Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/init.h>
  34#include <linux/pci.h>
  35#include <linux/vmalloc.h>
  36#include <linux/pagemap.h>
  37#include <linux/delay.h>
  38#include <linux/netdevice.h>
  39#include <linux/interrupt.h>
  40#include <linux/tcp.h>
  41#include <linux/ipv6.h>
  42#include <linux/slab.h>
  43#include <net/checksum.h>
  44#include <net/ip6_checksum.h>
  45#include <linux/mii.h>
  46#include <linux/ethtool.h>
  47#include <linux/if_vlan.h>
  48#include <linux/cpu.h>
  49#include <linux/smp.h>
  50#include <linux/pm_qos.h>
  51#include <linux/pm_runtime.h>
  52#include <linux/aer.h>
  53#include <linux/prefetch.h>
 
  54
  55#include "e1000.h"
  56
  57#define DRV_EXTRAVERSION "-k"
  58
  59#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
  60char e1000e_driver_name[] = "e1000e";
  61const char e1000e_driver_version[] = DRV_VERSION;
  62
  63#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  64static int debug = -1;
  65module_param(debug, int, 0);
  66MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67
  68static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
  69
  70static const struct e1000_info *e1000_info_tbl[] = {
  71	[board_82571]		= &e1000_82571_info,
  72	[board_82572]		= &e1000_82572_info,
  73	[board_82573]		= &e1000_82573_info,
  74	[board_82574]		= &e1000_82574_info,
  75	[board_82583]		= &e1000_82583_info,
  76	[board_80003es2lan]	= &e1000_es2_info,
  77	[board_ich8lan]		= &e1000_ich8_info,
  78	[board_ich9lan]		= &e1000_ich9_info,
  79	[board_ich10lan]	= &e1000_ich10_info,
  80	[board_pchlan]		= &e1000_pch_info,
  81	[board_pch2lan]		= &e1000_pch2_info,
  82	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
 
 
  83};
  84
  85struct e1000_reg_info {
  86	u32 ofs;
  87	char *name;
  88};
  89
  90#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
  91#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
  92#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
  93#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
  94#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
  95
  96#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
  97#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
  98#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
  99#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
 100#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
 101
 102static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 103
 104	/* General Registers */
 105	{E1000_CTRL, "CTRL"},
 106	{E1000_STATUS, "STATUS"},
 107	{E1000_CTRL_EXT, "CTRL_EXT"},
 108
 109	/* Interrupt Registers */
 110	{E1000_ICR, "ICR"},
 111
 112	/* Rx Registers */
 113	{E1000_RCTL, "RCTL"},
 114	{E1000_RDLEN(0), "RDLEN"},
 115	{E1000_RDH(0), "RDH"},
 116	{E1000_RDT(0), "RDT"},
 117	{E1000_RDTR, "RDTR"},
 118	{E1000_RXDCTL(0), "RXDCTL"},
 119	{E1000_ERT, "ERT"},
 120	{E1000_RDBAL(0), "RDBAL"},
 121	{E1000_RDBAH(0), "RDBAH"},
 122	{E1000_RDFH, "RDFH"},
 123	{E1000_RDFT, "RDFT"},
 124	{E1000_RDFHS, "RDFHS"},
 125	{E1000_RDFTS, "RDFTS"},
 126	{E1000_RDFPC, "RDFPC"},
 127
 128	/* Tx Registers */
 129	{E1000_TCTL, "TCTL"},
 130	{E1000_TDBAL(0), "TDBAL"},
 131	{E1000_TDBAH(0), "TDBAH"},
 132	{E1000_TDLEN(0), "TDLEN"},
 133	{E1000_TDH(0), "TDH"},
 134	{E1000_TDT(0), "TDT"},
 135	{E1000_TIDV, "TIDV"},
 136	{E1000_TXDCTL(0), "TXDCTL"},
 137	{E1000_TADV, "TADV"},
 138	{E1000_TARC(0), "TARC"},
 139	{E1000_TDFH, "TDFH"},
 140	{E1000_TDFT, "TDFT"},
 141	{E1000_TDFHS, "TDFHS"},
 142	{E1000_TDFTS, "TDFTS"},
 143	{E1000_TDFPC, "TDFPC"},
 144
 145	/* List Terminator */
 146	{0, NULL}
 147};
 148
 149/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150 * e1000_regdump - register printout routine
 151 */
 
 
 152static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 153{
 154	int n = 0;
 155	char rname[16];
 156	u32 regs[8];
 157
 158	switch (reginfo->ofs) {
 159	case E1000_RXDCTL(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_RXDCTL(n));
 162		break;
 163	case E1000_TXDCTL(0):
 164		for (n = 0; n < 2; n++)
 165			regs[n] = __er32(hw, E1000_TXDCTL(n));
 166		break;
 167	case E1000_TARC(0):
 168		for (n = 0; n < 2; n++)
 169			regs[n] = __er32(hw, E1000_TARC(n));
 170		break;
 171	default:
 172		pr_info("%-15s %08x\n",
 173			reginfo->name, __er32(hw, reginfo->ofs));
 174		return;
 175	}
 176
 177	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 178	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 179}
 180
 181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 183 */
 
 184static void e1000e_dump(struct e1000_adapter *adapter)
 185{
 186	struct net_device *netdev = adapter->netdev;
 187	struct e1000_hw *hw = &adapter->hw;
 188	struct e1000_reg_info *reginfo;
 189	struct e1000_ring *tx_ring = adapter->tx_ring;
 190	struct e1000_tx_desc *tx_desc;
 191	struct my_u0 {
 192		__le64 a;
 193		__le64 b;
 194	} *u0;
 195	struct e1000_buffer *buffer_info;
 196	struct e1000_ring *rx_ring = adapter->rx_ring;
 197	union e1000_rx_desc_packet_split *rx_desc_ps;
 198	union e1000_rx_desc_extended *rx_desc;
 199	struct my_u1 {
 200		__le64 a;
 201		__le64 b;
 202		__le64 c;
 203		__le64 d;
 204	} *u1;
 205	u32 staterr;
 206	int i = 0;
 207
 208	if (!netif_msg_hw(adapter))
 209		return;
 210
 211	/* Print netdevice Info */
 212	if (netdev) {
 213		dev_info(&adapter->pdev->dev, "Net device Info\n");
 214		pr_info("Device Name     state            trans_start      last_rx\n");
 215		pr_info("%-15s %016lX %016lX %016lX\n",
 216			netdev->name, netdev->state, netdev->trans_start,
 217			netdev->last_rx);
 218	}
 219
 220	/* Print Registers */
 221	dev_info(&adapter->pdev->dev, "Register Dump\n");
 222	pr_info(" Register Name   Value\n");
 223	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 224	     reginfo->name; reginfo++) {
 225		e1000_regdump(hw, reginfo);
 226	}
 227
 228	/* Print Tx Ring Summary */
 229	if (!netdev || !netif_running(netdev))
 230		return;
 231
 232	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 233	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 234	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 235	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 236		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 237		(unsigned long long)buffer_info->dma,
 238		buffer_info->length,
 239		buffer_info->next_to_watch,
 240		(unsigned long long)buffer_info->time_stamp);
 241
 242	/* Print Tx Ring */
 243	if (!netif_msg_tx_done(adapter))
 244		goto rx_ring_summary;
 245
 246	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 247
 248	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 249	 *
 250	 * Legacy Transmit Descriptor
 251	 *   +--------------------------------------------------------------+
 252	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 253	 *   +--------------------------------------------------------------+
 254	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 255	 *   +--------------------------------------------------------------+
 256	 *   63       48 47        36 35    32 31     24 23    16 15        0
 257	 *
 258	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 259	 *   63      48 47    40 39       32 31             16 15    8 7      0
 260	 *   +----------------------------------------------------------------+
 261	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 262	 *   +----------------------------------------------------------------+
 263	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 264	 *   +----------------------------------------------------------------+
 265	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 266	 *
 267	 * Extended Data Descriptor (DTYP=0x1)
 268	 *   +----------------------------------------------------------------+
 269	 * 0 |                     Buffer Address [63:0]                      |
 270	 *   +----------------------------------------------------------------+
 271	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 272	 *   +----------------------------------------------------------------+
 273	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 274	 */
 275	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 276	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 277	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 278	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 279		const char *next_desc;
 280		tx_desc = E1000_TX_DESC(*tx_ring, i);
 281		buffer_info = &tx_ring->buffer_info[i];
 282		u0 = (struct my_u0 *)tx_desc;
 283		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 284			next_desc = " NTC/U";
 285		else if (i == tx_ring->next_to_use)
 286			next_desc = " NTU";
 287		else if (i == tx_ring->next_to_clean)
 288			next_desc = " NTC";
 289		else
 290			next_desc = "";
 291		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 292			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 293			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 294			i,
 295			(unsigned long long)le64_to_cpu(u0->a),
 296			(unsigned long long)le64_to_cpu(u0->b),
 297			(unsigned long long)buffer_info->dma,
 298			buffer_info->length, buffer_info->next_to_watch,
 299			(unsigned long long)buffer_info->time_stamp,
 300			buffer_info->skb, next_desc);
 301
 302		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
 303			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 304				       16, 1, phys_to_virt(buffer_info->dma),
 305				       buffer_info->length, true);
 306	}
 307
 308	/* Print Rx Ring Summary */
 309rx_ring_summary:
 310	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 311	pr_info("Queue [NTU] [NTC]\n");
 312	pr_info(" %5d %5X %5X\n",
 313		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 314
 315	/* Print Rx Ring */
 316	if (!netif_msg_rx_status(adapter))
 317		return;
 318
 319	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 320	switch (adapter->rx_ps_pages) {
 321	case 1:
 322	case 2:
 323	case 3:
 324		/* [Extended] Packet Split Receive Descriptor Format
 325		 *
 326		 *    +-----------------------------------------------------+
 327		 *  0 |                Buffer Address 0 [63:0]              |
 328		 *    +-----------------------------------------------------+
 329		 *  8 |                Buffer Address 1 [63:0]              |
 330		 *    +-----------------------------------------------------+
 331		 * 16 |                Buffer Address 2 [63:0]              |
 332		 *    +-----------------------------------------------------+
 333		 * 24 |                Buffer Address 3 [63:0]              |
 334		 *    +-----------------------------------------------------+
 335		 */
 336		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 337		/* [Extended] Receive Descriptor (Write-Back) Format
 338		 *
 339		 *   63       48 47    32 31     13 12    8 7    4 3        0
 340		 *   +------------------------------------------------------+
 341		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 342		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 343		 *   +------------------------------------------------------+
 344		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 345		 *   +------------------------------------------------------+
 346		 *   63       48 47    32 31            20 19               0
 347		 */
 348		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 349		for (i = 0; i < rx_ring->count; i++) {
 350			const char *next_desc;
 351			buffer_info = &rx_ring->buffer_info[i];
 352			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 353			u1 = (struct my_u1 *)rx_desc_ps;
 354			staterr =
 355			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 356
 357			if (i == rx_ring->next_to_use)
 358				next_desc = " NTU";
 359			else if (i == rx_ring->next_to_clean)
 360				next_desc = " NTC";
 361			else
 362				next_desc = "";
 363
 364			if (staterr & E1000_RXD_STAT_DD) {
 365				/* Descriptor Done */
 366				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 367					"RWB", i,
 368					(unsigned long long)le64_to_cpu(u1->a),
 369					(unsigned long long)le64_to_cpu(u1->b),
 370					(unsigned long long)le64_to_cpu(u1->c),
 371					(unsigned long long)le64_to_cpu(u1->d),
 372					buffer_info->skb, next_desc);
 373			} else {
 374				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 375					"R  ", i,
 376					(unsigned long long)le64_to_cpu(u1->a),
 377					(unsigned long long)le64_to_cpu(u1->b),
 378					(unsigned long long)le64_to_cpu(u1->c),
 379					(unsigned long long)le64_to_cpu(u1->d),
 380					(unsigned long long)buffer_info->dma,
 381					buffer_info->skb, next_desc);
 382
 383				if (netif_msg_pktdata(adapter))
 384					print_hex_dump(KERN_INFO, "",
 385						DUMP_PREFIX_ADDRESS, 16, 1,
 386						phys_to_virt(buffer_info->dma),
 387						adapter->rx_ps_bsize0, true);
 388			}
 389		}
 390		break;
 391	default:
 392	case 0:
 393		/* Extended Receive Descriptor (Read) Format
 394		 *
 395		 *   +-----------------------------------------------------+
 396		 * 0 |                Buffer Address [63:0]                |
 397		 *   +-----------------------------------------------------+
 398		 * 8 |                      Reserved                       |
 399		 *   +-----------------------------------------------------+
 400		 */
 401		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 402		/* Extended Receive Descriptor (Write-Back) Format
 403		 *
 404		 *   63       48 47    32 31    24 23            4 3        0
 405		 *   +------------------------------------------------------+
 406		 *   |     RSS Hash      |        |               |         |
 407		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 408		 *   | Packet   | IP     |        |               |  Type   |
 409		 *   | Checksum | Ident  |        |               |         |
 410		 *   +------------------------------------------------------+
 411		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 412		 *   +------------------------------------------------------+
 413		 *   63       48 47    32 31            20 19               0
 414		 */
 415		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 416
 417		for (i = 0; i < rx_ring->count; i++) {
 418			const char *next_desc;
 419
 420			buffer_info = &rx_ring->buffer_info[i];
 421			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 422			u1 = (struct my_u1 *)rx_desc;
 423			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 424
 425			if (i == rx_ring->next_to_use)
 426				next_desc = " NTU";
 427			else if (i == rx_ring->next_to_clean)
 428				next_desc = " NTC";
 429			else
 430				next_desc = "";
 431
 432			if (staterr & E1000_RXD_STAT_DD) {
 433				/* Descriptor Done */
 434				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 435					"RWB", i,
 436					(unsigned long long)le64_to_cpu(u1->a),
 437					(unsigned long long)le64_to_cpu(u1->b),
 438					buffer_info->skb, next_desc);
 439			} else {
 440				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 441					"R  ", i,
 442					(unsigned long long)le64_to_cpu(u1->a),
 443					(unsigned long long)le64_to_cpu(u1->b),
 444					(unsigned long long)buffer_info->dma,
 445					buffer_info->skb, next_desc);
 446
 447				if (netif_msg_pktdata(adapter))
 
 448					print_hex_dump(KERN_INFO, "",
 449						       DUMP_PREFIX_ADDRESS, 16,
 450						       1,
 451						       phys_to_virt
 452						       (buffer_info->dma),
 453						       adapter->rx_buffer_len,
 454						       true);
 455			}
 456		}
 457	}
 458}
 459
 460/**
 461 * e1000_desc_unused - calculate if we have unused descriptors
 
 462 **/
 463static int e1000_desc_unused(struct e1000_ring *ring)
 464{
 465	if (ring->next_to_clean > ring->next_to_use)
 466		return ring->next_to_clean - ring->next_to_use - 1;
 467
 468	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 469}
 470
 471/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472 * e1000_receive_skb - helper function to handle Rx indications
 473 * @adapter: board private structure
 474 * @status: descriptor status field as written by hardware
 
 475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 476 * @skb: pointer to sk_buff to be indicated to stack
 477 **/
 478static void e1000_receive_skb(struct e1000_adapter *adapter,
 479			      struct net_device *netdev, struct sk_buff *skb,
 480			      u8 status, __le16 vlan)
 481{
 482	u16 tag = le16_to_cpu(vlan);
 
 
 
 483	skb->protocol = eth_type_trans(skb, netdev);
 484
 485	if (status & E1000_RXD_STAT_VP)
 486		__vlan_hwaccel_put_tag(skb, tag);
 487
 488	napi_gro_receive(&adapter->napi, skb);
 489}
 490
 491/**
 492 * e1000_rx_checksum - Receive Checksum Offload
 493 * @adapter: board private structure
 494 * @status_err: receive descriptor status and error fields
 495 * @csum: receive descriptor csum field
 496 * @sk_buff: socket buffer with received data
 497 **/
 498static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 499			      struct sk_buff *skb)
 500{
 501	u16 status = (u16)status_err;
 502	u8 errors = (u8)(status_err >> 24);
 503
 504	skb_checksum_none_assert(skb);
 505
 506	/* Rx checksum disabled */
 507	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 508		return;
 509
 510	/* Ignore Checksum bit is set */
 511	if (status & E1000_RXD_STAT_IXSM)
 512		return;
 513
 514	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 515	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 516		/* let the stack verify checksum errors */
 517		adapter->hw_csum_err++;
 518		return;
 519	}
 520
 521	/* TCP/UDP Checksum has not been calculated */
 522	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 523		return;
 524
 525	/* It must be a TCP or UDP packet with a valid checksum */
 526	skb->ip_summed = CHECKSUM_UNNECESSARY;
 527	adapter->hw_csum_good++;
 528}
 529
 530static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 531{
 532	struct e1000_adapter *adapter = rx_ring->adapter;
 533	struct e1000_hw *hw = &adapter->hw;
 534	s32 ret_val = __ew32_prepare(hw);
 535
 
 536	writel(i, rx_ring->tail);
 537
 538	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 539		u32 rctl = er32(RCTL);
 
 540		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 541		e_err("ME firmware caused invalid RDT - resetting\n");
 542		schedule_work(&adapter->reset_task);
 543	}
 544}
 545
 546static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 547{
 548	struct e1000_adapter *adapter = tx_ring->adapter;
 549	struct e1000_hw *hw = &adapter->hw;
 550	s32 ret_val = __ew32_prepare(hw);
 551
 
 552	writel(i, tx_ring->tail);
 553
 554	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 555		u32 tctl = er32(TCTL);
 
 556		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 557		e_err("ME firmware caused invalid TDT - resetting\n");
 558		schedule_work(&adapter->reset_task);
 559	}
 560}
 561
 562/**
 563 * e1000_alloc_rx_buffers - Replace used receive buffers
 564 * @rx_ring: Rx descriptor ring
 
 
 565 **/
 566static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 567				   int cleaned_count, gfp_t gfp)
 568{
 569	struct e1000_adapter *adapter = rx_ring->adapter;
 570	struct net_device *netdev = adapter->netdev;
 571	struct pci_dev *pdev = adapter->pdev;
 572	union e1000_rx_desc_extended *rx_desc;
 573	struct e1000_buffer *buffer_info;
 574	struct sk_buff *skb;
 575	unsigned int i;
 576	unsigned int bufsz = adapter->rx_buffer_len;
 577
 578	i = rx_ring->next_to_use;
 579	buffer_info = &rx_ring->buffer_info[i];
 580
 581	while (cleaned_count--) {
 582		skb = buffer_info->skb;
 583		if (skb) {
 584			skb_trim(skb, 0);
 585			goto map_skb;
 586		}
 587
 588		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 589		if (!skb) {
 590			/* Better luck next round */
 591			adapter->alloc_rx_buff_failed++;
 592			break;
 593		}
 594
 595		buffer_info->skb = skb;
 596map_skb:
 597		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 598						  adapter->rx_buffer_len,
 599						  DMA_FROM_DEVICE);
 600		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 601			dev_err(&pdev->dev, "Rx DMA map failed\n");
 602			adapter->rx_dma_failed++;
 603			break;
 604		}
 605
 606		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 607		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 608
 609		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 610			/*
 611			 * Force memory writes to complete before letting h/w
 612			 * know there are new descriptors to fetch.  (Only
 613			 * applicable for weak-ordered memory model archs,
 614			 * such as IA-64).
 615			 */
 616			wmb();
 617			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 618				e1000e_update_rdt_wa(rx_ring, i);
 619			else
 620				writel(i, rx_ring->tail);
 621		}
 622		i++;
 623		if (i == rx_ring->count)
 624			i = 0;
 625		buffer_info = &rx_ring->buffer_info[i];
 626	}
 627
 628	rx_ring->next_to_use = i;
 629}
 630
 631/**
 632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 633 * @rx_ring: Rx descriptor ring
 
 
 634 **/
 635static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 636				      int cleaned_count, gfp_t gfp)
 637{
 638	struct e1000_adapter *adapter = rx_ring->adapter;
 639	struct net_device *netdev = adapter->netdev;
 640	struct pci_dev *pdev = adapter->pdev;
 641	union e1000_rx_desc_packet_split *rx_desc;
 642	struct e1000_buffer *buffer_info;
 643	struct e1000_ps_page *ps_page;
 644	struct sk_buff *skb;
 645	unsigned int i, j;
 646
 647	i = rx_ring->next_to_use;
 648	buffer_info = &rx_ring->buffer_info[i];
 649
 650	while (cleaned_count--) {
 651		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 652
 653		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 654			ps_page = &buffer_info->ps_pages[j];
 655			if (j >= adapter->rx_ps_pages) {
 656				/* all unused desc entries get hw null ptr */
 657				rx_desc->read.buffer_addr[j + 1] =
 658				    ~cpu_to_le64(0);
 659				continue;
 660			}
 661			if (!ps_page->page) {
 662				ps_page->page = alloc_page(gfp);
 663				if (!ps_page->page) {
 664					adapter->alloc_rx_buff_failed++;
 665					goto no_buffers;
 666				}
 667				ps_page->dma = dma_map_page(&pdev->dev,
 668							    ps_page->page,
 669							    0, PAGE_SIZE,
 670							    DMA_FROM_DEVICE);
 671				if (dma_mapping_error(&pdev->dev,
 672						      ps_page->dma)) {
 673					dev_err(&adapter->pdev->dev,
 674						"Rx DMA page map failed\n");
 675					adapter->rx_dma_failed++;
 676					goto no_buffers;
 677				}
 678			}
 679			/*
 680			 * Refresh the desc even if buffer_addrs
 681			 * didn't change because each write-back
 682			 * erases this info.
 683			 */
 684			rx_desc->read.buffer_addr[j + 1] =
 685			    cpu_to_le64(ps_page->dma);
 686		}
 687
 688		skb = __netdev_alloc_skb_ip_align(netdev,
 689						  adapter->rx_ps_bsize0,
 690						  gfp);
 691
 692		if (!skb) {
 693			adapter->alloc_rx_buff_failed++;
 694			break;
 695		}
 696
 697		buffer_info->skb = skb;
 698		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 699						  adapter->rx_ps_bsize0,
 700						  DMA_FROM_DEVICE);
 701		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 702			dev_err(&pdev->dev, "Rx DMA map failed\n");
 703			adapter->rx_dma_failed++;
 704			/* cleanup skb */
 705			dev_kfree_skb_any(skb);
 706			buffer_info->skb = NULL;
 707			break;
 708		}
 709
 710		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 711
 712		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 713			/*
 714			 * Force memory writes to complete before letting h/w
 715			 * know there are new descriptors to fetch.  (Only
 716			 * applicable for weak-ordered memory model archs,
 717			 * such as IA-64).
 718			 */
 719			wmb();
 720			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 721				e1000e_update_rdt_wa(rx_ring, i << 1);
 722			else
 723				writel(i << 1, rx_ring->tail);
 724		}
 725
 726		i++;
 727		if (i == rx_ring->count)
 728			i = 0;
 729		buffer_info = &rx_ring->buffer_info[i];
 730	}
 731
 732no_buffers:
 733	rx_ring->next_to_use = i;
 734}
 735
 736/**
 737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 738 * @rx_ring: Rx descriptor ring
 739 * @cleaned_count: number of buffers to allocate this pass
 
 740 **/
 741
 742static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 743					 int cleaned_count, gfp_t gfp)
 744{
 745	struct e1000_adapter *adapter = rx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct pci_dev *pdev = adapter->pdev;
 748	union e1000_rx_desc_extended *rx_desc;
 749	struct e1000_buffer *buffer_info;
 750	struct sk_buff *skb;
 751	unsigned int i;
 752	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
 753
 754	i = rx_ring->next_to_use;
 755	buffer_info = &rx_ring->buffer_info[i];
 756
 757	while (cleaned_count--) {
 758		skb = buffer_info->skb;
 759		if (skb) {
 760			skb_trim(skb, 0);
 761			goto check_page;
 762		}
 763
 764		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 765		if (unlikely(!skb)) {
 766			/* Better luck next round */
 767			adapter->alloc_rx_buff_failed++;
 768			break;
 769		}
 770
 771		buffer_info->skb = skb;
 772check_page:
 773		/* allocate a new page if necessary */
 774		if (!buffer_info->page) {
 775			buffer_info->page = alloc_page(gfp);
 776			if (unlikely(!buffer_info->page)) {
 777				adapter->alloc_rx_buff_failed++;
 778				break;
 779			}
 780		}
 781
 782		if (!buffer_info->dma)
 783			buffer_info->dma = dma_map_page(&pdev->dev,
 784			                                buffer_info->page, 0,
 785			                                PAGE_SIZE,
 786							DMA_FROM_DEVICE);
 
 
 
 
 
 787
 788		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 789		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(++i == rx_ring->count))
 792			i = 0;
 793		buffer_info = &rx_ring->buffer_info[i];
 794	}
 795
 796	if (likely(rx_ring->next_to_use != i)) {
 797		rx_ring->next_to_use = i;
 798		if (unlikely(i-- == 0))
 799			i = (rx_ring->count - 1);
 800
 801		/* Force memory writes to complete before letting h/w
 802		 * know there are new descriptors to fetch.  (Only
 803		 * applicable for weak-ordered memory model archs,
 804		 * such as IA-64). */
 
 805		wmb();
 806		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 807			e1000e_update_rdt_wa(rx_ring, i);
 808		else
 809			writel(i, rx_ring->tail);
 810	}
 811}
 812
 813static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 814				 struct sk_buff *skb)
 815{
 816	if (netdev->features & NETIF_F_RXHASH)
 817		skb->rxhash = le32_to_cpu(rss);
 818}
 819
 820/**
 821 * e1000_clean_rx_irq - Send received data up the network stack
 822 * @rx_ring: Rx descriptor ring
 
 
 823 *
 824 * the return value indicates whether actual cleaning was done, there
 825 * is no guarantee that everything was cleaned
 826 **/
 827static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 828			       int work_to_do)
 829{
 830	struct e1000_adapter *adapter = rx_ring->adapter;
 831	struct net_device *netdev = adapter->netdev;
 832	struct pci_dev *pdev = adapter->pdev;
 833	struct e1000_hw *hw = &adapter->hw;
 834	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 835	struct e1000_buffer *buffer_info, *next_buffer;
 836	u32 length, staterr;
 837	unsigned int i;
 838	int cleaned_count = 0;
 839	bool cleaned = false;
 840	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 841
 842	i = rx_ring->next_to_clean;
 843	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 844	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 845	buffer_info = &rx_ring->buffer_info[i];
 846
 847	while (staterr & E1000_RXD_STAT_DD) {
 848		struct sk_buff *skb;
 849
 850		if (*work_done >= work_to_do)
 851			break;
 852		(*work_done)++;
 853		rmb();	/* read descriptor and rx_buffer_info after status DD */
 854
 855		skb = buffer_info->skb;
 856		buffer_info->skb = NULL;
 857
 858		prefetch(skb->data - NET_IP_ALIGN);
 859
 860		i++;
 861		if (i == rx_ring->count)
 862			i = 0;
 863		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 864		prefetch(next_rxd);
 865
 866		next_buffer = &rx_ring->buffer_info[i];
 867
 868		cleaned = true;
 869		cleaned_count++;
 870		dma_unmap_single(&pdev->dev,
 871				 buffer_info->dma,
 872				 adapter->rx_buffer_len,
 873				 DMA_FROM_DEVICE);
 874		buffer_info->dma = 0;
 875
 876		length = le16_to_cpu(rx_desc->wb.upper.length);
 877
 878		/*
 879		 * !EOP means multiple descriptors were used to store a single
 880		 * packet, if that's the case we need to toss it.  In fact, we
 881		 * need to toss every packet with the EOP bit clear and the
 882		 * next frame that _does_ have the EOP bit set, as it is by
 883		 * definition only a frame fragment
 884		 */
 885		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 886			adapter->flags2 |= FLAG2_IS_DISCARDING;
 887
 888		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 889			/* All receives must fit into a single buffer */
 890			e_dbg("Receive packet consumed multiple buffers\n");
 891			/* recycle */
 892			buffer_info->skb = skb;
 893			if (staterr & E1000_RXD_STAT_EOP)
 894				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 895			goto next_desc;
 896		}
 897
 898		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 899			     !(netdev->features & NETIF_F_RXALL))) {
 900			/* recycle */
 901			buffer_info->skb = skb;
 902			goto next_desc;
 903		}
 904
 905		/* adjust length to remove Ethernet CRC */
 906		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 907			/* If configured to store CRC, don't subtract FCS,
 908			 * but keep the FCS bytes out of the total_rx_bytes
 909			 * counter
 910			 */
 911			if (netdev->features & NETIF_F_RXFCS)
 912				total_rx_bytes -= 4;
 913			else
 914				length -= 4;
 915		}
 916
 917		total_rx_bytes += length;
 918		total_rx_packets++;
 919
 920		/*
 921		 * code added for copybreak, this should improve
 922		 * performance for small packets with large amounts
 923		 * of reassembly being done in the stack
 924		 */
 925		if (length < copybreak) {
 926			struct sk_buff *new_skb =
 927			    netdev_alloc_skb_ip_align(netdev, length);
 928			if (new_skb) {
 929				skb_copy_to_linear_data_offset(new_skb,
 930							       -NET_IP_ALIGN,
 931							       (skb->data -
 932								NET_IP_ALIGN),
 933							       (length +
 934								NET_IP_ALIGN));
 935				/* save the skb in buffer_info as good */
 936				buffer_info->skb = skb;
 937				skb = new_skb;
 938			}
 939			/* else just continue with the old one */
 940		}
 941		/* end copybreak code */
 942		skb_put(skb, length);
 943
 944		/* Receive Checksum Offload */
 945		e1000_rx_checksum(adapter, staterr, skb);
 946
 947		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
 948
 949		e1000_receive_skb(adapter, netdev, skb, staterr,
 950				  rx_desc->wb.upper.vlan);
 951
 952next_desc:
 953		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
 954
 955		/* return some buffers to hardware, one at a time is too slow */
 956		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
 957			adapter->alloc_rx_buf(rx_ring, cleaned_count,
 958					      GFP_ATOMIC);
 959			cleaned_count = 0;
 960		}
 961
 962		/* use prefetched values */
 963		rx_desc = next_rxd;
 964		buffer_info = next_buffer;
 965
 966		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 967	}
 968	rx_ring->next_to_clean = i;
 969
 970	cleaned_count = e1000_desc_unused(rx_ring);
 971	if (cleaned_count)
 972		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
 973
 974	adapter->total_rx_bytes += total_rx_bytes;
 975	adapter->total_rx_packets += total_rx_packets;
 976	return cleaned;
 977}
 978
 979static void e1000_put_txbuf(struct e1000_ring *tx_ring,
 980			    struct e1000_buffer *buffer_info)
 
 981{
 982	struct e1000_adapter *adapter = tx_ring->adapter;
 983
 984	if (buffer_info->dma) {
 985		if (buffer_info->mapped_as_page)
 986			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 987				       buffer_info->length, DMA_TO_DEVICE);
 988		else
 989			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 990					 buffer_info->length, DMA_TO_DEVICE);
 991		buffer_info->dma = 0;
 992	}
 993	if (buffer_info->skb) {
 994		dev_kfree_skb_any(buffer_info->skb);
 
 
 
 995		buffer_info->skb = NULL;
 996	}
 997	buffer_info->time_stamp = 0;
 998}
 999
1000static void e1000_print_hw_hang(struct work_struct *work)
1001{
1002	struct e1000_adapter *adapter = container_of(work,
1003	                                             struct e1000_adapter,
1004	                                             print_hang_task);
1005	struct net_device *netdev = adapter->netdev;
1006	struct e1000_ring *tx_ring = adapter->tx_ring;
1007	unsigned int i = tx_ring->next_to_clean;
1008	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010	struct e1000_hw *hw = &adapter->hw;
1011	u16 phy_status, phy_1000t_status, phy_ext_status;
1012	u16 pci_status;
1013
1014	if (test_bit(__E1000_DOWN, &adapter->state))
1015		return;
1016
1017	if (!adapter->tx_hang_recheck &&
1018	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1019		/*
1020		 * May be block on write-back, flush and detect again
1021		 * flush pending descriptor writebacks to memory
1022		 */
1023		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024		/* execute the writes immediately */
1025		e1e_flush();
1026		/*
1027		 * Due to rare timing issues, write to TIDV again to ensure
1028		 * the write is successful
1029		 */
1030		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031		/* execute the writes immediately */
1032		e1e_flush();
1033		adapter->tx_hang_recheck = true;
1034		return;
1035	}
1036	/* Real hang detected */
1037	adapter->tx_hang_recheck = false;
 
 
 
 
 
 
 
1038	netif_stop_queue(netdev);
1039
1040	e1e_rphy(hw, PHY_STATUS, &phy_status);
1041	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046	/* detected Hardware unit hang */
1047	e_err("Detected Hardware Unit Hang:\n"
1048	      "  TDH                  <%x>\n"
1049	      "  TDT                  <%x>\n"
1050	      "  next_to_use          <%x>\n"
1051	      "  next_to_clean        <%x>\n"
1052	      "buffer_info[next_to_clean]:\n"
1053	      "  time_stamp           <%lx>\n"
1054	      "  next_to_watch        <%x>\n"
1055	      "  jiffies              <%lx>\n"
1056	      "  next_to_watch.status <%x>\n"
1057	      "MAC Status             <%x>\n"
1058	      "PHY Status             <%x>\n"
1059	      "PHY 1000BASE-T Status  <%x>\n"
1060	      "PHY Extended Status    <%x>\n"
1061	      "PCI Status             <%x>\n",
1062	      readl(tx_ring->head),
1063	      readl(tx_ring->tail),
1064	      tx_ring->next_to_use,
1065	      tx_ring->next_to_clean,
1066	      tx_ring->buffer_info[eop].time_stamp,
1067	      eop,
1068	      jiffies,
1069	      eop_desc->upper.fields.status,
1070	      er32(STATUS),
1071	      phy_status,
1072	      phy_1000t_status,
1073	      phy_ext_status,
1074	      pci_status);
1075
1076	/* Suggest workaround for known h/w issue */
1077	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079}
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089{
1090	struct e1000_adapter *adapter = tx_ring->adapter;
1091	struct net_device *netdev = adapter->netdev;
1092	struct e1000_hw *hw = &adapter->hw;
1093	struct e1000_tx_desc *tx_desc, *eop_desc;
1094	struct e1000_buffer *buffer_info;
1095	unsigned int i, eop;
1096	unsigned int count = 0;
1097	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098	unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100	i = tx_ring->next_to_clean;
1101	eop = tx_ring->buffer_info[i].next_to_watch;
1102	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105	       (count < tx_ring->count)) {
1106		bool cleaned = false;
1107		rmb(); /* read buffer_info after eop_desc */
 
1108		for (; !cleaned; count++) {
1109			tx_desc = E1000_TX_DESC(*tx_ring, i);
1110			buffer_info = &tx_ring->buffer_info[i];
1111			cleaned = (i == eop);
1112
1113			if (cleaned) {
1114				total_tx_packets += buffer_info->segs;
1115				total_tx_bytes += buffer_info->bytecount;
1116				if (buffer_info->skb) {
1117					bytes_compl += buffer_info->skb->len;
1118					pkts_compl++;
1119				}
1120			}
1121
1122			e1000_put_txbuf(tx_ring, buffer_info);
1123			tx_desc->upper.data = 0;
1124
1125			i++;
1126			if (i == tx_ring->count)
1127				i = 0;
1128		}
1129
1130		if (i == tx_ring->next_to_use)
1131			break;
1132		eop = tx_ring->buffer_info[i].next_to_watch;
1133		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134	}
1135
1136	tx_ring->next_to_clean = i;
1137
1138	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140#define TX_WAKE_THRESHOLD 32
1141	if (count && netif_carrier_ok(netdev) &&
1142	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143		/* Make sure that anybody stopping the queue after this
1144		 * sees the new next_to_clean.
1145		 */
1146		smp_mb();
1147
1148		if (netif_queue_stopped(netdev) &&
1149		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1150			netif_wake_queue(netdev);
1151			++adapter->restart_queue;
1152		}
1153	}
1154
1155	if (adapter->detect_tx_hung) {
1156		/*
1157		 * Detect a transmit hang in hardware, this serializes the
1158		 * check with the clearing of time_stamp and movement of i
1159		 */
1160		adapter->detect_tx_hung = false;
1161		if (tx_ring->buffer_info[i].time_stamp &&
1162		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163			       + (adapter->tx_timeout_factor * HZ)) &&
1164		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165			schedule_work(&adapter->print_hang_task);
1166		else
1167			adapter->tx_hang_recheck = false;
1168	}
1169	adapter->total_tx_bytes += total_tx_bytes;
1170	adapter->total_tx_packets += total_tx_packets;
1171	return count < tx_ring->count;
1172}
1173
1174/**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
 
 
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182				  int work_to_do)
1183{
1184	struct e1000_adapter *adapter = rx_ring->adapter;
1185	struct e1000_hw *hw = &adapter->hw;
1186	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187	struct net_device *netdev = adapter->netdev;
1188	struct pci_dev *pdev = adapter->pdev;
1189	struct e1000_buffer *buffer_info, *next_buffer;
1190	struct e1000_ps_page *ps_page;
1191	struct sk_buff *skb;
1192	unsigned int i, j;
1193	u32 length, staterr;
1194	int cleaned_count = 0;
1195	bool cleaned = false;
1196	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198	i = rx_ring->next_to_clean;
1199	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201	buffer_info = &rx_ring->buffer_info[i];
1202
1203	while (staterr & E1000_RXD_STAT_DD) {
1204		if (*work_done >= work_to_do)
1205			break;
1206		(*work_done)++;
1207		skb = buffer_info->skb;
1208		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209
1210		/* in the packet split case this is header only */
1211		prefetch(skb->data - NET_IP_ALIGN);
1212
1213		i++;
1214		if (i == rx_ring->count)
1215			i = 0;
1216		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217		prefetch(next_rxd);
1218
1219		next_buffer = &rx_ring->buffer_info[i];
1220
1221		cleaned = true;
1222		cleaned_count++;
1223		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225		buffer_info->dma = 0;
1226
1227		/* see !EOP comment in other Rx routine */
1228		if (!(staterr & E1000_RXD_STAT_EOP))
1229			adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233			dev_kfree_skb_irq(skb);
1234			if (staterr & E1000_RXD_STAT_EOP)
1235				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236			goto next_desc;
1237		}
1238
1239		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240			     !(netdev->features & NETIF_F_RXALL))) {
1241			dev_kfree_skb_irq(skb);
1242			goto next_desc;
1243		}
1244
1245		length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247		if (!length) {
1248			e_dbg("Last part of the packet spanning multiple descriptors\n");
1249			dev_kfree_skb_irq(skb);
1250			goto next_desc;
1251		}
1252
1253		/* Good Receive */
1254		skb_put(skb, length);
1255
1256		{
1257			/*
1258			 * this looks ugly, but it seems compiler issues make
1259			 * it more efficient than reusing j
1260			 */
1261			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263			/*
1264			 * page alloc/put takes too long and effects small
1265			 * packet throughput, so unsplit small packets and
1266			 * save the alloc/put only valid in softirq (napi)
1267			 * context to call kmap_*
1268			 */
1269			if (l1 && (l1 <= copybreak) &&
1270			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1271				u8 *vaddr;
1272
1273				ps_page = &buffer_info->ps_pages[0];
1274
1275				/*
1276				 * there is no documentation about how to call
1277				 * kmap_atomic, so we can't hold the mapping
1278				 * very long
1279				 */
1280				dma_sync_single_for_cpu(&pdev->dev,
1281							ps_page->dma,
1282							PAGE_SIZE,
1283							DMA_FROM_DEVICE);
1284				vaddr = kmap_atomic(ps_page->page);
1285				memcpy(skb_tail_pointer(skb), vaddr, l1);
1286				kunmap_atomic(vaddr);
1287				dma_sync_single_for_device(&pdev->dev,
1288							   ps_page->dma,
1289							   PAGE_SIZE,
1290							   DMA_FROM_DEVICE);
1291
1292				/* remove the CRC */
1293				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294					if (!(netdev->features & NETIF_F_RXFCS))
1295						l1 -= 4;
1296				}
1297
1298				skb_put(skb, l1);
1299				goto copydone;
1300			} /* if */
1301		}
1302
1303		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305			if (!length)
1306				break;
1307
1308			ps_page = &buffer_info->ps_pages[j];
1309			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310				       DMA_FROM_DEVICE);
1311			ps_page->dma = 0;
1312			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313			ps_page->page = NULL;
1314			skb->len += length;
1315			skb->data_len += length;
1316			skb->truesize += PAGE_SIZE;
1317		}
1318
1319		/* strip the ethernet crc, problem is we're using pages now so
1320		 * this whole operation can get a little cpu intensive
1321		 */
1322		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323			if (!(netdev->features & NETIF_F_RXFCS))
1324				pskb_trim(skb, skb->len - 4);
1325		}
1326
1327copydone:
1328		total_rx_bytes += skb->len;
1329		total_rx_packets++;
1330
1331		e1000_rx_checksum(adapter, staterr, skb);
1332
1333		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335		if (rx_desc->wb.upper.header_status &
1336			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337			adapter->rx_hdr_split++;
1338
1339		e1000_receive_skb(adapter, netdev, skb,
1340				  staterr, rx_desc->wb.middle.vlan);
1341
1342next_desc:
1343		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344		buffer_info->skb = NULL;
1345
1346		/* return some buffers to hardware, one at a time is too slow */
1347		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349					      GFP_ATOMIC);
1350			cleaned_count = 0;
1351		}
1352
1353		/* use prefetched values */
1354		rx_desc = next_rxd;
1355		buffer_info = next_buffer;
1356
1357		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358	}
1359	rx_ring->next_to_clean = i;
1360
1361	cleaned_count = e1000_desc_unused(rx_ring);
1362	if (cleaned_count)
1363		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365	adapter->total_rx_bytes += total_rx_bytes;
1366	adapter->total_rx_packets += total_rx_packets;
1367	return cleaned;
1368}
1369
1370/**
1371 * e1000_consume_page - helper function
1372 **/
1373static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374                               u16 length)
1375{
1376	bi->page = NULL;
1377	skb->len += length;
1378	skb->data_len += length;
1379	skb->truesize += PAGE_SIZE;
1380}
1381
1382/**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
 
 
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390				     int work_to_do)
1391{
1392	struct e1000_adapter *adapter = rx_ring->adapter;
1393	struct net_device *netdev = adapter->netdev;
1394	struct pci_dev *pdev = adapter->pdev;
1395	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396	struct e1000_buffer *buffer_info, *next_buffer;
1397	u32 length, staterr;
1398	unsigned int i;
1399	int cleaned_count = 0;
1400	bool cleaned = false;
1401	unsigned int total_rx_bytes=0, total_rx_packets=0;
 
1402
1403	i = rx_ring->next_to_clean;
1404	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406	buffer_info = &rx_ring->buffer_info[i];
1407
1408	while (staterr & E1000_RXD_STAT_DD) {
1409		struct sk_buff *skb;
1410
1411		if (*work_done >= work_to_do)
1412			break;
1413		(*work_done)++;
1414		rmb();	/* read descriptor and rx_buffer_info after status DD */
1415
1416		skb = buffer_info->skb;
1417		buffer_info->skb = NULL;
1418
1419		++i;
1420		if (i == rx_ring->count)
1421			i = 0;
1422		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423		prefetch(next_rxd);
1424
1425		next_buffer = &rx_ring->buffer_info[i];
1426
1427		cleaned = true;
1428		cleaned_count++;
1429		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430			       DMA_FROM_DEVICE);
1431		buffer_info->dma = 0;
1432
1433		length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435		/* errors is only valid for DD + EOP descriptors */
1436		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438			      !(netdev->features & NETIF_F_RXALL)))) {
1439			/* recycle both page and skb */
1440			buffer_info->skb = skb;
1441			/* an error means any chain goes out the window too */
1442			if (rx_ring->rx_skb_top)
1443				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444			rx_ring->rx_skb_top = NULL;
1445			goto next_desc;
1446		}
1447
1448#define rxtop (rx_ring->rx_skb_top)
1449		if (!(staterr & E1000_RXD_STAT_EOP)) {
1450			/* this descriptor is only the beginning (or middle) */
1451			if (!rxtop) {
1452				/* this is the beginning of a chain */
1453				rxtop = skb;
1454				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455				                   0, length);
1456			} else {
1457				/* this is the middle of a chain */
1458				skb_fill_page_desc(rxtop,
1459				    skb_shinfo(rxtop)->nr_frags,
1460				    buffer_info->page, 0, length);
 
1461				/* re-use the skb, only consumed the page */
1462				buffer_info->skb = skb;
1463			}
1464			e1000_consume_page(buffer_info, rxtop, length);
1465			goto next_desc;
1466		} else {
1467			if (rxtop) {
1468				/* end of the chain */
1469				skb_fill_page_desc(rxtop,
1470				    skb_shinfo(rxtop)->nr_frags,
1471				    buffer_info->page, 0, length);
 
1472				/* re-use the current skb, we only consumed the
1473				 * page */
 
1474				buffer_info->skb = skb;
1475				skb = rxtop;
1476				rxtop = NULL;
1477				e1000_consume_page(buffer_info, skb, length);
1478			} else {
1479				/* no chain, got EOP, this buf is the packet
1480				 * copybreak to save the put_page/alloc_page */
 
1481				if (length <= copybreak &&
1482				    skb_tailroom(skb) >= length) {
1483					u8 *vaddr;
1484					vaddr = kmap_atomic(buffer_info->page);
1485					memcpy(skb_tail_pointer(skb), vaddr,
1486					       length);
1487					kunmap_atomic(vaddr);
1488					/* re-use the page, so don't erase
1489					 * buffer_info->page */
 
1490					skb_put(skb, length);
1491				} else {
1492					skb_fill_page_desc(skb, 0,
1493					                   buffer_info->page, 0,
1494				                           length);
1495					e1000_consume_page(buffer_info, skb,
1496					                   length);
1497				}
1498			}
1499		}
1500
1501		/* Receive Checksum Offload */
1502		e1000_rx_checksum(adapter, staterr, skb);
1503
1504		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506		/* probably a little skewed due to removing CRC */
1507		total_rx_bytes += skb->len;
1508		total_rx_packets++;
1509
1510		/* eth type trans needs skb->data to point to something */
1511		if (!pskb_may_pull(skb, ETH_HLEN)) {
1512			e_err("pskb_may_pull failed.\n");
1513			dev_kfree_skb_irq(skb);
1514			goto next_desc;
1515		}
1516
1517		e1000_receive_skb(adapter, netdev, skb, staterr,
1518				  rx_desc->wb.upper.vlan);
1519
1520next_desc:
1521		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523		/* return some buffers to hardware, one at a time is too slow */
1524		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526					      GFP_ATOMIC);
1527			cleaned_count = 0;
1528		}
1529
1530		/* use prefetched values */
1531		rx_desc = next_rxd;
1532		buffer_info = next_buffer;
1533
1534		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535	}
1536	rx_ring->next_to_clean = i;
1537
1538	cleaned_count = e1000_desc_unused(rx_ring);
1539	if (cleaned_count)
1540		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542	adapter->total_rx_bytes += total_rx_bytes;
1543	adapter->total_rx_packets += total_rx_packets;
1544	return cleaned;
1545}
1546
1547/**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552{
1553	struct e1000_adapter *adapter = rx_ring->adapter;
1554	struct e1000_buffer *buffer_info;
1555	struct e1000_ps_page *ps_page;
1556	struct pci_dev *pdev = adapter->pdev;
1557	unsigned int i, j;
1558
1559	/* Free all the Rx ring sk_buffs */
1560	for (i = 0; i < rx_ring->count; i++) {
1561		buffer_info = &rx_ring->buffer_info[i];
1562		if (buffer_info->dma) {
1563			if (adapter->clean_rx == e1000_clean_rx_irq)
1564				dma_unmap_single(&pdev->dev, buffer_info->dma,
1565						 adapter->rx_buffer_len,
1566						 DMA_FROM_DEVICE);
1567			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568				dma_unmap_page(&pdev->dev, buffer_info->dma,
1569				               PAGE_SIZE,
1570					       DMA_FROM_DEVICE);
1571			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572				dma_unmap_single(&pdev->dev, buffer_info->dma,
1573						 adapter->rx_ps_bsize0,
1574						 DMA_FROM_DEVICE);
1575			buffer_info->dma = 0;
1576		}
1577
1578		if (buffer_info->page) {
1579			put_page(buffer_info->page);
1580			buffer_info->page = NULL;
1581		}
1582
1583		if (buffer_info->skb) {
1584			dev_kfree_skb(buffer_info->skb);
1585			buffer_info->skb = NULL;
1586		}
1587
1588		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589			ps_page = &buffer_info->ps_pages[j];
1590			if (!ps_page->page)
1591				break;
1592			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593				       DMA_FROM_DEVICE);
1594			ps_page->dma = 0;
1595			put_page(ps_page->page);
1596			ps_page->page = NULL;
1597		}
1598	}
1599
1600	/* there also may be some cached data from a chained receive */
1601	if (rx_ring->rx_skb_top) {
1602		dev_kfree_skb(rx_ring->rx_skb_top);
1603		rx_ring->rx_skb_top = NULL;
1604	}
1605
1606	/* Zero out the descriptor ring */
1607	memset(rx_ring->desc, 0, rx_ring->size);
1608
1609	rx_ring->next_to_clean = 0;
1610	rx_ring->next_to_use = 0;
1611	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613	writel(0, rx_ring->head);
1614	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615		e1000e_update_rdt_wa(rx_ring, 0);
1616	else
1617		writel(0, rx_ring->tail);
1618}
1619
1620static void e1000e_downshift_workaround(struct work_struct *work)
1621{
1622	struct e1000_adapter *adapter = container_of(work,
1623					struct e1000_adapter, downshift_task);
 
1624
1625	if (test_bit(__E1000_DOWN, &adapter->state))
1626		return;
1627
1628	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629}
1630
1631/**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636static irqreturn_t e1000_intr_msi(int irq, void *data)
1637{
1638	struct net_device *netdev = data;
1639	struct e1000_adapter *adapter = netdev_priv(netdev);
1640	struct e1000_hw *hw = &adapter->hw;
1641	u32 icr = er32(ICR);
1642
1643	/*
1644	 * read ICR disables interrupts using IAM
1645	 */
1646
1647	if (icr & E1000_ICR_LSC) {
1648		hw->mac.get_link_status = true;
1649		/*
1650		 * ICH8 workaround-- Call gig speed drop workaround on cable
1651		 * disconnect (LSC) before accessing any PHY registers
1652		 */
1653		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654		    (!(er32(STATUS) & E1000_STATUS_LU)))
1655			schedule_work(&adapter->downshift_task);
1656
1657		/*
1658		 * 80003ES2LAN workaround-- For packet buffer work-around on
1659		 * link down event; disable receives here in the ISR and reset
1660		 * adapter in watchdog
1661		 */
1662		if (netif_carrier_ok(netdev) &&
1663		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664			/* disable receives */
1665			u32 rctl = er32(RCTL);
 
1666			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667			adapter->flags |= FLAG_RX_RESTART_NOW;
1668		}
1669		/* guard against interrupt when we're going down */
1670		if (!test_bit(__E1000_DOWN, &adapter->state))
1671			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672	}
1673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	if (napi_schedule_prep(&adapter->napi)) {
1675		adapter->total_tx_bytes = 0;
1676		adapter->total_tx_packets = 0;
1677		adapter->total_rx_bytes = 0;
1678		adapter->total_rx_packets = 0;
1679		__napi_schedule(&adapter->napi);
1680	}
1681
1682	return IRQ_HANDLED;
1683}
1684
1685/**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690static irqreturn_t e1000_intr(int irq, void *data)
1691{
1692	struct net_device *netdev = data;
1693	struct e1000_adapter *adapter = netdev_priv(netdev);
1694	struct e1000_hw *hw = &adapter->hw;
1695	u32 rctl, icr = er32(ICR);
1696
1697	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698		return IRQ_NONE;  /* Not our interrupt */
1699
1700	/*
1701	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702	 * not set, then the adapter didn't send an interrupt
1703	 */
1704	if (!(icr & E1000_ICR_INT_ASSERTED))
1705		return IRQ_NONE;
1706
1707	/*
1708	 * Interrupt Auto-Mask...upon reading ICR,
1709	 * interrupts are masked.  No need for the
1710	 * IMC write
1711	 */
1712
1713	if (icr & E1000_ICR_LSC) {
1714		hw->mac.get_link_status = true;
1715		/*
1716		 * ICH8 workaround-- Call gig speed drop workaround on cable
1717		 * disconnect (LSC) before accessing any PHY registers
1718		 */
1719		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720		    (!(er32(STATUS) & E1000_STATUS_LU)))
1721			schedule_work(&adapter->downshift_task);
1722
1723		/*
1724		 * 80003ES2LAN workaround--
1725		 * For packet buffer work-around on link down event;
1726		 * disable receives here in the ISR and
1727		 * reset adapter in watchdog
1728		 */
1729		if (netif_carrier_ok(netdev) &&
1730		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731			/* disable receives */
1732			rctl = er32(RCTL);
1733			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734			adapter->flags |= FLAG_RX_RESTART_NOW;
1735		}
1736		/* guard against interrupt when we're going down */
1737		if (!test_bit(__E1000_DOWN, &adapter->state))
1738			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739	}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	if (napi_schedule_prep(&adapter->napi)) {
1742		adapter->total_tx_bytes = 0;
1743		adapter->total_tx_packets = 0;
1744		adapter->total_rx_bytes = 0;
1745		adapter->total_rx_packets = 0;
1746		__napi_schedule(&adapter->napi);
1747	}
1748
1749	return IRQ_HANDLED;
1750}
1751
1752static irqreturn_t e1000_msix_other(int irq, void *data)
1753{
1754	struct net_device *netdev = data;
1755	struct e1000_adapter *adapter = netdev_priv(netdev);
1756	struct e1000_hw *hw = &adapter->hw;
1757	u32 icr = er32(ICR);
1758
1759	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			ew32(IMS, E1000_IMS_OTHER);
1762		return IRQ_NONE;
1763	}
1764
1765	if (icr & adapter->eiac_mask)
1766		ew32(ICS, (icr & adapter->eiac_mask));
1767
1768	if (icr & E1000_ICR_OTHER) {
1769		if (!(icr & E1000_ICR_LSC))
1770			goto no_link_interrupt;
1771		hw->mac.get_link_status = true;
1772		/* guard against interrupt when we're going down */
1773		if (!test_bit(__E1000_DOWN, &adapter->state))
1774			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775	}
1776
1777no_link_interrupt:
1778	if (!test_bit(__E1000_DOWN, &adapter->state))
1779		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781	return IRQ_HANDLED;
1782}
1783
1784
1785static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786{
1787	struct net_device *netdev = data;
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	struct e1000_hw *hw = &adapter->hw;
1790	struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793	adapter->total_tx_bytes = 0;
1794	adapter->total_tx_packets = 0;
1795
1796	if (!e1000_clean_tx_irq(tx_ring))
1797		/* Ring was not completely cleaned, so fire another interrupt */
1798		ew32(ICS, tx_ring->ims_val);
1799
 
 
 
1800	return IRQ_HANDLED;
1801}
1802
1803static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804{
1805	struct net_device *netdev = data;
1806	struct e1000_adapter *adapter = netdev_priv(netdev);
1807	struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809	/* Write the ITR value calculated at the end of the
1810	 * previous interrupt.
1811	 */
1812	if (rx_ring->set_itr) {
1813		writel(1000000000 / (rx_ring->itr_val * 256),
1814		       rx_ring->itr_register);
 
 
1815		rx_ring->set_itr = 0;
1816	}
1817
1818	if (napi_schedule_prep(&adapter->napi)) {
1819		adapter->total_rx_bytes = 0;
1820		adapter->total_rx_packets = 0;
1821		__napi_schedule(&adapter->napi);
1822	}
1823	return IRQ_HANDLED;
1824}
1825
1826/**
1827 * e1000_configure_msix - Configure MSI-X hardware
 
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832static void e1000_configure_msix(struct e1000_adapter *adapter)
1833{
1834	struct e1000_hw *hw = &adapter->hw;
1835	struct e1000_ring *rx_ring = adapter->rx_ring;
1836	struct e1000_ring *tx_ring = adapter->tx_ring;
1837	int vector = 0;
1838	u32 ctrl_ext, ivar = 0;
1839
1840	adapter->eiac_mask = 0;
1841
1842	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843	if (hw->mac.type == e1000_82574) {
1844		u32 rfctl = er32(RFCTL);
 
