len, char ***names, int **values)
3019{
3020	struct policydb *policydb;
3021	u32 i;
3022	int rc;
3023
3024	policydb = &policy->policydb;
3025
 
3026	*names = NULL;
3027	*values = NULL;
3028
3029	rc = 0;
3030	*len = policydb->p_bools.nprim;
3031	if (!*len)
3032		goto out;
3033
3034	rc = -ENOMEM;
3035	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3036	if (!*names)
3037		goto err;
3038
3039	rc = -ENOMEM;
3040	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3041	if (!*values)
3042		goto err;
3043
3044	for (i = 0; i < *len; i++) {
3045		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
3046
3047		rc = -ENOMEM;
3048		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3049				      GFP_ATOMIC);
3050		if (!(*names)[i])
3051			goto err;
 
 
 
3052	}
3053	rc = 0;
3054out:
 
3055	return rc;
3056err:
3057	if (*names) {
3058		for (i = 0; i < *len; i++)
3059			kfree((*names)[i]);
3060		kfree(*names);
3061	}
3062	kfree(*values);
3063	*len = 0;
3064	*names = NULL;
3065	*values = NULL;
3066	goto out;
3067}
3068
3069
3070int security_set_bools(struct selinux_state *state, u32 len, int *values)
3071{
3072	struct selinux_policy *newpolicy, *oldpolicy;
3073	int rc;
3074	u32 i, seqno = 0;
3075
3076	if (!selinux_initialized(state))
3077		return -EINVAL;
3078
3079	oldpolicy = rcu_dereference_protected(state->policy,
3080					lockdep_is_held(&state->policy_mutex));
3081
3082	/* Consistency check on number of booleans, should never fail */
3083	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3084		return -EINVAL;
3085
3086	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3087	if (!newpolicy)
3088		return -ENOMEM;
3089
3090	/*
3091	 * Deep copy only the parts of the policydb that might be
3092	 * modified as a result of changing booleans.
3093	 */
3094	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3095	if (rc) {
3096		kfree(newpolicy);
3097		return -ENOMEM;
3098	}
3099
3100	/* Update the boolean states in the copy */
3101	for (i = 0; i < len; i++) {
3102		int new_state = !!values[i];
3103		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3104
3105		if (new_state != old_state) {
3106			audit_log(audit_context(), GFP_ATOMIC,
3107				AUDIT_MAC_CONFIG_CHANGE,
3108				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3109				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3110				new_state,
3111				old_state,
3112				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3113				audit_get_sessionid(current));
3114			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3115		}
 
 
 
