Linux Audio

Check our new training course

Loading...
v3.5.6
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2012 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  30
  31#include <linux/module.h>
  32#include <linux/types.h>
  33#include <linux/init.h>
  34#include <linux/pci.h>
  35#include <linux/vmalloc.h>
  36#include <linux/pagemap.h>
  37#include <linux/delay.h>
  38#include <linux/netdevice.h>
  39#include <linux/interrupt.h>
  40#include <linux/tcp.h>
  41#include <linux/ipv6.h>
  42#include <linux/slab.h>
  43#include <net/checksum.h>
  44#include <net/ip6_checksum.h>
  45#include <linux/mii.h>
  46#include <linux/ethtool.h>
  47#include <linux/if_vlan.h>
  48#include <linux/cpu.h>
  49#include <linux/smp.h>
  50#include <linux/pm_qos.h>
  51#include <linux/pm_runtime.h>
  52#include <linux/aer.h>
  53#include <linux/prefetch.h>
  54
  55#include "e1000.h"
  56
  57#define DRV_EXTRAVERSION "-k"
  58
  59#define DRV_VERSION "2.0.0" DRV_EXTRAVERSION
  60char e1000e_driver_name[] = "e1000e";
  61const char e1000e_driver_version[] = DRV_VERSION;
  62
  63#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  64static int debug = -1;
  65module_param(debug, int, 0);
  66MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67
  68static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state);
  69
  70static const struct e1000_info *e1000_info_tbl[] = {
  71	[board_82571]		= &e1000_82571_info,
  72	[board_82572]		= &e1000_82572_info,
  73	[board_82573]		= &e1000_82573_info,
  74	[board_82574]		= &e1000_82574_info,
  75	[board_82583]		= &e1000_82583_info,
  76	[board_80003es2lan]	= &e1000_es2_info,
  77	[board_ich8lan]		= &e1000_ich8_info,
  78	[board_ich9lan]		= &e1000_ich9_info,
  79	[board_ich10lan]	= &e1000_ich10_info,
  80	[board_pchlan]		= &e1000_pch_info,
  81	[board_pch2lan]		= &e1000_pch2_info,
  82	[board_pch_lpt]		= &e1000_pch_lpt_info,
 
  83};
  84
  85struct e1000_reg_info {
  86	u32 ofs;
  87	char *name;
  88};
  89
  90#define E1000_RDFH	0x02410	/* Rx Data FIFO Head - RW */
  91#define E1000_RDFT	0x02418	/* Rx Data FIFO Tail - RW */
  92#define E1000_RDFHS	0x02420	/* Rx Data FIFO Head Saved - RW */
  93#define E1000_RDFTS	0x02428	/* Rx Data FIFO Tail Saved - RW */
  94#define E1000_RDFPC	0x02430	/* Rx Data FIFO Packet Count - RW */
  95
  96#define E1000_TDFH	0x03410	/* Tx Data FIFO Head - RW */
  97#define E1000_TDFT	0x03418	/* Tx Data FIFO Tail - RW */
  98#define E1000_TDFHS	0x03420	/* Tx Data FIFO Head Saved - RW */
  99#define E1000_TDFTS	0x03428	/* Tx Data FIFO Tail Saved - RW */
 100#define E1000_TDFPC	0x03430	/* Tx Data FIFO Packet Count - RW */
 101
 102static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 103
 104	/* General Registers */
 105	{E1000_CTRL, "CTRL"},
 106	{E1000_STATUS, "STATUS"},
 107	{E1000_CTRL_EXT, "CTRL_EXT"},
 108
 109	/* Interrupt Registers */
 110	{E1000_ICR, "ICR"},
 111
 112	/* Rx Registers */
 113	{E1000_RCTL, "RCTL"},
 114	{E1000_RDLEN(0), "RDLEN"},
 115	{E1000_RDH(0), "RDH"},
 116	{E1000_RDT(0), "RDT"},
 117	{E1000_RDTR, "RDTR"},
 118	{E1000_RXDCTL(0), "RXDCTL"},
 119	{E1000_ERT, "ERT"},
 120	{E1000_RDBAL(0), "RDBAL"},
 121	{E1000_RDBAH(0), "RDBAH"},
 122	{E1000_RDFH, "RDFH"},
 123	{E1000_RDFT, "RDFT"},
 124	{E1000_RDFHS, "RDFHS"},
 125	{E1000_RDFTS, "RDFTS"},
 126	{E1000_RDFPC, "RDFPC"},
 127
 128	/* Tx Registers */
 129	{E1000_TCTL, "TCTL"},
 130	{E1000_TDBAL(0), "TDBAL"},
 131	{E1000_TDBAH(0), "TDBAH"},
 132	{E1000_TDLEN(0), "TDLEN"},
 133	{E1000_TDH(0), "TDH"},
 134	{E1000_TDT(0), "TDT"},
 135	{E1000_TIDV, "TIDV"},
 136	{E1000_TXDCTL(0), "TXDCTL"},
 137	{E1000_TADV, "TADV"},
 138	{E1000_TARC(0), "TARC"},
 139	{E1000_TDFH, "TDFH"},
 140	{E1000_TDFT, "TDFT"},
 141	{E1000_TDFHS, "TDFHS"},
 142	{E1000_TDFTS, "TDFTS"},
 143	{E1000_TDFPC, "TDFPC"},
 144
 145	/* List Terminator */
 146	{0, NULL}
 147};
 148
 149/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 150 * e1000_regdump - register printout routine
 151 */
 
 
 152static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 153{
 154	int n = 0;
 155	char rname[16];
 156	u32 regs[8];
 157
 158	switch (reginfo->ofs) {
 159	case E1000_RXDCTL(0):
 160		for (n = 0; n < 2; n++)
 161			regs[n] = __er32(hw, E1000_RXDCTL(n));
 162		break;
 163	case E1000_TXDCTL(0):
 164		for (n = 0; n < 2; n++)
 165			regs[n] = __er32(hw, E1000_TXDCTL(n));
 166		break;
 167	case E1000_TARC(0):
 168		for (n = 0; n < 2; n++)
 169			regs[n] = __er32(hw, E1000_TARC(n));
 170		break;
 171	default:
 172		pr_info("%-15s %08x\n",
 173			reginfo->name, __er32(hw, reginfo->ofs));
 174		return;
 175	}
 176
 177	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 178	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 179}
 180
 181/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 183 */
 
 184static void e1000e_dump(struct e1000_adapter *adapter)
 185{
 186	struct net_device *netdev = adapter->netdev;
 187	struct e1000_hw *hw = &adapter->hw;
 188	struct e1000_reg_info *reginfo;
 189	struct e1000_ring *tx_ring = adapter->tx_ring;
 190	struct e1000_tx_desc *tx_desc;
 191	struct my_u0 {
 192		__le64 a;
 193		__le64 b;
 194	} *u0;
 195	struct e1000_buffer *buffer_info;
 196	struct e1000_ring *rx_ring = adapter->rx_ring;
 197	union e1000_rx_desc_packet_split *rx_desc_ps;
 198	union e1000_rx_desc_extended *rx_desc;
 199	struct my_u1 {
 200		__le64 a;
 201		__le64 b;
 202		__le64 c;
 203		__le64 d;
 204	} *u1;
 205	u32 staterr;
 206	int i = 0;
 207
 208	if (!netif_msg_hw(adapter))
 209		return;
 210
 211	/* Print netdevice Info */
 212	if (netdev) {
 213		dev_info(&adapter->pdev->dev, "Net device Info\n");
 214		pr_info("Device Name     state            trans_start      last_rx\n");
 215		pr_info("%-15s %016lX %016lX %016lX\n",
 216			netdev->name, netdev->state, netdev->trans_start,
 217			netdev->last_rx);
 218	}
 219
 220	/* Print Registers */
 221	dev_info(&adapter->pdev->dev, "Register Dump\n");
 222	pr_info(" Register Name   Value\n");
 223	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 224	     reginfo->name; reginfo++) {
 225		e1000_regdump(hw, reginfo);
 226	}
 227
 228	/* Print Tx Ring Summary */
 229	if (!netdev || !netif_running(netdev))
 230		return;
 231
 232	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 233	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 234	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 235	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 236		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 237		(unsigned long long)buffer_info->dma,
 238		buffer_info->length,
 239		buffer_info->next_to_watch,
 240		(unsigned long long)buffer_info->time_stamp);
 241
 242	/* Print Tx Ring */
 243	if (!netif_msg_tx_done(adapter))
 244		goto rx_ring_summary;
 245
 246	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 247
 248	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 249	 *
 250	 * Legacy Transmit Descriptor
 251	 *   +--------------------------------------------------------------+
 252	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 253	 *   +--------------------------------------------------------------+
 254	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 255	 *   +--------------------------------------------------------------+
 256	 *   63       48 47        36 35    32 31     24 23    16 15        0
 257	 *
 258	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 259	 *   63      48 47    40 39       32 31             16 15    8 7      0
 260	 *   +----------------------------------------------------------------+
 261	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 262	 *   +----------------------------------------------------------------+
 263	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 264	 *   +----------------------------------------------------------------+
 265	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 266	 *
 267	 * Extended Data Descriptor (DTYP=0x1)
 268	 *   +----------------------------------------------------------------+
 269	 * 0 |                     Buffer Address [63:0]                      |
 270	 *   +----------------------------------------------------------------+
 271	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 272	 *   +----------------------------------------------------------------+
 273	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 274	 */
 275	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 276	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 277	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 278	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 279		const char *next_desc;
 280		tx_desc = E1000_TX_DESC(*tx_ring, i);
 281		buffer_info = &tx_ring->buffer_info[i];
 282		u0 = (struct my_u0 *)tx_desc;
 283		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 284			next_desc = " NTC/U";
 285		else if (i == tx_ring->next_to_use)
 286			next_desc = " NTU";
 287		else if (i == tx_ring->next_to_clean)
 288			next_desc = " NTC";
 289		else
 290			next_desc = "";
 291		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 292			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 293			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 294			i,
 295			(unsigned long long)le64_to_cpu(u0->a),
 296			(unsigned long long)le64_to_cpu(u0->b),
 297			(unsigned long long)buffer_info->dma,
 298			buffer_info->length, buffer_info->next_to_watch,
 299			(unsigned long long)buffer_info->time_stamp,
 300			buffer_info->skb, next_desc);
 301
 302		if (netif_msg_pktdata(adapter) && buffer_info->dma != 0)
 303			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 304				       16, 1, phys_to_virt(buffer_info->dma),
 305				       buffer_info->length, true);
 306	}
 307
 308	/* Print Rx Ring Summary */
 309rx_ring_summary:
 310	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 311	pr_info("Queue [NTU] [NTC]\n");
 312	pr_info(" %5d %5X %5X\n",
 313		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 314
 315	/* Print Rx Ring */
 316	if (!netif_msg_rx_status(adapter))
 317		return;
 318
 319	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 320	switch (adapter->rx_ps_pages) {
 321	case 1:
 322	case 2:
 323	case 3:
 324		/* [Extended] Packet Split Receive Descriptor Format
 325		 *
 326		 *    +-----------------------------------------------------+
 327		 *  0 |                Buffer Address 0 [63:0]              |
 328		 *    +-----------------------------------------------------+
 329		 *  8 |                Buffer Address 1 [63:0]              |
 330		 *    +-----------------------------------------------------+
 331		 * 16 |                Buffer Address 2 [63:0]              |
 332		 *    +-----------------------------------------------------+
 333		 * 24 |                Buffer Address 3 [63:0]              |
 334		 *    +-----------------------------------------------------+
 335		 */
 336		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 337		/* [Extended] Receive Descriptor (Write-Back) Format
 338		 *
 339		 *   63       48 47    32 31     13 12    8 7    4 3        0
 340		 *   +------------------------------------------------------+
 341		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 342		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 343		 *   +------------------------------------------------------+
 344		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 345		 *   +------------------------------------------------------+
 346		 *   63       48 47    32 31            20 19               0
 347		 */
 348		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 349		for (i = 0; i < rx_ring->count; i++) {
 350			const char *next_desc;
 351			buffer_info = &rx_ring->buffer_info[i];
 352			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 353			u1 = (struct my_u1 *)rx_desc_ps;
 354			staterr =
 355			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 356
 357			if (i == rx_ring->next_to_use)
 358				next_desc = " NTU";
 359			else if (i == rx_ring->next_to_clean)
 360				next_desc = " NTC";
 361			else
 362				next_desc = "";
 363
 364			if (staterr & E1000_RXD_STAT_DD) {
 365				/* Descriptor Done */
 366				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 367					"RWB", i,
 368					(unsigned long long)le64_to_cpu(u1->a),
 369					(unsigned long long)le64_to_cpu(u1->b),
 370					(unsigned long long)le64_to_cpu(u1->c),
 371					(unsigned long long)le64_to_cpu(u1->d),
 372					buffer_info->skb, next_desc);
 373			} else {
 374				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 375					"R  ", i,
 376					(unsigned long long)le64_to_cpu(u1->a),
 377					(unsigned long long)le64_to_cpu(u1->b),
 378					(unsigned long long)le64_to_cpu(u1->c),
 379					(unsigned long long)le64_to_cpu(u1->d),
 380					(unsigned long long)buffer_info->dma,
 381					buffer_info->skb, next_desc);
 382
 383				if (netif_msg_pktdata(adapter))
 384					print_hex_dump(KERN_INFO, "",
 385						DUMP_PREFIX_ADDRESS, 16, 1,
 386						phys_to_virt(buffer_info->dma),
 387						adapter->rx_ps_bsize0, true);
 388			}
 389		}
 390		break;
 391	default:
 392	case 0:
 393		/* Extended Receive Descriptor (Read) Format
 394		 *
 395		 *   +-----------------------------------------------------+
 396		 * 0 |                Buffer Address [63:0]                |
 397		 *   +-----------------------------------------------------+
 398		 * 8 |                      Reserved                       |
 399		 *   +-----------------------------------------------------+
 400		 */
 401		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 402		/* Extended Receive Descriptor (Write-Back) Format
 403		 *
 404		 *   63       48 47    32 31    24 23            4 3        0
 405		 *   +------------------------------------------------------+
 406		 *   |     RSS Hash      |        |               |         |
 407		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 408		 *   | Packet   | IP     |        |               |  Type   |
 409		 *   | Checksum | Ident  |        |               |         |
 410		 *   +------------------------------------------------------+
 411		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 412		 *   +------------------------------------------------------+
 413		 *   63       48 47    32 31            20 19               0
 414		 */
 415		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 416
 417		for (i = 0; i < rx_ring->count; i++) {
 418			const char *next_desc;
 419
 420			buffer_info = &rx_ring->buffer_info[i];
 421			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 422			u1 = (struct my_u1 *)rx_desc;
 423			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 424
 425			if (i == rx_ring->next_to_use)
 426				next_desc = " NTU";
 427			else if (i == rx_ring->next_to_clean)
 428				next_desc = " NTC";
 429			else
 430				next_desc = "";
 431
 432			if (staterr & E1000_RXD_STAT_DD) {
 433				/* Descriptor Done */
 434				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 435					"RWB", i,
 436					(unsigned long long)le64_to_cpu(u1->a),
 437					(unsigned long long)le64_to_cpu(u1->b),
 438					buffer_info->skb, next_desc);
 439			} else {
 440				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 441					"R  ", i,
 442					(unsigned long long)le64_to_cpu(u1->a),
 443					(unsigned long long)le64_to_cpu(u1->b),
 444					(unsigned long long)buffer_info->dma,
 445					buffer_info->skb, next_desc);
 446
 447				if (netif_msg_pktdata(adapter))
 