1845		rfctl |= E1000_RFCTL_ACK_DIS;
1846		ew32(RFCTL, rfctl);
1847	}
1848
1849#define E1000_IVAR_INT_ALLOC_VALID	0x8
1850	/* Configure Rx vector */
1851	rx_ring->ims_val = E1000_IMS_RXQ0;
1852	adapter->eiac_mask |= rx_ring->ims_val;
1853	if (rx_ring->itr_val)
1854		writel(1000000000 / (rx_ring->itr_val * 256),
1855		       rx_ring->itr_register);
1856	else
1857		writel(1, rx_ring->itr_register);
1858	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860	/* Configure Tx vector */
1861	tx_ring->ims_val = E1000_IMS_TXQ0;
1862	vector++;
1863	if (tx_ring->itr_val)
1864		writel(1000000000 / (tx_ring->itr_val * 256),
1865		       tx_ring->itr_register);
1866	else
1867		writel(1, tx_ring->itr_register);
1868	adapter->eiac_mask |= tx_ring->ims_val;
1869	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871	/* set vector for Other Causes, e.g. link changes */
1872	vector++;
1873	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874	if (rx_ring->itr_val)
1875		writel(1000000000 / (rx_ring->itr_val * 256),
1876		       hw->hw_addr + E1000_EITR_82574(vector));
1877	else
1878		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1879
1880	/* Cause Tx interrupts on every write back */
1881	ivar |= (1 << 31);
1882
1883	ew32(IVAR, ivar);
1884
1885	/* enable MSI-X PBA support */
1886	ctrl_ext = er32(CTRL_EXT);
1887	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889	/* Auto-Mask Other interrupts upon ICR read */
1890#define E1000_EIAC_MASK_82574   0x01F00000
1891	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893	ew32(CTRL_EXT, ctrl_ext);
1894	e1e_flush();
1895}
1896
1897void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898{
1899	if (adapter->msix_entries) {
1900		pci_disable_msix(adapter->pdev);
1901		kfree(adapter->msix_entries);
1902		adapter->msix_entries = NULL;
1903	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1904		pci_disable_msi(adapter->pdev);
1905		adapter->flags &= ~FLAG_MSI_ENABLED;
1906	}
1907}
1908
1909/**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
 
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916{
1917	int err;
1918	int i;
1919
1920	switch (adapter->int_mode) {
1921	case E1000E_INT_MODE_MSIX:
1922		if (adapter->flags & FLAG_HAS_MSIX) {
1923			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925						      sizeof(struct msix_entry),
1926						      GFP_KERNEL);
 
1927			if (adapter->msix_entries) {
 
 
1928				for (i = 0; i < adapter->num_vectors; i++)
1929					adapter->msix_entries[i].entry = i;
1930
1931				err = pci_enable_msix(adapter->pdev,
1932						      adapter->msix_entries,
1933						      adapter->num_vectors);
1934				if (err == 0)
 
1935					return;
1936			}
1937			/* MSI-X failed, so fall through and try MSI */
1938			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939			e1000e_reset_interrupt_capability(adapter);
1940		}
1941		adapter->int_mode = E1000E_INT_MODE_MSI;
1942		/* Fall through */
1943	case E1000E_INT_MODE_MSI:
1944		if (!pci_enable_msi(adapter->pdev)) {
1945			adapter->flags |= FLAG_MSI_ENABLED;
1946		} else {
1947			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949		}
1950		/* Fall through */
1951	case E1000E_INT_MODE_LEGACY:
1952		/* Don't do anything; this is the system default */
1953		break;
1954	}
1955
1956	/* store the number of vectors being used */
1957	adapter->num_vectors = 1;
1958}
1959
1960/**
1961 * e1000_request_msix - Initialize MSI-X interrupts
 
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966static int e1000_request_msix(struct e1000_adapter *adapter)
1967{
1968	struct net_device *netdev = adapter->netdev;
1969	int err = 0, vector = 0;
1970
1971	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972		snprintf(adapter->rx_ring->name,
1973			 sizeof(adapter->rx_ring->name) - 1,
1974			 "%s-rx-0", netdev->name);
1975	else
1976		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977	err = request_irq(adapter->msix_entries[vector].vector,
1978			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979			  netdev);
1980	if (err)
1981		return err;
1982	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983	    E1000_EITR_82574(vector);
1984	adapter->rx_ring->itr_val = adapter->itr;
1985	vector++;
1986
1987	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988		snprintf(adapter->tx_ring->name,
1989			 sizeof(adapter->tx_ring->name) - 1,
1990			 "%s-tx-0", netdev->name);
1991	else
1992		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993	err = request_irq(adapter->msix_entries[vector].vector,
1994			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995			  netdev);
1996	if (err)
1997		return err;
1998	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999	    E1000_EITR_82574(vector);
2000	adapter->tx_ring->itr_val = adapter->itr;
2001	vector++;
2002
2003	err = request_irq(adapter->msix_entries[vector].vector,
2004			  e1000_msix_other, 0, netdev->name, netdev);
2005	if (err)
2006		return err;
2007
2008	e1000_configure_msix(adapter);
2009
2010	return 0;
2011}
2012
2013/**
2014 * e1000_request_irq - initialize interrupts
 
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019static int e1000_request_irq(struct e1000_adapter *adapter)
2020{
2021	struct net_device *netdev = adapter->netdev;
2022	int err;
2023
2024	if (adapter->msix_entries) {
2025		err = e1000_request_msix(adapter);
2026		if (!err)
2027			return err;
2028		/* fall back to MSI */
2029		e1000e_reset_interrupt_capability(adapter);
2030		adapter->int_mode = E1000E_INT_MODE_MSI;
2031		e1000e_set_interrupt_capability(adapter);
2032	}
2033	if (adapter->flags & FLAG_MSI_ENABLED) {
2034		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035				  netdev->name, netdev);
2036		if (!err)
2037			return err;
2038
2039		/* fall back to legacy interrupt */
2040		e1000e_reset_interrupt_capability(adapter);
2041		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042	}
2043
2044	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045			  netdev->name, netdev);
2046	if (err)
2047		e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049	return err;
2050}
2051
2052static void e1000_free_irq(struct e1000_adapter *adapter)
2053{
2054	struct net_device *netdev = adapter->netdev;
2055
2056	if (adapter->msix_entries) {
2057		int vector = 0;
2058
2059		free_irq(adapter->msix_entries[vector].vector, netdev);
2060		vector++;
2061
2062		free_irq(adapter->msix_entries[vector].vector, netdev);
2063		vector++;
2064
2065		/* Other Causes interrupt vector */
2066		free_irq(adapter->msix_entries[vector].vector, netdev);
2067		return;
2068	}
2069
2070	free_irq(adapter->pdev->irq, netdev);
2071}
2072
2073/**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
 
2075 **/
2076static void e1000_irq_disable(struct e1000_adapter *adapter)
2077{
2078	struct e1000_hw *hw = &adapter->hw;
2079
2080	ew32(IMC, ~0);
2081	if (adapter->msix_entries)
2082		ew32(EIAC_82574, 0);
2083	e1e_flush();
2084
2085	if (adapter->msix_entries) {
2086		int i;
 
2087		for (i = 0; i < adapter->num_vectors; i++)
2088			synchronize_irq(adapter->msix_entries[i].vector);
2089	} else {
2090		synchronize_irq(adapter->pdev->irq);
2091	}
2092}
2093
2094/**
2095 * e1000_irq_enable - Enable default interrupt generation settings
 
2096 **/
2097static void e1000_irq_enable(struct e1000_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100
2101	if (adapter->msix_entries) {
2102		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
 
 
 
2104	} else {
2105		ew32(IMS, IMS_ENABLE_MASK);
2106	}
2107	e1e_flush();
2108}
2109
2110/**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120{
2121	struct e1000_hw *hw = &adapter->hw;
2122	u32 ctrl_ext;
2123	u32 swsm;
2124
2125	/* Let firmware know the driver has taken over */
2126	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127		swsm = er32(SWSM);
2128		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130		ctrl_ext = er32(CTRL_EXT);
2131		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132	}
2133}
2134
2135/**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146{
2147	struct e1000_hw *hw = &adapter->hw;
2148	u32 ctrl_ext;
2149	u32 swsm;
2150
2151	/* Let firmware taken over control of h/w */
2152	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153		swsm = er32(SWSM);
2154		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156		ctrl_ext = er32(CTRL_EXT);
2157		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158	}
2159}
2160
2161/**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
 
 
2163 **/
2164static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165				struct e1000_ring *ring)
2166{
2167	struct pci_dev *pdev = adapter->pdev;
2168
2169	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170					GFP_KERNEL);
2171	if (!ring->desc)
2172		return -ENOMEM;
2173
2174	return 0;
2175}
2176
2177/**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184{
2185	struct e1000_adapter *adapter = tx_ring->adapter;
2186	int err = -ENOMEM, size;
2187
2188	size = sizeof(struct e1000_buffer) * tx_ring->count;
2189	tx_ring->buffer_info = vzalloc(size);
2190	if (!tx_ring->buffer_info)
2191		goto err;
2192
2193	/* round up to nearest 4K */
2194	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195	tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197	err = e1000_alloc_ring_dma(adapter, tx_ring);
2198	if (err)
2199		goto err;
2200
2201	tx_ring->next_to_use = 0;
2202	tx_ring->next_to_clean = 0;
2203
2204	return 0;
2205err:
2206	vfree(tx_ring->buffer_info);
2207	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208	return err;
2209}
2210
2211/**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218{
2219	struct e1000_adapter *adapter = rx_ring->adapter;
2220	struct e1000_buffer *buffer_info;
2221	int i, size, desc_len, err = -ENOMEM;
2222
2223	size = sizeof(struct e1000_buffer) * rx_ring->count;
2224	rx_ring->buffer_info = vzalloc(size);
2225	if (!rx_ring->buffer_info)
2226		goto err;
2227
2228	for (i = 0; i < rx_ring->count; i++) {
2229		buffer_info = &rx_ring->buffer_info[i];
2230		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231						sizeof(struct e1000_ps_page),
2232						GFP_KERNEL);
2233		if (!buffer_info->ps_pages)
2234			goto err_pages;
2235	}
2236
2237	desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239	/* Round up to nearest 4K */
2240	rx_ring->size = rx_ring->count * desc_len;
2241	rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243	err = e1000_alloc_ring_dma(adapter, rx_ring);
2244	if (err)
2245		goto err_pages;
2246
2247	rx_ring->next_to_clean = 0;
2248	rx_ring->next_to_use = 0;
2249	rx_ring->rx_skb_top = NULL;
2250
2251	return 0;
2252
2253err_pages:
2254	for (i = 0; i < rx_ring->count; i++) {
2255		buffer_info = &rx_ring->buffer_info[i];
2256		kfree(buffer_info->ps_pages);
2257	}
2258err:
2259	vfree(rx_ring->buffer_info);
2260	e_err("Unable to allocate memory for the receive descriptor ring\n");
2261	return err;
2262}
2263
2264/**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269{
2270	struct e1000_adapter *adapter = tx_ring->adapter;
2271	struct e1000_buffer *buffer_info;
2272	unsigned long size;
2273	unsigned int i;
2274
2275	for (i = 0; i < tx_ring->count; i++) {
2276		buffer_info = &tx_ring->buffer_info[i];
2277		e1000_put_txbuf(tx_ring, buffer_info);
2278	}
2279
2280	netdev_reset_queue(adapter->netdev);
2281	size = sizeof(struct e1000_buffer) * tx_ring->count;
2282	memset(tx_ring->buffer_info, 0, size);
2283
2284	memset(tx_ring->desc, 0, tx_ring->size);
2285
2286	tx_ring->next_to_use = 0;
2287	tx_ring->next_to_clean = 0;
2288
2289	writel(0, tx_ring->head);
2290	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291		e1000e_update_tdt_wa(tx_ring, 0);
2292	else
2293		writel(0, tx_ring->tail);
2294}
2295
2296/**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303{
2304	struct e1000_adapter *adapter = tx_ring->adapter;
2305	struct pci_dev *pdev = adapter->pdev;
2306
2307	e1000_clean_tx_ring(tx_ring);
2308
2309	vfree(tx_ring->buffer_info);
2310	tx_ring->buffer_info = NULL;
2311
2312	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313			  tx_ring->dma);
2314	tx_ring->desc = NULL;
2315}
2316
2317/**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324{
2325	struct e1000_adapter *adapter = rx_ring->adapter;
2326	struct pci_dev *pdev = adapter->pdev;
2327	int i;
2328
2329	e1000_clean_rx_ring(rx_ring);
2330
2331	for (i = 0; i < rx_ring->count; i++)
2332		kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334	vfree(rx_ring->buffer_info);
2335	rx_ring->buffer_info = NULL;
2336
2337	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338			  rx_ring->dma);
2339	rx_ring->desc = NULL;
2340}
2341
2342/**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 *      Stores a new ITR value based on packets and byte
2350 *      counts during the last interrupt.  The advantage of per interrupt
2351 *      computation is faster updates and more accurate ITR for the current
2352 *      traffic pattern.  Constants in this function were computed
2353 *      based on theoretical maximum wire speed and thresholds were set based
2354 *      on testing data as well as attempting to minimize response time
2355 *      while increasing bulk throughput.  This functionality is controlled
2356 *      by the InterruptThrottleRate module parameter.
2357 **/
2358static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359				     u16 itr_setting, int packets,
2360				     int bytes)
2361{
2362	unsigned int retval = itr_setting;
2363
2364	if (packets == 0)
2365		return itr_setting;
2366
2367	switch (itr_setting) {
2368	case lowest_latency:
2369		/* handle TSO and jumbo frames */
2370		if (bytes/packets > 8000)
2371			retval = bulk_latency;
2372		else if ((packets < 5) && (bytes > 512))
2373			retval = low_latency;
2374		break;
2375	case low_latency:  /* 50 usec aka 20000 ints/s */
2376		if (bytes > 10000) {
2377			/* this if handles the TSO accounting */
2378			if (bytes/packets > 8000)
2379				retval = bulk_latency;
2380			else if ((packets < 10) || ((bytes/packets) > 1200))
2381				retval = bulk_latency;
2382			else if ((packets > 35))
2383				retval = lowest_latency;
2384		} else if (bytes/packets > 2000) {
2385			retval = bulk_latency;
2386		} else if (packets <= 2 && bytes < 512) {
2387			retval = lowest_latency;
2388		}
2389		break;
2390	case bulk_latency: /* 250 usec aka 4000 ints/s */
2391		if (bytes > 25000) {
2392			if (packets > 35)
2393				retval = low_latency;
2394		} else if (bytes < 6000) {
2395			retval = low_latency;
2396		}
2397		break;
2398	}
2399
2400	return retval;
2401}
2402
2403static void e1000_set_itr(struct e1000_adapter *adapter)
2404{
2405	struct e1000_hw *hw = &adapter->hw;
2406	u16 current_itr;
2407	u32 new_itr = adapter->itr;
2408
2409	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410	if (adapter->link_speed != SPEED_1000) {
2411		current_itr = 0;
2412		new_itr = 4000;
2413		goto set_itr_now;
2414	}
2415
2416	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417		new_itr = 0;
2418		goto set_itr_now;
2419	}
2420
2421	adapter->tx_itr = e1000_update_itr(adapter,
2422				    adapter->tx_itr,
2423				    adapter->total_tx_packets,
2424				    adapter->total_tx_bytes);
2425	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2426	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427		adapter->tx_itr = low_latency;
2428
2429	adapter->rx_itr = e1000_update_itr(adapter,
2430				    adapter->rx_itr,
2431				    adapter->total_rx_packets,
2432				    adapter->total_rx_bytes);
2433	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2434	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435		adapter->rx_itr = low_latency;
2436
2437	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
2439	switch (current_itr) {
2440	/* counts and packets in update_itr are dependent on these numbers */
 
2441	case lowest_latency:
2442		new_itr = 70000;
2443		break;
2444	case low_latency:
2445		new_itr = 20000; /* aka hwitr = ~200 */
2446		break;
2447	case bulk_latency:
2448		new_itr = 4000;
2449		break;
2450	default:
2451		break;
2452	}
2453
2454set_itr_now:
2455	if (new_itr != adapter->itr) {
2456		/*
2457		 * this attempts to bias the interrupt rate towards Bulk
2458		 * by adding intermediate steps when interrupt rate is
2459		 * increasing
2460		 */
2461		new_itr = new_itr > adapter->itr ?
2462			     min(adapter->itr + (new_itr >> 2), new_itr) :
2463			     new_itr;
2464		adapter->itr = new_itr;
2465		adapter->rx_ring->itr_val = new_itr;
2466		if (adapter->msix_entries)
2467			adapter->rx_ring->set_itr = 1;
2468		else
2469			if (new_itr)
2470				ew32(ITR, 1000000000 / (new_itr * 256));
2471			else
2472				ew32(ITR, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	}
2474}
2475
2476/**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481{
2482	int size = sizeof(struct e1000_ring);
2483
2484	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485	if (!adapter->tx_ring)
2486		goto err;
2487	adapter->tx_ring->count = adapter->tx_ring_count;
2488	adapter->tx_ring->adapter = adapter;
2489
2490	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491	if (!adapter->rx_ring)
2492		goto err;
2493	adapter->rx_ring->count = adapter->rx_ring_count;
2494	adapter->rx_ring->adapter = adapter;
2495
2496	return 0;
2497err:
2498	e_err("Unable to allocate memory for queues\n");
2499	kfree(adapter->rx_ring);
2500	kfree(adapter->tx_ring);
2501	return -ENOMEM;
2502}
2503
2504/**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509static int e1000e_poll(struct napi_struct *napi, int weight)
2510{
2511	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512						     napi);
2513	struct e1000_hw *hw = &adapter->hw;
2514	struct net_device *poll_dev = adapter->netdev;
2515	int tx_cleaned = 1, work_done = 0;
2516
2517	adapter = netdev_priv(poll_dev);
2518
2519	if (!adapter->msix_entries ||
2520	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525	if (!tx_cleaned)
2526		work_done = weight;
2527
2528	/* If weight not fully consumed, exit the polling mode */
2529	if (work_done < weight) {
 
 
2530		if (adapter->itr_setting & 3)
2531			e1000_set_itr(adapter);
2532		napi_complete(napi);
2533		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534			if (adapter->msix_entries)
2535				ew32(IMS, adapter->rx_ring->ims_val);
2536			else
2537				e1000_irq_enable(adapter);
2538		}
2539	}
2540
2541	return work_done;
2542}
2543
2544static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 
2545{
2546	struct e1000_adapter *adapter = netdev_priv(netdev);
2547	struct e1000_hw *hw = &adapter->hw;
2548	u32 vfta, index;
2549
2550	/* don't update vlan cookie if already programmed */
2551	if ((adapter->hw.mng_cookie.status &
2552	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553	    (vid == adapter->mng_vlan_id))
2554		return 0;
2555
2556	/* add VID to filter table */
2557	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558		index = (vid >> 5) & 0x7F;
2559		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560		vfta |= (1 << (vid & 0x1F));
2561		hw->mac.ops.write_vfta(hw, index, vfta);
2562	}
2563
2564	set_bit(vid, adapter->active_vlans);
2565
2566	return 0;
2567}
2568
2569static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 
2570{
2571	struct e1000_adapter *adapter = netdev_priv(netdev);
2572	struct e1000_hw *hw = &adapter->hw;
2573	u32 vfta, index;
2574
2575	if ((adapter->hw.mng_cookie.status &
2576	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577	    (vid == adapter->mng_vlan_id)) {
2578		/* release control to f/w */
2579		e1000e_release_hw_control(adapter);
2580		return 0;
2581	}
2582
2583	/* remove VID from filter table */
2584	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585		index = (vid >> 5) & 0x7F;
2586		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587		vfta &= ~(1 << (vid & 0x1F));
2588		hw->mac.ops.write_vfta(hw, index, vfta);
2589	}
2590
2591	clear_bit(vid, adapter->active_vlans);
2592
2593	return 0;
2594}
2595
2596/**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601{
2602	struct net_device *netdev = adapter->netdev;
2603	struct e1000_hw *hw = &adapter->hw;
2604	u32 rctl;
2605
2606	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607		/* disable VLAN receive filtering */
2608		rctl = er32(RCTL);
2609		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610		ew32(RCTL, rctl);
2611
2612		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 
2614			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615		}
2616	}
2617}
2618
2619/**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624{
2625	struct e1000_hw *hw = &adapter->hw;
2626	u32 rctl;
2627
2628	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629		/* enable VLAN receive filtering */
2630		rctl = er32(RCTL);
2631		rctl |= E1000_RCTL_VFE;
2632		rctl &= ~E1000_RCTL_CFIEN;
2633		ew32(RCTL, rctl);
2634	}
2635}
2636
2637/**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642{
2643	struct e1000_hw *hw = &adapter->hw;
2644	u32 ctrl;
2645
2646	/* disable VLAN tag insert/strip */
2647	ctrl = er32(CTRL);
2648	ctrl &= ~E1000_CTRL_VME;
2649	ew32(CTRL, ctrl);
2650}
2651
2652/**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657{
2658	struct e1000_hw *hw = &adapter->hw;
2659	u32 ctrl;
2660
2661	/* enable VLAN tag insert/strip */
2662	ctrl = er32(CTRL);
2663	ctrl |= E1000_CTRL_VME;
2664	ew32(CTRL, ctrl);
2665}
2666
2667static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668{
2669	struct net_device *netdev = adapter->netdev;
2670	u16 vid = adapter->hw.mng_cookie.vlan_id;
2671	u16 old_vid = adapter->mng_vlan_id;
2672
2673	if (adapter->hw.mng_cookie.status &
2674	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675		e1000_vlan_rx_add_vid(netdev, vid);
2676		adapter->mng_vlan_id = vid;
2677	}
2678
2679	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680		e1000_vlan_rx_kill_vid(netdev, old_vid);
2681}
2682
2683static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684{
2685	u16 vid;
2686
2687	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691}
2692
2693static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694{
2695	struct e1000_hw *hw = &adapter->hw;
2696	u32 manc, manc2h, mdef, i, j;
2697
2698	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699		return;
2700
2701	manc = er32(MANC);
2702
2703	/*
2704	 * enable receiving management packets to the host. this will probably
2705	 * generate destination unreachable messages from the host OS, but
2706	 * the packets will be handled on SMBUS
2707	 */
2708	manc |= E1000_MANC_EN_MNG2HOST;
2709	manc2h = er32(MANC2H);
2710
2711	switch (hw->mac.type) {
2712	default:
2713		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714		break;
2715	case e1000_82574:
2716	case e1000_82583:
2717		/*
2718		 * Check if IPMI pass-through decision filter already exists;
2719		 * if so, enable it.
2720		 */
2721		for (i = 0, j = 0; i < 8; i++) {
2722			mdef = er32(MDEF(i));
2723
2724			/* Ignore filters with anything other than IPMI ports */
2725			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726				continue;
2727
2728			/* Enable this decision filter in MANC2H */
2729			if (mdef)
2730				manc2h |= (1 << i);
2731
2732			j |= mdef;
2733		}
2734
2735		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736			break;
2737
2738		/* Create new decision filter in an empty filter */
2739		for (i = 0, j = 0; i < 8; i++)
2740			if (er32(MDEF(i)) == 0) {
2741				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742					       E1000_MDEF_PORT_664));
2743				manc2h |= (1 << 1);
2744				j++;
2745				break;
2746			}
2747
2748		if (!j)
2749			e_warn("Unable to create IPMI pass-through filter\n");
2750		break;
2751	}
2752
2753	ew32(MANC2H, manc2h);
2754	ew32(MANC, manc);
2755}
2756
2757/**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763static void e1000_configure_tx(struct e1000_adapter *adapter)
2764{
2765	struct e1000_hw *hw = &adapter->hw;
2766	struct e1000_ring *tx_ring = adapter->tx_ring;
2767	u64 tdba;
2768	u32 tdlen, tarc;
2769
2770	/* Setup the HW Tx Head and Tail descriptor pointers */
2771	tdba = tx_ring->dma;
2772	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774	ew32(TDBAH(0), (tdba >> 32));
2775	ew32(TDLEN(0), tdlen);
2776	ew32(TDH(0), 0);
2777	ew32(TDT(0), 0);
2778	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
 
 
 
 
 
 
2781	/* Set the Tx Interrupt Delay register */
2782	ew32(TIDV, adapter->tx_int_delay);
2783	/* Tx irq moderation */
2784	ew32(TADV, adapter->tx_abs_int_delay);
2785
2786	if (adapter->flags2 & FLAG2_DMA_BURST) {
2787		u32 txdctl = er32(TXDCTL(0));
 
2788		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789			    E1000_TXDCTL_WTHRESH);
2790		/*
2791		 * set up some performance related parameters to encourage the
2792		 * hardware to use the bus more efficiently in bursts, depends
2793		 * on the tx_int_delay to be enabled,
2794		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795		 * hthresh = 1 ==> prefetch when one or more available
2796		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797		 * BEWARE: this seems to work but should be considered first if
2798		 * there are Tx hangs or other Tx related bugs
2799		 */
2800		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801		ew32(TXDCTL(0), txdctl);
2802	}
2803	/* erratum work around: set txdctl the same for both queues */
2804	ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
 
 
 
 
 
 
2806	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807		tarc = er32(TARC(0));
2808		/*
2809		 * set the speed mode bit, we'll clear it if we're not at
2810		 * gigabit link later
2811		 */
2812#define SPEED_MODE_BIT (1 << 21)
2813		tarc |= SPEED_MODE_BIT;
2814		ew32(TARC(0), tarc);
2815	}
2816
2817	/* errata: program both queues to unweighted RR */
2818	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819		tarc = er32(TARC(0));
2820		tarc |= 1;
2821		ew32(TARC(0), tarc);
2822		tarc = er32(TARC(1));
2823		tarc |= 1;
2824		ew32(TARC(1), tarc);
2825	}
2826
2827	/* Setup Transmit Descriptor Settings for eop descriptor */
2828	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830	/* only set IDE if we are delaying interrupts using the timers */
2831	if (adapter->tx_int_delay)
2832		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834	/* enable Report Status bit */
2835	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
 
 
2837	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
 
 
 
2840/**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 rctl, rfctl;
2850	u32 pages = 0;
2851
2852	/* Workaround Si errata on PCHx - configure jumbo frame flow */
 
 
 
2853	if (hw->mac.type >= e1000_pch2lan) {
2854		s32 ret_val;
2855
2856		if (adapter->netdev->mtu > ETH_DATA_LEN)
2857			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858		else
2859			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861		if (ret_val)
2862			e_dbg("failed to enable jumbo frame workaround mode\n");
2863	}
2864
2865	/* Program MC offset vector base */
2866	rctl = er32(RCTL);
2867	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872	/* Do not Store bad packets */
2873	rctl &= ~E1000_RCTL_SBP;
2874
2875	/* Enable Long Packet receive */
2876	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877		rctl &= ~E1000_RCTL_LPE;
2878	else
2879		rctl |= E1000_RCTL_LPE;
2880
2881	/* Some systems expect that the CRC is included in SMBUS traffic. The
2882	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883	 * host memory when this is enabled
2884	 */
2885	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886		rctl |= E1000_RCTL_SECRC;
2887
2888	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890		u16 phy_data;
2891
2892		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893		phy_data &= 0xfff8;
2894		phy_data |= (1 << 2);
2895		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897		e1e_rphy(hw, 22, &phy_data);
2898		phy_data &= 0x0fff;
2899		phy_data |= (1 << 14);
2900		e1e_wphy(hw, 0x10, 0x2823);
2901		e1e_wphy(hw, 0x11, 0x0003);
2902		e1e_wphy(hw, 22, phy_data);
2903	}
2904
2905	/* Setup buffer sizes */
2906	rctl &= ~E1000_RCTL_SZ_4096;
2907	rctl |= E1000_RCTL_BSEX;
2908	switch (adapter->rx_buffer_len) {
2909	case 2048:
2910	default:
2911		rctl |= E1000_RCTL_SZ_2048;
2912		rctl &= ~E1000_RCTL_BSEX;
2913		break;
2914	case 4096:
2915		rctl |= E1000_RCTL_SZ_4096;
2916		break;
2917	case 8192:
2918		rctl |= E1000_RCTL_SZ_8192;
2919		break;
2920	case 16384:
2921		rctl |= E1000_RCTL_SZ_16384;
2922		break;
2923	}
2924
2925	/* Enable Extended Status in all Receive Descriptors */
2926	rfctl = er32(RFCTL);
2927	rfctl |= E1000_RFCTL_EXTEN;
2928	ew32(RFCTL, rfctl);
2929
2930	/*
2931	 * 82571 and greater support packet-split where the protocol
2932	 * header is placed in skb->data and the packet data is
2933	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934	 * In the case of a non-split, skb->data is linearly filled,
2935	 * followed by the page buffers.  Therefore, skb->data is
2936	 * sized to hold the largest protocol header.
2937	 *
2938	 * allocations using alloc_page take too long for regular MTU
2939	 * so only enable packet split for jumbo frames
2940	 *
2941	 * Using pages when the page size is greater than 16k wastes
2942	 * a lot of memory, since we allocate 3 pages at all times
2943	 * per packet.
2944	 */
2945	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947		adapter->rx_ps_pages = pages;
2948	else
2949		adapter->rx_ps_pages = 0;
2950
2951	if (adapter->rx_ps_pages) {
2952		u32 psrctl = 0;
2953
2954		/* Enable Packet split descriptors */
2955		rctl |= E1000_RCTL_DTYP_PS;
2956
2957		psrctl |= adapter->rx_ps_bsize0 >>
2958			E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960		switch (adapter->rx_ps_pages) {
2961		case 3:
2962			psrctl |= PAGE_SIZE <<
2963				E1000_PSRCTL_BSIZE3_SHIFT;
2964		case 2:
2965			psrctl |= PAGE_SIZE <<
2966				E1000_PSRCTL_BSIZE2_SHIFT;
2967		case 1:
2968			psrctl |= PAGE_SIZE >>
2969				E1000_PSRCTL_BSIZE1_SHIFT;
2970			break;
2971		}
2972
2973		ew32(PSRCTL, psrctl);
2974	}
2975
2976	/* This is useful for sniffing bad packets. */
2977	if (adapter->netdev->features & NETIF_F_RXALL) {
2978		/* UPE and MPE will be handled by normal PROMISC logic
2979		 * in e1000e_set_rx_mode */
2980		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985			  E1000_RCTL_DPF | /* Allow filtered pause */
2986			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 
2987		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988		 * and that breaks VLANs.
2989		 */
2990	}
2991
2992	ew32(RCTL, rctl);
2993	/* just started the receive unit, no need to restart */
2994	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995}
2996
2997/**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003static void e1000_configure_rx(struct e1000_adapter *adapter)
3004{
3005	struct e1000_hw *hw = &adapter->hw;
3006	struct e1000_ring *rx_ring = adapter->rx_ring;
3007	u64 rdba;
3008	u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010	if (adapter->rx_ps_pages) {
3011		/* this is a 32 byte descriptor */
3012		rdlen = rx_ring->count *
3013		    sizeof(union e1000_rx_desc_packet_split);
3014		adapter->clean_rx = e1000_clean_rx_irq_ps;
3015		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020	} else {
3021		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022		adapter->clean_rx = e1000_clean_rx_irq;
3023		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024	}
3025
3026	/* disable receives while setting up the descriptors */
3027	rctl = er32(RCTL);
3028	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030	e1e_flush();
3031	usleep_range(10000, 20000);
3032
3033	if (adapter->flags2 & FLAG2_DMA_BURST) {
3034		/*
3035		 * set the writeback threshold (only takes effect if the RDTR
3036		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037		 * enable prefetching of 0x20 Rx descriptors
3038		 * granularity = 01
3039		 * wthresh = 04,
3040		 * hthresh = 04,
3041		 * pthresh = 0x20
3042		 */
3043		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046		/*
3047		 * override the delay timers for enabling bursting, only if
3048		 * the value was not set by the user via module options
3049		 */
3050		if (adapter->rx_int_delay == DEFAULT_RDTR)
3051			adapter->rx_int_delay = BURST_RDTR;
3052		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053			adapter->rx_abs_int_delay = BURST_RADV;
3054	}
3055
3056	/* set the Receive Delay Timer Register */
3057	ew32(RDTR, adapter->rx_int_delay);
3058
3059	/* irq moderation */
3060	ew32(RADV, adapter->rx_abs_int_delay);
3061	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062		ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064	ctrl_ext = er32(CTRL_EXT);
3065	/* Auto-Mask interrupts upon ICR access */
3066	ctrl_ext |= E1000_CTRL_EXT_IAME;
3067	ew32(IAM, 0xffffffff);
3068	ew32(CTRL_EXT, ctrl_ext);
3069	e1e_flush();
3070
3071	/*
3072	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073	 * the Base and Length of the Rx Descriptor Ring
3074	 */
3075	rdba = rx_ring->dma;
3076	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077	ew32(RDBAH(0), (rdba >> 32));
3078	ew32(RDLEN(0), rdlen);
3079	ew32(RDH(0), 0);
3080	ew32(RDT(0), 0);
3081	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
 
 
 
 
 
 
3084	/* Enable Receive Checksum Offload for TCP and UDP */
3085	rxcsum = er32(RXCSUM);
3086	if (adapter->netdev->features & NETIF_F_RXCSUM)
3087		rxcsum |= E1000_RXCSUM_TUOFL;
3088	else
3089		rxcsum &= ~E1000_RXCSUM_TUOFL;
3090	ew32(RXCSUM, rxcsum);
3091
3092	if (adapter->hw.mac.type == e1000_pch2lan) {
3093		/*
3094		 * With jumbo frames, excessive C-state transition
3095		 * latencies result in dropped transactions.
3096		 */
3097		if (adapter->netdev->mtu > ETH_DATA_LEN) {
 
 
 
3098			u32 rxdctl = er32(RXDCTL(0));
3099			ew32(RXDCTL(0), rxdctl | 0x3);
3100			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101		} else {
3102			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103					      PM_QOS_DEFAULT_VALUE);
3104		}
 
 
 
 
 
 
 
3105	}
3106
3107	/* Enable Receives */
3108	ew32(RCTL, rctl);
3109}
3110
3111/**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 *                0 on no addresses written
3118 *                X on writing X addresses to MTA
3119 */
3120static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121{
3122	struct e1000_adapter *adapter = netdev_priv(netdev);
3123	struct e1000_hw *hw = &adapter->hw;
3124	struct netdev_hw_addr *ha;
3125	u8 *mta_list;
3126	int i;
3127
3128	if (netdev_mc_empty(netdev)) {
3129		/* nothing to program, so clear mc list */
3130		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131		return 0;
3132	}
3133
3134	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135	if (!mta_list)
3136		return -ENOMEM;
3137
3138	/* update_mc_addr_list expects a packed array of only addresses. */
3139	i = 0;
3140	netdev_for_each_mc_addr(ha, netdev)
3141		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144	kfree(mta_list);
3145
3146	return netdev_mc_count(netdev);
3147}
3148
3149/**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 *                0 on no addresses written
3156 *                X on writing X addresses to the RAR table
3157 **/
3158static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159{
3160	struct e1000_adapter *adapter = netdev_priv(netdev);
3161	struct e1000_hw *hw = &adapter->hw;
3162	unsigned int rar_entries = hw->mac.rar_entry_count;
3163	int count = 0;
3164
 
 
3165	/* save a rar entry for our hardware address */
3166	rar_entries--;
3167
3168	/* save a rar entry for the LAA workaround */
3169	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170		rar_entries--;
3171
3172	/* return ENOMEM indicating insufficient memory for addresses */
3173	if (netdev_uc_count(netdev) > rar_entries)
3174		return -ENOMEM;
3175
3176	if (!netdev_uc_empty(netdev) && rar_entries) {
3177		struct netdev_hw_addr *ha;
3178
3179		/*
3180		 * write the addresses in reverse order to avoid write
3181		 * combining
3182		 */
3183		netdev_for_each_uc_addr(ha, netdev) {
 
 
3184			if (!rar_entries)
3185				break;
3186			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3187			count++;
3188		}
3189	}
3190
3191	/* zero out the remaining RAR entries not used above */
3192	for (; rar_entries > 0; rar_entries--) {
3193		ew32(RAH(rar_entries), 0);
3194		ew32(RAL(rar_entries), 0);
3195	}
3196	e1e_flush();
3197
3198	return count;
3199}
3200
3201/**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated.  This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210static void e1000e_set_rx_mode(struct net_device *netdev)
3211{
3212	struct e1000_adapter *adapter = netdev_priv(netdev);
3213	struct e1000_hw *hw = &adapter->hw;
3214	u32 rctl;
3215
 
 
 
3216	/* Check for Promiscuous and All Multicast modes */
3217	rctl = er32(RCTL);
3218
3219	/* clear the affected bits */
3220	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222	if (netdev->flags & IFF_PROMISC) {
3223		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224		/* Do not hardware filter VLANs in promisc mode */
3225		e1000e_vlan_filter_disable(adapter);
3226	} else {
3227		int count;
3228
3229		if (netdev->flags & IFF_ALLMULTI) {
3230			rctl |= E1000_RCTL_MPE;
3231		} else {
3232			/*
3233			 * Write addresses to the MTA, if the attempt fails
3234			 * then we should just turn on promiscuous mode so
3235			 * that we can at least receive multicast traffic
3236			 */
3237			count = e1000e_write_mc_addr_list(netdev);
3238			if (count < 0)
3239				rctl |= E1000_RCTL_MPE;
3240		}
3241		e1000e_vlan_filter_enable(adapter);
3242		/*
3243		 * Write addresses to available RAR registers, if there is not
3244		 * sufficient space to store all the addresses then enable
3245		 * unicast promiscuous mode
3246		 */
3247		count = e1000e_write_uc_addr_list(netdev);
3248		if (count < 0)
3249			rctl |= E1000_RCTL_UPE;
3250	}
3251
3252	ew32(RCTL, rctl);
3253
3254	if (netdev->features & NETIF_F_HW_VLAN_RX)
3255		e1000e_vlan_strip_enable(adapter);
3256	else
3257		e1000e_vlan_strip_disable(adapter);
3258}
3259
3260static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261{
3262	struct e1000_hw *hw = &adapter->hw;
3263	u32 mrqc, rxcsum;
 
3264	int i;
3265	static const u32 rsskey[10] = {
3266		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268	};
3269
3270	/* Fill out hash function seed */
3271	for (i = 0; i < 10; i++)
3272		ew32(RSSRK(i), rsskey[i]);
3273
3274	/* Direct all traffic to queue 0 */
3275	for (i = 0; i < 32; i++)
3276		ew32(RETA(i), 0);
3277
3278	/*
3279	 * Disable raw packet checksumming so that RSS hash is placed in
3280	 * descriptor on writeback.
3281	 */
3282	rxcsum = er32(RXCSUM);
3283	rxcsum |= E1000_RXCSUM_PCSD;
3284
3285	ew32(RXCSUM, rxcsum);
3286
3287	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289		E1000_MRQC_RSS_FIELD_IPV6 |
3290		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293	ew32(MRQC, mrqc);
3294}
3295
3296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300static void e1000_configure(struct e1000_adapter *adapter)
3301{
3302	struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304	e1000e_set_rx_mode(adapter->netdev);
3305
3306	e1000_restore_vlan(adapter);
3307	e1000_init_manageability_pt(adapter);
3308
3309	e1000_configure_tx(adapter);
3310
3311	if (adapter->netdev->features & NETIF_F_RXHASH)
3312		e1000e_setup_rss_hash(adapter);
3313	e1000_setup_rctl(adapter);
3314	e1000_configure_rx(adapter);
3315	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316}
3317
3318/**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327{
3328	if (adapter->hw.phy.ops.power_up)
3329		adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331	adapter->hw.mac.ops.setup_link(&adapter->hw);
3332}
3333
3334/**
3335 * e1000_power_down_phy - Power down the PHY
 
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341{
3342	/* WoL is enabled */
3343	if (adapter->wol)
3344		return;
3345
3346	if (adapter->hw.phy.ops.power_down)
3347		adapter->hw.phy.ops.power_down(&adapter->hw);
3348}
3349
3350/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3351 * e1000e_reset - bring the hardware into a known good state
 
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358void e1000e_reset(struct e1000_adapter *adapter)
3359{
3360	struct e1000_mac_info *mac = &adapter->hw.mac;
3361	struct e1000_fc_info *fc = &adapter->hw.fc;
3362	struct e1000_hw *hw = &adapter->hw;
3363	u32 tx_space, min_tx_space, min_rx_space;
3364	u32 pba = adapter->pba;
3365	u16 hwm;
3366
3367	/* reset Packet Buffer Allocation to default */
3368	ew32(PBA, pba);
3369
3370	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371		/*
3372		 * To maintain wire speed transmits, the Tx FIFO should be
3373		 * large enough to accommodate two full transmit packets,
3374		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3375		 * the Rx FIFO should be large enough to accommodate at least
3376		 * one full receive packet and is similarly rounded up and
3377		 * expressed in KB.
3378		 */
3379		pba = er32(PBA);
3380		/* upper 16 bits has Tx packet buffer allocation size in KB */
3381		tx_space = pba >> 16;
3382		/* lower 16 bits has Rx packet buffer allocation size in KB */
3383		pba &= 0xffff;
3384		/*
3385		 * the Tx fifo also stores 16 bytes of information about the Tx
3386		 * but don't include ethernet FCS because hardware appends it
3387		 */
3388		min_tx_space = (adapter->max_frame_size +
3389				sizeof(struct e1000_tx_desc) -
3390				ETH_FCS_LEN) * 2;
3391		min_tx_space = ALIGN(min_tx_space, 1024);
3392		min_tx_space >>= 10;
3393		/* software strips receive CRC, so leave room for it */
3394		min_rx_space = adapter->max_frame_size;
3395		min_rx_space = ALIGN(min_rx_space, 1024);
3396		min_rx_space >>= 10;
3397
3398		/*
3399		 * If current Tx allocation is less than the min Tx FIFO size,
3400		 * and the min Tx FIFO size is less than the current Rx FIFO
3401		 * allocation, take space away from current Rx allocation
3402		 */
3403		if ((tx_space < min_tx_space) &&
3404		    ((min_tx_space - tx_space) < pba)) {
3405			pba -= min_tx_space - tx_space;
3406
3407			/*
3408			 * if short on Rx space, Rx wins and must trump Tx
3409			 * adjustment or use Early Receive if available
3410			 */
3411			if (pba < min_rx_space)
3412				pba = min_rx_space;
3413		}
3414
3415		ew32(PBA, pba);
3416	}
3417
3418	/*
3419	 * flow control settings
3420	 *
3421	 * The high water mark must be low enough to fit one full frame
3422	 * (or the size used for early receive) above it in the Rx FIFO.
3423	 * Set it to the lower of:
3424	 * - 90% of the Rx FIFO size, and
3425	 * - the full Rx FIFO size minus one full frame
3426	 */
3427	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428		fc->pause_time = 0xFFFF;
3429	else
3430		fc->pause_time = E1000_FC_PAUSE_TIME;
3431	fc->send_xon = true;
3432	fc->current_mode = fc->requested_mode;
3433
3434	switch (hw->mac.type) {
3435	case e1000_ich9lan:
3436	case e1000_ich10lan:
3437		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438			pba = 14;
3439			ew32(PBA, pba);
3440			fc->high_water = 0x2800;
3441			fc->low_water = fc->high_water - 8;
3442			break;
3443		}
3444		/* fall-through */
3445	default:
3446		hwm = min(((pba << 10) * 9 / 10),
3447			  ((pba << 10) - adapter->max_frame_size));
3448
3449		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450		fc->low_water = fc->high_water - 8;
3451		break;
3452	case e1000_pchlan:
3453		/*
3454		 * Workaround PCH LOM adapter hangs with certain network
3455		 * loads.  If hangs persist, try disabling Tx flow control.
3456		 */
3457		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458			fc->high_water = 0x3500;
3459			fc->low_water  = 0x1500;
3460		} else {
3461			fc->high_water = 0x5000;
3462			fc->low_water  = 0x3000;
3463		}
3464		fc->refresh_time = 0x1000;
3465		break;
3466	case e1000_pch2lan:
3467	case e1000_pch_lpt:
3468		fc->high_water = 0x05C20;
3469		fc->low_water = 0x05048;
3470		fc->pause_time = 0x0650;
3471		fc->refresh_time = 0x0400;
3472		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473			pba = 14;
3474			ew32(PBA, pba);
 
 
 
 
 
3475		}
 
 
 
 
 
3476		break;
3477	}
3478
3479	/*
3480	 * Alignment of Tx data is on an arbitrary byte boundary with the
3481	 * maximum size per Tx descriptor limited only to the transmit
3482	 * allocation of the packet buffer minus 96 bytes with an upper
3483	 * limit of 24KB due to receive synchronization limitations.
3484	 */
3485	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3486				       24 << 10);
3487
3488	/*
3489	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490	 * fit in receive buffer.
3491	 */
3492	if (adapter->itr_setting & 0x3) {
3493		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3495				dev_info(&adapter->pdev->dev,
3496					"Interrupt Throttle Rate turned off\n");
3497				adapter->flags2 |= FLAG2_DISABLE_AIM;
3498				ew32(ITR, 0);
3499			}
3500		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3501			dev_info(&adapter->pdev->dev,
3502				 "Interrupt Throttle Rate turned on\n");
3503			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3504			adapter->itr = 20000;
3505			ew32(ITR, 1000000000 / (adapter->itr * 256));
3506		}
3507	}
3508
 
 
3509	/* Allow time for pending master requests to run */
3510	mac->ops.reset_hw(hw);
3511
3512	/*
3513	 * For parts with AMT enabled, let the firmware know
3514	 * that the network interface is in control
3515	 */
3516	if (adapter->flags & FLAG_HAS_AMT)
3517		e1000e_get_hw_control(adapter);
3518
3519	ew32(WUC, 0);
3520
3521	if (mac->ops.init_hw(hw))
3522		e_err("Hardware Error\n");
3523
3524	e1000_update_mng_vlan(adapter);
3525
3526	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3527	ew32(VET, ETH_P_8021Q);
3528
3529	e1000e_reset_adaptive(hw);
3530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	if (!netif_running(adapter->netdev) &&
3532	    !test_bit(__E1000_TESTING, &adapter->state)) {
3533		e1000_power_down_phy(adapter);
3534		return;
3535	}
3536
3537	e1000_get_phy_info(hw);
3538
3539	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3540	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541		u16 phy_data = 0;
3542		/*
3543		 * speed up time to link by disabling smart power down, ignore
3544		 * the return value of this function because there is nothing
3545		 * different we would do if it failed
3546		 */
3547		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3548		phy_data &= ~IGP02E1000_PM_SPD;
3549		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3550	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}
3552
3553int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3554{
3555	struct e1000_hw *hw = &adapter->hw;
3556
 
 
 
 
 
 
 
 
3557	/* hardware has been reset, we need to reload some things */
3558	e1000_configure(adapter);
3559
3560	clear_bit(__E1000_DOWN, &adapter->state);
3561
3562	if (adapter->msix_entries)
3563		e1000_configure_msix(adapter);
3564	e1000_irq_enable(adapter);
3565
3566	netif_start_queue(adapter->netdev);
3567
3568	/* fire a link change interrupt to start the watchdog */
3569	if (adapter->msix_entries)
3570		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3571	else
3572		ew32(ICS, E1000_ICS_LSC);
3573
3574	return 0;
3575}
3576
3577static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3578{
3579	struct e1000_hw *hw = &adapter->hw;
3580
3581	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3582		return;
3583
3584	/* flush pending descriptor writebacks to memory */
3585	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3586	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3587
3588	/* execute the writes immediately */
3589	e1e_flush();
3590
3591	/*
3592	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3593	 * write is successful
3594	 */
3595	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3596	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3597
3598	/* execute the writes immediately */
3599	e1e_flush();
3600}
3601
3602static void e1000e_update_stats(struct e1000_adapter *adapter);
3603
3604void e1000e_down(struct e1000_adapter *adapter)
 
 
 
 
 
3605{
3606	struct net_device *netdev = adapter->netdev;
3607	struct e1000_hw *hw = &adapter->hw;
3608	u32 tctl, rctl;
3609
3610	/*
3611	 * signal that we're down so the interrupt handler does not
3612	 * reschedule our watchdog timer
3613	 */
3614	set_bit(__E1000_DOWN, &adapter->state);
3615
 
 
3616	/* disable receives in the hardware */
3617	rctl = er32(RCTL);
3618	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3619		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3620	/* flush and sleep below */
3621
3622	netif_stop_queue(netdev);
3623
3624	/* disable transmits in the hardware */
3625	tctl = er32(TCTL);
3626	tctl &= ~E1000_TCTL_EN;
3627	ew32(TCTL, tctl);
3628
3629	/* flush both disables and wait for them to finish */
3630	e1e_flush();
3631	usleep_range(10000, 20000);
3632
3633	e1000_irq_disable(adapter);
3634
 
 
3635	del_timer_sync(&adapter->watchdog_timer);
3636	del_timer_sync(&adapter->phy_info_timer);
3637
3638	netif_carrier_off(netdev);
3639
3640	spin_lock(&adapter->stats64_lock);
3641	e1000e_update_stats(adapter);
3642	spin_unlock(&adapter->stats64_lock);
3643
3644	e1000e_flush_descriptors(adapter);
3645	e1000_clean_tx_ring(adapter->tx_ring);
3646	e1000_clean_rx_ring(adapter->rx_ring);
3647
3648	adapter->link_speed = 0;
3649	adapter->link_duplex = 0;
3650
3651	if (!pci_channel_offline(adapter->pdev))
3652		e1000e_reset(adapter);
3653
3654	/*
3655	 * TODO: for power management, we could drop the link and
3656	 * pci_disable_device here.
3657	 */
 
 
 
 
 
 
 
3658}
3659
3660void e1000e_reinit_locked(struct e1000_adapter *adapter)
3661{
3662	might_sleep();
3663	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3664		usleep_range(1000, 2000);
3665	e1000e_down(adapter);
3666	e1000e_up(adapter);
3667	clear_bit(__E1000_RESETTING, &adapter->state);
3668}
3669
3670/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3672 * @adapter: board private structure to initialize
3673 *
3674 * e1000_sw_init initializes the Adapter private data structure.
3675 * Fields are initialized based on PCI device information and
3676 * OS network device settings (MTU size).
3677 **/
3678static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3679{
3680	struct net_device *netdev = adapter->netdev;
3681
3682	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3683	adapter->rx_ps_bsize0 = 128;
3684	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3685	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3686	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3687	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3688
3689	spin_lock_init(&adapter->stats64_lock);
3690
3691	e1000e_set_interrupt_capability(adapter);
3692
3693	if (e1000_alloc_queues(adapter))
3694		return -ENOMEM;
3695
 
 
 
 
 
 
 
 
 
 
 
3696	/* Explicitly disable IRQ since the NIC can be in any state. */
3697	e1000_irq_disable(adapter);
3698
3699	set_bit(__E1000_DOWN, &adapter->state);
3700	return 0;
3701}
3702
3703/**
3704 * e1000_intr_msi_test - Interrupt Handler
3705 * @irq: interrupt number
3706 * @data: pointer to a network interface device structure
3707 **/
3708static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3709{
3710	struct net_device *netdev = data;
3711	struct e1000_adapter *adapter = netdev_priv(netdev);
3712	struct e1000_hw *hw = &adapter->hw;
3713	u32 icr = er32(ICR);
3714
3715	e_dbg("icr is %08X\n", icr);
3716	if (icr & E1000_ICR_RXSEQ) {
3717		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
 
 
 
3718		wmb();
3719	}
3720
3721	return IRQ_HANDLED;
3722}
3723
3724/**
3725 * e1000_test_msi_interrupt - Returns 0 for successful test
3726 * @adapter: board private struct
3727 *
3728 * code flow taken from tg3.c
3729 **/
3730static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3731{
3732	struct net_device *netdev = adapter->netdev;
3733	struct e1000_hw *hw = &adapter->hw;
3734	int err;
3735
3736	/* poll_enable hasn't been called yet, so don't need disable */
3737	/* clear any pending events */
3738	er32(ICR);
3739
3740	/* free the real vector and request a test handler */
3741	e1000_free_irq(adapter);
3742	e1000e_reset_interrupt_capability(adapter);
3743
3744	/* Assume that the test fails, if it succeeds then the test
3745	 * MSI irq handler will unset this flag */
 
3746	adapter->flags |= FLAG_MSI_TEST_FAILED;
3747
3748	err = pci_enable_msi(adapter->pdev);
3749	if (err)
3750		goto msi_test_failed;
3751
3752	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3753			  netdev->name, netdev);
3754	if (err) {
3755		pci_disable_msi(adapter->pdev);
3756		goto msi_test_failed;
3757	}
3758
 
 
 
3759	wmb();
3760
3761	e1000_irq_enable(adapter);
3762
3763	/* fire an unusual interrupt on the test handler */
3764	ew32(ICS, E1000_ICS_RXSEQ);
3765	e1e_flush();
3766	msleep(100);
3767
3768	e1000_irq_disable(adapter);
3769
3770	rmb();
3771
3772	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3773		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3774		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3775	} else {
3776		e_dbg("MSI interrupt test succeeded!\n");
3777	}
3778
3779	free_irq(adapter->pdev->irq, netdev);
3780	pci_disable_msi(adapter->pdev);
3781
3782msi_test_failed:
3783	e1000e_set_interrupt_capability(adapter);
3784	return e1000_request_irq(adapter);
3785}
3786
3787/**
3788 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3789 * @adapter: board private struct
3790 *
3791 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3792 **/
3793static int e1000_test_msi(struct e1000_adapter *adapter)
3794{
3795	int err;
3796	u16 pci_cmd;
3797
3798	if (!(adapter->flags & FLAG_MSI_ENABLED))
3799		return 0;
3800
3801	/* disable SERR in case the MSI write causes a master abort */
3802	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803	if (pci_cmd & PCI_COMMAND_SERR)
3804		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3805				      pci_cmd & ~PCI_COMMAND_SERR);
3806
3807	err = e1000_test_msi_interrupt(adapter);
3808
3809	/* re-enable SERR */
3810	if (pci_cmd & PCI_COMMAND_SERR) {
3811		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3812		pci_cmd |= PCI_COMMAND_SERR;
3813		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3814	}
3815
3816	return err;
3817}
3818
3819/**
3820 * e1000_open - Called when a network interface is made active
3821 * @netdev: network interface device structure
3822 *
3823 * Returns 0 on success, negative value on failure
3824 *
3825 * The open entry point is called when a network interface is made
3826 * active by the system (IFF_UP).  At this point all resources needed
3827 * for transmit and receive operations are allocated, the interrupt
3828 * handler is registered with the OS, the watchdog timer is started,
3829 * and the stack is notified that the interface is ready.
3830 **/
3831static int e1000_open(struct net_device *netdev)
3832{
3833	struct e1000_adapter *adapter = netdev_priv(netdev);
3834	struct e1000_hw *hw = &adapter->hw;
3835	struct pci_dev *pdev = adapter->pdev;
3836	int err;
3837
3838	/* disallow open during test */
3839	if (test_bit(__E1000_TESTING, &adapter->state))
3840		return -EBUSY;
3841
3842	pm_runtime_get_sync(&pdev->dev);
3843
3844	netif_carrier_off(netdev);
 