 
3116	}
3117
3118	/* Re-evaluate the conditional rules in the copy */
3119	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3120
3121	/* Set latest granting seqno for new policy */
3122	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3123	seqno = newpolicy->latest_granting;
3124
3125	/* Install the new policy */
3126	rcu_assign_pointer(state->policy, newpolicy);
3127
3128	/*
3129	 * Free the conditional portions of the old policydb
3130	 * that were copied for the new policy, and the oldpolicy
3131	 * structure itself but not what it references.
3132	 */
3133	synchronize_rcu();
3134	selinux_policy_cond_free(oldpolicy);
3135
3136	/* Notify others of the policy change */
3137	selinux_notify_policy_change(state, seqno);
3138	return 0;
3139}
3140
3141int security_get_bool_value(struct selinux_state *state,
3142			    u32 index)
3143{
3144	struct selinux_policy *policy;
3145	struct policydb *policydb;
3146	int rc;
3147	u32 len;
3148
3149	if (!selinux_initialized(state))
3150		return 0;
3151
3152	rcu_read_lock();
3153	policy = rcu_dereference(state->policy);
3154	policydb = &policy->policydb;
3155
3156	rc = -EFAULT;
3157	len = policydb->p_bools.nprim;
3158	if (index >= len)
3159		goto out;
3160
3161	rc = policydb->bool_val_to_struct[index]->state;
3162out:
3163	rcu_read_unlock();
3164	return rc;
3165}
3166
3167static int security_preserve_bools(struct selinux_policy *oldpolicy,
3168				struct selinux_policy *newpolicy)
3169{
3170	int rc, *bvalues = NULL;
3171	char **bnames = NULL;
3172	struct cond_bool_datum *booldatum;
3173	u32 i, nbools = 0;
3174
3175	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3176	if (rc)
3177		goto out;
3178	for (i = 0; i < nbools; i++) {
3179		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3180					bnames[i]);
3181		if (booldatum)
3182			booldatum->state = bvalues[i];
3183	}
3184	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3185
3186out:
3187	if (bnames) {
3188		for (i = 0; i < nbools; i++)
3189			kfree(bnames[i]);
3190	}
3191	kfree(bnames);
3192	kfree(bvalues);
3193	return rc;
3194}
3195
3196/*
3197 * security_sid_mls_copy() - computes a new sid based on the given
3198 * sid and the mls portion of mls_sid.
3199 */
3200int security_sid_mls_copy(struct selinux_state *state,
3201			  u32 sid, u32 mls_sid, u32 *new_sid)
3202{
3203	struct selinux_policy *policy;
3204	struct policydb *policydb;
3205	struct sidtab *sidtab;
3206	struct context *context1;
3207	struct context *context2;
3208	struct context newcon;
3209	char *s;
3210	u32 len;
3211	int rc;
3212
3213	if (!selinux_initialized(state)) {
 
3214		*new_sid = sid;
3215		return 0;
3216	}
3217
3218retry:
3219	rc = 0;
3220	context_init(&newcon);
3221
3222	rcu_read_lock();
3223	policy = rcu_dereference(state->policy);
3224	policydb = &policy->policydb;
3225	sidtab = policy->sidtab;
3226
3227	if (!policydb->mls_enabled) {
3228		*new_sid = sid;
3229		goto out_unlock;
3230	}
3231
3232	rc = -EINVAL;
3233	context1 = sidtab_search(sidtab, sid);
3234	if (!context1) {
3235		pr_err("SELinux: %s:  unrecognized SID %d\n",
3236			__func__, sid);
3237		goto out_unlock;
3238	}
3239
3240	rc = -EINVAL;
3241	context2 = sidtab_search(sidtab, mls_sid);
3242	if (!context2) {
3243		pr_err("SELinux: %s:  unrecognized SID %d\n",
3244			__func__, mls_sid);
3245		goto out_unlock;
3246	}
3247
3248	newcon.user = context1->user;
3249	newcon.role = context1->role;
3250	newcon.type = context1->type;
3251	rc = mls_context_cpy(&newcon, context2);
3252	if (rc)
3253		goto out_unlock;
3254
3255	/* Check the validity of the new context. */
3256	if (!policydb_context_isvalid(policydb, &newcon)) {
3257		rc = convert_context_handle_invalid_context(state, policydb,
3258							&newcon);
3259		if (rc) {
3260			if (!context_struct_to_string(policydb, &newcon, &s,
3261						      &len)) {
3262				struct audit_buffer *ab;
3263
3264				ab = audit_log_start(audit_context(),
3265						     GFP_ATOMIC,
3266						     AUDIT_SELINUX_ERR);
3267				audit_log_format(ab,
3268						 "op=security_sid_mls_copy invalid_context=");
3269				/* don't record NUL with untrusted strings */
3270				audit_log_n_untrustedstring(ab, s, len - 1);
3271				audit_log_end(ab);
3272				kfree(s);
3273			}
3274			goto out_unlock;
3275		}
3276	}
3277	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3278	if (rc == -ESTALE) {
3279		rcu_read_unlock();
3280		context_destroy(&newcon);
3281		goto retry;
3282	}
3283out_unlock:
3284	rcu_read_unlock();
3285	context_destroy(&newcon);
 
