Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
 
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
 
 
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
 
 
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
  95				      struct context *tcontext,
  96				      u16 tclass,
  97				      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100	u16 value; /* policy value */
 101	unsigned num_perms;
 102	u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109			       struct security_class_mapping *map,
 110			       struct selinux_mapping **out_map_p,
 111			       u16 *out_map_size)
 112{
 113	struct selinux_mapping *out_map = NULL;
 114	size_t size = sizeof(struct selinux_mapping);
 115	u16 i, j;
 116	unsigned k;
 117	bool print_unknown_handle = false;
 118
 119	/* Find number of classes in the input mapping */
 120	if (!map)
 121		return -EINVAL;
 122	i = 0;
 123	while (map[i].name)
 124		i++;
 125
 126	/* Allocate space for the class records, plus one for class zero */
 127	out_map = kcalloc(++i, size, GFP_ATOMIC);
 128	if (!out_map)
 129		return -ENOMEM;
 130
 131	/* Store the raw class and permission values */
 132	j = 0;
 133	while (map[j].name) {
 134		struct security_class_mapping *p_in = map + (j++);
 135		struct selinux_mapping *p_out = out_map + j;
 
 136
 137		/* An empty class string skips ahead */
 138		if (!strcmp(p_in->name, "")) {
 139			p_out->num_perms = 0;
 140			continue;
 141		}
 142
 143		p_out->value = string_to_security_class(pol, p_in->name);
 144		if (!p_out->value) {
 145			printk(KERN_INFO
 146			       "SELinux:  Class %s not defined in policy.\n",
 147			       p_in->name);
 148			if (pol->reject_unknown)
 149				goto err;
 150			p_out->num_perms = 0;
 151			print_unknown_handle = true;
 152			continue;
 153		}
 154
 155		k = 0;
 156		while (p_in->perms && p_in->perms[k]) {
 157			/* An empty permission string skips ahead */
 158			if (!*p_in->perms[k]) {
 159				k++;
 160				continue;
 161			}
 162			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163							    p_in->perms[k]);
 164			if (!p_out->perms[k]) {
 165				printk(KERN_INFO
 166				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167				       p_in->perms[k], p_in->name);
 168				if (pol->reject_unknown)
 169					goto err;
 170				print_unknown_handle = true;
 171			}
 172
 173			k++;
 174		}
 175		p_out->num_perms = k;
 176	}
 177
 178	if (print_unknown_handle)
 179		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180		       pol->allow_unknown ? "allowed" : "denied");
 181
 182	*out_map_p = out_map;
 183	*out_map_size = i;
 184	return 0;
 185err:
 186	kfree(out_map);
 
 187	return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196	if (tclass < current_mapping_size)
 197		return current_mapping[tclass].value;
 198
 199	return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207	u16 i;
 208
 209	for (i = 1; i < current_mapping_size; i++) {
 210		if (current_mapping[i].value == pol_value)
 211			return i;
 212	}
 213
 214	return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 
 218			 int allow_unknown)
 219{
 220	if (tclass < current_mapping_size) {
 221		unsigned i, n = current_mapping[tclass].num_perms;
 
 222		u32 result;
 223
 224		for (i = 0, result = 0; i < n; i++) {
 225			if (avd->allowed & current_mapping[tclass].perms[i])
 226				result |= 1<<i;
 227			if (allow_unknown && !current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229		}
 230		avd->allowed = result;
 231
 232		for (i = 0, result = 0; i < n; i++)
 233			if (avd->auditallow & current_mapping[tclass].perms[i])
 234				result |= 1<<i;
 235		avd->auditallow = result;
 236
 237		for (i = 0, result = 0; i < n; i++) {
 238			if (avd->auditdeny & current_mapping[tclass].perms[i])
 239				result |= 1<<i;
 240			if (!allow_unknown && !current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242		}
 243		/*
 244		 * In case the kernel has a bug and requests a permission
 245		 * between num_perms and the maximum permission number, we
 246		 * should audit that denial
 247		 */
 248		for (; i < (sizeof(u32)*8); i++)
 249			result |= 1<<i;
 250		avd->auditdeny = result;
 251	}
 252}
 253
 254int security_mls_enabled(void)
 255{
 256	return policydb.mls_enabled;
 
 
 
 
 
 
 
 
 
 
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 
 271				struct context *tcontext,
 272				struct context *xcontext,
 273				struct constraint_expr *cexpr)
 274{
 275	u32 val1, val2;
 276	struct context *c;
 277	struct role_datum *r1, *r2;
 278	struct mls_level *l1, *l2;
 279	struct constraint_expr *e;
 280	int s[CEXPR_MAXDEPTH];
 281	int sp = -1;
 282
 283	for (e = cexpr; e; e = e->next) {
 284		switch (e->expr_type) {
 285		case CEXPR_NOT:
 286			BUG_ON(sp < 0);
 287			s[sp] = !s[sp];
 288			break;
 289		case CEXPR_AND:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] &= s[sp + 1];
 293			break;
 294		case CEXPR_OR:
 295			BUG_ON(sp < 1);
 296			sp--;
 297			s[sp] |= s[sp + 1];
 298			break;
 299		case CEXPR_ATTR:
 300			if (sp == (CEXPR_MAXDEPTH - 1))
 301				return 0;
 302			switch (e->attr) {
 303			case CEXPR_USER:
 304				val1 = scontext->user;
 305				val2 = tcontext->user;
 306				break;
 307			case CEXPR_TYPE:
 308				val1 = scontext->type;
 309				val2 = tcontext->type;
 310				break;
 311			case CEXPR_ROLE:
 312				val1 = scontext->role;
 313				val2 = tcontext->role;
 314				r1 = policydb.role_val_to_struct[val1 - 1];
 315				r2 = policydb.role_val_to_struct[val2 - 1];
 316				switch (e->op) {
 317				case CEXPR_DOM:
 318					s[++sp] = ebitmap_get_bit(&r1->dominates,
 319								  val2 - 1);
 320					continue;
 321				case CEXPR_DOMBY:
 322					s[++sp] = ebitmap_get_bit(&r2->dominates,
 323								  val1 - 1);
 324					continue;
 325				case CEXPR_INCOMP:
 326					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327								    val2 - 1) &&
 328						   !ebitmap_get_bit(&r2->dominates,
 329								    val1 - 1));
 330					continue;
 331				default:
 332					break;
 333				}
 334				break;
 335			case CEXPR_L1L2:
 336				l1 = &(scontext->range.level[0]);
 337				l2 = &(tcontext->range.level[0]);
 338				goto mls_ops;
 339			case CEXPR_L1H2:
 340				l1 = &(scontext->range.level[0]);
 341				l2 = &(tcontext->range.level[1]);
 342				goto mls_ops;
 343			case CEXPR_H1L2:
 344				l1 = &(scontext->range.level[1]);
 345				l2 = &(tcontext->range.level[0]);
 346				goto mls_ops;
 347			case CEXPR_H1H2:
 348				l1 = &(scontext->range.level[1]);
 349				l2 = &(tcontext->range.level[1]);
 350				goto mls_ops;
 351			case CEXPR_L1H1:
 352				l1 = &(scontext->range.level[0]);
 353				l2 = &(scontext->range.level[1]);
 354				goto mls_ops;
 355			case CEXPR_L2H2:
 356				l1 = &(tcontext->range.level[0]);
 357				l2 = &(tcontext->range.level[1]);
 358				goto mls_ops;
 359mls_ops:
 360			switch (e->op) {
 361			case CEXPR_EQ:
 362				s[++sp] = mls_level_eq(l1, l2);
 363				continue;
 364			case CEXPR_NEQ:
 365				s[++sp] = !mls_level_eq(l1, l2);
 366				continue;
 367			case CEXPR_DOM:
 368				s[++sp] = mls_level_dom(l1, l2);
 369				continue;
 370			case CEXPR_DOMBY:
 371				s[++sp] = mls_level_dom(l2, l1);
 372				continue;
 373			case CEXPR_INCOMP:
 374				s[++sp] = mls_level_incomp(l2, l1);
 375				continue;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380			break;
 381			default:
 382				BUG();
 383				return 0;
 384			}
 385
 386			switch (e->op) {
 387			case CEXPR_EQ:
 388				s[++sp] = (val1 == val2);
 389				break;
 390			case CEXPR_NEQ:
 391				s[++sp] = (val1 != val2);
 392				break;
 393			default:
 394				BUG();
 395				return 0;
 396			}
 397			break;
 398		case CEXPR_NAMES:
 399			if (sp == (CEXPR_MAXDEPTH-1))
 400				return 0;
 401			c = scontext;
 402			if (e->attr & CEXPR_TARGET)
 403				c = tcontext;
 404			else if (e->attr & CEXPR_XTARGET) {
 405				c = xcontext;
 406				if (!c) {
 407					BUG();
 408					return 0;
 409				}
 410			}
 411			if (e->attr & CEXPR_USER)
 412				val1 = c->user;
 413			else if (e->attr & CEXPR_ROLE)
 414				val1 = c->role;
 415			else if (e->attr & CEXPR_TYPE)
 416				val1 = c->type;
 417			else {
 418				BUG();
 419				return 0;
 420			}
 421
 422			switch (e->op) {
 423			case CEXPR_EQ:
 424				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425				break;
 426			case CEXPR_NEQ:
 427				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428				break;
 429			default:
 430				BUG();
 431				return 0;
 432			}
 433			break;
 434		default:
 435			BUG();
 436			return 0;
 437		}
 438	}
 439
 440	BUG_ON(sp != 0);
 441	return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450	struct perm_datum *pdatum = d;
 451	char **permission_names = args;
 452
 453	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455	permission_names[pdatum->value - 1] = (char *)k;
 456
 457	return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551				    scontext->type - 1);
 552	BUG_ON(!source);
 553
 554	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555				    tcontext->type - 1);
 556	BUG_ON(!target);
 557
 558	if (source->bounds) {
 559		memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562		lo_scontext.type = source->bounds;
 563
 564		context_struct_compute_av(&lo_scontext,
 565					  tcontext,
 566					  tclass,
 567					  &lo_avd);
 568		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569			return;		/* no masked permission */
 570		masked = ~lo_avd.allowed & avd->allowed;
 571	}
 572
 573	if (target->bounds) {
 574		memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577		lo_tcontext.type = target->bounds;
 578
 579		context_struct_compute_av(scontext,
 580					  &lo_tcontext,
 581					  tclass,
 582					  &lo_avd);
 583		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584			return;		/* no masked permission */
 585		masked = ~lo_avd.allowed & avd->allowed;
 586	}
 587
 588	if (source->bounds && target->bounds) {
 589		memset(&lo_avd, 0, sizeof(lo_avd));
 590		/*
 591		 * lo_scontext and lo_tcontext are already
 592		 * set up.
 593		 */
 
 
 
 
 
 
 
 
 
 
 
 
 594
 595		context_struct_compute_av(&lo_scontext,
 596					  &lo_tcontext,
 597					  tclass,
 598					  &lo_avd);
 599		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600			return;		/* no masked permission */
 601		masked = ~lo_avd.allowed & avd->allowed;
 602	}
 603
 604	if (masked) {
 605		/* mask violated permissions */
 606		avd->allowed &= ~masked;
 607
 608		/* audit masked permissions */
 609		security_dump_masked_av(scontext, tcontext,
 610					tclass, masked, "bounds");
 
 
 
 
 
 
 
 
 
 
 
 
 611	}
 
 
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 
 619				      struct context *tcontext,
 620				      u16 tclass,
 621				      struct av_decision *avd)
 
 622{
 623	struct constraint_node *constraint;
 624	struct role_allow *ra;
 625	struct avtab_key avkey;
 626	struct avtab_node *node;
 627	struct class_datum *tclass_datum;
 628	struct ebitmap *sattr, *tattr;
 629	struct ebitmap_node *snode, *tnode;
 630	unsigned int i, j;
 631
 632	avd->allowed = 0;
 633	avd->auditallow = 0;
 634	avd->auditdeny = 0xffffffff;
 
 
 
 635
 636	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637		if (printk_ratelimit())
 638			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639		return;
 640	}
 641
 642	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644	/*
 645	 * If a specific type enforcement rule was defined for
 646	 * this permission check, then use it.
 647	 */
 648	avkey.target_class = tclass;
 649	avkey.specified = AVTAB_AV;
 650	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651	BUG_ON(!sattr);
 652	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653	BUG_ON(!tattr);
 654	ebitmap_for_each_positive_bit(sattr, snode, i) {
 655		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656			avkey.source_type = i + 1;
 657			avkey.target_type = j + 1;
 658			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.data;
 
 
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 671
 672		}
 673	}
 674
 675	/*
 676	 * Remove any permissions prohibited by a constraint (this includes
 677	 * the MLS policy).
 678	 */
 679	constraint = tclass_datum->constraints;
 680	while (constraint) {
 681		if ((constraint->permissions & (avd->allowed)) &&
 682		    !constraint_expr_eval(scontext, tcontext, NULL,
 683					  constraint->expr)) {
 684			avd->allowed &= ~(constraint->permissions);
 685		}
 686		constraint = constraint->next;
 687	}
 688
 689	/*
 690	 * If checking process transition permission and the
 691	 * role is changing, then check the (current_role, new_role)
 692	 * pair.
 693	 */
 694	if (tclass == policydb.process_class &&
 695	    (avd->allowed & policydb.process_trans_perms) &&
 696	    scontext->role != tcontext->role) {
 697		for (ra = policydb.role_allow; ra; ra = ra->next) {
 698			if (scontext->role == ra->role &&
 699			    tcontext->role == ra->new_role)
 700				break;
 701		}
 702		if (!ra)
 703			avd->allowed &= ~policydb.process_trans_perms;
 704	}
 705
 706	/*
 707	 * If the given source and target types have boundary
 708	 * constraint, lazy checks have to mask any violated
 709	 * permission and notice it to userspace via audit.
 710	 */
 711	type_attribute_bounds_av(scontext, tcontext,
 712				 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716					   struct context *ncontext,
 717					   struct context *tcontext,
 718					   u16 tclass)
 
 719{
 
 
 720	char *o = NULL, *n = NULL, *t = NULL;
 721	u32 olen, nlen, tlen;
 722
 723	if (context_struct_to_string(ocontext, &o, &olen))
 724		goto out;
 725	if (context_struct_to_string(ncontext, &n, &nlen))
 726		goto out;
 727	if (context_struct_to_string(tcontext, &t, &tlen))
 728		goto out;
 729	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730		  "security_validate_transition:  denied for"
 731		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734	kfree(o);
 735	kfree(n);
 736	kfree(t);
 737
 738	if (!selinux_enforcing)
 739		return 0;
 740	return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744				 u16 orig_tclass)
 745{
 746	struct context *ocontext;
 747	struct context *ncontext;
 748	struct context *tcontext;
 
 
 
 749	struct class_datum *tclass_datum;
 750	struct constraint_node *constraint;
 751	u16 tclass;
 752	int rc = 0;
 753
 754	if (!ss_initialized)
 
 755		return 0;
 756
 757	read_lock(&policy_rwlock);
 
 
 
 
 758
 759	tclass = unmap_class(orig_tclass);
 
 
 
 760
 761	if (!tclass || tclass > policydb.p_classes.nprim) {
 762		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763			__func__, tclass);
 764		rc = -EINVAL;
 765		goto out;
 766	}
 767	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769	ocontext = sidtab_search(&sidtab, oldsid);
 770	if (!ocontext) {
 771		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772			__func__, oldsid);
 773		rc = -EINVAL;
 774		goto out;
 775	}
 776
 777	ncontext = sidtab_search(&sidtab, newsid);
 778	if (!ncontext) {
 779		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780			__func__, newsid);
 781		rc = -EINVAL;
 782		goto out;
 783	}
 784
 785	tcontext = sidtab_search(&sidtab, tasksid);
 786	if (!tcontext) {
 787		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788			__func__, tasksid);
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792
 793	constraint = tclass_datum->validatetrans;
 794	while (constraint) {
 795		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 796					  constraint->expr)) {
 797			rc = security_validtrans_handle_fail(ocontext, ncontext,
 798							     tcontext, tclass);
 
 
 
 
 
 
 799			goto out;
 800		}
 801		constraint = constraint->next;
 802	}
 803
 804out:
 805	read_unlock(&policy_rwlock);
 806	return rc;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 819{
 820	struct context *old_context, *new_context;
 
 
 
 821	struct type_datum *type;
 822	int index;
 823	int rc;
 824
 825	read_lock(&policy_rwlock);
 
 
 
 
 
 
 826
 827	rc = -EINVAL;
 828	old_context = sidtab_search(&sidtab, old_sid);
 829	if (!old_context) {
 830		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831		       __func__, old_sid);
 832		goto out;
 833	}
 834
 835	rc = -EINVAL;
 836	new_context = sidtab_search(&sidtab, new_sid);
 837	if (!new_context) {
 838		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839		       __func__, new_sid);
 840		goto out;
 841	}
 842
 843	rc = 0;
 844	/* type/domain unchanged */
 845	if (old_context->type == new_context->type)
 846		goto out;
 847
 848	index = new_context->type;
 849	while (true) {
 850		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851					  index - 1);
 852		BUG_ON(!type);
 853
 854		/* not bounded anymore */
 855		rc = -EPERM;
 856		if (!type->bounds)
 857			break;
 858
 859		/* @newsid is bounded by @oldsid */
 860		rc = 0;
 861		if (type->bounds == old_context->type)
 862			break;
 863
 864		index = type->bounds;
 865	}
 866
 867	if (rc) {
 868		char *old_name = NULL;
 869		char *new_name = NULL;
 870		u32 length;
 871
 872		if (!context_struct_to_string(old_context,
 873					      &old_name, &length) &&
 874		    !context_struct_to_string(new_context,
 875					      &new_name, &length)) {
 876			audit_log(current->audit_context,
 877				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878				  "op=security_bounded_transition "
 879				  "result=denied "
 880				  "oldcontext=%s newcontext=%s",
 881				  old_name, new_name);
 882		}
 883		kfree(new_name);
 884		kfree(old_name);
 885	}
 886out:
 887	read_unlock(&policy_rwlock);
 888
 889	return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894	avd->allowed = 0;
 895	avd->auditallow = 0;
 896	avd->auditdeny = 0xffffffff;
 897	avd->seqno = latest_granting;
 
 
 
 898	avd->flags = 0;
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 913			 u32 tsid,
 914			 u16 orig_tclass,
 915			 struct av_decision *avd)
 
 916{
 
 
 
 917	u16 tclass;
 918	struct context *scontext = NULL, *tcontext = NULL;
 919
 920	read_lock(&policy_rwlock);
 921	avd_init(avd);
 922	if (!ss_initialized)
 
 
 923		goto allow;
 924
 925	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 926	if (!scontext) {
 927		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928		       __func__, ssid);
 929		goto out;
 930	}
 931
 932	/* permissive domain? */
 933	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934		avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936	tcontext = sidtab_search(&sidtab, tsid);
 937	if (!tcontext) {
 938		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939		       __func__, tsid);
 940		goto out;
 941	}
 942
 943	tclass = unmap_class(orig_tclass);
 944	if (unlikely(orig_tclass && !tclass)) {
 945		if (policydb.allow_unknown)
 946			goto allow;
 947		goto out;
 948	}
 949	context_struct_compute_av(scontext, tcontext, tclass, avd);
 950	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 951out:
 952	read_unlock(&policy_rwlock);
 953	return;
 954allow:
 955	avd->allowed = 0xffffffff;
 956	goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 960			      u32 tsid,
 961			      u16 tclass,
 962			      struct av_decision *avd)
 963{
 
 
 
 964	struct context *scontext = NULL, *tcontext = NULL;
 965
 966	read_lock(&policy_rwlock);
 967	avd_init(avd);
 968	if (!ss_initialized)
 
 969		goto allow;
 970
 971	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 972	if (!scontext) {
 973		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974		       __func__, ssid);
 975		goto out;
 976	}
 977
 978	/* permissive domain? */
 979	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980		avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982	tcontext = sidtab_search(&sidtab, tsid);
 983	if (!tcontext) {
 984		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985		       __func__, tsid);
 986		goto out;
 987	}
 988
 989	if (unlikely(!tclass)) {
 990		if (policydb.allow_unknown)
 991			goto allow;
 992		goto out;
 993	}
 994
 995	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 996 out:
 997	read_unlock(&policy_rwlock);
 998	return;
 999allow:
1000	avd->allowed = 0xffffffff;
1001	goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1012{
1013	char *scontextp;
1014
1015	if (scontext)
1016		*scontext = NULL;
1017	*scontext_len = 0;
1018
1019	if (context->len) {
1020		*scontext_len = context->len;
1021		if (scontext) {
1022			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023			if (!(*scontext))
1024				return -ENOMEM;
1025		}
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#include "initial_sid_to_string.h"
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
 
1073{
1074	struct context *context;
 
 
 
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
 
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
 
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
1235		int i;
 
 
 
 
 
 
 
 
 
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
 
 
 
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
 
 
 
 
 
 
 
 
 
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
 
 
 
 
 
 
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
 
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
 
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
 
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
 
 
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
 
 
 
 
 
1384}
1385
1386static int security_compute_sid(u32 ssid,
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
1394	struct class_datum *cladatum = NULL;
1395	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396	struct role_trans *roletr = NULL;
 
 
 
1397	struct avtab_key avkey;
1398	struct avtab_datum *avdatum;
1399	struct avtab_node *node;
1400	u16 tclass;
1401	int rc = 0;
1402	bool sock;
1403
1404	if (!ss_initialized) {
1405		switch (orig_tclass) {
1406		case SECCLASS_PROCESS: /* kernel value */
1407			*out_sid = ssid;
1408			break;
1409		default:
1410			*out_sid = tsid;
1411			break;
1412		}
1413		goto out;
1414	}
1415
 
 
1416	context_init(&newcontext);
1417
1418	read_lock(&policy_rwlock);
 
 
1419
1420	if (kern) {
1421		tclass = unmap_class(orig_tclass);
1422		sock = security_is_socket_class(orig_tclass);
1423	} else {
1424		tclass = orig_tclass;
1425		sock = security_is_socket_class(map_class(tclass));
 