3845
3846	/* allocate transmit descriptors */
3847	err = e1000e_setup_tx_resources(adapter->tx_ring);
3848	if (err)
3849		goto err_setup_tx;
3850
3851	/* allocate receive descriptors */
3852	err = e1000e_setup_rx_resources(adapter->rx_ring);
3853	if (err)
3854		goto err_setup_rx;
3855
3856	/*
3857	 * If AMT is enabled, let the firmware know that the network
3858	 * interface is now open and reset the part to a known state.
3859	 */
3860	if (adapter->flags & FLAG_HAS_AMT) {
3861		e1000e_get_hw_control(adapter);
3862		e1000e_reset(adapter);
3863	}
3864
3865	e1000e_power_up_phy(adapter);
3866
3867	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3868	if ((adapter->hw.mng_cookie.status &
3869	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3870		e1000_update_mng_vlan(adapter);
3871
3872	/* DMA latency requirement to workaround jumbo issue */
3873	if (adapter->hw.mac.type == e1000_pch2lan)
3874		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3875				   PM_QOS_CPU_DMA_LATENCY,
3876				   PM_QOS_DEFAULT_VALUE);
3877
3878	/*
3879	 * before we allocate an interrupt, we must be ready to handle it.
3880	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3881	 * as soon as we call pci_request_irq, so we have to setup our
3882	 * clean_rx handler before we do so.
3883	 */
3884	e1000_configure(adapter);
3885
3886	err = e1000_request_irq(adapter);
3887	if (err)
3888		goto err_req_irq;
3889
3890	/*
3891	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3892	 * ignore e1000e MSI messages, which means we need to test our MSI
3893	 * interrupt now
3894	 */
3895	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3896		err = e1000_test_msi(adapter);
3897		if (err) {
3898			e_err("Interrupt allocation failed\n");
3899			goto err_req_irq;
3900		}
3901	}
3902
3903	/* From here on the code is the same as e1000e_up() */
3904	clear_bit(__E1000_DOWN, &adapter->state);
3905
3906	napi_enable(&adapter->napi);
3907
3908	e1000_irq_enable(adapter);
3909
3910	adapter->tx_hang_recheck = false;
3911	netif_start_queue(netdev);
3912
3913	adapter->idle_check = true;
3914	pm_runtime_put(&pdev->dev);
3915
3916	/* fire a link status change interrupt to start the watchdog */
3917	if (adapter->msix_entries)
3918		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3919	else
3920		ew32(ICS, E1000_ICS_LSC);
3921
3922	return 0;
3923
3924err_req_irq:
 
3925	e1000e_release_hw_control(adapter);
3926	e1000_power_down_phy(adapter);
3927	e1000e_free_rx_resources(adapter->rx_ring);
3928err_setup_rx:
3929	e1000e_free_tx_resources(adapter->tx_ring);
3930err_setup_tx:
3931	e1000e_reset(adapter);
3932	pm_runtime_put_sync(&pdev->dev);
3933
3934	return err;
3935}
3936
3937/**
3938 * e1000_close - Disables a network interface
3939 * @netdev: network interface device structure
3940 *
3941 * Returns 0, this is not allowed to fail
3942 *
3943 * The close entry point is called when an interface is de-activated
3944 * by the OS.  The hardware is still under the drivers control, but
3945 * needs to be disabled.  A global MAC reset is issued to stop the
3946 * hardware, and all transmit and receive resources are freed.
3947 **/
3948static int e1000_close(struct net_device *netdev)
3949{
3950	struct e1000_adapter *adapter = netdev_priv(netdev);
3951	struct pci_dev *pdev = adapter->pdev;
3952	int count = E1000_CHECK_RESET_COUNT;
3953
3954	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3955		usleep_range(10000, 20000);
3956
3957	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3958
3959	pm_runtime_get_sync(&pdev->dev);
3960
3961	napi_disable(&adapter->napi);
3962
3963	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3964		e1000e_down(adapter);
3965		e1000_free_irq(adapter);
 
 
 
3966	}
3967	e1000_power_down_phy(adapter);
 
3968
3969	e1000e_free_tx_resources(adapter->tx_ring);
3970	e1000e_free_rx_resources(adapter->rx_ring);
3971
3972	/*
3973	 * kill manageability vlan ID if supported, but not if a vlan with
3974	 * the same ID is registered on the host OS (let 8021q kill it)
3975	 */
3976	if (adapter->hw.mng_cookie.status &
3977	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3978		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3979
3980	/*
3981	 * If AMT is enabled, let the firmware know that the network
3982	 * interface is now closed
3983	 */
3984	if ((adapter->flags & FLAG_HAS_AMT) &&
3985	    !test_bit(__E1000_TESTING, &adapter->state))
3986		e1000e_release_hw_control(adapter);
3987
3988	if (adapter->hw.mac.type == e1000_pch2lan)
3989		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990
3991	pm_runtime_put_sync(&pdev->dev);
3992
3993	return 0;
3994}
 
3995/**
3996 * e1000_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002static int e1000_set_mac(struct net_device *netdev, void *p)
4003{
4004	struct e1000_adapter *adapter = netdev_priv(netdev);
4005	struct e1000_hw *hw = &adapter->hw;
4006	struct sockaddr *addr = p;
4007
4008	if (!is_valid_ether_addr(addr->sa_data))
4009		return -EADDRNOTAVAIL;
4010
4011	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4013
4014	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4015
4016	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4017		/* activate the work around */
4018		e1000e_set_laa_state_82571(&adapter->hw, 1);
4019
4020		/*
4021		 * Hold a copy of the LAA in RAR[14] This is done so that
4022		 * between the time RAR[0] gets clobbered  and the time it
4023		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4024		 * of the RARs and no incoming packets directed to this port
4025		 * are dropped. Eventually the LAA will be in RAR[0] and
4026		 * RAR[14]
4027		 */
4028		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4029				    adapter->hw.mac.rar_entry_count - 1);
4030	}
4031
4032	return 0;
4033}
4034
4035/**
4036 * e1000e_update_phy_task - work thread to update phy
4037 * @work: pointer to our work struct
4038 *
4039 * this worker thread exists because we must acquire a
4040 * semaphore to read the phy, which we could msleep while
4041 * waiting for it, and we can't msleep in a timer.
4042 **/
4043static void e1000e_update_phy_task(struct work_struct *work)
4044{
4045	struct e1000_adapter *adapter = container_of(work,
4046					struct e1000_adapter, update_phy_task);
 
 
4047
4048	if (test_bit(__E1000_DOWN, &adapter->state))
4049		return;
4050
4051	e1000_get_phy_info(&adapter->hw);
 
 
 
 
4052}
4053
4054/*
 
 
 
4055 * Need to wait a few seconds after link up to get diagnostic information from
4056 * the phy
4057 */
4058static void e1000_update_phy_info(unsigned long data)
4059{
4060	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061
4062	if (test_bit(__E1000_DOWN, &adapter->state))
4063		return;
4064
4065	schedule_work(&adapter->update_phy_task);
4066}
4067
4068/**
4069 * e1000e_update_phy_stats - Update the PHY statistics counters
4070 * @adapter: board private structure
4071 *
4072 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 **/
4074static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4075{
4076	struct e1000_hw *hw = &adapter->hw;
4077	s32 ret_val;
4078	u16 phy_data;
4079
4080	ret_val = hw->phy.ops.acquire(hw);
4081	if (ret_val)
4082		return;
4083
4084	/*
4085	 * A page set is expensive so check if already on desired page.
4086	 * If not, set to the page with the PHY status registers.
4087	 */
4088	hw->phy.addr = 1;
4089	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4090					   &phy_data);
4091	if (ret_val)
4092		goto release;
4093	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4094		ret_val = hw->phy.ops.set_page(hw,
4095					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096		if (ret_val)
4097			goto release;
4098	}
4099
4100	/* Single Collision Count */
4101	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4102	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103	if (!ret_val)
4104		adapter->stats.scc += phy_data;
4105
4106	/* Excessive Collision Count */
4107	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4108	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109	if (!ret_val)
4110		adapter->stats.ecol += phy_data;
4111
4112	/* Multiple Collision Count */
4113	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4114	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115	if (!ret_val)
4116		adapter->stats.mcc += phy_data;
4117
4118	/* Late Collision Count */
4119	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4120	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121	if (!ret_val)
4122		adapter->stats.latecol += phy_data;
4123
4124	/* Collision Count - also used for adaptive IFS */
4125	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4126	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127	if (!ret_val)
4128		hw->mac.collision_delta = phy_data;
4129
4130	/* Defer Count */
4131	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4132	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133	if (!ret_val)
4134		adapter->stats.dc += phy_data;
4135
4136	/* Transmit with no CRS */
4137	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4138	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139	if (!ret_val)
4140		adapter->stats.tncrs += phy_data;
4141
4142release:
4143	hw->phy.ops.release(hw);
4144}
4145
4146/**
4147 * e1000e_update_stats - Update the board statistics counters
4148 * @adapter: board private structure
4149 **/
4150static void e1000e_update_stats(struct e1000_adapter *adapter)
4151{
4152	struct net_device *netdev = adapter->netdev;
4153	struct e1000_hw *hw = &adapter->hw;
4154	struct pci_dev *pdev = adapter->pdev;
4155
4156	/*
4157	 * Prevent stats update while adapter is being reset, or if the pci
4158	 * connection is down.
4159	 */
4160	if (adapter->link_speed == 0)
4161		return;
4162	if (pci_channel_offline(pdev))
4163		return;
4164
4165	adapter->stats.crcerrs += er32(CRCERRS);
4166	adapter->stats.gprc += er32(GPRC);
4167	adapter->stats.gorc += er32(GORCL);
4168	er32(GORCH); /* Clear gorc */
4169	adapter->stats.bprc += er32(BPRC);
4170	adapter->stats.mprc += er32(MPRC);
4171	adapter->stats.roc += er32(ROC);
4172
4173	adapter->stats.mpc += er32(MPC);
4174
4175	/* Half-duplex statistics */
4176	if (adapter->link_duplex == HALF_DUPLEX) {
4177		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4178			e1000e_update_phy_stats(adapter);
4179		} else {
4180			adapter->stats.scc += er32(SCC);
4181			adapter->stats.ecol += er32(ECOL);
4182			adapter->stats.mcc += er32(MCC);
4183			adapter->stats.latecol += er32(LATECOL);
4184			adapter->stats.dc += er32(DC);
4185
4186			hw->mac.collision_delta = er32(COLC);
4187
4188			if ((hw->mac.type != e1000_82574) &&
4189			    (hw->mac.type != e1000_82583))
4190				adapter->stats.tncrs += er32(TNCRS);
4191		}
4192		adapter->stats.colc += hw->mac.collision_delta;
4193	}
4194
4195	adapter->stats.xonrxc += er32(XONRXC);
4196	adapter->stats.xontxc += er32(XONTXC);
4197	adapter->stats.xoffrxc += er32(XOFFRXC);
4198	adapter->stats.xofftxc += er32(XOFFTXC);
4199	adapter->stats.gptc += er32(GPTC);
4200	adapter->stats.gotc += er32(GOTCL);
4201	er32(GOTCH); /* Clear gotc */
4202	adapter->stats.rnbc += er32(RNBC);
4203	adapter->stats.ruc += er32(RUC);
4204
4205	adapter->stats.mptc += er32(MPTC);
4206	adapter->stats.bptc += er32(BPTC);
4207
4208	/* used for adaptive IFS */
4209
4210	hw->mac.tx_packet_delta = er32(TPT);
4211	adapter->stats.tpt += hw->mac.tx_packet_delta;
4212
4213	adapter->stats.algnerrc += er32(ALGNERRC);
4214	adapter->stats.rxerrc += er32(RXERRC);
4215	adapter->stats.cexterr += er32(CEXTERR);
4216	adapter->stats.tsctc += er32(TSCTC);
4217	adapter->stats.tsctfc += er32(TSCTFC);
4218
4219	/* Fill out the OS statistics structure */
4220	netdev->stats.multicast = adapter->stats.mprc;
4221	netdev->stats.collisions = adapter->stats.colc;
4222
4223	/* Rx Errors */
4224
4225	/*
4226	 * RLEC on some newer hardware can be incorrect so build
4227	 * our own version based on RUC and ROC
4228	 */
4229	netdev->stats.rx_errors = adapter->stats.rxerrc +
4230		adapter->stats.crcerrs + adapter->stats.algnerrc +
4231		adapter->stats.ruc + adapter->stats.roc +
4232		adapter->stats.cexterr;
4233	netdev->stats.rx_length_errors = adapter->stats.ruc +
4234					      adapter->stats.roc;
4235	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4236	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4237	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238
4239	/* Tx Errors */
4240	netdev->stats.tx_errors = adapter->stats.ecol +
4241				       adapter->stats.latecol;
4242	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4243	netdev->stats.tx_window_errors = adapter->stats.latecol;
4244	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245
4246	/* Tx Dropped needs to be maintained elsewhere */
4247
4248	/* Management Stats */
4249	adapter->stats.mgptc += er32(MGTPTC);
4250	adapter->stats.mgprc += er32(MGTPRC);
4251	adapter->stats.mgpdc += er32(MGTPDC);
 
 
 
 
 
 
 
 
 
 
 
4252}
4253
4254/**
4255 * e1000_phy_read_status - Update the PHY register status snapshot
4256 * @adapter: board private structure
4257 **/
4258static void e1000_phy_read_status(struct e1000_adapter *adapter)
4259{
4260	struct e1000_hw *hw = &adapter->hw;
4261	struct e1000_phy_regs *phy = &adapter->phy_regs;
4262
4263	if ((er32(STATUS) & E1000_STATUS_LU) &&
 
4264	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265		int ret_val;
4266
4267		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4268		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4269		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4270		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4271		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4272		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4273		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4274		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4275		if (ret_val)
4276			e_warn("Error reading PHY register\n");
4277	} else {
4278		/*
4279		 * Do not read PHY registers if link is not up
4280		 * Set values to typical power-on defaults
4281		 */
4282		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4283		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4284			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4285			     BMSR_ERCAP);
4286		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4287				  ADVERTISE_ALL | ADVERTISE_CSMA);
4288		phy->lpa = 0;
4289		phy->expansion = EXPANSION_ENABLENPAGE;
4290		phy->ctrl1000 = ADVERTISE_1000FULL;
4291		phy->stat1000 = 0;
4292		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4293	}
4294}
4295
4296static void e1000_print_link_info(struct e1000_adapter *adapter)
4297{
4298	struct e1000_hw *hw = &adapter->hw;
4299	u32 ctrl = er32(CTRL);
4300
4301	/* Link status message must follow this format for user tools */
4302	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4303		adapter->netdev->name,
4304		adapter->link_speed,
4305		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4306		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4307		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4308		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309}
4310
4311static bool e1000e_has_link(struct e1000_adapter *adapter)
4312{
4313	struct e1000_hw *hw = &adapter->hw;
4314	bool link_active = false;
4315	s32 ret_val = 0;
4316
4317	/*
4318	 * get_link_status is set on LSC (link status) interrupt or
4319	 * Rx sequence error interrupt.  get_link_status will stay
4320	 * false until the check_for_link establishes link
4321	 * for copper adapters ONLY
4322	 */
4323	switch (hw->phy.media_type) {
4324	case e1000_media_type_copper:
4325		if (hw->mac.get_link_status) {
4326			ret_val = hw->mac.ops.check_for_link(hw);
4327			link_active = !hw->mac.get_link_status;
4328		} else {
4329			link_active = true;
4330		}
4331		break;
4332	case e1000_media_type_fiber:
4333		ret_val = hw->mac.ops.check_for_link(hw);
4334		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4335		break;
4336	case e1000_media_type_internal_serdes:
4337		ret_val = hw->mac.ops.check_for_link(hw);
4338		link_active = adapter->hw.mac.serdes_has_link;
4339		break;
4340	default:
4341	case e1000_media_type_unknown:
4342		break;
4343	}
4344
4345	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4346	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4347		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348		e_info("Gigabit has been disabled, downgrading speed\n");
4349	}
4350
4351	return link_active;
4352}
4353
4354static void e1000e_enable_receives(struct e1000_adapter *adapter)
4355{
4356	/* make sure the receive unit is started */
4357	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4358	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4359		struct e1000_hw *hw = &adapter->hw;
4360		u32 rctl = er32(RCTL);
 
4361		ew32(RCTL, rctl | E1000_RCTL_EN);
4362		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4363	}
4364}
4365
4366static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4367{
4368	struct e1000_hw *hw = &adapter->hw;
4369
4370	/*
4371	 * With 82574 controllers, PHY needs to be checked periodically
4372	 * for hung state and reset, if two calls return true
4373	 */
4374	if (e1000_check_phy_82574(hw))
4375		adapter->phy_hang_count++;
4376	else
4377		adapter->phy_hang_count = 0;
4378
4379	if (adapter->phy_hang_count > 1) {
4380		adapter->phy_hang_count = 0;
 
4381		schedule_work(&adapter->reset_task);
4382	}
4383}
4384
4385/**
4386 * e1000_watchdog - Timer Call-back
4387 * @data: pointer to adapter cast into an unsigned long
4388 **/
4389static void e1000_watchdog(unsigned long data)
4390{
4391	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4392
4393	/* Do the rest outside of interrupt context */
4394	schedule_work(&adapter->watchdog_task);
4395
4396	/* TODO: make this use queue_delayed_work() */
4397}
4398
4399static void e1000_watchdog_task(struct work_struct *work)
4400{
4401	struct e1000_adapter *adapter = container_of(work,
4402					struct e1000_adapter, watchdog_task);
 
4403	struct net_device *netdev = adapter->netdev;
4404	struct e1000_mac_info *mac = &adapter->hw.mac;
4405	struct e1000_phy_info *phy = &adapter->hw.phy;
4406	struct e1000_ring *tx_ring = adapter->tx_ring;
 
4407	struct e1000_hw *hw = &adapter->hw;
4408	u32 link, tctl;
4409
4410	if (test_bit(__E1000_DOWN, &adapter->state))
4411		return;
4412
4413	link = e1000e_has_link(adapter);
4414	if ((netif_carrier_ok(netdev)) && link) {
4415		/* Cancel scheduled suspend requests. */
4416		pm_runtime_resume(netdev->dev.parent);
4417
4418		e1000e_enable_receives(adapter);
4419		goto link_up;
4420	}
4421
4422	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4423	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4424		e1000_update_mng_vlan(adapter);
4425
4426	if (link) {
4427		if (!netif_carrier_ok(netdev)) {
4428			bool txb2b = true;
4429
4430			/* Cancel scheduled suspend requests. */
4431			pm_runtime_resume(netdev->dev.parent);
4432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4433			/* update snapshot of PHY registers on LSC */
4434			e1000_phy_read_status(adapter);
4435			mac->ops.get_link_up_info(&adapter->hw,
4436						   &adapter->link_speed,
4437						   &adapter->link_duplex);
4438			e1000_print_link_info(adapter);
4439			/*
4440			 * On supported PHYs, check for duplex mismatch only
 
 
 
 
 
 
4441			 * if link has autonegotiated at 10/100 half
4442			 */
4443			if ((hw->phy.type == e1000_phy_igp_3 ||
4444			     hw->phy.type == e1000_phy_bm) &&
4445			    (hw->mac.autoneg == true) &&
4446			    (adapter->link_speed == SPEED_10 ||
4447			     adapter->link_speed == SPEED_100) &&
4448			    (adapter->link_duplex == HALF_DUPLEX)) {
4449				u16 autoneg_exp;
4450
4451				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4452
4453				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4455			}
4456
4457			/* adjust timeout factor according to speed/duplex */
4458			adapter->tx_timeout_factor = 1;
4459			switch (adapter->link_speed) {
4460			case SPEED_10:
4461				txb2b = false;
4462				adapter->tx_timeout_factor = 16;
4463				break;
4464			case SPEED_100:
4465				txb2b = false;
4466				adapter->tx_timeout_factor = 10;
4467				break;
4468			}
4469
4470			/*
4471			 * workaround: re-program speed mode bit after
4472			 * link-up event
4473			 */
4474			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4475			    !txb2b) {
4476				u32 tarc0;
 
4477				tarc0 = er32(TARC(0));
4478				tarc0 &= ~SPEED_MODE_BIT;
4479				ew32(TARC(0), tarc0);
4480			}
4481
4482			/*
4483			 * disable TSO for pcie and 10/100 speeds, to avoid
4484			 * some hardware issues
4485			 */
4486			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4487				switch (adapter->link_speed) {
4488				case SPEED_10:
4489				case SPEED_100:
4490					e_info("10/100 speed: disabling TSO\n");
4491					netdev->features &= ~NETIF_F_TSO;
4492					netdev->features &= ~NETIF_F_TSO6;
4493					break;
4494				case SPEED_1000:
4495					netdev->features |= NETIF_F_TSO;
4496					netdev->features |= NETIF_F_TSO6;
4497					break;
4498				default:
4499					/* oops */
4500					break;
4501				}
 
 
 
 
4502			}
4503
4504			/*
4505			 * enable transmits in the hardware, need to do this
4506			 * after setting TARC(0)
4507			 */
4508			tctl = er32(TCTL);
4509			tctl |= E1000_TCTL_EN;
4510			ew32(TCTL, tctl);
4511
4512                        /*
4513			 * Perform any post-link-up configuration before
4514			 * reporting link up.
4515			 */
4516			if (phy->ops.cfg_on_link_up)
4517				phy->ops.cfg_on_link_up(hw);
4518
 
4519			netif_carrier_on(netdev);
4520
4521			if (!test_bit(__E1000_DOWN, &adapter->state))
4522				mod_timer(&adapter->phy_info_timer,
4523					  round_jiffies(jiffies + 2 * HZ));
4524		}
4525	} else {
4526		if (netif_carrier_ok(netdev)) {
4527			adapter->link_speed = 0;
4528			adapter->link_duplex = 0;
4529			/* Link status message must follow this format */
4530			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4531			       adapter->netdev->name);
4532			netif_carrier_off(netdev);
 
4533			if (!test_bit(__E1000_DOWN, &adapter->state))
4534				mod_timer(&adapter->phy_info_timer,
4535					  round_jiffies(jiffies + 2 * HZ));
4536
 
 
 
 
4537			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4538				schedule_work(&adapter->reset_task);
4539			else
4540				pm_schedule_suspend(netdev->dev.parent,
4541							LINK_TIMEOUT);
4542		}
4543	}
4544
4545link_up:
4546	spin_lock(&adapter->stats64_lock);
4547	e1000e_update_stats(adapter);
4548
4549	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4550	adapter->tpt_old = adapter->stats.tpt;
4551	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4552	adapter->colc_old = adapter->stats.colc;
4553
4554	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4555	adapter->gorc_old = adapter->stats.gorc;
4556	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4557	adapter->gotc_old = adapter->stats.gotc;
4558	spin_unlock(&adapter->stats64_lock);
4559
4560	e1000e_update_adaptive(&adapter->hw);
4561
 
 
4562	if (!netif_carrier_ok(netdev) &&
4563	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4564		/*
4565		 * We've lost link, so the controller stops DMA,
4566		 * but we've got queued Tx work that's never going
4567		 * to get done, so reset controller to flush Tx.
4568		 * (Do the reset outside of interrupt context).
4569		 */
4570		schedule_work(&adapter->reset_task);
4571		/* return immediately since reset is imminent */
4572		return;
4573	}
4574
 
 
4575	/* Simple mode for Interrupt Throttle Rate (ITR) */
4576	if (adapter->itr_setting == 4) {
4577		/*
4578		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4579		 * Total asymmetrical Tx or Rx gets ITR=8000;
4580		 * everyone else is between 2000-8000.
4581		 */
4582		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4583		u32 dif = (adapter->gotc > adapter->gorc ?
4584			    adapter->gotc - adapter->gorc :
4585			    adapter->gorc - adapter->gotc) / 10000;
4586		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4587
4588		ew32(ITR, 1000000000 / (itr * 256));
4589	}
4590
4591	/* Cause software interrupt to ensure Rx ring is cleaned */
4592	if (adapter->msix_entries)
4593		ew32(ICS, adapter->rx_ring->ims_val);
4594	else
4595		ew32(ICS, E1000_ICS_RXDMT0);
4596
4597	/* flush pending descriptors to memory before detecting Tx hang */
4598	e1000e_flush_descriptors(adapter);
4599
4600	/* Force detection of hung controller every watchdog period */
4601	adapter->detect_tx_hung = true;
4602
4603	/*
4604	 * With 82571 controllers, LAA may be overwritten due to controller
4605	 * reset from the other port. Set the appropriate LAA in RAR[0]
4606	 */
4607	if (e1000e_get_laa_state_82571(hw))
4608		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4609
4610	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4611		e1000e_check_82574_phy_workaround(adapter);
4612
 
 
 
 
 
 
 
 
 
 
 
4613	/* Reset the timer */
4614	if (!test_bit(__E1000_DOWN, &adapter->state))
4615		mod_timer(&adapter->watchdog_timer,
4616			  round_jiffies(jiffies + 2 * HZ));
4617}
4618
4619#define E1000_TX_FLAGS_CSUM		0x00000001
4620#define E1000_TX_FLAGS_VLAN		0x00000002
4621#define E1000_TX_FLAGS_TSO		0x00000004
4622#define E1000_TX_FLAGS_IPV4		0x00000008
4623#define E1000_TX_FLAGS_NO_FCS		0x00000010
 
4624#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4625#define E1000_TX_FLAGS_VLAN_SHIFT	16
4626
4627static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4628{
4629	struct e1000_context_desc *context_desc;
4630	struct e1000_buffer *buffer_info;
4631	unsigned int i;
4632	u32 cmd_length = 0;
4633	u16 ipcse = 0, tucse, mss;
4634	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 
4635
4636	if (!skb_is_gso(skb))
4637		return 0;
4638
4639	if (skb_header_cloned(skb)) {
4640		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4641
4642		if (err)
4643			return err;
4644	}
4645
4646	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4647	mss = skb_shinfo(skb)->gso_size;
4648	if (skb->protocol == htons(ETH_P_IP)) {
4649		struct iphdr *iph = ip_hdr(skb);
4650		iph->tot_len = 0;
4651		iph->check = 0;
4652		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4653		                                         0, IPPROTO_TCP, 0);
4654		cmd_length = E1000_TXD_CMD_IP;
4655		ipcse = skb_transport_offset(skb) - 1;
4656	} else if (skb_is_gso_v6(skb)) {
4657		ipv6_hdr(skb)->payload_len = 0;
4658		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659		                                       &ipv6_hdr(skb)->daddr,
4660		                                       0, IPPROTO_TCP, 0);
4661		ipcse = 0;
4662	}
4663	ipcss = skb_network_offset(skb);
4664	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4665	tucss = skb_transport_offset(skb);
4666	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4667	tucse = 0;
4668
4669	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4670	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4671
4672	i = tx_ring->next_to_use;
4673	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4674	buffer_info = &tx_ring->buffer_info[i];
4675
4676	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4677	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4678	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4679	context_desc->upper_setup.tcp_fields.tucss = tucss;
4680	context_desc->upper_setup.tcp_fields.tucso = tucso;
4681	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4682	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4683	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4684	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4685
4686	buffer_info->time_stamp = jiffies;
4687	buffer_info->next_to_watch = i;
4688
4689	i++;
4690	if (i == tx_ring->count)
4691		i = 0;
4692	tx_ring->next_to_use = i;
4693
4694	return 1;
4695}
4696
4697static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4698{
4699	struct e1000_adapter *adapter = tx_ring->adapter;
4700	struct e1000_context_desc *context_desc;
4701	struct e1000_buffer *buffer_info;
4702	unsigned int i;
4703	u8 css;
4704	u32 cmd_len = E1000_TXD_CMD_DEXT;
4705	__be16 protocol;
4706
4707	if (skb->ip_summed != CHECKSUM_PARTIAL)
4708		return 0;
4709
4710	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4711		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4712	else
4713		protocol = skb->protocol;
4714
4715	switch (protocol) {
4716	case cpu_to_be16(ETH_P_IP):
4717		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4718			cmd_len |= E1000_TXD_CMD_TCP;
4719		break;
4720	case cpu_to_be16(ETH_P_IPV6):
4721		/* XXX not handling all IPV6 headers */
4722		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4723			cmd_len |= E1000_TXD_CMD_TCP;
4724		break;
4725	default:
4726		if (unlikely(net_ratelimit()))
4727			e_warn("checksum_partial proto=%x!\n",
4728			       be16_to_cpu(protocol));
4729		break;
4730	}
4731
4732	css = skb_checksum_start_offset(skb);
4733
4734	i = tx_ring->next_to_use;
4735	buffer_info = &tx_ring->buffer_info[i];
4736	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4737
4738	context_desc->lower_setup.ip_config = 0;
4739	context_desc->upper_setup.tcp_fields.tucss = css;
4740	context_desc->upper_setup.tcp_fields.tucso =
4741				css + skb->csum_offset;
4742	context_desc->upper_setup.tcp_fields.tucse = 0;
4743	context_desc->tcp_seg_setup.data = 0;
4744	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4745
4746	buffer_info->time_stamp = jiffies;
4747	buffer_info->next_to_watch = i;
4748
4749	i++;
4750	if (i == tx_ring->count)
4751		i = 0;
4752	tx_ring->next_to_use = i;
4753
4754	return 1;
4755}
4756
4757static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4758			unsigned int first, unsigned int max_per_txd,
4759			unsigned int nr_frags)
4760{
4761	struct e1000_adapter *adapter = tx_ring->adapter;
4762	struct pci_dev *pdev = adapter->pdev;
4763	struct e1000_buffer *buffer_info;
4764	unsigned int len = skb_headlen(skb);
4765	unsigned int offset = 0, size, count = 0, i;
4766	unsigned int f, bytecount, segs;
4767
4768	i = tx_ring->next_to_use;
4769
4770	while (len) {
4771		buffer_info = &tx_ring->buffer_info[i];
4772		size = min(len, max_per_txd);
4773
4774		buffer_info->length = size;
4775		buffer_info->time_stamp = jiffies;
4776		buffer_info->next_to_watch = i;
4777		buffer_info->dma = dma_map_single(&pdev->dev,
4778						  skb->data + offset,
4779						  size, DMA_TO_DEVICE);
4780		buffer_info->mapped_as_page = false;
4781		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4782			goto dma_error;
4783
4784		len -= size;
4785		offset += size;
4786		count++;
4787
4788		if (len) {
4789			i++;
4790			if (i == tx_ring->count)
4791				i = 0;
4792		}
4793	}
4794
4795	for (f = 0; f < nr_frags; f++) {
4796		const struct skb_frag_struct *frag;
4797
4798		frag = &skb_shinfo(skb)->frags[f];
4799		len = skb_frag_size(frag);
4800		offset = 0;
4801
4802		while (len) {
4803			i++;
4804			if (i == tx_ring->count)
4805				i = 0;
4806
4807			buffer_info = &tx_ring->buffer_info[i];
4808			size = min(len, max_per_txd);
4809
4810			buffer_info->length = size;
4811			buffer_info->time_stamp = jiffies;
4812			buffer_info->next_to_watch = i;
4813			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4814						offset, size, DMA_TO_DEVICE);
 
4815			buffer_info->mapped_as_page = true;
4816			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4817				goto dma_error;
4818
4819			len -= size;
4820			offset += size;
4821			count++;
4822		}
4823	}
4824
4825	segs = skb_shinfo(skb)->gso_segs ? : 1;
4826	/* multiply data chunks by size of headers */
4827	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4828
4829	tx_ring->buffer_info[i].skb = skb;
4830	tx_ring->buffer_info[i].segs = segs;
4831	tx_ring->buffer_info[i].bytecount = bytecount;
4832	tx_ring->buffer_info[first].next_to_watch = i;
4833
4834	return count;
4835
4836dma_error:
4837	dev_err(&pdev->dev, "Tx DMA map failed\n");
4838	buffer_info->dma = 0;
4839	if (count)
4840		count--;
4841
4842	while (count--) {
4843		if (i == 0)
4844			i += tx_ring->count;
4845		i--;
4846		buffer_info = &tx_ring->buffer_info[i];
4847		e1000_put_txbuf(tx_ring, buffer_info);
4848	}
4849
4850	return 0;
4851}
4852
4853static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4854{
4855	struct e1000_adapter *adapter = tx_ring->adapter;
4856	struct e1000_tx_desc *tx_desc = NULL;
4857	struct e1000_buffer *buffer_info;
4858	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4859	unsigned int i;
4860
4861	if (tx_flags & E1000_TX_FLAGS_TSO) {
4862		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4863			     E1000_TXD_CMD_TSE;
4864		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4865
4866		if (tx_flags & E1000_TX_FLAGS_IPV4)
4867			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4868	}
4869
4870	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4871		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4872		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4873	}
4874
4875	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4876		txd_lower |= E1000_TXD_CMD_VLE;
4877		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4878	}
4879
4880	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4881		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4882
 
 
 
 
 
4883	i = tx_ring->next_to_use;
4884
4885	do {
4886		buffer_info = &tx_ring->buffer_info[i];
4887		tx_desc = E1000_TX_DESC(*tx_ring, i);
4888		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4889		tx_desc->lower.data =
4890			cpu_to_le32(txd_lower | buffer_info->length);
4891		tx_desc->upper.data = cpu_to_le32(txd_upper);
4892
4893		i++;
4894		if (i == tx_ring->count)
4895			i = 0;
4896	} while (--count > 0);
4897
4898	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4899
4900	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4901	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4902		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4903
4904	/*
4905	 * Force memory writes to complete before letting h/w
4906	 * know there are new descriptors to fetch.  (Only
4907	 * applicable for weak-ordered memory model archs,
4908	 * such as IA-64).
4909	 */
4910	wmb();
4911
4912	tx_ring->next_to_use = i;
4913
4914	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4915		e1000e_update_tdt_wa(tx_ring, i);
4916	else
4917		writel(i, tx_ring->tail);
4918
4919	/*
4920	 * we need this if more than one processor can write to our tail
4921	 * at a time, it synchronizes IO on IA64/Altix systems
4922	 */
4923	mmiowb();
4924}
4925
4926#define MINIMUM_DHCP_PACKET_SIZE 282
4927static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4928				    struct sk_buff *skb)
4929{
4930	struct e1000_hw *hw =  &adapter->hw;
4931	u16 length, offset;
4932
4933	if (vlan_tx_tag_present(skb)) {
4934		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4935		    (adapter->hw.mng_cookie.status &
4936			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4937			return 0;
4938	}
4939
4940	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4941		return 0;
4942
4943	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4944		return 0;
4945
4946	{
4947		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4948		struct udphdr *udp;
4949
4950		if (ip->protocol != IPPROTO_UDP)
4951			return 0;
4952
4953		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4954		if (ntohs(udp->dest) != 67)
4955			return 0;
4956
4957		offset = (u8 *)udp + 8 - skb->data;
4958		length = skb->len - offset;
4959		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4960	}
4961
4962	return 0;
4963}
4964
4965static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4966{
4967	struct e1000_adapter *adapter = tx_ring->adapter;
4968
4969	netif_stop_queue(adapter->netdev);
4970	/*
4971	 * Herbert's original patch had:
4972	 *  smp_mb__after_netif_stop_queue();
4973	 * but since that doesn't exist yet, just open code it.
4974	 */
4975	smp_mb();
4976
4977	/*
4978	 * We need to check again in a case another CPU has just
4979	 * made room available.
4980	 */
4981	if (e1000_desc_unused(tx_ring) < size)
4982		return -EBUSY;
4983
4984	/* A reprieve! */
4985	netif_start_queue(adapter->netdev);
4986	++adapter->restart_queue;
4987	return 0;
4988}
4989
4990static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4991{
4992	BUG_ON(size > tx_ring->count);
4993
4994	if (e1000_desc_unused(tx_ring) >= size)
4995		return 0;
4996	return __e1000_maybe_stop_tx(tx_ring, size);
4997}
4998
4999static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5000				    struct net_device *netdev)
5001{
5002	struct e1000_adapter *adapter = netdev_priv(netdev);
5003	struct e1000_ring *tx_ring = adapter->tx_ring;
5004	unsigned int first;
5005	unsigned int tx_flags = 0;
5006	unsigned int len = skb_headlen(skb);
5007	unsigned int nr_frags;
5008	unsigned int mss;
5009	int count = 0;
5010	int tso;
5011	unsigned int f;
 
5012
5013	if (test_bit(__E1000_DOWN, &adapter->state)) {
5014		dev_kfree_skb_any(skb);
5015		return NETDEV_TX_OK;
5016	}
5017
5018	if (skb->len <= 0) {
5019		dev_kfree_skb_any(skb);
5020		return NETDEV_TX_OK;
5021	}
5022
 
 
 
 
 
 
5023	mss = skb_shinfo(skb)->gso_size;
5024	if (mss) {
5025		u8 hdr_len;
5026
5027		/*
5028		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5029		 * points to just header, pull a few bytes of payload from
5030		 * frags into skb->data
5031		 */
5032		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5033		/*
5034		 * we do this workaround for ES2LAN, but it is un-necessary,
5035		 * avoiding it could save a lot of cycles
5036		 */
5037		if (skb->data_len && (hdr_len == len)) {
5038			unsigned int pull_size;
5039
5040			pull_size = min_t(unsigned int, 4, skb->data_len);
5041			if (!__pskb_pull_tail(skb, pull_size)) {
5042				e_err("__pskb_pull_tail failed.\n");
5043				dev_kfree_skb_any(skb);
5044				return NETDEV_TX_OK;
5045			}
5046			len = skb_headlen(skb);
5047		}
5048	}
5049
5050	/* reserve a descriptor for the offload context */
5051	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5052		count++;
5053	count++;
5054
5055	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5056
5057	nr_frags = skb_shinfo(skb)->nr_frags;
5058	for (f = 0; f < nr_frags; f++)
5059		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5060				      adapter->tx_fifo_limit);
5061
5062	if (adapter->hw.mac.tx_pkt_filtering)
5063		e1000_transfer_dhcp_info(adapter, skb);
5064
5065	/*
5066	 * need: count + 2 desc gap to keep tail from touching
5067	 * head, otherwise try next time
5068	 */
5069	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5070		return NETDEV_TX_BUSY;
5071
5072	if (vlan_tx_tag_present(skb)) {
5073		tx_flags |= E1000_TX_FLAGS_VLAN;
5074		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5075	}
5076
5077	first = tx_ring->next_to_use;
5078
5079	tso = e1000_tso(tx_ring, skb);
5080	if (tso < 0) {
5081		dev_kfree_skb_any(skb);
5082		return NETDEV_TX_OK;
5083	}
5084
5085	if (tso)
5086		tx_flags |= E1000_TX_FLAGS_TSO;
5087	else if (e1000_tx_csum(tx_ring, skb))
5088		tx_flags |= E1000_TX_FLAGS_CSUM;
5089
5090	/*
5091	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5092	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5093	 * no longer assume, we must.
5094	 */
5095	if (skb->protocol == htons(ETH_P_IP))
5096		tx_flags |= E1000_TX_FLAGS_IPV4;
5097
5098	if (unlikely(skb->no_fcs))
5099		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5100
5101	/* if count is 0 then mapping error has occurred */
5102	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5103			     nr_frags);
5104	if (count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
5105		skb_tx_timestamp(skb);
5106
5107		netdev_sent_queue(netdev, skb->len);
5108		e1000_tx_queue(tx_ring, tx_flags, count);
5109		/* Make sure there is space in the ring for the next send. */
5110		e1000_maybe_stop_tx(tx_ring,
5111				    (MAX_SKB_FRAGS *
5112				     DIV_ROUND_UP(PAGE_SIZE,
5113						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
5114	} else {
5115		dev_kfree_skb_any(skb);
5116		tx_ring->buffer_info[first].time_stamp = 0;
5117		tx_ring->next_to_use = first;
5118	}
5119
5120	return NETDEV_TX_OK;
5121}
5122
5123/**
5124 * e1000_tx_timeout - Respond to a Tx Hang
5125 * @netdev: network interface device structure
 
5126 **/
5127static void e1000_tx_timeout(struct net_device *netdev)
5128{
5129	struct e1000_adapter *adapter = netdev_priv(netdev);
5130
5131	/* Do the reset outside of interrupt context */
5132	adapter->tx_timeout_count++;
5133	schedule_work(&adapter->reset_task);
5134}
5135
5136static void e1000_reset_task(struct work_struct *work)
5137{
5138	struct e1000_adapter *adapter;
5139	adapter = container_of(work, struct e1000_adapter, reset_task);
5140
 
5141	/* don't run the task if already down */
5142	if (test_bit(__E1000_DOWN, &adapter->state))
 
5143		return;
 
5144
5145	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5147		e1000e_dump(adapter);
5148		e_err("Reset adapter\n");
5149	}
5150	e1000e_reinit_locked(adapter);
 
5151}
5152
5153/**
5154 * e1000_get_stats64 - Get System Network Statistics
5155 * @netdev: network interface device structure
5156 * @stats: rtnl_link_stats64 pointer
5157 *
5158 * Returns the address of the device statistics structure.
5159 **/
5160struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5161                                             struct rtnl_link_stats64 *stats)
5162{
5163	struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5166	spin_lock(&adapter->stats64_lock);
5167	e1000e_update_stats(adapter);
5168	/* Fill out the OS statistics structure */
5169	stats->rx_bytes = adapter->stats.gorc;
5170	stats->rx_packets = adapter->stats.gprc;
5171	stats->tx_bytes = adapter->stats.gotc;
5172	stats->tx_packets = adapter->stats.gptc;
5173	stats->multicast = adapter->stats.mprc;
5174	stats->collisions = adapter->stats.colc;
5175
5176	/* Rx Errors */
5177
5178	/*
5179	 * RLEC on some newer hardware can be incorrect so build
5180	 * our own version based on RUC and ROC
5181	 */
5182	stats->rx_errors = adapter->stats.rxerrc +
5183		adapter->stats.crcerrs + adapter->stats.algnerrc +
5184		adapter->stats.ruc + adapter->stats.roc +
5185		adapter->stats.cexterr;
5186	stats->rx_length_errors = adapter->stats.ruc +
5187					      adapter->stats.roc;
5188	stats->rx_crc_errors = adapter->stats.crcerrs;
5189	stats->rx_frame_errors = adapter->stats.algnerrc;
5190	stats->rx_missed_errors = adapter->stats.mpc;
5191
5192	/* Tx Errors */
5193	stats->tx_errors = adapter->stats.ecol +
5194				       adapter->stats.latecol;
5195	stats->tx_aborted_errors = adapter->stats.ecol;
5196	stats->tx_window_errors = adapter->stats.latecol;
5197	stats->tx_carrier_errors = adapter->stats.tncrs;
5198
5199	/* Tx Dropped needs to be maintained elsewhere */
5200
5201	spin_unlock(&adapter->stats64_lock);
5202	return stats;
5203}
5204
5205/**
5206 * e1000_change_mtu - Change the Maximum Transfer Unit
5207 * @netdev: network interface device structure
5208 * @new_mtu: new value for maximum frame size
5209 *
5210 * Returns 0 on success, negative on failure
5211 **/
5212static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5216
5217	/* Jumbo frame support */
5218	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5219	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5220		e_err("Jumbo Frames not supported.\n");
5221		return -EINVAL;
5222	}
5223
5224	/* Supported frame sizes */
5225	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5226	    (max_frame > adapter->max_hw_frame_size)) {
5227		e_err("Unsupported MTU setting\n");
5228		return -EINVAL;
5229	}
5230
5231	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5232	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5233	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5234	    (new_mtu > ETH_DATA_LEN)) {
5235		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5236		return -EINVAL;
5237	}
5238
5239	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5240		usleep_range(1000, 2000);
5241	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5242	adapter->max_frame_size = max_frame;
5243	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
 
5244	netdev->mtu = new_mtu;
 
 
 
5245	if (netif_running(netdev))
5246		e1000e_down(adapter);
5247
5248	/*
5249	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5250	 * means we reserve 2 more, this pushes us to allocate from the next
5251	 * larger slab size.
5252	 * i.e. RXBUFFER_2048 --> size-4096 slab
5253	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5254	 * fragmented skbs
5255	 */
5256
5257	if (max_frame <= 2048)
5258		adapter->rx_buffer_len = 2048;
5259	else
5260		adapter->rx_buffer_len = 4096;
5261
5262	/* adjust allocation if LPE protects us, and we aren't using SBP */
5263	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5264	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5265		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5266					 + ETH_FCS_LEN;
5267
5268	if (netif_running(netdev))
5269		e1000e_up(adapter);
5270	else
5271		e1000e_reset(adapter);
5272
 
 
5273	clear_bit(__E1000_RESETTING, &adapter->state);
5274
5275	return 0;
5276}
5277
5278static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5279			   int cmd)
5280{
5281	struct e1000_adapter *adapter = netdev_priv(netdev);
5282	struct mii_ioctl_data *data = if_mii(ifr);
5283
5284	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5285		return -EOPNOTSUPP;
5286
5287	switch (cmd) {
5288	case SIOCGMIIPHY:
5289		data->phy_id = adapter->hw.phy.addr;
5290		break;
5291	case SIOCGMIIREG:
5292		e1000_phy_read_status(adapter);
5293
5294		switch (data->reg_num & 0x1F) {
5295		case MII_BMCR:
5296			data->val_out = adapter->phy_regs.bmcr;
5297			break;
5298		case MII_BMSR:
5299			data->val_out = adapter->phy_regs.bmsr;
5300			break;
5301		case MII_PHYSID1:
5302			data->val_out = (adapter->hw.phy.id >> 16);
5303			break;
5304		case MII_PHYSID2:
5305			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5306			break;
5307		case MII_ADVERTISE:
5308			data->val_out = adapter->phy_regs.advertise;
5309			break;
5310		case MII_LPA:
5311			data->val_out = adapter->phy_regs.lpa;
5312			break;
5313		case MII_EXPANSION:
5314			data->val_out = adapter->phy_regs.expansion;
5315			break;
5316		case MII_CTRL1000:
5317			data->val_out = adapter->phy_regs.ctrl1000;
5318			break;
5319		case MII_STAT1000:
5320			data->val_out = adapter->phy_regs.stat1000;
5321			break;
5322		case MII_ESTATUS:
5323			data->val_out = adapter->phy_regs.estatus;
5324			break;
5325		default:
5326			return -EIO;
5327		}
5328		break;
5329	case SIOCSMIIREG:
5330	default:
5331		return -EOPNOTSUPP;
5332	}
5333	return 0;
5334}
5335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5336static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5337{
5338	switch (cmd) {
5339	case SIOCGMIIPHY:
5340	case SIOCGMIIREG:
5341	case SIOCSMIIREG:
5342		return e1000_mii_ioctl(netdev, ifr, cmd);
 
 
 
 
5343	default:
5344		return -EOPNOTSUPP;
5345	}
5346}
5347
5348static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5349{
5350	struct e1000_hw *hw = &adapter->hw;
5351	u32 i, mac_reg;
5352	u16 phy_reg, wuc_enable;
5353	int retval = 0;
5354
5355	/* copy MAC RARs to PHY RARs */
5356	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5357
5358	retval = hw->phy.ops.acquire(hw);
5359	if (retval) {
5360		e_err("Could not acquire PHY\n");
5361		return retval;
5362	}
5363
5364	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5365	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5366	if (retval)
5367		goto release;
5368
5369	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5370	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5371		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5372		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5373					   (u16)(mac_reg & 0xFFFF));
5374		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5375					   (u16)((mac_reg >> 16) & 0xFFFF));
5376	}
5377
5378	/* configure PHY Rx Control register */
5379	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5380	mac_reg = er32(RCTL);
5381	if (mac_reg & E1000_RCTL_UPE)
5382		phy_reg |= BM_RCTL_UPE;
5383	if (mac_reg & E1000_RCTL_MPE)
5384		phy_reg |= BM_RCTL_MPE;
5385	phy_reg &= ~(BM_RCTL_MO_MASK);
5386	if (mac_reg & E1000_RCTL_MO_3)
5387		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5388				<< BM_RCTL_MO_SHIFT);
5389	if (mac_reg & E1000_RCTL_BAM)
5390		phy_reg |= BM_RCTL_BAM;
5391	if (mac_reg & E1000_RCTL_PMCF)
5392		phy_reg |= BM_RCTL_PMCF;
5393	mac_reg = er32(CTRL);
5394	if (mac_reg & E1000_CTRL_RFCE)
5395		phy_reg |= BM_RCTL_RFCE;
5396	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5397
 
 
 
 
5398	/* enable PHY wakeup in MAC register */
5399	ew32(WUFC, wufc);
5400	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
 
5401
5402	/* configure and enable PHY wakeup in PHY registers */
5403	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5404	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5405
5406	/* activate PHY wakeup */
5407	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5408	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5409	if (retval)
5410		e_err("Could not set PHY Host Wakeup bit\n");
5411release:
5412	hw->phy.ops.release(hw);
5413
5414	return retval;
5415}
5416
5417static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5418			    bool runtime)
5419{
5420	struct net_device *netdev = pci_get_drvdata(pdev);
5421	struct e1000_adapter *adapter = netdev_priv(netdev);
5422	struct e1000_hw *hw = &adapter->hw;
5423	u32 ctrl, ctrl_ext, rctl, status;
5424	/* Runtime suspend should only enable wakeup for link changes */
5425	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5426	int retval = 0;
5427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5428	netif_device_detach(netdev);
5429
5430	if (netif_running(netdev)) {
5431		int count = E1000_CHECK_RESET_COUNT;
5432
5433		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5434			usleep_range(10000, 20000);
5435
5436		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5437		e1000e_down(adapter);
 
 
5438		e1000_free_irq(adapter);
5439	}
 
 
5440	e1000e_reset_interrupt_capability(adapter);
5441
5442	retval = pci_save_state(pdev);
5443	if (retval)
5444		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5445
5446	status = er32(STATUS);
5447	if (status & E1000_STATUS_LU)
5448		wufc &= ~E1000_WUFC_LNKC;
5449
5450	if (wufc) {
5451		e1000_setup_rctl(adapter);
5452		e1000e_set_rx_mode(netdev);
5453
5454		/* turn on all-multi mode if wake on multicast is enabled */
5455		if (wufc & E1000_WUFC_MC) {
5456			rctl = er32(RCTL);
5457			rctl |= E1000_RCTL_MPE;
5458			ew32(RCTL, rctl);
5459		}
5460
5461		ctrl = er32(CTRL);
5462		/* advertise wake from D3Cold */
5463		#define E1000_CTRL_ADVD3WUC 0x00100000
5464		/* phy power management enable */
5465		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5466		ctrl |= E1000_CTRL_ADVD3WUC;
5467		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5468			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5469		ew32(CTRL, ctrl);
5470
5471		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5472		    adapter->hw.phy.media_type ==
5473		    e1000_media_type_internal_serdes) {
5474			/* keep the laser running in D3 */
5475			ctrl_ext = er32(CTRL_EXT);
5476			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5477			ew32(CTRL_EXT, ctrl_ext);
5478		}
5479
 
 
 
5480		if (adapter->flags & FLAG_IS_ICH)
5481			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5482
5483		/* Allow time for pending master requests to run */
5484		e1000e_disable_pcie_master(&adapter->hw);
5485
5486		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5487			/* enable wakeup by the PHY */
5488			retval = e1000_init_phy_wakeup(adapter, wufc);
5489			if (retval)
5490				return retval;
5491		} else {
5492			/* enable wakeup by the MAC */
5493			ew32(WUFC, wufc);
5494			ew32(WUC, E1000_WUC_PME_EN);
5495		}
5496	} else {
5497		ew32(WUC, 0);
5498		ew32(WUFC, 0);
5499	}
5500
5501	*enable_wake = !!wufc;
5502
5503	/* make sure adapter isn't asleep if manageability is enabled */
5504	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5505	    (hw->mac.ops.check_mng_mode(hw)))
5506		*enable_wake = true;
5507
5508	if (adapter->hw.phy.type == e1000_phy_igp_3)
5509		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
 
 
 
 
 
 
5510
5511	/*
5512	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5513	 * would have already happened in close and is redundant.
5514	 */
5515	e1000e_release_hw_control(adapter);
5516
5517	pci_disable_device(pdev);
5518
5519	return 0;
5520}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5521
5522static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5523{
5524	if (sleep && wake) {
5525		pci_prepare_to_sleep(pdev);
5526		return;
5527	}
5528
5529	pci_wake_from_d3(pdev, wake);
5530	pci_set_power_state(pdev, PCI_D3hot);
5531}
 
5532
5533static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5534                                    bool wake)
5535{
5536	struct net_device *netdev = pci_get_drvdata(pdev);
5537	struct e1000_adapter *adapter = netdev_priv(netdev);
5538
5539	/*
5540	 * The pci-e switch on some quad port adapters will report a
5541	 * correctable error when the MAC transitions from D0 to D3.  To
5542	 * prevent this we need to mask off the correctable errors on the
5543	 * downstream port of the pci-e switch.
 