3286	return rc;
3287}
3288
3289/**
3290 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3291 * @state: SELinux state
3292 * @nlbl_sid: NetLabel SID
3293 * @nlbl_type: NetLabel labeling protocol type
3294 * @xfrm_sid: XFRM SID
3295 * @peer_sid: network peer sid
3296 *
3297 * Description:
3298 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3299 * resolved into a single SID it is returned via @peer_sid and the function
3300 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3301 * returns a negative value.  A table summarizing the behavior is below:
3302 *
3303 *                                 | function return |      @sid
3304 *   ------------------------------+-----------------+-----------------
3305 *   no peer labels                |        0        |    SECSID_NULL
3306 *   single peer label             |        0        |    <peer_label>
3307 *   multiple, consistent labels   |        0        |    <peer_label>
3308 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3309 *
3310 */
3311int security_net_peersid_resolve(struct selinux_state *state,
3312				 u32 nlbl_sid, u32 nlbl_type,
3313				 u32 xfrm_sid,
3314				 u32 *peer_sid)
3315{
3316	struct selinux_policy *policy;
3317	struct policydb *policydb;
3318	struct sidtab *sidtab;
3319	int rc;
3320	struct context *nlbl_ctx;
3321	struct context *xfrm_ctx;
3322
3323	*peer_sid = SECSID_NULL;
3324
3325	/* handle the common (which also happens to be the set of easy) cases
3326	 * right away, these two if statements catch everything involving a
3327	 * single or absent peer SID/label */
3328	if (xfrm_sid == SECSID_NULL) {
3329		*peer_sid = nlbl_sid;
3330		return 0;
3331	}
3332	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3333	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3334	 * is present */
3335	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3336		*peer_sid = xfrm_sid;
3337		return 0;
3338	}
3339
3340	if (!selinux_initialized(state))
 
 
 
3341		return 0;
3342
3343	rcu_read_lock();
3344	policy = rcu_dereference(state->policy);
3345	policydb = &policy->policydb;
3346	sidtab = policy->sidtab;
3347
3348	/*
3349	 * We don't need to check initialized here since the only way both
3350	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3351	 * security server was initialized and state->initialized was true.
3352	 */
3353	if (!policydb->mls_enabled) {
3354		rc = 0;
3355		goto out;
3356	}
3357
3358	rc = -EINVAL;
3359	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3360	if (!nlbl_ctx) {
3361		pr_err("SELinux: %s:  unrecognized SID %d\n",
3362		       __func__, nlbl_sid);
3363		goto out;
3364	}
3365	rc = -EINVAL;
3366	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3367	if (!xfrm_ctx) {
3368		pr_err("SELinux: %s:  unrecognized SID %d\n",
3369		       __func__, xfrm_sid);
3370		goto out;
3371	}
3372	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3373	if (rc)
3374		goto out;
3375
3376	/* at present NetLabel SIDs/labels really only carry MLS
3377	 * information so if the MLS portion of the NetLabel SID
3378	 * matches the MLS portion of the labeled XFRM SID/label
3379	 * then pass along the XFRM SID as it is the most
3380	 * expressive */
3381	*peer_sid = xfrm_sid;
3382out:
3383	rcu_read_unlock();
3384	return rc;
3385}
3386
3387static int get_classes_callback(void *k, void *d, void *args)
3388{
3389	struct class_datum *datum = d;
3390	char *name = k, **classes = args;
3391	int value = datum->value - 1;
3392
3393	classes[value] = kstrdup(name, GFP_ATOMIC);
3394	if (!classes[value])
3395		return -ENOMEM;
3396
3397	return 0;
3398}
3399
3400int security_get_classes(struct selinux_policy *policy,
3401			 char ***classes, int *nclasses)
3402{
3403	struct policydb *policydb;
3404	int rc;
3405
3406	policydb = &policy->policydb;
3407
3408	rc = -ENOMEM;
3409	*nclasses = policydb->p_classes.nprim;
3410	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3411	if (!*classes)
3412		goto out;
3413
3414	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3415			 *classes);
3416	if (rc) {
3417		int i;
3418		for (i = 0; i < *nclasses; i++)
3419			kfree((*classes)[i]);
3420		kfree(*classes);
3421	}
3422
3423out:
 