1426	}
1427
1428	scontext = sidtab_search(&sidtab, ssid);
1429	if (!scontext) {
1430		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1431		       __func__, ssid);
1432		rc = -EINVAL;
1433		goto out_unlock;
1434	}
1435	tcontext = sidtab_search(&sidtab, tsid);
1436	if (!tcontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, tsid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442
1443	if (tclass && tclass <= policydb.p_classes.nprim)
1444		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1445
1446	/* Set the user identity. */
1447	switch (specified) {
1448	case AVTAB_TRANSITION:
1449	case AVTAB_CHANGE:
1450		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451			newcontext.user = tcontext->user;
1452		} else {
1453			/* notice this gets both DEFAULT_SOURCE and unset */
1454			/* Use the process user identity. */
1455			newcontext.user = scontext->user;
1456		}
1457		break;
1458	case AVTAB_MEMBER:
1459		/* Use the related object owner. */
1460		newcontext.user = tcontext->user;
1461		break;
1462	}
1463
1464	/* Set the role to default values. */
1465	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466		newcontext.role = scontext->role;
1467	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468		newcontext.role = tcontext->role;
1469	} else {
1470		if ((tclass == policydb.process_class) || (sock == true))
1471			newcontext.role = scontext->role;
1472		else
1473			newcontext.role = OBJECT_R_VAL;
1474	}
1475
1476	/* Set the type to default values. */
1477	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478		newcontext.type = scontext->type;
1479	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480		newcontext.type = tcontext->type;
1481	} else {
1482		if ((tclass == policydb.process_class) || (sock == true)) {
1483			/* Use the type of process. */
1484			newcontext.type = scontext->type;
1485		} else {
1486			/* Use the type of the related object. */
1487			newcontext.type = tcontext->type;
1488		}
1489	}
1490
1491	/* Look for a type transition/member/change rule. */
1492	avkey.source_type = scontext->type;
1493	avkey.target_type = tcontext->type;
1494	avkey.target_class = tclass;
1495	avkey.specified = specified;
1496	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498	/* If no permanent rule, also check for enabled conditional rules */
1499	if (!avdatum) {
1500		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501		for (; node; node = avtab_search_node_next(node, specified)) {
1502			if (node->key.specified & AVTAB_ENABLED) {
1503				avdatum = &node->datum;
1504				break;
1505			}
1506		}
1507	}
1508
1509	if (avdatum) {
1510		/* Use the type from the type transition/member/change rule. */
1511		newcontext.type = avdatum->data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1512	}
1513
1514	/* if we have a objname this is a file trans check so check those rules */
1515	if (objname)
1516		filename_compute_type(&policydb, &newcontext, scontext->type,
1517				      tcontext->type, tclass, objname);
1518
1519	/* Check for class-specific changes. */
1520	if (specified & AVTAB_TRANSITION) {
1521		/* Look for a role transition rule. */
1522		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523			if ((roletr->role == scontext->role) &&
1524			    (roletr->type == tcontext->type) &&
1525			    (roletr->tclass == tclass)) {
1526				/* Use the role transition rule. */
1527				newcontext.role = roletr->new_role;
1528				break;
1529			}
1530		}
 
1531	}
1532
1533	/* Set the MLS attributes.
1534	   This is done last because it may allocate memory. */
1535	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536			     &newcontext, sock);
1537	if (rc)
1538		goto out_unlock;
1539
1540	/* Check the validity of the context. */
1541	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542		rc = compute_sid_handle_invalid_context(scontext,
1543							tcontext,
1544							tclass,
1545							&newcontext);
1546		if (rc)
1547			goto out_unlock;
1548	}
1549	/* Obtain the sid for the context. */
1550	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
 
 
 
 
 
1551out_unlock:
1552	read_unlock(&policy_rwlock);
1553	context_destroy(&newcontext);
1554out:
1555	return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
 
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1572			    const struct qstr *qstr, u32 *out_sid)
1573{
1574	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1575				    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1579				 const char *objname, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
1599			u32 tsid,
1600			u16 tclass,
1601			u32 *out_sid)
1602{
1603	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1604				    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
1621			u32 tsid,
1622			u16 tclass,
1623			u32 *out_sid)
1624{
1625	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1626				    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631		     struct context *context,
1632		     void *arg)
1633{
1634	struct sidtab *s = arg;
1635
1636	if (sid > SECINITSID_NUM)
1637		return sidtab_insert(s, sid, context);
1638	else
1639		return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
1644	char *s;
1645	u32 len;
1646
1647	if (selinux_enforcing)
1648		return -EINVAL;
1649
1650	if (!context_struct_to_string(context, &s, &len)) {
1651		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1652		kfree(s);
1653	}
1654	return 0;
1655}
1656
1657struct convert_context_args {
1658	struct policydb *oldp;
1659	struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
1668 */
1669static int convert_context(u32 key,
1670			   struct context *c,
1671			   void *p)
1672{
1673	struct convert_context_args *args;
1674	struct context oldc;
1675	struct ocontext *oc;
1676	struct mls_range *range;
1677	struct role_datum *role;
1678	struct type_datum *typdatum;
1679	struct user_datum *usrdatum;
1680	char *s;
1681	u32 len;
1682	int rc = 0;
1683
1684	if (key <= SECINITSID_NUM)
1685		goto out;
1686
1687	args = p;
1688
1689	if (c->str) {
1690		struct context ctx;
1691
1692		rc = -ENOMEM;
1693		s = kstrdup(c->str, GFP_KERNEL);
1694		if (!s)
1695			goto out;
1696
1697		rc = string_to_context_struct(args->newp, NULL, s,
1698					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
1699		kfree(s);
1700		if (!rc) {
1701			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702			       c->str);
1703			/* Replace string with mapped representation. */
1704			kfree(c->str);
1705			memcpy(c, &ctx, sizeof(*c));
1706			goto out;
1707		} else if (rc == -EINVAL) {
1708			/* Retain string representation for later mapping. */
1709			rc = 0;
1710			goto out;
1711		} else {
1712			/* Other error condition, e.g. ENOMEM. */
1713			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714			       c->str, -rc);
1715			goto out;
1716		}
 
 
 
1717	}
1718
1719	rc = context_cpy(&oldc, c);
1720	if (rc)
1721		goto out;
1722
1723	/* Convert the user. */
1724	rc = -EINVAL;
1725	usrdatum = hashtab_search(args->newp->p_users.table,
1726				  sym_name(args->oldp, SYM_USERS, c->user - 1));
1727	if (!usrdatum)
1728		goto bad;
1729	c->user = usrdatum->value;
1730
1731	/* Convert the role. */
1732	rc = -EINVAL;
1733	role = hashtab_search(args->newp->p_roles.table,
1734			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735	if (!role)
1736		goto bad;
1737	c->role = role->value;
1738
1739	/* Convert the type. */
1740	rc = -EINVAL;
1741	typdatum = hashtab_search(args->newp->p_types.table,
1742				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
1743	if (!typdatum)
1744		goto bad;
1745	c->type = typdatum->value;
1746
1747	/* Convert the MLS fields if dealing with MLS policies */
1748	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749		rc = mls_convert_context(args->oldp, args->newp, c);
1750		if (rc)
1751			goto bad;
1752	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753		/*
1754		 * Switching between MLS and non-MLS policy:
1755		 * free any storage used by the MLS fields in the
1756		 * context for all existing entries in the sidtab.
1757		 */
1758		mls_context_destroy(c);
1759	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760		/*
1761		 * Switching between non-MLS and MLS policy:
1762		 * ensure that the MLS fields of the context for all
1763		 * existing entries in the sidtab are filled in with a
1764		 * suitable default value, likely taken from one of the
1765		 * initial SIDs.
1766		 */
1767		oc = args->newp->ocontexts[OCON_ISID];
1768		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769			oc = oc->next;
1770		rc = -EINVAL;
1771		if (!oc) {
1772			printk(KERN_ERR "SELinux:  unable to look up"
1773				" the initial SIDs list\n");
1774			goto bad;
1775		}
1776		range = &oc->context[0].range;
1777		rc = mls_range_set(c, range);
1778		if (rc)
1779			goto bad;
1780	}
1781
1782	/* Check the validity of the new context. */
1783	if (!policydb_context_isvalid(args->newp, c)) {
1784		rc = convert_context_handle_invalid_context(&oldc);
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	context_destroy(&oldc);
1790
1791	rc = 0;
1792out:
1793	return rc;
1794bad:
1795	/* Map old representation to string and save it. */
1796	rc = context_struct_to_string(&oldc, &s, &len);
1797	if (rc)
1798		return rc;
1799	context_destroy(&oldc);
1800	context_destroy(c);
1801	c->str = s;
1802	c->len = len;
1803	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804	       c->str);
1805	rc = 0;
1806	goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808
1809static void security_load_policycaps(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810{
1811	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812						  POLICYDB_CAPABILITY_NETPEER);
1813	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814						  POLICYDB_CAPABILITY_OPENPERM);
 
 
 
1815}
1816
1817static int security_preserve_bools(struct policydb *p);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
1821 * @data: binary policy data
1822 * @len: length of data in bytes
 
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
 
1830{
1831	struct policydb oldpolicydb, newpolicydb;
1832	struct sidtab oldsidtab, newsidtab;
1833	struct selinux_mapping *oldmap, *map = NULL;
1834	struct convert_context_args args;
1835	u32 seqno;
1836	u16 map_size;
1837	int rc = 0;
1838	struct policy_file file = { data, len }, *fp = &file;
1839
1840	if (!ss_initialized) {
1841		avtab_cache_init();
1842		rc = policydb_read(&policydb, fp);
1843		if (rc) {
1844			avtab_cache_destroy();
1845			return rc;
1846		}
1847
1848		policydb.len = len;
1849		rc = selinux_set_mapping(&policydb, secclass_map,
1850					 &current_mapping,
1851					 &current_mapping_size);
1852		if (rc) {
1853			policydb_destroy(&policydb);
1854			avtab_cache_destroy();
1855			return rc;
1856		}
1857
1858		rc = policydb_load_isids(&policydb, &sidtab);
1859		if (rc) {
1860			policydb_destroy(&policydb);
1861			avtab_cache_destroy();
1862			return rc;
1863		}
1864
1865		security_load_policycaps();
1866		ss_initialized = 1;
1867		seqno = ++latest_granting;
1868		selinux_complete_init();
1869		avc_ss_reset(seqno);
1870		selnl_notify_policyload(seqno);
1871		selinux_status_update_policyload(seqno);
1872		selinux_netlbl_cache_invalidate();
1873		selinux_xfrm_notify_policyload();
1874		return 0;
1875	}
1876
1877#if 0
1878	sidtab_hash_eval(&sidtab, "sids");
1879#endif
1880
1881	rc = policydb_read(&newpolicydb, fp);
1882	if (rc)
1883		return rc;
1884
1885	newpolicydb.len = len;
1886	/* If switching between different policy types, log MLS status */
1887	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893	if (rc) {
1894		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895		policydb_destroy(&newpolicydb);
1896		return rc;
1897	}
1898
1899	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900	if (rc)
1901		goto err;
1902
1903	rc = security_preserve_bools(&newpolicydb);
1904	if (rc) {
1905		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906		goto err;
1907	}
1908
1909	/* Clone the SID table. */
1910	sidtab_shutdown(&sidtab);
1911
1912	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913	if (rc)
1914		goto err;
 
 
 
1915
1916	/*
1917	 * Convert the internal representations of contexts
1918	 * in the new SID table.
1919	 */
1920	args.oldp = &policydb;
1921	args.newp = &newpolicydb;
1922	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
 
 
 
 
 
1923	if (rc) {
1924		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925			" representation of contexts in the new SID"
1926			" table\n");
1927		goto err;
1928	}
1929
1930	/* Save the old policydb and SID table to free later. */
1931	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932	sidtab_set(&oldsidtab, &sidtab);
1933
1934	/* Install the new policydb and SID table. */
1935	write_lock_irq(&policy_rwlock);
1936	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937	sidtab_set(&sidtab, &newsidtab);
1938	security_load_policycaps();
1939	oldmap = current_mapping;
1940	current_mapping = map;
1941	current_mapping_size = map_size;
1942	seqno = ++latest_granting;
1943	write_unlock_irq(&policy_rwlock);
1944
1945	/* Free the old policydb and SID table. */
1946	policydb_destroy(&oldpolicydb);
1947	sidtab_destroy(&oldsidtab);
1948	kfree(oldmap);
1949
1950	avc_ss_reset(seqno);
1951	selnl_notify_policyload(seqno);
1952	selinux_status_update_policyload(seqno);
1953	selinux_netlbl_cache_invalidate();
1954	selinux_xfrm_notify_policyload();
1955
1956	return 0;
1957
1958err:
1959	kfree(map);
1960	sidtab_destroy(&newsidtab);
1961	policydb_destroy(&newpolicydb);
1962	return rc;
 
 
 
 
 
 
 
1963
 
1964}
1965
1966size_t security_policydb_len(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1967{
1968	size_t len;
 
1969
1970	read_lock(&policy_rwlock);
1971	len = policydb.len;
1972	read_unlock(&policy_rwlock);
 
 
 
1973
1974	return len;
 
 
 
 
 
 
 
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
1984{
 
 
 
1985	struct ocontext *c;
1986	int rc = 0;
1987
1988	read_lock(&policy_rwlock);
 
 
 
1989
1990	c = policydb.ocontexts[OCON_PORT];
 
 
 
 
 
 
 
1991	while (c) {
1992		if (c->u.port.protocol == protocol &&
1993		    c->u.port.low_port <= port &&
1994		    c->u.port.high_port >= port)
1995			break;
1996		c = c->next;
1997	}
1998
1999	if (c) {
2000		if (!c->sid[0]) {
2001			rc = sidtab_context_to_sid(&sidtab,
2002						   &c->context[0],
2003						   &c->sid[0]);
2004			if (rc)
2005				goto out;
2006		}
2007		*out_sid = c->sid[0];
 
2008	} else {
2009		*out_sid = SECINITSID_PORT;
2010	}
2011
2012out:
2013	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
2023{
2024	int rc = 0;
 
 
 
2025	struct ocontext *c;
2026
2027	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
2028
2029	c = policydb.ocontexts[OCON_NETIF];
2030	while (c) {
2031		if (strcmp(name, c->u.name) == 0)
2032			break;
2033		c = c->next;
2034	}
2035
2036	if (c) {
2037		if (!c->sid[0] || !c->sid[1]) {
2038			rc = sidtab_context_to_sid(&sidtab,
2039						  &c->context[0],
2040						  &c->sid[0]);
2041			if (rc)
2042				goto out;
2043			rc = sidtab_context_to_sid(&sidtab,
2044						   &c->context[1],
2045						   &c->sid[1]);
2046			if (rc)
2047				goto out;
2048		}
2049		*if_sid = c->sid[0];
 
2050	} else
2051		*if_sid = SECINITSID_NETIF;
2052
2053out:
2054	read_unlock(&policy_rwlock);
2055	return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060	int i, fail = 0;
2061
2062	for (i = 0; i < 4; i++)
2063		if (addr[i] != (input[i] & mask[i])) {
2064			fail = 1;
2065			break;
2066		}
2067
2068	return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
2079		      void *addrp,
2080		      u32 addrlen,
2081		      u32 *out_sid)
2082{
 
 
 
2083	int rc;
2084	struct ocontext *c;
2085
2086	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
2087
2088	switch (domain) {
2089	case AF_INET: {
2090		u32 addr;
2091
2092		rc = -EINVAL;
2093		if (addrlen != sizeof(u32))
2094			goto out;
2095
2096		addr = *((u32 *)addrp);
2097
2098		c = policydb.ocontexts[OCON_NODE];
2099		while (c) {
2100			if (c->u.node.addr == (addr & c->u.node.mask))
2101				break;
2102			c = c->next;
2103		}
2104		break;
2105	}
2106
2107	case AF_INET6:
2108		rc = -EINVAL;
2109		if (addrlen != sizeof(u64) * 2)
2110			goto out;
2111		c = policydb.ocontexts[OCON_NODE6];
2112		while (c) {
2113			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114						c->u.node6.mask))
2115				break;
2116			c = c->next;
2117		}
2118		break;
2119
2120	default:
2121		rc = 0;
2122		*out_sid = SECINITSID_NODE;
2123		goto out;
2124	}
2125
2126	if (c) {
2127		if (!c->sid[0]) {
2128			rc = sidtab_context_to_sid(&sidtab,
2129						   &c->context[0],
2130						   &c->sid[0]);
2131			if (rc)
2132				goto out;
2133		}
2134		*out_sid = c->sid[0];
 
2135	} else {
2136		*out_sid = SECINITSID_NODE;
2137	}
2138
2139	rc = 0;
2140out:
2141	read_unlock(&policy_rwlock);
2142	return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
2162			   char *username,
2163			   u32 **sids,
2164			   u32 *nel)
2165{
 
 
 
2166	struct context *fromcon, usercon;
2167	u32 *mysids = NULL, *mysids2, sid;
2168	u32 mynel = 0, maxnel = SIDS_NEL;
2169	struct user_datum *user;
2170	struct role_datum *role;
2171	struct ebitmap_node *rnode, *tnode;
2172	int rc = 0, i, j;
2173
2174	*sids = NULL;
2175	*nel = 0;
2176
2177	if (!ss_initialized)
2178		goto out;
 
 
 
 
2179
2180	read_lock(&policy_rwlock);
 
 
 
 
 
2181
2182	context_init(&usercon);
2183
2184	rc = -EINVAL;
2185	fromcon = sidtab_search(&sidtab, fromsid);
2186	if (!fromcon)
2187		goto out_unlock;
2188
2189	rc = -EINVAL;
2190	user = hashtab_search(policydb.p_users.table, username);
2191	if (!user)
2192		goto out_unlock;
2193
2194	usercon.user = user->value;
2195
2196	rc = -ENOMEM;
2197	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198	if (!mysids)
2199		goto out_unlock;
2200
2201	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202		role = policydb.role_val_to_struct[i];
2203		usercon.role = i + 1;
2204		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205			usercon.type = j + 1;
2206
2207			if (mls_setup_user_range(fromcon, user, &usercon))
 
2208				continue;
2209
2210			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
 
 
 
 
2211			if (rc)
2212				goto out_unlock;
2213			if (mynel < maxnel) {
2214				mysids[mynel++] = sid;
2215			} else {
2216				rc = -ENOMEM;
2217				maxnel += SIDS_NEL;
2218				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219				if (!mysids2)
2220					goto out_unlock;
2221				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222				kfree(mysids);
2223				mysids = mysids2;
2224				mysids[mynel++] = sid;
2225			}
2226		}
2227	}
2228	rc = 0;
2229out_unlock:
2230	read_unlock(&policy_rwlock);
2231	if (rc || !mynel) {
2232		kfree(mysids);
2233		goto out;
2234	}
2235
2236	rc = -ENOMEM;
2237	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238	if (!mysids2) {
2239		kfree(mysids);
2240		goto out;
2241	}
2242	for (i = 0, j = 0; i < mynel; i++) {
2243		struct av_decision dummy_avd;
2244		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2245					  SECCLASS_PROCESS, /* kernel value */
2246					  PROCESS__TRANSITION, AVC_STRICT,
2247					  &dummy_avd);
2248		if (!rc)
2249			mysids2[j++] = mysids[i];
2250		cond_resched();
2251	}
2252	rc = 0;
2253	kfree(mysids);
2254	*sids = mysids2;
2255	*nel = j;
2256out:
2257	return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
 
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
 
 
 
2270 */
2271int security_genfs_sid(const char *fstype,
2272		       char *path,
2273		       u16 orig_sclass,
2274		       u32 *sid)
 
2275{
2276	int len;
 
2277	u16 sclass;
2278	struct genfs *genfs;
2279	struct ocontext *c;
2280	int rc, cmp = 0;
2281
2282	while (path[0] == '/' && path[1] == '/')
2283		path++;
2284
2285	read_lock(&policy_rwlock);
2286
2287	sclass = unmap_class(orig_sclass);
2288	*sid = SECINITSID_UNLABELED;
2289
2290	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291		cmp = strcmp(fstype, genfs->fstype);
2292		if (cmp <= 0)
2293			break;
2294	}
2295
2296	rc = -ENOENT;
2297	if (!genfs || cmp)
2298		goto out;
2299
2300	for (c = genfs->head; c; c = c->next) {
2301		len = strlen(c->u.name);
2302		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303		    (strncmp(c->u.name, path, len) == 0))
2304			break;
2305	}
2306
2307	rc = -ENOENT;
2308	if (!c)
2309		goto out;
2310
2311	if (!c->sid[0]) {
2312		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313		if (rc)
2314			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2315	}
2316
2317	*sid = c->sid[0];
2318	rc = 0;
2319out:
2320	read_unlock(&policy_rwlock);
2321	return rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
2329 */
2330int security_fs_use(
2331	const char *fstype,
2332	unsigned int *behavior,
2333	u32 *sid)
2334{
2335	int rc = 0;
 
 
 
2336	struct ocontext *c;
 
 
 
 
 
 
 
 
2337
2338	read_lock(&policy_rwlock);
 
 
 
 
2339
2340	c = policydb.ocontexts[OCON_FSUSE];
2341	while (c) {
2342		if (strcmp(fstype, c->u.name) == 0)
2343			break;
2344		c = c->next;
2345	}
2346
2347	if (c) {
2348		*behavior = c->v.behavior;
2349		if (!c->sid[0]) {
2350			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351						   &c->sid[0]);
2352			if (rc)
2353				goto out;
2354		}
2355		*sid = c->sid[0];
 
2356	} else {
2357		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
 
 
 
 
2358		if (rc) {
2359			*behavior = SECURITY_FS_USE_NONE;
2360			rc = 0;
2361		} else {
2362			*behavior = SECURITY_FS_USE_GENFS;
2363		}
2364	}
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
 
2372{
2373	int i, rc;
 
 
 
 
2374
2375	read_lock(&policy_rwlock);
2376	*names = NULL;
2377	*values = NULL;
2378
2379	rc = 0;
2380	*len = policydb.p_bools.nprim;
2381	if (!*len)
2382		goto out;
2383
2384	rc = -ENOMEM;
2385	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386	if (!*names)
2387		goto err;
2388
2389	rc = -ENOMEM;
2390	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391	if (!*values)
2392		goto err;
2393
2394	for (i = 0; i < *len; i++) {
2395		size_t name_len;
2396
2397		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400		rc = -ENOMEM;
2401		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2402		if (!(*names)[i])
2403			goto err;
2404
2405		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406		(*names)[i][name_len - 1] = 0;
2407	}
2408	rc = 0;
2409out:
2410	read_unlock(&policy_rwlock);
2411	return rc;
2412err:
2413	if (*names) {
2414		for (i = 0; i < *len; i++)
2415			kfree((*names)[i]);
 
2416	}
2417	kfree(*values);
 
 
 
2418	goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424	int i, rc;
2425	int lenp, seqno = 0;
2426	struct cond_node *cur;
 
2427
2428	write_lock_irq(&policy_rwlock);
 
2429
2430	rc = -EFAULT;
2431	lenp = policydb.p_bools.nprim;
2432	if (len != lenp)
2433		goto out;
 
 
2434
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2435	for (i = 0; i < len; i++) {
2436		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437			audit_log(current->audit_context, GFP_ATOMIC,
 
 
 
2438				AUDIT_MAC_CONFIG_CHANGE,
2439				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440				sym_name(&policydb, SYM_BOOLS, i),
2441				!!values[i],
2442				policydb.bool_val_to_struct[i]->state,
2443				audit_get_loginuid(current),
2444				audit_get_sessionid(current));
 