 448					print_hex_dump(KERN_INFO, "",
 449						       DUMP_PREFIX_ADDRESS, 16,
 450						       1,
 451						       phys_to_virt
 452						       (buffer_info->dma),
 453						       adapter->rx_buffer_len,
 454						       true);
 455			}
 456		}
 457	}
 458}
 459
 460/**
 461 * e1000_desc_unused - calculate if we have unused descriptors
 462 **/
 463static int e1000_desc_unused(struct e1000_ring *ring)
 464{
 465	if (ring->next_to_clean > ring->next_to_use)
 466		return ring->next_to_clean - ring->next_to_use - 1;
 467
 468	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 469}
 470
 471/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 472 * e1000_receive_skb - helper function to handle Rx indications
 473 * @adapter: board private structure
 474 * @status: descriptor status field as written by hardware
 475 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 476 * @skb: pointer to sk_buff to be indicated to stack
 477 **/
 478static void e1000_receive_skb(struct e1000_adapter *adapter,
 479			      struct net_device *netdev, struct sk_buff *skb,
 480			      u8 status, __le16 vlan)
 481{
 482	u16 tag = le16_to_cpu(vlan);
 
 
 
 483	skb->protocol = eth_type_trans(skb, netdev);
 484
 485	if (status & E1000_RXD_STAT_VP)
 486		__vlan_hwaccel_put_tag(skb, tag);
 487
 488	napi_gro_receive(&adapter->napi, skb);
 489}
 490
 491/**
 492 * e1000_rx_checksum - Receive Checksum Offload
 493 * @adapter: board private structure
 494 * @status_err: receive descriptor status and error fields
 495 * @csum: receive descriptor csum field
 496 * @sk_buff: socket buffer with received data
 497 **/
 498static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 499			      struct sk_buff *skb)
 500{
 501	u16 status = (u16)status_err;
 502	u8 errors = (u8)(status_err >> 24);
 503
 504	skb_checksum_none_assert(skb);
 505
 506	/* Rx checksum disabled */
 507	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 508		return;
 509
 510	/* Ignore Checksum bit is set */
 511	if (status & E1000_RXD_STAT_IXSM)
 512		return;
 513
 514	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 515	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 516		/* let the stack verify checksum errors */
 517		adapter->hw_csum_err++;
 518		return;
 519	}
 520
 521	/* TCP/UDP Checksum has not been calculated */
 522	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 523		return;
 524
 525	/* It must be a TCP or UDP packet with a valid checksum */
 526	skb->ip_summed = CHECKSUM_UNNECESSARY;
 527	adapter->hw_csum_good++;
 528}
 529
 530static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 531{
 532	struct e1000_adapter *adapter = rx_ring->adapter;
 533	struct e1000_hw *hw = &adapter->hw;
 534	s32 ret_val = __ew32_prepare(hw);
 535
 536	writel(i, rx_ring->tail);
 537
 538	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 539		u32 rctl = er32(RCTL);
 
 540		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 541		e_err("ME firmware caused invalid RDT - resetting\n");
 542		schedule_work(&adapter->reset_task);
 543	}
 544}
 545
 546static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 547{
 548	struct e1000_adapter *adapter = tx_ring->adapter;
 549	struct e1000_hw *hw = &adapter->hw;
 550	s32 ret_val = __ew32_prepare(hw);
 551
 552	writel(i, tx_ring->tail);
 553
 554	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 555		u32 tctl = er32(TCTL);
 
