Loading...
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2012 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31#include <linux/module.h>
32#include <linux/types.h>
33#include <linux/init.h>
34#include <linux/pci.h>
35#include <linux/vmalloc.h>
36#include <linux/pagemap.h>
37#include <linux/delay.h>
38#include <linux/netdevice.h>
39#include <linux/interrupt.h>
40#include <linux/tcp.h>
41#include <linux/ipv6.h>
42#include <linux/slab.h>
43#include <net/checksum.h>
44#include <net/ip6_checksum.h>
45#include <linux/mii.h>
46#include <linux/ethtool.h>
47#include <linux/if_vlan.h>
48#include <linux/cpu.h>
49#include <linux/smp.h>
50#include <linux/pm_qos.h>
51#include <linux/pm_runtime.h>
52#include <linux/aer.h>
53#include <linux/prefetch.h>
54
55#include "e1000.h"
56
57#define DRV_EXTRAVERSION "-k"
58
59#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
60char e1000e_driver_name[] = "e1000e";
61const char e1000e_driver_version[] = DRV_VERSION;
62
63#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
64static int debug = -1;
65module_param(debug, int, 0);
66MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
67
68static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
69
70static const struct e1000_info *e1000_info_tbl[] = {
71 [board_82571] = &e1000_82571_info,
72 [board_82572] = &e1000_82572_info,
73 [board_82573] = &e1000_82573_info,
74 [board_82574] = &e1000_82574_info,
75 [board_82583] = &e1000_82583_info,
76 [board_80003es2lan] = &e1000_es2_info,
77 [board_ich8lan] = &e1000_ich8_info,
78 [board_ich9lan] = &e1000_ich9_info,
79 [board_ich10lan] = &e1000_ich10_info,
80 [board_pchlan] = &e1000_pch_info,
81 [board_pch2lan] = &e1000_pch2_info,
82 [board_pch_lpt] = &e1000_pch_lpt_info,
83};
84
85struct e1000_reg_info {
86 u32 ofs;
87 char *name;
88};
89
90#define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
91#define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
92#define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
93#define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
94#define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
95
96#define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
97#define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
98#define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
99#define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
100#define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
101
102static const struct e1000_reg_info e1000_reg_info_tbl[] = {
103
104 /* General Registers */
105 {E1000_CTRL, "CTRL"},
106 {E1000_STATUS, "STATUS"},
107 {E1000_CTRL_EXT, "CTRL_EXT"},
108
109 /* Interrupt Registers */
110 {E1000_ICR, "ICR"},
111
112 /* Rx Registers */
113 {E1000_RCTL, "RCTL"},
114 {E1000_RDLEN(0), "RDLEN"},
115 {E1000_RDH(0), "RDH"},
116 {E1000_RDT(0), "RDT"},
117 {E1000_RDTR, "RDTR"},
118 {E1000_RXDCTL(0), "RXDCTL"},
119 {E1000_ERT, "ERT"},
120 {E1000_RDBAL(0), "RDBAL"},
121 {E1000_RDBAH(0), "RDBAH"},
122 {E1000_RDFH, "RDFH"},
123 {E1000_RDFT, "RDFT"},
124 {E1000_RDFHS, "RDFHS"},
125 {E1000_RDFTS, "RDFTS"},
126 {E1000_RDFPC, "RDFPC"},
127
128 /* Tx Registers */
129 {E1000_TCTL, "TCTL"},
130 {E1000_TDBAL(0), "TDBAL"},
131 {E1000_TDBAH(0), "TDBAH"},
132 {E1000_TDLEN(0), "TDLEN"},
133 {E1000_TDH(0), "TDH"},
134 {E1000_TDT(0), "TDT"},
135 {E1000_TIDV, "TIDV"},
136 {E1000_TXDCTL(0), "TXDCTL"},
137 {E1000_TADV, "TADV"},
138 {E1000_TARC(0), "TARC"},
139 {E1000_TDFH, "TDFH"},
140 {E1000_TDFT, "TDFT"},
141 {E1000_TDFHS, "TDFHS"},
142 {E1000_TDFTS, "TDFTS"},
143 {E1000_TDFPC, "TDFPC"},
144
145 /* List Terminator */
146 {0, NULL}
147};
148
149/*
150 * e1000_regdump - register printout routine
151 */
152static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
153{
154 int n = 0;
155 char rname[16];
156 u32 regs[8];
157
158 switch (reginfo->ofs) {
159 case E1000_RXDCTL(0):
160 for (n = 0; n < 2; n++)
161 regs[n] = __er32(hw, E1000_RXDCTL(n));
162 break;
163 case E1000_TXDCTL(0):
164 for (n = 0; n < 2; n++)
165 regs[n] = __er32(hw, E1000_TXDCTL(n));
166 break;
167 case E1000_TARC(0):
168 for (n = 0; n < 2; n++)
169 regs[n] = __er32(hw, E1000_TARC(n));
170 break;
171 default:
172 pr_info("%-15s %08x\n",
173 reginfo->name, __er32(hw, reginfo->ofs));
174 return;
175 }
176
177 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
178 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
179}
180
181/*
182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
183 */
184static void e1000e_dump(struct e1000_adapter *adapter)
185{
186 struct net_device *netdev = adapter->netdev;
187 struct e1000_hw *hw = &adapter->hw;
188 struct e1000_reg_info *reginfo;
189 struct e1000_ring *tx_ring = adapter->tx_ring;
190 struct e1000_tx_desc *tx_desc;
191 struct my_u0 {
192 __le64 a;
193 __le64 b;
194 } *u0;
195 struct e1000_buffer *buffer_info;
196 struct e1000_ring *rx_ring = adapter->rx_ring;
197 union e1000_rx_desc_packet_split *rx_desc_ps;
198 union e1000_rx_desc_extended *rx_desc;
199 struct my_u1 {
200 __le64 a;
201 __le64 b;
202 __le64 c;
203 __le64 d;
204 } *u1;
205 u32 staterr;
206 int i = 0;
207
208 if (!netif_msg_hw(adapter))
209 return;
210
211 /* Print netdevice Info */
212 if (netdev) {
213 dev_info(&adapter->pdev->dev, "Net device Info\n");
214 pr_info("Device Name state trans_start last_rx\n");
215 pr_info("%-15s %016lX %016lX %016lX\n",
216 netdev->name, netdev->state, netdev->trans_start,
217 netdev->last_rx);
218 }
219
220 /* Print Registers */
221 dev_info(&adapter->pdev->dev, "Register Dump\n");
222 pr_info(" Register Name Value\n");
223 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
224 reginfo->name; reginfo++) {
225 e1000_regdump(hw, reginfo);
226 }
227
228 /* Print Tx Ring Summary */
229 if (!netdev || !netif_running(netdev))
230 return;
231
232 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
233 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
234 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
235 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
236 0, tx_ring->next_to_use, tx_ring->next_to_clean,
237 (unsigned long long)buffer_info->dma,
238 buffer_info->length,
239 buffer_info->next_to_watch,
240 (unsigned long long)buffer_info->time_stamp);
241
242 /* Print Tx Ring */
243 if (!netif_msg_tx_done(adapter))
244 goto rx_ring_summary;
245
246 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
247
248 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 *
250 * Legacy Transmit Descriptor
251 * +--------------------------------------------------------------+
252 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
253 * +--------------------------------------------------------------+
254 * 8 | Special | CSS | Status | CMD | CSO | Length |
255 * +--------------------------------------------------------------+
256 * 63 48 47 36 35 32 31 24 23 16 15 0
257 *
258 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
259 * 63 48 47 40 39 32 31 16 15 8 7 0
260 * +----------------------------------------------------------------+
261 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
262 * +----------------------------------------------------------------+
263 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
264 * +----------------------------------------------------------------+
265 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 *
267 * Extended Data Descriptor (DTYP=0x1)
268 * +----------------------------------------------------------------+
269 * 0 | Buffer Address [63:0] |
270 * +----------------------------------------------------------------+
271 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
272 * +----------------------------------------------------------------+
273 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 */
275 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
276 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
277 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
278 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
279 const char *next_desc;
280 tx_desc = E1000_TX_DESC(*tx_ring, i);
281 buffer_info = &tx_ring->buffer_info[i];
282 u0 = (struct my_u0 *)tx_desc;
283 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
284 next_desc = " NTC/U";
285 else if (i == tx_ring->next_to_use)
286 next_desc = " NTU";
287 else if (i == tx_ring->next_to_clean)
288 next_desc = " NTC";
289 else
290 next_desc = "";
291 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
292 (!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
293 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
294 i,
295 (unsigned long long)le64_to_cpu(u0->a),
296 (unsigned long long)le64_to_cpu(u0->b),
297 (unsigned long long)buffer_info->dma,
298 buffer_info->length, buffer_info->next_to_watch,
299 (unsigned long long)buffer_info->time_stamp,
300 buffer_info->skb, next_desc);
301
302 if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
303 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
304 16, 1, phys_to_virt(buffer_info->dma),
305 buffer_info->length, true);
306 }
307
308 /* Print Rx Ring Summary */
309rx_ring_summary:
310 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
311 pr_info("Queue [NTU] [NTC]\n");
312 pr_info(" %5d %5X %5X\n",
313 0, rx_ring->next_to_use, rx_ring->next_to_clean);
314
315 /* Print Rx Ring */
316 if (!netif_msg_rx_status(adapter))
317 return;
318
319 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
320 switch (adapter->rx_ps_pages) {
321 case 1:
322 case 2:
323 case 3:
324 /* [Extended] Packet Split Receive Descriptor Format
325 *
326 * +-----------------------------------------------------+
327 * 0 | Buffer Address 0 [63:0] |
328 * +-----------------------------------------------------+
329 * 8 | Buffer Address 1 [63:0] |
330 * +-----------------------------------------------------+
331 * 16 | Buffer Address 2 [63:0] |
332 * +-----------------------------------------------------+
333 * 24 | Buffer Address 3 [63:0] |
334 * +-----------------------------------------------------+
335 */
336 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
337 /* [Extended] Receive Descriptor (Write-Back) Format
338 *
339 * 63 48 47 32 31 13 12 8 7 4 3 0
340 * +------------------------------------------------------+
341 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
342 * | Checksum | Ident | | Queue | | Type |
343 * +------------------------------------------------------+
344 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
345 * +------------------------------------------------------+
346 * 63 48 47 32 31 20 19 0
347 */
348 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
349 for (i = 0; i < rx_ring->count; i++) {
350 const char *next_desc;
351 buffer_info = &rx_ring->buffer_info[i];
352 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
353 u1 = (struct my_u1 *)rx_desc_ps;
354 staterr =
355 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
356
357 if (i == rx_ring->next_to_use)
358 next_desc = " NTU";
359 else if (i == rx_ring->next_to_clean)
360 next_desc = " NTC";
361 else
362 next_desc = "";
363
364 if (staterr & E1000_RXD_STAT_DD) {
365 /* Descriptor Done */
366 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
367 "RWB", i,
368 (unsigned long long)le64_to_cpu(u1->a),
369 (unsigned long long)le64_to_cpu(u1->b),
370 (unsigned long long)le64_to_cpu(u1->c),
371 (unsigned long long)le64_to_cpu(u1->d),
372 buffer_info->skb, next_desc);
373 } else {
374 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
375 "R ", i,
376 (unsigned long long)le64_to_cpu(u1->a),
377 (unsigned long long)le64_to_cpu(u1->b),
378 (unsigned long long)le64_to_cpu(u1->c),
379 (unsigned long long)le64_to_cpu(u1->d),
380 (unsigned long long)buffer_info->dma,
381 buffer_info->skb, next_desc);
382
383 if (netif_msg_pktdata(adapter))
384 print_hex_dump(KERN_INFO, "",
385 DUMP_PREFIX_ADDRESS, 16, 1,
386 phys_to_virt(buffer_info->dma),
387 adapter->rx_ps_bsize0, true);
388 }
389 }
390 break;
391 default:
392 case 0:
393 /* Extended Receive Descriptor (Read) Format
394 *
395 * +-----------------------------------------------------+
396 * 0 | Buffer Address [63:0] |
397 * +-----------------------------------------------------+
398 * 8 | Reserved |
399 * +-----------------------------------------------------+
400 */
401 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
402 /* Extended Receive Descriptor (Write-Back) Format
403 *
404 * 63 48 47 32 31 24 23 4 3 0
405 * +------------------------------------------------------+
406 * | RSS Hash | | | |
407 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
408 * | Packet | IP | | | Type |
409 * | Checksum | Ident | | | |
410 * +------------------------------------------------------+
411 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
412 * +------------------------------------------------------+
413 * 63 48 47 32 31 20 19 0
414 */
415 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
416
417 for (i = 0; i < rx_ring->count; i++) {
418 const char *next_desc;
419
420 buffer_info = &rx_ring->buffer_info[i];
421 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
422 u1 = (struct my_u1 *)rx_desc;
423 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
424
425 if (i == rx_ring->next_to_use)
426 next_desc = " NTU";
427 else if (i == rx_ring->next_to_clean)
428 next_desc = " NTC";
429 else
430 next_desc = "";
431
432 if (staterr & E1000_RXD_STAT_DD) {
433 /* Descriptor Done */
434 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
435 "RWB", i,
436 (unsigned long long)le64_to_cpu(u1->a),
437 (unsigned long long)le64_to_cpu(u1->b),
438 buffer_info->skb, next_desc);
439 } else {
440 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
441 "R ", i,
442 (unsigned long long)le64_to_cpu(u1->a),
443 (unsigned long long)le64_to_cpu(u1->b),
444 (unsigned long long)buffer_info->dma,
445 buffer_info->skb, next_desc);
446
447 if (netif_msg_pktdata(adapter))
448 print_hex_dump(KERN_INFO, "",
449 DUMP_PREFIX_ADDRESS, 16,
450 1,
451 phys_to_virt
452 (buffer_info->dma),
453 adapter->rx_buffer_len,
454 true);
455 }
456 }
457 }
458}
459
460/**
461 * e1000_desc_unused - calculate if we have unused descriptors
462 **/
463static int e1000_desc_unused(struct e1000_ring *ring)
464{
465 if (ring->next_to_clean > ring->next_to_use)
466 return ring->next_to_clean - ring->next_to_use - 1;
467
468 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
469}
470
471/**
472 * e1000_receive_skb - helper function to handle Rx indications
473 * @adapter: board private structure
474 * @status: descriptor status field as written by hardware
475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
476 * @skb: pointer to sk_buff to be indicated to stack
477 **/
478static void e1000_receive_skb(struct e1000_adapter *adapter,
479 struct net_device *netdev, struct sk_buff *skb,
480 u8 status, __le16 vlan)
481{
482 u16 tag = le16_to_cpu(vlan);
483 skb->protocol = eth_type_trans(skb, netdev);
484
485 if (status & E1000_RXD_STAT_VP)
486 __vlan_hwaccel_put_tag(skb, tag);
487
488 napi_gro_receive(&adapter->napi, skb);
489}
490
491/**
492 * e1000_rx_checksum - Receive Checksum Offload
493 * @adapter: board private structure
494 * @status_err: receive descriptor status and error fields
495 * @csum: receive descriptor csum field
496 * @sk_buff: socket buffer with received data
497 **/
498static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
499 struct sk_buff *skb)
500{
501 u16 status = (u16)status_err;
502 u8 errors = (u8)(status_err >> 24);
503
504 skb_checksum_none_assert(skb);
505
506 /* Rx checksum disabled */
507 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
508 return;
509
510 /* Ignore Checksum bit is set */
511 if (status & E1000_RXD_STAT_IXSM)
512 return;
513
514 /* TCP/UDP checksum error bit or IP checksum error bit is set */
515 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
516 /* let the stack verify checksum errors */
517 adapter->hw_csum_err++;
518 return;
519 }
520
521 /* TCP/UDP Checksum has not been calculated */
522 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
523 return;
524
525 /* It must be a TCP or UDP packet with a valid checksum */
526 skb->ip_summed = CHECKSUM_UNNECESSARY;
527 adapter->hw_csum_good++;
528}
529
530static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
531{
532 struct e1000_adapter *adapter = rx_ring->adapter;
533 struct e1000_hw *hw = &adapter->hw;
534 s32 ret_val = __ew32_prepare(hw);
535
536 writel(i, rx_ring->tail);
537
538 if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
539 u32 rctl = er32(RCTL);
540 ew32(RCTL, rctl & ~E1000_RCTL_EN);
541 e_err("ME firmware caused invalid RDT - resetting\n");
542 schedule_work(&adapter->reset_task);
543 }
544}
545
546static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
547{
548 struct e1000_adapter *adapter = tx_ring->adapter;
549 struct e1000_hw *hw = &adapter->hw;
550 s32 ret_val = __ew32_prepare(hw);
551
552 writel(i, tx_ring->tail);
553
554 if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
555 u32 tctl = er32(TCTL);
556 ew32(TCTL, tctl & ~E1000_TCTL_EN);
557 e_err("ME firmware caused invalid TDT - resetting\n");
558 schedule_work(&adapter->reset_task);
559 }
560}
561
562/**
563 * e1000_alloc_rx_buffers - Replace used receive buffers
564 * @rx_ring: Rx descriptor ring
565 **/
566static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
567 int cleaned_count, gfp_t gfp)
568{
569 struct e1000_adapter *adapter = rx_ring->adapter;
570 struct net_device *netdev = adapter->netdev;
571 struct pci_dev *pdev = adapter->pdev;
572 union e1000_rx_desc_extended *rx_desc;
573 struct e1000_buffer *buffer_info;
574 struct sk_buff *skb;
575 unsigned int i;
576 unsigned int bufsz = adapter->rx_buffer_len;
577
578 i = rx_ring->next_to_use;
579 buffer_info = &rx_ring->buffer_info[i];
580
581 while (cleaned_count--) {
582 skb = buffer_info->skb;
583 if (skb) {
584 skb_trim(skb, 0);
585 goto map_skb;
586 }
587
588 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
589 if (!skb) {
590 /* Better luck next round */
591 adapter->alloc_rx_buff_failed++;
592 break;
593 }
594
595 buffer_info->skb = skb;
596map_skb:
597 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
598 adapter->rx_buffer_len,
599 DMA_FROM_DEVICE);
600 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
601 dev_err(&pdev->dev, "Rx DMA map failed\n");
602 adapter->rx_dma_failed++;
603 break;
604 }
605
606 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
607 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
608
609 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
610 /*
611 * Force memory writes to complete before letting h/w
612 * know there are new descriptors to fetch. (Only
613 * applicable for weak-ordered memory model archs,
614 * such as IA-64).
615 */
616 wmb();
617 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
618 e1000e_update_rdt_wa(rx_ring, i);
619 else
620 writel(i, rx_ring->tail);
621 }
622 i++;
623 if (i == rx_ring->count)
624 i = 0;
625 buffer_info = &rx_ring->buffer_info[i];
626 }
627
628 rx_ring->next_to_use = i;
629}
630
631/**
632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
633 * @rx_ring: Rx descriptor ring
634 **/
635static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
636 int cleaned_count, gfp_t gfp)
637{
638 struct e1000_adapter *adapter = rx_ring->adapter;
639 struct net_device *netdev = adapter->netdev;
640 struct pci_dev *pdev = adapter->pdev;
641 union e1000_rx_desc_packet_split *rx_desc;
642 struct e1000_buffer *buffer_info;
643 struct e1000_ps_page *ps_page;
644 struct sk_buff *skb;
645 unsigned int i, j;
646
647 i = rx_ring->next_to_use;
648 buffer_info = &rx_ring->buffer_info[i];
649
650 while (cleaned_count--) {
651 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
652
653 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
654 ps_page = &buffer_info->ps_pages[j];
655 if (j >= adapter->rx_ps_pages) {
656 /* all unused desc entries get hw null ptr */
657 rx_desc->read.buffer_addr[j + 1] =
658 ~cpu_to_le64(0);
659 continue;
660 }
661 if (!ps_page->page) {
662 ps_page->page = alloc_page(gfp);
663 if (!ps_page->page) {
664 adapter->alloc_rx_buff_failed++;
665 goto no_buffers;
666 }
667 ps_page->dma = dma_map_page(&pdev->dev,
668 ps_page->page,
669 0, PAGE_SIZE,
670 DMA_FROM_DEVICE);
671 if (dma_mapping_error(&pdev->dev,
672 ps_page->dma)) {
673 dev_err(&adapter->pdev->dev,
674 "Rx DMA page map failed\n");
675 adapter->rx_dma_failed++;
676 goto no_buffers;
677 }
678 }
679 /*
680 * Refresh the desc even if buffer_addrs
681 * didn't change because each write-back
682 * erases this info.
683 */
684 rx_desc->read.buffer_addr[j + 1] =
685 cpu_to_le64(ps_page->dma);
686 }
687
688 skb = __netdev_alloc_skb_ip_align(netdev,
689 adapter->rx_ps_bsize0,
690 gfp);
691
692 if (!skb) {
693 adapter->alloc_rx_buff_failed++;
694 break;
695 }
696
697 buffer_info->skb = skb;
698 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
699 adapter->rx_ps_bsize0,
700 DMA_FROM_DEVICE);
701 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
702 dev_err(&pdev->dev, "Rx DMA map failed\n");
703 adapter->rx_dma_failed++;
704 /* cleanup skb */
705 dev_kfree_skb_any(skb);
706 buffer_info->skb = NULL;
707 break;
708 }
709
710 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
711
712 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
713 /*
714 * Force memory writes to complete before letting h/w
715 * know there are new descriptors to fetch. (Only
716 * applicable for weak-ordered memory model archs,
717 * such as IA-64).
718 */
719 wmb();
720 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
721 e1000e_update_rdt_wa(rx_ring, i << 1);
722 else
723 writel(i << 1, rx_ring->tail);
724 }
725
726 i++;
727 if (i == rx_ring->count)
728 i = 0;
729 buffer_info = &rx_ring->buffer_info[i];
730 }
731
732no_buffers:
733 rx_ring->next_to_use = i;
734}
735
736/**
737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
738 * @rx_ring: Rx descriptor ring
739 * @cleaned_count: number of buffers to allocate this pass
740 **/
741
742static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
743 int cleaned_count, gfp_t gfp)
744{
745 struct e1000_adapter *adapter = rx_ring->adapter;
746 struct net_device *netdev = adapter->netdev;
747 struct pci_dev *pdev = adapter->pdev;
748 union e1000_rx_desc_extended *rx_desc;
749 struct e1000_buffer *buffer_info;
750 struct sk_buff *skb;
751 unsigned int i;
752 unsigned int bufsz = 256 - 16 /* for skb_reserve */;
753
754 i = rx_ring->next_to_use;
755 buffer_info = &rx_ring->buffer_info[i];
756
757 while (cleaned_count--) {
758 skb = buffer_info->skb;
759 if (skb) {
760 skb_trim(skb, 0);
761 goto check_page;
762 }
763
764 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
765 if (unlikely(!skb)) {
766 /* Better luck next round */
767 adapter->alloc_rx_buff_failed++;
768 break;
769 }
770
771 buffer_info->skb = skb;
772check_page:
773 /* allocate a new page if necessary */
774 if (!buffer_info->page) {
775 buffer_info->page = alloc_page(gfp);
776 if (unlikely(!buffer_info->page)) {
777 adapter->alloc_rx_buff_failed++;
778 break;
779 }
780 }
781
782 if (!buffer_info->dma)
783 buffer_info->dma = dma_map_page(&pdev->dev,
784 buffer_info->page, 0,
785 PAGE_SIZE,
786 DMA_FROM_DEVICE);
787
788 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
789 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
790
791 if (unlikely(++i == rx_ring->count))
792 i = 0;
793 buffer_info = &rx_ring->buffer_info[i];
794 }
795
796 if (likely(rx_ring->next_to_use != i)) {
797 rx_ring->next_to_use = i;
798 if (unlikely(i-- == 0))
799 i = (rx_ring->count - 1);
800
801 /* Force memory writes to complete before letting h/w
802 * know there are new descriptors to fetch. (Only
803 * applicable for weak-ordered memory model archs,
804 * such as IA-64). */
805 wmb();
806 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
807 e1000e_update_rdt_wa(rx_ring, i);
808 else
809 writel(i, rx_ring->tail);
810 }
811}
812
813static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
814 struct sk_buff *skb)
815{
816 if (netdev->features & NETIF_F_RXHASH)
817 skb->rxhash = le32_to_cpu(rss);
818}
819
820/**
821 * e1000_clean_rx_irq - Send received data up the network stack
822 * @rx_ring: Rx descriptor ring
823 *
824 * the return value indicates whether actual cleaning was done, there
825 * is no guarantee that everything was cleaned
826 **/
827static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
828 int work_to_do)
829{
830 struct e1000_adapter *adapter = rx_ring->adapter;
831 struct net_device *netdev = adapter->netdev;
832 struct pci_dev *pdev = adapter->pdev;
833 struct e1000_hw *hw = &adapter->hw;
834 union e1000_rx_desc_extended *rx_desc, *next_rxd;
835 struct e1000_buffer *buffer_info, *next_buffer;
836 u32 length, staterr;
837 unsigned int i;
838 int cleaned_count = 0;
839 bool cleaned = false;
840 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
841
842 i = rx_ring->next_to_clean;
843 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
844 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
845 buffer_info = &rx_ring->buffer_info[i];
846
847 while (staterr & E1000_RXD_STAT_DD) {
848 struct sk_buff *skb;
849
850 if (*work_done >= work_to_do)
851 break;
852 (*work_done)++;
853 rmb(); /* read descriptor and rx_buffer_info after status DD */
854
855 skb = buffer_info->skb;
856 buffer_info->skb = NULL;
857
858 prefetch(skb->data - NET_IP_ALIGN);
859
860 i++;
861 if (i == rx_ring->count)
862 i = 0;
863 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
864 prefetch(next_rxd);
865
866 next_buffer = &rx_ring->buffer_info[i];
867
868 cleaned = true;
869 cleaned_count++;
870 dma_unmap_single(&pdev->dev,
871 buffer_info->dma,
872 adapter->rx_buffer_len,
873 DMA_FROM_DEVICE);
874 buffer_info->dma = 0;
875
876 length = le16_to_cpu(rx_desc->wb.upper.length);
877
878 /*
879 * !EOP means multiple descriptors were used to store a single
880 * packet, if that's the case we need to toss it. In fact, we
881 * need to toss every packet with the EOP bit clear and the
882 * next frame that _does_ have the EOP bit set, as it is by
883 * definition only a frame fragment
884 */
885 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
886 adapter->flags2 |= FLAG2_IS_DISCARDING;
887
888 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
889 /* All receives must fit into a single buffer */
890 e_dbg("Receive packet consumed multiple buffers\n");
891 /* recycle */
892 buffer_info->skb = skb;
893 if (staterr & E1000_RXD_STAT_EOP)
894 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
895 goto next_desc;
896 }
897
898 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
899 !(netdev->features & NETIF_F_RXALL))) {
900 /* recycle */
901 buffer_info->skb = skb;
902 goto next_desc;
903 }
904
905 /* adjust length to remove Ethernet CRC */
906 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
907 /* If configured to store CRC, don't subtract FCS,
908 * but keep the FCS bytes out of the total_rx_bytes
909 * counter
910 */
911 if (netdev->features & NETIF_F_RXFCS)
912 total_rx_bytes -= 4;
913 else
914 length -= 4;
915 }
916
917 total_rx_bytes += length;
918 total_rx_packets++;
919
920 /*
921 * code added for copybreak, this should improve
922 * performance for small packets with large amounts
923 * of reassembly being done in the stack
924 */
925 if (length < copybreak) {
926 struct sk_buff *new_skb =
927 netdev_alloc_skb_ip_align(netdev, length);
928 if (new_skb) {
929 skb_copy_to_linear_data_offset(new_skb,
930 -NET_IP_ALIGN,
931 (skb->data -
932 NET_IP_ALIGN),
933 (length +
934 NET_IP_ALIGN));
935 /* save the skb in buffer_info as good */
936 buffer_info->skb = skb;
937 skb = new_skb;
938 }
939 /* else just continue with the old one */
940 }
941 /* end copybreak code */
942 skb_put(skb, length);
943
944 /* Receive Checksum Offload */
945 e1000_rx_checksum(adapter, staterr, skb);
946
947 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
948
949 e1000_receive_skb(adapter, netdev, skb, staterr,
950 rx_desc->wb.upper.vlan);
951
952next_desc:
953 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
954
955 /* return some buffers to hardware, one at a time is too slow */
956 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
957 adapter->alloc_rx_buf(rx_ring, cleaned_count,
958 GFP_ATOMIC);
959 cleaned_count = 0;
960 }
961
962 /* use prefetched values */
963 rx_desc = next_rxd;
964 buffer_info = next_buffer;
965
966 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
967 }
968 rx_ring->next_to_clean = i;
969
970 cleaned_count = e1000_desc_unused(rx_ring);
971 if (cleaned_count)
972 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
973
974 adapter->total_rx_bytes += total_rx_bytes;
975 adapter->total_rx_packets += total_rx_packets;
976 return cleaned;
977}
978
979static void e1000_put_txbuf(struct e1000_ring *tx_ring,
980 struct e1000_buffer *buffer_info)
981{
982 struct e1000_adapter *adapter = tx_ring->adapter;
983
984 if (buffer_info->dma) {
985 if (buffer_info->mapped_as_page)
986 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
987 buffer_info->length, DMA_TO_DEVICE);
988 else
989 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
990 buffer_info->length, DMA_TO_DEVICE);
991 buffer_info->dma = 0;
992 }
993 if (buffer_info->skb) {
994 dev_kfree_skb_any(buffer_info->skb);
995 buffer_info->skb = NULL;
996 }
997 buffer_info->time_stamp = 0;
998}
999
1000static void e1000_print_hw_hang(struct work_struct *work)
1001{
1002 struct e1000_adapter *adapter = container_of(work,
1003 struct e1000_adapter,
1004 print_hang_task);
1005 struct net_device *netdev = adapter->netdev;
1006 struct e1000_ring *tx_ring = adapter->tx_ring;
1007 unsigned int i = tx_ring->next_to_clean;
1008 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010 struct e1000_hw *hw = &adapter->hw;
1011 u16 phy_status, phy_1000t_status, phy_ext_status;
1012 u16 pci_status;
1013
1014 if (test_bit(__E1000_DOWN, &adapter->state))
1015 return;
1016
1017 if (!adapter->tx_hang_recheck &&
1018 (adapter->flags2 & FLAG2_DMA_BURST)) {
1019 /*
1020 * May be block on write-back, flush and detect again
1021 * flush pending descriptor writebacks to memory
1022 */
1023 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024 /* execute the writes immediately */
1025 e1e_flush();
1026 /*
1027 * Due to rare timing issues, write to TIDV again to ensure
1028 * the write is successful
1029 */
1030 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031 /* execute the writes immediately */
1032 e1e_flush();
1033 adapter->tx_hang_recheck = true;
1034 return;
1035 }
1036 /* Real hang detected */
1037 adapter->tx_hang_recheck = false;
1038 netif_stop_queue(netdev);
1039
1040 e1e_rphy(hw, PHY_STATUS, &phy_status);
1041 e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042 e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046 /* detected Hardware unit hang */
1047 e_err("Detected Hardware Unit Hang:\n"
1048 " TDH <%x>\n"
1049 " TDT <%x>\n"
1050 " next_to_use <%x>\n"
1051 " next_to_clean <%x>\n"
1052 "buffer_info[next_to_clean]:\n"
1053 " time_stamp <%lx>\n"
1054 " next_to_watch <%x>\n"
1055 " jiffies <%lx>\n"
1056 " next_to_watch.status <%x>\n"
1057 "MAC Status <%x>\n"
1058 "PHY Status <%x>\n"
1059 "PHY 1000BASE-T Status <%x>\n"
1060 "PHY Extended Status <%x>\n"
1061 "PCI Status <%x>\n",
1062 readl(tx_ring->head),
1063 readl(tx_ring->tail),
1064 tx_ring->next_to_use,
1065 tx_ring->next_to_clean,
1066 tx_ring->buffer_info[eop].time_stamp,
1067 eop,
1068 jiffies,
1069 eop_desc->upper.fields.status,
1070 er32(STATUS),
1071 phy_status,
1072 phy_1000t_status,
1073 phy_ext_status,
1074 pci_status);
1075
1076 /* Suggest workaround for known h/w issue */
1077 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079}
1080
1081/**
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089{
1090 struct e1000_adapter *adapter = tx_ring->adapter;
1091 struct net_device *netdev = adapter->netdev;
1092 struct e1000_hw *hw = &adapter->hw;
1093 struct e1000_tx_desc *tx_desc, *eop_desc;
1094 struct e1000_buffer *buffer_info;
1095 unsigned int i, eop;
1096 unsigned int count = 0;
1097 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098 unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100 i = tx_ring->next_to_clean;
1101 eop = tx_ring->buffer_info[i].next_to_watch;
1102 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105 (count < tx_ring->count)) {
1106 bool cleaned = false;
1107 rmb(); /* read buffer_info after eop_desc */
1108 for (; !cleaned; count++) {
1109 tx_desc = E1000_TX_DESC(*tx_ring, i);
1110 buffer_info = &tx_ring->buffer_info[i];
1111 cleaned = (i == eop);
1112
1113 if (cleaned) {
1114 total_tx_packets += buffer_info->segs;
1115 total_tx_bytes += buffer_info->bytecount;
1116 if (buffer_info->skb) {
1117 bytes_compl += buffer_info->skb->len;
1118 pkts_compl++;
1119 }
1120 }
1121
1122 e1000_put_txbuf(tx_ring, buffer_info);
1123 tx_desc->upper.data = 0;
1124
1125 i++;
1126 if (i == tx_ring->count)
1127 i = 0;
1128 }
1129
1130 if (i == tx_ring->next_to_use)
1131 break;
1132 eop = tx_ring->buffer_info[i].next_to_watch;
1133 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134 }
1135
1136 tx_ring->next_to_clean = i;
1137
1138 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140#define TX_WAKE_THRESHOLD 32
1141 if (count && netif_carrier_ok(netdev) &&
1142 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143 /* Make sure that anybody stopping the queue after this
1144 * sees the new next_to_clean.
1145 */
1146 smp_mb();
1147
1148 if (netif_queue_stopped(netdev) &&
1149 !(test_bit(__E1000_DOWN, &adapter->state))) {
1150 netif_wake_queue(netdev);
1151 ++adapter->restart_queue;
1152 }
1153 }
1154
1155 if (adapter->detect_tx_hung) {
1156 /*
1157 * Detect a transmit hang in hardware, this serializes the
1158 * check with the clearing of time_stamp and movement of i
1159 */
1160 adapter->detect_tx_hung = false;
1161 if (tx_ring->buffer_info[i].time_stamp &&
1162 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163 + (adapter->tx_timeout_factor * HZ)) &&
1164 !(er32(STATUS) & E1000_STATUS_TXOFF))
1165 schedule_work(&adapter->print_hang_task);
1166 else
1167 adapter->tx_hang_recheck = false;
1168 }
1169 adapter->total_tx_bytes += total_tx_bytes;
1170 adapter->total_tx_packets += total_tx_packets;
1171 return count < tx_ring->count;
1172}
1173
1174/**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182 int work_to_do)
1183{
1184 struct e1000_adapter *adapter = rx_ring->adapter;
1185 struct e1000_hw *hw = &adapter->hw;
1186 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187 struct net_device *netdev = adapter->netdev;
1188 struct pci_dev *pdev = adapter->pdev;
1189 struct e1000_buffer *buffer_info, *next_buffer;
1190 struct e1000_ps_page *ps_page;
1191 struct sk_buff *skb;
1192 unsigned int i, j;
1193 u32 length, staterr;
1194 int cleaned_count = 0;
1195 bool cleaned = false;
1196 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198 i = rx_ring->next_to_clean;
1199 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201 buffer_info = &rx_ring->buffer_info[i];
1202
1203 while (staterr & E1000_RXD_STAT_DD) {
1204 if (*work_done >= work_to_do)
1205 break;
1206 (*work_done)++;
1207 skb = buffer_info->skb;
1208 rmb(); /* read descriptor and rx_buffer_info after status DD */
1209
1210 /* in the packet split case this is header only */
1211 prefetch(skb->data - NET_IP_ALIGN);
1212
1213 i++;
1214 if (i == rx_ring->count)
1215 i = 0;
1216 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217 prefetch(next_rxd);
1218
1219 next_buffer = &rx_ring->buffer_info[i];
1220
1221 cleaned = true;
1222 cleaned_count++;
1223 dma_unmap_single(&pdev->dev, buffer_info->dma,
1224 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225 buffer_info->dma = 0;
1226
1227 /* see !EOP comment in other Rx routine */
1228 if (!(staterr & E1000_RXD_STAT_EOP))
1229 adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233 dev_kfree_skb_irq(skb);
1234 if (staterr & E1000_RXD_STAT_EOP)
1235 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236 goto next_desc;
1237 }
1238
1239 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240 !(netdev->features & NETIF_F_RXALL))) {
1241 dev_kfree_skb_irq(skb);
1242 goto next_desc;
1243 }
1244
1245 length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247 if (!length) {
1248 e_dbg("Last part of the packet spanning multiple descriptors\n");
1249 dev_kfree_skb_irq(skb);
1250 goto next_desc;
1251 }
1252
1253 /* Good Receive */
1254 skb_put(skb, length);
1255
1256 {
1257 /*
1258 * this looks ugly, but it seems compiler issues make
1259 * it more efficient than reusing j
1260 */
1261 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263 /*
1264 * page alloc/put takes too long and effects small
1265 * packet throughput, so unsplit small packets and
1266 * save the alloc/put only valid in softirq (napi)
1267 * context to call kmap_*
1268 */
1269 if (l1 && (l1 <= copybreak) &&
1270 ((length + l1) <= adapter->rx_ps_bsize0)) {
1271 u8 *vaddr;
1272
1273 ps_page = &buffer_info->ps_pages[0];
1274
1275 /*
1276 * there is no documentation about how to call
1277 * kmap_atomic, so we can't hold the mapping
1278 * very long
1279 */
1280 dma_sync_single_for_cpu(&pdev->dev,
1281 ps_page->dma,
1282 PAGE_SIZE,
1283 DMA_FROM_DEVICE);
1284 vaddr = kmap_atomic(ps_page->page);
1285 memcpy(skb_tail_pointer(skb), vaddr, l1);
1286 kunmap_atomic(vaddr);
1287 dma_sync_single_for_device(&pdev->dev,
1288 ps_page->dma,
1289 PAGE_SIZE,
1290 DMA_FROM_DEVICE);
1291
1292 /* remove the CRC */
1293 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294 if (!(netdev->features & NETIF_F_RXFCS))
1295 l1 -= 4;
1296 }
1297
1298 skb_put(skb, l1);
1299 goto copydone;
1300 } /* if */
1301 }
1302
1303 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305 if (!length)
1306 break;
1307
1308 ps_page = &buffer_info->ps_pages[j];
1309 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310 DMA_FROM_DEVICE);
1311 ps_page->dma = 0;
1312 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313 ps_page->page = NULL;
1314 skb->len += length;
1315 skb->data_len += length;
1316 skb->truesize += PAGE_SIZE;
1317 }
1318
1319 /* strip the ethernet crc, problem is we're using pages now so
1320 * this whole operation can get a little cpu intensive
1321 */
1322 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323 if (!(netdev->features & NETIF_F_RXFCS))
1324 pskb_trim(skb, skb->len - 4);
1325 }
1326
1327copydone:
1328 total_rx_bytes += skb->len;
1329 total_rx_packets++;
1330
1331 e1000_rx_checksum(adapter, staterr, skb);
1332
1333 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335 if (rx_desc->wb.upper.header_status &
1336 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337 adapter->rx_hdr_split++;
1338
1339 e1000_receive_skb(adapter, netdev, skb,
1340 staterr, rx_desc->wb.middle.vlan);
1341
1342next_desc:
1343 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344 buffer_info->skb = NULL;
1345
1346 /* return some buffers to hardware, one at a time is too slow */
1347 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349 GFP_ATOMIC);
1350 cleaned_count = 0;
1351 }
1352
1353 /* use prefetched values */
1354 rx_desc = next_rxd;
1355 buffer_info = next_buffer;
1356
1357 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358 }
1359 rx_ring->next_to_clean = i;
1360
1361 cleaned_count = e1000_desc_unused(rx_ring);
1362 if (cleaned_count)
1363 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365 adapter->total_rx_bytes += total_rx_bytes;
1366 adapter->total_rx_packets += total_rx_packets;
1367 return cleaned;
1368}
1369
1370/**
1371 * e1000_consume_page - helper function
1372 **/
1373static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374 u16 length)
1375{
1376 bi->page = NULL;
1377 skb->len += length;
1378 skb->data_len += length;
1379 skb->truesize += PAGE_SIZE;
1380}
1381
1382/**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390 int work_to_do)
1391{
1392 struct e1000_adapter *adapter = rx_ring->adapter;
1393 struct net_device *netdev = adapter->netdev;
1394 struct pci_dev *pdev = adapter->pdev;
1395 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396 struct e1000_buffer *buffer_info, *next_buffer;
1397 u32 length, staterr;
1398 unsigned int i;
1399 int cleaned_count = 0;
1400 bool cleaned = false;
1401 unsigned int total_rx_bytes=0, total_rx_packets=0;
1402
1403 i = rx_ring->next_to_clean;
1404 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406 buffer_info = &rx_ring->buffer_info[i];
1407
1408 while (staterr & E1000_RXD_STAT_DD) {
1409 struct sk_buff *skb;
1410
1411 if (*work_done >= work_to_do)
1412 break;
1413 (*work_done)++;
1414 rmb(); /* read descriptor and rx_buffer_info after status DD */
1415
1416 skb = buffer_info->skb;
1417 buffer_info->skb = NULL;
1418
1419 ++i;
1420 if (i == rx_ring->count)
1421 i = 0;
1422 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423 prefetch(next_rxd);
1424
1425 next_buffer = &rx_ring->buffer_info[i];
1426
1427 cleaned = true;
1428 cleaned_count++;
1429 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430 DMA_FROM_DEVICE);
1431 buffer_info->dma = 0;
1432
1433 length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435 /* errors is only valid for DD + EOP descriptors */
1436 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438 !(netdev->features & NETIF_F_RXALL)))) {
1439 /* recycle both page and skb */
1440 buffer_info->skb = skb;
1441 /* an error means any chain goes out the window too */
1442 if (rx_ring->rx_skb_top)
1443 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444 rx_ring->rx_skb_top = NULL;
1445 goto next_desc;
1446 }
1447
1448#define rxtop (rx_ring->rx_skb_top)
1449 if (!(staterr & E1000_RXD_STAT_EOP)) {
1450 /* this descriptor is only the beginning (or middle) */
1451 if (!rxtop) {
1452 /* this is the beginning of a chain */
1453 rxtop = skb;
1454 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455 0, length);
1456 } else {
1457 /* this is the middle of a chain */
1458 skb_fill_page_desc(rxtop,
1459 skb_shinfo(rxtop)->nr_frags,
1460 buffer_info->page, 0, length);
1461 /* re-use the skb, only consumed the page */
1462 buffer_info->skb = skb;
1463 }
1464 e1000_consume_page(buffer_info, rxtop, length);
1465 goto next_desc;
1466 } else {
1467 if (rxtop) {
1468 /* end of the chain */
1469 skb_fill_page_desc(rxtop,
1470 skb_shinfo(rxtop)->nr_frags,
1471 buffer_info->page, 0, length);
1472 /* re-use the current skb, we only consumed the
1473 * page */
1474 buffer_info->skb = skb;
1475 skb = rxtop;
1476 rxtop = NULL;
1477 e1000_consume_page(buffer_info, skb, length);
1478 } else {
1479 /* no chain, got EOP, this buf is the packet
1480 * copybreak to save the put_page/alloc_page */
1481 if (length <= copybreak &&
1482 skb_tailroom(skb) >= length) {
1483 u8 *vaddr;
1484 vaddr = kmap_atomic(buffer_info->page);
1485 memcpy(skb_tail_pointer(skb), vaddr,
1486 length);
1487 kunmap_atomic(vaddr);
1488 /* re-use the page, so don't erase
1489 * buffer_info->page */
1490 skb_put(skb, length);
1491 } else {
1492 skb_fill_page_desc(skb, 0,
1493 buffer_info->page, 0,
1494 length);
1495 e1000_consume_page(buffer_info, skb,
1496 length);
1497 }
1498 }
1499 }
1500
1501 /* Receive Checksum Offload */
1502 e1000_rx_checksum(adapter, staterr, skb);
1503
1504 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506 /* probably a little skewed due to removing CRC */
1507 total_rx_bytes += skb->len;
1508 total_rx_packets++;
1509
1510 /* eth type trans needs skb->data to point to something */
1511 if (!pskb_may_pull(skb, ETH_HLEN)) {
1512 e_err("pskb_may_pull failed.\n");
1513 dev_kfree_skb_irq(skb);
1514 goto next_desc;
1515 }
1516
1517 e1000_receive_skb(adapter, netdev, skb, staterr,
1518 rx_desc->wb.upper.vlan);
1519
1520next_desc:
1521 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523 /* return some buffers to hardware, one at a time is too slow */
1524 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526 GFP_ATOMIC);
1527 cleaned_count = 0;
1528 }
1529
1530 /* use prefetched values */
1531 rx_desc = next_rxd;
1532 buffer_info = next_buffer;
1533
1534 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535 }
1536 rx_ring->next_to_clean = i;
1537
1538 cleaned_count = e1000_desc_unused(rx_ring);
1539 if (cleaned_count)
1540 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542 adapter->total_rx_bytes += total_rx_bytes;
1543 adapter->total_rx_packets += total_rx_packets;
1544 return cleaned;
1545}
1546
1547/**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552{
1553 struct e1000_adapter *adapter = rx_ring->adapter;
1554 struct e1000_buffer *buffer_info;
1555 struct e1000_ps_page *ps_page;
1556 struct pci_dev *pdev = adapter->pdev;
1557 unsigned int i, j;
1558
1559 /* Free all the Rx ring sk_buffs */
1560 for (i = 0; i < rx_ring->count; i++) {
1561 buffer_info = &rx_ring->buffer_info[i];
1562 if (buffer_info->dma) {
1563 if (adapter->clean_rx == e1000_clean_rx_irq)
1564 dma_unmap_single(&pdev->dev, buffer_info->dma,
1565 adapter->rx_buffer_len,
1566 DMA_FROM_DEVICE);
1567 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568 dma_unmap_page(&pdev->dev, buffer_info->dma,
1569 PAGE_SIZE,
1570 DMA_FROM_DEVICE);
1571 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572 dma_unmap_single(&pdev->dev, buffer_info->dma,
1573 adapter->rx_ps_bsize0,
1574 DMA_FROM_DEVICE);
1575 buffer_info->dma = 0;
1576 }
1577
1578 if (buffer_info->page) {
1579 put_page(buffer_info->page);
1580 buffer_info->page = NULL;
1581 }
1582
1583 if (buffer_info->skb) {
1584 dev_kfree_skb(buffer_info->skb);
1585 buffer_info->skb = NULL;
1586 }
1587
1588 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589 ps_page = &buffer_info->ps_pages[j];
1590 if (!ps_page->page)
1591 break;
1592 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593 DMA_FROM_DEVICE);
1594 ps_page->dma = 0;
1595 put_page(ps_page->page);
1596 ps_page->page = NULL;
1597 }
1598 }
1599
1600 /* there also may be some cached data from a chained receive */
1601 if (rx_ring->rx_skb_top) {
1602 dev_kfree_skb(rx_ring->rx_skb_top);
1603 rx_ring->rx_skb_top = NULL;
1604 }
1605
1606 /* Zero out the descriptor ring */
1607 memset(rx_ring->desc, 0, rx_ring->size);
1608
1609 rx_ring->next_to_clean = 0;
1610 rx_ring->next_to_use = 0;
1611 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613 writel(0, rx_ring->head);
1614 if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615 e1000e_update_rdt_wa(rx_ring, 0);
1616 else
1617 writel(0, rx_ring->tail);
1618}
1619
1620static void e1000e_downshift_workaround(struct work_struct *work)
1621{
1622 struct e1000_adapter *adapter = container_of(work,
1623 struct e1000_adapter, downshift_task);
1624
1625 if (test_bit(__E1000_DOWN, &adapter->state))
1626 return;
1627
1628 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629}
1630
1631/**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636static irqreturn_t e1000_intr_msi(int irq, void *data)
1637{
1638 struct net_device *netdev = data;
1639 struct e1000_adapter *adapter = netdev_priv(netdev);
1640 struct e1000_hw *hw = &adapter->hw;
1641 u32 icr = er32(ICR);
1642
1643 /*
1644 * read ICR disables interrupts using IAM
1645 */
1646
1647 if (icr & E1000_ICR_LSC) {
1648 hw->mac.get_link_status = true;
1649 /*
1650 * ICH8 workaround-- Call gig speed drop workaround on cable
1651 * disconnect (LSC) before accessing any PHY registers
1652 */
1653 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654 (!(er32(STATUS) & E1000_STATUS_LU)))
1655 schedule_work(&adapter->downshift_task);
1656
1657 /*
1658 * 80003ES2LAN workaround-- For packet buffer work-around on
1659 * link down event; disable receives here in the ISR and reset
1660 * adapter in watchdog
1661 */
1662 if (netif_carrier_ok(netdev) &&
1663 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664 /* disable receives */
1665 u32 rctl = er32(RCTL);
1666 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667 adapter->flags |= FLAG_RX_RESTART_NOW;
1668 }
1669 /* guard against interrupt when we're going down */
1670 if (!test_bit(__E1000_DOWN, &adapter->state))
1671 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672 }
1673
1674 if (napi_schedule_prep(&adapter->napi)) {
1675 adapter->total_tx_bytes = 0;
1676 adapter->total_tx_packets = 0;
1677 adapter->total_rx_bytes = 0;
1678 adapter->total_rx_packets = 0;
1679 __napi_schedule(&adapter->napi);
1680 }
1681
1682 return IRQ_HANDLED;
1683}
1684
1685/**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690static irqreturn_t e1000_intr(int irq, void *data)
1691{
1692 struct net_device *netdev = data;
1693 struct e1000_adapter *adapter = netdev_priv(netdev);
1694 struct e1000_hw *hw = &adapter->hw;
1695 u32 rctl, icr = er32(ICR);
1696
1697 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698 return IRQ_NONE; /* Not our interrupt */
1699
1700 /*
1701 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702 * not set, then the adapter didn't send an interrupt
1703 */
1704 if (!(icr & E1000_ICR_INT_ASSERTED))
1705 return IRQ_NONE;
1706
1707 /*
1708 * Interrupt Auto-Mask...upon reading ICR,
1709 * interrupts are masked. No need for the
1710 * IMC write
1711 */
1712
1713 if (icr & E1000_ICR_LSC) {
1714 hw->mac.get_link_status = true;
1715 /*
1716 * ICH8 workaround-- Call gig speed drop workaround on cable
1717 * disconnect (LSC) before accessing any PHY registers
1718 */
1719 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720 (!(er32(STATUS) & E1000_STATUS_LU)))
1721 schedule_work(&adapter->downshift_task);
1722
1723 /*
1724 * 80003ES2LAN workaround--
1725 * For packet buffer work-around on link down event;
1726 * disable receives here in the ISR and
1727 * reset adapter in watchdog
1728 */
1729 if (netif_carrier_ok(netdev) &&
1730 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731 /* disable receives */
1732 rctl = er32(RCTL);
1733 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734 adapter->flags |= FLAG_RX_RESTART_NOW;
1735 }
1736 /* guard against interrupt when we're going down */
1737 if (!test_bit(__E1000_DOWN, &adapter->state))
1738 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739 }
1740
1741 if (napi_schedule_prep(&adapter->napi)) {
1742 adapter->total_tx_bytes = 0;
1743 adapter->total_tx_packets = 0;
1744 adapter->total_rx_bytes = 0;
1745 adapter->total_rx_packets = 0;
1746 __napi_schedule(&adapter->napi);
1747 }
1748
1749 return IRQ_HANDLED;
1750}
1751
1752static irqreturn_t e1000_msix_other(int irq, void *data)
1753{
1754 struct net_device *netdev = data;
1755 struct e1000_adapter *adapter = netdev_priv(netdev);
1756 struct e1000_hw *hw = &adapter->hw;
1757 u32 icr = er32(ICR);
1758
1759 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760 if (!test_bit(__E1000_DOWN, &adapter->state))
1761 ew32(IMS, E1000_IMS_OTHER);
1762 return IRQ_NONE;
1763 }
1764
1765 if (icr & adapter->eiac_mask)
1766 ew32(ICS, (icr & adapter->eiac_mask));
1767
1768 if (icr & E1000_ICR_OTHER) {
1769 if (!(icr & E1000_ICR_LSC))
1770 goto no_link_interrupt;
1771 hw->mac.get_link_status = true;
1772 /* guard against interrupt when we're going down */
1773 if (!test_bit(__E1000_DOWN, &adapter->state))
1774 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775 }
1776
1777no_link_interrupt:
1778 if (!test_bit(__E1000_DOWN, &adapter->state))
1779 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781 return IRQ_HANDLED;
1782}
1783
1784
1785static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786{
1787 struct net_device *netdev = data;
1788 struct e1000_adapter *adapter = netdev_priv(netdev);
1789 struct e1000_hw *hw = &adapter->hw;
1790 struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793 adapter->total_tx_bytes = 0;
1794 adapter->total_tx_packets = 0;
1795
1796 if (!e1000_clean_tx_irq(tx_ring))
1797 /* Ring was not completely cleaned, so fire another interrupt */
1798 ew32(ICS, tx_ring->ims_val);
1799
1800 return IRQ_HANDLED;
1801}
1802
1803static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804{
1805 struct net_device *netdev = data;
1806 struct e1000_adapter *adapter = netdev_priv(netdev);
1807 struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809 /* Write the ITR value calculated at the end of the
1810 * previous interrupt.