2445		}
2446		if (values[i])
2447			policydb.bool_val_to_struct[i]->state = 1;
2448		else
2449			policydb.bool_val_to_struct[i]->state = 0;
2450	}
2451
2452	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453		rc = evaluate_cond_node(&policydb, cur);
2454		if (rc)
2455			goto out;
2456	}
2457
2458	seqno = ++latest_granting;
2459	rc = 0;
2460out:
2461	write_unlock_irq(&policy_rwlock);
2462	if (!rc) {
2463		avc_ss_reset(seqno);
2464		selnl_notify_policyload(seqno);
2465		selinux_status_update_policyload(seqno);
2466		selinux_xfrm_notify_policyload();
2467	}
2468	return rc;
 
 
 
 
 
 
 
2469}
2470
2471int security_get_bool_value(int bool)
2472{
 
 
2473	int rc;
2474	int len;
2475
2476	read_lock(&policy_rwlock);
 
 
 
 
 
2477
2478	rc = -EFAULT;
2479	len = policydb.p_bools.nprim;
2480	if (bool >= len)
2481		goto out;
2482
2483	rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485	read_unlock(&policy_rwlock);
2486	return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
 
2490{
2491	int rc, nbools = 0, *bvalues = NULL, i;
2492	char **bnames = NULL;
2493	struct cond_bool_datum *booldatum;
2494	struct cond_node *cur;
2495
2496	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497	if (rc)
2498		goto out;
2499	for (i = 0; i < nbools; i++) {
2500		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
 
2501		if (booldatum)
2502			booldatum->state = bvalues[i];
2503	}
2504	for (cur = p->cond_list; cur; cur = cur->next) {
2505		rc = evaluate_cond_node(p, cur);
2506		if (rc)
2507			goto out;
2508	}
2509
2510out:
2511	if (bnames) {
2512		for (i = 0; i < nbools; i++)
2513			kfree(bnames[i]);
2514	}
2515	kfree(bnames);
2516	kfree(bvalues);
2517	return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
2525{
 
 
 
2526	struct context *context1;
2527	struct context *context2;
2528	struct context newcon;
2529	char *s;
2530	u32 len;
2531	int rc;
2532
2533	rc = 0;
2534	if (!ss_initialized || !policydb.mls_enabled) {
2535		*new_sid = sid;
2536		goto out;
2537	}
2538
 
 
2539	context_init(&newcon);
2540
2541	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
2542
2543	rc = -EINVAL;
2544	context1 = sidtab_search(&sidtab, sid);
2545	if (!context1) {
2546		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547			__func__, sid);
2548		goto out_unlock;
2549	}
2550
2551	rc = -EINVAL;
2552	context2 = sidtab_search(&sidtab, mls_sid);
2553	if (!context2) {
2554		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555			__func__, mls_sid);
2556		goto out_unlock;
2557	}
2558
2559	newcon.user = context1->user;
2560	newcon.role = context1->role;
2561	newcon.type = context1->type;
2562	rc = mls_context_cpy(&newcon, context2);
2563	if (rc)
2564		goto out_unlock;
2565
2566	/* Check the validity of the new context. */
2567	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568		rc = convert_context_handle_invalid_context(&newcon);
 
2569		if (rc) {
2570			if (!context_struct_to_string(&newcon, &s, &len)) {
2571				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2573				kfree(s);
2574			}
2575			goto out_unlock;
2576		}
2577	}
2578
2579	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
 
 
 
 
2580out_unlock:
2581	read_unlock(&policy_rwlock);
2582	context_destroy(&newcon);
2583out:
2584	return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
 
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
2608				 u32 xfrm_sid,
2609				 u32 *peer_sid)
2610{
 
 
 
2611	int rc;
2612	struct context *nlbl_ctx;
2613	struct context *xfrm_ctx;
2614
2615	*peer_sid = SECSID_NULL;
2616
2617	/* handle the common (which also happens to be the set of easy) cases
2618	 * right away, these two if statements catch everything involving a
2619	 * single or absent peer SID/label */
2620	if (xfrm_sid == SECSID_NULL) {
2621		*peer_sid = nlbl_sid;
2622		return 0;
2623	}
2624	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626	 * is present */
2627	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628		*peer_sid = xfrm_sid;
2629		return 0;
2630	}
2631
2632	/* we don't need to check ss_initialized here since the only way both
2633	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634	 * security server was initialized and ss_initialized was true */
2635	if (!policydb.mls_enabled)
2636		return 0;
2637
2638	read_lock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2639
2640	rc = -EINVAL;
2641	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642	if (!nlbl_ctx) {
2643		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644		       __func__, nlbl_sid);
2645		goto out;
2646	}
2647	rc = -EINVAL;
2648	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649	if (!xfrm_ctx) {
2650		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651		       __func__, xfrm_sid);
2652		goto out;
2653	}
2654	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655	if (rc)
2656		goto out;
2657
2658	/* at present NetLabel SIDs/labels really only carry MLS
2659	 * information so if the MLS portion of the NetLabel SID
2660	 * matches the MLS portion of the labeled XFRM SID/label
2661	 * then pass along the XFRM SID as it is the most
2662	 * expressive */
2663	*peer_sid = xfrm_sid;
2664out:
2665	read_unlock(&policy_rwlock);
2666	return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671	struct class_datum *datum = d;
2672	char *name = k, **classes = args;
2673	int value = datum->value - 1;
2674
2675	classes[value] = kstrdup(name, GFP_ATOMIC);
2676	if (!classes[value])
2677		return -ENOMEM;
2678
2679	return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
 
2683{
 
2684	int rc;
2685
2686	read_lock(&policy_rwlock);
2687
2688	rc = -ENOMEM;
2689	*nclasses = policydb.p_classes.nprim;
2690	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691	if (!*classes)
2692		goto out;
2693
2694	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695			*classes);
2696	if (rc) {
2697		int i;
 
2698		for (i = 0; i < *nclasses; i++)
2699			kfree((*classes)[i]);
2700		kfree(*classes);
2701	}
2702
2703out:
2704	read_unlock(&policy_rwlock);
2705	return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710	struct perm_datum *datum = d;
2711	char *name = k, **perms = args;
2712	int value = datum->value - 1;
2713
2714	perms[value] = kstrdup(name, GFP_ATOMIC);
2715	if (!perms[value])
2716		return -ENOMEM;
2717
2718	return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
 
2722{
2723	int rc, i;
 
 
2724	struct class_datum *match;
2725
2726	read_lock(&policy_rwlock);
2727
2728	rc = -EINVAL;
2729	match = hashtab_search(policydb.p_classes.table, class);
2730	if (!match) {
2731		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732			__func__, class);
2733		goto out;
2734	}
2735
2736	rc = -ENOMEM;
2737	*nperms = match->permissions.nprim;
2738	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739	if (!*perms)
2740		goto out;
2741
2742	if (match->comdatum) {
2743		rc = hashtab_map(match->comdatum->permissions.table,
2744				get_permissions_callback, *perms);
2745		if (rc)
2746			goto err;
2747	}
2748
2749	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750			*perms);
2751	if (rc)
2752		goto err;
2753
2754out:
2755	read_unlock(&policy_rwlock);
2756	return rc;
2757
2758err:
2759	read_unlock(&policy_rwlock);
2760	for (i = 0; i < *nperms; i++)
2761		kfree((*perms)[i]);
2762	kfree(*perms);
2763	return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768	return policydb.reject_unknown;
 
 
 
 
 
 
 
 
 
 
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773	return policydb.allow_unknown;
 
 
 
 
 
 
 
 
 
 
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
2787{
 
2788	int rc;
2789
2790	read_lock(&policy_rwlock);
2791	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792	read_unlock(&policy_rwlock);
 
 
 
 
2793
2794	return rc;
2795}
2796
2797struct selinux_audit_rule {
2798	u32 au_seqno;
2799	struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804	struct selinux_audit_rule *rule = vrule;
2805
2806	if (rule) {
2807		context_destroy(&rule->au_ctxt);
2808		kfree(rule);
2809	}
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
 
2813{
 
 
 
2814	struct selinux_audit_rule *tmprule;
2815	struct role_datum *roledatum;
2816	struct type_datum *typedatum;
2817	struct user_datum *userdatum;
2818	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819	int rc = 0;
2820
2821	*rule = NULL;
2822
2823	if (!ss_initialized)
2824		return -EOPNOTSUPP;
2825
2826	switch (field) {
2827	case AUDIT_SUBJ_USER:
2828	case AUDIT_SUBJ_ROLE:
2829	case AUDIT_SUBJ_TYPE:
2830	case AUDIT_OBJ_USER:
2831	case AUDIT_OBJ_ROLE:
2832	case AUDIT_OBJ_TYPE:
2833		/* only 'equals' and 'not equals' fit user, role, and type */
2834		if (op != Audit_equal && op != Audit_not_equal)
2835			return -EINVAL;
2836		break;
2837	case AUDIT_SUBJ_SEN:
2838	case AUDIT_SUBJ_CLR:
2839	case AUDIT_OBJ_LEV_LOW:
2840	case AUDIT_OBJ_LEV_HIGH:
2841		/* we do not allow a range, indicated by the presence of '-' */
2842		if (strchr(rulestr, '-'))
2843			return -EINVAL;
2844		break;
2845	default:
2846		/* only the above fields are valid */
2847		return -EINVAL;
2848	}
2849
2850	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851	if (!tmprule)
2852		return -ENOMEM;
2853
2854	context_init(&tmprule->au_ctxt);
2855
2856	read_lock(&policy_rwlock);
2857
2858	tmprule->au_seqno = latest_granting;
2859
2860	switch (field) {
2861	case AUDIT_SUBJ_USER:
2862	case AUDIT_OBJ_USER:
2863		rc = -EINVAL;
2864		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865		if (!userdatum)
2866			goto out;
 
2867		tmprule->au_ctxt.user = userdatum->value;
2868		break;
2869	case AUDIT_SUBJ_ROLE:
2870	case AUDIT_OBJ_ROLE:
2871		rc = -EINVAL;
2872		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873		if (!roledatum)
2874			goto out;
 
2875		tmprule->au_ctxt.role = roledatum->value;
2876		break;
2877	case AUDIT_SUBJ_TYPE:
2878	case AUDIT_OBJ_TYPE:
2879		rc = -EINVAL;
2880		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881		if (!typedatum)
2882			goto out;
 
2883		tmprule->au_ctxt.type = typedatum->value;
2884		break;
2885	case AUDIT_SUBJ_SEN:
2886	case AUDIT_SUBJ_CLR:
2887	case AUDIT_OBJ_LEV_LOW:
2888	case AUDIT_OBJ_LEV_HIGH:
2889		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2890		if (rc)
2891			goto out;
2892		break;
2893	}
2894	rc = 0;
2895out:
2896	read_unlock(&policy_rwlock);
2897
2898	if (rc) {
2899		selinux_audit_rule_free(tmprule);
2900		tmprule = NULL;
2901	}
2902
2903	*rule = tmprule;
 
2904
 
 
 
 
2905	return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911	int i;
2912
2913	for (i = 0; i < rule->field_count; i++) {
2914		struct audit_field *f = &rule->fields[i];
2915		switch (f->type) {
2916		case AUDIT_SUBJ_USER:
2917		case AUDIT_SUBJ_ROLE:
2918		case AUDIT_SUBJ_TYPE:
2919		case AUDIT_SUBJ_SEN:
2920		case AUDIT_SUBJ_CLR:
2921		case AUDIT_OBJ_USER:
2922		case AUDIT_OBJ_ROLE:
2923		case AUDIT_OBJ_TYPE:
2924		case AUDIT_OBJ_LEV_LOW:
2925		case AUDIT_OBJ_LEV_HIGH:
2926			return 1;
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934			     struct audit_context *actx)
2935{
 
 
2936	struct context *ctxt;
2937	struct mls_level *level;
2938	struct selinux_audit_rule *rule = vrule;
2939	int match = 0;
2940
2941	if (!rule) {
2942		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943			  "selinux_audit_rule_match: missing rule\n");
2944		return -ENOENT;
2945	}
2946
2947	read_lock(&policy_rwlock);
 
 
 
2948
2949	if (rule->au_seqno < latest_granting) {
2950		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951			  "selinux_audit_rule_match: stale rule\n");
2952		match = -ESTALE;
2953		goto out;
2954	}
2955
2956	ctxt = sidtab_search(&sidtab, sid);
2957	if (!ctxt) {
2958		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960			  sid);
2961		match = -ENOENT;
2962		goto out;
2963	}
2964
2965	/* a field/op pair that is not caught here will simply fall through
2966	   without a match */
2967	switch (field) {
2968	case AUDIT_SUBJ_USER:
2969	case AUDIT_OBJ_USER:
2970		switch (op) {
2971		case Audit_equal:
2972			match = (ctxt->user == rule->au_ctxt.user);
2973			break;
2974		case Audit_not_equal:
2975			match = (ctxt->user != rule->au_ctxt.user);
2976			break;
2977		}
2978		break;
2979	case AUDIT_SUBJ_ROLE:
2980	case AUDIT_OBJ_ROLE:
2981		switch (op) {
2982		case Audit_equal:
2983			match = (ctxt->role == rule->au_ctxt.role);
2984			break;
2985		case Audit_not_equal:
2986			match = (ctxt->role != rule->au_ctxt.role);
2987			break;
2988		}
2989		break;
2990	case AUDIT_SUBJ_TYPE:
2991	case AUDIT_OBJ_TYPE:
2992		switch (op) {
2993		case Audit_equal:
2994			match = (ctxt->type == rule->au_ctxt.type);
2995			break;
2996		case Audit_not_equal:
2997			match = (ctxt->type != rule->au_ctxt.type);
2998			break;
2999		}
3000		break;
3001	case AUDIT_SUBJ_SEN:
3002	case AUDIT_SUBJ_CLR:
3003	case AUDIT_OBJ_LEV_LOW:
3004	case AUDIT_OBJ_LEV_HIGH:
3005		level = ((field == AUDIT_SUBJ_SEN ||
3006			  field == AUDIT_OBJ_LEV_LOW) ?
3007			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008		switch (op) {
3009		case Audit_equal:
3010			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011					     level);
3012			break;
3013		case Audit_not_equal:
3014			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015					      level);
3016			break;
3017		case Audit_lt:
3018			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019					       level) &&
3020				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021					       level));
3022			break;
3023		case Audit_le:
3024			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025					      level);
3026			break;
3027		case Audit_gt:
3028			match = (mls_level_dom(level,
3029					      &rule->au_ctxt.range.level[0]) &&
3030				 !mls_level_eq(level,
3031					       &rule->au_ctxt.range.level[0]));
3032			break;
3033		case Audit_ge:
3034			match = mls_level_dom(level,
3035					      &rule->au_ctxt.range.level[0]);
3036			break;
3037		}
3038	}
3039
3040out:
3041	read_unlock(&policy_rwlock);
3042	return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
3048{
3049	int err = 0;
3050
3051	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052		err = aurule_callback();
3053	return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058	int err;
3059
3060	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061	if (err)
3062		panic("avc_add_callback() failed, error %d\n", err);
3063
3064	return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081				      u32 sid)
3082{
3083	u32 *sid_cache;
3084
3085	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086	if (sid_cache == NULL)
3087		return;
3088	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089	if (secattr->cache == NULL) {
3090		kfree(sid_cache);
3091		return;
3092	}
3093
3094	*sid_cache = sid;
3095	secattr->cache->free = kfree;
3096	secattr->cache->data = sid_cache;
3097	secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3116				   u32 *sid)
3117{
 
 
 
3118	int rc;
3119	struct context *ctx;
3120	struct context ctx_new;
3121
3122	if (!ss_initialized) {
3123		*sid = SECSID_NULL;
3124		return 0;
3125	}
3126
3127	read_lock(&policy_rwlock);
 
 
 
 
 
3128
3129	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130		*sid = *(u32 *)secattr->cache->data;
3131	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132		*sid = secattr->attr.secid;
3133	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134		rc = -EIDRM;
3135		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136		if (ctx == NULL)
3137			goto out;
3138
3139		context_init(&ctx_new);
3140		ctx_new.user = ctx->user;
3141		ctx_new.role = ctx->role;
3142		ctx_new.type = ctx->type;
3143		mls_import_netlbl_lvl(&ctx_new, secattr);
3144		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146						   secattr->attr.mls.cat);
3147			if (rc)
3148				goto out;
3149			memcpy(&ctx_new.range.level[1].cat,
3150			       &ctx_new.range.level[0].cat,
3151			       sizeof(ctx_new.range.level[0].cat));
3152		}
3153		rc = -EIDRM;
3154		if (!mls_context_isvalid(&policydb, &ctx_new))
3155			goto out_free;
 
 
3156
3157		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
 
 
 
 
 
3158		if (rc)
3159			goto out_free;
3160
3161		security_netlbl_cache_add(secattr, *sid);
3162
3163		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164	} else
3165		*sid = SECSID_NULL;
3166
3167	read_unlock(&policy_rwlock);
3168	return 0;
3169out_free:
3170	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172	read_unlock(&policy_rwlock);
3173	return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3187{
 
 
3188	int rc;
3189	struct context *ctx;
3190
3191	if (!ss_initialized)
3192		return 0;
3193
3194	read_lock(&policy_rwlock);
 
 
3195
3196	rc = -ENOENT;
3197	ctx = sidtab_search(&sidtab, sid);
3198	if (ctx == NULL)
3199		goto out;
3200
3201	rc = -ENOMEM;
3202	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203				  GFP_ATOMIC);
3204	if (secattr->domain == NULL)
3205		goto out;
3206
3207	secattr->attr.secid = sid;
3208	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209	mls_export_netlbl_lvl(ctx, secattr);
3210	rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212	read_unlock(&policy_rwlock);
3213	return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
 
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
 
3224{
3225	int rc;
3226	struct policy_file fp;
3227
3228	if (!ss_initialized)
3229		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3230
3231	*len = security_policydb_len();
 
 
 
3232
 
3233	*data = vmalloc_user(*len);
3234	if (!*data)
3235		return -ENOMEM;
3236
3237	fp.data = *data;
3238	fp.len = *len;
3239
3240	read_lock(&policy_rwlock);
3241	rc = policydb_write(&policydb, &fp);
3242	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
3243
3244	if (rc)
3245		return rc;
 
 
3246
3247	*len = (unsigned long)fp.data - (unsigned long)*data;
3248	return 0;
 
 
3249
 
 
 
 
 
 
 
3250}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <stephen.smalley.work@gmail.com>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <linux/lsm_hooks.h>
  51#include <net/netlabel.h>
  52
  53#include "flask.h"
  54#include "avc.h"
  55#include "avc_ss.h"
  56#include "security.h"
  57#include "context.h"
  58#include "policydb.h"
  59#include "sidtab.h"
  60#include "services.h"
  61#include "conditional.h"
  62#include "mls.h"
  63#include "objsec.h"
  64#include "netlabel.h"
  65#include "xfrm.h"
  66#include "ebitmap.h"
  67#include "audit.h"
  68#include "policycap_names.h"
  69#include "ima.h"
  70
  71struct selinux_policy_convert_data {
  72	struct convert_context_args args;
  73	struct sidtab_convert_params sidtab_params;
  74};
 
 
 
 
 
 
 
 
 
 
 
 
  75
  76/* Forward declaration. */
  77static int context_struct_to_string(struct policydb *policydb,
  78				    struct context *context,
  79				    char **scontext,
  80				    u32 *scontext_len);
  81
  82static int sidtab_entry_to_string(struct policydb *policydb,
  83				  struct sidtab *sidtab,
  84				  struct sidtab_entry *entry,
  85				  char **scontext,
  86				  u32 *scontext_len);
  87
  88static void context_struct_compute_av(struct policydb *policydb,
  89				      struct context *scontext,
  90				      struct context *tcontext,
  91				      u16 tclass,
  92				      struct av_decision *avd,
  93				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
  94
  95static int selinux_set_mapping(struct policydb *pol,
  96			       const struct security_class_mapping *map,
  97			       struct selinux_map *out_map)
 
  98{
 
 
  99	u16 i, j;
 
 100	bool print_unknown_handle = false;
 101
 102	/* Find number of classes in the input mapping */
 103	if (!map)
 104		return -EINVAL;
 105	i = 0;
 106	while (map[i].name)
 107		i++;
 108
 109	/* Allocate space for the class records, plus one for class zero */
 110	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 111	if (!out_map->mapping)
 112		return -ENOMEM;
 113
 114	/* Store the raw class and permission values */
 115	j = 0;
 116	while (map[j].name) {
 117		const struct security_class_mapping *p_in = map + (j++);
 118		struct selinux_mapping *p_out = out_map->mapping + j;
 119		u16 k;
 120
 121		/* An empty class string skips ahead */
 122		if (!strcmp(p_in->name, "")) {
 123			p_out->num_perms = 0;
 124			continue;
 125		}
 126
 127		p_out->value = string_to_security_class(pol, p_in->name);
 128		if (!p_out->value) {
 129			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 130			       p_in->name);
 131			if (pol->reject_unknown)
 132				goto err;
 133			p_out->num_perms = 0;
 134			print_unknown_handle = true;
 135			continue;
 136		}
 137
 138		k = 0;
 139		while (p_in->perms[k]) {
 140			/* An empty permission string skips ahead */
 141			if (!*p_in->perms[k]) {
 142				k++;
 143				continue;
 144			}
 145			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 146							    p_in->perms[k]);
 147			if (!p_out->perms[k]) {
 148				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 149				       p_in->perms[k], p_in->name);
 150				if (pol->reject_unknown)
 151					goto err;
 152				print_unknown_handle = true;
 153			}
 154
 155			k++;
 156		}
 157		p_out->num_perms = k;
 158	}
 159
 160	if (print_unknown_handle)
 161		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 162		       pol->allow_unknown ? "allowed" : "denied");
 163
 164	out_map->size = i;
 