 
 
 
5544	 */
5545	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5546		struct pci_dev *us_dev = pdev->bus->self;
5547		int pos = pci_pcie_cap(us_dev);
5548		u16 devctl;
5549
5550		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5551		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5552		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5553
5554		e1000_power_off(pdev, sleep, wake);
 
 
5555
5556		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5557	} else {
5558		e1000_power_off(pdev, sleep, wake);
 
5559	}
 
 
5560}
5561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5562#ifdef CONFIG_PCIEASPM
5563static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5564{
5565	pci_disable_link_state_locked(pdev, state);
5566}
5567#else
5568static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5569{
5570	int pos;
5571	u16 reg16;
5572
5573	/*
5574	 * Both device and parent should have the same ASPM setting.
5575	 * Disable ASPM in downstream component first and then upstream.
5576	 */
5577	pos = pci_pcie_cap(pdev);
5578	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5579	reg16 &= ~state;
5580	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5581
5582	if (!pdev->bus->self)
5583		return;
 
 
 
 
 
 
5584
5585	pos = pci_pcie_cap(pdev->bus->self);
5586	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5587	reg16 &= ~state;
5588	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
5589}
5590#endif
 
 
 
 
 
 
 
 
5591static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5592{
5593	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5594		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5595		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5596
5597	__e1000e_disable_aspm(pdev, state);
 
 
 
 
 
 
 
 
 
 
5598}
5599
5600#ifdef CONFIG_PM
5601static bool e1000e_pm_ready(struct e1000_adapter *adapter)
5602{
5603	return !!adapter->tx_ring->buffer_info;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5604}
5605
5606static int __e1000_resume(struct pci_dev *pdev)
5607{
5608	struct net_device *netdev = pci_get_drvdata(pdev);
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610	struct e1000_hw *hw = &adapter->hw;
5611	u16 aspm_disable_flag = 0;
5612	u32 err;
5613
5614	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5615		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5616	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5617		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5618	if (aspm_disable_flag)
5619		e1000e_disable_aspm(pdev, aspm_disable_flag);
5620
5621	pci_set_power_state(pdev, PCI_D0);
5622	pci_restore_state(pdev);
5623	pci_save_state(pdev);
5624
5625	e1000e_set_interrupt_capability(adapter);
5626	if (netif_running(netdev)) {
5627		err = e1000_request_irq(adapter);
5628		if (err)
5629			return err;
5630	}
5631
5632	if (hw->mac.type >= e1000_pch2lan)
5633		e1000_resume_workarounds_pchlan(&adapter->hw);
5634
5635	e1000e_power_up_phy(adapter);
5636
5637	/* report the system wakeup cause from S3/S4 */
5638	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5639		u16 phy_data;
5640
5641		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5642		if (phy_data) {
5643			e_info("PHY Wakeup cause - %s\n",
5644				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5645				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5646				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5647				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5648				phy_data & E1000_WUS_LNKC ?
5649				"Link Status Change" : "other");
5650		}
5651		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5652	} else {
5653		u32 wus = er32(WUS);
 
5654		if (wus) {
5655			e_info("MAC Wakeup cause - %s\n",
5656				wus & E1000_WUS_EX ? "Unicast Packet" :
5657				wus & E1000_WUS_MC ? "Multicast Packet" :
5658				wus & E1000_WUS_BC ? "Broadcast Packet" :
5659				wus & E1000_WUS_MAG ? "Magic Packet" :
5660				wus & E1000_WUS_LNKC ? "Link Status Change" :
5661				"other");
5662		}
5663		ew32(WUS, ~0);
5664	}
5665
5666	e1000e_reset(adapter);
5667
5668	e1000_init_manageability_pt(adapter);
5669
5670	if (netif_running(netdev))
5671		e1000e_up(adapter);
5672
5673	netif_device_attach(netdev);
5674
5675	/*
5676	 * If the controller has AMT, do not set DRV_LOAD until the interface
5677	 * is up.  For all other cases, let the f/w know that the h/w is now
5678	 * under the control of the driver.
5679	 */
5680	if (!(adapter->flags & FLAG_HAS_AMT))
5681		e1000e_get_hw_control(adapter);
5682
5683	return 0;
5684}
5685
5686#ifdef CONFIG_PM_SLEEP
5687static int e1000_suspend(struct device *dev)
5688{
 
 
 
 
 
 
 
 
5689	struct pci_dev *pdev = to_pci_dev(dev);
5690	int retval;
5691	bool wake;
5692
5693	retval = __e1000_shutdown(pdev, &wake, false);
5694	if (!retval)
5695		e1000_complete_shutdown(pdev, true, wake);
5696
5697	return retval;
 
 
 
 
 
 
 
 
 
 
 
5698}
5699
5700static int e1000_resume(struct device *dev)
5701{
5702	struct pci_dev *pdev = to_pci_dev(dev);
5703	struct net_device *netdev = pci_get_drvdata(pdev);
5704	struct e1000_adapter *adapter = netdev_priv(netdev);
 
 
5705
5706	if (e1000e_pm_ready(adapter))
5707		adapter->idle_check = true;
 
5708
5709	return __e1000_resume(pdev);
 
 
 
 
5710}
5711#endif /* CONFIG_PM_SLEEP */
5712
5713#ifdef CONFIG_PM_RUNTIME
5714static int e1000_runtime_suspend(struct device *dev)
5715{
5716	struct pci_dev *pdev = to_pci_dev(dev);
5717	struct net_device *netdev = pci_get_drvdata(pdev);
5718	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5719
5720	if (e1000e_pm_ready(adapter)) {
5721		bool wake;
5722
5723		__e1000_shutdown(pdev, &wake, true);
 
 
5724	}
5725
5726	return 0;
5727}
5728
5729static int e1000_idle(struct device *dev)
5730{
5731	struct pci_dev *pdev = to_pci_dev(dev);
5732	struct net_device *netdev = pci_get_drvdata(pdev);
5733	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5734
5735	if (!e1000e_pm_ready(adapter))
5736		return 0;
 
5737
5738	if (adapter->idle_check) {
5739		adapter->idle_check = false;
5740		if (!e1000e_has_link(adapter))
5741			pm_schedule_suspend(dev, MSEC_PER_SEC);
5742	}
5743
5744	return -EBUSY;
5745}
5746
5747static int e1000_runtime_resume(struct device *dev)
5748{
5749	struct pci_dev *pdev = to_pci_dev(dev);
5750	struct net_device *netdev = pci_get_drvdata(pdev);
5751	struct e1000_adapter *adapter = netdev_priv(netdev);
5752
5753	if (!e1000e_pm_ready(adapter))
5754		return 0;
 
 
 
5755
5756	adapter->idle_check = !dev->power.runtime_auto;
5757	return __e1000_resume(pdev);
 
 
 
 
 
 
 
 
 
 
5758}
5759#endif /* CONFIG_PM_RUNTIME */
5760#endif /* CONFIG_PM */
5761
5762static void e1000_shutdown(struct pci_dev *pdev)
5763{
5764	bool wake = false;
5765
5766	__e1000_shutdown(pdev, &wake, false);
5767
5768	if (system_state == SYSTEM_POWER_OFF)
5769		e1000_complete_shutdown(pdev, false, wake);
5770}
5771
5772#ifdef CONFIG_NET_POLL_CONTROLLER
5773
5774static irqreturn_t e1000_intr_msix(int irq, void *data)
5775{
5776	struct net_device *netdev = data;
5777	struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779	if (adapter->msix_entries) {
5780		int vector, msix_irq;
5781
5782		vector = 0;
5783		msix_irq = adapter->msix_entries[vector].vector;
5784		disable_irq(msix_irq);
5785		e1000_intr_msix_rx(msix_irq, netdev);
5786		enable_irq(msix_irq);
5787
5788		vector++;
5789		msix_irq = adapter->msix_entries[vector].vector;
5790		disable_irq(msix_irq);
5791		e1000_intr_msix_tx(msix_irq, netdev);
5792		enable_irq(msix_irq);
5793
5794		vector++;
5795		msix_irq = adapter->msix_entries[vector].vector;
5796		disable_irq(msix_irq);
5797		e1000_msix_other(msix_irq, netdev);
5798		enable_irq(msix_irq);
5799	}
5800
5801	return IRQ_HANDLED;
5802}
5803
5804/*
 
 
 
5805 * Polling 'interrupt' - used by things like netconsole to send skbs
5806 * without having to re-enable interrupts. It's not called while
5807 * the interrupt routine is executing.
5808 */
5809static void e1000_netpoll(struct net_device *netdev)
5810{
5811	struct e1000_adapter *adapter = netdev_priv(netdev);
5812
5813	switch (adapter->int_mode) {
5814	case E1000E_INT_MODE_MSIX:
5815		e1000_intr_msix(adapter->pdev->irq, netdev);
5816		break;
5817	case E1000E_INT_MODE_MSI:
5818		disable_irq(adapter->pdev->irq);
5819		e1000_intr_msi(adapter->pdev->irq, netdev);
5820		enable_irq(adapter->pdev->irq);
5821		break;
5822	default: /* E1000E_INT_MODE_LEGACY */
5823		disable_irq(adapter->pdev->irq);
5824		e1000_intr(adapter->pdev->irq, netdev);
5825		enable_irq(adapter->pdev->irq);
5826		break;
5827	}
5828}
5829#endif
5830
5831/**
5832 * e1000_io_error_detected - called when PCI error is detected
5833 * @pdev: Pointer to PCI device
5834 * @state: The current pci connection state
5835 *
5836 * This function is called after a PCI bus error affecting
5837 * this device has been detected.
5838 */
5839static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5840						pci_channel_state_t state)
5841{
5842	struct net_device *netdev = pci_get_drvdata(pdev);
5843	struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845	netif_device_detach(netdev);
5846
5847	if (state == pci_channel_io_perm_failure)
5848		return PCI_ERS_RESULT_DISCONNECT;
5849
5850	if (netif_running(netdev))
5851		e1000e_down(adapter);
5852	pci_disable_device(pdev);
5853
5854	/* Request a slot slot reset. */
5855	return PCI_ERS_RESULT_NEED_RESET;
5856}
5857
5858/**
5859 * e1000_io_slot_reset - called after the pci bus has been reset.
5860 * @pdev: Pointer to PCI device
5861 *
5862 * Restart the card from scratch, as if from a cold-boot. Implementation
5863 * resembles the first-half of the e1000_resume routine.
5864 */
5865static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5866{
5867	struct net_device *netdev = pci_get_drvdata(pdev);
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869	struct e1000_hw *hw = &adapter->hw;
5870	u16 aspm_disable_flag = 0;
5871	int err;
5872	pci_ers_result_t result;
5873
5874	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5875		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5876	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5877		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5878	if (aspm_disable_flag)
5879		e1000e_disable_aspm(pdev, aspm_disable_flag);
5880
5881	err = pci_enable_device_mem(pdev);
5882	if (err) {
5883		dev_err(&pdev->dev,
5884			"Cannot re-enable PCI device after reset.\n");
5885		result = PCI_ERS_RESULT_DISCONNECT;
5886	} else {
5887		pci_set_master(pdev);
5888		pdev->state_saved = true;
5889		pci_restore_state(pdev);
 
5890
5891		pci_enable_wake(pdev, PCI_D3hot, 0);
5892		pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894		e1000e_reset(adapter);
5895		ew32(WUS, ~0);
5896		result = PCI_ERS_RESULT_RECOVERED;
5897	}
5898
5899	pci_cleanup_aer_uncorrect_error_status(pdev);
5900
5901	return result;
5902}
5903
5904/**
5905 * e1000_io_resume - called when traffic can start flowing again.
5906 * @pdev: Pointer to PCI device
5907 *
5908 * This callback is called when the error recovery driver tells us that
5909 * its OK to resume normal operation. Implementation resembles the
5910 * second-half of the e1000_resume routine.
5911 */
5912static void e1000_io_resume(struct pci_dev *pdev)
5913{
5914	struct net_device *netdev = pci_get_drvdata(pdev);
5915	struct e1000_adapter *adapter = netdev_priv(netdev);
5916
5917	e1000_init_manageability_pt(adapter);
5918
5919	if (netif_running(netdev)) {
5920		if (e1000e_up(adapter)) {
5921			dev_err(&pdev->dev,
5922				"can't bring device back up after reset\n");
5923			return;
5924		}
5925	}
5926
5927	netif_device_attach(netdev);
5928
5929	/*
5930	 * If the controller has AMT, do not set DRV_LOAD until the interface
5931	 * is up.  For all other cases, let the f/w know that the h/w is now
5932	 * under the control of the driver.
5933	 */
5934	if (!(adapter->flags & FLAG_HAS_AMT))
5935		e1000e_get_hw_control(adapter);
5936
5937}
5938
5939static void e1000_print_device_info(struct e1000_adapter *adapter)
5940{
5941	struct e1000_hw *hw = &adapter->hw;
5942	struct net_device *netdev = adapter->netdev;
5943	u32 ret_val;
5944	u8 pba_str[E1000_PBANUM_LENGTH];
5945
5946	/* print bus type/speed/width info */
5947	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5948	       /* bus width */
5949	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5950	        "Width x1"),
5951	       /* MAC address */
5952	       netdev->dev_addr);
5953	e_info("Intel(R) PRO/%s Network Connection\n",
5954	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5955	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5956						E1000_PBANUM_LENGTH);
5957	if (ret_val)
5958		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5959	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5960	       hw->mac.type, hw->phy.type, pba_str);
5961}
5962
5963static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5964{
5965	struct e1000_hw *hw = &adapter->hw;
5966	int ret_val;
5967	u16 buf = 0;
5968
5969	if (hw->mac.type != e1000_82573)
5970		return;
5971
5972	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5973	le16_to_cpus(&buf);
5974	if (!ret_val && (!(buf & (1 << 0)))) {
5975		/* Deep Smart Power Down (DSPD) */
5976		dev_warn(&adapter->pdev->dev,
5977			 "Warning: detected DSPD enabled in EEPROM\n");
5978	}
5979}
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5981static int e1000_set_features(struct net_device *netdev,
5982			      netdev_features_t features)
5983{
5984	struct e1000_adapter *adapter = netdev_priv(netdev);
5985	netdev_features_t changed = features ^ netdev->features;
5986
5987	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5988		adapter->flags |= FLAG_TSO_FORCE;
5989
5990	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5991			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5992			 NETIF_F_RXALL)))
5993		return 0;
5994
5995	if (changed & NETIF_F_RXFCS) {
5996		if (features & NETIF_F_RXFCS) {
5997			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
5998		} else {
5999			/* We need to take it back to defaults, which might mean
6000			 * stripping is still disabled at the adapter level.
6001			 */
6002			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6003				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6004			else
6005				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6006		}
6007	}
6008
6009	netdev->features = features;
6010
6011	if (netif_running(netdev))
6012		e1000e_reinit_locked(adapter);
6013	else
6014		e1000e_reset(adapter);
6015
6016	return 0;
6017}
6018
6019static const struct net_device_ops e1000e_netdev_ops = {
6020	.ndo_open		= e1000_open,
6021	.ndo_stop		= e1000_close,
6022	.ndo_start_xmit		= e1000_xmit_frame,
6023	.ndo_get_stats64	= e1000e_get_stats64,
6024	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6025	.ndo_set_mac_address	= e1000_set_mac,
6026	.ndo_change_mtu		= e1000_change_mtu,
6027	.ndo_do_ioctl		= e1000_ioctl,
6028	.ndo_tx_timeout		= e1000_tx_timeout,
6029	.ndo_validate_addr	= eth_validate_addr,
6030
6031	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6032	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6033#ifdef CONFIG_NET_POLL_CONTROLLER
6034	.ndo_poll_controller	= e1000_netpoll,
6035#endif
6036	.ndo_set_features = e1000_set_features,
 
 
6037};
6038
6039/**
6040 * e1000_probe - Device Initialization Routine
6041 * @pdev: PCI device information struct
6042 * @ent: entry in e1000_pci_tbl
6043 *
6044 * Returns 0 on success, negative on failure
6045 *
6046 * e1000_probe initializes an adapter identified by a pci_dev structure.
6047 * The OS initialization, configuring of the adapter private structure,
6048 * and a hardware reset occur.
6049 **/
6050static int __devinit e1000_probe(struct pci_dev *pdev,
6051				 const struct pci_device_id *ent)
6052{
6053	struct net_device *netdev;
6054	struct e1000_adapter *adapter;
6055	struct e1000_hw *hw;
6056	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6057	resource_size_t mmio_start, mmio_len;
6058	resource_size_t flash_start, flash_len;
6059	static int cards_found;
6060	u16 aspm_disable_flag = 0;
6061	int i, err, pci_using_dac;
6062	u16 eeprom_data = 0;
6063	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
6064
6065	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6066		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6067	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6068		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6069	if (aspm_disable_flag)
6070		e1000e_disable_aspm(pdev, aspm_disable_flag);
6071
6072	err = pci_enable_device_mem(pdev);
6073	if (err)
6074		return err;
6075
6076	pci_using_dac = 0;
6077	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6078	if (!err) {
6079		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6080		if (!err)
6081			pci_using_dac = 1;
6082	} else {
6083		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6084		if (err) {
6085			err = dma_set_coherent_mask(&pdev->dev,
6086						    DMA_BIT_MASK(32));
6087			if (err) {
6088				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6089				goto err_dma;
6090			}
6091		}
6092	}
6093
6094	err = pci_request_selected_regions_exclusive(pdev,
6095	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6096	                                  e1000e_driver_name);
6097	if (err)
6098		goto err_pci_reg;
6099
6100	/* AER (Advanced Error Reporting) hooks */
6101	pci_enable_pcie_error_reporting(pdev);
6102
6103	pci_set_master(pdev);
6104	/* PCI config space info */
6105	err = pci_save_state(pdev);
6106	if (err)
6107		goto err_alloc_etherdev;
6108
6109	err = -ENOMEM;
6110	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6111	if (!netdev)
6112		goto err_alloc_etherdev;
6113
6114	SET_NETDEV_DEV(netdev, &pdev->dev);
6115
6116	netdev->irq = pdev->irq;
6117
6118	pci_set_drvdata(pdev, netdev);
6119	adapter = netdev_priv(netdev);
6120	hw = &adapter->hw;
6121	adapter->netdev = netdev;
6122	adapter->pdev = pdev;
6123	adapter->ei = ei;
6124	adapter->pba = ei->pba;
6125	adapter->flags = ei->flags;
6126	adapter->flags2 = ei->flags2;
6127	adapter->hw.adapter = adapter;
6128	adapter->hw.mac.type = ei->mac;
6129	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6130	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6131
6132	mmio_start = pci_resource_start(pdev, 0);
6133	mmio_len = pci_resource_len(pdev, 0);
6134
6135	err = -EIO;
6136	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6137	if (!adapter->hw.hw_addr)
6138		goto err_ioremap;
6139
6140	if ((adapter->flags & FLAG_HAS_FLASH) &&
6141	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6142		flash_start = pci_resource_start(pdev, 1);
6143		flash_len = pci_resource_len(pdev, 1);
6144		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6145		if (!adapter->hw.flash_address)
6146			goto err_flashmap;
6147	}
6148
 
 
 
 
6149	/* construct the net_device struct */
6150	netdev->netdev_ops		= &e1000e_netdev_ops;
6151	e1000e_set_ethtool_ops(netdev);
6152	netdev->watchdog_timeo		= 5 * HZ;
6153	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6154	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6155
6156	netdev->mem_start = mmio_start;
6157	netdev->mem_end = mmio_start + mmio_len;
6158
6159	adapter->bd_number = cards_found++;
6160
6161	e1000e_check_options(adapter);
6162
6163	/* setup adapter struct */
6164	err = e1000_sw_init(adapter);
6165	if (err)
6166		goto err_sw_init;
6167
6168	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6169	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6170	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6171
6172	err = ei->get_variants(adapter);
6173	if (err)
6174		goto err_hw_init;
6175
6176	if ((adapter->flags & FLAG_IS_ICH) &&
6177	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6178		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6179
6180	hw->mac.ops.get_bus_info(&adapter->hw);
6181
6182	adapter->hw.phy.autoneg_wait_to_complete = 0;
6183
6184	/* Copper options */
6185	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6186		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6187		adapter->hw.phy.disable_polarity_correction = 0;
6188		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6189	}
6190
6191	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6192		e_info("PHY reset is blocked due to SOL/IDER session.\n");
 
6193
6194	/* Set initial default active device features */
6195	netdev->features = (NETIF_F_SG |
6196			    NETIF_F_HW_VLAN_RX |
6197			    NETIF_F_HW_VLAN_TX |
6198			    NETIF_F_TSO |
6199			    NETIF_F_TSO6 |
6200			    NETIF_F_RXHASH |
6201			    NETIF_F_RXCSUM |
6202			    NETIF_F_HW_CSUM);
6203
6204	/* Set user-changeable features (subset of all device features) */
6205	netdev->hw_features = netdev->features;
6206	netdev->hw_features |= NETIF_F_RXFCS;
6207	netdev->priv_flags |= IFF_SUPP_NOFCS;
6208	netdev->hw_features |= NETIF_F_RXALL;
6209
6210	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6211		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6212
6213	netdev->vlan_features |= (NETIF_F_SG |
6214				  NETIF_F_TSO |
6215				  NETIF_F_TSO6 |
6216				  NETIF_F_HW_CSUM);
6217
6218	netdev->priv_flags |= IFF_UNICAST_FLT;
6219
6220	if (pci_using_dac) {
6221		netdev->features |= NETIF_F_HIGHDMA;
6222		netdev->vlan_features |= NETIF_F_HIGHDMA;
6223	}
6224
 
 
 
 
 
6225	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6226		adapter->flags |= FLAG_MNG_PT_ENABLED;
6227
6228	/*
6229	 * before reading the NVM, reset the controller to
6230	 * put the device in a known good starting state
6231	 */
6232	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6233
6234	/*
6235	 * systems with ASPM and others may see the checksum fail on the first
6236	 * attempt. Let's give it a few tries
6237	 */
6238	for (i = 0;; i++) {
6239		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6240			break;
6241		if (i == 2) {
6242			e_err("The NVM Checksum Is Not Valid\n");
6243			err = -EIO;
6244			goto err_eeprom;
6245		}
6246	}
6247
6248	e1000_eeprom_checks(adapter);
6249
6250	/* copy the MAC address */
6251	if (e1000e_read_mac_addr(&adapter->hw))
6252		e_err("NVM Read Error while reading MAC address\n");
 
6253
6254	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6255	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6256
6257	if (!is_valid_ether_addr(netdev->perm_addr)) {
6258		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
 
6259		err = -EIO;
6260		goto err_eeprom;
6261	}
6262
6263	init_timer(&adapter->watchdog_timer);
6264	adapter->watchdog_timer.function = e1000_watchdog;
6265	adapter->watchdog_timer.data = (unsigned long) adapter;
6266
6267	init_timer(&adapter->phy_info_timer);
6268	adapter->phy_info_timer.function = e1000_update_phy_info;
6269	adapter->phy_info_timer.data = (unsigned long) adapter;
6270
6271	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6272	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6273	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6274	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6275	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6276
6277	/* Initialize link parameters. User can change them with ethtool */
6278	adapter->hw.mac.autoneg = 1;
6279	adapter->fc_autoneg = true;
6280	adapter->hw.fc.requested_mode = e1000_fc_default;
6281	adapter->hw.fc.current_mode = e1000_fc_default;
6282	adapter->hw.phy.autoneg_advertised = 0x2f;
6283
6284	/* ring size defaults */
6285	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6286	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6287
6288	/*
6289	 * Initial Wake on LAN setting - If APM wake is enabled in
6290	 * the EEPROM, enable the ACPI Magic Packet filter
6291	 */
6292	if (adapter->flags & FLAG_APME_IN_WUC) {
6293		/* APME bit in EEPROM is mapped to WUC.APME */
6294		eeprom_data = er32(WUC);
6295		eeprom_apme_mask = E1000_WUC_APME;
6296		if ((hw->mac.type > e1000_ich10lan) &&
6297		    (eeprom_data & E1000_WUC_PHY_WAKE))
6298			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6299	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6300		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6301		    (adapter->hw.bus.func == 1))
6302			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6303				       1, &eeprom_data);
 
6304		else
6305			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6306				       1, &eeprom_data);
 
6307	}
6308
6309	/* fetch WoL from EEPROM */
6310	if (eeprom_data & eeprom_apme_mask)
 
 
6311		adapter->eeprom_wol |= E1000_WUFC_MAG;
6312
6313	/*
6314	 * now that we have the eeprom settings, apply the special cases
6315	 * where the eeprom may be wrong or the board simply won't support
6316	 * wake on lan on a particular port
6317	 */
6318	if (!(adapter->flags & FLAG_HAS_WOL))
6319		adapter->eeprom_wol = 0;
6320
6321	/* initialize the wol settings based on the eeprom settings */
6322	adapter->wol = adapter->eeprom_wol;
6323	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 
 
 
 
6324
6325	/* save off EEPROM version number */
6326	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
 
 
 
6327
6328	/* reset the hardware with the new settings */
6329	e1000e_reset(adapter);
6330
6331	/*
6332	 * If the controller has AMT, do not set DRV_LOAD until the interface
6333	 * is up.  For all other cases, let the f/w know that the h/w is now
6334	 * under the control of the driver.
6335	 */
6336	if (!(adapter->flags & FLAG_HAS_AMT))
6337		e1000e_get_hw_control(adapter);
6338
 
 
 
6339	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6340	err = register_netdev(netdev);
6341	if (err)
6342		goto err_register;
6343
6344	/* carrier off reporting is important to ethtool even BEFORE open */
6345	netif_carrier_off(netdev);
6346
6347	e1000_print_device_info(adapter);
6348
6349	if (pci_dev_run_wake(pdev))
 
 
6350		pm_runtime_put_noidle(&pdev->dev);
6351
6352	return 0;
6353
6354err_register:
6355	if (!(adapter->flags & FLAG_HAS_AMT))
6356		e1000e_release_hw_control(adapter);
6357err_eeprom:
6358	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6359		e1000_phy_hw_reset(&adapter->hw);
6360err_hw_init:
6361	kfree(adapter->tx_ring);
6362	kfree(adapter->rx_ring);
6363err_sw_init:
6364	if (adapter->hw.flash_address)
6365		iounmap(adapter->hw.flash_address);
6366	e1000e_reset_interrupt_capability(adapter);
6367err_flashmap:
6368	iounmap(adapter->hw.hw_addr);
6369err_ioremap:
6370	free_netdev(netdev);
6371err_alloc_etherdev:
6372	pci_release_selected_regions(pdev,
6373	                             pci_select_bars(pdev, IORESOURCE_MEM));
6374err_pci_reg:
6375err_dma:
6376	pci_disable_device(pdev);
6377	return err;
6378}
6379
6380/**
6381 * e1000_remove - Device Removal Routine
6382 * @pdev: PCI device information struct
6383 *
6384 * e1000_remove is called by the PCI subsystem to alert the driver
6385 * that it should release a PCI device.  The could be caused by a
6386 * Hot-Plug event, or because the driver is going to be removed from
6387 * memory.
6388 **/
6389static void __devexit e1000_remove(struct pci_dev *pdev)
6390{
6391	struct net_device *netdev = pci_get_drvdata(pdev);
6392	struct e1000_adapter *adapter = netdev_priv(netdev);
6393	bool down = test_bit(__E1000_DOWN, &adapter->state);
6394
6395	/*
6396	 * The timers may be rescheduled, so explicitly disable them
 
6397	 * from being rescheduled.
6398	 */
6399	if (!down)
6400		set_bit(__E1000_DOWN, &adapter->state);
6401	del_timer_sync(&adapter->watchdog_timer);
6402	del_timer_sync(&adapter->phy_info_timer);
6403
6404	cancel_work_sync(&adapter->reset_task);
6405	cancel_work_sync(&adapter->watchdog_task);
6406	cancel_work_sync(&adapter->downshift_task);
6407	cancel_work_sync(&adapter->update_phy_task);
6408	cancel_work_sync(&adapter->print_hang_task);
6409
6410	if (!(netdev->flags & IFF_UP))
6411		e1000_power_down_phy(adapter);
 
 
 
 
 
6412
6413	/* Don't lie to e1000_close() down the road. */
6414	if (!down)
6415		clear_bit(__E1000_DOWN, &adapter->state);
6416	unregister_netdev(netdev);
6417
6418	if (pci_dev_run_wake(pdev))
6419		pm_runtime_get_noresume(&pdev->dev);
6420
6421	/*
6422	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6423	 * would have already happened in close and is redundant.
6424	 */
6425	e1000e_release_hw_control(adapter);
6426
6427	e1000e_reset_interrupt_capability(adapter);
6428	kfree(adapter->tx_ring);
6429	kfree(adapter->rx_ring);
6430
6431	iounmap(adapter->hw.hw_addr);
6432	if (adapter->hw.flash_address)
 
6433		iounmap(adapter->hw.flash_address);
6434	pci_release_selected_regions(pdev,
6435	                             pci_select_bars(pdev, IORESOURCE_MEM));
6436
6437	free_netdev(netdev);
6438
6439	/* AER disable */
6440	pci_disable_pcie_error_reporting(pdev);
6441
6442	pci_disable_device(pdev);
6443}
6444
6445/* PCI Error Recovery (ERS) */
6446static struct pci_error_handlers e1000_err_handler = {
6447	.error_detected = e1000_io_error_detected,
6448	.slot_reset = e1000_io_slot_reset,
6449	.resume = e1000_io_resume,
6450};
6451
6452static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6453	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6454	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6455	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6456	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
 
6457	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6458	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6459	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6460	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6461	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6462
6463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6467
6468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6471
6472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6473	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6475
6476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6477	  board_80003es2lan },
6478	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6479	  board_80003es2lan },
6480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6481	  board_80003es2lan },
6482	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6483	  board_80003es2lan },
6484
6485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6486	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6488	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6490	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6492	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6493
6494	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6495	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6503
6504	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6507
6508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6511
6512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6514	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6516
6517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6518	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6519
6520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6522
6523	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6524};
6525MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6526
6527#ifdef CONFIG_PM
6528static const struct dev_pm_ops e1000_pm_ops = {
6529	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6530	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6531				e1000_runtime_resume, e1000_idle)
6532};
 
 
 
 
6533#endif
 
 
 
6534
6535/* PCI Device API Driver */
6536static struct pci_driver e1000_driver = {
6537	.name     = e1000e_driver_name,
6538	.id_table = e1000_pci_tbl,
6539	.probe    = e1000_probe,
6540	.remove   = __devexit_p(e1000_remove),
6541#ifdef CONFIG_PM
6542	.driver   = {
6543		.pm = &e1000_pm_ops,
6544	},
6545#endif
6546	.shutdown = e1000_shutdown,
6547	.err_handler = &e1000_err_handler
6548};
6549
6550/**
6551 * e1000_init_module - Driver Registration Routine
6552 *
6553 * e1000_init_module is the first routine called when the driver is
6554 * loaded. All it does is register with the PCI subsystem.
6555 **/
6556static int __init e1000_init_module(void)
6557{
6558	int ret;
6559	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6560		e1000e_driver_version);
6561	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6562	ret = pci_register_driver(&e1000_driver);
6563
6564	return ret;
6565}
6566module_init(e1000_init_module);
6567
6568/**
6569 * e1000_exit_module - Driver Exit Cleanup Routine
6570 *
6571 * e1000_exit_module is called just before the driver is removed
6572 * from memory.
6573 **/
6574static void __exit e1000_exit_module(void)
6575{
6576	pci_unregister_driver(&e1000_driver);
6577}
6578module_exit(e1000_exit_module);
6579
6580
6581MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6582MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6583MODULE_LICENSE("GPL");
6584MODULE_VERSION(DRV_VERSION);
6585
6586/* netdev.c */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright(c) 1999 - 2018 Intel Corporation. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   3
   4#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   5
   6#include <linux/module.h>
   7#include <linux/types.h>
   8#include <linux/init.h>
   9#include <linux/pci.h>
  10#include <linux/vmalloc.h>
  11#include <linux/pagemap.h>
  12#include <linux/delay.h>
  13#include <linux/netdevice.h>
  14#include <linux/interrupt.h>
  15#include <linux/tcp.h>
  16#include <linux/ipv6.h>
  17#include <linux/slab.h>
  18#include <net/checksum.h>
  19#include <net/ip6_checksum.h>
 
  20#include <linux/ethtool.h>
  21#include <linux/if_vlan.h>
  22#include <linux/cpu.h>
  23#include <linux/smp.h>
  24#include <linux/pm_qos.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/aer.h>
  27#include <linux/prefetch.h>
  28#include <linux/suspend.h>
  29
  30#include "e1000.h"
  31
 
 
 
  32char e1000e_driver_name[] = "e1000e";
 
  33
  34#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  35static int debug = -1;
  36module_param(debug, int, 0);
  37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  38
 
 
  39static const struct e1000_info *e1000_info_tbl[] = {
  40	[board_82571]		= &e1000_82571_info,
  41	[board_82572]		= &e1000_82572_info,
  42	[board_82573]		= &e1000_82573_info,
  43	[board_82574]		= &e1000_82574_info,
  44	[board_82583]		= &e1000_82583_info,
  45	[board_80003es2lan]	= &e1000_es2_info,
  46	[board_ich8lan]		= &e1000_ich8_info,
  47	[board_ich9lan]		= &e1000_ich9_info,
  48	[board_ich10lan]	= &e1000_ich10_info,
  49	[board_pchlan]		= &e1000_pch_info,
  50	[board_pch2lan]		= &e1000_pch2_info,
  51	[board_pch_lpt]		= &e1000_pch_lpt_info,
  52	[board_pch_spt]		= &e1000_pch_spt_info,
  53	[board_pch_cnp]		= &e1000_pch_cnp_info,
  54	[board_pch_tgp]		= &e1000_pch_tgp_info,
  55};
  56
  57struct e1000_reg_info {
  58	u32 ofs;
  59	char *name;
  60};
  61
 
 
 
 
 
 
 
 
 
 
 
 
  62static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 
  63	/* General Registers */
  64	{E1000_CTRL, "CTRL"},
  65	{E1000_STATUS, "STATUS"},
  66	{E1000_CTRL_EXT, "CTRL_EXT"},
  67
  68	/* Interrupt Registers */
  69	{E1000_ICR, "ICR"},
  70
  71	/* Rx Registers */
  72	{E1000_RCTL, "RCTL"},
  73	{E1000_RDLEN(0), "RDLEN"},
  74	{E1000_RDH(0), "RDH"},
  75	{E1000_RDT(0), "RDT"},
  76	{E1000_RDTR, "RDTR"},
  77	{E1000_RXDCTL(0), "RXDCTL"},
  78	{E1000_ERT, "ERT"},
  79	{E1000_RDBAL(0), "RDBAL"},
  80	{E1000_RDBAH(0), "RDBAH"},
  81	{E1000_RDFH, "RDFH"},
  82	{E1000_RDFT, "RDFT"},
  83	{E1000_RDFHS, "RDFHS"},
  84	{E1000_RDFTS, "RDFTS"},
  85	{E1000_RDFPC, "RDFPC"},
  86
  87	/* Tx Registers */
  88	{E1000_TCTL, "TCTL"},
  89	{E1000_TDBAL(0), "TDBAL"},
  90	{E1000_TDBAH(0), "TDBAH"},
  91	{E1000_TDLEN(0), "TDLEN"},
  92	{E1000_TDH(0), "TDH"},
  93	{E1000_TDT(0), "TDT"},
  94	{E1000_TIDV, "TIDV"},
  95	{E1000_TXDCTL(0), "TXDCTL"},
  96	{E1000_TADV, "TADV"},
  97	{E1000_TARC(0), "TARC"},
  98	{E1000_TDFH, "TDFH"},
  99	{E1000_TDFT, "TDFT"},
 100	{E1000_TDFHS, "TDFHS"},
 101	{E1000_TDFTS, "TDFTS"},
 102	{E1000_TDFPC, "TDFPC"},
 103
 104	/* List Terminator */
 105	{0, NULL}
 106};
 107
 108/**
 109 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 110 * @hw: pointer to the HW structure
 111 *
 112 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 113 * be accessing the registers at the same time.  Normally, this is handled in
 114 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 115 * accesses later than it should which could result in the register to have
 116 * an incorrect value.  Workaround this by checking the FWSM register which
 117 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 118 * and try again a number of times.
 119 **/
 120static void __ew32_prepare(struct e1000_hw *hw)
 121{
 122	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 123
 124	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 125		udelay(50);
 126}
 127
 128void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 129{
 130	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 131		__ew32_prepare(hw);
 132
 133	writel(val, hw->hw_addr + reg);
 134}
 135
 136/**
 137 * e1000_regdump - register printout routine
 138 * @hw: pointer to the HW structure
 139 * @reginfo: pointer to the register info table
 140 **/
 141static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 142{
 143	int n = 0;
 144	char rname[16];
 145	u32 regs[8];
 146
 147	switch (reginfo->ofs) {
 148	case E1000_RXDCTL(0):
 149		for (n = 0; n < 2; n++)
 150			regs[n] = __er32(hw, E1000_RXDCTL(n));
 151		break;
 152	case E1000_TXDCTL(0):
 153		for (n = 0; n < 2; n++)
 154			regs[n] = __er32(hw, E1000_TXDCTL(n));
 155		break;
 156	case E1000_TARC(0):
 157		for (n = 0; n < 2; n++)
 158			regs[n] = __er32(hw, E1000_TARC(n));
 159		break;
 160	default:
 161		pr_info("%-15s %08x\n",
 162			reginfo->name, __er32(hw, reginfo->ofs));
 163		return;
 164	}
 165
 166	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 167	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 168}
 169
 170static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 171				 struct e1000_buffer *bi)
 172{
 173	int i;
 174	struct e1000_ps_page *ps_page;
 175
 176	for (i = 0; i < adapter->rx_ps_pages; i++) {
 177		ps_page = &bi->ps_pages[i];
 178
 179		if (ps_page->page) {
 180			pr_info("packet dump for ps_page %d:\n", i);
 181			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 182				       16, 1, page_address(ps_page->page),
 183				       PAGE_SIZE, true);
 184		}
 185	}
 186}
 187
 188/**
 189 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 190 * @adapter: board private structure
 191 **/
 192static void e1000e_dump(struct e1000_adapter *adapter)
 193{
 194	struct net_device *netdev = adapter->netdev;
 195	struct e1000_hw *hw = &adapter->hw;
 196	struct e1000_reg_info *reginfo;
 197	struct e1000_ring *tx_ring = adapter->tx_ring;
 198	struct e1000_tx_desc *tx_desc;
 199	struct my_u0 {
 200		__le64 a;
 201		__le64 b;
 202	} *u0;
 203	struct e1000_buffer *buffer_info;
 204	struct e1000_ring *rx_ring = adapter->rx_ring;
 205	union e1000_rx_desc_packet_split *rx_desc_ps;
 206	union e1000_rx_desc_extended *rx_desc;
 207	struct my_u1 {
 208		__le64 a;
 209		__le64 b;
 210		__le64 c;
 211		__le64 d;
 212	} *u1;
 213	u32 staterr;
 214	int i = 0;
 215
 216	if (!netif_msg_hw(adapter))
 217		return;
 218
 219	/* Print netdevice Info */
 220	if (netdev) {
 221		dev_info(&adapter->pdev->dev, "Net device Info\n");
 222		pr_info("Device Name     state            trans_start\n");
 223		pr_info("%-15s %016lX %016lX\n", netdev->name,
 224			netdev->state, dev_trans_start(netdev));
 
 225	}
 226
 227	/* Print Registers */
 228	dev_info(&adapter->pdev->dev, "Register Dump\n");
 229	pr_info(" Register Name   Value\n");
 230	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 231	     reginfo->name; reginfo++) {
 232		e1000_regdump(hw, reginfo);
 233	}
 234
 235	/* Print Tx Ring Summary */
 236	if (!netdev || !netif_running(netdev))
 237		return;
 238
 239	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 240	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 241	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 242	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 243		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 244		(unsigned long long)buffer_info->dma,
 245		buffer_info->length,
 246		buffer_info->next_to_watch,
 247		(unsigned long long)buffer_info->time_stamp);
 248
 249	/* Print Tx Ring */
 250	if (!netif_msg_tx_done(adapter))
 251		goto rx_ring_summary;
 252
 253	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 254
 255	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 256	 *
 257	 * Legacy Transmit Descriptor
 258	 *   +--------------------------------------------------------------+
 259	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 260	 *   +--------------------------------------------------------------+
 261	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 262	 *   +--------------------------------------------------------------+
 263	 *   63       48 47        36 35    32 31     24 23    16 15        0
 264	 *
 265	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 266	 *   63      48 47    40 39       32 31             16 15    8 7      0
 267	 *   +----------------------------------------------------------------+
 268	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 269	 *   +----------------------------------------------------------------+
 270	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 271	 *   +----------------------------------------------------------------+
 272	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 273	 *
 274	 * Extended Data Descriptor (DTYP=0x1)
 275	 *   +----------------------------------------------------------------+
 276	 * 0 |                     Buffer Address [63:0]                      |
 277	 *   +----------------------------------------------------------------+
 278	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 279	 *   +----------------------------------------------------------------+
 280	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 281	 */
 282	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 283	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 284	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 285	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 286		const char *next_desc;
 287		tx_desc = E1000_TX_DESC(*tx_ring, i);
 288		buffer_info = &tx_ring->buffer_info[i];
 289		u0 = (struct my_u0 *)tx_desc;
 290		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 291			next_desc = " NTC/U";
 292		else if (i == tx_ring->next_to_use)
 293			next_desc = " NTU";
 294		else if (i == tx_ring->next_to_clean)
 295			next_desc = " NTC";
 296		else
 297			next_desc = "";
 298		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 299			(!(le64_to_cpu(u0->b) & BIT(29)) ? 'l' :
 300			 ((le64_to_cpu(u0->b) & BIT(20)) ? 'd' : 'c')),
 301			i,
 302			(unsigned long long)le64_to_cpu(u0->a),
 303			(unsigned long long)le64_to_cpu(u0->b),
 304			(unsigned long long)buffer_info->dma,
 305			buffer_info->length, buffer_info->next_to_watch,
 306			(unsigned long long)buffer_info->time_stamp,
 307			buffer_info->skb, next_desc);
 308
 309		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 310			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 311				       16, 1, buffer_info->skb->data,
 312				       buffer_info->skb->len, true);
 313	}
 314
 315	/* Print Rx Ring Summary */
 316rx_ring_summary:
 317	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 318	pr_info("Queue [NTU] [NTC]\n");
 319	pr_info(" %5d %5X %5X\n",
 320		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 321
 322	/* Print Rx Ring */
 323	if (!netif_msg_rx_status(adapter))
 324		return;
 325
 326	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 327	switch (adapter->rx_ps_pages) {
 328	case 1:
 329	case 2:
 330	case 3:
 331		/* [Extended] Packet Split Receive Descriptor Format
 332		 *
 333		 *    +-----------------------------------------------------+
 334		 *  0 |                Buffer Address 0 [63:0]              |
 335		 *    +-----------------------------------------------------+
 336		 *  8 |                Buffer Address 1 [63:0]              |
 337		 *    +-----------------------------------------------------+
 338		 * 16 |                Buffer Address 2 [63:0]              |
 339		 *    +-----------------------------------------------------+
 340		 * 24 |                Buffer Address 3 [63:0]              |
 341		 *    +-----------------------------------------------------+
 342		 */
 343		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 344		/* [Extended] Receive Descriptor (Write-Back) Format
 345		 *
 346		 *   63       48 47    32 31     13 12    8 7    4 3        0
 347		 *   +------------------------------------------------------+
 348		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 349		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 350		 *   +------------------------------------------------------+
 351		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 352		 *   +------------------------------------------------------+
 353		 *   63       48 47    32 31            20 19               0
 354		 */
 355		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 356		for (i = 0; i < rx_ring->count; i++) {
 357			const char *next_desc;
 358			buffer_info = &rx_ring->buffer_info[i];
 359			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 360			u1 = (struct my_u1 *)rx_desc_ps;
 361			staterr =
 362			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 363
 364			if (i == rx_ring->next_to_use)
 365				next_desc = " NTU";
 366			else if (i == rx_ring->next_to_clean)
 367				next_desc = " NTC";
 368			else
 369				next_desc = "";
 370
 371			if (staterr & E1000_RXD_STAT_DD) {
 372				/* Descriptor Done */
 373				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 374					"RWB", i,
 375					(unsigned long long)le64_to_cpu(u1->a),
 376					(unsigned long long)le64_to_cpu(u1->b),
 377					(unsigned long long)le64_to_cpu(u1->c),
 378					(unsigned long long)le64_to_cpu(u1->d),
 379					buffer_info->skb, next_desc);
 380			} else {
 381				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 382					"R  ", i,
 383					(unsigned long long)le64_to_cpu(u1->a),
 384					(unsigned long long)le64_to_cpu(u1->b),
 385					(unsigned long long)le64_to_cpu(u1->c),
 386					(unsigned long long)le64_to_cpu(u1->d),
 387					(unsigned long long)buffer_info->dma,
 388					buffer_info->skb, next_desc);
 389
 390				if (netif_msg_pktdata(adapter))
 391					e1000e_dump_ps_pages(adapter,
 392							     buffer_info);
 
 
 393			}
 394		}
 395		break;
 396	default:
 397	case 0:
 398		/* Extended Receive Descriptor (Read) Format
 399		 *
 400		 *   +-----------------------------------------------------+
 401		 * 0 |                Buffer Address [63:0]                |
 402		 *   +-----------------------------------------------------+
 403		 * 8 |                      Reserved                       |
 404		 *   +-----------------------------------------------------+
 405		 */
 406		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 407		/* Extended Receive Descriptor (Write-Back) Format
 408		 *
 409		 *   63       48 47    32 31    24 23            4 3        0
 410		 *   +------------------------------------------------------+
 411		 *   |     RSS Hash      |        |               |         |
 412		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 413		 *   | Packet   | IP     |        |               |  Type   |
 414		 *   | Checksum | Ident  |        |               |         |
 415		 *   +------------------------------------------------------+
 416		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 417		 *   +------------------------------------------------------+
 418		 *   63       48 47    32 31            20 19               0
 419		 */
 420		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 421
 422		for (i = 0; i < rx_ring->count; i++) {
 423			const char *next_desc;
 424
 425			buffer_info = &rx_ring->buffer_info[i];
 426			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 427			u1 = (struct my_u1 *)rx_desc;
 428			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 429
 430			if (i == rx_ring->next_to_use)
 431				next_desc = " NTU";
 432			else if (i == rx_ring->next_to_clean)
 433				next_desc = " NTC";
 434			else
 435				next_desc = "";
 436
 437			if (staterr & E1000_RXD_STAT_DD) {
 438				/* Descriptor Done */
 439				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 440					"RWB", i,
 441					(unsigned long long)le64_to_cpu(u1->a),
 442					(unsigned long long)le64_to_cpu(u1->b),
 443					buffer_info->skb, next_desc);
 444			} else {
 445				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 446					"R  ", i,
 447					(unsigned long long)le64_to_cpu(u1->a),
 448					(unsigned long long)le64_to_cpu(u1->b),
 449					(unsigned long long)buffer_info->dma,
 450					buffer_info->skb, next_desc);
 451
 452				if (netif_msg_pktdata(adapter) &&
 453				    buffer_info->skb)
 454					print_hex_dump(KERN_INFO, "",
 455						       DUMP_PREFIX_ADDRESS, 16,
 456						       1,
 457						       buffer_info->skb->data,
 
 458						       adapter->rx_buffer_len,
 459						       true);
 460			}
 461		}
 462	}
 463}
 464
 465/**
 466 * e1000_desc_unused - calculate if we have unused descriptors
 467 * @ring: pointer to ring struct to perform calculation on
 468 **/
 469static int e1000_desc_unused(struct e1000_ring *ring)
 470{
 471	if (ring->next_to_clean > ring->next_to_use)
 472		return ring->next_to_clean - ring->next_to_use - 1;
 473
 474	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 475}
 476
 477/**
 478 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 479 * @adapter: board private structure
 480 * @hwtstamps: time stamp structure to update
 481 * @systim: unsigned 64bit system time value.
 482 *
 483 * Convert the system time value stored in the RX/TXSTMP registers into a
 484 * hwtstamp which can be used by the upper level time stamping functions.
 485 *
 486 * The 'systim_lock' spinlock is used to protect the consistency of the
 487 * system time value. This is needed because reading the 64 bit time
 488 * value involves reading two 32 bit registers. The first read latches the
 489 * value.
 490 **/
 491static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 492				      struct skb_shared_hwtstamps *hwtstamps,
 493				      u64 systim)
 494{
 495	u64 ns;
 496	unsigned long flags;
 497
 498	spin_lock_irqsave(&adapter->systim_lock, flags);
 499	ns = timecounter_cyc2time(&adapter->tc, systim);
 500	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 501
 502	memset(hwtstamps, 0, sizeof(*hwtstamps));
 503	hwtstamps->hwtstamp = ns_to_ktime(ns);
 504}
 505
 506/**
 507 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 508 * @adapter: board private structure
 509 * @status: descriptor extended error and status field
 510 * @skb: particular skb to include time stamp
 511 *
 512 * If the time stamp is valid, convert it into the timecounter ns value
 513 * and store that result into the shhwtstamps structure which is passed
 514 * up the network stack.
 515 **/
 516static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 517			       struct sk_buff *skb)
 518{
 519	struct e1000_hw *hw = &adapter->hw;
 520	u64 rxstmp;
 521
 522	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 523	    !(status & E1000_RXDEXT_STATERR_TST) ||
 524	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 525		return;
 526
 527	/* The Rx time stamp registers contain the time stamp.  No other
 528	 * received packet will be time stamped until the Rx time stamp
 529	 * registers are read.  Because only one packet can be time stamped
 530	 * at a time, the register values must belong to this packet and
 531	 * therefore none of the other additional attributes need to be
 532	 * compared.
 533	 */
 534	rxstmp = (u64)er32(RXSTMPL);
 535	rxstmp |= (u64)er32(RXSTMPH) << 32;
 536	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 537
 538	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 539}
 540
 541/**
 542 * e1000_receive_skb - helper function to handle Rx indications
 543 * @adapter: board private structure
 544 * @netdev: pointer to netdev struct
 545 * @staterr: descriptor extended error and status field as written by hardware
 546 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 547 * @skb: pointer to sk_buff to be indicated to stack
 548 **/
 549static void e1000_receive_skb(struct e1000_adapter *adapter,
 550			      struct net_device *netdev, struct sk_buff *skb,
 551			      u32 staterr, __le16 vlan)
 552{
 553	u16 tag = le16_to_cpu(vlan);
 554
 555	e1000e_rx_hwtstamp(adapter, staterr, skb);
 556
 557	skb->protocol = eth_type_trans(skb, netdev);
 558
 559	if (staterr & E1000_RXD_STAT_VP)
 560		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 561
 562	napi_gro_receive(&adapter->napi, skb);
 563}
 564
 565/**
 566 * e1000_rx_checksum - Receive Checksum Offload
 567 * @adapter: board private structure
 568 * @status_err: receive descriptor status and error fields
 569 * @skb: socket buffer with received data
 
 570 **/
 571static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 572			      struct sk_buff *skb)
 573{
 574	u16 status = (u16)status_err;
 575	u8 errors = (u8)(status_err >> 24);
 576
 577	skb_checksum_none_assert(skb);
 578
 579	/* Rx checksum disabled */
 580	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 581		return;
 582
 583	/* Ignore Checksum bit is set */
 584	if (status & E1000_RXD_STAT_IXSM)
 585		return;
 586
 587	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 588	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 589		/* let the stack verify checksum errors */
 590		adapter->hw_csum_err++;
 591		return;
 592	}
 593
 594	/* TCP/UDP Checksum has not been calculated */
 595	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 596		return;
 597
 598	/* It must be a TCP or UDP packet with a valid checksum */
 599	skb->ip_summed = CHECKSUM_UNNECESSARY;
 600	adapter->hw_csum_good++;
 601}
 602
 603static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 604{
 605	struct e1000_adapter *adapter = rx_ring->adapter;
 606	struct e1000_hw *hw = &adapter->hw;
 
 607
 608	__ew32_prepare(hw);
 609	writel(i, rx_ring->tail);
 610
 611	if (unlikely(i != readl(rx_ring->tail))) {
 612		u32 rctl = er32(RCTL);
 613
 614		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 615		e_err("ME firmware caused invalid RDT - resetting\n");
 616		schedule_work(&adapter->reset_task);
 617	}
 618}
 619
 620static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 621{
 622	struct e1000_adapter *adapter = tx_ring->adapter;
 623	struct e1000_hw *hw = &adapter->hw;
 
 624
 625	__ew32_prepare(hw);
 626	writel(i, tx_ring->tail);
 627
 628	if (unlikely(i != readl(tx_ring->tail))) {
 629		u32 tctl = er32(TCTL);
 630
 631		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 632		e_err("ME firmware caused invalid TDT - resetting\n");
 633		schedule_work(&adapter->reset_task);
 634	}
 635}
 636
 637/**
 638 * e1000_alloc_rx_buffers - Replace used receive buffers
 639 * @rx_ring: Rx descriptor ring
 640 * @cleaned_count: number to reallocate
 641 * @gfp: flags for allocation
 642 **/
 643static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 644				   int cleaned_count, gfp_t gfp)
 645{
 646	struct e1000_adapter *adapter = rx_ring->adapter;
 647	struct net_device *netdev = adapter->netdev;
 648	struct pci_dev *pdev = adapter->pdev;
 649	union e1000_rx_desc_extended *rx_desc;
 650	struct e1000_buffer *buffer_info;
 651	struct sk_buff *skb;
 652	unsigned int i;
 653	unsigned int bufsz = adapter->rx_buffer_len;
 654
 655	i = rx_ring->next_to_use;
 656	buffer_info = &rx_ring->buffer_info[i];
 657
 658	while (cleaned_count--) {
 659		skb = buffer_info->skb;
 660		if (skb) {
 661			skb_trim(skb, 0);
 662			goto map_skb;
 663		}
 664
 665		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 666		if (!skb) {
 667			/* Better luck next round */
 668			adapter->alloc_rx_buff_failed++;
 669			break;
 670		}
 671
 672		buffer_info->skb = skb;
 673map_skb:
 674		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 675						  adapter->rx_buffer_len,
 676						  DMA_FROM_DEVICE);
 677		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 678			dev_err(&pdev->dev, "Rx DMA map failed\n");
 679			adapter->rx_dma_failed++;
 680			break;
 681		}
 682
 683		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 684		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 685
 686		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 687			/* Force memory writes to complete before letting h/w
 
 688			 * know there are new descriptors to fetch.  (Only
 689			 * applicable for weak-ordered memory model archs,
 690			 * such as IA-64).
 691			 */
 692			wmb();
 693			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 694				e1000e_update_rdt_wa(rx_ring, i);
 695			else
 696				writel(i, rx_ring->tail);
 697		}
 698		i++;
 699		if (i == rx_ring->count)
 700			i = 0;
 701		buffer_info = &rx_ring->buffer_info[i];
 702	}
 703
 704	rx_ring->next_to_use = i;
 705}
 706
 707/**
 708 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 709 * @rx_ring: Rx descriptor ring
 710 * @cleaned_count: number to reallocate
 711 * @gfp: flags for allocation
 712 **/
 713static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 714				      int cleaned_count, gfp_t gfp)
 715{
 716	struct e1000_adapter *adapter = rx_ring->adapter;
 717	struct net_device *netdev = adapter->netdev;
 718	struct pci_dev *pdev = adapter->pdev;
 719	union e1000_rx_desc_packet_split *rx_desc;
 720	struct e1000_buffer *buffer_info;
 721	struct e1000_ps_page *ps_page;
 722	struct sk_buff *skb;
 723	unsigned int i, j;
 724
 725	i = rx_ring->next_to_use;
 726	buffer_info = &rx_ring->buffer_info[i];
 727
 728	while (cleaned_count--) {
 729		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 730
 731		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 732			ps_page = &buffer_info->ps_pages[j];
 733			if (j >= adapter->rx_ps_pages) {
 734				/* all unused desc entries get hw null ptr */
 735				rx_desc->read.buffer_addr[j + 1] =
 736				    ~cpu_to_le64(0);
 737				continue;
 738			}
 739			if (!ps_page->page) {
 740				ps_page->page = alloc_page(gfp);
 741				if (!ps_page->page) {
 742					adapter->alloc_rx_buff_failed++;
 743					goto no_buffers;
 744				}
 745				ps_page->dma = dma_map_page(&pdev->dev,
 746							    ps_page->page,
 747							    0, PAGE_SIZE,
 748							    DMA_FROM_DEVICE);
 749				if (dma_mapping_error(&pdev->dev,
 750						      ps_page->dma)) {
 751					dev_err(&adapter->pdev->dev,
 752						"Rx DMA page map failed\n");
 753					adapter->rx_dma_failed++;
 754					goto no_buffers;
 755				}
 756			}
 757			/* Refresh the desc even if buffer_addrs
 
 758			 * didn't change because each write-back
 759			 * erases this info.
 760			 */
 761			rx_desc->read.buffer_addr[j + 1] =
 762			    cpu_to_le64(ps_page->dma);
 763		}
 764
 765		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 
 766						  gfp);
 767
 768		if (!skb) {
 769			adapter->alloc_rx_buff_failed++;
 770			break;
 771		}
 772
 773		buffer_info->skb = skb;
 774		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 775						  adapter->rx_ps_bsize0,
 776						  DMA_FROM_DEVICE);
 777		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 778			dev_err(&pdev->dev, "Rx DMA map failed\n");
 779			adapter->rx_dma_failed++;
 780			/* cleanup skb */
 781			dev_kfree_skb_any(skb);
 782			buffer_info->skb = NULL;
 783			break;
 784		}
 785
 786		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 787
 788		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 789			/* Force memory writes to complete before letting h/w
 
 790			 * know there are new descriptors to fetch.  (Only
 791			 * applicable for weak-ordered memory model archs,
 792			 * such as IA-64).
 793			 */
 794			wmb();
 795			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 796				e1000e_update_rdt_wa(rx_ring, i << 1);
 797			else
 798				writel(i << 1, rx_ring->tail);
 799		}
 800
 801		i++;
 802		if (i == rx_ring->count)
 803			i = 0;
 804		buffer_info = &rx_ring->buffer_info[i];
 805	}
 806
 807no_buffers:
 808	rx_ring->next_to_use = i;
 809}
 810
 811/**
 812 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 813 * @rx_ring: Rx descriptor ring
 814 * @cleaned_count: number of buffers to allocate this pass
 815 * @gfp: flags for allocation
 816 **/
 817
 818static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 819					 int cleaned_count, gfp_t gfp)
 820{
 821	struct e1000_adapter *adapter = rx_ring->adapter;
 822	struct net_device *netdev = adapter->netdev;
 823	struct pci_dev *pdev = adapter->pdev;
 824	union e1000_rx_desc_extended *rx_desc;
 825	struct e1000_buffer *buffer_info;
 826	struct sk_buff *skb;
 827	unsigned int i;
 828	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 829
 830	i = rx_ring->next_to_use;
 831	buffer_info = &rx_ring->buffer_info[i];
 832
 833	while (cleaned_count--) {
 834		skb = buffer_info->skb;
 835		if (skb) {
 836			skb_trim(skb, 0);
 837			goto check_page;
 838		}
 839
 840		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 841		if (unlikely(!skb)) {
 842			/* Better luck next round */
 843			adapter->alloc_rx_buff_failed++;
 844			break;
 845		}
 846
 847		buffer_info->skb = skb;
 848check_page:
 849		/* allocate a new page if necessary */
 850		if (!buffer_info->page) {
 851			buffer_info->page = alloc_page(gfp);
 852			if (unlikely(!buffer_info->page)) {
 853				adapter->alloc_rx_buff_failed++;
 854				break;
 855			}
 856		}
 857
 858		if (!buffer_info->dma) {
 859			buffer_info->dma = dma_map_page(&pdev->dev,
 860							buffer_info->page, 0,
 861							PAGE_SIZE,
 862							DMA_FROM_DEVICE);
 863			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 864				adapter->alloc_rx_buff_failed++;
 865				break;
 866			}
 867		}
 868
 869		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 870		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 871
 872		if (unlikely(++i == rx_ring->count))
 873			i = 0;
 874		buffer_info = &rx_ring->buffer_info[i];
 875	}
 876
 877	if (likely(rx_ring->next_to_use != i)) {
 878		rx_ring->next_to_use = i;
 879		if (unlikely(i-- == 0))
 880			i = (rx_ring->count - 1);
 881
 882		/* Force memory writes to complete before letting h/w
 883		 * know there are new descriptors to fetch.  (Only
 884		 * applicable for weak-ordered memory model archs,
 885		 * such as IA-64).
 886		 */
 887		wmb();
 888		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 889			e1000e_update_rdt_wa(rx_ring, i);
 890		else
 891			writel(i, rx_ring->tail);
 892	}
 893}
 894
 895static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 896				 struct sk_buff *skb)
 897{
 898	if (netdev->features & NETIF_F_RXHASH)
 899		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 900}
 901
 902/**
 903 * e1000_clean_rx_irq - Send received data up the network stack
 904 * @rx_ring: Rx descriptor ring
 905 * @work_done: output parameter for indicating completed work
 906 * @work_to_do: how many packets we can clean
 907 *
 908 * the return value indicates whether actual cleaning was done, there
 909 * is no guarantee that everything was cleaned
 910 **/
 911static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 912			       int work_to_do)
 913{
 914	struct e1000_adapter *adapter = rx_ring->adapter;
 915	struct net_device *netdev = adapter->netdev;
 916	struct pci_dev *pdev = adapter->pdev;
 917	struct e1000_hw *hw = &adapter->hw;
 918	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 919	struct e1000_buffer *buffer_info, *next_buffer;
 920	u32 length, staterr;
 921	unsigned int i;
 922	int cleaned_count = 0;
 923	bool cleaned = false;
 924	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 925
 926	i = rx_ring->next_to_clean;
 927	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 928	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 929	buffer_info = &rx_ring->buffer_info[i];
 930
 931	while (staterr & E1000_RXD_STAT_DD) {
 932		struct sk_buff *skb;
 933
 934		if (*work_done >= work_to_do)
 935			break;
 936		(*work_done)++;
 937		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 938
 939		skb = buffer_info->skb;
 940		buffer_info->skb = NULL;
 941
 942		prefetch(skb->data - NET_IP_ALIGN);
 943
 944		i++;
 945		if (i == rx_ring->count)
 946			i = 0;
 947		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 948		prefetch(next_rxd);
 949
 950		next_buffer = &rx_ring->buffer_info[i];
 951
 952		cleaned = true;
 953		cleaned_count++;
 954		dma_unmap_single(&pdev->dev, buffer_info->dma,
 955				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 
 