1811 */
1812 if (rx_ring->set_itr) {
1813 writel(1000000000 / (rx_ring->itr_val * 256),
1814 rx_ring->itr_register);
1815 rx_ring->set_itr = 0;
1816 }
1817
1818 if (napi_schedule_prep(&adapter->napi)) {
1819 adapter->total_rx_bytes = 0;
1820 adapter->total_rx_packets = 0;
1821 __napi_schedule(&adapter->napi);
1822 }
1823 return IRQ_HANDLED;
1824}
1825
1826/**
1827 * e1000_configure_msix - Configure MSI-X hardware
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832static void e1000_configure_msix(struct e1000_adapter *adapter)
1833{
1834 struct e1000_hw *hw = &adapter->hw;
1835 struct e1000_ring *rx_ring = adapter->rx_ring;
1836 struct e1000_ring *tx_ring = adapter->tx_ring;
1837 int vector = 0;
1838 u32 ctrl_ext, ivar = 0;
1839
1840 adapter->eiac_mask = 0;
1841
1842 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843 if (hw->mac.type == e1000_82574) {
1844 u32 rfctl = er32(RFCTL);
1845 rfctl |= E1000_RFCTL_ACK_DIS;
1846 ew32(RFCTL, rfctl);
1847 }
1848
1849#define E1000_IVAR_INT_ALLOC_VALID 0x8
1850 /* Configure Rx vector */
1851 rx_ring->ims_val = E1000_IMS_RXQ0;
1852 adapter->eiac_mask |= rx_ring->ims_val;
1853 if (rx_ring->itr_val)
1854 writel(1000000000 / (rx_ring->itr_val * 256),
1855 rx_ring->itr_register);
1856 else
1857 writel(1, rx_ring->itr_register);
1858 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860 /* Configure Tx vector */
1861 tx_ring->ims_val = E1000_IMS_TXQ0;
1862 vector++;
1863 if (tx_ring->itr_val)
1864 writel(1000000000 / (tx_ring->itr_val * 256),
1865 tx_ring->itr_register);
1866 else
1867 writel(1, tx_ring->itr_register);
1868 adapter->eiac_mask |= tx_ring->ims_val;
1869 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871 /* set vector for Other Causes, e.g. link changes */
1872 vector++;
1873 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874 if (rx_ring->itr_val)
1875 writel(1000000000 / (rx_ring->itr_val * 256),
1876 hw->hw_addr + E1000_EITR_82574(vector));
1877 else
1878 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880 /* Cause Tx interrupts on every write back */
1881 ivar |= (1 << 31);
1882
1883 ew32(IVAR, ivar);
1884
1885 /* enable MSI-X PBA support */
1886 ctrl_ext = er32(CTRL_EXT);
1887 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889 /* Auto-Mask Other interrupts upon ICR read */
1890#define E1000_EIAC_MASK_82574 0x01F00000
1891 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893 ew32(CTRL_EXT, ctrl_ext);
1894 e1e_flush();
1895}
1896
1897void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898{
1899 if (adapter->msix_entries) {
1900 pci_disable_msix(adapter->pdev);
1901 kfree(adapter->msix_entries);
1902 adapter->msix_entries = NULL;
1903 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1904 pci_disable_msi(adapter->pdev);
1905 adapter->flags &= ~FLAG_MSI_ENABLED;
1906 }
1907}
1908
1909/**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916{
1917 int err;
1918 int i;
1919
1920 switch (adapter->int_mode) {
1921 case E1000E_INT_MODE_MSIX:
1922 if (adapter->flags & FLAG_HAS_MSIX) {
1923 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924 adapter->msix_entries = kcalloc(adapter->num_vectors,
1925 sizeof(struct msix_entry),
1926 GFP_KERNEL);
1927 if (adapter->msix_entries) {
1928 for (i = 0; i < adapter->num_vectors; i++)
1929 adapter->msix_entries[i].entry = i;
1930
1931 err = pci_enable_msix(adapter->pdev,
1932 adapter->msix_entries,
1933 adapter->num_vectors);
1934 if (err == 0)
1935 return;
1936 }
1937 /* MSI-X failed, so fall through and try MSI */
1938 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
1939 e1000e_reset_interrupt_capability(adapter);
1940 }
1941 adapter->int_mode = E1000E_INT_MODE_MSI;
1942 /* Fall through */
1943 case E1000E_INT_MODE_MSI:
1944 if (!pci_enable_msi(adapter->pdev)) {
1945 adapter->flags |= FLAG_MSI_ENABLED;
1946 } else {
1947 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
1949 }
1950 /* Fall through */
1951 case E1000E_INT_MODE_LEGACY:
1952 /* Don't do anything; this is the system default */
1953 break;
1954 }
1955
1956 /* store the number of vectors being used */
1957 adapter->num_vectors = 1;
1958}
1959
1960/**
1961 * e1000_request_msix - Initialize MSI-X interrupts
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966static int e1000_request_msix(struct e1000_adapter *adapter)
1967{
1968 struct net_device *netdev = adapter->netdev;
1969 int err = 0, vector = 0;
1970
1971 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972 snprintf(adapter->rx_ring->name,
1973 sizeof(adapter->rx_ring->name) - 1,
1974 "%s-rx-0", netdev->name);
1975 else
1976 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977 err = request_irq(adapter->msix_entries[vector].vector,
1978 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979 netdev);
1980 if (err)
1981 return err;
1982 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983 E1000_EITR_82574(vector);
1984 adapter->rx_ring->itr_val = adapter->itr;
1985 vector++;
1986
1987 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988 snprintf(adapter->tx_ring->name,
1989 sizeof(adapter->tx_ring->name) - 1,
1990 "%s-tx-0", netdev->name);
1991 else
1992 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993 err = request_irq(adapter->msix_entries[vector].vector,
1994 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995 netdev);
1996 if (err)
1997 return err;
1998 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999 E1000_EITR_82574(vector);
2000 adapter->tx_ring->itr_val = adapter->itr;
2001 vector++;
2002
2003 err = request_irq(adapter->msix_entries[vector].vector,
2004 e1000_msix_other, 0, netdev->name, netdev);
2005 if (err)
2006 return err;
2007
2008 e1000_configure_msix(adapter);
2009
2010 return 0;
2011}
2012
2013/**
2014 * e1000_request_irq - initialize interrupts
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019static int e1000_request_irq(struct e1000_adapter *adapter)
2020{
2021 struct net_device *netdev = adapter->netdev;
2022 int err;
2023
2024 if (adapter->msix_entries) {
2025 err = e1000_request_msix(adapter);
2026 if (!err)
2027 return err;
2028 /* fall back to MSI */
2029 e1000e_reset_interrupt_capability(adapter);
2030 adapter->int_mode = E1000E_INT_MODE_MSI;
2031 e1000e_set_interrupt_capability(adapter);
2032 }
2033 if (adapter->flags & FLAG_MSI_ENABLED) {
2034 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035 netdev->name, netdev);
2036 if (!err)
2037 return err;
2038
2039 /* fall back to legacy interrupt */
2040 e1000e_reset_interrupt_capability(adapter);
2041 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042 }
2043
2044 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045 netdev->name, netdev);
2046 if (err)
2047 e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049 return err;
2050}
2051
2052static void e1000_free_irq(struct e1000_adapter *adapter)
2053{
2054 struct net_device *netdev = adapter->netdev;
2055
2056 if (adapter->msix_entries) {
2057 int vector = 0;
2058
2059 free_irq(adapter->msix_entries[vector].vector, netdev);
2060 vector++;
2061
2062 free_irq(adapter->msix_entries[vector].vector, netdev);
2063 vector++;
2064
2065 /* Other Causes interrupt vector */
2066 free_irq(adapter->msix_entries[vector].vector, netdev);
2067 return;
2068 }
2069
2070 free_irq(adapter->pdev->irq, netdev);
2071}
2072
2073/**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
2075 **/
2076static void e1000_irq_disable(struct e1000_adapter *adapter)
2077{
2078 struct e1000_hw *hw = &adapter->hw;
2079
2080 ew32(IMC, ~0);
2081 if (adapter->msix_entries)
2082 ew32(EIAC_82574, 0);
2083 e1e_flush();
2084
2085 if (adapter->msix_entries) {
2086 int i;
2087 for (i = 0; i < adapter->num_vectors; i++)
2088 synchronize_irq(adapter->msix_entries[i].vector);
2089 } else {
2090 synchronize_irq(adapter->pdev->irq);
2091 }
2092}
2093
2094/**
2095 * e1000_irq_enable - Enable default interrupt generation settings
2096 **/
2097static void e1000_irq_enable(struct e1000_adapter *adapter)
2098{
2099 struct e1000_hw *hw = &adapter->hw;
2100
2101 if (adapter->msix_entries) {
2102 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
2104 } else {
2105 ew32(IMS, IMS_ENABLE_MASK);
2106 }
2107 e1e_flush();
2108}
2109
2110/**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120{
2121 struct e1000_hw *hw = &adapter->hw;
2122 u32 ctrl_ext;
2123 u32 swsm;
2124
2125 /* Let firmware know the driver has taken over */
2126 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127 swsm = er32(SWSM);
2128 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130 ctrl_ext = er32(CTRL_EXT);
2131 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132 }
2133}
2134
2135/**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146{
2147 struct e1000_hw *hw = &adapter->hw;
2148 u32 ctrl_ext;
2149 u32 swsm;
2150
2151 /* Let firmware taken over control of h/w */
2152 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153 swsm = er32(SWSM);
2154 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156 ctrl_ext = er32(CTRL_EXT);
2157 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158 }
2159}
2160
2161/**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
2163 **/
2164static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165 struct e1000_ring *ring)
2166{
2167 struct pci_dev *pdev = adapter->pdev;
2168
2169 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170 GFP_KERNEL);
2171 if (!ring->desc)
2172 return -ENOMEM;
2173
2174 return 0;
2175}
2176
2177/**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184{
2185 struct e1000_adapter *adapter = tx_ring->adapter;
2186 int err = -ENOMEM, size;
2187
2188 size = sizeof(struct e1000_buffer) * tx_ring->count;
2189 tx_ring->buffer_info = vzalloc(size);
2190 if (!tx_ring->buffer_info)
2191 goto err;
2192
2193 /* round up to nearest 4K */
2194 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195 tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197 err = e1000_alloc_ring_dma(adapter, tx_ring);
2198 if (err)
2199 goto err;
2200
2201 tx_ring->next_to_use = 0;
2202 tx_ring->next_to_clean = 0;
2203
2204 return 0;
2205err:
2206 vfree(tx_ring->buffer_info);
2207 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208 return err;
2209}
2210
2211/**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218{
2219 struct e1000_adapter *adapter = rx_ring->adapter;
2220 struct e1000_buffer *buffer_info;
2221 int i, size, desc_len, err = -ENOMEM;
2222
2223 size = sizeof(struct e1000_buffer) * rx_ring->count;
2224 rx_ring->buffer_info = vzalloc(size);
2225 if (!rx_ring->buffer_info)
2226 goto err;
2227
2228 for (i = 0; i < rx_ring->count; i++) {
2229 buffer_info = &rx_ring->buffer_info[i];
2230 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231 sizeof(struct e1000_ps_page),
2232 GFP_KERNEL);
2233 if (!buffer_info->ps_pages)
2234 goto err_pages;
2235 }
2236
2237 desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239 /* Round up to nearest 4K */
2240 rx_ring->size = rx_ring->count * desc_len;
2241 rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243 err = e1000_alloc_ring_dma(adapter, rx_ring);
2244 if (err)
2245 goto err_pages;
2246
2247 rx_ring->next_to_clean = 0;
2248 rx_ring->next_to_use = 0;
2249 rx_ring->rx_skb_top = NULL;
2250
2251 return 0;
2252
2253err_pages:
2254 for (i = 0; i < rx_ring->count; i++) {
2255 buffer_info = &rx_ring->buffer_info[i];
2256 kfree(buffer_info->ps_pages);
2257 }
2258err:
2259 vfree(rx_ring->buffer_info);
2260 e_err("Unable to allocate memory for the receive descriptor ring\n");
2261 return err;
2262}
2263
2264/**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269{
2270 struct e1000_adapter *adapter = tx_ring->adapter;
2271 struct e1000_buffer *buffer_info;
2272 unsigned long size;
2273 unsigned int i;
2274
2275 for (i = 0; i < tx_ring->count; i++) {
2276 buffer_info = &tx_ring->buffer_info[i];
2277 e1000_put_txbuf(tx_ring, buffer_info);
2278 }
2279
2280 netdev_reset_queue(adapter->netdev);
2281 size = sizeof(struct e1000_buffer) * tx_ring->count;
2282 memset(tx_ring->buffer_info, 0, size);
2283
2284 memset(tx_ring->desc, 0, tx_ring->size);
2285
2286 tx_ring->next_to_use = 0;
2287 tx_ring->next_to_clean = 0;
2288
2289 writel(0, tx_ring->head);
2290 if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291 e1000e_update_tdt_wa(tx_ring, 0);
2292 else
2293 writel(0, tx_ring->tail);
2294}
2295
2296/**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303{
2304 struct e1000_adapter *adapter = tx_ring->adapter;
2305 struct pci_dev *pdev = adapter->pdev;
2306
2307 e1000_clean_tx_ring(tx_ring);
2308
2309 vfree(tx_ring->buffer_info);
2310 tx_ring->buffer_info = NULL;
2311
2312 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313 tx_ring->dma);
2314 tx_ring->desc = NULL;
2315}
2316
2317/**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324{
2325 struct e1000_adapter *adapter = rx_ring->adapter;
2326 struct pci_dev *pdev = adapter->pdev;
2327 int i;
2328
2329 e1000_clean_rx_ring(rx_ring);
2330
2331 for (i = 0; i < rx_ring->count; i++)
2332 kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334 vfree(rx_ring->buffer_info);
2335 rx_ring->buffer_info = NULL;
2336
2337 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338 rx_ring->dma);
2339 rx_ring->desc = NULL;
2340}
2341
2342/**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 * Stores a new ITR value based on packets and byte
2350 * counts during the last interrupt. The advantage of per interrupt
2351 * computation is faster updates and more accurate ITR for the current
2352 * traffic pattern. Constants in this function were computed
2353 * based on theoretical maximum wire speed and thresholds were set based
2354 * on testing data as well as attempting to minimize response time
2355 * while increasing bulk throughput. This functionality is controlled
2356 * by the InterruptThrottleRate module parameter.
2357 **/
2358static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359 u16 itr_setting, int packets,
2360 int bytes)
2361{
2362 unsigned int retval = itr_setting;
2363
2364 if (packets == 0)
2365 return itr_setting;
2366
2367 switch (itr_setting) {
2368 case lowest_latency:
2369 /* handle TSO and jumbo frames */
2370 if (bytes/packets > 8000)
2371 retval = bulk_latency;
2372 else if ((packets < 5) && (bytes > 512))
2373 retval = low_latency;
2374 break;
2375 case low_latency: /* 50 usec aka 20000 ints/s */
2376 if (bytes > 10000) {
2377 /* this if handles the TSO accounting */
2378 if (bytes/packets > 8000)
2379 retval = bulk_latency;
2380 else if ((packets < 10) || ((bytes/packets) > 1200))
2381 retval = bulk_latency;
2382 else if ((packets > 35))
2383 retval = lowest_latency;
2384 } else if (bytes/packets > 2000) {
2385 retval = bulk_latency;
2386 } else if (packets <= 2 && bytes < 512) {
2387 retval = lowest_latency;
2388 }
2389 break;
2390 case bulk_latency: /* 250 usec aka 4000 ints/s */
2391 if (bytes > 25000) {
2392 if (packets > 35)
2393 retval = low_latency;
2394 } else if (bytes < 6000) {
2395 retval = low_latency;
2396 }
2397 break;
2398 }
2399
2400 return retval;
2401}
2402
2403static void e1000_set_itr(struct e1000_adapter *adapter)
2404{
2405 struct e1000_hw *hw = &adapter->hw;
2406 u16 current_itr;
2407 u32 new_itr = adapter->itr;
2408
2409 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410 if (adapter->link_speed != SPEED_1000) {
2411 current_itr = 0;
2412 new_itr = 4000;
2413 goto set_itr_now;
2414 }
2415
2416 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417 new_itr = 0;
2418 goto set_itr_now;
2419 }
2420
2421 adapter->tx_itr = e1000_update_itr(adapter,
2422 adapter->tx_itr,
2423 adapter->total_tx_packets,
2424 adapter->total_tx_bytes);
2425 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2426 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427 adapter->tx_itr = low_latency;
2428
2429 adapter->rx_itr = e1000_update_itr(adapter,
2430 adapter->rx_itr,
2431 adapter->total_rx_packets,
2432 adapter->total_rx_bytes);
2433 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2434 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435 adapter->rx_itr = low_latency;
2436
2437 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
2439 switch (current_itr) {
2440 /* counts and packets in update_itr are dependent on these numbers */
2441 case lowest_latency:
2442 new_itr = 70000;
2443 break;
2444 case low_latency:
2445 new_itr = 20000; /* aka hwitr = ~200 */
2446 break;
2447 case bulk_latency:
2448 new_itr = 4000;
2449 break;
2450 default:
2451 break;
2452 }
2453
2454set_itr_now:
2455 if (new_itr != adapter->itr) {
2456 /*
2457 * this attempts to bias the interrupt rate towards Bulk
2458 * by adding intermediate steps when interrupt rate is
2459 * increasing
2460 */
2461 new_itr = new_itr > adapter->itr ?
2462 min(adapter->itr + (new_itr >> 2), new_itr) :
2463 new_itr;
2464 adapter->itr = new_itr;
2465 adapter->rx_ring->itr_val = new_itr;
2466 if (adapter->msix_entries)
2467 adapter->rx_ring->set_itr = 1;
2468 else
2469 if (new_itr)
2470 ew32(ITR, 1000000000 / (new_itr * 256));
2471 else
2472 ew32(ITR, 0);
2473 }
2474}
2475
2476/**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481{
2482 int size = sizeof(struct e1000_ring);
2483
2484 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485 if (!adapter->tx_ring)
2486 goto err;
2487 adapter->tx_ring->count = adapter->tx_ring_count;
2488 adapter->tx_ring->adapter = adapter;
2489
2490 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491 if (!adapter->rx_ring)
2492 goto err;
2493 adapter->rx_ring->count = adapter->rx_ring_count;
2494 adapter->rx_ring->adapter = adapter;
2495
2496 return 0;
2497err:
2498 e_err("Unable to allocate memory for queues\n");
2499 kfree(adapter->rx_ring);
2500 kfree(adapter->tx_ring);
2501 return -ENOMEM;
2502}
2503
2504/**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509static int e1000e_poll(struct napi_struct *napi, int weight)
2510{
2511 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512 napi);
2513 struct e1000_hw *hw = &adapter->hw;
2514 struct net_device *poll_dev = adapter->netdev;
2515 int tx_cleaned = 1, work_done = 0;
2516
2517 adapter = netdev_priv(poll_dev);
2518
2519 if (!adapter->msix_entries ||
2520 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523 adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525 if (!tx_cleaned)
2526 work_done = weight;
2527
2528 /* If weight not fully consumed, exit the polling mode */
2529 if (work_done < weight) {
2530 if (adapter->itr_setting & 3)
2531 e1000_set_itr(adapter);
2532 napi_complete(napi);
2533 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534 if (adapter->msix_entries)
2535 ew32(IMS, adapter->rx_ring->ims_val);
2536 else
2537 e1000_irq_enable(adapter);
2538 }
2539 }
2540
2541 return work_done;
2542}
2543
2544static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2545{
2546 struct e1000_adapter *adapter = netdev_priv(netdev);
2547 struct e1000_hw *hw = &adapter->hw;
2548 u32 vfta, index;
2549
2550 /* don't update vlan cookie if already programmed */
2551 if ((adapter->hw.mng_cookie.status &
2552 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553 (vid == adapter->mng_vlan_id))
2554 return 0;
2555
2556 /* add VID to filter table */
2557 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558 index = (vid >> 5) & 0x7F;
2559 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560 vfta |= (1 << (vid & 0x1F));
2561 hw->mac.ops.write_vfta(hw, index, vfta);
2562 }
2563
2564 set_bit(vid, adapter->active_vlans);
2565
2566 return 0;
2567}
2568
2569static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2570{
2571 struct e1000_adapter *adapter = netdev_priv(netdev);
2572 struct e1000_hw *hw = &adapter->hw;
2573 u32 vfta, index;
2574
2575 if ((adapter->hw.mng_cookie.status &
2576 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577 (vid == adapter->mng_vlan_id)) {
2578 /* release control to f/w */
2579 e1000e_release_hw_control(adapter);
2580 return 0;
2581 }
2582
2583 /* remove VID from filter table */
2584 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585 index = (vid >> 5) & 0x7F;
2586 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587 vfta &= ~(1 << (vid & 0x1F));
2588 hw->mac.ops.write_vfta(hw, index, vfta);
2589 }
2590
2591 clear_bit(vid, adapter->active_vlans);
2592
2593 return 0;
2594}
2595
2596/**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601{
2602 struct net_device *netdev = adapter->netdev;
2603 struct e1000_hw *hw = &adapter->hw;
2604 u32 rctl;
2605
2606 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607 /* disable VLAN receive filtering */
2608 rctl = er32(RCTL);
2609 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610 ew32(RCTL, rctl);
2611
2612 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
2614 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615 }
2616 }
2617}
2618
2619/**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624{
2625 struct e1000_hw *hw = &adapter->hw;
2626 u32 rctl;
2627
2628 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629 /* enable VLAN receive filtering */
2630 rctl = er32(RCTL);
2631 rctl |= E1000_RCTL_VFE;
2632 rctl &= ~E1000_RCTL_CFIEN;
2633 ew32(RCTL, rctl);
2634 }
2635}
2636
2637/**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642{
2643 struct e1000_hw *hw = &adapter->hw;
2644 u32 ctrl;
2645
2646 /* disable VLAN tag insert/strip */
2647 ctrl = er32(CTRL);
2648 ctrl &= ~E1000_CTRL_VME;
2649 ew32(CTRL, ctrl);
2650}
2651
2652/**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657{
2658 struct e1000_hw *hw = &adapter->hw;
2659 u32 ctrl;
2660
2661 /* enable VLAN tag insert/strip */
2662 ctrl = er32(CTRL);
2663 ctrl |= E1000_CTRL_VME;
2664 ew32(CTRL, ctrl);
2665}
2666
2667static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668{
2669 struct net_device *netdev = adapter->netdev;
2670 u16 vid = adapter->hw.mng_cookie.vlan_id;
2671 u16 old_vid = adapter->mng_vlan_id;
2672
2673 if (adapter->hw.mng_cookie.status &
2674 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675 e1000_vlan_rx_add_vid(netdev, vid);
2676 adapter->mng_vlan_id = vid;
2677 }
2678
2679 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680 e1000_vlan_rx_kill_vid(netdev, old_vid);
2681}
2682
2683static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684{
2685 u16 vid;
2686
2687 e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691}
2692
2693static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694{
2695 struct e1000_hw *hw = &adapter->hw;
2696 u32 manc, manc2h, mdef, i, j;
2697
2698 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699 return;
2700
2701 manc = er32(MANC);
2702
2703 /*
2704 * enable receiving management packets to the host. this will probably
2705 * generate destination unreachable messages from the host OS, but
2706 * the packets will be handled on SMBUS
2707 */
2708 manc |= E1000_MANC_EN_MNG2HOST;
2709 manc2h = er32(MANC2H);
2710
2711 switch (hw->mac.type) {
2712 default:
2713 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714 break;
2715 case e1000_82574:
2716 case e1000_82583:
2717 /*
2718 * Check if IPMI pass-through decision filter already exists;
2719 * if so, enable it.
2720 */
2721 for (i = 0, j = 0; i < 8; i++) {
2722 mdef = er32(MDEF(i));
2723
2724 /* Ignore filters with anything other than IPMI ports */
2725 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726 continue;
2727
2728 /* Enable this decision filter in MANC2H */
2729 if (mdef)
2730 manc2h |= (1 << i);
2731
2732 j |= mdef;
2733 }
2734
2735 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736 break;
2737
2738 /* Create new decision filter in an empty filter */
2739 for (i = 0, j = 0; i < 8; i++)
2740 if (er32(MDEF(i)) == 0) {
2741 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742 E1000_MDEF_PORT_664));
2743 manc2h |= (1 << 1);
2744 j++;
2745 break;
2746 }
2747
2748 if (!j)
2749 e_warn("Unable to create IPMI pass-through filter\n");
2750 break;
2751 }
2752
2753 ew32(MANC2H, manc2h);
2754 ew32(MANC, manc);
2755}
2756
2757/**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763static void e1000_configure_tx(struct e1000_adapter *adapter)
2764{
2765 struct e1000_hw *hw = &adapter->hw;
2766 struct e1000_ring *tx_ring = adapter->tx_ring;
2767 u64 tdba;
2768 u32 tdlen, tarc;
2769
2770 /* Setup the HW Tx Head and Tail descriptor pointers */
2771 tdba = tx_ring->dma;
2772 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774 ew32(TDBAH(0), (tdba >> 32));
2775 ew32(TDLEN(0), tdlen);
2776 ew32(TDH(0), 0);
2777 ew32(TDT(0), 0);
2778 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
2781 /* Set the Tx Interrupt Delay register */
2782 ew32(TIDV, adapter->tx_int_delay);
2783 /* Tx irq moderation */
2784 ew32(TADV, adapter->tx_abs_int_delay);
2785
2786 if (adapter->flags2 & FLAG2_DMA_BURST) {
2787 u32 txdctl = er32(TXDCTL(0));
2788 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789 E1000_TXDCTL_WTHRESH);
2790 /*
2791 * set up some performance related parameters to encourage the
2792 * hardware to use the bus more efficiently in bursts, depends
2793 * on the tx_int_delay to be enabled,
2794 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795 * hthresh = 1 ==> prefetch when one or more available
2796 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797 * BEWARE: this seems to work but should be considered first if
2798 * there are Tx hangs or other Tx related bugs
2799 */
2800 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801 ew32(TXDCTL(0), txdctl);
2802 }
2803 /* erratum work around: set txdctl the same for both queues */
2804 ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
2806 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807 tarc = er32(TARC(0));
2808 /*
2809 * set the speed mode bit, we'll clear it if we're not at
2810 * gigabit link later
2811 */
2812#define SPEED_MODE_BIT (1 << 21)
2813 tarc |= SPEED_MODE_BIT;
2814 ew32(TARC(0), tarc);
2815 }
2816
2817 /* errata: program both queues to unweighted RR */
2818 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819 tarc = er32(TARC(0));
2820 tarc |= 1;
2821 ew32(TARC(0), tarc);
2822 tarc = er32(TARC(1));
2823 tarc |= 1;
2824 ew32(TARC(1), tarc);
2825 }
2826
2827 /* Setup Transmit Descriptor Settings for eop descriptor */
2828 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830 /* only set IDE if we are delaying interrupts using the timers */
2831 if (adapter->tx_int_delay)
2832 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834 /* enable Report Status bit */
2835 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
2837 hw->mac.ops.config_collision_dist(hw);
2838}
2839
2840/**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847{
2848 struct e1000_hw *hw = &adapter->hw;
2849 u32 rctl, rfctl;
2850 u32 pages = 0;
2851
2852 /* Workaround Si errata on PCHx - configure jumbo frame flow */
2853 if (hw->mac.type >= e1000_pch2lan) {
2854 s32 ret_val;
2855
2856 if (adapter->netdev->mtu > ETH_DATA_LEN)
2857 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858 else
2859 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861 if (ret_val)
2862 e_dbg("failed to enable jumbo frame workaround mode\n");
2863 }
2864
2865 /* Program MC offset vector base */
2866 rctl = er32(RCTL);
2867 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872 /* Do not Store bad packets */
2873 rctl &= ~E1000_RCTL_SBP;
2874
2875 /* Enable Long Packet receive */
2876 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877 rctl &= ~E1000_RCTL_LPE;
2878 else
2879 rctl |= E1000_RCTL_LPE;
2880
2881 /* Some systems expect that the CRC is included in SMBUS traffic. The
2882 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883 * host memory when this is enabled
2884 */
2885 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886 rctl |= E1000_RCTL_SECRC;
2887
2888 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890 u16 phy_data;
2891
2892 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893 phy_data &= 0xfff8;
2894 phy_data |= (1 << 2);
2895 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897 e1e_rphy(hw, 22, &phy_data);
2898 phy_data &= 0x0fff;
2899 phy_data |= (1 << 14);
2900 e1e_wphy(hw, 0x10, 0x2823);
2901 e1e_wphy(hw, 0x11, 0x0003);
2902 e1e_wphy(hw, 22, phy_data);
2903 }
2904
2905 /* Setup buffer sizes */
2906 rctl &= ~E1000_RCTL_SZ_4096;
2907 rctl |= E1000_RCTL_BSEX;
2908 switch (adapter->rx_buffer_len) {
2909 case 2048:
2910 default:
2911 rctl |= E1000_RCTL_SZ_2048;
2912 rctl &= ~E1000_RCTL_BSEX;
2913 break;
2914 case 4096:
2915 rctl |= E1000_RCTL_SZ_4096;
2916 break;
2917 case 8192:
2918 rctl |= E1000_RCTL_SZ_8192;
2919 break;
2920 case 16384:
2921 rctl |= E1000_RCTL_SZ_16384;
2922 break;
2923 }
2924
2925 /* Enable Extended Status in all Receive Descriptors */
2926 rfctl = er32(RFCTL);
2927 rfctl |= E1000_RFCTL_EXTEN;
2928 ew32(RFCTL, rfctl);
2929
2930 /*
2931 * 82571 and greater support packet-split where the protocol
2932 * header is placed in skb->data and the packet data is
2933 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934 * In the case of a non-split, skb->data is linearly filled,
2935 * followed by the page buffers. Therefore, skb->data is
2936 * sized to hold the largest protocol header.
2937 *
2938 * allocations using alloc_page take too long for regular MTU
2939 * so only enable packet split for jumbo frames
2940 *
2941 * Using pages when the page size is greater than 16k wastes
2942 * a lot of memory, since we allocate 3 pages at all times
2943 * per packet.
2944 */
2945 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947 adapter->rx_ps_pages = pages;
2948 else
2949 adapter->rx_ps_pages = 0;
2950
2951 if (adapter->rx_ps_pages) {
2952 u32 psrctl = 0;
2953
2954 /* Enable Packet split descriptors */
2955 rctl |= E1000_RCTL_DTYP_PS;
2956
2957 psrctl |= adapter->rx_ps_bsize0 >>
2958 E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960 switch (adapter->rx_ps_pages) {
2961 case 3:
2962 psrctl |= PAGE_SIZE <<
2963 E1000_PSRCTL_BSIZE3_SHIFT;
2964 case 2:
2965 psrctl |= PAGE_SIZE <<
2966 E1000_PSRCTL_BSIZE2_SHIFT;
2967 case 1:
2968 psrctl |= PAGE_SIZE >>
2969 E1000_PSRCTL_BSIZE1_SHIFT;
2970 break;
2971 }
2972
2973 ew32(PSRCTL, psrctl);
2974 }
2975
2976 /* This is useful for sniffing bad packets. */
2977 if (adapter->netdev->features & NETIF_F_RXALL) {
2978 /* UPE and MPE will be handled by normal PROMISC logic
2979 * in e1000e_set_rx_mode */
2980 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985 E1000_RCTL_DPF | /* Allow filtered pause */
2986 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
2987 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988 * and that breaks VLANs.
2989 */
2990 }
2991
2992 ew32(RCTL, rctl);
2993 /* just started the receive unit, no need to restart */
2994 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995}
2996
2997/**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003static void e1000_configure_rx(struct e1000_adapter *adapter)
3004{
3005 struct e1000_hw *hw = &adapter->hw;
3006 struct e1000_ring *rx_ring = adapter->rx_ring;
3007 u64 rdba;
3008 u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010 if (adapter->rx_ps_pages) {
3011 /* this is a 32 byte descriptor */
3012 rdlen = rx_ring->count *
3013 sizeof(union e1000_rx_desc_packet_split);
3014 adapter->clean_rx = e1000_clean_rx_irq_ps;
3015 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020 } else {
3021 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022 adapter->clean_rx = e1000_clean_rx_irq;
3023 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024 }
3025
3026 /* disable receives while setting up the descriptors */
3027 rctl = er32(RCTL);
3028 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030 e1e_flush();
3031 usleep_range(10000, 20000);
3032
3033 if (adapter->flags2 & FLAG2_DMA_BURST) {
3034 /*
3035 * set the writeback threshold (only takes effect if the RDTR
3036 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037 * enable prefetching of 0x20 Rx descriptors
3038 * granularity = 01
3039 * wthresh = 04,
3040 * hthresh = 04,
3041 * pthresh = 0x20
3042 */
3043 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046 /*
3047 * override the delay timers for enabling bursting, only if
3048 * the value was not set by the user via module options
3049 */
3050 if (adapter->rx_int_delay == DEFAULT_RDTR)
3051 adapter->rx_int_delay = BURST_RDTR;
3052 if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053 adapter->rx_abs_int_delay = BURST_RADV;
3054 }
3055
3056 /* set the Receive Delay Timer Register */
3057 ew32(RDTR, adapter->rx_int_delay);
3058
3059 /* irq moderation */
3060 ew32(RADV, adapter->rx_abs_int_delay);
3061 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062 ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064 ctrl_ext = er32(CTRL_EXT);
3065 /* Auto-Mask interrupts upon ICR access */
3066 ctrl_ext |= E1000_CTRL_EXT_IAME;
3067 ew32(IAM, 0xffffffff);
3068 ew32(CTRL_EXT, ctrl_ext);
3069 e1e_flush();
3070
3071 /*
3072 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073 * the Base and Length of the Rx Descriptor Ring
3074 */
3075 rdba = rx_ring->dma;
3076 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077 ew32(RDBAH(0), (rdba >> 32));
3078 ew32(RDLEN(0), rdlen);
3079 ew32(RDH(0), 0);
3080 ew32(RDT(0), 0);
3081 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
3084 /* Enable Receive Checksum Offload for TCP and UDP */
3085 rxcsum = er32(RXCSUM);
3086 if (adapter->netdev->features & NETIF_F_RXCSUM)
3087 rxcsum |= E1000_RXCSUM_TUOFL;
3088 else
3089 rxcsum &= ~E1000_RXCSUM_TUOFL;
3090 ew32(RXCSUM, rxcsum);
3091
3092 if (adapter->hw.mac.type == e1000_pch2lan) {
3093 /*
3094 * With jumbo frames, excessive C-state transition
3095 * latencies result in dropped transactions.
3096 */
3097 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3098 u32 rxdctl = er32(RXDCTL(0));
3099 ew32(RXDCTL(0), rxdctl | 0x3);
3100 pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101 } else {
3102 pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103 PM_QOS_DEFAULT_VALUE);
3104 }
3105 }
3106
3107 /* Enable Receives */
3108 ew32(RCTL, rctl);
3109}
3110
3111/**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 * 0 on no addresses written
3118 * X on writing X addresses to MTA
3119 */
3120static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121{
3122 struct e1000_adapter *adapter = netdev_priv(netdev);
3123 struct e1000_hw *hw = &adapter->hw;
3124 struct netdev_hw_addr *ha;
3125 u8 *mta_list;
3126 int i;
3127
3128 if (netdev_mc_empty(netdev)) {
3129 /* nothing to program, so clear mc list */
3130 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131 return 0;
3132 }
3133
3134 mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135 if (!mta_list)
3136 return -ENOMEM;
3137
3138 /* update_mc_addr_list expects a packed array of only addresses. */
3139 i = 0;
3140 netdev_for_each_mc_addr(ha, netdev)
3141 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144 kfree(mta_list);
3145
3146 return netdev_mc_count(netdev);
3147}
3148
3149/**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 * 0 on no addresses written
3156 * X on writing X addresses to the RAR table
3157 **/
3158static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159{
3160 struct e1000_adapter *adapter = netdev_priv(netdev);
3161 struct e1000_hw *hw = &adapter->hw;
3162 unsigned int rar_entries = hw->mac.rar_entry_count;
3163 int count = 0;
3164
3165 /* save a rar entry for our hardware address */
3166 rar_entries--;
3167
3168 /* save a rar entry for the LAA workaround */
3169 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170 rar_entries--;
3171
3172 /* return ENOMEM indicating insufficient memory for addresses */
3173 if (netdev_uc_count(netdev) > rar_entries)
3174 return -ENOMEM;
3175
3176 if (!netdev_uc_empty(netdev) && rar_entries) {
3177 struct netdev_hw_addr *ha;
3178
3179 /*
3180 * write the addresses in reverse order to avoid write
3181 * combining
3182 */
3183 netdev_for_each_uc_addr(ha, netdev) {
3184 if (!rar_entries)
3185 break;
3186 hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3187 count++;
3188 }
3189 }
3190
3191 /* zero out the remaining RAR entries not used above */
3192 for (; rar_entries > 0; rar_entries--) {
3193 ew32(RAH(rar_entries), 0);
3194 ew32(RAL(rar_entries), 0);
3195 }
3196 e1e_flush();
3197
3198 return count;
3199}
3200
3201/**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated. This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210static void e1000e_set_rx_mode(struct net_device *netdev)
3211{
3212 struct e1000_adapter *adapter = netdev_priv(netdev);
3213 struct e1000_hw *hw = &adapter->hw;
3214 u32 rctl;
3215
3216 /* Check for Promiscuous and All Multicast modes */
3217 rctl = er32(RCTL);
3218
3219 /* clear the affected bits */
3220 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222 if (netdev->flags & IFF_PROMISC) {
3223 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224 /* Do not hardware filter VLANs in promisc mode */
3225 e1000e_vlan_filter_disable(adapter);
3226 } else {
3227 int count;
3228
3229 if (netdev->flags & IFF_ALLMULTI) {
3230 rctl |= E1000_RCTL_MPE;
3231 } else {
3232 /*
3233 * Write addresses to the MTA, if the attempt fails
3234 * then we should just turn on promiscuous mode so
3235 * that we can at least receive multicast traffic
3236 */
3237 count = e1000e_write_mc_addr_list(netdev);
3238 if (count < 0)
3239 rctl |= E1000_RCTL_MPE;
3240 }
3241 e1000e_vlan_filter_enable(adapter);
3242 /*
3243 * Write addresses to available RAR registers, if there is not
3244 * sufficient space to store all the addresses then enable
3245 * unicast promiscuous mode
3246 */
3247 count = e1000e_write_uc_addr_list(netdev);
3248 if (count < 0)
3249 rctl |= E1000_RCTL_UPE;
3250 }
3251
3252 ew32(RCTL, rctl);
3253
3254 if (netdev->features & NETIF_F_HW_VLAN_RX)
3255 e1000e_vlan_strip_enable(adapter);
3256 else
3257 e1000e_vlan_strip_disable(adapter);
3258}
3259
3260static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261{
3262 struct e1000_hw *hw = &adapter->hw;
3263 u32 mrqc, rxcsum;
3264 int i;
3265 static const u32 rsskey[10] = {
3266 0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267 0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268 };
3269
3270 /* Fill out hash function seed */
3271 for (i = 0; i < 10; i++)
3272 ew32(RSSRK(i), rsskey[i]);
3273
3274 /* Direct all traffic to queue 0 */
3275 for (i = 0; i < 32; i++)
3276 ew32(RETA(i), 0);
3277
3278 /*
3279 * Disable raw packet checksumming so that RSS hash is placed in
3280 * descriptor on writeback.
3281 */
3282 rxcsum = er32(RXCSUM);
3283 rxcsum |= E1000_RXCSUM_PCSD;
3284
3285 ew32(RXCSUM, rxcsum);
3286
3287 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289 E1000_MRQC_RSS_FIELD_IPV6 |
3290 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293 ew32(MRQC, mrqc);
3294}
3295
3296/**
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300static void e1000_configure(struct e1000_adapter *adapter)
3301{
3302 struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304 e1000e_set_rx_mode(adapter->netdev);
3305
3306 e1000_restore_vlan(adapter);
3307 e1000_init_manageability_pt(adapter);
3308
3309 e1000_configure_tx(adapter);
3310
3311 if (adapter->netdev->features & NETIF_F_RXHASH)
3312 e1000e_setup_rss_hash(adapter);
3313 e1000_setup_rctl(adapter);
3314 e1000_configure_rx(adapter);
3315 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316}
3317
3318/**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327{
3328 if (adapter->hw.phy.ops.power_up)
3329 adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331 adapter->hw.mac.ops.setup_link(&adapter->hw);
3332}
3333
3334/**
3335 * e1000_power_down_phy - Power down the PHY
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341{
3342 /* WoL is enabled */
3343 if (adapter->wol)
3344 return;
3345
3346 if (adapter->hw.phy.ops.power_down)
3347 adapter->hw.phy.ops.power_down(&adapter->hw);
3348}
3349
3350/**
3351 * e1000e_reset - bring the hardware into a known good state
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358void e1000e_reset(struct e1000_adapter *adapter)
3359{
3360 struct e1000_mac_info *mac = &adapter->hw.mac;
3361 struct e1000_fc_info *fc = &adapter->hw.fc;
3362 struct e1000_hw *hw = &adapter->hw;
3363 u32 tx_space, min_tx_space, min_rx_space;
3364 u32 pba = adapter->pba;
3365 u16 hwm;
3366
3367 /* reset Packet Buffer Allocation to default */
3368 ew32(PBA, pba);
3369
3370 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371 /*
3372 * To maintain wire speed transmits, the Tx FIFO should be
3373 * large enough to accommodate two full transmit packets,
3374 * rounded up to the next 1KB and expressed in KB. Likewise,
3375 * the Rx FIFO should be large enough to accommodate at least
3376 * one full receive packet and is similarly rounded up and
3377 * expressed in KB.
3378 */
3379 pba = er32(PBA);
3380 /* upper 16 bits has Tx packet buffer allocation size in KB */
3381 tx_space = pba >> 16;
3382 /* lower 16 bits has Rx packet buffer allocation size in KB */
3383 pba &= 0xffff;
3384 /*
3385 * the Tx fifo also stores 16 bytes of information about the Tx
3386 * but don't include ethernet FCS because hardware appends it
3387 */
3388 min_tx_space = (adapter->max_frame_size +
3389 sizeof(struct e1000_tx_desc) -
3390 ETH_FCS_LEN) * 2;
3391 min_tx_space = ALIGN(min_tx_space, 1024);
3392 min_tx_space >>= 10;
3393 /* software strips receive CRC, so leave room for it */
3394 min_rx_space = adapter->max_frame_size;
3395 min_rx_space = ALIGN(min_rx_space, 1024);
3396 min_rx_space >>= 10;
3397
3398 /*
3399 * If current Tx allocation is less than the min Tx FIFO size,
3400 * and the min Tx FIFO size is less than the current Rx FIFO
3401 * allocation, take space away from current Rx allocation
3402 */
3403 if ((tx_space < min_tx_space) &&
3404 ((min_tx_space - tx_space) < pba)) {
3405 pba -= min_tx_space - tx_space;
3406
3407 /*
3408 * if short on Rx space, Rx wins and must trump Tx
3409 * adjustment or use Early Receive if available
3410 */
3411 if (pba < min_rx_space)
3412 pba = min_rx_space;
3413 }
3414
3415 ew32(PBA, pba);
3416 }
3417
3418 /*
3419 * flow control settings
3420 *
3421 * The high water mark must be low enough to fit one full frame
3422 * (or the size used for early receive) above it in the Rx FIFO.
3423 * Set it to the lower of:
3424 * - 90% of the Rx FIFO size, and
3425 * - the full Rx FIFO size minus one full frame
3426 */
3427 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428 fc->pause_time = 0xFFFF;
3429 else
3430 fc->pause_time = E1000_FC_PAUSE_TIME;
3431 fc->send_xon = true;
3432 fc->current_mode = fc->requested_mode;
3433
3434 switch (hw->mac.type) {
3435 case e1000_ich9lan:
3436 case e1000_ich10lan:
3437 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438 pba = 14;
3439 ew32(PBA, pba);
3440 fc->high_water = 0x2800;
3441 fc->low_water = fc->high_water - 8;
3442 break;
3443 }
3444 /* fall-through */
3445 default:
3446 hwm = min(((pba << 10) * 9 / 10),
3447 ((pba << 10) - adapter->max_frame_size));
3448
3449 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450 fc->low_water = fc->high_water - 8;
3451 break;
3452 case e1000_pchlan:
3453 /*
3454 * Workaround PCH LOM adapter hangs with certain network
3455 * loads. If hangs persist, try disabling Tx flow control.
3456 */
3457 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458 fc->high_water = 0x3500;
3459 fc->low_water = 0x1500;
3460 } else {
3461 fc->high_water = 0x5000;
3462 fc->low_water = 0x3000;
3463 }
3464 fc->refresh_time = 0x1000;
3465 break;
3466 case e1000_pch2lan:
3467 case e1000_pch_lpt:
3468 fc->high_water = 0x05C20;
3469 fc->low_water = 0x05048;
3470 fc->pause_time = 0x0650;
3471 fc->refresh_time = 0x0400;
3472 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473 pba = 14;
3474 ew32(PBA, pba);
3475 }
3476 break;
3477 }
3478
3479 /*
3480 * Alignment of Tx data is on an arbitrary byte boundary with the
3481 * maximum size per Tx descriptor limited only to the transmit
3482 * allocation of the packet buffer minus 96 bytes with an upper
3483 * limit of 24KB due to receive synchronization limitations.
3484 */
3485 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3486 24 << 10);
3487
3488 /*
3489 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490 * fit in receive buffer.
3491 */
3492 if (adapter->itr_setting & 0x3) {
3493 if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3495 dev_info(&adapter->pdev->dev,
3496 "Interrupt Throttle Rate turned off\n");
3497 adapter->flags2 |= FLAG2_DISABLE_AIM;
3498 ew32(ITR, 0);
3499 }
3500 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3501 dev_info(&adapter->pdev->dev,
3502 "Interrupt Throttle Rate turned on\n");
3503 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3504 adapter->itr = 20000;
3505 ew32(ITR, 1000000000 / (adapter->itr * 256));
3506 }
3507 }
3508
3509 /* Allow time for pending master requests to run */
3510 mac->ops.reset_hw(hw);
3511
3512 /*
3513 * For parts with AMT enabled, let the firmware know
3514 * that the network interface is in control
3515 */
3516 if (adapter->flags & FLAG_HAS_AMT)
3517 e1000e_get_hw_control(adapter);
3518
3519 ew32(WUC, 0);
3520
3521 if (mac->ops.init_hw(hw))
3522 e_err("Hardware Error\n");
3523
3524 e1000_update_mng_vlan(adapter);
3525
3526 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3527 ew32(VET, ETH_P_8021Q);
3528
3529 e1000e_reset_adaptive(hw);
3530
3531 if (!netif_running(adapter->netdev) &&
3532 !test_bit(__E1000_TESTING, &adapter->state)) {
3533 e1000_power_down_phy(adapter);
3534 return;
3535 }
3536
3537 e1000_get_phy_info(hw);
3538
3539 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3540 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541 u16 phy_data = 0;
3542 /*
3543 * speed up time to link by disabling smart power down, ignore
3544 * the return value of this function because there is nothing
3545 * different we would do if it failed
3546 */
3547 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3548 phy_data &= ~IGP02E1000_PM_SPD;
3549 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3550 }
3551}
3552
3553int e1000e_up(struct e1000_adapter *adapter)
3554{
3555 struct e1000_hw *hw = &adapter->hw;
3556
3557 /* hardware has been reset, we need to reload some things */
3558 e1000_configure(adapter);
3559
3560 clear_bit(__E1000_DOWN, &adapter->state);
3561
3562 if (adapter->msix_entries)
3563 e1000_configure_msix(adapter);
3564 e1000_irq_enable(adapter);
3565
3566 netif_start_queue(adapter->netdev);
3567
3568 /* fire a link change interrupt to start the watchdog */
3569 if (adapter->msix_entries)
3570 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3571 else
3572 ew32(ICS, E1000_ICS_LSC);
3573
3574 return 0;
3575}
3576
3577static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3578{
3579 struct e1000_hw *hw = &adapter->hw;
3580
3581 if (!(adapter->flags2 & FLAG2_DMA_BURST))
3582 return;
3583
3584 /* flush pending descriptor writebacks to memory */
3585 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3586 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3587
3588 /* execute the writes immediately */
3589 e1e_flush();
3590
3591 /*
3592 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3593 * write is successful
3594 */
3595 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3596 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3597
3598 /* execute the writes immediately */
3599 e1e_flush();
3600}
3601
3602static void e1000e_update_stats(struct e1000_adapter *adapter);
3603
3604void e1000e_down(struct e1000_adapter *adapter)
3605{
3606 struct net_device *netdev = adapter->netdev;
3607 struct e1000_hw *hw = &adapter->hw;
3608 u32 tctl, rctl;
3609
3610 /*
3611 * signal that we're down so the interrupt handler does not
3612 * reschedule our watchdog timer
3613 */
3614 set_bit(__E1000_DOWN, &adapter->state);
3615
3616 /* disable receives in the hardware */
3617 rctl = er32(RCTL);
3618 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3619 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3620 /* flush and sleep below */
3621
3622 netif_stop_queue(netdev);
3623
3624 /* disable transmits in the hardware */
3625 tctl = er32(TCTL);
3626 tctl &= ~E1000_TCTL_EN;
3627 ew32(TCTL, tctl);
3628
3629 /* flush both disables and wait for them to finish */
3630 e1e_flush();
3631 usleep_range(10000, 20000);
3632
3633 e1000_irq_disable(adapter);
3634
3635 del_timer_sync(&adapter->watchdog_timer);
3636 del_timer_sync(&adapter->phy_info_timer);
3637
3638 netif_carrier_off(netdev);
3639
3640 spin_lock(&adapter->stats64_lock);
3641 e1000e_update_stats(adapter);
3642 spin_unlock(&adapter->stats64_lock);
3643
3644 e1000e_flush_descriptors(adapter);
3645 e1000_clean_tx_ring(adapter->tx_ring);
3646 e1000_clean_rx_ring(adapter->rx_ring);
3647
3648 adapter->link_speed = 0;
3649 adapter->link_duplex = 0;
3650
3651 if (!pci_channel_offline(adapter->pdev))
3652 e1000e_reset(adapter);
3653
3654 /*
3655 * TODO: for power management, we could drop the link and
3656 * pci_disable_device here.
3657 */
3658}
3659
3660void e1000e_reinit_locked(struct e1000_adapter *adapter)
3661{
3662 might_sleep();
3663 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3664 usleep_range(1000, 2000);
3665 e1000e_down(adapter);
3666 e1000e_up(adapter);
3667 clear_bit(__E1000_RESETTING, &adapter->state);
3668}
3669
3670/**
3671 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3672 * @adapter: board private structure to initialize
3673 *
3674 * e1000_sw_init initializes the Adapter private data structure.
3675 * Fields are initialized based on PCI device information and
3676 * OS network device settings (MTU size).
3677 **/
3678static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3679{
3680 struct net_device *netdev = adapter->netdev;
3681
3682 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3683 adapter->rx_ps_bsize0 = 128;
3684 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3685 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3686 adapter->tx_ring_count = E1000_DEFAULT_TXD;
3687 adapter->rx_ring_count = E1000_DEFAULT_RXD;
3688
3689 spin_lock_init(&adapter->stats64_lock);
3690
3691 e1000e_set_interrupt_capability(adapter);
3692
3693 if (e1000_alloc_queues(adapter))
3694 return -ENOMEM;
3695
3696 /* Explicitly disable IRQ since the NIC can be in any state. */
3697 e1000_irq_disable(adapter);
3698
3699 set_bit(__E1000_DOWN, &adapter->state);
3700 return 0;
3701}
3702
3703/**
3704 * e1000_intr_msi_test - Interrupt Handler
3705 * @irq: interrupt number
3706 * @data: pointer to a network interface device structure
3707 **/
3708static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3709{
3710 struct net_device *netdev = data;
3711 struct e1000_adapter *adapter = netdev_priv(netdev);
3712 struct e1000_hw *hw = &adapter->hw;
3713 u32 icr = er32(ICR);
3714
3715 e_dbg("icr is %08X\n", icr);
3716 if (icr & E1000_ICR_RXSEQ) {
3717 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
3718 wmb();
3719 }
3720
3721 return IRQ_HANDLED;
3722}
3723
3724/**
3725 * e1000_test_msi_interrupt - Returns 0 for successful test
3726 * @adapter: board private struct
3727 *
3728 * code flow taken from tg3.c
3729 **/
3730static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3731{
3732 struct net_device *netdev = adapter->netdev;
3733 struct e1000_hw *hw = &adapter->hw;
3734 int err;
3735
3736 /* poll_enable hasn't been called yet, so don't need disable */
3737 /* clear any pending events */
3738 er32(ICR);
3739
3740 /* free the real vector and request a test handler */
3741 e1000_free_irq(adapter);
3742 e1000e_reset_interrupt_capability(adapter);
3743
3744 /* Assume that the test fails, if it succeeds then the test
3745 * MSI irq handler will unset this flag */
3746 adapter->flags |= FLAG_MSI_TEST_FAILED;
3747
3748 err = pci_enable_msi(adapter->pdev);
3749 if (err)
3750 goto msi_test_failed;
3751
3752 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3753 netdev->name, netdev);
3754 if (err) {
3755 pci_disable_msi(adapter->pdev);
3756 goto msi_test_failed;
3757 }
3758
3759 wmb();
3760
3761 e1000_irq_enable(adapter);
3762
3763 /* fire an unusual interrupt on the test handler */
3764 ew32(ICS, E1000_ICS_RXSEQ);
3765 e1e_flush();
3766 msleep(100);
3767
3768 e1000_irq_disable(adapter);
3769
3770 rmb();
3771
3772 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3773 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3774 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3775 } else {
3776 e_dbg("MSI interrupt test succeeded!\n");
3777 }
3778
3779 free_irq(adapter->pdev->irq, netdev);
3780 pci_disable_msi(adapter->pdev);
3781
3782msi_test_failed:
3783 e1000e_set_interrupt_capability(adapter);
3784 return e1000_request_irq(adapter);
3785}
3786
3787/**
3788 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3789 * @adapter: board private struct
3790 *
3791 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3792 **/
3793static int e1000_test_msi(struct e1000_adapter *adapter)
3794{
3795 int err;
3796 u16 pci_cmd;
3797
3798 if (!(adapter->flags & FLAG_MSI_ENABLED))
3799 return 0;
3800
3801 /* disable SERR in case the MSI write causes a master abort */
3802 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803 if (pci_cmd & PCI_COMMAND_SERR)
3804 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3805 pci_cmd & ~PCI_COMMAND_SERR);
3806
3807 err = e1000_test_msi_interrupt(adapter);
3808
3809 /* re-enable SERR */
3810 if (pci_cmd & PCI_COMMAND_SERR) {
3811 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3812 pci_cmd |= PCI_COMMAND_SERR;
3813 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3814 }
3815
3816 return err;
3817}
3818
3819/**
3820 * e1000_open - Called when a network interface is made active
3821 * @netdev: network interface device structure
3822 *
3823 * Returns 0 on success, negative value on failure
3824 *
3825 * The open entry point is called when a network interface is made
3826 * active by the system (IFF_UP). At this point all resources needed
3827 * for transmit and receive operations are allocated, the interrupt
3828 * handler is registered with the OS, the watchdog timer is started,
3829 * and the stack is notified that the interface is ready.
3830 **/
3831static int e1000_open(struct net_device *netdev)
3832{
3833 struct e1000_adapter *adapter = netdev_priv(netdev);
3834 struct e1000_hw *hw = &adapter->hw;
3835 struct pci_dev *pdev = adapter->pdev;
3836 int err;
3837
3838 /* disallow open during test */
3839 if (test_bit(__E1000_TESTING, &adapter->state))
3840 return -EBUSY;
3841
3842 pm_runtime_get_sync(&pdev->dev);
3843
3844 netif_carrier_off(netdev);
3845
3846 /* allocate transmit descriptors */
3847 err = e1000e_setup_tx_resources(adapter->tx_ring);
3848 if (err)
3849 goto err_setup_tx;
3850
3851 /* allocate receive descriptors */
3852 err = e1000e_setup_rx_resources(adapter->rx_ring);
3853 if (err)
3854 goto err_setup_rx;
3855
3856 /*
3857 * If AMT is enabled, let the firmware know that the network
3858 * interface is now open and reset the part to a known state.
3859 */
3860 if (adapter->flags & FLAG_HAS_AMT) {
3861 e1000e_get_hw_control(adapter);
3862 e1000e_reset(adapter);
3863 }
3864
3865 e1000e_power_up_phy(adapter);
3866
3867 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3868 if ((adapter->hw.mng_cookie.status &
3869 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3870 e1000_update_mng_vlan(adapter);
3871
3872 /* DMA latency requirement to workaround jumbo issue */
3873 if (adapter->hw.mac.type == e1000_pch2lan)
3874 pm_qos_add_request(&adapter->netdev->pm_qos_req,
3875 PM_QOS_CPU_DMA_LATENCY,
3876 PM_QOS_DEFAULT_VALUE);
3877
3878 /*
3879 * before we allocate an interrupt, we must be ready to handle it.
3880 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3881 * as soon as we call pci_request_irq, so we have to setup our
3882 * clean_rx handler before we do so.
3883 */
3884 e1000_configure(adapter);
3885
3886 err = e1000_request_irq(adapter);
3887 if (err)
3888 goto err_req_irq;
3889
3890 /*
3891 * Work around PCIe errata with MSI interrupts causing some chipsets to
3892 * ignore e1000e MSI messages, which means we need to test our MSI
3893 * interrupt now
3894 */
3895 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3896 err = e1000_test_msi(adapter);
3897 if (err) {
3898 e_err("Interrupt allocation failed\n");
3899 goto err_req_irq;
3900 }
3901 }
3902
3903 /* From here on the code is the same as e1000e_up() */
3904 clear_bit(__E1000_DOWN, &adapter->state);
3905
3906 napi_enable(&adapter->napi);
3907
3908 e1000_irq_enable(adapter);
3909
3910 adapter->tx_hang_recheck = false;
3911 netif_start_queue(netdev);
3912
3913 adapter->idle_check = true;
3914 pm_runtime_put(&pdev->dev);
3915
3916 /* fire a link status change interrupt to start the watchdog */
3917 if (adapter->msix_entries)
3918 ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3919 else
3920 ew32(ICS, E1000_ICS_LSC);
3921
3922 return 0;
3923
3924err_req_irq:
3925 e1000e_release_hw_control(adapter);
3926 e1000_power_down_phy(adapter);
3927 e1000e_free_rx_resources(adapter->rx_ring);
3928err_setup_rx:
3929 e1000e_free_tx_resources(adapter->tx_ring);
3930err_setup_tx:
3931 e1000e_reset(adapter);
3932 pm_runtime_put_sync(&pdev->dev);
3933
3934 return err;
3935}
3936
3937/**
3938 * e1000_close - Disables a network interface
3939 * @netdev: network interface device structure
3940 *
3941 * Returns 0, this is not allowed to fail
3942 *
3943 * The close entry point is called when an interface is de-activated
3944 * by the OS. The hardware is still under the drivers control, but
3945 * needs to be disabled. A global MAC reset is issued to stop the
3946 * hardware, and all transmit and receive resources are freed.
