Linux Audio

Check our new training course

Loading...
v3.5.6
 
   1/*
   2 * Implementation of the security services.
   3 *
   4 * Authors : Stephen Smalley, <sds@epoch.ncsc.mil>
   5 *	     James Morris <jmorris@redhat.com>
   6 *
   7 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   8 *
   9 *	Support for enhanced MLS infrastructure.
  10 *	Support for context based audit filters.
  11 *
  12 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  13 *
  14 *	Added conditional policy language extensions
  15 *
  16 * Updated: Hewlett-Packard <paul@paul-moore.com>
  17 *
  18 *      Added support for NetLabel
  19 *      Added support for the policy capability bitmap
  20 *
  21 * Updated: Chad Sellers <csellers@tresys.com>
  22 *
  23 *  Added validation of kernel classes and permissions
  24 *
  25 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  26 *
  27 *  Added support for bounds domain and audit messaged on masked permissions
  28 *
  29 * Updated: Guido Trentalancia <guido@trentalancia.com>
  30 *
  31 *  Added support for runtime switching of the policy type
  32 *
  33 * Copyright (C) 2008, 2009 NEC Corporation
  34 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  35 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  36 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  37 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
  38 *	This program is free software; you can redistribute it and/or modify
  39 *	it under the terms of the GNU General Public License as published by
  40 *	the Free Software Foundation, version 2.
  41 */
  42#include <linux/kernel.h>
  43#include <linux/slab.h>
  44#include <linux/string.h>
  45#include <linux/spinlock.h>
  46#include <linux/rcupdate.h>
  47#include <linux/errno.h>
  48#include <linux/in.h>
  49#include <linux/sched.h>
  50#include <linux/audit.h>
  51#include <linux/mutex.h>
  52#include <linux/selinux.h>
  53#include <linux/flex_array.h>
  54#include <linux/vmalloc.h>
  55#include <net/netlabel.h>
  56
  57#include "flask.h"
  58#include "avc.h"
  59#include "avc_ss.h"
  60#include "security.h"
  61#include "context.h"
  62#include "policydb.h"
  63#include "sidtab.h"
  64#include "services.h"
  65#include "conditional.h"
  66#include "mls.h"
  67#include "objsec.h"
  68#include "netlabel.h"
  69#include "xfrm.h"
  70#include "ebitmap.h"
  71#include "audit.h"
  72
  73int selinux_policycap_netpeer;
  74int selinux_policycap_openperm;
  75
  76static DEFINE_RWLOCK(policy_rwlock);
 
 
 
 
 
 
  77
  78static struct sidtab sidtab;
  79struct policydb policydb;
  80int ss_initialized;
  81
  82/*
  83 * The largest sequence number that has been used when
  84 * providing an access decision to the access vector cache.
  85 * The sequence number only changes when a policy change
  86 * occurs.
  87 */
  88static u32 latest_granting;
  89
  90/* Forward declaration. */
  91static int context_struct_to_string(struct context *context, char **scontext,
 
 
  92				    u32 *scontext_len);
  93
  94static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
  95				      struct context *tcontext,
  96				      u16 tclass,
  97				      struct av_decision *avd);
  98
  99struct selinux_mapping {
 100	u16 value; /* policy value */
 101	unsigned num_perms;
 102	u32 perms[sizeof(u32) * 8];
 103};
 104
 105static struct selinux_mapping *current_mapping;
 106static u16 current_mapping_size;
 107
 108static int selinux_set_mapping(struct policydb *pol,
 109			       struct security_class_mapping *map,
 110			       struct selinux_mapping **out_map_p,
 111			       u16 *out_map_size)
 112{
 113	struct selinux_mapping *out_map = NULL;
 114	size_t size = sizeof(struct selinux_mapping);
 115	u16 i, j;
 116	unsigned k;
 117	bool print_unknown_handle = false;
 118
 119	/* Find number of classes in the input mapping */
 120	if (!map)
 121		return -EINVAL;
 122	i = 0;
 123	while (map[i].name)
 124		i++;
 125
 126	/* Allocate space for the class records, plus one for class zero */
 127	out_map = kcalloc(++i, size, GFP_ATOMIC);
 128	if (!out_map)
 129		return -ENOMEM;
 130
 131	/* Store the raw class and permission values */
 132	j = 0;
 133	while (map[j].name) {
 134		struct security_class_mapping *p_in = map + (j++);
 135		struct selinux_mapping *p_out = out_map + j;
 136
 137		/* An empty class string skips ahead */
 138		if (!strcmp(p_in->name, "")) {
 139			p_out->num_perms = 0;
 140			continue;
 141		}
 142
 143		p_out->value = string_to_security_class(pol, p_in->name);
 144		if (!p_out->value) {
 145			printk(KERN_INFO
 146			       "SELinux:  Class %s not defined in policy.\n",
 147			       p_in->name);
 148			if (pol->reject_unknown)
 149				goto err;
 150			p_out->num_perms = 0;
 151			print_unknown_handle = true;
 152			continue;
 153		}
 154
 155		k = 0;
 156		while (p_in->perms && p_in->perms[k]) {
 157			/* An empty permission string skips ahead */
 158			if (!*p_in->perms[k]) {
 159				k++;
 160				continue;
 161			}
 162			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 163							    p_in->perms[k]);
 164			if (!p_out->perms[k]) {
 165				printk(KERN_INFO
 166				       "SELinux:  Permission %s in class %s not defined in policy.\n",
 167				       p_in->perms[k], p_in->name);
 168				if (pol->reject_unknown)
 169					goto err;
 170				print_unknown_handle = true;
 171			}
 172
 173			k++;
 174		}
 175		p_out->num_perms = k;
 176	}
 177
 178	if (print_unknown_handle)
 179		printk(KERN_INFO "SELinux: the above unknown classes and permissions will be %s\n",
 180		       pol->allow_unknown ? "allowed" : "denied");
 181
 182	*out_map_p = out_map;
 183	*out_map_size = i;
 184	return 0;
 185err:
 186	kfree(out_map);
 
 187	return -EINVAL;
 188}
 189
 190/*
 191 * Get real, policy values from mapped values
 192 */
 193
 194static u16 unmap_class(u16 tclass)
 195{
 196	if (tclass < current_mapping_size)
 197		return current_mapping[tclass].value;
 198
 199	return tclass;
 200}
 201
 202/*
 203 * Get kernel value for class from its policy value
 204 */
 205static u16 map_class(u16 pol_value)
 206{
 207	u16 i;
 208
 209	for (i = 1; i < current_mapping_size; i++) {
 210		if (current_mapping[i].value == pol_value)
 211			return i;
 212	}
 213
 214	return SECCLASS_NULL;
 215}
 216
 217static void map_decision(u16 tclass, struct av_decision *avd,
 
 218			 int allow_unknown)
 219{
 220	if (tclass < current_mapping_size) {
 221		unsigned i, n = current_mapping[tclass].num_perms;
 
 222		u32 result;
 223
 224		for (i = 0, result = 0; i < n; i++) {
 225			if (avd->allowed & current_mapping[tclass].perms[i])
 226				result |= 1<<i;
 227			if (allow_unknown && !current_mapping[tclass].perms[i])
 228				result |= 1<<i;
 229		}
 230		avd->allowed = result;
 231
 232		for (i = 0, result = 0; i < n; i++)
 233			if (avd->auditallow & current_mapping[tclass].perms[i])
 234				result |= 1<<i;
 235		avd->auditallow = result;
 236
 237		for (i = 0, result = 0; i < n; i++) {
 238			if (avd->auditdeny & current_mapping[tclass].perms[i])
 239				result |= 1<<i;
 240			if (!allow_unknown && !current_mapping[tclass].perms[i])
 241				result |= 1<<i;
 242		}
 243		/*
 244		 * In case the kernel has a bug and requests a permission
 245		 * between num_perms and the maximum permission number, we
 246		 * should audit that denial
 247		 */
 248		for (; i < (sizeof(u32)*8); i++)
 249			result |= 1<<i;
 250		avd->auditdeny = result;
 251	}
 252}
 253
 254int security_mls_enabled(void)
 255{
 256	return policydb.mls_enabled;
 
 
 257}
 258
 259/*
 260 * Return the boolean value of a constraint expression
 261 * when it is applied to the specified source and target
 262 * security contexts.
 263 *
 264 * xcontext is a special beast...  It is used by the validatetrans rules
 265 * only.  For these rules, scontext is the context before the transition,
 266 * tcontext is the context after the transition, and xcontext is the context
 267 * of the process performing the transition.  All other callers of
 268 * constraint_expr_eval should pass in NULL for xcontext.
 269 */
 270static int constraint_expr_eval(struct context *scontext,
 
 271				struct context *tcontext,
 272				struct context *xcontext,
 273				struct constraint_expr *cexpr)
 274{
 275	u32 val1, val2;
 276	struct context *c;
 277	struct role_datum *r1, *r2;
 278	struct mls_level *l1, *l2;
 279	struct constraint_expr *e;
 280	int s[CEXPR_MAXDEPTH];
 281	int sp = -1;
 282
 283	for (e = cexpr; e; e = e->next) {
 284		switch (e->expr_type) {
 285		case CEXPR_NOT:
 286			BUG_ON(sp < 0);
 287			s[sp] = !s[sp];
 288			break;
 289		case CEXPR_AND:
 290			BUG_ON(sp < 1);
 291			sp--;
 292			s[sp] &= s[sp + 1];
 293			break;
 294		case CEXPR_OR:
 295			BUG_ON(sp < 1);
 296			sp--;
 297			s[sp] |= s[sp + 1];
 298			break;
 299		case CEXPR_ATTR:
 300			if (sp == (CEXPR_MAXDEPTH - 1))
 301				return 0;
 302			switch (e->attr) {
 303			case CEXPR_USER:
 304				val1 = scontext->user;
 305				val2 = tcontext->user;
 306				break;
 307			case CEXPR_TYPE:
 308				val1 = scontext->type;
 309				val2 = tcontext->type;
 310				break;
 311			case CEXPR_ROLE:
 312				val1 = scontext->role;
 313				val2 = tcontext->role;
 314				r1 = policydb.role_val_to_struct[val1 - 1];
 315				r2 = policydb.role_val_to_struct[val2 - 1];
 316				switch (e->op) {
 317				case CEXPR_DOM:
 318					s[++sp] = ebitmap_get_bit(&r1->dominates,
 319								  val2 - 1);
 320					continue;
 321				case CEXPR_DOMBY:
 322					s[++sp] = ebitmap_get_bit(&r2->dominates,
 323								  val1 - 1);
 324					continue;
 325				case CEXPR_INCOMP:
 326					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 327								    val2 - 1) &&
 328						   !ebitmap_get_bit(&r2->dominates,
 329								    val1 - 1));
 330					continue;
 331				default:
 332					break;
 333				}
 334				break;
 335			case CEXPR_L1L2:
 336				l1 = &(scontext->range.level[0]);
 337				l2 = &(tcontext->range.level[0]);
 338				goto mls_ops;
 339			case CEXPR_L1H2:
 340				l1 = &(scontext->range.level[0]);
 341				l2 = &(tcontext->range.level[1]);
 342				goto mls_ops;
 343			case CEXPR_H1L2:
 344				l1 = &(scontext->range.level[1]);
 345				l2 = &(tcontext->range.level[0]);
 346				goto mls_ops;
 347			case CEXPR_H1H2:
 348				l1 = &(scontext->range.level[1]);
 349				l2 = &(tcontext->range.level[1]);
 350				goto mls_ops;
 351			case CEXPR_L1H1:
 352				l1 = &(scontext->range.level[0]);
 353				l2 = &(scontext->range.level[1]);
 354				goto mls_ops;
 355			case CEXPR_L2H2:
 356				l1 = &(tcontext->range.level[0]);
 357				l2 = &(tcontext->range.level[1]);
 358				goto mls_ops;
 359mls_ops:
 360			switch (e->op) {
 361			case CEXPR_EQ:
 362				s[++sp] = mls_level_eq(l1, l2);
 363				continue;
 364			case CEXPR_NEQ:
 365				s[++sp] = !mls_level_eq(l1, l2);
 366				continue;
 367			case CEXPR_DOM:
 368				s[++sp] = mls_level_dom(l1, l2);
 369				continue;
 370			case CEXPR_DOMBY:
 371				s[++sp] = mls_level_dom(l2, l1);
 372				continue;
 373			case CEXPR_INCOMP:
 374				s[++sp] = mls_level_incomp(l2, l1);
 375				continue;
 376			default:
 377				BUG();
 378				return 0;
 379			}
 380			break;
 381			default:
 382				BUG();
 383				return 0;
 384			}
 385
 386			switch (e->op) {
 387			case CEXPR_EQ:
 388				s[++sp] = (val1 == val2);
 389				break;
 390			case CEXPR_NEQ:
 391				s[++sp] = (val1 != val2);
 392				break;
 393			default:
 394				BUG();
 395				return 0;
 396			}
 397			break;
 398		case CEXPR_NAMES:
 399			if (sp == (CEXPR_MAXDEPTH-1))
 400				return 0;
 401			c = scontext;
 402			if (e->attr & CEXPR_TARGET)
 403				c = tcontext;
 404			else if (e->attr & CEXPR_XTARGET) {
 405				c = xcontext;
 406				if (!c) {
 407					BUG();
 408					return 0;
 409				}
 410			}
 411			if (e->attr & CEXPR_USER)
 412				val1 = c->user;
 413			else if (e->attr & CEXPR_ROLE)
 414				val1 = c->role;
 415			else if (e->attr & CEXPR_TYPE)
 416				val1 = c->type;
 417			else {
 418				BUG();
 419				return 0;
 420			}
 421
 422			switch (e->op) {
 423			case CEXPR_EQ:
 424				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 425				break;
 426			case CEXPR_NEQ:
 427				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 428				break;
 429			default:
 430				BUG();
 431				return 0;
 432			}
 433			break;
 434		default:
 435			BUG();
 436			return 0;
 437		}
 438	}
 439
 440	BUG_ON(sp != 0);
 441	return s[0];
 442}
 443
 444/*
 445 * security_dump_masked_av - dumps masked permissions during
 446 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 447 */
 448static int dump_masked_av_helper(void *k, void *d, void *args)
 449{
 450	struct perm_datum *pdatum = d;
 451	char **permission_names = args;
 452
 453	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 454
 455	permission_names[pdatum->value - 1] = (char *)k;
 456
 457	return 0;
 458}
 459
 460static void security_dump_masked_av(struct context *scontext,
 
 461				    struct context *tcontext,
 462				    u16 tclass,
 463				    u32 permissions,
 464				    const char *reason)
 465{
 466	struct common_datum *common_dat;
 467	struct class_datum *tclass_dat;
 468	struct audit_buffer *ab;
 469	char *tclass_name;
 470	char *scontext_name = NULL;
 471	char *tcontext_name = NULL;
 472	char *permission_names[32];
 473	int index;
 474	u32 length;
 475	bool need_comma = false;
 476
 477	if (!permissions)
 478		return;
 479
 480	tclass_name = sym_name(&policydb, SYM_CLASSES, tclass - 1);
 481	tclass_dat = policydb.class_val_to_struct[tclass - 1];
 482	common_dat = tclass_dat->comdatum;
 483
 484	/* init permission_names */
 485	if (common_dat &&
 486	    hashtab_map(common_dat->permissions.table,
 487			dump_masked_av_helper, permission_names) < 0)
 488		goto out;
 489
 490	if (hashtab_map(tclass_dat->permissions.table,
 491			dump_masked_av_helper, permission_names) < 0)
 492		goto out;
 493
 494	/* get scontext/tcontext in text form */
 495	if (context_struct_to_string(scontext,
 496				     &scontext_name, &length) < 0)
 497		goto out;
 498
 499	if (context_struct_to_string(tcontext,
 500				     &tcontext_name, &length) < 0)
 501		goto out;
 502
 503	/* audit a message */
 504	ab = audit_log_start(current->audit_context,
 505			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 506	if (!ab)
 507		goto out;
 508
 509	audit_log_format(ab, "op=security_compute_av reason=%s "
 510			 "scontext=%s tcontext=%s tclass=%s perms=",
 511			 reason, scontext_name, tcontext_name, tclass_name);
 512
 513	for (index = 0; index < 32; index++) {
 514		u32 mask = (1 << index);
 515
 516		if ((mask & permissions) == 0)
 517			continue;
 518
 519		audit_log_format(ab, "%s%s",
 520				 need_comma ? "," : "",
 521				 permission_names[index]
 522				 ? permission_names[index] : "????");
 523		need_comma = true;
 524	}
 525	audit_log_end(ab);
 526out:
 527	/* release scontext/tcontext */
 528	kfree(tcontext_name);
 529	kfree(scontext_name);
 530
 531	return;
 532}
 533
 534/*
 535 * security_boundary_permission - drops violated permissions
 536 * on boundary constraint.
 537 */
 538static void type_attribute_bounds_av(struct context *scontext,
 
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = flex_array_get_ptr(policydb.type_val_to_struct_array,
 551				    scontext->type - 1);
 552	BUG_ON(!source);
 553
 554	target = flex_array_get_ptr(policydb.type_val_to_struct_array,
 555				    tcontext->type - 1);
 556	BUG_ON(!target);
 557
 558	if (source->bounds) {
 559		memset(&lo_avd, 0, sizeof(lo_avd));
 560
 561		memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562		lo_scontext.type = source->bounds;
 563
 564		context_struct_compute_av(&lo_scontext,
 565					  tcontext,
 566					  tclass,
 567					  &lo_avd);
 568		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 569			return;		/* no masked permission */
 570		masked = ~lo_avd.allowed & avd->allowed;
 571	}
 572
 573	if (target->bounds) {
 574		memset(&lo_avd, 0, sizeof(lo_avd));
 575
 576		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 577		lo_tcontext.type = target->bounds;
 578
 579		context_struct_compute_av(scontext,
 580					  &lo_tcontext,
 581					  tclass,
 582					  &lo_avd);
 583		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 584			return;		/* no masked permission */
 585		masked = ~lo_avd.allowed & avd->allowed;
 586	}
 587
 588	if (source->bounds && target->bounds) {
 589		memset(&lo_avd, 0, sizeof(lo_avd));
 590		/*
 591		 * lo_scontext and lo_tcontext are already
 592		 * set up.
 593		 */
 594
 595		context_struct_compute_av(&lo_scontext,
 596					  &lo_tcontext,
 597					  tclass,
 598					  &lo_avd);
 599		if ((lo_avd.allowed & avd->allowed) == avd->allowed)
 600			return;		/* no masked permission */
 601		masked = ~lo_avd.allowed & avd->allowed;
 602	}
 603
 604	if (masked) {
 605		/* mask violated permissions */
 606		avd->allowed &= ~masked;
 607
 608		/* audit masked permissions */
 609		security_dump_masked_av(scontext, tcontext,
 610					tclass, masked, "bounds");
 611	}
 612}
 613
 614/*
 615 * Compute access vectors based on a context structure pair for
 616 * the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct context *scontext,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 619				      struct context *tcontext,
 620				      u16 tclass,
 621				      struct av_decision *avd)
 
 622{
 623	struct constraint_node *constraint;
 624	struct role_allow *ra;
 625	struct avtab_key avkey;
 626	struct avtab_node *node;
 627	struct class_datum *tclass_datum;
 628	struct ebitmap *sattr, *tattr;
 629	struct ebitmap_node *snode, *tnode;
 630	unsigned int i, j;
 631
 632	avd->allowed = 0;
 633	avd->auditallow = 0;
 634	avd->auditdeny = 0xffffffff;
 
 
 
 
 635
 636	if (unlikely(!tclass || tclass > policydb.p_classes.nprim)) {
 637		if (printk_ratelimit())
 638			printk(KERN_WARNING "SELinux:  Invalid class %hu\n", tclass);
 639		return;
 640	}
 641
 642	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 643
 644	/*
 645	 * If a specific type enforcement rule was defined for
 646	 * this permission check, then use it.
 647	 */
 648	avkey.target_class = tclass;
 649	avkey.specified = AVTAB_AV;
 650	sattr = flex_array_get(policydb.type_attr_map_array, scontext->type - 1);
 651	BUG_ON(!sattr);
 652	tattr = flex_array_get(policydb.type_attr_map_array, tcontext->type - 1);
 653	BUG_ON(!tattr);
 654	ebitmap_for_each_positive_bit(sattr, snode, i) {
 655		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 656			avkey.source_type = i + 1;
 657			avkey.target_type = j + 1;
 658			for (node = avtab_search_node(&policydb.te_avtab, &avkey);
 
 659			     node;
 660			     node = avtab_search_node_next(node, avkey.specified)) {
 661				if (node->key.specified == AVTAB_ALLOWED)
 662					avd->allowed |= node->datum.data;
 663				else if (node->key.specified == AVTAB_AUDITALLOW)
 664					avd->auditallow |= node->datum.data;
 665				else if (node->key.specified == AVTAB_AUDITDENY)
 666					avd->auditdeny &= node->datum.data;
 
 
 667			}
 668
 669			/* Check conditional av table for additional permissions */
 670			cond_compute_av(&policydb.te_cond_avtab, &avkey, avd);
 
 671
 672		}
 673	}
 674
 675	/*
 676	 * Remove any permissions prohibited by a constraint (this includes
 677	 * the MLS policy).
 678	 */
 679	constraint = tclass_datum->constraints;
 680	while (constraint) {
 681		if ((constraint->permissions & (avd->allowed)) &&
 682		    !constraint_expr_eval(scontext, tcontext, NULL,
 683					  constraint->expr)) {
 684			avd->allowed &= ~(constraint->permissions);
 685		}
 686		constraint = constraint->next;
 687	}
 688
 689	/*
 690	 * If checking process transition permission and the
 691	 * role is changing, then check the (current_role, new_role)
 692	 * pair.
 693	 */
 694	if (tclass == policydb.process_class &&
 695	    (avd->allowed & policydb.process_trans_perms) &&
 696	    scontext->role != tcontext->role) {
 697		for (ra = policydb.role_allow; ra; ra = ra->next) {
 698			if (scontext->role == ra->role &&
 699			    tcontext->role == ra->new_role)
 700				break;
 701		}
 702		if (!ra)
 703			avd->allowed &= ~policydb.process_trans_perms;
 704	}
 705
 706	/*
 707	 * If the given source and target types have boundary
 708	 * constraint, lazy checks have to mask any violated
 709	 * permission and notice it to userspace via audit.
 710	 */
 711	type_attribute_bounds_av(scontext, tcontext,
 712				 tclass, avd);
 713}
 714
 715static int security_validtrans_handle_fail(struct context *ocontext,
 716					   struct context *ncontext,
 717					   struct context *tcontext,
 
 718					   u16 tclass)
 719{
 
 
 720	char *o = NULL, *n = NULL, *t = NULL;
 721	u32 olen, nlen, tlen;
 722
 723	if (context_struct_to_string(ocontext, &o, &olen))
 724		goto out;
 725	if (context_struct_to_string(ncontext, &n, &nlen))
 726		goto out;
 727	if (context_struct_to_string(tcontext, &t, &tlen))
 728		goto out;
 729	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
 730		  "security_validate_transition:  denied for"
 731		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 732		  o, n, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 733out:
 734	kfree(o);
 735	kfree(n);
 736	kfree(t);
 737
 738	if (!selinux_enforcing)
 739		return 0;
 740	return -EPERM;
 741}
 742
 743int security_validate_transition(u32 oldsid, u32 newsid, u32 tasksid,
 744				 u16 orig_tclass)
 745{
 746	struct context *ocontext;
 747	struct context *ncontext;
 748	struct context *tcontext;
 
 
 
 749	struct class_datum *tclass_datum;
 750	struct constraint_node *constraint;
 751	u16 tclass;
 752	int rc = 0;
 753
 754	if (!ss_initialized)
 
 755		return 0;
 756
 757	read_lock(&policy_rwlock);
 
 
 
 758
 759	tclass = unmap_class(orig_tclass);
 
 
 
 760
 761	if (!tclass || tclass > policydb.p_classes.nprim) {
 762		printk(KERN_ERR "SELinux: %s:  unrecognized class %d\n",
 763			__func__, tclass);
 764		rc = -EINVAL;
 765		goto out;
 766	}
 767	tclass_datum = policydb.class_val_to_struct[tclass - 1];
 768
 769	ocontext = sidtab_search(&sidtab, oldsid);
 770	if (!ocontext) {
 771		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 772			__func__, oldsid);
 773		rc = -EINVAL;
 774		goto out;
 775	}
 776
 777	ncontext = sidtab_search(&sidtab, newsid);
 778	if (!ncontext) {
 779		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 780			__func__, newsid);
 781		rc = -EINVAL;
 782		goto out;
 783	}
 784
 785	tcontext = sidtab_search(&sidtab, tasksid);
 786	if (!tcontext) {
 787		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 788			__func__, tasksid);
 789		rc = -EINVAL;
 790		goto out;
 791	}
 792
 793	constraint = tclass_datum->validatetrans;
 794	while (constraint) {
 795		if (!constraint_expr_eval(ocontext, ncontext, tcontext,
 
 796					  constraint->expr)) {
 797			rc = security_validtrans_handle_fail(ocontext, ncontext,
 798							     tcontext, tclass);
 
 
 
 
 
 
 799			goto out;
 800		}
 801		constraint = constraint->next;
 802	}
 803
 804out:
 805	read_unlock(&policy_rwlock);
 806	return rc;
 807}
 808
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 809/*
 810 * security_bounded_transition - check whether the given
 811 * transition is directed to bounded, or not.
 812 * It returns 0, if @newsid is bounded by @oldsid.
 813 * Otherwise, it returns error code.
 814 *
 815 * @oldsid : current security identifier
 816 * @newsid : destinated security identifier
 817 */
 818int security_bounded_transition(u32 old_sid, u32 new_sid)
 
 819{
 820	struct context *old_context, *new_context;
 
 
 821	struct type_datum *type;
 822	int index;
 823	int rc;
 824
 825	read_lock(&policy_rwlock);
 
 
 
 
 
 
 826
 827	rc = -EINVAL;
 828	old_context = sidtab_search(&sidtab, old_sid);
 829	if (!old_context) {
 830		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 831		       __func__, old_sid);
 832		goto out;
 833	}
 834
 835	rc = -EINVAL;
 836	new_context = sidtab_search(&sidtab, new_sid);
 837	if (!new_context) {
 838		printk(KERN_ERR "SELinux: %s: unrecognized SID %u\n",
 839		       __func__, new_sid);
 840		goto out;
 841	}
 842
 843	rc = 0;
 844	/* type/domain unchanged */
 845	if (old_context->type == new_context->type)
 846		goto out;
 847
 848	index = new_context->type;
 849	while (true) {
 850		type = flex_array_get_ptr(policydb.type_val_to_struct_array,
 851					  index - 1);
 852		BUG_ON(!type);
 853
 854		/* not bounded anymore */
 855		rc = -EPERM;
 856		if (!type->bounds)
 857			break;
 858
 859		/* @newsid is bounded by @oldsid */
 860		rc = 0;
 861		if (type->bounds == old_context->type)
 862			break;
 863
 864		index = type->bounds;
 865	}
 866
 867	if (rc) {
 868		char *old_name = NULL;
 869		char *new_name = NULL;
 870		u32 length;
 871
 872		if (!context_struct_to_string(old_context,
 873					      &old_name, &length) &&
 874		    !context_struct_to_string(new_context,
 875					      &new_name, &length)) {
 876			audit_log(current->audit_context,
 877				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 878				  "op=security_bounded_transition "
 879				  "result=denied "
 880				  "oldcontext=%s newcontext=%s",
 881				  old_name, new_name);
 882		}
 883		kfree(new_name);
 884		kfree(old_name);
 885	}
 886out:
 887	read_unlock(&policy_rwlock);
 888
 889	return rc;
 890}
 891
 892static void avd_init(struct av_decision *avd)
 893{
 894	avd->allowed = 0;
 895	avd->auditallow = 0;
 896	avd->auditdeny = 0xffffffff;
 897	avd->seqno = latest_granting;
 898	avd->flags = 0;
 899}
 900
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 901
 902/**
 903 * security_compute_av - Compute access vector decisions.
 904 * @ssid: source security identifier
 905 * @tsid: target security identifier
 906 * @tclass: target security class
 907 * @avd: access vector decisions
 
 908 *
 909 * Compute a set of access vector decisions based on the
 910 * SID pair (@ssid, @tsid) for the permissions in @tclass.
 911 */
 912void security_compute_av(u32 ssid,
 
 913			 u32 tsid,
 914			 u16 orig_tclass,
 915			 struct av_decision *avd)
 