 956		buffer_info->dma = 0;
 957
 958		length = le16_to_cpu(rx_desc->wb.upper.length);
 959
 960		/* !EOP means multiple descriptors were used to store a single
 
 961		 * packet, if that's the case we need to toss it.  In fact, we
 962		 * need to toss every packet with the EOP bit clear and the
 963		 * next frame that _does_ have the EOP bit set, as it is by
 964		 * definition only a frame fragment
 965		 */
 966		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 967			adapter->flags2 |= FLAG2_IS_DISCARDING;
 968
 969		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 970			/* All receives must fit into a single buffer */
 971			e_dbg("Receive packet consumed multiple buffers\n");
 972			/* recycle */
 973			buffer_info->skb = skb;
 974			if (staterr & E1000_RXD_STAT_EOP)
 975				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 976			goto next_desc;
 977		}
 978
 979		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 980			     !(netdev->features & NETIF_F_RXALL))) {
 981			/* recycle */
 982			buffer_info->skb = skb;
 983			goto next_desc;
 984		}
 985
 986		/* adjust length to remove Ethernet CRC */
 987		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 988			/* If configured to store CRC, don't subtract FCS,
 989			 * but keep the FCS bytes out of the total_rx_bytes
 990			 * counter
 991			 */
 992			if (netdev->features & NETIF_F_RXFCS)
 993				total_rx_bytes -= 4;
 994			else
 995				length -= 4;
 996		}
 997
 998		total_rx_bytes += length;
 999		total_rx_packets++;
1000
1001		/* code added for copybreak, this should improve
 
1002		 * performance for small packets with large amounts
1003		 * of reassembly being done in the stack
1004		 */
1005		if (length < copybreak) {
1006			struct sk_buff *new_skb =
1007				napi_alloc_skb(&adapter->napi, length);
1008			if (new_skb) {
1009				skb_copy_to_linear_data_offset(new_skb,
1010							       -NET_IP_ALIGN,
1011							       (skb->data -
1012								NET_IP_ALIGN),
1013							       (length +
1014								NET_IP_ALIGN));
1015				/* save the skb in buffer_info as good */
1016				buffer_info->skb = skb;
1017				skb = new_skb;
1018			}
1019			/* else just continue with the old one */
1020		}
1021		/* end copybreak code */
1022		skb_put(skb, length);
1023
1024		/* Receive Checksum Offload */
1025		e1000_rx_checksum(adapter, staterr, skb);
1026
1027		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1028
1029		e1000_receive_skb(adapter, netdev, skb, staterr,
1030				  rx_desc->wb.upper.vlan);
1031
1032next_desc:
1033		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1034
1035		/* return some buffers to hardware, one at a time is too slow */
1036		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1037			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1038					      GFP_ATOMIC);
1039			cleaned_count = 0;
1040		}
1041
1042		/* use prefetched values */
1043		rx_desc = next_rxd;
1044		buffer_info = next_buffer;
1045
1046		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1047	}
1048	rx_ring->next_to_clean = i;
1049
1050	cleaned_count = e1000_desc_unused(rx_ring);
1051	if (cleaned_count)
1052		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1053
1054	adapter->total_rx_bytes += total_rx_bytes;
1055	adapter->total_rx_packets += total_rx_packets;
1056	return cleaned;
1057}
1058
1059static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1060			    struct e1000_buffer *buffer_info,
1061			    bool drop)
1062{
1063	struct e1000_adapter *adapter = tx_ring->adapter;
1064
1065	if (buffer_info->dma) {
1066		if (buffer_info->mapped_as_page)
1067			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1068				       buffer_info->length, DMA_TO_DEVICE);
1069		else
1070			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1071					 buffer_info->length, DMA_TO_DEVICE);
1072		buffer_info->dma = 0;
1073	}
1074	if (buffer_info->skb) {
1075		if (drop)
1076			dev_kfree_skb_any(buffer_info->skb);
1077		else
1078			dev_consume_skb_any(buffer_info->skb);
1079		buffer_info->skb = NULL;
1080	}
1081	buffer_info->time_stamp = 0;
1082}
1083
1084static void e1000_print_hw_hang(struct work_struct *work)
1085{
1086	struct e1000_adapter *adapter = container_of(work,
1087						     struct e1000_adapter,
1088						     print_hang_task);
1089	struct net_device *netdev = adapter->netdev;
1090	struct e1000_ring *tx_ring = adapter->tx_ring;
1091	unsigned int i = tx_ring->next_to_clean;
1092	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1093	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1094	struct e1000_hw *hw = &adapter->hw;
1095	u16 phy_status, phy_1000t_status, phy_ext_status;
1096	u16 pci_status;
1097
1098	if (test_bit(__E1000_DOWN, &adapter->state))
1099		return;
1100
1101	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1102		/* May be block on write-back, flush and detect again
 
 
1103		 * flush pending descriptor writebacks to memory
1104		 */
1105		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1106		/* execute the writes immediately */
1107		e1e_flush();
1108		/* Due to rare timing issues, write to TIDV again to ensure
 
1109		 * the write is successful
1110		 */
1111		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1112		/* execute the writes immediately */
1113		e1e_flush();
1114		adapter->tx_hang_recheck = true;
1115		return;
1116	}
 
1117	adapter->tx_hang_recheck = false;
1118
1119	if (er32(TDH(0)) == er32(TDT(0))) {
1120		e_dbg("false hang detected, ignoring\n");
1121		return;
1122	}
1123
1124	/* Real hang detected */
1125	netif_stop_queue(netdev);
1126
1127	e1e_rphy(hw, MII_BMSR, &phy_status);
1128	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1129	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1130
1131	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1132
1133	/* detected Hardware unit hang */
1134	e_err("Detected Hardware Unit Hang:\n"
1135	      "  TDH                  <%x>\n"
1136	      "  TDT                  <%x>\n"
1137	      "  next_to_use          <%x>\n"
1138	      "  next_to_clean        <%x>\n"
1139	      "buffer_info[next_to_clean]:\n"
1140	      "  time_stamp           <%lx>\n"
1141	      "  next_to_watch        <%x>\n"
1142	      "  jiffies              <%lx>\n"
1143	      "  next_to_watch.status <%x>\n"
1144	      "MAC Status             <%x>\n"
1145	      "PHY Status             <%x>\n"
1146	      "PHY 1000BASE-T Status  <%x>\n"
1147	      "PHY Extended Status    <%x>\n"
1148	      "PCI Status             <%x>\n",
1149	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1150	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1151	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1152	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1153
1154	e1000e_dump(adapter);
 
 
 
 
 
 
 
1155
1156	/* Suggest workaround for known h/w issue */
1157	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1158		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1159}
1160
1161/**
1162 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1163 * @work: pointer to work struct
1164 *
1165 * This work function polls the TSYNCTXCTL valid bit to determine when a
1166 * timestamp has been taken for the current stored skb.  The timestamp must
1167 * be for this skb because only one such packet is allowed in the queue.
1168 */
1169static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1170{
1171	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1172						     tx_hwtstamp_work);
1173	struct e1000_hw *hw = &adapter->hw;
1174
1175	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1176		struct sk_buff *skb = adapter->tx_hwtstamp_skb;
1177		struct skb_shared_hwtstamps shhwtstamps;
1178		u64 txstmp;
1179
1180		txstmp = er32(TXSTMPL);
1181		txstmp |= (u64)er32(TXSTMPH) << 32;
1182
1183		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1184
1185		/* Clear the global tx_hwtstamp_skb pointer and force writes
1186		 * prior to notifying the stack of a Tx timestamp.
1187		 */
1188		adapter->tx_hwtstamp_skb = NULL;
1189		wmb(); /* force write prior to skb_tstamp_tx */
1190
1191		skb_tstamp_tx(skb, &shhwtstamps);
1192		dev_consume_skb_any(skb);
1193	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1194			      + adapter->tx_timeout_factor * HZ)) {
1195		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1196		adapter->tx_hwtstamp_skb = NULL;
1197		adapter->tx_hwtstamp_timeouts++;
1198		e_warn("clearing Tx timestamp hang\n");
1199	} else {
1200		/* reschedule to check later */
1201		schedule_work(&adapter->tx_hwtstamp_work);
1202	}
1203}
1204
1205/**
1206 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1207 * @tx_ring: Tx descriptor ring
1208 *
1209 * the return value indicates whether actual cleaning was done, there
1210 * is no guarantee that everything was cleaned
1211 **/
1212static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1213{
1214	struct e1000_adapter *adapter = tx_ring->adapter;
1215	struct net_device *netdev = adapter->netdev;
1216	struct e1000_hw *hw = &adapter->hw;
1217	struct e1000_tx_desc *tx_desc, *eop_desc;
1218	struct e1000_buffer *buffer_info;
1219	unsigned int i, eop;
1220	unsigned int count = 0;
1221	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1222	unsigned int bytes_compl = 0, pkts_compl = 0;
1223
1224	i = tx_ring->next_to_clean;
1225	eop = tx_ring->buffer_info[i].next_to_watch;
1226	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1227
1228	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1229	       (count < tx_ring->count)) {
1230		bool cleaned = false;
1231
1232		dma_rmb();		/* read buffer_info after eop_desc */
1233		for (; !cleaned; count++) {
1234			tx_desc = E1000_TX_DESC(*tx_ring, i);
1235			buffer_info = &tx_ring->buffer_info[i];
1236			cleaned = (i == eop);
1237
1238			if (cleaned) {
1239				total_tx_packets += buffer_info->segs;
1240				total_tx_bytes += buffer_info->bytecount;
1241				if (buffer_info->skb) {
1242					bytes_compl += buffer_info->skb->len;
1243					pkts_compl++;
1244				}
1245			}
1246
1247			e1000_put_txbuf(tx_ring, buffer_info, false);
1248			tx_desc->upper.data = 0;
1249
1250			i++;
1251			if (i == tx_ring->count)
1252				i = 0;
1253		}
1254
1255		if (i == tx_ring->next_to_use)
1256			break;
1257		eop = tx_ring->buffer_info[i].next_to_watch;
1258		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1259	}
1260
1261	tx_ring->next_to_clean = i;
1262
1263	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1264
1265#define TX_WAKE_THRESHOLD 32
1266	if (count && netif_carrier_ok(netdev) &&
1267	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1268		/* Make sure that anybody stopping the queue after this
1269		 * sees the new next_to_clean.
1270		 */
1271		smp_mb();
1272
1273		if (netif_queue_stopped(netdev) &&
1274		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1275			netif_wake_queue(netdev);
1276			++adapter->restart_queue;
1277		}
1278	}
1279
1280	if (adapter->detect_tx_hung) {
1281		/* Detect a transmit hang in hardware, this serializes the
 
1282		 * check with the clearing of time_stamp and movement of i
1283		 */
1284		adapter->detect_tx_hung = false;
1285		if (tx_ring->buffer_info[i].time_stamp &&
1286		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1287			       + (adapter->tx_timeout_factor * HZ)) &&
1288		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1289			schedule_work(&adapter->print_hang_task);
1290		else
1291			adapter->tx_hang_recheck = false;
1292	}
1293	adapter->total_tx_bytes += total_tx_bytes;
1294	adapter->total_tx_packets += total_tx_packets;
1295	return count < tx_ring->count;
1296}
1297
1298/**
1299 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1300 * @rx_ring: Rx descriptor ring
1301 * @work_done: output parameter for indicating completed work
1302 * @work_to_do: how many packets we can clean
1303 *
1304 * the return value indicates whether actual cleaning was done, there
1305 * is no guarantee that everything was cleaned
1306 **/
1307static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1308				  int work_to_do)
1309{
1310	struct e1000_adapter *adapter = rx_ring->adapter;
1311	struct e1000_hw *hw = &adapter->hw;
1312	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1313	struct net_device *netdev = adapter->netdev;
1314	struct pci_dev *pdev = adapter->pdev;
1315	struct e1000_buffer *buffer_info, *next_buffer;
1316	struct e1000_ps_page *ps_page;
1317	struct sk_buff *skb;
1318	unsigned int i, j;
1319	u32 length, staterr;
1320	int cleaned_count = 0;
1321	bool cleaned = false;
1322	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1323
1324	i = rx_ring->next_to_clean;
1325	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1326	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1327	buffer_info = &rx_ring->buffer_info[i];
1328
1329	while (staterr & E1000_RXD_STAT_DD) {
1330		if (*work_done >= work_to_do)
1331			break;
1332		(*work_done)++;
1333		skb = buffer_info->skb;
1334		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1335
1336		/* in the packet split case this is header only */
1337		prefetch(skb->data - NET_IP_ALIGN);
1338
1339		i++;
1340		if (i == rx_ring->count)
1341			i = 0;
1342		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1343		prefetch(next_rxd);
1344
1345		next_buffer = &rx_ring->buffer_info[i];
1346
1347		cleaned = true;
1348		cleaned_count++;
1349		dma_unmap_single(&pdev->dev, buffer_info->dma,
1350				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1351		buffer_info->dma = 0;
1352
1353		/* see !EOP comment in other Rx routine */
1354		if (!(staterr & E1000_RXD_STAT_EOP))
1355			adapter->flags2 |= FLAG2_IS_DISCARDING;
1356
1357		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1358			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1359			dev_kfree_skb_irq(skb);
1360			if (staterr & E1000_RXD_STAT_EOP)
1361				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1362			goto next_desc;
1363		}
1364
1365		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1366			     !(netdev->features & NETIF_F_RXALL))) {
1367			dev_kfree_skb_irq(skb);
1368			goto next_desc;
1369		}
1370
1371		length = le16_to_cpu(rx_desc->wb.middle.length0);
1372
1373		if (!length) {
1374			e_dbg("Last part of the packet spanning multiple descriptors\n");
1375			dev_kfree_skb_irq(skb);
1376			goto next_desc;
1377		}
1378
1379		/* Good Receive */
1380		skb_put(skb, length);
1381
1382		{
1383			/* this looks ugly, but it seems compiler issues make
 
1384			 * it more efficient than reusing j
1385			 */
1386			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1387
1388			/* page alloc/put takes too long and effects small
 
1389			 * packet throughput, so unsplit small packets and
1390			 * save the alloc/put only valid in softirq (napi)
1391			 * context to call kmap_*
1392			 */
1393			if (l1 && (l1 <= copybreak) &&
1394			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1395				u8 *vaddr;
1396
1397				ps_page = &buffer_info->ps_pages[0];
1398
1399				/* there is no documentation about how to call
 
1400				 * kmap_atomic, so we can't hold the mapping
1401				 * very long
1402				 */
1403				dma_sync_single_for_cpu(&pdev->dev,
1404							ps_page->dma,
1405							PAGE_SIZE,
1406							DMA_FROM_DEVICE);
1407				vaddr = kmap_atomic(ps_page->page);
1408				memcpy(skb_tail_pointer(skb), vaddr, l1);
1409				kunmap_atomic(vaddr);
1410				dma_sync_single_for_device(&pdev->dev,
1411							   ps_page->dma,
1412							   PAGE_SIZE,
1413							   DMA_FROM_DEVICE);
1414
1415				/* remove the CRC */
1416				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1417					if (!(netdev->features & NETIF_F_RXFCS))
1418						l1 -= 4;
1419				}
1420
1421				skb_put(skb, l1);
1422				goto copydone;
1423			}	/* if */
1424		}
1425
1426		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1427			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1428			if (!length)
1429				break;
1430
1431			ps_page = &buffer_info->ps_pages[j];
1432			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1433				       DMA_FROM_DEVICE);
1434			ps_page->dma = 0;
1435			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1436			ps_page->page = NULL;
1437			skb->len += length;
1438			skb->data_len += length;
1439			skb->truesize += PAGE_SIZE;
1440		}
1441
1442		/* strip the ethernet crc, problem is we're using pages now so
1443		 * this whole operation can get a little cpu intensive
1444		 */
1445		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1446			if (!(netdev->features & NETIF_F_RXFCS))
1447				pskb_trim(skb, skb->len - 4);
1448		}
1449
1450copydone:
1451		total_rx_bytes += skb->len;
1452		total_rx_packets++;
1453
1454		e1000_rx_checksum(adapter, staterr, skb);
1455
1456		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1457
1458		if (rx_desc->wb.upper.header_status &
1459		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1460			adapter->rx_hdr_split++;
1461
1462		e1000_receive_skb(adapter, netdev, skb, staterr,
1463				  rx_desc->wb.middle.vlan);
1464
1465next_desc:
1466		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1467		buffer_info->skb = NULL;
1468
1469		/* return some buffers to hardware, one at a time is too slow */
1470		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1471			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1472					      GFP_ATOMIC);
1473			cleaned_count = 0;
1474		}
1475
1476		/* use prefetched values */
1477		rx_desc = next_rxd;
1478		buffer_info = next_buffer;
1479
1480		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1481	}
1482	rx_ring->next_to_clean = i;
1483
1484	cleaned_count = e1000_desc_unused(rx_ring);
1485	if (cleaned_count)
1486		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1487
1488	adapter->total_rx_bytes += total_rx_bytes;
1489	adapter->total_rx_packets += total_rx_packets;
1490	return cleaned;
1491}
1492
 
 
 
1493static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1494			       u16 length)
1495{
1496	bi->page = NULL;
1497	skb->len += length;
1498	skb->data_len += length;
1499	skb->truesize += PAGE_SIZE;
1500}
1501
1502/**
1503 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1504 * @rx_ring: Rx descriptor ring
1505 * @work_done: output parameter for indicating completed work
1506 * @work_to_do: how many packets we can clean
1507 *
1508 * the return value indicates whether actual cleaning was done, there
1509 * is no guarantee that everything was cleaned
1510 **/
1511static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1512				     int work_to_do)
1513{
1514	struct e1000_adapter *adapter = rx_ring->adapter;
1515	struct net_device *netdev = adapter->netdev;
1516	struct pci_dev *pdev = adapter->pdev;
1517	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1518	struct e1000_buffer *buffer_info, *next_buffer;
1519	u32 length, staterr;
1520	unsigned int i;
1521	int cleaned_count = 0;
1522	bool cleaned = false;
1523	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1524	struct skb_shared_info *shinfo;
1525
1526	i = rx_ring->next_to_clean;
1527	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1528	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1529	buffer_info = &rx_ring->buffer_info[i];
1530
1531	while (staterr & E1000_RXD_STAT_DD) {
1532		struct sk_buff *skb;
1533
1534		if (*work_done >= work_to_do)
1535			break;
1536		(*work_done)++;
1537		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1538
1539		skb = buffer_info->skb;
1540		buffer_info->skb = NULL;
1541
1542		++i;
1543		if (i == rx_ring->count)
1544			i = 0;
1545		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1546		prefetch(next_rxd);
1547
1548		next_buffer = &rx_ring->buffer_info[i];
1549
1550		cleaned = true;
1551		cleaned_count++;
1552		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1553			       DMA_FROM_DEVICE);
1554		buffer_info->dma = 0;
1555
1556		length = le16_to_cpu(rx_desc->wb.upper.length);
1557
1558		/* errors is only valid for DD + EOP descriptors */
1559		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1560			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1561			      !(netdev->features & NETIF_F_RXALL)))) {
1562			/* recycle both page and skb */
1563			buffer_info->skb = skb;
1564			/* an error means any chain goes out the window too */
1565			if (rx_ring->rx_skb_top)
1566				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1567			rx_ring->rx_skb_top = NULL;
1568			goto next_desc;
1569		}
 
1570#define rxtop (rx_ring->rx_skb_top)
1571		if (!(staterr & E1000_RXD_STAT_EOP)) {
1572			/* this descriptor is only the beginning (or middle) */
1573			if (!rxtop) {
1574				/* this is the beginning of a chain */
1575				rxtop = skb;
1576				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1577						   0, length);
1578			} else {
1579				/* this is the middle of a chain */
1580				shinfo = skb_shinfo(rxtop);
1581				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1582						   buffer_info->page, 0,
1583						   length);
1584				/* re-use the skb, only consumed the page */
1585				buffer_info->skb = skb;
1586			}
1587			e1000_consume_page(buffer_info, rxtop, length);
1588			goto next_desc;
1589		} else {
1590			if (rxtop) {
1591				/* end of the chain */
1592				shinfo = skb_shinfo(rxtop);
1593				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1594						   buffer_info->page, 0,
1595						   length);
1596				/* re-use the current skb, we only consumed the
1597				 * page
1598				 */
1599				buffer_info->skb = skb;
1600				skb = rxtop;
1601				rxtop = NULL;
1602				e1000_consume_page(buffer_info, skb, length);
1603			} else {
1604				/* no chain, got EOP, this buf is the packet
1605				 * copybreak to save the put_page/alloc_page
1606				 */
1607				if (length <= copybreak &&
1608				    skb_tailroom(skb) >= length) {
1609					u8 *vaddr;
1610					vaddr = kmap_atomic(buffer_info->page);
1611					memcpy(skb_tail_pointer(skb), vaddr,
1612					       length);
1613					kunmap_atomic(vaddr);
1614					/* re-use the page, so don't erase
1615					 * buffer_info->page
1616					 */
1617					skb_put(skb, length);
1618				} else {
1619					skb_fill_page_desc(skb, 0,
1620							   buffer_info->page, 0,
1621							   length);
1622					e1000_consume_page(buffer_info, skb,
1623							   length);
1624				}
1625			}
1626		}
1627
1628		/* Receive Checksum Offload */
1629		e1000_rx_checksum(adapter, staterr, skb);
1630
1631		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1632
1633		/* probably a little skewed due to removing CRC */
1634		total_rx_bytes += skb->len;
1635		total_rx_packets++;
1636
1637		/* eth type trans needs skb->data to point to something */
1638		if (!pskb_may_pull(skb, ETH_HLEN)) {
1639			e_err("pskb_may_pull failed.\n");
1640			dev_kfree_skb_irq(skb);
1641			goto next_desc;
1642		}
1643
1644		e1000_receive_skb(adapter, netdev, skb, staterr,
1645				  rx_desc->wb.upper.vlan);
1646
1647next_desc:
1648		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1649
1650		/* return some buffers to hardware, one at a time is too slow */
1651		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1652			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1653					      GFP_ATOMIC);
1654			cleaned_count = 0;
1655		}
1656
1657		/* use prefetched values */
1658		rx_desc = next_rxd;
1659		buffer_info = next_buffer;
1660
1661		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1662	}
1663	rx_ring->next_to_clean = i;
1664
1665	cleaned_count = e1000_desc_unused(rx_ring);
1666	if (cleaned_count)
1667		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1668
1669	adapter->total_rx_bytes += total_rx_bytes;
1670	adapter->total_rx_packets += total_rx_packets;
1671	return cleaned;
1672}
1673
1674/**
1675 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1676 * @rx_ring: Rx descriptor ring
1677 **/
1678static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1679{
1680	struct e1000_adapter *adapter = rx_ring->adapter;
1681	struct e1000_buffer *buffer_info;
1682	struct e1000_ps_page *ps_page;
1683	struct pci_dev *pdev = adapter->pdev;
1684	unsigned int i, j;
1685
1686	/* Free all the Rx ring sk_buffs */
1687	for (i = 0; i < rx_ring->count; i++) {
1688		buffer_info = &rx_ring->buffer_info[i];
1689		if (buffer_info->dma) {
1690			if (adapter->clean_rx == e1000_clean_rx_irq)
1691				dma_unmap_single(&pdev->dev, buffer_info->dma,
1692						 adapter->rx_buffer_len,
1693						 DMA_FROM_DEVICE);
1694			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1695				dma_unmap_page(&pdev->dev, buffer_info->dma,
1696					       PAGE_SIZE, DMA_FROM_DEVICE);
 
1697			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1698				dma_unmap_single(&pdev->dev, buffer_info->dma,
1699						 adapter->rx_ps_bsize0,
1700						 DMA_FROM_DEVICE);
1701			buffer_info->dma = 0;
1702		}
1703
1704		if (buffer_info->page) {
1705			put_page(buffer_info->page);
1706			buffer_info->page = NULL;
1707		}
1708
1709		if (buffer_info->skb) {
1710			dev_kfree_skb(buffer_info->skb);
1711			buffer_info->skb = NULL;
1712		}
1713
1714		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1715			ps_page = &buffer_info->ps_pages[j];
1716			if (!ps_page->page)
1717				break;
1718			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1719				       DMA_FROM_DEVICE);
1720			ps_page->dma = 0;
1721			put_page(ps_page->page);
1722			ps_page->page = NULL;
1723		}
1724	}
1725
1726	/* there also may be some cached data from a chained receive */
1727	if (rx_ring->rx_skb_top) {
1728		dev_kfree_skb(rx_ring->rx_skb_top);
1729		rx_ring->rx_skb_top = NULL;
1730	}
1731
1732	/* Zero out the descriptor ring */
1733	memset(rx_ring->desc, 0, rx_ring->size);
1734
1735	rx_ring->next_to_clean = 0;
1736	rx_ring->next_to_use = 0;
1737	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1738}
1739
1740static void e1000e_downshift_workaround(struct work_struct *work)
1741{
1742	struct e1000_adapter *adapter = container_of(work,
1743						     struct e1000_adapter,
1744						     downshift_task);
1745
1746	if (test_bit(__E1000_DOWN, &adapter->state))
1747		return;
1748
1749	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1750}
1751
1752/**
1753 * e1000_intr_msi - Interrupt Handler
1754 * @irq: interrupt number
1755 * @data: pointer to a network interface device structure
1756 **/
1757static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1758{
1759	struct net_device *netdev = data;
1760	struct e1000_adapter *adapter = netdev_priv(netdev);
1761	struct e1000_hw *hw = &adapter->hw;
1762	u32 icr = er32(ICR);
1763
1764	/* read ICR disables interrupts using IAM */
 
 
 
1765	if (icr & E1000_ICR_LSC) {
1766		hw->mac.get_link_status = true;
1767		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1768		 * disconnect (LSC) before accessing any PHY registers
1769		 */
1770		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1771		    (!(er32(STATUS) & E1000_STATUS_LU)))
1772			schedule_work(&adapter->downshift_task);
1773
1774		/* 80003ES2LAN workaround-- For packet buffer work-around on
 
1775		 * link down event; disable receives here in the ISR and reset
1776		 * adapter in watchdog
1777		 */
1778		if (netif_carrier_ok(netdev) &&
1779		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1780			/* disable receives */
1781			u32 rctl = er32(RCTL);
1782
1783			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1784			adapter->flags |= FLAG_RESTART_NOW;
1785		}
1786		/* guard against interrupt when we're going down */
1787		if (!test_bit(__E1000_DOWN, &adapter->state))
1788			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1789	}
1790
1791	/* Reset on uncorrectable ECC error */
1792	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1793		u32 pbeccsts = er32(PBECCSTS);
1794
1795		adapter->corr_errors +=
1796		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1797		adapter->uncorr_errors +=
1798		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1799		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1800
1801		/* Do the reset outside of interrupt context */
1802		schedule_work(&adapter->reset_task);
1803
1804		/* return immediately since reset is imminent */
1805		return IRQ_HANDLED;
1806	}
1807
1808	if (napi_schedule_prep(&adapter->napi)) {
1809		adapter->total_tx_bytes = 0;
1810		adapter->total_tx_packets = 0;
1811		adapter->total_rx_bytes = 0;
1812		adapter->total_rx_packets = 0;
1813		__napi_schedule(&adapter->napi);
1814	}
1815
1816	return IRQ_HANDLED;
1817}
1818
1819/**
1820 * e1000_intr - Interrupt Handler
1821 * @irq: interrupt number
1822 * @data: pointer to a network interface device structure
1823 **/
1824static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1825{
1826	struct net_device *netdev = data;
1827	struct e1000_adapter *adapter = netdev_priv(netdev);
1828	struct e1000_hw *hw = &adapter->hw;
1829	u32 rctl, icr = er32(ICR);
1830
1831	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1832		return IRQ_NONE;	/* Not our interrupt */
1833
1834	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 
1835	 * not set, then the adapter didn't send an interrupt
1836	 */
1837	if (!(icr & E1000_ICR_INT_ASSERTED))
1838		return IRQ_NONE;
1839
1840	/* Interrupt Auto-Mask...upon reading ICR,
 
1841	 * interrupts are masked.  No need for the
1842	 * IMC write
1843	 */
1844
1845	if (icr & E1000_ICR_LSC) {
1846		hw->mac.get_link_status = true;
1847		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1848		 * disconnect (LSC) before accessing any PHY registers
1849		 */
1850		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1851		    (!(er32(STATUS) & E1000_STATUS_LU)))
1852			schedule_work(&adapter->downshift_task);
1853
1854		/* 80003ES2LAN workaround--
 
1855		 * For packet buffer work-around on link down event;
1856		 * disable receives here in the ISR and
1857		 * reset adapter in watchdog
1858		 */
1859		if (netif_carrier_ok(netdev) &&
1860		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1861			/* disable receives */
1862			rctl = er32(RCTL);
1863			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1864			adapter->flags |= FLAG_RESTART_NOW;
1865		}
1866		/* guard against interrupt when we're going down */
1867		if (!test_bit(__E1000_DOWN, &adapter->state))
1868			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1869	}
1870
1871	/* Reset on uncorrectable ECC error */
1872	if ((icr & E1000_ICR_ECCER) && (hw->mac.type >= e1000_pch_lpt)) {
1873		u32 pbeccsts = er32(PBECCSTS);
1874
1875		adapter->corr_errors +=
1876		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1877		adapter->uncorr_errors +=
1878		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1879		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1880
1881		/* Do the reset outside of interrupt context */
1882		schedule_work(&adapter->reset_task);
1883
1884		/* return immediately since reset is imminent */
1885		return IRQ_HANDLED;
1886	}
1887
1888	if (napi_schedule_prep(&adapter->napi)) {
1889		adapter->total_tx_bytes = 0;
1890		adapter->total_tx_packets = 0;
1891		adapter->total_rx_bytes = 0;
1892		adapter->total_rx_packets = 0;
1893		__napi_schedule(&adapter->napi);
1894	}
1895
1896	return IRQ_HANDLED;
1897}
1898
1899static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1900{
1901	struct net_device *netdev = data;
1902	struct e1000_adapter *adapter = netdev_priv(netdev);
1903	struct e1000_hw *hw = &adapter->hw;
1904	u32 icr = er32(ICR);
1905
 
 
 
 
 
 
1906	if (icr & adapter->eiac_mask)
1907		ew32(ICS, (icr & adapter->eiac_mask));
1908
1909	if (icr & E1000_ICR_LSC) {
 
 
1910		hw->mac.get_link_status = true;
1911		/* guard against interrupt when we're going down */
1912		if (!test_bit(__E1000_DOWN, &adapter->state))
1913			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914	}
1915
 
1916	if (!test_bit(__E1000_DOWN, &adapter->state))
1917		ew32(IMS, E1000_IMS_OTHER | IMS_OTHER_MASK);
1918
1919	return IRQ_HANDLED;
1920}
1921
1922static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
 
1923{
1924	struct net_device *netdev = data;
1925	struct e1000_adapter *adapter = netdev_priv(netdev);
1926	struct e1000_hw *hw = &adapter->hw;
1927	struct e1000_ring *tx_ring = adapter->tx_ring;
1928
 
1929	adapter->total_tx_bytes = 0;
1930	adapter->total_tx_packets = 0;
1931
1932	if (!e1000_clean_tx_irq(tx_ring))
1933		/* Ring was not completely cleaned, so fire another interrupt */
1934		ew32(ICS, tx_ring->ims_val);
1935
1936	if (!test_bit(__E1000_DOWN, &adapter->state))
1937		ew32(IMS, adapter->tx_ring->ims_val);
1938
1939	return IRQ_HANDLED;
1940}
1941
1942static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1943{
1944	struct net_device *netdev = data;
1945	struct e1000_adapter *adapter = netdev_priv(netdev);
1946	struct e1000_ring *rx_ring = adapter->rx_ring;
1947
1948	/* Write the ITR value calculated at the end of the
1949	 * previous interrupt.
1950	 */
1951	if (rx_ring->set_itr) {
1952		u32 itr = rx_ring->itr_val ?
1953			  1000000000 / (rx_ring->itr_val * 256) : 0;
1954
1955		writel(itr, rx_ring->itr_register);
1956		rx_ring->set_itr = 0;
1957	}
1958
1959	if (napi_schedule_prep(&adapter->napi)) {
1960		adapter->total_rx_bytes = 0;
1961		adapter->total_rx_packets = 0;
1962		__napi_schedule(&adapter->napi);
1963	}
1964	return IRQ_HANDLED;
1965}
1966
1967/**
1968 * e1000_configure_msix - Configure MSI-X hardware
1969 * @adapter: board private structure
1970 *
1971 * e1000_configure_msix sets up the hardware to properly
1972 * generate MSI-X interrupts.
1973 **/
1974static void e1000_configure_msix(struct e1000_adapter *adapter)
1975{
1976	struct e1000_hw *hw = &adapter->hw;
1977	struct e1000_ring *rx_ring = adapter->rx_ring;
1978	struct e1000_ring *tx_ring = adapter->tx_ring;
1979	int vector = 0;
1980	u32 ctrl_ext, ivar = 0;
1981
1982	adapter->eiac_mask = 0;
1983
1984	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1985	if (hw->mac.type == e1000_82574) {
1986		u32 rfctl = er32(RFCTL);
1987
1988		rfctl |= E1000_RFCTL_ACK_DIS;
1989		ew32(RFCTL, rfctl);
1990	}
1991
 
1992	/* Configure Rx vector */
1993	rx_ring->ims_val = E1000_IMS_RXQ0;
1994	adapter->eiac_mask |= rx_ring->ims_val;
1995	if (rx_ring->itr_val)
1996		writel(1000000000 / (rx_ring->itr_val * 256),
1997		       rx_ring->itr_register);
1998	else
1999		writel(1, rx_ring->itr_register);
2000	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
2001
2002	/* Configure Tx vector */
2003	tx_ring->ims_val = E1000_IMS_TXQ0;
2004	vector++;
2005	if (tx_ring->itr_val)
2006		writel(1000000000 / (tx_ring->itr_val * 256),
2007		       tx_ring->itr_register);
2008	else
2009		writel(1, tx_ring->itr_register);
2010	adapter->eiac_mask |= tx_ring->ims_val;
2011	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2012
2013	/* set vector for Other Causes, e.g. link changes */
2014	vector++;
2015	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2016	if (rx_ring->itr_val)
2017		writel(1000000000 / (rx_ring->itr_val * 256),
2018		       hw->hw_addr + E1000_EITR_82574(vector));
2019	else
2020		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2021
2022	/* Cause Tx interrupts on every write back */
2023	ivar |= BIT(31);
2024
2025	ew32(IVAR, ivar);
2026
2027	/* enable MSI-X PBA support */
2028	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2029	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
 
2030	ew32(CTRL_EXT, ctrl_ext);
2031	e1e_flush();
2032}
2033
2034void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2035{
2036	if (adapter->msix_entries) {
2037		pci_disable_msix(adapter->pdev);
2038		kfree(adapter->msix_entries);
2039		adapter->msix_entries = NULL;
2040	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2041		pci_disable_msi(adapter->pdev);
2042		adapter->flags &= ~FLAG_MSI_ENABLED;
2043	}
2044}
2045
2046/**
2047 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2048 * @adapter: board private structure
2049 *
2050 * Attempt to configure interrupts using the best available
2051 * capabilities of the hardware and kernel.
2052 **/
2053void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2054{
2055	int err;
2056	int i;
2057
2058	switch (adapter->int_mode) {
2059	case E1000E_INT_MODE_MSIX:
2060		if (adapter->flags & FLAG_HAS_MSIX) {
2061			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2062			adapter->msix_entries = kcalloc(adapter->num_vectors,
2063							sizeof(struct
2064							       msix_entry),
2065							GFP_KERNEL);
2066			if (adapter->msix_entries) {
2067				struct e1000_adapter *a = adapter;
2068
2069				for (i = 0; i < adapter->num_vectors; i++)
2070					adapter->msix_entries[i].entry = i;
2071
2072				err = pci_enable_msix_range(a->pdev,
2073							    a->msix_entries,
2074							    a->num_vectors,
2075							    a->num_vectors);
2076				if (err > 0)
2077					return;
2078			}
2079			/* MSI-X failed, so fall through and try MSI */
2080			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2081			e1000e_reset_interrupt_capability(adapter);
2082		}
2083		adapter->int_mode = E1000E_INT_MODE_MSI;
2084		fallthrough;
2085	case E1000E_INT_MODE_MSI:
2086		if (!pci_enable_msi(adapter->pdev)) {
2087			adapter->flags |= FLAG_MSI_ENABLED;
2088		} else {
2089			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2090			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2091		}
2092		fallthrough;
2093	case E1000E_INT_MODE_LEGACY:
2094		/* Don't do anything; this is the system default */
2095		break;
2096	}
2097
2098	/* store the number of vectors being used */
2099	adapter->num_vectors = 1;
2100}
2101
2102/**
2103 * e1000_request_msix - Initialize MSI-X interrupts
2104 * @adapter: board private structure
2105 *
2106 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2107 * kernel.
2108 **/
2109static int e1000_request_msix(struct e1000_adapter *adapter)
2110{
2111	struct net_device *netdev = adapter->netdev;
2112	int err = 0, vector = 0;
2113
2114	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2115		snprintf(adapter->rx_ring->name,
2116			 sizeof(adapter->rx_ring->name) - 1,
2117			 "%.14s-rx-0", netdev->name);
2118	else
2119		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2120	err = request_irq(adapter->msix_entries[vector].vector,
2121			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2122			  netdev);
2123	if (err)
2124		return err;
2125	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2126	    E1000_EITR_82574(vector);
2127	adapter->rx_ring->itr_val = adapter->itr;
2128	vector++;
2129
2130	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2131		snprintf(adapter->tx_ring->name,
2132			 sizeof(adapter->tx_ring->name) - 1,
2133			 "%.14s-tx-0", netdev->name);
2134	else
2135		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2136	err = request_irq(adapter->msix_entries[vector].vector,
2137			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2138			  netdev);
2139	if (err)
2140		return err;
2141	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2142	    E1000_EITR_82574(vector);
2143	adapter->tx_ring->itr_val = adapter->itr;
2144	vector++;
2145
2146	err = request_irq(adapter->msix_entries[vector].vector,
2147			  e1000_msix_other, 0, netdev->name, netdev);
2148	if (err)
2149		return err;
2150
2151	e1000_configure_msix(adapter);
2152
2153	return 0;
2154}
2155
2156/**
2157 * e1000_request_irq - initialize interrupts
2158 * @adapter: board private structure
2159 *
2160 * Attempts to configure interrupts using the best available
2161 * capabilities of the hardware and kernel.
2162 **/
2163static int e1000_request_irq(struct e1000_adapter *adapter)
2164{
2165	struct net_device *netdev = adapter->netdev;
2166	int err;
2167
2168	if (adapter->msix_entries) {
2169		err = e1000_request_msix(adapter);
2170		if (!err)
2171			return err;
2172		/* fall back to MSI */
2173		e1000e_reset_interrupt_capability(adapter);
2174		adapter->int_mode = E1000E_INT_MODE_MSI;
2175		e1000e_set_interrupt_capability(adapter);
2176	}
2177	if (adapter->flags & FLAG_MSI_ENABLED) {
2178		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2179				  netdev->name, netdev);
2180		if (!err)
2181			return err;
2182
2183		/* fall back to legacy interrupt */
2184		e1000e_reset_interrupt_capability(adapter);
2185		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2186	}
2187
2188	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2189			  netdev->name, netdev);
2190	if (err)
2191		e_err("Unable to allocate interrupt, Error: %d\n", err);
2192
2193	return err;
2194}
2195
2196static void e1000_free_irq(struct e1000_adapter *adapter)
2197{
2198	struct net_device *netdev = adapter->netdev;
2199
2200	if (adapter->msix_entries) {
2201		int vector = 0;
2202
2203		free_irq(adapter->msix_entries[vector].vector, netdev);
2204		vector++;
2205
2206		free_irq(adapter->msix_entries[vector].vector, netdev);
2207		vector++;
2208
2209		/* Other Causes interrupt vector */
2210		free_irq(adapter->msix_entries[vector].vector, netdev);
2211		return;
2212	}
2213
2214	free_irq(adapter->pdev->irq, netdev);
2215}
2216
2217/**
2218 * e1000_irq_disable - Mask off interrupt generation on the NIC
2219 * @adapter: board private structure
2220 **/
2221static void e1000_irq_disable(struct e1000_adapter *adapter)
2222{
2223	struct e1000_hw *hw = &adapter->hw;
2224
2225	ew32(IMC, ~0);
2226	if (adapter->msix_entries)
2227		ew32(EIAC_82574, 0);
2228	e1e_flush();
2229
2230	if (adapter->msix_entries) {
2231		int i;
2232
2233		for (i = 0; i < adapter->num_vectors; i++)
2234			synchronize_irq(adapter->msix_entries[i].vector);
2235	} else {
2236		synchronize_irq(adapter->pdev->irq);
2237	}
2238}
2239
2240/**
2241 * e1000_irq_enable - Enable default interrupt generation settings
2242 * @adapter: board private structure
2243 **/
2244static void e1000_irq_enable(struct e1000_adapter *adapter)
2245{
2246	struct e1000_hw *hw = &adapter->hw;
2247
2248	if (adapter->msix_entries) {
2249		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2250		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER |
2251		     IMS_OTHER_MASK);
2252	} else if (hw->mac.type >= e1000_pch_lpt) {
2253		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2254	} else {
2255		ew32(IMS, IMS_ENABLE_MASK);
2256	}
2257	e1e_flush();
2258}
2259
2260/**
2261 * e1000e_get_hw_control - get control of the h/w from f/w
2262 * @adapter: address of board private structure
2263 *
2264 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2265 * For ASF and Pass Through versions of f/w this means that
2266 * the driver is loaded. For AMT version (only with 82573)
2267 * of the f/w this means that the network i/f is open.
2268 **/
2269void e1000e_get_hw_control(struct e1000_adapter *adapter)
2270{
2271	struct e1000_hw *hw = &adapter->hw;
2272	u32 ctrl_ext;
2273	u32 swsm;
2274
2275	/* Let firmware know the driver has taken over */
2276	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2277		swsm = er32(SWSM);
2278		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2279	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2280		ctrl_ext = er32(CTRL_EXT);
2281		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2282	}
2283}
2284
2285/**
2286 * e1000e_release_hw_control - release control of the h/w to f/w
2287 * @adapter: address of board private structure
2288 *
2289 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2290 * For ASF and Pass Through versions of f/w this means that the
2291 * driver is no longer loaded. For AMT version (only with 82573) i
2292 * of the f/w this means that the network i/f is closed.
2293 *
2294 **/
2295void e1000e_release_hw_control(struct e1000_adapter *adapter)
2296{
2297	struct e1000_hw *hw = &adapter->hw;
2298	u32 ctrl_ext;
2299	u32 swsm;
2300
2301	/* Let firmware taken over control of h/w */
2302	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2303		swsm = er32(SWSM);
2304		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2305	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2306		ctrl_ext = er32(CTRL_EXT);
2307		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2308	}
2309}
2310
2311/**
2312 * e1000_alloc_ring_dma - allocate memory for a ring structure
2313 * @adapter: board private structure
2314 * @ring: ring struct for which to allocate dma
2315 **/
2316static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2317				struct e1000_ring *ring)
2318{
2319	struct pci_dev *pdev = adapter->pdev;
2320
2321	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2322					GFP_KERNEL);
2323	if (!ring->desc)
2324		return -ENOMEM;
2325
2326	return 0;
2327}
2328
2329/**
2330 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2331 * @tx_ring: Tx descriptor ring
2332 *
2333 * Return 0 on success, negative on failure
2334 **/
2335int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2336{
2337	struct e1000_adapter *adapter = tx_ring->adapter;
2338	int err = -ENOMEM, size;
2339
2340	size = sizeof(struct e1000_buffer) * tx_ring->count;
2341	tx_ring->buffer_info = vzalloc(size);
2342	if (!tx_ring->buffer_info)
2343		goto err;
2344
2345	/* round up to nearest 4K */
2346	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2347	tx_ring->size = ALIGN(tx_ring->size, 4096);
2348
2349	err = e1000_alloc_ring_dma(adapter, tx_ring);
2350	if (err)
2351		goto err;
2352
2353	tx_ring->next_to_use = 0;
2354	tx_ring->next_to_clean = 0;
2355
2356	return 0;
2357err:
2358	vfree(tx_ring->buffer_info);
2359	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2360	return err;
2361}
2362
2363/**
2364 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2365 * @rx_ring: Rx descriptor ring
2366 *
2367 * Returns 0 on success, negative on failure
2368 **/
2369int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2370{
2371	struct e1000_adapter *adapter = rx_ring->adapter;
2372	struct e1000_buffer *buffer_info;
2373	int i, size, desc_len, err = -ENOMEM;
2374
2375	size = sizeof(struct e1000_buffer) * rx_ring->count;
2376	rx_ring->buffer_info = vzalloc(size);
2377	if (!rx_ring->buffer_info)
2378		goto err;
2379
2380	for (i = 0; i < rx_ring->count; i++) {
2381		buffer_info = &rx_ring->buffer_info[i];
2382		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2383						sizeof(struct e1000_ps_page),
2384						GFP_KERNEL);
2385		if (!buffer_info->ps_pages)
2386			goto err_pages;
2387	}
2388
2389	desc_len = sizeof(union e1000_rx_desc_packet_split);
2390
2391	/* Round up to nearest 4K */
2392	rx_ring->size = rx_ring->count * desc_len;
2393	rx_ring->size = ALIGN(rx_ring->size, 4096);
2394
2395	err = e1000_alloc_ring_dma(adapter, rx_ring);
2396	if (err)
2397		goto err_pages;
2398
2399	rx_ring->next_to_clean = 0;
2400	rx_ring->next_to_use = 0;
2401	rx_ring->rx_skb_top = NULL;
2402
2403	return 0;
2404
2405err_pages:
2406	for (i = 0; i < rx_ring->count; i++) {
2407		buffer_info = &rx_ring->buffer_info[i];
2408		kfree(buffer_info->ps_pages);
2409	}
2410err:
2411	vfree(rx_ring->buffer_info);
2412	e_err("Unable to allocate memory for the receive descriptor ring\n");
2413	return err;
2414}
2415
2416/**
2417 * e1000_clean_tx_ring - Free Tx Buffers
2418 * @tx_ring: Tx descriptor ring
2419 **/
2420static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2421{
2422	struct e1000_adapter *adapter = tx_ring->adapter;
2423	struct e1000_buffer *buffer_info;
2424	unsigned long size;
2425	unsigned int i;
2426
2427	for (i = 0; i < tx_ring->count; i++) {
2428		buffer_info = &tx_ring->buffer_info[i];
2429		e1000_put_txbuf(tx_ring, buffer_info, false);
2430	}
2431
2432	netdev_reset_queue(adapter->netdev);
2433	size = sizeof(struct e1000_buffer) * tx_ring->count;
2434	memset(tx_ring->buffer_info, 0, size);
2435
2436	memset(tx_ring->desc, 0, tx_ring->size);
2437
2438	tx_ring->next_to_use = 0;
2439	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2440}
2441
2442/**
2443 * e1000e_free_tx_resources - Free Tx Resources per Queue
2444 * @tx_ring: Tx descriptor ring
2445 *
2446 * Free all transmit software resources
2447 **/
2448void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2449{
2450	struct e1000_adapter *adapter = tx_ring->adapter;
2451	struct pci_dev *pdev = adapter->pdev;
2452
2453	e1000_clean_tx_ring(tx_ring);
2454
2455	vfree(tx_ring->buffer_info);
2456	tx_ring->buffer_info = NULL;
2457
2458	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2459			  tx_ring->dma);
2460	tx_ring->desc = NULL;
2461}
2462
2463/**
2464 * e1000e_free_rx_resources - Free Rx Resources
2465 * @rx_ring: Rx descriptor ring
2466 *
2467 * Free all receive software resources
2468 **/
2469void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2470{
2471	struct e1000_adapter *adapter = rx_ring->adapter;
2472	struct pci_dev *pdev = adapter->pdev;
2473	int i;
2474
2475	e1000_clean_rx_ring(rx_ring);
2476
2477	for (i = 0; i < rx_ring->count; i++)
2478		kfree(rx_ring->buffer_info[i].ps_pages);
2479
2480	vfree(rx_ring->buffer_info);
2481	rx_ring->buffer_info = NULL;
2482
2483	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2484			  rx_ring->dma);
2485	rx_ring->desc = NULL;
2486}
2487
2488/**
2489 * e1000_update_itr - update the dynamic ITR value based on statistics
 
2490 * @itr_setting: current adapter->itr
2491 * @packets: the number of packets during this measurement interval
2492 * @bytes: the number of bytes during this measurement interval
2493 *
2494 *      Stores a new ITR value based on packets and byte
2495 *      counts during the last interrupt.  The advantage of per interrupt
2496 *      computation is faster updates and more accurate ITR for the current
2497 *      traffic pattern.  Constants in this function were computed
2498 *      based on theoretical maximum wire speed and thresholds were set based
2499 *      on testing data as well as attempting to minimize response time
2500 *      while increasing bulk throughput.  This functionality is controlled
2501 *      by the InterruptThrottleRate module parameter.
2502 **/
2503static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
 
 
2504{
2505	unsigned int retval = itr_setting;
2506
2507	if (packets == 0)
2508		return itr_setting;
2509
2510	switch (itr_setting) {
2511	case lowest_latency:
2512		/* handle TSO and jumbo frames */
2513		if (bytes / packets > 8000)
2514			retval = bulk_latency;
2515		else if ((packets < 5) && (bytes > 512))
2516			retval = low_latency;
2517		break;
2518	case low_latency:	/* 50 usec aka 20000 ints/s */
2519		if (bytes > 10000) {
2520			/* this if handles the TSO accounting */
2521			if (bytes / packets > 8000)
2522				retval = bulk_latency;
2523			else if ((packets < 10) || ((bytes / packets) > 1200))
2524				retval = bulk_latency;
2525			else if ((packets > 35))
2526				retval = lowest_latency;
2527		} else if (bytes / packets > 2000) {
2528			retval = bulk_latency;
2529		} else if (packets <= 2 && bytes < 512) {
2530			retval = lowest_latency;
2531		}
2532		break;
2533	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2534		if (bytes > 25000) {
2535			if (packets > 35)
2536				retval = low_latency;
2537		} else if (bytes < 6000) {
2538			retval = low_latency;
2539		}
2540		break;
2541	}
2542
2543	return retval;
2544}
2545
2546static void e1000_set_itr(struct e1000_adapter *adapter)
2547{
 
2548	u16 current_itr;
2549	u32 new_itr = adapter->itr;
2550
2551	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2552	if (adapter->link_speed != SPEED_1000) {
2553		current_itr = 0;
2554		new_itr = 4000;
2555		goto set_itr_now;
2556	}
2557
2558	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2559		new_itr = 0;
2560		goto set_itr_now;
2561	}
2562
2563	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2564					   adapter->total_tx_packets,
2565					   adapter->total_tx_bytes);
 
2566	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2567	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2568		adapter->tx_itr = low_latency;
2569
2570	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2571					   adapter->total_rx_packets,
2572					   adapter->total_rx_bytes);
 
2573	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2574	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2575		adapter->rx_itr = low_latency;
2576
2577	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2578
 
2579	/* counts and packets in update_itr are dependent on these numbers */
2580	switch (current_itr) {
2581	case lowest_latency:
2582		new_itr = 70000;
2583		break;
2584	case low_latency:
2585		new_itr = 20000;	/* aka hwitr = ~200 */
2586		break;
2587	case bulk_latency:
2588		new_itr = 4000;
2589		break;
2590	default:
2591		break;
2592	}
2593
2594set_itr_now:
2595	if (new_itr != adapter->itr) {
2596		/* this attempts to bias the interrupt rate towards Bulk
 
2597		 * by adding intermediate steps when interrupt rate is
2598		 * increasing
2599		 */
2600		new_itr = new_itr > adapter->itr ?
2601		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
 
2602		adapter->itr = new_itr;
2603		adapter->rx_ring->itr_val = new_itr;
2604		if (adapter->msix_entries)
2605			adapter->rx_ring->set_itr = 1;
2606		else
2607			e1000e_write_itr(adapter, new_itr);
2608	}
2609}
2610
2611/**
2612 * e1000e_write_itr - write the ITR value to the appropriate registers
2613 * @adapter: address of board private structure
2614 * @itr: new ITR value to program
2615 *
2616 * e1000e_write_itr determines if the adapter is in MSI-X mode
2617 * and, if so, writes the EITR registers with the ITR value.
2618 * Otherwise, it writes the ITR value into the ITR register.
2619 **/
2620void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2621{
2622	struct e1000_hw *hw = &adapter->hw;
2623	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2624
2625	if (adapter->msix_entries) {
2626		int vector;
2627
2628		for (vector = 0; vector < adapter->num_vectors; vector++)
2629			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2630	} else {
2631		ew32(ITR, new_itr);
2632	}
2633}
2634
2635/**
2636 * e1000_alloc_queues - Allocate memory for all rings
2637 * @adapter: board private structure to initialize
2638 **/
2639static int e1000_alloc_queues(struct e1000_adapter *adapter)
2640{
2641	int size = sizeof(struct e1000_ring);
2642
2643	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2644	if (!adapter->tx_ring)
2645		goto err;
2646	adapter->tx_ring->count = adapter->tx_ring_count;
2647	adapter->tx_ring->adapter = adapter;
2648
2649	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2650	if (!adapter->rx_ring)
2651		goto err;
2652	adapter->rx_ring->count = adapter->rx_ring_count;
2653	adapter->rx_ring->adapter = adapter;
2654
2655	return 0;
2656err:
2657	e_err("Unable to allocate memory for queues\n");
2658	kfree(adapter->rx_ring);
2659	kfree(adapter->tx_ring);
2660	return -ENOMEM;
2661}
2662
2663/**
2664 * e1000e_poll - NAPI Rx polling callback
2665 * @napi: struct associated with this polling callback
2666 * @budget: number of packets driver is allowed to process this poll
2667 **/
2668static int e1000e_poll(struct napi_struct *napi, int budget)
2669{
2670	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2671						     napi);
2672	struct e1000_hw *hw = &adapter->hw;
2673	struct net_device *poll_dev = adapter->netdev;
2674	int tx_cleaned = 1, work_done = 0;
2675
2676	adapter = netdev_priv(poll_dev);
2677
2678	if (!adapter->msix_entries ||
2679	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2680		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2681
2682	adapter->clean_rx(adapter->rx_ring, &work_done, budget);
2683
2684	if (!tx_cleaned || work_done == budget)
2685		return budget;
2686
2687	/* Exit the polling mode, but don't re-enable interrupts if stack might
2688	 * poll us due to busy-polling
2689	 */
2690	if (likely(napi_complete_done(napi, work_done))) {
2691		if (adapter->itr_setting & 3)
2692			e1000_set_itr(adapter);
 