3947 **/
3948static int e1000_close(struct net_device *netdev)
3949{
3950 struct e1000_adapter *adapter = netdev_priv(netdev);
3951 struct pci_dev *pdev = adapter->pdev;
3952 int count = E1000_CHECK_RESET_COUNT;
3953
3954 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3955 usleep_range(10000, 20000);
3956
3957 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3958
3959 pm_runtime_get_sync(&pdev->dev);
3960
3961 napi_disable(&adapter->napi);
3962
3963 if (!test_bit(__E1000_DOWN, &adapter->state)) {
3964 e1000e_down(adapter);
3965 e1000_free_irq(adapter);
3966 }
3967 e1000_power_down_phy(adapter);
3968
3969 e1000e_free_tx_resources(adapter->tx_ring);
3970 e1000e_free_rx_resources(adapter->rx_ring);
3971
3972 /*
3973 * kill manageability vlan ID if supported, but not if a vlan with
3974 * the same ID is registered on the host OS (let 8021q kill it)
3975 */
3976 if (adapter->hw.mng_cookie.status &
3977 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3978 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3979
3980 /*
3981 * If AMT is enabled, let the firmware know that the network
3982 * interface is now closed
3983 */
3984 if ((adapter->flags & FLAG_HAS_AMT) &&
3985 !test_bit(__E1000_TESTING, &adapter->state))
3986 e1000e_release_hw_control(adapter);
3987
3988 if (adapter->hw.mac.type == e1000_pch2lan)
3989 pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990
3991 pm_runtime_put_sync(&pdev->dev);
3992
3993 return 0;
3994}
3995/**
3996 * e1000_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002static int e1000_set_mac(struct net_device *netdev, void *p)
4003{
4004 struct e1000_adapter *adapter = netdev_priv(netdev);
4005 struct e1000_hw *hw = &adapter->hw;
4006 struct sockaddr *addr = p;
4007
4008 if (!is_valid_ether_addr(addr->sa_data))
4009 return -EADDRNOTAVAIL;
4010
4011 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4013
4014 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4015
4016 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4017 /* activate the work around */
4018 e1000e_set_laa_state_82571(&adapter->hw, 1);
4019
4020 /*
4021 * Hold a copy of the LAA in RAR[14] This is done so that
4022 * between the time RAR[0] gets clobbered and the time it
4023 * gets fixed (in e1000_watchdog), the actual LAA is in one
4024 * of the RARs and no incoming packets directed to this port
4025 * are dropped. Eventually the LAA will be in RAR[0] and
4026 * RAR[14]
4027 */
4028 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4029 adapter->hw.mac.rar_entry_count - 1);
4030 }
4031
4032 return 0;
4033}
4034
4035/**
4036 * e1000e_update_phy_task - work thread to update phy
4037 * @work: pointer to our work struct
4038 *
4039 * this worker thread exists because we must acquire a
4040 * semaphore to read the phy, which we could msleep while
4041 * waiting for it, and we can't msleep in a timer.
4042 **/
4043static void e1000e_update_phy_task(struct work_struct *work)
4044{
4045 struct e1000_adapter *adapter = container_of(work,
4046 struct e1000_adapter, update_phy_task);
4047
4048 if (test_bit(__E1000_DOWN, &adapter->state))
4049 return;
4050
4051 e1000_get_phy_info(&adapter->hw);
4052}
4053
4054/*
4055 * Need to wait a few seconds after link up to get diagnostic information from
4056 * the phy
4057 */
4058static void e1000_update_phy_info(unsigned long data)
4059{
4060 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061
4062 if (test_bit(__E1000_DOWN, &adapter->state))
4063 return;
4064
4065 schedule_work(&adapter->update_phy_task);
4066}
4067
4068/**
4069 * e1000e_update_phy_stats - Update the PHY statistics counters
4070 * @adapter: board private structure
4071 *
4072 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 **/
4074static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4075{
4076 struct e1000_hw *hw = &adapter->hw;
4077 s32 ret_val;
4078 u16 phy_data;
4079
4080 ret_val = hw->phy.ops.acquire(hw);
4081 if (ret_val)
4082 return;
4083
4084 /*
4085 * A page set is expensive so check if already on desired page.
4086 * If not, set to the page with the PHY status registers.
4087 */
4088 hw->phy.addr = 1;
4089 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4090 &phy_data);
4091 if (ret_val)
4092 goto release;
4093 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4094 ret_val = hw->phy.ops.set_page(hw,
4095 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096 if (ret_val)
4097 goto release;
4098 }
4099
4100 /* Single Collision Count */
4101 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4102 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103 if (!ret_val)
4104 adapter->stats.scc += phy_data;
4105
4106 /* Excessive Collision Count */
4107 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4108 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109 if (!ret_val)
4110 adapter->stats.ecol += phy_data;
4111
4112 /* Multiple Collision Count */
4113 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4114 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115 if (!ret_val)
4116 adapter->stats.mcc += phy_data;
4117
4118 /* Late Collision Count */
4119 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4120 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121 if (!ret_val)
4122 adapter->stats.latecol += phy_data;
4123
4124 /* Collision Count - also used for adaptive IFS */
4125 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4126 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127 if (!ret_val)
4128 hw->mac.collision_delta = phy_data;
4129
4130 /* Defer Count */
4131 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4132 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133 if (!ret_val)
4134 adapter->stats.dc += phy_data;
4135
4136 /* Transmit with no CRS */
4137 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4138 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139 if (!ret_val)
4140 adapter->stats.tncrs += phy_data;
4141
4142release:
4143 hw->phy.ops.release(hw);
4144}
4145
4146/**
4147 * e1000e_update_stats - Update the board statistics counters
4148 * @adapter: board private structure
4149 **/
4150static void e1000e_update_stats(struct e1000_adapter *adapter)
4151{
4152 struct net_device *netdev = adapter->netdev;
4153 struct e1000_hw *hw = &adapter->hw;
4154 struct pci_dev *pdev = adapter->pdev;
4155
4156 /*
4157 * Prevent stats update while adapter is being reset, or if the pci
4158 * connection is down.
4159 */
4160 if (adapter->link_speed == 0)
4161 return;
4162 if (pci_channel_offline(pdev))
4163 return;
4164
4165 adapter->stats.crcerrs += er32(CRCERRS);
4166 adapter->stats.gprc += er32(GPRC);
4167 adapter->stats.gorc += er32(GORCL);
4168 er32(GORCH); /* Clear gorc */
4169 adapter->stats.bprc += er32(BPRC);
4170 adapter->stats.mprc += er32(MPRC);
4171 adapter->stats.roc += er32(ROC);
4172
4173 adapter->stats.mpc += er32(MPC);
4174
4175 /* Half-duplex statistics */
4176 if (adapter->link_duplex == HALF_DUPLEX) {
4177 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4178 e1000e_update_phy_stats(adapter);
4179 } else {
4180 adapter->stats.scc += er32(SCC);
4181 adapter->stats.ecol += er32(ECOL);
4182 adapter->stats.mcc += er32(MCC);
4183 adapter->stats.latecol += er32(LATECOL);
4184 adapter->stats.dc += er32(DC);
4185
4186 hw->mac.collision_delta = er32(COLC);
4187
4188 if ((hw->mac.type != e1000_82574) &&
4189 (hw->mac.type != e1000_82583))
4190 adapter->stats.tncrs += er32(TNCRS);
4191 }
4192 adapter->stats.colc += hw->mac.collision_delta;
4193 }
4194
4195 adapter->stats.xonrxc += er32(XONRXC);
4196 adapter->stats.xontxc += er32(XONTXC);
4197 adapter->stats.xoffrxc += er32(XOFFRXC);
4198 adapter->stats.xofftxc += er32(XOFFTXC);
4199 adapter->stats.gptc += er32(GPTC);
4200 adapter->stats.gotc += er32(GOTCL);
4201 er32(GOTCH); /* Clear gotc */
4202 adapter->stats.rnbc += er32(RNBC);
4203 adapter->stats.ruc += er32(RUC);
4204
4205 adapter->stats.mptc += er32(MPTC);
4206 adapter->stats.bptc += er32(BPTC);
4207
4208 /* used for adaptive IFS */
4209
4210 hw->mac.tx_packet_delta = er32(TPT);
4211 adapter->stats.tpt += hw->mac.tx_packet_delta;
4212
4213 adapter->stats.algnerrc += er32(ALGNERRC);
4214 adapter->stats.rxerrc += er32(RXERRC);
4215 adapter->stats.cexterr += er32(CEXTERR);
4216 adapter->stats.tsctc += er32(TSCTC);
4217 adapter->stats.tsctfc += er32(TSCTFC);
4218
4219 /* Fill out the OS statistics structure */
4220 netdev->stats.multicast = adapter->stats.mprc;
4221 netdev->stats.collisions = adapter->stats.colc;
4222
4223 /* Rx Errors */
4224
4225 /*
4226 * RLEC on some newer hardware can be incorrect so build
4227 * our own version based on RUC and ROC
4228 */
4229 netdev->stats.rx_errors = adapter->stats.rxerrc +
4230 adapter->stats.crcerrs + adapter->stats.algnerrc +
4231 adapter->stats.ruc + adapter->stats.roc +
4232 adapter->stats.cexterr;
4233 netdev->stats.rx_length_errors = adapter->stats.ruc +
4234 adapter->stats.roc;
4235 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4236 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4237 netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238
4239 /* Tx Errors */
4240 netdev->stats.tx_errors = adapter->stats.ecol +
4241 adapter->stats.latecol;
4242 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4243 netdev->stats.tx_window_errors = adapter->stats.latecol;
4244 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245
4246 /* Tx Dropped needs to be maintained elsewhere */
4247
4248 /* Management Stats */
4249 adapter->stats.mgptc += er32(MGTPTC);
4250 adapter->stats.mgprc += er32(MGTPRC);
4251 adapter->stats.mgpdc += er32(MGTPDC);
4252}
4253
4254/**
4255 * e1000_phy_read_status - Update the PHY register status snapshot
4256 * @adapter: board private structure
4257 **/
4258static void e1000_phy_read_status(struct e1000_adapter *adapter)
4259{
4260 struct e1000_hw *hw = &adapter->hw;
4261 struct e1000_phy_regs *phy = &adapter->phy_regs;
4262
4263 if ((er32(STATUS) & E1000_STATUS_LU) &&
4264 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265 int ret_val;
4266
4267 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4268 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4269 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4270 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4271 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4272 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4273 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4274 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4275 if (ret_val)
4276 e_warn("Error reading PHY register\n");
4277 } else {
4278 /*
4279 * Do not read PHY registers if link is not up
4280 * Set values to typical power-on defaults
4281 */
4282 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4283 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4284 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4285 BMSR_ERCAP);
4286 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4287 ADVERTISE_ALL | ADVERTISE_CSMA);
4288 phy->lpa = 0;
4289 phy->expansion = EXPANSION_ENABLENPAGE;
4290 phy->ctrl1000 = ADVERTISE_1000FULL;
4291 phy->stat1000 = 0;
4292 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4293 }
4294}
4295
4296static void e1000_print_link_info(struct e1000_adapter *adapter)
4297{
4298 struct e1000_hw *hw = &adapter->hw;
4299 u32 ctrl = er32(CTRL);
4300
4301 /* Link status message must follow this format for user tools */
4302 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4303 adapter->netdev->name,
4304 adapter->link_speed,
4305 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4306 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4307 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
4308 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309}
4310
4311static bool e1000e_has_link(struct e1000_adapter *adapter)
4312{
4313 struct e1000_hw *hw = &adapter->hw;
4314 bool link_active = false;
4315 s32 ret_val = 0;
4316
4317 /*
4318 * get_link_status is set on LSC (link status) interrupt or
4319 * Rx sequence error interrupt. get_link_status will stay
4320 * false until the check_for_link establishes link
4321 * for copper adapters ONLY
4322 */
4323 switch (hw->phy.media_type) {
4324 case e1000_media_type_copper:
4325 if (hw->mac.get_link_status) {
4326 ret_val = hw->mac.ops.check_for_link(hw);
4327 link_active = !hw->mac.get_link_status;
4328 } else {
4329 link_active = true;
4330 }
4331 break;
4332 case e1000_media_type_fiber:
4333 ret_val = hw->mac.ops.check_for_link(hw);
4334 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4335 break;
4336 case e1000_media_type_internal_serdes:
4337 ret_val = hw->mac.ops.check_for_link(hw);
4338 link_active = adapter->hw.mac.serdes_has_link;
4339 break;
4340 default:
4341 case e1000_media_type_unknown:
4342 break;
4343 }
4344
4345 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4346 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4347 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348 e_info("Gigabit has been disabled, downgrading speed\n");
4349 }
4350
4351 return link_active;
4352}
4353
4354static void e1000e_enable_receives(struct e1000_adapter *adapter)
4355{
4356 /* make sure the receive unit is started */
4357 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4358 (adapter->flags & FLAG_RX_RESTART_NOW)) {
4359 struct e1000_hw *hw = &adapter->hw;
4360 u32 rctl = er32(RCTL);
4361 ew32(RCTL, rctl | E1000_RCTL_EN);
4362 adapter->flags &= ~FLAG_RX_RESTART_NOW;
4363 }
4364}
4365
4366static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4367{
4368 struct e1000_hw *hw = &adapter->hw;
4369
4370 /*
4371 * With 82574 controllers, PHY needs to be checked periodically
4372 * for hung state and reset, if two calls return true
4373 */
4374 if (e1000_check_phy_82574(hw))
4375 adapter->phy_hang_count++;
4376 else
4377 adapter->phy_hang_count = 0;
4378
4379 if (adapter->phy_hang_count > 1) {
4380 adapter->phy_hang_count = 0;
4381 schedule_work(&adapter->reset_task);
4382 }
4383}
4384
4385/**
4386 * e1000_watchdog - Timer Call-back
4387 * @data: pointer to adapter cast into an unsigned long
4388 **/
4389static void e1000_watchdog(unsigned long data)
4390{
4391 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4392
4393 /* Do the rest outside of interrupt context */
4394 schedule_work(&adapter->watchdog_task);
4395
4396 /* TODO: make this use queue_delayed_work() */
4397}
4398
4399static void e1000_watchdog_task(struct work_struct *work)
4400{
4401 struct e1000_adapter *adapter = container_of(work,
4402 struct e1000_adapter, watchdog_task);
4403 struct net_device *netdev = adapter->netdev;
4404 struct e1000_mac_info *mac = &adapter->hw.mac;
4405 struct e1000_phy_info *phy = &adapter->hw.phy;
4406 struct e1000_ring *tx_ring = adapter->tx_ring;
4407 struct e1000_hw *hw = &adapter->hw;
4408 u32 link, tctl;
4409
4410 if (test_bit(__E1000_DOWN, &adapter->state))
4411 return;
4412
4413 link = e1000e_has_link(adapter);
4414 if ((netif_carrier_ok(netdev)) && link) {
4415 /* Cancel scheduled suspend requests. */
4416 pm_runtime_resume(netdev->dev.parent);
4417
4418 e1000e_enable_receives(adapter);
4419 goto link_up;
4420 }
4421
4422 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4423 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4424 e1000_update_mng_vlan(adapter);
4425
4426 if (link) {
4427 if (!netif_carrier_ok(netdev)) {
4428 bool txb2b = true;
4429
4430 /* Cancel scheduled suspend requests. */
4431 pm_runtime_resume(netdev->dev.parent);
4432
4433 /* update snapshot of PHY registers on LSC */
4434 e1000_phy_read_status(adapter);
4435 mac->ops.get_link_up_info(&adapter->hw,
4436 &adapter->link_speed,
4437 &adapter->link_duplex);
4438 e1000_print_link_info(adapter);
4439 /*
4440 * On supported PHYs, check for duplex mismatch only
4441 * if link has autonegotiated at 10/100 half
4442 */
4443 if ((hw->phy.type == e1000_phy_igp_3 ||
4444 hw->phy.type == e1000_phy_bm) &&
4445 (hw->mac.autoneg == true) &&
4446 (adapter->link_speed == SPEED_10 ||
4447 adapter->link_speed == SPEED_100) &&
4448 (adapter->link_duplex == HALF_DUPLEX)) {
4449 u16 autoneg_exp;
4450
4451 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4452
4453 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
4455 }
4456
4457 /* adjust timeout factor according to speed/duplex */
4458 adapter->tx_timeout_factor = 1;
4459 switch (adapter->link_speed) {
4460 case SPEED_10:
4461 txb2b = false;
4462 adapter->tx_timeout_factor = 16;
4463 break;
4464 case SPEED_100:
4465 txb2b = false;
4466 adapter->tx_timeout_factor = 10;
4467 break;
4468 }
4469
4470 /*
4471 * workaround: re-program speed mode bit after
4472 * link-up event
4473 */
4474 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4475 !txb2b) {
4476 u32 tarc0;
4477 tarc0 = er32(TARC(0));
4478 tarc0 &= ~SPEED_MODE_BIT;
4479 ew32(TARC(0), tarc0);
4480 }
4481
4482 /*
4483 * disable TSO for pcie and 10/100 speeds, to avoid
4484 * some hardware issues
4485 */
4486 if (!(adapter->flags & FLAG_TSO_FORCE)) {
4487 switch (adapter->link_speed) {
4488 case SPEED_10:
4489 case SPEED_100:
4490 e_info("10/100 speed: disabling TSO\n");
4491 netdev->features &= ~NETIF_F_TSO;
4492 netdev->features &= ~NETIF_F_TSO6;
4493 break;
4494 case SPEED_1000:
4495 netdev->features |= NETIF_F_TSO;
4496 netdev->features |= NETIF_F_TSO6;
4497 break;
4498 default:
4499 /* oops */
4500 break;
4501 }
4502 }
4503
4504 /*
4505 * enable transmits in the hardware, need to do this
4506 * after setting TARC(0)
4507 */
4508 tctl = er32(TCTL);
4509 tctl |= E1000_TCTL_EN;
4510 ew32(TCTL, tctl);
4511
4512 /*
4513 * Perform any post-link-up configuration before
4514 * reporting link up.
4515 */
4516 if (phy->ops.cfg_on_link_up)
4517 phy->ops.cfg_on_link_up(hw);
4518
4519 netif_carrier_on(netdev);
4520
4521 if (!test_bit(__E1000_DOWN, &adapter->state))
4522 mod_timer(&adapter->phy_info_timer,
4523 round_jiffies(jiffies + 2 * HZ));
4524 }
4525 } else {
4526 if (netif_carrier_ok(netdev)) {
4527 adapter->link_speed = 0;
4528 adapter->link_duplex = 0;
4529 /* Link status message must follow this format */
4530 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4531 adapter->netdev->name);
4532 netif_carrier_off(netdev);
4533 if (!test_bit(__E1000_DOWN, &adapter->state))
4534 mod_timer(&adapter->phy_info_timer,
4535 round_jiffies(jiffies + 2 * HZ));
4536
4537 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4538 schedule_work(&adapter->reset_task);
4539 else
4540 pm_schedule_suspend(netdev->dev.parent,
4541 LINK_TIMEOUT);
4542 }
4543 }
4544
4545link_up:
4546 spin_lock(&adapter->stats64_lock);
4547 e1000e_update_stats(adapter);
4548
4549 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4550 adapter->tpt_old = adapter->stats.tpt;
4551 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4552 adapter->colc_old = adapter->stats.colc;
4553
4554 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4555 adapter->gorc_old = adapter->stats.gorc;
4556 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4557 adapter->gotc_old = adapter->stats.gotc;
4558 spin_unlock(&adapter->stats64_lock);
4559
4560 e1000e_update_adaptive(&adapter->hw);
4561
4562 if (!netif_carrier_ok(netdev) &&
4563 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4564 /*
4565 * We've lost link, so the controller stops DMA,
4566 * but we've got queued Tx work that's never going
4567 * to get done, so reset controller to flush Tx.
4568 * (Do the reset outside of interrupt context).
4569 */
4570 schedule_work(&adapter->reset_task);
4571 /* return immediately since reset is imminent */
4572 return;
4573 }
4574
4575 /* Simple mode for Interrupt Throttle Rate (ITR) */
4576 if (adapter->itr_setting == 4) {
4577 /*
4578 * Symmetric Tx/Rx gets a reduced ITR=2000;
4579 * Total asymmetrical Tx or Rx gets ITR=8000;
4580 * everyone else is between 2000-8000.
4581 */
4582 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4583 u32 dif = (adapter->gotc > adapter->gorc ?
4584 adapter->gotc - adapter->gorc :
4585 adapter->gorc - adapter->gotc) / 10000;
4586 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4587
4588 ew32(ITR, 1000000000 / (itr * 256));
4589 }
4590
4591 /* Cause software interrupt to ensure Rx ring is cleaned */
4592 if (adapter->msix_entries)
4593 ew32(ICS, adapter->rx_ring->ims_val);
4594 else
4595 ew32(ICS, E1000_ICS_RXDMT0);
4596
4597 /* flush pending descriptors to memory before detecting Tx hang */
4598 e1000e_flush_descriptors(adapter);
4599
4600 /* Force detection of hung controller every watchdog period */
4601 adapter->detect_tx_hung = true;
4602
4603 /*
4604 * With 82571 controllers, LAA may be overwritten due to controller
4605 * reset from the other port. Set the appropriate LAA in RAR[0]
4606 */
4607 if (e1000e_get_laa_state_82571(hw))
4608 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4609
4610 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4611 e1000e_check_82574_phy_workaround(adapter);
4612
4613 /* Reset the timer */
4614 if (!test_bit(__E1000_DOWN, &adapter->state))
4615 mod_timer(&adapter->watchdog_timer,
4616 round_jiffies(jiffies + 2 * HZ));
4617}
4618
4619#define E1000_TX_FLAGS_CSUM 0x00000001
4620#define E1000_TX_FLAGS_VLAN 0x00000002
4621#define E1000_TX_FLAGS_TSO 0x00000004
4622#define E1000_TX_FLAGS_IPV4 0x00000008
4623#define E1000_TX_FLAGS_NO_FCS 0x00000010
4624#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4625#define E1000_TX_FLAGS_VLAN_SHIFT 16
4626
4627static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
4628{
4629 struct e1000_context_desc *context_desc;
4630 struct e1000_buffer *buffer_info;
4631 unsigned int i;
4632 u32 cmd_length = 0;
4633 u16 ipcse = 0, tucse, mss;
4634 u8 ipcss, ipcso, tucss, tucso, hdr_len;
4635
4636 if (!skb_is_gso(skb))
4637 return 0;
4638
4639 if (skb_header_cloned(skb)) {
4640 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4641
4642 if (err)
4643 return err;
4644 }
4645
4646 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4647 mss = skb_shinfo(skb)->gso_size;
4648 if (skb->protocol == htons(ETH_P_IP)) {
4649 struct iphdr *iph = ip_hdr(skb);
4650 iph->tot_len = 0;
4651 iph->check = 0;
4652 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4653 0, IPPROTO_TCP, 0);
4654 cmd_length = E1000_TXD_CMD_IP;
4655 ipcse = skb_transport_offset(skb) - 1;
4656 } else if (skb_is_gso_v6(skb)) {
4657 ipv6_hdr(skb)->payload_len = 0;
4658 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659 &ipv6_hdr(skb)->daddr,
4660 0, IPPROTO_TCP, 0);
4661 ipcse = 0;
4662 }
4663 ipcss = skb_network_offset(skb);
4664 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4665 tucss = skb_transport_offset(skb);
4666 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4667 tucse = 0;
4668
4669 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4670 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4671
4672 i = tx_ring->next_to_use;
4673 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4674 buffer_info = &tx_ring->buffer_info[i];
4675
4676 context_desc->lower_setup.ip_fields.ipcss = ipcss;
4677 context_desc->lower_setup.ip_fields.ipcso = ipcso;
4678 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
4679 context_desc->upper_setup.tcp_fields.tucss = tucss;
4680 context_desc->upper_setup.tcp_fields.tucso = tucso;
4681 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4682 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
4683 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4684 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4685
4686 buffer_info->time_stamp = jiffies;
4687 buffer_info->next_to_watch = i;
4688
4689 i++;
4690 if (i == tx_ring->count)
4691 i = 0;
4692 tx_ring->next_to_use = i;
4693
4694 return 1;
4695}
4696
4697static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
4698{
4699 struct e1000_adapter *adapter = tx_ring->adapter;
4700 struct e1000_context_desc *context_desc;
4701 struct e1000_buffer *buffer_info;
4702 unsigned int i;
4703 u8 css;
4704 u32 cmd_len = E1000_TXD_CMD_DEXT;
4705 __be16 protocol;
4706
4707 if (skb->ip_summed != CHECKSUM_PARTIAL)
4708 return 0;
4709
4710 if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4711 protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4712 else
4713 protocol = skb->protocol;
4714
4715 switch (protocol) {
4716 case cpu_to_be16(ETH_P_IP):
4717 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4718 cmd_len |= E1000_TXD_CMD_TCP;
4719 break;
4720 case cpu_to_be16(ETH_P_IPV6):
4721 /* XXX not handling all IPV6 headers */
4722 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4723 cmd_len |= E1000_TXD_CMD_TCP;
4724 break;
4725 default:
4726 if (unlikely(net_ratelimit()))
4727 e_warn("checksum_partial proto=%x!\n",
4728 be16_to_cpu(protocol));
4729 break;
4730 }
4731
4732 css = skb_checksum_start_offset(skb);
4733
4734 i = tx_ring->next_to_use;
4735 buffer_info = &tx_ring->buffer_info[i];
4736 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4737
4738 context_desc->lower_setup.ip_config = 0;
4739 context_desc->upper_setup.tcp_fields.tucss = css;
4740 context_desc->upper_setup.tcp_fields.tucso =
4741 css + skb->csum_offset;
4742 context_desc->upper_setup.tcp_fields.tucse = 0;
4743 context_desc->tcp_seg_setup.data = 0;
4744 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4745
4746 buffer_info->time_stamp = jiffies;
4747 buffer_info->next_to_watch = i;
4748
4749 i++;
4750 if (i == tx_ring->count)
4751 i = 0;
4752 tx_ring->next_to_use = i;
4753
4754 return 1;
4755}
4756
4757static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4758 unsigned int first, unsigned int max_per_txd,
4759 unsigned int nr_frags)
4760{
4761 struct e1000_adapter *adapter = tx_ring->adapter;
4762 struct pci_dev *pdev = adapter->pdev;
4763 struct e1000_buffer *buffer_info;
4764 unsigned int len = skb_headlen(skb);
4765 unsigned int offset = 0, size, count = 0, i;
4766 unsigned int f, bytecount, segs;
4767
4768 i = tx_ring->next_to_use;
4769
4770 while (len) {
4771 buffer_info = &tx_ring->buffer_info[i];
4772 size = min(len, max_per_txd);
4773
4774 buffer_info->length = size;
4775 buffer_info->time_stamp = jiffies;
4776 buffer_info->next_to_watch = i;
4777 buffer_info->dma = dma_map_single(&pdev->dev,
4778 skb->data + offset,
4779 size, DMA_TO_DEVICE);
4780 buffer_info->mapped_as_page = false;
4781 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4782 goto dma_error;
4783
4784 len -= size;
4785 offset += size;
4786 count++;
4787
4788 if (len) {
4789 i++;
4790 if (i == tx_ring->count)
4791 i = 0;
4792 }
4793 }
4794
4795 for (f = 0; f < nr_frags; f++) {
4796 const struct skb_frag_struct *frag;
4797
4798 frag = &skb_shinfo(skb)->frags[f];
4799 len = skb_frag_size(frag);
4800 offset = 0;
4801
4802 while (len) {
4803 i++;
4804 if (i == tx_ring->count)
4805 i = 0;
4806
4807 buffer_info = &tx_ring->buffer_info[i];
4808 size = min(len, max_per_txd);
4809
4810 buffer_info->length = size;
4811 buffer_info->time_stamp = jiffies;
4812 buffer_info->next_to_watch = i;
4813 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4814 offset, size, DMA_TO_DEVICE);
4815 buffer_info->mapped_as_page = true;
4816 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4817 goto dma_error;
4818
4819 len -= size;
4820 offset += size;
4821 count++;
4822 }
4823 }
4824
4825 segs = skb_shinfo(skb)->gso_segs ? : 1;
4826 /* multiply data chunks by size of headers */
4827 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4828
4829 tx_ring->buffer_info[i].skb = skb;
4830 tx_ring->buffer_info[i].segs = segs;
4831 tx_ring->buffer_info[i].bytecount = bytecount;
4832 tx_ring->buffer_info[first].next_to_watch = i;
4833
4834 return count;
4835
4836dma_error:
4837 dev_err(&pdev->dev, "Tx DMA map failed\n");
4838 buffer_info->dma = 0;
4839 if (count)
4840 count--;
4841
4842 while (count--) {
4843 if (i == 0)
4844 i += tx_ring->count;
4845 i--;
4846 buffer_info = &tx_ring->buffer_info[i];
4847 e1000_put_txbuf(tx_ring, buffer_info);
4848 }
4849
4850 return 0;
4851}
4852
4853static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4854{
4855 struct e1000_adapter *adapter = tx_ring->adapter;
4856 struct e1000_tx_desc *tx_desc = NULL;
4857 struct e1000_buffer *buffer_info;
4858 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4859 unsigned int i;
4860
4861 if (tx_flags & E1000_TX_FLAGS_TSO) {
4862 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4863 E1000_TXD_CMD_TSE;
4864 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4865
4866 if (tx_flags & E1000_TX_FLAGS_IPV4)
4867 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4868 }
4869
4870 if (tx_flags & E1000_TX_FLAGS_CSUM) {
4871 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4872 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4873 }
4874
4875 if (tx_flags & E1000_TX_FLAGS_VLAN) {
4876 txd_lower |= E1000_TXD_CMD_VLE;
4877 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4878 }
4879
4880 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4881 txd_lower &= ~(E1000_TXD_CMD_IFCS);
4882
4883 i = tx_ring->next_to_use;
4884
4885 do {
4886 buffer_info = &tx_ring->buffer_info[i];
4887 tx_desc = E1000_TX_DESC(*tx_ring, i);
4888 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4889 tx_desc->lower.data =
4890 cpu_to_le32(txd_lower | buffer_info->length);
4891 tx_desc->upper.data = cpu_to_le32(txd_upper);
4892
4893 i++;
4894 if (i == tx_ring->count)
4895 i = 0;
4896 } while (--count > 0);
4897
4898 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4899
4900 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4901 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4902 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4903
4904 /*
4905 * Force memory writes to complete before letting h/w
4906 * know there are new descriptors to fetch. (Only
4907 * applicable for weak-ordered memory model archs,
4908 * such as IA-64).
4909 */
4910 wmb();
4911
4912 tx_ring->next_to_use = i;
4913
4914 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4915 e1000e_update_tdt_wa(tx_ring, i);
4916 else
4917 writel(i, tx_ring->tail);
4918
4919 /*
4920 * we need this if more than one processor can write to our tail
4921 * at a time, it synchronizes IO on IA64/Altix systems
4922 */
4923 mmiowb();
4924}
4925
4926#define MINIMUM_DHCP_PACKET_SIZE 282
4927static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4928 struct sk_buff *skb)
4929{
4930 struct e1000_hw *hw = &adapter->hw;
4931 u16 length, offset;
4932
4933 if (vlan_tx_tag_present(skb)) {
4934 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4935 (adapter->hw.mng_cookie.status &
4936 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4937 return 0;
4938 }
4939
4940 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4941 return 0;
4942
4943 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4944 return 0;
4945
4946 {
4947 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4948 struct udphdr *udp;
4949
4950 if (ip->protocol != IPPROTO_UDP)
4951 return 0;
4952
4953 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4954 if (ntohs(udp->dest) != 67)
4955 return 0;
4956
4957 offset = (u8 *)udp + 8 - skb->data;
4958 length = skb->len - offset;
4959 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4960 }
4961
4962 return 0;
4963}
4964
4965static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4966{
4967 struct e1000_adapter *adapter = tx_ring->adapter;
4968
4969 netif_stop_queue(adapter->netdev);
4970 /*
4971 * Herbert's original patch had:
4972 * smp_mb__after_netif_stop_queue();
4973 * but since that doesn't exist yet, just open code it.
4974 */
4975 smp_mb();
4976
4977 /*
4978 * We need to check again in a case another CPU has just
4979 * made room available.
4980 */
4981 if (e1000_desc_unused(tx_ring) < size)
4982 return -EBUSY;
4983
4984 /* A reprieve! */
4985 netif_start_queue(adapter->netdev);
4986 ++adapter->restart_queue;
4987 return 0;
4988}
4989
4990static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4991{
4992 BUG_ON(size > tx_ring->count);
4993
4994 if (e1000_desc_unused(tx_ring) >= size)
4995 return 0;
4996 return __e1000_maybe_stop_tx(tx_ring, size);
4997}
4998
4999static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5000 struct net_device *netdev)
5001{
5002 struct e1000_adapter *adapter = netdev_priv(netdev);
5003 struct e1000_ring *tx_ring = adapter->tx_ring;
5004 unsigned int first;
5005 unsigned int tx_flags = 0;
5006 unsigned int len = skb_headlen(skb);
5007 unsigned int nr_frags;
5008 unsigned int mss;
5009 int count = 0;
5010 int tso;
5011 unsigned int f;
5012
5013 if (test_bit(__E1000_DOWN, &adapter->state)) {
5014 dev_kfree_skb_any(skb);
5015 return NETDEV_TX_OK;
5016 }
5017
5018 if (skb->len <= 0) {
5019 dev_kfree_skb_any(skb);
5020 return NETDEV_TX_OK;
5021 }
5022
5023 mss = skb_shinfo(skb)->gso_size;
5024 if (mss) {
5025 u8 hdr_len;
5026
5027 /*
5028 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5029 * points to just header, pull a few bytes of payload from
5030 * frags into skb->data
5031 */
5032 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5033 /*
5034 * we do this workaround for ES2LAN, but it is un-necessary,
5035 * avoiding it could save a lot of cycles
5036 */
5037 if (skb->data_len && (hdr_len == len)) {
5038 unsigned int pull_size;
5039
5040 pull_size = min_t(unsigned int, 4, skb->data_len);
5041 if (!__pskb_pull_tail(skb, pull_size)) {
5042 e_err("__pskb_pull_tail failed.\n");
5043 dev_kfree_skb_any(skb);
5044 return NETDEV_TX_OK;
5045 }
5046 len = skb_headlen(skb);
5047 }
5048 }
5049
5050 /* reserve a descriptor for the offload context */
5051 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5052 count++;
5053 count++;
5054
5055 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5056
5057 nr_frags = skb_shinfo(skb)->nr_frags;
5058 for (f = 0; f < nr_frags; f++)
5059 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5060 adapter->tx_fifo_limit);
5061
5062 if (adapter->hw.mac.tx_pkt_filtering)
5063 e1000_transfer_dhcp_info(adapter, skb);
5064
5065 /*
5066 * need: count + 2 desc gap to keep tail from touching
5067 * head, otherwise try next time
5068 */
5069 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5070 return NETDEV_TX_BUSY;
5071
5072 if (vlan_tx_tag_present(skb)) {
5073 tx_flags |= E1000_TX_FLAGS_VLAN;
5074 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
5075 }
5076
5077 first = tx_ring->next_to_use;
5078
5079 tso = e1000_tso(tx_ring, skb);
5080 if (tso < 0) {
5081 dev_kfree_skb_any(skb);
5082 return NETDEV_TX_OK;
5083 }
5084
5085 if (tso)
5086 tx_flags |= E1000_TX_FLAGS_TSO;
5087 else if (e1000_tx_csum(tx_ring, skb))
5088 tx_flags |= E1000_TX_FLAGS_CSUM;
5089
5090 /*
5091 * Old method was to assume IPv4 packet by default if TSO was enabled.
5092 * 82571 hardware supports TSO capabilities for IPv6 as well...
5093 * no longer assume, we must.
5094 */
5095 if (skb->protocol == htons(ETH_P_IP))
5096 tx_flags |= E1000_TX_FLAGS_IPV4;
5097
5098 if (unlikely(skb->no_fcs))
5099 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5100
5101 /* if count is 0 then mapping error has occurred */
5102 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5103 nr_frags);
5104 if (count) {
5105 skb_tx_timestamp(skb);
5106
5107 netdev_sent_queue(netdev, skb->len);
5108 e1000_tx_queue(tx_ring, tx_flags, count);
5109 /* Make sure there is space in the ring for the next send. */
5110 e1000_maybe_stop_tx(tx_ring,
5111 (MAX_SKB_FRAGS *
5112 DIV_ROUND_UP(PAGE_SIZE,
5113 adapter->tx_fifo_limit) + 2));
5114 } else {
5115 dev_kfree_skb_any(skb);
5116 tx_ring->buffer_info[first].time_stamp = 0;
5117 tx_ring->next_to_use = first;
5118 }
5119
5120 return NETDEV_TX_OK;
5121}
5122
5123/**
5124 * e1000_tx_timeout - Respond to a Tx Hang
5125 * @netdev: network interface device structure
5126 **/
5127static void e1000_tx_timeout(struct net_device *netdev)
5128{
5129 struct e1000_adapter *adapter = netdev_priv(netdev);
5130
5131 /* Do the reset outside of interrupt context */
5132 adapter->tx_timeout_count++;
5133 schedule_work(&adapter->reset_task);
5134}
5135
5136static void e1000_reset_task(struct work_struct *work)
5137{
5138 struct e1000_adapter *adapter;
5139 adapter = container_of(work, struct e1000_adapter, reset_task);
5140
5141 /* don't run the task if already down */
5142 if (test_bit(__E1000_DOWN, &adapter->state))
5143 return;
5144
5145 if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146 (adapter->flags & FLAG_RX_RESTART_NOW))) {
5147 e1000e_dump(adapter);
5148 e_err("Reset adapter\n");
5149 }
5150 e1000e_reinit_locked(adapter);
5151}
5152
5153/**
5154 * e1000_get_stats64 - Get System Network Statistics
5155 * @netdev: network interface device structure
5156 * @stats: rtnl_link_stats64 pointer
5157 *
5158 * Returns the address of the device statistics structure.
5159 **/
5160struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5161 struct rtnl_link_stats64 *stats)
5162{
5163 struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165 memset(stats, 0, sizeof(struct rtnl_link_stats64));
5166 spin_lock(&adapter->stats64_lock);
5167 e1000e_update_stats(adapter);
5168 /* Fill out the OS statistics structure */
5169 stats->rx_bytes = adapter->stats.gorc;
5170 stats->rx_packets = adapter->stats.gprc;
5171 stats->tx_bytes = adapter->stats.gotc;
5172 stats->tx_packets = adapter->stats.gptc;
5173 stats->multicast = adapter->stats.mprc;
5174 stats->collisions = adapter->stats.colc;
5175
5176 /* Rx Errors */
5177
5178 /*
5179 * RLEC on some newer hardware can be incorrect so build
5180 * our own version based on RUC and ROC
5181 */
5182 stats->rx_errors = adapter->stats.rxerrc +
5183 adapter->stats.crcerrs + adapter->stats.algnerrc +
5184 adapter->stats.ruc + adapter->stats.roc +
5185 adapter->stats.cexterr;
5186 stats->rx_length_errors = adapter->stats.ruc +
5187 adapter->stats.roc;
5188 stats->rx_crc_errors = adapter->stats.crcerrs;
5189 stats->rx_frame_errors = adapter->stats.algnerrc;
5190 stats->rx_missed_errors = adapter->stats.mpc;
5191
5192 /* Tx Errors */
5193 stats->tx_errors = adapter->stats.ecol +
5194 adapter->stats.latecol;
5195 stats->tx_aborted_errors = adapter->stats.ecol;
5196 stats->tx_window_errors = adapter->stats.latecol;
5197 stats->tx_carrier_errors = adapter->stats.tncrs;
5198
5199 /* Tx Dropped needs to be maintained elsewhere */
5200
5201 spin_unlock(&adapter->stats64_lock);
5202 return stats;
5203}
5204
5205/**
5206 * e1000_change_mtu - Change the Maximum Transfer Unit
5207 * @netdev: network interface device structure
5208 * @new_mtu: new value for maximum frame size
5209 *
5210 * Returns 0 on success, negative on failure
5211 **/
5212static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5213{
5214 struct e1000_adapter *adapter = netdev_priv(netdev);
5215 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5216
5217 /* Jumbo frame support */
5218 if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5219 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5220 e_err("Jumbo Frames not supported.\n");
5221 return -EINVAL;
5222 }
5223
5224 /* Supported frame sizes */
5225 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5226 (max_frame > adapter->max_hw_frame_size)) {
5227 e_err("Unsupported MTU setting\n");
5228 return -EINVAL;
5229 }
5230
5231 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5232 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5233 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5234 (new_mtu > ETH_DATA_LEN)) {
5235 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5236 return -EINVAL;
5237 }
5238
5239 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5240 usleep_range(1000, 2000);
5241 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5242 adapter->max_frame_size = max_frame;
5243 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5244 netdev->mtu = new_mtu;
5245 if (netif_running(netdev))
5246 e1000e_down(adapter);
5247
5248 /*
5249 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5250 * means we reserve 2 more, this pushes us to allocate from the next
5251 * larger slab size.
5252 * i.e. RXBUFFER_2048 --> size-4096 slab
5253 * However with the new *_jumbo_rx* routines, jumbo receives will use
5254 * fragmented skbs
5255 */
5256
5257 if (max_frame <= 2048)
5258 adapter->rx_buffer_len = 2048;
5259 else
5260 adapter->rx_buffer_len = 4096;
5261
5262 /* adjust allocation if LPE protects us, and we aren't using SBP */
5263 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5264 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5265 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5266 + ETH_FCS_LEN;
5267
5268 if (netif_running(netdev))
5269 e1000e_up(adapter);
5270 else
5271 e1000e_reset(adapter);
5272
5273 clear_bit(__E1000_RESETTING, &adapter->state);
5274
5275 return 0;
5276}
5277
5278static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5279 int cmd)
5280{
5281 struct e1000_adapter *adapter = netdev_priv(netdev);
5282 struct mii_ioctl_data *data = if_mii(ifr);
5283
5284 if (adapter->hw.phy.media_type != e1000_media_type_copper)
5285 return -EOPNOTSUPP;
5286
5287 switch (cmd) {
5288 case SIOCGMIIPHY:
5289 data->phy_id = adapter->hw.phy.addr;
5290 break;
5291 case SIOCGMIIREG:
5292 e1000_phy_read_status(adapter);
5293
5294 switch (data->reg_num & 0x1F) {
5295 case MII_BMCR:
5296 data->val_out = adapter->phy_regs.bmcr;
5297 break;
5298 case MII_BMSR:
5299 data->val_out = adapter->phy_regs.bmsr;
5300 break;
5301 case MII_PHYSID1:
5302 data->val_out = (adapter->hw.phy.id >> 16);
5303 break;
5304 case MII_PHYSID2:
5305 data->val_out = (adapter->hw.phy.id & 0xFFFF);
5306 break;
5307 case MII_ADVERTISE:
5308 data->val_out = adapter->phy_regs.advertise;
5309 break;
5310 case MII_LPA:
5311 data->val_out = adapter->phy_regs.lpa;
5312 break;
5313 case MII_EXPANSION:
5314 data->val_out = adapter->phy_regs.expansion;
5315 break;
5316 case MII_CTRL1000:
5317 data->val_out = adapter->phy_regs.ctrl1000;
5318 break;
5319 case MII_STAT1000:
5320 data->val_out = adapter->phy_regs.stat1000;
5321 break;
5322 case MII_ESTATUS:
5323 data->val_out = adapter->phy_regs.estatus;
5324 break;
5325 default:
5326 return -EIO;
5327 }
5328 break;
5329 case SIOCSMIIREG:
5330 default:
5331 return -EOPNOTSUPP;
5332 }
5333 return 0;
5334}
5335
5336static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5337{
5338 switch (cmd) {
5339 case SIOCGMIIPHY:
5340 case SIOCGMIIREG:
5341 case SIOCSMIIREG:
5342 return e1000_mii_ioctl(netdev, ifr, cmd);
5343 default:
5344 return -EOPNOTSUPP;
5345 }
5346}
5347
5348static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5349{
5350 struct e1000_hw *hw = &adapter->hw;
5351 u32 i, mac_reg;
5352 u16 phy_reg, wuc_enable;
5353 int retval = 0;
5354
5355 /* copy MAC RARs to PHY RARs */
5356 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5357
5358 retval = hw->phy.ops.acquire(hw);
5359 if (retval) {
5360 e_err("Could not acquire PHY\n");
5361 return retval;
5362 }
5363
5364 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5365 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5366 if (retval)
5367 goto release;
5368
5369 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5370 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5371 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5372 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5373 (u16)(mac_reg & 0xFFFF));
5374 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5375 (u16)((mac_reg >> 16) & 0xFFFF));
5376 }
5377
5378 /* configure PHY Rx Control register */
5379 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5380 mac_reg = er32(RCTL);
5381 if (mac_reg & E1000_RCTL_UPE)
5382 phy_reg |= BM_RCTL_UPE;
5383 if (mac_reg & E1000_RCTL_MPE)
5384 phy_reg |= BM_RCTL_MPE;
5385 phy_reg &= ~(BM_RCTL_MO_MASK);
5386 if (mac_reg & E1000_RCTL_MO_3)
5387 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5388 << BM_RCTL_MO_SHIFT);
5389 if (mac_reg & E1000_RCTL_BAM)
5390 phy_reg |= BM_RCTL_BAM;
5391 if (mac_reg & E1000_RCTL_PMCF)
5392 phy_reg |= BM_RCTL_PMCF;
5393 mac_reg = er32(CTRL);
5394 if (mac_reg & E1000_CTRL_RFCE)
5395 phy_reg |= BM_RCTL_RFCE;
5396 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5397
5398 /* enable PHY wakeup in MAC register */
5399 ew32(WUFC, wufc);
5400 ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
5401
5402 /* configure and enable PHY wakeup in PHY registers */
5403 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5404 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5405
5406 /* activate PHY wakeup */
5407 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5408 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5409 if (retval)
5410 e_err("Could not set PHY Host Wakeup bit\n");
5411release:
5412 hw->phy.ops.release(hw);
5413
5414 return retval;
5415}
5416
5417static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5418 bool runtime)
5419{
5420 struct net_device *netdev = pci_get_drvdata(pdev);
5421 struct e1000_adapter *adapter = netdev_priv(netdev);
5422 struct e1000_hw *hw = &adapter->hw;
5423 u32 ctrl, ctrl_ext, rctl, status;
5424 /* Runtime suspend should only enable wakeup for link changes */
5425 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5426 int retval = 0;
5427
5428 netif_device_detach(netdev);
5429
5430 if (netif_running(netdev)) {
5431 int count = E1000_CHECK_RESET_COUNT;
5432
5433 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5434 usleep_range(10000, 20000);
5435
5436 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5437 e1000e_down(adapter);
5438 e1000_free_irq(adapter);
5439 }
5440 e1000e_reset_interrupt_capability(adapter);
5441
5442 retval = pci_save_state(pdev);
5443 if (retval)
5444 return retval;
5445
5446 status = er32(STATUS);
5447 if (status & E1000_STATUS_LU)
5448 wufc &= ~E1000_WUFC_LNKC;
5449
5450 if (wufc) {
5451 e1000_setup_rctl(adapter);
5452 e1000e_set_rx_mode(netdev);
5453
5454 /* turn on all-multi mode if wake on multicast is enabled */
5455 if (wufc & E1000_WUFC_MC) {
5456 rctl = er32(RCTL);
5457 rctl |= E1000_RCTL_MPE;
5458 ew32(RCTL, rctl);
5459 }
5460
5461 ctrl = er32(CTRL);
5462 /* advertise wake from D3Cold */
5463 #define E1000_CTRL_ADVD3WUC 0x00100000
5464 /* phy power management enable */
5465 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5466 ctrl |= E1000_CTRL_ADVD3WUC;
5467 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5468 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5469 ew32(CTRL, ctrl);
5470
5471 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5472 adapter->hw.phy.media_type ==
5473 e1000_media_type_internal_serdes) {
5474 /* keep the laser running in D3 */
5475 ctrl_ext = er32(CTRL_EXT);
5476 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5477 ew32(CTRL_EXT, ctrl_ext);
5478 }
5479
5480 if (adapter->flags & FLAG_IS_ICH)
5481 e1000_suspend_workarounds_ich8lan(&adapter->hw);
5482
5483 /* Allow time for pending master requests to run */
5484 e1000e_disable_pcie_master(&adapter->hw);
5485
5486 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5487 /* enable wakeup by the PHY */
5488 retval = e1000_init_phy_wakeup(adapter, wufc);
5489 if (retval)
5490 return retval;
5491 } else {
5492 /* enable wakeup by the MAC */
5493 ew32(WUFC, wufc);
5494 ew32(WUC, E1000_WUC_PME_EN);
5495 }
5496 } else {
5497 ew32(WUC, 0);
5498 ew32(WUFC, 0);
5499 }
5500
5501 *enable_wake = !!wufc;
5502
5503 /* make sure adapter isn't asleep if manageability is enabled */
5504 if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5505 (hw->mac.ops.check_mng_mode(hw)))
5506 *enable_wake = true;
5507
5508 if (adapter->hw.phy.type == e1000_phy_igp_3)
5509 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
5510
5511 /*
5512 * Release control of h/w to f/w. If f/w is AMT enabled, this
5513 * would have already happened in close and is redundant.
5514 */
5515 e1000e_release_hw_control(adapter);
5516
5517 pci_disable_device(pdev);
5518
5519 return 0;
5520}
5521
5522static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5523{
5524 if (sleep && wake) {
5525 pci_prepare_to_sleep(pdev);
5526 return;
5527 }
5528
5529 pci_wake_from_d3(pdev, wake);
5530 pci_set_power_state(pdev, PCI_D3hot);
5531}
5532
5533static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5534 bool wake)
5535{
5536 struct net_device *netdev = pci_get_drvdata(pdev);
5537 struct e1000_adapter *adapter = netdev_priv(netdev);
5538
5539 /*
5540 * The pci-e switch on some quad port adapters will report a
5541 * correctable error when the MAC transitions from D0 to D3. To
5542 * prevent this we need to mask off the correctable errors on the
5543 * downstream port of the pci-e switch.
5544 */
5545 if (adapter->flags & FLAG_IS_QUAD_PORT) {
5546 struct pci_dev *us_dev = pdev->bus->self;
5547 int pos = pci_pcie_cap(us_dev);
5548 u16 devctl;
5549
5550 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5551 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5552 (devctl & ~PCI_EXP_DEVCTL_CERE));
5553
5554 e1000_power_off(pdev, sleep, wake);
5555
5556 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5557 } else {
5558 e1000_power_off(pdev, sleep, wake);
5559 }
5560}
5561
5562#ifdef CONFIG_PCIEASPM
5563static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5564{
5565 pci_disable_link_state_locked(pdev, state);
5566}
5567#else
5568static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5569{
5570 int pos;
5571 u16 reg16;
5572
5573 /*
5574 * Both device and parent should have the same ASPM setting.
5575 * Disable ASPM in downstream component first and then upstream.
5576 */
5577 pos = pci_pcie_cap(pdev);
5578 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, ®16);
5579 reg16 &= ~state;
5580 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5581
5582 if (!pdev->bus->self)
5583 return;
5584
5585 pos = pci_pcie_cap(pdev->bus->self);
5586 pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, ®16);
5587 reg16 &= ~state;
5588 pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5589}
5590#endif
5591static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5592{
5593 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5594 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5595 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5596
5597 __e1000e_disable_aspm(pdev, state);
5598}
5599
5600#ifdef CONFIG_PM
5601static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5602{
5603 return !!adapter->tx_ring->buffer_info;
5604}
5605
5606static int __e1000_resume(struct pci_dev *pdev)
5607{
5608 struct net_device *netdev = pci_get_drvdata(pdev);
5609 struct e1000_adapter *adapter = netdev_priv(netdev);
5610 struct e1000_hw *hw = &adapter->hw;
5611 u16 aspm_disable_flag = 0;
5612 u32 err;
5613
5614 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5615 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5616 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5617 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5618 if (aspm_disable_flag)
5619 e1000e_disable_aspm(pdev, aspm_disable_flag);
5620
5621 pci_set_power_state(pdev, PCI_D0);
5622 pci_restore_state(pdev);
5623 pci_save_state(pdev);
5624
5625 e1000e_set_interrupt_capability(adapter);
5626 if (netif_running(netdev)) {
5627 err = e1000_request_irq(adapter);
5628 if (err)
5629 return err;
5630 }
5631
5632 if (hw->mac.type >= e1000_pch2lan)
5633 e1000_resume_workarounds_pchlan(&adapter->hw);
5634
5635 e1000e_power_up_phy(adapter);
5636
5637 /* report the system wakeup cause from S3/S4 */
5638 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5639 u16 phy_data;
5640
5641 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5642 if (phy_data) {
5643 e_info("PHY Wakeup cause - %s\n",
5644 phy_data & E1000_WUS_EX ? "Unicast Packet" :
5645 phy_data & E1000_WUS_MC ? "Multicast Packet" :
5646 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5647 phy_data & E1000_WUS_MAG ? "Magic Packet" :
5648 phy_data & E1000_WUS_LNKC ?
5649 "Link Status Change" : "other");
5650 }
5651 e1e_wphy(&adapter->hw, BM_WUS, ~0);
5652 } else {
5653 u32 wus = er32(WUS);
5654 if (wus) {
5655 e_info("MAC Wakeup cause - %s\n",
5656 wus & E1000_WUS_EX ? "Unicast Packet" :
5657 wus & E1000_WUS_MC ? "Multicast Packet" :
5658 wus & E1000_WUS_BC ? "Broadcast Packet" :
5659 wus & E1000_WUS_MAG ? "Magic Packet" :
5660 wus & E1000_WUS_LNKC ? "Link Status Change" :
5661 "other");
5662 }
5663 ew32(WUS, ~0);
5664 }
5665
5666 e1000e_reset(adapter);
5667
5668 e1000_init_manageability_pt(adapter);
5669
5670 if (netif_running(netdev))
5671 e1000e_up(adapter);
5672
5673 netif_device_attach(netdev);
5674
5675 /*
5676 * If the controller has AMT, do not set DRV_LOAD until the interface
5677 * is up. For all other cases, let the f/w know that the h/w is now
5678 * under the control of the driver.
5679 */
5680 if (!(adapter->flags & FLAG_HAS_AMT))
5681 e1000e_get_hw_control(adapter);
5682
5683 return 0;
5684}
5685
5686#ifdef CONFIG_PM_SLEEP
5687static int e1000_suspend(struct device *dev)
5688{
5689 struct pci_dev *pdev = to_pci_dev(dev);
5690 int retval;
5691 bool wake;
5692
5693 retval = __e1000_shutdown(pdev, &wake, false);
5694 if (!retval)
5695 e1000_complete_shutdown(pdev, true, wake);
5696
5697 return retval;
5698}
5699
5700static int e1000_resume(struct device *dev)
5701{
5702 struct pci_dev *pdev = to_pci_dev(dev);
5703 struct net_device *netdev = pci_get_drvdata(pdev);
5704 struct e1000_adapter *adapter = netdev_priv(netdev);
5705
5706 if (e1000e_pm_ready(adapter))
5707 adapter->idle_check = true;
5708
5709 return __e1000_resume(pdev);
5710}
5711#endif /* CONFIG_PM_SLEEP */
5712
5713#ifdef CONFIG_PM_RUNTIME
5714static int e1000_runtime_suspend(struct device *dev)
5715{
5716 struct pci_dev *pdev = to_pci_dev(dev);
5717 struct net_device *netdev = pci_get_drvdata(pdev);
5718 struct e1000_adapter *adapter = netdev_priv(netdev);
5719
5720 if (e1000e_pm_ready(adapter)) {
5721 bool wake;
5722
5723 __e1000_shutdown(pdev, &wake, true);
5724 }
5725
5726 return 0;
5727}
5728
5729static int e1000_idle(struct device *dev)
5730{
5731 struct pci_dev *pdev = to_pci_dev(dev);
5732 struct net_device *netdev = pci_get_drvdata(pdev);
5733 struct e1000_adapter *adapter = netdev_priv(netdev);
5734
5735 if (!e1000e_pm_ready(adapter))
5736 return 0;
5737
5738 if (adapter->idle_check) {
5739 adapter->idle_check = false;
5740 if (!e1000e_has_link(adapter))
5741 pm_schedule_suspend(dev, MSEC_PER_SEC);
5742 }
5743
5744 return -EBUSY;
5745}
5746
5747static int e1000_runtime_resume(struct device *dev)
5748{
5749 struct pci_dev *pdev = to_pci_dev(dev);
5750 struct net_device *netdev = pci_get_drvdata(pdev);
5751 struct e1000_adapter *adapter = netdev_priv(netdev);
5752
5753 if (!e1000e_pm_ready(adapter))
5754 return 0;
5755
5756 adapter->idle_check = !dev->power.runtime_auto;
5757 return __e1000_resume(pdev);
5758}
5759#endif /* CONFIG_PM_RUNTIME */
5760#endif /* CONFIG_PM */
5761
5762static void e1000_shutdown(struct pci_dev *pdev)
5763{
5764 bool wake = false;
5765
5766 __e1000_shutdown(pdev, &wake, false);
5767
5768 if (system_state == SYSTEM_POWER_OFF)
5769 e1000_complete_shutdown(pdev, false, wake);
5770}
5771
5772#ifdef CONFIG_NET_POLL_CONTROLLER
5773
5774static irqreturn_t e1000_intr_msix(int irq, void *data)
5775{
5776 struct net_device *netdev = data;
5777 struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779 if (adapter->msix_entries) {
5780 int vector, msix_irq;
5781
5782 vector = 0;
5783 msix_irq = adapter->msix_entries[vector].vector;
5784 disable_irq(msix_irq);
5785 e1000_intr_msix_rx(msix_irq, netdev);
5786 enable_irq(msix_irq);
5787
5788 vector++;
5789 msix_irq = adapter->msix_entries[vector].vector;
5790 disable_irq(msix_irq);
5791 e1000_intr_msix_tx(msix_irq, netdev);
5792 enable_irq(msix_irq);
5793
5794 vector++;
5795 msix_irq = adapter->msix_entries[vector].vector;
5796 disable_irq(msix_irq);
5797 e1000_msix_other(msix_irq, netdev);
5798 enable_irq(msix_irq);
5799 }
5800
5801 return IRQ_HANDLED;
5802}
5803
5804/*
5805 * Polling 'interrupt' - used by things like netconsole to send skbs
5806 * without having to re-enable interrupts. It's not called while
5807 * the interrupt routine is executing.