 556		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 557		e_err("ME firmware caused invalid TDT - resetting\n");
 558		schedule_work(&adapter->reset_task);
 559	}
 560}
 561
 562/**
 563 * e1000_alloc_rx_buffers - Replace used receive buffers
 564 * @rx_ring: Rx descriptor ring
 565 **/
 566static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 567				   int cleaned_count, gfp_t gfp)
 568{
 569	struct e1000_adapter *adapter = rx_ring->adapter;
 570	struct net_device *netdev = adapter->netdev;
 571	struct pci_dev *pdev = adapter->pdev;
 572	union e1000_rx_desc_extended *rx_desc;
 573	struct e1000_buffer *buffer_info;
 574	struct sk_buff *skb;
 575	unsigned int i;
 576	unsigned int bufsz = adapter->rx_buffer_len;
 577
 578	i = rx_ring->next_to_use;
 579	buffer_info = &rx_ring->buffer_info[i];
 580
 581	while (cleaned_count--) {
 582		skb = buffer_info->skb;
 583		if (skb) {
 584			skb_trim(skb, 0);
 585			goto map_skb;
 586		}
 587
 588		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 589		if (!skb) {
 590			/* Better luck next round */
 591			adapter->alloc_rx_buff_failed++;
 592			break;
 593		}
 594
 595		buffer_info->skb = skb;
 596map_skb:
 597		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 598						  adapter->rx_buffer_len,
 599						  DMA_FROM_DEVICE);
 600		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 601			dev_err(&pdev->dev, "Rx DMA map failed\n");
 602			adapter->rx_dma_failed++;
 603			break;
 604		}
 605
 606		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 607		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 608
 609		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 610			/*
 611			 * Force memory writes to complete before letting h/w
 612			 * know there are new descriptors to fetch.  (Only
 613			 * applicable for weak-ordered memory model archs,
 614			 * such as IA-64).
 615			 */
 616			wmb();
 617			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 618				e1000e_update_rdt_wa(rx_ring, i);
 619			else
 620				writel(i, rx_ring->tail);
 621		}
 622		i++;
 623		if (i == rx_ring->count)
 624			i = 0;
 625		buffer_info = &rx_ring->buffer_info[i];
 626	}
 627
 628	rx_ring->next_to_use = i;
 629}
 630
 631/**
 632 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 633 * @rx_ring: Rx descriptor ring
 634 **/
 635static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 636				      int cleaned_count, gfp_t gfp)
 637{
 638	struct e1000_adapter *adapter = rx_ring->adapter;
 639	struct net_device *netdev = adapter->netdev;
 640	struct pci_dev *pdev = adapter->pdev;
 641	union e1000_rx_desc_packet_split *rx_desc;
 642	struct e1000_buffer *buffer_info;
 643	struct e1000_ps_page *ps_page;
 644	struct sk_buff *skb;
 645	unsigned int i, j;
 646
 647	i = rx_ring->next_to_use;
 648	buffer_info = &rx_ring->buffer_info[i];
 649
 650	while (cleaned_count--) {
 651		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 652
 653		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 654			ps_page = &buffer_info->ps_pages[j];
 655			if (j >= adapter->rx_ps_pages) {
 656				/* all unused desc entries get hw null ptr */
 657				rx_desc->read.buffer_addr[j + 1] =
 658				    ~cpu_to_le64(0);
 659				continue;
 660			}
 661			if (!ps_page->page) {
 662				ps_page->page = alloc_page(gfp);
 663				if (!ps_page->page) {
 664					adapter->alloc_rx_buff_failed++;
 665					goto no_buffers;
 666				}
 667				ps_page->dma = dma_map_page(&pdev->dev,
 668							    ps_page->page,
 669							    0, PAGE_SIZE,
 670							    DMA_FROM_DEVICE);
 671				if (dma_mapping_error(&pdev->dev,
 672						      ps_page->dma)) {
 673					dev_err(&adapter->pdev->dev,
 674						"Rx DMA page map failed\n");
 675					adapter->rx_dma_failed++;
 676					goto no_buffers;
 677				}
 678			}
 679			/*
 680			 * Refresh the desc even if buffer_addrs
 681			 * didn't change because each write-back
 682			 * erases this info.
 683			 */
 684			rx_desc->read.buffer_addr[j + 1] =
 685			    cpu_to_le64(ps_page->dma);
 686		}
 687
 688		skb = __netdev_alloc_skb_ip_align(netdev,
 689						  adapter->rx_ps_bsize0,
 690						  gfp);
 691
 692		if (!skb) {
 693			adapter->alloc_rx_buff_failed++;
 694			break;
 695		}
 696
 697		buffer_info->skb = skb;
 698		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 699						  adapter->rx_ps_bsize0,
 700						  DMA_FROM_DEVICE);
 701		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 702			dev_err(&pdev->dev, "Rx DMA map failed\n");
 703			adapter->rx_dma_failed++;
 704			/* cleanup skb */
 705			dev_kfree_skb_any(skb);
 706			buffer_info->skb = NULL;
 707			break;
 708		}
 709
 710		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 711
 712		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 713			/*
 714			 * Force memory writes to complete before letting h/w
 715			 * know there are new descriptors to fetch.  (Only
 716			 * applicable for weak-ordered memory model archs,
 717			 * such as IA-64).
 718			 */
 719			wmb();
 720			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 721				e1000e_update_rdt_wa(rx_ring, i << 1);
 722			else
 723				writel(i << 1, rx_ring->tail);
 724		}
 725
 726		i++;
 727		if (i == rx_ring->count)
 728			i = 0;
 729		buffer_info = &rx_ring->buffer_info[i];
 730	}
 731
 732no_buffers:
 733	rx_ring->next_to_use = i;
 734}
 735
 736/**
 737 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 738 * @rx_ring: Rx descriptor ring
 739 * @cleaned_count: number of buffers to allocate this pass
 740 **/
 741
 742static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 743					 int cleaned_count, gfp_t gfp)
 744{
 745	struct e1000_adapter *adapter = rx_ring->adapter;
 746	struct net_device *netdev = adapter->netdev;
 747	struct pci_dev *pdev = adapter->pdev;
 748	union e1000_rx_desc_extended *rx_desc;
 749	struct e1000_buffer *buffer_info;
 750	struct sk_buff *skb;
 751	unsigned int i;
 752	unsigned int bufsz = 256 - 16 /* for skb_reserve */;
 753
 754	i = rx_ring->next_to_use;
 755	buffer_info = &rx_ring->buffer_info[i];
 756
 757	while (cleaned_count--) {
 758		skb = buffer_info->skb;
 759		if (skb) {
 760			skb_trim(skb, 0);
 761			goto check_page;
 762		}
 763
 764		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 765		if (unlikely(!skb)) {
 766			/* Better luck next round */
 767			adapter->alloc_rx_buff_failed++;
 768			break;
 769		}
 770
 771		buffer_info->skb = skb;
 772check_page:
 773		/* allocate a new page if necessary */
 774		if (!buffer_info->page) {
 775			buffer_info->page = alloc_page(gfp);
 776			if (unlikely(!buffer_info->page)) {
 777				adapter->alloc_rx_buff_failed++;
 778				break;
 779			}
 780		}
 781
 782		if (!buffer_info->dma)
 783			buffer_info->dma = dma_map_page(&pdev->dev,
 784			                                buffer_info->page, 0,
 785			                                PAGE_SIZE,
 786							DMA_FROM_DEVICE);
 
 
 
 
 
 787
 788		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 789		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 790
 791		if (unlikely(++i == rx_ring->count))
 792			i = 0;
 793		buffer_info = &rx_ring->buffer_info[i];
 794	}
 795
 796	if (likely(rx_ring->next_to_use != i)) {
 797		rx_ring->next_to_use = i;
 798		if (unlikely(i-- == 0))
 799			i = (rx_ring->count - 1);
 800
 801		/* Force memory writes to complete before letting h/w
 802		 * know there are new descriptors to fetch.  (Only
 803		 * applicable for weak-ordered memory model archs,
 804		 * such as IA-64). */
 
 805		wmb();
 806		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 807			e1000e_update_rdt_wa(rx_ring, i);
 808		else
 809			writel(i, rx_ring->tail);
 810	}
 811}
 812
 813static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 814				 struct sk_buff *skb)
 815{
 816	if (netdev->features & NETIF_F_RXHASH)
 817		skb->rxhash = le32_to_cpu(rss);
 818}
 819
 820/**
 821 * e1000_clean_rx_irq - Send received data up the network stack
 822 * @rx_ring: Rx descriptor ring
 823 *
 824 * the return value indicates whether actual cleaning was done, there
 825 * is no guarantee that everything was cleaned
 826 **/
 827static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 828			       int work_to_do)
 829{
 830	struct e1000_adapter *adapter = rx_ring->adapter;
 831	struct net_device *netdev = adapter->netdev;
 832	struct pci_dev *pdev = adapter->pdev;
 833	struct e1000_hw *hw = &adapter->hw;
 834	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 835	struct e1000_buffer *buffer_info, *next_buffer;
 836	u32 length, staterr;
 837	unsigned int i;
 838	int cleaned_count = 0;
 839	bool cleaned = false;
 840	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 841
 842	i = rx_ring->next_to_clean;
 843	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 844	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 845	buffer_info = &rx_ring->buffer_info[i];
 846
 847	while (staterr & E1000_RXD_STAT_DD) {
 848		struct sk_buff *skb;
 849
 850		if (*work_done >= work_to_do)
 851			break;
 852		(*work_done)++;
 853		rmb();	/* read descriptor and rx_buffer_info after status DD */
 854
 855		skb = buffer_info->skb;
 856		buffer_info->skb = NULL;
 857
 858		prefetch(skb->data - NET_IP_ALIGN);
 859
 860		i++;
 861		if (i == rx_ring->count)
 862			i = 0;
 863		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 864		prefetch(next_rxd);
 865
 866		next_buffer = &rx_ring->buffer_info[i];
 867
 868		cleaned = true;
 869		cleaned_count++;
 870		dma_unmap_single(&pdev->dev,
 871				 buffer_info->dma,
 872				 adapter->rx_buffer_len,
 873				 DMA_FROM_DEVICE);
 874		buffer_info->dma = 0;
 875
 876		length = le16_to_cpu(rx_desc->wb.upper.length);
 877
 878		/*
 879		 * !EOP means multiple descriptors were used to store a single
 880		 * packet, if that's the case we need to toss it.  In fact, we
 881		 * need to toss every packet with the EOP bit clear and the
 882		 * next frame that _does_ have the EOP bit set, as it is by
 883		 * definition only a frame fragment
 884		 */
 885		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 886			adapter->flags2 |= FLAG2_IS_DISCARDING;
 887
 888		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 889			/* All receives must fit into a single buffer */
 890			e_dbg("Receive packet consumed multiple buffers\n");
 891			/* recycle */
 892			buffer_info->skb = skb;
 893			if (staterr & E1000_RXD_STAT_EOP)
 894				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 895			goto next_desc;
 896		}
 897
 898		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 899			     !(netdev->features & NETIF_F_RXALL))) {
 900			/* recycle */
 901			buffer_info->skb = skb;
 902			goto next_desc;
 903		}
 904
 905		/* adjust length to remove Ethernet CRC */
 906		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
 907			/* If configured to store CRC, don't subtract FCS,
 908			 * but keep the FCS bytes out of the total_rx_bytes
 909			 * counter
 910			 */
 911			if (netdev->features & NETIF_F_RXFCS)
 912				total_rx_bytes -= 4;
 913			else
 914				length -= 4;
 915		}
 916
 917		total_rx_bytes += length;
 918		total_rx_packets++;
 919
 920		/*
 921		 * code added for copybreak, this should improve
 922		 * performance for small packets with large amounts
 923		 * of reassembly being done in the stack
 924		 */
 925		if (length < copybreak) {
 926			struct sk_buff *new_skb =
 927			    netdev_alloc_skb_ip_align(netdev, length);
 928			if (new_skb) {
 929				skb_copy_to_linear_data_offset(new_skb,
 930							       -NET_IP_ALIGN,
 931							       (skb->data -
 932								NET_IP_ALIGN),
 933							       (length +
 934								NET_IP_ALIGN));
 935				/* save the skb in buffer_info as good */
 936				buffer_info->skb = skb;
 937				skb = new_skb;
 938			}
 939			/* else just continue with the old one */
 940		}
 941		/* end copybreak code */
 942		skb_put(skb, length);
 943
 944		/* Receive Checksum Offload */
 945		e1000_rx_checksum(adapter, staterr, skb);
 946
 947		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
 948
 949		e1000_receive_skb(adapter, netdev, skb, staterr,
 950				  rx_desc->wb.upper.vlan);
 951
 952next_desc:
 953		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
 954
 955		/* return some buffers to hardware, one at a time is too slow */
 956		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
 957			adapter->alloc_rx_buf(rx_ring, cleaned_count,
 958					      GFP_ATOMIC);
 959			cleaned_count = 0;
 960		}
 961
 962		/* use prefetched values */
 963		rx_desc = next_rxd;
 964		buffer_info = next_buffer;
 965
 966		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 967	}
 968	rx_ring->next_to_clean = i;
 969
 970	cleaned_count = e1000_desc_unused(rx_ring);
 971	if (cleaned_count)
 972		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
 973
 974	adapter->total_rx_bytes += total_rx_bytes;
 975	adapter->total_rx_packets += total_rx_packets;
 976	return cleaned;
 977}
 978
 979static void e1000_put_txbuf(struct e1000_ring *tx_ring,
 980			    struct e1000_buffer *buffer_info)
 981{
 982	struct e1000_adapter *adapter = tx_ring->adapter;
 983
 984	if (buffer_info->dma) {
 985		if (buffer_info->mapped_as_page)
 986			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
 987				       buffer_info->length, DMA_TO_DEVICE);
 988		else
 989			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
 990					 buffer_info->length, DMA_TO_DEVICE);
 991		buffer_info->dma = 0;
 992	}
 993	if (buffer_info->skb) {
 994		dev_kfree_skb_any(buffer_info->skb);
 995		buffer_info->skb = NULL;
 996	}
 997	buffer_info->time_stamp = 0;
 998}
 999
1000static void e1000_print_hw_hang(struct work_struct *work)
1001{
1002	struct e1000_adapter *adapter = container_of(work,
1003	                                             struct e1000_adapter,
1004	                                             print_hang_task);
1005	struct net_device *netdev = adapter->netdev;
1006	struct e1000_ring *tx_ring = adapter->tx_ring;
1007	unsigned int i = tx_ring->next_to_clean;
1008	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1009	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1010	struct e1000_hw *hw = &adapter->hw;
1011	u16 phy_status, phy_1000t_status, phy_ext_status;
1012	u16 pci_status;
1013
1014	if (test_bit(__E1000_DOWN, &adapter->state))
1015		return;
1016
1017	if (!adapter->tx_hang_recheck &&
1018	    (adapter->flags2 & FLAG2_DMA_BURST)) {
1019		/*
1020		 * May be block on write-back, flush and detect again
1021		 * flush pending descriptor writebacks to memory
1022		 */
1023		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1024		/* execute the writes immediately */
1025		e1e_flush();
1026		/*
1027		 * Due to rare timing issues, write to TIDV again to ensure
1028		 * the write is successful
1029		 */
1030		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1031		/* execute the writes immediately */
1032		e1e_flush();
1033		adapter->tx_hang_recheck = true;
1034		return;
1035	}
1036	/* Real hang detected */
1037	adapter->tx_hang_recheck = false;
 