 916{
 
 
 917	u16 tclass;
 918	struct context *scontext = NULL, *tcontext = NULL;
 919
 920	read_lock(&policy_rwlock);
 921	avd_init(avd);
 922	if (!ss_initialized)
 
 923		goto allow;
 924
 925	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 926	if (!scontext) {
 927		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 928		       __func__, ssid);
 929		goto out;
 930	}
 931
 932	/* permissive domain? */
 933	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 934		avd->flags |= AVD_FLAGS_PERMISSIVE;
 935
 936	tcontext = sidtab_search(&sidtab, tsid);
 937	if (!tcontext) {
 938		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 939		       __func__, tsid);
 940		goto out;
 941	}
 942
 943	tclass = unmap_class(orig_tclass);
 944	if (unlikely(orig_tclass && !tclass)) {
 945		if (policydb.allow_unknown)
 946			goto allow;
 947		goto out;
 948	}
 949	context_struct_compute_av(scontext, tcontext, tclass, avd);
 950	map_decision(orig_tclass, avd, policydb.allow_unknown);
 
 
 951out:
 952	read_unlock(&policy_rwlock);
 953	return;
 954allow:
 955	avd->allowed = 0xffffffff;
 956	goto out;
 957}
 958
 959void security_compute_av_user(u32 ssid,
 
 960			      u32 tsid,
 961			      u16 tclass,
 962			      struct av_decision *avd)
 963{
 
 
 964	struct context *scontext = NULL, *tcontext = NULL;
 965
 966	read_lock(&policy_rwlock);
 967	avd_init(avd);
 968	if (!ss_initialized)
 969		goto allow;
 970
 971	scontext = sidtab_search(&sidtab, ssid);
 
 
 
 972	if (!scontext) {
 973		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 974		       __func__, ssid);
 975		goto out;
 976	}
 977
 978	/* permissive domain? */
 979	if (ebitmap_get_bit(&policydb.permissive_map, scontext->type))
 980		avd->flags |= AVD_FLAGS_PERMISSIVE;
 981
 982	tcontext = sidtab_search(&sidtab, tsid);
 983	if (!tcontext) {
 984		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 985		       __func__, tsid);
 986		goto out;
 987	}
 988
 989	if (unlikely(!tclass)) {
 990		if (policydb.allow_unknown)
 991			goto allow;
 992		goto out;
 993	}
 994
 995	context_struct_compute_av(scontext, tcontext, tclass, avd);
 
 996 out:
 997	read_unlock(&policy_rwlock);
 998	return;
 999allow:
1000	avd->allowed = 0xffffffff;
1001	goto out;
1002}
1003
1004/*
1005 * Write the security context string representation of
1006 * the context structure `context' into a dynamically
1007 * allocated string of the correct size.  Set `*scontext'
1008 * to point to this string and set `*scontext_len' to
1009 * the length of the string.
1010 */
1011static int context_struct_to_string(struct context *context, char **scontext, u32 *scontext_len)
 
 
1012{
1013	char *scontextp;
1014
1015	if (scontext)
1016		*scontext = NULL;
1017	*scontext_len = 0;
1018
1019	if (context->len) {
1020		*scontext_len = context->len;
1021		if (scontext) {
1022			*scontext = kstrdup(context->str, GFP_ATOMIC);
1023			if (!(*scontext))
1024				return -ENOMEM;
1025		}
1026		return 0;
1027	}
1028
1029	/* Compute the size of the context. */
1030	*scontext_len += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) + 1;
1031	*scontext_len += strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) + 1;
1032	*scontext_len += strlen(sym_name(&policydb, SYM_TYPES, context->type - 1)) + 1;
1033	*scontext_len += mls_compute_context_len(context);
1034
1035	if (!scontext)
1036		return 0;
1037
1038	/* Allocate space for the context; caller must free this space. */
1039	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1040	if (!scontextp)
1041		return -ENOMEM;
1042	*scontext = scontextp;
1043
1044	/*
1045	 * Copy the user name, role name and type name into the context.
1046	 */
1047	sprintf(scontextp, "%s:%s:%s",
1048		sym_name(&policydb, SYM_USERS, context->user - 1),
1049		sym_name(&policydb, SYM_ROLES, context->role - 1),
1050		sym_name(&policydb, SYM_TYPES, context->type - 1));
1051	scontextp += strlen(sym_name(&policydb, SYM_USERS, context->user - 1)) +
1052		     1 + strlen(sym_name(&policydb, SYM_ROLES, context->role - 1)) +
1053		     1 + strlen(sym_name(&policydb, SYM_TYPES, context->type - 1));
1054
1055	mls_sid_to_context(context, &scontextp);
1056
1057	*scontextp = 0;
1058
1059	return 0;
1060}
1061
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1062#include "initial_sid_to_string.h"
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064const char *security_get_initial_sid_context(u32 sid)
1065{
1066	if (unlikely(sid > SECINITSID_NUM))
1067		return NULL;
1068	return initial_sid_to_string[sid];
1069}
1070
1071static int security_sid_to_context_core(u32 sid, char **scontext,
1072					u32 *scontext_len, int force)
1073{
1074	struct context *context;
 
 
 
 
1075	int rc = 0;
1076
1077	if (scontext)
1078		*scontext = NULL;
1079	*scontext_len  = 0;
1080
1081	if (!ss_initialized) {
1082		if (sid <= SECINITSID_NUM) {
1083			char *scontextp;
 
1084
1085			*scontext_len = strlen(initial_sid_to_string[sid]) + 1;
 
 
1086			if (!scontext)
1087				goto out;
1088			scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1089			if (!scontextp) {
1090				rc = -ENOMEM;
1091				goto out;
1092			}
1093			strcpy(scontextp, initial_sid_to_string[sid]);
1094			*scontext = scontextp;
1095			goto out;
1096		}
1097		printk(KERN_ERR "SELinux: %s:  called before initial "
1098		       "load_policy on unknown SID %d\n", __func__, sid);
1099		rc = -EINVAL;
1100		goto out;
1101	}
1102	read_lock(&policy_rwlock);
 
 
 
1103	if (force)
1104		context = sidtab_search_force(&sidtab, sid);
1105	else
1106		context = sidtab_search(&sidtab, sid);
1107	if (!context) {
1108		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1109			__func__, sid);
1110		rc = -EINVAL;
1111		goto out_unlock;
1112	}
1113	rc = context_struct_to_string(context, scontext, scontext_len);
 
 
 
 
 
1114out_unlock:
1115	read_unlock(&policy_rwlock);
1116out:
1117	return rc;
1118
1119}
1120
1121/**
1122 * security_sid_to_context - Obtain a context for a given SID.
1123 * @sid: security identifier, SID
1124 * @scontext: security context
1125 * @scontext_len: length in bytes
1126 *
1127 * Write the string representation of the context associated with @sid
1128 * into a dynamically allocated string of the correct size.  Set @scontext
1129 * to point to this string and set @scontext_len to the length of the string.
1130 */
1131int security_sid_to_context(u32 sid, char **scontext, u32 *scontext_len)
 
1132{
1133	return security_sid_to_context_core(sid, scontext, scontext_len, 0);
 
1134}
1135
1136int security_sid_to_context_force(u32 sid, char **scontext, u32 *scontext_len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1137{
1138	return security_sid_to_context_core(sid, scontext, scontext_len, 1);
 
1139}
1140
1141/*
1142 * Caveat:  Mutates scontext.
1143 */
1144static int string_to_context_struct(struct policydb *pol,
1145				    struct sidtab *sidtabp,
1146				    char *scontext,
1147				    u32 scontext_len,
1148				    struct context *ctx,
1149				    u32 def_sid)
1150{
1151	struct role_datum *role;
1152	struct type_datum *typdatum;
1153	struct user_datum *usrdatum;
1154	char *scontextp, *p, oldc;
1155	int rc = 0;
1156
1157	context_init(ctx);
1158
1159	/* Parse the security context. */
1160
1161	rc = -EINVAL;
1162	scontextp = (char *) scontext;
1163
1164	/* Extract the user. */
1165	p = scontextp;
1166	while (*p && *p != ':')
1167		p++;
1168
1169	if (*p == 0)
1170		goto out;
1171
1172	*p++ = 0;
1173
1174	usrdatum = hashtab_search(pol->p_users.table, scontextp);
1175	if (!usrdatum)
1176		goto out;
1177
1178	ctx->user = usrdatum->value;
1179
1180	/* Extract role. */
1181	scontextp = p;
1182	while (*p && *p != ':')
1183		p++;
1184
1185	if (*p == 0)
1186		goto out;
1187
1188	*p++ = 0;
1189
1190	role = hashtab_search(pol->p_roles.table, scontextp);
1191	if (!role)
1192		goto out;
1193	ctx->role = role->value;
1194
1195	/* Extract type. */
1196	scontextp = p;
1197	while (*p && *p != ':')
1198		p++;
1199	oldc = *p;
1200	*p++ = 0;
1201
1202	typdatum = hashtab_search(pol->p_types.table, scontextp);
1203	if (!typdatum || typdatum->attribute)
1204		goto out;
1205
1206	ctx->type = typdatum->value;
1207
1208	rc = mls_context_to_sid(pol, oldc, &p, ctx, sidtabp, def_sid);
1209	if (rc)
1210		goto out;
1211
1212	rc = -EINVAL;
1213	if ((p - scontext) < scontext_len)
1214		goto out;
1215
1216	/* Check the validity of the new context. */
 
1217	if (!policydb_context_isvalid(pol, ctx))
1218		goto out;
1219	rc = 0;
1220out:
1221	if (rc)
1222		context_destroy(ctx);
1223	return rc;
1224}
1225
1226static int security_context_to_sid_core(const char *scontext, u32 scontext_len,
 
1227					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1228					int force)
1229{
 
 
1230	char *scontext2, *str = NULL;
1231	struct context context;
1232	int rc = 0;
1233
1234	if (!ss_initialized) {
 
 
 
 
 
 
 
 
 
1235		int i;
1236
1237		for (i = 1; i < SECINITSID_NUM; i++) {
1238			if (!strcmp(initial_sid_to_string[i], scontext)) {
 
 
1239				*sid = i;
1240				return 0;
1241			}
1242		}
1243		*sid = SECINITSID_KERNEL;
1244		return 0;
1245	}
1246	*sid = SECSID_NULL;
1247
1248	/* Copy the string so that we can modify the copy as we parse it. */
1249	scontext2 = kmalloc(scontext_len + 1, gfp_flags);
1250	if (!scontext2)
1251		return -ENOMEM;
1252	memcpy(scontext2, scontext, scontext_len);
1253	scontext2[scontext_len] = 0;
1254
1255	if (force) {
1256		/* Save another copy for storing in uninterpreted form */
1257		rc = -ENOMEM;
1258		str = kstrdup(scontext2, gfp_flags);
1259		if (!str)
1260			goto out;
1261	}
1262
1263	read_lock(&policy_rwlock);
1264	rc = string_to_context_struct(&policydb, &sidtab, scontext2,
1265				      scontext_len, &context, def_sid);
 
1266	if (rc == -EINVAL && force) {
1267		context.str = str;
1268		context.len = scontext_len;
1269		str = NULL;
1270	} else if (rc)
1271		goto out_unlock;
1272	rc = sidtab_context_to_sid(&sidtab, &context, sid);
1273	context_destroy(&context);
1274out_unlock:
1275	read_unlock(&policy_rwlock);
1276out:
1277	kfree(scontext2);
1278	kfree(str);
1279	return rc;
1280}
1281
1282/**
1283 * security_context_to_sid - Obtain a SID for a given security context.
1284 * @scontext: security context
1285 * @scontext_len: length in bytes
1286 * @sid: security identifier, SID
 
1287 *
1288 * Obtains a SID associated with the security context that
1289 * has the string representation specified by @scontext.
1290 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1291 * memory is available, or 0 on success.
1292 */
1293int security_context_to_sid(const char *scontext, u32 scontext_len, u32 *sid)
 
 
 
 
 
 
 
 
 
1294{
1295	return security_context_to_sid_core(scontext, scontext_len,
1296					    sid, SECSID_NULL, GFP_KERNEL, 0);
1297}
1298
1299/**
1300 * security_context_to_sid_default - Obtain a SID for a given security context,
1301 * falling back to specified default if needed.
1302 *
1303 * @scontext: security context
1304 * @scontext_len: length in bytes
1305 * @sid: security identifier, SID
1306 * @def_sid: default SID to assign on error
1307 *
1308 * Obtains a SID associated with the security context that
1309 * has the string representation specified by @scontext.
1310 * The default SID is passed to the MLS layer to be used to allow
1311 * kernel labeling of the MLS field if the MLS field is not present
1312 * (for upgrading to MLS without full relabel).
1313 * Implicitly forces adding of the context even if it cannot be mapped yet.
1314 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1315 * memory is available, or 0 on success.
1316 */
1317int security_context_to_sid_default(const char *scontext, u32 scontext_len,
 
1318				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1319{
1320	return security_context_to_sid_core(scontext, scontext_len,
1321					    sid, def_sid, gfp_flags, 1);
1322}
1323
1324int security_context_to_sid_force(const char *scontext, u32 scontext_len,
 
1325				  u32 *sid)
1326{
1327	return security_context_to_sid_core(scontext, scontext_len,
1328					    sid, SECSID_NULL, GFP_KERNEL, 1);
1329}
1330
1331static int compute_sid_handle_invalid_context(
1332	struct context *scontext,
1333	struct context *tcontext,
 
1334	u16 tclass,
1335	struct context *newcontext)
1336{
 
 
1337	char *s = NULL, *t = NULL, *n = NULL;
1338	u32 slen, tlen, nlen;
 
1339
1340	if (context_struct_to_string(scontext, &s, &slen))
1341		goto out;
1342	if (context_struct_to_string(tcontext, &t, &tlen))
1343		goto out;
1344	if (context_struct_to_string(newcontext, &n, &nlen))
1345		goto out;
1346	audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
1347		  "security_compute_sid:  invalid context %s"
1348		  " for scontext=%s"
1349		  " tcontext=%s"
1350		  " tclass=%s",
1351		  n, s, t, sym_name(&policydb, SYM_CLASSES, tclass-1));
 
 
1352out:
1353	kfree(s);
1354	kfree(t);
1355	kfree(n);
1356	if (!selinux_enforcing)
1357		return 0;
1358	return -EACCES;
1359}
1360
1361static void filename_compute_type(struct policydb *p, struct context *newcontext,
 
1362				  u32 stype, u32 ttype, u16 tclass,
1363				  const char *objname)
1364{
1365	struct filename_trans ft;
1366	struct filename_trans_datum *otype;
1367
1368	/*
1369	 * Most filename trans rules are going to live in specific directories
1370	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1371	 * if the ttype does not contain any rules.
1372	 */
1373	if (!ebitmap_get_bit(&p->filename_trans_ttypes, ttype))
1374		return;
1375
1376	ft.stype = stype;
1377	ft.ttype = ttype;
1378	ft.tclass = tclass;
1379	ft.name = objname;
1380
1381	otype = hashtab_search(p->filename_trans, &ft);
1382	if (otype)
1383		newcontext->type = otype->otype;
 
 
 
 
 
1384}
1385
1386static int security_compute_sid(u32 ssid,
 
1387				u32 tsid,
1388				u16 orig_tclass,
1389				u32 specified,
1390				const char *objname,
1391				u32 *out_sid,
1392				bool kern)
1393{
 
 
1394	struct class_datum *cladatum = NULL;
1395	struct context *scontext = NULL, *tcontext = NULL, newcontext;
1396	struct role_trans *roletr = NULL;
1397	struct avtab_key avkey;
1398	struct avtab_datum *avdatum;
1399	struct avtab_node *node;
1400	u16 tclass;
1401	int rc = 0;
1402	bool sock;
1403
1404	if (!ss_initialized) {
1405		switch (orig_tclass) {
1406		case SECCLASS_PROCESS: /* kernel value */
1407			*out_sid = ssid;
1408			break;
1409		default:
1410			*out_sid = tsid;
1411			break;
1412		}
1413		goto out;
1414	}
1415
1416	context_init(&newcontext);
1417
1418	read_lock(&policy_rwlock);
1419
1420	if (kern) {
1421		tclass = unmap_class(orig_tclass);
1422		sock = security_is_socket_class(orig_tclass);
1423	} else {
1424		tclass = orig_tclass;
1425		sock = security_is_socket_class(map_class(tclass));
 
1426	}
1427
1428	scontext = sidtab_search(&sidtab, ssid);
1429	if (!scontext) {
1430		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
 
 
 
1431		       __func__, ssid);
1432		rc = -EINVAL;
1433		goto out_unlock;
1434	}
1435	tcontext = sidtab_search(&sidtab, tsid);
1436	if (!tcontext) {
1437		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
1438		       __func__, tsid);
1439		rc = -EINVAL;
1440		goto out_unlock;
1441	}
1442
1443	if (tclass && tclass <= policydb.p_classes.nprim)
1444		cladatum = policydb.class_val_to_struct[tclass - 1];
 
 
 
1445
1446	/* Set the user identity. */
1447	switch (specified) {
1448	case AVTAB_TRANSITION:
1449	case AVTAB_CHANGE:
1450		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1451			newcontext.user = tcontext->user;
1452		} else {
1453			/* notice this gets both DEFAULT_SOURCE and unset */
1454			/* Use the process user identity. */
1455			newcontext.user = scontext->user;
1456		}
1457		break;
1458	case AVTAB_MEMBER:
1459		/* Use the related object owner. */
1460		newcontext.user = tcontext->user;
1461		break;
1462	}
1463
1464	/* Set the role to default values. */
1465	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1466		newcontext.role = scontext->role;
1467	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1468		newcontext.role = tcontext->role;
1469	} else {
1470		if ((tclass == policydb.process_class) || (sock == true))
1471			newcontext.role = scontext->role;
1472		else
1473			newcontext.role = OBJECT_R_VAL;
1474	}
1475
1476	/* Set the type to default values. */
1477	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1478		newcontext.type = scontext->type;
1479	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1480		newcontext.type = tcontext->type;
1481	} else {
1482		if ((tclass == policydb.process_class) || (sock == true)) {
1483			/* Use the type of process. */
1484			newcontext.type = scontext->type;
1485		} else {
1486			/* Use the type of the related object. */
1487			newcontext.type = tcontext->type;
1488		}
1489	}
1490
1491	/* Look for a type transition/member/change rule. */
1492	avkey.source_type = scontext->type;
1493	avkey.target_type = tcontext->type;
1494	avkey.target_class = tclass;
1495	avkey.specified = specified;
1496	avdatum = avtab_search(&policydb.te_avtab, &avkey);
1497
1498	/* If no permanent rule, also check for enabled conditional rules */
1499	if (!avdatum) {
1500		node = avtab_search_node(&policydb.te_cond_avtab, &avkey);
1501		for (; node; node = avtab_search_node_next(node, specified)) {
1502			if (node->key.specified & AVTAB_ENABLED) {
1503				avdatum = &node->datum;
1504				break;
1505			}
1506		}
1507	}
1508
1509	if (avdatum) {
1510		/* Use the type from the type transition/member/change rule. */
1511		newcontext.type = avdatum->data;
1512	}
1513
1514	/* if we have a objname this is a file trans check so check those rules */
1515	if (objname)
1516		filename_compute_type(&policydb, &newcontext, scontext->type,
1517				      tcontext->type, tclass, objname);
1518
1519	/* Check for class-specific changes. */
1520	if (specified & AVTAB_TRANSITION) {
1521		/* Look for a role transition rule. */
1522		for (roletr = policydb.role_tr; roletr; roletr = roletr->next) {
1523			if ((roletr->role == scontext->role) &&
1524			    (roletr->type == tcontext->type) &&
1525			    (roletr->tclass == tclass)) {
1526				/* Use the role transition rule. */
1527				newcontext.role = roletr->new_role;
1528				break;
1529			}
1530		}
 
1531	}
1532
1533	/* Set the MLS attributes.
1534	   This is done last because it may allocate memory. */
1535	rc = mls_compute_sid(scontext, tcontext, tclass, specified,
1536			     &newcontext, sock);
1537	if (rc)
1538		goto out_unlock;
1539
1540	/* Check the validity of the context. */
1541	if (!policydb_context_isvalid(&policydb, &newcontext)) {
1542		rc = compute_sid_handle_invalid_context(scontext,
1543							tcontext,
1544							tclass,
1545							&newcontext);
1546		if (rc)
1547			goto out_unlock;
1548	}
1549	/* Obtain the sid for the context. */
1550	rc = sidtab_context_to_sid(&sidtab, &newcontext, out_sid);
1551out_unlock:
1552	read_unlock(&policy_rwlock);
1553	context_destroy(&newcontext);
1554out:
1555	return rc;
1556}
1557
1558/**
1559 * security_transition_sid - Compute the SID for a new subject/object.
1560 * @ssid: source security identifier
1561 * @tsid: target security identifier
1562 * @tclass: target security class
1563 * @out_sid: security identifier for new subject/object
1564 *
1565 * Compute a SID to use for labeling a new subject or object in the
1566 * class @tclass based on a SID pair (@ssid, @tsid).
1567 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1568 * if insufficient memory is available, or %0 if the new SID was
1569 * computed successfully.
1570 */
1571int security_transition_sid(u32 ssid, u32 tsid, u16 tclass,
 
1572			    const struct qstr *qstr, u32 *out_sid)
1573{
1574	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1575				    qstr ? qstr->name : NULL, out_sid, true);
1576}
1577
1578int security_transition_sid_user(u32 ssid, u32 tsid, u16 tclass,
 
1579				 const char *objname, u32 *out_sid)
1580{
1581	return security_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION,
 
1582				    objname, out_sid, false);
1583}
1584
1585/**
1586 * security_member_sid - Compute the SID for member selection.
1587 * @ssid: source security identifier
1588 * @tsid: target security identifier
1589 * @tclass: target security class
1590 * @out_sid: security identifier for selected member
1591 *
1592 * Compute a SID to use when selecting a member of a polyinstantiated
1593 * object of class @tclass based on a SID pair (@ssid, @tsid).
1594 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1595 * if insufficient memory is available, or %0 if the SID was
1596 * computed successfully.
1597 */
1598int security_member_sid(u32 ssid,
 
1599			u32 tsid,
1600			u16 tclass,
1601			u32 *out_sid)
1602{
1603	return security_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, NULL,
 
1604				    out_sid, false);
1605}
1606
1607/**
1608 * security_change_sid - Compute the SID for object relabeling.
1609 * @ssid: source security identifier
1610 * @tsid: target security identifier
1611 * @tclass: target security class
1612 * @out_sid: security identifier for selected member
1613 *
1614 * Compute a SID to use for relabeling an object of class @tclass
1615 * based on a SID pair (@ssid, @tsid).
1616 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1617 * if insufficient memory is available, or %0 if the SID was
1618 * computed successfully.
1619 */
1620int security_change_sid(u32 ssid,
 
1621			u32 tsid,
1622			u16 tclass,
1623			u32 *out_sid)
1624{
1625	return security_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, NULL,
 
1626				    out_sid, false);
1627}
1628
1629/* Clone the SID into the new SID table. */
1630static int clone_sid(u32 sid,
1631		     struct context *context,
1632		     void *arg)
1633{
1634	struct sidtab *s = arg;
1635
1636	if (sid > SECINITSID_NUM)
1637		return sidtab_insert(s, sid, context);
1638	else
1639		return 0;
1640}
1641
1642static inline int convert_context_handle_invalid_context(struct context *context)
1643{
 
1644	char *s;
1645	u32 len;
1646
1647	if (selinux_enforcing)
1648		return -EINVAL;
1649
1650	if (!context_struct_to_string(context, &s, &len)) {
1651		printk(KERN_WARNING "SELinux:  Context %s would be invalid if enforcing\n", s);
 
1652		kfree(s);
1653	}
1654	return 0;
1655}
1656
1657struct convert_context_args {
 
1658	struct policydb *oldp;
1659	struct policydb *newp;
1660};
1661
1662/*
1663 * Convert the values in the security context
1664 * structure `c' from the values specified
1665 * in the policy `p->oldp' to the values specified
1666 * in the policy `p->newp'.  Verify that the
1667 * context is valid under the new policy.
 
1668 */
1669static int convert_context(u32 key,
1670			   struct context *c,
1671			   void *p)
1672{
1673	struct convert_context_args *args;
1674	struct context oldc;
1675	struct ocontext *oc;
1676	struct mls_range *range;
1677	struct role_datum *role;
1678	struct type_datum *typdatum;
1679	struct user_datum *usrdatum;
1680	char *s;
1681	u32 len;
1682	int rc = 0;
1683
1684	if (key <= SECINITSID_NUM)
1685		goto out;
1686
1687	args = p;
1688
1689	if (c->str) {
1690		struct context ctx;
1691
1692		rc = -ENOMEM;
1693		s = kstrdup(c->str, GFP_KERNEL);
1694		if (!s)
1695			goto out;
1696
1697		rc = string_to_context_struct(args->newp, NULL, s,
1698					      c->len, &ctx, SECSID_NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699		kfree(s);
1700		if (!rc) {
1701			printk(KERN_INFO "SELinux:  Context %s became valid (mapped).\n",
1702			       c->str);
1703			/* Replace string with mapped representation. */
1704			kfree(c->str);
1705			memcpy(c, &ctx, sizeof(*c));
1706			goto out;
1707		} else if (rc == -EINVAL) {
1708			/* Retain string representation for later mapping. */
1709			rc = 0;
1710			goto out;
1711		} else {
1712			/* Other error condition, e.g. ENOMEM. */
1713			printk(KERN_ERR "SELinux:   Unable to map context %s, rc = %d.\n",
1714			       c->str, -rc);
1715			goto out;
1716		}
 
 
 
1717	}
1718
1719	rc = context_cpy(&oldc, c);
1720	if (rc)
1721		goto out;
1722
1723	/* Convert the user. */
1724	rc = -EINVAL;
1725	usrdatum = hashtab_search(args->newp->p_users.table,
1726				  sym_name(args->oldp, SYM_USERS, c->user - 1));
 
1727	if (!usrdatum)
1728		goto bad;
1729	c->user = usrdatum->value;
1730
1731	/* Convert the role. */
1732	rc = -EINVAL;
1733	role = hashtab_search(args->newp->p_roles.table,
1734			      sym_name(args->oldp, SYM_ROLES, c->role - 1));
1735	if (!role)
1736		goto bad;
1737	c->role = role->value;
1738
1739	/* Convert the type. */
1740	rc = -EINVAL;
1741	typdatum = hashtab_search(args->newp->p_types.table,
1742				  sym_name(args->oldp, SYM_TYPES, c->type - 1));
 
1743	if (!typdatum)
1744		goto bad;
1745	c->type = typdatum->value;
1746
1747	/* Convert the MLS fields if dealing with MLS policies */
1748	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
1749		rc = mls_convert_context(args->oldp, args->newp, c);
1750		if (rc)
1751			goto bad;
1752	} else if (args->oldp->mls_enabled && !args->newp->mls_enabled) {
1753		/*
1754		 * Switching between MLS and non-MLS policy:
1755		 * free any storage used by the MLS fields in the
1756		 * context for all existing entries in the sidtab.
1757		 */
1758		mls_context_destroy(c);
1759	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
1760		/*
1761		 * Switching between non-MLS and MLS policy:
1762		 * ensure that the MLS fields of the context for all
1763		 * existing entries in the sidtab are filled in with a
1764		 * suitable default value, likely taken from one of the
1765		 * initial SIDs.
1766		 */
1767		oc = args->newp->ocontexts[OCON_ISID];
1768		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
1769			oc = oc->next;
1770		rc = -EINVAL;
1771		if (!oc) {
1772			printk(KERN_ERR "SELinux:  unable to look up"
1773				" the initial SIDs list\n");
1774			goto bad;
1775		}
1776		range = &oc->context[0].range;
1777		rc = mls_range_set(c, range);
1778		if (rc)
1779			goto bad;
1780	}
1781
1782	/* Check the validity of the new context. */
1783	if (!policydb_context_isvalid(args->newp, c)) {
1784		rc = convert_context_handle_invalid_context(&oldc);
1785		if (rc)
1786			goto bad;
1787	}
1788
1789	context_destroy(&oldc);
1790
1791	rc = 0;
1792out:
1793	return rc;
1794bad:
1795	/* Map old representation to string and save it. */
1796	rc = context_struct_to_string(&oldc, &s, &len);
1797	if (rc)
1798		return rc;
1799	context_destroy(&oldc);
1800	context_destroy(c);
1801	c->str = s;
1802	c->len = len;
1803	printk(KERN_INFO "SELinux:  Context %s became invalid (unmapped).\n",
1804	       c->str);
1805	rc = 0;
1806	goto out;
1807}
1808
1809static void security_load_policycaps(void)
1810{
1811	selinux_policycap_netpeer = ebitmap_get_bit(&policydb.policycaps,
1812						  POLICYDB_CAPABILITY_NETPEER);
1813	selinux_policycap_openperm = ebitmap_get_bit(&policydb.policycaps,
1814						  POLICYDB_CAPABILITY_OPENPERM);
 