5808 */
5809static void e1000_netpoll(struct net_device *netdev)
5810{
5811 struct e1000_adapter *adapter = netdev_priv(netdev);
5812
5813 switch (adapter->int_mode) {
5814 case E1000E_INT_MODE_MSIX:
5815 e1000_intr_msix(adapter->pdev->irq, netdev);
5816 break;
5817 case E1000E_INT_MODE_MSI:
5818 disable_irq(adapter->pdev->irq);
5819 e1000_intr_msi(adapter->pdev->irq, netdev);
5820 enable_irq(adapter->pdev->irq);
5821 break;
5822 default: /* E1000E_INT_MODE_LEGACY */
5823 disable_irq(adapter->pdev->irq);
5824 e1000_intr(adapter->pdev->irq, netdev);
5825 enable_irq(adapter->pdev->irq);
5826 break;
5827 }
5828}
5829#endif
5830
5831/**
5832 * e1000_io_error_detected - called when PCI error is detected
5833 * @pdev: Pointer to PCI device
5834 * @state: The current pci connection state
5835 *
5836 * This function is called after a PCI bus error affecting
5837 * this device has been detected.
5838 */
5839static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5840 pci_channel_state_t state)
5841{
5842 struct net_device *netdev = pci_get_drvdata(pdev);
5843 struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845 netif_device_detach(netdev);
5846
5847 if (state == pci_channel_io_perm_failure)
5848 return PCI_ERS_RESULT_DISCONNECT;
5849
5850 if (netif_running(netdev))
5851 e1000e_down(adapter);
5852 pci_disable_device(pdev);
5853
5854 /* Request a slot slot reset. */
5855 return PCI_ERS_RESULT_NEED_RESET;
5856}
5857
5858/**
5859 * e1000_io_slot_reset - called after the pci bus has been reset.
5860 * @pdev: Pointer to PCI device
5861 *
5862 * Restart the card from scratch, as if from a cold-boot. Implementation
5863 * resembles the first-half of the e1000_resume routine.
5864 */
5865static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5866{
5867 struct net_device *netdev = pci_get_drvdata(pdev);
5868 struct e1000_adapter *adapter = netdev_priv(netdev);
5869 struct e1000_hw *hw = &adapter->hw;
5870 u16 aspm_disable_flag = 0;
5871 int err;
5872 pci_ers_result_t result;
5873
5874 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5875 aspm_disable_flag = PCIE_LINK_STATE_L0S;
5876 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5877 aspm_disable_flag |= PCIE_LINK_STATE_L1;
5878 if (aspm_disable_flag)
5879 e1000e_disable_aspm(pdev, aspm_disable_flag);
5880
5881 err = pci_enable_device_mem(pdev);
5882 if (err) {
5883 dev_err(&pdev->dev,
5884 "Cannot re-enable PCI device after reset.\n");
5885 result = PCI_ERS_RESULT_DISCONNECT;
5886 } else {
5887 pci_set_master(pdev);
5888 pdev->state_saved = true;
5889 pci_restore_state(pdev);
5890
5891 pci_enable_wake(pdev, PCI_D3hot, 0);
5892 pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894 e1000e_reset(adapter);
5895 ew32(WUS, ~0);
5896 result = PCI_ERS_RESULT_RECOVERED;
5897 }
5898
5899 pci_cleanup_aer_uncorrect_error_status(pdev);
5900
5901 return result;
5902}
5903
5904/**
5905 * e1000_io_resume - called when traffic can start flowing again.
5906 * @pdev: Pointer to PCI device
5907 *
5908 * This callback is called when the error recovery driver tells us that
5909 * its OK to resume normal operation. Implementation resembles the
5910 * second-half of the e1000_resume routine.
5911 */
5912static void e1000_io_resume(struct pci_dev *pdev)
5913{
5914 struct net_device *netdev = pci_get_drvdata(pdev);
5915 struct e1000_adapter *adapter = netdev_priv(netdev);
5916
5917 e1000_init_manageability_pt(adapter);
5918
5919 if (netif_running(netdev)) {
5920 if (e1000e_up(adapter)) {
5921 dev_err(&pdev->dev,
5922 "can't bring device back up after reset\n");
5923 return;
5924 }
5925 }
5926
5927 netif_device_attach(netdev);
5928
5929 /*
5930 * If the controller has AMT, do not set DRV_LOAD until the interface
5931 * is up. For all other cases, let the f/w know that the h/w is now
5932 * under the control of the driver.
5933 */
5934 if (!(adapter->flags & FLAG_HAS_AMT))
5935 e1000e_get_hw_control(adapter);
5936
5937}
5938
5939static void e1000_print_device_info(struct e1000_adapter *adapter)
5940{
5941 struct e1000_hw *hw = &adapter->hw;
5942 struct net_device *netdev = adapter->netdev;
5943 u32 ret_val;
5944 u8 pba_str[E1000_PBANUM_LENGTH];
5945
5946 /* print bus type/speed/width info */
5947 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5948 /* bus width */
5949 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5950 "Width x1"),
5951 /* MAC address */
5952 netdev->dev_addr);
5953 e_info("Intel(R) PRO/%s Network Connection\n",
5954 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5955 ret_val = e1000_read_pba_string_generic(hw, pba_str,
5956 E1000_PBANUM_LENGTH);
5957 if (ret_val)
5958 strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5959 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5960 hw->mac.type, hw->phy.type, pba_str);
5961}
5962
5963static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5964{
5965 struct e1000_hw *hw = &adapter->hw;
5966 int ret_val;
5967 u16 buf = 0;
5968
5969 if (hw->mac.type != e1000_82573)
5970 return;
5971
5972 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5973 le16_to_cpus(&buf);
5974 if (!ret_val && (!(buf & (1 << 0)))) {
5975 /* Deep Smart Power Down (DSPD) */
5976 dev_warn(&adapter->pdev->dev,
5977 "Warning: detected DSPD enabled in EEPROM\n");
5978 }
5979}
5980
5981static int e1000_set_features(struct net_device *netdev,
5982 netdev_features_t features)
5983{
5984 struct e1000_adapter *adapter = netdev_priv(netdev);
5985 netdev_features_t changed = features ^ netdev->features;
5986
5987 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5988 adapter->flags |= FLAG_TSO_FORCE;
5989
5990 if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5991 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5992 NETIF_F_RXALL)))
5993 return 0;
5994
5995 if (changed & NETIF_F_RXFCS) {
5996 if (features & NETIF_F_RXFCS) {
5997 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
5998 } else {
5999 /* We need to take it back to defaults, which might mean
6000 * stripping is still disabled at the adapter level.
6001 */
6002 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6003 adapter->flags2 |= FLAG2_CRC_STRIPPING;
6004 else
6005 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6006 }
6007 }
6008
6009 netdev->features = features;
6010
6011 if (netif_running(netdev))
6012 e1000e_reinit_locked(adapter);
6013 else
6014 e1000e_reset(adapter);
6015
6016 return 0;
6017}
6018
6019static const struct net_device_ops e1000e_netdev_ops = {
6020 .ndo_open = e1000_open,
6021 .ndo_stop = e1000_close,
6022 .ndo_start_xmit = e1000_xmit_frame,
6023 .ndo_get_stats64 = e1000e_get_stats64,
6024 .ndo_set_rx_mode = e1000e_set_rx_mode,
6025 .ndo_set_mac_address = e1000_set_mac,
6026 .ndo_change_mtu = e1000_change_mtu,
6027 .ndo_do_ioctl = e1000_ioctl,
6028 .ndo_tx_timeout = e1000_tx_timeout,
6029 .ndo_validate_addr = eth_validate_addr,
6030
6031 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
6032 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
6033#ifdef CONFIG_NET_POLL_CONTROLLER
6034 .ndo_poll_controller = e1000_netpoll,
6035#endif
6036 .ndo_set_features = e1000_set_features,
6037};
6038
6039/**
6040 * e1000_probe - Device Initialization Routine
6041 * @pdev: PCI device information struct
6042 * @ent: entry in e1000_pci_tbl
6043 *
6044 * Returns 0 on success, negative on failure
6045 *
6046 * e1000_probe initializes an adapter identified by a pci_dev structure.
6047 * The OS initialization, configuring of the adapter private structure,
6048 * and a hardware reset occur.
6049 **/
6050static int __devinit e1000_probe(struct pci_dev *pdev,
6051 const struct pci_device_id *ent)
6052{
6053 struct net_device *netdev;
6054 struct e1000_adapter *adapter;
6055 struct e1000_hw *hw;
6056 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6057 resource_size_t mmio_start, mmio_len;
6058 resource_size_t flash_start, flash_len;
6059 static int cards_found;
6060 u16 aspm_disable_flag = 0;
6061 int i, err, pci_using_dac;
6062 u16 eeprom_data = 0;
6063 u16 eeprom_apme_mask = E1000_EEPROM_APME;
6064
6065 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6066 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6067 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6068 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6069 if (aspm_disable_flag)
6070 e1000e_disable_aspm(pdev, aspm_disable_flag);
6071
6072 err = pci_enable_device_mem(pdev);
6073 if (err)
6074 return err;
6075
6076 pci_using_dac = 0;
6077 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6078 if (!err) {
6079 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6080 if (!err)
6081 pci_using_dac = 1;
6082 } else {
6083 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6084 if (err) {
6085 err = dma_set_coherent_mask(&pdev->dev,
6086 DMA_BIT_MASK(32));
6087 if (err) {
6088 dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6089 goto err_dma;
6090 }
6091 }
6092 }
6093
6094 err = pci_request_selected_regions_exclusive(pdev,
6095 pci_select_bars(pdev, IORESOURCE_MEM),
6096 e1000e_driver_name);
6097 if (err)
6098 goto err_pci_reg;
6099
6100 /* AER (Advanced Error Reporting) hooks */
6101 pci_enable_pcie_error_reporting(pdev);
6102
6103 pci_set_master(pdev);
6104 /* PCI config space info */
6105 err = pci_save_state(pdev);
6106 if (err)
6107 goto err_alloc_etherdev;
6108
6109 err = -ENOMEM;
6110 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6111 if (!netdev)
6112 goto err_alloc_etherdev;
6113
6114 SET_NETDEV_DEV(netdev, &pdev->dev);
6115
6116 netdev->irq = pdev->irq;
6117
6118 pci_set_drvdata(pdev, netdev);
6119 adapter = netdev_priv(netdev);
6120 hw = &adapter->hw;
6121 adapter->netdev = netdev;
6122 adapter->pdev = pdev;
6123 adapter->ei = ei;
6124 adapter->pba = ei->pba;
6125 adapter->flags = ei->flags;
6126 adapter->flags2 = ei->flags2;
6127 adapter->hw.adapter = adapter;
6128 adapter->hw.mac.type = ei->mac;
6129 adapter->max_hw_frame_size = ei->max_hw_frame_size;
6130 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6131
6132 mmio_start = pci_resource_start(pdev, 0);
6133 mmio_len = pci_resource_len(pdev, 0);
6134
6135 err = -EIO;
6136 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6137 if (!adapter->hw.hw_addr)
6138 goto err_ioremap;
6139
6140 if ((adapter->flags & FLAG_HAS_FLASH) &&
6141 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
6142 flash_start = pci_resource_start(pdev, 1);
6143 flash_len = pci_resource_len(pdev, 1);
6144 adapter->hw.flash_address = ioremap(flash_start, flash_len);
6145 if (!adapter->hw.flash_address)
6146 goto err_flashmap;
6147 }
6148
6149 /* construct the net_device struct */
6150 netdev->netdev_ops = &e1000e_netdev_ops;
6151 e1000e_set_ethtool_ops(netdev);
6152 netdev->watchdog_timeo = 5 * HZ;
6153 netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6154 strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6155
6156 netdev->mem_start = mmio_start;
6157 netdev->mem_end = mmio_start + mmio_len;
6158
6159 adapter->bd_number = cards_found++;
6160
6161 e1000e_check_options(adapter);
6162
6163 /* setup adapter struct */
6164 err = e1000_sw_init(adapter);
6165 if (err)
6166 goto err_sw_init;
6167
6168 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6169 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6170 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6171
6172 err = ei->get_variants(adapter);
6173 if (err)
6174 goto err_hw_init;
6175
6176 if ((adapter->flags & FLAG_IS_ICH) &&
6177 (adapter->flags & FLAG_READ_ONLY_NVM))
6178 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6179
6180 hw->mac.ops.get_bus_info(&adapter->hw);
6181
6182 adapter->hw.phy.autoneg_wait_to_complete = 0;
6183
6184 /* Copper options */
6185 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6186 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6187 adapter->hw.phy.disable_polarity_correction = 0;
6188 adapter->hw.phy.ms_type = e1000_ms_hw_default;
6189 }
6190
6191 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6192 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6193
6194 /* Set initial default active device features */
6195 netdev->features = (NETIF_F_SG |
6196 NETIF_F_HW_VLAN_RX |
6197 NETIF_F_HW_VLAN_TX |
6198 NETIF_F_TSO |
6199 NETIF_F_TSO6 |
6200 NETIF_F_RXHASH |
6201 NETIF_F_RXCSUM |
6202 NETIF_F_HW_CSUM);
6203
6204 /* Set user-changeable features (subset of all device features) */
6205 netdev->hw_features = netdev->features;
6206 netdev->hw_features |= NETIF_F_RXFCS;
6207 netdev->priv_flags |= IFF_SUPP_NOFCS;
6208 netdev->hw_features |= NETIF_F_RXALL;
6209
6210 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6211 netdev->features |= NETIF_F_HW_VLAN_FILTER;
6212
6213 netdev->vlan_features |= (NETIF_F_SG |
6214 NETIF_F_TSO |
6215 NETIF_F_TSO6 |
6216 NETIF_F_HW_CSUM);
6217
6218 netdev->priv_flags |= IFF_UNICAST_FLT;
6219
6220 if (pci_using_dac) {
6221 netdev->features |= NETIF_F_HIGHDMA;
6222 netdev->vlan_features |= NETIF_F_HIGHDMA;
6223 }
6224
6225 if (e1000e_enable_mng_pass_thru(&adapter->hw))
6226 adapter->flags |= FLAG_MNG_PT_ENABLED;
6227
6228 /*
6229 * before reading the NVM, reset the controller to
6230 * put the device in a known good starting state
6231 */
6232 adapter->hw.mac.ops.reset_hw(&adapter->hw);
6233
6234 /*
6235 * systems with ASPM and others may see the checksum fail on the first
6236 * attempt. Let's give it a few tries
6237 */
6238 for (i = 0;; i++) {
6239 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6240 break;
6241 if (i == 2) {
6242 e_err("The NVM Checksum Is Not Valid\n");
6243 err = -EIO;
6244 goto err_eeprom;
6245 }
6246 }
6247
6248 e1000_eeprom_checks(adapter);
6249
6250 /* copy the MAC address */
6251 if (e1000e_read_mac_addr(&adapter->hw))
6252 e_err("NVM Read Error while reading MAC address\n");
6253
6254 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6255 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6256
6257 if (!is_valid_ether_addr(netdev->perm_addr)) {
6258 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
6259 err = -EIO;
6260 goto err_eeprom;
6261 }
6262
6263 init_timer(&adapter->watchdog_timer);
6264 adapter->watchdog_timer.function = e1000_watchdog;
6265 adapter->watchdog_timer.data = (unsigned long) adapter;
6266
6267 init_timer(&adapter->phy_info_timer);
6268 adapter->phy_info_timer.function = e1000_update_phy_info;
6269 adapter->phy_info_timer.data = (unsigned long) adapter;
6270
6271 INIT_WORK(&adapter->reset_task, e1000_reset_task);
6272 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6273 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6274 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6275 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6276
6277 /* Initialize link parameters. User can change them with ethtool */
6278 adapter->hw.mac.autoneg = 1;
6279 adapter->fc_autoneg = true;
6280 adapter->hw.fc.requested_mode = e1000_fc_default;
6281 adapter->hw.fc.current_mode = e1000_fc_default;
6282 adapter->hw.phy.autoneg_advertised = 0x2f;
6283
6284 /* ring size defaults */
6285 adapter->rx_ring->count = E1000_DEFAULT_RXD;
6286 adapter->tx_ring->count = E1000_DEFAULT_TXD;
6287
6288 /*
6289 * Initial Wake on LAN setting - If APM wake is enabled in
6290 * the EEPROM, enable the ACPI Magic Packet filter
6291 */
6292 if (adapter->flags & FLAG_APME_IN_WUC) {
6293 /* APME bit in EEPROM is mapped to WUC.APME */
6294 eeprom_data = er32(WUC);
6295 eeprom_apme_mask = E1000_WUC_APME;
6296 if ((hw->mac.type > e1000_ich10lan) &&
6297 (eeprom_data & E1000_WUC_PHY_WAKE))
6298 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6299 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6300 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6301 (adapter->hw.bus.func == 1))
6302 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6303 1, &eeprom_data);
6304 else
6305 e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6306 1, &eeprom_data);
6307 }
6308
6309 /* fetch WoL from EEPROM */
6310 if (eeprom_data & eeprom_apme_mask)
6311 adapter->eeprom_wol |= E1000_WUFC_MAG;
6312
6313 /*
6314 * now that we have the eeprom settings, apply the special cases
6315 * where the eeprom may be wrong or the board simply won't support
6316 * wake on lan on a particular port
6317 */
6318 if (!(adapter->flags & FLAG_HAS_WOL))
6319 adapter->eeprom_wol = 0;
6320
6321 /* initialize the wol settings based on the eeprom settings */
6322 adapter->wol = adapter->eeprom_wol;
6323 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
6324
6325 /* save off EEPROM version number */
6326 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
6327
6328 /* reset the hardware with the new settings */
6329 e1000e_reset(adapter);
6330
6331 /*
6332 * If the controller has AMT, do not set DRV_LOAD until the interface
6333 * is up. For all other cases, let the f/w know that the h/w is now
6334 * under the control of the driver.
6335 */
6336 if (!(adapter->flags & FLAG_HAS_AMT))
6337 e1000e_get_hw_control(adapter);
6338
6339 strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6340 err = register_netdev(netdev);
6341 if (err)
6342 goto err_register;
6343
6344 /* carrier off reporting is important to ethtool even BEFORE open */
6345 netif_carrier_off(netdev);
6346
6347 e1000_print_device_info(adapter);
6348
6349 if (pci_dev_run_wake(pdev))
6350 pm_runtime_put_noidle(&pdev->dev);
6351
6352 return 0;
6353
6354err_register:
6355 if (!(adapter->flags & FLAG_HAS_AMT))
6356 e1000e_release_hw_control(adapter);
6357err_eeprom:
6358 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6359 e1000_phy_hw_reset(&adapter->hw);
6360err_hw_init:
6361 kfree(adapter->tx_ring);
6362 kfree(adapter->rx_ring);
6363err_sw_init:
6364 if (adapter->hw.flash_address)
6365 iounmap(adapter->hw.flash_address);
6366 e1000e_reset_interrupt_capability(adapter);
6367err_flashmap:
6368 iounmap(adapter->hw.hw_addr);
6369err_ioremap:
6370 free_netdev(netdev);
6371err_alloc_etherdev:
6372 pci_release_selected_regions(pdev,
6373 pci_select_bars(pdev, IORESOURCE_MEM));
6374err_pci_reg:
6375err_dma:
6376 pci_disable_device(pdev);
6377 return err;
6378}
6379
6380/**
6381 * e1000_remove - Device Removal Routine
6382 * @pdev: PCI device information struct
6383 *
6384 * e1000_remove is called by the PCI subsystem to alert the driver
6385 * that it should release a PCI device. The could be caused by a
6386 * Hot-Plug event, or because the driver is going to be removed from
6387 * memory.
6388 **/
6389static void __devexit e1000_remove(struct pci_dev *pdev)
6390{
6391 struct net_device *netdev = pci_get_drvdata(pdev);
6392 struct e1000_adapter *adapter = netdev_priv(netdev);
6393 bool down = test_bit(__E1000_DOWN, &adapter->state);
6394
6395 /*
6396 * The timers may be rescheduled, so explicitly disable them
6397 * from being rescheduled.
6398 */
6399 if (!down)
6400 set_bit(__E1000_DOWN, &adapter->state);
6401 del_timer_sync(&adapter->watchdog_timer);
6402 del_timer_sync(&adapter->phy_info_timer);
6403
6404 cancel_work_sync(&adapter->reset_task);
6405 cancel_work_sync(&adapter->watchdog_task);
6406 cancel_work_sync(&adapter->downshift_task);
6407 cancel_work_sync(&adapter->update_phy_task);
6408 cancel_work_sync(&adapter->print_hang_task);
6409
6410 if (!(netdev->flags & IFF_UP))
6411 e1000_power_down_phy(adapter);
6412
6413 /* Don't lie to e1000_close() down the road. */
6414 if (!down)
6415 clear_bit(__E1000_DOWN, &adapter->state);
6416 unregister_netdev(netdev);
6417
6418 if (pci_dev_run_wake(pdev))
6419 pm_runtime_get_noresume(&pdev->dev);
6420
6421 /*
6422 * Release control of h/w to f/w. If f/w is AMT enabled, this
6423 * would have already happened in close and is redundant.
6424 */
6425 e1000e_release_hw_control(adapter);
6426
6427 e1000e_reset_interrupt_capability(adapter);
6428 kfree(adapter->tx_ring);
6429 kfree(adapter->rx_ring);
6430
6431 iounmap(adapter->hw.hw_addr);
6432 if (adapter->hw.flash_address)
6433 iounmap(adapter->hw.flash_address);
6434 pci_release_selected_regions(pdev,
6435 pci_select_bars(pdev, IORESOURCE_MEM));
6436
6437 free_netdev(netdev);
6438
6439 /* AER disable */
6440 pci_disable_pcie_error_reporting(pdev);
6441
6442 pci_disable_device(pdev);
6443}
6444
6445/* PCI Error Recovery (ERS) */
6446static struct pci_error_handlers e1000_err_handler = {
6447 .error_detected = e1000_io_error_detected,
6448 .slot_reset = e1000_io_slot_reset,
6449 .resume = e1000_io_resume,
6450};
6451
6452static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6453 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6454 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6455 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6456 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
6457 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6458 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6459 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6460 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6461 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6462
6463 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6464 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6465 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6466 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6467
6468 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6469 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6470 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6471
6472 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6473 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6474 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6475
6476 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6477 board_80003es2lan },
6478 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6479 board_80003es2lan },
6480 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6481 board_80003es2lan },
6482 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6483 board_80003es2lan },
6484
6485 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6486 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6487 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6488 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6489 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6490 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6491 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6492 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6493
6494 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6495 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6496 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6497 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6498 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6499 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6500 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6501 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6502 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6503
6504 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6505 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6506 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6507
6508 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6509 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6510 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6511
6512 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6513 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6514 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6515 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6516
6517 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6518 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6519
6520 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6521 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
6522
6523 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
6524};
6525MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6526
6527#ifdef CONFIG_PM
6528static const struct dev_pm_ops e1000_pm_ops = {
6529 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6530 SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6531 e1000_runtime_resume, e1000_idle)
6532};
6533#endif
6534
6535/* PCI Device API Driver */
6536static struct pci_driver e1000_driver = {
6537 .name = e1000e_driver_name,
6538 .id_table = e1000_pci_tbl,
6539 .probe = e1000_probe,
6540 .remove = __devexit_p(e1000_remove),
6541#ifdef CONFIG_PM
6542 .driver = {
6543 .pm = &e1000_pm_ops,
6544 },
6545#endif
6546 .shutdown = e1000_shutdown,
6547 .err_handler = &e1000_err_handler
6548};
6549
6550/**
6551 * e1000_init_module - Driver Registration Routine
6552 *
6553 * e1000_init_module is the first routine called when the driver is
6554 * loaded. All it does is register with the PCI subsystem.
6555 **/
6556static int __init e1000_init_module(void)
6557{
6558 int ret;
6559 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6560 e1000e_driver_version);
6561 pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6562 ret = pci_register_driver(&e1000_driver);
6563
6564 return ret;
6565}
6566module_init(e1000_init_module);
6567
6568/**
6569 * e1000_exit_module - Driver Exit Cleanup Routine
6570 *
6571 * e1000_exit_module is called just before the driver is removed
6572 * from memory.
6573 **/
6574static void __exit e1000_exit_module(void)
6575{
6576 pci_unregister_driver(&e1000_driver);
6577}
6578module_exit(e1000_exit_module);
6579
6580
6581MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6582MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6583MODULE_LICENSE("GPL");
6584MODULE_VERSION(DRV_VERSION);
6585
6586/* netdev.c */
1// SPDX-License-Identifier: GPL-2.0
2/* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5
6#include <linux/module.h>
7#include <linux/types.h>
8#include <linux/init.h>
9#include <linux/pci.h>
10#include <linux/vmalloc.h>
11#include <linux/pagemap.h>
12#include <linux/delay.h>
13#include <linux/netdevice.h>
14#include <linux/interrupt.h>
15#include <linux/tcp.h>
16#include <linux/ipv6.h>
17#include <linux/slab.h>
18#include <net/checksum.h>
19#include <net/ip6_checksum.h>
20#include <linux/ethtool.h>
21#include <linux/if_vlan.h>
22#include <linux/cpu.h>
23#include <linux/smp.h>
24#include <linux/pm_qos.h>
25#include <linux/pm_runtime.h>
26#include <linux/aer.h>
27#include <linux/prefetch.h>
28#include <linux/suspend.h>
29
30#include "e1000.h"
31#define CREATE_TRACE_POINTS
32#include "e1000e_trace.h"
33
34char e1000e_driver_name[] = "e1000e";
35
36#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
37static int debug = -1;
38module_param(debug, int, 0);
39MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
40
41static const struct e1000_info *e1000_info_tbl[] = {
42 [board_82571] = &e1000_82571_info,
43 [board_82572] = &e1000_82572_info,
44 [board_82573] = &e1000_82573_info,
45 [board_82574] = &e1000_82574_info,
46 [board_82583] = &e1000_82583_info,
47 [board_80003es2lan] = &e1000_es2_info,
48 [board_ich8lan] = &e1000_ich8_info,
49 [board_ich9lan] = &e1000_ich9_info,
50 [board_ich10lan] = &e1000_ich10_info,
51 [board_pchlan] = &e1000_pch_info,
52 [board_pch2lan] = &e1000_pch2_info,
53 [board_pch_lpt] = &e1000_pch_lpt_info,
54 [board_pch_spt] = &e1000_pch_spt_info,
55 [board_pch_cnp] = &e1000_pch_cnp_info,
56 [board_pch_tgp] = &e1000_pch_tgp_info,
57 [board_pch_adp] = &e1000_pch_adp_info,
58 [board_pch_mtp] = &e1000_pch_mtp_info,
59};
60
61struct e1000_reg_info {
62 u32 ofs;
63 char *name;
64};
65
66static const struct e1000_reg_info e1000_reg_info_tbl[] = {
67 /* General Registers */
68 {E1000_CTRL, "CTRL"},
69 {E1000_STATUS, "STATUS"},
70 {E1000_CTRL_EXT, "CTRL_EXT"},
71
72 /* Interrupt Registers */
73 {E1000_ICR, "ICR"},
74
75 /* Rx Registers */
76 {E1000_RCTL, "RCTL"},
77 {E1000_RDLEN(0), "RDLEN"},
78 {E1000_RDH(0), "RDH"},
79 {E1000_RDT(0), "RDT"},
80 {E1000_RDTR, "RDTR"},
81 {E1000_RXDCTL(0), "RXDCTL"},
82 {E1000_ERT, "ERT"},
83 {E1000_RDBAL(0), "RDBAL"},
84 {E1000_RDBAH(0), "RDBAH"},
85 {E1000_RDFH, "RDFH"},
86 {E1000_RDFT, "RDFT"},
87 {E1000_RDFHS, "RDFHS"},
88 {E1000_RDFTS, "RDFTS"},
89 {E1000_RDFPC, "RDFPC"},
90
91 /* Tx Registers */
92 {E1000_TCTL, "TCTL"},
93 {E1000_TDBAL(0), "TDBAL"},
94 {E1000_TDBAH(0), "TDBAH"},
95 {E1000_TDLEN(0), "TDLEN"},
96 {E1000_TDH(0), "TDH"},
97 {E1000_TDT(0), "TDT"},
98 {E1000_TIDV, "TIDV"},
99 {E1000_TXDCTL(0), "TXDCTL"},
100 {E1000_TADV, "TADV"},
101 {E1000_TARC(0), "TARC"},
102 {E1000_TDFH, "TDFH"},
103 {E1000_TDFT, "TDFT"},
104 {E1000_TDFHS, "TDFHS"},
105 {E1000_TDFTS, "TDFTS"},
106 {E1000_TDFPC, "TDFPC"},
107
108 /* List Terminator */
109 {0, NULL}
110};
111
112/**
113 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
114 * @hw: pointer to the HW structure
115 *
116 * When updating the MAC CSR registers, the Manageability Engine (ME) could
117 * be accessing the registers at the same time. Normally, this is handled in
118 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
119 * accesses later than it should which could result in the register to have
120 * an incorrect value. Workaround this by checking the FWSM register which
121 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
122 * and try again a number of times.
123 **/
124static void __ew32_prepare(struct e1000_hw *hw)
125{
126 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
127
128 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
129 udelay(50);
130}
131
132void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
133{
134 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
135 __ew32_prepare(hw);
136
137 writel(val, hw->hw_addr + reg);
138}
139
140/**
141 * e1000_regdump - register printout routine
142 * @hw: pointer to the HW structure
143 * @reginfo: pointer to the register info table
144 **/
145static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
146{
147 int n = 0;
148 char rname[16];
149 u32 regs[8];
150
151 switch (reginfo->ofs) {
152 case E1000_RXDCTL(0):
153 for (n = 0; n < 2; n++)
154 regs[n] = __er32(hw, E1000_RXDCTL(n));
155 break;
156 case E1000_TXDCTL(0):
157 for (n = 0; n < 2; n++)
158 regs[n] = __er32(hw, E1000_TXDCTL(n));
159 break;
160 case E1000_TARC(0):
161 for (n = 0; n < 2; n++)
162 regs[n] = __er32(hw, E1000_TARC(n));
163 break;
164 default:
165 pr_info("%-15s %08x\n",
166 reginfo->name, __er32(hw, reginfo->ofs));
167 return;
168 }
169
170 snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
171 pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
172}
173
174static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
175 struct e1000_buffer *bi)
176{
177 int i;
178 struct e1000_ps_page *ps_page;
179
180 for (i = 0; i < adapter->rx_ps_pages; i++) {
181 ps_page = &bi->ps_pages[i];
182
183 if (ps_page->page) {
184 pr_info("packet dump for ps_page %d:\n", i);
185 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
186 16, 1, page_address(ps_page->page),
187 PAGE_SIZE, true);
188 }
189 }
190}
191
192/**
193 * e1000e_dump - Print registers, Tx-ring and Rx-ring
194 * @adapter: board private structure
195 **/
196static void e1000e_dump(struct e1000_adapter *adapter)
197{
198 struct net_device *netdev = adapter->netdev;
199 struct e1000_hw *hw = &adapter->hw;
200 struct e1000_reg_info *reginfo;
201 struct e1000_ring *tx_ring = adapter->tx_ring;
202 struct e1000_tx_desc *tx_desc;
203 struct my_u0 {
204 __le64 a;
205 __le64 b;
206 } *u0;
207 struct e1000_buffer *buffer_info;
208 struct e1000_ring *rx_ring = adapter->rx_ring;
209 union e1000_rx_desc_packet_split *rx_desc_ps;
210 union e1000_rx_desc_extended *rx_desc;
211 struct my_u1 {
212 __le64 a;
213 __le64 b;
214 __le64 c;
215 __le64 d;
216 } *u1;
217 u32 staterr;
218 int i = 0;
219
220 if (!netif_msg_hw(adapter))
221 return;
222
223 /* Print netdevice Info */
224 if (netdev) {
225 dev_info(&adapter->pdev->dev, "Net device Info\n");
226 pr_info("Device Name state trans_start\n");
227 pr_info("%-15s %016lX %016lX\n", netdev->name,
228 netdev->state, dev_trans_start(netdev));
229 }
230
231 /* Print Registers */
232 dev_info(&adapter->pdev->dev, "Register Dump\n");
233 pr_info(" Register Name Value\n");
234 for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
235 reginfo->name; reginfo++) {
236 e1000_regdump(hw, reginfo);
237 }
238
239 /* Print Tx Ring Summary */
240 if (!netdev || !netif_running(netdev))
241 return;
242
243 dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
244 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
245 buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
246 pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
247 0, tx_ring->next_to_use, tx_ring->next_to_clean,
248 (unsigned long long)buffer_info->dma,
249 buffer_info->length,
250 buffer_info->next_to_watch,
251 (unsigned long long)buffer_info->time_stamp);
252
253 /* Print Tx Ring */
254 if (!netif_msg_tx_done(adapter))
255 goto rx_ring_summary;
256
257 dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
258
259 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
260 *
261 * Legacy Transmit Descriptor
262 * +--------------------------------------------------------------+
263 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
264 * +--------------------------------------------------------------+
265 * 8 | Special | CSS | Status | CMD | CSO | Length |
266 * +--------------------------------------------------------------+
267 * 63 48 47 36 35 32 31 24 23 16 15 0
268 *
269 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
270 * 63 48 47 40 39 32 31 16 15 8 7 0
271 * +----------------------------------------------------------------+
272 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
273 * +----------------------------------------------------------------+
274 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
275 * +----------------------------------------------------------------+
276 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
277 *
278 * Extended Data Descriptor (DTYP=0x1)
279 * +----------------------------------------------------------------+
280 * 0 | Buffer Address [63:0] |
281 * +----------------------------------------------------------------+
282 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
283 * +----------------------------------------------------------------+
284 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
285 */
286 pr_info("Tl[desc] [address 63:0 ] [SpeCssSCmCsLen] [bi->dma ] leng ntw timestamp bi->skb <-- Legacy format\n");
287 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Context format\n");
288 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestamp bi->skb <-- Ext Data format\n");
289 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
290 const char *next_desc;
291 tx_desc = E1000_TX_DESC(*tx_ring, i);
292 buffer_info = &tx_ring->buffer_info[i];
293 u0 = (struct my_u0 *)tx_desc;
294 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
295 next_desc = " NTC/U";
296 else if (i == tx_ring->next_to_use)
297 next_desc = " NTU";
298 else if (i == tx_ring->next_to_clean)
299 next_desc = " NTC";
300 else
301 next_desc = "";
302 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p%s\n",
303 (!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
304 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
305 i,
306 (unsigned long long)le64_to_cpu(u0->a),
307 (unsigned long long)le64_to_cpu(u0->b),
308 (unsigned long long)buffer_info->dma,
309 buffer_info->length, buffer_info->next_to_watch,
310 (unsigned long long)buffer_info->time_stamp,
311 buffer_info->skb, next_desc);
312
313 if (netif_msg_pktdata(adapter) && buffer_info->skb)
314 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
315 16, 1, buffer_info->skb->data,
316 buffer_info->skb->len, true);
317 }
318
319 /* Print Rx Ring Summary */
320rx_ring_summary:
321 dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
322 pr_info("Queue [NTU] [NTC]\n");
323 pr_info(" %5d %5X %5X\n",
324 0, rx_ring->next_to_use, rx_ring->next_to_clean);
325
326 /* Print Rx Ring */
327 if (!netif_msg_rx_status(adapter))
328 return;
329
330 dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
331 switch (adapter->rx_ps_pages) {
332 case 1:
333 case 2:
334 case 3:
335 /* [Extended] Packet Split Receive Descriptor Format
336 *
337 * +-----------------------------------------------------+
338 * 0 | Buffer Address 0 [63:0] |
339 * +-----------------------------------------------------+
340 * 8 | Buffer Address 1 [63:0] |
341 * +-----------------------------------------------------+
342 * 16 | Buffer Address 2 [63:0] |
343 * +-----------------------------------------------------+
344 * 24 | Buffer Address 3 [63:0] |
345 * +-----------------------------------------------------+
346 */
347 pr_info("R [desc] [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] [bi->skb] <-- Ext Pkt Split format\n");
348 /* [Extended] Receive Descriptor (Write-Back) Format
349 *
350 * 63 48 47 32 31 13 12 8 7 4 3 0
351 * +------------------------------------------------------+
352 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
353 * | Checksum | Ident | | Queue | | Type |
354 * +------------------------------------------------------+
355 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
356 * +------------------------------------------------------+
357 * 63 48 47 32 31 20 19 0
358 */
359 pr_info("RWB[desc] [ck ipid mrqhsh] [vl l0 ee es] [ l3 l2 l1 hs] [reserved ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
360 for (i = 0; i < rx_ring->count; i++) {
361 const char *next_desc;
362 buffer_info = &rx_ring->buffer_info[i];
363 rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
364 u1 = (struct my_u1 *)rx_desc_ps;
365 staterr =
366 le32_to_cpu(rx_desc_ps->wb.middle.status_error);
367
368 if (i == rx_ring->next_to_use)
369 next_desc = " NTU";
370 else if (i == rx_ring->next_to_clean)
371 next_desc = " NTC";
372 else
373 next_desc = "";
374
375 if (staterr & E1000_RXD_STAT_DD) {
376 /* Descriptor Done */
377 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX ---------------- %p%s\n",
378 "RWB", i,
379 (unsigned long long)le64_to_cpu(u1->a),
380 (unsigned long long)le64_to_cpu(u1->b),
381 (unsigned long long)le64_to_cpu(u1->c),
382 (unsigned long long)le64_to_cpu(u1->d),
383 buffer_info->skb, next_desc);
384 } else {
385 pr_info("%s[0x%03X] %016llX %016llX %016llX %016llX %016llX %p%s\n",
386 "R ", i,
387 (unsigned long long)le64_to_cpu(u1->a),
388 (unsigned long long)le64_to_cpu(u1->b),
389 (unsigned long long)le64_to_cpu(u1->c),
390 (unsigned long long)le64_to_cpu(u1->d),
391 (unsigned long long)buffer_info->dma,
392 buffer_info->skb, next_desc);
393
394 if (netif_msg_pktdata(adapter))
395 e1000e_dump_ps_pages(adapter,
396 buffer_info);
397 }
398 }
399 break;
400 default:
401 case 0:
402 /* Extended Receive Descriptor (Read) Format
403 *
404 * +-----------------------------------------------------+
405 * 0 | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
407 * 8 | Reserved |
408 * +-----------------------------------------------------+
409 */
410 pr_info("R [desc] [buf addr 63:0 ] [reserved 63:0 ] [bi->dma ] [bi->skb] <-- Ext (Read) format\n");
411 /* Extended Receive Descriptor (Write-Back) Format
412 *
413 * 63 48 47 32 31 24 23 4 3 0
414 * +------------------------------------------------------+
415 * | RSS Hash | | | |
416 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
417 * | Packet | IP | | | Type |
418 * | Checksum | Ident | | | |
419 * +------------------------------------------------------+
420 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
421 * +------------------------------------------------------+
422 * 63 48 47 32 31 20 19 0
423 */
424 pr_info("RWB[desc] [cs ipid mrq] [vt ln xe xs] [bi->skb] <-- Ext (Write-Back) format\n");
425
426 for (i = 0; i < rx_ring->count; i++) {
427 const char *next_desc;
428
429 buffer_info = &rx_ring->buffer_info[i];
430 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
431 u1 = (struct my_u1 *)rx_desc;
432 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
433
434 if (i == rx_ring->next_to_use)
435 next_desc = " NTU";
436 else if (i == rx_ring->next_to_clean)
437 next_desc = " NTC";
438 else
439 next_desc = "";
440
441 if (staterr & E1000_RXD_STAT_DD) {
442 /* Descriptor Done */
443 pr_info("%s[0x%03X] %016llX %016llX ---------------- %p%s\n",
444 "RWB", i,
445 (unsigned long long)le64_to_cpu(u1->a),
446 (unsigned long long)le64_to_cpu(u1->b),
447 buffer_info->skb, next_desc);
448 } else {
449 pr_info("%s[0x%03X] %016llX %016llX %016llX %p%s\n",
450 "R ", i,
451 (unsigned long long)le64_to_cpu(u1->a),
452 (unsigned long long)le64_to_cpu(u1->b),
453 (unsigned long long)buffer_info->dma,
454 buffer_info->skb, next_desc);
455
456 if (netif_msg_pktdata(adapter) &&
457 buffer_info->skb)
458 print_hex_dump(KERN_INFO, "",
459 DUMP_PREFIX_ADDRESS, 16,
460 1,
461 buffer_info->skb->data,
462 adapter->rx_buffer_len,
463 true);
464 }
465 }
466 }
467}
468
469/**
470 * e1000_desc_unused - calculate if we have unused descriptors
471 * @ring: pointer to ring struct to perform calculation on
472 **/
473static int e1000_desc_unused(struct e1000_ring *ring)
474{
475 if (ring->next_to_clean > ring->next_to_use)
476 return ring->next_to_clean - ring->next_to_use - 1;
477
478 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
479}
480
481/**
482 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
483 * @adapter: board private structure
484 * @hwtstamps: time stamp structure to update
485 * @systim: unsigned 64bit system time value.
486 *
487 * Convert the system time value stored in the RX/TXSTMP registers into a
488 * hwtstamp which can be used by the upper level time stamping functions.
489 *
490 * The 'systim_lock' spinlock is used to protect the consistency of the
491 * system time value. This is needed because reading the 64 bit time
492 * value involves reading two 32 bit registers. The first read latches the
493 * value.
494 **/
495static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
496 struct skb_shared_hwtstamps *hwtstamps,
497 u64 systim)
498{
499 u64 ns;
500 unsigned long flags;
501
502 spin_lock_irqsave(&adapter->systim_lock, flags);
503 ns = timecounter_cyc2time(&adapter->tc, systim);
504 spin_unlock_irqrestore(&adapter->systim_lock, flags);
505
506 memset(hwtstamps, 0, sizeof(*hwtstamps));
507 hwtstamps->hwtstamp = ns_to_ktime(ns);
508}
509
510/**
511 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
512 * @adapter: board private structure
513 * @status: descriptor extended error and status field
514 * @skb: particular skb to include time stamp
515 *
516 * If the time stamp is valid, convert it into the timecounter ns value
517 * and store that result into the shhwtstamps structure which is passed
518 * up the network stack.
519 **/
520static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
521 struct sk_buff *skb)
522{
523 struct e1000_hw *hw = &adapter->hw;
524 u64 rxstmp;
525
526 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
527 !(status & E1000_RXDEXT_STATERR_TST) ||
528 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
529 return;
530
531 /* The Rx time stamp registers contain the time stamp. No other
532 * received packet will be time stamped until the Rx time stamp
533 * registers are read. Because only one packet can be time stamped
534 * at a time, the register values must belong to this packet and
535 * therefore none of the other additional attributes need to be
536 * compared.
537 */
538 rxstmp = (u64)er32(RXSTMPL);
539 rxstmp |= (u64)er32(RXSTMPH) << 32;
540 e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
541
542 adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
543}
544
545/**
546 * e1000_receive_skb - helper function to handle Rx indications
547 * @adapter: board private structure
548 * @netdev: pointer to netdev struct
549 * @staterr: descriptor extended error and status field as written by hardware
550 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
551 * @skb: pointer to sk_buff to be indicated to stack
552 **/
553static void e1000_receive_skb(struct e1000_adapter *adapter,
554 struct net_device *netdev, struct sk_buff *skb,
555 u32 staterr, __le16 vlan)
556{
557 u16 tag = le16_to_cpu(vlan);
558
559 e1000e_rx_hwtstamp(adapter, staterr, skb);
560
561 skb->protocol = eth_type_trans(skb, netdev);
562
563 if (staterr & E1000_RXD_STAT_VP)
564 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
565
566 napi_gro_receive(&adapter->napi, skb);
567}
568
569/**
570 * e1000_rx_checksum - Receive Checksum Offload
571 * @adapter: board private structure
572 * @status_err: receive descriptor status and error fields
573 * @skb: socket buffer with received data
574 **/
575static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
576 struct sk_buff *skb)
577{
578 u16 status = (u16)status_err;
579 u8 errors = (u8)(status_err >> 24);
580
581 skb_checksum_none_assert(skb);
582
583 /* Rx checksum disabled */
584 if (!(adapter->netdev->features & NETIF_F_RXCSUM))
585 return;
586
587 /* Ignore Checksum bit is set */
588 if (status & E1000_RXD_STAT_IXSM)
589 return;
590
591 /* TCP/UDP checksum error bit or IP checksum error bit is set */
592 if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
593 /* let the stack verify checksum errors */
594 adapter->hw_csum_err++;
595 return;
596 }
597
598 /* TCP/UDP Checksum has not been calculated */
599 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
600 return;
601
602 /* It must be a TCP or UDP packet with a valid checksum */
603 skb->ip_summed = CHECKSUM_UNNECESSARY;
604 adapter->hw_csum_good++;
605}
606
607static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
608{
609 struct e1000_adapter *adapter = rx_ring->adapter;
610 struct e1000_hw *hw = &adapter->hw;
611
612 __ew32_prepare(hw);
613 writel(i, rx_ring->tail);
614
615 if (unlikely(i != readl(rx_ring->tail))) {
616 u32 rctl = er32(RCTL);
617
618 ew32(RCTL, rctl & ~E1000_RCTL_EN);
619 e_err("ME firmware caused invalid RDT - resetting\n");
620 schedule_work(&adapter->reset_task);
621 }
622}
623
624static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
625{
626 struct e1000_adapter *adapter = tx_ring->adapter;
627 struct e1000_hw *hw = &adapter->hw;
628
629 __ew32_prepare(hw);
630 writel(i, tx_ring->tail);
631
632 if (unlikely(i != readl(tx_ring->tail))) {
633 u32 tctl = er32(TCTL);
634
635 ew32(TCTL, tctl & ~E1000_TCTL_EN);
636 e_err("ME firmware caused invalid TDT - resetting\n");
637 schedule_work(&adapter->reset_task);
638 }
639}
640
641/**
642 * e1000_alloc_rx_buffers - Replace used receive buffers
643 * @rx_ring: Rx descriptor ring
644 * @cleaned_count: number to reallocate
645 * @gfp: flags for allocation
646 **/
647static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
648 int cleaned_count, gfp_t gfp)
649{
650 struct e1000_adapter *adapter = rx_ring->adapter;
651 struct net_device *netdev = adapter->netdev;
652 struct pci_dev *pdev = adapter->pdev;
653 union e1000_rx_desc_extended *rx_desc;
654 struct e1000_buffer *buffer_info;
655 struct sk_buff *skb;
656 unsigned int i;
657 unsigned int bufsz = adapter->rx_buffer_len;
658
659 i = rx_ring->next_to_use;
660 buffer_info = &rx_ring->buffer_info[i];
661
662 while (cleaned_count--) {
663 skb = buffer_info->skb;
664 if (skb) {
665 skb_trim(skb, 0);
666 goto map_skb;
667 }
668
669 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
670 if (!skb) {
671 /* Better luck next round */
672 adapter->alloc_rx_buff_failed++;
673 break;
674 }
675
676 buffer_info->skb = skb;
677map_skb:
678 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
679 adapter->rx_buffer_len,
680 DMA_FROM_DEVICE);
681 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
682 dev_err(&pdev->dev, "Rx DMA map failed\n");
683 adapter->rx_dma_failed++;
684 break;
685 }
686
687 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
688 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
689
690 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
691 /* Force memory writes to complete before letting h/w
692 * know there are new descriptors to fetch. (Only
693 * applicable for weak-ordered memory model archs,
694 * such as IA-64).
695 */
696 wmb();
697 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
698 e1000e_update_rdt_wa(rx_ring, i);
699 else
700 writel(i, rx_ring->tail);
701 }
702 i++;
703 if (i == rx_ring->count)
704 i = 0;
705 buffer_info = &rx_ring->buffer_info[i];
706 }
707
708 rx_ring->next_to_use = i;
709}
710
711/**
712 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
713 * @rx_ring: Rx descriptor ring
714 * @cleaned_count: number to reallocate
715 * @gfp: flags for allocation
716 **/
717static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
718 int cleaned_count, gfp_t gfp)
719{
720 struct e1000_adapter *adapter = rx_ring->adapter;
721 struct net_device *netdev = adapter->netdev;
722 struct pci_dev *pdev = adapter->pdev;
723 union e1000_rx_desc_packet_split *rx_desc;
724 struct e1000_buffer *buffer_info;
725 struct e1000_ps_page *ps_page;
726 struct sk_buff *skb;
727 unsigned int i, j;
728
729 i = rx_ring->next_to_use;
730 buffer_info = &rx_ring->buffer_info[i];
731
732 while (cleaned_count--) {
733 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
734
735 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
736 ps_page = &buffer_info->ps_pages[j];
737 if (j >= adapter->rx_ps_pages) {
738 /* all unused desc entries get hw null ptr */
739 rx_desc->read.buffer_addr[j + 1] =
740 ~cpu_to_le64(0);
741 continue;
742 }
743 if (!ps_page->page) {
744 ps_page->page = alloc_page(gfp);
745 if (!ps_page->page) {
746 adapter->alloc_rx_buff_failed++;
747 goto no_buffers;
748 }
749 ps_page->dma = dma_map_page(&pdev->dev,
750 ps_page->page,
751 0, PAGE_SIZE,
752 DMA_FROM_DEVICE);
753 if (dma_mapping_error(&pdev->dev,
754 ps_page->dma)) {
755 dev_err(&adapter->pdev->dev,
756 "Rx DMA page map failed\n");
757 adapter->rx_dma_failed++;
758 goto no_buffers;
759 }
760 }
761 /* Refresh the desc even if buffer_addrs
762 * didn't change because each write-back
763 * erases this info.
764 */
765 rx_desc->read.buffer_addr[j + 1] =
766 cpu_to_le64(ps_page->dma);
767 }
768
769 skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
770 gfp);
771
772 if (!skb) {
773 adapter->alloc_rx_buff_failed++;
774 break;
775 }
776
777 buffer_info->skb = skb;
778 buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
779 adapter->rx_ps_bsize0,
780 DMA_FROM_DEVICE);
781 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
782 dev_err(&pdev->dev, "Rx DMA map failed\n");
783 adapter->rx_dma_failed++;
784 /* cleanup skb */
785 dev_kfree_skb_any(skb);
786 buffer_info->skb = NULL;
787 break;
788 }
789
790 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
791
792 if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
793 /* Force memory writes to complete before letting h/w
794 * know there are new descriptors to fetch. (Only
795 * applicable for weak-ordered memory model archs,
796 * such as IA-64).
797 */
798 wmb();
799 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
800 e1000e_update_rdt_wa(rx_ring, i << 1);
801 else
802 writel(i << 1, rx_ring->tail);
803 }
804
805 i++;
806 if (i == rx_ring->count)
807 i = 0;
808 buffer_info = &rx_ring->buffer_info[i];
809 }
810
811no_buffers:
812 rx_ring->next_to_use = i;
813}
814
815/**
816 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
817 * @rx_ring: Rx descriptor ring
818 * @cleaned_count: number of buffers to allocate this pass
819 * @gfp: flags for allocation
820 **/
821
822static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
823 int cleaned_count, gfp_t gfp)
824{
825 struct e1000_adapter *adapter = rx_ring->adapter;
826 struct net_device *netdev = adapter->netdev;
827 struct pci_dev *pdev = adapter->pdev;
828 union e1000_rx_desc_extended *rx_desc;
829 struct e1000_buffer *buffer_info;
830 struct sk_buff *skb;
831 unsigned int i;
832 unsigned int bufsz = 256 - 16; /* for skb_reserve */
833
834 i = rx_ring->next_to_use;
835 buffer_info = &rx_ring->buffer_info[i];
836
837 while (cleaned_count--) {
838 skb = buffer_info->skb;
839 if (skb) {
840 skb_trim(skb, 0);
841 goto check_page;
842 }
843
844 skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
845 if (unlikely(!skb)) {
846 /* Better luck next round */
847 adapter->alloc_rx_buff_failed++;
848 break;
849 }
850
851 buffer_info->skb = skb;
852check_page:
853 /* allocate a new page if necessary */
854 if (!buffer_info->page) {
855 buffer_info->page = alloc_page(gfp);
856 if (unlikely(!buffer_info->page)) {
857 adapter->alloc_rx_buff_failed++;
858 break;
859 }
860 }
861
862 if (!buffer_info->dma) {
863 buffer_info->dma = dma_map_page(&pdev->dev,
864 buffer_info->page, 0,
865 PAGE_SIZE,
866 DMA_FROM_DEVICE);
867 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
868 adapter->alloc_rx_buff_failed++;
869 break;
870 }
871 }
872
873 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
874 rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
875
876 if (unlikely(++i == rx_ring->count))
877 i = 0;
878 buffer_info = &rx_ring->buffer_info[i];
879 }
880
881 if (likely(rx_ring->next_to_use != i)) {
882 rx_ring->next_to_use = i;
883 if (unlikely(i-- == 0))
884 i = (rx_ring->count - 1);
885
886 /* Force memory writes to complete before letting h/w
887 * know there are new descriptors to fetch. (Only
888 * applicable for weak-ordered memory model archs,
889 * such as IA-64).