 165	return 0;
 166err:
 167	kfree(out_map->mapping);
 168	out_map->mapping = NULL;
 169	return -EINVAL;
 170}
 171
 172/*
 173 * Get real, policy values from mapped values
 174 */
 175
 176static u16 unmap_class(struct selinux_map *map, u16 tclass)
 177{
 178	if (tclass < map->size)
 179		return map->mapping[tclass].value;
 180
 181	return tclass;
 182}
 183
 184/*
 185 * Get kernel value for class from its policy value
 186 */
 187static u16 map_class(struct selinux_map *map, u16 pol_value)
 188{
 189	u16 i;
 190
 191	for (i = 1; i < map->size; i++) {
 192		if (map->mapping[i].value == pol_value)
 193			return i;
 194	}
 195
 196	return SECCLASS_NULL;
 197}
 198
 199static void map_decision(struct selinux_map *map,
 200			 u16 tclass, struct av_decision *avd,
 201			 int allow_unknown)
 202{
 203	if (tclass < map->size) {
 204		struct selinux_mapping *mapping = &map->mapping[tclass];
 205		unsigned int i, n = mapping->num_perms;
 206		u32 result;
 207
 208		for (i = 0, result = 0; i < n; i++) {
 209			if (avd->allowed & mapping->perms[i])
 210				result |= (u32)1<<i;
 211			if (allow_unknown && !mapping->perms[i])
 212				result |= (u32)1<<i;
 213		}
 214		avd->allowed = result;
 215
 216		for (i = 0, result = 0; i < n; i++)
 217			if (avd->auditallow & mapping->perms[i])
 218				result |= (u32)1<<i;
 219		avd->auditallow = result;
 220
 221		for (i = 0, result = 0; i < n; i++) {
 222			if (avd->auditdeny & mapping->perms[i])
 223				result |= (u32)1<<i;
 224			if (!allow_unknown && !mapping->perms[i])
 225				result |= (u32)1<<i;
 226		}
 227		/*
 228		 * In case the kernel has a bug and requests a permission
 229		 * between num_perms and the maximum permission number, we
 230		 * should audit that denial
 231		 */
 232		for (; i < (sizeof(u32)*8); i++)
 233			result |= (u32)1<<i;
 234		avd->auditdeny = result;
 235	}
 236}
 237
 238int security_mls_enabled(void)
 239{
 240	int mls_enabled;
 241	struct selinux_policy *policy;
 242
 243	if (!selinux_initialized())
 244		return 0;
 245
 246	rcu_read_lock();
 247	policy = rcu_dereference(selinux_state.policy);
 248	mls_enabled = policy->policydb.mls_enabled;
 249	rcu_read_unlock();
 250	return mls_enabled;
 251}
 252
 253/*
 254 * Return the boolean value of a constraint expression
 255 * when it is applied to the specified source and target
 256 * security contexts.
 257 *
 258 * xcontext is a special beast...  It is used by the validatetrans rules
 259 * only.  For these rules, scontext is the context before the transition,
 260 * tcontext is the context after the transition, and xcontext is the context
 261 * of the process performing the transition.  All other callers of
 262 * constraint_expr_eval should pass in NULL for xcontext.
 263 */
 264static int constraint_expr_eval(struct policydb *policydb,
 265				struct context *scontext,
 266				struct context *tcontext,
 267				struct context *xcontext,
 268				struct constraint_expr *cexpr)
 269{
 270	u32 val1, val2;
 271	struct context *c;
 272	struct role_datum *r1, *r2;
 273	struct mls_level *l1, *l2;
 274	struct constraint_expr *e;
 275	int s[CEXPR_MAXDEPTH];
 276	int sp = -1;
 277
 278	for (e = cexpr; e; e = e->next) {
 279		switch (e->expr_type) {
 280		case CEXPR_NOT:
 281			BUG_ON(sp < 0);
 282			s[sp] = !s[sp];
 283			break;
 284		case CEXPR_AND:
 285			BUG_ON(sp < 1);
 286			sp--;
 287			s[sp] &= s[sp + 1];
 288			break;
 289		case CEXPR_OR:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] |= s[sp + 1];
 293			break;
 294		case CEXPR_ATTR:
 295			if (sp == (CEXPR_MAXDEPTH - 1))
 296				return 0;
 297			switch (e->attr) {
 298			case CEXPR_USER:
 299				val1 = scontext->user;
 300				val2 = tcontext->user;
 301				break;
 302			case CEXPR_TYPE:
 303				val1 = scontext->type;
 304				val2 = tcontext->type;
 305				break;
 306			case CEXPR_ROLE:
 307				val1 = scontext->role;
 308				val2 = tcontext->role;
 309				r1 = policydb->role_val_to_struct[val1 - 1];
 310				r2 = policydb->role_val_to_struct[val2 - 1];
 311				switch (e->op) {
 312				case CEXPR_DOM:
 313					s[++sp] = ebitmap_get_bit(&r1->dominates,
 314								  val2 - 1);
 315					continue;
 316				case CEXPR_DOMBY:
 317					s[++sp] = ebitmap_get_bit(&r2->dominates,
 318								  val1 - 1);
 319					continue;
 320				case CEXPR_INCOMP:
 321					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 322								    val2 - 1) &&
 323						   !ebitmap_get_bit(&r2->dominates,
 324								    val1 - 1));
 325					continue;
 326				default:
 327					break;
 328				}
 329				break;
 330			case CEXPR_L1L2:
 331				l1 = &(scontext->range.level[0]);
 332				l2 = &(tcontext->range.level[0]);
 333				goto mls_ops;
 334			case CEXPR_L1H2:
 335				l1 = &(scontext->range.level[0]);
 336				l2 = &(tcontext->range.level[1]);
 337				goto mls_ops;
 338			case CEXPR_H1L2:
 339				l1 = &(scontext->range.level[1]);
 340				l2 = &(tcontext->range.level[0]);
 341				goto mls_ops;
 342			case CEXPR_H1H2:
 343				l1 = &(scontext->range.level[1]);
 344				l2 = &(tcontext->range.level[1]);
 345				goto mls_ops;
 346			case CEXPR_L1H1:
 347				l1 = &(scontext->range.level[0]);
 348				l2 = &(scontext->range.level[1]);
 349				goto mls_ops;
 350			case CEXPR_L2H2:
 351				l1 = &(tcontext->range.level[0]);
 352				l2 = &(tcontext->range.level[1]);
 353				goto mls_ops;
 354mls_ops:
 355				switch (e->op) {
 356				case CEXPR_EQ:
 357					s[++sp] = mls_level_eq(l1, l2);
 358					continue;
 359				case CEXPR_NEQ:
 360					s[++sp] = !mls_level_eq(l1, l2);
 361					continue;
 362				case CEXPR_DOM:
 363					s[++sp] = mls_level_dom(l1, l2);
 364					continue;
 365				case CEXPR_DOMBY:
 366					s[++sp] = mls_level_dom(l2, l1);
 367					continue;
 368				case CEXPR_INCOMP:
 369					s[++sp] = mls_level_incomp(l2, l1);
 370					continue;
 371				default:
 372					BUG();
 373					return 0;
 374				}
 375				break;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380
 381			switch (e->op) {
 382			case CEXPR_EQ:
 383				s[++sp] = (val1 == val2);
 384				break;
 385			case CEXPR_NEQ:
 386				s[++sp] = (val1 != val2);
 387				break;
 388			default:
 389				BUG();
 390				return 0;
 391			}
 392			break;
 393		case CEXPR_NAMES:
 394			if (sp == (CEXPR_MAXDEPTH-1))
 395				return 0;
 396			c = scontext;
 397			if (e->attr & CEXPR_TARGET)
 398				c = tcontext;
 399			else if (e->attr & CEXPR_XTARGET) {
 400				c = xcontext;
 401				if (!c) {
 402					BUG();
 403					return 0;
 404				}
 405			}
 406			if (e->attr & CEXPR_USER)
 407				val1 = c->user;
 408			else if (e->attr & CEXPR_ROLE)
 409				val1 = c->role;
 410			else if (e->attr & CEXPR_TYPE)
 411				val1 = c->type;
 412			else {
 413				BUG();
 414				return 0;
 415			}
 416
 417			switch (e->op) {
 418			case CEXPR_EQ:
 419				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 420				break;
 421			case CEXPR_NEQ:
 422				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			default:
 425				BUG();
 426				return 0;
 427			}
 428			break;
 429		default:
 430			BUG();
 431			return 0;
 432		}
 433	}
 434
 435	BUG_ON(sp != 0);
 436	return s[0];
 437}
 438
 439/*
 440 * security_dump_masked_av - dumps masked permissions during
 441 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 442 */
 443static int dump_masked_av_helper(void *k, void *d, void *args)
 444{
 445	struct perm_datum *pdatum = d;
 446	char **permission_names = args;
 447
 448	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 449
 450	permission_names[pdatum->value - 1] = (char *)k;
 451
 452	return 0;
 453}
 454
 455static void security_dump_masked_av(struct policydb *policydb,
 456				    struct context *scontext,
 457				    struct context *tcontext,
 458				    u16 tclass,
 459				    u32 permissions,
 460				    const char *reason)
 461{
 462	struct common_datum *common_dat;
 463	struct class_datum *tclass_dat;
 464	struct audit_buffer *ab;
 465	char *tclass_name;
 466	char *scontext_name = NULL;
 467	char *tcontext_name = NULL;
 468	char *permission_names[32];
 469	int index;
 470	u32 length;
 471	bool need_comma = false;
 472
 473	if (!permissions)
 474		return;
 475
 476	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 477	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 478	common_dat = tclass_dat->comdatum;
 479
 480	/* init permission_names */
 481	if (common_dat &&
 482	    hashtab_map(&common_dat->permissions.table,
 483			dump_masked_av_helper, permission_names) < 0)
 484		goto out;
 485
 486	if (hashtab_map(&tclass_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	/* get scontext/tcontext in text form */
 491	if (context_struct_to_string(policydb, scontext,
 492				     &scontext_name, &length) < 0)
 493		goto out;
 494
 495	if (context_struct_to_string(policydb, tcontext,
 496				     &tcontext_name, &length) < 0)
 497		goto out;
 498
 499	/* audit a message */
 500	ab = audit_log_start(audit_context(),
 501			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 502	if (!ab)
 503		goto out;
 504
 505	audit_log_format(ab, "op=security_compute_av reason=%s "
 506			 "scontext=%s tcontext=%s tclass=%s perms=",
 507			 reason, scontext_name, tcontext_name, tclass_name);
 508
 509	for (index = 0; index < 32; index++) {
 510		u32 mask = (1 << index);
 511
 512		if ((mask & permissions) == 0)
 513			continue;
 514
 515		audit_log_format(ab, "%s%s",
 516				 need_comma ? "," : "",
 517				 permission_names[index]
 518				 ? permission_names[index] : "????");
 519		need_comma = true;
 520	}
 521	audit_log_end(ab);
 522out:
 523	/* release scontext/tcontext */
 524	kfree(tcontext_name);
 525	kfree(scontext_name);
 
 
 526}
 527
 528/*
 529 * security_boundary_permission - drops violated permissions
 530 * on boundary constraint.
 531 */
 532static void type_attribute_bounds_av(struct policydb *policydb,
 533				     struct context *scontext,
 534				     struct context *tcontext,
 535				     u16 tclass,
 536				     struct av_decision *avd)
 537{
 538	struct context lo_scontext;
 539	struct context lo_tcontext, *tcontextp = tcontext;
 540	struct av_decision lo_avd;
 541	struct type_datum *source;
 542	struct type_datum *target;
 543	u32 masked = 0;
 544
 545	source = policydb->type_val_to_struct[scontext->type - 1];
 
 546	BUG_ON(!source);
 547
 548	if (!source->bounds)
 549		return;
 
 550
 551	target = policydb->type_val_to_struct[tcontext->type - 1];
 552	BUG_ON(!target);
 553
 554	memset(&lo_avd, 0, sizeof(lo_avd));
 
 555
 556	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 557	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 558
 559	if (target->bounds) {
 
 
 560		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 561		lo_tcontext.type = target->bounds;
 562		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 563	}
 564
 565	context_struct_compute_av(policydb, &lo_scontext,
 566				  tcontextp,
 567				  tclass,
 568				  &lo_avd,
 569				  NULL);
 570
 571	masked = ~lo_avd.allowed & avd->allowed;
 572
 573	if (likely(!masked))
 574		return;		/* no masked permission */
 575
 576	/* mask violated permissions */
 577	avd->allowed &= ~masked;
 578
 579	/* audit masked permissions */
 580	security_dump_masked_av(policydb, scontext, tcontext,
 581				tclass, masked, "bounds");
 582}
 583
 584/*
 585 * Flag which drivers have permissions and which base permissions are covered.
 586 */
 587void services_compute_xperms_drivers(
 588		struct extended_perms *xperms,
 589		struct avtab_node *node)
 590{
 591	unsigned int i;
 592
 593	switch (node->datum.u.xperms->specified) {
 594	case AVTAB_XPERMS_IOCTLDRIVER:
 595		xperms->base_perms |= AVC_EXT_IOCTL;
 596		/* if one or more driver has all permissions allowed */
 597		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 598			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 599		break;
 600	case AVTAB_XPERMS_IOCTLFUNCTION:
 601		xperms->base_perms |= AVC_EXT_IOCTL;
 602		/* if allowing permissions within a driver */
 603		security_xperm_set(xperms->drivers.p,
 604					node->datum.u.xperms->driver);
 605		break;
 606	case AVTAB_XPERMS_NLMSG:
 607		xperms->base_perms |= AVC_EXT_NLMSG;
 608		/* if allowing permissions within a driver */
 609		security_xperm_set(xperms->drivers.p,
 610					node->datum.u.xperms->driver);
 611		break;
 612	}
 613
 614	xperms->len = 1;
 615}
 616
 617/*
 618 * Compute access vectors and extended permissions based on a context
 619 * structure pair for the permissions in a particular class.
 620 */
 621static void context_struct_compute_av(struct policydb *policydb,
 622				      struct context *scontext,
 623				      struct context *tcontext,
 624				      u16 tclass,
 625				      struct av_decision *avd,
 626				      struct extended_perms *xperms)
 627{
 628	struct constraint_node *constraint;
 629	struct role_allow *ra;
 630	struct avtab_key avkey;
 631	struct avtab_node *node;
 632	struct class_datum *tclass_datum;
 633	struct ebitmap *sattr, *tattr;
 634	struct ebitmap_node *snode, *tnode;
 635	unsigned int i, j;
 636
 637	avd->allowed = 0;
 638	avd->auditallow = 0;
 639	avd->auditdeny = 0xffffffff;
 640	if (xperms) {
 641		memset(xperms, 0, sizeof(*xperms));
 642	}
 643
 644	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 645		pr_warn_ratelimited("SELinux:  Invalid class %u\n", tclass);
 
 646		return;
 647	}
 648
 649	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 650
 651	/*
 652	 * If a specific type enforcement rule was defined for
 653	 * this permission check, then use it.
 654	 */
 655	avkey.target_class = tclass;
 656	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 657	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 658	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 659	ebitmap_for_each_positive_bit(sattr, snode, i) {
 660		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 661			avkey.source_type = i + 1;
 662			avkey.target_type = j + 1;
 663			for (node = avtab_search_node(&policydb->te_avtab,
 664						      &avkey);
 665			     node;
 666			     node = avtab_search_node_next(node, avkey.specified)) {
 667				if (node->key.specified == AVTAB_ALLOWED)
 668					avd->allowed |= node->datum.u.data;
 669				else if (node->key.specified == AVTAB_AUDITALLOW)
 670					avd->auditallow |= node->datum.u.data;
 671				else if (node->key.specified == AVTAB_AUDITDENY)
 672					avd->auditdeny &= node->datum.u.data;
 673				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 674					services_compute_xperms_drivers(xperms, node);
 675			}
 676
 677			/* Check conditional av table for additional permissions */
 678			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 679					avd, xperms);
 680
 681		}
 682	}
 683
 684	/*
 685	 * Remove any permissions prohibited by a constraint (this includes
 686	 * the MLS policy).
 687	 */
 688	constraint = tclass_datum->constraints;
 689	while (constraint) {
 690		if ((constraint->permissions & (avd->allowed)) &&
 691		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 692					  constraint->expr)) {
 693			avd->allowed &= ~(constraint->permissions);
 694		}
 695		constraint = constraint->next;
 696	}
 697
 698	/*
 699	 * If checking process transition permission and the
 700	 * role is changing, then check the (current_role, new_role)
 701	 * pair.
 702	 */
 703	if (tclass == policydb->process_class &&
 704	    (avd->allowed & policydb->process_trans_perms) &&
 705	    scontext->role != tcontext->role) {
 706		for (ra = policydb->role_allow; ra; ra = ra->next) {
 707			if (scontext->role == ra->role &&
 708			    tcontext->role == ra->new_role)
 709				break;
 710		}
 711		if (!ra)
 712			avd->allowed &= ~policydb->process_trans_perms;
 713	}
 714
 715	/*
 716	 * If the given source and target types have boundary
 717	 * constraint, lazy checks have to mask any violated
 718	 * permission and notice it to userspace via audit.
 719	 */
 720	type_attribute_bounds_av(policydb, scontext, tcontext,
 721				 tclass, avd);
 722}
 723
 724static int security_validtrans_handle_fail(struct selinux_policy *policy,
 725					struct sidtab_entry *oentry,
 726					struct sidtab_entry *nentry,
 727					struct sidtab_entry *tentry,
 728					u16 tclass)
 729{
 730	struct policydb *p = &policy->policydb;
 731	struct sidtab *sidtab = policy->sidtab;
 732	char *o = NULL, *n = NULL, *t = NULL;
 733	u32 olen, nlen, tlen;
 734
 735	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 736		goto out;
 737	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 738		goto out;
 739	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 740		goto out;
 741	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 742		  "op=security_validate_transition seresult=denied"
 743		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 744		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 745out:
 746	kfree(o);
 747	kfree(n);
 748	kfree(t);
 749
 750	if (!enforcing_enabled())
 751		return 0;
 752	return -EPERM;
 753}
 754
 755static int security_compute_validatetrans(u32 oldsid, u32 newsid, u32 tasksid,
 756					  u16 orig_tclass, bool user)
 757{
 758	struct selinux_policy *policy;
 759	struct policydb *policydb;
 760	struct sidtab *sidtab;
 761	struct sidtab_entry *oentry;
 762	struct sidtab_entry *nentry;
 763	struct sidtab_entry *tentry;
 764	struct class_datum *tclass_datum;
 765	struct constraint_node *constraint;
 766	u16 tclass;
 767	int rc = 0;
 768
 769
 770	if (!selinux_initialized())
 771		return 0;
 772
 773	rcu_read_lock();
 774
 775	policy = rcu_dereference(selinux_state.policy);
 776	policydb = &policy->policydb;
 777	sidtab = policy->sidtab;
 778
 779	if (!user)
 780		tclass = unmap_class(&policy->map, orig_tclass);
 781	else
 782		tclass = orig_tclass;
 783
 784	if (!tclass || tclass > policydb->p_classes.nprim) {
 