 
 
 
 
 
 
 
 
 
 
 
 
1815}
1816
1817static int security_preserve_bools(struct policydb *p);
 
1818
1819/**
1820 * security_load_policy - Load a security policy configuration.
1821 * @data: binary policy data
1822 * @len: length of data in bytes
1823 *
1824 * Load a new set of security policy configuration data,
1825 * validate it and convert the SID table as necessary.
1826 * This function will flush the access vector cache after
1827 * loading the new policy.
1828 */
1829int security_load_policy(void *data, size_t len)
1830{
1831	struct policydb oldpolicydb, newpolicydb;
1832	struct sidtab oldsidtab, newsidtab;
1833	struct selinux_mapping *oldmap, *map = NULL;
 
 
 
1834	struct convert_context_args args;
1835	u32 seqno;
1836	u16 map_size;
1837	int rc = 0;
1838	struct policy_file file = { data, len }, *fp = &file;
1839
1840	if (!ss_initialized) {
1841		avtab_cache_init();
1842		rc = policydb_read(&policydb, fp);
 
 
 
 
 
1843		if (rc) {
1844			avtab_cache_destroy();
1845			return rc;
1846		}
1847
1848		policydb.len = len;
1849		rc = selinux_set_mapping(&policydb, secclass_map,
1850					 &current_mapping,
1851					 &current_mapping_size);
1852		if (rc) {
1853			policydb_destroy(&policydb);
1854			avtab_cache_destroy();
1855			return rc;
1856		}
1857
1858		rc = policydb_load_isids(&policydb, &sidtab);
1859		if (rc) {
1860			policydb_destroy(&policydb);
1861			avtab_cache_destroy();
1862			return rc;
1863		}
1864
1865		security_load_policycaps();
1866		ss_initialized = 1;
1867		seqno = ++latest_granting;
 
1868		selinux_complete_init();
1869		avc_ss_reset(seqno);
1870		selnl_notify_policyload(seqno);
1871		selinux_status_update_policyload(seqno);
1872		selinux_netlbl_cache_invalidate();
1873		selinux_xfrm_notify_policyload();
1874		return 0;
1875	}
1876
1877#if 0
1878	sidtab_hash_eval(&sidtab, "sids");
1879#endif
 
 
 
1880
1881	rc = policydb_read(&newpolicydb, fp);
1882	if (rc)
1883		return rc;
 
 
1884
1885	newpolicydb.len = len;
1886	/* If switching between different policy types, log MLS status */
1887	if (policydb.mls_enabled && !newpolicydb.mls_enabled)
1888		printk(KERN_INFO "SELinux: Disabling MLS support...\n");
1889	else if (!policydb.mls_enabled && newpolicydb.mls_enabled)
1890		printk(KERN_INFO "SELinux: Enabling MLS support...\n");
1891
1892	rc = policydb_load_isids(&newpolicydb, &newsidtab);
1893	if (rc) {
1894		printk(KERN_ERR "SELinux:  unable to load the initial SIDs\n");
1895		policydb_destroy(&newpolicydb);
1896		return rc;
 
1897	}
1898
1899	rc = selinux_set_mapping(&newpolicydb, secclass_map, &map, &map_size);
1900	if (rc)
1901		goto err;
1902
1903	rc = security_preserve_bools(&newpolicydb);
1904	if (rc) {
1905		printk(KERN_ERR "SELinux:  unable to preserve booleans\n");
1906		goto err;
1907	}
1908
1909	/* Clone the SID table. */
1910	sidtab_shutdown(&sidtab);
1911
1912	rc = sidtab_map(&sidtab, clone_sid, &newsidtab);
1913	if (rc)
1914		goto err;
1915
1916	/*
1917	 * Convert the internal representations of contexts
1918	 * in the new SID table.
1919	 */
1920	args.oldp = &policydb;
1921	args.newp = &newpolicydb;
1922	rc = sidtab_map(&newsidtab, convert_context, &args);
 
 
 
 
 
 
1923	if (rc) {
1924		printk(KERN_ERR "SELinux:  unable to convert the internal"
1925			" representation of contexts in the new SID"
1926			" table\n");
1927		goto err;
1928	}
1929
1930	/* Save the old policydb and SID table to free later. */
1931	memcpy(&oldpolicydb, &policydb, sizeof policydb);
1932	sidtab_set(&oldsidtab, &sidtab);
1933
1934	/* Install the new policydb and SID table. */
1935	write_lock_irq(&policy_rwlock);
1936	memcpy(&policydb, &newpolicydb, sizeof policydb);
1937	sidtab_set(&sidtab, &newsidtab);
1938	security_load_policycaps();
1939	oldmap = current_mapping;
1940	current_mapping = map;
1941	current_mapping_size = map_size;
1942	seqno = ++latest_granting;
1943	write_unlock_irq(&policy_rwlock);
1944
1945	/* Free the old policydb and SID table. */
1946	policydb_destroy(&oldpolicydb);
1947	sidtab_destroy(&oldsidtab);
1948	kfree(oldmap);
 
1949
1950	avc_ss_reset(seqno);
1951	selnl_notify_policyload(seqno);
1952	selinux_status_update_policyload(seqno);
1953	selinux_netlbl_cache_invalidate();
1954	selinux_xfrm_notify_policyload();
1955
1956	return 0;
 
1957
1958err:
1959	kfree(map);
1960	sidtab_destroy(&newsidtab);
1961	policydb_destroy(&newpolicydb);
1962	return rc;
1963
 
 
 
1964}
1965
1966size_t security_policydb_len(void)
1967{
 
1968	size_t len;
1969
1970	read_lock(&policy_rwlock);
1971	len = policydb.len;
1972	read_unlock(&policy_rwlock);
1973
1974	return len;
1975}
1976
1977/**
1978 * security_port_sid - Obtain the SID for a port.
1979 * @protocol: protocol number
1980 * @port: port number
1981 * @out_sid: security identifier
1982 */
1983int security_port_sid(u8 protocol, u16 port, u32 *out_sid)
 
1984{
 
 
1985	struct ocontext *c;
1986	int rc = 0;
1987
1988	read_lock(&policy_rwlock);
 
 
 
1989
1990	c = policydb.ocontexts[OCON_PORT];
1991	while (c) {
1992		if (c->u.port.protocol == protocol &&
1993		    c->u.port.low_port <= port &&
1994		    c->u.port.high_port >= port)
1995			break;
1996		c = c->next;
1997	}
1998
1999	if (c) {
2000		if (!c->sid[0]) {
2001			rc = sidtab_context_to_sid(&sidtab,
2002						   &c->context[0],
2003						   &c->sid[0]);
2004			if (rc)
2005				goto out;
2006		}
2007		*out_sid = c->sid[0];
2008	} else {
2009		*out_sid = SECINITSID_PORT;
2010	}
2011
2012out:
2013	read_unlock(&policy_rwlock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014	return rc;
2015}
2016
2017/**
2018 * security_netif_sid - Obtain the SID for a network interface.
2019 * @name: interface name
2020 * @if_sid: interface SID
2021 */
2022int security_netif_sid(char *name, u32 *if_sid)
 
2023{
 
 
2024	int rc = 0;
2025	struct ocontext *c;
2026
2027	read_lock(&policy_rwlock);
 
 
 
2028
2029	c = policydb.ocontexts[OCON_NETIF];
2030	while (c) {
2031		if (strcmp(name, c->u.name) == 0)
2032			break;
2033		c = c->next;
2034	}
2035
2036	if (c) {
2037		if (!c->sid[0] || !c->sid[1]) {
2038			rc = sidtab_context_to_sid(&sidtab,
2039						  &c->context[0],
2040						  &c->sid[0]);
2041			if (rc)
2042				goto out;
2043			rc = sidtab_context_to_sid(&sidtab,
2044						   &c->context[1],
2045						   &c->sid[1]);
2046			if (rc)
2047				goto out;
2048		}
2049		*if_sid = c->sid[0];
2050	} else
2051		*if_sid = SECINITSID_NETIF;
2052
2053out:
2054	read_unlock(&policy_rwlock);
2055	return rc;
2056}
2057
2058static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2059{
2060	int i, fail = 0;
2061
2062	for (i = 0; i < 4; i++)
2063		if (addr[i] != (input[i] & mask[i])) {
2064			fail = 1;
2065			break;
2066		}
2067
2068	return !fail;
2069}
2070
2071/**
2072 * security_node_sid - Obtain the SID for a node (host).
2073 * @domain: communication domain aka address family
2074 * @addrp: address
2075 * @addrlen: address length in bytes
2076 * @out_sid: security identifier
2077 */
2078int security_node_sid(u16 domain,
 
2079		      void *addrp,
2080		      u32 addrlen,
2081		      u32 *out_sid)
2082{
 
 
2083	int rc;
2084	struct ocontext *c;
2085
2086	read_lock(&policy_rwlock);
 
 
 
2087
2088	switch (domain) {
2089	case AF_INET: {
2090		u32 addr;
2091
2092		rc = -EINVAL;
2093		if (addrlen != sizeof(u32))
2094			goto out;
2095
2096		addr = *((u32 *)addrp);
2097
2098		c = policydb.ocontexts[OCON_NODE];
2099		while (c) {
2100			if (c->u.node.addr == (addr & c->u.node.mask))
2101				break;
2102			c = c->next;
2103		}
2104		break;
2105	}
2106
2107	case AF_INET6:
2108		rc = -EINVAL;
2109		if (addrlen != sizeof(u64) * 2)
2110			goto out;
2111		c = policydb.ocontexts[OCON_NODE6];
2112		while (c) {
2113			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2114						c->u.node6.mask))
2115				break;
2116			c = c->next;
2117		}
2118		break;
2119
2120	default:
2121		rc = 0;
2122		*out_sid = SECINITSID_NODE;
2123		goto out;
2124	}
2125
2126	if (c) {
2127		if (!c->sid[0]) {
2128			rc = sidtab_context_to_sid(&sidtab,
2129						   &c->context[0],
2130						   &c->sid[0]);
2131			if (rc)
2132				goto out;
2133		}
2134		*out_sid = c->sid[0];
2135	} else {
2136		*out_sid = SECINITSID_NODE;
2137	}
2138
2139	rc = 0;
2140out:
2141	read_unlock(&policy_rwlock);
2142	return rc;
2143}
2144
2145#define SIDS_NEL 25
2146
2147/**
2148 * security_get_user_sids - Obtain reachable SIDs for a user.
2149 * @fromsid: starting SID
2150 * @username: username
2151 * @sids: array of reachable SIDs for user
2152 * @nel: number of elements in @sids
2153 *
2154 * Generate the set of SIDs for legal security contexts
2155 * for a given user that can be reached by @fromsid.
2156 * Set *@sids to point to a dynamically allocated
2157 * array containing the set of SIDs.  Set *@nel to the
2158 * number of elements in the array.
2159 */
2160
2161int security_get_user_sids(u32 fromsid,
 
2162			   char *username,
2163			   u32 **sids,
2164			   u32 *nel)
2165{
 
 
2166	struct context *fromcon, usercon;
2167	u32 *mysids = NULL, *mysids2, sid;
2168	u32 mynel = 0, maxnel = SIDS_NEL;
2169	struct user_datum *user;
2170	struct role_datum *role;
2171	struct ebitmap_node *rnode, *tnode;
2172	int rc = 0, i, j;
2173
2174	*sids = NULL;
2175	*nel = 0;
2176
2177	if (!ss_initialized)
2178		goto out;
2179
2180	read_lock(&policy_rwlock);
 
 
 
2181
2182	context_init(&usercon);
2183
2184	rc = -EINVAL;
2185	fromcon = sidtab_search(&sidtab, fromsid);
2186	if (!fromcon)
2187		goto out_unlock;
2188
2189	rc = -EINVAL;
2190	user = hashtab_search(policydb.p_users.table, username);
2191	if (!user)
2192		goto out_unlock;
2193
2194	usercon.user = user->value;
2195
2196	rc = -ENOMEM;
2197	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2198	if (!mysids)
2199		goto out_unlock;
2200
2201	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2202		role = policydb.role_val_to_struct[i];
2203		usercon.role = i + 1;
2204		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2205			usercon.type = j + 1;
2206
2207			if (mls_setup_user_range(fromcon, user, &usercon))
 
2208				continue;
2209
2210			rc = sidtab_context_to_sid(&sidtab, &usercon, &sid);
2211			if (rc)
2212				goto out_unlock;
2213			if (mynel < maxnel) {
2214				mysids[mynel++] = sid;
2215			} else {
2216				rc = -ENOMEM;
2217				maxnel += SIDS_NEL;
2218				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2219				if (!mysids2)
2220					goto out_unlock;
2221				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2222				kfree(mysids);
2223				mysids = mysids2;
2224				mysids[mynel++] = sid;
2225			}
2226		}
2227	}
2228	rc = 0;
2229out_unlock:
2230	read_unlock(&policy_rwlock);
2231	if (rc || !mynel) {
2232		kfree(mysids);
2233		goto out;
2234	}
2235
2236	rc = -ENOMEM;
2237	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2238	if (!mysids2) {
2239		kfree(mysids);
2240		goto out;
2241	}
2242	for (i = 0, j = 0; i < mynel; i++) {
2243		struct av_decision dummy_avd;
2244		rc = avc_has_perm_noaudit(fromsid, mysids[i],
 
2245					  SECCLASS_PROCESS, /* kernel value */
2246					  PROCESS__TRANSITION, AVC_STRICT,
2247					  &dummy_avd);
2248		if (!rc)
2249			mysids2[j++] = mysids[i];
2250		cond_resched();
2251	}
2252	rc = 0;
2253	kfree(mysids);
2254	*sids = mysids2;
2255	*nel = j;
2256out:
2257	return rc;
2258}
2259
2260/**
2261 * security_genfs_sid - Obtain a SID for a file in a filesystem
2262 * @fstype: filesystem type
2263 * @path: path from root of mount
2264 * @sclass: file security class
2265 * @sid: SID for path
2266 *
2267 * Obtain a SID to use for a file in a filesystem that
2268 * cannot support xattr or use a fixed labeling behavior like
2269 * transition SIDs or task SIDs.
 
 
2270 */
2271int security_genfs_sid(const char *fstype,
2272		       char *path,
2273		       u16 orig_sclass,
2274		       u32 *sid)
 
2275{
 
 
2276	int len;
2277	u16 sclass;
2278	struct genfs *genfs;
2279	struct ocontext *c;
2280	int rc, cmp = 0;
2281
2282	while (path[0] == '/' && path[1] == '/')
2283		path++;
2284
2285	read_lock(&policy_rwlock);
2286
2287	sclass = unmap_class(orig_sclass);
2288	*sid = SECINITSID_UNLABELED;
2289
2290	for (genfs = policydb.genfs; genfs; genfs = genfs->next) {
2291		cmp = strcmp(fstype, genfs->fstype);
2292		if (cmp <= 0)
2293			break;
2294	}
2295
2296	rc = -ENOENT;
2297	if (!genfs || cmp)
2298		goto out;
2299
2300	for (c = genfs->head; c; c = c->next) {
2301		len = strlen(c->u.name);
2302		if ((!c->v.sclass || sclass == c->v.sclass) &&
2303		    (strncmp(c->u.name, path, len) == 0))
2304			break;
2305	}
2306
2307	rc = -ENOENT;
2308	if (!c)
2309		goto out;
2310
2311	if (!c->sid[0]) {
2312		rc = sidtab_context_to_sid(&sidtab, &c->context[0], &c->sid[0]);
2313		if (rc)
2314			goto out;
2315	}
2316
2317	*sid = c->sid[0];
2318	rc = 0;
2319out:
2320	read_unlock(&policy_rwlock);
2321	return rc;
2322}
2323
2324/**
2325 * security_fs_use - Determine how to handle labeling for a filesystem.
2326 * @fstype: filesystem type
2327 * @behavior: labeling behavior
2328 * @sid: SID for filesystem (superblock)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2329 */
2330int security_fs_use(
2331	const char *fstype,
2332	unsigned int *behavior,
2333	u32 *sid)
2334{
 
 
2335	int rc = 0;
2336	struct ocontext *c;
 
 
 
 
2337
2338	read_lock(&policy_rwlock);
 
2339
2340	c = policydb.ocontexts[OCON_FSUSE];
2341	while (c) {
2342		if (strcmp(fstype, c->u.name) == 0)
2343			break;
2344		c = c->next;
2345	}
2346
2347	if (c) {
2348		*behavior = c->v.behavior;
2349		if (!c->sid[0]) {
2350			rc = sidtab_context_to_sid(&sidtab, &c->context[0],
2351						   &c->sid[0]);
2352			if (rc)
2353				goto out;
2354		}
2355		*sid = c->sid[0];
2356	} else {
2357		rc = security_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
 
2358		if (rc) {
2359			*behavior = SECURITY_FS_USE_NONE;
2360			rc = 0;
2361		} else {
2362			*behavior = SECURITY_FS_USE_GENFS;
2363		}
2364	}
2365
2366out:
2367	read_unlock(&policy_rwlock);
2368	return rc;
2369}
2370
2371int security_get_bools(int *len, char ***names, int **values)
 
2372{
2373	int i, rc;
 
 
 
 
 
 
 
 
 
 
 
 
 
2374
2375	read_lock(&policy_rwlock);
2376	*names = NULL;
2377	*values = NULL;
2378
2379	rc = 0;
2380	*len = policydb.p_bools.nprim;
2381	if (!*len)
2382		goto out;
2383
2384	rc = -ENOMEM;
2385	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2386	if (!*names)
2387		goto err;
2388
2389	rc = -ENOMEM;
2390	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2391	if (!*values)
2392		goto err;
2393
2394	for (i = 0; i < *len; i++) {
2395		size_t name_len;
2396
2397		(*values)[i] = policydb.bool_val_to_struct[i]->state;
2398		name_len = strlen(sym_name(&policydb, SYM_BOOLS, i)) + 1;
2399
2400		rc = -ENOMEM;
2401		(*names)[i] = kmalloc(sizeof(char) * name_len, GFP_ATOMIC);
 
2402		if (!(*names)[i])
2403			goto err;
2404
2405		strncpy((*names)[i], sym_name(&policydb, SYM_BOOLS, i), name_len);
2406		(*names)[i][name_len - 1] = 0;
2407	}
2408	rc = 0;
2409out:
2410	read_unlock(&policy_rwlock);
2411	return rc;
2412err:
2413	if (*names) {
2414		for (i = 0; i < *len; i++)
2415			kfree((*names)[i]);
 
2416	}
2417	kfree(*values);
 
 
 
2418	goto out;
2419}
2420
2421
2422int security_set_bools(int len, int *values)
2423{
2424	int i, rc;
2425	int lenp, seqno = 0;
2426	struct cond_node *cur;
2427
2428	write_lock_irq(&policy_rwlock);
 
 
2429
2430	rc = -EFAULT;
2431	lenp = policydb.p_bools.nprim;
2432	if (len != lenp)
2433		goto out;
2434
2435	for (i = 0; i < len; i++) {
2436		if (!!values[i] != policydb.bool_val_to_struct[i]->state) {
2437			audit_log(current->audit_context, GFP_ATOMIC,
2438				AUDIT_MAC_CONFIG_CHANGE,
2439				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2440				sym_name(&policydb, SYM_BOOLS, i),
2441				!!values[i],
2442				policydb.bool_val_to_struct[i]->state,
2443				audit_get_loginuid(current),
2444				audit_get_sessionid(current));
2445		}
2446		if (values[i])
2447			policydb.bool_val_to_struct[i]->state = 1;
2448		else
2449			policydb.bool_val_to_struct[i]->state = 0;
2450	}
2451
2452	for (cur = policydb.cond_list; cur; cur = cur->next) {
2453		rc = evaluate_cond_node(&policydb, cur);
2454		if (rc)
2455			goto out;
2456	}
2457
2458	seqno = ++latest_granting;
2459	rc = 0;
2460out:
2461	write_unlock_irq(&policy_rwlock);
2462	if (!rc) {
2463		avc_ss_reset(seqno);
2464		selnl_notify_policyload(seqno);
2465		selinux_status_update_policyload(seqno);
2466		selinux_xfrm_notify_policyload();
2467	}
2468	return rc;
2469}
2470
2471int security_get_bool_value(int bool)
 
2472{
 
2473	int rc;
2474	int len;
 
 
2475
2476	read_lock(&policy_rwlock);
2477
2478	rc = -EFAULT;
2479	len = policydb.p_bools.nprim;
2480	if (bool >= len)
2481		goto out;
2482
2483	rc = policydb.bool_val_to_struct[bool]->state;
2484out:
2485	read_unlock(&policy_rwlock);
2486	return rc;
2487}
2488
2489static int security_preserve_bools(struct policydb *p)
 
2490{
2491	int rc, nbools = 0, *bvalues = NULL, i;
2492	char **bnames = NULL;
2493	struct cond_bool_datum *booldatum;
2494	struct cond_node *cur;
2495
2496	rc = security_get_bools(&nbools, &bnames, &bvalues);
2497	if (rc)
2498		goto out;
2499	for (i = 0; i < nbools; i++) {
2500		booldatum = hashtab_search(p->p_bools.table, bnames[i]);
2501		if (booldatum)
2502			booldatum->state = bvalues[i];
2503	}
2504	for (cur = p->cond_list; cur; cur = cur->next) {
2505		rc = evaluate_cond_node(p, cur);
2506		if (rc)
2507			goto out;
2508	}
2509
2510out:
2511	if (bnames) {
2512		for (i = 0; i < nbools; i++)
2513			kfree(bnames[i]);
2514	}
2515	kfree(bnames);
2516	kfree(bvalues);
2517	return rc;
2518}
2519
2520/*
2521 * security_sid_mls_copy() - computes a new sid based on the given
2522 * sid and the mls portion of mls_sid.
2523 */
2524int security_sid_mls_copy(u32 sid, u32 mls_sid, u32 *new_sid)
 
2525{
 
 
2526	struct context *context1;
2527	struct context *context2;
2528	struct context newcon;
2529	char *s;
2530	u32 len;
2531	int rc;
2532
2533	rc = 0;
2534	if (!ss_initialized || !policydb.mls_enabled) {
2535		*new_sid = sid;
2536		goto out;
2537	}
2538
2539	context_init(&newcon);
2540
2541	read_lock(&policy_rwlock);
2542
2543	rc = -EINVAL;
2544	context1 = sidtab_search(&sidtab, sid);
2545	if (!context1) {
2546		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2547			__func__, sid);
2548		goto out_unlock;
2549	}
2550
2551	rc = -EINVAL;
2552	context2 = sidtab_search(&sidtab, mls_sid);
2553	if (!context2) {
2554		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2555			__func__, mls_sid);
2556		goto out_unlock;
2557	}
2558
2559	newcon.user = context1->user;
2560	newcon.role = context1->role;
2561	newcon.type = context1->type;
2562	rc = mls_context_cpy(&newcon, context2);
2563	if (rc)
2564		goto out_unlock;
2565
2566	/* Check the validity of the new context. */
2567	if (!policydb_context_isvalid(&policydb, &newcon)) {
2568		rc = convert_context_handle_invalid_context(&newcon);
2569		if (rc) {
2570			if (!context_struct_to_string(&newcon, &s, &len)) {
2571				audit_log(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2572					  "security_sid_mls_copy: invalid context %s", s);
 
 
 
 
 
 
 
 
 
2573				kfree(s);
2574			}
2575			goto out_unlock;
2576		}
2577	}
2578
2579	rc = sidtab_context_to_sid(&sidtab, &newcon, new_sid);
2580out_unlock:
2581	read_unlock(&policy_rwlock);
2582	context_destroy(&newcon);
2583out:
2584	return rc;
2585}
2586
2587/**
2588 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
2589 * @nlbl_sid: NetLabel SID
2590 * @nlbl_type: NetLabel labeling protocol type
2591 * @xfrm_sid: XFRM SID
2592 *
2593 * Description:
2594 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
2595 * resolved into a single SID it is returned via @peer_sid and the function
2596 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
2597 * returns a negative value.  A table summarizing the behavior is below:
2598 *
2599 *                                 | function return |      @sid
2600 *   ------------------------------+-----------------+-----------------
2601 *   no peer labels                |        0        |    SECSID_NULL
2602 *   single peer label             |        0        |    <peer_label>
2603 *   multiple, consistent labels   |        0        |    <peer_label>
2604 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
2605 *
2606 */
2607int security_net_peersid_resolve(u32 nlbl_sid, u32 nlbl_type,
 
2608				 u32 xfrm_sid,
2609				 u32 *peer_sid)
2610{
 
 
2611	int rc;
2612	struct context *nlbl_ctx;
2613	struct context *xfrm_ctx;
2614
2615	*peer_sid = SECSID_NULL;
2616
2617	/* handle the common (which also happens to be the set of easy) cases
2618	 * right away, these two if statements catch everything involving a
2619	 * single or absent peer SID/label */
2620	if (xfrm_sid == SECSID_NULL) {
2621		*peer_sid = nlbl_sid;
2622		return 0;
2623	}
2624	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
2625	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
2626	 * is present */
2627	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
2628		*peer_sid = xfrm_sid;
2629		return 0;
2630	}
2631
2632	/* we don't need to check ss_initialized here since the only way both
 
2633	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
2634	 * security server was initialized and ss_initialized was true */
2635	if (!policydb.mls_enabled)
 
2636		return 0;
2637
2638	read_lock(&policy_rwlock);
2639
2640	rc = -EINVAL;
2641	nlbl_ctx = sidtab_search(&sidtab, nlbl_sid);
2642	if (!nlbl_ctx) {
2643		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2644		       __func__, nlbl_sid);
2645		goto out;
2646	}
2647	rc = -EINVAL;
2648	xfrm_ctx = sidtab_search(&sidtab, xfrm_sid);
2649	if (!xfrm_ctx) {
2650		printk(KERN_ERR "SELinux: %s:  unrecognized SID %d\n",
2651		       __func__, xfrm_sid);
2652		goto out;
2653	}
2654	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
2655	if (rc)
2656		goto out;
2657
2658	/* at present NetLabel SIDs/labels really only carry MLS
2659	 * information so if the MLS portion of the NetLabel SID
2660	 * matches the MLS portion of the labeled XFRM SID/label
2661	 * then pass along the XFRM SID as it is the most
2662	 * expressive */
2663	*peer_sid = xfrm_sid;
2664out:
2665	read_unlock(&policy_rwlock);
2666	return rc;
2667}
2668
2669static int get_classes_callback(void *k, void *d, void *args)
2670{
2671	struct class_datum *datum = d;
2672	char *name = k, **classes = args;
2673	int value = datum->value - 1;
2674
2675	classes[value] = kstrdup(name, GFP_ATOMIC);
2676	if (!classes[value])
2677		return -ENOMEM;
2678
2679	return 0;
2680}
2681
2682int security_get_classes(char ***classes, int *nclasses)
 
2683{
 
2684	int rc;
2685
2686	read_lock(&policy_rwlock);
 
 
 
 
 
 
2687
2688	rc = -ENOMEM;
2689	*nclasses = policydb.p_classes.nprim;
2690	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
2691	if (!*classes)
2692		goto out;
2693
2694	rc = hashtab_map(policydb.p_classes.table, get_classes_callback,
2695			*classes);
2696	if (rc) {
2697		int i;
2698		for (i = 0; i < *nclasses; i++)
2699			kfree((*classes)[i]);
2700		kfree(*classes);
2701	}
2702
2703out:
2704	read_unlock(&policy_rwlock);
2705	return rc;
2706}
2707
2708static int get_permissions_callback(void *k, void *d, void *args)
2709{
2710	struct perm_datum *datum = d;
2711	char *name = k, **perms = args;
2712	int value = datum->value - 1;
2713
2714	perms[value] = kstrdup(name, GFP_ATOMIC);
2715	if (!perms[value])
2716		return -ENOMEM;
2717
2718	return 0;
2719}
2720
2721int security_get_permissions(char *class, char ***perms, int *nperms)
 