3424	return rc;
3425}
3426
3427static int get_permissions_callback(void *k, void *d, void *args)
3428{
3429	struct perm_datum *datum = d;
3430	char *name = k, **perms = args;
3431	int value = datum->value - 1;
3432
3433	perms[value] = kstrdup(name, GFP_ATOMIC);
3434	if (!perms[value])
3435		return -ENOMEM;
3436
3437	return 0;
3438}
3439
3440int security_get_permissions(struct selinux_policy *policy,
3441			     char *class, char ***perms, int *nperms)
3442{
3443	struct policydb *policydb;
3444	int rc, i;
3445	struct class_datum *match;
3446
3447	policydb = &policy->policydb;
3448
3449	rc = -EINVAL;
3450	match = symtab_search(&policydb->p_classes, class);
3451	if (!match) {
3452		pr_err("SELinux: %s:  unrecognized class %s\n",
3453			__func__, class);
3454		goto out;
3455	}
3456
3457	rc = -ENOMEM;
3458	*nperms = match->permissions.nprim;
3459	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3460	if (!*perms)
3461		goto out;
3462
3463	if (match->comdatum) {
3464		rc = hashtab_map(&match->comdatum->permissions.table,
3465				 get_permissions_callback, *perms);
3466		if (rc)
3467			goto err;
3468	}
3469
3470	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3471			 *perms);
3472	if (rc)
3473		goto err;
3474
3475out:
 
3476	return rc;
3477
3478err:
 