 
 785		rc = -EINVAL;
 786		goto out;
 787	}
 788	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 789
 790	oentry = sidtab_search_entry(sidtab, oldsid);
 791	if (!oentry) {
 792		pr_err("SELinux: %s:  unrecognized SID %d\n",
 793			__func__, oldsid);
 794		rc = -EINVAL;
 795		goto out;
 796	}
 797
 798	nentry = sidtab_search_entry(sidtab, newsid);
 799	if (!nentry) {
 800		pr_err("SELinux: %s:  unrecognized SID %d\n",
 801			__func__, newsid);
 802		rc = -EINVAL;
 803		goto out;
 804	}
 805
 806	tentry = sidtab_search_entry(sidtab, tasksid);
 807	if (!tentry) {
 808		pr_err("SELinux: %s:  unrecognized SID %d\n",
 809			__func__, tasksid);
 810		rc = -EINVAL;
 811		goto out;
 812	}
 813
 814	constraint = tclass_datum->validatetrans;
 815	while (constraint) {
 816		if (!constraint_expr_eval(policydb, &oentry->context,
 817					  &nentry->context, &tentry->context,
 818					  constraint->expr)) {
 819			if (user)
 820				rc = -EPERM;
 821			else
 822				rc = security_validtrans_handle_fail(policy,
 823								oentry,
 824								nentry,
 825								tentry,
 826								tclass);
 827			goto out;
 828		}
 829		constraint = constraint->next;
 830	}
 831
 832out:
 833	rcu_read_unlock();
 834	return rc;
 835}
 836
 837int security_validate_transition_user(u32 oldsid, u32 newsid, u32 tasksid,
 838				      u16 tclass)
 839{
 840	return security_compute_validatetrans(oldsid, newsid, tasksid,
 841					      tclass, true);
 842}
 843
 844int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(u32 old_sid, u32 new_sid)
 861{
 862	struct selinux_policy *policy;
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	u32 index;
 868	int rc;
 869
 870	if (!selinux_initialized())
 871		return 0;
 872
 873	rcu_read_lock();
 874	policy = rcu_dereference(selinux_state.policy);
 875	policydb = &policy->policydb;
 876	sidtab = policy->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	rcu_read_unlock();
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_policy *policy, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	if (policy)
 948		avd->seqno = policy->latest_granting;
 949	else
 950		avd->seqno = 0;
 951	avd->flags = 0;
 952}
 953
 954static void update_xperms_extended_data(u8 specified,
 955					struct extended_perms_data *from,
 956					struct extended_perms_data *xp_data)
 957{
 958	unsigned int i;
 959
 960	switch (specified) {
 961	case AVTAB_XPERMS_IOCTLDRIVER:
 962		memset(xp_data->p, 0xff, sizeof(xp_data->p));
 963		break;
 964	case AVTAB_XPERMS_IOCTLFUNCTION:
 965	case AVTAB_XPERMS_NLMSG:
 966		for (i = 0; i < ARRAY_SIZE(xp_data->p); i++)
 967			xp_data->p[i] |= from->p[i];
 968		break;
 969	}
 970
 971}
 972
 973void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 974					struct avtab_node *node)
 975{
 976	switch (node->datum.u.xperms->specified) {
 977	case AVTAB_XPERMS_IOCTLFUNCTION:
 978		if (xpermd->base_perm != AVC_EXT_IOCTL ||
 979		    xpermd->driver != node->datum.u.xperms->driver)
 980			return;
 981		break;
 982	case AVTAB_XPERMS_IOCTLDRIVER:
 983		if (xpermd->base_perm != AVC_EXT_IOCTL ||
 984		    !security_xperm_test(node->datum.u.xperms->perms.p,
 985					 xpermd->driver))
 986			return;
 987		break;
 988	case AVTAB_XPERMS_NLMSG:
 989		if (xpermd->base_perm != AVC_EXT_NLMSG ||
 990		    xpermd->driver != node->datum.u.xperms->driver)
 991			return;
 992		break;
 993	default:
 994		pr_warn_once(
 995			"SELinux: unknown extended permission (%u) will be ignored\n",
 996			node->datum.u.xperms->specified);
 997		return;
 998	}
 999
1000	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
1001		xpermd->used |= XPERMS_ALLOWED;
1002		update_xperms_extended_data(node->datum.u.xperms->specified,
1003					    &node->datum.u.xperms->perms,
1004					    xpermd->allowed);
1005	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
1006		xpermd->used |= XPERMS_AUDITALLOW;
1007		update_xperms_extended_data(node->datum.u.xperms->specified,
1008					    &node->datum.u.xperms->perms,
1009					    xpermd->auditallow);
1010	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
1011		xpermd->used |= XPERMS_DONTAUDIT;
1012		update_xperms_extended_data(node->datum.u.xperms->specified,
1013					    &node->datum.u.xperms->perms,
1014					    xpermd->dontaudit);
1015	} else {
1016		pr_warn_once("SELinux: unknown specified key (%u)\n",
1017			     node->key.specified);
1018	}
1019}
1020
1021void security_compute_xperms_decision(u32 ssid,
1022				      u32 tsid,
1023				      u16 orig_tclass,
1024				      u8 driver,
1025				      u8 base_perm,
1026				      struct extended_perms_decision *xpermd)
1027{
1028	struct selinux_policy *policy;
1029	struct policydb *policydb;
1030	struct sidtab *sidtab;
1031	u16 tclass;
1032	struct context *scontext, *tcontext;
1033	struct avtab_key avkey;
1034	struct avtab_node *node;
1035	struct ebitmap *sattr, *tattr;
1036	struct ebitmap_node *snode, *tnode;
1037	unsigned int i, j;
1038
1039	xpermd->base_perm = base_perm;
1040	xpermd->driver = driver;
1041	xpermd->used = 0;
1042	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1043	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1044	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1045
1046	rcu_read_lock();
1047	if (!selinux_initialized())
1048		goto allow;
1049
1050	policy = rcu_dereference(selinux_state.policy);
1051	policydb = &policy->policydb;
1052	sidtab = policy->sidtab;
1053
1054	scontext = sidtab_search(sidtab, ssid);
1055	if (!scontext) {
1056		pr_err("SELinux: %s:  unrecognized SID %d\n",
1057		       __func__, ssid);
1058		goto out;
1059	}
1060
1061	tcontext = sidtab_search(sidtab, tsid);
1062	if (!tcontext) {
1063		pr_err("SELinux: %s:  unrecognized SID %d\n",
1064		       __func__, tsid);
1065		goto out;
1066	}
1067
1068	tclass = unmap_class(&policy->map, orig_tclass);
1069	if (unlikely(orig_tclass && !tclass)) {
1070		if (policydb->allow_unknown)
1071			goto allow;
1072		goto out;
1073	}
1074
1075
1076	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1077		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1078		goto out;
1079	}
1080
1081	avkey.target_class = tclass;
1082	avkey.specified = AVTAB_XPERMS;
1083	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1084	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1085	ebitmap_for_each_positive_bit(sattr, snode, i) {
1086		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1087			avkey.source_type = i + 1;
1088			avkey.target_type = j + 1;
1089			for (node = avtab_search_node(&policydb->te_avtab,
1090						      &avkey);
1091			     node;
1092			     node = avtab_search_node_next(node, avkey.specified))
1093				services_compute_xperms_decision(xpermd, node);
1094
1095			cond_compute_xperms(&policydb->te_cond_avtab,
1096						&avkey, xpermd);
1097		}
1098	}
1099out:
1100	rcu_read_unlock();
1101	return;
1102allow:
1103	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1104	goto out;
1105}
1106
1107/**
1108 * security_compute_av - Compute access vector decisions.
1109 * @ssid: source security identifier
1110 * @tsid: target security identifier
1111 * @orig_tclass: target security class
1112 * @avd: access vector decisions
1113 * @xperms: extended permissions
1114 *
1115 * Compute a set of access vector decisions based on the
1116 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1117 */
1118void security_compute_av(u32 ssid,
1119			 u32 tsid,
1120			 u16 orig_tclass,
1121			 struct av_decision *avd,
1122			 struct extended_perms *xperms)
1123{
1124	struct selinux_policy *policy;
1125	struct policydb *policydb;
1126	struct sidtab *sidtab;
1127	u16 tclass;
1128	struct context *scontext = NULL, *tcontext = NULL;
1129
1130	rcu_read_lock();
1131	policy = rcu_dereference(selinux_state.policy);
1132	avd_init(policy, avd);
1133	xperms->len = 0;
1134	if (!selinux_initialized())
1135		goto allow;
1136
1137	policydb = &policy->policydb;
1138	sidtab = policy->sidtab;
1139
1140	scontext = sidtab_search(sidtab, ssid);
1141	if (!scontext) {
1142		pr_err("SELinux: %s:  unrecognized SID %d\n",
1143		       __func__, ssid);
1144		goto out;
1145	}
1146
1147	/* permissive domain? */
1148	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1149		avd->flags |= AVD_FLAGS_PERMISSIVE;
1150
1151	tcontext = sidtab_search(sidtab, tsid);
1152	if (!tcontext) {
1153		pr_err("SELinux: %s:  unrecognized SID %d\n",
1154		       __func__, tsid);
1155		goto out;
1156	}
1157
1158	tclass = unmap_class(&policy->map, orig_tclass);
1159	if (unlikely(orig_tclass && !tclass)) {
1160		if (policydb->allow_unknown)
1161			goto allow;
1162		goto out;
1163	}
1164	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1165				  xperms);
1166	map_decision(&policy->map, orig_tclass, avd,
1167		     policydb->allow_unknown);
1168out:
1169	rcu_read_unlock();
1170	return;
1171allow:
1172	avd->allowed = 0xffffffff;
1173	goto out;
1174}
1175
1176void security_compute_av_user(u32 ssid,
1177			      u32 tsid,
1178			      u16 tclass,
1179			      struct av_decision *avd)
1180{
1181	struct selinux_policy *policy;
1182	struct policydb *policydb;
1183	struct sidtab *sidtab;
1184	struct context *scontext = NULL, *tcontext = NULL;
1185
1186	rcu_read_lock();
1187	policy = rcu_dereference(selinux_state.policy);
1188	avd_init(policy, avd);
1189	if (!selinux_initialized())
1190		goto allow;
1191
1192	policydb = &policy->policydb;
1193	sidtab = policy->sidtab;
1194
1195	scontext = sidtab_search(sidtab, ssid);
1196	if (!scontext) {
1197		pr_err("SELinux: %s:  unrecognized SID %d\n",
1198		       __func__, ssid);
1199		goto out;
1200	}
1201
1202	/* permissive domain? */
1203	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1204		avd->flags |= AVD_FLAGS_PERMISSIVE;
1205
1206	tcontext = sidtab_search(sidtab, tsid);
1207	if (!tcontext) {
1208		pr_err("SELinux: %s:  unrecognized SID %d\n",
1209		       __func__, tsid);
1210		goto out;
1211	}
1212
1213	if (unlikely(!tclass)) {
1214		if (policydb->allow_unknown)
1215			goto allow;
1216		goto out;
1217	}
1218
1219	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1220				  NULL);
1221 out:
1222	rcu_read_unlock();
1223	return;
1224allow:
1225	avd->allowed = 0xffffffff;
1226	goto out;
1227}
1228
1229/*
1230 * Write the security context string representation of
1231 * the context structure `context' into a dynamically
1232 * allocated string of the correct size.  Set `*scontext'
1233 * to point to this string and set `*scontext_len' to
1234 * the length of the string.
1235 */
1236static int context_struct_to_string(struct policydb *p,
1237				    struct context *context,
1238				    char **scontext, u32 *scontext_len)
1239{
1240	char *scontextp;
1241
1242	if (scontext)
1243		*scontext = NULL;
1244	*scontext_len = 0;
1245
1246	if (context->len) {
1247		*scontext_len = context->len;
1248		if (scontext) {
1249			*scontext = kstrdup(context->str, GFP_ATOMIC);
1250			if (!(*scontext))
1251				return -ENOMEM;
1252		}
1253		return 0;
1254	}
1255
1256	/* Compute the size of the context. */
1257	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1258	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1259	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1260	*scontext_len += mls_compute_context_len(p, context);
1261
1262	if (!scontext)
1263		return 0;
1264
1265	/* Allocate space for the context; caller must free this space. */
1266	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1267	if (!scontextp)
1268		return -ENOMEM;
1269	*scontext = scontextp;
1270
1271	/*
1272	 * Copy the user name, role name and type name into the context.
1273	 */
1274	scontextp += sprintf(scontextp, "%s:%s:%s",
1275		sym_name(p, SYM_USERS, context->user - 1),
1276		sym_name(p, SYM_ROLES, context->role - 1),
1277		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1278
1279	mls_sid_to_context(p, context, &scontextp);
1280
1281	*scontextp = 0;
1282
1283	return 0;
1284}
1285
1286static int sidtab_entry_to_string(struct policydb *p,
1287				  struct sidtab *sidtab,
1288				  struct sidtab_entry *entry,
1289				  char **scontext, u32 *scontext_len)
1290{
1291	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1292
1293	if (rc != -ENOENT)
1294		return rc;
1295
1296	rc = context_struct_to_string(p, &entry->context, scontext,
1297				      scontext_len);
1298	if (!rc && scontext)
1299		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1300	return rc;
1301}
1302
1303#include "initial_sid_to_string.h"
1304
1305int security_sidtab_hash_stats(char *page)
1306{
1307	struct selinux_policy *policy;
1308	int rc;
1309
1310	if (!selinux_initialized()) {
1311		pr_err("SELinux: %s:  called before initial load_policy\n",
1312		       __func__);
1313		return -EINVAL;
1314	}
1315
1316	rcu_read_lock();
1317	policy = rcu_dereference(selinux_state.policy);
1318	rc = sidtab_hash_stats(policy->sidtab, page);
1319	rcu_read_unlock();
1320
1321	return rc;
1322}
1323
1324const char *security_get_initial_sid_context(u32 sid)
1325{
1326	if (unlikely(sid > SECINITSID_NUM))
1327		return NULL;
1328	return initial_sid_to_string[sid];
1329}
1330
1331static int security_sid_to_context_core(u32 sid, char **scontext,
1332					u32 *scontext_len, int force,
1333					int only_invalid)
1334{
1335	struct selinux_policy *policy;
1336	struct policydb *policydb;
1337	struct sidtab *sidtab;
1338	struct sidtab_entry *entry;
1339	int rc = 0;
1340
1341	if (scontext)
1342		*scontext = NULL;
1343	*scontext_len  = 0;
1344
1345	if (!selinux_initialized()) {
1346		if (sid <= SECINITSID_NUM) {
1347			char *scontextp;
1348			const char *s;
1349
1350			/*
1351			 * Before the policy is loaded, translate
1352			 * SECINITSID_INIT to "kernel", because systemd and
1353			 * libselinux < 2.6 take a getcon_raw() result that is
1354			 * both non-null and not "kernel" to mean that a policy
1355			 * is already loaded.
1356			 */
1357			if (sid == SECINITSID_INIT)
1358				sid = SECINITSID_KERNEL;
1359
1360			s = initial_sid_to_string[sid];
1361			if (!s)
1362				return -EINVAL;
1363			*scontext_len = strlen(s) + 1;
1364			if (!scontext)
1365				return 0;
1366			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1367			if (!scontextp)
1368				return -ENOMEM;
 
 
 
1369			*scontext = scontextp;
1370			return 0;
1371		}
1372		pr_err("SELinux: %s:  called before initial "
1373		       "load_policy on unknown SID %d\n", __func__, sid);
1374		return -EINVAL;
 
1375	}
1376	rcu_read_lock();
1377	policy = rcu_dereference(selinux_state.policy);
1378	policydb = &policy->policydb;
1379	sidtab = policy->sidtab;
1380
1381	if (force)
1382		entry = sidtab_search_entry_force(sidtab, sid);
1383	else
1384		entry = sidtab_search_entry(sidtab, sid);
1385	if (!entry) {
1386		pr_err("SELinux: %s:  unrecognized SID %d\n",
1387			__func__, sid);
1388		rc = -EINVAL;
1389		goto out_unlock;
1390	}
1391	if (only_invalid && !entry->context.len)
1392		goto out_unlock;
1393
1394	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1395				    scontext_len);
1396
1397out_unlock:
1398	rcu_read_unlock();
 
1399	return rc;
1400
1401}
1402
1403/**
1404 * security_sid_to_context - Obtain a context for a given SID.
1405 * @sid: security identifier, SID
1406 * @scontext: security context
1407 * @scontext_len: length in bytes
1408 *
1409 * Write the string representation of the context associated with @sid
1410 * into a dynamically allocated string of the correct size.  Set @scontext
1411 * to point to this string and set @scontext_len to the length of the string.
1412 */
1413int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
1414{
1415	return security_sid_to_context_core(sid, scontext,
1416					    scontext_len, 0, 0);
1417}
1418
1419int security_sid_to_context_force(u32 sid,
1420				  char **scontext, u32 *scontext_len)
1421{
1422	return security_sid_to_context_core(sid, scontext,
1423					    scontext_len, 1, 0);
1424}
1425
1426/**
1427 * security_sid_to_context_inval - Obtain a context for a given SID if it
1428 *                                 is invalid.
1429 * @sid: security identifier, SID
1430 * @scontext: security context
1431 * @scontext_len: length in bytes
1432 *
1433 * Write the string representation of the context associated with @sid
1434 * into a dynamically allocated string of the correct size, but only if the
1435 * context is invalid in the current policy.  Set @scontext to point to
1436 * this string (or NULL if the context is valid) and set @scontext_len to
1437 * the length of the string (or 0 if the context is valid).
1438 */
1439int security_sid_to_context_inval(u32 sid,
1440				  char **scontext, u32 *scontext_len)
1441{
1442	return security_sid_to_context_core(sid, scontext,
1443					    scontext_len, 1, 1);
1444}
1445
1446/*
1447 * Caveat:  Mutates scontext.
1448 */
1449static int string_to_context_struct(struct policydb *pol,
1450				    struct sidtab *sidtabp,
1451				    char *scontext,
 
1452				    struct context *ctx,
1453				    u32 def_sid)
1454{
1455	struct role_datum *role;
1456	struct type_datum *typdatum;
1457	struct user_datum *usrdatum;
1458	char *scontextp, *p, oldc;
1459	int rc = 0;
1460
1461	context_init(ctx);
1462
1463	/* Parse the security context. */
1464
1465	rc = -EINVAL;
1466	scontextp = scontext;
1467
1468	/* Extract the user. */
1469	p = scontextp;
1470	while (*p && *p != ':')
1471		p++;
1472
1473	if (*p == 0)
1474		goto out;
1475
1476	*p++ = 0;
1477
1478	usrdatum = symtab_search(&pol->p_users, scontextp);
1479	if (!usrdatum)
1480		goto out;
1481
1482	ctx->user = usrdatum->value;
1483
1484	/* Extract role. */
1485	scontextp = p;
1486	while (*p && *p != ':')
1487		p++;
1488
1489	if (*p == 0)
1490		goto out;
1491
1492	*p++ = 0;
1493
1494	role = symtab_search(&pol->p_roles, scontextp);
1495	if (!role)
1496		goto out;
1497	ctx->role = role->value;
1498
1499	/* Extract type. */
1500	scontextp = p;
1501	while (*p && *p != ':')
1502		p++;
1503	oldc = *p;
1504	*p++ = 0;
1505
1506	typdatum = symtab_search(&pol->p_types, scontextp);
1507	if (!typdatum || typdatum->attribute)
1508		goto out;
1509
1510	ctx->type = typdatum->value;
1511
1512	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1513	if (rc)
1514		goto out;
1515
 
 
 
 
1516	/* Check the validity of the new context. */
1517	rc = -EINVAL;
1518	if (!policydb_context_isvalid(pol, ctx))
1519		goto out;
1520	rc = 0;
1521out:
1522	if (rc)
1523		context_destroy(ctx);
1524	return rc;
1525}
1526
1527static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
1528					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1529					int force)
1530{
1531	struct selinux_policy *policy;
1532	struct policydb *policydb;
1533	struct sidtab *sidtab;
1534	char *scontext2, *str = NULL;
1535	struct context context;
1536	int rc = 0;
1537
1538	/* An empty security context is never valid. */
1539	if (!scontext_len)
1540		return -EINVAL;
1541
1542	/* Copy the string to allow changes and ensure a NUL terminator */
1543	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1544	if (!scontext2)
1545		return -ENOMEM;
1546
1547	if (!selinux_initialized()) {
1548		u32 i;
1549
1550		for (i = 1; i < SECINITSID_NUM; i++) {
1551			const char *s = initial_sid_to_string[i];
1552
1553			if (s && !strcmp(s, scontext2)) {
1554				*sid = i;
1555				goto out;
1556			}
1557		}
1558		*sid = SECINITSID_KERNEL;
1559		goto out;
1560	}
1561	*sid = SECSID_NULL;
1562
 
 
 
 
 
 
 
1563	if (force) {
1564		/* Save another copy for storing in uninterpreted form */
1565		rc = -ENOMEM;
1566		str = kstrdup(scontext2, gfp_flags);
1567		if (!str)
1568			goto out;
1569	}
1570retry:
1571	rcu_read_lock();
1572	policy = rcu_dereference(selinux_state.policy);
1573	policydb = &policy->policydb;
1574	sidtab = policy->sidtab;
1575	rc = string_to_context_struct(policydb, sidtab, scontext2,
1576				      &context, def_sid);
1577	if (rc == -EINVAL && force) {
1578		context.str = str;
1579		context.len = strlen(str) + 1;
1580		str = NULL;
1581	} else if (rc)
1582		goto out_unlock;
1583	rc = sidtab_context_to_sid(sidtab, &context, sid);
1584	if (rc == -ESTALE) {
1585		rcu_read_unlock();
1586		if (context.str) {
1587			str = context.str;
1588			context.str = NULL;
1589		}
1590		context_destroy(&context);
1591		goto retry;
1592	}
1593	context_destroy(&context);
1594out_unlock:
1595	rcu_read_unlock();
1596out:
1597	kfree(scontext2);
1598	kfree(str);
1599	return rc;
1600}
1601
1602/**
1603 * security_context_to_sid - Obtain a SID for a given security context.
1604 * @scontext: security context
1605 * @scontext_len: length in bytes
1606 * @sid: security identifier, SID
1607 * @gfp: context for the allocation
1608 *
1609 * Obtains a SID associated with the security context that
1610 * has the string representation specified by @scontext.
1611 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1612 * memory is available, or 0 on success.
1613 */
1614int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid,
1615			    gfp_t gfp)
1616{
1617	return security_context_to_sid_core(scontext, scontext_len,
1618					    sid, SECSID_NULL, gfp, 0);
1619}
1620
1621int security_context_str_to_sid(const char *scontext, u32 *sid, gfp_t gfp)
1622{
1623	return security_context_to_sid(scontext, strlen(scontext),
1624				       sid, gfp);
1625}
1626
1627/**
1628 * security_context_to_sid_default - Obtain a SID for a given security context,
1629 * falling back to specified default if needed.
1630 *
1631 * @scontext: security context
1632 * @scontext_len: length in bytes
1633 * @sid: security identifier, SID
1634 * @def_sid: default SID to assign on error
1635 * @gfp_flags: the allocator get-free-page (GFP) flags
1636 *
1637 * Obtains a SID associated with the security context that
1638 * has the string representation specified by @scontext.
1639 * The default SID is passed to the MLS layer to be used to allow
1640 * kernel labeling of the MLS field if the MLS field is not present
1641 * (for upgrading to MLS without full relabel).
1642 * Implicitly forces adding of the context even if it cannot be mapped yet.
1643 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1644 * memory is available, or 0 on success.
1645 */
1646int security_context_to_sid_default(const char *scontext, u32 scontext_len,
1647				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1648{
1649	return security_context_to_sid_core(scontext, scontext_len,
1650					    sid, def_sid, gfp_flags, 1);
1651}
1652
1653int security_context_to_sid_force(const char *scontext, u32 scontext_len,
1654				  u32 *sid)
1655{
1656	return security_context_to_sid_core(scontext, scontext_len,
1657					    sid, SECSID_NULL, GFP_KERNEL, 1);
1658}
1659
1660static int compute_sid_handle_invalid_context(
1661	struct selinux_policy *policy,
1662	struct sidtab_entry *sentry,
1663	struct sidtab_entry *tentry,
1664	u16 tclass,
1665	struct context *newcontext)
1666{
1667	struct policydb *policydb = &policy->policydb;
1668	struct sidtab *sidtab = policy->sidtab;
1669	char *s = NULL, *t = NULL, *n = NULL;
1670	u32 slen, tlen, nlen;
1671	struct audit_buffer *ab;
1672
1673	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1674		goto out;
1675	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1676		goto out;
1677	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1678		goto out;
1679	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1680	if (!ab)
1681		goto out;
1682	audit_log_format(ab,
1683			 "op=security_compute_sid invalid_context=");
1684	/* no need to record the NUL with untrusted strings */
1685	audit_log_n_untrustedstring(ab, n, nlen - 1);
1686	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1687			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1688	audit_log_end(ab);
1689out:
1690	kfree(s);
1691	kfree(t);
1692	kfree(n);
1693	if (!enforcing_enabled())
1694		return 0;
1695	return -EACCES;
1696}
1697
1698static void filename_compute_type(struct policydb *policydb,
1699				  struct context *newcontext,
1700				  u32 stype, u32 ttype, u16 tclass,
1701				  const char *objname)
1702{
1703	struct filename_trans_key ft;
1704	struct filename_trans_datum *datum;
1705
1706	/*
1707	 * Most filename trans rules are going to live in specific directories
1708	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1709	 * if the ttype does not contain any rules.
1710	 */
1711	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1712		return;
1713
 
1714	ft.ttype = ttype;
1715	ft.tclass = tclass;
1716	ft.name = objname;
1717
1718	datum = policydb_filenametr_search(policydb, &ft);
1719	while (datum) {
1720		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1721			newcontext->type = datum->otype;
1722			return;
1723		}
1724		datum = datum->next;
1725	}
1726}
1727
1728static int security_compute_sid(u32 ssid,
1729				u32 tsid,
1730				u16 orig_tclass,
1731				u16 specified,
1732				const char *objname,
1733				u32 *out_sid,
1734				bool kern)
1735{
1736	struct selinux_policy *policy;
1737	struct policydb *policydb;
1738	struct sidtab *sidtab;
1739	struct class_datum *cladatum;
1740	struct context *scontext, *tcontext, newcontext;
1741	struct sidtab_entry *sentry, *tentry;
1742	struct avtab_key avkey;
1743	struct avtab_node *avnode, *node;
 