2722{
 
2723	int rc, i;
2724	struct class_datum *match;
2725
2726	read_lock(&policy_rwlock);
2727
2728	rc = -EINVAL;
2729	match = hashtab_search(policydb.p_classes.table, class);
2730	if (!match) {
2731		printk(KERN_ERR "SELinux: %s:  unrecognized class %s\n",
2732			__func__, class);
2733		goto out;
2734	}
2735
2736	rc = -ENOMEM;
2737	*nperms = match->permissions.nprim;
2738	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
2739	if (!*perms)
2740		goto out;
2741
2742	if (match->comdatum) {
2743		rc = hashtab_map(match->comdatum->permissions.table,
2744				get_permissions_callback, *perms);
2745		if (rc)
2746			goto err;
2747	}
2748
2749	rc = hashtab_map(match->permissions.table, get_permissions_callback,
2750			*perms);
2751	if (rc)
2752		goto err;
2753
2754out:
2755	read_unlock(&policy_rwlock);
2756	return rc;
2757
2758err:
2759	read_unlock(&policy_rwlock);
2760	for (i = 0; i < *nperms; i++)
2761		kfree((*perms)[i]);
2762	kfree(*perms);
2763	return rc;
2764}
2765
2766int security_get_reject_unknown(void)
2767{
2768	return policydb.reject_unknown;
2769}
2770
2771int security_get_allow_unknown(void)
2772{
2773	return policydb.allow_unknown;
2774}
2775
2776/**
2777 * security_policycap_supported - Check for a specific policy capability
2778 * @req_cap: capability
2779 *
2780 * Description:
2781 * This function queries the currently loaded policy to see if it supports the
2782 * capability specified by @req_cap.  Returns true (1) if the capability is
2783 * supported, false (0) if it isn't supported.
2784 *
2785 */
2786int security_policycap_supported(unsigned int req_cap)
 
2787{
 
2788	int rc;
2789
2790	read_lock(&policy_rwlock);
2791	rc = ebitmap_get_bit(&policydb.policycaps, req_cap);
2792	read_unlock(&policy_rwlock);
2793
2794	return rc;
2795}
2796
2797struct selinux_audit_rule {
2798	u32 au_seqno;
2799	struct context au_ctxt;
2800};
2801
2802void selinux_audit_rule_free(void *vrule)
2803{
2804	struct selinux_audit_rule *rule = vrule;
2805
2806	if (rule) {
2807		context_destroy(&rule->au_ctxt);
2808		kfree(rule);
2809	}
2810}
2811
2812int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
2813{
 
 
2814	struct selinux_audit_rule *tmprule;
2815	struct role_datum *roledatum;
2816	struct type_datum *typedatum;
2817	struct user_datum *userdatum;
2818	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
2819	int rc = 0;
2820
2821	*rule = NULL;
2822
2823	if (!ss_initialized)
2824		return -EOPNOTSUPP;
2825
2826	switch (field) {
2827	case AUDIT_SUBJ_USER:
2828	case AUDIT_SUBJ_ROLE:
2829	case AUDIT_SUBJ_TYPE:
2830	case AUDIT_OBJ_USER:
2831	case AUDIT_OBJ_ROLE:
2832	case AUDIT_OBJ_TYPE:
2833		/* only 'equals' and 'not equals' fit user, role, and type */
2834		if (op != Audit_equal && op != Audit_not_equal)
2835			return -EINVAL;
2836		break;
2837	case AUDIT_SUBJ_SEN:
2838	case AUDIT_SUBJ_CLR:
2839	case AUDIT_OBJ_LEV_LOW:
2840	case AUDIT_OBJ_LEV_HIGH:
2841		/* we do not allow a range, indicated by the presence of '-' */
2842		if (strchr(rulestr, '-'))
2843			return -EINVAL;
2844		break;
2845	default:
2846		/* only the above fields are valid */
2847		return -EINVAL;
2848	}
2849
2850	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
2851	if (!tmprule)
2852		return -ENOMEM;
2853
2854	context_init(&tmprule->au_ctxt);
2855
2856	read_lock(&policy_rwlock);
2857
2858	tmprule->au_seqno = latest_granting;
2859
2860	switch (field) {
2861	case AUDIT_SUBJ_USER:
2862	case AUDIT_OBJ_USER:
2863		rc = -EINVAL;
2864		userdatum = hashtab_search(policydb.p_users.table, rulestr);
2865		if (!userdatum)
2866			goto out;
2867		tmprule->au_ctxt.user = userdatum->value;
2868		break;
2869	case AUDIT_SUBJ_ROLE:
2870	case AUDIT_OBJ_ROLE:
2871		rc = -EINVAL;
2872		roledatum = hashtab_search(policydb.p_roles.table, rulestr);
2873		if (!roledatum)
2874			goto out;
2875		tmprule->au_ctxt.role = roledatum->value;
2876		break;
2877	case AUDIT_SUBJ_TYPE:
2878	case AUDIT_OBJ_TYPE:
2879		rc = -EINVAL;
2880		typedatum = hashtab_search(policydb.p_types.table, rulestr);
2881		if (!typedatum)
2882			goto out;
2883		tmprule->au_ctxt.type = typedatum->value;
2884		break;
2885	case AUDIT_SUBJ_SEN:
2886	case AUDIT_SUBJ_CLR:
2887	case AUDIT_OBJ_LEV_LOW:
2888	case AUDIT_OBJ_LEV_HIGH:
2889		rc = mls_from_string(rulestr, &tmprule->au_ctxt, GFP_ATOMIC);
 
2890		if (rc)
2891			goto out;
2892		break;
2893	}
2894	rc = 0;
2895out:
2896	read_unlock(&policy_rwlock);
2897
2898	if (rc) {
2899		selinux_audit_rule_free(tmprule);
2900		tmprule = NULL;
2901	}
2902
2903	*rule = tmprule;
2904
2905	return rc;
2906}
2907
2908/* Check to see if the rule contains any selinux fields */
2909int selinux_audit_rule_known(struct audit_krule *rule)
2910{
2911	int i;
2912
2913	for (i = 0; i < rule->field_count; i++) {
2914		struct audit_field *f = &rule->fields[i];
2915		switch (f->type) {
2916		case AUDIT_SUBJ_USER:
2917		case AUDIT_SUBJ_ROLE:
2918		case AUDIT_SUBJ_TYPE:
2919		case AUDIT_SUBJ_SEN:
2920		case AUDIT_SUBJ_CLR:
2921		case AUDIT_OBJ_USER:
2922		case AUDIT_OBJ_ROLE:
2923		case AUDIT_OBJ_TYPE:
2924		case AUDIT_OBJ_LEV_LOW:
2925		case AUDIT_OBJ_LEV_HIGH:
2926			return 1;
2927		}
2928	}
2929
2930	return 0;
2931}
2932
2933int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule,
2934			     struct audit_context *actx)
2935{
 
2936	struct context *ctxt;
2937	struct mls_level *level;
2938	struct selinux_audit_rule *rule = vrule;
2939	int match = 0;
2940
2941	if (!rule) {
2942		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2943			  "selinux_audit_rule_match: missing rule\n");
2944		return -ENOENT;
2945	}
2946
2947	read_lock(&policy_rwlock);
2948
2949	if (rule->au_seqno < latest_granting) {
2950		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2951			  "selinux_audit_rule_match: stale rule\n");
2952		match = -ESTALE;
2953		goto out;
2954	}
2955
2956	ctxt = sidtab_search(&sidtab, sid);
2957	if (!ctxt) {
2958		audit_log(actx, GFP_ATOMIC, AUDIT_SELINUX_ERR,
2959			  "selinux_audit_rule_match: unrecognized SID %d\n",
2960			  sid);
2961		match = -ENOENT;
2962		goto out;
2963	}
2964
2965	/* a field/op pair that is not caught here will simply fall through
2966	   without a match */
2967	switch (field) {
2968	case AUDIT_SUBJ_USER:
2969	case AUDIT_OBJ_USER:
2970		switch (op) {
2971		case Audit_equal:
2972			match = (ctxt->user == rule->au_ctxt.user);
2973			break;
2974		case Audit_not_equal:
2975			match = (ctxt->user != rule->au_ctxt.user);
2976			break;
2977		}
2978		break;
2979	case AUDIT_SUBJ_ROLE:
2980	case AUDIT_OBJ_ROLE:
2981		switch (op) {
2982		case Audit_equal:
2983			match = (ctxt->role == rule->au_ctxt.role);
2984			break;
2985		case Audit_not_equal:
2986			match = (ctxt->role != rule->au_ctxt.role);
2987			break;
2988		}
2989		break;
2990	case AUDIT_SUBJ_TYPE:
2991	case AUDIT_OBJ_TYPE:
2992		switch (op) {
2993		case Audit_equal:
2994			match = (ctxt->type == rule->au_ctxt.type);
2995			break;
2996		case Audit_not_equal:
2997			match = (ctxt->type != rule->au_ctxt.type);
2998			break;
2999		}
3000		break;
3001	case AUDIT_SUBJ_SEN:
3002	case AUDIT_SUBJ_CLR:
3003	case AUDIT_OBJ_LEV_LOW:
3004	case AUDIT_OBJ_LEV_HIGH:
3005		level = ((field == AUDIT_SUBJ_SEN ||
3006			  field == AUDIT_OBJ_LEV_LOW) ?
3007			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3008		switch (op) {
3009		case Audit_equal:
3010			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3011					     level);
3012			break;
3013		case Audit_not_equal:
3014			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3015					      level);
3016			break;
3017		case Audit_lt:
3018			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3019					       level) &&
3020				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3021					       level));
3022			break;
3023		case Audit_le:
3024			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3025					      level);
3026			break;
3027		case Audit_gt:
3028			match = (mls_level_dom(level,
3029					      &rule->au_ctxt.range.level[0]) &&
3030				 !mls_level_eq(level,
3031					       &rule->au_ctxt.range.level[0]));
3032			break;
3033		case Audit_ge:
3034			match = mls_level_dom(level,
3035					      &rule->au_ctxt.range.level[0]);
3036			break;
3037		}
3038	}
3039
3040out:
3041	read_unlock(&policy_rwlock);
3042	return match;
3043}
3044
3045static int (*aurule_callback)(void) = audit_update_lsm_rules;
3046
3047static int aurule_avc_callback(u32 event)
3048{
3049	int err = 0;
3050
3051	if (event == AVC_CALLBACK_RESET && aurule_callback)
3052		err = aurule_callback();
3053	return err;
3054}
3055
3056static int __init aurule_init(void)
3057{
3058	int err;
3059
3060	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3061	if (err)
3062		panic("avc_add_callback() failed, error %d\n", err);
3063
3064	return err;
3065}
3066__initcall(aurule_init);
3067
3068#ifdef CONFIG_NETLABEL
3069/**
3070 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3071 * @secattr: the NetLabel packet security attributes
3072 * @sid: the SELinux SID
3073 *
3074 * Description:
3075 * Attempt to cache the context in @ctx, which was derived from the packet in
3076 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3077 * already been initialized.
3078 *
3079 */
3080static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3081				      u32 sid)
3082{
3083	u32 *sid_cache;
3084
3085	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3086	if (sid_cache == NULL)
3087		return;
3088	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3089	if (secattr->cache == NULL) {
3090		kfree(sid_cache);
3091		return;
3092	}
3093
3094	*sid_cache = sid;
3095	secattr->cache->free = kfree;
3096	secattr->cache->data = sid_cache;
3097	secattr->flags |= NETLBL_SECATTR_CACHE;
3098}
3099
3100/**
3101 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3102 * @secattr: the NetLabel packet security attributes
3103 * @sid: the SELinux SID
3104 *
3105 * Description:
3106 * Convert the given NetLabel security attributes in @secattr into a
3107 * SELinux SID.  If the @secattr field does not contain a full SELinux
3108 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3109 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3110 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3111 * conversion for future lookups.  Returns zero on success, negative values on
3112 * failure.
3113 *
3114 */
3115int security_netlbl_secattr_to_sid(struct netlbl_lsm_secattr *secattr,
 
3116				   u32 *sid)
3117{
 
 
3118	int rc;
3119	struct context *ctx;
3120	struct context ctx_new;
3121
3122	if (!ss_initialized) {
3123		*sid = SECSID_NULL;
3124		return 0;
3125	}
3126
3127	read_lock(&policy_rwlock);
3128
3129	if (secattr->flags & NETLBL_SECATTR_CACHE)
3130		*sid = *(u32 *)secattr->cache->data;
3131	else if (secattr->flags & NETLBL_SECATTR_SECID)
3132		*sid = secattr->attr.secid;
3133	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3134		rc = -EIDRM;
3135		ctx = sidtab_search(&sidtab, SECINITSID_NETMSG);
3136		if (ctx == NULL)
3137			goto out;
3138
3139		context_init(&ctx_new);
3140		ctx_new.user = ctx->user;
3141		ctx_new.role = ctx->role;
3142		ctx_new.type = ctx->type;
3143		mls_import_netlbl_lvl(&ctx_new, secattr);
3144		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3145			rc = ebitmap_netlbl_import(&ctx_new.range.level[0].cat,
3146						   secattr->attr.mls.cat);
3147			if (rc)
3148				goto out;
3149			memcpy(&ctx_new.range.level[1].cat,
3150			       &ctx_new.range.level[0].cat,
3151			       sizeof(ctx_new.range.level[0].cat));
3152		}
3153		rc = -EIDRM;
3154		if (!mls_context_isvalid(&policydb, &ctx_new))
3155			goto out_free;
3156
3157		rc = sidtab_context_to_sid(&sidtab, &ctx_new, sid);
3158		if (rc)
3159			goto out_free;
3160
3161		security_netlbl_cache_add(secattr, *sid);
3162
3163		ebitmap_destroy(&ctx_new.range.level[0].cat);
3164	} else
3165		*sid = SECSID_NULL;
3166
3167	read_unlock(&policy_rwlock);
3168	return 0;
3169out_free:
3170	ebitmap_destroy(&ctx_new.range.level[0].cat);
3171out:
3172	read_unlock(&policy_rwlock);
3173	return rc;
3174}
3175
3176/**
3177 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3178 * @sid: the SELinux SID
3179 * @secattr: the NetLabel packet security attributes
3180 *
3181 * Description:
3182 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3183 * Returns zero on success, negative values on failure.
3184 *
3185 */
3186int security_netlbl_sid_to_secattr(u32 sid, struct netlbl_lsm_secattr *secattr)
 
3187{
 
3188	int rc;
3189	struct context *ctx;
3190
3191	if (!ss_initialized)
3192		return 0;
3193
3194	read_lock(&policy_rwlock);
3195
3196	rc = -ENOENT;
3197	ctx = sidtab_search(&sidtab, sid);
3198	if (ctx == NULL)
3199		goto out;
3200
3201	rc = -ENOMEM;
3202	secattr->domain = kstrdup(sym_name(&policydb, SYM_TYPES, ctx->type - 1),
3203				  GFP_ATOMIC);
3204	if (secattr->domain == NULL)
3205		goto out;
3206
3207	secattr->attr.secid = sid;
3208	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3209	mls_export_netlbl_lvl(ctx, secattr);
3210	rc = mls_export_netlbl_cat(ctx, secattr);
3211out:
3212	read_unlock(&policy_rwlock);
3213	return rc;
3214}
3215#endif /* CONFIG_NETLABEL */
3216
3217/**
3218 * security_read_policy - read the policy.
3219 * @data: binary policy data
3220 * @len: length of data in bytes
3221 *
3222 */
3223int security_read_policy(void **data, size_t *len)
 
3224{
 
3225	int rc;
3226	struct policy_file fp;
3227
3228	if (!ss_initialized)
3229		return -EINVAL;
3230
3231	*len = security_policydb_len();
3232
3233	*data = vmalloc_user(*len);
3234	if (!*data)
3235		return -ENOMEM;
3236
3237	fp.data = *data;
3238	fp.len = *len;
3239
3240	read_lock(&policy_rwlock);
3241	rc = policydb_write(&policydb, &fp);
3242	read_unlock(&policy_rwlock);
3243
3244	if (rc)
3245		return rc;
3246
3247	*len = (unsigned long)fp.data - (unsigned long)*data;
3248	return 0;
3249
3250}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Implementation of the security services.
   4 *
   5 * Authors : Stephen Smalley, <sds@tycho.nsa.gov>
   6 *	     James Morris <jmorris@redhat.com>
   7 *
   8 * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
   9 *
  10 *	Support for enhanced MLS infrastructure.
  11 *	Support for context based audit filters.
  12 *
  13 * Updated: Frank Mayer <mayerf@tresys.com> and Karl MacMillan <kmacmillan@tresys.com>
  14 *
  15 *	Added conditional policy language extensions
  16 *
  17 * Updated: Hewlett-Packard <paul@paul-moore.com>
  18 *
  19 *      Added support for NetLabel
  20 *      Added support for the policy capability bitmap
  21 *
  22 * Updated: Chad Sellers <csellers@tresys.com>
  23 *
  24 *  Added validation of kernel classes and permissions
  25 *
  26 * Updated: KaiGai Kohei <kaigai@ak.jp.nec.com>
  27 *
  28 *  Added support for bounds domain and audit messaged on masked permissions
  29 *
  30 * Updated: Guido Trentalancia <guido@trentalancia.com>
  31 *
  32 *  Added support for runtime switching of the policy type
  33 *
  34 * Copyright (C) 2008, 2009 NEC Corporation
  35 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P.
  36 * Copyright (C) 2004-2006 Trusted Computer Solutions, Inc.
  37 * Copyright (C) 2003 - 2004, 2006 Tresys Technology, LLC
  38 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
 
 
 
  39 */
  40#include <linux/kernel.h>
  41#include <linux/slab.h>
  42#include <linux/string.h>
  43#include <linux/spinlock.h>
  44#include <linux/rcupdate.h>
  45#include <linux/errno.h>
  46#include <linux/in.h>
  47#include <linux/sched.h>
  48#include <linux/audit.h>
 
 
 
  49#include <linux/vmalloc.h>
  50#include <net/netlabel.h>
  51
  52#include "flask.h"
  53#include "avc.h"
  54#include "avc_ss.h"
  55#include "security.h"
  56#include "context.h"
  57#include "policydb.h"
  58#include "sidtab.h"
  59#include "services.h"
  60#include "conditional.h"
  61#include "mls.h"
  62#include "objsec.h"
  63#include "netlabel.h"
  64#include "xfrm.h"
  65#include "ebitmap.h"
  66#include "audit.h"
  67
  68/* Policy capability names */
  69const char *selinux_policycap_names[__POLICYDB_CAPABILITY_MAX] = {
  70	"network_peer_controls",
  71	"open_perms",
  72	"extended_socket_class",
  73	"always_check_network",
  74	"cgroup_seclabel",
  75	"nnp_nosuid_transition",
  76	"genfs_seclabel_symlinks"
  77};
  78
  79static struct selinux_ss selinux_ss;
 
 
  80
  81void selinux_ss_init(struct selinux_ss **ss)
  82{
  83	rwlock_init(&selinux_ss.policy_rwlock);
  84	*ss = &selinux_ss;
  85}
 
 
  86
  87/* Forward declaration. */
  88static int context_struct_to_string(struct policydb *policydb,
  89				    struct context *context,
  90				    char **scontext,
  91				    u32 *scontext_len);
  92
  93static int sidtab_entry_to_string(struct policydb *policydb,
  94				  struct sidtab *sidtab,
  95				  struct sidtab_entry *entry,
  96				  char **scontext,
  97				  u32 *scontext_len);
  98
  99static void context_struct_compute_av(struct policydb *policydb,
 100				      struct context *scontext,
 101				      struct context *tcontext,
 102				      u16 tclass,
 103				      struct av_decision *avd,
 104				      struct extended_perms *xperms);
 
 
 
 
 
 
 
 
 105
 106static int selinux_set_mapping(struct policydb *pol,
 107			       struct security_class_mapping *map,
 108			       struct selinux_map *out_map)
 
 109{
 
 
 110	u16 i, j;
 111	unsigned k;
 112	bool print_unknown_handle = false;
 113
 114	/* Find number of classes in the input mapping */
 115	if (!map)
 116		return -EINVAL;
 117	i = 0;
 118	while (map[i].name)
 119		i++;
 120
 121	/* Allocate space for the class records, plus one for class zero */
 122	out_map->mapping = kcalloc(++i, sizeof(*out_map->mapping), GFP_ATOMIC);
 123	if (!out_map->mapping)
 124		return -ENOMEM;
 125
 126	/* Store the raw class and permission values */
 127	j = 0;
 128	while (map[j].name) {
 129		struct security_class_mapping *p_in = map + (j++);
 130		struct selinux_mapping *p_out = out_map->mapping + j;
 131
 132		/* An empty class string skips ahead */
 133		if (!strcmp(p_in->name, "")) {
 134			p_out->num_perms = 0;
 135			continue;
 136		}
 137
 138		p_out->value = string_to_security_class(pol, p_in->name);
 139		if (!p_out->value) {
 140			pr_info("SELinux:  Class %s not defined in policy.\n",
 
 141			       p_in->name);
 142			if (pol->reject_unknown)
 143				goto err;
 144			p_out->num_perms = 0;
 145			print_unknown_handle = true;
 146			continue;
 147		}
 148
 149		k = 0;
 150		while (p_in->perms[k]) {
 151			/* An empty permission string skips ahead */
 152			if (!*p_in->perms[k]) {
 153				k++;
 154				continue;
 155			}
 156			p_out->perms[k] = string_to_av_perm(pol, p_out->value,
 157							    p_in->perms[k]);
 158			if (!p_out->perms[k]) {
 159				pr_info("SELinux:  Permission %s in class %s not defined in policy.\n",
 
 160				       p_in->perms[k], p_in->name);
 161				if (pol->reject_unknown)
 162					goto err;
 163				print_unknown_handle = true;
 164			}
 165
 166			k++;
 167		}
 168		p_out->num_perms = k;
 169	}
 170
 171	if (print_unknown_handle)
 172		pr_info("SELinux: the above unknown classes and permissions will be %s\n",
 173		       pol->allow_unknown ? "allowed" : "denied");
 174
 175	out_map->size = i;
 
 176	return 0;
 177err:
 178	kfree(out_map->mapping);
 179	out_map->mapping = NULL;
 180	return -EINVAL;
 181}
 182
 183/*
 184 * Get real, policy values from mapped values
 185 */
 186
 187static u16 unmap_class(struct selinux_map *map, u16 tclass)
 188{
 189	if (tclass < map->size)
 190		return map->mapping[tclass].value;
 191
 192	return tclass;
 193}
 194
 195/*
 196 * Get kernel value for class from its policy value
 197 */
 198static u16 map_class(struct selinux_map *map, u16 pol_value)
 199{
 200	u16 i;
 201
 202	for (i = 1; i < map->size; i++) {
 203		if (map->mapping[i].value == pol_value)
 204			return i;
 205	}
 206
 207	return SECCLASS_NULL;
 208}
 209
 210static void map_decision(struct selinux_map *map,
 211			 u16 tclass, struct av_decision *avd,
 212			 int allow_unknown)
 213{
 214	if (tclass < map->size) {
 215		struct selinux_mapping *mapping = &map->mapping[tclass];
 216		unsigned int i, n = mapping->num_perms;
 217		u32 result;
 218
 219		for (i = 0, result = 0; i < n; i++) {
 220			if (avd->allowed & mapping->perms[i])
 221				result |= 1<<i;
 222			if (allow_unknown && !mapping->perms[i])
 223				result |= 1<<i;
 224		}
 225		avd->allowed = result;
 226
 227		for (i = 0, result = 0; i < n; i++)
 228			if (avd->auditallow & mapping->perms[i])
 229				result |= 1<<i;
 230		avd->auditallow = result;
 231
 232		for (i = 0, result = 0; i < n; i++) {
 233			if (avd->auditdeny & mapping->perms[i])
 234				result |= 1<<i;
 235			if (!allow_unknown && !mapping->perms[i])
 236				result |= 1<<i;
 237		}
 238		/*
 239		 * In case the kernel has a bug and requests a permission
 240		 * between num_perms and the maximum permission number, we
 241		 * should audit that denial
 242		 */
 243		for (; i < (sizeof(u32)*8); i++)
 244			result |= 1<<i;
 245		avd->auditdeny = result;
 246	}
 247}
 248
 249int security_mls_enabled(struct selinux_state *state)
 250{
 251	struct policydb *p = &state->ss->policydb;
 252
 253	return p->mls_enabled;
 254}
 255
 256/*
 257 * Return the boolean value of a constraint expression
 258 * when it is applied to the specified source and target
 259 * security contexts.
 260 *
 261 * xcontext is a special beast...  It is used by the validatetrans rules
 262 * only.  For these rules, scontext is the context before the transition,
 263 * tcontext is the context after the transition, and xcontext is the context
 264 * of the process performing the transition.  All other callers of
 265 * constraint_expr_eval should pass in NULL for xcontext.
 266 */
 267static int constraint_expr_eval(struct policydb *policydb,
 268				struct context *scontext,
 269				struct context *tcontext,
 270				struct context *xcontext,
 271				struct constraint_expr *cexpr)
 272{
 273	u32 val1, val2;
 274	struct context *c;
 275	struct role_datum *r1, *r2;
 276	struct mls_level *l1, *l2;
 277	struct constraint_expr *e;
 278	int s[CEXPR_MAXDEPTH];
 279	int sp = -1;
 280
 281	for (e = cexpr; e; e = e->next) {
 282		switch (e->expr_type) {
 283		case CEXPR_NOT:
 284			BUG_ON(sp < 0);
 285			s[sp] = !s[sp];
 286			break;
 287		case CEXPR_AND:
 288			BUG_ON(sp < 1);
 289			sp--;
 290			s[sp] &= s[sp + 1];
 291			break;
 292		case CEXPR_OR:
 293			BUG_ON(sp < 1);
 294			sp--;
 295			s[sp] |= s[sp + 1];
 296			break;
 297		case CEXPR_ATTR:
 298			if (sp == (CEXPR_MAXDEPTH - 1))
 299				return 0;
 300			switch (e->attr) {
 301			case CEXPR_USER:
 302				val1 = scontext->user;
 303				val2 = tcontext->user;
 304				break;
 305			case CEXPR_TYPE:
 306				val1 = scontext->type;
 307				val2 = tcontext->type;
 308				break;
 309			case CEXPR_ROLE:
 310				val1 = scontext->role;
 311				val2 = tcontext->role;
 312				r1 = policydb->role_val_to_struct[val1 - 1];
 313				r2 = policydb->role_val_to_struct[val2 - 1];
 314				switch (e->op) {
 315				case CEXPR_DOM:
 316					s[++sp] = ebitmap_get_bit(&r1->dominates,
 317								  val2 - 1);
 318					continue;
 319				case CEXPR_DOMBY:
 320					s[++sp] = ebitmap_get_bit(&r2->dominates,
 321								  val1 - 1);
 322					continue;
 323				case CEXPR_INCOMP:
 324					s[++sp] = (!ebitmap_get_bit(&r1->dominates,
 325								    val2 - 1) &&
 326						   !ebitmap_get_bit(&r2->dominates,
 327								    val1 - 1));
 328					continue;
 329				default:
 330					break;
 331				}
 332				break;
 333			case CEXPR_L1L2:
 334				l1 = &(scontext->range.level[0]);
 335				l2 = &(tcontext->range.level[0]);
 336				goto mls_ops;
 337			case CEXPR_L1H2:
 338				l1 = &(scontext->range.level[0]);
 339				l2 = &(tcontext->range.level[1]);
 340				goto mls_ops;
 341			case CEXPR_H1L2:
 342				l1 = &(scontext->range.level[1]);
 343				l2 = &(tcontext->range.level[0]);
 344				goto mls_ops;
 345			case CEXPR_H1H2:
 346				l1 = &(scontext->range.level[1]);
 347				l2 = &(tcontext->range.level[1]);
 348				goto mls_ops;
 349			case CEXPR_L1H1:
 350				l1 = &(scontext->range.level[0]);
 351				l2 = &(scontext->range.level[1]);
 352				goto mls_ops;
 353			case CEXPR_L2H2:
 354				l1 = &(tcontext->range.level[0]);
 355				l2 = &(tcontext->range.level[1]);
 356				goto mls_ops;
 357mls_ops:
 358			switch (e->op) {
 359			case CEXPR_EQ:
 360				s[++sp] = mls_level_eq(l1, l2);
 361				continue;
 362			case CEXPR_NEQ:
 363				s[++sp] = !mls_level_eq(l1, l2);
 364				continue;
 365			case CEXPR_DOM:
 366				s[++sp] = mls_level_dom(l1, l2);
 367				continue;
 368			case CEXPR_DOMBY:
 369				s[++sp] = mls_level_dom(l2, l1);
 370				continue;
 371			case CEXPR_INCOMP:
 372				s[++sp] = mls_level_incomp(l2, l1);
 373				continue;
 374			default:
 375				BUG();
 376				return 0;
 377			}
 378			break;
 379			default:
 380				BUG();
 381				return 0;
 382			}
 383
 384			switch (e->op) {
 385			case CEXPR_EQ:
 386				s[++sp] = (val1 == val2);
 387				break;
 388			case CEXPR_NEQ:
 389				s[++sp] = (val1 != val2);
 390				break;
 391			default:
 392				BUG();
 393				return 0;
 394			}
 395			break;
 396		case CEXPR_NAMES:
 397			if (sp == (CEXPR_MAXDEPTH-1))
 398				return 0;
 399			c = scontext;
 400			if (e->attr & CEXPR_TARGET)
 401				c = tcontext;
 402			else if (e->attr & CEXPR_XTARGET) {
 403				c = xcontext;
 404				if (!c) {
 405					BUG();
 406					return 0;
 407				}
 408			}
 409			if (e->attr & CEXPR_USER)
 410				val1 = c->user;
 411			else if (e->attr & CEXPR_ROLE)
 412				val1 = c->role;
 413			else if (e->attr & CEXPR_TYPE)
 414				val1 = c->type;
 415			else {
 416				BUG();
 417				return 0;
 418			}
 419
 420			switch (e->op) {
 421			case CEXPR_EQ:
 422				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
 423				break;
 424			case CEXPR_NEQ:
 425				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
 426				break;
 427			default:
 428				BUG();
 429				return 0;
 430			}
 431			break;
 432		default:
 433			BUG();
 434			return 0;
 435		}
 436	}
 437
 438	BUG_ON(sp != 0);
 439	return s[0];
 440}
 441
 442/*
 443 * security_dump_masked_av - dumps masked permissions during
 444 * security_compute_av due to RBAC, MLS/Constraint and Type bounds.
 445 */
 446static int dump_masked_av_helper(void *k, void *d, void *args)
 447{
 448	struct perm_datum *pdatum = d;
 449	char **permission_names = args;
 450
 451	BUG_ON(pdatum->value < 1 || pdatum->value > 32);
 452
 453	permission_names[pdatum->value - 1] = (char *)k;
 454
 455	return 0;
 456}
 457
 458static void security_dump_masked_av(struct policydb *policydb,
 459				    struct context *scontext,
 460				    struct context *tcontext,
 461				    u16 tclass,
 462				    u32 permissions,
 463				    const char *reason)
 464{
 465	struct common_datum *common_dat;
 466	struct class_datum *tclass_dat;
 467	struct audit_buffer *ab;
 468	char *tclass_name;
 469	char *scontext_name = NULL;
 470	char *tcontext_name = NULL;
 471	char *permission_names[32];
 472	int index;
 473	u32 length;
 474	bool need_comma = false;
 475
 476	if (!permissions)
 477		return;
 478
 479	tclass_name = sym_name(policydb, SYM_CLASSES, tclass - 1);
 480	tclass_dat = policydb->class_val_to_struct[tclass - 1];
 481	common_dat = tclass_dat->comdatum;
 482
 483	/* init permission_names */
 484	if (common_dat &&
 485	    hashtab_map(&common_dat->permissions.table,
 486			dump_masked_av_helper, permission_names) < 0)
 487		goto out;
 488
 489	if (hashtab_map(&tclass_dat->permissions.table,
 490			dump_masked_av_helper, permission_names) < 0)
 491		goto out;
 492
 493	/* get scontext/tcontext in text form */
 494	if (context_struct_to_string(policydb, scontext,
 495				     &scontext_name, &length) < 0)
 496		goto out;
 497
 498	if (context_struct_to_string(policydb, tcontext,
 499				     &tcontext_name, &length) < 0)
 500		goto out;
 501
 502	/* audit a message */
 503	ab = audit_log_start(audit_context(),
 504			     GFP_ATOMIC, AUDIT_SELINUX_ERR);
 505	if (!ab)
 506		goto out;
 507
 508	audit_log_format(ab, "op=security_compute_av reason=%s "
 509			 "scontext=%s tcontext=%s tclass=%s perms=",
 510			 reason, scontext_name, tcontext_name, tclass_name);
 511
 512	for (index = 0; index < 32; index++) {
 513		u32 mask = (1 << index);
 514
 515		if ((mask & permissions) == 0)
 516			continue;
 517
 518		audit_log_format(ab, "%s%s",
 519				 need_comma ? "," : "",
 520				 permission_names[index]
 521				 ? permission_names[index] : "????");
 522		need_comma = true;
 523	}
 524	audit_log_end(ab);
 525out:
 526	/* release scontext/tcontext */
 527	kfree(tcontext_name);
 528	kfree(scontext_name);
 529
 530	return;
 531}
 532
 533/*
 534 * security_boundary_permission - drops violated permissions
 535 * on boundary constraint.
 536 */
 537static void type_attribute_bounds_av(struct policydb *policydb,
 538				     struct context *scontext,
 539				     struct context *tcontext,
 540				     u16 tclass,
 541				     struct av_decision *avd)
 542{
 543	struct context lo_scontext;
 544	struct context lo_tcontext, *tcontextp = tcontext;
 545	struct av_decision lo_avd;
 546	struct type_datum *source;
 547	struct type_datum *target;
 548	u32 masked = 0;
 549
 550	source = policydb->type_val_to_struct[scontext->type - 1];
 