2693		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2694			if (adapter->msix_entries)
2695				ew32(IMS, adapter->rx_ring->ims_val);
2696			else
2697				e1000_irq_enable(adapter);
2698		}
2699	}
2700
2701	return work_done;
2702}
2703
2704static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2705				 __always_unused __be16 proto, u16 vid)
2706{
2707	struct e1000_adapter *adapter = netdev_priv(netdev);
2708	struct e1000_hw *hw = &adapter->hw;
2709	u32 vfta, index;
2710
2711	/* don't update vlan cookie if already programmed */
2712	if ((adapter->hw.mng_cookie.status &
2713	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2714	    (vid == adapter->mng_vlan_id))
2715		return 0;
2716
2717	/* add VID to filter table */
2718	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2719		index = (vid >> 5) & 0x7F;
2720		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2721		vfta |= BIT((vid & 0x1F));
2722		hw->mac.ops.write_vfta(hw, index, vfta);
2723	}
2724
2725	set_bit(vid, adapter->active_vlans);
2726
2727	return 0;
2728}
2729
2730static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2731				  __always_unused __be16 proto, u16 vid)
2732{
2733	struct e1000_adapter *adapter = netdev_priv(netdev);
2734	struct e1000_hw *hw = &adapter->hw;
2735	u32 vfta, index;
2736
2737	if ((adapter->hw.mng_cookie.status &
2738	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2739	    (vid == adapter->mng_vlan_id)) {
2740		/* release control to f/w */
2741		e1000e_release_hw_control(adapter);
2742		return 0;
2743	}
2744
2745	/* remove VID from filter table */
2746	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2747		index = (vid >> 5) & 0x7F;
2748		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2749		vfta &= ~BIT((vid & 0x1F));
2750		hw->mac.ops.write_vfta(hw, index, vfta);
2751	}
2752
2753	clear_bit(vid, adapter->active_vlans);
2754
2755	return 0;
2756}
2757
2758/**
2759 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2760 * @adapter: board private structure to initialize
2761 **/
2762static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2763{
2764	struct net_device *netdev = adapter->netdev;
2765	struct e1000_hw *hw = &adapter->hw;
2766	u32 rctl;
2767
2768	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2769		/* disable VLAN receive filtering */
2770		rctl = er32(RCTL);
2771		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2772		ew32(RCTL, rctl);
2773
2774		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2775			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2776					       adapter->mng_vlan_id);
2777			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2778		}
2779	}
2780}
2781
2782/**
2783 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2784 * @adapter: board private structure to initialize
2785 **/
2786static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2787{
2788	struct e1000_hw *hw = &adapter->hw;
2789	u32 rctl;
2790
2791	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2792		/* enable VLAN receive filtering */
2793		rctl = er32(RCTL);
2794		rctl |= E1000_RCTL_VFE;
2795		rctl &= ~E1000_RCTL_CFIEN;
2796		ew32(RCTL, rctl);
2797	}
2798}
2799
2800/**
2801 * e1000e_vlan_strip_disable - helper to disable HW VLAN stripping
2802 * @adapter: board private structure to initialize
2803 **/
2804static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2805{
2806	struct e1000_hw *hw = &adapter->hw;
2807	u32 ctrl;
2808
2809	/* disable VLAN tag insert/strip */
2810	ctrl = er32(CTRL);
2811	ctrl &= ~E1000_CTRL_VME;
2812	ew32(CTRL, ctrl);
2813}
2814
2815/**
2816 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2817 * @adapter: board private structure to initialize
2818 **/
2819static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2820{
2821	struct e1000_hw *hw = &adapter->hw;
2822	u32 ctrl;
2823
2824	/* enable VLAN tag insert/strip */
2825	ctrl = er32(CTRL);
2826	ctrl |= E1000_CTRL_VME;
2827	ew32(CTRL, ctrl);
2828}
2829
2830static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2831{
2832	struct net_device *netdev = adapter->netdev;
2833	u16 vid = adapter->hw.mng_cookie.vlan_id;
2834	u16 old_vid = adapter->mng_vlan_id;
2835
2836	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2837		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 
2838		adapter->mng_vlan_id = vid;
2839	}
2840
2841	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2842		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2843}
2844
2845static void e1000_restore_vlan(struct e1000_adapter *adapter)
2846{
2847	u16 vid;
2848
2849	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2850
2851	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2852	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2853}
2854
2855static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2856{
2857	struct e1000_hw *hw = &adapter->hw;
2858	u32 manc, manc2h, mdef, i, j;
2859
2860	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2861		return;
2862
2863	manc = er32(MANC);
2864
2865	/* enable receiving management packets to the host. this will probably
 
2866	 * generate destination unreachable messages from the host OS, but
2867	 * the packets will be handled on SMBUS
2868	 */
2869	manc |= E1000_MANC_EN_MNG2HOST;
2870	manc2h = er32(MANC2H);
2871
2872	switch (hw->mac.type) {
2873	default:
2874		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2875		break;
2876	case e1000_82574:
2877	case e1000_82583:
2878		/* Check if IPMI pass-through decision filter already exists;
 
2879		 * if so, enable it.
2880		 */
2881		for (i = 0, j = 0; i < 8; i++) {
2882			mdef = er32(MDEF(i));
2883
2884			/* Ignore filters with anything other than IPMI ports */
2885			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2886				continue;
2887
2888			/* Enable this decision filter in MANC2H */
2889			if (mdef)
2890				manc2h |= BIT(i);
2891
2892			j |= mdef;
2893		}
2894
2895		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2896			break;
2897
2898		/* Create new decision filter in an empty filter */
2899		for (i = 0, j = 0; i < 8; i++)
2900			if (er32(MDEF(i)) == 0) {
2901				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2902					       E1000_MDEF_PORT_664));
2903				manc2h |= BIT(1);
2904				j++;
2905				break;
2906			}
2907
2908		if (!j)
2909			e_warn("Unable to create IPMI pass-through filter\n");
2910		break;
2911	}
2912
2913	ew32(MANC2H, manc2h);
2914	ew32(MANC, manc);
2915}
2916
2917/**
2918 * e1000_configure_tx - Configure Transmit Unit after Reset
2919 * @adapter: board private structure
2920 *
2921 * Configure the Tx unit of the MAC after a reset.
2922 **/
2923static void e1000_configure_tx(struct e1000_adapter *adapter)
2924{
2925	struct e1000_hw *hw = &adapter->hw;
2926	struct e1000_ring *tx_ring = adapter->tx_ring;
2927	u64 tdba;
2928	u32 tdlen, tctl, tarc;
2929
2930	/* Setup the HW Tx Head and Tail descriptor pointers */
2931	tdba = tx_ring->dma;
2932	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2933	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2934	ew32(TDBAH(0), (tdba >> 32));
2935	ew32(TDLEN(0), tdlen);
2936	ew32(TDH(0), 0);
2937	ew32(TDT(0), 0);
2938	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2939	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2940
2941	writel(0, tx_ring->head);
2942	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2943		e1000e_update_tdt_wa(tx_ring, 0);
2944	else
2945		writel(0, tx_ring->tail);
2946
2947	/* Set the Tx Interrupt Delay register */
2948	ew32(TIDV, adapter->tx_int_delay);
2949	/* Tx irq moderation */
2950	ew32(TADV, adapter->tx_abs_int_delay);
2951
2952	if (adapter->flags2 & FLAG2_DMA_BURST) {
2953		u32 txdctl = er32(TXDCTL(0));
2954
2955		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2956			    E1000_TXDCTL_WTHRESH);
2957		/* set up some performance related parameters to encourage the
 
2958		 * hardware to use the bus more efficiently in bursts, depends
2959		 * on the tx_int_delay to be enabled,
2960		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2961		 * hthresh = 1 ==> prefetch when one or more available
2962		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2963		 * BEWARE: this seems to work but should be considered first if
2964		 * there are Tx hangs or other Tx related bugs
2965		 */
2966		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2967		ew32(TXDCTL(0), txdctl);
2968	}
2969	/* erratum work around: set txdctl the same for both queues */
2970	ew32(TXDCTL(1), er32(TXDCTL(0)));
2971
2972	/* Program the Transmit Control Register */
2973	tctl = er32(TCTL);
2974	tctl &= ~E1000_TCTL_CT;
2975	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2976		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2977
2978	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2979		tarc = er32(TARC(0));
2980		/* set the speed mode bit, we'll clear it if we're not at
 
2981		 * gigabit link later
2982		 */
2983#define SPEED_MODE_BIT BIT(21)
2984		tarc |= SPEED_MODE_BIT;
2985		ew32(TARC(0), tarc);
2986	}
2987
2988	/* errata: program both queues to unweighted RR */
2989	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2990		tarc = er32(TARC(0));
2991		tarc |= 1;
2992		ew32(TARC(0), tarc);
2993		tarc = er32(TARC(1));
2994		tarc |= 1;
2995		ew32(TARC(1), tarc);
2996	}
2997
2998	/* Setup Transmit Descriptor Settings for eop descriptor */
2999	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
3000
3001	/* only set IDE if we are delaying interrupts using the timers */
3002	if (adapter->tx_int_delay)
3003		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
3004
3005	/* enable Report Status bit */
3006	adapter->txd_cmd |= E1000_TXD_CMD_RS;
3007
3008	ew32(TCTL, tctl);
3009
3010	hw->mac.ops.config_collision_dist(hw);
3011
3012	/* SPT and KBL Si errata workaround to avoid data corruption */
3013	if (hw->mac.type == e1000_pch_spt) {
3014		u32 reg_val;
3015
3016		reg_val = er32(IOSFPC);
3017		reg_val |= E1000_RCTL_RDMTS_HEX;
3018		ew32(IOSFPC, reg_val);
3019
3020		reg_val = er32(TARC(0));
3021		/* SPT and KBL Si errata workaround to avoid Tx hang.
3022		 * Dropping the number of outstanding requests from
3023		 * 3 to 2 in order to avoid a buffer overrun.
3024		 */
3025		reg_val &= ~E1000_TARC0_CB_MULTIQ_3_REQ;
3026		reg_val |= E1000_TARC0_CB_MULTIQ_2_REQ;
3027		ew32(TARC(0), reg_val);
3028	}
3029}
3030
3031#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3032			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3033
3034/**
3035 * e1000_setup_rctl - configure the receive control registers
3036 * @adapter: Board private structure
3037 **/
 
 
3038static void e1000_setup_rctl(struct e1000_adapter *adapter)
3039{
3040	struct e1000_hw *hw = &adapter->hw;
3041	u32 rctl, rfctl;
3042	u32 pages = 0;
3043
3044	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3045	 * If jumbo frames not set, program related MAC/PHY registers
3046	 * to h/w defaults
3047	 */
3048	if (hw->mac.type >= e1000_pch2lan) {
3049		s32 ret_val;
3050
3051		if (adapter->netdev->mtu > ETH_DATA_LEN)
3052			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3053		else
3054			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3055
3056		if (ret_val)
3057			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3058	}
3059
3060	/* Program MC offset vector base */
3061	rctl = er32(RCTL);
3062	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3063	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3064	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3065	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3066
3067	/* Do not Store bad packets */
3068	rctl &= ~E1000_RCTL_SBP;
3069
3070	/* Enable Long Packet receive */
3071	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3072		rctl &= ~E1000_RCTL_LPE;
3073	else
3074		rctl |= E1000_RCTL_LPE;
3075
3076	/* Some systems expect that the CRC is included in SMBUS traffic. The
3077	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3078	 * host memory when this is enabled
3079	 */
3080	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3081		rctl |= E1000_RCTL_SECRC;
3082
3083	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3084	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3085		u16 phy_data;
3086
3087		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3088		phy_data &= 0xfff8;
3089		phy_data |= BIT(2);
3090		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3091
3092		e1e_rphy(hw, 22, &phy_data);
3093		phy_data &= 0x0fff;
3094		phy_data |= BIT(14);
3095		e1e_wphy(hw, 0x10, 0x2823);
3096		e1e_wphy(hw, 0x11, 0x0003);
3097		e1e_wphy(hw, 22, phy_data);
3098	}
3099
3100	/* Setup buffer sizes */
3101	rctl &= ~E1000_RCTL_SZ_4096;
3102	rctl |= E1000_RCTL_BSEX;
3103	switch (adapter->rx_buffer_len) {
3104	case 2048:
3105	default:
3106		rctl |= E1000_RCTL_SZ_2048;
3107		rctl &= ~E1000_RCTL_BSEX;
3108		break;
3109	case 4096:
3110		rctl |= E1000_RCTL_SZ_4096;
3111		break;
3112	case 8192:
3113		rctl |= E1000_RCTL_SZ_8192;
3114		break;
3115	case 16384:
3116		rctl |= E1000_RCTL_SZ_16384;
3117		break;
3118	}
3119
3120	/* Enable Extended Status in all Receive Descriptors */
3121	rfctl = er32(RFCTL);
3122	rfctl |= E1000_RFCTL_EXTEN;
3123	ew32(RFCTL, rfctl);
3124
3125	/* 82571 and greater support packet-split where the protocol
 
3126	 * header is placed in skb->data and the packet data is
3127	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3128	 * In the case of a non-split, skb->data is linearly filled,
3129	 * followed by the page buffers.  Therefore, skb->data is
3130	 * sized to hold the largest protocol header.
3131	 *
3132	 * allocations using alloc_page take too long for regular MTU
3133	 * so only enable packet split for jumbo frames
3134	 *
3135	 * Using pages when the page size is greater than 16k wastes
3136	 * a lot of memory, since we allocate 3 pages at all times
3137	 * per packet.
3138	 */
3139	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3140	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3141		adapter->rx_ps_pages = pages;
3142	else
3143		adapter->rx_ps_pages = 0;
3144
3145	if (adapter->rx_ps_pages) {
3146		u32 psrctl = 0;
3147
3148		/* Enable Packet split descriptors */
3149		rctl |= E1000_RCTL_DTYP_PS;
3150
3151		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
 
3152
3153		switch (adapter->rx_ps_pages) {
3154		case 3:
3155			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3156			fallthrough;
3157		case 2:
3158			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3159			fallthrough;
3160		case 1:
3161			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
 
3162			break;
3163		}
3164
3165		ew32(PSRCTL, psrctl);
3166	}
3167
3168	/* This is useful for sniffing bad packets. */
3169	if (adapter->netdev->features & NETIF_F_RXALL) {
3170		/* UPE and MPE will be handled by normal PROMISC logic
3171		 * in e1000e_set_rx_mode
3172		 */
3173		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3174			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3175			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3176
3177		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3178			  E1000_RCTL_DPF |	/* Allow filtered pause */
3179			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3180		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3181		 * and that breaks VLANs.
3182		 */
3183	}
3184
3185	ew32(RCTL, rctl);
3186	/* just started the receive unit, no need to restart */
3187	adapter->flags &= ~FLAG_RESTART_NOW;
3188}
3189
3190/**
3191 * e1000_configure_rx - Configure Receive Unit after Reset
3192 * @adapter: board private structure
3193 *
3194 * Configure the Rx unit of the MAC after a reset.
3195 **/
3196static void e1000_configure_rx(struct e1000_adapter *adapter)
3197{
3198	struct e1000_hw *hw = &adapter->hw;
3199	struct e1000_ring *rx_ring = adapter->rx_ring;
3200	u64 rdba;
3201	u32 rdlen, rctl, rxcsum, ctrl_ext;
3202
3203	if (adapter->rx_ps_pages) {
3204		/* this is a 32 byte descriptor */
3205		rdlen = rx_ring->count *
3206		    sizeof(union e1000_rx_desc_packet_split);
3207		adapter->clean_rx = e1000_clean_rx_irq_ps;
3208		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3209	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3210		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3211		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3212		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3213	} else {
3214		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3215		adapter->clean_rx = e1000_clean_rx_irq;
3216		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3217	}
3218
3219	/* disable receives while setting up the descriptors */
3220	rctl = er32(RCTL);
3221	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3222		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3223	e1e_flush();
3224	usleep_range(10000, 11000);
3225
3226	if (adapter->flags2 & FLAG2_DMA_BURST) {
3227		/* set the writeback threshold (only takes effect if the RDTR
 
3228		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3229		 * enable prefetching of 0x20 Rx descriptors
3230		 * granularity = 01
3231		 * wthresh = 04,
3232		 * hthresh = 04,
3233		 * pthresh = 0x20
3234		 */
3235		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3236		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
 
 
 
 
 
 
 
 
 
3237	}
3238
3239	/* set the Receive Delay Timer Register */
3240	ew32(RDTR, adapter->rx_int_delay);
3241
3242	/* irq moderation */
3243	ew32(RADV, adapter->rx_abs_int_delay);
3244	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3245		e1000e_write_itr(adapter, adapter->itr);
3246
3247	ctrl_ext = er32(CTRL_EXT);
3248	/* Auto-Mask interrupts upon ICR access */
3249	ctrl_ext |= E1000_CTRL_EXT_IAME;
3250	ew32(IAM, 0xffffffff);
3251	ew32(CTRL_EXT, ctrl_ext);
3252	e1e_flush();
3253
3254	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 
3255	 * the Base and Length of the Rx Descriptor Ring
3256	 */
3257	rdba = rx_ring->dma;
3258	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3259	ew32(RDBAH(0), (rdba >> 32));
3260	ew32(RDLEN(0), rdlen);
3261	ew32(RDH(0), 0);
3262	ew32(RDT(0), 0);
3263	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3264	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3265
3266	writel(0, rx_ring->head);
3267	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3268		e1000e_update_rdt_wa(rx_ring, 0);
3269	else
3270		writel(0, rx_ring->tail);
3271
3272	/* Enable Receive Checksum Offload for TCP and UDP */
3273	rxcsum = er32(RXCSUM);
3274	if (adapter->netdev->features & NETIF_F_RXCSUM)
3275		rxcsum |= E1000_RXCSUM_TUOFL;
3276	else
3277		rxcsum &= ~E1000_RXCSUM_TUOFL;
3278	ew32(RXCSUM, rxcsum);
3279
3280	/* With jumbo frames, excessive C-state transition latencies result
3281	 * in dropped transactions.
3282	 */
3283	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3284		u32 lat =
3285		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3286		     adapter->max_frame_size) * 8 / 1000;
3287
3288		if (adapter->flags & FLAG_IS_ICH) {
3289			u32 rxdctl = er32(RXDCTL(0));
3290
3291			ew32(RXDCTL(0), rxdctl | 0x3 | BIT(8));
 
 
 
3292		}
3293
3294		dev_info(&adapter->pdev->dev,
3295			 "Some CPU C-states have been disabled in order to enable jumbo frames\n");
3296		cpu_latency_qos_update_request(&adapter->pm_qos_req, lat);
3297	} else {
3298		cpu_latency_qos_update_request(&adapter->pm_qos_req,
3299					       PM_QOS_DEFAULT_VALUE);
3300	}
3301
3302	/* Enable Receives */
3303	ew32(RCTL, rctl);
3304}
3305
3306/**
3307 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3308 * @netdev: network interface device structure
3309 *
3310 * Writes multicast address list to the MTA hash table.
3311 * Returns: -ENOMEM on failure
3312 *                0 on no addresses written
3313 *                X on writing X addresses to MTA
3314 */
3315static int e1000e_write_mc_addr_list(struct net_device *netdev)
3316{
3317	struct e1000_adapter *adapter = netdev_priv(netdev);
3318	struct e1000_hw *hw = &adapter->hw;
3319	struct netdev_hw_addr *ha;
3320	u8 *mta_list;
3321	int i;
3322
3323	if (netdev_mc_empty(netdev)) {
3324		/* nothing to program, so clear mc list */
3325		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3326		return 0;
3327	}
3328
3329	mta_list = kcalloc(netdev_mc_count(netdev), ETH_ALEN, GFP_ATOMIC);
3330	if (!mta_list)
3331		return -ENOMEM;
3332
3333	/* update_mc_addr_list expects a packed array of only addresses. */
3334	i = 0;
3335	netdev_for_each_mc_addr(ha, netdev)
3336	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3337
3338	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3339	kfree(mta_list);
3340
3341	return netdev_mc_count(netdev);
3342}
3343
3344/**
3345 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3346 * @netdev: network interface device structure
3347 *
3348 * Writes unicast address list to the RAR table.
3349 * Returns: -ENOMEM on failure/insufficient address space
3350 *                0 on no addresses written
3351 *                X on writing X addresses to the RAR table
3352 **/
3353static int e1000e_write_uc_addr_list(struct net_device *netdev)
3354{
3355	struct e1000_adapter *adapter = netdev_priv(netdev);
3356	struct e1000_hw *hw = &adapter->hw;
3357	unsigned int rar_entries;
3358	int count = 0;
3359
3360	rar_entries = hw->mac.ops.rar_get_count(hw);
3361
3362	/* save a rar entry for our hardware address */
3363	rar_entries--;
3364
3365	/* save a rar entry for the LAA workaround */
3366	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3367		rar_entries--;
3368
3369	/* return ENOMEM indicating insufficient memory for addresses */
3370	if (netdev_uc_count(netdev) > rar_entries)
3371		return -ENOMEM;
3372
3373	if (!netdev_uc_empty(netdev) && rar_entries) {
3374		struct netdev_hw_addr *ha;
3375
3376		/* write the addresses in reverse order to avoid write
 
3377		 * combining
3378		 */
3379		netdev_for_each_uc_addr(ha, netdev) {
3380			int ret_val;
3381
3382			if (!rar_entries)
3383				break;
3384			ret_val = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3385			if (ret_val < 0)
3386				return -ENOMEM;
3387			count++;
3388		}
3389	}
3390
3391	/* zero out the remaining RAR entries not used above */
3392	for (; rar_entries > 0; rar_entries--) {
3393		ew32(RAH(rar_entries), 0);
3394		ew32(RAL(rar_entries), 0);
3395	}
3396	e1e_flush();
3397
3398	return count;
3399}
3400
3401/**
3402 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3403 * @netdev: network interface device structure
3404 *
3405 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3406 * address list or the network interface flags are updated.  This routine is
3407 * responsible for configuring the hardware for proper unicast, multicast,
3408 * promiscuous mode, and all-multi behavior.
3409 **/
3410static void e1000e_set_rx_mode(struct net_device *netdev)
3411{
3412	struct e1000_adapter *adapter = netdev_priv(netdev);
3413	struct e1000_hw *hw = &adapter->hw;
3414	u32 rctl;
3415
3416	if (pm_runtime_suspended(netdev->dev.parent))
3417		return;
3418
3419	/* Check for Promiscuous and All Multicast modes */
3420	rctl = er32(RCTL);
3421
3422	/* clear the affected bits */
3423	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3424
3425	if (netdev->flags & IFF_PROMISC) {
3426		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3427		/* Do not hardware filter VLANs in promisc mode */
3428		e1000e_vlan_filter_disable(adapter);
3429	} else {
3430		int count;
3431
3432		if (netdev->flags & IFF_ALLMULTI) {
3433			rctl |= E1000_RCTL_MPE;
3434		} else {
3435			/* Write addresses to the MTA, if the attempt fails
 
3436			 * then we should just turn on promiscuous mode so
3437			 * that we can at least receive multicast traffic
3438			 */
3439			count = e1000e_write_mc_addr_list(netdev);
3440			if (count < 0)
3441				rctl |= E1000_RCTL_MPE;
3442		}
3443		e1000e_vlan_filter_enable(adapter);
3444		/* Write addresses to available RAR registers, if there is not
 
3445		 * sufficient space to store all the addresses then enable
3446		 * unicast promiscuous mode
3447		 */
3448		count = e1000e_write_uc_addr_list(netdev);
3449		if (count < 0)
3450			rctl |= E1000_RCTL_UPE;
3451	}
3452
3453	ew32(RCTL, rctl);
3454
3455	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3456		e1000e_vlan_strip_enable(adapter);
3457	else
3458		e1000e_vlan_strip_disable(adapter);
3459}
3460
3461static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3462{
3463	struct e1000_hw *hw = &adapter->hw;
3464	u32 mrqc, rxcsum;
3465	u32 rss_key[10];
3466	int i;
 
 
 
 
3467
3468	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3469	for (i = 0; i < 10; i++)
3470		ew32(RSSRK(i), rss_key[i]);
3471
3472	/* Direct all traffic to queue 0 */
3473	for (i = 0; i < 32; i++)
3474		ew32(RETA(i), 0);
3475
3476	/* Disable raw packet checksumming so that RSS hash is placed in
 
3477	 * descriptor on writeback.
3478	 */
3479	rxcsum = er32(RXCSUM);
3480	rxcsum |= E1000_RXCSUM_PCSD;
3481
3482	ew32(RXCSUM, rxcsum);
3483
3484	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3485		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3486		E1000_MRQC_RSS_FIELD_IPV6 |
3487		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3488		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3489
3490	ew32(MRQC, mrqc);
3491}
3492
3493/**
3494 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3495 * @adapter: board private structure
3496 * @timinca: pointer to returned time increment attributes
3497 *
3498 * Get attributes for incrementing the System Time Register SYSTIML/H at
3499 * the default base frequency, and set the cyclecounter shift value.
3500 **/
3501s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3502{
3503	struct e1000_hw *hw = &adapter->hw;
3504	u32 incvalue, incperiod, shift;
3505
3506	/* Make sure clock is enabled on I217/I218/I219  before checking
3507	 * the frequency
3508	 */
3509	if ((hw->mac.type >= e1000_pch_lpt) &&
3510	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3511	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3512		u32 fextnvm7 = er32(FEXTNVM7);
3513
3514		if (!(fextnvm7 & BIT(0))) {
3515			ew32(FEXTNVM7, fextnvm7 | BIT(0));
3516			e1e_flush();
3517		}
3518	}
3519
3520	switch (hw->mac.type) {
3521	case e1000_pch2lan:
3522		/* Stable 96MHz frequency */
3523		incperiod = INCPERIOD_96MHZ;
3524		incvalue = INCVALUE_96MHZ;
3525		shift = INCVALUE_SHIFT_96MHZ;
3526		adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3527		break;
3528	case e1000_pch_lpt:
3529		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3530			/* Stable 96MHz frequency */
3531			incperiod = INCPERIOD_96MHZ;
3532			incvalue = INCVALUE_96MHZ;
3533			shift = INCVALUE_SHIFT_96MHZ;
3534			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHZ;
3535		} else {
3536			/* Stable 25MHz frequency */
3537			incperiod = INCPERIOD_25MHZ;
3538			incvalue = INCVALUE_25MHZ;
3539			shift = INCVALUE_SHIFT_25MHZ;
3540			adapter->cc.shift = shift;
3541		}
3542		break;
3543	case e1000_pch_spt:
3544		/* Stable 24MHz frequency */
3545		incperiod = INCPERIOD_24MHZ;
3546		incvalue = INCVALUE_24MHZ;
3547		shift = INCVALUE_SHIFT_24MHZ;
3548		adapter->cc.shift = shift;
3549		break;
3550	case e1000_pch_cnp:
3551	case e1000_pch_tgp:
3552	case e1000_pch_adp:
3553	case e1000_pch_mtp:
3554		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3555			/* Stable 24MHz frequency */
3556			incperiod = INCPERIOD_24MHZ;
3557			incvalue = INCVALUE_24MHZ;
3558			shift = INCVALUE_SHIFT_24MHZ;
3559			adapter->cc.shift = shift;
3560		} else {
3561			/* Stable 38400KHz frequency */
3562			incperiod = INCPERIOD_38400KHZ;
3563			incvalue = INCVALUE_38400KHZ;
3564			shift = INCVALUE_SHIFT_38400KHZ;
3565			adapter->cc.shift = shift;
3566		}
3567		break;
3568	case e1000_82574:
3569	case e1000_82583:
3570		/* Stable 25MHz frequency */
3571		incperiod = INCPERIOD_25MHZ;
3572		incvalue = INCVALUE_25MHZ;
3573		shift = INCVALUE_SHIFT_25MHZ;
3574		adapter->cc.shift = shift;
3575		break;
3576	default:
3577		return -EINVAL;
3578	}
3579
3580	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3581		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3582
3583	return 0;
3584}
3585
3586/**
3587 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3588 * @adapter: board private structure
3589 * @config: timestamp configuration
3590 *
3591 * Outgoing time stamping can be enabled and disabled. Play nice and
3592 * disable it when requested, although it shouldn't cause any overhead
3593 * when no packet needs it. At most one packet in the queue may be
3594 * marked for time stamping, otherwise it would be impossible to tell
3595 * for sure to which packet the hardware time stamp belongs.
3596 *
3597 * Incoming time stamping has to be configured via the hardware filters.
3598 * Not all combinations are supported, in particular event type has to be
3599 * specified. Matching the kind of event packet is not supported, with the
3600 * exception of "all V2 events regardless of level 2 or 4".
3601 **/
3602static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3603				  struct hwtstamp_config *config)
3604{
3605	struct e1000_hw *hw = &adapter->hw;
3606	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3607	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3608	u32 rxmtrl = 0;
3609	u16 rxudp = 0;
3610	bool is_l4 = false;
3611	bool is_l2 = false;
3612	u32 regval;
3613
3614	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3615		return -EINVAL;
3616
3617	/* flags reserved for future extensions - must be zero */
3618	if (config->flags)
3619		return -EINVAL;
3620
3621	switch (config->tx_type) {
3622	case HWTSTAMP_TX_OFF:
3623		tsync_tx_ctl = 0;
3624		break;
3625	case HWTSTAMP_TX_ON:
3626		break;
3627	default:
3628		return -ERANGE;
3629	}
3630
3631	switch (config->rx_filter) {
3632	case HWTSTAMP_FILTER_NONE:
3633		tsync_rx_ctl = 0;
3634		break;
3635	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3636		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3637		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3638		is_l4 = true;
3639		break;
3640	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3641		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3642		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3643		is_l4 = true;
3644		break;
3645	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3646		/* Also time stamps V2 L2 Path Delay Request/Response */
3647		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3648		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3649		is_l2 = true;
3650		break;
3651	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3652		/* Also time stamps V2 L2 Path Delay Request/Response. */
3653		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3654		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3655		is_l2 = true;
3656		break;
3657	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3658		/* Hardware cannot filter just V2 L4 Sync messages */
3659		fallthrough;
3660	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3661		/* Also time stamps V2 Path Delay Request/Response. */
3662		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3663		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3664		is_l2 = true;
3665		is_l4 = true;
3666		break;
3667	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3668		/* Hardware cannot filter just V2 L4 Delay Request messages */
3669		fallthrough;
3670	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3671		/* Also time stamps V2 Path Delay Request/Response. */
3672		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3673		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3674		is_l2 = true;
3675		is_l4 = true;
3676		break;
3677	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3678	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3679		/* Hardware cannot filter just V2 L4 or L2 Event messages */
3680		fallthrough;
3681	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3682		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3683		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3684		is_l2 = true;
3685		is_l4 = true;
3686		break;
3687	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3688		/* For V1, the hardware can only filter Sync messages or
3689		 * Delay Request messages but not both so fall-through to
3690		 * time stamp all packets.
3691		 */
3692		fallthrough;
3693	case HWTSTAMP_FILTER_NTP_ALL:
3694	case HWTSTAMP_FILTER_ALL:
3695		is_l2 = true;
3696		is_l4 = true;
3697		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3698		config->rx_filter = HWTSTAMP_FILTER_ALL;
3699		break;
3700	default:
3701		return -ERANGE;
3702	}
3703
3704	adapter->hwtstamp_config = *config;
3705
3706	/* enable/disable Tx h/w time stamping */
3707	regval = er32(TSYNCTXCTL);
3708	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3709	regval |= tsync_tx_ctl;
3710	ew32(TSYNCTXCTL, regval);
3711	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3712	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3713		e_err("Timesync Tx Control register not set as expected\n");
3714		return -EAGAIN;
3715	}
3716
3717	/* enable/disable Rx h/w time stamping */
3718	regval = er32(TSYNCRXCTL);
3719	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3720	regval |= tsync_rx_ctl;
3721	ew32(TSYNCRXCTL, regval);
3722	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3723				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3724	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3725		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3726		e_err("Timesync Rx Control register not set as expected\n");
3727		return -EAGAIN;
3728	}
3729
3730	/* L2: define ethertype filter for time stamped packets */
3731	if (is_l2)
3732		rxmtrl |= ETH_P_1588;
3733
3734	/* define which PTP packets get time stamped */
3735	ew32(RXMTRL, rxmtrl);
3736
3737	/* Filter by destination port */
3738	if (is_l4) {
3739		rxudp = PTP_EV_PORT;
3740		cpu_to_be16s(&rxudp);
3741	}
3742	ew32(RXUDP, rxudp);
3743
3744	e1e_flush();
3745
3746	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3747	er32(RXSTMPH);
3748	er32(TXSTMPH);
3749
3750	return 0;
3751}
3752
3753/**
3754 * e1000_configure - configure the hardware for Rx and Tx
3755 * @adapter: private board structure
3756 **/
3757static void e1000_configure(struct e1000_adapter *adapter)
3758{
3759	struct e1000_ring *rx_ring = adapter->rx_ring;
3760
3761	e1000e_set_rx_mode(adapter->netdev);
3762
3763	e1000_restore_vlan(adapter);
3764	e1000_init_manageability_pt(adapter);
3765
3766	e1000_configure_tx(adapter);
3767
3768	if (adapter->netdev->features & NETIF_F_RXHASH)
3769		e1000e_setup_rss_hash(adapter);
3770	e1000_setup_rctl(adapter);
3771	e1000_configure_rx(adapter);
3772	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3773}
3774
3775/**
3776 * e1000e_power_up_phy - restore link in case the phy was powered down
3777 * @adapter: address of board private structure
3778 *
3779 * The phy may be powered down to save power and turn off link when the
3780 * driver is unloaded and wake on lan is not enabled (among others)
3781 * *** this routine MUST be followed by a call to e1000e_reset ***
3782 **/
3783void e1000e_power_up_phy(struct e1000_adapter *adapter)
3784{
3785	if (adapter->hw.phy.ops.power_up)
3786		adapter->hw.phy.ops.power_up(&adapter->hw);
3787
3788	adapter->hw.mac.ops.setup_link(&adapter->hw);
3789}
3790
3791/**
3792 * e1000_power_down_phy - Power down the PHY
3793 * @adapter: board private structure
3794 *
3795 * Power down the PHY so no link is implied when interface is down.
3796 * The PHY cannot be powered down if management or WoL is active.
3797 */
3798static void e1000_power_down_phy(struct e1000_adapter *adapter)
3799{
 
 
 
 
3800	if (adapter->hw.phy.ops.power_down)
3801		adapter->hw.phy.ops.power_down(&adapter->hw);
3802}
3803
3804/**
3805 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3806 * @adapter: board private structure
3807 *
3808 * We want to clear all pending descriptors from the TX ring.
3809 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3810 * the data of the next descriptor. We don't care about the data we are about
3811 * to reset the HW.
3812 */
3813static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3814{
3815	struct e1000_hw *hw = &adapter->hw;
3816	struct e1000_ring *tx_ring = adapter->tx_ring;
3817	struct e1000_tx_desc *tx_desc = NULL;
3818	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3819	u16 size = 512;
3820
3821	tctl = er32(TCTL);
3822	ew32(TCTL, tctl | E1000_TCTL_EN);
3823	tdt = er32(TDT(0));
3824	BUG_ON(tdt != tx_ring->next_to_use);
3825	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3826	tx_desc->buffer_addr = cpu_to_le64(tx_ring->dma);
3827
3828	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3829	tx_desc->upper.data = 0;
3830	/* flush descriptors to memory before notifying the HW */
3831	wmb();
3832	tx_ring->next_to_use++;
3833	if (tx_ring->next_to_use == tx_ring->count)
3834		tx_ring->next_to_use = 0;
3835	ew32(TDT(0), tx_ring->next_to_use);
3836	usleep_range(200, 250);
3837}
3838
3839/**
3840 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3841 * @adapter: board private structure
3842 *
3843 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3844 */
3845static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3846{
3847	u32 rctl, rxdctl;
3848	struct e1000_hw *hw = &adapter->hw;
3849
3850	rctl = er32(RCTL);
3851	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3852	e1e_flush();
3853	usleep_range(100, 150);
3854
3855	rxdctl = er32(RXDCTL(0));
3856	/* zero the lower 14 bits (prefetch and host thresholds) */
3857	rxdctl &= 0xffffc000;
3858
3859	/* update thresholds: prefetch threshold to 31, host threshold to 1
3860	 * and make sure the granularity is "descriptors" and not "cache lines"
3861	 */
3862	rxdctl |= (0x1F | BIT(8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3863
3864	ew32(RXDCTL(0), rxdctl);
3865	/* momentarily enable the RX ring for the changes to take effect */
3866	ew32(RCTL, rctl | E1000_RCTL_EN);
3867	e1e_flush();
3868	usleep_range(100, 150);
3869	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3870}
3871
3872/**
3873 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3874 * @adapter: board private structure
3875 *
3876 * In i219, the descriptor rings must be emptied before resetting the HW
3877 * or before changing the device state to D3 during runtime (runtime PM).
3878 *
3879 * Failure to do this will cause the HW to enter a unit hang state which can
3880 * only be released by PCI reset on the device
3881 *
3882 */
3883
3884static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3885{
3886	u16 hang_state;
3887	u32 fext_nvm11, tdlen;
3888	struct e1000_hw *hw = &adapter->hw;
3889
3890	/* First, disable MULR fix in FEXTNVM11 */
3891	fext_nvm11 = er32(FEXTNVM11);
3892	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3893	ew32(FEXTNVM11, fext_nvm11);
3894	/* do nothing if we're not in faulty state, or if the queue is empty */
3895	tdlen = er32(TDLEN(0));
3896	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3897			     &hang_state);
3898	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3899		return;
3900	e1000_flush_tx_ring(adapter);
3901	/* recheck, maybe the fault is caused by the rx ring */
3902	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3903			     &hang_state);
3904	if (hang_state & FLUSH_DESC_REQUIRED)
3905		e1000_flush_rx_ring(adapter);
3906}
3907
3908/**
3909 * e1000e_systim_reset - reset the timesync registers after a hardware reset
3910 * @adapter: board private structure
3911 *
3912 * When the MAC is reset, all hardware bits for timesync will be reset to the
3913 * default values. This function will restore the settings last in place.
3914 * Since the clock SYSTIME registers are reset, we will simply restore the
3915 * cyclecounter to the kernel real clock time.
3916 **/
3917static void e1000e_systim_reset(struct e1000_adapter *adapter)
3918{
3919	struct ptp_clock_info *info = &adapter->ptp_clock_info;
3920	struct e1000_hw *hw = &adapter->hw;
3921	unsigned long flags;
3922	u32 timinca;
3923	s32 ret_val;
3924
3925	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3926		return;
3927
3928	if (info->adjfreq) {
3929		/* restore the previous ptp frequency delta */
3930		ret_val = info->adjfreq(info, adapter->ptp_delta);
3931	} else {
3932		/* set the default base frequency if no adjustment possible */
3933		ret_val = e1000e_get_base_timinca(adapter, &timinca);
3934		if (!ret_val)
3935			ew32(TIMINCA, timinca);
3936	}
3937
3938	if (ret_val) {
3939		dev_warn(&adapter->pdev->dev,
3940			 "Failed to restore TIMINCA clock rate delta: %d\n",
3941			 ret_val);
3942		return;
3943	}
3944
3945	/* reset the systim ns time counter */
3946	spin_lock_irqsave(&adapter->systim_lock, flags);
3947	timecounter_init(&adapter->tc, &adapter->cc,
3948			 ktime_to_ns(ktime_get_real()));
3949	spin_unlock_irqrestore(&adapter->systim_lock, flags);
3950
3951	/* restore the previous hwtstamp configuration settings */
3952	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
3953}
3954
3955/**
3956 * e1000e_reset - bring the hardware into a known good state
3957 * @adapter: board private structure
3958 *
3959 * This function boots the hardware and enables some settings that
3960 * require a configuration cycle of the hardware - those cannot be
3961 * set/changed during runtime. After reset the device needs to be
3962 * properly configured for Rx, Tx etc.
3963 */
3964void e1000e_reset(struct e1000_adapter *adapter)
3965{
3966	struct e1000_mac_info *mac = &adapter->hw.mac;
3967	struct e1000_fc_info *fc = &adapter->hw.fc;
3968	struct e1000_hw *hw = &adapter->hw;
3969	u32 tx_space, min_tx_space, min_rx_space;
3970	u32 pba = adapter->pba;
3971	u16 hwm;
3972
3973	/* reset Packet Buffer Allocation to default */
3974	ew32(PBA, pba);
3975
3976	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3977		/* To maintain wire speed transmits, the Tx FIFO should be
 
3978		 * large enough to accommodate two full transmit packets,
3979		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3980		 * the Rx FIFO should be large enough to accommodate at least
3981		 * one full receive packet and is similarly rounded up and
3982		 * expressed in KB.
3983		 */
3984		pba = er32(PBA);
3985		/* upper 16 bits has Tx packet buffer allocation size in KB */
3986		tx_space = pba >> 16;
3987		/* lower 16 bits has Rx packet buffer allocation size in KB */
3988		pba &= 0xffff;
3989		/* the Tx fifo also stores 16 bytes of information about the Tx
 
3990		 * but don't include ethernet FCS because hardware appends it
3991		 */
3992		min_tx_space = (adapter->max_frame_size +
3993				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
 
3994		min_tx_space = ALIGN(min_tx_space, 1024);
3995		min_tx_space >>= 10;
3996		/* software strips receive CRC, so leave room for it */
3997		min_rx_space = adapter->max_frame_size;
3998		min_rx_space = ALIGN(min_rx_space, 1024);
3999		min_rx_space >>= 10;
4000
4001		/* If current Tx allocation is less than the min Tx FIFO size,
 
4002		 * and the min Tx FIFO size is less than the current Rx FIFO
4003		 * allocation, take space away from current Rx allocation
4004		 */
4005		if ((tx_space < min_tx_space) &&
4006		    ((min_tx_space - tx_space) < pba)) {
4007			pba -= min_tx_space - tx_space;
4008
4009			/* if short on Rx space, Rx wins and must trump Tx
4010			 * adjustment
 
4011			 */
4012			if (pba < min_rx_space)
4013				pba = min_rx_space;
4014		}
4015
4016		ew32(PBA, pba);
4017	}
4018
4019	/* flow control settings
 
4020	 *
4021	 * The high water mark must be low enough to fit one full frame
4022	 * (or the size used for early receive) above it in the Rx FIFO.
4023	 * Set it to the lower of:
4024	 * - 90% of the Rx FIFO size, and
4025	 * - the full Rx FIFO size minus one full frame
4026	 */
4027	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
4028		fc->pause_time = 0xFFFF;
4029	else
4030		fc->pause_time = E1000_FC_PAUSE_TIME;
4031	fc->send_xon = true;
4032	fc->current_mode = fc->requested_mode;
4033
4034	switch (hw->mac.type) {
4035	case e1000_ich9lan:
4036	case e1000_ich10lan:
4037		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4038			pba = 14;
4039			ew32(PBA, pba);
4040			fc->high_water = 0x2800;
4041			fc->low_water = fc->high_water - 8;
4042			break;
4043		}
4044		fallthrough;
4045	default:
4046		hwm = min(((pba << 10) * 9 / 10),
4047			  ((pba << 10) - adapter->max_frame_size));
4048
4049		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
4050		fc->low_water = fc->high_water - 8;
4051		break;
4052	case e1000_pchlan:
4053		/* Workaround PCH LOM adapter hangs with certain network
 
4054		 * loads.  If hangs persist, try disabling Tx flow control.
4055		 */
4056		if (adapter->netdev->mtu > ETH_DATA_LEN) {
4057			fc->high_water = 0x3500;
4058			fc->low_water = 0x1500;
4059		} else {
4060			fc->high_water = 0x5000;
4061			fc->low_water = 0x3000;
4062		}
4063		fc->refresh_time = 0x1000;
4064		break;
4065	case e1000_pch2lan:
4066	case e1000_pch_lpt:
4067	case e1000_pch_spt:
4068	case e1000_pch_cnp:
4069	case e1000_pch_tgp:
4070	case e1000_pch_adp:
4071	case e1000_pch_mtp:
4072		fc->refresh_time = 0xFFFF;
4073		fc->pause_time = 0xFFFF;
4074
4075		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4076			fc->high_water = 0x05C20;
4077			fc->low_water = 0x05048;
4078			break;
4079		}
4080
4081		pba = 14;
4082		ew32(PBA, pba);
4083		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4084		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4085		break;
4086	}
4087
4088	/* Alignment of Tx data is on an arbitrary byte boundary with the
 
4089	 * maximum size per Tx descriptor limited only to the transmit
4090	 * allocation of the packet buffer minus 96 bytes with an upper
4091	 * limit of 24KB due to receive synchronization limitations.
4092	 */
4093	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4094				       24 << 10);
4095
4096	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
 
4097	 * fit in receive buffer.
4098	 */
4099	if (adapter->itr_setting & 0x3) {
4100		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4101			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4102				dev_info(&adapter->pdev->dev,
4103					 "Interrupt Throttle Rate off\n");
4104				adapter->flags2 |= FLAG2_DISABLE_AIM;
4105				e1000e_write_itr(adapter, 0);
4106			}
4107		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4108			dev_info(&adapter->pdev->dev,
4109				 "Interrupt Throttle Rate on\n");
4110			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4111			adapter->itr = 20000;
4112			e1000e_write_itr(adapter, adapter->itr);
4113		}
4114	}
4115
4116	if (hw->mac.type >= e1000_pch_spt)
4117		e1000_flush_desc_rings(adapter);
4118	/* Allow time for pending master requests to run */
4119	mac->ops.reset_hw(hw);
4120
4121	/* For parts with AMT enabled, let the firmware know
 
4122	 * that the network interface is in control
4123	 */
4124	if (adapter->flags & FLAG_HAS_AMT)
4125		e1000e_get_hw_control(adapter);
4126
4127	ew32(WUC, 0);
4128
4129	if (mac->ops.init_hw(hw))
4130		e_err("Hardware Error\n");
4131
4132	e1000_update_mng_vlan(adapter);
4133
4134	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4135	ew32(VET, ETH_P_8021Q);
4136
4137	e1000e_reset_adaptive(hw);
4138
4139	/* restore systim and hwtstamp settings */
4140	e1000e_systim_reset(adapter);
4141
4142	/* Set EEE advertisement as appropriate */
4143	if (adapter->flags2 & FLAG2_HAS_EEE) {
4144		s32 ret_val;
4145		u16 adv_addr;
4146
4147		switch (hw->phy.type) {
4148		case e1000_phy_82579:
4149			adv_addr = I82579_EEE_ADVERTISEMENT;
4150			break;
4151		case e1000_phy_i217:
4152			adv_addr = I217_EEE_ADVERTISEMENT;
4153			break;
4154		default:
4155			dev_err(&adapter->pdev->dev,
4156				"Invalid PHY type setting EEE advertisement\n");
4157			return;
4158		}
4159
4160		ret_val = hw->phy.ops.acquire(hw);
4161		if (ret_val) {
4162			dev_err(&adapter->pdev->dev,
4163				"EEE advertisement - unable to acquire PHY\n");
4164			return;
4165		}
4166
4167		e1000_write_emi_reg_locked(hw, adv_addr,
4168					   hw->dev_spec.ich8lan.eee_disable ?
4169					   0 : adapter->eee_advert);
4170
4171		hw->phy.ops.release(hw);
4172	}
4173
4174	if (!netif_running(adapter->netdev) &&
4175	    !test_bit(__E1000_TESTING, &adapter->state))
4176		e1000_power_down_phy(adapter);
 
 
4177
4178	e1000_get_phy_info(hw);
4179
4180	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4181	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4182		u16 phy_data = 0;
4183		/* speed up time to link by disabling smart power down, ignore
 
4184		 * the return value of this function because there is nothing
4185		 * different we would do if it failed
4186		 */
4187		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4188		phy_data &= ~IGP02E1000_PM_SPD;
4189		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4190	}
4191	if (hw->mac.type >= e1000_pch_spt && adapter->int_mode == 0) {
4192		u32 reg;
4193
4194		/* Fextnvm7 @ 0xe4[2] = 1 */
4195		reg = er32(FEXTNVM7);
4196		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4197		ew32(FEXTNVM7, reg);
4198		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4199		reg = er32(FEXTNVM9);
4200		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4201		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4202		ew32(FEXTNVM9, reg);
4203	}
4204
4205}
4206
4207/**
4208 * e1000e_trigger_lsc - trigger an LSC interrupt
4209 * @adapter: 
4210 *
4211 * Fire a link status change interrupt to start the watchdog.
4212 **/
4213static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4214{
4215	struct e1000_hw *hw = &adapter->hw;
4216
4217	if (adapter->msix_entries)
4218		ew32(ICS, E1000_ICS_LSC | E1000_ICS_OTHER);
4219	else
4220		ew32(ICS, E1000_ICS_LSC);
4221}
4222
4223void e1000e_up(struct e1000_adapter *adapter)
4224{
4225	/* hardware has been reset, we need to reload some things */
4226	e1000_configure(adapter);
4227
4228	clear_bit(__E1000_DOWN, &adapter->state);
4229
4230	if (adapter->msix_entries)
4231		e1000_configure_msix(adapter);
4232	e1000_irq_enable(adapter);
4233
4234	/* Tx queue started by watchdog timer when link is up */
 
 
 
 
 
 
4235
4236	e1000e_trigger_lsc(adapter);
4237}
4238
4239static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4240{
4241	struct e1000_hw *hw = &adapter->hw;
4242
4243	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4244		return;
4245
4246	/* flush pending descriptor writebacks to memory */
4247	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4248	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4249
4250	/* execute the writes immediately */
4251	e1e_flush();
4252
4253	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
 
4254	 * write is successful
4255	 */
4256	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4257	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4258
4259	/* execute the writes immediately */
4260	e1e_flush();
4261}
4262
4263static void e1000e_update_stats(struct e1000_adapter *adapter);
4264
4265/**
4266 * e1000e_down - quiesce the device and optionally reset the hardware
4267 * @adapter: board private structure
4268 * @reset: boolean flag to reset the hardware or not
4269 */
4270void e1000e_down(struct e1000_adapter *adapter, bool reset)
4271{
4272	struct net_device *netdev = adapter->netdev;
4273	struct e1000_hw *hw = &adapter->hw;
4274	u32 tctl, rctl;
4275
4276	/* signal that we're down so the interrupt handler does not
 
4277	 * reschedule our watchdog timer
4278	 */
4279	set_bit(__E1000_DOWN, &adapter->state);
4280
4281	netif_carrier_off(netdev);
4282
4283	/* disable receives in the hardware */
4284	rctl = er32(RCTL);
4285	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4286		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4287	/* flush and sleep below */
4288
4289	netif_stop_queue(netdev);
4290
4291	/* disable transmits in the hardware */
4292	tctl = er32(TCTL);
4293	tctl &= ~E1000_TCTL_EN;
4294	ew32(TCTL, tctl);
4295
4296	/* flush both disables and wait for them to finish */
4297	e1e_flush();
4298	usleep_range(10000, 11000);
4299
4300	e1000_irq_disable(adapter);
4301
4302	napi_synchronize(&adapter->napi);
4303
4304	del_timer_sync(&adapter->watchdog_timer);
4305	del_timer_sync(&adapter->phy_info_timer);
4306
 
 
4307	spin_lock(&adapter->stats64_lock);
4308	e1000e_update_stats(adapter);
4309	spin_unlock(&adapter->stats64_lock);
4310
4311	e1000e_flush_descriptors(adapter);
 
 
4312
4313	adapter->link_speed = 0;
4314	adapter->link_duplex = 0;
4315
4316	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4317	if ((hw->mac.type >= e1000_pch2lan) &&
4318	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4319	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4320		e_dbg("failed to disable jumbo frame workaround mode\n");
4321
4322	if (!pci_channel_offline(adapter->pdev)) {
4323		if (reset)
4324			e1000e_reset(adapter);
4325		else if (hw->mac.type >= e1000_pch_spt)
4326			e1000_flush_desc_rings(adapter);
4327	}
4328	e1000_clean_tx_ring(adapter->tx_ring);
4329	e1000_clean_rx_ring(adapter->rx_ring);
4330}
4331
4332void e1000e_reinit_locked(struct e1000_adapter *adapter)
4333{
4334	might_sleep();
4335	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4336		usleep_range(1000, 1100);
4337	e1000e_down(adapter, true);
4338	e1000e_up(adapter);
4339	clear_bit(__E1000_RESETTING, &adapter->state);
4340}
4341
4342/**
4343 * e1000e_sanitize_systim - sanitize raw cycle counter reads
4344 * @hw: pointer to the HW structure
4345 * @systim: PHC time value read, sanitized and returned
4346 * @sts: structure to hold system time before and after reading SYSTIML,
4347 * may be NULL
4348 *
4349 * Errata for 82574/82583 possible bad bits read from SYSTIMH/L:
4350 * check to see that the time is incrementing at a reasonable
4351 * rate and is a multiple of incvalue.
4352 **/
4353static u64 e1000e_sanitize_systim(struct e1000_hw *hw, u64 systim,
4354				  struct ptp_system_timestamp *sts)
4355{
4356	u64 time_delta, rem, temp;
4357	u64 systim_next;
4358	u32 incvalue;
4359	int i;
4360
4361	incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4362	for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4363		/* latch SYSTIMH on read of SYSTIML */
4364		ptp_read_system_prets(sts);
4365		systim_next = (u64)er32(SYSTIML);
4366		ptp_read_system_postts(sts);
4367		systim_next |= (u64)er32(SYSTIMH) << 32;
4368
4369		time_delta = systim_next - systim;
4370		temp = time_delta;
4371		/* VMWare users have seen incvalue of zero, don't div / 0 */
4372		rem = incvalue ? do_div(temp, incvalue) : (time_delta != 0);
4373
4374		systim = systim_next;
4375
4376		if ((time_delta < E1000_82574_SYSTIM_EPSILON) && (rem == 0))
4377			break;
4378	}
4379
4380	return systim;
4381}
4382
4383/**
4384 * e1000e_read_systim - read SYSTIM register
4385 * @adapter: board private structure
4386 * @sts: structure which will contain system time before and after reading
4387 * SYSTIML, may be NULL
4388 **/
4389u64 e1000e_read_systim(struct e1000_adapter *adapter,
4390		       struct ptp_system_timestamp *sts)
4391{
4392	struct e1000_hw *hw = &adapter->hw;
4393	u32 systimel, systimel_2, systimeh;
4394	u64 systim;
4395	/* SYSTIMH latching upon SYSTIML read does not work well.
4396	 * This means that if SYSTIML overflows after we read it but before
4397	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4398	 * will experience a huge non linear increment in the systime value
4399	 * to fix that we test for overflow and if true, we re-read systime.
4400	 */
4401	ptp_read_system_prets(sts);
4402	systimel = er32(SYSTIML);
4403	ptp_read_system_postts(sts);
4404	systimeh = er32(SYSTIMH);
4405	/* Is systimel is so large that overflow is possible? */
4406	if (systimel >= (u32)0xffffffff - E1000_TIMINCA_INCVALUE_MASK) {
4407		ptp_read_system_prets(sts);
4408		systimel_2 = er32(SYSTIML);
4409		ptp_read_system_postts(sts);
4410		if (systimel > systimel_2) {
4411			/* There was an overflow, read again SYSTIMH, and use
4412			 * systimel_2
4413			 */
4414			systimeh = er32(SYSTIMH);
4415			systimel = systimel_2;
4416		}
4417	}
4418	systim = (u64)systimel;
4419	systim |= (u64)systimeh << 32;
4420
4421	if (adapter->flags2 & FLAG2_CHECK_SYSTIM_OVERFLOW)
4422		systim = e1000e_sanitize_systim(hw, systim, sts);
4423
4424	return systim;
4425}
4426
4427/**
4428 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4429 * @cc: cyclecounter structure
4430 **/
4431static u64 e1000e_cyclecounter_read(const struct cyclecounter *cc)
4432{
4433	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4434						     cc);
4435
4436	return e1000e_read_systim(adapter, NULL);
4437}
4438
4439/**
4440 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4441 * @adapter: board private structure to initialize
4442 *
4443 * e1000_sw_init initializes the Adapter private data structure.
4444 * Fields are initialized based on PCI device information and
4445 * OS network device settings (MTU size).
4446 **/
4447static int e1000_sw_init(struct e1000_adapter *adapter)
4448{
4449	struct net_device *netdev = adapter->netdev;
4450
4451	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4452	adapter->rx_ps_bsize0 = 128;
4453	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4454	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4455	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4456	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4457
4458	spin_lock_init(&adapter->stats64_lock);
4459
4460	e1000e_set_interrupt_capability(adapter);
4461
4462	if (e1000_alloc_queues(adapter))
4463		return -ENOMEM;
4464
4465	/* Setup hardware time stamping cyclecounter */
4466	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4467		adapter->cc.read = e1000e_cyclecounter_read;
4468		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4469		adapter->cc.mult = 1;
4470		/* cc.shift set in e1000e_get_base_tininca() */
4471
4472		spin_lock_init(&adapter->systim_lock);
4473		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4474	}
4475
4476	/* Explicitly disable IRQ since the NIC can be in any state. */
4477	e1000_irq_disable(adapter);
4478
4479	set_bit(__E1000_DOWN, &adapter->state);
4480	return 0;
4481}
4482
4483/**
4484 * e1000_intr_msi_test - Interrupt Handler
4485 * @irq: interrupt number
4486 * @data: pointer to a network interface device structure
4487 **/
4488static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4489{
4490	struct net_device *netdev = data;
4491	struct e1000_adapter *adapter = netdev_priv(netdev);
4492	struct e1000_hw *hw = &adapter->hw;
4493	u32 icr = er32(ICR);
4494
4495	e_dbg("icr is %08X\n", icr);
4496	if (icr & E1000_ICR_RXSEQ) {
4497		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4498		/* Force memory writes to complete before acknowledging the
4499		 * interrupt is handled.
4500		 */
4501		wmb();
4502	}
4503
4504	return IRQ_HANDLED;
4505}
4506
4507/**
4508 * e1000_test_msi_interrupt - Returns 0 for successful test
4509 * @adapter: board private struct
4510 *
4511 * code flow taken from tg3.c
4512 **/
4513static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4514{
4515	struct net_device *netdev = adapter->netdev;
4516	struct e1000_hw *hw = &adapter->hw;
4517	int err;
4518
4519	/* poll_enable hasn't been called yet, so don't need disable */
4520	/* clear any pending events */
4521	er32(ICR);
4522
4523	/* free the real vector and request a test handler */
4524	e1000_free_irq(adapter);
4525	e1000e_reset_interrupt_capability(adapter);
4526
4527	/* Assume that the test fails, if it succeeds then the test
4528	 * MSI irq handler will unset this flag
4529	 */
4530	adapter->flags |= FLAG_MSI_TEST_FAILED;
4531
4532	err = pci_enable_msi(adapter->pdev);
4533	if (err)
4534		goto msi_test_failed;
4535
4536	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4537			  netdev->name, netdev);
4538	if (err) {
4539		pci_disable_msi(adapter->pdev);
4540		goto msi_test_failed;
4541	}
4542
4543	/* Force memory writes to complete before enabling and firing an
4544	 * interrupt.
4545	 */
4546	wmb();
4547
4548	e1000_irq_enable(adapter);
4549
4550	/* fire an unusual interrupt on the test handler */
4551	ew32(ICS, E1000_ICS_RXSEQ);
4552	e1e_flush();
4553	msleep(100);
4554
4555	e1000_irq_disable(adapter);
4556
4557	rmb();			/* read flags after interrupt has been fired */
4558
4559	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4560		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4561		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4562	} else {
4563		e_dbg("MSI interrupt test succeeded!\n");
4564	}
4565
4566	free_irq(adapter->pdev->irq, netdev);
4567	pci_disable_msi(adapter->pdev);
4568
4569msi_test_failed:
4570	e1000e_set_interrupt_capability(adapter);
4571	return e1000_request_irq(adapter);
4572}
4573
4574/**
4575 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4576 * @adapter: board private struct
4577 *
4578 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4579 **/
4580static int e1000_test_msi(struct e1000_adapter *adapter)
4581{
4582	int err;
4583	u16 pci_cmd;
4584
4585	if (!(adapter->flags & FLAG_MSI_ENABLED))
4586		return 0;
4587
4588	/* disable SERR in case the MSI write causes a master abort */
4589	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4590	if (pci_cmd & PCI_COMMAND_SERR)
4591		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4592				      pci_cmd & ~PCI_COMMAND_SERR);
4593
4594	err = e1000_test_msi_interrupt(adapter);
4595
4596	/* re-enable SERR */
4597	if (pci_cmd & PCI_COMMAND_SERR) {
4598		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4599		pci_cmd |= PCI_COMMAND_SERR;
4600		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4601	}
4602
4603	return err;
4604}
4605
4606/**
4607 * e1000e_open - Called when a network interface is made active
4608 * @netdev: network interface device structure
4609 *
4610 * Returns 0 on success, negative value on failure
4611 *
4612 * The open entry point is called when a network interface is made
4613 * active by the system (IFF_UP).  At this point all resources needed
4614 * for transmit and receive operations are allocated, the interrupt
4615 * handler is registered with the OS, the watchdog timer is started,
4616 * and the stack is notified that the interface is ready.
4617 **/
4618int e1000e_open(struct net_device *netdev)
4619{
4620	struct e1000_adapter *adapter = netdev_priv(netdev);
4621	struct e1000_hw *hw = &adapter->hw;
4622	struct pci_dev *pdev = adapter->pdev;
4623	int err;
4624
4625	/* disallow open during test */
4626	if (test_bit(__E1000_TESTING, &adapter->state))
4627		return -EBUSY;
4628
4629	pm_runtime_get_sync(&pdev->dev);
4630
4631	netif_carrier_off(netdev);
4632	netif_stop_queue(netdev);
4633
4634	/* allocate transmit descriptors */
4635	err = e1000e_setup_tx_resources(adapter->tx_ring);
4636	if (err)
4637		goto err_setup_tx;
4638
4639	/* allocate receive descriptors */
4640	err = e1000e_setup_rx_resources(adapter->rx_ring);
4641	if (err)
4642		goto err_setup_rx;
4643
4644	/* If AMT is enabled, let the firmware know that the network
 
4645	 * interface is now open and reset the part to a known state.
4646	 */
4647	if (adapter->flags & FLAG_HAS_AMT) {
4648		e1000e_get_hw_control(adapter);
4649		e1000e_reset(adapter);
4650	}
4651
4652	e1000e_power_up_phy(adapter);
4653
4654	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4655	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
 
4656		e1000_update_mng_vlan(adapter);
4657
4658	/* DMA latency requirement to workaround jumbo issue */
4659	cpu_latency_qos_add_request(&adapter->pm_qos_req, PM_QOS_DEFAULT_VALUE);
 
 
 
4660
4661	/* before we allocate an interrupt, we must be ready to handle it.
 