1744	u16 tclass;
1745	int rc = 0;
1746	bool sock;
1747
1748	if (!selinux_initialized()) {
1749		switch (orig_tclass) {
1750		case SECCLASS_PROCESS: /* kernel value */
1751			*out_sid = ssid;
1752			break;
1753		default:
1754			*out_sid = tsid;
1755			break;
1756		}
1757		goto out;
1758	}
1759
1760retry:
1761	cladatum = NULL;
1762	context_init(&newcontext);
1763
1764	rcu_read_lock();
1765
1766	policy = rcu_dereference(selinux_state.policy);
1767
1768	if (kern) {
1769		tclass = unmap_class(&policy->map, orig_tclass);
1770		sock = security_is_socket_class(orig_tclass);
1771	} else {
1772		tclass = orig_tclass;
1773		sock = security_is_socket_class(map_class(&policy->map,
1774							  tclass));
1775	}
1776
1777	policydb = &policy->policydb;
1778	sidtab = policy->sidtab;
1779
1780	sentry = sidtab_search_entry(sidtab, ssid);
1781	if (!sentry) {
1782		pr_err("SELinux: %s:  unrecognized SID %d\n",
1783		       __func__, ssid);
1784		rc = -EINVAL;
1785		goto out_unlock;
1786	}
1787	tentry = sidtab_search_entry(sidtab, tsid);
1788	if (!tentry) {
1789		pr_err("SELinux: %s:  unrecognized SID %d\n",
1790		       __func__, tsid);
1791		rc = -EINVAL;
1792		goto out_unlock;
1793	}
1794
1795	scontext = &sentry->context;
1796	tcontext = &tentry->context;
1797
1798	if (tclass && tclass <= policydb->p_classes.nprim)
1799		cladatum = policydb->class_val_to_struct[tclass - 1];
1800
1801	/* Set the user identity. */
1802	switch (specified) {
1803	case AVTAB_TRANSITION:
1804	case AVTAB_CHANGE:
1805		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1806			newcontext.user = tcontext->user;
1807		} else {
1808			/* notice this gets both DEFAULT_SOURCE and unset */
1809			/* Use the process user identity. */
1810			newcontext.user = scontext->user;
1811		}
1812		break;
1813	case AVTAB_MEMBER:
1814		/* Use the related object owner. */
1815		newcontext.user = tcontext->user;
1816		break;
1817	}
1818
1819	/* Set the role to default values. */
1820	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1821		newcontext.role = scontext->role;
1822	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1823		newcontext.role = tcontext->role;
1824	} else {
1825		if ((tclass == policydb->process_class) || sock)
1826			newcontext.role = scontext->role;
1827		else
1828			newcontext.role = OBJECT_R_VAL;
1829	}
1830
1831	/* Set the type.
1832	 * Look for a type transition/member/change rule.
1833	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1834	avkey.source_type = scontext->type;
1835	avkey.target_type = tcontext->type;
1836	avkey.target_class = tclass;
1837	avkey.specified = specified;
1838	avnode = avtab_search_node(&policydb->te_avtab, &avkey);
1839
1840	/* If no permanent rule, also check for enabled conditional rules */
1841	if (!avnode) {
1842		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1843		for (; node; node = avtab_search_node_next(node, specified)) {
1844			if (node->key.specified & AVTAB_ENABLED) {
1845				avnode = node;
1846				break;
1847			}
1848		}
1849	}
1850
1851	/* If a permanent rule is found, use the type from
1852	 * the type transition/member/change rule. Otherwise,
1853	 * set the type to its default values.
1854	 */
1855	if (avnode) {
1856		newcontext.type = avnode->datum.u.data;
1857	} else if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1858		newcontext.type = scontext->type;
1859	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1860		newcontext.type = tcontext->type;
1861	} else {
1862		if ((tclass == policydb->process_class) || sock) {
1863			/* Use the type of process. */
1864			newcontext.type = scontext->type;
1865		} else {
1866			/* Use the type of the related object. */
1867			newcontext.type = tcontext->type;
1868		}
1869	}
1870
1871	/* if we have a objname this is a file trans check so check those rules */
1872	if (objname)
1873		filename_compute_type(policydb, &newcontext, scontext->type,
1874				      tcontext->type, tclass, objname);
1875
1876	/* Check for class-specific changes. */
1877	if (specified & AVTAB_TRANSITION) {
1878		/* Look for a role transition rule. */
1879		struct role_trans_datum *rtd;
1880		struct role_trans_key rtk = {
1881			.role = scontext->role,
1882			.type = tcontext->type,
1883			.tclass = tclass,
1884		};
1885
1886		rtd = policydb_roletr_search(policydb, &rtk);
1887		if (rtd)
1888			newcontext.role = rtd->new_role;
1889	}
1890
1891	/* Set the MLS attributes.
1892	   This is done last because it may allocate memory. */
1893	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1894			     &newcontext, sock);
1895	if (rc)
1896		goto out_unlock;
1897
1898	/* Check the validity of the context. */
1899	if (!policydb_context_isvalid(policydb, &newcontext)) {
1900		rc = compute_sid_handle_invalid_context(policy, sentry,
1901							tentry, tclass,
 
1902							&newcontext);
1903		if (rc)
1904			goto out_unlock;
1905	}
1906	/* Obtain the sid for the context. */
1907	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1908	if (rc == -ESTALE) {
1909		rcu_read_unlock();
1910		context_destroy(&newcontext);
1911		goto retry;
1912	}
1913out_unlock:
1914	rcu_read_unlock();
1915	context_destroy(&newcontext);
1916out:
1917	return rc;
1918}
1919
1920/**
1921 * security_transition_sid - Compute the SID for a new subject/object.
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @qstr: object name
1926 * @out_sid: security identifier for new subject/object
1927 *
1928 * Compute a SID to use for labeling a new subject or object in the
1929 * class @tclass based on a SID pair (@ssid, @tsid).
1930 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1931 * if insufficient memory is available, or %0 if the new SID was
1932 * computed successfully.
1933 */
1934int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
1935			    const struct qstr *qstr, u32 *out_sid)
1936{
1937	return security_compute_sid(ssid, tsid, tclass,
1938				    AVTAB_TRANSITION,
1939				    qstr ? qstr->name : NULL, out_sid, true);
1940}
1941
1942int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
1943				 const char *objname, u32 *out_sid)
1944{
1945	return security_compute_sid(ssid, tsid, tclass,
1946				    AVTAB_TRANSITION,
1947				    objname, out_sid, false);
1948}
1949
1950/**
1951 * security_member_sid - Compute the SID for member selection.
1952 * @ssid: source security identifier
1953 * @tsid: target security identifier
1954 * @tclass: target security class
1955 * @out_sid: security identifier for selected member
1956 *
1957 * Compute a SID to use when selecting a member of a polyinstantiated
1958 * object of class @tclass based on a SID pair (@ssid, @tsid).
1959 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1960 * if insufficient memory is available, or %0 if the SID was
1961 * computed successfully.
1962 */
1963int security_member_sid(u32 ssid,
1964			u32 tsid,
1965			u16 tclass,
1966			u32 *out_sid)
1967{
1968	return security_compute_sid(ssid, tsid, tclass,
1969				    AVTAB_MEMBER, NULL,
1970				    out_sid, false);
1971}
1972
1973/**
1974 * security_change_sid - Compute the SID for object relabeling.
1975 * @ssid: source security identifier
1976 * @tsid: target security identifier
1977 * @tclass: target security class
1978 * @out_sid: security identifier for selected member
1979 *
1980 * Compute a SID to use for relabeling an object of class @tclass
1981 * based on a SID pair (@ssid, @tsid).
1982 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1983 * if insufficient memory is available, or %0 if the SID was
1984 * computed successfully.
1985 */
1986int security_change_sid(u32 ssid,
1987			u32 tsid,
1988			u16 tclass,
1989			u32 *out_sid)
1990{
1991	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1992				    out_sid, false);
1993}
1994
1995static inline int convert_context_handle_invalid_context(
1996	struct policydb *policydb,
1997	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1998{
1999	char *s;
2000	u32 len;
2001
2002	if (enforcing_enabled())
2003		return -EINVAL;
2004
2005	if (!context_struct_to_string(policydb, context, &s, &len)) {
2006		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
2007			s);
2008		kfree(s);
2009	}
2010	return 0;
2011}
2012
2013/**
2014 * services_convert_context - Convert a security context across policies.
2015 * @args: populated convert_context_args struct
2016 * @oldc: original context
2017 * @newc: converted context
2018 * @gfp_flags: allocation flags
2019 *
2020 * Convert the values in the security context structure @oldc from the values
2021 * specified in the policy @args->oldp to the values specified in the policy
2022 * @args->newp, storing the new context in @newc, and verifying that the
2023 * context is valid under the new policy.
2024 */
2025int services_convert_context(struct convert_context_args *args,
2026			     struct context *oldc, struct context *newc,
2027			     gfp_t gfp_flags)
2028{
 
 
2029	struct ocontext *oc;
 
2030	struct role_datum *role;
2031	struct type_datum *typdatum;
2032	struct user_datum *usrdatum;
2033	char *s;
2034	u32 len;
2035	int rc;
 
 
 
 
 
 
 
 
2036
2037	if (oldc->str) {
2038		s = kstrdup(oldc->str, gfp_flags);
2039		if (!s)
2040			return -ENOMEM;
2041
2042		rc = string_to_context_struct(args->newp, NULL, s, newc, SECSID_NULL);
2043		if (rc == -EINVAL) {
2044			/*
2045			 * Retain string representation for later mapping.
2046			 *
2047			 * IMPORTANT: We need to copy the contents of oldc->str
2048			 * back into s again because string_to_context_struct()
2049			 * may have garbled it.
2050			 */
2051			memcpy(s, oldc->str, oldc->len);
2052			context_init(newc);
2053			newc->str = s;
2054			newc->len = oldc->len;
2055			return 0;
2056		}
2057		kfree(s);
2058		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2059			/* Other error condition, e.g. ENOMEM. */
2060			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2061			       oldc->str, -rc);
2062			return rc;
2063		}
2064		pr_info("SELinux:  Context %s became valid (mapped).\n",
2065			oldc->str);
2066		return 0;
2067	}
2068
2069	context_init(newc);
 
 
2070
2071	/* Convert the user. */
2072	usrdatum = symtab_search(&args->newp->p_users,
2073				 sym_name(args->oldp, SYM_USERS, oldc->user - 1));
 
2074	if (!usrdatum)
2075		goto bad;
2076	newc->user = usrdatum->value;
2077
2078	/* Convert the role. */
2079	role = symtab_search(&args->newp->p_roles,
2080			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
 
2081	if (!role)
2082		goto bad;
2083	newc->role = role->value;
2084
2085	/* Convert the type. */
2086	typdatum = symtab_search(&args->newp->p_types,
2087				 sym_name(args->oldp, SYM_TYPES, oldc->type - 1));
 
2088	if (!typdatum)
2089		goto bad;
2090	newc->type = typdatum->value;
2091
2092	/* Convert the MLS fields if dealing with MLS policies */
2093	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2094		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2095		if (rc)
2096			goto bad;
 
 
 
 
 
 
 
2097	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2098		/*
2099		 * Switching between non-MLS and MLS policy:
2100		 * ensure that the MLS fields of the context for all
2101		 * existing entries in the sidtab are filled in with a
2102		 * suitable default value, likely taken from one of the
2103		 * initial SIDs.
2104		 */
2105		oc = args->newp->ocontexts[OCON_ISID];
2106		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2107			oc = oc->next;
 
2108		if (!oc) {
2109			pr_err("SELinux:  unable to look up"
2110				" the initial SIDs list\n");
2111			goto bad;
2112		}
2113		rc = mls_range_set(newc, &oc->context[0].range);
 
2114		if (rc)
2115			goto bad;
2116	}
2117
2118	/* Check the validity of the new context. */
2119	if (!policydb_context_isvalid(args->newp, newc)) {
2120		rc = convert_context_handle_invalid_context(args->oldp, oldc);
2121		if (rc)
2122			goto bad;
2123	}
2124
2125	return 0;
 
 
 
 
2126bad:
2127	/* Map old representation to string and save it. */
2128	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2129	if (rc)
2130		return rc;
2131	context_destroy(newc);
2132	newc->str = s;
2133	newc->len = len;
2134	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2135		newc->str);
2136	return 0;
2137}
2138
2139static void security_load_policycaps(struct selinux_policy *policy)
2140{
2141	struct policydb *p;
2142	unsigned int i;
2143	struct ebitmap_node *node;
2144
2145	p = &policy->policydb;
2146
2147	for (i = 0; i < ARRAY_SIZE(selinux_state.policycap); i++)
2148		WRITE_ONCE(selinux_state.policycap[i],
2149			ebitmap_get_bit(&p->policycaps, i));
2150
2151	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2152		pr_info("SELinux:  policy capability %s=%d\n",
2153			selinux_policycap_names[i],
2154			ebitmap_get_bit(&p->policycaps, i));
2155
2156	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2157		if (i >= ARRAY_SIZE(selinux_policycap_names))
2158			pr_info("SELinux:  unknown policy capability %u\n",
2159				i);
2160	}
2161}
2162
2163static int security_preserve_bools(struct selinux_policy *oldpolicy,
2164				struct selinux_policy *newpolicy);
2165
2166static void selinux_policy_free(struct selinux_policy *policy)
2167{
2168	if (!policy)
2169		return;
2170
2171	sidtab_destroy(policy->sidtab);
2172	kfree(policy->map.mapping);
2173	policydb_destroy(&policy->policydb);
2174	kfree(policy->sidtab);
2175	kfree(policy);
2176}
2177
2178static void selinux_policy_cond_free(struct selinux_policy *policy)
2179{
2180	cond_policydb_destroy_dup(&policy->policydb);
2181	kfree(policy);
2182}
2183
2184void selinux_policy_cancel(struct selinux_load_state *load_state)
2185{
2186	struct selinux_state *state = &selinux_state;
2187	struct selinux_policy *oldpolicy;
2188
2189	oldpolicy = rcu_dereference_protected(state->policy,
2190					lockdep_is_held(&state->policy_mutex));
2191
2192	sidtab_cancel_convert(oldpolicy->sidtab);
2193	selinux_policy_free(load_state->policy);
2194	kfree(load_state->convert_data);
2195}
2196
2197static void selinux_notify_policy_change(u32 seqno)
2198{
2199	/* Flush external caches and notify userspace of policy load */
2200	avc_ss_reset(seqno);
2201	selnl_notify_policyload(seqno);
2202	selinux_status_update_policyload(seqno);
2203	selinux_netlbl_cache_invalidate();
2204	selinux_xfrm_notify_policyload();
2205	selinux_ima_measure_state_locked();
2206}
2207
2208void selinux_policy_commit(struct selinux_load_state *load_state)
2209{
2210	struct selinux_state *state = &selinux_state;
2211	struct selinux_policy *oldpolicy, *newpolicy = load_state->policy;
2212	unsigned long flags;
2213	u32 seqno;
2214
2215	oldpolicy = rcu_dereference_protected(state->policy,
2216					lockdep_is_held(&state->policy_mutex));
2217
2218	/* If switching between different policy types, log MLS status */
2219	if (oldpolicy) {
2220		if (oldpolicy->policydb.mls_enabled && !newpolicy->policydb.mls_enabled)
2221			pr_info("SELinux: Disabling MLS support...\n");
2222		else if (!oldpolicy->policydb.mls_enabled && newpolicy->policydb.mls_enabled)
2223			pr_info("SELinux: Enabling MLS support...\n");
2224	}
2225
2226	/* Set latest granting seqno for new policy. */
2227	if (oldpolicy)
2228		newpolicy->latest_granting = oldpolicy->latest_granting + 1;
2229	else
2230		newpolicy->latest_granting = 1;
2231	seqno = newpolicy->latest_granting;
2232
2233	/* Install the new policy. */
2234	if (oldpolicy) {
2235		sidtab_freeze_begin(oldpolicy->sidtab, &flags);
2236		rcu_assign_pointer(state->policy, newpolicy);
2237		sidtab_freeze_end(oldpolicy->sidtab, &flags);
2238	} else {
2239		rcu_assign_pointer(state->policy, newpolicy);
2240	}
2241
2242	/* Load the policycaps from the new policy */
2243	security_load_policycaps(newpolicy);
2244
2245	if (!selinux_initialized()) {
2246		/*
2247		 * After first policy load, the security server is
2248		 * marked as initialized and ready to handle requests and
2249		 * any objects created prior to policy load are then labeled.
2250		 */
2251		selinux_mark_initialized();
2252		selinux_complete_init();
2253	}
2254
2255	/* Free the old policy */
2256	synchronize_rcu();
2257	selinux_policy_free(oldpolicy);
2258	kfree(load_state->convert_data);
2259
2260	/* Notify others of the policy change */
2261	selinux_notify_policy_change(seqno);
2262}
2263
2264/**
2265 * security_load_policy - Load a security policy configuration.
2266 * @data: binary policy data
2267 * @len: length of data in bytes
2268 * @load_state: policy load state
2269 *
2270 * Load a new set of security policy configuration data,
2271 * validate it and convert the SID table as necessary.
2272 * This function will flush the access vector cache after
2273 * loading the new policy.
2274 */
2275int security_load_policy(void *data, size_t len,
2276			 struct selinux_load_state *load_state)
2277{
2278	struct selinux_state *state = &selinux_state;
2279	struct selinux_policy *newpolicy, *oldpolicy;
2280	struct selinux_policy_convert_data *convert_data;
 
 
 
2281	int rc = 0;
2282	struct policy_file file = { data, len }, *fp = &file;
2283
2284	newpolicy = kzalloc(sizeof(*newpolicy), GFP_KERNEL);
2285	if (!newpolicy)
2286		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2287
2288	newpolicy->sidtab = kzalloc(sizeof(*newpolicy->sidtab), GFP_KERNEL);
2289	if (!newpolicy->sidtab) {
2290		rc = -ENOMEM;
2291		goto err_policy;
 
 
 
 
 
 
2292	}
2293
2294	rc = policydb_read(&newpolicy->policydb, fp);
 
 
 
 
2295	if (rc)
2296		goto err_sidtab;
2297
2298	newpolicy->policydb.len = len;
2299	rc = selinux_set_mapping(&newpolicy->policydb, secclass_map,
2300				&newpolicy->map);
2301	if (rc)
2302		goto err_policydb;
 
2303
2304	rc = policydb_load_isids(&newpolicy->policydb, newpolicy->sidtab);
2305	if (rc) {
2306		pr_err("SELinux:  unable to load the initial SIDs\n");
2307		goto err_mapping;
 
2308	}
2309
2310	if (!selinux_initialized()) {
2311		/* First policy load, so no need to preserve state from old policy */
2312		load_state->policy = newpolicy;
2313		load_state->convert_data = NULL;
2314		return 0;
 
 
 
2315	}
2316
2317	oldpolicy = rcu_dereference_protected(state->policy,
2318					lockdep_is_held(&state->policy_mutex));
2319
2320	/* Preserve active boolean values from the old policy */
2321	rc = security_preserve_bools(oldpolicy, newpolicy);
2322	if (rc) {
2323		pr_err("SELinux:  unable to preserve booleans\n");
2324		goto err_free_isids;
2325	}
2326
2327	/*
2328	 * Convert the internal representations of contexts
2329	 * in the new SID table.
2330	 */
2331
2332	convert_data = kmalloc(sizeof(*convert_data), GFP_KERNEL);
2333	if (!convert_data) {
2334		rc = -ENOMEM;
2335		goto err_free_isids;
2336	}
2337
2338	convert_data->args.oldp = &oldpolicy->policydb;
2339	convert_data->args.newp = &newpolicy->policydb;
2340
2341	convert_data->sidtab_params.args = &convert_data->args;
2342	convert_data->sidtab_params.target = newpolicy->sidtab;
2343
2344	rc = sidtab_convert(oldpolicy->sidtab, &convert_data->sidtab_params);
2345	if (rc) {
2346		pr_err("SELinux:  unable to convert the internal"
2347			" representation of contexts in the new SID"
2348			" table\n");
2349		goto err_free_convert_data;
2350	}
2351
2352	load_state->policy = newpolicy;
2353	load_state->convert_data = convert_data;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2354	return 0;
2355
2356err_free_convert_data:
2357	kfree(convert_data);
2358err_free_isids:
2359	sidtab_destroy(newpolicy->sidtab);
2360err_mapping:
2361	kfree(newpolicy->map.mapping);
2362err_policydb:
2363	policydb_destroy(&newpolicy->policydb);
2364err_sidtab:
2365	kfree(newpolicy->sidtab);
2366err_policy:
2367	kfree(newpolicy);
2368
2369	return rc;
2370}
2371
2372/**
2373 * ocontext_to_sid - Helper to safely get sid for an ocontext
2374 * @sidtab: SID table
2375 * @c: ocontext structure
2376 * @index: index of the context entry (0 or 1)
2377 * @out_sid: pointer to the resulting SID value
2378 *
2379 * For all ocontexts except OCON_ISID the SID fields are populated
2380 * on-demand when needed. Since updating the SID value is an SMP-sensitive
2381 * operation, this helper must be used to do that safely.
2382 *
2383 * WARNING: This function may return -ESTALE, indicating that the caller
2384 * must retry the operation after re-acquiring the policy pointer!
2385 */
2386static int ocontext_to_sid(struct sidtab *sidtab, struct ocontext *c,
2387			   size_t index, u32 *out_sid)
2388{
2389	int rc;
2390	u32 sid;
2391
2392	/* Ensure the associated sidtab entry is visible to this thread. */
2393	sid = smp_load_acquire(&c->sid[index]);
2394	if (!sid) {
2395		rc = sidtab_context_to_sid(sidtab, &c->context[index], &sid);
2396		if (rc)
2397			return rc;
2398
2399		/*
2400		 * Ensure the new sidtab entry is visible to other threads
2401		 * when they see the SID.
2402		 */
2403		smp_store_release(&c->sid[index], sid);
2404	}
2405	*out_sid = sid;
2406	return 0;
2407}
2408
2409/**
2410 * security_port_sid - Obtain the SID for a port.
2411 * @protocol: protocol number
2412 * @port: port number
2413 * @out_sid: security identifier
2414 */
2415int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
2416{
2417	struct selinux_policy *policy;
2418	struct policydb *policydb;
2419	struct sidtab *sidtab;
2420	struct ocontext *c;
2421	int rc;
2422
2423	if (!selinux_initialized()) {
2424		*out_sid = SECINITSID_PORT;
2425		return 0;
2426	}
2427
2428retry:
2429	rc = 0;
2430	rcu_read_lock();
2431	policy = rcu_dereference(selinux_state.policy);
2432	policydb = &policy->policydb;
2433	sidtab = policy->sidtab;
2434
2435	c = policydb->ocontexts[OCON_PORT];
2436	while (c) {
2437		if (c->u.port.protocol == protocol &&
2438		    c->u.port.low_port <= port &&
2439		    c->u.port.high_port >= port)
2440			break;
2441		c = c->next;
2442	}
2443
2444	if (c) {
2445		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2446		if (rc == -ESTALE) {
2447			rcu_read_unlock();
2448			goto retry;
 