 
 
 
 
 
 
1038	netif_stop_queue(netdev);
1039
1040	e1e_rphy(hw, PHY_STATUS, &phy_status);
1041	e1e_rphy(hw, PHY_1000T_STATUS, &phy_1000t_status);
1042	e1e_rphy(hw, PHY_EXT_STATUS, &phy_ext_status);
1043
1044	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1045
1046	/* detected Hardware unit hang */
1047	e_err("Detected Hardware Unit Hang:\n"
1048	      "  TDH                  <%x>\n"
1049	      "  TDT                  <%x>\n"
1050	      "  next_to_use          <%x>\n"
1051	      "  next_to_clean        <%x>\n"
1052	      "buffer_info[next_to_clean]:\n"
1053	      "  time_stamp           <%lx>\n"
1054	      "  next_to_watch        <%x>\n"
1055	      "  jiffies              <%lx>\n"
1056	      "  next_to_watch.status <%x>\n"
1057	      "MAC Status             <%x>\n"
1058	      "PHY Status             <%x>\n"
1059	      "PHY 1000BASE-T Status  <%x>\n"
1060	      "PHY Extended Status    <%x>\n"
1061	      "PCI Status             <%x>\n",
1062	      readl(tx_ring->head),
1063	      readl(tx_ring->tail),
1064	      tx_ring->next_to_use,
1065	      tx_ring->next_to_clean,
1066	      tx_ring->buffer_info[eop].time_stamp,
1067	      eop,
1068	      jiffies,
1069	      eop_desc->upper.fields.status,
1070	      er32(STATUS),
1071	      phy_status,
1072	      phy_1000t_status,
1073	      phy_ext_status,
1074	      pci_status);
1075
1076	/* Suggest workaround for known h/w issue */
1077	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1078		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1079}
1080
1081/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @tx_ring: Tx descriptor ring
1084 *
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1087 **/
1088static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1089{
1090	struct e1000_adapter *adapter = tx_ring->adapter;
1091	struct net_device *netdev = adapter->netdev;
1092	struct e1000_hw *hw = &adapter->hw;
1093	struct e1000_tx_desc *tx_desc, *eop_desc;
1094	struct e1000_buffer *buffer_info;
1095	unsigned int i, eop;
1096	unsigned int count = 0;
1097	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1098	unsigned int bytes_compl = 0, pkts_compl = 0;
1099
1100	i = tx_ring->next_to_clean;
1101	eop = tx_ring->buffer_info[i].next_to_watch;
1102	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103
1104	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1105	       (count < tx_ring->count)) {
1106		bool cleaned = false;
1107		rmb(); /* read buffer_info after eop_desc */
 
1108		for (; !cleaned; count++) {
1109			tx_desc = E1000_TX_DESC(*tx_ring, i);
1110			buffer_info = &tx_ring->buffer_info[i];
1111			cleaned = (i == eop);
1112
1113			if (cleaned) {
1114				total_tx_packets += buffer_info->segs;
1115				total_tx_bytes += buffer_info->bytecount;
1116				if (buffer_info->skb) {
1117					bytes_compl += buffer_info->skb->len;
1118					pkts_compl++;
1119				}
1120			}
1121
1122			e1000_put_txbuf(tx_ring, buffer_info);
1123			tx_desc->upper.data = 0;
1124
1125			i++;
1126			if (i == tx_ring->count)
1127				i = 0;
1128		}
1129
1130		if (i == tx_ring->next_to_use)
1131			break;
1132		eop = tx_ring->buffer_info[i].next_to_watch;
1133		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1134	}
1135
1136	tx_ring->next_to_clean = i;
1137
1138	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1139
1140#define TX_WAKE_THRESHOLD 32
1141	if (count && netif_carrier_ok(netdev) &&
1142	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1143		/* Make sure that anybody stopping the queue after this
1144		 * sees the new next_to_clean.
1145		 */
1146		smp_mb();
1147
1148		if (netif_queue_stopped(netdev) &&
1149		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1150			netif_wake_queue(netdev);
1151			++adapter->restart_queue;
1152		}
1153	}
1154
1155	if (adapter->detect_tx_hung) {
1156		/*
1157		 * Detect a transmit hang in hardware, this serializes the
1158		 * check with the clearing of time_stamp and movement of i
1159		 */
1160		adapter->detect_tx_hung = false;
1161		if (tx_ring->buffer_info[i].time_stamp &&
1162		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1163			       + (adapter->tx_timeout_factor * HZ)) &&
1164		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1165			schedule_work(&adapter->print_hang_task);
1166		else
1167			adapter->tx_hang_recheck = false;
1168	}
1169	adapter->total_tx_bytes += total_tx_bytes;
1170	adapter->total_tx_packets += total_tx_packets;
1171	return count < tx_ring->count;
1172}
1173
1174/**
1175 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1176 * @rx_ring: Rx descriptor ring
1177 *
1178 * the return value indicates whether actual cleaning was done, there
1179 * is no guarantee that everything was cleaned
1180 **/
1181static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1182				  int work_to_do)
1183{
1184	struct e1000_adapter *adapter = rx_ring->adapter;
1185	struct e1000_hw *hw = &adapter->hw;
1186	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1187	struct net_device *netdev = adapter->netdev;
1188	struct pci_dev *pdev = adapter->pdev;
1189	struct e1000_buffer *buffer_info, *next_buffer;
1190	struct e1000_ps_page *ps_page;
1191	struct sk_buff *skb;
1192	unsigned int i, j;
1193	u32 length, staterr;
1194	int cleaned_count = 0;
1195	bool cleaned = false;
1196	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1197
1198	i = rx_ring->next_to_clean;
1199	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1200	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1201	buffer_info = &rx_ring->buffer_info[i];
1202
1203	while (staterr & E1000_RXD_STAT_DD) {
1204		if (*work_done >= work_to_do)
1205			break;
1206		(*work_done)++;
1207		skb = buffer_info->skb;
1208		rmb();	/* read descriptor and rx_buffer_info after status DD */
1209
1210		/* in the packet split case this is header only */
1211		prefetch(skb->data - NET_IP_ALIGN);
1212
1213		i++;
1214		if (i == rx_ring->count)
1215			i = 0;
1216		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1217		prefetch(next_rxd);
1218
1219		next_buffer = &rx_ring->buffer_info[i];
1220
1221		cleaned = true;
1222		cleaned_count++;
1223		dma_unmap_single(&pdev->dev, buffer_info->dma,
1224				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1225		buffer_info->dma = 0;
1226
1227		/* see !EOP comment in other Rx routine */
1228		if (!(staterr & E1000_RXD_STAT_EOP))
1229			adapter->flags2 |= FLAG2_IS_DISCARDING;
1230
1231		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1232			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1233			dev_kfree_skb_irq(skb);
1234			if (staterr & E1000_RXD_STAT_EOP)
1235				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1236			goto next_desc;
1237		}
1238
1239		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1240			     !(netdev->features & NETIF_F_RXALL))) {
1241			dev_kfree_skb_irq(skb);
1242			goto next_desc;
1243		}
1244
1245		length = le16_to_cpu(rx_desc->wb.middle.length0);
1246
1247		if (!length) {
1248			e_dbg("Last part of the packet spanning multiple descriptors\n");
1249			dev_kfree_skb_irq(skb);
1250			goto next_desc;
1251		}
1252
1253		/* Good Receive */
1254		skb_put(skb, length);
1255
1256		{
1257			/*
1258			 * this looks ugly, but it seems compiler issues make
1259			 * it more efficient than reusing j
1260			 */
1261			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1262
1263			/*
1264			 * page alloc/put takes too long and effects small
1265			 * packet throughput, so unsplit small packets and
1266			 * save the alloc/put only valid in softirq (napi)
1267			 * context to call kmap_*
1268			 */
1269			if (l1 && (l1 <= copybreak) &&
1270			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1271				u8 *vaddr;
1272
1273				ps_page = &buffer_info->ps_pages[0];
1274
1275				/*
1276				 * there is no documentation about how to call
1277				 * kmap_atomic, so we can't hold the mapping
1278				 * very long
1279				 */
1280				dma_sync_single_for_cpu(&pdev->dev,
1281							ps_page->dma,
1282							PAGE_SIZE,
1283							DMA_FROM_DEVICE);
1284				vaddr = kmap_atomic(ps_page->page);
1285				memcpy(skb_tail_pointer(skb), vaddr, l1);
1286				kunmap_atomic(vaddr);
1287				dma_sync_single_for_device(&pdev->dev,
1288							   ps_page->dma,
1289							   PAGE_SIZE,
1290							   DMA_FROM_DEVICE);
1291
1292				/* remove the CRC */
1293				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1294					if (!(netdev->features & NETIF_F_RXFCS))
1295						l1 -= 4;
1296				}
1297
1298				skb_put(skb, l1);
1299				goto copydone;
1300			} /* if */
1301		}
1302
1303		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1304			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1305			if (!length)
1306				break;
1307
1308			ps_page = &buffer_info->ps_pages[j];
1309			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1310				       DMA_FROM_DEVICE);
1311			ps_page->dma = 0;
1312			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1313			ps_page->page = NULL;
1314			skb->len += length;
1315			skb->data_len += length;
1316			skb->truesize += PAGE_SIZE;
1317		}
1318
1319		/* strip the ethernet crc, problem is we're using pages now so
1320		 * this whole operation can get a little cpu intensive
1321		 */
1322		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1323			if (!(netdev->features & NETIF_F_RXFCS))
1324				pskb_trim(skb, skb->len - 4);
1325		}
1326
1327copydone:
1328		total_rx_bytes += skb->len;
1329		total_rx_packets++;
1330
1331		e1000_rx_checksum(adapter, staterr, skb);
1332
1333		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1334
1335		if (rx_desc->wb.upper.header_status &
1336			   cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1337			adapter->rx_hdr_split++;
1338
1339		e1000_receive_skb(adapter, netdev, skb,
1340				  staterr, rx_desc->wb.middle.vlan);
1341
1342next_desc:
1343		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1344		buffer_info->skb = NULL;
1345
1346		/* return some buffers to hardware, one at a time is too slow */
1347		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1348			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1349					      GFP_ATOMIC);
1350			cleaned_count = 0;
1351		}
1352
1353		/* use prefetched values */
1354		rx_desc = next_rxd;
1355		buffer_info = next_buffer;
1356
1357		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1358	}
1359	rx_ring->next_to_clean = i;
1360
1361	cleaned_count = e1000_desc_unused(rx_ring);
1362	if (cleaned_count)
1363		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1364
1365	adapter->total_rx_bytes += total_rx_bytes;
1366	adapter->total_rx_packets += total_rx_packets;
1367	return cleaned;
1368}
1369
1370/**
1371 * e1000_consume_page - helper function
1372 **/
1373static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1374                               u16 length)
1375{
1376	bi->page = NULL;
1377	skb->len += length;
1378	skb->data_len += length;
1379	skb->truesize += PAGE_SIZE;
1380}
1381
1382/**
1383 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1384 * @adapter: board private structure
1385 *
1386 * the return value indicates whether actual cleaning was done, there
1387 * is no guarantee that everything was cleaned
1388 **/
1389static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1390				     int work_to_do)
1391{
1392	struct e1000_adapter *adapter = rx_ring->adapter;
1393	struct net_device *netdev = adapter->netdev;
1394	struct pci_dev *pdev = adapter->pdev;
1395	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1396	struct e1000_buffer *buffer_info, *next_buffer;
1397	u32 length, staterr;
1398	unsigned int i;
1399	int cleaned_count = 0;
1400	bool cleaned = false;
1401	unsigned int total_rx_bytes=0, total_rx_packets=0;
 