4662	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4663	 * as soon as we call pci_request_irq, so we have to setup our
4664	 * clean_rx handler before we do so.
4665	 */
4666	e1000_configure(adapter);
4667
4668	err = e1000_request_irq(adapter);
4669	if (err)
4670		goto err_req_irq;
4671
4672	/* Work around PCIe errata with MSI interrupts causing some chipsets to
 
4673	 * ignore e1000e MSI messages, which means we need to test our MSI
4674	 * interrupt now
4675	 */
4676	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4677		err = e1000_test_msi(adapter);
4678		if (err) {
4679			e_err("Interrupt allocation failed\n");
4680			goto err_req_irq;
4681		}
4682	}
4683
4684	/* From here on the code is the same as e1000e_up() */
4685	clear_bit(__E1000_DOWN, &adapter->state);
4686
4687	napi_enable(&adapter->napi);
4688
4689	e1000_irq_enable(adapter);
4690
4691	adapter->tx_hang_recheck = false;
 
4692
4693	hw->mac.get_link_status = true;
4694	pm_runtime_put(&pdev->dev);
4695
4696	e1000e_trigger_lsc(adapter);
 
 
 
 
4697
4698	return 0;
4699
4700err_req_irq:
4701	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
4702	e1000e_release_hw_control(adapter);
4703	e1000_power_down_phy(adapter);
4704	e1000e_free_rx_resources(adapter->rx_ring);
4705err_setup_rx:
4706	e1000e_free_tx_resources(adapter->tx_ring);
4707err_setup_tx:
4708	e1000e_reset(adapter);
4709	pm_runtime_put_sync(&pdev->dev);
4710
4711	return err;
4712}
4713
4714/**
4715 * e1000e_close - Disables a network interface
4716 * @netdev: network interface device structure
4717 *
4718 * Returns 0, this is not allowed to fail
4719 *
4720 * The close entry point is called when an interface is de-activated
4721 * by the OS.  The hardware is still under the drivers control, but
4722 * needs to be disabled.  A global MAC reset is issued to stop the
4723 * hardware, and all transmit and receive resources are freed.
4724 **/
4725int e1000e_close(struct net_device *netdev)
4726{
4727	struct e1000_adapter *adapter = netdev_priv(netdev);
4728	struct pci_dev *pdev = adapter->pdev;
4729	int count = E1000_CHECK_RESET_COUNT;
4730
4731	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4732		usleep_range(10000, 11000);
4733
4734	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4735
4736	pm_runtime_get_sync(&pdev->dev);
4737
4738	if (netif_device_present(netdev)) {
4739		e1000e_down(adapter, true);
 
 
4740		e1000_free_irq(adapter);
4741
4742		/* Link status message must follow this format */
4743		netdev_info(netdev, "NIC Link is Down\n");
4744	}
4745
4746	napi_disable(&adapter->napi);
4747
4748	e1000e_free_tx_resources(adapter->tx_ring);
4749	e1000e_free_rx_resources(adapter->rx_ring);
4750
4751	/* kill manageability vlan ID if supported, but not if a vlan with
 
4752	 * the same ID is registered on the host OS (let 8021q kill it)
4753	 */
4754	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4755		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4756				       adapter->mng_vlan_id);
4757
4758	/* If AMT is enabled, let the firmware know that the network
 
4759	 * interface is now closed
4760	 */
4761	if ((adapter->flags & FLAG_HAS_AMT) &&
4762	    !test_bit(__E1000_TESTING, &adapter->state))
4763		e1000e_release_hw_control(adapter);
4764
4765	cpu_latency_qos_remove_request(&adapter->pm_qos_req);
 
4766
4767	pm_runtime_put_sync(&pdev->dev);
4768
4769	return 0;
4770}
4771
4772/**
4773 * e1000_set_mac - Change the Ethernet Address of the NIC
4774 * @netdev: network interface device structure
4775 * @p: pointer to an address structure
4776 *
4777 * Returns 0 on success, negative on failure
4778 **/
4779static int e1000_set_mac(struct net_device *netdev, void *p)
4780{
4781	struct e1000_adapter *adapter = netdev_priv(netdev);
4782	struct e1000_hw *hw = &adapter->hw;
4783	struct sockaddr *addr = p;
4784
4785	if (!is_valid_ether_addr(addr->sa_data))
4786		return -EADDRNOTAVAIL;
4787
4788	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4789	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4790
4791	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4792
4793	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4794		/* activate the work around */
4795		e1000e_set_laa_state_82571(&adapter->hw, 1);
4796
4797		/* Hold a copy of the LAA in RAR[14] This is done so that
 
4798		 * between the time RAR[0] gets clobbered  and the time it
4799		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4800		 * of the RARs and no incoming packets directed to this port
4801		 * are dropped. Eventually the LAA will be in RAR[0] and
4802		 * RAR[14]
4803		 */
4804		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4805				    adapter->hw.mac.rar_entry_count - 1);
4806	}
4807
4808	return 0;
4809}
4810
4811/**
4812 * e1000e_update_phy_task - work thread to update phy
4813 * @work: pointer to our work struct
4814 *
4815 * this worker thread exists because we must acquire a
4816 * semaphore to read the phy, which we could msleep while
4817 * waiting for it, and we can't msleep in a timer.
4818 **/
4819static void e1000e_update_phy_task(struct work_struct *work)
4820{
4821	struct e1000_adapter *adapter = container_of(work,
4822						     struct e1000_adapter,
4823						     update_phy_task);
4824	struct e1000_hw *hw = &adapter->hw;
4825
4826	if (test_bit(__E1000_DOWN, &adapter->state))
4827		return;
4828
4829	e1000_get_phy_info(hw);
4830
4831	/* Enable EEE on 82579 after link up */
4832	if (hw->phy.type >= e1000_phy_82579)
4833		e1000_set_eee_pchlan(hw);
4834}
4835
4836/**
4837 * e1000_update_phy_info - timre call-back to update PHY info
4838 * @t: pointer to timer_list containing private info adapter
4839 *
4840 * Need to wait a few seconds after link up to get diagnostic information from
4841 * the phy
4842 **/
4843static void e1000_update_phy_info(struct timer_list *t)
4844{
4845	struct e1000_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4846
4847	if (test_bit(__E1000_DOWN, &adapter->state))
4848		return;
4849
4850	schedule_work(&adapter->update_phy_task);
4851}
4852
4853/**
4854 * e1000e_update_phy_stats - Update the PHY statistics counters
4855 * @adapter: board private structure
4856 *
4857 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4858 **/
4859static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4860{
4861	struct e1000_hw *hw = &adapter->hw;
4862	s32 ret_val;
4863	u16 phy_data;
4864
4865	ret_val = hw->phy.ops.acquire(hw);
4866	if (ret_val)
4867		return;
4868
4869	/* A page set is expensive so check if already on desired page.
 
4870	 * If not, set to the page with the PHY status registers.
4871	 */
4872	hw->phy.addr = 1;
4873	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4874					   &phy_data);
4875	if (ret_val)
4876		goto release;
4877	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4878		ret_val = hw->phy.ops.set_page(hw,
4879					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4880		if (ret_val)
4881			goto release;
4882	}
4883
4884	/* Single Collision Count */
4885	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4886	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4887	if (!ret_val)
4888		adapter->stats.scc += phy_data;
4889
4890	/* Excessive Collision Count */
4891	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4892	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4893	if (!ret_val)
4894		adapter->stats.ecol += phy_data;
4895
4896	/* Multiple Collision Count */
4897	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4898	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4899	if (!ret_val)
4900		adapter->stats.mcc += phy_data;
4901
4902	/* Late Collision Count */
4903	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4904	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4905	if (!ret_val)
4906		adapter->stats.latecol += phy_data;
4907
4908	/* Collision Count - also used for adaptive IFS */
4909	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4910	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4911	if (!ret_val)
4912		hw->mac.collision_delta = phy_data;
4913
4914	/* Defer Count */
4915	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4916	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4917	if (!ret_val)
4918		adapter->stats.dc += phy_data;
4919
4920	/* Transmit with no CRS */
4921	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4922	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4923	if (!ret_val)
4924		adapter->stats.tncrs += phy_data;
4925
4926release:
4927	hw->phy.ops.release(hw);
4928}
4929
4930/**
4931 * e1000e_update_stats - Update the board statistics counters
4932 * @adapter: board private structure
4933 **/
4934static void e1000e_update_stats(struct e1000_adapter *adapter)
4935{
4936	struct net_device *netdev = adapter->netdev;
4937	struct e1000_hw *hw = &adapter->hw;
4938	struct pci_dev *pdev = adapter->pdev;
4939
4940	/* Prevent stats update while adapter is being reset, or if the pci
 
4941	 * connection is down.
4942	 */
4943	if (adapter->link_speed == 0)
4944		return;
4945	if (pci_channel_offline(pdev))
4946		return;
4947
4948	adapter->stats.crcerrs += er32(CRCERRS);
4949	adapter->stats.gprc += er32(GPRC);
4950	adapter->stats.gorc += er32(GORCL);
4951	er32(GORCH);		/* Clear gorc */
4952	adapter->stats.bprc += er32(BPRC);
4953	adapter->stats.mprc += er32(MPRC);
4954	adapter->stats.roc += er32(ROC);
4955
4956	adapter->stats.mpc += er32(MPC);
4957
4958	/* Half-duplex statistics */
4959	if (adapter->link_duplex == HALF_DUPLEX) {
4960		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4961			e1000e_update_phy_stats(adapter);
4962		} else {
4963			adapter->stats.scc += er32(SCC);
4964			adapter->stats.ecol += er32(ECOL);
4965			adapter->stats.mcc += er32(MCC);
4966			adapter->stats.latecol += er32(LATECOL);
4967			adapter->stats.dc += er32(DC);
4968
4969			hw->mac.collision_delta = er32(COLC);
4970
4971			if ((hw->mac.type != e1000_82574) &&
4972			    (hw->mac.type != e1000_82583))
4973				adapter->stats.tncrs += er32(TNCRS);
4974		}
4975		adapter->stats.colc += hw->mac.collision_delta;
4976	}
4977
4978	adapter->stats.xonrxc += er32(XONRXC);
4979	adapter->stats.xontxc += er32(XONTXC);
4980	adapter->stats.xoffrxc += er32(XOFFRXC);
4981	adapter->stats.xofftxc += er32(XOFFTXC);
4982	adapter->stats.gptc += er32(GPTC);
4983	adapter->stats.gotc += er32(GOTCL);
4984	er32(GOTCH);		/* Clear gotc */
4985	adapter->stats.rnbc += er32(RNBC);
4986	adapter->stats.ruc += er32(RUC);
4987
4988	adapter->stats.mptc += er32(MPTC);
4989	adapter->stats.bptc += er32(BPTC);
4990
4991	/* used for adaptive IFS */
4992
4993	hw->mac.tx_packet_delta = er32(TPT);
4994	adapter->stats.tpt += hw->mac.tx_packet_delta;
4995
4996	adapter->stats.algnerrc += er32(ALGNERRC);
4997	adapter->stats.rxerrc += er32(RXERRC);
4998	adapter->stats.cexterr += er32(CEXTERR);
4999	adapter->stats.tsctc += er32(TSCTC);
5000	adapter->stats.tsctfc += er32(TSCTFC);
5001
5002	/* Fill out the OS statistics structure */
5003	netdev->stats.multicast = adapter->stats.mprc;
5004	netdev->stats.collisions = adapter->stats.colc;
5005
5006	/* Rx Errors */
5007
5008	/* RLEC on some newer hardware can be incorrect so build
 
5009	 * our own version based on RUC and ROC
5010	 */
5011	netdev->stats.rx_errors = adapter->stats.rxerrc +
5012	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5013	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
 
5014	netdev->stats.rx_length_errors = adapter->stats.ruc +
5015	    adapter->stats.roc;
5016	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
5017	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
5018	netdev->stats.rx_missed_errors = adapter->stats.mpc;
5019
5020	/* Tx Errors */
5021	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
5022	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
5023	netdev->stats.tx_window_errors = adapter->stats.latecol;
5024	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
5025
5026	/* Tx Dropped needs to be maintained elsewhere */
5027
5028	/* Management Stats */
5029	adapter->stats.mgptc += er32(MGTPTC);
5030	adapter->stats.mgprc += er32(MGTPRC);
5031	adapter->stats.mgpdc += er32(MGTPDC);
5032
5033	/* Correctable ECC Errors */
5034	if (hw->mac.type >= e1000_pch_lpt) {
5035		u32 pbeccsts = er32(PBECCSTS);
5036
5037		adapter->corr_errors +=
5038		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
5039		adapter->uncorr_errors +=
5040		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
5041		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
5042	}
5043}
5044
5045/**
5046 * e1000_phy_read_status - Update the PHY register status snapshot
5047 * @adapter: board private structure
5048 **/
5049static void e1000_phy_read_status(struct e1000_adapter *adapter)
5050{
5051	struct e1000_hw *hw = &adapter->hw;
5052	struct e1000_phy_regs *phy = &adapter->phy_regs;
5053
5054	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
5055	    (er32(STATUS) & E1000_STATUS_LU) &&
5056	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
5057		int ret_val;
5058
5059		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
5060		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
5061		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
5062		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
5063		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
5064		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
5065		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
5066		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
5067		if (ret_val)
5068			e_warn("Error reading PHY register\n");
5069	} else {
5070		/* Do not read PHY registers if link is not up
 
5071		 * Set values to typical power-on defaults
5072		 */
5073		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
5074		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
5075			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
5076			     BMSR_ERCAP);
5077		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
5078				  ADVERTISE_ALL | ADVERTISE_CSMA);
5079		phy->lpa = 0;
5080		phy->expansion = EXPANSION_ENABLENPAGE;
5081		phy->ctrl1000 = ADVERTISE_1000FULL;
5082		phy->stat1000 = 0;
5083		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
5084	}
5085}
5086
5087static void e1000_print_link_info(struct e1000_adapter *adapter)
5088{
5089	struct e1000_hw *hw = &adapter->hw;
5090	u32 ctrl = er32(CTRL);
5091
5092	/* Link status message must follow this format for user tools */
5093	netdev_info(adapter->netdev,
5094		    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
5095		    adapter->link_speed,
5096		    adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
5097		    (ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
5098		    (ctrl & E1000_CTRL_RFCE) ? "Rx" :
5099		    (ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
5100}
5101
5102static bool e1000e_has_link(struct e1000_adapter *adapter)
5103{
5104	struct e1000_hw *hw = &adapter->hw;
5105	bool link_active = false;
5106	s32 ret_val = 0;
5107
5108	/* get_link_status is set on LSC (link status) interrupt or
 
5109	 * Rx sequence error interrupt.  get_link_status will stay
5110	 * true until the check_for_link establishes link
5111	 * for copper adapters ONLY
5112	 */
5113	switch (hw->phy.media_type) {
5114	case e1000_media_type_copper:
5115		if (hw->mac.get_link_status) {
5116			ret_val = hw->mac.ops.check_for_link(hw);
5117			link_active = !hw->mac.get_link_status;
5118		} else {
5119			link_active = true;
5120		}
5121		break;
5122	case e1000_media_type_fiber:
5123		ret_val = hw->mac.ops.check_for_link(hw);
5124		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5125		break;
5126	case e1000_media_type_internal_serdes:
5127		ret_val = hw->mac.ops.check_for_link(hw);
5128		link_active = hw->mac.serdes_has_link;
5129		break;
5130	default:
5131	case e1000_media_type_unknown:
5132		break;
5133	}
5134
5135	if ((ret_val == -E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5136	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5137		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5138		e_info("Gigabit has been disabled, downgrading speed\n");
5139	}
5140
5141	return link_active;
5142}
5143
5144static void e1000e_enable_receives(struct e1000_adapter *adapter)
5145{
5146	/* make sure the receive unit is started */
5147	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5148	    (adapter->flags & FLAG_RESTART_NOW)) {
5149		struct e1000_hw *hw = &adapter->hw;
5150		u32 rctl = er32(RCTL);
5151
5152		ew32(RCTL, rctl | E1000_RCTL_EN);
5153		adapter->flags &= ~FLAG_RESTART_NOW;
5154	}
5155}
5156
5157static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5158{
5159	struct e1000_hw *hw = &adapter->hw;
5160
5161	/* With 82574 controllers, PHY needs to be checked periodically
 
5162	 * for hung state and reset, if two calls return true
5163	 */
5164	if (e1000_check_phy_82574(hw))
5165		adapter->phy_hang_count++;
5166	else
5167		adapter->phy_hang_count = 0;
5168
5169	if (adapter->phy_hang_count > 1) {
5170		adapter->phy_hang_count = 0;
5171		e_dbg("PHY appears hung - resetting\n");
5172		schedule_work(&adapter->reset_task);
5173	}
5174}
5175
5176/**
5177 * e1000_watchdog - Timer Call-back
5178 * @t: pointer to timer_list containing private info adapter
5179 **/
5180static void e1000_watchdog(struct timer_list *t)
5181{
5182	struct e1000_adapter *adapter = from_timer(adapter, t, watchdog_timer);
5183
5184	/* Do the rest outside of interrupt context */
5185	schedule_work(&adapter->watchdog_task);
5186
5187	/* TODO: make this use queue_delayed_work() */
5188}
5189
5190static void e1000_watchdog_task(struct work_struct *work)
5191{
5192	struct e1000_adapter *adapter = container_of(work,
5193						     struct e1000_adapter,
5194						     watchdog_task);
5195	struct net_device *netdev = adapter->netdev;
5196	struct e1000_mac_info *mac = &adapter->hw.mac;
5197	struct e1000_phy_info *phy = &adapter->hw.phy;
5198	struct e1000_ring *tx_ring = adapter->tx_ring;
5199	u32 dmoff_exit_timeout = 100, tries = 0;
5200	struct e1000_hw *hw = &adapter->hw;
5201	u32 link, tctl, pcim_state;
5202
5203	if (test_bit(__E1000_DOWN, &adapter->state))
5204		return;
5205
5206	link = e1000e_has_link(adapter);
5207	if ((netif_carrier_ok(netdev)) && link) {
5208		/* Cancel scheduled suspend requests. */
5209		pm_runtime_resume(netdev->dev.parent);
5210
5211		e1000e_enable_receives(adapter);
5212		goto link_up;
5213	}
5214
5215	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5216	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5217		e1000_update_mng_vlan(adapter);
5218
5219	if (link) {
5220		if (!netif_carrier_ok(netdev)) {
5221			bool txb2b = true;
5222
5223			/* Cancel scheduled suspend requests. */
5224			pm_runtime_resume(netdev->dev.parent);
5225
5226			/* Checking if MAC is in DMoff state*/
5227			if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
5228				pcim_state = er32(STATUS);
5229				while (pcim_state & E1000_STATUS_PCIM_STATE) {
5230					if (tries++ == dmoff_exit_timeout) {
5231						e_dbg("Error in exiting dmoff\n");
5232						break;
5233					}
5234					usleep_range(10000, 20000);
5235					pcim_state = er32(STATUS);
5236
5237					/* Checking if MAC exited DMoff state */
5238					if (!(pcim_state & E1000_STATUS_PCIM_STATE))
5239						e1000_phy_hw_reset(&adapter->hw);
5240				}
5241			}
5242
5243			/* update snapshot of PHY registers on LSC */
5244			e1000_phy_read_status(adapter);
5245			mac->ops.get_link_up_info(&adapter->hw,
5246						  &adapter->link_speed,
5247						  &adapter->link_duplex);
5248			e1000_print_link_info(adapter);
5249
5250			/* check if SmartSpeed worked */
5251			e1000e_check_downshift(hw);
5252			if (phy->speed_downgraded)
5253				netdev_warn(netdev,
5254					    "Link Speed was downgraded by SmartSpeed\n");
5255
5256			/* On supported PHYs, check for duplex mismatch only
5257			 * if link has autonegotiated at 10/100 half
5258			 */
5259			if ((hw->phy.type == e1000_phy_igp_3 ||
5260			     hw->phy.type == e1000_phy_bm) &&
5261			    hw->mac.autoneg &&
5262			    (adapter->link_speed == SPEED_10 ||
5263			     adapter->link_speed == SPEED_100) &&
5264			    (adapter->link_duplex == HALF_DUPLEX)) {
5265				u16 autoneg_exp;
5266
5267				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5268
5269				if (!(autoneg_exp & EXPANSION_NWAY))
5270					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5271			}
5272
5273			/* adjust timeout factor according to speed/duplex */
5274			adapter->tx_timeout_factor = 1;
5275			switch (adapter->link_speed) {
5276			case SPEED_10:
5277				txb2b = false;
5278				adapter->tx_timeout_factor = 16;
5279				break;
5280			case SPEED_100:
5281				txb2b = false;
5282				adapter->tx_timeout_factor = 10;
5283				break;
5284			}
5285
5286			/* workaround: re-program speed mode bit after
 
5287			 * link-up event
5288			 */
5289			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5290			    !txb2b) {
5291				u32 tarc0;
5292
5293				tarc0 = er32(TARC(0));
5294				tarc0 &= ~SPEED_MODE_BIT;
5295				ew32(TARC(0), tarc0);
5296			}
5297
5298			/* disable TSO for pcie and 10/100 speeds, to avoid
 
5299			 * some hardware issues
5300			 */
5301			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5302				switch (adapter->link_speed) {
5303				case SPEED_10:
5304				case SPEED_100:
5305					e_info("10/100 speed: disabling TSO\n");
5306					netdev->features &= ~NETIF_F_TSO;
5307					netdev->features &= ~NETIF_F_TSO6;
5308					break;
5309				case SPEED_1000:
5310					netdev->features |= NETIF_F_TSO;
5311					netdev->features |= NETIF_F_TSO6;
5312					break;
5313				default:
5314					/* oops */
5315					break;
5316				}
5317				if (hw->mac.type == e1000_pch_spt) {
5318					netdev->features &= ~NETIF_F_TSO;
5319					netdev->features &= ~NETIF_F_TSO6;
5320				}
5321			}
5322
5323			/* enable transmits in the hardware, need to do this
 
5324			 * after setting TARC(0)
5325			 */
5326			tctl = er32(TCTL);
5327			tctl |= E1000_TCTL_EN;
5328			ew32(TCTL, tctl);
5329
5330			/* Perform any post-link-up configuration before
 
5331			 * reporting link up.
5332			 */
5333			if (phy->ops.cfg_on_link_up)
5334				phy->ops.cfg_on_link_up(hw);
5335
5336			netif_wake_queue(netdev);
5337			netif_carrier_on(netdev);
5338
5339			if (!test_bit(__E1000_DOWN, &adapter->state))
5340				mod_timer(&adapter->phy_info_timer,
5341					  round_jiffies(jiffies + 2 * HZ));
5342		}
5343	} else {
5344		if (netif_carrier_ok(netdev)) {
5345			adapter->link_speed = 0;
5346			adapter->link_duplex = 0;
5347			/* Link status message must follow this format */
5348			netdev_info(netdev, "NIC Link is Down\n");
 
5349			netif_carrier_off(netdev);
5350			netif_stop_queue(netdev);
5351			if (!test_bit(__E1000_DOWN, &adapter->state))
5352				mod_timer(&adapter->phy_info_timer,
5353					  round_jiffies(jiffies + 2 * HZ));
5354
5355			/* 8000ES2LAN requires a Rx packet buffer work-around
5356			 * on link down event; reset the controller to flush
5357			 * the Rx packet buffer.
5358			 */
5359			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5360				adapter->flags |= FLAG_RESTART_NOW;
5361			else
5362				pm_schedule_suspend(netdev->dev.parent,
5363						    LINK_TIMEOUT);
5364		}
5365	}
5366
5367link_up:
5368	spin_lock(&adapter->stats64_lock);
5369	e1000e_update_stats(adapter);
5370
5371	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5372	adapter->tpt_old = adapter->stats.tpt;
5373	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5374	adapter->colc_old = adapter->stats.colc;
5375
5376	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5377	adapter->gorc_old = adapter->stats.gorc;
5378	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5379	adapter->gotc_old = adapter->stats.gotc;
5380	spin_unlock(&adapter->stats64_lock);
5381
5382	/* If the link is lost the controller stops DMA, but
5383	 * if there is queued Tx work it cannot be done.  So
5384	 * reset the controller to flush the Tx packet buffers.
5385	 */
5386	if (!netif_carrier_ok(netdev) &&
5387	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5388		adapter->flags |= FLAG_RESTART_NOW;
5389
5390	/* If reset is necessary, do it outside of interrupt context. */
5391	if (adapter->flags & FLAG_RESTART_NOW) {
 
 
5392		schedule_work(&adapter->reset_task);
5393		/* return immediately since reset is imminent */
5394		return;
5395	}
5396
5397	e1000e_update_adaptive(&adapter->hw);
5398
5399	/* Simple mode for Interrupt Throttle Rate (ITR) */
5400	if (adapter->itr_setting == 4) {
5401		/* Symmetric Tx/Rx gets a reduced ITR=2000;
 
5402		 * Total asymmetrical Tx or Rx gets ITR=8000;
5403		 * everyone else is between 2000-8000.
5404		 */
5405		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5406		u32 dif = (adapter->gotc > adapter->gorc ?
5407			   adapter->gotc - adapter->gorc :
5408			   adapter->gorc - adapter->gotc) / 10000;
5409		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5410
5411		e1000e_write_itr(adapter, itr);
5412	}
5413
5414	/* Cause software interrupt to ensure Rx ring is cleaned */
5415	if (adapter->msix_entries)
5416		ew32(ICS, adapter->rx_ring->ims_val);
5417	else
5418		ew32(ICS, E1000_ICS_RXDMT0);
5419
5420	/* flush pending descriptors to memory before detecting Tx hang */
5421	e1000e_flush_descriptors(adapter);
5422
5423	/* Force detection of hung controller every watchdog period */
5424	adapter->detect_tx_hung = true;
5425
5426	/* With 82571 controllers, LAA may be overwritten due to controller
 
5427	 * reset from the other port. Set the appropriate LAA in RAR[0]
5428	 */
5429	if (e1000e_get_laa_state_82571(hw))
5430		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5431
5432	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5433		e1000e_check_82574_phy_workaround(adapter);
5434
5435	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5436	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5437		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5438		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5439			er32(RXSTMPH);
5440			adapter->rx_hwtstamp_cleared++;
5441		} else {
5442			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5443		}
5444	}
5445
5446	/* Reset the timer */
5447	if (!test_bit(__E1000_DOWN, &adapter->state))
5448		mod_timer(&adapter->watchdog_timer,
5449			  round_jiffies(jiffies + 2 * HZ));
5450}
5451
5452#define E1000_TX_FLAGS_CSUM		0x00000001
5453#define E1000_TX_FLAGS_VLAN		0x00000002
5454#define E1000_TX_FLAGS_TSO		0x00000004
5455#define E1000_TX_FLAGS_IPV4		0x00000008
5456#define E1000_TX_FLAGS_NO_FCS		0x00000010
5457#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5458#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5459#define E1000_TX_FLAGS_VLAN_SHIFT	16
5460
5461static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5462		     __be16 protocol)
5463{
5464	struct e1000_context_desc *context_desc;
5465	struct e1000_buffer *buffer_info;
5466	unsigned int i;
5467	u32 cmd_length = 0;
5468	u16 ipcse = 0, mss;
5469	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5470	int err;
5471
5472	if (!skb_is_gso(skb))
5473		return 0;
5474
5475	err = skb_cow_head(skb, 0);
5476	if (err < 0)
5477		return err;
 
 
 
5478
5479	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5480	mss = skb_shinfo(skb)->gso_size;
5481	if (protocol == htons(ETH_P_IP)) {
5482		struct iphdr *iph = ip_hdr(skb);
5483		iph->tot_len = 0;
5484		iph->check = 0;
5485		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5486							 0, IPPROTO_TCP, 0);
5487		cmd_length = E1000_TXD_CMD_IP;
5488		ipcse = skb_transport_offset(skb) - 1;
5489	} else if (skb_is_gso_v6(skb)) {
5490		tcp_v6_gso_csum_prep(skb);
 
 
 
5491		ipcse = 0;
5492	}
5493	ipcss = skb_network_offset(skb);
5494	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5495	tucss = skb_transport_offset(skb);
5496	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 
5497
5498	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5499		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5500
5501	i = tx_ring->next_to_use;
5502	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5503	buffer_info = &tx_ring->buffer_info[i];
5504
5505	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5506	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5507	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5508	context_desc->upper_setup.tcp_fields.tucss = tucss;
5509	context_desc->upper_setup.tcp_fields.tucso = tucso;
5510	context_desc->upper_setup.tcp_fields.tucse = 0;
5511	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5512	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5513	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5514
5515	buffer_info->time_stamp = jiffies;
5516	buffer_info->next_to_watch = i;
5517
5518	i++;
5519	if (i == tx_ring->count)
5520		i = 0;
5521	tx_ring->next_to_use = i;
5522
5523	return 1;
5524}
5525
5526static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5527			  __be16 protocol)
5528{
5529	struct e1000_adapter *adapter = tx_ring->adapter;
5530	struct e1000_context_desc *context_desc;
5531	struct e1000_buffer *buffer_info;
5532	unsigned int i;
5533	u8 css;
5534	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5535
5536	if (skb->ip_summed != CHECKSUM_PARTIAL)
5537		return false;
 
 
 
 
 
5538
5539	switch (protocol) {
5540	case cpu_to_be16(ETH_P_IP):
5541		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5542			cmd_len |= E1000_TXD_CMD_TCP;
5543		break;
5544	case cpu_to_be16(ETH_P_IPV6):
5545		/* XXX not handling all IPV6 headers */
5546		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5547			cmd_len |= E1000_TXD_CMD_TCP;
5548		break;
5549	default:
5550		if (unlikely(net_ratelimit()))
5551			e_warn("checksum_partial proto=%x!\n",
5552			       be16_to_cpu(protocol));
5553		break;
5554	}
5555
5556	css = skb_checksum_start_offset(skb);
5557
5558	i = tx_ring->next_to_use;
5559	buffer_info = &tx_ring->buffer_info[i];
5560	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5561
5562	context_desc->lower_setup.ip_config = 0;
5563	context_desc->upper_setup.tcp_fields.tucss = css;
5564	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
 
5565	context_desc->upper_setup.tcp_fields.tucse = 0;
5566	context_desc->tcp_seg_setup.data = 0;
5567	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5568
5569	buffer_info->time_stamp = jiffies;
5570	buffer_info->next_to_watch = i;
5571
5572	i++;
5573	if (i == tx_ring->count)
5574		i = 0;
5575	tx_ring->next_to_use = i;
5576
5577	return true;
5578}
5579
5580static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5581			unsigned int first, unsigned int max_per_txd,
5582			unsigned int nr_frags)
5583{
5584	struct e1000_adapter *adapter = tx_ring->adapter;
5585	struct pci_dev *pdev = adapter->pdev;
5586	struct e1000_buffer *buffer_info;
5587	unsigned int len = skb_headlen(skb);
5588	unsigned int offset = 0, size, count = 0, i;
5589	unsigned int f, bytecount, segs;
5590
5591	i = tx_ring->next_to_use;
5592
5593	while (len) {
5594		buffer_info = &tx_ring->buffer_info[i];
5595		size = min(len, max_per_txd);
5596
5597		buffer_info->length = size;
5598		buffer_info->time_stamp = jiffies;
5599		buffer_info->next_to_watch = i;
5600		buffer_info->dma = dma_map_single(&pdev->dev,
5601						  skb->data + offset,
5602						  size, DMA_TO_DEVICE);
5603		buffer_info->mapped_as_page = false;
5604		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5605			goto dma_error;
5606
5607		len -= size;
5608		offset += size;
5609		count++;
5610
5611		if (len) {
5612			i++;
5613			if (i == tx_ring->count)
5614				i = 0;
5615		}
5616	}
5617
5618	for (f = 0; f < nr_frags; f++) {
5619		const skb_frag_t *frag = &skb_shinfo(skb)->frags[f];
5620
 
5621		len = skb_frag_size(frag);
5622		offset = 0;
5623
5624		while (len) {
5625			i++;
5626			if (i == tx_ring->count)
5627				i = 0;
5628
5629			buffer_info = &tx_ring->buffer_info[i];
5630			size = min(len, max_per_txd);
5631
5632			buffer_info->length = size;
5633			buffer_info->time_stamp = jiffies;
5634			buffer_info->next_to_watch = i;
5635			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5636							    offset, size,
5637							    DMA_TO_DEVICE);
5638			buffer_info->mapped_as_page = true;
5639			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5640				goto dma_error;
5641
5642			len -= size;
5643			offset += size;
5644			count++;
5645		}
5646	}
5647
5648	segs = skb_shinfo(skb)->gso_segs ? : 1;
5649	/* multiply data chunks by size of headers */
5650	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5651
5652	tx_ring->buffer_info[i].skb = skb;
5653	tx_ring->buffer_info[i].segs = segs;
5654	tx_ring->buffer_info[i].bytecount = bytecount;
5655	tx_ring->buffer_info[first].next_to_watch = i;
5656
5657	return count;
5658
5659dma_error:
5660	dev_err(&pdev->dev, "Tx DMA map failed\n");
5661	buffer_info->dma = 0;
5662	if (count)
5663		count--;
5664
5665	while (count--) {
5666		if (i == 0)
5667			i += tx_ring->count;
5668		i--;
5669		buffer_info = &tx_ring->buffer_info[i];
5670		e1000_put_txbuf(tx_ring, buffer_info, true);
5671	}
5672
5673	return 0;
5674}
5675
5676static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5677{
5678	struct e1000_adapter *adapter = tx_ring->adapter;
5679	struct e1000_tx_desc *tx_desc = NULL;
5680	struct e1000_buffer *buffer_info;
5681	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5682	unsigned int i;
5683
5684	if (tx_flags & E1000_TX_FLAGS_TSO) {
5685		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5686		    E1000_TXD_CMD_TSE;
5687		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5688
5689		if (tx_flags & E1000_TX_FLAGS_IPV4)
5690			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5691	}
5692
5693	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5694		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5695		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5696	}
5697
5698	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5699		txd_lower |= E1000_TXD_CMD_VLE;
5700		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5701	}
5702
5703	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5704		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5705
5706	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5707		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5708		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5709	}
5710
5711	i = tx_ring->next_to_use;
5712
5713	do {
5714		buffer_info = &tx_ring->buffer_info[i];
5715		tx_desc = E1000_TX_DESC(*tx_ring, i);
5716		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5717		tx_desc->lower.data = cpu_to_le32(txd_lower |
5718						  buffer_info->length);
5719		tx_desc->upper.data = cpu_to_le32(txd_upper);
5720
5721		i++;
5722		if (i == tx_ring->count)
5723			i = 0;
5724	} while (--count > 0);
5725
5726	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5727
5728	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5729	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5730		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5731
5732	/* Force memory writes to complete before letting h/w
 
5733	 * know there are new descriptors to fetch.  (Only
5734	 * applicable for weak-ordered memory model archs,
5735	 * such as IA-64).
5736	 */
5737	wmb();
5738
5739	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
5740}
5741
5742#define MINIMUM_DHCP_PACKET_SIZE 282
5743static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5744				    struct sk_buff *skb)
5745{
5746	struct e1000_hw *hw = &adapter->hw;
5747	u16 length, offset;
5748
5749	if (skb_vlan_tag_present(skb) &&
5750	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5751	      (adapter->hw.mng_cookie.status &
5752	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5753		return 0;
 
5754
5755	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5756		return 0;
5757
5758	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5759		return 0;
5760
5761	{
5762		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5763		struct udphdr *udp;
5764
5765		if (ip->protocol != IPPROTO_UDP)
5766			return 0;
5767
5768		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5769		if (ntohs(udp->dest) != 67)
5770			return 0;
5771
5772		offset = (u8 *)udp + 8 - skb->data;
5773		length = skb->len - offset;
5774		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5775	}
5776
5777	return 0;
5778}
5779
5780static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5781{
5782	struct e1000_adapter *adapter = tx_ring->adapter;
5783
5784	netif_stop_queue(adapter->netdev);
5785	/* Herbert's original patch had:
 
5786	 *  smp_mb__after_netif_stop_queue();
5787	 * but since that doesn't exist yet, just open code it.
5788	 */
5789	smp_mb();
5790
5791	/* We need to check again in a case another CPU has just
 
5792	 * made room available.
5793	 */
5794	if (e1000_desc_unused(tx_ring) < size)
5795		return -EBUSY;
5796
5797	/* A reprieve! */
5798	netif_start_queue(adapter->netdev);
5799	++adapter->restart_queue;
5800	return 0;
5801}
5802
5803static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5804{
5805	BUG_ON(size > tx_ring->count);
5806
5807	if (e1000_desc_unused(tx_ring) >= size)
5808		return 0;
5809	return __e1000_maybe_stop_tx(tx_ring, size);
5810}
5811
5812static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5813				    struct net_device *netdev)
5814{
5815	struct e1000_adapter *adapter = netdev_priv(netdev);
5816	struct e1000_ring *tx_ring = adapter->tx_ring;
5817	unsigned int first;
5818	unsigned int tx_flags = 0;
5819	unsigned int len = skb_headlen(skb);
5820	unsigned int nr_frags;
5821	unsigned int mss;
5822	int count = 0;
5823	int tso;
5824	unsigned int f;
5825	__be16 protocol = vlan_get_protocol(skb);
5826
5827	if (test_bit(__E1000_DOWN, &adapter->state)) {
5828		dev_kfree_skb_any(skb);
5829		return NETDEV_TX_OK;
5830	}
5831
5832	if (skb->len <= 0) {
5833		dev_kfree_skb_any(skb);
5834		return NETDEV_TX_OK;
5835	}
5836
5837	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5838	 * pad skb in order to meet this minimum size requirement
5839	 */
5840	if (skb_put_padto(skb, 17))
5841		return NETDEV_TX_OK;
5842
5843	mss = skb_shinfo(skb)->gso_size;
5844	if (mss) {
5845		u8 hdr_len;
5846
5847		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
 
5848		 * points to just header, pull a few bytes of payload from
5849		 * frags into skb->data
5850		 */
5851		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5852		/* we do this workaround for ES2LAN, but it is un-necessary,
 
5853		 * avoiding it could save a lot of cycles
5854		 */
5855		if (skb->data_len && (hdr_len == len)) {
5856			unsigned int pull_size;
5857
5858			pull_size = min_t(unsigned int, 4, skb->data_len);
5859			if (!__pskb_pull_tail(skb, pull_size)) {
5860				e_err("__pskb_pull_tail failed.\n");
5861				dev_kfree_skb_any(skb);
5862				return NETDEV_TX_OK;
5863			}
5864			len = skb_headlen(skb);
5865		}
5866	}
5867
5868	/* reserve a descriptor for the offload context */
5869	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5870		count++;
5871	count++;
5872
5873	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5874
5875	nr_frags = skb_shinfo(skb)->nr_frags;
5876	for (f = 0; f < nr_frags; f++)
5877		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5878				      adapter->tx_fifo_limit);
5879
5880	if (adapter->hw.mac.tx_pkt_filtering)
5881		e1000_transfer_dhcp_info(adapter, skb);
5882
5883	/* need: count + 2 desc gap to keep tail from touching
 
5884	 * head, otherwise try next time
5885	 */
5886	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5887		return NETDEV_TX_BUSY;
5888
5889	if (skb_vlan_tag_present(skb)) {
5890		tx_flags |= E1000_TX_FLAGS_VLAN;
5891		tx_flags |= (skb_vlan_tag_get(skb) <<
5892			     E1000_TX_FLAGS_VLAN_SHIFT);
5893	}
5894
5895	first = tx_ring->next_to_use;
5896
5897	tso = e1000_tso(tx_ring, skb, protocol);
5898	if (tso < 0) {
5899		dev_kfree_skb_any(skb);
5900		return NETDEV_TX_OK;
5901	}
5902
5903	if (tso)
5904		tx_flags |= E1000_TX_FLAGS_TSO;
5905	else if (e1000_tx_csum(tx_ring, skb, protocol))
5906		tx_flags |= E1000_TX_FLAGS_CSUM;
5907
5908	/* Old method was to assume IPv4 packet by default if TSO was enabled.
 
5909	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5910	 * no longer assume, we must.
5911	 */
5912	if (protocol == htons(ETH_P_IP))
5913		tx_flags |= E1000_TX_FLAGS_IPV4;
5914
5915	if (unlikely(skb->no_fcs))
5916		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5917
5918	/* if count is 0 then mapping error has occurred */
5919	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5920			     nr_frags);
5921	if (count) {
5922		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5923		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP)) {
5924			if (!adapter->tx_hwtstamp_skb) {
5925				skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5926				tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5927				adapter->tx_hwtstamp_skb = skb_get(skb);
5928				adapter->tx_hwtstamp_start = jiffies;
5929				schedule_work(&adapter->tx_hwtstamp_work);
5930			} else {
5931				adapter->tx_hwtstamp_skipped++;
5932			}
5933		}
5934
5935		skb_tx_timestamp(skb);
5936
5937		netdev_sent_queue(netdev, skb->len);
5938		e1000_tx_queue(tx_ring, tx_flags, count);
5939		/* Make sure there is space in the ring for the next send. */
5940		e1000_maybe_stop_tx(tx_ring,
5941				    (MAX_SKB_FRAGS *
5942				     DIV_ROUND_UP(PAGE_SIZE,
5943						  adapter->tx_fifo_limit) + 2));
5944
5945		if (!netdev_xmit_more() ||
5946		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5947			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5948				e1000e_update_tdt_wa(tx_ring,
5949						     tx_ring->next_to_use);
5950			else
5951				writel(tx_ring->next_to_use, tx_ring->tail);
5952		}
5953	} else {
5954		dev_kfree_skb_any(skb);
5955		tx_ring->buffer_info[first].time_stamp = 0;
5956		tx_ring->next_to_use = first;
5957	}
5958
5959	return NETDEV_TX_OK;
5960}
5961
5962/**
5963 * e1000_tx_timeout - Respond to a Tx Hang
5964 * @netdev: network interface device structure
5965 * @txqueue: index of the hung queue (unused)
5966 **/
5967static void e1000_tx_timeout(struct net_device *netdev, unsigned int __always_unused txqueue)
5968{
5969	struct e1000_adapter *adapter = netdev_priv(netdev);
5970
5971	/* Do the reset outside of interrupt context */
5972	adapter->tx_timeout_count++;
5973	schedule_work(&adapter->reset_task);
5974}
5975
5976static void e1000_reset_task(struct work_struct *work)
5977{
5978	struct e1000_adapter *adapter;
5979	adapter = container_of(work, struct e1000_adapter, reset_task);
5980
5981	rtnl_lock();
5982	/* don't run the task if already down */
5983	if (test_bit(__E1000_DOWN, &adapter->state)) {
5984		rtnl_unlock();
5985		return;
5986	}
5987
5988	if (!(adapter->flags & FLAG_RESTART_NOW)) {
 
5989		e1000e_dump(adapter);
5990		e_err("Reset adapter unexpectedly\n");
5991	}
5992	e1000e_reinit_locked(adapter);
5993	rtnl_unlock();
5994}
5995
5996/**
5997 * e1000e_get_stats64 - Get System Network Statistics
5998 * @netdev: network interface device structure
5999 * @stats: rtnl_link_stats64 pointer
6000 *
6001 * Returns the address of the device statistics structure.
6002 **/
6003void e1000e_get_stats64(struct net_device *netdev,
6004			struct rtnl_link_stats64 *stats)
6005{
6006	struct e1000_adapter *adapter = netdev_priv(netdev);
6007
 
6008	spin_lock(&adapter->stats64_lock);
6009	e1000e_update_stats(adapter);
6010	/* Fill out the OS statistics structure */
6011	stats->rx_bytes = adapter->stats.gorc;
6012	stats->rx_packets = adapter->stats.gprc;
6013	stats->tx_bytes = adapter->stats.gotc;
6014	stats->tx_packets = adapter->stats.gptc;
6015	stats->multicast = adapter->stats.mprc;
6016	stats->collisions = adapter->stats.colc;
6017
6018	/* Rx Errors */
6019
6020	/* RLEC on some newer hardware can be incorrect so build
 
6021	 * our own version based on RUC and ROC
6022	 */
6023	stats->rx_errors = adapter->stats.rxerrc +
6024	    adapter->stats.crcerrs + adapter->stats.algnerrc +
6025	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
6026	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
 
 
6027	stats->rx_crc_errors = adapter->stats.crcerrs;
6028	stats->rx_frame_errors = adapter->stats.algnerrc;
6029	stats->rx_missed_errors = adapter->stats.mpc;
6030
6031	/* Tx Errors */
6032	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
6033	stats->tx_aborted_errors = adapter->stats.ecol;
6034	stats->tx_window_errors = adapter->stats.latecol;
6035	stats->tx_carrier_errors = adapter->stats.tncrs;
6036
6037	/* Tx Dropped needs to be maintained elsewhere */
6038
6039	spin_unlock(&adapter->stats64_lock);
 
6040}
6041
6042/**
6043 * e1000_change_mtu - Change the Maximum Transfer Unit
6044 * @netdev: network interface device structure
6045 * @new_mtu: new value for maximum frame size
6046 *
6047 * Returns 0 on success, negative on failure
6048 **/
6049static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
6050{
6051	struct e1000_adapter *adapter = netdev_priv(netdev);
6052	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
6053
6054	/* Jumbo frame support */
6055	if ((new_mtu > ETH_DATA_LEN) &&
6056	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
6057		e_err("Jumbo Frames not supported.\n");
6058		return -EINVAL;
6059	}
6060
 
 
 
 
 
 
 
6061	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6062	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
6063	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
6064	    (new_mtu > ETH_DATA_LEN)) {
6065		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
6066		return -EINVAL;
6067	}
6068
6069	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
6070		usleep_range(1000, 1100);
6071	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
6072	adapter->max_frame_size = max_frame;
6073	netdev_dbg(netdev, "changing MTU from %d to %d\n",
6074		   netdev->mtu, new_mtu);
6075	netdev->mtu = new_mtu;
6076
6077	pm_runtime_get_sync(netdev->dev.parent);
6078
6079	if (netif_running(netdev))
6080		e1000e_down(adapter, true);
6081
6082	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 
6083	 * means we reserve 2 more, this pushes us to allocate from the next
6084	 * larger slab size.
6085	 * i.e. RXBUFFER_2048 --> size-4096 slab
6086	 * However with the new *_jumbo_rx* routines, jumbo receives will use
6087	 * fragmented skbs
6088	 */
6089
6090	if (max_frame <= 2048)
6091		adapter->rx_buffer_len = 2048;
6092	else
6093		adapter->rx_buffer_len = 4096;
6094
6095	/* adjust allocation if LPE protects us, and we aren't using SBP */
6096	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
6097		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
6098
6099	if (netif_running(netdev))
6100		e1000e_up(adapter);
6101	else
6102		e1000e_reset(adapter);
6103
6104	pm_runtime_put_sync(netdev->dev.parent);
6105
6106	clear_bit(__E1000_RESETTING, &adapter->state);
6107
6108	return 0;
6109}
6110
6111static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
6112			   int cmd)
6113{
6114	struct e1000_adapter *adapter = netdev_priv(netdev);
6115	struct mii_ioctl_data *data = if_mii(ifr);
6116
6117	if (adapter->hw.phy.media_type != e1000_media_type_copper)
6118		return -EOPNOTSUPP;
6119
6120	switch (cmd) {
6121	case SIOCGMIIPHY:
6122		data->phy_id = adapter->hw.phy.addr;
6123		break;
6124	case SIOCGMIIREG:
6125		e1000_phy_read_status(adapter);
6126
6127		switch (data->reg_num & 0x1F) {
6128		case MII_BMCR:
6129			data->val_out = adapter->phy_regs.bmcr;
6130			break;
6131		case MII_BMSR:
6132			data->val_out = adapter->phy_regs.bmsr;
6133			break;
6134		case MII_PHYSID1:
6135			data->val_out = (adapter->hw.phy.id >> 16);
6136			break;
6137		case MII_PHYSID2:
6138			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6139			break;
6140		case MII_ADVERTISE:
6141			data->val_out = adapter->phy_regs.advertise;
6142			break;
6143		case MII_LPA:
6144			data->val_out = adapter->phy_regs.lpa;
6145			break;
6146		case MII_EXPANSION:
6147			data->val_out = adapter->phy_regs.expansion;
6148			break;
6149		case MII_CTRL1000:
6150			data->val_out = adapter->phy_regs.ctrl1000;
6151			break;
6152		case MII_STAT1000:
6153			data->val_out = adapter->phy_regs.stat1000;
6154			break;
6155		case MII_ESTATUS:
6156			data->val_out = adapter->phy_regs.estatus;
6157			break;
6158		default:
6159			return -EIO;
6160		}
6161		break;
6162	case SIOCSMIIREG:
6163	default:
6164		return -EOPNOTSUPP;
6165	}
6166	return 0;
6167}
6168
6169/**
6170 * e1000e_hwtstamp_set - control hardware time stamping
6171 * @netdev: network interface device structure
6172 * @ifr: interface request
6173 *
6174 * Outgoing time stamping can be enabled and disabled. Play nice and
6175 * disable it when requested, although it shouldn't cause any overhead
6176 * when no packet needs it. At most one packet in the queue may be
6177 * marked for time stamping, otherwise it would be impossible to tell
6178 * for sure to which packet the hardware time stamp belongs.
6179 *
6180 * Incoming time stamping has to be configured via the hardware filters.
6181 * Not all combinations are supported, in particular event type has to be
6182 * specified. Matching the kind of event packet is not supported, with the
6183 * exception of "all V2 events regardless of level 2 or 4".
6184 **/
6185static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6186{
6187	struct e1000_adapter *adapter = netdev_priv(netdev);
6188	struct hwtstamp_config config;
6189	int ret_val;
6190
6191	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6192		return -EFAULT;
6193
6194	ret_val = e1000e_config_hwtstamp(adapter, &config);
6195	if (ret_val)
6196		return ret_val;
6197
6198	switch (config.rx_filter) {
6199	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6200	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6201	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6202	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6203	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6204	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6205		/* With V2 type filters which specify a Sync or Delay Request,
6206		 * Path Delay Request/Response messages are also time stamped
6207		 * by hardware so notify the caller the requested packets plus
6208		 * some others are time stamped.
6209		 */
6210		config.rx_filter = HWTSTAMP_FILTER_SOME;
6211		break;
6212	default:
6213		break;
6214	}
6215
6216	return copy_to_user(ifr->ifr_data, &config,
6217			    sizeof(config)) ? -EFAULT : 0;
6218}
6219
6220static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6221{
6222	struct e1000_adapter *adapter = netdev_priv(netdev);
6223
6224	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6225			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6226}
6227
6228static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6229{
6230	switch (cmd) {
6231	case SIOCGMIIPHY:
6232	case SIOCGMIIREG:
6233	case SIOCSMIIREG:
6234		return e1000_mii_ioctl(netdev, ifr, cmd);
6235	case SIOCSHWTSTAMP:
6236		return e1000e_hwtstamp_set(netdev, ifr);
6237	case SIOCGHWTSTAMP:
6238		return e1000e_hwtstamp_get(netdev, ifr);
6239	default:
6240		return -EOPNOTSUPP;
6241	}
6242}
6243
6244static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6245{
6246	struct e1000_hw *hw = &adapter->hw;
6247	u32 i, mac_reg, wuc;
6248	u16 phy_reg, wuc_enable;
6249	int retval;
6250
6251	/* copy MAC RARs to PHY RARs */
6252	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6253
6254	retval = hw->phy.ops.acquire(hw);
6255	if (retval) {
6256		e_err("Could not acquire PHY\n");
6257		return retval;
6258	}
6259
6260	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6261	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6262	if (retval)
6263		goto release;
6264
6265	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6266	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6267		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6268		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6269					   (u16)(mac_reg & 0xFFFF));
6270		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6271					   (u16)((mac_reg >> 16) & 0xFFFF));
6272	}
6273
6274	/* configure PHY Rx Control register */
6275	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6276	mac_reg = er32(RCTL);
6277	if (mac_reg & E1000_RCTL_UPE)
6278		phy_reg |= BM_RCTL_UPE;
6279	if (mac_reg & E1000_RCTL_MPE)
6280		phy_reg |= BM_RCTL_MPE;
6281	phy_reg &= ~(BM_RCTL_MO_MASK);
6282	if (mac_reg & E1000_RCTL_MO_3)
6283		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6284			    << BM_RCTL_MO_SHIFT);
6285	if (mac_reg & E1000_RCTL_BAM)
6286		phy_reg |= BM_RCTL_BAM;
6287	if (mac_reg & E1000_RCTL_PMCF)
6288		phy_reg |= BM_RCTL_PMCF;
6289	mac_reg = er32(CTRL);
6290	if (mac_reg & E1000_CTRL_RFCE)
6291		phy_reg |= BM_RCTL_RFCE;
6292	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6293
6294	wuc = E1000_WUC_PME_EN;
6295	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6296		wuc |= E1000_WUC_APME;
6297
6298	/* enable PHY wakeup in MAC register */
6299	ew32(WUFC, wufc);
6300	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6301		   E1000_WUC_PME_STATUS | wuc));
6302
6303	/* configure and enable PHY wakeup in PHY registers */
6304	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6305	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6306
6307	/* activate PHY wakeup */
6308	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6309	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6310	if (retval)
6311		e_err("Could not set PHY Host Wakeup bit\n");
6312release:
6313	hw->phy.ops.release(hw);
6314
6315	return retval;
6316}
6317
6318static void e1000e_flush_lpic(struct pci_dev *pdev)
 