 
2449		}
2450		if (rc)
2451			goto out;
2452	} else {
2453		*out_sid = SECINITSID_PORT;
2454	}
2455
2456out:
2457	rcu_read_unlock();
2458	return rc;
2459}
2460
2461/**
2462 * security_ib_pkey_sid - Obtain the SID for a pkey.
2463 * @subnet_prefix: Subnet Prefix
2464 * @pkey_num: pkey number
2465 * @out_sid: security identifier
2466 */
2467int security_ib_pkey_sid(u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2468{
2469	struct selinux_policy *policy;
2470	struct policydb *policydb;
2471	struct sidtab *sidtab;
2472	struct ocontext *c;
2473	int rc;
2474
2475	if (!selinux_initialized()) {
2476		*out_sid = SECINITSID_UNLABELED;
2477		return 0;
2478	}
2479
2480retry:
2481	rc = 0;
2482	rcu_read_lock();
2483	policy = rcu_dereference(selinux_state.policy);
2484	policydb = &policy->policydb;
2485	sidtab = policy->sidtab;
2486
2487	c = policydb->ocontexts[OCON_IBPKEY];
2488	while (c) {
2489		if (c->u.ibpkey.low_pkey <= pkey_num &&
2490		    c->u.ibpkey.high_pkey >= pkey_num &&
2491		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2492			break;
2493
2494		c = c->next;
2495	}
2496
2497	if (c) {
2498		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2499		if (rc == -ESTALE) {
2500			rcu_read_unlock();
2501			goto retry;
2502		}
2503		if (rc)
2504			goto out;
2505	} else
2506		*out_sid = SECINITSID_UNLABELED;
2507
2508out:
2509	rcu_read_unlock();
2510	return rc;
2511}
2512
2513/**
2514 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2515 * @dev_name: device name
2516 * @port_num: port number
2517 * @out_sid: security identifier
2518 */
2519int security_ib_endport_sid(const char *dev_name, u8 port_num, u32 *out_sid)
2520{
2521	struct selinux_policy *policy;
2522	struct policydb *policydb;
2523	struct sidtab *sidtab;
2524	struct ocontext *c;
2525	int rc;
2526
2527	if (!selinux_initialized()) {
2528		*out_sid = SECINITSID_UNLABELED;
2529		return 0;
2530	}
2531
2532retry:
2533	rc = 0;
2534	rcu_read_lock();
2535	policy = rcu_dereference(selinux_state.policy);
2536	policydb = &policy->policydb;
2537	sidtab = policy->sidtab;
2538
2539	c = policydb->ocontexts[OCON_IBENDPORT];
2540	while (c) {
2541		if (c->u.ibendport.port == port_num &&
2542		    !strncmp(c->u.ibendport.dev_name,
2543			     dev_name,
2544			     IB_DEVICE_NAME_MAX))
2545			break;
2546
2547		c = c->next;
2548	}
2549
2550	if (c) {
2551		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2552		if (rc == -ESTALE) {
2553			rcu_read_unlock();
2554			goto retry;
2555		}
2556		if (rc)
2557			goto out;
2558	} else
2559		*out_sid = SECINITSID_UNLABELED;
2560
2561out:
2562	rcu_read_unlock();
2563	return rc;
2564}
2565
2566/**
2567 * security_netif_sid - Obtain the SID for a network interface.
2568 * @name: interface name
2569 * @if_sid: interface SID
2570 */
2571int security_netif_sid(char *name, u32 *if_sid)
2572{
2573	struct selinux_policy *policy;
2574	struct policydb *policydb;
2575	struct sidtab *sidtab;
2576	int rc;
2577	struct ocontext *c;
2578
2579	if (!selinux_initialized()) {
2580		*if_sid = SECINITSID_NETIF;
2581		return 0;
2582	}
2583
2584retry:
2585	rc = 0;
2586	rcu_read_lock();
2587	policy = rcu_dereference(selinux_state.policy);
2588	policydb = &policy->policydb;
2589	sidtab = policy->sidtab;
2590
2591	c = policydb->ocontexts[OCON_NETIF];
2592	while (c) {
2593		if (strcmp(name, c->u.name) == 0)
2594			break;
2595		c = c->next;
2596	}
2597
2598	if (c) {
2599		rc = ocontext_to_sid(sidtab, c, 0, if_sid);
2600		if (rc == -ESTALE) {
2601			rcu_read_unlock();
2602			goto retry;
 
 
 
 
 
 
 
2603		}
2604		if (rc)
2605			goto out;
2606	} else
2607		*if_sid = SECINITSID_NETIF;
2608
2609out:
2610	rcu_read_unlock();
2611	return rc;
2612}
2613
2614static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2615{
2616	int i, fail = 0;
2617
2618	for (i = 0; i < 4; i++)
2619		if (addr[i] != (input[i] & mask[i])) {
2620			fail = 1;
2621			break;
2622		}
2623
2624	return !fail;
2625}
2626
2627/**
2628 * security_node_sid - Obtain the SID for a node (host).
2629 * @domain: communication domain aka address family
2630 * @addrp: address
2631 * @addrlen: address length in bytes
2632 * @out_sid: security identifier
2633 */
2634int security_node_sid(u16 domain,
2635		      void *addrp,
2636		      u32 addrlen,
2637		      u32 *out_sid)
2638{
2639	struct selinux_policy *policy;
2640	struct policydb *policydb;
2641	struct sidtab *sidtab;
2642	int rc;
2643	struct ocontext *c;
2644
2645	if (!selinux_initialized()) {
2646		*out_sid = SECINITSID_NODE;
2647		return 0;
2648	}
2649
2650retry:
2651	rcu_read_lock();
2652	policy = rcu_dereference(selinux_state.policy);
2653	policydb = &policy->policydb;
2654	sidtab = policy->sidtab;
2655
2656	switch (domain) {
2657	case AF_INET: {
2658		u32 addr;
2659
2660		rc = -EINVAL;
2661		if (addrlen != sizeof(u32))
2662			goto out;
2663
2664		addr = *((u32 *)addrp);
2665
2666		c = policydb->ocontexts[OCON_NODE];
2667		while (c) {
2668			if (c->u.node.addr == (addr & c->u.node.mask))
2669				break;
2670			c = c->next;
2671		}
2672		break;
2673	}
2674
2675	case AF_INET6:
2676		rc = -EINVAL;
2677		if (addrlen != sizeof(u64) * 2)
2678			goto out;
2679		c = policydb->ocontexts[OCON_NODE6];
2680		while (c) {
2681			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2682						c->u.node6.mask))
2683				break;
2684			c = c->next;
2685		}
2686		break;
2687
2688	default:
2689		rc = 0;
2690		*out_sid = SECINITSID_NODE;
2691		goto out;
2692	}
2693
2694	if (c) {
2695		rc = ocontext_to_sid(sidtab, c, 0, out_sid);
2696		if (rc == -ESTALE) {
2697			rcu_read_unlock();
2698			goto retry;
 
 
2699		}
2700		if (rc)
2701			goto out;
2702	} else {
2703		*out_sid = SECINITSID_NODE;
2704	}
2705
2706	rc = 0;
2707out:
2708	rcu_read_unlock();
2709	return rc;
2710}
2711
2712#define SIDS_NEL 25
2713
2714/**
2715 * security_get_user_sids - Obtain reachable SIDs for a user.
2716 * @fromsid: starting SID
2717 * @username: username
2718 * @sids: array of reachable SIDs for user
2719 * @nel: number of elements in @sids
2720 *
2721 * Generate the set of SIDs for legal security contexts
2722 * for a given user that can be reached by @fromsid.
2723 * Set *@sids to point to a dynamically allocated
2724 * array containing the set of SIDs.  Set *@nel to the
2725 * number of elements in the array.
2726 */
2727
2728int security_get_user_sids(u32 fromsid,
2729			   char *username,
2730			   u32 **sids,
2731			   u32 *nel)
2732{
2733	struct selinux_policy *policy;
2734	struct policydb *policydb;
2735	struct sidtab *sidtab;
2736	struct context *fromcon, usercon;
2737	u32 *mysids = NULL, *mysids2, sid;
2738	u32 i, j, mynel, maxnel = SIDS_NEL;
2739	struct user_datum *user;
2740	struct role_datum *role;
2741	struct ebitmap_node *rnode, *tnode;
2742	int rc;
2743
2744	*sids = NULL;
2745	*nel = 0;
2746
2747	if (!selinux_initialized())
2748		return 0;
2749
2750	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_KERNEL);
2751	if (!mysids)
2752		return -ENOMEM;
2753
2754retry:
2755	mynel = 0;
2756	rcu_read_lock();
2757	policy = rcu_dereference(selinux_state.policy);
2758	policydb = &policy->policydb;
2759	sidtab = policy->sidtab;
2760
2761	context_init(&usercon);
2762
2763	rc = -EINVAL;
2764	fromcon = sidtab_search(sidtab, fromsid);
2765	if (!fromcon)
2766		goto out_unlock;
2767
2768	rc = -EINVAL;
2769	user = symtab_search(&policydb->p_users, username);
2770	if (!user)
2771		goto out_unlock;
2772
2773	usercon.user = user->value;
2774
 
 
 
 
 
2775	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2776		role = policydb->role_val_to_struct[i];
2777		usercon.role = i + 1;
2778		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2779			usercon.type = j + 1;
2780
2781			if (mls_setup_user_range(policydb, fromcon, user,
2782						 &usercon))
2783				continue;
2784
2785			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2786			if (rc == -ESTALE) {
2787				rcu_read_unlock();
2788				goto retry;
2789			}
2790			if (rc)
2791				goto out_unlock;
2792			if (mynel < maxnel) {
2793				mysids[mynel++] = sid;
2794			} else {
2795				rc = -ENOMEM;
2796				maxnel += SIDS_NEL;
2797				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2798				if (!mysids2)
2799					goto out_unlock;
2800				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2801				kfree(mysids);
2802				mysids = mysids2;
2803				mysids[mynel++] = sid;
2804			}
2805		}
2806	}
2807	rc = 0;
2808out_unlock:
2809	rcu_read_unlock();
2810	if (rc || !mynel) {
2811		kfree(mysids);
2812		return rc;
2813	}
2814
2815	rc = -ENOMEM;
2816	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2817	if (!mysids2) {
2818		kfree(mysids);
2819		return rc;
2820	}
2821	for (i = 0, j = 0; i < mynel; i++) {
2822		struct av_decision dummy_avd;
2823		rc = avc_has_perm_noaudit(fromsid, mysids[i],
2824					  SECCLASS_PROCESS, /* kernel value */
2825					  PROCESS__TRANSITION, AVC_STRICT,
2826					  &dummy_avd);
2827		if (!rc)
2828			mysids2[j++] = mysids[i];
2829		cond_resched();
2830	}
 
2831	kfree(mysids);
2832	*sids = mysids2;
2833	*nel = j;
2834	return 0;
 
2835}
2836
2837/**
2838 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2839 * @policy: policy
2840 * @fstype: filesystem type
2841 * @path: path from root of mount
2842 * @orig_sclass: file security class
2843 * @sid: SID for path
2844 *
2845 * Obtain a SID to use for a file in a filesystem that
2846 * cannot support xattr or use a fixed labeling behavior like
2847 * transition SIDs or task SIDs.
2848 *
2849 * WARNING: This function may return -ESTALE, indicating that the caller
2850 * must retry the operation after re-acquiring the policy pointer!
2851 */
2852static inline int __security_genfs_sid(struct selinux_policy *policy,
2853				       const char *fstype,
2854				       const char *path,
2855				       u16 orig_sclass,
2856				       u32 *sid)
2857{
2858	struct policydb *policydb = &policy->policydb;
2859	struct sidtab *sidtab = policy->sidtab;
2860	u16 sclass;
2861	struct genfs *genfs;
2862	struct ocontext *c;
2863	int cmp = 0;
2864
2865	while (path[0] == '/' && path[1] == '/')
2866		path++;
2867
2868	sclass = unmap_class(&policy->map, orig_sclass);
 
 
2869	*sid = SECINITSID_UNLABELED;
2870
2871	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2872		cmp = strcmp(fstype, genfs->fstype);
2873		if (cmp <= 0)
2874			break;
2875	}
2876
 
2877	if (!genfs || cmp)
2878		return -ENOENT;
2879
2880	for (c = genfs->head; c; c = c->next) {
2881		size_t len = strlen(c->u.name);
2882		if ((!c->v.sclass || sclass == c->v.sclass) &&
2883		    (strncmp(c->u.name, path, len) == 0))
2884			break;
2885	}
2886
 
2887	if (!c)
2888		return -ENOENT;
2889
2890	return ocontext_to_sid(sidtab, c, 0, sid);
2891}
2892
2893/**
2894 * security_genfs_sid - Obtain a SID for a file in a filesystem
2895 * @fstype: filesystem type
2896 * @path: path from root of mount
2897 * @orig_sclass: file security class
2898 * @sid: SID for path
2899 *
2900 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2901 * it afterward.
2902 */
2903int security_genfs_sid(const char *fstype,
2904		       const char *path,
2905		       u16 orig_sclass,
2906		       u32 *sid)
2907{
2908	struct selinux_policy *policy;
2909	int retval;
2910
2911	if (!selinux_initialized()) {
2912		*sid = SECINITSID_UNLABELED;
2913		return 0;
2914	}
2915
2916	do {
2917		rcu_read_lock();
2918		policy = rcu_dereference(selinux_state.policy);
2919		retval = __security_genfs_sid(policy, fstype, path,
2920					      orig_sclass, sid);
2921		rcu_read_unlock();
2922	} while (retval == -ESTALE);
2923	return retval;
2924}
2925
2926int selinux_policy_genfs_sid(struct selinux_policy *policy,
2927			const char *fstype,
2928			const char *path,
2929			u16 orig_sclass,
2930			u32 *sid)
2931{
2932	/* no lock required, policy is not yet accessible by other threads */
2933	return __security_genfs_sid(policy, fstype, path, orig_sclass, sid);
2934}
2935
2936/**
2937 * security_fs_use - Determine how to handle labeling for a filesystem.
2938 * @sb: superblock in question
 
 
2939 */
2940int security_fs_use(struct super_block *sb)
 
 
 
2941{
2942	struct selinux_policy *policy;
2943	struct policydb *policydb;
2944	struct sidtab *sidtab;
2945	int rc;
2946	struct ocontext *c;
2947	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2948	const char *fstype = sb->s_type->name;
2949
2950	if (!selinux_initialized()) {
2951		sbsec->behavior = SECURITY_FS_USE_NONE;
2952		sbsec->sid = SECINITSID_UNLABELED;
2953		return 0;
2954	}
2955
2956retry:
2957	rcu_read_lock();
2958	policy = rcu_dereference(selinux_state.policy);
2959	policydb = &policy->policydb;
2960	sidtab = policy->sidtab;
2961
2962	c = policydb->ocontexts[OCON_FSUSE];
2963	while (c) {
2964		if (strcmp(fstype, c->u.name) == 0)
2965			break;
2966		c = c->next;
2967	}
2968
2969	if (c) {
2970		sbsec->behavior = c->v.behavior;
2971		rc = ocontext_to_sid(sidtab, c, 0, &sbsec->sid);
2972		if (rc == -ESTALE) {
2973			rcu_read_unlock();
2974			goto retry;
 
2975		}
2976		if (rc)
2977			goto out;
2978	} else {
2979		rc = __security_genfs_sid(policy, fstype, "/",
2980					SECCLASS_DIR, &sbsec->sid);
2981		if (rc == -ESTALE) {
2982			rcu_read_unlock();
2983			goto retry;
2984		}
2985		if (rc) {
2986			sbsec->behavior = SECURITY_FS_USE_NONE;
2987			rc = 0;
2988		} else {
2989			sbsec->behavior = SECURITY_FS_USE_GENFS;
2990		}
2991	}
2992
2993out:
2994	rcu_read_unlock();
2995	return rc;
2996}
2997
2998int security_get_bools(struct selinux_policy *policy,
2999		       u32 *len, char ***names, int **values)
3000{
3001	struct policydb *policydb;
3002	u32 i;
3003	int rc;
3004
3005	policydb = &policy->policydb;
3006
 
3007	*names = NULL;
3008	*values = NULL;
3009
3010	rc = 0;
3011	*len = policydb->p_bools.nprim;
3012	if (!*len)
3013		goto out;
3014
3015	rc = -ENOMEM;
3016	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
3017	if (!*names)
3018		goto err;
3019
3020	rc = -ENOMEM;
3021	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
3022	if (!*values)
3023		goto err;
3024
3025	for (i = 0; i < *len; i++) {
3026		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
3027
3028		rc = -ENOMEM;
3029		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
3030				      GFP_ATOMIC);
3031		if (!(*names)[i])
3032			goto err;
 
 
 
3033	}
3034	rc = 0;
3035out:
 
3036	return rc;
3037err:
3038	if (*names) {
3039		for (i = 0; i < *len; i++)
3040			kfree((*names)[i]);
3041		kfree(*names);
3042	}
3043	kfree(*values);
3044	*len = 0;
3045	*names = NULL;
3046	*values = NULL;
3047	goto out;
3048}
3049
3050
3051int security_set_bools(u32 len, int *values)
3052{
3053	struct selinux_state *state = &selinux_state;
3054	struct selinux_policy *newpolicy, *oldpolicy;
3055	int rc;
3056	u32 i, seqno = 0;
3057
3058	if (!selinux_initialized())
3059		return -EINVAL;
3060
3061	oldpolicy = rcu_dereference_protected(state->policy,
3062					lockdep_is_held(&state->policy_mutex));
3063
3064	/* Consistency check on number of booleans, should never fail */
3065	if (WARN_ON(len != oldpolicy->policydb.p_bools.nprim))
3066		return -EINVAL;
3067
3068	newpolicy = kmemdup(oldpolicy, sizeof(*newpolicy), GFP_KERNEL);
3069	if (!newpolicy)
3070		return -ENOMEM;
3071
3072	/*
3073	 * Deep copy only the parts of the policydb that might be
3074	 * modified as a result of changing booleans.
3075	 */
3076	rc = cond_policydb_dup(&newpolicy->policydb, &oldpolicy->policydb);
3077	if (rc) {
3078		kfree(newpolicy);
3079		return -ENOMEM;
3080	}
3081
3082	/* Update the boolean states in the copy */
3083	for (i = 0; i < len; i++) {
3084		int new_state = !!values[i];
3085		int old_state = newpolicy->policydb.bool_val_to_struct[i]->state;
3086
3087		if (new_state != old_state) {
3088			audit_log(audit_context(), GFP_ATOMIC,
3089				AUDIT_MAC_CONFIG_CHANGE,
3090				"bool=%s val=%d old_val=%d auid=%u ses=%u",
3091				sym_name(&newpolicy->policydb, SYM_BOOLS, i),
3092				new_state,
3093				old_state,
3094				from_kuid(&init_user_ns, audit_get_loginuid(current)),
3095				audit_get_sessionid(current));
3096			newpolicy->policydb.bool_val_to_struct[i]->state = new_state;
3097		}
 
 
 
 
3098	}
3099
3100	/* Re-evaluate the conditional rules in the copy */
3101	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
3102
3103	/* Set latest granting seqno for new policy */
3104	newpolicy->latest_granting = oldpolicy->latest_granting + 1;
3105	seqno = newpolicy->latest_granting;
3106
3107	/* Install the new policy */
3108	rcu_assign_pointer(state->policy, newpolicy);
3109
3110	/*
3111	 * Free the conditional portions of the old policydb
3112	 * that were copied for the new policy, and the oldpolicy
3113	 * structure itself but not what it references.
3114	 */
3115	synchronize_rcu();
3116	selinux_policy_cond_free(oldpolicy);
3117
3118	/* Notify others of the policy change */
3119	selinux_notify_policy_change(seqno);
3120	return 0;
3121}
3122
3123int security_get_bool_value(u32 index)
3124{
3125	struct selinux_policy *policy;
3126	struct policydb *policydb;
3127	int rc;
3128	u32 len;
3129
3130	if (!selinux_initialized())
3131		return 0;
3132
3133	rcu_read_lock();
3134	policy = rcu_dereference(selinux_state.policy);
3135	policydb = &policy->policydb;
3136
3137	rc = -EFAULT;
3138	len = policydb->p_bools.nprim;
3139	if (index >= len)
3140		goto out;
3141
3142	rc = policydb->bool_val_to_struct[index]->state;
3143out:
3144	rcu_read_unlock();
3145	return rc;
3146}
3147
3148static int security_preserve_bools(struct selinux_policy *oldpolicy,
3149				struct selinux_policy *newpolicy)
3150{
3151	int rc, *bvalues = NULL;
3152	char **bnames = NULL;
3153	struct cond_bool_datum *booldatum;
3154	u32 i, nbools = 0;
3155
3156	rc = security_get_bools(oldpolicy, &nbools, &bnames, &bvalues);
3157	if (rc)
3158		goto out;
3159	for (i = 0; i < nbools; i++) {
3160		booldatum = symtab_search(&newpolicy->policydb.p_bools,
3161					bnames[i]);
3162		if (booldatum)
3163			booldatum->state = bvalues[i];
3164	}
3165	evaluate_cond_nodes(&newpolicy->policydb);
 
 
 
 
3166
3167out:
3168	if (bnames) {
3169		for (i = 0; i < nbools; i++)
3170			kfree(bnames[i]);
3171	}
3172	kfree(bnames);
3173	kfree(bvalues);
3174	return rc;
3175}
3176
3177/*
3178 * security_sid_mls_copy() - computes a new sid based on the given
3179 * sid and the mls portion of mls_sid.
3180 */
3181int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
3182{
3183	struct selinux_policy *policy;
3184	struct policydb *policydb;
3185	struct sidtab *sidtab;
3186	struct context *context1;
3187	struct context *context2;
3188	struct context newcon;
3189	char *s;
3190	u32 len;
3191	int rc;
3192
3193	if (!selinux_initialized()) {
 
3194		*new_sid = sid;
3195		return 0;
3196	}
3197
3198retry:
3199	rc = 0;
3200	context_init(&newcon);
3201
3202	rcu_read_lock();
3203	policy = rcu_dereference(selinux_state.policy);
3204	policydb = &policy->policydb;
3205	sidtab = policy->sidtab;
3206
3207	if (!policydb->mls_enabled) {
3208		*new_sid = sid;
3209		goto out_unlock;
3210	}
3211
3212	rc = -EINVAL;
3213	context1 = sidtab_search(sidtab, sid);
3214	if (!context1) {
3215		pr_err("SELinux: %s:  unrecognized SID %d\n",
3216			__func__, sid);
3217		goto out_unlock;
3218	}
3219
3220	rc = -EINVAL;
3221	context2 = sidtab_search(sidtab, mls_sid);
3222	if (!context2) {
3223		pr_err("SELinux: %s:  unrecognized SID %d\n",
3224			__func__, mls_sid);
3225		goto out_unlock;
3226	}
3227
3228	newcon.user = context1->user;
3229	newcon.role = context1->role;
3230	newcon.type = context1->type;
3231	rc = mls_context_cpy(&newcon, context2);
3232	if (rc)
3233		goto out_unlock;
3234
3235	/* Check the validity of the new context. */
3236	if (!policydb_context_isvalid(policydb, &newcon)) {
3237		rc = convert_context_handle_invalid_context(policydb,
3238							&newcon);
3239		if (rc) {
3240			if (!context_struct_to_string(policydb, &newcon, &s,
3241						      &len)) {
3242				struct audit_buffer *ab;
3243
3244				ab = audit_log_start(audit_context(),
3245						     GFP_ATOMIC,
3246						     AUDIT_SELINUX_ERR);
3247				audit_log_format(ab,
3248						 "op=security_sid_mls_copy invalid_context=");
3249				/* don't record NUL with untrusted strings */
3250				audit_log_n_untrustedstring(ab, s, len - 1);
3251				audit_log_end(ab);
3252				kfree(s);
3253			}
3254			goto out_unlock;
3255		}
3256	}
3257	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
3258	if (rc == -ESTALE) {
3259		rcu_read_unlock();
3260		context_destroy(&newcon);
3261		goto retry;
3262	}
3263out_unlock:
3264	rcu_read_unlock();
3265	context_destroy(&newcon);
 