3479	for (i = 0; i < *nperms; i++)
3480		kfree((*perms)[i]);
3481	kfree(*perms);
3482	return rc;
3483}
3484
3485int security_get_reject_unknown(struct selinux_state *state)
3486{
3487	struct selinux_policy *policy;
3488	int value;
3489
3490	if (!selinux_initialized(state))
3491		return 0;
3492
3493	rcu_read_lock();
3494	policy = rcu_dereference(state->policy);
3495	value = policy->policydb.reject_unknown;
3496	rcu_read_unlock();
3497	return value;
3498}
3499
3500int security_get_allow_unknown(struct selinux_state *state)
3501{
3502	struct selinux_policy *policy;
3503	int value;
3504
3505	if (!selinux_initialized(state))
3506		return 0;
3507
3508	rcu_read_lock();
3509	policy = rcu_dereference(state->policy);
3510	value = policy->policydb.allow_unknown;
3511	rcu_read_unlock();
3512	return value;
3513}
3514
3515/**
3516 * security_policycap_supported - Check for a specific policy capability
3517 * @state: SELinux state
3518 * @req_cap: capability
3519 *
3520 * Description:
3521 * This function queries the currently loaded policy to see if it supports the
3522 * capability specified by @req_cap.  Returns true (1) if the capability is
3523 * supported, false (0) if it isn't supported.
3524 *
3525 */
3526int security_policycap_supported(struct selinux_state *state,
3527				 unsigned int req_cap)
3528{
3529	struct selinux_policy *policy;
3530	int rc;
3531
3532	if (!selinux_initialized(state))
3533		return 0;
3534
3535	rcu_read_lock();
3536	policy = rcu_dereference(state->policy);
3537	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3538	rcu_read_unlock();
3539
3540	return rc;
3541}
3542
3543struct selinux_audit_rule {
3544	u32 au_seqno;
3545	struct context au_ctxt;
3546};
3547
3548void selinux_audit_rule_free(void *vrule)
3549{
3550	struct selinux_audit_rule *rule = vrule;
3551
3552	if (rule) {
3553		context_destroy(&rule->au_ctxt);
3554		kfree(rule);
3555	}
3556}
3557
3558int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3559{
3560	struct selinux_state *state = &selinux_state;
3561	struct selinux_policy *policy;
3562	struct policydb *policydb;
3563	struct selinux_audit_rule *tmprule;
3564	struct role_datum *roledatum;
3565	struct type_datum *typedatum;
3566	struct user_datum *userdatum;
3567	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3568	int rc = 0;
3569
3570	*rule = NULL;
3571
3572	if (!selinux_initialized(state))
3573		return -EOPNOTSUPP;
3574
3575	switch (field) {
3576	case AUDIT_SUBJ_USER:
3577	case AUDIT_SUBJ_ROLE:
3578	case AUDIT_SUBJ_TYPE:
3579	case AUDIT_OBJ_USER:
3580	case AUDIT_OBJ_ROLE:
3581	case AUDIT_OBJ_TYPE:
3582		/* only 'equals' and 'not equals' fit user, role, and type */
3583		if (op != Audit_equal && op != Audit_not_equal)
3584			return -EINVAL;
3585		break;
3586	case AUDIT_SUBJ_SEN:
3587	case AUDIT_SUBJ_CLR:
3588	case AUDIT_OBJ_LEV_LOW:
3589	case AUDIT_OBJ_LEV_HIGH:
3590		/* we do not allow a range, indicated by the presence of '-' */
3591		if (strchr(rulestr, '-'))
3592			return -EINVAL;
3593		break;
3594	default:
3595		/* only the above fields are valid */
3596		return -EINVAL;
3597	}
3598
3599	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3600	if (!tmprule)
3601		return -ENOMEM;
3602
3603	context_init(&tmprule->au_ctxt);
3604
3605	rcu_read_lock();
3606	policy = rcu_dereference(state->policy);
3607	policydb = &policy->policydb;
3608
3609	tmprule->au_seqno = policy->latest_granting;
3610
3611	switch (field) {
3612	case AUDIT_SUBJ_USER:
3613	case AUDIT_OBJ_USER:
3614		rc = -EINVAL;
3615		userdatum = symtab_search(&policydb->p_users, rulestr);
3616		if (!userdatum)
3617			goto out;
3618		tmprule->au_ctxt.user = userdatum->value;
3619		break;
3620	case AUDIT_SUBJ_ROLE:
3621	case AUDIT_OBJ_ROLE:
3622		rc = -EINVAL;
3623		roledatum = symtab_search(&policydb->p_roles, rulestr);
3624		if (!roledatum)
3625			goto out;
3626		tmprule->au_ctxt.role = roledatum->value;
3627		break;
3628	case AUDIT_SUBJ_TYPE:
3629	case AUDIT_OBJ_TYPE:
3630		rc = -EINVAL;
3631		typedatum = symtab_search(&policydb->p_types, rulestr);
3632		if (!typedatum)
3633			goto out;
3634		tmprule->au_ctxt.type = typedatum->value;
3635		break;
3636	case AUDIT_SUBJ_SEN:
3637	case AUDIT_SUBJ_CLR:
3638	case AUDIT_OBJ_LEV_LOW:
3639	case AUDIT_OBJ_LEV_HIGH:
3640		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3641				     GFP_ATOMIC);
3642		if (rc)
3643			goto out;
3644		break;
3645	}
3646	rc = 0;
3647out:
3648	rcu_read_unlock();
3649
3650	if (rc) {
3651		selinux_audit_rule_free(tmprule);
3652		tmprule = NULL;
3653	}
3654
3655	*rule = tmprule;
3656
3657	return rc;
3658}
3659
3660/* Check to see if the rule contains any selinux fields */
3661int selinux_audit_rule_known(struct audit_krule *rule)
3662{
3663	int i;
3664
3665	for (i = 0; i < rule->field_count; i++) {
3666		struct audit_field *f = &rule->fields[i];
3667		switch (f->type) {
3668		case AUDIT_SUBJ_USER:
3669		case AUDIT_SUBJ_ROLE:
3670		case AUDIT_SUBJ_TYPE:
3671		case AUDIT_SUBJ_SEN:
3672		case AUDIT_SUBJ_CLR:
3673		case AUDIT_OBJ_USER:
3674		case AUDIT_OBJ_ROLE:
3675		case AUDIT_OBJ_TYPE:
3676		case AUDIT_OBJ_LEV_LOW:
3677		case AUDIT_OBJ_LEV_HIGH:
3678			return 1;
3679		}
3680	}
3681
3682	return 0;
3683}
3684
3685int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3686{
3687	struct selinux_state *state = &selinux_state;
3688	struct selinux_policy *policy;
3689	struct context *ctxt;
3690	struct mls_level *level;
3691	struct selinux_audit_rule *rule = vrule;
3692	int match = 0;
3693
3694	if (unlikely(!rule)) {
3695		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3696		return -ENOENT;
3697	}
3698
3699	if (!selinux_initialized(state))
3700		return 0;
3701
3702	rcu_read_lock();
3703
3704	policy = rcu_dereference(state->policy);
3705
3706	if (rule->au_seqno < policy->latest_granting) {
 