 551	BUG_ON(!source);
 552
 553	if (!source->bounds)
 554		return;
 
 555
 556	target = policydb->type_val_to_struct[tcontext->type - 1];
 557	BUG_ON(!target);
 558
 559	memset(&lo_avd, 0, sizeof(lo_avd));
 
 560
 561	memcpy(&lo_scontext, scontext, sizeof(lo_scontext));
 562	lo_scontext.type = source->bounds;
 
 
 
 
 
 
 563
 564	if (target->bounds) {
 
 
 565		memcpy(&lo_tcontext, tcontext, sizeof(lo_tcontext));
 566		lo_tcontext.type = target->bounds;
 567		tcontextp = &lo_tcontext;
 
 
 
 
 
 
 
 568	}
 569
 570	context_struct_compute_av(policydb, &lo_scontext,
 571				  tcontextp,
 572				  tclass,
 573				  &lo_avd,
 574				  NULL);
 
 575
 576	masked = ~lo_avd.allowed & avd->allowed;
 577
 578	if (likely(!masked))
 579		return;		/* no masked permission */
 580
 581	/* mask violated permissions */
 582	avd->allowed &= ~masked;
 583
 584	/* audit masked permissions */
 585	security_dump_masked_av(policydb, scontext, tcontext,
 586				tclass, masked, "bounds");
 
 
 
 
 
 
 587}
 588
 589/*
 590 * flag which drivers have permissions
 591 * only looking for ioctl based extended permssions
 592 */
 593void services_compute_xperms_drivers(
 594		struct extended_perms *xperms,
 595		struct avtab_node *node)
 596{
 597	unsigned int i;
 598
 599	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 600		/* if one or more driver has all permissions allowed */
 601		for (i = 0; i < ARRAY_SIZE(xperms->drivers.p); i++)
 602			xperms->drivers.p[i] |= node->datum.u.xperms->perms.p[i];
 603	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 604		/* if allowing permissions within a driver */
 605		security_xperm_set(xperms->drivers.p,
 606					node->datum.u.xperms->driver);
 607	}
 608
 609	/* If no ioctl commands are allowed, ignore auditallow and auditdeny */
 610	if (node->key.specified & AVTAB_XPERMS_ALLOWED)
 611		xperms->len = 1;
 612}
 613
 614/*
 615 * Compute access vectors and extended permissions based on a context
 616 * structure pair for the permissions in a particular class.
 617 */
 618static void context_struct_compute_av(struct policydb *policydb,
 619				      struct context *scontext,
 620				      struct context *tcontext,
 621				      u16 tclass,
 622				      struct av_decision *avd,
 623				      struct extended_perms *xperms)
 624{
 625	struct constraint_node *constraint;
 626	struct role_allow *ra;
 627	struct avtab_key avkey;
 628	struct avtab_node *node;
 629	struct class_datum *tclass_datum;
 630	struct ebitmap *sattr, *tattr;
 631	struct ebitmap_node *snode, *tnode;
 632	unsigned int i, j;
 633
 634	avd->allowed = 0;
 635	avd->auditallow = 0;
 636	avd->auditdeny = 0xffffffff;
 637	if (xperms) {
 638		memset(&xperms->drivers, 0, sizeof(xperms->drivers));
 639		xperms->len = 0;
 640	}
 641
 642	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
 643		if (printk_ratelimit())
 644			pr_warn("SELinux:  Invalid class %hu\n", tclass);
 645		return;
 646	}
 647
 648	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 649
 650	/*
 651	 * If a specific type enforcement rule was defined for
 652	 * this permission check, then use it.
 653	 */
 654	avkey.target_class = tclass;
 655	avkey.specified = AVTAB_AV | AVTAB_XPERMS;
 656	sattr = &policydb->type_attr_map_array[scontext->type - 1];
 657	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
 
 
 658	ebitmap_for_each_positive_bit(sattr, snode, i) {
 659		ebitmap_for_each_positive_bit(tattr, tnode, j) {
 660			avkey.source_type = i + 1;
 661			avkey.target_type = j + 1;
 662			for (node = avtab_search_node(&policydb->te_avtab,
 663						      &avkey);
 664			     node;
 665			     node = avtab_search_node_next(node, avkey.specified)) {
 666				if (node->key.specified == AVTAB_ALLOWED)
 667					avd->allowed |= node->datum.u.data;
 668				else if (node->key.specified == AVTAB_AUDITALLOW)
 669					avd->auditallow |= node->datum.u.data;
 670				else if (node->key.specified == AVTAB_AUDITDENY)
 671					avd->auditdeny &= node->datum.u.data;
 672				else if (xperms && (node->key.specified & AVTAB_XPERMS))
 673					services_compute_xperms_drivers(xperms, node);
 674			}
 675
 676			/* Check conditional av table for additional permissions */
 677			cond_compute_av(&policydb->te_cond_avtab, &avkey,
 678					avd, xperms);
 679
 680		}
 681	}
 682
 683	/*
 684	 * Remove any permissions prohibited by a constraint (this includes
 685	 * the MLS policy).
 686	 */
 687	constraint = tclass_datum->constraints;
 688	while (constraint) {
 689		if ((constraint->permissions & (avd->allowed)) &&
 690		    !constraint_expr_eval(policydb, scontext, tcontext, NULL,
 691					  constraint->expr)) {
 692			avd->allowed &= ~(constraint->permissions);
 693		}
 694		constraint = constraint->next;
 695	}
 696
 697	/*
 698	 * If checking process transition permission and the
 699	 * role is changing, then check the (current_role, new_role)
 700	 * pair.
 701	 */
 702	if (tclass == policydb->process_class &&
 703	    (avd->allowed & policydb->process_trans_perms) &&
 704	    scontext->role != tcontext->role) {
 705		for (ra = policydb->role_allow; ra; ra = ra->next) {
 706			if (scontext->role == ra->role &&
 707			    tcontext->role == ra->new_role)
 708				break;
 709		}
 710		if (!ra)
 711			avd->allowed &= ~policydb->process_trans_perms;
 712	}
 713
 714	/*
 715	 * If the given source and target types have boundary
 716	 * constraint, lazy checks have to mask any violated
 717	 * permission and notice it to userspace via audit.
 718	 */
 719	type_attribute_bounds_av(policydb, scontext, tcontext,
 720				 tclass, avd);
 721}
 722
 723static int security_validtrans_handle_fail(struct selinux_state *state,
 724					   struct sidtab_entry *oentry,
 725					   struct sidtab_entry *nentry,
 726					   struct sidtab_entry *tentry,
 727					   u16 tclass)
 728{
 729	struct policydb *p = &state->ss->policydb;
 730	struct sidtab *sidtab = state->ss->sidtab;
 731	char *o = NULL, *n = NULL, *t = NULL;
 732	u32 olen, nlen, tlen;
 733
 734	if (sidtab_entry_to_string(p, sidtab, oentry, &o, &olen))
 735		goto out;
 736	if (sidtab_entry_to_string(p, sidtab, nentry, &n, &nlen))
 737		goto out;
 738	if (sidtab_entry_to_string(p, sidtab, tentry, &t, &tlen))
 739		goto out;
 740	audit_log(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR,
 741		  "op=security_validate_transition seresult=denied"
 742		  " oldcontext=%s newcontext=%s taskcontext=%s tclass=%s",
 743		  o, n, t, sym_name(p, SYM_CLASSES, tclass-1));
 744out:
 745	kfree(o);
 746	kfree(n);
 747	kfree(t);
 748
 749	if (!enforcing_enabled(state))
 750		return 0;
 751	return -EPERM;
 752}
 753
 754static int security_compute_validatetrans(struct selinux_state *state,
 755					  u32 oldsid, u32 newsid, u32 tasksid,
 756					  u16 orig_tclass, bool user)
 757{
 758	struct policydb *policydb;
 759	struct sidtab *sidtab;
 760	struct sidtab_entry *oentry;
 761	struct sidtab_entry *nentry;
 762	struct sidtab_entry *tentry;
 763	struct class_datum *tclass_datum;
 764	struct constraint_node *constraint;
 765	u16 tclass;
 766	int rc = 0;
 767
 768
 769	if (!selinux_initialized(state))
 770		return 0;
 771
 772	read_lock(&state->ss->policy_rwlock);
 773
 774	policydb = &state->ss->policydb;
 775	sidtab = state->ss->sidtab;
 776
 777	if (!user)
 778		tclass = unmap_class(&state->ss->map, orig_tclass);
 779	else
 780		tclass = orig_tclass;
 781
 782	if (!tclass || tclass > policydb->p_classes.nprim) {
 
 
 783		rc = -EINVAL;
 784		goto out;
 785	}
 786	tclass_datum = policydb->class_val_to_struct[tclass - 1];
 787
 788	oentry = sidtab_search_entry(sidtab, oldsid);
 789	if (!oentry) {
 790		pr_err("SELinux: %s:  unrecognized SID %d\n",
 791			__func__, oldsid);
 792		rc = -EINVAL;
 793		goto out;
 794	}
 795
 796	nentry = sidtab_search_entry(sidtab, newsid);
 797	if (!nentry) {
 798		pr_err("SELinux: %s:  unrecognized SID %d\n",
 799			__func__, newsid);
 800		rc = -EINVAL;
 801		goto out;
 802	}
 803
 804	tentry = sidtab_search_entry(sidtab, tasksid);
 805	if (!tentry) {
 806		pr_err("SELinux: %s:  unrecognized SID %d\n",
 807			__func__, tasksid);
 808		rc = -EINVAL;
 809		goto out;
 810	}
 811
 812	constraint = tclass_datum->validatetrans;
 813	while (constraint) {
 814		if (!constraint_expr_eval(policydb, &oentry->context,
 815					  &nentry->context, &tentry->context,
 816					  constraint->expr)) {
 817			if (user)
 818				rc = -EPERM;
 819			else
 820				rc = security_validtrans_handle_fail(state,
 821								     oentry,
 822								     nentry,
 823								     tentry,
 824								     tclass);
 825			goto out;
 826		}
 827		constraint = constraint->next;
 828	}
 829
 830out:
 831	read_unlock(&state->ss->policy_rwlock);
 832	return rc;
 833}
 834
 835int security_validate_transition_user(struct selinux_state *state,
 836				      u32 oldsid, u32 newsid, u32 tasksid,
 837				      u16 tclass)
 838{
 839	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 840					      tclass, true);
 841}
 842
 843int security_validate_transition(struct selinux_state *state,
 844				 u32 oldsid, u32 newsid, u32 tasksid,
 845				 u16 orig_tclass)
 846{
 847	return security_compute_validatetrans(state, oldsid, newsid, tasksid,
 848					      orig_tclass, false);
 849}
 850
 851/*
 852 * security_bounded_transition - check whether the given
 853 * transition is directed to bounded, or not.
 854 * It returns 0, if @newsid is bounded by @oldsid.
 855 * Otherwise, it returns error code.
 856 *
 857 * @oldsid : current security identifier
 858 * @newsid : destinated security identifier
 859 */
 860int security_bounded_transition(struct selinux_state *state,
 861				u32 old_sid, u32 new_sid)
 862{
 863	struct policydb *policydb;
 864	struct sidtab *sidtab;
 865	struct sidtab_entry *old_entry, *new_entry;
 866	struct type_datum *type;
 867	int index;
 868	int rc;
 869
 870	if (!selinux_initialized(state))
 871		return 0;
 872
 873	read_lock(&state->ss->policy_rwlock);
 874
 875	policydb = &state->ss->policydb;
 876	sidtab = state->ss->sidtab;
 877
 878	rc = -EINVAL;
 879	old_entry = sidtab_search_entry(sidtab, old_sid);
 880	if (!old_entry) {
 881		pr_err("SELinux: %s: unrecognized SID %u\n",
 882		       __func__, old_sid);
 883		goto out;
 884	}
 885
 886	rc = -EINVAL;
 887	new_entry = sidtab_search_entry(sidtab, new_sid);
 888	if (!new_entry) {
 889		pr_err("SELinux: %s: unrecognized SID %u\n",
 890		       __func__, new_sid);
 891		goto out;
 892	}
 893
 894	rc = 0;
 895	/* type/domain unchanged */
 896	if (old_entry->context.type == new_entry->context.type)
 897		goto out;
 898
 899	index = new_entry->context.type;
 900	while (true) {
 901		type = policydb->type_val_to_struct[index - 1];
 
 902		BUG_ON(!type);
 903
 904		/* not bounded anymore */
 905		rc = -EPERM;
 906		if (!type->bounds)
 907			break;
 908
 909		/* @newsid is bounded by @oldsid */
 910		rc = 0;
 911		if (type->bounds == old_entry->context.type)
 912			break;
 913
 914		index = type->bounds;
 915	}
 916
 917	if (rc) {
 918		char *old_name = NULL;
 919		char *new_name = NULL;
 920		u32 length;
 921
 922		if (!sidtab_entry_to_string(policydb, sidtab, old_entry,
 923					    &old_name, &length) &&
 924		    !sidtab_entry_to_string(policydb, sidtab, new_entry,
 925					    &new_name, &length)) {
 926			audit_log(audit_context(),
 927				  GFP_ATOMIC, AUDIT_SELINUX_ERR,
 928				  "op=security_bounded_transition "
 929				  "seresult=denied "
 930				  "oldcontext=%s newcontext=%s",
 931				  old_name, new_name);
 932		}
 933		kfree(new_name);
 934		kfree(old_name);
 935	}
 936out:
 937	read_unlock(&state->ss->policy_rwlock);
 938
 939	return rc;
 940}
 941
 942static void avd_init(struct selinux_state *state, struct av_decision *avd)
 943{
 944	avd->allowed = 0;
 945	avd->auditallow = 0;
 946	avd->auditdeny = 0xffffffff;
 947	avd->seqno = state->ss->latest_granting;
 948	avd->flags = 0;
 949}
 950
 951void services_compute_xperms_decision(struct extended_perms_decision *xpermd,
 952					struct avtab_node *node)
 953{
 954	unsigned int i;
 955
 956	if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 957		if (xpermd->driver != node->datum.u.xperms->driver)
 958			return;
 959	} else if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 960		if (!security_xperm_test(node->datum.u.xperms->perms.p,
 961					xpermd->driver))
 962			return;
 963	} else {
 964		BUG();
 965	}
 966
 967	if (node->key.specified == AVTAB_XPERMS_ALLOWED) {
 968		xpermd->used |= XPERMS_ALLOWED;
 969		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 970			memset(xpermd->allowed->p, 0xff,
 971					sizeof(xpermd->allowed->p));
 972		}
 973		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 974			for (i = 0; i < ARRAY_SIZE(xpermd->allowed->p); i++)
 975				xpermd->allowed->p[i] |=
 976					node->datum.u.xperms->perms.p[i];
 977		}
 978	} else if (node->key.specified == AVTAB_XPERMS_AUDITALLOW) {
 979		xpermd->used |= XPERMS_AUDITALLOW;
 980		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 981			memset(xpermd->auditallow->p, 0xff,
 982					sizeof(xpermd->auditallow->p));
 983		}
 984		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 985			for (i = 0; i < ARRAY_SIZE(xpermd->auditallow->p); i++)
 986				xpermd->auditallow->p[i] |=
 987					node->datum.u.xperms->perms.p[i];
 988		}
 989	} else if (node->key.specified == AVTAB_XPERMS_DONTAUDIT) {
 990		xpermd->used |= XPERMS_DONTAUDIT;
 991		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLDRIVER) {
 992			memset(xpermd->dontaudit->p, 0xff,
 993					sizeof(xpermd->dontaudit->p));
 994		}
 995		if (node->datum.u.xperms->specified == AVTAB_XPERMS_IOCTLFUNCTION) {
 996			for (i = 0; i < ARRAY_SIZE(xpermd->dontaudit->p); i++)
 997				xpermd->dontaudit->p[i] |=
 998					node->datum.u.xperms->perms.p[i];
 999		}
1000	} else {
1001		BUG();
1002	}
1003}
1004
1005void security_compute_xperms_decision(struct selinux_state *state,
1006				      u32 ssid,
1007				      u32 tsid,
1008				      u16 orig_tclass,
1009				      u8 driver,
1010				      struct extended_perms_decision *xpermd)
1011{
1012	struct policydb *policydb;
1013	struct sidtab *sidtab;
1014	u16 tclass;
1015	struct context *scontext, *tcontext;
1016	struct avtab_key avkey;
1017	struct avtab_node *node;
1018	struct ebitmap *sattr, *tattr;
1019	struct ebitmap_node *snode, *tnode;
1020	unsigned int i, j;
1021
1022	xpermd->driver = driver;
1023	xpermd->used = 0;
1024	memset(xpermd->allowed->p, 0, sizeof(xpermd->allowed->p));
1025	memset(xpermd->auditallow->p, 0, sizeof(xpermd->auditallow->p));
1026	memset(xpermd->dontaudit->p, 0, sizeof(xpermd->dontaudit->p));
1027
1028	read_lock(&state->ss->policy_rwlock);
1029	if (!selinux_initialized(state))
1030		goto allow;
1031
1032	policydb = &state->ss->policydb;
1033	sidtab = state->ss->sidtab;
1034
1035	scontext = sidtab_search(sidtab, ssid);
1036	if (!scontext) {
1037		pr_err("SELinux: %s:  unrecognized SID %d\n",
1038		       __func__, ssid);
1039		goto out;
1040	}
1041
1042	tcontext = sidtab_search(sidtab, tsid);
1043	if (!tcontext) {
1044		pr_err("SELinux: %s:  unrecognized SID %d\n",
1045		       __func__, tsid);
1046		goto out;
1047	}
1048
1049	tclass = unmap_class(&state->ss->map, orig_tclass);
1050	if (unlikely(orig_tclass && !tclass)) {
1051		if (policydb->allow_unknown)
1052			goto allow;
1053		goto out;
1054	}
1055
1056
1057	if (unlikely(!tclass || tclass > policydb->p_classes.nprim)) {
1058		pr_warn_ratelimited("SELinux:  Invalid class %hu\n", tclass);
1059		goto out;
1060	}
1061
1062	avkey.target_class = tclass;
1063	avkey.specified = AVTAB_XPERMS;
1064	sattr = &policydb->type_attr_map_array[scontext->type - 1];
1065	tattr = &policydb->type_attr_map_array[tcontext->type - 1];
1066	ebitmap_for_each_positive_bit(sattr, snode, i) {
1067		ebitmap_for_each_positive_bit(tattr, tnode, j) {
1068			avkey.source_type = i + 1;
1069			avkey.target_type = j + 1;
1070			for (node = avtab_search_node(&policydb->te_avtab,
1071						      &avkey);
1072			     node;
1073			     node = avtab_search_node_next(node, avkey.specified))
1074				services_compute_xperms_decision(xpermd, node);
1075
1076			cond_compute_xperms(&policydb->te_cond_avtab,
1077						&avkey, xpermd);
1078		}
1079	}
1080out:
1081	read_unlock(&state->ss->policy_rwlock);
1082	return;
1083allow:
1084	memset(xpermd->allowed->p, 0xff, sizeof(xpermd->allowed->p));
1085	goto out;
1086}
1087
1088/**
1089 * security_compute_av - Compute access vector decisions.
1090 * @ssid: source security identifier
1091 * @tsid: target security identifier
1092 * @tclass: target security class
1093 * @avd: access vector decisions
1094 * @xperms: extended permissions
1095 *
1096 * Compute a set of access vector decisions based on the
1097 * SID pair (@ssid, @tsid) for the permissions in @tclass.
1098 */
1099void security_compute_av(struct selinux_state *state,
1100			 u32 ssid,
1101			 u32 tsid,
1102			 u16 orig_tclass,
1103			 struct av_decision *avd,
1104			 struct extended_perms *xperms)
1105{
1106	struct policydb *policydb;
1107	struct sidtab *sidtab;
1108	u16 tclass;
1109	struct context *scontext = NULL, *tcontext = NULL;
1110
1111	read_lock(&state->ss->policy_rwlock);
1112	avd_init(state, avd);
1113	xperms->len = 0;
1114	if (!selinux_initialized(state))
1115		goto allow;
1116
1117	policydb = &state->ss->policydb;
1118	sidtab = state->ss->sidtab;
1119
1120	scontext = sidtab_search(sidtab, ssid);
1121	if (!scontext) {
1122		pr_err("SELinux: %s:  unrecognized SID %d\n",
1123		       __func__, ssid);
1124		goto out;
1125	}
1126
1127	/* permissive domain? */
1128	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1129		avd->flags |= AVD_FLAGS_PERMISSIVE;
1130
1131	tcontext = sidtab_search(sidtab, tsid);
1132	if (!tcontext) {
1133		pr_err("SELinux: %s:  unrecognized SID %d\n",
1134		       __func__, tsid);
1135		goto out;
1136	}
1137
1138	tclass = unmap_class(&state->ss->map, orig_tclass);
1139	if (unlikely(orig_tclass && !tclass)) {
1140		if (policydb->allow_unknown)
1141			goto allow;
1142		goto out;
1143	}
1144	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1145				  xperms);
1146	map_decision(&state->ss->map, orig_tclass, avd,
1147		     policydb->allow_unknown);
1148out:
1149	read_unlock(&state->ss->policy_rwlock);
1150	return;
1151allow:
1152	avd->allowed = 0xffffffff;
1153	goto out;
1154}
1155
1156void security_compute_av_user(struct selinux_state *state,
1157			      u32 ssid,
1158			      u32 tsid,
1159			      u16 tclass,
1160			      struct av_decision *avd)
1161{
1162	struct policydb *policydb;
1163	struct sidtab *sidtab;
1164	struct context *scontext = NULL, *tcontext = NULL;
1165
1166	read_lock(&state->ss->policy_rwlock);
1167	avd_init(state, avd);
1168	if (!selinux_initialized(state))
1169		goto allow;
1170
1171	policydb = &state->ss->policydb;
1172	sidtab = state->ss->sidtab;
1173
1174	scontext = sidtab_search(sidtab, ssid);
1175	if (!scontext) {
1176		pr_err("SELinux: %s:  unrecognized SID %d\n",
1177		       __func__, ssid);
1178		goto out;
1179	}
1180
1181	/* permissive domain? */
1182	if (ebitmap_get_bit(&policydb->permissive_map, scontext->type))
1183		avd->flags |= AVD_FLAGS_PERMISSIVE;
1184
1185	tcontext = sidtab_search(sidtab, tsid);
1186	if (!tcontext) {
1187		pr_err("SELinux: %s:  unrecognized SID %d\n",
1188		       __func__, tsid);
1189		goto out;
1190	}
1191
1192	if (unlikely(!tclass)) {
1193		if (policydb->allow_unknown)
1194			goto allow;
1195		goto out;
1196	}
1197
1198	context_struct_compute_av(policydb, scontext, tcontext, tclass, avd,
1199				  NULL);
1200 out:
1201	read_unlock(&state->ss->policy_rwlock);
1202	return;
1203allow:
1204	avd->allowed = 0xffffffff;
1205	goto out;
1206}
1207
1208/*
1209 * Write the security context string representation of
1210 * the context structure `context' into a dynamically
1211 * allocated string of the correct size.  Set `*scontext'
1212 * to point to this string and set `*scontext_len' to
1213 * the length of the string.
1214 */
1215static int context_struct_to_string(struct policydb *p,
1216				    struct context *context,
1217				    char **scontext, u32 *scontext_len)
1218{
1219	char *scontextp;
1220
1221	if (scontext)
1222		*scontext = NULL;
1223	*scontext_len = 0;
1224
1225	if (context->len) {
1226		*scontext_len = context->len;
1227		if (scontext) {
1228			*scontext = kstrdup(context->str, GFP_ATOMIC);
1229			if (!(*scontext))
1230				return -ENOMEM;
1231		}
1232		return 0;
1233	}
1234
1235	/* Compute the size of the context. */
1236	*scontext_len += strlen(sym_name(p, SYM_USERS, context->user - 1)) + 1;
1237	*scontext_len += strlen(sym_name(p, SYM_ROLES, context->role - 1)) + 1;
1238	*scontext_len += strlen(sym_name(p, SYM_TYPES, context->type - 1)) + 1;
1239	*scontext_len += mls_compute_context_len(p, context);
1240
1241	if (!scontext)
1242		return 0;
1243
1244	/* Allocate space for the context; caller must free this space. */
1245	scontextp = kmalloc(*scontext_len, GFP_ATOMIC);
1246	if (!scontextp)
1247		return -ENOMEM;
1248	*scontext = scontextp;
1249
1250	/*
1251	 * Copy the user name, role name and type name into the context.
1252	 */
1253	scontextp += sprintf(scontextp, "%s:%s:%s",
1254		sym_name(p, SYM_USERS, context->user - 1),
1255		sym_name(p, SYM_ROLES, context->role - 1),
1256		sym_name(p, SYM_TYPES, context->type - 1));
 