890 */
891 wmb();
892 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
893 e1000e_update_rdt_wa(rx_ring, i);
894 else
895 writel(i, rx_ring->tail);
896 }
897}
898
899static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
900 struct sk_buff *skb)
901{
902 if (netdev->features & NETIF_F_RXHASH)
903 skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
904}
905
906/**
907 * e1000_clean_rx_irq - Send received data up the network stack
908 * @rx_ring: Rx descriptor ring
909 * @work_done: output parameter for indicating completed work
910 * @work_to_do: how many packets we can clean
911 *
912 * the return value indicates whether actual cleaning was done, there
913 * is no guarantee that everything was cleaned
914 **/
915static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
916 int work_to_do)
917{
918 struct e1000_adapter *adapter = rx_ring->adapter;
919 struct net_device *netdev = adapter->netdev;
920 struct pci_dev *pdev = adapter->pdev;
921 struct e1000_hw *hw = &adapter->hw;
922 union e1000_rx_desc_extended *rx_desc, *next_rxd;
923 struct e1000_buffer *buffer_info, *next_buffer;
924 u32 length, staterr;
925 unsigned int i;
926 int cleaned_count = 0;
927 bool cleaned = false;
928 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
929
930 i = rx_ring->next_to_clean;
931 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
932 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
933 buffer_info = &rx_ring->buffer_info[i];
934
935 while (staterr & E1000_RXD_STAT_DD) {
936 struct sk_buff *skb;
937
938 if (*work_done >= work_to_do)
939 break;
940 (*work_done)++;
941 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
942
943 skb = buffer_info->skb;
944 buffer_info->skb = NULL;
945
946 prefetch(skb->data - NET_IP_ALIGN);
947
948 i++;
949 if (i == rx_ring->count)
950 i = 0;
951 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
952 prefetch(next_rxd);
953
954 next_buffer = &rx_ring->buffer_info[i];
955
956 cleaned = true;
957 cleaned_count++;
958 dma_unmap_single(&pdev->dev, buffer_info->dma,
959 adapter->rx_buffer_len, DMA_FROM_DEVICE);
960 buffer_info->dma = 0;
961
962 length = le16_to_cpu(rx_desc->wb.upper.length);
963
964 /* !EOP means multiple descriptors were used to store a single
965 * packet, if that's the case we need to toss it. In fact, we
966 * need to toss every packet with the EOP bit clear and the
967 * next frame that _does_ have the EOP bit set, as it is by
968 * definition only a frame fragment
969 */
970 if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
971 adapter->flags2 |= FLAG2_IS_DISCARDING;
972
973 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
974 /* All receives must fit into a single buffer */
975 e_dbg("Receive packet consumed multiple buffers\n");
976 /* recycle */
977 buffer_info->skb = skb;
978 if (staterr & E1000_RXD_STAT_EOP)
979 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
980 goto next_desc;
981 }
982
983 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
984 !(netdev->features & NETIF_F_RXALL))) {
985 /* recycle */
986 buffer_info->skb = skb;
987 goto next_desc;
988 }
989
990 /* adjust length to remove Ethernet CRC */
991 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
992 /* If configured to store CRC, don't subtract FCS,
993 * but keep the FCS bytes out of the total_rx_bytes
994 * counter
995 */
996 if (netdev->features & NETIF_F_RXFCS)
997 total_rx_bytes -= 4;
998 else
999 length -= 4;
1000 }
1001
1002 total_rx_bytes += length;
1003 total_rx_packets++;
1004
1005 /* code added for copybreak, this should improve
1006 * performance for small packets with large amounts
1007 * of reassembly being done in the stack
1008 */
1009 if (length < copybreak) {
1010 struct sk_buff *new_skb =
1011 napi_alloc_skb(&adapter->napi, length);
1012 if (new_skb) {
1013 skb_copy_to_linear_data_offset(new_skb,
1014 -NET_IP_ALIGN,
1015 (skb->data -
1016 NET_IP_ALIGN),
1017 (length +
1018 NET_IP_ALIGN));
1019 /* save the skb in buffer_info as good */
1020 buffer_info->skb = skb;
1021 skb = new_skb;
1022 }
1023 /* else just continue with the old one */
1024 }
1025 /* end copybreak code */
1026 skb_put(skb, length);
1027
1028 /* Receive Checksum Offload */
1029 e1000_rx_checksum(adapter, staterr, skb);
1030
1031 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1032
1033 e1000_receive_skb(adapter, netdev, skb, staterr,
1034 rx_desc->wb.upper.vlan);
1035
1036next_desc:
1037 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1038
1039 /* return some buffers to hardware, one at a time is too slow */
1040 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1041 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1042 GFP_ATOMIC);
1043 cleaned_count = 0;
1044 }
1045
1046 /* use prefetched values */
1047 rx_desc = next_rxd;
1048 buffer_info = next_buffer;
1049
1050 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1051 }
1052 rx_ring->next_to_clean = i;
1053
1054 cleaned_count = e1000_desc_unused(rx_ring);
1055 if (cleaned_count)
1056 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1057
1058 adapter->total_rx_bytes += total_rx_bytes;
1059 adapter->total_rx_packets += total_rx_packets;
1060 return cleaned;
1061}
1062
1063static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1064 struct e1000_buffer *buffer_info,
1065 bool drop)
1066{
1067 struct e1000_adapter *adapter = tx_ring->adapter;
1068
1069 if (buffer_info->dma) {
1070 if (buffer_info->mapped_as_page)
1071 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1072 buffer_info->length, DMA_TO_DEVICE);
1073 else
1074 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1075 buffer_info->length, DMA_TO_DEVICE);
1076 buffer_info->dma = 0;
1077 }
1078 if (buffer_info->skb) {
1079 if (drop)
1080 dev_kfree_skb_any(buffer_info->skb);
1081 else
1082 dev_consume_skb_any(buffer_info->skb);
1083 buffer_info->skb = NULL;
1084 }
1085 buffer_info->time_stamp = 0;
1086}
1087
1088static void e1000_print_hw_hang(struct work_struct *work)
1089{
1090 struct e1000_adapter *adapter = container_of(work,
1091 struct e1000_adapter,
1092 print_hang_task);
1093 struct net_device *netdev = adapter->netdev;
1094 struct e1000_ring *tx_ring = adapter->tx_ring;
1095 unsigned int i = tx_ring->next_to_clean;
1096 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1097 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1098 struct e1000_hw *hw = &adapter->hw;
1099 u16 phy_status, phy_1000t_status, phy_ext_status;
1100 u16 pci_status;
1101
1102 if (test_bit(__E1000_DOWN, &adapter->state))
1103 return;
1104
1105 if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1106 /* May be block on write-back, flush and detect again
1107 * flush pending descriptor writebacks to memory
1108 */
1109 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1110 /* execute the writes immediately */
1111 e1e_flush();
1112 /* Due to rare timing issues, write to TIDV again to ensure
1113 * the write is successful
1114 */
1115 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1116 /* execute the writes immediately */
1117 e1e_flush();
1118 adapter->tx_hang_recheck = true;
1119 return;
1120 }
1121 adapter->tx_hang_recheck = false;
1122
1123 if (er32(TDH(0)) == er32(TDT(0))) {
1124 e_dbg("false hang detected, ignoring\n");
1125 return;
1126 }
1127
1128 /* Real hang detected */
1129 netif_stop_queue(netdev);
1130
1131 e1e_rphy(hw, MII_BMSR, &phy_status);
1132 e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1133 e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1134
1135 pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1136
1137 /* detected Hardware unit hang */
1138 e_err("Detected Hardware Unit Hang:\n"
1139 " TDH <%x>\n"
1140 " TDT <%x>\n"
1141 " next_to_use <%x>\n"
1142 " next_to_clean <%x>\n"
1143 "buffer_info[next_to_clean]:\n"
1144 " time_stamp <%lx>\n"
1145 " next_to_watch <%x>\n"
1146 " jiffies <%lx>\n"
1147 " next_to_watch.status <%x>\n"
1148 "MAC Status <%x>\n"
1149 "PHY Status <%x>\n"
1150 "PHY 1000BASE-T Status <%x>\n"
1151 "PHY Extended Status <%x>\n"
1152 "PCI Status <%x>\n",
1153 readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1154 tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1155 eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1156 phy_status, phy_1000t_status, phy_ext_status, pci_status);
1157
1158 e1000e_dump(adapter);
1159
1160 /* Suggest workaround for known h/w issue */
1161 if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1162 e_err("Try turning off Tx pause (flow control) via ethtool\n");
1163}
1164
1165/**
1166 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1167 * @work: pointer to work struct
1168 *
1169 * This work function polls the TSYNCTXCTL valid bit to determine when a
1170 * timestamp has been taken for the current stored skb. The timestamp must
1171 * be for this skb because only one such packet is allowed in the queue.
1172 */
1173static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1174{
1175 struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1176 tx_hwtstamp_work);
1177 struct e1000_hw *hw = &adapter->hw;
1178
1179 if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1180 struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1181 struct skb_shared_hwtstamps shhwtstamps;
1182 u64 txstmp;
1183
1184 txstmp = er32(TXSTMPL);
1185 txstmp |= (u64)er32(TXSTMPH) << 32;
1186
1187 e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1188
1189 /* Clear the global tx_hwtstamp_skb pointer and force writes
1190 * prior to notifying the stack of a Tx timestamp.
1191 */
1192 adapter->tx_hwtstamp_skb = NULL;
1193 wmb(); /* force write prior to skb_tstamp_tx */
1194
1195 skb_tstamp_tx(skb, &shhwtstamps);
1196 dev_consume_skb_any(skb);
1197 } else if (time_after(jiffies, adapter->tx_hwtstamp_start
1198 + adapter->tx_timeout_factor * HZ)) {
1199 dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1200 adapter->tx_hwtstamp_skb = NULL;
1201 adapter->tx_hwtstamp_timeouts++;
1202 e_warn("clearing Tx timestamp hang\n");
1203 } else {
1204 /* reschedule to check later */
1205 schedule_work(&adapter->tx_hwtstamp_work);
1206 }
1207}
1208
1209/**
1210 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1211 * @tx_ring: Tx descriptor ring
1212 *
1213 * the return value indicates whether actual cleaning was done, there
1214 * is no guarantee that everything was cleaned
1215 **/
1216static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1217{
1218 struct e1000_adapter *adapter = tx_ring->adapter;
1219 struct net_device *netdev = adapter->netdev;
1220 struct e1000_hw *hw = &adapter->hw;
1221 struct e1000_tx_desc *tx_desc, *eop_desc;
1222 struct e1000_buffer *buffer_info;
1223 unsigned int i, eop;
1224 unsigned int count = 0;
1225 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1226 unsigned int bytes_compl = 0, pkts_compl = 0;
1227
1228 i = tx_ring->next_to_clean;
1229 eop = tx_ring->buffer_info[i].next_to_watch;
1230 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1231
1232 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1233 (count < tx_ring->count)) {
1234 bool cleaned = false;
1235
1236 dma_rmb(); /* read buffer_info after eop_desc */
1237 for (; !cleaned; count++) {
1238 tx_desc = E1000_TX_DESC(*tx_ring, i);
1239 buffer_info = &tx_ring->buffer_info[i];
1240 cleaned = (i == eop);
1241
1242 if (cleaned) {
1243 total_tx_packets += buffer_info->segs;
1244 total_tx_bytes += buffer_info->bytecount;
1245 if (buffer_info->skb) {
1246 bytes_compl += buffer_info->skb->len;
1247 pkts_compl++;
1248 }
1249 }
1250
1251 e1000_put_txbuf(tx_ring, buffer_info, false);
1252 tx_desc->upper.data = 0;
1253
1254 i++;
1255 if (i == tx_ring->count)
1256 i = 0;
1257 }
1258
1259 if (i == tx_ring->next_to_use)
1260 break;
1261 eop = tx_ring->buffer_info[i].next_to_watch;
1262 eop_desc = E1000_TX_DESC(*tx_ring, eop);
1263 }
1264
1265 tx_ring->next_to_clean = i;
1266
1267 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1268
1269#define TX_WAKE_THRESHOLD 32
1270 if (count && netif_carrier_ok(netdev) &&
1271 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1272 /* Make sure that anybody stopping the queue after this
1273 * sees the new next_to_clean.
1274 */
1275 smp_mb();
1276
1277 if (netif_queue_stopped(netdev) &&
1278 !(test_bit(__E1000_DOWN, &adapter->state))) {
1279 netif_wake_queue(netdev);
1280 ++adapter->restart_queue;
1281 }
1282 }
1283
1284 if (adapter->detect_tx_hung) {
1285 /* Detect a transmit hang in hardware, this serializes the
1286 * check with the clearing of time_stamp and movement of i
1287 */
1288 adapter->detect_tx_hung = false;
1289 if (tx_ring->buffer_info[i].time_stamp &&
1290 time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1291 + (adapter->tx_timeout_factor * HZ)) &&
1292 !(er32(STATUS) & E1000_STATUS_TXOFF))
1293 schedule_work(&adapter->print_hang_task);
1294 else
1295 adapter->tx_hang_recheck = false;
1296 }
1297 adapter->total_tx_bytes += total_tx_bytes;
1298 adapter->total_tx_packets += total_tx_packets;
1299 return count < tx_ring->count;
1300}
1301
1302/**
1303 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1304 * @rx_ring: Rx descriptor ring
1305 * @work_done: output parameter for indicating completed work
1306 * @work_to_do: how many packets we can clean
1307 *
1308 * the return value indicates whether actual cleaning was done, there
1309 * is no guarantee that everything was cleaned
1310 **/
1311static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1312 int work_to_do)
1313{
1314 struct e1000_adapter *adapter = rx_ring->adapter;
1315 struct e1000_hw *hw = &adapter->hw;
1316 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1317 struct net_device *netdev = adapter->netdev;
1318 struct pci_dev *pdev = adapter->pdev;
1319 struct e1000_buffer *buffer_info, *next_buffer;
1320 struct e1000_ps_page *ps_page;
1321 struct sk_buff *skb;
1322 unsigned int i, j;
1323 u32 length, staterr;
1324 int cleaned_count = 0;
1325 bool cleaned = false;
1326 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1327
1328 i = rx_ring->next_to_clean;
1329 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1330 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1331 buffer_info = &rx_ring->buffer_info[i];
1332
1333 while (staterr & E1000_RXD_STAT_DD) {
1334 if (*work_done >= work_to_do)
1335 break;
1336 (*work_done)++;
1337 skb = buffer_info->skb;
1338 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1339
1340 /* in the packet split case this is header only */
1341 prefetch(skb->data - NET_IP_ALIGN);
1342
1343 i++;
1344 if (i == rx_ring->count)
1345 i = 0;
1346 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1347 prefetch(next_rxd);
1348
1349 next_buffer = &rx_ring->buffer_info[i];
1350
1351 cleaned = true;
1352 cleaned_count++;
1353 dma_unmap_single(&pdev->dev, buffer_info->dma,
1354 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1355 buffer_info->dma = 0;
1356
1357 /* see !EOP comment in other Rx routine */
1358 if (!(staterr & E1000_RXD_STAT_EOP))
1359 adapter->flags2 |= FLAG2_IS_DISCARDING;
1360
1361 if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1362 e_dbg("Packet Split buffers didn't pick up the full packet\n");
1363 dev_kfree_skb_irq(skb);
1364 if (staterr & E1000_RXD_STAT_EOP)
1365 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1366 goto next_desc;
1367 }
1368
1369 if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1370 !(netdev->features & NETIF_F_RXALL))) {
1371 dev_kfree_skb_irq(skb);
1372 goto next_desc;
1373 }
1374
1375 length = le16_to_cpu(rx_desc->wb.middle.length0);
1376
1377 if (!length) {
1378 e_dbg("Last part of the packet spanning multiple descriptors\n");
1379 dev_kfree_skb_irq(skb);
1380 goto next_desc;
1381 }
1382
1383 /* Good Receive */
1384 skb_put(skb, length);
1385
1386 {
1387 /* this looks ugly, but it seems compiler issues make
1388 * it more efficient than reusing j
1389 */
1390 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1391
1392 /* page alloc/put takes too long and effects small
1393 * packet throughput, so unsplit small packets and
1394 * save the alloc/put
1395 */
1396 if (l1 && (l1 <= copybreak) &&
1397 ((length + l1) <= adapter->rx_ps_bsize0)) {
1398 ps_page = &buffer_info->ps_pages[0];
1399
1400 dma_sync_single_for_cpu(&pdev->dev,
1401 ps_page->dma,
1402 PAGE_SIZE,
1403 DMA_FROM_DEVICE);
1404 memcpy(skb_tail_pointer(skb),
1405 page_address(ps_page->page), l1);
1406 dma_sync_single_for_device(&pdev->dev,
1407 ps_page->dma,
1408 PAGE_SIZE,
1409 DMA_FROM_DEVICE);
1410
1411 /* remove the CRC */
1412 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1413 if (!(netdev->features & NETIF_F_RXFCS))
1414 l1 -= 4;
1415 }
1416
1417 skb_put(skb, l1);
1418 goto copydone;
1419 } /* if */
1420 }
1421
1422 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1423 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1424 if (!length)
1425 break;
1426
1427 ps_page = &buffer_info->ps_pages[j];
1428 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1429 DMA_FROM_DEVICE);
1430 ps_page->dma = 0;
1431 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1432 ps_page->page = NULL;
1433 skb->len += length;
1434 skb->data_len += length;
1435 skb->truesize += PAGE_SIZE;
1436 }
1437
1438 /* strip the ethernet crc, problem is we're using pages now so
1439 * this whole operation can get a little cpu intensive
1440 */
1441 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1442 if (!(netdev->features & NETIF_F_RXFCS))
1443 pskb_trim(skb, skb->len - 4);
1444 }
1445
1446copydone:
1447 total_rx_bytes += skb->len;
1448 total_rx_packets++;
1449
1450 e1000_rx_checksum(adapter, staterr, skb);
1451
1452 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1453
1454 if (rx_desc->wb.upper.header_status &
1455 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1456 adapter->rx_hdr_split++;
1457
1458 e1000_receive_skb(adapter, netdev, skb, staterr,
1459 rx_desc->wb.middle.vlan);
1460
1461next_desc:
1462 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1463 buffer_info->skb = NULL;
1464
1465 /* return some buffers to hardware, one at a time is too slow */
1466 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1467 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1468 GFP_ATOMIC);
1469 cleaned_count = 0;
1470 }
1471
1472 /* use prefetched values */
1473 rx_desc = next_rxd;
1474 buffer_info = next_buffer;
1475
1476 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1477 }
1478 rx_ring->next_to_clean = i;
1479
1480 cleaned_count = e1000_desc_unused(rx_ring);
1481 if (cleaned_count)
1482 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1483
1484 adapter->total_rx_bytes += total_rx_bytes;
1485 adapter->total_rx_packets += total_rx_packets;
1486 return cleaned;
1487}
1488
1489static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1490 u16 length)
1491{
1492 bi->page = NULL;
1493 skb->len += length;
1494 skb->data_len += length;
1495 skb->truesize += PAGE_SIZE;
1496}
1497
1498/**
1499 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1500 * @rx_ring: Rx descriptor ring
1501 * @work_done: output parameter for indicating completed work
1502 * @work_to_do: how many packets we can clean
1503 *
1504 * the return value indicates whether actual cleaning was done, there
1505 * is no guarantee that everything was cleaned
1506 **/
1507static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1508 int work_to_do)
1509{
1510 struct e1000_adapter *adapter = rx_ring->adapter;
1511 struct net_device *netdev = adapter->netdev;
1512 struct pci_dev *pdev = adapter->pdev;
1513 union e1000_rx_desc_extended *rx_desc, *next_rxd;
1514 struct e1000_buffer *buffer_info, *next_buffer;
1515 u32 length, staterr;
1516 unsigned int i;
1517 int cleaned_count = 0;
1518 bool cleaned = false;
1519 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1520 struct skb_shared_info *shinfo;
1521
1522 i = rx_ring->next_to_clean;
1523 rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1524 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1525 buffer_info = &rx_ring->buffer_info[i];
1526
1527 while (staterr & E1000_RXD_STAT_DD) {
1528 struct sk_buff *skb;
1529
1530 if (*work_done >= work_to_do)
1531 break;
1532 (*work_done)++;
1533 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
1534
1535 skb = buffer_info->skb;
1536 buffer_info->skb = NULL;
1537
1538 ++i;
1539 if (i == rx_ring->count)
1540 i = 0;
1541 next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1542 prefetch(next_rxd);
1543
1544 next_buffer = &rx_ring->buffer_info[i];
1545
1546 cleaned = true;
1547 cleaned_count++;
1548 dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1549 DMA_FROM_DEVICE);
1550 buffer_info->dma = 0;
1551
1552 length = le16_to_cpu(rx_desc->wb.upper.length);
1553
1554 /* errors is only valid for DD + EOP descriptors */
1555 if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1556 ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1557 !(netdev->features & NETIF_F_RXALL)))) {
1558 /* recycle both page and skb */
1559 buffer_info->skb = skb;
1560 /* an error means any chain goes out the window too */
1561 if (rx_ring->rx_skb_top)
1562 dev_kfree_skb_irq(rx_ring->rx_skb_top);
1563 rx_ring->rx_skb_top = NULL;
1564 goto next_desc;
1565 }
1566#define rxtop (rx_ring->rx_skb_top)
1567 if (!(staterr & E1000_RXD_STAT_EOP)) {
1568 /* this descriptor is only the beginning (or middle) */
1569 if (!rxtop) {
1570 /* this is the beginning of a chain */
1571 rxtop = skb;
1572 skb_fill_page_desc(rxtop, 0, buffer_info->page,
1573 0, length);
1574 } else {
1575 /* this is the middle of a chain */
1576 shinfo = skb_shinfo(rxtop);
1577 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1578 buffer_info->page, 0,
1579 length);
1580 /* re-use the skb, only consumed the page */
1581 buffer_info->skb = skb;
1582 }
1583 e1000_consume_page(buffer_info, rxtop, length);
1584 goto next_desc;
1585 } else {
1586 if (rxtop) {
1587 /* end of the chain */
1588 shinfo = skb_shinfo(rxtop);
1589 skb_fill_page_desc(rxtop, shinfo->nr_frags,
1590 buffer_info->page, 0,
1591 length);
1592 /* re-use the current skb, we only consumed the
1593 * page
1594 */
1595 buffer_info->skb = skb;
1596 skb = rxtop;
1597 rxtop = NULL;
1598 e1000_consume_page(buffer_info, skb, length);
1599 } else {
1600 /* no chain, got EOP, this buf is the packet
1601 * copybreak to save the put_page/alloc_page
1602 */
1603 if (length <= copybreak &&
1604 skb_tailroom(skb) >= length) {
1605 memcpy(skb_tail_pointer(skb),
1606 page_address(buffer_info->page),
1607 length);
1608 /* re-use the page, so don't erase
1609 * buffer_info->page
1610 */
1611 skb_put(skb, length);
1612 } else {
1613 skb_fill_page_desc(skb, 0,
1614 buffer_info->page, 0,
1615 length);
1616 e1000_consume_page(buffer_info, skb,
1617 length);
1618 }
1619 }
1620 }
1621
1622 /* Receive Checksum Offload */
1623 e1000_rx_checksum(adapter, staterr, skb);
1624
1625 e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1626
1627 /* probably a little skewed due to removing CRC */
1628 total_rx_bytes += skb->len;
1629 total_rx_packets++;
1630
1631 /* eth type trans needs skb->data to point to something */
1632 if (!pskb_may_pull(skb, ETH_HLEN)) {
1633 e_err("pskb_may_pull failed.\n");
1634 dev_kfree_skb_irq(skb);
1635 goto next_desc;
1636 }
1637
1638 e1000_receive_skb(adapter, netdev, skb, staterr,
1639 rx_desc->wb.upper.vlan);
1640
1641next_desc:
1642 rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1643
1644 /* return some buffers to hardware, one at a time is too slow */
1645 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1646 adapter->alloc_rx_buf(rx_ring, cleaned_count,
1647 GFP_ATOMIC);
1648 cleaned_count = 0;
1649 }
1650
1651 /* use prefetched values */
1652 rx_desc = next_rxd;
1653 buffer_info = next_buffer;
1654
1655 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1656 }
1657 rx_ring->next_to_clean = i;
1658
1659 cleaned_count = e1000_desc_unused(rx_ring);
1660 if (cleaned_count)
1661 adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1662
1663 adapter->total_rx_bytes += total_rx_bytes;
1664 adapter->total_rx_packets += total_rx_packets;
1665 return cleaned;
1666}
1667
1668/**
1669 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1670 * @rx_ring: Rx descriptor ring
1671 **/
1672static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1673{
1674 struct e1000_adapter *adapter = rx_ring->adapter;
1675 struct e1000_buffer *buffer_info;
1676 struct e1000_ps_page *ps_page;
1677 struct pci_dev *pdev = adapter->pdev;
1678 unsigned int i, j;
1679
1680 /* Free all the Rx ring sk_buffs */
1681 for (i = 0; i < rx_ring->count; i++) {
1682 buffer_info = &rx_ring->buffer_info[i];
1683 if (buffer_info->dma) {
1684 if (adapter->clean_rx == e1000_clean_rx_irq)
1685 dma_unmap_single(&pdev->dev, buffer_info->dma,
1686 adapter->rx_buffer_len,
1687 DMA_FROM_DEVICE);
1688 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1689 dma_unmap_page(&pdev->dev, buffer_info->dma,
1690 PAGE_SIZE, DMA_FROM_DEVICE);
1691 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1692 dma_unmap_single(&pdev->dev, buffer_info->dma,
1693 adapter->rx_ps_bsize0,
1694 DMA_FROM_DEVICE);
1695 buffer_info->dma = 0;
1696 }
1697
1698 if (buffer_info->page) {
1699 put_page(buffer_info->page);
1700 buffer_info->page = NULL;
1701 }
1702
1703 if (buffer_info->skb) {
1704 dev_kfree_skb(buffer_info->skb);
1705 buffer_info->skb = NULL;
1706 }
1707
1708 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1709 ps_page = &buffer_info->ps_pages[j];
1710 if (!ps_page->page)
1711 break;
1712 dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1713 DMA_FROM_DEVICE);
1714 ps_page->dma = 0;
1715 put_page(ps_page->page);
1716 ps_page->page = NULL;
1717 }
1718 }
1719
1720 /* there also may be some cached data from a chained receive */
1721 if (rx_ring->rx_skb_top) {
1722 dev_kfree_skb(rx_ring->rx_skb_top);
1723 rx_ring->rx_skb_top = NULL;
1724 }
1725
1726 /* Zero out the descriptor ring */
1727 memset(rx_ring->desc, 0, rx_ring->size);
1728
1729 rx_ring->next_to_clean = 0;
1730 rx_ring->next_to_use = 0;
1731 adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1732}
1733
1734static void e1000e_downshift_workaround(struct work_struct *work)
1735{
1736 struct e1000_adapter *adapter = container_of(work,
1737 struct e1000_adapter,
1738 downshift_task);
1739
1740 if (test_bit(__E1000_DOWN, &adapter->state))
1741 return;
1742
1743 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1744}
1745
1746/**
1747 * e1000_intr_msi - Interrupt Handler
1748 * @irq: interrupt number
1749 * @data: pointer to a network interface device structure
1750 **/
1751static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1752{
1753 struct net_device *netdev = data;
1754 struct e1000_adapter *adapter = netdev_priv(netdev);
1755 struct e1000_hw *hw = &adapter->hw;
1756 u32 icr = er32(ICR);
1757
1758 /* read ICR disables interrupts using IAM */
1759 if (icr & E1000_ICR_LSC) {
1760 hw->mac.get_link_status = true;
1761 /* ICH8 workaround-- Call gig speed drop workaround on cable
1762 * disconnect (LSC) before accessing any PHY registers
1763 */
1764 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1765 (!(er32(STATUS) & E1000_STATUS_LU)))
1766 schedule_work(&adapter->downshift_task);
1767
1768 /* 80003ES2LAN workaround-- For packet buffer work-around on
1769 * link down event; disable receives here in the ISR and reset
1770 * adapter in watchdog
1771 */
1772 if (netif_carrier_ok(netdev) &&
1773 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1774 /* disable receives */
1775 u32 rctl = er32(RCTL);
1776
1777 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1778 adapter->flags |= FLAG_RESTART_NOW;
1779 }
1780 /* guard against interrupt when we're going down */
1781 if (!test_bit(__E1000_DOWN, &adapter->state))
1782 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1783 }
1784
1785 /* Reset on uncorrectable ECC error */
1786 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1787 u32 pbeccsts = er32(PBECCSTS);
1788
1789 adapter->corr_errors +=
1790 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1791 adapter->uncorr_errors +=
1792 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1793 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1794
1795 /* Do the reset outside of interrupt context */
1796 schedule_work(&adapter->reset_task);
1797
1798 /* return immediately since reset is imminent */
1799 return IRQ_HANDLED;
1800 }
1801
1802 if (napi_schedule_prep(&adapter->napi)) {
1803 adapter->total_tx_bytes = 0;
1804 adapter->total_tx_packets = 0;
1805 adapter->total_rx_bytes = 0;
1806 adapter->total_rx_packets = 0;
1807 __napi_schedule(&adapter->napi);
1808 }
1809
1810 return IRQ_HANDLED;
1811}
1812
1813/**
1814 * e1000_intr - Interrupt Handler
1815 * @irq: interrupt number
1816 * @data: pointer to a network interface device structure
1817 **/
1818static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1819{
1820 struct net_device *netdev = data;
1821 struct e1000_adapter *adapter = netdev_priv(netdev);
1822 struct e1000_hw *hw = &adapter->hw;
1823 u32 rctl, icr = er32(ICR);
1824
1825 if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1826 return IRQ_NONE; /* Not our interrupt */
1827
1828 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1829 * not set, then the adapter didn't send an interrupt
1830 */
1831 if (!(icr & E1000_ICR_INT_ASSERTED))
1832 return IRQ_NONE;
1833
1834 /* Interrupt Auto-Mask...upon reading ICR,
1835 * interrupts are masked. No need for the
1836 * IMC write
1837 */
1838
1839 if (icr & E1000_ICR_LSC) {
1840 hw->mac.get_link_status = true;
1841 /* ICH8 workaround-- Call gig speed drop workaround on cable
1842 * disconnect (LSC) before accessing any PHY registers
1843 */
1844 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1845 (!(er32(STATUS) & E1000_STATUS_LU)))
1846 schedule_work(&adapter->downshift_task);
1847
1848 /* 80003ES2LAN workaround--
1849 * For packet buffer work-around on link down event;
1850 * disable receives here in the ISR and
1851 * reset adapter in watchdog
1852 */
1853 if (netif_carrier_ok(netdev) &&
1854 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1855 /* disable receives */
1856 rctl = er32(RCTL);
1857 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1858 adapter->flags |= FLAG_RESTART_NOW;
1859 }
1860 /* guard against interrupt when we're going down */
1861 if (!test_bit(__E1000_DOWN, &adapter->state))
1862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1863 }
1864
1865 /* Reset on uncorrectable ECC error */
1866 if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1867 u32 pbeccsts = er32(PBECCSTS);
1868
1869 adapter->corr_errors +=
1870 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1871 adapter->uncorr_errors +=
1872 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1873 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1874
1875 /* Do the reset outside of interrupt context */
1876 schedule_work(&adapter->reset_task);
1877
1878 /* return immediately since reset is imminent */
1879 return IRQ_HANDLED;
1880 }
1881
1882 if (napi_schedule_prep(&adapter->napi)) {
1883 adapter->total_tx_bytes = 0;
1884 adapter->total_tx_packets = 0;
1885 adapter->total_rx_bytes = 0;
1886 adapter->total_rx_packets = 0;
1887 __napi_schedule(&adapter->napi);
1888 }
1889
1890 return IRQ_HANDLED;
1891}
1892
1893static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1894{
1895 struct net_device *netdev = data;
1896 struct e1000_adapter *adapter = netdev_priv(netdev);
1897 struct e1000_hw *hw = &adapter->hw;
1898 u32 icr = er32(ICR);
1899
1900 if (icr & adapter->eiac_mask)
1901 ew32(ICS, (icr & adapter->eiac_mask));
1902
1903 if (icr & E1000_ICR_LSC) {
1904 hw->mac.get_link_status = true;
1905 /* guard against interrupt when we're going down */
1906 if (!test_bit(__E1000_DOWN, &adapter->state))
1907 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1908 }
1909
1910 if (!test_bit(__E1000_DOWN, &adapter->state))
1911 ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1912
1913 return IRQ_HANDLED;
1914}
1915
1916static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
1917{
1918 struct net_device *netdev = data;
1919 struct e1000_adapter *adapter = netdev_priv(netdev);
1920 struct e1000_hw *hw = &adapter->hw;
1921 struct e1000_ring *tx_ring = adapter->tx_ring;
1922
1923 adapter->total_tx_bytes = 0;
1924 adapter->total_tx_packets = 0;
1925
1926 if (!e1000_clean_tx_irq(tx_ring))
1927 /* Ring was not completely cleaned, so fire another interrupt */
1928 ew32(ICS, tx_ring->ims_val);
1929
1930 if (!test_bit(__E1000_DOWN, &adapter->state))
1931 ew32(IMS, adapter->tx_ring->ims_val);
1932
1933 return IRQ_HANDLED;
1934}
1935
1936static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1937{
1938 struct net_device *netdev = data;
1939 struct e1000_adapter *adapter = netdev_priv(netdev);
1940 struct e1000_ring *rx_ring = adapter->rx_ring;
1941
1942 /* Write the ITR value calculated at the end of the
1943 * previous interrupt.
1944 */
1945 if (rx_ring->set_itr) {
1946 u32 itr = rx_ring->itr_val ?
1947 1000000000 / (rx_ring->itr_val * 256) : 0;
1948
1949 writel(itr, rx_ring->itr_register);
1950 rx_ring->set_itr = 0;
1951 }
1952
1953 if (napi_schedule_prep(&adapter->napi)) {
1954 adapter->total_rx_bytes = 0;
1955 adapter->total_rx_packets = 0;
1956 __napi_schedule(&adapter->napi);
1957 }
1958 return IRQ_HANDLED;
1959}
1960
1961/**
1962 * e1000_configure_msix - Configure MSI-X hardware
1963 * @adapter: board private structure
1964 *
1965 * e1000_configure_msix sets up the hardware to properly
1966 * generate MSI-X interrupts.
1967 **/
1968static void e1000_configure_msix(struct e1000_adapter *adapter)
1969{
1970 struct e1000_hw *hw = &adapter->hw;
1971 struct e1000_ring *rx_ring = adapter->rx_ring;
1972 struct e1000_ring *tx_ring = adapter->tx_ring;
1973 int vector = 0;
1974 u32 ctrl_ext, ivar = 0;
1975
1976 adapter->eiac_mask = 0;
1977
1978 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1979 if (hw->mac.type == e1000_82574) {
1980 u32 rfctl = er32(RFCTL);
1981
1982 rfctl |= E1000_RFCTL_ACK_DIS;
1983 ew32(RFCTL, rfctl);
1984 }
1985
1986 /* Configure Rx vector */
1987 rx_ring->ims_val = E1000_IMS_RXQ0;
1988 adapter->eiac_mask |= rx_ring->ims_val;
1989 if (rx_ring->itr_val)
1990 writel(1000000000 / (rx_ring->itr_val * 256),
1991 rx_ring->itr_register);
1992 else
1993 writel(1, rx_ring->itr_register);
1994 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1995
1996 /* Configure Tx vector */
1997 tx_ring->ims_val = E1000_IMS_TXQ0;
1998 vector++;
1999 if (tx_ring->itr_val)
2000 writel(1000000000 / (tx_ring->itr_val * 256),
2001 tx_ring->itr_register);
2002 else
2003 writel(1, tx_ring->itr_register);
2004 adapter->eiac_mask |= tx_ring->ims_val;
2005 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2006
2007 /* set vector for Other Causes, e.g. link changes */
2008 vector++;
2009 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2010 if (rx_ring->itr_val)
2011 writel(1000000000 / (rx_ring->itr_val * 256),
2012 hw->hw_addr + E1000_EITR_82574(vector));
2013 else
2014 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2015
2016 /* Cause Tx interrupts on every write back */
2017 ivar |= BIT(31);
2018
2019 ew32(IVAR, ivar);
2020
2021 /* enable MSI-X PBA support */
2022 ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2023 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
2024 ew32(CTRL_EXT, ctrl_ext);
2025 e1e_flush();
2026}
2027
2028void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2029{
2030 if (adapter->msix_entries) {
2031 pci_disable_msix(adapter->pdev);
2032 kfree(adapter->msix_entries);
2033 adapter->msix_entries = NULL;
2034 } else if (adapter->flags & FLAG_MSI_ENABLED) {
2035 pci_disable_msi(adapter->pdev);
2036 adapter->flags &= ~FLAG_MSI_ENABLED;
2037 }
2038}
2039
2040/**
2041 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2042 * @adapter: board private structure
2043 *
2044 * Attempt to configure interrupts using the best available
2045 * capabilities of the hardware and kernel.
2046 **/
2047void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2048{
2049 int err;
2050 int i;
2051
2052 switch (adapter->int_mode) {
2053 case E1000E_INT_MODE_MSIX:
2054 if (adapter->flags & FLAG_HAS_MSIX) {
2055 adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2056 adapter->msix_entries = kcalloc(adapter->num_vectors,
2057 sizeof(struct
2058 msix_entry),
2059 GFP_KERNEL);
2060 if (adapter->msix_entries) {
2061 struct e1000_adapter *a = adapter;
2062
2063 for (i = 0; i < adapter->num_vectors; i++)
2064 adapter->msix_entries[i].entry = i;
2065
2066 err = pci_enable_msix_range(a->pdev,
2067 a->msix_entries,
2068 a->num_vectors,
2069 a->num_vectors);
2070 if (err > 0)
2071 return;
2072 }
2073 /* MSI-X failed, so fall through and try MSI */
2074 e_err("Failed to initialize MSI-X interrupts. Falling back to MSI interrupts.\n");
2075 e1000e_reset_interrupt_capability(adapter);
2076 }
2077 adapter->int_mode = E1000E_INT_MODE_MSI;
2078 fallthrough;
2079 case E1000E_INT_MODE_MSI:
2080 if (!pci_enable_msi(adapter->pdev)) {
2081 adapter->flags |= FLAG_MSI_ENABLED;
2082 } else {
2083 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2084 e_err("Failed to initialize MSI interrupts. Falling back to legacy interrupts.\n");
2085 }
2086 fallthrough;
2087 case E1000E_INT_MODE_LEGACY:
2088 /* Don't do anything; this is the system default */
2089 break;
2090 }
2091
2092 /* store the number of vectors being used */
2093 adapter->num_vectors = 1;
2094}
2095
2096/**
2097 * e1000_request_msix - Initialize MSI-X interrupts
2098 * @adapter: board private structure
2099 *
2100 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2101 * kernel.
2102 **/
2103static int e1000_request_msix(struct e1000_adapter *adapter)
2104{
2105 struct net_device *netdev = adapter->netdev;
2106 int err = 0, vector = 0;
2107
2108 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2109 snprintf(adapter->rx_ring->name,
2110 sizeof(adapter->rx_ring->name) - 1,
2111 "%.14s-rx-0", netdev->name);
2112 else
2113 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2114 err = request_irq(adapter->msix_entries[vector].vector,
2115 e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2116 netdev);
2117 if (err)
2118 return err;
2119 adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2120 E1000_EITR_82574(vector);
2121 adapter->rx_ring->itr_val = adapter->itr;
2122 vector++;
2123
2124 if (strlen(netdev->name) < (IFNAMSIZ - 5))
2125 snprintf(adapter->tx_ring->name,
2126 sizeof(adapter->tx_ring->name) - 1,
2127 "%.14s-tx-0", netdev->name);
2128 else
2129 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2130 err = request_irq(adapter->msix_entries[vector].vector,
2131 e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2132 netdev);
2133 if (err)
2134 return err;
2135 adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2136 E1000_EITR_82574(vector);
2137 adapter->tx_ring->itr_val = adapter->itr;
2138 vector++;
2139
2140 err = request_irq(adapter->msix_entries[vector].vector,
2141 e1000_msix_other, 0, netdev->name, netdev);
2142 if (err)
2143 return err;
2144
2145 e1000_configure_msix(adapter);
2146
2147 return 0;
2148}
2149
2150/**
2151 * e1000_request_irq - initialize interrupts
2152 * @adapter: board private structure
2153 *
2154 * Attempts to configure interrupts using the best available
2155 * capabilities of the hardware and kernel.
2156 **/
2157static int e1000_request_irq(struct e1000_adapter *adapter)
2158{
2159 struct net_device *netdev = adapter->netdev;
2160 int err;
2161
2162 if (adapter->msix_entries) {
2163 err = e1000_request_msix(adapter);
2164 if (!err)
2165 return err;
2166 /* fall back to MSI */
2167 e1000e_reset_interrupt_capability(adapter);
2168 adapter->int_mode = E1000E_INT_MODE_MSI;
2169 e1000e_set_interrupt_capability(adapter);
2170 }
2171 if (adapter->flags & FLAG_MSI_ENABLED) {
2172 err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2173 netdev->name, netdev);
2174 if (!err)
2175 return err;
2176
2177 /* fall back to legacy interrupt */
2178 e1000e_reset_interrupt_capability(adapter);
2179 adapter->int_mode = E1000E_INT_MODE_LEGACY;
2180 }
2181
2182 err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2183 netdev->name, netdev);
2184 if (err)
2185 e_err("Unable to allocate interrupt, Error: %d\n", err);
2186
2187 return err;
2188}
2189
2190static void e1000_free_irq(struct e1000_adapter *adapter)
2191{
2192 struct net_device *netdev = adapter->netdev;
2193
2194 if (adapter->msix_entries) {
2195 int vector = 0;
2196
2197 free_irq(adapter->msix_entries[vector].vector, netdev);
2198 vector++;
2199
2200 free_irq(adapter->msix_entries[vector].vector, netdev);
2201 vector++;
2202
2203 /* Other Causes interrupt vector */
2204 free_irq(adapter->msix_entries[vector].vector, netdev);
2205 return;
2206 }
2207
2208 free_irq(adapter->pdev->irq, netdev);
2209}
2210
2211/**
2212 * e1000_irq_disable - Mask off interrupt generation on the NIC
2213 * @adapter: board private structure
2214 **/
2215static void e1000_irq_disable(struct e1000_adapter *adapter)
2216{
2217 struct e1000_hw *hw = &adapter->hw;
2218
2219 ew32(IMC, ~0);
2220 if (adapter->msix_entries)
2221 ew32(EIAC_82574, 0);
2222 e1e_flush();
2223
2224 if (adapter->msix_entries) {
2225 int i;
2226
2227 for (i = 0; i < adapter->num_vectors; i++)
2228 synchronize_irq(adapter->msix_entries[i].vector);
2229 } else {
2230 synchronize_irq(adapter->pdev->irq);
2231 }
2232}
2233
2234/**
2235 * e1000_irq_enable - Enable default interrupt generation settings
2236 * @adapter: board private structure
2237 **/
2238static void e1000_irq_enable(struct e1000_adapter *adapter)
2239{
2240 struct e1000_hw *hw = &adapter->hw;
2241
2242 if (adapter->msix_entries) {
2243 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2244 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2245 IMS_OTHER_MASK);
2246 } else if (hw->mac.type >= e1000_pch_lpt) {
2247 ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2248 } else {
2249 ew32(IMS, IMS_ENABLE_MASK);
2250 }
2251 e1e_flush();
2252}
2253
2254/**
2255 * e1000e_get_hw_control - get control of the h/w from f/w
2256 * @adapter: address of board private structure
2257 *
2258 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2259 * For ASF and Pass Through versions of f/w this means that
2260 * the driver is loaded. For AMT version (only with 82573)
2261 * of the f/w this means that the network i/f is open.
2262 **/
2263void e1000e_get_hw_control(struct e1000_adapter *adapter)
2264{
2265 struct e1000_hw *hw = &adapter->hw;
2266 u32 ctrl_ext;
2267 u32 swsm;
2268
2269 /* Let firmware know the driver has taken over */
2270 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2271 swsm = er32(SWSM);
2272 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2273 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2274 ctrl_ext = er32(CTRL_EXT);
2275 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2276 }
2277}
2278
2279/**
2280 * e1000e_release_hw_control - release control of the h/w to f/w
2281 * @adapter: address of board private structure
2282 *
2283 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2284 * For ASF and Pass Through versions of f/w this means that the
2285 * driver is no longer loaded. For AMT version (only with 82573) i
2286 * of the f/w this means that the network i/f is closed.
2287 *
2288 **/
2289void e1000e_release_hw_control(struct e1000_adapter *adapter)
2290{
2291 struct e1000_hw *hw = &adapter->hw;
2292 u32 ctrl_ext;
2293 u32 swsm;
2294
2295 /* Let firmware taken over control of h/w */
2296 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2297 swsm = er32(SWSM);
2298 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2299 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2300 ctrl_ext = er32(CTRL_EXT);
2301 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2302 }
2303}
2304
2305/**
2306 * e1000_alloc_ring_dma - allocate memory for a ring structure
2307 * @adapter: board private structure
2308 * @ring: ring struct for which to allocate dma
2309 **/
2310static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2311 struct e1000_ring *ring)
2312{
2313 struct pci_dev *pdev = adapter->pdev;
2314
2315 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2316 GFP_KERNEL);
2317 if (!ring->desc)
2318 return -ENOMEM;
2319
2320 return 0;
2321}
2322
2323/**
2324 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2325 * @tx_ring: Tx descriptor ring
2326 *
2327 * Return 0 on success, negative on failure
2328 **/
2329int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2330{
2331 struct e1000_adapter *adapter = tx_ring->adapter;
2332 int err = -ENOMEM, size;
2333
2334 size = sizeof(struct e1000_buffer) * tx_ring->count;
2335 tx_ring->buffer_info = vzalloc(size);
2336 if (!tx_ring->buffer_info)
2337 goto err;
2338
2339 /* round up to nearest 4K */
2340 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2341 tx_ring->size = ALIGN(tx_ring->size, 4096);
2342
2343 err = e1000_alloc_ring_dma(adapter, tx_ring);
2344 if (err)
2345 goto err;
2346
2347 tx_ring->next_to_use = 0;
2348 tx_ring->next_to_clean = 0;
2349
2350 return 0;
2351err:
2352 vfree(tx_ring->buffer_info);
2353 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2354 return err;
2355}
2356
2357/**
2358 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2359 * @rx_ring: Rx descriptor ring
2360 *
2361 * Returns 0 on success, negative on failure
2362 **/
2363int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2364{
2365 struct e1000_adapter *adapter = rx_ring->adapter;
2366 struct e1000_buffer *buffer_info;
2367 int i, size, desc_len, err = -ENOMEM;
2368
2369 size = sizeof(struct e1000_buffer) * rx_ring->count;
2370 rx_ring->buffer_info = vzalloc(size);
2371 if (!rx_ring->buffer_info)
2372 goto err;
2373
2374 for (i = 0; i < rx_ring->count; i++) {
2375 buffer_info = &rx_ring->buffer_info[i];
2376 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2377 sizeof(struct e1000_ps_page),
2378 GFP_KERNEL);
2379 if (!buffer_info->ps_pages)
2380 goto err_pages;
2381 }
2382
2383 desc_len = sizeof(union e1000_rx_desc_packet_split);
2384
2385 /* Round up to nearest 4K */
2386 rx_ring->size = rx_ring->count * desc_len;
2387 rx_ring->size = ALIGN(rx_ring->size, 4096);
2388
2389 err = e1000_alloc_ring_dma(adapter, rx_ring);
2390 if (err)
2391 goto err_pages;
2392
2393 rx_ring->next_to_clean = 0;
2394 rx_ring->next_to_use = 0;
2395 rx_ring->rx_skb_top = NULL;
2396
2397 return 0;
2398
2399err_pages:
2400 for (i = 0; i < rx_ring->count; i++) {
2401 buffer_info = &rx_ring->buffer_info[i];
2402 kfree(buffer_info->ps_pages);
2403 }
2404err:
2405 vfree(rx_ring->buffer_info);
2406 e_err("Unable to allocate memory for the receive descriptor ring\n");
2407 return err;
2408}
2409
2410/**
2411 * e1000_clean_tx_ring - Free Tx Buffers
2412 * @tx_ring: Tx descriptor ring
2413 **/
2414static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2415{
2416 struct e1000_adapter *adapter = tx_ring->adapter;
2417 struct e1000_buffer *buffer_info;
2418 unsigned long size;
2419 unsigned int i;
2420
2421 for (i = 0; i < tx_ring->count; i++) {
2422 buffer_info = &tx_ring->buffer_info[i];
2423 e1000_put_txbuf(tx_ring, buffer_info, false);
2424 }
2425
2426 netdev_reset_queue(adapter->netdev);
2427 size = sizeof(struct e1000_buffer) * tx_ring->count;
2428 memset(tx_ring->buffer_info, 0, size);
2429
2430 memset(tx_ring->desc, 0, tx_ring->size);
2431
2432 tx_ring->next_to_use = 0;
2433 tx_ring->next_to_clean = 0;
2434}
2435
2436/**
2437 * e1000e_free_tx_resources - Free Tx Resources per Queue
2438 * @tx_ring: Tx descriptor ring
2439 *
2440 * Free all transmit software resources
2441 **/
2442void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2443{
2444 struct e1000_adapter *adapter = tx_ring->adapter;
2445 struct pci_dev *pdev = adapter->pdev;
2446
2447 e1000_clean_tx_ring(tx_ring);
2448
2449 vfree(tx_ring->buffer_info);
2450 tx_ring->buffer_info = NULL;
2451
2452 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2453 tx_ring->dma);
2454 tx_ring->desc = NULL;
2455}
2456
2457/**
2458 * e1000e_free_rx_resources - Free Rx Resources
2459 * @rx_ring: Rx descriptor ring
2460 *
2461 * Free all receive software resources
2462 **/
2463void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2464{
2465 struct e1000_adapter *adapter = rx_ring->adapter;
2466 struct pci_dev *pdev = adapter->pdev;
2467 int i;
2468
2469 e1000_clean_rx_ring(rx_ring);
2470
2471 for (i = 0; i < rx_ring->count; i++)
2472 kfree(rx_ring->buffer_info[i].ps_pages);
2473
2474 vfree(rx_ring->buffer_info);
2475 rx_ring->buffer_info = NULL;
2476
2477 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2478 rx_ring->dma);
2479 rx_ring->desc = NULL;
2480}
2481
2482/**
2483 * e1000_update_itr - update the dynamic ITR value based on statistics
2484 * @itr_setting: current adapter->itr
2485 * @packets: the number of packets during this measurement interval
2486 * @bytes: the number of bytes during this measurement interval
2487 *
2488 * Stores a new ITR value based on packets and byte
2489 * counts during the last interrupt. The advantage of per interrupt
2490 * computation is faster updates and more accurate ITR for the current
2491 * traffic pattern. Constants in this function were computed
2492 * based on theoretical maximum wire speed and thresholds were set based
2493 * on testing data as well as attempting to minimize response time
2494 * while increasing bulk throughput. This functionality is controlled
2495 * by the InterruptThrottleRate module parameter.
2496 **/
2497static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
2498{
2499 unsigned int retval = itr_setting;
2500
2501 if (packets == 0)
2502 return itr_setting;
2503
2504 switch (itr_setting) {
2505 case lowest_latency:
2506 /* handle TSO and jumbo frames */
2507 if (bytes / packets > 8000)
2508 retval = bulk_latency;
2509 else if ((packets < 5) && (bytes > 512))
2510 retval = low_latency;
2511 break;
2512 case low_latency: /* 50 usec aka 20000 ints/s */
2513 if (bytes > 10000) {
2514 /* this if handles the TSO accounting */
2515 if (bytes / packets > 8000)
2516 retval = bulk_latency;
2517 else if ((packets < 10) || ((bytes / packets) > 1200))
2518 retval = bulk_latency;
2519 else if ((packets > 35))
2520 retval = lowest_latency;
2521 } else if (bytes / packets > 2000) {
2522 retval = bulk_latency;
2523 } else if (packets <= 2 && bytes < 512) {
2524 retval = lowest_latency;
2525 }
2526 break;
2527 case bulk_latency: /* 250 usec aka 4000 ints/s */
2528 if (bytes > 25000) {
2529 if (packets > 35)
2530 retval = low_latency;
2531 } else if (bytes < 6000) {
2532 retval = low_latency;
2533 }
2534 break;
2535 }
2536
2537 return retval;
2538}
2539
2540static void e1000_set_itr(struct e1000_adapter *adapter)
2541{
2542 u16 current_itr;
2543 u32 new_itr = adapter->itr;
2544
2545 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2546 if (adapter->link_speed != SPEED_1000) {
2547 new_itr = 4000;
2548 goto set_itr_now;
2549 }
2550
2551 if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2552 new_itr = 0;
2553 goto set_itr_now;
2554 }
2555
2556 adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2557 adapter->total_tx_packets,
2558 adapter->total_tx_bytes);
2559 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2560 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2561 adapter->tx_itr = low_latency;
2562
2563 adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2564 adapter->total_rx_packets,
2565 adapter->total_rx_bytes);
2566 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2567 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2568 adapter->rx_itr = low_latency;
2569
2570 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2571
2572 /* counts and packets in update_itr are dependent on these numbers */
2573 switch (current_itr) {
2574 case lowest_latency:
2575 new_itr = 70000;
2576 break;
2577 case low_latency:
2578 new_itr = 20000; /* aka hwitr = ~200 */
2579 break;
2580 case bulk_latency:
2581 new_itr = 4000;
2582 break;
2583 default:
2584 break;
2585 }
2586
2587set_itr_now:
2588 if (new_itr != adapter->itr) {
2589 /* this attempts to bias the interrupt rate towards Bulk
2590 * by adding intermediate steps when interrupt rate is
2591 * increasing
2592 */
2593 new_itr = new_itr > adapter->itr ?
2594 min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
2595 adapter->itr = new_itr;
2596 adapter->rx_ring->itr_val = new_itr;
2597 if (adapter->msix_entries)
2598 adapter->rx_ring->set_itr = 1;
2599 else
2600 e1000e_write_itr(adapter, new_itr);
2601 }
2602}
2603
2604/**
2605 * e1000e_write_itr - write the ITR value to the appropriate registers
2606 * @adapter: address of board private structure
2607 * @itr: new ITR value to program
2608 *
2609 * e1000e_write_itr determines if the adapter is in MSI-X mode
2610 * and, if so, writes the EITR registers with the ITR value.
2611 * Otherwise, it writes the ITR value into the ITR register.