1402
1403	i = rx_ring->next_to_clean;
1404	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1405	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1406	buffer_info = &rx_ring->buffer_info[i];
1407
1408	while (staterr & E1000_RXD_STAT_DD) {
1409		struct sk_buff *skb;
1410
1411		if (*work_done >= work_to_do)
1412			break;
1413		(*work_done)++;
1414		rmb();	/* read descriptor and rx_buffer_info after status DD */
1415
1416		skb = buffer_info->skb;
1417		buffer_info->skb = NULL;
1418
1419		++i;
1420		if (i == rx_ring->count)
1421			i = 0;
1422		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1423		prefetch(next_rxd);
1424
1425		next_buffer = &rx_ring->buffer_info[i];
1426
1427		cleaned = true;
1428		cleaned_count++;
1429		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1430			       DMA_FROM_DEVICE);
1431		buffer_info->dma = 0;
1432
1433		length = le16_to_cpu(rx_desc->wb.upper.length);
1434
1435		/* errors is only valid for DD + EOP descriptors */
1436		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1437			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1438			      !(netdev->features & NETIF_F_RXALL)))) {
1439			/* recycle both page and skb */
1440			buffer_info->skb = skb;
1441			/* an error means any chain goes out the window too */
1442			if (rx_ring->rx_skb_top)
1443				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1444			rx_ring->rx_skb_top = NULL;
1445			goto next_desc;
1446		}
1447
1448#define rxtop (rx_ring->rx_skb_top)
1449		if (!(staterr & E1000_RXD_STAT_EOP)) {
1450			/* this descriptor is only the beginning (or middle) */
1451			if (!rxtop) {
1452				/* this is the beginning of a chain */
1453				rxtop = skb;
1454				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1455				                   0, length);
1456			} else {
1457				/* this is the middle of a chain */
1458				skb_fill_page_desc(rxtop,
1459				    skb_shinfo(rxtop)->nr_frags,
1460				    buffer_info->page, 0, length);
 
1461				/* re-use the skb, only consumed the page */
1462				buffer_info->skb = skb;
1463			}
1464			e1000_consume_page(buffer_info, rxtop, length);
1465			goto next_desc;
1466		} else {
1467			if (rxtop) {
1468				/* end of the chain */
1469				skb_fill_page_desc(rxtop,
1470				    skb_shinfo(rxtop)->nr_frags,
1471				    buffer_info->page, 0, length);
 
1472				/* re-use the current skb, we only consumed the
1473				 * page */
 
1474				buffer_info->skb = skb;
1475				skb = rxtop;
1476				rxtop = NULL;
1477				e1000_consume_page(buffer_info, skb, length);
1478			} else {
1479				/* no chain, got EOP, this buf is the packet
1480				 * copybreak to save the put_page/alloc_page */
 
1481				if (length <= copybreak &&
1482				    skb_tailroom(skb) >= length) {
1483					u8 *vaddr;
1484					vaddr = kmap_atomic(buffer_info->page);
1485					memcpy(skb_tail_pointer(skb), vaddr,
1486					       length);
1487					kunmap_atomic(vaddr);
1488					/* re-use the page, so don't erase
1489					 * buffer_info->page */
 
1490					skb_put(skb, length);
1491				} else {
1492					skb_fill_page_desc(skb, 0,
1493					                   buffer_info->page, 0,
1494				                           length);
1495					e1000_consume_page(buffer_info, skb,
1496					                   length);
1497				}
1498			}
1499		}
1500
1501		/* Receive Checksum Offload */
1502		e1000_rx_checksum(adapter, staterr, skb);
1503
1504		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1505
1506		/* probably a little skewed due to removing CRC */
1507		total_rx_bytes += skb->len;
1508		total_rx_packets++;
1509
1510		/* eth type trans needs skb->data to point to something */
1511		if (!pskb_may_pull(skb, ETH_HLEN)) {
1512			e_err("pskb_may_pull failed.\n");
1513			dev_kfree_skb_irq(skb);
1514			goto next_desc;
1515		}
1516
1517		e1000_receive_skb(adapter, netdev, skb, staterr,
1518				  rx_desc->wb.upper.vlan);
1519
1520next_desc:
1521		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1522
1523		/* return some buffers to hardware, one at a time is too slow */
1524		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1525			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1526					      GFP_ATOMIC);
1527			cleaned_count = 0;
1528		}
1529
1530		/* use prefetched values */
1531		rx_desc = next_rxd;
1532		buffer_info = next_buffer;
1533
1534		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1535	}
1536	rx_ring->next_to_clean = i;
1537
1538	cleaned_count = e1000_desc_unused(rx_ring);
1539	if (cleaned_count)
1540		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1541
1542	adapter->total_rx_bytes += total_rx_bytes;
1543	adapter->total_rx_packets += total_rx_packets;
1544	return cleaned;
1545}
1546
1547/**
1548 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1549 * @rx_ring: Rx descriptor ring
1550 **/
1551static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1552{
1553	struct e1000_adapter *adapter = rx_ring->adapter;
1554	struct e1000_buffer *buffer_info;
1555	struct e1000_ps_page *ps_page;
1556	struct pci_dev *pdev = adapter->pdev;
1557	unsigned int i, j;
1558
1559	/* Free all the Rx ring sk_buffs */
1560	for (i = 0; i < rx_ring->count; i++) {
1561		buffer_info = &rx_ring->buffer_info[i];
1562		if (buffer_info->dma) {
1563			if (adapter->clean_rx == e1000_clean_rx_irq)
1564				dma_unmap_single(&pdev->dev, buffer_info->dma,
1565						 adapter->rx_buffer_len,
1566						 DMA_FROM_DEVICE);
1567			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1568				dma_unmap_page(&pdev->dev, buffer_info->dma,
1569				               PAGE_SIZE,
1570					       DMA_FROM_DEVICE);
1571			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1572				dma_unmap_single(&pdev->dev, buffer_info->dma,
1573						 adapter->rx_ps_bsize0,
1574						 DMA_FROM_DEVICE);
1575			buffer_info->dma = 0;
1576		}
1577
1578		if (buffer_info->page) {
1579			put_page(buffer_info->page);
1580			buffer_info->page = NULL;
1581		}
1582
1583		if (buffer_info->skb) {
1584			dev_kfree_skb(buffer_info->skb);
1585			buffer_info->skb = NULL;
1586		}
1587
1588		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1589			ps_page = &buffer_info->ps_pages[j];
1590			if (!ps_page->page)
1591				break;
1592			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1593				       DMA_FROM_DEVICE);
1594			ps_page->dma = 0;
1595			put_page(ps_page->page);
1596			ps_page->page = NULL;
1597		}
1598	}
1599
1600	/* there also may be some cached data from a chained receive */
1601	if (rx_ring->rx_skb_top) {
1602		dev_kfree_skb(rx_ring->rx_skb_top);
1603		rx_ring->rx_skb_top = NULL;
1604	}
1605
1606	/* Zero out the descriptor ring */
1607	memset(rx_ring->desc, 0, rx_ring->size);
1608
1609	rx_ring->next_to_clean = 0;
1610	rx_ring->next_to_use = 0;
1611	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1612
1613	writel(0, rx_ring->head);
1614	if (rx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
1615		e1000e_update_rdt_wa(rx_ring, 0);
1616	else
1617		writel(0, rx_ring->tail);
1618}
1619
1620static void e1000e_downshift_workaround(struct work_struct *work)
1621{
1622	struct e1000_adapter *adapter = container_of(work,
1623					struct e1000_adapter, downshift_task);
 
1624
1625	if (test_bit(__E1000_DOWN, &adapter->state))
1626		return;
1627
1628	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1629}
1630
1631/**
1632 * e1000_intr_msi - Interrupt Handler
1633 * @irq: interrupt number
1634 * @data: pointer to a network interface device structure
1635 **/
1636static irqreturn_t e1000_intr_msi(int irq, void *data)
1637{
1638	struct net_device *netdev = data;
1639	struct e1000_adapter *adapter = netdev_priv(netdev);
1640	struct e1000_hw *hw = &adapter->hw;
1641	u32 icr = er32(ICR);
1642
1643	/*
1644	 * read ICR disables interrupts using IAM
1645	 */
1646
1647	if (icr & E1000_ICR_LSC) {
1648		hw->mac.get_link_status = true;
1649		/*
1650		 * ICH8 workaround-- Call gig speed drop workaround on cable
1651		 * disconnect (LSC) before accessing any PHY registers
1652		 */
1653		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1654		    (!(er32(STATUS) & E1000_STATUS_LU)))
1655			schedule_work(&adapter->downshift_task);
1656
1657		/*
1658		 * 80003ES2LAN workaround-- For packet buffer work-around on
1659		 * link down event; disable receives here in the ISR and reset
1660		 * adapter in watchdog
1661		 */
1662		if (netif_carrier_ok(netdev) &&
1663		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1664			/* disable receives */
1665			u32 rctl = er32(RCTL);
 