 
3707		match = -ESTALE;
3708		goto out;
3709	}
3710
3711	ctxt = sidtab_search(policy->sidtab, sid);
3712	if (unlikely(!ctxt)) {
3713		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3714			  sid);
3715		match = -ENOENT;
3716		goto out;
3717	}
3718
3719	/* a field/op pair that is not caught here will simply fall through
3720	   without a match */
3721	switch (field) {
3722	case AUDIT_SUBJ_USER:
3723	case AUDIT_OBJ_USER:
3724		switch (op) {
3725		case Audit_equal:
3726			match = (ctxt->user == rule->au_ctxt.user);
3727			break;
3728		case Audit_not_equal:
3729			match = (ctxt->user != rule->au_ctxt.user);
3730			break;
3731		}
3732		break;
3733	case AUDIT_SUBJ_ROLE:
3734	case AUDIT_OBJ_ROLE:
3735		switch (op) {
3736		case Audit_equal:
3737			match = (ctxt->role == rule->au_ctxt.role);
3738			break;
3739		case Audit_not_equal:
3740			match = (ctxt->role != rule->au_ctxt.role);
3741			break;
3742		}
3743		break;
3744	case AUDIT_SUBJ_TYPE:
3745	case AUDIT_OBJ_TYPE:
3746		switch (op) {
3747		case Audit_equal:
3748			match = (ctxt->type == rule->au_ctxt.type);
3749			break;
3750		case Audit_not_equal:
3751			match = (ctxt->type != rule->au_ctxt.type);
3752			break;
3753		}
3754		break;
3755	case AUDIT_SUBJ_SEN:
3756	case AUDIT_SUBJ_CLR:
3757	case AUDIT_OBJ_LEV_LOW:
3758	case AUDIT_OBJ_LEV_HIGH:
3759		level = ((field == AUDIT_SUBJ_SEN ||
3760			  field == AUDIT_OBJ_LEV_LOW) ?
3761			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3762		switch (op) {
3763		case Audit_equal:
3764			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3765					     level);
3766			break;
3767		case Audit_not_equal:
3768			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3769					      level);
3770			break;
3771		case Audit_lt:
3772			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3773					       level) &&
3774				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3775					       level));
3776			break;
3777		case Audit_le:
3778			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3779					      level);
3780			break;
3781		case Audit_gt:
3782			match = (mls_level_dom(level,
3783					      &rule->au_ctxt.range.level[0]) &&
3784				 !mls_level_eq(level,
3785					       &rule->au_ctxt.range.level[0]));
3786			break;
3787		case Audit_ge:
3788			match = mls_level_dom(level,
3789					      &rule->au_ctxt.range.level[0]);
3790			break;
3791		}
3792	}
3793
3794out:
3795	rcu_read_unlock();
3796	return match;
3797}
3798
 