2612 **/
2613void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2614{
2615 struct e1000_hw *hw = &adapter->hw;
2616 u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2617
2618 if (adapter->msix_entries) {
2619 int vector;
2620
2621 for (vector = 0; vector < adapter->num_vectors; vector++)
2622 writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2623 } else {
2624 ew32(ITR, new_itr);
2625 }
2626}
2627
2628/**
2629 * e1000_alloc_queues - Allocate memory for all rings
2630 * @adapter: board private structure to initialize
2631 **/
2632static int e1000_alloc_queues(struct e1000_adapter *adapter)
2633{
2634 int size = sizeof(struct e1000_ring);
2635
2636 adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2637 if (!adapter->tx_ring)
2638 goto err;
2639 adapter->tx_ring->count = adapter->tx_ring_count;
2640 adapter->tx_ring->adapter = adapter;
2641
2642 adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2643 if (!adapter->rx_ring)
2644 goto err;
2645 adapter->rx_ring->count = adapter->rx_ring_count;
2646 adapter->rx_ring->adapter = adapter;
2647
2648 return 0;
2649err:
2650 e_err("Unable to allocate memory for queues\n");
2651 kfree(adapter->rx_ring);
2652 kfree(adapter->tx_ring);
2653 return -ENOMEM;
2654}
2655
2656/**
2657 * e1000e_poll - NAPI Rx polling callback
2658 * @napi: struct associated with this polling callback
2659 * @budget: number of packets driver is allowed to process this poll
2660 **/
2661static int e1000e_poll(struct napi_struct *napi, int budget)
2662{
2663 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2664 napi);
2665 struct e1000_hw *hw = &adapter->hw;
2666 struct net_device *poll_dev = adapter->netdev;
2667 int tx_cleaned = 1, work_done = 0;
2668
2669 adapter = netdev_priv(poll_dev);
2670
2671 if (!adapter->msix_entries ||
2672 (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2673 tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2674
2675 adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2676
2677 if (!tx_cleaned || work_done == budget)
2678 return budget;
2679
2680 /* Exit the polling mode, but don't re-enable interrupts if stack might
2681 * poll us due to busy-polling
2682 */
2683 if (likely(napi_complete_done(napi, work_done))) {
2684 if (adapter->itr_setting & 3)
2685 e1000_set_itr(adapter);
2686 if (!test_bit(__E1000_DOWN, &adapter->state)) {
2687 if (adapter->msix_entries)
2688 ew32(IMS, adapter->rx_ring->ims_val);
2689 else
2690 e1000_irq_enable(adapter);
2691 }
2692 }
2693
2694 return work_done;
2695}
2696
2697static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2698 __always_unused __be16 proto, u16 vid)
2699{
2700 struct e1000_adapter *adapter = netdev_priv(netdev);
2701 struct e1000_hw *hw = &adapter->hw;
2702 u32 vfta, index;
2703
2704 /* don't update vlan cookie if already programmed */
2705 if ((adapter->hw.mng_cookie.status &
2706 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2707 (vid == adapter->mng_vlan_id))
2708 return 0;
2709
2710 /* add VID to filter table */
2711 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2712 index = (vid >> 5) & 0x7F;
2713 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2714 vfta |= BIT((vid & 0x1F));
2715 hw->mac.ops.write_vfta(hw, index, vfta);
2716 }
2717
2718 set_bit(vid, adapter->active_vlans);
2719
2720 return 0;
2721}
2722
2723static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2724 __always_unused __be16 proto, u16 vid)
2725{
2726 struct e1000_adapter *adapter = netdev_priv(netdev);
2727 struct e1000_hw *hw = &adapter->hw;
2728 u32 vfta, index;
2729
2730 if ((adapter->hw.mng_cookie.status &
2731 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2732 (vid == adapter->mng_vlan_id)) {
2733 /* release control to f/w */
2734 e1000e_release_hw_control(adapter);
2735 return 0;
2736 }
2737
2738 /* remove VID from filter table */
2739 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2740 index = (vid >> 5) & 0x7F;
2741 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2742 vfta &= ~BIT((vid & 0x1F));
2743 hw->mac.ops.write_vfta(hw, index, vfta);
2744 }
2745
2746 clear_bit(vid, adapter->active_vlans);
2747
2748 return 0;
2749}
2750
2751/**
2752 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2753 * @adapter: board private structure to initialize
2754 **/
2755static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2756{
2757 struct net_device *netdev = adapter->netdev;
2758 struct e1000_hw *hw = &adapter->hw;
2759 u32 rctl;
2760
2761 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2762 /* disable VLAN receive filtering */
2763 rctl = er32(RCTL);
2764 rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2765 ew32(RCTL, rctl);
2766
2767 if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2768 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2769 adapter->mng_vlan_id);
2770 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2771 }
2772 }
2773}
2774
2775/**
2776 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2777 * @adapter: board private structure to initialize
2778 **/
2779static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2780{
2781 struct e1000_hw *hw = &adapter->hw;
2782 u32 rctl;
2783
2784 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2785 /* enable VLAN receive filtering */
2786 rctl = er32(RCTL);
2787 rctl |= E1000_RCTL_VFE;
2788 rctl &= ~E1000_RCTL_CFIEN;
2789 ew32(RCTL, rctl);
2790 }
2791}
2792
2793/**
2794 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2795 * @adapter: board private structure to initialize
2796 **/
2797static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2798{
2799 struct e1000_hw *hw = &adapter->hw;
2800 u32 ctrl;
2801
2802 /* disable VLAN tag insert/strip */
2803 ctrl = er32(CTRL);
2804 ctrl &= ~E1000_CTRL_VME;
2805 ew32(CTRL, ctrl);
2806}
2807
2808/**
2809 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2810 * @adapter: board private structure to initialize
2811 **/
2812static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2813{
2814 struct e1000_hw *hw = &adapter->hw;
2815 u32 ctrl;
2816
2817 /* enable VLAN tag insert/strip */
2818 ctrl = er32(CTRL);
2819 ctrl |= E1000_CTRL_VME;
2820 ew32(CTRL, ctrl);
2821}
2822
2823static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2824{
2825 struct net_device *netdev = adapter->netdev;
2826 u16 vid = adapter->hw.mng_cookie.vlan_id;
2827 u16 old_vid = adapter->mng_vlan_id;
2828
2829 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2830 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
2831 adapter->mng_vlan_id = vid;
2832 }
2833
2834 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2835 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2836}
2837
2838static void e1000_restore_vlan(struct e1000_adapter *adapter)
2839{
2840 u16 vid;
2841
2842 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2843
2844 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2845 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2846}
2847
2848static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2849{
2850 struct e1000_hw *hw = &adapter->hw;
2851 u32 manc, manc2h, mdef, i, j;
2852
2853 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2854 return;
2855
2856 manc = er32(MANC);
2857
2858 /* enable receiving management packets to the host. this will probably
2859 * generate destination unreachable messages from the host OS, but
2860 * the packets will be handled on SMBUS
2861 */
2862 manc |= E1000_MANC_EN_MNG2HOST;
2863 manc2h = er32(MANC2H);
2864
2865 switch (hw->mac.type) {
2866 default:
2867 manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2868 break;
2869 case e1000_82574:
2870 case e1000_82583:
2871 /* Check if IPMI pass-through decision filter already exists;
2872 * if so, enable it.
2873 */
2874 for (i = 0, j = 0; i < 8; i++) {
2875 mdef = er32(MDEF(i));
2876
2877 /* Ignore filters with anything other than IPMI ports */
2878 if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2879 continue;
2880
2881 /* Enable this decision filter in MANC2H */
2882 if (mdef)
2883 manc2h |= BIT(i);
2884
2885 j |= mdef;
2886 }
2887
2888 if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2889 break;
2890
2891 /* Create new decision filter in an empty filter */
2892 for (i = 0, j = 0; i < 8; i++)
2893 if (er32(MDEF(i)) == 0) {
2894 ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2895 E1000_MDEF_PORT_664));
2896 manc2h |= BIT(1);
2897 j++;
2898 break;
2899 }
2900
2901 if (!j)
2902 e_warn("Unable to create IPMI pass-through filter\n");
2903 break;
2904 }
2905
2906 ew32(MANC2H, manc2h);
2907 ew32(MANC, manc);
2908}
2909
2910/**
2911 * e1000_configure_tx - Configure Transmit Unit after Reset
2912 * @adapter: board private structure
2913 *
2914 * Configure the Tx unit of the MAC after a reset.
2915 **/
2916static void e1000_configure_tx(struct e1000_adapter *adapter)
2917{
2918 struct e1000_hw *hw = &adapter->hw;
2919 struct e1000_ring *tx_ring = adapter->tx_ring;
2920 u64 tdba;
2921 u32 tdlen, tctl, tarc;
2922
2923 /* Setup the HW Tx Head and Tail descriptor pointers */
2924 tdba = tx_ring->dma;
2925 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2926 ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2927 ew32(TDBAH(0), (tdba >> 32));
2928 ew32(TDLEN(0), tdlen);
2929 ew32(TDH(0), 0);
2930 ew32(TDT(0), 0);
2931 tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2932 tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2933
2934 writel(0, tx_ring->head);
2935 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2936 e1000e_update_tdt_wa(tx_ring, 0);
2937 else
2938 writel(0, tx_ring->tail);
2939
2940 /* Set the Tx Interrupt Delay register */
2941 ew32(TIDV, adapter->tx_int_delay);
2942 /* Tx irq moderation */
2943 ew32(TADV, adapter->tx_abs_int_delay);
2944
2945 if (adapter->flags2 & FLAG2_DMA_BURST) {
2946 u32 txdctl = er32(TXDCTL(0));
2947
2948 txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2949 E1000_TXDCTL_WTHRESH);
2950 /* set up some performance related parameters to encourage the
2951 * hardware to use the bus more efficiently in bursts, depends
2952 * on the tx_int_delay to be enabled,
2953 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2954 * hthresh = 1 ==> prefetch when one or more available
2955 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2956 * BEWARE: this seems to work but should be considered first if
2957 * there are Tx hangs or other Tx related bugs
2958 */
2959 txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2960 ew32(TXDCTL(0), txdctl);
2961 }
2962 /* erratum work around: set txdctl the same for both queues */
2963 ew32(TXDCTL(1), er32(TXDCTL(0)));
2964
2965 /* Program the Transmit Control Register */
2966 tctl = er32(TCTL);
2967 tctl &= ~E1000_TCTL_CT;
2968 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2969 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2970
2971 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2972 tarc = er32(TARC(0));
2973 /* set the speed mode bit, we'll clear it if we're not at
2974 * gigabit link later
2975 */
2976#define SPEED_MODE_BIT BIT(21)
2977 tarc |= SPEED_MODE_BIT;
2978 ew32(TARC(0), tarc);
2979 }
2980
2981 /* errata: program both queues to unweighted RR */
2982 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2983 tarc = er32(TARC(0));
2984 tarc |= 1;
2985 ew32(TARC(0), tarc);
2986 tarc = er32(TARC(1));
2987 tarc |= 1;
2988 ew32(TARC(1), tarc);
2989 }
2990
2991 /* Setup Transmit Descriptor Settings for eop descriptor */
2992 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2993
2994 /* only set IDE if we are delaying interrupts using the timers */
2995 if (adapter->tx_int_delay)
2996 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2997
2998 /* enable Report Status bit */
2999 adapter->txd_cmd |= E1000_TXD_CMD_RS;
3000
3001 ew32(TCTL, tctl);
3002
3003 hw->mac.ops.config_collision_dist(hw);
3004
3005 /* SPT and KBL Si errata workaround to avoid data corruption */
3006 if (hw->mac.type == e1000_pch_spt) {
3007 u32 reg_val;
3008
3009 reg_val = er32(IOSFPC);
3010 reg_val |= E1000_RCTL_RDMTS_HEX;
3011 ew32(IOSFPC, reg_val);
3012
3013 reg_val = er32(TARC(0));
3014 /* SPT and KBL Si errata workaround to avoid Tx hang.
3015 * Dropping the number of outstanding requests from
3016 * 3 to 2 in order to avoid a buffer overrun.
3017 */
3018 reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3019 reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3020 ew32(TARC(0), reg_val);
3021 }
3022}
3023
3024#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3025 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3026
3027/**
3028 * e1000_setup_rctl - configure the receive control registers
3029 * @adapter: Board private structure
3030 **/
3031static void e1000_setup_rctl(struct e1000_adapter *adapter)
3032{
3033 struct e1000_hw *hw = &adapter->hw;
3034 u32 rctl, rfctl;
3035 u32 pages = 0;
3036
3037 /* Workaround Si errata on PCHx - configure jumbo frame flow.
3038 * If jumbo frames not set, program related MAC/PHY registers
3039 * to h/w defaults
3040 */
3041 if (hw->mac.type >= e1000_pch2lan) {
3042 s32 ret_val;
3043
3044 if (adapter->netdev->mtu > ETH_DATA_LEN)
3045 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3046 else
3047 ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3048
3049 if (ret_val)
3050 e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3051 }
3052
3053 /* Program MC offset vector base */
3054 rctl = er32(RCTL);
3055 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3056 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3057 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3058 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3059
3060 /* Do not Store bad packets */
3061 rctl &= ~E1000_RCTL_SBP;
3062
3063 /* Enable Long Packet receive */
3064 if (adapter->netdev->mtu <= ETH_DATA_LEN)
3065 rctl &= ~E1000_RCTL_LPE;
3066 else
3067 rctl |= E1000_RCTL_LPE;
3068
3069 /* Some systems expect that the CRC is included in SMBUS traffic. The
3070 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3071 * host memory when this is enabled
3072 */
3073 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3074 rctl |= E1000_RCTL_SECRC;
3075
3076 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3077 if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3078 u16 phy_data;
3079
3080 e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3081 phy_data &= 0xfff8;
3082 phy_data |= BIT(2);
3083 e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3084
3085 e1e_rphy(hw, 22, &phy_data);
3086 phy_data &= 0x0fff;
3087 phy_data |= BIT(14);
3088 e1e_wphy(hw, 0x10, 0x2823);
3089 e1e_wphy(hw, 0x11, 0x0003);
3090 e1e_wphy(hw, 22, phy_data);
3091 }
3092
3093 /* Setup buffer sizes */
3094 rctl &= ~E1000_RCTL_SZ_4096;
3095 rctl |= E1000_RCTL_BSEX;
3096 switch (adapter->rx_buffer_len) {
3097 case 2048:
3098 default:
3099 rctl |= E1000_RCTL_SZ_2048;
3100 rctl &= ~E1000_RCTL_BSEX;
3101 break;
3102 case 4096:
3103 rctl |= E1000_RCTL_SZ_4096;
3104 break;
3105 case 8192:
3106 rctl |= E1000_RCTL_SZ_8192;
3107 break;
3108 case 16384:
3109 rctl |= E1000_RCTL_SZ_16384;
3110 break;
3111 }
3112
3113 /* Enable Extended Status in all Receive Descriptors */
3114 rfctl = er32(RFCTL);
3115 rfctl |= E1000_RFCTL_EXTEN;
3116 ew32(RFCTL, rfctl);
3117
3118 /* 82571 and greater support packet-split where the protocol
3119 * header is placed in skb->data and the packet data is
3120 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3121 * In the case of a non-split, skb->data is linearly filled,
3122 * followed by the page buffers. Therefore, skb->data is
3123 * sized to hold the largest protocol header.
3124 *
3125 * allocations using alloc_page take too long for regular MTU
3126 * so only enable packet split for jumbo frames
3127 *
3128 * Using pages when the page size is greater than 16k wastes
3129 * a lot of memory, since we allocate 3 pages at all times
3130 * per packet.
3131 */
3132 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3133 if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3134 adapter->rx_ps_pages = pages;
3135 else
3136 adapter->rx_ps_pages = 0;
3137
3138 if (adapter->rx_ps_pages) {
3139 u32 psrctl = 0;
3140
3141 /* Enable Packet split descriptors */
3142 rctl |= E1000_RCTL_DTYP_PS;
3143
3144 psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
3145
3146 switch (adapter->rx_ps_pages) {
3147 case 3:
3148 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3149 fallthrough;
3150 case 2:
3151 psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3152 fallthrough;
3153 case 1:
3154 psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
3155 break;
3156 }
3157
3158 ew32(PSRCTL, psrctl);
3159 }
3160
3161 /* This is useful for sniffing bad packets. */
3162 if (adapter->netdev->features & NETIF_F_RXALL) {
3163 /* UPE and MPE will be handled by normal PROMISC logic
3164 * in e1000e_set_rx_mode
3165 */
3166 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3167 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3168 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3169
3170 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3171 E1000_RCTL_DPF | /* Allow filtered pause */
3172 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3173 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3174 * and that breaks VLANs.
3175 */
3176 }
3177
3178 ew32(RCTL, rctl);
3179 /* just started the receive unit, no need to restart */
3180 adapter->flags &= ~FLAG_RESTART_NOW;
3181}
3182
3183/**
3184 * e1000_configure_rx - Configure Receive Unit after Reset
3185 * @adapter: board private structure
3186 *
3187 * Configure the Rx unit of the MAC after a reset.
3188 **/
3189static void e1000_configure_rx(struct e1000_adapter *adapter)
3190{
3191 struct e1000_hw *hw = &adapter->hw;
3192 struct e1000_ring *rx_ring = adapter->rx_ring;
3193 u64 rdba;
3194 u32 rdlen, rctl, rxcsum, ctrl_ext;
3195
3196 if (adapter->rx_ps_pages) {
3197 /* this is a 32 byte descriptor */
3198 rdlen = rx_ring->count *
3199 sizeof(union e1000_rx_desc_packet_split);
3200 adapter->clean_rx = e1000_clean_rx_irq_ps;
3201 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3202 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3203 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3204 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3205 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3206 } else {
3207 rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3208 adapter->clean_rx = e1000_clean_rx_irq;
3209 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3210 }
3211
3212 /* disable receives while setting up the descriptors */
3213 rctl = er32(RCTL);
3214 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3215 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3216 e1e_flush();
3217 usleep_range(10000, 11000);
3218
3219 if (adapter->flags2 & FLAG2_DMA_BURST) {
3220 /* set the writeback threshold (only takes effect if the RDTR
3221 * is set). set GRAN=1 and write back up to 0x4 worth, and
3222 * enable prefetching of 0x20 Rx descriptors
3223 * granularity = 01
3224 * wthresh = 04,
3225 * hthresh = 04,
3226 * pthresh = 0x20
3227 */
3228 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3229 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3230 }
3231
3232 /* set the Receive Delay Timer Register */
3233 ew32(RDTR, adapter->rx_int_delay);
3234
3235 /* irq moderation */
3236 ew32(RADV, adapter->rx_abs_int_delay);
3237 if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238 e1000e_write_itr(adapter, adapter->itr);
3239
3240 ctrl_ext = er32(CTRL_EXT);
3241 /* Auto-Mask interrupts upon ICR access */
3242 ctrl_ext |= E1000_CTRL_EXT_IAME;
3243 ew32(IAM, 0xffffffff);
3244 ew32(CTRL_EXT, ctrl_ext);
3245 e1e_flush();
3246
3247 /* Setup the HW Rx Head and Tail Descriptor Pointers and
3248 * the Base and Length of the Rx Descriptor Ring
3249 */
3250 rdba = rx_ring->dma;
3251 ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252 ew32(RDBAH(0), (rdba >> 32));
3253 ew32(RDLEN(0), rdlen);
3254 ew32(RDH(0), 0);
3255 ew32(RDT(0), 0);
3256 rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257 rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258
3259 writel(0, rx_ring->head);
3260 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261 e1000e_update_rdt_wa(rx_ring, 0);
3262 else
3263 writel(0, rx_ring->tail);
3264
3265 /* Enable Receive Checksum Offload for TCP and UDP */
3266 rxcsum = er32(RXCSUM);
3267 if (adapter->netdev->features & NETIF_F_RXCSUM)
3268 rxcsum |= E1000_RXCSUM_TUOFL;
3269 else
3270 rxcsum &= ~E1000_RXCSUM_TUOFL;
3271 ew32(RXCSUM, rxcsum);
3272
3273 /* With jumbo frames, excessive C-state transition latencies result
3274 * in dropped transactions.
3275 */
3276 if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277 u32 lat =
3278 ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279 adapter->max_frame_size) * 8 / 1000;
3280
3281 if (adapter->flags & FLAG_IS_ICH) {
3282 u32 rxdctl = er32(RXDCTL(0));
3283
3284 ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
3285 }
3286
3287 dev_info(&adapter->pdev->dev,
3288 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3289 cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3290 } else {
3291 cpu_latency_qos_update_request(&adapter->pm_qos_req,
3292 PM_QOS_DEFAULT_VALUE);
3293 }
3294
3295 /* Enable Receives */
3296 ew32(RCTL, rctl);
3297}
3298
3299/**
3300 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3301 * @netdev: network interface device structure
3302 *
3303 * Writes multicast address list to the MTA hash table.
3304 * Returns: -ENOMEM on failure
3305 * 0 on no addresses written
3306 * X on writing X addresses to MTA
3307 */
3308static int e1000e_write_mc_addr_list(struct net_device *netdev)
3309{
3310 struct e1000_adapter *adapter = netdev_priv(netdev);
3311 struct e1000_hw *hw = &adapter->hw;
3312 struct netdev_hw_addr *ha;
3313 u8 *mta_list;
3314 int i;
3315
3316 if (netdev_mc_empty(netdev)) {
3317 /* nothing to program, so clear mc list */
3318 hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3319 return 0;
3320 }
3321
3322 mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3323 if (!mta_list)
3324 return -ENOMEM;
3325
3326 /* update_mc_addr_list expects a packed array of only addresses. */
3327 i = 0;
3328 netdev_for_each_mc_addr(ha, netdev)
3329 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3330
3331 hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3332 kfree(mta_list);
3333
3334 return netdev_mc_count(netdev);
3335}
3336
3337/**
3338 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3339 * @netdev: network interface device structure
3340 *
3341 * Writes unicast address list to the RAR table.
3342 * Returns: -ENOMEM on failure/insufficient address space
3343 * 0 on no addresses written
3344 * X on writing X addresses to the RAR table
3345 **/
3346static int e1000e_write_uc_addr_list(struct net_device *netdev)
3347{
3348 struct e1000_adapter *adapter = netdev_priv(netdev);
3349 struct e1000_hw *hw = &adapter->hw;
3350 unsigned int rar_entries;
3351 int count = 0;
3352
3353 rar_entries = hw->mac.ops.rar_get_count(hw);
3354
3355 /* save a rar entry for our hardware address */
3356 rar_entries--;
3357
3358 /* save a rar entry for the LAA workaround */
3359 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3360 rar_entries--;
3361
3362 /* return ENOMEM indicating insufficient memory for addresses */
3363 if (netdev_uc_count(netdev) > rar_entries)
3364 return -ENOMEM;
3365
3366 if (!netdev_uc_empty(netdev) && rar_entries) {
3367 struct netdev_hw_addr *ha;
3368
3369 /* write the addresses in reverse order to avoid write
3370 * combining
3371 */
3372 netdev_for_each_uc_addr(ha, netdev) {
3373 int ret_val;
3374
3375 if (!rar_entries)
3376 break;
3377 ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3378 if (ret_val < 0)
3379 return -ENOMEM;
3380 count++;
3381 }
3382 }
3383
3384 /* zero out the remaining RAR entries not used above */
3385 for (; rar_entries > 0; rar_entries--) {
3386 ew32(RAH(rar_entries), 0);
3387 ew32(RAL(rar_entries), 0);
3388 }
3389 e1e_flush();
3390
3391 return count;
3392}
3393
3394/**
3395 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3396 * @netdev: network interface device structure
3397 *
3398 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3399 * address list or the network interface flags are updated. This routine is
3400 * responsible for configuring the hardware for proper unicast, multicast,
3401 * promiscuous mode, and all-multi behavior.
3402 **/
3403static void e1000e_set_rx_mode(struct net_device *netdev)
3404{
3405 struct e1000_adapter *adapter = netdev_priv(netdev);
3406 struct e1000_hw *hw = &adapter->hw;
3407 u32 rctl;
3408
3409 if (pm_runtime_suspended(netdev->dev.parent))
3410 return;
3411
3412 /* Check for Promiscuous and All Multicast modes */
3413 rctl = er32(RCTL);
3414
3415 /* clear the affected bits */
3416 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3417
3418 if (netdev->flags & IFF_PROMISC) {
3419 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3420 /* Do not hardware filter VLANs in promisc mode */
3421 e1000e_vlan_filter_disable(adapter);
3422 } else {
3423 int count;
3424
3425 if (netdev->flags & IFF_ALLMULTI) {
3426 rctl |= E1000_RCTL_MPE;
3427 } else {
3428 /* Write addresses to the MTA, if the attempt fails
3429 * then we should just turn on promiscuous mode so
3430 * that we can at least receive multicast traffic
3431 */
3432 count = e1000e_write_mc_addr_list(netdev);
3433 if (count < 0)
3434 rctl |= E1000_RCTL_MPE;
3435 }
3436 e1000e_vlan_filter_enable(adapter);
3437 /* Write addresses to available RAR registers, if there is not
3438 * sufficient space to store all the addresses then enable
3439 * unicast promiscuous mode
3440 */
3441 count = e1000e_write_uc_addr_list(netdev);
3442 if (count < 0)
3443 rctl |= E1000_RCTL_UPE;
3444 }
3445
3446 ew32(RCTL, rctl);
3447
3448 if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3449 e1000e_vlan_strip_enable(adapter);
3450 else
3451 e1000e_vlan_strip_disable(adapter);
3452}
3453
3454static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3455{
3456 struct e1000_hw *hw = &adapter->hw;
3457 u32 mrqc, rxcsum;
3458 u32 rss_key[10];
3459 int i;
3460
3461 netdev_rss_key_fill(rss_key, sizeof(rss_key));
3462 for (i = 0; i < 10; i++)
3463 ew32(RSSRK(i), rss_key[i]);
3464
3465 /* Direct all traffic to queue 0 */
3466 for (i = 0; i < 32; i++)
3467 ew32(RETA(i), 0);
3468
3469 /* Disable raw packet checksumming so that RSS hash is placed in
3470 * descriptor on writeback.
3471 */
3472 rxcsum = er32(RXCSUM);
3473 rxcsum |= E1000_RXCSUM_PCSD;
3474
3475 ew32(RXCSUM, rxcsum);
3476
3477 mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3478 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3479 E1000_MRQC_RSS_FIELD_IPV6 |
3480 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3481 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3482
3483 ew32(MRQC, mrqc);
3484}
3485
3486/**
3487 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3488 * @adapter: board private structure
3489 * @timinca: pointer to returned time increment attributes
3490 *
3491 * Get attributes for incrementing the System Time Register SYSTIML/H at
3492 * the default base frequency, and set the cyclecounter shift value.
3493 **/
3494s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3495{
3496 struct e1000_hw *hw = &adapter->hw;
3497 u32 incvalue, incperiod, shift;
3498
3499 /* Make sure clock is enabled on I217/I218/I219 before checking
3500 * the frequency
3501 */
3502 if ((hw->mac.type >= e1000_pch_lpt) &&
3503 !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3504 !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3505 u32 fextnvm7 = er32(FEXTNVM7);
3506
3507 if (!(fextnvm7 & BIT(0))) {
3508 ew32(FEXTNVM7, fextnvm7 | BIT(0));
3509 e1e_flush();
3510 }
3511 }
3512
3513 switch (hw->mac.type) {
3514 case e1000_pch2lan:
3515 /* Stable 96MHz frequency */
3516 incperiod = INCPERIOD_96MHZ;
3517 incvalue = INCVALUE_96MHZ;
3518 shift = INCVALUE_SHIFT_96MHZ;
3519 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3520 break;
3521 case e1000_pch_lpt:
3522 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3523 /* Stable 96MHz frequency */
3524 incperiod = INCPERIOD_96MHZ;
3525 incvalue = INCVALUE_96MHZ;
3526 shift = INCVALUE_SHIFT_96MHZ;
3527 adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3528 } else {
3529 /* Stable 25MHz frequency */
3530 incperiod = INCPERIOD_25MHZ;
3531 incvalue = INCVALUE_25MHZ;
3532 shift = INCVALUE_SHIFT_25MHZ;
3533 adapter->cc.shift = shift;
3534 }
3535 break;
3536 case e1000_pch_spt:
3537 /* Stable 24MHz frequency */
3538 incperiod = INCPERIOD_24MHZ;
3539 incvalue = INCVALUE_24MHZ;
3540 shift = INCVALUE_SHIFT_24MHZ;
3541 adapter->cc.shift = shift;
3542 break;
3543 case e1000_pch_cnp:
3544 case e1000_pch_tgp:
3545 case e1000_pch_adp:
3546 case e1000_pch_mtp:
3547 case e1000_pch_lnp:
3548 case e1000_pch_ptp:
3549 if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3550 /* Stable 24MHz frequency */
3551 incperiod = INCPERIOD_24MHZ;
3552 incvalue = INCVALUE_24MHZ;
3553 shift = INCVALUE_SHIFT_24MHZ;
3554 adapter->cc.shift = shift;
3555 } else {
3556 /* Stable 38400KHz frequency */
3557 incperiod = INCPERIOD_38400KHZ;
3558 incvalue = INCVALUE_38400KHZ;
3559 shift = INCVALUE_SHIFT_38400KHZ;
3560 adapter->cc.shift = shift;
3561 }
3562 break;
3563 case e1000_82574:
3564 case e1000_82583:
3565 /* Stable 25MHz frequency */
3566 incperiod = INCPERIOD_25MHZ;
3567 incvalue = INCVALUE_25MHZ;
3568 shift = INCVALUE_SHIFT_25MHZ;
3569 adapter->cc.shift = shift;
3570 break;
3571 default:
3572 return -EINVAL;
3573 }
3574
3575 *timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3576 ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3577
3578 return 0;
3579}
3580
3581/**
3582 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3583 * @adapter: board private structure
3584 * @config: timestamp configuration
3585 *
3586 * Outgoing time stamping can be enabled and disabled. Play nice and
3587 * disable it when requested, although it shouldn't cause any overhead
3588 * when no packet needs it. At most one packet in the queue may be
3589 * marked for time stamping, otherwise it would be impossible to tell
3590 * for sure to which packet the hardware time stamp belongs.
3591 *
3592 * Incoming time stamping has to be configured via the hardware filters.
3593 * Not all combinations are supported, in particular event type has to be
3594 * specified. Matching the kind of event packet is not supported, with the
3595 * exception of "all V2 events regardless of level 2 or 4".
3596 **/
3597static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3598 struct hwtstamp_config *config)
3599{
3600 struct e1000_hw *hw = &adapter->hw;
3601 u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3602 u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3603 u32 rxmtrl = 0;
3604 u16 rxudp = 0;
3605 bool is_l4 = false;
3606 bool is_l2 = false;
3607 u32 regval;
3608
3609 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3610 return -EINVAL;
3611
3612 switch (config->tx_type) {
3613 case HWTSTAMP_TX_OFF:
3614 tsync_tx_ctl = 0;
3615 break;
3616 case HWTSTAMP_TX_ON:
3617 break;
3618 default:
3619 return -ERANGE;
3620 }
3621
3622 switch (config->rx_filter) {
3623 case HWTSTAMP_FILTER_NONE:
3624 tsync_rx_ctl = 0;
3625 break;
3626 case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3627 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3628 rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3629 is_l4 = true;
3630 break;
3631 case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3632 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3633 rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3634 is_l4 = true;
3635 break;
3636 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3637 /* Also time stamps V2 L2 Path Delay Request/Response */
3638 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3639 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3640 is_l2 = true;
3641 break;
3642 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3643 /* Also time stamps V2 L2 Path Delay Request/Response. */
3644 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3645 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3646 is_l2 = true;
3647 break;
3648 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3649 /* Hardware cannot filter just V2 L4 Sync messages */
3650 fallthrough;
3651 case HWTSTAMP_FILTER_PTP_V2_SYNC:
3652 /* Also time stamps V2 Path Delay Request/Response. */
3653 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3654 rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3655 is_l2 = true;
3656 is_l4 = true;
3657 break;
3658 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3659 /* Hardware cannot filter just V2 L4 Delay Request messages */
3660 fallthrough;
3661 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3662 /* Also time stamps V2 Path Delay Request/Response. */
3663 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3664 rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3665 is_l2 = true;
3666 is_l4 = true;
3667 break;
3668 case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3669 case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3670 /* Hardware cannot filter just V2 L4 or L2 Event messages */
3671 fallthrough;
3672 case HWTSTAMP_FILTER_PTP_V2_EVENT:
3673 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3674 config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3675 is_l2 = true;
3676 is_l4 = true;
3677 break;
3678 case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3679 /* For V1, the hardware can only filter Sync messages or
3680 * Delay Request messages but not both so fall-through to
3681 * time stamp all packets.
3682 */
3683 fallthrough;
3684 case HWTSTAMP_FILTER_NTP_ALL:
3685 case HWTSTAMP_FILTER_ALL:
3686 is_l2 = true;
3687 is_l4 = true;
3688 tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3689 config->rx_filter = HWTSTAMP_FILTER_ALL;
3690 break;
3691 default:
3692 return -ERANGE;
3693 }
3694
3695 adapter->hwtstamp_config = *config;
3696
3697 /* enable/disable Tx h/w time stamping */
3698 regval = er32(TSYNCTXCTL);
3699 regval &= ~E1000_TSYNCTXCTL_ENABLED;
3700 regval |= tsync_tx_ctl;
3701 ew32(TSYNCTXCTL, regval);
3702 if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3703 (regval & E1000_TSYNCTXCTL_ENABLED)) {
3704 e_err("Timesync Tx Control register not set as expected\n");
3705 return -EAGAIN;
3706 }
3707
3708 /* enable/disable Rx h/w time stamping */
3709 regval = er32(TSYNCRXCTL);
3710 regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3711 regval |= tsync_rx_ctl;
3712 ew32(TSYNCRXCTL, regval);
3713 if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3714 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3715 (regval & (E1000_TSYNCRXCTL_ENABLED |
3716 E1000_TSYNCRXCTL_TYPE_MASK))) {
3717 e_err("Timesync Rx Control register not set as expected\n");
3718 return -EAGAIN;
3719 }
3720
3721 /* L2: define ethertype filter for time stamped packets */
3722 if (is_l2)
3723 rxmtrl |= ETH_P_1588;
3724
3725 /* define which PTP packets get time stamped */
3726 ew32(RXMTRL, rxmtrl);
3727
3728 /* Filter by destination port */
3729 if (is_l4) {
3730 rxudp = PTP_EV_PORT;
3731 cpu_to_be16s(&rxudp);
3732 }
3733 ew32(RXUDP, rxudp);
3734
3735 e1e_flush();
3736
3737 /* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3738 er32(RXSTMPH);
3739 er32(TXSTMPH);
3740
3741 return 0;
3742}
3743
3744/**
3745 * e1000_configure - configure the hardware for Rx and Tx
3746 * @adapter: private board structure
3747 **/
3748static void e1000_configure(struct e1000_adapter *adapter)
3749{
3750 struct e1000_ring *rx_ring = adapter->rx_ring;
3751
3752 e1000e_set_rx_mode(adapter->netdev);
3753
3754 e1000_restore_vlan(adapter);
3755 e1000_init_manageability_pt(adapter);
3756
3757 e1000_configure_tx(adapter);
3758
3759 if (adapter->netdev->features & NETIF_F_RXHASH)
3760 e1000e_setup_rss_hash(adapter);
3761 e1000_setup_rctl(adapter);
3762 e1000_configure_rx(adapter);
3763 adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3764}
3765
3766/**
3767 * e1000e_power_up_phy - restore link in case the phy was powered down
3768 * @adapter: address of board private structure
3769 *
3770 * The phy may be powered down to save power and turn off link when the
3771 * driver is unloaded and wake on lan is not enabled (among others)
3772 * *** this routine MUST be followed by a call to e1000e_reset ***
3773 **/
3774void e1000e_power_up_phy(struct e1000_adapter *adapter)
3775{
3776 if (adapter->hw.phy.ops.power_up)
3777 adapter->hw.phy.ops.power_up(&adapter->hw);
3778
3779 adapter->hw.mac.ops.setup_link(&adapter->hw);
3780}
3781
3782/**
3783 * e1000_power_down_phy - Power down the PHY
3784 * @adapter: board private structure
3785 *
3786 * Power down the PHY so no link is implied when interface is down.
3787 * The PHY cannot be powered down if management or WoL is active.
3788 */
3789static void e1000_power_down_phy(struct e1000_adapter *adapter)
3790{
3791 if (adapter->hw.phy.ops.power_down)
3792 adapter->hw.phy.ops.power_down(&adapter->hw);
3793}
3794
3795/**
3796 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3797 * @adapter: board private structure
3798 *
3799 * We want to clear all pending descriptors from the TX ring.
3800 * zeroing happens when the HW reads the regs. We assign the ring itself as
3801 * the data of the next descriptor. We don't care about the data we are about
3802 * to reset the HW.
3803 */
3804static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3805{
3806 struct e1000_hw *hw = &adapter->hw;
3807 struct e1000_ring *tx_ring = adapter->tx_ring;
3808 struct e1000_tx_desc *tx_desc = NULL;
3809 u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3810 u16 size = 512;
3811
3812 tctl = er32(TCTL);
3813 ew32(TCTL, tctl | E1000_TCTL_EN);
3814 tdt = er32(TDT(0));
3815 BUG_ON(tdt != tx_ring->next_to_use);
3816 tx_desc = E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3817 tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3818
3819 tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3820 tx_desc->upper.data = 0;
3821 /* flush descriptors to memory before notifying the HW */
3822 wmb();
3823 tx_ring->next_to_use++;
3824 if (tx_ring->next_to_use == tx_ring->count)
3825 tx_ring->next_to_use = 0;
3826 ew32(TDT(0), tx_ring->next_to_use);
3827 usleep_range(200, 250);
3828}
3829
3830/**
3831 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3832 * @adapter: board private structure
3833 *
3834 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3835 */
3836static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3837{
3838 u32 rctl, rxdctl;
3839 struct e1000_hw *hw = &adapter->hw;
3840
3841 rctl = er32(RCTL);
3842 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3843 e1e_flush();
3844 usleep_range(100, 150);
3845
3846 rxdctl = er32(RXDCTL(0));
3847 /* zero the lower 14 bits (prefetch and host thresholds) */
3848 rxdctl &= 0xffffc000;
3849
3850 /* update thresholds: prefetch threshold to 31, host threshold to 1
3851 * and make sure the granularity is "descriptors" and not "cache lines"
3852 */
3853 rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3854
3855 ew32(RXDCTL(0), rxdctl);
3856 /* momentarily enable the RX ring for the changes to take effect */
3857 ew32(RCTL, rctl | E1000_RCTL_EN);
3858 e1e_flush();
3859 usleep_range(100, 150);
3860 ew32(RCTL, rctl & ~E1000_RCTL_EN);
3861}
3862
3863/**
3864 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3865 * @adapter: board private structure
3866 *
3867 * In i219, the descriptor rings must be emptied before resetting the HW
3868 * or before changing the device state to D3 during runtime (runtime PM).
3869 *
3870 * Failure to do this will cause the HW to enter a unit hang state which can
3871 * only be released by PCI reset on the device
3872 *
3873 */
3874
3875static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3876{
3877 u16 hang_state;
3878 u32 fext_nvm11, tdlen;
3879 struct e1000_hw *hw = &adapter->hw;
3880
3881 /* First, disable MULR fix in FEXTNVM11 */
3882 fext_nvm11 = er32(FEXTNVM11);
3883 fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3884 ew32(FEXTNVM11, fext_nvm11);
3885 /* do nothing if we're not in faulty state, or if the queue is empty */
3886 tdlen = er32(TDLEN(0));
3887 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3888 &hang_state);
3889 if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3890 return;
3891 e1000_flush_tx_ring(adapter);
3892 /* recheck, maybe the fault is caused by the rx ring */
3893 pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3894 &hang_state);
3895 if (hang_state & FLUSH_DESC_REQUIRED)
3896 e1000_flush_rx_ring(adapter);
3897}
3898
3899/**
3900 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3901 * @adapter: board private structure
3902 *
3903 * When the MAC is reset, all hardware bits for timesync will be reset to the
3904 * default values. This function will restore the settings last in place.
3905 * Since the clock SYSTIME registers are reset, we will simply restore the
3906 * cyclecounter to the kernel real clock time.
3907 **/
3908static void e1000e_systim_reset(struct e1000_adapter *adapter)
3909{
3910 struct ptp_clock_info *info = &adapter->ptp_clock_info;
3911 struct e1000_hw *hw = &adapter->hw;
3912 unsigned long flags;
3913 u32 timinca;
3914 s32 ret_val;
3915
3916 if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3917 return;
3918
3919 if (info->adjfine) {
3920 /* restore the previous ptp frequency delta */
3921 ret_val = info->adjfine(info, adapter->ptp_delta);
3922 } else {
3923 /* set the default base frequency if no adjustment possible */
3924 ret_val = e1000e_get_base_timinca(adapter, &timinca);
3925 if (!ret_val)
3926 ew32(TIMINCA, timinca);
3927 }
3928
3929 if (ret_val) {
3930 dev_warn(&adapter->pdev->dev,
3931 "Failed to restore TIMINCA clock rate delta: %d\n",
3932 ret_val);
3933 return;
3934 }
3935
3936 /* reset the systim ns time counter */
3937 spin_lock_irqsave(&adapter->systim_lock, flags);
3938 timecounter_init(&adapter->tc, &adapter->cc,
3939 ktime_to_ns(ktime_get_real()));
3940 spin_unlock_irqrestore(&adapter->systim_lock, flags);
3941
3942 /* restore the previous hwtstamp configuration settings */
3943 e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3944}
3945
3946/**
3947 * e1000e_reset - bring the hardware into a known good state
3948 * @adapter: board private structure
3949 *
3950 * This function boots the hardware and enables some settings that
3951 * require a configuration cycle of the hardware - those cannot be
3952 * set/changed during runtime. After reset the device needs to be
3953 * properly configured for Rx, Tx etc.
3954 */
3955void e1000e_reset(struct e1000_adapter *adapter)
3956{
3957 struct e1000_mac_info *mac = &adapter->hw.mac;
3958 struct e1000_fc_info *fc = &adapter->hw.fc;
3959 struct e1000_hw *hw = &adapter->hw;
3960 u32 tx_space, min_tx_space, min_rx_space;
3961 u32 pba = adapter->pba;
3962 u16 hwm;
3963
3964 /* reset Packet Buffer Allocation to default */
3965 ew32(PBA, pba);
3966
3967 if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3968 /* To maintain wire speed transmits, the Tx FIFO should be
3969 * large enough to accommodate two full transmit packets,
3970 * rounded up to the next 1KB and expressed in KB. Likewise,
3971 * the Rx FIFO should be large enough to accommodate at least
3972 * one full receive packet and is similarly rounded up and
3973 * expressed in KB.
3974 */
3975 pba = er32(PBA);
3976 /* upper 16 bits has Tx packet buffer allocation size in KB */
3977 tx_space = pba >> 16;
3978 /* lower 16 bits has Rx packet buffer allocation size in KB */
3979 pba &= 0xffff;
3980 /* the Tx fifo also stores 16 bytes of information about the Tx
3981 * but don't include ethernet FCS because hardware appends it
3982 */
3983 min_tx_space = (adapter->max_frame_size +
3984 sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
3985 min_tx_space = ALIGN(min_tx_space, 1024);
3986 min_tx_space >>= 10;
3987 /* software strips receive CRC, so leave room for it */
3988 min_rx_space = adapter->max_frame_size;
3989 min_rx_space = ALIGN(min_rx_space, 1024);
3990 min_rx_space >>= 10;
3991
3992 /* If current Tx allocation is less than the min Tx FIFO size,
3993 * and the min Tx FIFO size is less than the current Rx FIFO
3994 * allocation, take space away from current Rx allocation
3995 */
3996 if ((tx_space < min_tx_space) &&
3997 ((min_tx_space - tx_space) < pba)) {
3998 pba -= min_tx_space - tx_space;
3999
4000 /* if short on Rx space, Rx wins and must trump Tx
4001 * adjustment
4002 */
4003 if (pba < min_rx_space)
4004 pba = min_rx_space;
4005 }
4006
4007 ew32(PBA, pba);
4008 }
4009
4010 /* flow control settings
4011 *
4012 * The high water mark must be low enough to fit one full frame
4013 * (or the size used for early receive) above it in the Rx FIFO.
4014 * Set it to the lower of:
4015 * - 90% of the Rx FIFO size, and
4016 * - the full Rx FIFO size minus one full frame
4017 */
4018 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4019 fc->pause_time = 0xFFFF;
4020 else
4021 fc->pause_time = E1000_FC_PAUSE_TIME;
4022 fc->send_xon = true;
4023 fc->current_mode = fc->requested_mode;
4024
4025 switch (hw->mac.type) {
4026 case e1000_ich9lan:
4027 case e1000_ich10lan:
4028 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4029 pba = 14;
4030 ew32(PBA, pba);
4031 fc->high_water = 0x2800;
4032 fc->low_water = fc->high_water - 8;
4033 break;
4034 }
4035 fallthrough;
4036 default:
4037 hwm = min(((pba << 10) * 9 / 10),
4038 ((pba << 10) - adapter->max_frame_size));
4039
4040 fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
4041 fc->low_water = fc->high_water - 8;
4042 break;
4043 case e1000_pchlan:
4044 /* Workaround PCH LOM adapter hangs with certain network
4045 * loads. If hangs persist, try disabling Tx flow control.
4046 */
4047 if (adapter->netdev->mtu > ETH_DATA_LEN) {
4048 fc->high_water = 0x3500;
4049 fc->low_water = 0x1500;
4050 } else {
4051 fc->high_water = 0x5000;
4052 fc->low_water = 0x3000;
4053 }
4054 fc->refresh_time = 0x1000;
4055 break;
4056 case e1000_pch2lan:
4057 case e1000_pch_lpt:
4058 case e1000_pch_spt:
4059 case e1000_pch_cnp:
4060 case e1000_pch_tgp:
4061 case e1000_pch_adp:
4062 case e1000_pch_mtp:
4063 case e1000_pch_lnp:
4064 case e1000_pch_ptp:
4065 fc->refresh_time = 0xFFFF;
4066 fc->pause_time = 0xFFFF;
4067
4068 if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4069 fc->high_water = 0x05C20;
4070 fc->low_water = 0x05048;
4071 break;
4072 }
4073
4074 pba = 14;
4075 ew32(PBA, pba);
4076 fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4077 fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4078 break;
4079 }
4080
4081 /* Alignment of Tx data is on an arbitrary byte boundary with the
4082 * maximum size per Tx descriptor limited only to the transmit
4083 * allocation of the packet buffer minus 96 bytes with an upper
4084 * limit of 24KB due to receive synchronization limitations.
4085 */
4086 adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4087 24 << 10);
4088
4089 /* Disable Adaptive Interrupt Moderation if 2 full packets cannot
4090 * fit in receive buffer.
4091 */
4092 if (adapter->itr_setting & 0x3) {
4093 if ((adapter->max_frame_size * 2) > (pba << 10)) {
4094 if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4095 dev_info(&adapter->pdev->dev,
4096 "Interrupt Throttle Rate off\n");
4097 adapter->flags2 |= FLAG2_DISABLE_AIM;
4098 e1000e_write_itr(adapter, 0);
4099 }
4100 } else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4101 dev_info(&adapter->pdev->dev,
4102 "Interrupt Throttle Rate on\n");
4103 adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4104 adapter->itr = 20000;
4105 e1000e_write_itr(adapter, adapter->itr);
4106 }
4107 }
4108
4109 if (hw->mac.type >= e1000_pch_spt)
4110 e1000_flush_desc_rings(adapter);
4111 /* Allow time for pending master requests to run */
4112 mac->ops.reset_hw(hw);
4113
4114 /* For parts with AMT enabled, let the firmware know
4115 * that the network interface is in control
4116 */
4117 if (adapter->flags & FLAG_HAS_AMT)
4118 e1000e_get_hw_control(adapter);
4119
4120 ew32(WUC, 0);
4121
4122 if (mac->ops.init_hw(hw))
4123 e_err("Hardware Error\n");
4124
4125 e1000_update_mng_vlan(adapter);
4126
4127 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4128 ew32(VET, ETH_P_8021Q);
4129
4130 e1000e_reset_adaptive(hw);
4131
4132 /* restore systim and hwtstamp settings */
4133 e1000e_systim_reset(adapter);
4134
4135 /* Set EEE advertisement as appropriate */
4136 if (adapter->flags2 & FLAG2_HAS_EEE) {
4137 s32 ret_val;
4138 u16 adv_addr;
4139
4140 switch (hw->phy.type) {
4141 case e1000_phy_82579:
4142 adv_addr = I82579_EEE_ADVERTISEMENT;
4143 break;
4144 case e1000_phy_i217:
4145 adv_addr = I217_EEE_ADVERTISEMENT;
4146 break;
4147 default:
4148 dev_err(&adapter->pdev->dev,
4149 "Invalid PHY type setting EEE advertisement\n");
4150 return;
4151 }
4152
4153 ret_val = hw->phy.ops.acquire(hw);
4154 if (ret_val) {
4155 dev_err(&adapter->pdev->dev,
4156 "EEE advertisement - unable to acquire PHY\n");
4157 return;
4158 }
4159
4160 e1000_write_emi_reg_locked(hw, adv_addr,
4161 hw->dev_spec.ich8lan.eee_disable ?
4162 0 : adapter->eee_advert);
4163
4164 hw->phy.ops.release(hw);
4165 }
4166
4167 if (!netif_running(adapter->netdev) &&
4168 !test_bit(__E1000_TESTING, &adapter->state))
4169 e1000_power_down_phy(adapter);
4170
4171 e1000_get_phy_info(hw);
4172
4173 if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4174 !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4175 u16 phy_data = 0;
4176 /* speed up time to link by disabling smart power down, ignore
4177 * the return value of this function because there is nothing
4178 * different we would do if it failed
4179 */
4180 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4181 phy_data &= ~IGP02E1000_PM_SPD;
4182 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4183 }
4184 if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4185 u32 reg;
4186
4187 /* Fextnvm7 @ 0xe4[2] = 1 */
4188 reg = er32(FEXTNVM7);
4189 reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4190 ew32(FEXTNVM7, reg);
4191 /* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4192 reg = er32(FEXTNVM9);
4193 reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4194 E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4195 ew32(FEXTNVM9, reg);
4196 }
4197
4198}
4199
4200/**
4201 * e1000e_trigger_lsc - trigger an LSC interrupt
4202 * @adapter:
4203 *
4204 * Fire a link status change interrupt to start the watchdog.
4205 **/
4206static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4207{
4208 struct e1000_hw *hw = &adapter->hw;
4209
4210 if (adapter->msix_entries)
4211 ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4212 else
4213 ew32(ICS, E1000_ICS_LSC);
4214}
4215
4216void e1000e_up(struct e1000_adapter *adapter)
4217{
4218 /* hardware has been reset, we need to reload some things */
4219 e1000_configure(adapter);
4220
4221 clear_bit(__E1000_DOWN, &adapter->state);
4222
4223 if (adapter->msix_entries)
4224 e1000_configure_msix(adapter);
4225 e1000_irq_enable(adapter);
4226
4227 /* Tx queue started by watchdog timer when link is up */
4228
4229 e1000e_trigger_lsc(adapter);
4230}
4231
4232static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4233{
4234 struct e1000_hw *hw = &adapter->hw;
4235
4236 if (!(adapter->flags2 & FLAG2_DMA_BURST))
4237 return;
4238
4239 /* flush pending descriptor writebacks to memory */
4240 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4241 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4242
4243 /* execute the writes immediately */
4244 e1e_flush();
4245
4246 /* due to rare timing issues, write to TIDV/RDTR again to ensure the
4247 * write is successful
4248 */
4249 ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4250 ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4251
4252 /* execute the writes immediately */
4253 e1e_flush();
4254}
4255
4256static void e1000e_update_stats(struct e1000_adapter *adapter);
4257
4258/**
4259 * e1000e_down - quiesce the device and optionally reset the hardware
4260 * @adapter: board private structure
4261 * @reset: boolean flag to reset the hardware or not
4262 */
4263void e1000e_down(struct e1000_adapter *adapter, bool reset)
4264{
4265 struct net_device *netdev = adapter->netdev;
4266 struct e1000_hw *hw = &adapter->hw;
4267 u32 tctl, rctl;
4268
4269 /* signal that we're down so the interrupt handler does not
4270 * reschedule our watchdog timer
4271 */
4272 set_bit(__E1000_DOWN, &adapter->state);
4273
4274 netif_carrier_off(netdev);
4275
4276 /* disable receives in the hardware */
4277 rctl = er32(RCTL);
4278 if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4279 ew32(RCTL, rctl & ~E1000_RCTL_EN);
4280 /* flush and sleep below */
4281
4282 netif_stop_queue(netdev);
4283
4284 /* disable transmits in the hardware */
4285 tctl = er32(TCTL);
4286 tctl &= ~E1000_TCTL_EN;
4287 ew32(TCTL, tctl);
4288
4289 /* flush both disables and wait for them to finish */
4290 e1e_flush();
4291 usleep_range(10000, 11000);
4292
4293 e1000_irq_disable(adapter);
4294
4295 napi_synchronize(&adapter->napi);
4296
4297 del_timer_sync(&adapter->watchdog_timer);
4298 del_timer_sync(&adapter->phy_info_timer);
4299
4300 spin_lock(&adapter->stats64_lock);
4301 e1000e_update_stats(adapter);
4302 spin_unlock(&adapter->stats64_lock);
4303
4304 e1000e_flush_descriptors(adapter);
4305
4306 adapter->link_speed = 0;
4307 adapter->link_duplex = 0;
4308
4309 /* Disable Si errata workaround on PCHx for jumbo frame flow */
4310 if ((hw->mac.type >= e1000_pch2lan) &&
4311 (adapter->netdev->mtu > ETH_DATA_LEN) &&
4312 e1000_lv_jumbo_workaround_ich8lan(hw, false))
4313 e_dbg("failed to disable jumbo frame workaround mode\n");
4314
4315 if (!pci_channel_offline(adapter->pdev)) {
4316 if (reset)
4317 e1000e_reset(adapter);
4318 else if (hw->mac.type >= e1000_pch_spt)
4319 e1000_flush_desc_rings(adapter);
4320 }
4321 e1000_clean_tx_ring(adapter->tx_ring);
4322 e1000_clean_rx_ring(adapter->rx_ring);
4323}
4324
4325void e1000e_reinit_locked(struct e1000_adapter *adapter)
4326{
4327 might_sleep();
4328 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4329 usleep_range(1000, 1100);
4330 e1000e_down(adapter, true);
4331 e1000e_up(adapter);
4332 clear_bit(__E1000_RESETTING, &adapter->state);
4333}
4334
4335/**
4336 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4337 * @hw: pointer to the HW structure
4338 * @systim: PHC time value read, sanitized and returned
4339 * @sts: structure to hold system time before and after reading SYSTIML,
4340 * may be NULL
4341 *
4342 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4343 * check to see that the time is incrementing at a reasonable
4344 * rate and is a multiple of incvalue.
4345 **/
4346static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4347 struct ptp_system_timestamp *sts)
4348{
4349 u64 time_delta, rem, temp;
4350 u64 systim_next;
4351 u32 incvalue;
4352 int i;
4353
4354 incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4355 for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4356 /* latch SYSTIMH on read of SYSTIML */
4357 ptp_read_system_prets(sts);
4358 systim_next = (u64)er32(SYSTIML);
4359 ptp_read_system_postts(sts);
4360 systim_next |= (u64)er32(SYSTIMH) << 32;
4361
4362 time_delta = systim_next - systim;
4363 temp = time_delta;
4364 /* VMWare users have seen incvalue of zero, don't div / 0 */
4365 rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4366
4367 systim = systim_next;
4368
4369 if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4370 break;
4371 }
4372
4373 return systim;
4374}
4375
4376/**
4377 * e1000e_read_systim - read SYSTIM register
4378 * @adapter: board private structure
4379 * @sts: structure which will contain system time before and after reading
4380 * SYSTIML, may be NULL
4381 **/
4382u64 e1000e_read_systim(struct e1000_adapter *adapter,
4383 struct ptp_system_timestamp *sts)
4384{
4385 struct e1000_hw *hw = &adapter->hw;
4386 u32 systimel, systimel_2, systimeh;
4387 u64 systim;
4388 /* SYSTIMH latching upon SYSTIML read does not work well.
4389 * This means that if SYSTIML overflows after we read it but before
4390 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4391 * will experience a huge non linear increment in the systime value
4392 * to fix that we test for overflow and if true, we re-read systime.
4393 */
4394 ptp_read_system_prets(sts);
4395 systimel = er32(SYSTIML);
4396 ptp_read_system_postts(sts);
4397 systimeh = er32(SYSTIMH);
4398 /* Is systimel is so large that overflow is possible? */
4399 if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4400 ptp_read_system_prets(sts);
4401 systimel_2 = er32(SYSTIML);
4402 ptp_read_system_postts(sts);
4403 if (systimel > systimel_2) {
4404 /* There was an overflow, read again SYSTIMH, and use
4405 * systimel_2
4406 */
4407 systimeh = er32(SYSTIMH);
4408 systimel = systimel_2;
4409 }
4410 }
4411 systim = (u64)systimel;
4412 systim |= (u64)systimeh << 32;
4413
4414 if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4415 systim = e1000e_sanitize_systim(hw, systim, sts);
4416
4417 return systim;
4418}
4419
4420/**
4421 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4422 * @cc: cyclecounter structure
4423 **/
4424static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4425{
4426 struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4427 cc);
4428
4429 return e1000e_read_systim(adapter, NULL);
4430}
4431
4432/**
4433 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4434 * @adapter: board private structure to initialize
4435 *
4436 * e1000_sw_init initializes the Adapter private data structure.
4437 * Fields are initialized based on PCI device information and
4438 * OS network device settings (MTU size).
4439 **/
4440static int e1000_sw_init(struct e1000_adapter *adapter)
4441{
4442 struct net_device *netdev = adapter->netdev;
4443
4444 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4445 adapter->rx_ps_bsize0 = 128;
4446 adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4447 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4448 adapter->tx_ring_count = E1000_DEFAULT_TXD;
4449 adapter->rx_ring_count = E1000_DEFAULT_RXD;
4450
4451 spin_lock_init(&adapter->stats64_lock);
4452
4453 e1000e_set_interrupt_capability(adapter);
4454
4455 if (e1000_alloc_queues(adapter))
4456 return -ENOMEM;
4457
4458 /* Setup hardware time stamping cyclecounter */
4459 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4460 adapter->cc.read = e1000e_cyclecounter_read;
4461 adapter->cc.mask = CYCLECOUNTER_MASK(64);
4462 adapter->cc.mult = 1;
4463 /* cc.shift set in e1000e_get_base_tininca() */
4464
4465 spin_lock_init(&adapter->systim_lock);
4466 INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4467 }
4468
4469 /* Explicitly disable IRQ since the NIC can be in any state. */
4470 e1000_irq_disable(adapter);
4471
4472 set_bit(__E1000_DOWN, &adapter->state);
4473 return 0;
4474}
4475
4476/**
4477 * e1000_intr_msi_test - Interrupt Handler
4478 * @irq: interrupt number
4479 * @data: pointer to a network interface device structure
4480 **/
4481static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4482{
4483 struct net_device *netdev = data;
4484 struct e1000_adapter *adapter = netdev_priv(netdev);
4485 struct e1000_hw *hw = &adapter->hw;
4486 u32 icr = er32(ICR);
4487
4488 e_dbg("icr is %08X\n", icr);
4489 if (icr & E1000_ICR_RXSEQ) {
4490 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4491 /* Force memory writes to complete before acknowledging the
4492 * interrupt is handled.