 
 
1257
1258	mls_sid_to_context(p, context, &scontextp);
1259
1260	*scontextp = 0;
1261
1262	return 0;
1263}
1264
1265static int sidtab_entry_to_string(struct policydb *p,
1266				  struct sidtab *sidtab,
1267				  struct sidtab_entry *entry,
1268				  char **scontext, u32 *scontext_len)
1269{
1270	int rc = sidtab_sid2str_get(sidtab, entry, scontext, scontext_len);
1271
1272	if (rc != -ENOENT)
1273		return rc;
1274
1275	rc = context_struct_to_string(p, &entry->context, scontext,
1276				      scontext_len);
1277	if (!rc && scontext)
1278		sidtab_sid2str_put(sidtab, entry, *scontext, *scontext_len);
1279	return rc;
1280}
1281
1282#include "initial_sid_to_string.h"
1283
1284int security_sidtab_hash_stats(struct selinux_state *state, char *page)
1285{
1286	int rc;
1287
1288	if (!selinux_initialized(state)) {
1289		pr_err("SELinux: %s:  called before initial load_policy\n",
1290		       __func__);
1291		return -EINVAL;
1292	}
1293
1294	read_lock(&state->ss->policy_rwlock);
1295	rc = sidtab_hash_stats(state->ss->sidtab, page);
1296	read_unlock(&state->ss->policy_rwlock);
1297
1298	return rc;
1299}
1300
1301const char *security_get_initial_sid_context(u32 sid)
1302{
1303	if (unlikely(sid > SECINITSID_NUM))
1304		return NULL;
1305	return initial_sid_to_string[sid];
1306}
1307
1308static int security_sid_to_context_core(struct selinux_state *state,
1309					u32 sid, char **scontext,
1310					u32 *scontext_len, int force,
1311					int only_invalid)
1312{
1313	struct policydb *policydb;
1314	struct sidtab *sidtab;
1315	struct sidtab_entry *entry;
1316	int rc = 0;
1317
1318	if (scontext)
1319		*scontext = NULL;
1320	*scontext_len  = 0;
1321
1322	if (!selinux_initialized(state)) {
1323		if (sid <= SECINITSID_NUM) {
1324			char *scontextp;
1325			const char *s = initial_sid_to_string[sid];
1326
1327			if (!s)
1328				return -EINVAL;
1329			*scontext_len = strlen(s) + 1;
1330			if (!scontext)
1331				return 0;
1332			scontextp = kmemdup(s, *scontext_len, GFP_ATOMIC);
1333			if (!scontextp)
1334				return -ENOMEM;
 
 
 
1335			*scontext = scontextp;
1336			return 0;
1337		}
1338		pr_err("SELinux: %s:  called before initial "
1339		       "load_policy on unknown SID %d\n", __func__, sid);
1340		return -EINVAL;
 
1341	}
1342	read_lock(&state->ss->policy_rwlock);
1343	policydb = &state->ss->policydb;
1344	sidtab = state->ss->sidtab;
1345
1346	if (force)
1347		entry = sidtab_search_entry_force(sidtab, sid);
1348	else
1349		entry = sidtab_search_entry(sidtab, sid);
1350	if (!entry) {
1351		pr_err("SELinux: %s:  unrecognized SID %d\n",
1352			__func__, sid);
1353		rc = -EINVAL;
1354		goto out_unlock;
1355	}
1356	if (only_invalid && !entry->context.len)
1357		goto out_unlock;
1358
1359	rc = sidtab_entry_to_string(policydb, sidtab, entry, scontext,
1360				    scontext_len);
1361
1362out_unlock:
1363	read_unlock(&state->ss->policy_rwlock);
 
1364	return rc;
1365
1366}
1367
1368/**
1369 * security_sid_to_context - Obtain a context for a given SID.
1370 * @sid: security identifier, SID
1371 * @scontext: security context
1372 * @scontext_len: length in bytes
1373 *
1374 * Write the string representation of the context associated with @sid
1375 * into a dynamically allocated string of the correct size.  Set @scontext
1376 * to point to this string and set @scontext_len to the length of the string.
1377 */
1378int security_sid_to_context(struct selinux_state *state,
1379			    u32 sid, char **scontext, u32 *scontext_len)
1380{
1381	return security_sid_to_context_core(state, sid, scontext,
1382					    scontext_len, 0, 0);
1383}
1384
1385int security_sid_to_context_force(struct selinux_state *state, u32 sid,
1386				  char **scontext, u32 *scontext_len)
1387{
1388	return security_sid_to_context_core(state, sid, scontext,
1389					    scontext_len, 1, 0);
1390}
1391
1392/**
1393 * security_sid_to_context_inval - Obtain a context for a given SID if it
1394 *                                 is invalid.
1395 * @sid: security identifier, SID
1396 * @scontext: security context
1397 * @scontext_len: length in bytes
1398 *
1399 * Write the string representation of the context associated with @sid
1400 * into a dynamically allocated string of the correct size, but only if the
1401 * context is invalid in the current policy.  Set @scontext to point to
1402 * this string (or NULL if the context is valid) and set @scontext_len to
1403 * the length of the string (or 0 if the context is valid).
1404 */
1405int security_sid_to_context_inval(struct selinux_state *state, u32 sid,
1406				  char **scontext, u32 *scontext_len)
1407{
1408	return security_sid_to_context_core(state, sid, scontext,
1409					    scontext_len, 1, 1);
1410}
1411
1412/*
1413 * Caveat:  Mutates scontext.
1414 */
1415static int string_to_context_struct(struct policydb *pol,
1416				    struct sidtab *sidtabp,
1417				    char *scontext,
 
1418				    struct context *ctx,
1419				    u32 def_sid)
1420{
1421	struct role_datum *role;
1422	struct type_datum *typdatum;
1423	struct user_datum *usrdatum;
1424	char *scontextp, *p, oldc;
1425	int rc = 0;
1426
1427	context_init(ctx);
1428
1429	/* Parse the security context. */
1430
1431	rc = -EINVAL;
1432	scontextp = (char *) scontext;
1433
1434	/* Extract the user. */
1435	p = scontextp;
1436	while (*p && *p != ':')
1437		p++;
1438
1439	if (*p == 0)
1440		goto out;
1441
1442	*p++ = 0;
1443
1444	usrdatum = symtab_search(&pol->p_users, scontextp);
1445	if (!usrdatum)
1446		goto out;
1447
1448	ctx->user = usrdatum->value;
1449
1450	/* Extract role. */
1451	scontextp = p;
1452	while (*p && *p != ':')
1453		p++;
1454
1455	if (*p == 0)
1456		goto out;
1457
1458	*p++ = 0;
1459
1460	role = symtab_search(&pol->p_roles, scontextp);
1461	if (!role)
1462		goto out;
1463	ctx->role = role->value;
1464
1465	/* Extract type. */
1466	scontextp = p;
1467	while (*p && *p != ':')
1468		p++;
1469	oldc = *p;
1470	*p++ = 0;
1471
1472	typdatum = symtab_search(&pol->p_types, scontextp);
1473	if (!typdatum || typdatum->attribute)
1474		goto out;
1475
1476	ctx->type = typdatum->value;
1477
1478	rc = mls_context_to_sid(pol, oldc, p, ctx, sidtabp, def_sid);
1479	if (rc)
1480		goto out;
1481
 
 
 
 
1482	/* Check the validity of the new context. */
1483	rc = -EINVAL;
1484	if (!policydb_context_isvalid(pol, ctx))
1485		goto out;
1486	rc = 0;
1487out:
1488	if (rc)
1489		context_destroy(ctx);
1490	return rc;
1491}
1492
1493static int security_context_to_sid_core(struct selinux_state *state,
1494					const char *scontext, u32 scontext_len,
1495					u32 *sid, u32 def_sid, gfp_t gfp_flags,
1496					int force)
1497{
1498	struct policydb *policydb;
1499	struct sidtab *sidtab;
1500	char *scontext2, *str = NULL;
1501	struct context context;
1502	int rc = 0;
1503
1504	/* An empty security context is never valid. */
1505	if (!scontext_len)
1506		return -EINVAL;
1507
1508	/* Copy the string to allow changes and ensure a NUL terminator */
1509	scontext2 = kmemdup_nul(scontext, scontext_len, gfp_flags);
1510	if (!scontext2)
1511		return -ENOMEM;
1512
1513	if (!selinux_initialized(state)) {
1514		int i;
1515
1516		for (i = 1; i < SECINITSID_NUM; i++) {
1517			const char *s = initial_sid_to_string[i];
1518
1519			if (s && !strcmp(s, scontext2)) {
1520				*sid = i;
1521				goto out;
1522			}
1523		}
1524		*sid = SECINITSID_KERNEL;
1525		goto out;
1526	}
1527	*sid = SECSID_NULL;
1528
 
 
 
 
 
 
 
1529	if (force) {
1530		/* Save another copy for storing in uninterpreted form */
1531		rc = -ENOMEM;
1532		str = kstrdup(scontext2, gfp_flags);
1533		if (!str)
1534			goto out;
1535	}
1536	read_lock(&state->ss->policy_rwlock);
1537	policydb = &state->ss->policydb;
1538	sidtab = state->ss->sidtab;
1539	rc = string_to_context_struct(policydb, sidtab, scontext2,
1540				      &context, def_sid);
1541	if (rc == -EINVAL && force) {
1542		context.str = str;
1543		context.len = strlen(str) + 1;
1544		str = NULL;
1545	} else if (rc)
1546		goto out_unlock;
1547	rc = sidtab_context_to_sid(sidtab, &context, sid);
1548	context_destroy(&context);
1549out_unlock:
1550	read_unlock(&state->ss->policy_rwlock);
1551out:
1552	kfree(scontext2);
1553	kfree(str);
1554	return rc;
1555}
1556
1557/**
1558 * security_context_to_sid - Obtain a SID for a given security context.
1559 * @scontext: security context
1560 * @scontext_len: length in bytes
1561 * @sid: security identifier, SID
1562 * @gfp: context for the allocation
1563 *
1564 * Obtains a SID associated with the security context that
1565 * has the string representation specified by @scontext.
1566 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1567 * memory is available, or 0 on success.
1568 */
1569int security_context_to_sid(struct selinux_state *state,
1570			    const char *scontext, u32 scontext_len, u32 *sid,
1571			    gfp_t gfp)
1572{
1573	return security_context_to_sid_core(state, scontext, scontext_len,
1574					    sid, SECSID_NULL, gfp, 0);
1575}
1576
1577int security_context_str_to_sid(struct selinux_state *state,
1578				const char *scontext, u32 *sid, gfp_t gfp)
1579{
1580	return security_context_to_sid(state, scontext, strlen(scontext),
1581				       sid, gfp);
1582}
1583
1584/**
1585 * security_context_to_sid_default - Obtain a SID for a given security context,
1586 * falling back to specified default if needed.
1587 *
1588 * @scontext: security context
1589 * @scontext_len: length in bytes
1590 * @sid: security identifier, SID
1591 * @def_sid: default SID to assign on error
1592 *
1593 * Obtains a SID associated with the security context that
1594 * has the string representation specified by @scontext.
1595 * The default SID is passed to the MLS layer to be used to allow
1596 * kernel labeling of the MLS field if the MLS field is not present
1597 * (for upgrading to MLS without full relabel).
1598 * Implicitly forces adding of the context even if it cannot be mapped yet.
1599 * Returns -%EINVAL if the context is invalid, -%ENOMEM if insufficient
1600 * memory is available, or 0 on success.
1601 */
1602int security_context_to_sid_default(struct selinux_state *state,
1603				    const char *scontext, u32 scontext_len,
1604				    u32 *sid, u32 def_sid, gfp_t gfp_flags)
1605{
1606	return security_context_to_sid_core(state, scontext, scontext_len,
1607					    sid, def_sid, gfp_flags, 1);
1608}
1609
1610int security_context_to_sid_force(struct selinux_state *state,
1611				  const char *scontext, u32 scontext_len,
1612				  u32 *sid)
1613{
1614	return security_context_to_sid_core(state, scontext, scontext_len,
1615					    sid, SECSID_NULL, GFP_KERNEL, 1);
1616}
1617
1618static int compute_sid_handle_invalid_context(
1619	struct selinux_state *state,
1620	struct sidtab_entry *sentry,
1621	struct sidtab_entry *tentry,
1622	u16 tclass,
1623	struct context *newcontext)
1624{
1625	struct policydb *policydb = &state->ss->policydb;
1626	struct sidtab *sidtab = state->ss->sidtab;
1627	char *s = NULL, *t = NULL, *n = NULL;
1628	u32 slen, tlen, nlen;
1629	struct audit_buffer *ab;
1630
1631	if (sidtab_entry_to_string(policydb, sidtab, sentry, &s, &slen))
1632		goto out;
1633	if (sidtab_entry_to_string(policydb, sidtab, tentry, &t, &tlen))
1634		goto out;
1635	if (context_struct_to_string(policydb, newcontext, &n, &nlen))
1636		goto out;
1637	ab = audit_log_start(audit_context(), GFP_ATOMIC, AUDIT_SELINUX_ERR);
1638	audit_log_format(ab,
1639			 "op=security_compute_sid invalid_context=");
1640	/* no need to record the NUL with untrusted strings */
1641	audit_log_n_untrustedstring(ab, n, nlen - 1);
1642	audit_log_format(ab, " scontext=%s tcontext=%s tclass=%s",
1643			 s, t, sym_name(policydb, SYM_CLASSES, tclass-1));
1644	audit_log_end(ab);
1645out:
1646	kfree(s);
1647	kfree(t);
1648	kfree(n);
1649	if (!enforcing_enabled(state))
1650		return 0;
1651	return -EACCES;
1652}
1653
1654static void filename_compute_type(struct policydb *policydb,
1655				  struct context *newcontext,
1656				  u32 stype, u32 ttype, u16 tclass,
1657				  const char *objname)
1658{
1659	struct filename_trans_key ft;
1660	struct filename_trans_datum *datum;
1661
1662	/*
1663	 * Most filename trans rules are going to live in specific directories
1664	 * like /dev or /var/run.  This bitmap will quickly skip rule searches
1665	 * if the ttype does not contain any rules.
1666	 */
1667	if (!ebitmap_get_bit(&policydb->filename_trans_ttypes, ttype))
1668		return;
1669
 
1670	ft.ttype = ttype;
1671	ft.tclass = tclass;
1672	ft.name = objname;
1673
1674	datum = policydb_filenametr_search(policydb, &ft);
1675	while (datum) {
1676		if (ebitmap_get_bit(&datum->stypes, stype - 1)) {
1677			newcontext->type = datum->otype;
1678			return;
1679		}
1680		datum = datum->next;
1681	}
1682}
1683
1684static int security_compute_sid(struct selinux_state *state,
1685				u32 ssid,
1686				u32 tsid,
1687				u16 orig_tclass,
1688				u32 specified,
1689				const char *objname,
1690				u32 *out_sid,
1691				bool kern)
1692{
1693	struct policydb *policydb;
1694	struct sidtab *sidtab;
1695	struct class_datum *cladatum = NULL;
1696	struct context *scontext, *tcontext, newcontext;
1697	struct sidtab_entry *sentry, *tentry;
1698	struct avtab_key avkey;
1699	struct avtab_datum *avdatum;
1700	struct avtab_node *node;
1701	u16 tclass;
1702	int rc = 0;
1703	bool sock;
1704
1705	if (!selinux_initialized(state)) {
1706		switch (orig_tclass) {
1707		case SECCLASS_PROCESS: /* kernel value */
1708			*out_sid = ssid;
1709			break;
1710		default:
1711			*out_sid = tsid;
1712			break;
1713		}
1714		goto out;
1715	}
1716
1717	context_init(&newcontext);
1718
1719	read_lock(&state->ss->policy_rwlock);
1720
1721	if (kern) {
1722		tclass = unmap_class(&state->ss->map, orig_tclass);
1723		sock = security_is_socket_class(orig_tclass);
1724	} else {
1725		tclass = orig_tclass;
1726		sock = security_is_socket_class(map_class(&state->ss->map,
1727							  tclass));
1728	}
1729
1730	policydb = &state->ss->policydb;
1731	sidtab = state->ss->sidtab;
1732
1733	sentry = sidtab_search_entry(sidtab, ssid);
1734	if (!sentry) {
1735		pr_err("SELinux: %s:  unrecognized SID %d\n",
1736		       __func__, ssid);
1737		rc = -EINVAL;
1738		goto out_unlock;
1739	}
1740	tentry = sidtab_search_entry(sidtab, tsid);
1741	if (!tentry) {
1742		pr_err("SELinux: %s:  unrecognized SID %d\n",
1743		       __func__, tsid);
1744		rc = -EINVAL;
1745		goto out_unlock;
1746	}
1747
1748	scontext = &sentry->context;
1749	tcontext = &tentry->context;
1750
1751	if (tclass && tclass <= policydb->p_classes.nprim)
1752		cladatum = policydb->class_val_to_struct[tclass - 1];
1753
1754	/* Set the user identity. */
1755	switch (specified) {
1756	case AVTAB_TRANSITION:
1757	case AVTAB_CHANGE:
1758		if (cladatum && cladatum->default_user == DEFAULT_TARGET) {
1759			newcontext.user = tcontext->user;
1760		} else {
1761			/* notice this gets both DEFAULT_SOURCE and unset */
1762			/* Use the process user identity. */
1763			newcontext.user = scontext->user;
1764		}
1765		break;
1766	case AVTAB_MEMBER:
1767		/* Use the related object owner. */
1768		newcontext.user = tcontext->user;
1769		break;
1770	}
1771
1772	/* Set the role to default values. */
1773	if (cladatum && cladatum->default_role == DEFAULT_SOURCE) {
1774		newcontext.role = scontext->role;
1775	} else if (cladatum && cladatum->default_role == DEFAULT_TARGET) {
1776		newcontext.role = tcontext->role;
1777	} else {
1778		if ((tclass == policydb->process_class) || sock)
1779			newcontext.role = scontext->role;
1780		else
1781			newcontext.role = OBJECT_R_VAL;
1782	}
1783
1784	/* Set the type to default values. */
1785	if (cladatum && cladatum->default_type == DEFAULT_SOURCE) {
1786		newcontext.type = scontext->type;
1787	} else if (cladatum && cladatum->default_type == DEFAULT_TARGET) {
1788		newcontext.type = tcontext->type;
1789	} else {
1790		if ((tclass == policydb->process_class) || sock) {
1791			/* Use the type of process. */
1792			newcontext.type = scontext->type;
1793		} else {
1794			/* Use the type of the related object. */
1795			newcontext.type = tcontext->type;
1796		}
1797	}
1798
1799	/* Look for a type transition/member/change rule. */
1800	avkey.source_type = scontext->type;
1801	avkey.target_type = tcontext->type;
1802	avkey.target_class = tclass;
1803	avkey.specified = specified;
1804	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1805
1806	/* If no permanent rule, also check for enabled conditional rules */
1807	if (!avdatum) {
1808		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1809		for (; node; node = avtab_search_node_next(node, specified)) {
1810			if (node->key.specified & AVTAB_ENABLED) {
1811				avdatum = &node->datum;
1812				break;
1813			}
1814		}
1815	}
1816
1817	if (avdatum) {
1818		/* Use the type from the type transition/member/change rule. */
1819		newcontext.type = avdatum->u.data;
1820	}
1821
1822	/* if we have a objname this is a file trans check so check those rules */
1823	if (objname)
1824		filename_compute_type(policydb, &newcontext, scontext->type,
1825				      tcontext->type, tclass, objname);
1826
1827	/* Check for class-specific changes. */
1828	if (specified & AVTAB_TRANSITION) {
1829		/* Look for a role transition rule. */
1830		struct role_trans_datum *rtd;
1831		struct role_trans_key rtk = {
1832			.role = scontext->role,
1833			.type = tcontext->type,
1834			.tclass = tclass,
1835		};
1836
1837		rtd = policydb_roletr_search(policydb, &rtk);
1838		if (rtd)
1839			newcontext.role = rtd->new_role;
1840	}
1841
1842	/* Set the MLS attributes.
1843	   This is done last because it may allocate memory. */
1844	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1845			     &newcontext, sock);
1846	if (rc)
1847		goto out_unlock;
1848
1849	/* Check the validity of the context. */
1850	if (!policydb_context_isvalid(policydb, &newcontext)) {
1851		rc = compute_sid_handle_invalid_context(state, sentry, tentry,
1852							tclass, &newcontext);
 
 
1853		if (rc)
1854			goto out_unlock;
1855	}
1856	/* Obtain the sid for the context. */
1857	rc = sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1858out_unlock:
1859	read_unlock(&state->ss->policy_rwlock);
1860	context_destroy(&newcontext);
1861out:
1862	return rc;
1863}
1864
1865/**
1866 * security_transition_sid - Compute the SID for a new subject/object.
1867 * @ssid: source security identifier
1868 * @tsid: target security identifier
1869 * @tclass: target security class
1870 * @out_sid: security identifier for new subject/object
1871 *
1872 * Compute a SID to use for labeling a new subject or object in the
1873 * class @tclass based on a SID pair (@ssid, @tsid).
1874 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1875 * if insufficient memory is available, or %0 if the new SID was
1876 * computed successfully.
1877 */
1878int security_transition_sid(struct selinux_state *state,
1879			    u32 ssid, u32 tsid, u16 tclass,
1880			    const struct qstr *qstr, u32 *out_sid)
1881{
1882	return security_compute_sid(state, ssid, tsid, tclass,
1883				    AVTAB_TRANSITION,
1884				    qstr ? qstr->name : NULL, out_sid, true);
1885}
1886
1887int security_transition_sid_user(struct selinux_state *state,
1888				 u32 ssid, u32 tsid, u16 tclass,
1889				 const char *objname, u32 *out_sid)
1890{
1891	return security_compute_sid(state, ssid, tsid, tclass,
1892				    AVTAB_TRANSITION,
1893				    objname, out_sid, false);
1894}
1895
1896/**
1897 * security_member_sid - Compute the SID for member selection.
1898 * @ssid: source security identifier
1899 * @tsid: target security identifier
1900 * @tclass: target security class
1901 * @out_sid: security identifier for selected member
1902 *
1903 * Compute a SID to use when selecting a member of a polyinstantiated
1904 * object of class @tclass based on a SID pair (@ssid, @tsid).
1905 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1906 * if insufficient memory is available, or %0 if the SID was
1907 * computed successfully.
1908 */
1909int security_member_sid(struct selinux_state *state,
1910			u32 ssid,
1911			u32 tsid,
1912			u16 tclass,
1913			u32 *out_sid)
1914{
1915	return security_compute_sid(state, ssid, tsid, tclass,
1916				    AVTAB_MEMBER, NULL,
1917				    out_sid, false);
1918}
1919
1920/**
1921 * security_change_sid - Compute the SID for object relabeling.
1922 * @ssid: source security identifier
1923 * @tsid: target security identifier
1924 * @tclass: target security class
1925 * @out_sid: security identifier for selected member
1926 *
1927 * Compute a SID to use for relabeling an object of class @tclass
1928 * based on a SID pair (@ssid, @tsid).
1929 * Return -%EINVAL if any of the parameters are invalid, -%ENOMEM
1930 * if insufficient memory is available, or %0 if the SID was
1931 * computed successfully.
1932 */
1933int security_change_sid(struct selinux_state *state,
1934			u32 ssid,
1935			u32 tsid,
1936			u16 tclass,
1937			u32 *out_sid)
1938{
1939	return security_compute_sid(state,
1940				    ssid, tsid, tclass, AVTAB_CHANGE, NULL,
1941				    out_sid, false);
1942}
1943
1944static inline int convert_context_handle_invalid_context(
1945	struct selinux_state *state,
1946	struct context *context)
 
 
 
 
 
 
 
 
 
 
 
1947{
1948	struct policydb *policydb = &state->ss->policydb;
1949	char *s;
1950	u32 len;
1951
1952	if (enforcing_enabled(state))
1953		return -EINVAL;
1954
1955	if (!context_struct_to_string(policydb, context, &s, &len)) {
1956		pr_warn("SELinux:  Context %s would be invalid if enforcing\n",
1957			s);
1958		kfree(s);
1959	}
1960	return 0;
1961}
1962
1963struct convert_context_args {
1964	struct selinux_state *state;
1965	struct policydb *oldp;
1966	struct policydb *newp;
1967};
1968
1969/*
1970 * Convert the values in the security context
1971 * structure `oldc' from the values specified
1972 * in the policy `p->oldp' to the values specified
1973 * in the policy `p->newp', storing the new context
1974 * in `newc'.  Verify that the context is valid
1975 * under the new policy.
1976 */
1977static int convert_context(struct context *oldc, struct context *newc, void *p)
 
 
1978{
1979	struct convert_context_args *args;
 
1980	struct ocontext *oc;
 
1981	struct role_datum *role;
1982	struct type_datum *typdatum;
1983	struct user_datum *usrdatum;
1984	char *s;
1985	u32 len;
1986	int rc;
 
 
 
1987
1988	args = p;
1989
1990	if (oldc->str) {
1991		s = kstrdup(oldc->str, GFP_KERNEL);
 
 
 
1992		if (!s)
1993			return -ENOMEM;
1994
1995		rc = string_to_context_struct(args->newp, NULL, s,
1996					      newc, SECSID_NULL);
1997		if (rc == -EINVAL) {
1998			/*
1999			 * Retain string representation for later mapping.
2000			 *
2001			 * IMPORTANT: We need to copy the contents of oldc->str
2002			 * back into s again because string_to_context_struct()
2003			 * may have garbled it.
2004			 */
2005			memcpy(s, oldc->str, oldc->len);
2006			context_init(newc);
2007			newc->str = s;
2008			newc->len = oldc->len;
2009			return 0;
2010		}
2011		kfree(s);
2012		if (rc) {
 
 
 
 
 
 
 
 
 
 
 
2013			/* Other error condition, e.g. ENOMEM. */
2014			pr_err("SELinux:   Unable to map context %s, rc = %d.\n",
2015			       oldc->str, -rc);
2016			return rc;
2017		}
2018		pr_info("SELinux:  Context %s became valid (mapped).\n",
2019			oldc->str);
2020		return 0;
2021	}
2022
2023	context_init(newc);
 
 
2024
2025	/* Convert the user. */
2026	rc = -EINVAL;
2027	usrdatum = symtab_search(&args->newp->p_users,
2028				 sym_name(args->oldp,
2029					  SYM_USERS, oldc->user - 1));
2030	if (!usrdatum)
2031		goto bad;
2032	newc->user = usrdatum->value;
2033
2034	/* Convert the role. */
2035	rc = -EINVAL;
2036	role = symtab_search(&args->newp->p_roles,
2037			     sym_name(args->oldp, SYM_ROLES, oldc->role - 1));
2038	if (!role)
2039		goto bad;
2040	newc->role = role->value;
2041
2042	/* Convert the type. */
2043	rc = -EINVAL;
2044	typdatum = symtab_search(&args->newp->p_types,
2045				 sym_name(args->oldp,
2046					  SYM_TYPES, oldc->type - 1));
2047	if (!typdatum)
2048		goto bad;
2049	newc->type = typdatum->value;
2050
2051	/* Convert the MLS fields if dealing with MLS policies */
2052	if (args->oldp->mls_enabled && args->newp->mls_enabled) {
2053		rc = mls_convert_context(args->oldp, args->newp, oldc, newc);
2054		if (rc)
2055			goto bad;
 
 
 
 
 
 
 