 
3799static int aurule_avc_callback(u32 event)
3800{
3801	if (event == AVC_CALLBACK_RESET)
3802		return audit_update_lsm_rules();
3803	return 0;
 
 
3804}
3805
3806static int __init aurule_init(void)
3807{
3808	int err;
3809
3810	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3811	if (err)
3812		panic("avc_add_callback() failed, error %d\n", err);
3813
3814	return err;
3815}
3816__initcall(aurule_init);
3817
3818#ifdef CONFIG_NETLABEL
3819/**
3820 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3821 * @secattr: the NetLabel packet security attributes
3822 * @sid: the SELinux SID
3823 *
3824 * Description:
3825 * Attempt to cache the context in @ctx, which was derived from the packet in
3826 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3827 * already been initialized.
3828 *
3829 */
3830static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3831				      u32 sid)
3832{
3833	u32 *sid_cache;
3834
3835	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3836	if (sid_cache == NULL)
3837		return;
3838	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3839	if (secattr->cache == NULL) {
3840		kfree(sid_cache);
3841		return;
3842	}
3843
3844	*sid_cache = sid;
3845	secattr->cache->free = kfree;
3846	secattr->cache->data = sid_cache;
3847	secattr->flags |= NETLBL_SECATTR_CACHE;
3848}
3849
3850/**
3851 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3852 * @state: SELinux state
3853 * @secattr: the NetLabel packet security attributes
3854 * @sid: the SELinux SID
3855 *
3856 * Description:
3857 * Convert the given NetLabel security attributes in @secattr into a
3858 * SELinux SID.  If the @secattr field does not contain a full SELinux
3859 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3860 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3861 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3862 * conversion for future lookups.  Returns zero on success, negative values on
3863 * failure.
3864 *
3865 */
3866int security_netlbl_secattr_to_sid(struct selinux_state *state,
3867				   struct netlbl_lsm_secattr *secattr,
3868				   u32 *sid)
3869{
3870	struct selinux_policy *policy;
3871	struct policydb *policydb;
3872	struct sidtab *sidtab;
3873	int rc;
3874	struct context *ctx;
3875	struct context ctx_new;
3876
3877	if (!selinux_initialized(state)) {
3878		*sid = SECSID_NULL;
3879		return 0;
3880	}
3881
3882retry:
3883	rc = 0;
3884	rcu_read_lock();
3885	policy = rcu_dereference(state->policy);
3886	policydb = &policy->policydb;
3887	sidtab = policy->sidtab;
3888
3889	if (secattr->flags & NETLBL_SECATTR_CACHE)
3890		*sid = *(u32 *)secattr->cache->data;
3891	else if (secattr->flags & NETLBL_SECATTR_SECID)
3892		*sid = secattr->attr.secid;
3893	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3894		rc = -EIDRM;
3895		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3896		if (ctx == NULL)
3897			goto out;
3898
3899		context_init(&ctx_new);
3900		ctx_new.user = ctx->user;
3901		ctx_new.role = ctx->role;
3902		ctx_new.type = ctx->type;
3903		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3904		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3905			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3906			if (rc)
3907				goto out;
 
 
 
3908		}
3909		rc = -EIDRM;
3910		if (!mls_context_isvalid(policydb, &ctx_new)) {
3911			ebitmap_destroy(&ctx_new.range.level[0].cat);
3912			goto out;
3913		}
3914
3915		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3916		ebitmap_destroy(&ctx_new.range.level[0].cat);
3917		if (rc == -ESTALE) {
3918			rcu_read_unlock();
3919			goto retry;
3920		}
3921		if (rc)
3922			goto out;
3923
3924		security_netlbl_cache_add(secattr, *sid);
 
 
3925	} else
3926		*sid = SECSID_NULL;
3927
 
 
 