4493 */
4494 wmb();
4495 }
4496
4497 return IRQ_HANDLED;
4498}
4499
4500/**
4501 * e1000_test_msi_interrupt - Returns 0 for successful test
4502 * @adapter: board private struct
4503 *
4504 * code flow taken from tg3.c
4505 **/
4506static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4507{
4508 struct net_device *netdev = adapter->netdev;
4509 struct e1000_hw *hw = &adapter->hw;
4510 int err;
4511
4512 /* poll_enable hasn't been called yet, so don't need disable */
4513 /* clear any pending events */
4514 er32(ICR);
4515
4516 /* free the real vector and request a test handler */
4517 e1000_free_irq(adapter);
4518 e1000e_reset_interrupt_capability(adapter);
4519
4520 /* Assume that the test fails, if it succeeds then the test
4521 * MSI irq handler will unset this flag
4522 */
4523 adapter->flags |= FLAG_MSI_TEST_FAILED;
4524
4525 err = pci_enable_msi(adapter->pdev);
4526 if (err)
4527 goto msi_test_failed;
4528
4529 err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4530 netdev->name, netdev);
4531 if (err) {
4532 pci_disable_msi(adapter->pdev);
4533 goto msi_test_failed;
4534 }
4535
4536 /* Force memory writes to complete before enabling and firing an
4537 * interrupt.
4538 */
4539 wmb();
4540
4541 e1000_irq_enable(adapter);
4542
4543 /* fire an unusual interrupt on the test handler */
4544 ew32(ICS, E1000_ICS_RXSEQ);
4545 e1e_flush();
4546 msleep(100);
4547
4548 e1000_irq_disable(adapter);
4549
4550 rmb(); /* read flags after interrupt has been fired */
4551
4552 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4553 adapter->int_mode = E1000E_INT_MODE_LEGACY;
4554 e_info("MSI interrupt test failed, using legacy interrupt.\n");
4555 } else {
4556 e_dbg("MSI interrupt test succeeded!\n");
4557 }
4558
4559 free_irq(adapter->pdev->irq, netdev);
4560 pci_disable_msi(adapter->pdev);
4561
4562msi_test_failed:
4563 e1000e_set_interrupt_capability(adapter);
4564 return e1000_request_irq(adapter);
4565}
4566
4567/**
4568 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4569 * @adapter: board private struct
4570 *
4571 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4572 **/
4573static int e1000_test_msi(struct e1000_adapter *adapter)
4574{
4575 int err;
4576 u16 pci_cmd;
4577
4578 if (!(adapter->flags & FLAG_MSI_ENABLED))
4579 return 0;
4580
4581 /* disable SERR in case the MSI write causes a master abort */
4582 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4583 if (pci_cmd & PCI_COMMAND_SERR)
4584 pci_write_config_word(adapter->pdev, PCI_COMMAND,
4585 pci_cmd & ~PCI_COMMAND_SERR);
4586
4587 err = e1000_test_msi_interrupt(adapter);
4588
4589 /* re-enable SERR */
4590 if (pci_cmd & PCI_COMMAND_SERR) {
4591 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4592 pci_cmd |= PCI_COMMAND_SERR;
4593 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4594 }
4595
4596 return err;
4597}
4598
4599/**
4600 * e1000e_open - Called when a network interface is made active
4601 * @netdev: network interface device structure
4602 *
4603 * Returns 0 on success, negative value on failure
4604 *
4605 * The open entry point is called when a network interface is made
4606 * active by the system (IFF_UP). At this point all resources needed
4607 * for transmit and receive operations are allocated, the interrupt
4608 * handler is registered with the OS, the watchdog timer is started,
4609 * and the stack is notified that the interface is ready.
4610 **/
4611int e1000e_open(struct net_device *netdev)
4612{
4613 struct e1000_adapter *adapter = netdev_priv(netdev);
4614 struct e1000_hw *hw = &adapter->hw;
4615 struct pci_dev *pdev = adapter->pdev;
4616 int err;
4617
4618 /* disallow open during test */
4619 if (test_bit(__E1000_TESTING, &adapter->state))
4620 return -EBUSY;
4621
4622 pm_runtime_get_sync(&pdev->dev);
4623
4624 netif_carrier_off(netdev);
4625 netif_stop_queue(netdev);
4626
4627 /* allocate transmit descriptors */
4628 err = e1000e_setup_tx_resources(adapter->tx_ring);
4629 if (err)
4630 goto err_setup_tx;
4631
4632 /* allocate receive descriptors */
4633 err = e1000e_setup_rx_resources(adapter->rx_ring);
4634 if (err)
4635 goto err_setup_rx;
4636
4637 /* If AMT is enabled, let the firmware know that the network
4638 * interface is now open and reset the part to a known state.
4639 */
4640 if (adapter->flags & FLAG_HAS_AMT) {
4641 e1000e_get_hw_control(adapter);
4642 e1000e_reset(adapter);
4643 }
4644
4645 e1000e_power_up_phy(adapter);
4646
4647 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4648 if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
4649 e1000_update_mng_vlan(adapter);
4650
4651 /* DMA latency requirement to workaround jumbo issue */
4652 cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
4653
4654 /* before we allocate an interrupt, we must be ready to handle it.
4655 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4656 * as soon as we call pci_request_irq, so we have to setup our
4657 * clean_rx handler before we do so.
4658 */
4659 e1000_configure(adapter);
4660
4661 err = e1000_request_irq(adapter);
4662 if (err)
4663 goto err_req_irq;
4664
4665 /* Work around PCIe errata with MSI interrupts causing some chipsets to
4666 * ignore e1000e MSI messages, which means we need to test our MSI
4667 * interrupt now
4668 */
4669 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4670 err = e1000_test_msi(adapter);
4671 if (err) {
4672 e_err("Interrupt allocation failed\n");
4673 goto err_req_irq;
4674 }
4675 }
4676
4677 /* From here on the code is the same as e1000e_up() */
4678 clear_bit(__E1000_DOWN, &adapter->state);
4679
4680 napi_enable(&adapter->napi);
4681
4682 e1000_irq_enable(adapter);
4683
4684 adapter->tx_hang_recheck = false;
4685
4686 hw->mac.get_link_status = true;
4687 pm_runtime_put(&pdev->dev);
4688
4689 e1000e_trigger_lsc(adapter);
4690
4691 return 0;
4692
4693err_req_irq:
4694 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4695 e1000e_release_hw_control(adapter);
4696 e1000_power_down_phy(adapter);
4697 e1000e_free_rx_resources(adapter->rx_ring);
4698err_setup_rx:
4699 e1000e_free_tx_resources(adapter->tx_ring);
4700err_setup_tx:
4701 e1000e_reset(adapter);
4702 pm_runtime_put_sync(&pdev->dev);
4703
4704 return err;
4705}
4706
4707/**
4708 * e1000e_close - Disables a network interface
4709 * @netdev: network interface device structure
4710 *
4711 * Returns 0, this is not allowed to fail
4712 *
4713 * The close entry point is called when an interface is de-activated
4714 * by the OS. The hardware is still under the drivers control, but
4715 * needs to be disabled. A global MAC reset is issued to stop the
4716 * hardware, and all transmit and receive resources are freed.
4717 **/
4718int e1000e_close(struct net_device *netdev)
4719{
4720 struct e1000_adapter *adapter = netdev_priv(netdev);
4721 struct pci_dev *pdev = adapter->pdev;
4722 int count = E1000_CHECK_RESET_COUNT;
4723
4724 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4725 usleep_range(10000, 11000);
4726
4727 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4728
4729 pm_runtime_get_sync(&pdev->dev);
4730
4731 if (netif_device_present(netdev)) {
4732 e1000e_down(adapter, true);
4733 e1000_free_irq(adapter);
4734
4735 /* Link status message must follow this format */
4736 netdev_info(netdev, "NIC Link is Down\n");
4737 }
4738
4739 napi_disable(&adapter->napi);
4740
4741 e1000e_free_tx_resources(adapter->tx_ring);
4742 e1000e_free_rx_resources(adapter->rx_ring);
4743
4744 /* kill manageability vlan ID if supported, but not if a vlan with
4745 * the same ID is registered on the host OS (let 8021q kill it)
4746 */
4747 if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4748 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4749 adapter->mng_vlan_id);
4750
4751 /* If AMT is enabled, let the firmware know that the network
4752 * interface is now closed
4753 */
4754 if ((adapter->flags & FLAG_HAS_AMT) &&
4755 !test_bit(__E1000_TESTING, &adapter->state))
4756 e1000e_release_hw_control(adapter);
4757
4758 cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4759
4760 pm_runtime_put_sync(&pdev->dev);
4761
4762 return 0;
4763}
4764
4765/**
4766 * e1000_set_mac - Change the Ethernet Address of the NIC
4767 * @netdev: network interface device structure
4768 * @p: pointer to an address structure
4769 *
4770 * Returns 0 on success, negative on failure
4771 **/
4772static int e1000_set_mac(struct net_device *netdev, void *p)
4773{
4774 struct e1000_adapter *adapter = netdev_priv(netdev);
4775 struct e1000_hw *hw = &adapter->hw;
4776 struct sockaddr *addr = p;
4777
4778 if (!is_valid_ether_addr(addr->sa_data))
4779 return -EADDRNOTAVAIL;
4780
4781 eth_hw_addr_set(netdev, addr->sa_data);
4782 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4783
4784 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4785
4786 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4787 /* activate the work around */
4788 e1000e_set_laa_state_82571(&adapter->hw, 1);
4789
4790 /* Hold a copy of the LAA in RAR[14] This is done so that
4791 * between the time RAR[0] gets clobbered and the time it
4792 * gets fixed (in e1000_watchdog), the actual LAA is in one
4793 * of the RARs and no incoming packets directed to this port
4794 * are dropped. Eventually the LAA will be in RAR[0] and
4795 * RAR[14]
4796 */
4797 hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4798 adapter->hw.mac.rar_entry_count - 1);
4799 }
4800
4801 return 0;
4802}
4803
4804/**
4805 * e1000e_update_phy_task - work thread to update phy
4806 * @work: pointer to our work struct
4807 *
4808 * this worker thread exists because we must acquire a
4809 * semaphore to read the phy, which we could msleep while
4810 * waiting for it, and we can't msleep in a timer.
4811 **/
4812static void e1000e_update_phy_task(struct work_struct *work)
4813{
4814 struct e1000_adapter *adapter = container_of(work,
4815 struct e1000_adapter,
4816 update_phy_task);
4817 struct e1000_hw *hw = &adapter->hw;
4818
4819 if (test_bit(__E1000_DOWN, &adapter->state))
4820 return;
4821
4822 e1000_get_phy_info(hw);
4823
4824 /* Enable EEE on 82579 after link up */
4825 if (hw->phy.type >= e1000_phy_82579)
4826 e1000_set_eee_pchlan(hw);
4827}
4828
4829/**
4830 * e1000_update_phy_info - timre call-back to update PHY info
4831 * @t: pointer to timer_list containing private info adapter
4832 *
4833 * Need to wait a few seconds after link up to get diagnostic information from
4834 * the phy
4835 **/
4836static void e1000_update_phy_info(struct timer_list *t)
4837{
4838 struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4839
4840 if (test_bit(__E1000_DOWN, &adapter->state))
4841 return;
4842
4843 schedule_work(&adapter->update_phy_task);
4844}
4845
4846/**
4847 * e1000e_update_phy_stats - Update the PHY statistics counters
4848 * @adapter: board private structure
4849 *
4850 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4851 **/
4852static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4853{
4854 struct e1000_hw *hw = &adapter->hw;
4855 s32 ret_val;
4856 u16 phy_data;
4857
4858 ret_val = hw->phy.ops.acquire(hw);
4859 if (ret_val)
4860 return;
4861
4862 /* A page set is expensive so check if already on desired page.
4863 * If not, set to the page with the PHY status registers.
4864 */
4865 hw->phy.addr = 1;
4866 ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4867 &phy_data);
4868 if (ret_val)
4869 goto release;
4870 if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4871 ret_val = hw->phy.ops.set_page(hw,
4872 HV_STATS_PAGE << IGP_PAGE_SHIFT);
4873 if (ret_val)
4874 goto release;
4875 }
4876
4877 /* Single Collision Count */
4878 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4879 ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4880 if (!ret_val)
4881 adapter->stats.scc += phy_data;
4882
4883 /* Excessive Collision Count */
4884 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4885 ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4886 if (!ret_val)
4887 adapter->stats.ecol += phy_data;
4888
4889 /* Multiple Collision Count */
4890 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4891 ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4892 if (!ret_val)
4893 adapter->stats.mcc += phy_data;
4894
4895 /* Late Collision Count */
4896 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4897 ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4898 if (!ret_val)
4899 adapter->stats.latecol += phy_data;
4900
4901 /* Collision Count - also used for adaptive IFS */
4902 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4903 ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4904 if (!ret_val)
4905 hw->mac.collision_delta = phy_data;
4906
4907 /* Defer Count */
4908 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4909 ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4910 if (!ret_val)
4911 adapter->stats.dc += phy_data;
4912
4913 /* Transmit with no CRS */
4914 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4915 ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4916 if (!ret_val)
4917 adapter->stats.tncrs += phy_data;
4918
4919release:
4920 hw->phy.ops.release(hw);
4921}
4922
4923/**
4924 * e1000e_update_stats - Update the board statistics counters
4925 * @adapter: board private structure
4926 **/
4927static void e1000e_update_stats(struct e1000_adapter *adapter)
4928{
4929 struct net_device *netdev = adapter->netdev;
4930 struct e1000_hw *hw = &adapter->hw;
4931 struct pci_dev *pdev = adapter->pdev;
4932
4933 /* Prevent stats update while adapter is being reset, or if the pci
4934 * connection is down.
4935 */
4936 if (adapter->link_speed == 0)
4937 return;
4938 if (pci_channel_offline(pdev))
4939 return;
4940
4941 adapter->stats.crcerrs += er32(CRCERRS);
4942 adapter->stats.gprc += er32(GPRC);
4943 adapter->stats.gorc += er32(GORCL);
4944 er32(GORCH); /* Clear gorc */
4945 adapter->stats.bprc += er32(BPRC);
4946 adapter->stats.mprc += er32(MPRC);
4947 adapter->stats.roc += er32(ROC);
4948
4949 adapter->stats.mpc += er32(MPC);
4950
4951 /* Half-duplex statistics */
4952 if (adapter->link_duplex == HALF_DUPLEX) {
4953 if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4954 e1000e_update_phy_stats(adapter);
4955 } else {
4956 adapter->stats.scc += er32(SCC);
4957 adapter->stats.ecol += er32(ECOL);
4958 adapter->stats.mcc += er32(MCC);
4959 adapter->stats.latecol += er32(LATECOL);
4960 adapter->stats.dc += er32(DC);
4961
4962 hw->mac.collision_delta = er32(COLC);
4963
4964 if ((hw->mac.type != e1000_82574) &&
4965 (hw->mac.type != e1000_82583))
4966 adapter->stats.tncrs += er32(TNCRS);
4967 }
4968 adapter->stats.colc += hw->mac.collision_delta;
4969 }
4970
4971 adapter->stats.xonrxc += er32(XONRXC);
4972 adapter->stats.xontxc += er32(XONTXC);
4973 adapter->stats.xoffrxc += er32(XOFFRXC);
4974 adapter->stats.xofftxc += er32(XOFFTXC);
4975 adapter->stats.gptc += er32(GPTC);
4976 adapter->stats.gotc += er32(GOTCL);
4977 er32(GOTCH); /* Clear gotc */
4978 adapter->stats.rnbc += er32(RNBC);
4979 adapter->stats.ruc += er32(RUC);
4980
4981 adapter->stats.mptc += er32(MPTC);
4982 adapter->stats.bptc += er32(BPTC);
4983
4984 /* used for adaptive IFS */
4985
4986 hw->mac.tx_packet_delta = er32(TPT);
4987 adapter->stats.tpt += hw->mac.tx_packet_delta;
4988
4989 adapter->stats.algnerrc += er32(ALGNERRC);
4990 adapter->stats.rxerrc += er32(RXERRC);
4991 adapter->stats.cexterr += er32(CEXTERR);
4992 adapter->stats.tsctc += er32(TSCTC);
4993 adapter->stats.tsctfc += er32(TSCTFC);
4994
4995 /* Fill out the OS statistics structure */
4996 netdev->stats.multicast = adapter->stats.mprc;
4997 netdev->stats.collisions = adapter->stats.colc;
4998
4999 /* Rx Errors */
5000
5001 /* RLEC on some newer hardware can be incorrect so build
5002 * our own version based on RUC and ROC
5003 */
5004 netdev->stats.rx_errors = adapter->stats.rxerrc +
5005 adapter->stats.crcerrs + adapter->stats.algnerrc +
5006 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5007 netdev->stats.rx_length_errors = adapter->stats.ruc +
5008 adapter->stats.roc;
5009 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5010 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5011 netdev->stats.rx_missed_errors = adapter->stats.mpc;
5012
5013 /* Tx Errors */
5014 netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
5015 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5016 netdev->stats.tx_window_errors = adapter->stats.latecol;
5017 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5018
5019 /* Tx Dropped needs to be maintained elsewhere */
5020
5021 /* Management Stats */
5022 adapter->stats.mgptc += er32(MGTPTC);
5023 adapter->stats.mgprc += er32(MGTPRC);
5024 adapter->stats.mgpdc += er32(MGTPDC);
5025
5026 /* Correctable ECC Errors */
5027 if (hw->mac.type >= e1000_pch_lpt) {
5028 u32 pbeccsts = er32(PBECCSTS);
5029
5030 adapter->corr_errors +=
5031 pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5032 adapter->uncorr_errors +=
5033 (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5034 E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5035 }
5036}
5037
5038/**
5039 * e1000_phy_read_status - Update the PHY register status snapshot
5040 * @adapter: board private structure
5041 **/
5042static void e1000_phy_read_status(struct e1000_adapter *adapter)
5043{
5044 struct e1000_hw *hw = &adapter->hw;
5045 struct e1000_phy_regs *phy = &adapter->phy_regs;
5046
5047 if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5048 (er32(STATUS) & E1000_STATUS_LU) &&
5049 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5050 int ret_val;
5051
5052 ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5053 ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5054 ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5055 ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5056 ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5057 ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5058 ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5059 ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5060 if (ret_val)
5061 e_warn("Error reading PHY register\n");
5062 } else {
5063 /* Do not read PHY registers if link is not up
5064 * Set values to typical power-on defaults
5065 */
5066 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5067 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5068 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5069 BMSR_ERCAP);
5070 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5071 ADVERTISE_ALL | ADVERTISE_CSMA);
5072 phy->lpa = 0;
5073 phy->expansion = EXPANSION_ENABLENPAGE;
5074 phy->ctrl1000 = ADVERTISE_1000FULL;
5075 phy->stat1000 = 0;
5076 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5077 }
5078}
5079
5080static void e1000_print_link_info(struct e1000_adapter *adapter)
5081{
5082 struct e1000_hw *hw = &adapter->hw;
5083 u32 ctrl = er32(CTRL);
5084
5085 /* Link status message must follow this format for user tools */
5086 netdev_info(adapter->netdev,
5087 "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5088 adapter->link_speed,
5089 adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5090 (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5091 (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5092 (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5093}
5094
5095static bool e1000e_has_link(struct e1000_adapter *adapter)
5096{
5097 struct e1000_hw *hw = &adapter->hw;
5098 bool link_active = false;
5099 s32 ret_val = 0;
5100
5101 /* get_link_status is set on LSC (link status) interrupt or
5102 * Rx sequence error interrupt. get_link_status will stay
5103 * true until the check_for_link establishes link
5104 * for copper adapters ONLY
5105 */
5106 switch (hw->phy.media_type) {
5107 case e1000_media_type_copper:
5108 if (hw->mac.get_link_status) {
5109 ret_val = hw->mac.ops.check_for_link(hw);
5110 link_active = !hw->mac.get_link_status;
5111 } else {
5112 link_active = true;
5113 }
5114 break;
5115 case e1000_media_type_fiber:
5116 ret_val = hw->mac.ops.check_for_link(hw);
5117 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5118 break;
5119 case e1000_media_type_internal_serdes:
5120 ret_val = hw->mac.ops.check_for_link(hw);
5121 link_active = hw->mac.serdes_has_link;
5122 break;
5123 default:
5124 case e1000_media_type_unknown:
5125 break;
5126 }
5127
5128 if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5129 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5130 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5131 e_info("Gigabit has been disabled, downgrading speed\n");
5132 }
5133
5134 return link_active;
5135}
5136
5137static void e1000e_enable_receives(struct e1000_adapter *adapter)
5138{
5139 /* make sure the receive unit is started */
5140 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5141 (adapter->flags & FLAG_RESTART_NOW)) {
5142 struct e1000_hw *hw = &adapter->hw;
5143 u32 rctl = er32(RCTL);
5144
5145 ew32(RCTL, rctl | E1000_RCTL_EN);
5146 adapter->flags &= ~FLAG_RESTART_NOW;
5147 }
5148}
5149
5150static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5151{
5152 struct e1000_hw *hw = &adapter->hw;
5153
5154 /* With 82574 controllers, PHY needs to be checked periodically
5155 * for hung state and reset, if two calls return true
5156 */
5157 if (e1000_check_phy_82574(hw))
5158 adapter->phy_hang_count++;
5159 else
5160 adapter->phy_hang_count = 0;
5161
5162 if (adapter->phy_hang_count > 1) {
5163 adapter->phy_hang_count = 0;
5164 e_dbg("PHY appears hung - resetting\n");
5165 schedule_work(&adapter->reset_task);
5166 }
5167}
5168
5169/**
5170 * e1000_watchdog - Timer Call-back
5171 * @t: pointer to timer_list containing private info adapter
5172 **/
5173static void e1000_watchdog(struct timer_list *t)
5174{
5175 struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5176
5177 /* Do the rest outside of interrupt context */
5178 schedule_work(&adapter->watchdog_task);
5179
5180 /* TODO: make this use queue_delayed_work() */
5181}
5182
5183static void e1000_watchdog_task(struct work_struct *work)
5184{
5185 struct e1000_adapter *adapter = container_of(work,
5186 struct e1000_adapter,
5187 watchdog_task);
5188 struct net_device *netdev = adapter->netdev;
5189 struct e1000_mac_info *mac = &adapter->hw.mac;
5190 struct e1000_phy_info *phy = &adapter->hw.phy;
5191 struct e1000_ring *tx_ring = adapter->tx_ring;
5192 u32 dmoff_exit_timeout = 100, tries = 0;
5193 struct e1000_hw *hw = &adapter->hw;
5194 u32 link, tctl, pcim_state;
5195
5196 if (test_bit(__E1000_DOWN, &adapter->state))
5197 return;
5198
5199 link = e1000e_has_link(adapter);
5200 if ((netif_carrier_ok(netdev)) && link) {
5201 /* Cancel scheduled suspend requests. */
5202 pm_runtime_resume(netdev->dev.parent);
5203
5204 e1000e_enable_receives(adapter);
5205 goto link_up;
5206 }
5207
5208 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5209 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5210 e1000_update_mng_vlan(adapter);
5211
5212 if (link) {
5213 if (!netif_carrier_ok(netdev)) {
5214 bool txb2b = true;
5215
5216 /* Cancel scheduled suspend requests. */
5217 pm_runtime_resume(netdev->dev.parent);
5218
5219 /* Checking if MAC is in DMoff state*/
5220 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5221 pcim_state = er32(STATUS);
5222 while (pcim_state & E1000_STATUS_PCIM_STATE) {
5223 if (tries++ == dmoff_exit_timeout) {
5224 e_dbg("Error in exiting dmoff\n");
5225 break;
5226 }
5227 usleep_range(10000, 20000);
5228 pcim_state = er32(STATUS);
5229
5230 /* Checking if MAC exited DMoff state */
5231 if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5232 e1000_phy_hw_reset(&adapter->hw);
5233 }
5234 }
5235
5236 /* update snapshot of PHY registers on LSC */
5237 e1000_phy_read_status(adapter);
5238 mac->ops.get_link_up_info(&adapter->hw,
5239 &adapter->link_speed,
5240 &adapter->link_duplex);
5241 e1000_print_link_info(adapter);
5242
5243 /* check if SmartSpeed worked */
5244 e1000e_check_downshift(hw);
5245 if (phy->speed_downgraded)
5246 netdev_warn(netdev,
5247 "Link Speed was downgraded by SmartSpeed\n");
5248
5249 /* On supported PHYs, check for duplex mismatch only
5250 * if link has autonegotiated at 10/100 half
5251 */
5252 if ((hw->phy.type == e1000_phy_igp_3 ||
5253 hw->phy.type == e1000_phy_bm) &&
5254 hw->mac.autoneg &&
5255 (adapter->link_speed == SPEED_10 ||
5256 adapter->link_speed == SPEED_100) &&
5257 (adapter->link_duplex == HALF_DUPLEX)) {
5258 u16 autoneg_exp;
5259
5260 e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5261
5262 if (!(autoneg_exp & EXPANSION_NWAY))
5263 e_info("Autonegotiated half duplex but link partner cannot autoneg. Try forcing full duplex if link gets many collisions.\n");
5264 }
5265
5266 /* adjust timeout factor according to speed/duplex */
5267 adapter->tx_timeout_factor = 1;
5268 switch (adapter->link_speed) {
5269 case SPEED_10:
5270 txb2b = false;
5271 adapter->tx_timeout_factor = 16;
5272 break;
5273 case SPEED_100:
5274 txb2b = false;
5275 adapter->tx_timeout_factor = 10;
5276 break;
5277 }
5278
5279 /* workaround: re-program speed mode bit after
5280 * link-up event
5281 */
5282 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5283 !txb2b) {
5284 u32 tarc0;
5285
5286 tarc0 = er32(TARC(0));
5287 tarc0 &= ~SPEED_MODE_BIT;
5288 ew32(TARC(0), tarc0);
5289 }
5290
5291 /* disable TSO for pcie and 10/100 speeds, to avoid
5292 * some hardware issues
5293 */
5294 if (!(adapter->flags & FLAG_TSO_FORCE)) {
5295 switch (adapter->link_speed) {
5296 case SPEED_10:
5297 case SPEED_100:
5298 e_info("10/100 speed: disabling TSO\n");
5299 netdev->features &= ~NETIF_F_TSO;
5300 netdev->features &= ~NETIF_F_TSO6;
5301 break;
5302 case SPEED_1000:
5303 netdev->features |= NETIF_F_TSO;
5304 netdev->features |= NETIF_F_TSO6;
5305 break;
5306 default:
5307 /* oops */
5308 break;
5309 }
5310 if (hw->mac.type == e1000_pch_spt) {
5311 netdev->features &= ~NETIF_F_TSO;
5312 netdev->features &= ~NETIF_F_TSO6;
5313 }
5314 }
5315
5316 /* enable transmits in the hardware, need to do this
5317 * after setting TARC(0)
5318 */
5319 tctl = er32(TCTL);
5320 tctl |= E1000_TCTL_EN;
5321 ew32(TCTL, tctl);
5322
5323 /* Perform any post-link-up configuration before
5324 * reporting link up.
5325 */
5326 if (phy->ops.cfg_on_link_up)
5327 phy->ops.cfg_on_link_up(hw);
5328
5329 netif_wake_queue(netdev);
5330 netif_carrier_on(netdev);
5331
5332 if (!test_bit(__E1000_DOWN, &adapter->state))
5333 mod_timer(&adapter->phy_info_timer,
5334 round_jiffies(jiffies + 2 * HZ));
5335 }
5336 } else {
5337 if (netif_carrier_ok(netdev)) {
5338 adapter->link_speed = 0;
5339 adapter->link_duplex = 0;
5340 /* Link status message must follow this format */
5341 netdev_info(netdev, "NIC Link is Down\n");
5342 netif_carrier_off(netdev);
5343 netif_stop_queue(netdev);
5344 if (!test_bit(__E1000_DOWN, &adapter->state))
5345 mod_timer(&adapter->phy_info_timer,
5346 round_jiffies(jiffies + 2 * HZ));
5347
5348 /* 8000ES2LAN requires a Rx packet buffer work-around
5349 * on link down event; reset the controller to flush
5350 * the Rx packet buffer.
5351 */
5352 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5353 adapter->flags |= FLAG_RESTART_NOW;
5354 else
5355 pm_schedule_suspend(netdev->dev.parent,
5356 LINK_TIMEOUT);
5357 }
5358 }
5359
5360link_up:
5361 spin_lock(&adapter->stats64_lock);
5362 e1000e_update_stats(adapter);
5363
5364 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5365 adapter->tpt_old = adapter->stats.tpt;
5366 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5367 adapter->colc_old = adapter->stats.colc;
5368
5369 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5370 adapter->gorc_old = adapter->stats.gorc;
5371 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5372 adapter->gotc_old = adapter->stats.gotc;
5373 spin_unlock(&adapter->stats64_lock);
5374
5375 /* If the link is lost the controller stops DMA, but
5376 * if there is queued Tx work it cannot be done. So
5377 * reset the controller to flush the Tx packet buffers.
5378 */
5379 if (!netif_carrier_ok(netdev) &&
5380 (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5381 adapter->flags |= FLAG_RESTART_NOW;
5382
5383 /* If reset is necessary, do it outside of interrupt context. */
5384 if (adapter->flags & FLAG_RESTART_NOW) {
5385 schedule_work(&adapter->reset_task);
5386 /* return immediately since reset is imminent */
5387 return;
5388 }
5389
5390 e1000e_update_adaptive(&adapter->hw);
5391
5392 /* Simple mode for Interrupt Throttle Rate (ITR) */
5393 if (adapter->itr_setting == 4) {
5394 /* Symmetric Tx/Rx gets a reduced ITR=2000;
5395 * Total asymmetrical Tx or Rx gets ITR=8000;
5396 * everyone else is between 2000-8000.
5397 */
5398 u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5399 u32 dif = (adapter->gotc > adapter->gorc ?
5400 adapter->gotc - adapter->gorc :
5401 adapter->gorc - adapter->gotc) / 10000;
5402 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5403
5404 e1000e_write_itr(adapter, itr);
5405 }
5406
5407 /* Cause software interrupt to ensure Rx ring is cleaned */
5408 if (adapter->msix_entries)
5409 ew32(ICS, adapter->rx_ring->ims_val);
5410 else
5411 ew32(ICS, E1000_ICS_RXDMT0);
5412
5413 /* flush pending descriptors to memory before detecting Tx hang */
5414 e1000e_flush_descriptors(adapter);
5415
5416 /* Force detection of hung controller every watchdog period */
5417 adapter->detect_tx_hung = true;
5418
5419 /* With 82571 controllers, LAA may be overwritten due to controller
5420 * reset from the other port. Set the appropriate LAA in RAR[0]
5421 */
5422 if (e1000e_get_laa_state_82571(hw))
5423 hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5424
5425 if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5426 e1000e_check_82574_phy_workaround(adapter);
5427
5428 /* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5429 if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5430 if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5431 (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5432 er32(RXSTMPH);
5433 adapter->rx_hwtstamp_cleared++;
5434 } else {
5435 adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5436 }
5437 }
5438
5439 /* Reset the timer */
5440 if (!test_bit(__E1000_DOWN, &adapter->state))
5441 mod_timer(&adapter->watchdog_timer,
5442 round_jiffies(jiffies + 2 * HZ));
5443}
5444
5445#define E1000_TX_FLAGS_CSUM 0x00000001
5446#define E1000_TX_FLAGS_VLAN 0x00000002
5447#define E1000_TX_FLAGS_TSO 0x00000004
5448#define E1000_TX_FLAGS_IPV4 0x00000008
5449#define E1000_TX_FLAGS_NO_FCS 0x00000010
5450#define E1000_TX_FLAGS_HWTSTAMP 0x00000020
5451#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
5452#define E1000_TX_FLAGS_VLAN_SHIFT 16
5453
5454static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5455 __be16 protocol)
5456{
5457 struct e1000_context_desc *context_desc;
5458 struct e1000_buffer *buffer_info;
5459 unsigned int i;
5460 u32 cmd_length = 0;
5461 u16 ipcse = 0, mss;
5462 u8 ipcss, ipcso, tucss, tucso, hdr_len;
5463 int err;
5464
5465 if (!skb_is_gso(skb))
5466 return 0;
5467
5468 err = skb_cow_head(skb, 0);
5469 if (err < 0)
5470 return err;
5471
5472 hdr_len = skb_tcp_all_headers(skb);
5473 mss = skb_shinfo(skb)->gso_size;
5474 if (protocol == htons(ETH_P_IP)) {
5475 struct iphdr *iph = ip_hdr(skb);
5476 iph->tot_len = 0;
5477 iph->check = 0;
5478 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5479 0, IPPROTO_TCP, 0);
5480 cmd_length = E1000_TXD_CMD_IP;
5481 ipcse = skb_transport_offset(skb) - 1;
5482 } else if (skb_is_gso_v6(skb)) {
5483 tcp_v6_gso_csum_prep(skb);
5484 ipcse = 0;
5485 }
5486 ipcss = skb_network_offset(skb);
5487 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5488 tucss = skb_transport_offset(skb);
5489 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
5490
5491 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5492 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5493
5494 i = tx_ring->next_to_use;
5495 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5496 buffer_info = &tx_ring->buffer_info[i];
5497
5498 context_desc->lower_setup.ip_fields.ipcss = ipcss;
5499 context_desc->lower_setup.ip_fields.ipcso = ipcso;
5500 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5501 context_desc->upper_setup.tcp_fields.tucss = tucss;
5502 context_desc->upper_setup.tcp_fields.tucso = tucso;
5503 context_desc->upper_setup.tcp_fields.tucse = 0;
5504 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5505 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5506 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5507
5508 buffer_info->time_stamp = jiffies;
5509 buffer_info->next_to_watch = i;
5510
5511 i++;
5512 if (i == tx_ring->count)
5513 i = 0;
5514 tx_ring->next_to_use = i;
5515
5516 return 1;
5517}
5518
5519static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5520 __be16 protocol)
5521{
5522 struct e1000_adapter *adapter = tx_ring->adapter;
5523 struct e1000_context_desc *context_desc;
5524 struct e1000_buffer *buffer_info;
5525 unsigned int i;
5526 u8 css;
5527 u32 cmd_len = E1000_TXD_CMD_DEXT;
5528
5529 if (skb->ip_summed != CHECKSUM_PARTIAL)
5530 return false;
5531
5532 switch (protocol) {
5533 case cpu_to_be16(ETH_P_IP):
5534 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5535 cmd_len |= E1000_TXD_CMD_TCP;
5536 break;
5537 case cpu_to_be16(ETH_P_IPV6):
5538 /* XXX not handling all IPV6 headers */
5539 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5540 cmd_len |= E1000_TXD_CMD_TCP;
5541 break;
5542 default:
5543 if (unlikely(net_ratelimit()))
5544 e_warn("checksum_partial proto=%x!\n",
5545 be16_to_cpu(protocol));
5546 break;
5547 }
5548
5549 css = skb_checksum_start_offset(skb);
5550
5551 i = tx_ring->next_to_use;
5552 buffer_info = &tx_ring->buffer_info[i];
5553 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5554
5555 context_desc->lower_setup.ip_config = 0;
5556 context_desc->upper_setup.tcp_fields.tucss = css;
5557 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
5558 context_desc->upper_setup.tcp_fields.tucse = 0;
5559 context_desc->tcp_seg_setup.data = 0;
5560 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5561
5562 buffer_info->time_stamp = jiffies;
5563 buffer_info->next_to_watch = i;
5564
5565 i++;
5566 if (i == tx_ring->count)
5567 i = 0;
5568 tx_ring->next_to_use = i;
5569
5570 return true;
5571}
5572
5573static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5574 unsigned int first, unsigned int max_per_txd,
5575 unsigned int nr_frags)
5576{
5577 struct e1000_adapter *adapter = tx_ring->adapter;
5578 struct pci_dev *pdev = adapter->pdev;
5579 struct e1000_buffer *buffer_info;
5580 unsigned int len = skb_headlen(skb);
5581 unsigned int offset = 0, size, count = 0, i;
5582 unsigned int f, bytecount, segs;
5583
5584 i = tx_ring->next_to_use;
5585
5586 while (len) {
5587 buffer_info = &tx_ring->buffer_info[i];
5588 size = min(len, max_per_txd);
5589
5590 buffer_info->length = size;
5591 buffer_info->time_stamp = jiffies;
5592 buffer_info->next_to_watch = i;
5593 buffer_info->dma = dma_map_single(&pdev->dev,
5594 skb->data + offset,
5595 size, DMA_TO_DEVICE);
5596 buffer_info->mapped_as_page = false;
5597 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5598 goto dma_error;
5599
5600 len -= size;
5601 offset += size;
5602 count++;
5603
5604 if (len) {
5605 i++;
5606 if (i == tx_ring->count)
5607 i = 0;
5608 }
5609 }
5610
5611 for (f = 0; f < nr_frags; f++) {
5612 const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5613
5614 len = skb_frag_size(frag);
5615 offset = 0;
5616
5617 while (len) {
5618 i++;
5619 if (i == tx_ring->count)
5620 i = 0;
5621
5622 buffer_info = &tx_ring->buffer_info[i];
5623 size = min(len, max_per_txd);
5624
5625 buffer_info->length = size;
5626 buffer_info->time_stamp = jiffies;
5627 buffer_info->next_to_watch = i;
5628 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5629 offset, size,
5630 DMA_TO_DEVICE);
5631 buffer_info->mapped_as_page = true;
5632 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5633 goto dma_error;
5634
5635 len -= size;
5636 offset += size;
5637 count++;
5638 }
5639 }
5640
5641 segs = skb_shinfo(skb)->gso_segs ? : 1;
5642 /* multiply data chunks by size of headers */
5643 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5644
5645 tx_ring->buffer_info[i].skb = skb;
5646 tx_ring->buffer_info[i].segs = segs;
5647 tx_ring->buffer_info[i].bytecount = bytecount;
5648 tx_ring->buffer_info[first].next_to_watch = i;
5649
5650 return count;
5651
5652dma_error:
5653 dev_err(&pdev->dev, "Tx DMA map failed\n");
5654 buffer_info->dma = 0;
5655 if (count)
5656 count--;
5657
5658 while (count--) {
5659 if (i == 0)
5660 i += tx_ring->count;
5661 i--;
5662 buffer_info = &tx_ring->buffer_info[i];
5663 e1000_put_txbuf(tx_ring, buffer_info, true);
5664 }
5665
5666 return 0;
5667}
5668
5669static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5670{
5671 struct e1000_adapter *adapter = tx_ring->adapter;
5672 struct e1000_tx_desc *tx_desc = NULL;
5673 struct e1000_buffer *buffer_info;
5674 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5675 unsigned int i;
5676
5677 if (tx_flags & E1000_TX_FLAGS_TSO) {
5678 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5679 E1000_TXD_CMD_TSE;
5680 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5681
5682 if (tx_flags & E1000_TX_FLAGS_IPV4)
5683 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5684 }
5685
5686 if (tx_flags & E1000_TX_FLAGS_CSUM) {
5687 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5688 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5689 }
5690
5691 if (tx_flags & E1000_TX_FLAGS_VLAN) {
5692 txd_lower |= E1000_TXD_CMD_VLE;
5693 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5694 }
5695
5696 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5697 txd_lower &= ~(E1000_TXD_CMD_IFCS);
5698
5699 if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5700 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5701 txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5702 }
5703
5704 i = tx_ring->next_to_use;
5705
5706 do {
5707 buffer_info = &tx_ring->buffer_info[i];
5708 tx_desc = E1000_TX_DESC(*tx_ring, i);
5709 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5710 tx_desc->lower.data = cpu_to_le32(txd_lower |
5711 buffer_info->length);
5712 tx_desc->upper.data = cpu_to_le32(txd_upper);
5713
5714 i++;
5715 if (i == tx_ring->count)
5716 i = 0;
5717 } while (--count > 0);
5718
5719 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5720
5721 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5722 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5723 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5724
5725 /* Force memory writes to complete before letting h/w
5726 * know there are new descriptors to fetch. (Only
5727 * applicable for weak-ordered memory model archs,
5728 * such as IA-64).
5729 */
5730 wmb();
5731
5732 tx_ring->next_to_use = i;
5733}
5734
5735#define MINIMUM_DHCP_PACKET_SIZE 282
5736static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5737 struct sk_buff *skb)
5738{
5739 struct e1000_hw *hw = &adapter->hw;
5740 u16 length, offset;
5741
5742 if (skb_vlan_tag_present(skb) &&
5743 !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5744 (adapter->hw.mng_cookie.status &
5745 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5746 return 0;
5747
5748 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5749 return 0;
5750
5751 if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5752 return 0;
5753
5754 {
5755 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5756 struct udphdr *udp;
5757
5758 if (ip->protocol != IPPROTO_UDP)
5759 return 0;
5760
5761 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5762 if (ntohs(udp->dest) != 67)
5763 return 0;
5764
5765 offset = (u8 *)udp + 8 - skb->data;
5766 length = skb->len - offset;
5767 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5768 }
5769
5770 return 0;
5771}
5772
5773static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5774{
5775 struct e1000_adapter *adapter = tx_ring->adapter;
5776
5777 netif_stop_queue(adapter->netdev);
5778 /* Herbert's original patch had:
5779 * smp_mb__after_netif_stop_queue();
5780 * but since that doesn't exist yet, just open code it.
5781 */
5782 smp_mb();
5783
5784 /* We need to check again in a case another CPU has just
5785 * made room available.
5786 */
5787 if (e1000_desc_unused(tx_ring) < size)
5788 return -EBUSY;
5789
5790 /* A reprieve! */
5791 netif_start_queue(adapter->netdev);
5792 ++adapter->restart_queue;
5793 return 0;
5794}
5795
5796static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5797{
5798 BUG_ON(size > tx_ring->count);
5799
5800 if (e1000_desc_unused(tx_ring) >= size)
5801 return 0;
5802 return __e1000_maybe_stop_tx(tx_ring, size);
5803}
5804
5805static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5806 struct net_device *netdev)
5807{
5808 struct e1000_adapter *adapter = netdev_priv(netdev);
5809 struct e1000_ring *tx_ring = adapter->tx_ring;
5810 unsigned int first;
5811 unsigned int tx_flags = 0;
5812 unsigned int len = skb_headlen(skb);
5813 unsigned int nr_frags;
5814 unsigned int mss;
5815 int count = 0;
5816 int tso;
5817 unsigned int f;
5818 __be16 protocol = vlan_get_protocol(skb);
5819
5820 if (test_bit(__E1000_DOWN, &adapter->state)) {
5821 dev_kfree_skb_any(skb);
5822 return NETDEV_TX_OK;
5823 }
5824
5825 if (skb->len <= 0) {
5826 dev_kfree_skb_any(skb);
5827 return NETDEV_TX_OK;
5828 }
5829
5830 /* The minimum packet size with TCTL.PSP set is 17 bytes so
5831 * pad skb in order to meet this minimum size requirement
5832 */
5833 if (skb_put_padto(skb, 17))
5834 return NETDEV_TX_OK;
5835
5836 mss = skb_shinfo(skb)->gso_size;
5837 if (mss) {
5838 u8 hdr_len;
5839
5840 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
5841 * points to just header, pull a few bytes of payload from
5842 * frags into skb->data
5843 */
5844 hdr_len = skb_tcp_all_headers(skb);
5845 /* we do this workaround for ES2LAN, but it is un-necessary,
5846 * avoiding it could save a lot of cycles
5847 */
5848 if (skb->data_len && (hdr_len == len)) {
5849 unsigned int pull_size;
5850
5851 pull_size = min_t(unsigned int, 4, skb->data_len);
5852 if (!__pskb_pull_tail(skb, pull_size)) {
5853 e_err("__pskb_pull_tail failed.\n");
5854 dev_kfree_skb_any(skb);
5855 return NETDEV_TX_OK;
5856 }
5857 len = skb_headlen(skb);
5858 }
5859 }
5860
5861 /* reserve a descriptor for the offload context */
5862 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5863 count++;
5864 count++;
5865
5866 count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5867
5868 nr_frags = skb_shinfo(skb)->nr_frags;
5869 for (f = 0; f < nr_frags; f++)
5870 count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5871 adapter->tx_fifo_limit);
5872
5873 if (adapter->hw.mac.tx_pkt_filtering)
5874 e1000_transfer_dhcp_info(adapter, skb);
5875
5876 /* need: count + 2 desc gap to keep tail from touching
5877 * head, otherwise try next time
5878 */
5879 if (e1000_maybe_stop_tx(tx_ring, count + 2))
5880 return NETDEV_TX_BUSY;
5881
5882 if (skb_vlan_tag_present(skb)) {
5883 tx_flags |= E1000_TX_FLAGS_VLAN;
5884 tx_flags |= (skb_vlan_tag_get(skb) <<
5885 E1000_TX_FLAGS_VLAN_SHIFT);
5886 }
5887
5888 first = tx_ring->next_to_use;
5889
5890 tso = e1000_tso(tx_ring, skb, protocol);
5891 if (tso < 0) {
5892 dev_kfree_skb_any(skb);
5893 return NETDEV_TX_OK;
5894 }
5895
5896 if (tso)
5897 tx_flags |= E1000_TX_FLAGS_TSO;
5898 else if (e1000_tx_csum(tx_ring, skb, protocol))
5899 tx_flags |= E1000_TX_FLAGS_CSUM;
5900
5901 /* Old method was to assume IPv4 packet by default if TSO was enabled.
5902 * 82571 hardware supports TSO capabilities for IPv6 as well...
5903 * no longer assume, we must.
5904 */
5905 if (protocol == htons(ETH_P_IP))
5906 tx_flags |= E1000_TX_FLAGS_IPV4;
5907
5908 if (unlikely(skb->no_fcs))
5909 tx_flags |= E1000_TX_FLAGS_NO_FCS;
5910
5911 /* if count is 0 then mapping error has occurred */
5912 count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5913 nr_frags);
5914 if (count) {
5915 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5916 (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5917 if (!adapter->tx_hwtstamp_skb) {
5918 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5919 tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5920 adapter->tx_hwtstamp_skb = skb_get(skb);
5921 adapter->tx_hwtstamp_start = jiffies;
5922 schedule_work(&adapter->tx_hwtstamp_work);
5923 } else {
5924 adapter->tx_hwtstamp_skipped++;
5925 }
5926 }
5927
5928 skb_tx_timestamp(skb);
5929
5930 netdev_sent_queue(netdev, skb->len);
5931 e1000_tx_queue(tx_ring, tx_flags, count);
5932 /* Make sure there is space in the ring for the next send. */
5933 e1000_maybe_stop_tx(tx_ring,
5934 ((MAX_SKB_FRAGS + 1) *
5935 DIV_ROUND_UP(PAGE_SIZE,
5936 adapter->tx_fifo_limit) + 4));
5937
5938 if (!netdev_xmit_more() ||
5939 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5940 if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5941 e1000e_update_tdt_wa(tx_ring,
5942 tx_ring->next_to_use);
5943 else
5944 writel(tx_ring->next_to_use, tx_ring->tail);
5945 }
5946 } else {
5947 dev_kfree_skb_any(skb);
5948 tx_ring->buffer_info[first].time_stamp = 0;
5949 tx_ring->next_to_use = first;
5950 }
5951
5952 return NETDEV_TX_OK;
5953}
5954
5955/**
5956 * e1000_tx_timeout - Respond to a Tx Hang
5957 * @netdev: network interface device structure
5958 * @txqueue: index of the hung queue (unused)
5959 **/
5960static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5961{
5962 struct e1000_adapter *adapter = netdev_priv(netdev);
5963
5964 /* Do the reset outside of interrupt context */
5965 adapter->tx_timeout_count++;
5966 schedule_work(&adapter->reset_task);
5967}
5968
5969static void e1000_reset_task(struct work_struct *work)
5970{
5971 struct e1000_adapter *adapter;
5972 adapter = container_of(work, struct e1000_adapter, reset_task);
5973
5974 rtnl_lock();
5975 /* don't run the task if already down */
5976 if (test_bit(__E1000_DOWN, &adapter->state)) {
5977 rtnl_unlock();
5978 return;
5979 }
5980
5981 if (!(adapter->flags & FLAG_RESTART_NOW)) {
5982 e1000e_dump(adapter);
5983 e_err("Reset adapter unexpectedly\n");
5984 }
5985 e1000e_reinit_locked(adapter);
5986 rtnl_unlock();
5987}
5988
5989/**
5990 * e1000e_get_stats64 - Get System Network Statistics
5991 * @netdev: network interface device structure
5992 * @stats: rtnl_link_stats64 pointer
5993 *
5994 * Returns the address of the device statistics structure.
5995 **/
5996void e1000e_get_stats64(struct net_device *netdev,
5997 struct rtnl_link_stats64 *stats)
5998{
5999 struct e1000_adapter *adapter = netdev_priv(netdev);
6000
6001 spin_lock(&adapter->stats64_lock);
6002 e1000e_update_stats(adapter);
6003 /* Fill out the OS statistics structure */
6004 stats->rx_bytes = adapter->stats.gorc;
6005 stats->rx_packets = adapter->stats.gprc;
6006 stats->tx_bytes = adapter->stats.gotc;
6007 stats->tx_packets = adapter->stats.gptc;
6008 stats->multicast = adapter->stats.mprc;
6009 stats->collisions = adapter->stats.colc;
6010
6011 /* Rx Errors */
6012
6013 /* RLEC on some newer hardware can be incorrect so build
6014 * our own version based on RUC and ROC
6015 */
6016 stats->rx_errors = adapter->stats.rxerrc +
6017 adapter->stats.crcerrs + adapter->stats.algnerrc +
6018 adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6019 stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
6020 stats->rx_crc_errors = adapter->stats.crcerrs;
6021 stats->rx_frame_errors = adapter->stats.algnerrc;
6022 stats->rx_missed_errors = adapter->stats.mpc;
6023
6024 /* Tx Errors */
6025 stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
6026 stats->tx_aborted_errors = adapter->stats.ecol;
6027 stats->tx_window_errors = adapter->stats.latecol;
6028 stats->tx_carrier_errors = adapter->stats.tncrs;
6029
6030 /* Tx Dropped needs to be maintained elsewhere */
6031
6032 spin_unlock(&adapter->stats64_lock);
6033}
6034
6035/**
6036 * e1000_change_mtu - Change the Maximum Transfer Unit
6037 * @netdev: network interface device structure
6038 * @new_mtu: new value for maximum frame size
6039 *
6040 * Returns 0 on success, negative on failure
6041 **/
6042static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6043{
6044 struct e1000_adapter *adapter = netdev_priv(netdev);
6045 int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6046
6047 /* Jumbo frame support */
6048 if ((new_mtu > ETH_DATA_LEN) &&
6049 !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6050 e_err("Jumbo Frames not supported.\n");
6051 return -EINVAL;
6052 }
6053
6054 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6055 if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6056 !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6057 (new_mtu > ETH_DATA_LEN)) {
6058 e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6059 return -EINVAL;
6060 }
6061
6062 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6063 usleep_range(1000, 1100);
6064 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6065 adapter->max_frame_size = max_frame;
6066 netdev_dbg(netdev, "changing MTU from %d to %d\n",
6067 netdev->mtu, new_mtu);
6068 netdev->mtu = new_mtu;
6069
6070 pm_runtime_get_sync(netdev->dev.parent);
6071
6072 if (netif_running(netdev))
6073 e1000e_down(adapter, true);
6074
6075 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
6076 * means we reserve 2 more, this pushes us to allocate from the next
6077 * larger slab size.
6078 * i.e. RXBUFFER_2048 --> size-4096 slab
6079 * However with the new *_jumbo_rx* routines, jumbo receives will use
6080 * fragmented skbs
6081 */
6082
6083 if (max_frame <= 2048)
6084 adapter->rx_buffer_len = 2048;
6085 else
6086 adapter->rx_buffer_len = 4096;
6087
6088 /* adjust allocation if LPE protects us, and we aren't using SBP */
6089 if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6090 adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
6091
6092 if (netif_running(netdev))
6093 e1000e_up(adapter);
6094 else
6095 e1000e_reset(adapter);
6096
6097 pm_runtime_put_sync(netdev->dev.parent);
6098
6099 clear_bit(__E1000_RESETTING, &adapter->state);
6100
6101 return 0;
6102}
6103
6104static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6105 int cmd)
6106{
6107 struct e1000_adapter *adapter = netdev_priv(netdev);
6108 struct mii_ioctl_data *data = if_mii(ifr);
6109
6110 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6111 return -EOPNOTSUPP;
6112
6113 switch (cmd) {
6114 case SIOCGMIIPHY:
6115 data->phy_id = adapter->hw.phy.addr;
6116 break;
6117 case SIOCGMIIREG:
6118 e1000_phy_read_status(adapter);
6119
6120 switch (data->reg_num & 0x1F) {
6121 case MII_BMCR:
6122 data->val_out = adapter->phy_regs.bmcr;
6123 break;
6124 case MII_BMSR:
6125 data->val_out = adapter->phy_regs.bmsr;
6126 break;
6127 case MII_PHYSID1:
6128 data->val_out = (adapter->hw.phy.id >> 16);
6129 break;
6130 case MII_PHYSID2:
6131 data->val_out = (adapter->hw.phy.id & 0xFFFF);
6132 break;
6133 case MII_ADVERTISE:
6134 data->val_out = adapter->phy_regs.advertise;
6135 break;
6136 case MII_LPA:
6137 data->val_out = adapter->phy_regs.lpa;
6138 break;
6139 case MII_EXPANSION:
6140 data->val_out = adapter->phy_regs.expansion;
6141 break;
6142 case MII_CTRL1000:
6143 data->val_out = adapter->phy_regs.ctrl1000;
6144 break;
6145 case MII_STAT1000:
6146 data->val_out = adapter->phy_regs.stat1000;
6147 break;
6148 case MII_ESTATUS:
6149 data->val_out = adapter->phy_regs.estatus;
6150 break;
6151 default:
6152 return -EIO;
6153 }
6154 break;
6155 case SIOCSMIIREG:
6156 default:
6157 return -EOPNOTSUPP;
6158 }
6159 return 0;
6160}
6161
6162/**
6163 * e1000e_hwtstamp_set - control hardware time stamping
6164 * @netdev: network interface device structure
6165 * @ifr: interface request
6166 *
6167 * Outgoing time stamping can be enabled and disabled. Play nice and
6168 * disable it when requested, although it shouldn't cause any overhead
6169 * when no packet needs it. At most one packet in the queue may be
6170 * marked for time stamping, otherwise it would be impossible to tell
6171 * for sure to which packet the hardware time stamp belongs.
6172 *
6173 * Incoming time stamping has to be configured via the hardware filters.
6174 * Not all combinations are supported, in particular event type has to be
6175 * specified. Matching the kind of event packet is not supported, with the
6176 * exception of "all V2 events regardless of level 2 or 4".
6177 **/
6178static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6179{
6180 struct e1000_adapter *adapter = netdev_priv(netdev);
6181 struct hwtstamp_config config;
6182 int ret_val;
6183
6184 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6185 return -EFAULT;
6186
6187 ret_val = e1000e_config_hwtstamp(adapter, &config);
6188 if (ret_val)
6189 return ret_val;
6190
6191 switch (config.rx_filter) {
6192 case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6193 case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6194 case HWTSTAMP_FILTER_PTP_V2_SYNC:
6195 case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6196 case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6197 case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6198 /* With V2 type filters which specify a Sync or Delay Request,
6199 * Path Delay Request/Response messages are also time stamped
6200 * by hardware so notify the caller the requested packets plus
6201 * some others are time stamped.