2056	} else if (!args->oldp->mls_enabled && args->newp->mls_enabled) {
2057		/*
2058		 * Switching between non-MLS and MLS policy:
2059		 * ensure that the MLS fields of the context for all
2060		 * existing entries in the sidtab are filled in with a
2061		 * suitable default value, likely taken from one of the
2062		 * initial SIDs.
2063		 */
2064		oc = args->newp->ocontexts[OCON_ISID];
2065		while (oc && oc->sid[0] != SECINITSID_UNLABELED)
2066			oc = oc->next;
2067		rc = -EINVAL;
2068		if (!oc) {
2069			pr_err("SELinux:  unable to look up"
2070				" the initial SIDs list\n");
2071			goto bad;
2072		}
2073		rc = mls_range_set(newc, &oc->context[0].range);
 
2074		if (rc)
2075			goto bad;
2076	}
2077
2078	/* Check the validity of the new context. */
2079	if (!policydb_context_isvalid(args->newp, newc)) {
2080		rc = convert_context_handle_invalid_context(args->state, oldc);
2081		if (rc)
2082			goto bad;
2083	}
2084
2085	return 0;
 
 
 
 
2086bad:
2087	/* Map old representation to string and save it. */
2088	rc = context_struct_to_string(args->oldp, oldc, &s, &len);
2089	if (rc)
2090		return rc;
2091	context_destroy(newc);
2092	newc->str = s;
2093	newc->len = len;
2094	pr_info("SELinux:  Context %s became invalid (unmapped).\n",
2095		newc->str);
2096	return 0;
 
 
2097}
2098
2099static void security_load_policycaps(struct selinux_state *state)
2100{
2101	struct policydb *p = &state->ss->policydb;
2102	unsigned int i;
2103	struct ebitmap_node *node;
2104
2105	for (i = 0; i < ARRAY_SIZE(state->policycap); i++)
2106		state->policycap[i] = ebitmap_get_bit(&p->policycaps, i);
2107
2108	for (i = 0; i < ARRAY_SIZE(selinux_policycap_names); i++)
2109		pr_info("SELinux:  policy capability %s=%d\n",
2110			selinux_policycap_names[i],
2111			ebitmap_get_bit(&p->policycaps, i));
2112
2113	ebitmap_for_each_positive_bit(&p->policycaps, node, i) {
2114		if (i >= ARRAY_SIZE(selinux_policycap_names))
2115			pr_info("SELinux:  unknown policy capability %u\n",
2116				i);
2117	}
2118}
2119
2120static int security_preserve_bools(struct selinux_state *state,
2121				   struct policydb *newpolicydb);
2122
2123/**
2124 * security_load_policy - Load a security policy configuration.
2125 * @data: binary policy data
2126 * @len: length of data in bytes
2127 *
2128 * Load a new set of security policy configuration data,
2129 * validate it and convert the SID table as necessary.
2130 * This function will flush the access vector cache after
2131 * loading the new policy.
2132 */
2133int security_load_policy(struct selinux_state *state, void *data, size_t len)
2134{
2135	struct policydb *policydb;
2136	struct sidtab *oldsidtab, *newsidtab;
2137	struct policydb *oldpolicydb, *newpolicydb;
2138	struct selinux_mapping *oldmapping;
2139	struct selinux_map newmap;
2140	struct sidtab_convert_params convert_params;
2141	struct convert_context_args args;
2142	u32 seqno;
 
2143	int rc = 0;
2144	struct policy_file file = { data, len }, *fp = &file;
2145
2146	policydb = &state->ss->policydb;
2147
2148	newsidtab = kmalloc(sizeof(*newsidtab), GFP_KERNEL);
2149	if (!newsidtab)
2150		return -ENOMEM;
2151
2152	if (!selinux_initialized(state)) {
2153		rc = policydb_read(policydb, fp);
2154		if (rc) {
2155			kfree(newsidtab);
2156			return rc;
2157		}
2158
2159		policydb->len = len;
2160		rc = selinux_set_mapping(policydb, secclass_map,
2161					 &state->ss->map);
 
2162		if (rc) {
2163			kfree(newsidtab);
2164			policydb_destroy(policydb);
2165			return rc;
2166		}
2167
2168		rc = policydb_load_isids(policydb, newsidtab);
2169		if (rc) {
2170			kfree(newsidtab);
2171			policydb_destroy(policydb);
2172			return rc;
2173		}
2174
2175		state->ss->sidtab = newsidtab;
2176		security_load_policycaps(state);
2177		selinux_mark_initialized(state);
2178		seqno = ++state->ss->latest_granting;
2179		selinux_complete_init();
2180		avc_ss_reset(state->avc, seqno);
2181		selnl_notify_policyload(seqno);
2182		selinux_status_update_policyload(state, seqno);
2183		selinux_netlbl_cache_invalidate();
2184		selinux_xfrm_notify_policyload();
2185		return 0;
2186	}
2187
2188	oldpolicydb = kcalloc(2, sizeof(*oldpolicydb), GFP_KERNEL);
2189	if (!oldpolicydb) {
2190		kfree(newsidtab);
2191		return -ENOMEM;
2192	}
2193	newpolicydb = oldpolicydb + 1;
2194
2195	rc = policydb_read(newpolicydb, fp);
2196	if (rc) {
2197		kfree(newsidtab);
2198		goto out;
2199	}
2200
2201	newpolicydb->len = len;
2202	/* If switching between different policy types, log MLS status */
2203	if (policydb->mls_enabled && !newpolicydb->mls_enabled)
2204		pr_info("SELinux: Disabling MLS support...\n");
2205	else if (!policydb->mls_enabled && newpolicydb->mls_enabled)
2206		pr_info("SELinux: Enabling MLS support...\n");
2207
2208	rc = policydb_load_isids(newpolicydb, newsidtab);
2209	if (rc) {
2210		pr_err("SELinux:  unable to load the initial SIDs\n");
2211		policydb_destroy(newpolicydb);
2212		kfree(newsidtab);
2213		goto out;
2214	}
2215
2216	rc = selinux_set_mapping(newpolicydb, secclass_map, &newmap);
2217	if (rc)
2218		goto err;
2219
2220	rc = security_preserve_bools(state, newpolicydb);
2221	if (rc) {
2222		pr_err("SELinux:  unable to preserve booleans\n");
2223		goto err;
2224	}
2225
2226	oldsidtab = state->ss->sidtab;
 
 
 
 
 
2227
2228	/*
2229	 * Convert the internal representations of contexts
2230	 * in the new SID table.
2231	 */
2232	args.state = state;
2233	args.oldp = policydb;
2234	args.newp = newpolicydb;
2235
2236	convert_params.func = convert_context;
2237	convert_params.args = &args;
2238	convert_params.target = newsidtab;
2239
2240	rc = sidtab_convert(oldsidtab, &convert_params);
2241	if (rc) {
2242		pr_err("SELinux:  unable to convert the internal"
2243			" representation of contexts in the new SID"
2244			" table\n");
2245		goto err;
2246	}
2247
2248	/* Save the old policydb and SID table to free later. */
2249	memcpy(oldpolicydb, policydb, sizeof(*policydb));
 
2250
2251	/* Install the new policydb and SID table. */
2252	write_lock_irq(&state->ss->policy_rwlock);
2253	memcpy(policydb, newpolicydb, sizeof(*policydb));
2254	state->ss->sidtab = newsidtab;
2255	security_load_policycaps(state);
2256	oldmapping = state->ss->map.mapping;
2257	state->ss->map.mapping = newmap.mapping;
2258	state->ss->map.size = newmap.size;
2259	seqno = ++state->ss->latest_granting;
2260	write_unlock_irq(&state->ss->policy_rwlock);
2261
2262	/* Free the old policydb and SID table. */
2263	policydb_destroy(oldpolicydb);
2264	sidtab_destroy(oldsidtab);
2265	kfree(oldsidtab);
2266	kfree(oldmapping);
2267
2268	avc_ss_reset(state->avc, seqno);
2269	selnl_notify_policyload(seqno);
2270	selinux_status_update_policyload(state, seqno);
2271	selinux_netlbl_cache_invalidate();
2272	selinux_xfrm_notify_policyload();
2273
2274	rc = 0;
2275	goto out;
2276
2277err:
2278	kfree(newmap.mapping);
2279	sidtab_destroy(newsidtab);
2280	kfree(newsidtab);
2281	policydb_destroy(newpolicydb);
2282
2283out:
2284	kfree(oldpolicydb);
2285	return rc;
2286}
2287
2288size_t security_policydb_len(struct selinux_state *state)
2289{
2290	struct policydb *p = &state->ss->policydb;
2291	size_t len;
2292
2293	read_lock(&state->ss->policy_rwlock);
2294	len = p->len;
2295	read_unlock(&state->ss->policy_rwlock);
2296
2297	return len;
2298}
2299
2300/**
2301 * security_port_sid - Obtain the SID for a port.
2302 * @protocol: protocol number
2303 * @port: port number
2304 * @out_sid: security identifier
2305 */
2306int security_port_sid(struct selinux_state *state,
2307		      u8 protocol, u16 port, u32 *out_sid)
2308{
2309	struct policydb *policydb;
2310	struct sidtab *sidtab;
2311	struct ocontext *c;
2312	int rc = 0;
2313
2314	read_lock(&state->ss->policy_rwlock);
2315
2316	policydb = &state->ss->policydb;
2317	sidtab = state->ss->sidtab;
2318
2319	c = policydb->ocontexts[OCON_PORT];
2320	while (c) {
2321		if (c->u.port.protocol == protocol &&
2322		    c->u.port.low_port <= port &&
2323		    c->u.port.high_port >= port)
2324			break;
2325		c = c->next;
2326	}
2327
2328	if (c) {
2329		if (!c->sid[0]) {
2330			rc = sidtab_context_to_sid(sidtab, &c->context[0],
 
2331						   &c->sid[0]);
2332			if (rc)
2333				goto out;
2334		}
2335		*out_sid = c->sid[0];
2336	} else {
2337		*out_sid = SECINITSID_PORT;
2338	}
2339
2340out:
2341	read_unlock(&state->ss->policy_rwlock);
2342	return rc;
2343}
2344
2345/**
2346 * security_pkey_sid - Obtain the SID for a pkey.
2347 * @subnet_prefix: Subnet Prefix
2348 * @pkey_num: pkey number
2349 * @out_sid: security identifier
2350 */
2351int security_ib_pkey_sid(struct selinux_state *state,
2352			 u64 subnet_prefix, u16 pkey_num, u32 *out_sid)
2353{
2354	struct policydb *policydb;
2355	struct sidtab *sidtab;
2356	struct ocontext *c;
2357	int rc = 0;
2358
2359	read_lock(&state->ss->policy_rwlock);
2360
2361	policydb = &state->ss->policydb;
2362	sidtab = state->ss->sidtab;
2363
2364	c = policydb->ocontexts[OCON_IBPKEY];
2365	while (c) {
2366		if (c->u.ibpkey.low_pkey <= pkey_num &&
2367		    c->u.ibpkey.high_pkey >= pkey_num &&
2368		    c->u.ibpkey.subnet_prefix == subnet_prefix)
2369			break;
2370
2371		c = c->next;
2372	}
2373
2374	if (c) {
2375		if (!c->sid[0]) {
2376			rc = sidtab_context_to_sid(sidtab,
2377						   &c->context[0],
2378						   &c->sid[0]);
2379			if (rc)
2380				goto out;
2381		}
2382		*out_sid = c->sid[0];
2383	} else
2384		*out_sid = SECINITSID_UNLABELED;
2385
2386out:
2387	read_unlock(&state->ss->policy_rwlock);
2388	return rc;
2389}
2390
2391/**
2392 * security_ib_endport_sid - Obtain the SID for a subnet management interface.
2393 * @dev_name: device name
2394 * @port: port number
2395 * @out_sid: security identifier
2396 */
2397int security_ib_endport_sid(struct selinux_state *state,
2398			    const char *dev_name, u8 port_num, u32 *out_sid)
2399{
2400	struct policydb *policydb;
2401	struct sidtab *sidtab;
2402	struct ocontext *c;
2403	int rc = 0;
2404
2405	read_lock(&state->ss->policy_rwlock);
2406
2407	policydb = &state->ss->policydb;
2408	sidtab = state->ss->sidtab;
2409
2410	c = policydb->ocontexts[OCON_IBENDPORT];
2411	while (c) {
2412		if (c->u.ibendport.port == port_num &&
2413		    !strncmp(c->u.ibendport.dev_name,
2414			     dev_name,
2415			     IB_DEVICE_NAME_MAX))
2416			break;
2417
2418		c = c->next;
2419	}
2420
2421	if (c) {
2422		if (!c->sid[0]) {
2423			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2424						   &c->sid[0]);
2425			if (rc)
2426				goto out;
2427		}
2428		*out_sid = c->sid[0];
2429	} else
2430		*out_sid = SECINITSID_UNLABELED;
2431
2432out:
2433	read_unlock(&state->ss->policy_rwlock);
2434	return rc;
2435}
2436
2437/**
2438 * security_netif_sid - Obtain the SID for a network interface.
2439 * @name: interface name
2440 * @if_sid: interface SID
2441 */
2442int security_netif_sid(struct selinux_state *state,
2443		       char *name, u32 *if_sid)
2444{
2445	struct policydb *policydb;
2446	struct sidtab *sidtab;
2447	int rc = 0;
2448	struct ocontext *c;
2449
2450	read_lock(&state->ss->policy_rwlock);
2451
2452	policydb = &state->ss->policydb;
2453	sidtab = state->ss->sidtab;
2454
2455	c = policydb->ocontexts[OCON_NETIF];
2456	while (c) {
2457		if (strcmp(name, c->u.name) == 0)
2458			break;
2459		c = c->next;
2460	}
2461
2462	if (c) {
2463		if (!c->sid[0] || !c->sid[1]) {
2464			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2465						   &c->sid[0]);
 
2466			if (rc)
2467				goto out;
2468			rc = sidtab_context_to_sid(sidtab, &c->context[1],
 
2469						   &c->sid[1]);
2470			if (rc)
2471				goto out;
2472		}
2473		*if_sid = c->sid[0];
2474	} else
2475		*if_sid = SECINITSID_NETIF;
2476
2477out:
2478	read_unlock(&state->ss->policy_rwlock);
2479	return rc;
2480}
2481
2482static int match_ipv6_addrmask(u32 *input, u32 *addr, u32 *mask)
2483{
2484	int i, fail = 0;
2485
2486	for (i = 0; i < 4; i++)
2487		if (addr[i] != (input[i] & mask[i])) {
2488			fail = 1;
2489			break;
2490		}
2491
2492	return !fail;
2493}
2494
2495/**
2496 * security_node_sid - Obtain the SID for a node (host).
2497 * @domain: communication domain aka address family
2498 * @addrp: address
2499 * @addrlen: address length in bytes
2500 * @out_sid: security identifier
2501 */
2502int security_node_sid(struct selinux_state *state,
2503		      u16 domain,
2504		      void *addrp,
2505		      u32 addrlen,
2506		      u32 *out_sid)
2507{
2508	struct policydb *policydb;
2509	struct sidtab *sidtab;
2510	int rc;
2511	struct ocontext *c;
2512
2513	read_lock(&state->ss->policy_rwlock);
2514
2515	policydb = &state->ss->policydb;
2516	sidtab = state->ss->sidtab;
2517
2518	switch (domain) {
2519	case AF_INET: {
2520		u32 addr;
2521
2522		rc = -EINVAL;
2523		if (addrlen != sizeof(u32))
2524			goto out;
2525
2526		addr = *((u32 *)addrp);
2527
2528		c = policydb->ocontexts[OCON_NODE];
2529		while (c) {
2530			if (c->u.node.addr == (addr & c->u.node.mask))
2531				break;
2532			c = c->next;
2533		}
2534		break;
2535	}
2536
2537	case AF_INET6:
2538		rc = -EINVAL;
2539		if (addrlen != sizeof(u64) * 2)
2540			goto out;
2541		c = policydb->ocontexts[OCON_NODE6];
2542		while (c) {
2543			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
2544						c->u.node6.mask))
2545				break;
2546			c = c->next;
2547		}
2548		break;
2549
2550	default:
2551		rc = 0;
2552		*out_sid = SECINITSID_NODE;
2553		goto out;
2554	}
2555
2556	if (c) {
2557		if (!c->sid[0]) {
2558			rc = sidtab_context_to_sid(sidtab,
2559						   &c->context[0],
2560						   &c->sid[0]);
2561			if (rc)
2562				goto out;
2563		}
2564		*out_sid = c->sid[0];
2565	} else {
2566		*out_sid = SECINITSID_NODE;
2567	}
2568
2569	rc = 0;
2570out:
2571	read_unlock(&state->ss->policy_rwlock);
2572	return rc;
2573}
2574
2575#define SIDS_NEL 25
2576
2577/**
2578 * security_get_user_sids - Obtain reachable SIDs for a user.
2579 * @fromsid: starting SID
2580 * @username: username
2581 * @sids: array of reachable SIDs for user
2582 * @nel: number of elements in @sids
2583 *
2584 * Generate the set of SIDs for legal security contexts
2585 * for a given user that can be reached by @fromsid.
2586 * Set *@sids to point to a dynamically allocated
2587 * array containing the set of SIDs.  Set *@nel to the
2588 * number of elements in the array.
2589 */
2590
2591int security_get_user_sids(struct selinux_state *state,
2592			   u32 fromsid,
2593			   char *username,
2594			   u32 **sids,
2595			   u32 *nel)
2596{
2597	struct policydb *policydb;
2598	struct sidtab *sidtab;
2599	struct context *fromcon, usercon;
2600	u32 *mysids = NULL, *mysids2, sid;
2601	u32 mynel = 0, maxnel = SIDS_NEL;
2602	struct user_datum *user;
2603	struct role_datum *role;
2604	struct ebitmap_node *rnode, *tnode;
2605	int rc = 0, i, j;
2606
2607	*sids = NULL;
2608	*nel = 0;
2609
2610	if (!selinux_initialized(state))
2611		goto out;
2612
2613	read_lock(&state->ss->policy_rwlock);
2614
2615	policydb = &state->ss->policydb;
2616	sidtab = state->ss->sidtab;
2617
2618	context_init(&usercon);
2619
2620	rc = -EINVAL;
2621	fromcon = sidtab_search(sidtab, fromsid);
2622	if (!fromcon)
2623		goto out_unlock;
2624
2625	rc = -EINVAL;
2626	user = symtab_search(&policydb->p_users, username);
2627	if (!user)
2628		goto out_unlock;
2629
2630	usercon.user = user->value;
2631
2632	rc = -ENOMEM;
2633	mysids = kcalloc(maxnel, sizeof(*mysids), GFP_ATOMIC);
2634	if (!mysids)
2635		goto out_unlock;
2636
2637	ebitmap_for_each_positive_bit(&user->roles, rnode, i) {
2638		role = policydb->role_val_to_struct[i];
2639		usercon.role = i + 1;
2640		ebitmap_for_each_positive_bit(&role->types, tnode, j) {
2641			usercon.type = j + 1;
2642
2643			if (mls_setup_user_range(policydb, fromcon, user,
2644						 &usercon))
2645				continue;
2646
2647			rc = sidtab_context_to_sid(sidtab, &usercon, &sid);
2648			if (rc)
2649				goto out_unlock;
2650			if (mynel < maxnel) {
2651				mysids[mynel++] = sid;
2652			} else {
2653				rc = -ENOMEM;
2654				maxnel += SIDS_NEL;
2655				mysids2 = kcalloc(maxnel, sizeof(*mysids2), GFP_ATOMIC);
2656				if (!mysids2)
2657					goto out_unlock;
2658				memcpy(mysids2, mysids, mynel * sizeof(*mysids2));
2659				kfree(mysids);
2660				mysids = mysids2;
2661				mysids[mynel++] = sid;
2662			}
2663		}
2664	}
2665	rc = 0;
2666out_unlock:
2667	read_unlock(&state->ss->policy_rwlock);
2668	if (rc || !mynel) {
2669		kfree(mysids);
2670		goto out;
2671	}
2672
2673	rc = -ENOMEM;
2674	mysids2 = kcalloc(mynel, sizeof(*mysids2), GFP_KERNEL);
2675	if (!mysids2) {
2676		kfree(mysids);
2677		goto out;
2678	}
2679	for (i = 0, j = 0; i < mynel; i++) {
2680		struct av_decision dummy_avd;
2681		rc = avc_has_perm_noaudit(state,
2682					  fromsid, mysids[i],
2683					  SECCLASS_PROCESS, /* kernel value */
2684					  PROCESS__TRANSITION, AVC_STRICT,
2685					  &dummy_avd);
2686		if (!rc)
2687			mysids2[j++] = mysids[i];
2688		cond_resched();
2689	}
2690	rc = 0;
2691	kfree(mysids);
2692	*sids = mysids2;
2693	*nel = j;
2694out:
2695	return rc;
2696}
2697
2698/**
2699 * __security_genfs_sid - Helper to obtain a SID for a file in a filesystem
2700 * @fstype: filesystem type
2701 * @path: path from root of mount
2702 * @sclass: file security class
2703 * @sid: SID for path
2704 *
2705 * Obtain a SID to use for a file in a filesystem that
2706 * cannot support xattr or use a fixed labeling behavior like
2707 * transition SIDs or task SIDs.
2708 *
2709 * The caller must acquire the policy_rwlock before calling this function.
2710 */
2711static inline int __security_genfs_sid(struct selinux_state *state,
2712				       const char *fstype,
2713				       char *path,
2714				       u16 orig_sclass,
2715				       u32 *sid)
2716{
2717	struct policydb *policydb = &state->ss->policydb;
2718	struct sidtab *sidtab = state->ss->sidtab;
2719	int len;
2720	u16 sclass;
2721	struct genfs *genfs;
2722	struct ocontext *c;
2723	int rc, cmp = 0;
2724
2725	while (path[0] == '/' && path[1] == '/')
2726		path++;
2727
2728	sclass = unmap_class(&state->ss->map, orig_sclass);
 
 
2729	*sid = SECINITSID_UNLABELED;
2730
2731	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2732		cmp = strcmp(fstype, genfs->fstype);
2733		if (cmp <= 0)
2734			break;
2735	}
2736
2737	rc = -ENOENT;
2738	if (!genfs || cmp)
2739		goto out;
2740
2741	for (c = genfs->head; c; c = c->next) {
2742		len = strlen(c->u.name);
2743		if ((!c->v.sclass || sclass == c->v.sclass) &&
2744		    (strncmp(c->u.name, path, len) == 0))
2745			break;
2746	}
2747
2748	rc = -ENOENT;
2749	if (!c)
2750		goto out;
2751
2752	if (!c->sid[0]) {
2753		rc = sidtab_context_to_sid(sidtab, &c->context[0], &c->sid[0]);
2754		if (rc)
2755			goto out;
2756	}
2757
2758	*sid = c->sid[0];
2759	rc = 0;
2760out:
 
2761	return rc;
2762}
2763
2764/**
2765 * security_genfs_sid - Obtain a SID for a file in a filesystem
2766 * @fstype: filesystem type
2767 * @path: path from root of mount
2768 * @sclass: file security class
2769 * @sid: SID for path
2770 *
2771 * Acquire policy_rwlock before calling __security_genfs_sid() and release
2772 * it afterward.
2773 */
2774int security_genfs_sid(struct selinux_state *state,
2775		       const char *fstype,
2776		       char *path,
2777		       u16 orig_sclass,
2778		       u32 *sid)
2779{
2780	int retval;
2781
2782	read_lock(&state->ss->policy_rwlock);
2783	retval = __security_genfs_sid(state, fstype, path, orig_sclass, sid);
2784	read_unlock(&state->ss->policy_rwlock);
2785	return retval;
2786}
2787
2788/**
2789 * security_fs_use - Determine how to handle labeling for a filesystem.
2790 * @sb: superblock in question
2791 */
2792int security_fs_use(struct selinux_state *state, struct super_block *sb)
 
 
 
2793{
2794	struct policydb *policydb;
2795	struct sidtab *sidtab;
2796	int rc = 0;
2797	struct ocontext *c;
2798	struct superblock_security_struct *sbsec = sb->s_security;
2799	const char *fstype = sb->s_type->name;
2800
2801	read_lock(&state->ss->policy_rwlock);
2802
2803	policydb = &state->ss->policydb;
2804	sidtab = state->ss->sidtab;
2805
2806	c = policydb->ocontexts[OCON_FSUSE];
2807	while (c) {
2808		if (strcmp(fstype, c->u.name) == 0)
2809			break;
2810		c = c->next;
2811	}
2812
2813	if (c) {
2814		sbsec->behavior = c->v.behavior;
2815		if (!c->sid[0]) {
2816			rc = sidtab_context_to_sid(sidtab, &c->context[0],
2817						   &c->sid[0]);
2818			if (rc)
2819				goto out;
2820		}
2821		sbsec->sid = c->sid[0];
2822	} else {
2823		rc = __security_genfs_sid(state, fstype, "/", SECCLASS_DIR,
2824					  &sbsec->sid);
2825		if (rc) {
2826			sbsec->behavior = SECURITY_FS_USE_NONE;
2827			rc = 0;
2828		} else {
2829			sbsec->behavior = SECURITY_FS_USE_GENFS;
2830		}
2831	}
2832
2833out:
2834	read_unlock(&state->ss->policy_rwlock);
2835	return rc;
2836}
2837
2838int security_get_bools(struct selinux_state *state,
2839		       u32 *len, char ***names, int **values)
2840{
2841	struct policydb *policydb;
2842	u32 i;
2843	int rc;
2844
2845	if (!selinux_initialized(state)) {
2846		*len = 0;
2847		*names = NULL;
2848		*values = NULL;
2849		return 0;
2850	}
2851
2852	read_lock(&state->ss->policy_rwlock);
2853
2854	policydb = &state->ss->policydb;
2855
 
2856	*names = NULL;
2857	*values = NULL;
2858
2859	rc = 0;
2860	*len = policydb->p_bools.nprim;
2861	if (!*len)
2862		goto out;
2863
2864	rc = -ENOMEM;
2865	*names = kcalloc(*len, sizeof(char *), GFP_ATOMIC);
2866	if (!*names)
2867		goto err;
2868
2869	rc = -ENOMEM;
2870	*values = kcalloc(*len, sizeof(int), GFP_ATOMIC);
2871	if (!*values)
2872		goto err;
2873
2874	for (i = 0; i < *len; i++) {
2875		(*values)[i] = policydb->bool_val_to_struct[i]->state;
 
 
 
2876
2877		rc = -ENOMEM;
2878		(*names)[i] = kstrdup(sym_name(policydb, SYM_BOOLS, i),
2879				      GFP_ATOMIC);
2880		if (!(*names)[i])
2881			goto err;
 
 
 
2882	}
2883	rc = 0;
2884out:
2885	read_unlock(&state->ss->policy_rwlock);
2886	return rc;
2887err:
2888	if (*names) {
2889		for (i = 0; i < *len; i++)
2890			kfree((*names)[i]);
2891		kfree(*names);
2892	}
2893	kfree(*values);
2894	*len = 0;
2895	*names = NULL;
2896	*values = NULL;
2897	goto out;
2898}
2899
2900
2901int security_set_bools(struct selinux_state *state, u32 len, int *values)
2902{
2903	struct policydb *policydb;
2904	int rc;
2905	u32 i, lenp, seqno = 0;
2906
2907	write_lock_irq(&state->ss->policy_rwlock);
2908
2909	policydb = &state->ss->policydb;
2910
2911	rc = -EFAULT;
2912	lenp = policydb->p_bools.nprim;
2913	if (len != lenp)
2914		goto out;
2915
2916	for (i = 0; i < len; i++) {
2917		if (!!values[i] != policydb->bool_val_to_struct[i]->state) {
2918			audit_log(audit_context(), GFP_ATOMIC,
2919				AUDIT_MAC_CONFIG_CHANGE,
2920				"bool=%s val=%d old_val=%d auid=%u ses=%u",
2921				sym_name(policydb, SYM_BOOLS, i),
2922				!!values[i],
2923				policydb->bool_val_to_struct[i]->state,
2924				from_kuid(&init_user_ns, audit_get_loginuid(current)),
2925				audit_get_sessionid(current));
2926		}
2927		if (values[i])
2928			policydb->bool_val_to_struct[i]->state = 1;
2929		else
2930			policydb->bool_val_to_struct[i]->state = 0;
2931	}
2932
2933	evaluate_cond_nodes(policydb);
 
 
 