6319{
6320	struct net_device *netdev = pci_get_drvdata(pdev);
6321	struct e1000_adapter *adapter = netdev_priv(netdev);
6322	struct e1000_hw *hw = &adapter->hw;
6323	u32 ret_val;
 
 
 
6324
6325	pm_runtime_get_sync(netdev->dev.parent);
6326
6327	ret_val = hw->phy.ops.acquire(hw);
6328	if (ret_val)
6329		goto fl_out;
6330
6331	pr_info("EEE TX LPI TIMER: %08X\n",
6332		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6333
6334	hw->phy.ops.release(hw);
6335
6336fl_out:
6337	pm_runtime_put_sync(netdev->dev.parent);
6338}
6339
6340/* S0ix implementation */
6341static void e1000e_s0ix_entry_flow(struct e1000_adapter *adapter)
6342{
6343	struct e1000_hw *hw = &adapter->hw;
6344	u32 mac_data;
6345	u16 phy_data;
6346
6347	/* Disable the periodic inband message,
6348	 * don't request PCIe clock in K1 page770_17[10:9] = 10b
6349	 */
6350	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6351	phy_data &= ~HV_PM_CTRL_K1_CLK_REQ;
6352	phy_data |= BIT(10);
6353	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6354
6355	/* Make sure we don't exit K1 every time a new packet arrives
6356	 * 772_29[5] = 1 CS_Mode_Stay_In_K1
6357	 */
6358	e1e_rphy(hw, I217_CGFREG, &phy_data);
6359	phy_data |= BIT(5);
6360	e1e_wphy(hw, I217_CGFREG, phy_data);
6361
6362	/* Change the MAC/PHY interface to SMBus
6363	 * Force the SMBus in PHY page769_23[0] = 1
6364	 * Force the SMBus in MAC CTRL_EXT[11] = 1
6365	 */
6366	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6367	phy_data |= CV_SMB_CTRL_FORCE_SMBUS;
6368	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6369	mac_data = er32(CTRL_EXT);
6370	mac_data |= E1000_CTRL_EXT_FORCE_SMBUS;
6371	ew32(CTRL_EXT, mac_data);
6372
6373	/* DFT control: PHY bit: page769_20[0] = 1
6374	 * Gate PPW via EXTCNF_CTRL - set 0x0F00[7] = 1
6375	 */
6376	e1e_rphy(hw, I82579_DFT_CTRL, &phy_data);
6377	phy_data |= BIT(0);
6378	e1e_wphy(hw, I82579_DFT_CTRL, phy_data);
6379
6380	mac_data = er32(EXTCNF_CTRL);
6381	mac_data |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
6382	ew32(EXTCNF_CTRL, mac_data);
6383
6384	/* Check MAC Tx/Rx packet buffer pointers.
6385	 * Reset MAC Tx/Rx packet buffer pointers to suppress any
6386	 * pending traffic indication that would prevent power gating.
6387	 */
6388	mac_data = er32(TDFH);
6389	if (mac_data)
6390		ew32(TDFH, 0);
6391	mac_data = er32(TDFT);
6392	if (mac_data)
6393		ew32(TDFT, 0);
6394	mac_data = er32(TDFHS);
6395	if (mac_data)
6396		ew32(TDFHS, 0);
6397	mac_data = er32(TDFTS);
6398	if (mac_data)
6399		ew32(TDFTS, 0);
6400	mac_data = er32(TDFPC);
6401	if (mac_data)
6402		ew32(TDFPC, 0);
6403	mac_data = er32(RDFH);
6404	if (mac_data)
6405		ew32(RDFH, 0);
6406	mac_data = er32(RDFT);
6407	if (mac_data)
6408		ew32(RDFT, 0);
6409	mac_data = er32(RDFHS);
6410	if (mac_data)
6411		ew32(RDFHS, 0);
6412	mac_data = er32(RDFTS);
6413	if (mac_data)
6414		ew32(RDFTS, 0);
6415	mac_data = er32(RDFPC);
6416	if (mac_data)
6417		ew32(RDFPC, 0);
6418
6419	/* Enable the Dynamic Power Gating in the MAC */
6420	mac_data = er32(FEXTNVM7);
6421	mac_data |= BIT(22);
6422	ew32(FEXTNVM7, mac_data);
6423
6424	/* Disable the time synchronization clock */
6425	mac_data = er32(FEXTNVM7);
6426	mac_data |= BIT(31);
6427	mac_data &= ~BIT(0);
6428	ew32(FEXTNVM7, mac_data);
6429
6430	/* Dynamic Power Gating Enable */
6431	mac_data = er32(CTRL_EXT);
6432	mac_data |= BIT(3);
6433	ew32(CTRL_EXT, mac_data);
6434
6435	/* Disable disconnected cable conditioning for Power Gating */
6436	mac_data = er32(DPGFR);
6437	mac_data |= BIT(2);
6438	ew32(DPGFR, mac_data);
6439
6440	/* Don't wake from dynamic Power Gating with clock request */
6441	mac_data = er32(FEXTNVM12);
6442	mac_data |= BIT(12);
6443	ew32(FEXTNVM12, mac_data);
6444
6445	/* Ungate PGCB clock */
6446	mac_data = er32(FEXTNVM9);
6447	mac_data &= ~BIT(28);
6448	ew32(FEXTNVM9, mac_data);
6449
6450	/* Enable K1 off to enable mPHY Power Gating */
6451	mac_data = er32(FEXTNVM6);
6452	mac_data |= BIT(31);
6453	ew32(FEXTNVM6, mac_data);
6454
6455	/* Enable mPHY power gating for any link and speed */
6456	mac_data = er32(FEXTNVM8);
6457	mac_data |= BIT(9);
6458	ew32(FEXTNVM8, mac_data);
6459
6460	/* Enable the Dynamic Clock Gating in the DMA and MAC */
6461	mac_data = er32(CTRL_EXT);
6462	mac_data |= E1000_CTRL_EXT_DMA_DYN_CLK_EN;
6463	ew32(CTRL_EXT, mac_data);
6464
6465	/* No MAC DPG gating SLP_S0 in modern standby
6466	 * Switch the logic of the lanphypc to use PMC counter
6467	 */
6468	mac_data = er32(FEXTNVM5);
6469	mac_data |= BIT(7);
6470	ew32(FEXTNVM5, mac_data);
6471}
6472
6473static void e1000e_s0ix_exit_flow(struct e1000_adapter *adapter)
6474{
6475	struct e1000_hw *hw = &adapter->hw;
6476	u32 mac_data;
6477	u16 phy_data;
6478
6479	/* Disable the Dynamic Power Gating in the MAC */
6480	mac_data = er32(FEXTNVM7);
6481	mac_data &= 0xFFBFFFFF;
6482	ew32(FEXTNVM7, mac_data);
6483
6484	/* Enable the time synchronization clock */
6485	mac_data = er32(FEXTNVM7);
6486	mac_data |= BIT(0);
6487	ew32(FEXTNVM7, mac_data);
6488
6489	/* Disable mPHY power gating for any link and speed */
6490	mac_data = er32(FEXTNVM8);
6491	mac_data &= ~BIT(9);
6492	ew32(FEXTNVM8, mac_data);
6493
6494	/* Disable K1 off */
6495	mac_data = er32(FEXTNVM6);
6496	mac_data &= ~BIT(31);
6497	ew32(FEXTNVM6, mac_data);
6498
6499	/* Disable Ungate PGCB clock */
6500	mac_data = er32(FEXTNVM9);
6501	mac_data |= BIT(28);
6502	ew32(FEXTNVM9, mac_data);
6503
6504	/* Cancel not waking from dynamic
6505	 * Power Gating with clock request
6506	 */
6507	mac_data = er32(FEXTNVM12);
6508	mac_data &= ~BIT(12);
6509	ew32(FEXTNVM12, mac_data);
6510
6511	/* Cancel disable disconnected cable conditioning
6512	 * for Power Gating
6513	 */
6514	mac_data = er32(DPGFR);
6515	mac_data &= ~BIT(2);
6516	ew32(DPGFR, mac_data);
6517
6518	/* Disable Dynamic Power Gating */
6519	mac_data = er32(CTRL_EXT);
6520	mac_data &= 0xFFFFFFF7;
6521	ew32(CTRL_EXT, mac_data);
6522
6523	/* Disable the Dynamic Clock Gating in the DMA and MAC */
6524	mac_data = er32(CTRL_EXT);
6525	mac_data &= 0xFFF7FFFF;
6526	ew32(CTRL_EXT, mac_data);
6527
6528	/* Revert the lanphypc logic to use the internal Gbe counter
6529	 * and not the PMC counter
6530	 */
6531	mac_data = er32(FEXTNVM5);
6532	mac_data &= 0xFFFFFF7F;
6533	ew32(FEXTNVM5, mac_data);
6534
6535	/* Enable the periodic inband message,
6536	 * Request PCIe clock in K1 page770_17[10:9] =01b
6537	 */
6538	e1e_rphy(hw, HV_PM_CTRL, &phy_data);
6539	phy_data &= 0xFBFF;
6540	phy_data |= HV_PM_CTRL_K1_CLK_REQ;
6541	e1e_wphy(hw, HV_PM_CTRL, phy_data);
6542
6543	/* Return back configuration
6544	 * 772_29[5] = 0 CS_Mode_Stay_In_K1
6545	 */
6546	e1e_rphy(hw, I217_CGFREG, &phy_data);
6547	phy_data &= 0xFFDF;
6548	e1e_wphy(hw, I217_CGFREG, phy_data);
6549
6550	/* Change the MAC/PHY interface to Kumeran
6551	 * Unforce the SMBus in PHY page769_23[0] = 0
6552	 * Unforce the SMBus in MAC CTRL_EXT[11] = 0
6553	 */
6554	e1e_rphy(hw, CV_SMB_CTRL, &phy_data);
6555	phy_data &= ~CV_SMB_CTRL_FORCE_SMBUS;
6556	e1e_wphy(hw, CV_SMB_CTRL, phy_data);
6557	mac_data = er32(CTRL_EXT);
6558	mac_data &= ~E1000_CTRL_EXT_FORCE_SMBUS;
6559	ew32(CTRL_EXT, mac_data);
6560}
6561
6562static int e1000e_pm_freeze(struct device *dev)
6563{
6564	struct net_device *netdev = dev_get_drvdata(dev);
6565	struct e1000_adapter *adapter = netdev_priv(netdev);
6566	bool present;
6567
6568	rtnl_lock();
6569
6570	present = netif_device_present(netdev);
6571	netif_device_detach(netdev);
6572
6573	if (present && netif_running(netdev)) {
6574		int count = E1000_CHECK_RESET_COUNT;
6575
6576		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6577			usleep_range(10000, 11000);
6578
6579		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6580
6581		/* Quiesce the device without resetting the hardware */
6582		e1000e_down(adapter, false);
6583		e1000_free_irq(adapter);
6584	}
6585	rtnl_unlock();
6586
6587	e1000e_reset_interrupt_capability(adapter);
6588
6589	/* Allow time for pending master requests to run */
6590	e1000e_disable_pcie_master(&adapter->hw);
6591
6592	return 0;
6593}
6594
6595static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6596{
6597	struct net_device *netdev = pci_get_drvdata(pdev);
6598	struct e1000_adapter *adapter = netdev_priv(netdev);
6599	struct e1000_hw *hw = &adapter->hw;
6600	u32 ctrl, ctrl_ext, rctl, status, wufc;
6601	int retval = 0;
6602
6603	/* Runtime suspend should only enable wakeup for link changes */
6604	if (runtime)
6605		wufc = E1000_WUFC_LNKC;
6606	else if (device_may_wakeup(&pdev->dev))
6607		wufc = adapter->wol;
6608	else
6609		wufc = 0;
6610
6611	status = er32(STATUS);
6612	if (status & E1000_STATUS_LU)
6613		wufc &= ~E1000_WUFC_LNKC;
6614
6615	if (wufc) {
6616		e1000_setup_rctl(adapter);
6617		e1000e_set_rx_mode(netdev);
6618
6619		/* turn on all-multi mode if wake on multicast is enabled */
6620		if (wufc & E1000_WUFC_MC) {
6621			rctl = er32(RCTL);
6622			rctl |= E1000_RCTL_MPE;
6623			ew32(RCTL, rctl);
6624		}
6625
6626		ctrl = er32(CTRL);
 
 
 
 
6627		ctrl |= E1000_CTRL_ADVD3WUC;
6628		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6629			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6630		ew32(CTRL, ctrl);
6631
6632		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6633		    adapter->hw.phy.media_type ==
6634		    e1000_media_type_internal_serdes) {
6635			/* keep the laser running in D3 */
6636			ctrl_ext = er32(CTRL_EXT);
6637			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6638			ew32(CTRL_EXT, ctrl_ext);
6639		}
6640
6641		if (!runtime)
6642			e1000e_power_up_phy(adapter);
6643
6644		if (adapter->flags & FLAG_IS_ICH)
6645			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6646
 
 
 
6647		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6648			/* enable wakeup by the PHY */
6649			retval = e1000_init_phy_wakeup(adapter, wufc);
6650			if (retval)
6651				return retval;
6652		} else {
6653			/* enable wakeup by the MAC */
6654			ew32(WUFC, wufc);
6655			ew32(WUC, E1000_WUC_PME_EN);
6656		}
6657	} else {
6658		ew32(WUC, 0);
6659		ew32(WUFC, 0);
 
 
 
6660
6661		e1000_power_down_phy(adapter);
6662	}
 
 
6663
6664	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6665		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6666	} else if (hw->mac.type >= e1000_pch_lpt) {
6667		if (wufc && !(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6668			/* ULP does not support wake from unicast, multicast
6669			 * or broadcast.
6670			 */
6671			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6672
6673		if (retval)
6674			return retval;
6675	}
 
 
 
 
6676
6677	/* Ensure that the appropriate bits are set in LPI_CTRL
6678	 * for EEE in Sx
6679	 */
6680	if ((hw->phy.type >= e1000_phy_i217) &&
6681	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6682		u16 lpi_ctrl = 0;
6683
6684		retval = hw->phy.ops.acquire(hw);
6685		if (!retval) {
6686			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6687						 &lpi_ctrl);
6688			if (!retval) {
6689				if (adapter->eee_advert &
6690				    hw->dev_spec.ich8lan.eee_lp_ability &
6691				    I82579_EEE_100_SUPPORTED)
6692					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6693				if (adapter->eee_advert &
6694				    hw->dev_spec.ich8lan.eee_lp_ability &
6695				    I82579_EEE_1000_SUPPORTED)
6696					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6697
6698				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6699							 lpi_ctrl);
6700			}
6701		}
6702		hw->phy.ops.release(hw);
6703	}
6704
6705	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6706	 * would have already happened in close and is redundant.
6707	 */
6708	e1000e_release_hw_control(adapter);
6709
6710	pci_clear_master(pdev);
 
 
 
 
6711
6712	/* The pci-e switch on some quad port adapters will report a
 
6713	 * correctable error when the MAC transitions from D0 to D3.  To
6714	 * prevent this we need to mask off the correctable errors on the
6715	 * downstream port of the pci-e switch.
6716	 *
6717	 * We don't have the associated upstream bridge while assigning
6718	 * the PCI device into guest. For example, the KVM on power is
6719	 * one of the cases.
6720	 */
6721	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6722		struct pci_dev *us_dev = pdev->bus->self;
 
6723		u16 devctl;
6724
6725		if (!us_dev)
6726			return 0;
 
6727
6728		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6729		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6730					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6731
6732		pci_save_state(pdev);
6733		pci_prepare_to_sleep(pdev);
6734
6735		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6736	}
6737
6738	return 0;
6739}
6740
6741/**
6742 * __e1000e_disable_aspm - Disable ASPM states
6743 * @pdev: pointer to PCI device struct
6744 * @state: bit-mask of ASPM states to disable
6745 * @locked: indication if this context holds pci_bus_sem locked.
6746 *
6747 * Some devices *must* have certain ASPM states disabled per hardware errata.
6748 **/
6749static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6750{
6751	struct pci_dev *parent = pdev->bus->self;
6752	u16 aspm_dis_mask = 0;
6753	u16 pdev_aspmc, parent_aspmc;
6754
6755	switch (state) {
6756	case PCIE_LINK_STATE_L0S:
6757	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6758		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6759		fallthrough; /* can't have L1 without L0s */
6760	case PCIE_LINK_STATE_L1:
6761		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6762		break;
6763	default:
6764		return;
6765	}
6766
6767	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6768	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6769
6770	if (parent) {
6771		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6772					  &parent_aspmc);
6773		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6774	}
6775
6776	/* Nothing to do if the ASPM states to be disabled already are */
6777	if (!(pdev_aspmc & aspm_dis_mask) &&
6778	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6779		return;
6780
6781	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6782		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6783		 "L0s" : "",
6784		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6785		 "L1" : "");
6786
6787#ifdef CONFIG_PCIEASPM
6788	if (locked)
6789		pci_disable_link_state_locked(pdev, state);
6790	else
6791		pci_disable_link_state(pdev, state);
 
 
 
 
 
6792
6793	/* Double-check ASPM control.  If not disabled by the above, the
6794	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6795	 * not enabled); override by writing PCI config space directly.
6796	 */
6797	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6798	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
 
 
6799
6800	if (!(aspm_dis_mask & pdev_aspmc))
6801		return;
6802#endif
6803
6804	/* Both device and parent should have the same ASPM setting.
6805	 * Disable ASPM in downstream component first and then upstream.
6806	 */
6807	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6808
6809	if (parent)
6810		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6811					   aspm_dis_mask);
 
6812}
6813
6814/**
6815 * e1000e_disable_aspm - Disable ASPM states.
6816 * @pdev: pointer to PCI device struct
6817 * @state: bit-mask of ASPM states to disable
6818 *
6819 * This function acquires the pci_bus_sem!
6820 * Some devices *must* have certain ASPM states disabled per hardware errata.
6821 **/
6822static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6823{
6824	__e1000e_disable_aspm(pdev, state, 0);
6825}
 
6826
6827/**
6828 * e1000e_disable_aspm_locked - Disable ASPM states.
6829 * @pdev: pointer to PCI device struct
6830 * @state: bit-mask of ASPM states to disable
6831 *
6832 * This function must be called with pci_bus_sem acquired!
6833 * Some devices *must* have certain ASPM states disabled per hardware errata.
6834 **/
6835static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6836{
6837	__e1000e_disable_aspm(pdev, state, 1);
6838}
6839
6840static int e1000e_pm_thaw(struct device *dev)
 
6841{
6842	struct net_device *netdev = dev_get_drvdata(dev);
6843	struct e1000_adapter *adapter = netdev_priv(netdev);
6844	int rc = 0;
6845
6846	e1000e_set_interrupt_capability(adapter);
6847
6848	rtnl_lock();
6849	if (netif_running(netdev)) {
6850		rc = e1000_request_irq(adapter);
6851		if (rc)
6852			goto err_irq;
6853
6854		e1000e_up(adapter);
6855	}
6856
6857	netif_device_attach(netdev);
6858err_irq:
6859	rtnl_unlock();
6860
6861	return rc;
6862}
6863
6864static int __e1000_resume(struct pci_dev *pdev)
6865{
6866	struct net_device *netdev = pci_get_drvdata(pdev);
6867	struct e1000_adapter *adapter = netdev_priv(netdev);
6868	struct e1000_hw *hw = &adapter->hw;
6869	u16 aspm_disable_flag = 0;
 
6870
6871	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6872		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6873	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6874		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6875	if (aspm_disable_flag)
6876		e1000e_disable_aspm(pdev, aspm_disable_flag);
6877
6878	pci_set_master(pdev);
 
 
 
 
 
 
 
 
 
6879
6880	if (hw->mac.type >= e1000_pch2lan)
6881		e1000_resume_workarounds_pchlan(&adapter->hw);
6882
6883	e1000e_power_up_phy(adapter);
6884
6885	/* report the system wakeup cause from S3/S4 */
6886	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6887		u16 phy_data;
6888
6889		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6890		if (phy_data) {
6891			e_info("PHY Wakeup cause - %s\n",
6892			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6893			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6894			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6895			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6896			       phy_data & E1000_WUS_LNKC ?
6897			       "Link Status Change" : "other");
6898		}
6899		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6900	} else {
6901		u32 wus = er32(WUS);
6902
6903		if (wus) {
6904			e_info("MAC Wakeup cause - %s\n",
6905			       wus & E1000_WUS_EX ? "Unicast Packet" :
6906			       wus & E1000_WUS_MC ? "Multicast Packet" :
6907			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6908			       wus & E1000_WUS_MAG ? "Magic Packet" :
6909			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6910			       "other");
6911		}
6912		ew32(WUS, ~0);
6913	}
6914
6915	e1000e_reset(adapter);
6916
6917	e1000_init_manageability_pt(adapter);
6918
6919	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
 
 
 
 
 
6920	 * is up.  For all other cases, let the f/w know that the h/w is now
6921	 * under the control of the driver.
6922	 */
6923	if (!(adapter->flags & FLAG_HAS_AMT))
6924		e1000e_get_hw_control(adapter);
6925
6926	return 0;
6927}
6928
6929static __maybe_unused int e1000e_pm_prepare(struct device *dev)
 
6930{
6931	return pm_runtime_suspended(dev) &&
6932		pm_suspend_via_firmware();
6933}
6934
6935static __maybe_unused int e1000e_pm_suspend(struct device *dev)
6936{
6937	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6938	struct e1000_adapter *adapter = netdev_priv(netdev);
6939	struct pci_dev *pdev = to_pci_dev(dev);
6940	int rc;
 
6941
6942	e1000e_flush_lpic(pdev);
 
 
6943
6944	e1000e_pm_freeze(dev);
6945
6946	rc = __e1000_shutdown(pdev, false);
6947	if (rc) {
6948		e1000e_pm_thaw(dev);
6949	} else {
6950		/* Introduce S0ix implementation */
6951		if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6952			e1000e_s0ix_entry_flow(adapter);
6953	}
6954
6955	return rc;
6956}
6957
6958static __maybe_unused int e1000e_pm_resume(struct device *dev)
6959{
6960	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
 
6961	struct e1000_adapter *adapter = netdev_priv(netdev);
6962	struct pci_dev *pdev = to_pci_dev(dev);
6963	int rc;
6964
6965	/* Introduce S0ix implementation */
6966	if (adapter->flags2 & FLAG2_ENABLE_S0IX_FLOWS)
6967		e1000e_s0ix_exit_flow(adapter);
6968
6969	rc = __e1000_resume(pdev);
6970	if (rc)
6971		return rc;
6972
6973	return e1000e_pm_thaw(dev);
6974}
 
6975
6976static __maybe_unused int e1000e_pm_runtime_idle(struct device *dev)
 
6977{
6978	struct net_device *netdev = dev_get_drvdata(dev);
 
6979	struct e1000_adapter *adapter = netdev_priv(netdev);
6980	u16 eee_lp;
6981
6982	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
 
6983
6984	if (!e1000e_has_link(adapter)) {
6985		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6986		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6987	}
6988
6989	return -EBUSY;
6990}
6991
6992static __maybe_unused int e1000e_pm_runtime_resume(struct device *dev)
6993{
6994	struct pci_dev *pdev = to_pci_dev(dev);
6995	struct net_device *netdev = pci_get_drvdata(pdev);
6996	struct e1000_adapter *adapter = netdev_priv(netdev);
6997	int rc;
6998
6999	rc = __e1000_resume(pdev);
7000	if (rc)
7001		return rc;
7002
7003	if (netdev->flags & IFF_UP)
7004		e1000e_up(adapter);
 
 
 
7005
7006	return rc;
7007}
7008
7009static __maybe_unused int e1000e_pm_runtime_suspend(struct device *dev)
7010{
7011	struct pci_dev *pdev = to_pci_dev(dev);
7012	struct net_device *netdev = pci_get_drvdata(pdev);
7013	struct e1000_adapter *adapter = netdev_priv(netdev);
7014
7015	if (netdev->flags & IFF_UP) {
7016		int count = E1000_CHECK_RESET_COUNT;
7017
7018		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
7019			usleep_range(10000, 11000);
7020
7021		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
7022
7023		/* Down the device without resetting the hardware */
7024		e1000e_down(adapter, false);
7025	}
7026
7027	if (__e1000_shutdown(pdev, true)) {
7028		e1000e_pm_runtime_resume(dev);
7029		return -EBUSY;
7030	}
7031
7032	return 0;
7033}
 
 
7034
7035static void e1000_shutdown(struct pci_dev *pdev)
7036{
7037	e1000e_flush_lpic(pdev);
7038
7039	e1000e_pm_freeze(&pdev->dev);
7040
7041	__e1000_shutdown(pdev, false);
 
7042}
7043
7044#ifdef CONFIG_NET_POLL_CONTROLLER
7045
7046static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
7047{
7048	struct net_device *netdev = data;
7049	struct e1000_adapter *adapter = netdev_priv(netdev);
7050
7051	if (adapter->msix_entries) {
7052		int vector, msix_irq;
7053
7054		vector = 0;
7055		msix_irq = adapter->msix_entries[vector].vector;
7056		if (disable_hardirq(msix_irq))
7057			e1000_intr_msix_rx(msix_irq, netdev);
7058		enable_irq(msix_irq);
7059
7060		vector++;
7061		msix_irq = adapter->msix_entries[vector].vector;
7062		if (disable_hardirq(msix_irq))
7063			e1000_intr_msix_tx(msix_irq, netdev);
7064		enable_irq(msix_irq);
7065
7066		vector++;
7067		msix_irq = adapter->msix_entries[vector].vector;
7068		if (disable_hardirq(msix_irq))
7069			e1000_msix_other(msix_irq, netdev);
7070		enable_irq(msix_irq);
7071	}
7072
7073	return IRQ_HANDLED;
7074}
7075
7076/**
7077 * e1000_netpoll
7078 * @netdev: network interface device structure
7079 *
7080 * Polling 'interrupt' - used by things like netconsole to send skbs
7081 * without having to re-enable interrupts. It's not called while
7082 * the interrupt routine is executing.
7083 */
7084static void e1000_netpoll(struct net_device *netdev)
7085{
7086	struct e1000_adapter *adapter = netdev_priv(netdev);
7087
7088	switch (adapter->int_mode) {
7089	case E1000E_INT_MODE_MSIX:
7090		e1000_intr_msix(adapter->pdev->irq, netdev);
7091		break;
7092	case E1000E_INT_MODE_MSI:
7093		if (disable_hardirq(adapter->pdev->irq))
7094			e1000_intr_msi(adapter->pdev->irq, netdev);
7095		enable_irq(adapter->pdev->irq);
7096		break;
7097	default:		/* E1000E_INT_MODE_LEGACY */
7098		if (disable_hardirq(adapter->pdev->irq))
7099			e1000_intr(adapter->pdev->irq, netdev);
7100		enable_irq(adapter->pdev->irq);
7101		break;
7102	}
7103}
7104#endif
7105
7106/**
7107 * e1000_io_error_detected - called when PCI error is detected
7108 * @pdev: Pointer to PCI device
7109 * @state: The current pci connection state
7110 *
7111 * This function is called after a PCI bus error affecting
7112 * this device has been detected.
7113 */
7114static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
7115						pci_channel_state_t state)
7116{
7117	e1000e_pm_freeze(&pdev->dev);
 
 
 
7118
7119	if (state == pci_channel_io_perm_failure)
7120		return PCI_ERS_RESULT_DISCONNECT;
7121
 
 
7122	pci_disable_device(pdev);
7123
7124	/* Request a slot reset. */
7125	return PCI_ERS_RESULT_NEED_RESET;
7126}
7127
7128/**
7129 * e1000_io_slot_reset - called after the pci bus has been reset.
7130 * @pdev: Pointer to PCI device
7131 *
7132 * Restart the card from scratch, as if from a cold-boot. Implementation
7133 * resembles the first-half of the e1000e_pm_resume routine.
7134 */
7135static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
7136{
7137	struct net_device *netdev = pci_get_drvdata(pdev);
7138	struct e1000_adapter *adapter = netdev_priv(netdev);
7139	struct e1000_hw *hw = &adapter->hw;
7140	u16 aspm_disable_flag = 0;
7141	int err;
7142	pci_ers_result_t result;
7143
7144	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
7145		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7146	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
7147		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7148	if (aspm_disable_flag)
7149		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
7150
7151	err = pci_enable_device_mem(pdev);
7152	if (err) {
7153		dev_err(&pdev->dev,
7154			"Cannot re-enable PCI device after reset.\n");
7155		result = PCI_ERS_RESULT_DISCONNECT;
7156	} else {
 
7157		pdev->state_saved = true;
7158		pci_restore_state(pdev);
7159		pci_set_master(pdev);
7160
7161		pci_enable_wake(pdev, PCI_D3hot, 0);
7162		pci_enable_wake(pdev, PCI_D3cold, 0);
7163
7164		e1000e_reset(adapter);
7165		ew32(WUS, ~0);
7166		result = PCI_ERS_RESULT_RECOVERED;
7167	}
7168
 
 
7169	return result;
7170}
7171
7172/**
7173 * e1000_io_resume - called when traffic can start flowing again.
7174 * @pdev: Pointer to PCI device
7175 *
7176 * This callback is called when the error recovery driver tells us that
7177 * its OK to resume normal operation. Implementation resembles the
7178 * second-half of the e1000e_pm_resume routine.
7179 */
7180static void e1000_io_resume(struct pci_dev *pdev)
7181{
7182	struct net_device *netdev = pci_get_drvdata(pdev);
7183	struct e1000_adapter *adapter = netdev_priv(netdev);
7184
7185	e1000_init_manageability_pt(adapter);
7186
7187	e1000e_pm_thaw(&pdev->dev);
 
 
 
 
 
 
7188
7189	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
 
 
7190	 * is up.  For all other cases, let the f/w know that the h/w is now
7191	 * under the control of the driver.
7192	 */
7193	if (!(adapter->flags & FLAG_HAS_AMT))
7194		e1000e_get_hw_control(adapter);
 
7195}
7196
7197static void e1000_print_device_info(struct e1000_adapter *adapter)
7198{
7199	struct e1000_hw *hw = &adapter->hw;
7200	struct net_device *netdev = adapter->netdev;
7201	u32 ret_val;
7202	u8 pba_str[E1000_PBANUM_LENGTH];
7203
7204	/* print bus type/speed/width info */
7205	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
7206	       /* bus width */
7207	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
7208		"Width x1"),
7209	       /* MAC address */
7210	       netdev->dev_addr);
7211	e_info("Intel(R) PRO/%s Network Connection\n",
7212	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
7213	ret_val = e1000_read_pba_string_generic(hw, pba_str,
7214						E1000_PBANUM_LENGTH);
7215	if (ret_val)
7216		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
7217	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
7218	       hw->mac.type, hw->phy.type, pba_str);
7219}
7220
7221static void e1000_eeprom_checks(struct e1000_adapter *adapter)
7222{
7223	struct e1000_hw *hw = &adapter->hw;
7224	int ret_val;
7225	u16 buf = 0;
7226
7227	if (hw->mac.type != e1000_82573)
7228		return;
7229
7230	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
7231	le16_to_cpus(&buf);
7232	if (!ret_val && (!(buf & BIT(0)))) {
7233		/* Deep Smart Power Down (DSPD) */
7234		dev_warn(&adapter->pdev->dev,
7235			 "Warning: detected DSPD enabled in EEPROM\n");
7236	}
7237}
7238
7239static netdev_features_t e1000_fix_features(struct net_device *netdev,
7240					    netdev_features_t features)
7241{
7242	struct e1000_adapter *adapter = netdev_priv(netdev);
7243	struct e1000_hw *hw = &adapter->hw;
7244
7245	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
7246	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
7247		features &= ~NETIF_F_RXFCS;
7248
7249	/* Since there is no support for separate Rx/Tx vlan accel
7250	 * enable/disable make sure Tx flag is always in same state as Rx.
7251	 */
7252	if (features & NETIF_F_HW_VLAN_CTAG_RX)
7253		features |= NETIF_F_HW_VLAN_CTAG_TX;
7254	else
7255		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
7256
7257	return features;
7258}
7259
7260static int e1000_set_features(struct net_device *netdev,
7261			      netdev_features_t features)
7262{
7263	struct e1000_adapter *adapter = netdev_priv(netdev);
7264	netdev_features_t changed = features ^ netdev->features;
7265
7266	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
7267		adapter->flags |= FLAG_TSO_FORCE;
7268
7269	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
7270			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
7271			 NETIF_F_RXALL)))
7272		return 0;
7273
7274	if (changed & NETIF_F_RXFCS) {
7275		if (features & NETIF_F_RXFCS) {
7276			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7277		} else {
7278			/* We need to take it back to defaults, which might mean
7279			 * stripping is still disabled at the adapter level.
7280			 */
7281			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
7282				adapter->flags2 |= FLAG2_CRC_STRIPPING;
7283			else
7284				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
7285		}
7286	}
7287
7288	netdev->features = features;
7289
7290	if (netif_running(netdev))
7291		e1000e_reinit_locked(adapter);
7292	else
7293		e1000e_reset(adapter);
7294
7295	return 1;
7296}
7297
7298static const struct net_device_ops e1000e_netdev_ops = {
7299	.ndo_open		= e1000e_open,
7300	.ndo_stop		= e1000e_close,
7301	.ndo_start_xmit		= e1000_xmit_frame,
7302	.ndo_get_stats64	= e1000e_get_stats64,
7303	.ndo_set_rx_mode	= e1000e_set_rx_mode,
7304	.ndo_set_mac_address	= e1000_set_mac,
7305	.ndo_change_mtu		= e1000_change_mtu,
7306	.ndo_do_ioctl		= e1000_ioctl,
7307	.ndo_tx_timeout		= e1000_tx_timeout,
7308	.ndo_validate_addr	= eth_validate_addr,
7309
7310	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
7311	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
7312#ifdef CONFIG_NET_POLL_CONTROLLER
7313	.ndo_poll_controller	= e1000_netpoll,
7314#endif
7315	.ndo_set_features = e1000_set_features,
7316	.ndo_fix_features = e1000_fix_features,
7317	.ndo_features_check	= passthru_features_check,
7318};
7319
7320/**
7321 * e1000_probe - Device Initialization Routine
7322 * @pdev: PCI device information struct
7323 * @ent: entry in e1000_pci_tbl
7324 *
7325 * Returns 0 on success, negative on failure
7326 *
7327 * e1000_probe initializes an adapter identified by a pci_dev structure.
7328 * The OS initialization, configuring of the adapter private structure,
7329 * and a hardware reset occur.
7330 **/
7331static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 
7332{
7333	struct net_device *netdev;
7334	struct e1000_adapter *adapter;
7335	struct e1000_hw *hw;
7336	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
7337	resource_size_t mmio_start, mmio_len;
7338	resource_size_t flash_start, flash_len;
7339	static int cards_found;
7340	u16 aspm_disable_flag = 0;
7341	int bars, i, err, pci_using_dac;
7342	u16 eeprom_data = 0;
7343	u16 eeprom_apme_mask = E1000_EEPROM_APME;
7344	s32 ret_val = 0;
7345
7346	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
7347		aspm_disable_flag = PCIE_LINK_STATE_L0S;
7348	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
7349		aspm_disable_flag |= PCIE_LINK_STATE_L1;
7350	if (aspm_disable_flag)
7351		e1000e_disable_aspm(pdev, aspm_disable_flag);
7352
7353	err = pci_enable_device_mem(pdev);
7354	if (err)
7355		return err;
7356
7357	pci_using_dac = 0;
7358	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
7359	if (!err) {
7360		pci_using_dac = 1;
 
 
7361	} else {
7362		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
7363		if (err) {
7364			dev_err(&pdev->dev,
7365				"No usable DMA configuration, aborting\n");
7366			goto err_dma;
 
 
 
7367		}
7368	}
7369
7370	bars = pci_select_bars(pdev, IORESOURCE_MEM);
7371	err = pci_request_selected_regions_exclusive(pdev, bars,
7372						     e1000e_driver_name);
7373	if (err)
7374		goto err_pci_reg;
7375
7376	/* AER (Advanced Error Reporting) hooks */
7377	pci_enable_pcie_error_reporting(pdev);
7378
7379	pci_set_master(pdev);
7380	/* PCI config space info */
7381	err = pci_save_state(pdev);
7382	if (err)
7383		goto err_alloc_etherdev;
7384
7385	err = -ENOMEM;
7386	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7387	if (!netdev)
7388		goto err_alloc_etherdev;
7389
7390	SET_NETDEV_DEV(netdev, &pdev->dev);
7391
7392	netdev->irq = pdev->irq;
7393
7394	pci_set_drvdata(pdev, netdev);
7395	adapter = netdev_priv(netdev);
7396	hw = &adapter->hw;
7397	adapter->netdev = netdev;
7398	adapter->pdev = pdev;
7399	adapter->ei = ei;
7400	adapter->pba = ei->pba;
7401	adapter->flags = ei->flags;
7402	adapter->flags2 = ei->flags2;
7403	adapter->hw.adapter = adapter;
7404	adapter->hw.mac.type = ei->mac;
7405	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7406	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7407
7408	mmio_start = pci_resource_start(pdev, 0);
7409	mmio_len = pci_resource_len(pdev, 0);
7410
7411	err = -EIO;
7412	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7413	if (!adapter->hw.hw_addr)
7414		goto err_ioremap;
7415
7416	if ((adapter->flags & FLAG_HAS_FLASH) &&
7417	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7418	    (hw->mac.type < e1000_pch_spt)) {
7419		flash_start = pci_resource_start(pdev, 1);
7420		flash_len = pci_resource_len(pdev, 1);
7421		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7422		if (!adapter->hw.flash_address)
7423			goto err_flashmap;
7424	}
7425
7426	/* Set default EEE advertisement */
7427	if (adapter->flags2 & FLAG2_HAS_EEE)
7428		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7429
7430	/* construct the net_device struct */
7431	netdev->netdev_ops = &e1000e_netdev_ops;
7432	e1000e_set_ethtool_ops(netdev);
7433	netdev->watchdog_timeo = 5 * HZ;
7434	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7435	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7436
7437	netdev->mem_start = mmio_start;
7438	netdev->mem_end = mmio_start + mmio_len;
7439
7440	adapter->bd_number = cards_found++;
7441
7442	e1000e_check_options(adapter);
7443
7444	/* setup adapter struct */
7445	err = e1000_sw_init(adapter);
7446	if (err)
7447		goto err_sw_init;
7448
7449	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7450	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7451	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7452
7453	err = ei->get_variants(adapter);
7454	if (err)
7455		goto err_hw_init;
7456
7457	if ((adapter->flags & FLAG_IS_ICH) &&
7458	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7459	    (hw->mac.type < e1000_pch_spt))
7460		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7461
7462	hw->mac.ops.get_bus_info(&adapter->hw);
7463
7464	adapter->hw.phy.autoneg_wait_to_complete = 0;
7465
7466	/* Copper options */
7467	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7468		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7469		adapter->hw.phy.disable_polarity_correction = 0;
7470		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7471	}
7472
7473	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7474		dev_info(&pdev->dev,
7475			 "PHY reset is blocked due to SOL/IDER session.\n");
7476
7477	/* Set initial default active device features */
7478	netdev->features = (NETIF_F_SG |
7479			    NETIF_F_HW_VLAN_CTAG_RX |
7480			    NETIF_F_HW_VLAN_CTAG_TX |
7481			    NETIF_F_TSO |
7482			    NETIF_F_TSO6 |
7483			    NETIF_F_RXHASH |
7484			    NETIF_F_RXCSUM |
7485			    NETIF_F_HW_CSUM);
7486
7487	/* Set user-changeable features (subset of all device features) */
7488	netdev->hw_features = netdev->features;
7489	netdev->hw_features |= NETIF_F_RXFCS;
7490	netdev->priv_flags |= IFF_SUPP_NOFCS;
7491	netdev->hw_features |= NETIF_F_RXALL;
7492
7493	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7494		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7495
7496	netdev->vlan_features |= (NETIF_F_SG |
7497				  NETIF_F_TSO |
7498				  NETIF_F_TSO6 |
7499				  NETIF_F_HW_CSUM);
7500
7501	netdev->priv_flags |= IFF_UNICAST_FLT;
7502
7503	if (pci_using_dac) {
7504		netdev->features |= NETIF_F_HIGHDMA;
7505		netdev->vlan_features |= NETIF_F_HIGHDMA;
7506	}
7507
7508	/* MTU range: 68 - max_hw_frame_size */
7509	netdev->min_mtu = ETH_MIN_MTU;
7510	netdev->max_mtu = adapter->max_hw_frame_size -
7511			  (VLAN_ETH_HLEN + ETH_FCS_LEN);
7512
7513	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7514		adapter->flags |= FLAG_MNG_PT_ENABLED;
7515
7516	/* before reading the NVM, reset the controller to
 
7517	 * put the device in a known good starting state
7518	 */
7519	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7520
7521	/* systems with ASPM and others may see the checksum fail on the first
 
7522	 * attempt. Let's give it a few tries
7523	 */
7524	for (i = 0;; i++) {
7525		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7526			break;
7527		if (i == 2) {
7528			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7529			err = -EIO;
7530			goto err_eeprom;
7531		}
7532	}
7533
7534	e1000_eeprom_checks(adapter);
7535
7536	/* copy the MAC address */
7537	if (e1000e_read_mac_addr(&adapter->hw))
7538		dev_err(&pdev->dev,
7539			"NVM Read Error while reading MAC address\n");
7540
7541	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
 
7542
7543	if (!is_valid_ether_addr(netdev->dev_addr)) {
7544		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7545			netdev->dev_addr);
7546		err = -EIO;
7547		goto err_eeprom;
7548	}
7549
7550	timer_setup(&adapter->watchdog_timer, e1000_watchdog, 0);
7551	timer_setup(&adapter->phy_info_timer, e1000_update_phy_info, 0);
 
 
 
 
 
7552
7553	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7554	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7555	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7556	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7557	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7558
7559	/* Initialize link parameters. User can change them with ethtool */
7560	adapter->hw.mac.autoneg = 1;
7561	adapter->fc_autoneg = true;
7562	adapter->hw.fc.requested_mode = e1000_fc_default;
7563	adapter->hw.fc.current_mode = e1000_fc_default;
7564	adapter->hw.phy.autoneg_advertised = 0x2f;
7565
7566	/* Initial Wake on LAN setting - If APM wake is enabled in
 
 
 
 
 
7567	 * the EEPROM, enable the ACPI Magic Packet filter
7568	 */
7569	if (adapter->flags & FLAG_APME_IN_WUC) {
7570		/* APME bit in EEPROM is mapped to WUC.APME */
7571		eeprom_data = er32(WUC);
7572		eeprom_apme_mask = E1000_WUC_APME;
7573		if ((hw->mac.type > e1000_ich10lan) &&
7574		    (eeprom_data & E1000_WUC_PHY_WAKE))
7575			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7576	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7577		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7578		    (adapter->hw.bus.func == 1))
7579			ret_val = e1000_read_nvm(&adapter->hw,
7580					      NVM_INIT_CONTROL3_PORT_B,
7581					      1, &eeprom_data);
7582		else
7583			ret_val = e1000_read_nvm(&adapter->hw,
7584					      NVM_INIT_CONTROL3_PORT_A,
7585					      1, &eeprom_data);
7586	}
7587
7588	/* fetch WoL from EEPROM */
7589	if (ret_val)
7590		e_dbg("NVM read error getting WoL initial values: %d\n", ret_val);
7591	else if (eeprom_data & eeprom_apme_mask)
7592		adapter->eeprom_wol |= E1000_WUFC_MAG;
7593
7594	/* now that we have the eeprom settings, apply the special cases
 
7595	 * where the eeprom may be wrong or the board simply won't support
7596	 * wake on lan on a particular port
7597	 */
7598	if (!(adapter->flags & FLAG_HAS_WOL))
7599		adapter->eeprom_wol = 0;
7600
7601	/* initialize the wol settings based on the eeprom settings */
7602	adapter->wol = adapter->eeprom_wol;
7603
7604	/* make sure adapter isn't asleep if manageability is enabled */
7605	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7606	    (hw->mac.ops.check_mng_mode(hw)))
7607		device_wakeup_enable(&pdev->dev);
7608
7609	/* save off EEPROM version number */
7610	ret_val = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7611
7612	if (ret_val) {
7613		e_dbg("NVM read error getting EEPROM version: %d\n", ret_val);
7614		adapter->eeprom_vers = 0;
7615	}
7616
7617	/* init PTP hardware clock */
7618	e1000e_ptp_init(adapter);
7619
7620	/* reset the hardware with the new settings */
7621	e1000e_reset(adapter);
7622
7623	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
7624	 * is up.  For all other cases, let the f/w know that the h/w is now
7625	 * under the control of the driver.
7626	 */
7627	if (!(adapter->flags & FLAG_HAS_AMT))
7628		e1000e_get_hw_control(adapter);
7629
7630	if (hw->mac.type >= e1000_pch_cnp)
7631		adapter->flags2 |= FLAG2_ENABLE_S0IX_FLOWS;
7632
7633	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7634	err = register_netdev(netdev);
7635	if (err)
7636		goto err_register;
7637
7638	/* carrier off reporting is important to ethtool even BEFORE open */
7639	netif_carrier_off(netdev);
7640
7641	e1000_print_device_info(adapter);
7642
7643	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_SMART_PREPARE);
7644
7645	if (pci_dev_run_wake(pdev) && hw->mac.type != e1000_pch_cnp)
7646		pm_runtime_put_noidle(&pdev->dev);
7647
7648	return 0;
7649
7650err_register:
7651	if (!(adapter->flags & FLAG_HAS_AMT))
7652		e1000e_release_hw_control(adapter);
7653err_eeprom:
7654	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7655		e1000_phy_hw_reset(&adapter->hw);
7656err_hw_init:
7657	kfree(adapter->tx_ring);
7658	kfree(adapter->rx_ring);
7659err_sw_init:
7660	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7661		iounmap(adapter->hw.flash_address);
7662	e1000e_reset_interrupt_capability(adapter);
7663err_flashmap:
7664	iounmap(adapter->hw.hw_addr);
7665err_ioremap:
7666	free_netdev(netdev);
7667err_alloc_etherdev:
7668	pci_disable_pcie_error_reporting(pdev);
7669	pci_release_mem_regions(pdev);
7670err_pci_reg:
7671err_dma:
7672	pci_disable_device(pdev);
7673	return err;
7674}
7675
7676/**
7677 * e1000_remove - Device Removal Routine
7678 * @pdev: PCI device information struct
7679 *
7680 * e1000_remove is called by the PCI subsystem to alert the driver
7681 * that it should release a PCI device.  The could be caused by a
7682 * Hot-Plug event, or because the driver is going to be removed from
7683 * memory.
7684 **/
7685static void e1000_remove(struct pci_dev *pdev)
7686{
7687	struct net_device *netdev = pci_get_drvdata(pdev);
7688	struct e1000_adapter *adapter = netdev_priv(netdev);
 
7689
7690	e1000e_ptp_remove(adapter);
7691
7692	/* The timers may be rescheduled, so explicitly disable them
7693	 * from being rescheduled.
7694	 */
7695	set_bit(__E1000_DOWN, &adapter->state);
 
7696	del_timer_sync(&adapter->watchdog_timer);
7697	del_timer_sync(&adapter->phy_info_timer);
7698
7699	cancel_work_sync(&adapter->reset_task);
7700	cancel_work_sync(&adapter->watchdog_task);
7701	cancel_work_sync(&adapter->downshift_task);
7702	cancel_work_sync(&adapter->update_phy_task);
7703	cancel_work_sync(&adapter->print_hang_task);
7704
7705	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7706		cancel_work_sync(&adapter->tx_hwtstamp_work);
7707		if (adapter->tx_hwtstamp_skb) {
7708			dev_consume_skb_any(adapter->tx_hwtstamp_skb);
7709			adapter->tx_hwtstamp_skb = NULL;
7710		}
7711	}
7712
 
 
 
7713	unregister_netdev(netdev);
7714
7715	if (pci_dev_run_wake(pdev))
7716		pm_runtime_get_noresume(&pdev->dev);
7717
7718	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 
7719	 * would have already happened in close and is redundant.
7720	 */
7721	e1000e_release_hw_control(adapter);
7722
7723	e1000e_reset_interrupt_capability(adapter);
7724	kfree(adapter->tx_ring);
7725	kfree(adapter->rx_ring);
7726
7727	iounmap(adapter->hw.hw_addr);
7728	if ((adapter->hw.flash_address) &&
7729	    (adapter->hw.mac.type < e1000_pch_spt))
7730		iounmap(adapter->hw.flash_address);
7731	pci_release_mem_regions(pdev);
 
7732
7733	free_netdev(netdev);
7734
7735	/* AER disable */
7736	pci_disable_pcie_error_reporting(pdev);
7737
7738	pci_disable_device(pdev);
7739}
7740
7741/* PCI Error Recovery (ERS) */
7742static const struct pci_error_handlers e1000_err_handler = {
7743	.error_detected = e1000_io_error_detected,
7744	.slot_reset = e1000_io_slot_reset,
7745	.resume = e1000_io_resume,
7746};
7747
7748static const struct pci_device_id e1000_pci_tbl[] = {
7749	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7750	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7751	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7752	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7753	  board_82571 },
7754	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7755	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7756	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7757	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7758	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7759
7760	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7761	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7762	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7763	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7764
7765	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7766	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7767	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7768
7769	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7770	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7771	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7772
7773	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7774	  board_80003es2lan },
7775	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7776	  board_80003es2lan },
7777	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7778	  board_80003es2lan },
7779	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7780	  board_80003es2lan },
7781
7782	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7783	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7784	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7785	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7786	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7787	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7788	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7789	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7790
7791	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7792	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7793	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7794	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7795	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7796	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7797	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7798	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7799	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7800
7801	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7802	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7803	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7804
7805	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7806	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7807	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7808
7809	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7810	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7811	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7812	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7813
7814	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7815	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7816
7817	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7818	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7819	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7820	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7821	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7822	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7823	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7824	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7825	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7826	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7827	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7828	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7829	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7830	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7831	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7832	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7833	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7834	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM6), board_pch_cnp },
7835	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V6), board_pch_cnp },
7836	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_LM7), board_pch_cnp },
7837	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CNP_I219_V7), board_pch_cnp },
7838	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM8), board_pch_cnp },
7839	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V8), board_pch_cnp },
7840	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_LM9), board_pch_cnp },
7841	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ICP_I219_V9), board_pch_cnp },
7842	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM10), board_pch_cnp },
7843	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V10), board_pch_cnp },
7844	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM11), board_pch_cnp },
7845	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V11), board_pch_cnp },
7846	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_LM12), board_pch_spt },
7847	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_CMP_I219_V12), board_pch_spt },
7848	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM13), board_pch_tgp },
7849	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V13), board_pch_tgp },
7850	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM14), board_pch_tgp },
7851	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V14), board_pch_tgp },
7852	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_LM15), board_pch_tgp },
7853	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_TGP_I219_V15), board_pch_tgp },
7854	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM16), board_pch_tgp },
7855	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V16), board_pch_tgp },
7856	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_LM17), board_pch_tgp },
7857	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_ADP_I219_V17), board_pch_tgp },
7858	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM18), board_pch_tgp },
7859	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V18), board_pch_tgp },
7860	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_LM19), board_pch_tgp },
7861	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_MTP_I219_V19), board_pch_tgp },
7862
7863	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7864};
7865MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7866
 
7867static const struct dev_pm_ops e1000_pm_ops = {
7868#ifdef CONFIG_PM_SLEEP
7869	.prepare	= e1000e_pm_prepare,
7870	.suspend	= e1000e_pm_suspend,
7871	.resume		= e1000e_pm_resume,
7872	.freeze		= e1000e_pm_freeze,
7873	.thaw		= e1000e_pm_thaw,
7874	.poweroff	= e1000e_pm_suspend,
7875	.restore	= e1000e_pm_resume,
7876#endif
7877	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7878			   e1000e_pm_runtime_idle)
7879};
7880
7881/* PCI Device API Driver */
7882static struct pci_driver e1000_driver = {
7883	.name     = e1000e_driver_name,
7884	.id_table = e1000_pci_tbl,
7885	.probe    = e1000_probe,
7886	.remove   = e1000_remove,
 
7887	.driver   = {
7888		.pm = &e1000_pm_ops,
7889	},
 
7890	.shutdown = e1000_shutdown,
7891	.err_handler = &e1000_err_handler
7892};
7893
7894/**
7895 * e1000_init_module - Driver Registration Routine
7896 *
7897 * e1000_init_module is the first routine called when the driver is
7898 * loaded. All it does is register with the PCI subsystem.
7899 **/
7900static int __init e1000_init_module(void)
7901{
7902	pr_info("Intel(R) PRO/1000 Network Driver\n");
7903	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
 
 
7904
7905	return pci_register_driver(&e1000_driver);
7906}
7907module_init(e1000_init_module);
7908
7909/**
7910 * e1000_exit_module - Driver Exit Cleanup Routine
7911 *
7912 * e1000_exit_module is called just before the driver is removed
7913 * from memory.
7914 **/
7915static void __exit e1000_exit_module(void)
7916{
7917	pci_unregister_driver(&e1000_driver);
7918}
7919module_exit(e1000_exit_module);
7920
 
7921MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7922MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7923MODULE_LICENSE("GPL v2");
 
7924
7925/* netdev.c */