1666			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1667			adapter->flags |= FLAG_RX_RESTART_NOW;
1668		}
1669		/* guard against interrupt when we're going down */
1670		if (!test_bit(__E1000_DOWN, &adapter->state))
1671			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1672	}
1673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674	if (napi_schedule_prep(&adapter->napi)) {
1675		adapter->total_tx_bytes = 0;
1676		adapter->total_tx_packets = 0;
1677		adapter->total_rx_bytes = 0;
1678		adapter->total_rx_packets = 0;
1679		__napi_schedule(&adapter->napi);
1680	}
1681
1682	return IRQ_HANDLED;
1683}
1684
1685/**
1686 * e1000_intr - Interrupt Handler
1687 * @irq: interrupt number
1688 * @data: pointer to a network interface device structure
1689 **/
1690static irqreturn_t e1000_intr(int irq, void *data)
1691{
1692	struct net_device *netdev = data;
1693	struct e1000_adapter *adapter = netdev_priv(netdev);
1694	struct e1000_hw *hw = &adapter->hw;
1695	u32 rctl, icr = er32(ICR);
1696
1697	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1698		return IRQ_NONE;  /* Not our interrupt */
1699
1700	/*
1701	 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1702	 * not set, then the adapter didn't send an interrupt
1703	 */
1704	if (!(icr & E1000_ICR_INT_ASSERTED))
1705		return IRQ_NONE;
1706
1707	/*
1708	 * Interrupt Auto-Mask...upon reading ICR,
1709	 * interrupts are masked.  No need for the
1710	 * IMC write
1711	 */
1712
1713	if (icr & E1000_ICR_LSC) {
1714		hw->mac.get_link_status = true;
1715		/*
1716		 * ICH8 workaround-- Call gig speed drop workaround on cable
1717		 * disconnect (LSC) before accessing any PHY registers
1718		 */
1719		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1720		    (!(er32(STATUS) & E1000_STATUS_LU)))
1721			schedule_work(&adapter->downshift_task);
1722
1723		/*
1724		 * 80003ES2LAN workaround--
1725		 * For packet buffer work-around on link down event;
1726		 * disable receives here in the ISR and
1727		 * reset adapter in watchdog
1728		 */
1729		if (netif_carrier_ok(netdev) &&
1730		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1731			/* disable receives */
1732			rctl = er32(RCTL);
1733			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1734			adapter->flags |= FLAG_RX_RESTART_NOW;
1735		}
1736		/* guard against interrupt when we're going down */
1737		if (!test_bit(__E1000_DOWN, &adapter->state))
1738			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1739	}
1740
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741	if (napi_schedule_prep(&adapter->napi)) {
1742		adapter->total_tx_bytes = 0;
1743		adapter->total_tx_packets = 0;
1744		adapter->total_rx_bytes = 0;
1745		adapter->total_rx_packets = 0;
1746		__napi_schedule(&adapter->napi);
1747	}
1748
1749	return IRQ_HANDLED;
1750}
1751
1752static irqreturn_t e1000_msix_other(int irq, void *data)
1753{
1754	struct net_device *netdev = data;
1755	struct e1000_adapter *adapter = netdev_priv(netdev);
1756	struct e1000_hw *hw = &adapter->hw;
1757	u32 icr = er32(ICR);
1758
1759	if (!(icr & E1000_ICR_INT_ASSERTED)) {
1760		if (!test_bit(__E1000_DOWN, &adapter->state))
1761			ew32(IMS, E1000_IMS_OTHER);
1762		return IRQ_NONE;
1763	}
1764
1765	if (icr & adapter->eiac_mask)
1766		ew32(ICS, (icr & adapter->eiac_mask));
1767
1768	if (icr & E1000_ICR_OTHER) {
1769		if (!(icr & E1000_ICR_LSC))
1770			goto no_link_interrupt;
1771		hw->mac.get_link_status = true;
1772		/* guard against interrupt when we're going down */
1773		if (!test_bit(__E1000_DOWN, &adapter->state))
1774			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1775	}
1776
1777no_link_interrupt:
1778	if (!test_bit(__E1000_DOWN, &adapter->state))
1779		ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1780
1781	return IRQ_HANDLED;
1782}
1783
1784
1785static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1786{
1787	struct net_device *netdev = data;
1788	struct e1000_adapter *adapter = netdev_priv(netdev);
1789	struct e1000_hw *hw = &adapter->hw;
1790	struct e1000_ring *tx_ring = adapter->tx_ring;
1791
1792
1793	adapter->total_tx_bytes = 0;
1794	adapter->total_tx_packets = 0;
1795
1796	if (!e1000_clean_tx_irq(tx_ring))
1797		/* Ring was not completely cleaned, so fire another interrupt */
1798		ew32(ICS, tx_ring->ims_val);
1799
 
 
 
1800	return IRQ_HANDLED;
1801}
1802
1803static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1804{
1805	struct net_device *netdev = data;
1806	struct e1000_adapter *adapter = netdev_priv(netdev);
1807	struct e1000_ring *rx_ring = adapter->rx_ring;
1808
1809	/* Write the ITR value calculated at the end of the
1810	 * previous interrupt.
1811	 */
1812	if (rx_ring->set_itr) {
1813		writel(1000000000 / (rx_ring->itr_val * 256),
1814		       rx_ring->itr_register);
 
 
1815		rx_ring->set_itr = 0;
1816	}
1817
1818	if (napi_schedule_prep(&adapter->napi)) {
1819		adapter->total_rx_bytes = 0;
1820		adapter->total_rx_packets = 0;
1821		__napi_schedule(&adapter->napi);
1822	}
1823	return IRQ_HANDLED;
1824}
1825
1826/**
1827 * e1000_configure_msix - Configure MSI-X hardware
1828 *
1829 * e1000_configure_msix sets up the hardware to properly
1830 * generate MSI-X interrupts.
1831 **/
1832static void e1000_configure_msix(struct e1000_adapter *adapter)
1833{
1834	struct e1000_hw *hw = &adapter->hw;
1835	struct e1000_ring *rx_ring = adapter->rx_ring;
1836	struct e1000_ring *tx_ring = adapter->tx_ring;
1837	int vector = 0;
1838	u32 ctrl_ext, ivar = 0;
1839
1840	adapter->eiac_mask = 0;
1841
1842	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1843	if (hw->mac.type == e1000_82574) {
1844		u32 rfctl = er32(RFCTL);
 
1845		rfctl |= E1000_RFCTL_ACK_DIS;
1846		ew32(RFCTL, rfctl);
1847	}
1848
1849#define E1000_IVAR_INT_ALLOC_VALID	0x8
1850	/* Configure Rx vector */
1851	rx_ring->ims_val = E1000_IMS_RXQ0;
1852	adapter->eiac_mask |= rx_ring->ims_val;
1853	if (rx_ring->itr_val)
1854		writel(1000000000 / (rx_ring->itr_val * 256),
1855		       rx_ring->itr_register);
1856	else
1857		writel(1, rx_ring->itr_register);
1858	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1859
1860	/* Configure Tx vector */
1861	tx_ring->ims_val = E1000_IMS_TXQ0;
1862	vector++;
1863	if (tx_ring->itr_val)
1864		writel(1000000000 / (tx_ring->itr_val * 256),
1865		       tx_ring->itr_register);
1866	else
1867		writel(1, tx_ring->itr_register);
1868	adapter->eiac_mask |= tx_ring->ims_val;
1869	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1870
1871	/* set vector for Other Causes, e.g. link changes */
1872	vector++;
1873	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1874	if (rx_ring->itr_val)
1875		writel(1000000000 / (rx_ring->itr_val * 256),
1876		       hw->hw_addr + E1000_EITR_82574(vector));
1877	else
1878		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
 
1879
1880	/* Cause Tx interrupts on every write back */
1881	ivar |= (1 << 31);
1882
1883	ew32(IVAR, ivar);
1884
1885	/* enable MSI-X PBA support */
1886	ctrl_ext = er32(CTRL_EXT);
1887	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1888
1889	/* Auto-Mask Other interrupts upon ICR read */
1890#define E1000_EIAC_MASK_82574   0x01F00000
1891	ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1892	ctrl_ext |= E1000_CTRL_EXT_EIAME;
1893	ew32(CTRL_EXT, ctrl_ext);
1894	e1e_flush();
1895}
1896
1897void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1898{
1899	if (adapter->msix_entries) {
1900		pci_disable_msix(adapter->pdev);
1901		kfree(adapter->msix_entries);
1902		adapter->msix_entries = NULL;
1903	} else if (adapter->flags & FLAG_MSI_ENABLED) {
1904		pci_disable_msi(adapter->pdev);
1905		adapter->flags &= ~FLAG_MSI_ENABLED;
1906	}
1907}
1908
1909/**
1910 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1911 *
1912 * Attempt to configure interrupts using the best available
1913 * capabilities of the hardware and kernel.
1914 **/
1915void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1916{
1917	int err;
1918	int i;
1919
1920	switch (adapter->int_mode) {
1921	case E1000E_INT_MODE_MSIX:
1922		if (adapter->flags & FLAG_HAS_MSIX) {
1923			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
1924			adapter->msix_entries = kcalloc(adapter->num_vectors,
1925						      sizeof(struct msix_entry),
1926						      GFP_KERNEL);
 
1927			if (adapter->msix_entries) {
 
 
1928				for (i = 0; i < adapter->num_vectors; i++)
1929					adapter->msix_entries[i].entry = i;
1930
1931				err = pci_enable_msix(adapter->pdev,
1932						      adapter->msix_entries,
1933						      adapter->num_vectors);
1934				if (err == 0)
 