6202 */
6203 config.rx_filter = HWTSTAMP_FILTER_SOME;
6204 break;
6205 default:
6206 break;
6207 }
6208
6209 return copy_to_user(ifr->ifr_data, &config,
6210 sizeof(config)) ? -EFAULT : 0;
6211}
6212
6213static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6214{
6215 struct e1000_adapter *adapter = netdev_priv(netdev);
6216
6217 return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6218 sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6219}
6220
6221static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6222{
6223 switch (cmd) {
6224 case SIOCGMIIPHY:
6225 case SIOCGMIIREG:
6226 case SIOCSMIIREG:
6227 return e1000_mii_ioctl(netdev, ifr, cmd);
6228 case SIOCSHWTSTAMP:
6229 return e1000e_hwtstamp_set(netdev, ifr);
6230 case SIOCGHWTSTAMP:
6231 return e1000e_hwtstamp_get(netdev, ifr);
6232 default:
6233 return -EOPNOTSUPP;
6234 }
6235}
6236
6237static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6238{
6239 struct e1000_hw *hw = &adapter->hw;
6240 u32 i, mac_reg, wuc;
6241 u16 phy_reg, wuc_enable;
6242 int retval;
6243
6244 /* copy MAC RARs to PHY RARs */
6245 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6246
6247 retval = hw->phy.ops.acquire(hw);
6248 if (retval) {
6249 e_err("Could not acquire PHY\n");
6250 return retval;
6251 }
6252
6253 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6254 retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6255 if (retval)
6256 goto release;
6257
6258 /* copy MAC MTA to PHY MTA - only needed for pchlan */
6259 for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6260 mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6261 hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6262 (u16)(mac_reg & 0xFFFF));
6263 hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6264 (u16)((mac_reg >> 16) & 0xFFFF));
6265 }
6266
6267 /* configure PHY Rx Control register */
6268 hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6269 mac_reg = er32(RCTL);
6270 if (mac_reg & E1000_RCTL_UPE)
6271 phy_reg |= BM_RCTL_UPE;
6272 if (mac_reg & E1000_RCTL_MPE)
6273 phy_reg |= BM_RCTL_MPE;
6274 phy_reg &= ~(BM_RCTL_MO_MASK);
6275 if (mac_reg & E1000_RCTL_MO_3)
6276 phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6277 << BM_RCTL_MO_SHIFT);
6278 if (mac_reg & E1000_RCTL_BAM)
6279 phy_reg |= BM_RCTL_BAM;
6280 if (mac_reg & E1000_RCTL_PMCF)
6281 phy_reg |= BM_RCTL_PMCF;
6282 mac_reg = er32(CTRL);
6283 if (mac_reg & E1000_CTRL_RFCE)
6284 phy_reg |= BM_RCTL_RFCE;
6285 hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6286
6287 wuc = E1000_WUC_PME_EN;
6288 if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6289 wuc |= E1000_WUC_APME;
6290
6291 /* enable PHY wakeup in MAC register */
6292 ew32(WUFC, wufc);
6293 ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6294 E1000_WUC_PME_STATUS | wuc));
6295
6296 /* configure and enable PHY wakeup in PHY registers */
6297 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6298 hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6299
6300 /* activate PHY wakeup */
6301 wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6302 retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6303 if (retval)
6304 e_err("Could not set PHY Host Wakeup bit\n");
6305release:
6306 hw->phy.ops.release(hw);
6307
6308 return retval;
6309}
6310
6311static void e1000e_flush_lpic(struct pci_dev *pdev)
6312{
6313 struct net_device *netdev = pci_get_drvdata(pdev);
6314 struct e1000_adapter *adapter = netdev_priv(netdev);
6315 struct e1000_hw *hw = &adapter->hw;
6316 u32 ret_val;
6317
6318 pm_runtime_get_sync(netdev->dev.parent);
6319
6320 ret_val = hw->phy.ops.acquire(hw);
6321 if (ret_val)
6322 goto fl_out;
6323
6324 pr_info("EEE TX LPI TIMER: %08X\n",
6325 er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6326
6327 hw->phy.ops.release(hw);
6328
6329fl_out:
6330 pm_runtime_put_sync(netdev->dev.parent);
6331}
6332
6333/* S0ix implementation */
6334static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6335{
6336 struct e1000_hw *hw = &adapter->hw;
6337 u32 mac_data;
6338 u16 phy_data;
6339
6340 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6341 hw->mac.type >= e1000_pch_adp) {
6342 /* Request ME configure the device for S0ix */
6343 mac_data = er32(H2ME);
6344 mac_data |= E1000_H2ME_START_DPG;
6345 mac_data &= ~E1000_H2ME_EXIT_DPG;
6346 trace_e1000e_trace_mac_register(mac_data);
6347 ew32(H2ME, mac_data);
6348 } else {
6349 /* Request driver configure the device to S0ix */
6350 /* Disable the periodic inband message,
6351 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6352 */
6353 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6354 phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6355 phy_data |= BIT(10);
6356 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6357
6358 /* Make sure we don't exit K1 every time a new packet arrives
6359 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6360 */
6361 e1e_rphy(hw, I217_CGFREG, &phy_data);
6362 phy_data |= BIT(5);
6363 e1e_wphy(hw, I217_CGFREG, phy_data);
6364
6365 /* Change the MAC/PHY interface to SMBus
6366 * Force the SMBus in PHY page769_23[0] = 1
6367 * Force the SMBus in MAC CTRL_EXT[11] = 1
6368 */
6369 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6370 phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6371 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6372 mac_data = er32(CTRL_EXT);
6373 mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6374 ew32(CTRL_EXT, mac_data);
6375
6376 /* DFT control: PHY bit: page769_20[0] = 1
6377 * page769_20[7] - PHY PLL stop
6378 * page769_20[8] - PHY go to the electrical idle
6379 * page769_20[9] - PHY serdes disable
6380 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6381 */
6382 e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6383 phy_data |= BIT(0);
6384 phy_data |= BIT(7);
6385 phy_data |= BIT(8);
6386 phy_data |= BIT(9);
6387 e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6388
6389 mac_data = er32(EXTCNF_CTRL);
6390 mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6391 ew32(EXTCNF_CTRL, mac_data);
6392
6393 /* Enable the Dynamic Power Gating in the MAC */
6394 mac_data = er32(FEXTNVM7);
6395 mac_data |= BIT(22);
6396 ew32(FEXTNVM7, mac_data);
6397
6398 /* Disable disconnected cable conditioning for Power Gating */
6399 mac_data = er32(DPGFR);
6400 mac_data |= BIT(2);
6401 ew32(DPGFR, mac_data);
6402
6403 /* Don't wake from dynamic Power Gating with clock request */
6404 mac_data = er32(FEXTNVM12);
6405 mac_data |= BIT(12);
6406 ew32(FEXTNVM12, mac_data);
6407
6408 /* Ungate PGCB clock */
6409 mac_data = er32(FEXTNVM9);
6410 mac_data &= ~BIT(28);
6411 ew32(FEXTNVM9, mac_data);
6412
6413 /* Enable K1 off to enable mPHY Power Gating */
6414 mac_data = er32(FEXTNVM6);
6415 mac_data |= BIT(31);
6416 ew32(FEXTNVM6, mac_data);
6417
6418 /* Enable mPHY power gating for any link and speed */
6419 mac_data = er32(FEXTNVM8);
6420 mac_data |= BIT(9);
6421 ew32(FEXTNVM8, mac_data);
6422
6423 /* Enable the Dynamic Clock Gating in the DMA and MAC */
6424 mac_data = er32(CTRL_EXT);
6425 mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6426 ew32(CTRL_EXT, mac_data);
6427
6428 /* No MAC DPG gating SLP_S0 in modern standby
6429 * Switch the logic of the lanphypc to use PMC counter
6430 */
6431 mac_data = er32(FEXTNVM5);
6432 mac_data |= BIT(7);
6433 ew32(FEXTNVM5, mac_data);
6434 }
6435
6436 /* Disable the time synchronization clock */
6437 mac_data = er32(FEXTNVM7);
6438 mac_data |= BIT(31);
6439 mac_data &= ~BIT(0);
6440 ew32(FEXTNVM7, mac_data);
6441
6442 /* Dynamic Power Gating Enable */
6443 mac_data = er32(CTRL_EXT);
6444 mac_data |= BIT(3);
6445 ew32(CTRL_EXT, mac_data);
6446
6447 /* Check MAC Tx/Rx packet buffer pointers.
6448 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6449 * pending traffic indication that would prevent power gating.
6450 */
6451 mac_data = er32(TDFH);
6452 if (mac_data)
6453 ew32(TDFH, 0);
6454 mac_data = er32(TDFT);
6455 if (mac_data)
6456 ew32(TDFT, 0);
6457 mac_data = er32(TDFHS);
6458 if (mac_data)
6459 ew32(TDFHS, 0);
6460 mac_data = er32(TDFTS);
6461 if (mac_data)
6462 ew32(TDFTS, 0);
6463 mac_data = er32(TDFPC);
6464 if (mac_data)
6465 ew32(TDFPC, 0);
6466 mac_data = er32(RDFH);
6467 if (mac_data)
6468 ew32(RDFH, 0);
6469 mac_data = er32(RDFT);
6470 if (mac_data)
6471 ew32(RDFT, 0);
6472 mac_data = er32(RDFHS);
6473 if (mac_data)
6474 ew32(RDFHS, 0);
6475 mac_data = er32(RDFTS);
6476 if (mac_data)
6477 ew32(RDFTS, 0);
6478 mac_data = er32(RDFPC);
6479 if (mac_data)
6480 ew32(RDFPC, 0);
6481}
6482
6483static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6484{
6485 struct e1000_hw *hw = &adapter->hw;
6486 bool firmware_bug = false;
6487 u32 mac_data;
6488 u16 phy_data;
6489 u32 i = 0;
6490
6491 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID &&
6492 hw->mac.type >= e1000_pch_adp) {
6493 /* Keep the GPT clock enabled for CSME */
6494 mac_data = er32(FEXTNVM);
6495 mac_data |= BIT(3);
6496 ew32(FEXTNVM, mac_data);
6497 /* Request ME unconfigure the device from S0ix */
6498 mac_data = er32(H2ME);
6499 mac_data &= ~E1000_H2ME_START_DPG;
6500 mac_data |= E1000_H2ME_EXIT_DPG;
6501 trace_e1000e_trace_mac_register(mac_data);
6502 ew32(H2ME, mac_data);
6503
6504 /* Poll up to 2.5 seconds for ME to unconfigure DPG.
6505 * If this takes more than 1 second, show a warning indicating a
6506 * firmware bug
6507 */
6508 while (!(er32(EXFWSM) & E1000_EXFWSM_DPG_EXIT_DONE)) {
6509 if (i > 100 && !firmware_bug)
6510 firmware_bug = true;
6511
6512 if (i++ == 250) {
6513 e_dbg("Timeout (firmware bug): %d msec\n",
6514 i * 10);
6515 break;
6516 }
6517
6518 usleep_range(10000, 11000);
6519 }
6520 if (firmware_bug)
6521 e_warn("DPG_EXIT_DONE took %d msec. This is a firmware bug\n",
6522 i * 10);
6523 else
6524 e_dbg("DPG_EXIT_DONE cleared after %d msec\n", i * 10);
6525 } else {
6526 /* Request driver unconfigure the device from S0ix */
6527
6528 /* Disable the Dynamic Power Gating in the MAC */
6529 mac_data = er32(FEXTNVM7);
6530 mac_data &= 0xFFBFFFFF;
6531 ew32(FEXTNVM7, mac_data);
6532
6533 /* Disable mPHY power gating for any link and speed */
6534 mac_data = er32(FEXTNVM8);
6535 mac_data &= ~BIT(9);
6536 ew32(FEXTNVM8, mac_data);
6537
6538 /* Disable K1 off */
6539 mac_data = er32(FEXTNVM6);
6540 mac_data &= ~BIT(31);
6541 ew32(FEXTNVM6, mac_data);
6542
6543 /* Disable Ungate PGCB clock */
6544 mac_data = er32(FEXTNVM9);
6545 mac_data |= BIT(28);
6546 ew32(FEXTNVM9, mac_data);
6547
6548 /* Cancel not waking from dynamic
6549 * Power Gating with clock request
6550 */
6551 mac_data = er32(FEXTNVM12);
6552 mac_data &= ~BIT(12);
6553 ew32(FEXTNVM12, mac_data);
6554
6555 /* Cancel disable disconnected cable conditioning
6556 * for Power Gating
6557 */
6558 mac_data = er32(DPGFR);
6559 mac_data &= ~BIT(2);
6560 ew32(DPGFR, mac_data);
6561
6562 /* Disable the Dynamic Clock Gating in the DMA and MAC */
6563 mac_data = er32(CTRL_EXT);
6564 mac_data &= 0xFFF7FFFF;
6565 ew32(CTRL_EXT, mac_data);
6566
6567 /* Revert the lanphypc logic to use the internal Gbe counter
6568 * and not the PMC counter
6569 */
6570 mac_data = er32(FEXTNVM5);
6571 mac_data &= 0xFFFFFF7F;
6572 ew32(FEXTNVM5, mac_data);
6573
6574 /* Enable the periodic inband message,
6575 * Request PCIe clock in K1 page770_17[10:9] =01b
6576 */
6577 e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6578 phy_data &= 0xFBFF;
6579 phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6580 e1e_wphy(hw, HV_PM_CTRL, phy_data);
6581
6582 /* Return back configuration
6583 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6584 */
6585 e1e_rphy(hw, I217_CGFREG, &phy_data);
6586 phy_data &= 0xFFDF;
6587 e1e_wphy(hw, I217_CGFREG, phy_data);
6588
6589 /* Change the MAC/PHY interface to Kumeran
6590 * Unforce the SMBus in PHY page769_23[0] = 0
6591 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6592 */
6593 e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6594 phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6595 e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6596 mac_data = er32(CTRL_EXT);
6597 mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6598 ew32(CTRL_EXT, mac_data);
6599 }
6600
6601 /* Disable Dynamic Power Gating */
6602 mac_data = er32(CTRL_EXT);
6603 mac_data &= 0xFFFFFFF7;
6604 ew32(CTRL_EXT, mac_data);
6605
6606 /* Enable the time synchronization clock */
6607 mac_data = er32(FEXTNVM7);
6608 mac_data &= ~BIT(31);
6609 mac_data |= BIT(0);
6610 ew32(FEXTNVM7, mac_data);
6611}
6612
6613static int e1000e_pm_freeze(struct device *dev)
6614{
6615 struct net_device *netdev = dev_get_drvdata(dev);
6616 struct e1000_adapter *adapter = netdev_priv(netdev);
6617 bool present;
6618
6619 rtnl_lock();
6620
6621 present = netif_device_present(netdev);
6622 netif_device_detach(netdev);
6623
6624 if (present && netif_running(netdev)) {
6625 int count = E1000_CHECK_RESET_COUNT;
6626
6627 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6628 usleep_range(10000, 11000);
6629
6630 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6631
6632 /* Quiesce the device without resetting the hardware */
6633 e1000e_down(adapter, false);
6634 e1000_free_irq(adapter);
6635 }
6636 rtnl_unlock();
6637
6638 e1000e_reset_interrupt_capability(adapter);
6639
6640 /* Allow time for pending master requests to run */
6641 e1000e_disable_pcie_master(&adapter->hw);
6642
6643 return 0;
6644}
6645
6646static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6647{
6648 struct net_device *netdev = pci_get_drvdata(pdev);
6649 struct e1000_adapter *adapter = netdev_priv(netdev);
6650 struct e1000_hw *hw = &adapter->hw;
6651 u32 ctrl, ctrl_ext, rctl, status, wufc;
6652 int retval = 0;
6653
6654 /* Runtime suspend should only enable wakeup for link changes */
6655 if (runtime)
6656 wufc = E1000_WUFC_LNKC;
6657 else if (device_may_wakeup(&pdev->dev))
6658 wufc = adapter->wol;
6659 else
6660 wufc = 0;
6661
6662 status = er32(STATUS);
6663 if (status & E1000_STATUS_LU)
6664 wufc &= ~E1000_WUFC_LNKC;
6665
6666 if (wufc) {
6667 e1000_setup_rctl(adapter);
6668 e1000e_set_rx_mode(netdev);
6669
6670 /* turn on all-multi mode if wake on multicast is enabled */
6671 if (wufc & E1000_WUFC_MC) {
6672 rctl = er32(RCTL);
6673 rctl |= E1000_RCTL_MPE;
6674 ew32(RCTL, rctl);
6675 }
6676
6677 ctrl = er32(CTRL);
6678 ctrl |= E1000_CTRL_ADVD3WUC;
6679 if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6680 ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6681 ew32(CTRL, ctrl);
6682
6683 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6684 adapter->hw.phy.media_type ==
6685 e1000_media_type_internal_serdes) {
6686 /* keep the laser running in D3 */
6687 ctrl_ext = er32(CTRL_EXT);
6688 ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6689 ew32(CTRL_EXT, ctrl_ext);
6690 }
6691
6692 if (!runtime)
6693 e1000e_power_up_phy(adapter);
6694
6695 if (adapter->flags & FLAG_IS_ICH)
6696 e1000_suspend_workarounds_ich8lan(&adapter->hw);
6697
6698 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6699 /* enable wakeup by the PHY */
6700 retval = e1000_init_phy_wakeup(adapter, wufc);
6701 if (retval)
6702 return retval;
6703 } else {
6704 /* enable wakeup by the MAC */
6705 ew32(WUFC, wufc);
6706 ew32(WUC, E1000_WUC_PME_EN);
6707 }
6708 } else {
6709 ew32(WUC, 0);
6710 ew32(WUFC, 0);
6711
6712 e1000_power_down_phy(adapter);
6713 }
6714
6715 if (adapter->hw.phy.type == e1000_phy_igp_3) {
6716 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6717 } else if (hw->mac.type >= e1000_pch_lpt) {
6718 if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6719 /* ULP does not support wake from unicast, multicast
6720 * or broadcast.
6721 */
6722 retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6723
6724 if (retval)
6725 return retval;
6726 }
6727
6728 /* Ensure that the appropriate bits are set in LPI_CTRL
6729 * for EEE in Sx
6730 */
6731 if ((hw->phy.type >= e1000_phy_i217) &&
6732 adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6733 u16 lpi_ctrl = 0;
6734
6735 retval = hw->phy.ops.acquire(hw);
6736 if (!retval) {
6737 retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6738 &lpi_ctrl);
6739 if (!retval) {
6740 if (adapter->eee_advert &
6741 hw->dev_spec.ich8lan.eee_lp_ability &
6742 I82579_EEE_100_SUPPORTED)
6743 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6744 if (adapter->eee_advert &
6745 hw->dev_spec.ich8lan.eee_lp_ability &
6746 I82579_EEE_1000_SUPPORTED)
6747 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6748
6749 retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6750 lpi_ctrl);
6751 }
6752 }
6753 hw->phy.ops.release(hw);
6754 }
6755
6756 /* Release control of h/w to f/w. If f/w is AMT enabled, this
6757 * would have already happened in close and is redundant.
6758 */
6759 e1000e_release_hw_control(adapter);
6760
6761 pci_clear_master(pdev);
6762
6763 /* The pci-e switch on some quad port adapters will report a
6764 * correctable error when the MAC transitions from D0 to D3. To
6765 * prevent this we need to mask off the correctable errors on the
6766 * downstream port of the pci-e switch.
6767 *
6768 * We don't have the associated upstream bridge while assigning
6769 * the PCI device into guest. For example, the KVM on power is
6770 * one of the cases.
6771 */
6772 if (adapter->flags & FLAG_IS_QUAD_PORT) {
6773 struct pci_dev *us_dev = pdev->bus->self;
6774 u16 devctl;
6775
6776 if (!us_dev)
6777 return 0;
6778
6779 pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6780 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6781 (devctl & ~PCI_EXP_DEVCTL_CERE));
6782
6783 pci_save_state(pdev);
6784 pci_prepare_to_sleep(pdev);
6785
6786 pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6787 }
6788
6789 return 0;
6790}
6791
6792/**
6793 * __e1000e_disable_aspm - Disable ASPM states
6794 * @pdev: pointer to PCI device struct
6795 * @state: bit-mask of ASPM states to disable
6796 * @locked: indication if this context holds pci_bus_sem locked.
6797 *
6798 * Some devices *must* have certain ASPM states disabled per hardware errata.
6799 **/
6800static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6801{
6802 struct pci_dev *parent = pdev->bus->self;
6803 u16 aspm_dis_mask = 0;
6804 u16 pdev_aspmc, parent_aspmc;
6805
6806 switch (state) {
6807 case PCIE_LINK_STATE_L0S:
6808 case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6809 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6810 fallthrough; /* can't have L1 without L0s */
6811 case PCIE_LINK_STATE_L1:
6812 aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6813 break;
6814 default:
6815 return;
6816 }
6817
6818 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6819 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6820
6821 if (parent) {
6822 pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6823 &parent_aspmc);
6824 parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6825 }
6826
6827 /* Nothing to do if the ASPM states to be disabled already are */
6828 if (!(pdev_aspmc & aspm_dis_mask) &&
6829 (!parent || !(parent_aspmc & aspm_dis_mask)))
6830 return;
6831
6832 dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6833 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6834 "L0s" : "",
6835 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6836 "L1" : "");
6837
6838#ifdef CONFIG_PCIEASPM
6839 if (locked)
6840 pci_disable_link_state_locked(pdev, state);
6841 else
6842 pci_disable_link_state(pdev, state);
6843
6844 /* Double-check ASPM control. If not disabled by the above, the
6845 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6846 * not enabled); override by writing PCI config space directly.
6847 */
6848 pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6849 pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6850
6851 if (!(aspm_dis_mask & pdev_aspmc))
6852 return;
6853#endif
6854
6855 /* Both device and parent should have the same ASPM setting.
6856 * Disable ASPM in downstream component first and then upstream.
6857 */
6858 pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6859
6860 if (parent)
6861 pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6862 aspm_dis_mask);
6863}
6864
6865/**
6866 * e1000e_disable_aspm - Disable ASPM states.
6867 * @pdev: pointer to PCI device struct
6868 * @state: bit-mask of ASPM states to disable
6869 *
6870 * This function acquires the pci_bus_sem!
6871 * Some devices *must* have certain ASPM states disabled per hardware errata.
6872 **/
6873static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6874{
6875 __e1000e_disable_aspm(pdev, state, 0);
6876}
6877
6878/**
6879 * e1000e_disable_aspm_locked - Disable ASPM states.
6880 * @pdev: pointer to PCI device struct
6881 * @state: bit-mask of ASPM states to disable
6882 *
6883 * This function must be called with pci_bus_sem acquired!
6884 * Some devices *must* have certain ASPM states disabled per hardware errata.
6885 **/
6886static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6887{
6888 __e1000e_disable_aspm(pdev, state, 1);
6889}
6890
6891static int e1000e_pm_thaw(struct device *dev)
6892{
6893 struct net_device *netdev = dev_get_drvdata(dev);
6894 struct e1000_adapter *adapter = netdev_priv(netdev);
6895 int rc = 0;
6896
6897 e1000e_set_interrupt_capability(adapter);
6898
6899 rtnl_lock();
6900 if (netif_running(netdev)) {
6901 rc = e1000_request_irq(adapter);
6902 if (rc)
6903 goto err_irq;
6904
6905 e1000e_up(adapter);
6906 }
6907
6908 netif_device_attach(netdev);
6909err_irq:
6910 rtnl_unlock();
6911
6912 return rc;
6913}
6914
6915static int __e1000_resume(struct pci_dev *pdev)
6916{
6917 struct net_device *netdev = pci_get_drvdata(pdev);
6918 struct e1000_adapter *adapter = netdev_priv(netdev);
6919 struct e1000_hw *hw = &adapter->hw;
6920 u16 aspm_disable_flag = 0;
6921
6922 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6923 aspm_disable_flag = PCIE_LINK_STATE_L0S;
6924 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6925 aspm_disable_flag |= PCIE_LINK_STATE_L1;
6926 if (aspm_disable_flag)
6927 e1000e_disable_aspm(pdev, aspm_disable_flag);
6928
6929 pci_set_master(pdev);
6930
6931 if (hw->mac.type >= e1000_pch2lan)
6932 e1000_resume_workarounds_pchlan(&adapter->hw);
6933
6934 e1000e_power_up_phy(adapter);
6935
6936 /* report the system wakeup cause from S3/S4 */
6937 if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6938 u16 phy_data;
6939
6940 e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6941 if (phy_data) {
6942 e_info("PHY Wakeup cause - %s\n",
6943 phy_data & E1000_WUS_EX ? "Unicast Packet" :
6944 phy_data & E1000_WUS_MC ? "Multicast Packet" :
6945 phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6946 phy_data & E1000_WUS_MAG ? "Magic Packet" :
6947 phy_data & E1000_WUS_LNKC ?
6948 "Link Status Change" : "other");
6949 }
6950 e1e_wphy(&adapter->hw, BM_WUS, ~0);
6951 } else {
6952 u32 wus = er32(WUS);
6953
6954 if (wus) {
6955 e_info("MAC Wakeup cause - %s\n",
6956 wus & E1000_WUS_EX ? "Unicast Packet" :
6957 wus & E1000_WUS_MC ? "Multicast Packet" :
6958 wus & E1000_WUS_BC ? "Broadcast Packet" :
6959 wus & E1000_WUS_MAG ? "Magic Packet" :
6960 wus & E1000_WUS_LNKC ? "Link Status Change" :
6961 "other");
6962 }
6963 ew32(WUS, ~0);
6964 }
6965
6966 e1000e_reset(adapter);
6967
6968 e1000_init_manageability_pt(adapter);
6969
6970 /* If the controller has AMT, do not set DRV_LOAD until the interface
6971 * is up. For all other cases, let the f/w know that the h/w is now
6972 * under the control of the driver.
6973 */
6974 if (!(adapter->flags & FLAG_HAS_AMT))
6975 e1000e_get_hw_control(adapter);
6976
6977 return 0;
6978}
6979
6980static __maybe_unused int e1000e_pm_prepare(struct device *dev)
6981{
6982 return pm_runtime_suspended(dev) &&
6983 pm_suspend_via_firmware();
6984}
6985
6986static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6987{
6988 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6989 struct e1000_adapter *adapter = netdev_priv(netdev);
6990 struct pci_dev *pdev = to_pci_dev(dev);
6991 int rc;
6992
6993 e1000e_flush_lpic(pdev);
6994
6995 e1000e_pm_freeze(dev);
6996
6997 rc = __e1000_shutdown(pdev, false);
6998 if (rc) {
6999 e1000e_pm_thaw(dev);
7000 } else {
7001 /* Introduce S0ix implementation */
7002 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7003 e1000e_s0ix_entry_flow(adapter);
7004 }
7005
7006 return rc;
7007}
7008
7009static __maybe_unused int e1000e_pm_resume(struct device *dev)
7010{
7011 struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
7012 struct e1000_adapter *adapter = netdev_priv(netdev);
7013 struct pci_dev *pdev = to_pci_dev(dev);
7014 int rc;
7015
7016 /* Introduce S0ix implementation */
7017 if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
7018 e1000e_s0ix_exit_flow(adapter);
7019
7020 rc = __e1000_resume(pdev);
7021 if (rc)
7022 return rc;
7023
7024 return e1000e_pm_thaw(dev);
7025}
7026
7027static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
7028{
7029 struct net_device *netdev = dev_get_drvdata(dev);
7030 struct e1000_adapter *adapter = netdev_priv(netdev);
7031 u16 eee_lp;
7032
7033 eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
7034
7035 if (!e1000e_has_link(adapter)) {
7036 adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
7037 pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
7038 }
7039
7040 return -EBUSY;
7041}
7042
7043static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
7044{
7045 struct pci_dev *pdev = to_pci_dev(dev);
7046 struct net_device *netdev = pci_get_drvdata(pdev);
7047 struct e1000_adapter *adapter = netdev_priv(netdev);
7048 int rc;
7049
7050 rc = __e1000_resume(pdev);
7051 if (rc)
7052 return rc;
7053
7054 if (netdev->flags & IFF_UP)
7055 e1000e_up(adapter);
7056
7057 return rc;
7058}
7059
7060static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7061{
7062 struct pci_dev *pdev = to_pci_dev(dev);
7063 struct net_device *netdev = pci_get_drvdata(pdev);
7064 struct e1000_adapter *adapter = netdev_priv(netdev);
7065
7066 if (netdev->flags & IFF_UP) {
7067 int count = E1000_CHECK_RESET_COUNT;
7068
7069 while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7070 usleep_range(10000, 11000);
7071
7072 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7073
7074 /* Down the device without resetting the hardware */
7075 e1000e_down(adapter, false);
7076 }
7077
7078 if (__e1000_shutdown(pdev, true)) {
7079 e1000e_pm_runtime_resume(dev);
7080 return -EBUSY;
7081 }
7082
7083 return 0;
7084}
7085
7086static void e1000_shutdown(struct pci_dev *pdev)
7087{
7088 e1000e_flush_lpic(pdev);
7089
7090 e1000e_pm_freeze(&pdev->dev);
7091
7092 __e1000_shutdown(pdev, false);
7093}
7094
7095#ifdef CONFIG_NET_POLL_CONTROLLER
7096
7097static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7098{
7099 struct net_device *netdev = data;
7100 struct e1000_adapter *adapter = netdev_priv(netdev);
7101
7102 if (adapter->msix_entries) {
7103 int vector, msix_irq;
7104
7105 vector = 0;
7106 msix_irq = adapter->msix_entries[vector].vector;
7107 if (disable_hardirq(msix_irq))
7108 e1000_intr_msix_rx(msix_irq, netdev);
7109 enable_irq(msix_irq);
7110
7111 vector++;
7112 msix_irq = adapter->msix_entries[vector].vector;
7113 if (disable_hardirq(msix_irq))
7114 e1000_intr_msix_tx(msix_irq, netdev);
7115 enable_irq(msix_irq);
7116
7117 vector++;
7118 msix_irq = adapter->msix_entries[vector].vector;
7119 if (disable_hardirq(msix_irq))
7120 e1000_msix_other(msix_irq, netdev);
7121 enable_irq(msix_irq);
7122 }
7123
7124 return IRQ_HANDLED;
7125}
7126
7127/**
7128 * e1000_netpoll
7129 * @netdev: network interface device structure
7130 *
7131 * Polling 'interrupt' - used by things like netconsole to send skbs
7132 * without having to re-enable interrupts. It's not called while
7133 * the interrupt routine is executing.
7134 */
7135static void e1000_netpoll(struct net_device *netdev)
7136{
7137 struct e1000_adapter *adapter = netdev_priv(netdev);
7138
7139 switch (adapter->int_mode) {
7140 case E1000E_INT_MODE_MSIX:
7141 e1000_intr_msix(adapter->pdev->irq, netdev);
7142 break;
7143 case E1000E_INT_MODE_MSI:
7144 if (disable_hardirq(adapter->pdev->irq))
7145 e1000_intr_msi(adapter->pdev->irq, netdev);
7146 enable_irq(adapter->pdev->irq);
7147 break;
7148 default: /* E1000E_INT_MODE_LEGACY */
7149 if (disable_hardirq(adapter->pdev->irq))
7150 e1000_intr(adapter->pdev->irq, netdev);
7151 enable_irq(adapter->pdev->irq);
7152 break;
7153 }
7154}
7155#endif
7156
7157/**
7158 * e1000_io_error_detected - called when PCI error is detected
7159 * @pdev: Pointer to PCI device
7160 * @state: The current pci connection state
7161 *
7162 * This function is called after a PCI bus error affecting
7163 * this device has been detected.
7164 */
7165static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7166 pci_channel_state_t state)
7167{
7168 e1000e_pm_freeze(&pdev->dev);
7169
7170 if (state == pci_channel_io_perm_failure)
7171 return PCI_ERS_RESULT_DISCONNECT;
7172
7173 pci_disable_device(pdev);
7174
7175 /* Request a slot reset. */
7176 return PCI_ERS_RESULT_NEED_RESET;
7177}
7178
7179/**
7180 * e1000_io_slot_reset - called after the pci bus has been reset.
7181 * @pdev: Pointer to PCI device
7182 *
7183 * Restart the card from scratch, as if from a cold-boot. Implementation
7184 * resembles the first-half of the e1000e_pm_resume routine.
7185 */
7186static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7187{
7188 struct net_device *netdev = pci_get_drvdata(pdev);
7189 struct e1000_adapter *adapter = netdev_priv(netdev);
7190 struct e1000_hw *hw = &adapter->hw;
7191 u16 aspm_disable_flag = 0;
7192 int err;
7193 pci_ers_result_t result;
7194
7195 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7196 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7197 if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7198 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7199 if (aspm_disable_flag)
7200 e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7201
7202 err = pci_enable_device_mem(pdev);
7203 if (err) {
7204 dev_err(&pdev->dev,
7205 "Cannot re-enable PCI device after reset.\n");
7206 result = PCI_ERS_RESULT_DISCONNECT;
7207 } else {
7208 pdev->state_saved = true;
7209 pci_restore_state(pdev);
7210 pci_set_master(pdev);
7211
7212 pci_enable_wake(pdev, PCI_D3hot, 0);
7213 pci_enable_wake(pdev, PCI_D3cold, 0);
7214
7215 e1000e_reset(adapter);
7216 ew32(WUS, ~0);
7217 result = PCI_ERS_RESULT_RECOVERED;
7218 }
7219
7220 return result;
7221}
7222
7223/**
7224 * e1000_io_resume - called when traffic can start flowing again.
7225 * @pdev: Pointer to PCI device
7226 *
7227 * This callback is called when the error recovery driver tells us that
7228 * its OK to resume normal operation. Implementation resembles the
7229 * second-half of the e1000e_pm_resume routine.
7230 */
7231static void e1000_io_resume(struct pci_dev *pdev)
7232{
7233 struct net_device *netdev = pci_get_drvdata(pdev);
7234 struct e1000_adapter *adapter = netdev_priv(netdev);
7235
7236 e1000_init_manageability_pt(adapter);
7237
7238 e1000e_pm_thaw(&pdev->dev);
7239
7240 /* If the controller has AMT, do not set DRV_LOAD until the interface
7241 * is up. For all other cases, let the f/w know that the h/w is now
7242 * under the control of the driver.
7243 */
7244 if (!(adapter->flags & FLAG_HAS_AMT))
7245 e1000e_get_hw_control(adapter);
7246}
7247
7248static void e1000_print_device_info(struct e1000_adapter *adapter)
7249{
7250 struct e1000_hw *hw = &adapter->hw;
7251 struct net_device *netdev = adapter->netdev;
7252 u32 ret_val;
7253 u8 pba_str[E1000_PBANUM_LENGTH];
7254
7255 /* print bus type/speed/width info */
7256 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7257 /* bus width */
7258 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7259 "Width x1"),
7260 /* MAC address */
7261 netdev->dev_addr);
7262 e_info("Intel(R) PRO/%s Network Connection\n",
7263 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7264 ret_val = e1000_read_pba_string_generic(hw, pba_str,
7265 E1000_PBANUM_LENGTH);
7266 if (ret_val)
7267 strscpy((char *)pba_str, "Unknown", sizeof(pba_str));
7268 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7269 hw->mac.type, hw->phy.type, pba_str);
7270}
7271
7272static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7273{
7274 struct e1000_hw *hw = &adapter->hw;
7275 int ret_val;
7276 u16 buf = 0;
7277
7278 if (hw->mac.type != e1000_82573)
7279 return;
7280
7281 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7282 le16_to_cpus(&buf);
7283 if (!ret_val && (!(buf & BIT(0)))) {
7284 /* Deep Smart Power Down (DSPD) */
7285 dev_warn(&adapter->pdev->dev,
7286 "Warning: detected DSPD enabled in EEPROM\n");
7287 }
7288}
7289
7290static netdev_features_t e1000_fix_features(struct net_device *netdev,
7291 netdev_features_t features)
7292{
7293 struct e1000_adapter *adapter = netdev_priv(netdev);
7294 struct e1000_hw *hw = &adapter->hw;
7295
7296 /* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7297 if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7298 features &= ~NETIF_F_RXFCS;
7299
7300 /* Since there is no support for separate Rx/Tx vlan accel
7301 * enable/disable make sure Tx flag is always in same state as Rx.
7302 */
7303 if (features & NETIF_F_HW_VLAN_CTAG_RX)
7304 features |= NETIF_F_HW_VLAN_CTAG_TX;
7305 else
7306 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7307
7308 return features;
7309}
7310
7311static int e1000_set_features(struct net_device *netdev,
7312 netdev_features_t features)
7313{
7314 struct e1000_adapter *adapter = netdev_priv(netdev);
7315 netdev_features_t changed = features ^ netdev->features;
7316
7317 if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7318 adapter->flags |= FLAG_TSO_FORCE;
7319
7320 if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7321 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7322 NETIF_F_RXALL)))
7323 return 0;
7324
7325 if (changed & NETIF_F_RXFCS) {
7326 if (features & NETIF_F_RXFCS) {
7327 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7328 } else {
7329 /* We need to take it back to defaults, which might mean
7330 * stripping is still disabled at the adapter level.
7331 */
7332 if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7333 adapter->flags2 |= FLAG2_CRC_STRIPPING;
7334 else
7335 adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7336 }
7337 }
7338
7339 netdev->features = features;
7340
7341 if (netif_running(netdev))
7342 e1000e_reinit_locked(adapter);
7343 else
7344 e1000e_reset(adapter);
7345
7346 return 1;
7347}
7348
7349static const struct net_device_ops e1000e_netdev_ops = {
7350 .ndo_open = e1000e_open,
7351 .ndo_stop = e1000e_close,
7352 .ndo_start_xmit = e1000_xmit_frame,
7353 .ndo_get_stats64 = e1000e_get_stats64,
7354 .ndo_set_rx_mode = e1000e_set_rx_mode,
7355 .ndo_set_mac_address = e1000_set_mac,
7356 .ndo_change_mtu = e1000_change_mtu,
7357 .ndo_eth_ioctl = e1000_ioctl,
7358 .ndo_tx_timeout = e1000_tx_timeout,
7359 .ndo_validate_addr = eth_validate_addr,
7360
7361 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
7362 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
7363#ifdef CONFIG_NET_POLL_CONTROLLER
7364 .ndo_poll_controller = e1000_netpoll,
7365#endif
7366 .ndo_set_features = e1000_set_features,
7367 .ndo_fix_features = e1000_fix_features,
7368 .ndo_features_check = passthru_features_check,
7369};
7370
7371/**
7372 * e1000_probe - Device Initialization Routine
7373 * @pdev: PCI device information struct
7374 * @ent: entry in e1000_pci_tbl
7375 *
7376 * Returns 0 on success, negative on failure
7377 *
7378 * e1000_probe initializes an adapter identified by a pci_dev structure.
7379 * The OS initialization, configuring of the adapter private structure,
7380 * and a hardware reset occur.
7381 **/
7382static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
7383{
7384 struct net_device *netdev;
7385 struct e1000_adapter *adapter;
7386 struct e1000_hw *hw;
7387 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7388 resource_size_t mmio_start, mmio_len;
7389 resource_size_t flash_start, flash_len;
7390 static int cards_found;
7391 u16 aspm_disable_flag = 0;
7392 u16 eeprom_data = 0;
7393 u16 eeprom_apme_mask = E1000_EEPROM_APME;
7394 int bars, i, err;
7395 s32 ret_val = 0;
7396
7397 if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7398 aspm_disable_flag = PCIE_LINK_STATE_L0S;
7399 if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7400 aspm_disable_flag |= PCIE_LINK_STATE_L1;
7401 if (aspm_disable_flag)
7402 e1000e_disable_aspm(pdev, aspm_disable_flag);
7403
7404 err = pci_enable_device_mem(pdev);
7405 if (err)
7406 return err;
7407
7408 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7409 if (err) {
7410 dev_err(&pdev->dev,
7411 "No usable DMA configuration, aborting\n");
7412 goto err_dma;
7413 }
7414
7415 bars = pci_select_bars(pdev, IORESOURCE_MEM);
7416 err = pci_request_selected_regions_exclusive(pdev, bars,
7417 e1000e_driver_name);
7418 if (err)
7419 goto err_pci_reg;
7420
7421 /* AER (Advanced Error Reporting) hooks */
7422 pci_enable_pcie_error_reporting(pdev);
7423
7424 pci_set_master(pdev);
7425 /* PCI config space info */
7426 err = pci_save_state(pdev);
7427 if (err)
7428 goto err_alloc_etherdev;
7429
7430 err = -ENOMEM;
7431 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7432 if (!netdev)
7433 goto err_alloc_etherdev;
7434
7435 SET_NETDEV_DEV(netdev, &pdev->dev);
7436
7437 netdev->irq = pdev->irq;
7438
7439 pci_set_drvdata(pdev, netdev);
7440 adapter = netdev_priv(netdev);
7441 hw = &adapter->hw;
7442 adapter->netdev = netdev;
7443 adapter->pdev = pdev;
7444 adapter->ei = ei;
7445 adapter->pba = ei->pba;
7446 adapter->flags = ei->flags;
7447 adapter->flags2 = ei->flags2;
7448 adapter->hw.adapter = adapter;
7449 adapter->hw.mac.type = ei->mac;
7450 adapter->max_hw_frame_size = ei->max_hw_frame_size;
7451 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7452
7453 mmio_start = pci_resource_start(pdev, 0);
7454 mmio_len = pci_resource_len(pdev, 0);
7455
7456 err = -EIO;
7457 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7458 if (!adapter->hw.hw_addr)
7459 goto err_ioremap;
7460
7461 if ((adapter->flags & FLAG_HAS_FLASH) &&
7462 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7463 (hw->mac.type < e1000_pch_spt)) {
7464 flash_start = pci_resource_start(pdev, 1);
7465 flash_len = pci_resource_len(pdev, 1);
7466 adapter->hw.flash_address = ioremap(flash_start, flash_len);
7467 if (!adapter->hw.flash_address)
7468 goto err_flashmap;
7469 }
7470
7471 /* Set default EEE advertisement */
7472 if (adapter->flags2 & FLAG2_HAS_EEE)
7473 adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7474
7475 /* construct the net_device struct */
7476 netdev->netdev_ops = &e1000e_netdev_ops;
7477 e1000e_set_ethtool_ops(netdev);
7478 netdev->watchdog_timeo = 5 * HZ;
7479 netif_napi_add(netdev, &adapter->napi, e1000e_poll);
7480 strscpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7481
7482 netdev->mem_start = mmio_start;
7483 netdev->mem_end = mmio_start + mmio_len;
7484
7485 adapter->bd_number = cards_found++;
7486
7487 e1000e_check_options(adapter);
7488
7489 /* setup adapter struct */
7490 err = e1000_sw_init(adapter);
7491 if (err)
7492 goto err_sw_init;
7493
7494 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7495 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7496 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7497
7498 err = ei->get_variants(adapter);
7499 if (err)
7500 goto err_hw_init;
7501
7502 if ((adapter->flags & FLAG_IS_ICH) &&
7503 (adapter->flags & FLAG_READ_ONLY_NVM) &&
7504 (hw->mac.type < e1000_pch_spt))
7505 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7506
7507 hw->mac.ops.get_bus_info(&adapter->hw);
7508
7509 adapter->hw.phy.autoneg_wait_to_complete = 0;
7510
7511 /* Copper options */
7512 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7513 adapter->hw.phy.mdix = AUTO_ALL_MODES;
7514 adapter->hw.phy.disable_polarity_correction = 0;
7515 adapter->hw.phy.ms_type = e1000_ms_hw_default;
7516 }
7517
7518 if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7519 dev_info(&pdev->dev,
7520 "PHY reset is blocked due to SOL/IDER session.\n");
7521
7522 /* Set initial default active device features */
7523 netdev->features = (NETIF_F_SG |
7524 NETIF_F_HW_VLAN_CTAG_RX |
7525 NETIF_F_HW_VLAN_CTAG_TX |
7526 NETIF_F_TSO |
7527 NETIF_F_TSO6 |
7528 NETIF_F_RXHASH |
7529 NETIF_F_RXCSUM |
7530 NETIF_F_HW_CSUM);
7531
7532 /* Set user-changeable features (subset of all device features) */
7533 netdev->hw_features = netdev->features;
7534 netdev->hw_features |= NETIF_F_RXFCS;
7535 netdev->priv_flags |= IFF_SUPP_NOFCS;
7536 netdev->hw_features |= NETIF_F_RXALL;
7537
7538 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7539 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7540
7541 netdev->vlan_features |= (NETIF_F_SG |
7542 NETIF_F_TSO |
7543 NETIF_F_TSO6 |
7544 NETIF_F_HW_CSUM);
7545
7546 netdev->priv_flags |= IFF_UNICAST_FLT;
7547
7548 netdev->features |= NETIF_F_HIGHDMA;
7549 netdev->vlan_features |= NETIF_F_HIGHDMA;
7550
7551 /* MTU range: 68 - max_hw_frame_size */
7552 netdev->min_mtu = ETH_MIN_MTU;
7553 netdev->max_mtu = adapter->max_hw_frame_size -
7554 (VLAN_ETH_HLEN + ETH_FCS_LEN);
7555
7556 if (e1000e_enable_mng_pass_thru(&adapter->hw))
7557 adapter->flags |= FLAG_MNG_PT_ENABLED;
7558
7559 /* before reading the NVM, reset the controller to
7560 * put the device in a known good starting state
7561 */
7562 adapter->hw.mac.ops.reset_hw(&adapter->hw);
7563
7564 /* systems with ASPM and others may see the checksum fail on the first
7565 * attempt. Let's give it a few tries
7566 */
7567 for (i = 0;; i++) {
7568 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7569 break;
7570 if (i == 2) {
7571 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7572 err = -EIO;
7573 goto err_eeprom;
7574 }
7575 }
7576
7577 e1000_eeprom_checks(adapter);
7578
7579 /* copy the MAC address */
7580 if (e1000e_read_mac_addr(&adapter->hw))
7581 dev_err(&pdev->dev,
7582 "NVM Read Error while reading MAC address\n");
7583
7584 eth_hw_addr_set(netdev, adapter->hw.mac.addr);
7585
7586 if (!is_valid_ether_addr(netdev->dev_addr)) {
7587 dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7588 netdev->dev_addr);
7589 err = -EIO;
7590 goto err_eeprom;
7591 }
7592
7593 timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7594 timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
7595
7596 INIT_WORK(&adapter->reset_task, e1000_reset_task);
7597 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7598 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7599 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7600 INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7601
7602 /* Initialize link parameters. User can change them with ethtool */
7603 adapter->hw.mac.autoneg = 1;
7604 adapter->fc_autoneg = true;
7605 adapter->hw.fc.requested_mode = e1000_fc_default;
7606 adapter->hw.fc.current_mode = e1000_fc_default;
7607 adapter->hw.phy.autoneg_advertised = 0x2f;
7608
7609 /* Initial Wake on LAN setting - If APM wake is enabled in
7610 * the EEPROM, enable the ACPI Magic Packet filter
7611 */
7612 if (adapter->flags & FLAG_APME_IN_WUC) {
7613 /* APME bit in EEPROM is mapped to WUC.APME */
7614 eeprom_data = er32(WUC);
7615 eeprom_apme_mask = E1000_WUC_APME;
7616 if ((hw->mac.type > e1000_ich10lan) &&
7617 (eeprom_data & E1000_WUC_PHY_WAKE))
7618 adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7619 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7620 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7621 (adapter->hw.bus.func == 1))
7622 ret_val = e1000_read_nvm(&adapter->hw,
7623 NVM_INIT_CONTROL3_PORT_B,
7624 1, &eeprom_data);
7625 else
7626 ret_val = e1000_read_nvm(&adapter->hw,
7627 NVM_INIT_CONTROL3_PORT_A,
7628 1, &eeprom_data);
7629 }
7630
7631 /* fetch WoL from EEPROM */
7632 if (ret_val)
7633 e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7634 else if (eeprom_data & eeprom_apme_mask)
7635 adapter->eeprom_wol |= E1000_WUFC_MAG;
7636
7637 /* now that we have the eeprom settings, apply the special cases
7638 * where the eeprom may be wrong or the board simply won't support
7639 * wake on lan on a particular port
7640 */
7641 if (!(adapter->flags & FLAG_HAS_WOL))
7642 adapter->eeprom_wol = 0;
7643
7644 /* initialize the wol settings based on the eeprom settings */
7645 adapter->wol = adapter->eeprom_wol;
7646
7647 /* make sure adapter isn't asleep if manageability is enabled */
7648 if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7649 (hw->mac.ops.check_mng_mode(hw)))
7650 device_wakeup_enable(&pdev->dev);
7651
7652 /* save off EEPROM version number */
7653 ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7654
7655 if (ret_val) {
7656 e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7657 adapter->eeprom_vers = 0;
7658 }
7659
7660 /* init PTP hardware clock */
7661 e1000e_ptp_init(adapter);
7662
7663 /* reset the hardware with the new settings */
7664 e1000e_reset(adapter);
7665
7666 /* If the controller has AMT, do not set DRV_LOAD until the interface
7667 * is up. For all other cases, let the f/w know that the h/w is now
7668 * under the control of the driver.
7669 */
7670 if (!(adapter->flags & FLAG_HAS_AMT))
7671 e1000e_get_hw_control(adapter);
7672
7673 if (hw->mac.type >= e1000_pch_cnp)
7674 adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7675
7676 strscpy(netdev->name, "eth%d", sizeof(netdev->name));
7677 err = register_netdev(netdev);
7678 if (err)
7679 goto err_register;
7680
7681 /* carrier off reporting is important to ethtool even BEFORE open */
7682 netif_carrier_off(netdev);
7683
7684 e1000_print_device_info(adapter);
7685
7686 dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7687
7688 if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7689 pm_runtime_put_noidle(&pdev->dev);
7690
7691 return 0;
7692
7693err_register:
7694 if (!(adapter->flags & FLAG_HAS_AMT))
7695 e1000e_release_hw_control(adapter);
7696err_eeprom:
7697 if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7698 e1000_phy_hw_reset(&adapter->hw);
7699err_hw_init:
7700 kfree(adapter->tx_ring);
7701 kfree(adapter->rx_ring);
7702err_sw_init:
7703 if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7704 iounmap(adapter->hw.flash_address);
7705 e1000e_reset_interrupt_capability(adapter);
7706err_flashmap:
7707 iounmap(adapter->hw.hw_addr);
7708err_ioremap:
7709 free_netdev(netdev);
7710err_alloc_etherdev:
7711 pci_disable_pcie_error_reporting(pdev);
7712 pci_release_mem_regions(pdev);
7713err_pci_reg:
7714err_dma:
7715 pci_disable_device(pdev);
7716 return err;
7717}
7718
7719/**
7720 * e1000_remove - Device Removal Routine
7721 * @pdev: PCI device information struct
7722 *
7723 * e1000_remove is called by the PCI subsystem to alert the driver
7724 * that it should release a PCI device. This could be caused by a
7725 * Hot-Plug event, or because the driver is going to be removed from
7726 * memory.
7727 **/
7728static void e1000_remove(struct pci_dev *pdev)
7729{
7730 struct net_device *netdev = pci_get_drvdata(pdev);
7731 struct e1000_adapter *adapter = netdev_priv(netdev);
7732
7733 e1000e_ptp_remove(adapter);
7734
7735 /* The timers may be rescheduled, so explicitly disable them
7736 * from being rescheduled.
7737 */
7738 set_bit(__E1000_DOWN, &adapter->state);
7739 del_timer_sync(&adapter->watchdog_timer);
7740 del_timer_sync(&adapter->phy_info_timer);
7741
7742 cancel_work_sync(&adapter->reset_task);
7743 cancel_work_sync(&adapter->watchdog_task);
7744 cancel_work_sync(&adapter->downshift_task);
7745 cancel_work_sync(&adapter->update_phy_task);
7746 cancel_work_sync(&adapter->print_hang_task);
7747
7748 if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7749 cancel_work_sync(&adapter->tx_hwtstamp_work);
7750 if (adapter->tx_hwtstamp_skb) {
7751 dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7752 adapter->tx_hwtstamp_skb = NULL;
7753 }
7754 }
7755
7756 unregister_netdev(netdev);
7757
7758 if (pci_dev_run_wake(pdev))
7759 pm_runtime_get_noresume(&pdev->dev);
7760
7761 /* Release control of h/w to f/w. If f/w is AMT enabled, this
7762 * would have already happened in close and is redundant.
7763 */
7764 e1000e_release_hw_control(adapter);
7765
7766 e1000e_reset_interrupt_capability(adapter);
7767 kfree(adapter->tx_ring);
7768 kfree(adapter->rx_ring);
7769
7770 iounmap(adapter->hw.hw_addr);
7771 if ((adapter->hw.flash_address) &&
7772 (adapter->hw.mac.type < e1000_pch_spt))
7773 iounmap(adapter->hw.flash_address);
7774 pci_release_mem_regions(pdev);
7775
7776 free_netdev(netdev);
7777
7778 /* AER disable */
7779 pci_disable_pcie_error_reporting(pdev);
7780
7781 pci_disable_device(pdev);
7782}
7783
7784/* PCI Error Recovery (ERS) */
7785static const struct pci_error_handlers e1000_err_handler = {
7786 .error_detected = e1000_io_error_detected,
7787 .slot_reset = e1000_io_slot_reset,
7788 .resume = e1000_io_resume,
7789};
7790
7791static const struct pci_device_id e1000_pci_tbl[] = {
7792 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7793 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7794 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7795 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7796 board_82571 },
7797 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7798 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7799 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7800 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7801 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7802
7803 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7804 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7805 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7806 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7807
7808 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7809 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7810 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7811
7812 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7813 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7814 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7815
7816 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7817 board_80003es2lan },
7818 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7819 board_80003es2lan },
7820 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7821 board_80003es2lan },
7822 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7823 board_80003es2lan },
7824
7825 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7826 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7827 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7828 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7829 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7830 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7831 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7832 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7833
7834 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7835 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7836 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7837 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7838 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7839 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7840 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7841 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7842 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7843
7844 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7845 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7846 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7847
7848 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7849 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7850 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7851
7852 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7853 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7854 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7855 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7856
7857 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7858 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7859
7860 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7861 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7862 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7863 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7864 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7865 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7866 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7867 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7868 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7869 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7870 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7871 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7872 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7873 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7874 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7875 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7876 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7877 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7878 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7879 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7880 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7881 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7882 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7883 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7884 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7885 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7886 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7887 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7888 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7889 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7890 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7891 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7892 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7893 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7894 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7895 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7896 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7897 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM23), board_pch_adp },
7898 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V23), board_pch_adp },
7899 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_adp },
7900 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_adp },
7901 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_adp },
7902 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_adp },
7903 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_LM22), board_pch_adp },
7904 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_RPL_I219_V22), board_pch_adp },
7905 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_mtp },
7906 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_mtp },
7907 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_mtp },
7908 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_mtp },
7909 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM20), board_pch_mtp },
7910 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V20), board_pch_mtp },
7911 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_LM21), board_pch_mtp },
7912 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LNP_I219_V21), board_pch_mtp },
7913 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_LM24), board_pch_mtp },
7914 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ARL_I219_V24), board_pch_mtp },
7915 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM25), board_pch_mtp },
7916 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V25), board_pch_mtp },
7917 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM26), board_pch_mtp },
7918 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V26), board_pch_mtp },
7919 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_LM27), board_pch_mtp },
7920 { PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_PTP_I219_V27), board_pch_mtp },
7921
7922 { 0, 0, 0, 0, 0, 0, 0 } /* terminate list */
7923};
7924MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7925
7926static const struct dev_pm_ops e1000_pm_ops = {
7927#ifdef CONFIG_PM_SLEEP
7928 .prepare = e1000e_pm_prepare,
7929 .suspend = e1000e_pm_suspend,
7930 .resume = e1000e_pm_resume,
7931 .freeze = e1000e_pm_freeze,
7932 .thaw = e1000e_pm_thaw,
7933 .poweroff = e1000e_pm_suspend,
7934 .restore = e1000e_pm_resume,
7935#endif
7936 SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7937 e1000e_pm_runtime_idle)
7938};
7939
7940/* PCI Device API Driver */
7941static struct pci_driver e1000_driver = {
7942 .name = e1000e_driver_name,
7943 .id_table = e1000_pci_tbl,
7944 .probe = e1000_probe,
7945 .remove = e1000_remove,
7946 .driver = {
7947 .pm = &e1000_pm_ops,
7948 },
7949 .shutdown = e1000_shutdown,
7950 .err_handler = &e1000_err_handler
7951};
7952
7953/**
7954 * e1000_init_module - Driver Registration Routine
7955 *
7956 * e1000_init_module is the first routine called when the driver is
7957 * loaded. All it does is register with the PCI subsystem.
7958 **/
7959static int __init e1000_init_module(void)
7960{
7961 pr_info("Intel(R) PRO/1000 Network Driver\n");
7962 pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
7963
7964 return pci_register_driver(&e1000_driver);
7965}
7966module_init(e1000_init_module);
7967
7968/**
7969 * e1000_exit_module - Driver Exit Cleanup Routine
7970 *
7971 * e1000_exit_module is called just before the driver is removed
7972 * from memory.
7973 **/
7974static void __exit e1000_exit_module(void)
7975{
7976 pci_unregister_driver(&e1000_driver);
7977}
7978module_exit(e1000_exit_module);
7979
7980MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7981MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7982MODULE_LICENSE("GPL v2");
7983
7984/* netdev.c */