 
2934
2935	seqno = ++state->ss->latest_granting;
2936	rc = 0;
2937out:
2938	write_unlock_irq(&state->ss->policy_rwlock);
2939	if (!rc) {
2940		avc_ss_reset(state->avc, seqno);
2941		selnl_notify_policyload(seqno);
2942		selinux_status_update_policyload(state, seqno);
2943		selinux_xfrm_notify_policyload();
2944	}
2945	return rc;
2946}
2947
2948int security_get_bool_value(struct selinux_state *state,
2949			    u32 index)
2950{
2951	struct policydb *policydb;
2952	int rc;
2953	u32 len;
2954
2955	read_lock(&state->ss->policy_rwlock);
2956
2957	policydb = &state->ss->policydb;
2958
2959	rc = -EFAULT;
2960	len = policydb->p_bools.nprim;
2961	if (index >= len)
2962		goto out;
2963
2964	rc = policydb->bool_val_to_struct[index]->state;
2965out:
2966	read_unlock(&state->ss->policy_rwlock);
2967	return rc;
2968}
2969
2970static int security_preserve_bools(struct selinux_state *state,
2971				   struct policydb *policydb)
2972{
2973	int rc, *bvalues = NULL;
2974	char **bnames = NULL;
2975	struct cond_bool_datum *booldatum;
2976	u32 i, nbools = 0;
2977
2978	rc = security_get_bools(state, &nbools, &bnames, &bvalues);
2979	if (rc)
2980		goto out;
2981	for (i = 0; i < nbools; i++) {
2982		booldatum = symtab_search(&policydb->p_bools, bnames[i]);
2983		if (booldatum)
2984			booldatum->state = bvalues[i];
2985	}
2986	evaluate_cond_nodes(policydb);
 
 
 
 
2987
2988out:
2989	if (bnames) {
2990		for (i = 0; i < nbools; i++)
2991			kfree(bnames[i]);
2992	}
2993	kfree(bnames);
2994	kfree(bvalues);
2995	return rc;
2996}
2997
2998/*
2999 * security_sid_mls_copy() - computes a new sid based on the given
3000 * sid and the mls portion of mls_sid.
3001 */
3002int security_sid_mls_copy(struct selinux_state *state,
3003			  u32 sid, u32 mls_sid, u32 *new_sid)
3004{
3005	struct policydb *policydb = &state->ss->policydb;
3006	struct sidtab *sidtab = state->ss->sidtab;
3007	struct context *context1;
3008	struct context *context2;
3009	struct context newcon;
3010	char *s;
3011	u32 len;
3012	int rc;
3013
3014	rc = 0;
3015	if (!selinux_initialized(state) || !policydb->mls_enabled) {
3016		*new_sid = sid;
3017		goto out;
3018	}
3019
3020	context_init(&newcon);
3021
3022	read_lock(&state->ss->policy_rwlock);
3023
3024	rc = -EINVAL;
3025	context1 = sidtab_search(sidtab, sid);
3026	if (!context1) {
3027		pr_err("SELinux: %s:  unrecognized SID %d\n",
3028			__func__, sid);
3029		goto out_unlock;
3030	}
3031
3032	rc = -EINVAL;
3033	context2 = sidtab_search(sidtab, mls_sid);
3034	if (!context2) {
3035		pr_err("SELinux: %s:  unrecognized SID %d\n",
3036			__func__, mls_sid);
3037		goto out_unlock;
3038	}
3039
3040	newcon.user = context1->user;
3041	newcon.role = context1->role;
3042	newcon.type = context1->type;
3043	rc = mls_context_cpy(&newcon, context2);
3044	if (rc)
3045		goto out_unlock;
3046
3047	/* Check the validity of the new context. */
3048	if (!policydb_context_isvalid(policydb, &newcon)) {
3049		rc = convert_context_handle_invalid_context(state, &newcon);
3050		if (rc) {
3051			if (!context_struct_to_string(policydb, &newcon, &s,
3052						      &len)) {
3053				struct audit_buffer *ab;
3054
3055				ab = audit_log_start(audit_context(),
3056						     GFP_ATOMIC,
3057						     AUDIT_SELINUX_ERR);
3058				audit_log_format(ab,
3059						 "op=security_sid_mls_copy invalid_context=");
3060				/* don't record NUL with untrusted strings */
3061				audit_log_n_untrustedstring(ab, s, len - 1);
3062				audit_log_end(ab);
3063				kfree(s);
3064			}
3065			goto out_unlock;
3066		}
3067	}
3068	rc = sidtab_context_to_sid(sidtab, &newcon, new_sid);
 
3069out_unlock:
3070	read_unlock(&state->ss->policy_rwlock);
3071	context_destroy(&newcon);
3072out:
3073	return rc;
3074}
3075
3076/**
3077 * security_net_peersid_resolve - Compare and resolve two network peer SIDs
3078 * @nlbl_sid: NetLabel SID
3079 * @nlbl_type: NetLabel labeling protocol type
3080 * @xfrm_sid: XFRM SID
3081 *
3082 * Description:
3083 * Compare the @nlbl_sid and @xfrm_sid values and if the two SIDs can be
3084 * resolved into a single SID it is returned via @peer_sid and the function
3085 * returns zero.  Otherwise @peer_sid is set to SECSID_NULL and the function
3086 * returns a negative value.  A table summarizing the behavior is below:
3087 *
3088 *                                 | function return |      @sid
3089 *   ------------------------------+-----------------+-----------------
3090 *   no peer labels                |        0        |    SECSID_NULL
3091 *   single peer label             |        0        |    <peer_label>
3092 *   multiple, consistent labels   |        0        |    <peer_label>
3093 *   multiple, inconsistent labels |    -<errno>     |    SECSID_NULL
3094 *
3095 */
3096int security_net_peersid_resolve(struct selinux_state *state,
3097				 u32 nlbl_sid, u32 nlbl_type,
3098				 u32 xfrm_sid,
3099				 u32 *peer_sid)
3100{
3101	struct policydb *policydb = &state->ss->policydb;
3102	struct sidtab *sidtab = state->ss->sidtab;
3103	int rc;
3104	struct context *nlbl_ctx;
3105	struct context *xfrm_ctx;
3106
3107	*peer_sid = SECSID_NULL;
3108
3109	/* handle the common (which also happens to be the set of easy) cases
3110	 * right away, these two if statements catch everything involving a
3111	 * single or absent peer SID/label */
3112	if (xfrm_sid == SECSID_NULL) {
3113		*peer_sid = nlbl_sid;
3114		return 0;
3115	}
3116	/* NOTE: an nlbl_type == NETLBL_NLTYPE_UNLABELED is a "fallback" label
3117	 * and is treated as if nlbl_sid == SECSID_NULL when a XFRM SID/label
3118	 * is present */
3119	if (nlbl_sid == SECSID_NULL || nlbl_type == NETLBL_NLTYPE_UNLABELED) {
3120		*peer_sid = xfrm_sid;
3121		return 0;
3122	}
3123
3124	/*
3125	 * We don't need to check initialized here since the only way both
3126	 * nlbl_sid and xfrm_sid are not equal to SECSID_NULL would be if the
3127	 * security server was initialized and state->initialized was true.
3128	 */
3129	if (!policydb->mls_enabled)
3130		return 0;
3131
3132	read_lock(&state->ss->policy_rwlock);
3133
3134	rc = -EINVAL;
3135	nlbl_ctx = sidtab_search(sidtab, nlbl_sid);
3136	if (!nlbl_ctx) {
3137		pr_err("SELinux: %s:  unrecognized SID %d\n",
3138		       __func__, nlbl_sid);
3139		goto out;
3140	}
3141	rc = -EINVAL;
3142	xfrm_ctx = sidtab_search(sidtab, xfrm_sid);
3143	if (!xfrm_ctx) {
3144		pr_err("SELinux: %s:  unrecognized SID %d\n",
3145		       __func__, xfrm_sid);
3146		goto out;
3147	}
3148	rc = (mls_context_cmp(nlbl_ctx, xfrm_ctx) ? 0 : -EACCES);
3149	if (rc)
3150		goto out;
3151
3152	/* at present NetLabel SIDs/labels really only carry MLS
3153	 * information so if the MLS portion of the NetLabel SID
3154	 * matches the MLS portion of the labeled XFRM SID/label
3155	 * then pass along the XFRM SID as it is the most
3156	 * expressive */
3157	*peer_sid = xfrm_sid;
3158out:
3159	read_unlock(&state->ss->policy_rwlock);
3160	return rc;
3161}
3162
3163static int get_classes_callback(void *k, void *d, void *args)
3164{
3165	struct class_datum *datum = d;
3166	char *name = k, **classes = args;
3167	int value = datum->value - 1;
3168
3169	classes[value] = kstrdup(name, GFP_ATOMIC);
3170	if (!classes[value])
3171		return -ENOMEM;
3172
3173	return 0;
3174}
3175
3176int security_get_classes(struct selinux_state *state,
3177			 char ***classes, int *nclasses)
3178{
3179	struct policydb *policydb = &state->ss->policydb;
3180	int rc;
3181
3182	if (!selinux_initialized(state)) {
3183		*nclasses = 0;
3184		*classes = NULL;
3185		return 0;
3186	}
3187
3188	read_lock(&state->ss->policy_rwlock);
3189
3190	rc = -ENOMEM;
3191	*nclasses = policydb->p_classes.nprim;
3192	*classes = kcalloc(*nclasses, sizeof(**classes), GFP_ATOMIC);
3193	if (!*classes)
3194		goto out;
3195
3196	rc = hashtab_map(&policydb->p_classes.table, get_classes_callback,
3197			 *classes);
3198	if (rc) {
3199		int i;
3200		for (i = 0; i < *nclasses; i++)
3201			kfree((*classes)[i]);
3202		kfree(*classes);
3203	}
3204
3205out:
3206	read_unlock(&state->ss->policy_rwlock);
3207	return rc;
3208}
3209
3210static int get_permissions_callback(void *k, void *d, void *args)
3211{
3212	struct perm_datum *datum = d;
3213	char *name = k, **perms = args;
3214	int value = datum->value - 1;
3215
3216	perms[value] = kstrdup(name, GFP_ATOMIC);
3217	if (!perms[value])
3218		return -ENOMEM;
3219
3220	return 0;
3221}
3222
3223int security_get_permissions(struct selinux_state *state,
3224			     char *class, char ***perms, int *nperms)
3225{
3226	struct policydb *policydb = &state->ss->policydb;
3227	int rc, i;
3228	struct class_datum *match;
3229
3230	read_lock(&state->ss->policy_rwlock);
3231
3232	rc = -EINVAL;
3233	match = symtab_search(&policydb->p_classes, class);
3234	if (!match) {
3235		pr_err("SELinux: %s:  unrecognized class %s\n",
3236			__func__, class);
3237		goto out;
3238	}
3239
3240	rc = -ENOMEM;
3241	*nperms = match->permissions.nprim;
3242	*perms = kcalloc(*nperms, sizeof(**perms), GFP_ATOMIC);
3243	if (!*perms)
3244		goto out;
3245
3246	if (match->comdatum) {
3247		rc = hashtab_map(&match->comdatum->permissions.table,
3248				 get_permissions_callback, *perms);
3249		if (rc)
3250			goto err;
3251	}
3252
3253	rc = hashtab_map(&match->permissions.table, get_permissions_callback,
3254			 *perms);
3255	if (rc)
3256		goto err;
3257
3258out:
3259	read_unlock(&state->ss->policy_rwlock);
3260	return rc;
3261
3262err:
3263	read_unlock(&state->ss->policy_rwlock);
3264	for (i = 0; i < *nperms; i++)
3265		kfree((*perms)[i]);
3266	kfree(*perms);
3267	return rc;
3268}
3269
3270int security_get_reject_unknown(struct selinux_state *state)
3271{
3272	return state->ss->policydb.reject_unknown;
3273}
3274
3275int security_get_allow_unknown(struct selinux_state *state)
3276{
3277	return state->ss->policydb.allow_unknown;
3278}
3279
3280/**
3281 * security_policycap_supported - Check for a specific policy capability
3282 * @req_cap: capability
3283 *
3284 * Description:
3285 * This function queries the currently loaded policy to see if it supports the
3286 * capability specified by @req_cap.  Returns true (1) if the capability is
3287 * supported, false (0) if it isn't supported.
3288 *
3289 */
3290int security_policycap_supported(struct selinux_state *state,
3291				 unsigned int req_cap)
3292{
3293	struct policydb *policydb = &state->ss->policydb;
3294	int rc;
3295
3296	read_lock(&state->ss->policy_rwlock);
3297	rc = ebitmap_get_bit(&policydb->policycaps, req_cap);
3298	read_unlock(&state->ss->policy_rwlock);
3299
3300	return rc;
3301}
3302
3303struct selinux_audit_rule {
3304	u32 au_seqno;
3305	struct context au_ctxt;
3306};
3307
3308void selinux_audit_rule_free(void *vrule)
3309{
3310	struct selinux_audit_rule *rule = vrule;
3311
3312	if (rule) {
3313		context_destroy(&rule->au_ctxt);
3314		kfree(rule);
3315	}
3316}
3317
3318int selinux_audit_rule_init(u32 field, u32 op, char *rulestr, void **vrule)
3319{
3320	struct selinux_state *state = &selinux_state;
3321	struct policydb *policydb = &state->ss->policydb;
3322	struct selinux_audit_rule *tmprule;
3323	struct role_datum *roledatum;
3324	struct type_datum *typedatum;
3325	struct user_datum *userdatum;
3326	struct selinux_audit_rule **rule = (struct selinux_audit_rule **)vrule;
3327	int rc = 0;
3328
3329	*rule = NULL;
3330
3331	if (!selinux_initialized(state))
3332		return -EOPNOTSUPP;
3333
3334	switch (field) {
3335	case AUDIT_SUBJ_USER:
3336	case AUDIT_SUBJ_ROLE:
3337	case AUDIT_SUBJ_TYPE:
3338	case AUDIT_OBJ_USER:
3339	case AUDIT_OBJ_ROLE:
3340	case AUDIT_OBJ_TYPE:
3341		/* only 'equals' and 'not equals' fit user, role, and type */
3342		if (op != Audit_equal && op != Audit_not_equal)
3343			return -EINVAL;
3344		break;
3345	case AUDIT_SUBJ_SEN:
3346	case AUDIT_SUBJ_CLR:
3347	case AUDIT_OBJ_LEV_LOW:
3348	case AUDIT_OBJ_LEV_HIGH:
3349		/* we do not allow a range, indicated by the presence of '-' */
3350		if (strchr(rulestr, '-'))
3351			return -EINVAL;
3352		break;
3353	default:
3354		/* only the above fields are valid */
3355		return -EINVAL;
3356	}
3357
3358	tmprule = kzalloc(sizeof(struct selinux_audit_rule), GFP_KERNEL);
3359	if (!tmprule)
3360		return -ENOMEM;
3361
3362	context_init(&tmprule->au_ctxt);
3363
3364	read_lock(&state->ss->policy_rwlock);
3365
3366	tmprule->au_seqno = state->ss->latest_granting;
3367
3368	switch (field) {
3369	case AUDIT_SUBJ_USER:
3370	case AUDIT_OBJ_USER:
3371		rc = -EINVAL;
3372		userdatum = symtab_search(&policydb->p_users, rulestr);
3373		if (!userdatum)
3374			goto out;
3375		tmprule->au_ctxt.user = userdatum->value;
3376		break;
3377	case AUDIT_SUBJ_ROLE:
3378	case AUDIT_OBJ_ROLE:
3379		rc = -EINVAL;
3380		roledatum = symtab_search(&policydb->p_roles, rulestr);
3381		if (!roledatum)
3382			goto out;
3383		tmprule->au_ctxt.role = roledatum->value;
3384		break;
3385	case AUDIT_SUBJ_TYPE:
3386	case AUDIT_OBJ_TYPE:
3387		rc = -EINVAL;
3388		typedatum = symtab_search(&policydb->p_types, rulestr);
3389		if (!typedatum)
3390			goto out;
3391		tmprule->au_ctxt.type = typedatum->value;
3392		break;
3393	case AUDIT_SUBJ_SEN:
3394	case AUDIT_SUBJ_CLR:
3395	case AUDIT_OBJ_LEV_LOW:
3396	case AUDIT_OBJ_LEV_HIGH:
3397		rc = mls_from_string(policydb, rulestr, &tmprule->au_ctxt,
3398				     GFP_ATOMIC);
3399		if (rc)
3400			goto out;
3401		break;
3402	}
3403	rc = 0;
3404out:
3405	read_unlock(&state->ss->policy_rwlock);
3406
3407	if (rc) {
3408		selinux_audit_rule_free(tmprule);
3409		tmprule = NULL;
3410	}
3411
3412	*rule = tmprule;
3413
3414	return rc;
3415}
3416
3417/* Check to see if the rule contains any selinux fields */
3418int selinux_audit_rule_known(struct audit_krule *rule)
3419{
3420	int i;
3421
3422	for (i = 0; i < rule->field_count; i++) {
3423		struct audit_field *f = &rule->fields[i];
3424		switch (f->type) {
3425		case AUDIT_SUBJ_USER:
3426		case AUDIT_SUBJ_ROLE:
3427		case AUDIT_SUBJ_TYPE:
3428		case AUDIT_SUBJ_SEN:
3429		case AUDIT_SUBJ_CLR:
3430		case AUDIT_OBJ_USER:
3431		case AUDIT_OBJ_ROLE:
3432		case AUDIT_OBJ_TYPE:
3433		case AUDIT_OBJ_LEV_LOW:
3434		case AUDIT_OBJ_LEV_HIGH:
3435			return 1;
3436		}
3437	}
3438
3439	return 0;
3440}
3441
3442int selinux_audit_rule_match(u32 sid, u32 field, u32 op, void *vrule)
 
3443{
3444	struct selinux_state *state = &selinux_state;
3445	struct context *ctxt;
3446	struct mls_level *level;
3447	struct selinux_audit_rule *rule = vrule;
3448	int match = 0;
3449
3450	if (unlikely(!rule)) {
3451		WARN_ONCE(1, "selinux_audit_rule_match: missing rule\n");
 
3452		return -ENOENT;
3453	}
3454
3455	read_lock(&state->ss->policy_rwlock);
3456
3457	if (rule->au_seqno < state->ss->latest_granting) {
 
 
3458		match = -ESTALE;
3459		goto out;
3460	}
3461
3462	ctxt = sidtab_search(state->ss->sidtab, sid);
3463	if (unlikely(!ctxt)) {
3464		WARN_ONCE(1, "selinux_audit_rule_match: unrecognized SID %d\n",
 
3465			  sid);
3466		match = -ENOENT;
3467		goto out;
3468	}
3469
3470	/* a field/op pair that is not caught here will simply fall through
3471	   without a match */
3472	switch (field) {
3473	case AUDIT_SUBJ_USER:
3474	case AUDIT_OBJ_USER:
3475		switch (op) {
3476		case Audit_equal:
3477			match = (ctxt->user == rule->au_ctxt.user);
3478			break;
3479		case Audit_not_equal:
3480			match = (ctxt->user != rule->au_ctxt.user);
3481			break;
3482		}
3483		break;
3484	case AUDIT_SUBJ_ROLE:
3485	case AUDIT_OBJ_ROLE:
3486		switch (op) {
3487		case Audit_equal:
3488			match = (ctxt->role == rule->au_ctxt.role);
3489			break;
3490		case Audit_not_equal:
3491			match = (ctxt->role != rule->au_ctxt.role);
3492			break;
3493		}
3494		break;
3495	case AUDIT_SUBJ_TYPE:
3496	case AUDIT_OBJ_TYPE:
3497		switch (op) {
3498		case Audit_equal:
3499			match = (ctxt->type == rule->au_ctxt.type);
3500			break;
3501		case Audit_not_equal:
3502			match = (ctxt->type != rule->au_ctxt.type);
3503			break;
3504		}
3505		break;
3506	case AUDIT_SUBJ_SEN:
3507	case AUDIT_SUBJ_CLR:
3508	case AUDIT_OBJ_LEV_LOW:
3509	case AUDIT_OBJ_LEV_HIGH:
3510		level = ((field == AUDIT_SUBJ_SEN ||
3511			  field == AUDIT_OBJ_LEV_LOW) ?
3512			 &ctxt->range.level[0] : &ctxt->range.level[1]);
3513		switch (op) {
3514		case Audit_equal:
3515			match = mls_level_eq(&rule->au_ctxt.range.level[0],
3516					     level);
3517			break;
3518		case Audit_not_equal:
3519			match = !mls_level_eq(&rule->au_ctxt.range.level[0],
3520					      level);
3521			break;
3522		case Audit_lt:
3523			match = (mls_level_dom(&rule->au_ctxt.range.level[0],
3524					       level) &&
3525				 !mls_level_eq(&rule->au_ctxt.range.level[0],
3526					       level));
3527			break;
3528		case Audit_le:
3529			match = mls_level_dom(&rule->au_ctxt.range.level[0],
3530					      level);
3531			break;
3532		case Audit_gt:
3533			match = (mls_level_dom(level,
3534					      &rule->au_ctxt.range.level[0]) &&
3535				 !mls_level_eq(level,
3536					       &rule->au_ctxt.range.level[0]));
3537			break;
3538		case Audit_ge:
3539			match = mls_level_dom(level,
3540					      &rule->au_ctxt.range.level[0]);
3541			break;
3542		}
3543	}
3544
3545out:
3546	read_unlock(&state->ss->policy_rwlock);
3547	return match;
3548}
3549
3550static int (*aurule_callback)(void) = audit_update_lsm_rules;
3551
3552static int aurule_avc_callback(u32 event)
3553{
3554	int err = 0;
3555
3556	if (event == AVC_CALLBACK_RESET && aurule_callback)
3557		err = aurule_callback();
3558	return err;
3559}
3560
3561static int __init aurule_init(void)
3562{
3563	int err;
3564
3565	err = avc_add_callback(aurule_avc_callback, AVC_CALLBACK_RESET);
3566	if (err)
3567		panic("avc_add_callback() failed, error %d\n", err);
3568
3569	return err;
3570}
3571__initcall(aurule_init);
3572
3573#ifdef CONFIG_NETLABEL
3574/**
3575 * security_netlbl_cache_add - Add an entry to the NetLabel cache
3576 * @secattr: the NetLabel packet security attributes
3577 * @sid: the SELinux SID
3578 *
3579 * Description:
3580 * Attempt to cache the context in @ctx, which was derived from the packet in
3581 * @skb, in the NetLabel subsystem cache.  This function assumes @secattr has
3582 * already been initialized.
3583 *
3584 */
3585static void security_netlbl_cache_add(struct netlbl_lsm_secattr *secattr,
3586				      u32 sid)
3587{
3588	u32 *sid_cache;
3589
3590	sid_cache = kmalloc(sizeof(*sid_cache), GFP_ATOMIC);
3591	if (sid_cache == NULL)
3592		return;
3593	secattr->cache = netlbl_secattr_cache_alloc(GFP_ATOMIC);
3594	if (secattr->cache == NULL) {
3595		kfree(sid_cache);
3596		return;
3597	}
3598
3599	*sid_cache = sid;
3600	secattr->cache->free = kfree;
3601	secattr->cache->data = sid_cache;
3602	secattr->flags |= NETLBL_SECATTR_CACHE;
3603}
3604
3605/**
3606 * security_netlbl_secattr_to_sid - Convert a NetLabel secattr to a SELinux SID
3607 * @secattr: the NetLabel packet security attributes
3608 * @sid: the SELinux SID
3609 *
3610 * Description:
3611 * Convert the given NetLabel security attributes in @secattr into a
3612 * SELinux SID.  If the @secattr field does not contain a full SELinux
3613 * SID/context then use SECINITSID_NETMSG as the foundation.  If possible the
3614 * 'cache' field of @secattr is set and the CACHE flag is set; this is to
3615 * allow the @secattr to be used by NetLabel to cache the secattr to SID
3616 * conversion for future lookups.  Returns zero on success, negative values on
3617 * failure.
3618 *
3619 */
3620int security_netlbl_secattr_to_sid(struct selinux_state *state,
3621				   struct netlbl_lsm_secattr *secattr,
3622				   u32 *sid)
3623{
3624	struct policydb *policydb = &state->ss->policydb;
3625	struct sidtab *sidtab = state->ss->sidtab;
3626	int rc;
3627	struct context *ctx;
3628	struct context ctx_new;
3629
3630	if (!selinux_initialized(state)) {
3631		*sid = SECSID_NULL;
3632		return 0;
3633	}
3634
3635	read_lock(&state->ss->policy_rwlock);
3636
3637	if (secattr->flags & NETLBL_SECATTR_CACHE)
3638		*sid = *(u32 *)secattr->cache->data;
3639	else if (secattr->flags & NETLBL_SECATTR_SECID)
3640		*sid = secattr->attr.secid;
3641	else if (secattr->flags & NETLBL_SECATTR_MLS_LVL) {
3642		rc = -EIDRM;
3643		ctx = sidtab_search(sidtab, SECINITSID_NETMSG);
3644		if (ctx == NULL)
3645			goto out;
3646
3647		context_init(&ctx_new);
3648		ctx_new.user = ctx->user;
3649		ctx_new.role = ctx->role;
3650		ctx_new.type = ctx->type;
3651		mls_import_netlbl_lvl(policydb, &ctx_new, secattr);
3652		if (secattr->flags & NETLBL_SECATTR_MLS_CAT) {
3653			rc = mls_import_netlbl_cat(policydb, &ctx_new, secattr);
 
3654			if (rc)
3655				goto out;
 
 
 
3656		}
3657		rc = -EIDRM;
3658		if (!mls_context_isvalid(policydb, &ctx_new))
3659			goto out_free;
3660
3661		rc = sidtab_context_to_sid(sidtab, &ctx_new, sid);
3662		if (rc)
3663			goto out_free;
3664
3665		security_netlbl_cache_add(secattr, *sid);
3666
3667		ebitmap_destroy(&ctx_new.range.level[0].cat);
3668	} else
3669		*sid = SECSID_NULL;
3670
3671	read_unlock(&state->ss->policy_rwlock);
3672	return 0;
3673out_free:
3674	ebitmap_destroy(&ctx_new.range.level[0].cat);
3675out:
3676	read_unlock(&state->ss->policy_rwlock);
3677	return rc;
3678}
3679
3680/**
3681 * security_netlbl_sid_to_secattr - Convert a SELinux SID to a NetLabel secattr
3682 * @sid: the SELinux SID
3683 * @secattr: the NetLabel packet security attributes
3684 *
3685 * Description:
3686 * Convert the given SELinux SID in @sid into a NetLabel security attribute.
3687 * Returns zero on success, negative values on failure.
3688 *
3689 */
3690int security_netlbl_sid_to_secattr(struct selinux_state *state,
3691				   u32 sid, struct netlbl_lsm_secattr *secattr)
3692{
3693	struct policydb *policydb = &state->ss->policydb;
3694	int rc;
3695	struct context *ctx;
3696
3697	if (!selinux_initialized(state))
3698		return 0;
3699
3700	read_lock(&state->ss->policy_rwlock);
3701
3702	rc = -ENOENT;
3703	ctx = sidtab_search(state->ss->sidtab, sid);
3704	if (ctx == NULL)
3705		goto out;
3706
3707	rc = -ENOMEM;
3708	secattr->domain = kstrdup(sym_name(policydb, SYM_TYPES, ctx->type - 1),
3709				  GFP_ATOMIC);
3710	if (secattr->domain == NULL)
3711		goto out;
3712
3713	secattr->attr.secid = sid;
3714	secattr->flags |= NETLBL_SECATTR_DOMAIN_CPY | NETLBL_SECATTR_SECID;
3715	mls_export_netlbl_lvl(policydb, ctx, secattr);
3716	rc = mls_export_netlbl_cat(policydb, ctx, secattr);
3717out:
3718	read_unlock(&state->ss->policy_rwlock);
3719	return rc;
3720}
3721#endif /* CONFIG_NETLABEL */
3722
3723/**
3724 * security_read_policy - read the policy.
3725 * @data: binary policy data
3726 * @len: length of data in bytes
3727 *
3728 */
3729int security_read_policy(struct selinux_state *state,
3730			 void **data, size_t *len)
3731{
3732	struct policydb *policydb = &state->ss->policydb;
3733	int rc;
3734	struct policy_file fp;
3735
3736	if (!selinux_initialized(state))
3737		return -EINVAL;
3738
3739	*len = security_policydb_len(state);
3740
3741	*data = vmalloc_user(*len);
3742	if (!*data)
3743		return -ENOMEM;
3744
3745	fp.data = *data;
3746	fp.len = *len;
3747
3748	read_lock(&state->ss->policy_rwlock);
3749	rc = policydb_write(policydb, &fp);
3750	read_unlock(&state->ss->policy_rwlock);
3751
3752	if (rc)
3753		return rc;
3754
3755	*len = (unsigned long)fp.data - (unsigned long)*data;
3756	return 0;
3757
3758}