1935					return;
1936			}
1937			/* MSI-X failed, so fall through and try MSI */
1938			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
1939			e1000e_reset_interrupt_capability(adapter);
1940		}
1941		adapter->int_mode = E1000E_INT_MODE_MSI;
1942		/* Fall through */
1943	case E1000E_INT_MODE_MSI:
1944		if (!pci_enable_msi(adapter->pdev)) {
1945			adapter->flags |= FLAG_MSI_ENABLED;
1946		} else {
1947			adapter->int_mode = E1000E_INT_MODE_LEGACY;
1948			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
1949		}
1950		/* Fall through */
1951	case E1000E_INT_MODE_LEGACY:
1952		/* Don't do anything; this is the system default */
1953		break;
1954	}
1955
1956	/* store the number of vectors being used */
1957	adapter->num_vectors = 1;
1958}
1959
1960/**
1961 * e1000_request_msix - Initialize MSI-X interrupts
1962 *
1963 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1964 * kernel.
1965 **/
1966static int e1000_request_msix(struct e1000_adapter *adapter)
1967{
1968	struct net_device *netdev = adapter->netdev;
1969	int err = 0, vector = 0;
1970
1971	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1972		snprintf(adapter->rx_ring->name,
1973			 sizeof(adapter->rx_ring->name) - 1,
1974			 "%s-rx-0", netdev->name);
1975	else
1976		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1977	err = request_irq(adapter->msix_entries[vector].vector,
1978			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1979			  netdev);
1980	if (err)
1981		return err;
1982	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
1983	    E1000_EITR_82574(vector);
1984	adapter->rx_ring->itr_val = adapter->itr;
1985	vector++;
1986
1987	if (strlen(netdev->name) < (IFNAMSIZ - 5))
1988		snprintf(adapter->tx_ring->name,
1989			 sizeof(adapter->tx_ring->name) - 1,
1990			 "%s-tx-0", netdev->name);
1991	else
1992		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1993	err = request_irq(adapter->msix_entries[vector].vector,
1994			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1995			  netdev);
1996	if (err)
1997		return err;
1998	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
1999	    E1000_EITR_82574(vector);
2000	adapter->tx_ring->itr_val = adapter->itr;
2001	vector++;
2002
2003	err = request_irq(adapter->msix_entries[vector].vector,
2004			  e1000_msix_other, 0, netdev->name, netdev);
2005	if (err)
2006		return err;
2007
2008	e1000_configure_msix(adapter);
2009
2010	return 0;
2011}
2012
2013/**
2014 * e1000_request_irq - initialize interrupts
2015 *
2016 * Attempts to configure interrupts using the best available
2017 * capabilities of the hardware and kernel.
2018 **/
2019static int e1000_request_irq(struct e1000_adapter *adapter)
2020{
2021	struct net_device *netdev = adapter->netdev;
2022	int err;
2023
2024	if (adapter->msix_entries) {
2025		err = e1000_request_msix(adapter);
2026		if (!err)
2027			return err;
2028		/* fall back to MSI */
2029		e1000e_reset_interrupt_capability(adapter);
2030		adapter->int_mode = E1000E_INT_MODE_MSI;
2031		e1000e_set_interrupt_capability(adapter);
2032	}
2033	if (adapter->flags & FLAG_MSI_ENABLED) {
2034		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2035				  netdev->name, netdev);
2036		if (!err)
2037			return err;
2038
2039		/* fall back to legacy interrupt */
2040		e1000e_reset_interrupt_capability(adapter);
2041		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2042	}
2043
2044	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2045			  netdev->name, netdev);
2046	if (err)
2047		e_err("Unable to allocate interrupt, Error: %d\n", err);
2048
2049	return err;
2050}
2051
2052static void e1000_free_irq(struct e1000_adapter *adapter)
2053{
2054	struct net_device *netdev = adapter->netdev;
2055
2056	if (adapter->msix_entries) {
2057		int vector = 0;
2058
2059		free_irq(adapter->msix_entries[vector].vector, netdev);
2060		vector++;
2061
2062		free_irq(adapter->msix_entries[vector].vector, netdev);
2063		vector++;
2064
2065		/* Other Causes interrupt vector */
2066		free_irq(adapter->msix_entries[vector].vector, netdev);
2067		return;
2068	}
2069
2070	free_irq(adapter->pdev->irq, netdev);
2071}
2072
2073/**
2074 * e1000_irq_disable - Mask off interrupt generation on the NIC
2075 **/
2076static void e1000_irq_disable(struct e1000_adapter *adapter)
2077{
2078	struct e1000_hw *hw = &adapter->hw;
2079
2080	ew32(IMC, ~0);
2081	if (adapter->msix_entries)
2082		ew32(EIAC_82574, 0);
2083	e1e_flush();
2084
2085	if (adapter->msix_entries) {
2086		int i;
 
2087		for (i = 0; i < adapter->num_vectors; i++)
2088			synchronize_irq(adapter->msix_entries[i].vector);
2089	} else {
2090		synchronize_irq(adapter->pdev->irq);
2091	}
2092}
2093
2094/**
2095 * e1000_irq_enable - Enable default interrupt generation settings
2096 **/
2097static void e1000_irq_enable(struct e1000_adapter *adapter)
2098{
2099	struct e1000_hw *hw = &adapter->hw;
2100
2101	if (adapter->msix_entries) {
2102		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2103		ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
 
 
 
2104	} else {
2105		ew32(IMS, IMS_ENABLE_MASK);
2106	}
2107	e1e_flush();
2108}
2109
2110/**
2111 * e1000e_get_hw_control - get control of the h/w from f/w
2112 * @adapter: address of board private structure
2113 *
2114 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2115 * For ASF and Pass Through versions of f/w this means that
2116 * the driver is loaded. For AMT version (only with 82573)
2117 * of the f/w this means that the network i/f is open.
2118 **/
2119void e1000e_get_hw_control(struct e1000_adapter *adapter)
2120{
2121	struct e1000_hw *hw = &adapter->hw;
2122	u32 ctrl_ext;
2123	u32 swsm;
2124
2125	/* Let firmware know the driver has taken over */
2126	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2127		swsm = er32(SWSM);
2128		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2129	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2130		ctrl_ext = er32(CTRL_EXT);
2131		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2132	}
2133}
2134
2135/**
2136 * e1000e_release_hw_control - release control of the h/w to f/w
2137 * @adapter: address of board private structure
2138 *
2139 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2140 * For ASF and Pass Through versions of f/w this means that the
2141 * driver is no longer loaded. For AMT version (only with 82573) i
2142 * of the f/w this means that the network i/f is closed.
2143 *
2144 **/
2145void e1000e_release_hw_control(struct e1000_adapter *adapter)
2146{
2147	struct e1000_hw *hw = &adapter->hw;
2148	u32 ctrl_ext;
2149	u32 swsm;
2150
2151	/* Let firmware taken over control of h/w */
2152	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2153		swsm = er32(SWSM);
2154		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2155	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2156		ctrl_ext = er32(CTRL_EXT);
2157		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2158	}
2159}
2160
2161/**
2162 * @e1000_alloc_ring - allocate memory for a ring structure
2163 **/
2164static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2165				struct e1000_ring *ring)
2166{
2167	struct pci_dev *pdev = adapter->pdev;
2168
2169	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2170					GFP_KERNEL);
2171	if (!ring->desc)
2172		return -ENOMEM;
2173
2174	return 0;
2175}
2176
2177/**
2178 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2179 * @tx_ring: Tx descriptor ring
2180 *
2181 * Return 0 on success, negative on failure
2182 **/
2183int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2184{
2185	struct e1000_adapter *adapter = tx_ring->adapter;
2186	int err = -ENOMEM, size;
2187
2188	size = sizeof(struct e1000_buffer) * tx_ring->count;
2189	tx_ring->buffer_info = vzalloc(size);
2190	if (!tx_ring->buffer_info)
2191		goto err;
2192
2193	/* round up to nearest 4K */
2194	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2195	tx_ring->size = ALIGN(tx_ring->size, 4096);
2196
2197	err = e1000_alloc_ring_dma(adapter, tx_ring);
2198	if (err)
2199		goto err;
2200
2201	tx_ring->next_to_use = 0;
2202	tx_ring->next_to_clean = 0;
2203
2204	return 0;
2205err:
2206	vfree(tx_ring->buffer_info);
2207	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2208	return err;
2209}
2210
2211/**
2212 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2213 * @rx_ring: Rx descriptor ring
2214 *
2215 * Returns 0 on success, negative on failure
2216 **/
2217int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2218{
2219	struct e1000_adapter *adapter = rx_ring->adapter;
2220	struct e1000_buffer *buffer_info;
2221	int i, size, desc_len, err = -ENOMEM;
2222
2223	size = sizeof(struct e1000_buffer) * rx_ring->count;
2224	rx_ring->buffer_info = vzalloc(size);
2225	if (!rx_ring->buffer_info)
2226		goto err;
2227
2228	for (i = 0; i < rx_ring->count; i++) {
2229		buffer_info = &rx_ring->buffer_info[i];
2230		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2231						sizeof(struct e1000_ps_page),
2232						GFP_KERNEL);
2233		if (!buffer_info->ps_pages)
2234			goto err_pages;
2235	}
2236
2237	desc_len = sizeof(union e1000_rx_desc_packet_split);
2238
2239	/* Round up to nearest 4K */
2240	rx_ring->size = rx_ring->count * desc_len;
2241	rx_ring->size = ALIGN(rx_ring->size, 4096);
2242
2243	err = e1000_alloc_ring_dma(adapter, rx_ring);
2244	if (err)
2245		goto err_pages;
2246
2247	rx_ring->next_to_clean = 0;
2248	rx_ring->next_to_use = 0;
2249	rx_ring->rx_skb_top = NULL;
2250
2251	return 0;
2252
2253err_pages:
2254	for (i = 0; i < rx_ring->count; i++) {
2255		buffer_info = &rx_ring->buffer_info[i];
2256		kfree(buffer_info->ps_pages);
2257	}
2258err:
2259	vfree(rx_ring->buffer_info);
2260	e_err("Unable to allocate memory for the receive descriptor ring\n");
2261	return err;
2262}
2263
2264/**
2265 * e1000_clean_tx_ring - Free Tx Buffers
2266 * @tx_ring: Tx descriptor ring
2267 **/
2268static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2269{
2270	struct e1000_adapter *adapter = tx_ring->adapter;
2271	struct e1000_buffer *buffer_info;
2272	unsigned long size;
2273	unsigned int i;
2274
2275	for (i = 0; i < tx_ring->count; i++) {
2276		buffer_info = &tx_ring->buffer_info[i];
2277		e1000_put_txbuf(tx_ring, buffer_info);
2278	}
2279
2280	netdev_reset_queue(adapter->netdev);
2281	size = sizeof(struct e1000_buffer) * tx_ring->count;
2282	memset(tx_ring->buffer_info, 0, size);
2283
2284	memset(tx_ring->desc, 0, tx_ring->size);
2285
2286	tx_ring->next_to_use = 0;
2287	tx_ring->next_to_clean = 0;
2288
2289	writel(0, tx_ring->head);
2290	if (tx_ring->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2291		e1000e_update_tdt_wa(tx_ring, 0);
2292	else
2293		writel(0, tx_ring->tail);
2294}
2295
2296/**
2297 * e1000e_free_tx_resources - Free Tx Resources per Queue
2298 * @tx_ring: Tx descriptor ring
2299 *
2300 * Free all transmit software resources
2301 **/
2302void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2303{
2304	struct e1000_adapter *adapter = tx_ring->adapter;
2305	struct pci_dev *pdev = adapter->pdev;
2306
2307	e1000_clean_tx_ring(tx_ring);
2308
2309	vfree(tx_ring->buffer_info);
2310	tx_ring->buffer_info = NULL;
2311
2312	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2313			  tx_ring->dma);
2314	tx_ring->desc = NULL;
2315}
2316
2317/**
2318 * e1000e_free_rx_resources - Free Rx Resources
2319 * @rx_ring: Rx descriptor ring
2320 *
2321 * Free all receive software resources
2322 **/
2323void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2324{
2325	struct e1000_adapter *adapter = rx_ring->adapter;
2326	struct pci_dev *pdev = adapter->pdev;
2327	int i;
2328
2329	e1000_clean_rx_ring(rx_ring);
2330
2331	for (i = 0; i < rx_ring->count; i++)
2332		kfree(rx_ring->buffer_info[i].ps_pages);
2333
2334	vfree(rx_ring->buffer_info);
2335	rx_ring->buffer_info = NULL;
2336
2337	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2338			  rx_ring->dma);
2339	rx_ring->desc = NULL;
2340}
2341
2342/**
2343 * e1000_update_itr - update the dynamic ITR value based on statistics
2344 * @adapter: pointer to adapter
2345 * @itr_setting: current adapter->itr
2346 * @packets: the number of packets during this measurement interval
2347 * @bytes: the number of bytes during this measurement interval
2348 *
2349 *      Stores a new ITR value based on packets and byte
2350 *      counts during the last interrupt.  The advantage of per interrupt
2351 *      computation is faster updates and more accurate ITR for the current
2352 *      traffic pattern.  Constants in this function were computed
2353 *      based on theoretical maximum wire speed and thresholds were set based
2354 *      on testing data as well as attempting to minimize response time
2355 *      while increasing bulk throughput.  This functionality is controlled
2356 *      by the InterruptThrottleRate module parameter.
2357 **/
2358static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
2359				     u16 itr_setting, int packets,
2360				     int bytes)
2361{
2362	unsigned int retval = itr_setting;
2363
2364	if (packets == 0)
2365		return itr_setting;
2366
2367	switch (itr_setting) {
2368	case lowest_latency:
2369		/* handle TSO and jumbo frames */
2370		if (bytes/packets > 8000)
2371			retval = bulk_latency;
2372		else if ((packets < 5) && (bytes > 512))
2373			retval = low_latency;
2374		break;
2375	case low_latency:  /* 50 usec aka 20000 ints/s */
2376		if (bytes > 10000) {
2377			/* this if handles the TSO accounting */
2378			if (bytes/packets > 8000)
2379				retval = bulk_latency;
2380			else if ((packets < 10) || ((bytes/packets) > 1200))
2381				retval = bulk_latency;
2382			else if ((packets > 35))
2383				retval = lowest_latency;
2384		} else if (bytes/packets > 2000) {
2385			retval = bulk_latency;
2386		} else if (packets <= 2 && bytes < 512) {
2387			retval = lowest_latency;
2388		}
2389		break;
2390	case bulk_latency: /* 250 usec aka 4000 ints/s */
2391		if (bytes > 25000) {
2392			if (packets > 35)
2393				retval = low_latency;
2394		} else if (bytes < 6000) {
2395			retval = low_latency;
2396		}
2397		break;
2398	}
2399
2400	return retval;
2401}
2402
2403static void e1000_set_itr(struct e1000_adapter *adapter)
2404{
2405	struct e1000_hw *hw = &adapter->hw;
2406	u16 current_itr;
2407	u32 new_itr = adapter->itr;
2408
2409	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2410	if (adapter->link_speed != SPEED_1000) {
2411		current_itr = 0;
2412		new_itr = 4000;
2413		goto set_itr_now;
2414	}
2415
2416	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2417		new_itr = 0;
2418		goto set_itr_now;
2419	}
2420
2421	adapter->tx_itr = e1000_update_itr(adapter,
2422				    adapter->tx_itr,
2423				    adapter->total_tx_packets,
2424				    adapter->total_tx_bytes);
2425	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2426	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2427		adapter->tx_itr = low_latency;
2428
2429	adapter->rx_itr = e1000_update_itr(adapter,
2430				    adapter->rx_itr,
2431				    adapter->total_rx_packets,
2432				    adapter->total_rx_bytes);
2433	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2434	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2435		adapter->rx_itr = low_latency;
2436
2437	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2438
2439	switch (current_itr) {
2440	/* counts and packets in update_itr are dependent on these numbers */
 