3266	return rc;
3267}
3268
3269/**
3270 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3271 * @nlbl_sid: NetLabel SID
3272 * @nlbl_type: NetLabel labeling protocol type
3273 * @xfrm_sid: XFRM SID
3274 * @peer_sid: network peer sid
3275 *
3276 * Description:
3277 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3278 * resolved into a single SID it is returned via @peer_sid and the function
3279 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3280 * returns a negative value.  A table summarizing the behavior is below:
3281 *
3282 *                                 | function return |      @sid
3283 *   ------------------------------+-----------------+-----------------
3284 *   no peer labels                |        0        |    SECSID_NULL
3285 *   single peer label             |        0        |    <peer_label>
3286 *   multiple, consistent labels   |        0        |    <peer_label>
3287 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3288 *
3289 */
3290int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
3291				 u32 xfrm_sid,
3292				 u32 *peer_sid)
3293{
3294	struct selinux_policy *policy;
3295	struct policydb *policydb;
3296	struct sidtab *sidtab;
3297	int rc;
3298	struct context *nlbl_ctx;
3299	struct context *xfrm_ctx;
3300
3301	*peer_sid = SECSID_NULL;
3302
3303	/* handle the common (which also happens to be the set of easy) cases
3304	 * right away, these two if statements catch everything involving a
3305	 * single or absent peer SID/label */
3306	if (xfrm_sid == SECSID_NULL) {
3307		*peer_sid = nlbl_sid;
3308		return 0;
3309	}
3310	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3311	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3312	 * is present */
3313	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3314		*peer_sid = xfrm_sid;
3315		return 0;
3316	}
3317
3318	if (!selinux_initialized())
 
 
 
3319		return 0;
3320
3321	rcu_read_lock();
3322	policy = rcu_dereference(selinux_state.policy);
3323	policydb = &policy->policydb;
3324	sidtab = policy->sidtab;
3325
3326	/*
3327	 * We don't need to check initialized here since the only way both
3328	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3329	 * security server was initialized and state->initialized was true.
3330	 */
3331	if (!policydb->mls_enabled) {
3332		rc = 0;
3333		goto out;
3334	}
3335
3336	rc = -EINVAL;
3337	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3338	if (!nlbl_ctx) {
3339		pr_err("SELinux: %s:  unrecognized SID %d\n",
3340		       __func__, nlbl_sid);
3341		goto out;
3342	}
3343	rc = -EINVAL;
3344	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3345	if (!xfrm_ctx) {
3346		pr_err("SELinux: %s:  unrecognized SID %d\n",
3347		       __func__, xfrm_sid);
3348		goto out;
3349	}
3350	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3351	if (rc)
3352		goto out;
3353
3354	/* at present NetLabel SIDs/labels really only carry MLS
3355	 * information so if the MLS portion of the NetLabel SID
3356	 * matches the MLS portion of the labeled XFRM SID/label
3357	 * then pass along the XFRM SID as it is the most
3358	 * expressive */
3359	*peer_sid = xfrm_sid;
3360out:
3361	rcu_read_unlock();
3362	return rc;
3363}
3364
3365static int get_classes_callback(void *k, void *d, void *args)
3366{
3367	struct class_datum *datum = d;
3368	char *name = k, **classes = args;
3369	u32 value = datum->value - 1;
3370
3371	classes[value] = kstrdup(name, GFP_ATOMIC);
3372	if (!classes[value])
3373		return -ENOMEM;
3374
3375	return 0;
3376}
3377
3378int security_get_classes(struct selinux_policy *policy,
3379			 char ***classes, u32 *nclasses)
3380{
3381	struct policydb *policydb;
3382	int rc;
3383
3384	policydb = &policy->policydb;
3385
3386	rc = -ENOMEM;
3387	*nclasses = policydb->p_classes.nprim;
3388	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3389	if (!*classes)
3390		goto out;
3391
3392	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3393			 *classes);
3394	if (rc) {
3395		u32 i;
3396
3397		for (i = 0; i < *nclasses; i++)
3398			kfree((*classes)[i]);
3399		kfree(*classes);
3400	}
3401
3402out:
 
3403	return rc;
3404}
3405
3406static int get_permissions_callback(void *k, void *d, void *args)
3407{
3408	struct perm_datum *datum = d;
3409	char *name = k, **perms = args;
3410	u32 value = datum->value - 1;
3411
3412	perms[value] = kstrdup(name, GFP_ATOMIC);
3413	if (!perms[value])
3414		return -ENOMEM;
3415
3416	return 0;
3417}
3418
3419int security_get_permissions(struct selinux_policy *policy,
3420			     const char *class, char ***perms, u32 *nperms)
3421{
3422	struct policydb *policydb;
3423	u32 i;
3424	int rc;
3425	struct class_datum *match;
3426
3427	policydb = &policy->policydb;
3428
3429	rc = -EINVAL;
3430	match = symtab_search(&policydb->p_classes, class);
3431	if (!match) {
3432		pr_err("SELinux: %s:  unrecognized class %s\n",
3433			__func__, class);
3434		goto out;
3435	}
3436
3437	rc = -ENOMEM;
3438	*nperms = match->permissions.nprim;
3439	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3440	if (!*perms)
3441		goto out;
3442
3443	if (match->comdatum) {
3444		rc = hashtab_map(&match->comdatum->permissions.table,
3445				 get_permissions_callback, *perms);
3446		if (rc)
3447			goto err;
3448	}
3449
3450	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3451			 *perms);
3452	if (rc)
3453		goto err;
3454
3455out:
 
3456	return rc;
3457
3458err:
 
3459	for (i = 0; i < *nperms; i++)
3460		kfree((*perms)[i]);
3461	kfree(*perms);
3462	return rc;
3463}
3464
3465int security_get_reject_unknown(void)
3466{
3467	struct selinux_policy *policy;
3468	int value;
3469
3470	if (!selinux_initialized())
3471		return 0;
3472
3473	rcu_read_lock();
3474	policy = rcu_dereference(selinux_state.policy);
3475	value = policy->policydb.reject_unknown;
3476	rcu_read_unlock();
3477	return value;
3478}
3479
3480int security_get_allow_unknown(void)
3481{
3482	struct selinux_policy *policy;
3483	int value;
3484
3485	if (!selinux_initialized())
3486		return 0;
3487
3488	rcu_read_lock();
3489	policy = rcu_dereference(selinux_state.policy);
3490	value = policy->policydb.allow_unknown;
3491	rcu_read_unlock();
3492	return value;
3493}
3494
3495/**
3496 * security_policycap_supported - Check for a specific policy capability
3497 * @req_cap: capability
3498 *
3499 * Description:
3500 * This function queries the currently loaded policy to see if it supports the
3501 * capability specified by @req_cap.  Returns true (1) if the capability is
3502 * supported, false (0) if it isn't supported.
3503 *
3504 */
3505int security_policycap_supported(unsigned int req_cap)
3506{
3507	struct selinux_policy *policy;
3508	int rc;
3509
3510	if (!selinux_initialized())
3511		return 0;
3512
3513	rcu_read_lock();
3514	policy = rcu_dereference(selinux_state.policy);
3515	rc = ebitmap_get_bit(&policy->policydb.policycaps, req_cap);
3516	rcu_read_unlock();
3517
3518	return rc;
3519}
3520
3521struct selinux_audit_rule {
3522	u32 au_seqno;
3523	struct context au_ctxt;
3524};
3525
3526void selinux_audit_rule_free(void *vrule)
3527{
3528	struct selinux_audit_rule *rule = vrule;
3529
3530	if (rule) {
3531		context_destroy(&rule->au_ctxt);
3532		kfree(rule);
3533	}
3534}
3535
3536int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule,
3537			    gfp_t gfp)
3538{
3539	struct selinux_state *state = &selinux_state;
3540	struct selinux_policy *policy;
3541	struct policydb *policydb;
3542	struct selinux_audit_rule *tmprule;
3543	struct role_datum *roledatum;
3544	struct type_datum *typedatum;
3545	struct user_datum *userdatum;
3546	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3547	int rc = 0;
3548
3549	*rule = NULL;
3550
3551	if (!selinux_initialized())
3552		return -EOPNOTSUPP;
3553
3554	switch (field) {
3555	case AUDIT_SUBJ_USER:
3556	case AUDIT_SUBJ_ROLE:
3557	case AUDIT_SUBJ_TYPE:
3558	case AUDIT_OBJ_USER:
3559	case AUDIT_OBJ_ROLE:
3560	case AUDIT_OBJ_TYPE:
3561		/* only 'equals' and 'not equals' fit user, role, and type */
3562		if (op != Audit_equal && op != Audit_not_equal)
3563			return -EINVAL;
3564		break;
3565	case AUDIT_SUBJ_SEN:
3566	case AUDIT_SUBJ_CLR:
3567	case AUDIT_OBJ_LEV_LOW:
3568	case AUDIT_OBJ_LEV_HIGH:
3569		/* we do not allow a range, indicated by the presence of '-' */
3570		if (strchr(rulestr, '-'))
3571			return -EINVAL;
3572		break;
3573	default:
3574		/* only the above fields are valid */
3575		return -EINVAL;
3576	}
3577
3578	tmprule = kzalloc(sizeof(struct selinux_audit_rule), gfp);
3579	if (!tmprule)
3580		return -ENOMEM;
 
3581	context_init(&tmprule->au_ctxt);
3582
3583	rcu_read_lock();
3584	policy = rcu_dereference(state->policy);
3585	policydb = &policy->policydb;
3586	tmprule->au_seqno = policy->latest_granting;
3587	switch (field) {
3588	case AUDIT_SUBJ_USER:
3589	case AUDIT_OBJ_USER:
3590		userdatum = symtab_search(&policydb->p_users, rulestr);
3591		if (!userdatum) {
3592			rc = -EINVAL;
3593			goto err;
3594		}
3595		tmprule->au_ctxt.user = userdatum->value;
3596		break;
3597	case AUDIT_SUBJ_ROLE:
3598	case AUDIT_OBJ_ROLE:
3599		roledatum = symtab_search(&policydb->p_roles, rulestr);
3600		if (!roledatum) {
3601			rc = -EINVAL;
3602			goto err;
3603		}
3604		tmprule->au_ctxt.role = roledatum->value;
3605		break;
3606	case AUDIT_SUBJ_TYPE:
3607	case AUDIT_OBJ_TYPE:
3608		typedatum = symtab_search(&policydb->p_types, rulestr);
3609		if (!typedatum) {
3610			rc = -EINVAL;
3611			goto err;
3612		}
3613		tmprule->au_ctxt.type = typedatum->value;
3614		break;
3615	case AUDIT_SUBJ_SEN:
3616	case AUDIT_SUBJ_CLR:
3617	case AUDIT_OBJ_LEV_LOW:
3618	case AUDIT_OBJ_LEV_HIGH:
3619		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3620				     GFP_ATOMIC);
3621		if (rc)
3622			goto err;
3623		break;
3624	}
3625	rcu_read_unlock();
 
 
 
 
 
 
 
3626
3627	*rule = tmprule;
3628	return 0;
3629
3630err:
3631	rcu_read_unlock();
3632	selinux_audit_rule_free(tmprule);
3633	*rule = NULL;
3634	return rc;
3635}
3636
3637/* Check to see if the rule contains any selinux fields */
3638int selinux_audit_rule_known(struct audit_krule *rule)
3639{
3640	u32 i;
3641
3642	for (i = 0; i < rule->field_count; i++) {
3643		struct audit_field *f = &rule->fields[i];
3644		switch (f->type) {
3645		case AUDIT_SUBJ_USER:
3646		case AUDIT_SUBJ_ROLE:
3647		case AUDIT_SUBJ_TYPE:
3648		case AUDIT_SUBJ_SEN:
3649		case AUDIT_SUBJ_CLR:
3650		case AUDIT_OBJ_USER:
3651		case AUDIT_OBJ_ROLE:
3652		case AUDIT_OBJ_TYPE:
3653		case AUDIT_OBJ_LEV_LOW:
3654		case AUDIT_OBJ_LEV_HIGH:
3655			return 1;
3656		}
3657	}
3658
3659	return 0;
3660}
3661
3662int selinux_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, void *vrule)
 
3663{
3664	struct selinux_state *state = &selinux_state;
3665	struct selinux_policy *policy;
3666	struct context *ctxt;
3667	struct mls_level *level;
3668	struct selinux_audit_rule *rule = vrule;
3669	int match = 0;
3670
3671	if (unlikely(!rule)) {
3672		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3673		return -ENOENT;
3674	}
3675
3676	if (!selinux_initialized())
3677		return 0;
3678
3679	rcu_read_lock();
3680
3681	policy = rcu_dereference(state->policy);
3682
3683	if (rule->au_seqno < policy->latest_granting) {
3684		match = -ESTALE;
3685		goto out;
3686	}
3687
3688	ctxt = sidtab_search(policy->sidtab, prop->selinux.secid);
3689	if (unlikely(!ctxt)) {
3690		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
3691			  prop->selinux.secid);
 
3692		match = -ENOENT;
3693		goto out;
3694	}
3695
3696	/* a field/op pair that is not caught here will simply fall through
3697	   without a match */
3698	switch (field) {
3699	case AUDIT_SUBJ_USER:
3700	case AUDIT_OBJ_USER:
3701		switch (op) {
3702		case Audit_equal:
3703			match = (ctxt->user == rule->au_ctxt.user);
3704			break;
3705		case Audit_not_equal:
3706			match = (ctxt->user != rule->au_ctxt.user);
3707			break;
3708		}
3709		break;
3710	case AUDIT_SUBJ_ROLE:
3711	case AUDIT_OBJ_ROLE:
3712		switch (op) {
3713		case Audit_equal:
3714			match = (ctxt->role == rule->au_ctxt.role);
3715			break;
3716		case Audit_not_equal:
3717			match = (ctxt->role != rule->au_ctxt.role);
3718			break;
3719		}
3720		break;
3721	case AUDIT_SUBJ_TYPE:
3722	case AUDIT_OBJ_TYPE:
3723		switch (op) {
3724		case Audit_equal:
3725			match = (ctxt->type == rule->au_ctxt.type);
3726			break;
3727		case Audit_not_equal:
3728			match = (ctxt->type != rule->au_ctxt.type);
3729			break;
3730		}
3731		break;
3732	case AUDIT_SUBJ_SEN:
3733	case AUDIT_SUBJ_CLR:
3734	case AUDIT_OBJ_LEV_LOW:
3735	case AUDIT_OBJ_LEV_HIGH:
3736		level = ((field == AUDIT_SUBJ_SEN ||
3737			  field == AUDIT_OBJ_LEV_LOW) ?
3738			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3739		switch (op) {
3740		case Audit_equal:
3741			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3742					     level);
3743			break;
3744		case Audit_not_equal:
3745			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3746					      level);
3747			break;
3748		case Audit_lt:
3749			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3750					       level) &&
3751				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3752					       level));
3753			break;
3754		case Audit_le:
3755			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3756					      level);
3757			break;
3758		case Audit_gt:
3759			match = (mls_level_dom(level,
3760					      &rule->au_ctxt.range.level[0]) &&
3761				 !mls_level_eq(level,
3762					       &rule->au_ctxt.range.level[0]));
3763			break;
3764		case Audit_ge:
3765			match = mls_level_dom(level,
3766					      &rule->au_ctxt.range.level[0]);
3767			break;
3768		}
3769	}
3770
3771out:
3772	rcu_read_unlock();
3773	return match;
3774}
3775
 
 
3776static int aurule_avc_callback(u32 event)
3777{
3778	if (event == AVC_CALLBACK_RESET)
3779		return audit_update_lsm_rules();
3780	return 0;
 
 
3781}
3782
3783static int __init aurule_init(void)
3784{
3785	int err;
3786
3787	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3788	if (err)
3789		panic("avc_add_callback() failed, error %d\n", err);
3790
3791	return err;
3792}
3793__initcall(aurule_init);
3794
3795#ifdef CONFIG_NETLABEL
3796/**
3797 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3798 * @secattr: the NetLabel packet security attributes
3799 * @sid: the SELinux SID
3800 *
3801 * Description:
3802 * Attempt to cache the context in @ctx, which was derived from the packet in
3803 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3804 * already been initialized.
3805 *
3806 */
3807static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3808				      u32 sid)
3809{
3810	u32 *sid_cache;
3811
3812	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3813	if (sid_cache == NULL)
3814		return;
3815	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3816	if (secattr->cache == NULL) {
3817		kfree(sid_cache);
3818		return;
3819	}
3820
3821	*sid_cache = sid;
3822	secattr->cache->free = kfree;
3823	secattr->cache->data = sid_cache;
3824	secattr->flags |= NETLBL_SECATTR_CACHE;
3825}
3826
3827/**
3828 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3829 * @secattr: the NetLabel packet security attributes
3830 * @sid: the SELinux SID
3831 *
3832 * Description:
3833 * Convert the given NetLabel security attributes in @secattr into a
3834 * SELinux SID.  If the @secattr field does not contain a full SELinux
3835 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3836 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3837 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3838 * conversion for future lookups.  Returns zero on success, negative values on
3839 * failure.
3840 *
3841 */
3842int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
3843				   u32 *sid)
3844{
3845	struct selinux_policy *policy;
3846	struct policydb *policydb;
3847	struct sidtab *sidtab;
3848	int rc;
3849	struct context *ctx;
3850	struct context ctx_new;
3851
3852	if (!selinux_initialized()) {
3853		*sid = SECSID_NULL;
3854		return 0;
3855	}
3856
3857retry:
3858	rc = 0;
3859	rcu_read_lock();
3860	policy = rcu_dereference(selinux_state.policy);
3861	policydb = &policy->policydb;
3862	sidtab = policy->sidtab;
3863
3864	if (secattr->flags & NETLBL_SECATTR_CACHE)
3865		*sid = *(u32 *)secattr->cache->data;
3866	else if (secattr->flags & NETLBL_SECATTR_SECID)
3867		*sid = secattr->attr.secid;
3868	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3869		rc = -EIDRM;
3870		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3871		if (ctx == NULL)
3872			goto out;
3873
3874		context_init(&ctx_new);
3875		ctx_new.user = ctx->user;
3876		ctx_new.role = ctx->role;
3877		ctx_new.type = ctx->type;
3878		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3879		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3880			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3881			if (rc)
3882				goto out;
 
 
 
3883		}
3884		rc = -EIDRM;
3885		if (!mls_context_isvalid(policydb, &ctx_new)) {
3886			ebitmap_destroy(&ctx_new.range.level[0].cat);
3887			goto out;
3888		}
3889
3890		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3891		ebitmap_destroy(&ctx_new.range.level[0].cat);
3892		if (rc == -ESTALE) {
3893			rcu_read_unlock();
3894			goto retry;
3895		}
3896		if (rc)
3897			goto out;
3898
3899		security_netlbl_cache_add(secattr, *sid);
 
 
3900	} else
3901		*sid = SECSID_NULL;
3902
 
 
 
 
3903out:
3904	rcu_read_unlock();
3905	return rc;
3906}
3907
3908/**
3909 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3910 * @sid: the SELinux SID
3911 * @secattr: the NetLabel packet security attributes
3912 *
3913 * Description:
3914 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3915 * Returns zero on success, negative values on failure.
3916 *
3917 */
3918int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
3919{
3920	struct selinux_policy *policy;
3921	struct policydb *policydb;
3922	int rc;
3923	struct context *ctx;
3924
3925	if (!selinux_initialized())
3926		return 0;
3927
3928	rcu_read_lock();
3929	policy = rcu_dereference(selinux_state.policy);
3930	policydb = &policy->policydb;
3931
3932	rc = -ENOENT;
3933	ctx = sidtab_search(policy->sidtab, sid);
3934	if (ctx == NULL)
3935		goto out;
3936
3937	rc = -ENOMEM;
3938	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3939				  GFP_ATOMIC);
3940	if (secattr->domain == NULL)
3941		goto out;
3942
3943	secattr->attr.secid = sid;
3944	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3945	mls_export_netlbl_lvl(policydb, ctx, secattr);
3946	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3947out:
3948	rcu_read_unlock();
3949	return rc;
3950}
3951#endif /* CONFIG_NETLABEL */
3952
3953/**
3954 * __security_read_policy - read the policy.
3955 * @policy: SELinux policy
3956 * @data: binary policy data
3957 * @len: length of data in bytes
3958 *
3959 */
3960static int __security_read_policy(struct selinux_policy *policy,
3961				  void *data, size_t *len)
3962{
3963	int rc;
3964	struct policy_file fp;
3965
3966	fp.data = data;
3967	fp.len = *len;
3968
3969	rc = policydb_write(&policy->policydb, &fp);
3970	if (rc)
3971		return rc;
3972
3973	*len = (unsigned long)fp.data - (unsigned long)data;
3974	return 0;
3975}
3976
3977/**
3978 * security_read_policy - read the policy.
3979 * @data: binary policy data
3980 * @len: length of data in bytes
3981 *
3982 */
3983int security_read_policy(void **data, size_t *len)
3984{
3985	struct selinux_state *state = &selinux_state;
3986	struct selinux_policy *policy;
3987
3988	policy = rcu_dereference_protected(
3989			state->policy, lockdep_is_held(&state->policy_mutex));
3990	if (!policy)
3991		return -EINVAL;
3992
3993	*len = policy->policydb.len;
3994	*data = vmalloc_user(*len);
3995	if (!*data)
3996		return -ENOMEM;
3997
3998	return __security_read_policy(policy, *data, len);
3999}
4000
4001/**
4002 * security_read_state_kernel - read the policy.
4003 * @data: binary policy data
4004 * @len: length of data in bytes
4005 *
4006 * Allocates kernel memory for reading SELinux policy.
4007 * This function is for internal use only and should not
4008 * be used for returning data to user space.
4009 *
4010 * This function must be called with policy_mutex held.
4011 */
4012int security_read_state_kernel(void **data, size_t *len)
4013{
4014	int err;
4015	struct selinux_state *state = &selinux_state;
4016	struct selinux_policy *policy;
4017
4018	policy = rcu_dereference_protected(
4019			state->policy, lockdep_is_held(&state->policy_mutex));
4020	if (!policy)
4021		return -EINVAL;
4022
4023	*len = policy->policydb.len;
4024	*data = vmalloc(*len);
4025	if (!*data)
4026		return -ENOMEM;
4027
4028	err = __security_read_policy(policy, *data, len);
4029	if (err) {
4030		vfree(*data);
4031		*data = NULL;
4032		*len = 0;
4033	}
4034	return err;
4035}