 
3928out:
3929	rcu_read_unlock();
3930	return rc;
3931}
3932
3933/**
3934 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3935 * @state: SELinux state
3936 * @sid: the SELinux SID
3937 * @secattr: the NetLabel packet security attributes
3938 *
3939 * Description:
3940 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3941 * Returns zero on success, negative values on failure.
3942 *
3943 */
3944int security_netlbl_sid_to_secattr(struct selinux_state *state,
3945				   u32 sid, struct netlbl_lsm_secattr *secattr)
3946{
3947	struct selinux_policy *policy;
3948	struct policydb *policydb;
3949	int rc;
3950	struct context *ctx;
3951
3952	if (!selinux_initialized(state))
3953		return 0;
3954
3955	rcu_read_lock();
3956	policy = rcu_dereference(state->policy);
3957	policydb = &policy->policydb;
3958
3959	rc = -ENOENT;
3960	ctx = sidtab_search(policy->sidtab, sid);
3961	if (ctx == NULL)
3962		goto out;
3963
3964	rc = -ENOMEM;
3965	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3966				  GFP_ATOMIC);
3967	if (secattr->domain == NULL)
3968		goto out;
3969
3970	secattr->attr.secid = sid;
3971	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3972	mls_export_netlbl_lvl(policydb, ctx, secattr);
3973	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3974out:
3975	rcu_read_unlock();
3976	return rc;
3977}
3978#endif /* CONFIG_NETLABEL */
3979
3980/**
3981 * __security_read_policy - read the policy.
3982 * @policy: SELinux policy
3983 * @data: binary policy data
3984 * @len: length of data in bytes
3985 *
3986 */
3987static int __security_read_policy(struct selinux_policy *policy,
3988				  void *data, size_t *len)
3989{
3990	int rc;
3991	struct policy_file fp;
3992
3993	fp.data = data;
3994	fp.len = *len;
3995
3996	rc = policydb_write(&policy->policydb, &fp);
3997	if (rc)
3998		return rc;
3999
4000	*len = (unsigned long)fp.data - (unsigned long)data;
4001	return 0;
4002}
4003
4004/**
4005 * security_read_policy - read the policy.
4006 * @state: selinux_state
4007 * @data: binary policy data
4008 * @len: length of data in bytes
4009 *
4010 */
4011int security_read_policy(struct selinux_state *state,
4012			 void **data, size_t *len)
4013{
4014	struct selinux_policy *policy;
4015
4016	policy = rcu_dereference_protected(
4017			state->policy, lockdep_is_held(&state->policy_mutex));
4018	if (!policy)
4019		return -EINVAL;
4020
4021	*len = policy->policydb.len;
4022	*data = vmalloc_user(*len);
4023	if (!*data)
4024		return -ENOMEM;
4025
4026	return __security_read_policy(policy, *data, len);
4027}
4028
4029/**
4030 * security_read_state_kernel - read the policy.
4031 * @state: selinux_state
4032 * @data: binary policy data
4033 * @len: length of data in bytes
4034 *
4035 * Allocates kernel memory for reading SELinux policy.
4036 * This function is for internal use only and should not
4037 * be used for returning data to user space.
4038 *
4039 * This function must be called with policy_mutex held.
4040 */
4041int security_read_state_kernel(struct selinux_state *state,
4042			       void **data, size_t *len)
4043{
4044	int err;
4045	struct selinux_policy *policy;
4046
4047	policy = rcu_dereference_protected(
4048			state->policy, lockdep_is_held(&state->policy_mutex));
4049	if (!policy)
4050		return -EINVAL;
4051
4052	*len = policy->policydb.len;
4053	*data = vmalloc(*len);
4054	if (!*data)
4055		return -ENOMEM;
4056
4057	err = __security_read_policy(policy, *data, len);
4058	if (err) {
4059		vfree(*data);
4060		*data = NULL;
4061		*len = 0;
4062	}
4063	return err;
4064}