2441	case lowest_latency:
2442		new_itr = 70000;
2443		break;
2444	case low_latency:
2445		new_itr = 20000; /* aka hwitr = ~200 */
2446		break;
2447	case bulk_latency:
2448		new_itr = 4000;
2449		break;
2450	default:
2451		break;
2452	}
2453
2454set_itr_now:
2455	if (new_itr != adapter->itr) {
2456		/*
2457		 * this attempts to bias the interrupt rate towards Bulk
2458		 * by adding intermediate steps when interrupt rate is
2459		 * increasing
2460		 */
2461		new_itr = new_itr > adapter->itr ?
2462			     min(adapter->itr + (new_itr >> 2), new_itr) :
2463			     new_itr;
2464		adapter->itr = new_itr;
2465		adapter->rx_ring->itr_val = new_itr;
2466		if (adapter->msix_entries)
2467			adapter->rx_ring->set_itr = 1;
2468		else
2469			if (new_itr)
2470				ew32(ITR, 1000000000 / (new_itr * 256));
2471			else
2472				ew32(ITR, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2473	}
2474}
2475
2476/**
2477 * e1000_alloc_queues - Allocate memory for all rings
2478 * @adapter: board private structure to initialize
2479 **/
2480static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
2481{
2482	int size = sizeof(struct e1000_ring);
2483
2484	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2485	if (!adapter->tx_ring)
2486		goto err;
2487	adapter->tx_ring->count = adapter->tx_ring_count;
2488	adapter->tx_ring->adapter = adapter;
2489
2490	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2491	if (!adapter->rx_ring)
2492		goto err;
2493	adapter->rx_ring->count = adapter->rx_ring_count;
2494	adapter->rx_ring->adapter = adapter;
2495
2496	return 0;
2497err:
2498	e_err("Unable to allocate memory for queues\n");
2499	kfree(adapter->rx_ring);
2500	kfree(adapter->tx_ring);
2501	return -ENOMEM;
2502}
2503
2504/**
2505 * e1000e_poll - NAPI Rx polling callback
2506 * @napi: struct associated with this polling callback
2507 * @weight: number of packets driver is allowed to process this poll
2508 **/
2509static int e1000e_poll(struct napi_struct *napi, int weight)
2510{
2511	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2512						     napi);
2513	struct e1000_hw *hw = &adapter->hw;
2514	struct net_device *poll_dev = adapter->netdev;
2515	int tx_cleaned = 1, work_done = 0;
2516
2517	adapter = netdev_priv(poll_dev);
2518
2519	if (!adapter->msix_entries ||
2520	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2521		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2522
2523	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2524
2525	if (!tx_cleaned)
2526		work_done = weight;
2527
2528	/* If weight not fully consumed, exit the polling mode */
2529	if (work_done < weight) {
2530		if (adapter->itr_setting & 3)
2531			e1000_set_itr(adapter);
2532		napi_complete(napi);
2533		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2534			if (adapter->msix_entries)
2535				ew32(IMS, adapter->rx_ring->ims_val);
2536			else
2537				e1000_irq_enable(adapter);
2538		}
2539	}
2540
2541	return work_done;
2542}
2543
2544static int e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
 
2545{
2546	struct e1000_adapter *adapter = netdev_priv(netdev);
2547	struct e1000_hw *hw = &adapter->hw;
2548	u32 vfta, index;
2549
2550	/* don't update vlan cookie if already programmed */
2551	if ((adapter->hw.mng_cookie.status &
2552	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2553	    (vid == adapter->mng_vlan_id))
2554		return 0;
2555
2556	/* add VID to filter table */
2557	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2558		index = (vid >> 5) & 0x7F;
2559		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2560		vfta |= (1 << (vid & 0x1F));
2561		hw->mac.ops.write_vfta(hw, index, vfta);
2562	}
2563
2564	set_bit(vid, adapter->active_vlans);
2565
2566	return 0;
2567}
2568
2569static int e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
 
2570{
2571	struct e1000_adapter *adapter = netdev_priv(netdev);
2572	struct e1000_hw *hw = &adapter->hw;
2573	u32 vfta, index;
2574
2575	if ((adapter->hw.mng_cookie.status &
2576	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2577	    (vid == adapter->mng_vlan_id)) {
2578		/* release control to f/w */
2579		e1000e_release_hw_control(adapter);
2580		return 0;
2581	}
2582
2583	/* remove VID from filter table */
2584	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2585		index = (vid >> 5) & 0x7F;
2586		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2587		vfta &= ~(1 << (vid & 0x1F));
2588		hw->mac.ops.write_vfta(hw, index, vfta);
2589	}
2590
2591	clear_bit(vid, adapter->active_vlans);
2592
2593	return 0;
2594}
2595
2596/**
2597 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2598 * @adapter: board private structure to initialize
2599 **/
2600static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2601{
2602	struct net_device *netdev = adapter->netdev;
2603	struct e1000_hw *hw = &adapter->hw;
2604	u32 rctl;
2605
2606	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2607		/* disable VLAN receive filtering */
2608		rctl = er32(RCTL);
2609		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2610		ew32(RCTL, rctl);
2611
2612		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2613			e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
 
2614			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2615		}
2616	}
2617}
2618
2619/**
2620 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2621 * @adapter: board private structure to initialize
2622 **/
2623static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2624{
2625	struct e1000_hw *hw = &adapter->hw;
2626	u32 rctl;
2627
2628	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2629		/* enable VLAN receive filtering */
2630		rctl = er32(RCTL);
2631		rctl |= E1000_RCTL_VFE;
2632		rctl &= ~E1000_RCTL_CFIEN;
2633		ew32(RCTL, rctl);
2634	}
2635}
2636
2637/**
2638 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2639 * @adapter: board private structure to initialize
2640 **/
2641static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2642{
2643	struct e1000_hw *hw = &adapter->hw;
2644	u32 ctrl;
2645
2646	/* disable VLAN tag insert/strip */
2647	ctrl = er32(CTRL);
2648	ctrl &= ~E1000_CTRL_VME;
2649	ew32(CTRL, ctrl);
2650}
2651
2652/**
2653 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2654 * @adapter: board private structure to initialize
2655 **/
2656static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2657{
2658	struct e1000_hw *hw = &adapter->hw;
2659	u32 ctrl;
2660
2661	/* enable VLAN tag insert/strip */
2662	ctrl = er32(CTRL);
2663	ctrl |= E1000_CTRL_VME;
2664	ew32(CTRL, ctrl);
2665}
2666
2667static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2668{
2669	struct net_device *netdev = adapter->netdev;
2670	u16 vid = adapter->hw.mng_cookie.vlan_id;
2671	u16 old_vid = adapter->mng_vlan_id;
2672
2673	if (adapter->hw.mng_cookie.status &
2674	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2675		e1000_vlan_rx_add_vid(netdev, vid);
2676		adapter->mng_vlan_id = vid;
2677	}
2678
2679	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2680		e1000_vlan_rx_kill_vid(netdev, old_vid);
2681}
2682
2683static void e1000_restore_vlan(struct e1000_adapter *adapter)
2684{
2685	u16 vid;
2686
2687	e1000_vlan_rx_add_vid(adapter->netdev, 0);
2688
2689	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2690		e1000_vlan_rx_add_vid(adapter->netdev, vid);
2691}
2692
2693static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2694{
2695	struct e1000_hw *hw = &adapter->hw;
2696	u32 manc, manc2h, mdef, i, j;
2697
2698	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2699		return;
2700
2701	manc = er32(MANC);
2702
2703	/*
2704	 * enable receiving management packets to the host. this will probably
2705	 * generate destination unreachable messages from the host OS, but
2706	 * the packets will be handled on SMBUS
2707	 */
2708	manc |= E1000_MANC_EN_MNG2HOST;
2709	manc2h = er32(MANC2H);
2710
2711	switch (hw->mac.type) {
2712	default:
2713		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2714		break;
2715	case e1000_82574:
2716	case e1000_82583:
2717		/*
2718		 * Check if IPMI pass-through decision filter already exists;
2719		 * if so, enable it.
2720		 */
2721		for (i = 0, j = 0; i < 8; i++) {
2722			mdef = er32(MDEF(i));
2723
2724			/* Ignore filters with anything other than IPMI ports */
2725			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2726				continue;
2727
2728			/* Enable this decision filter in MANC2H */
2729			if (mdef)
2730				manc2h |= (1 << i);
2731
2732			j |= mdef;
2733		}
2734
2735		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2736			break;
2737
2738		/* Create new decision filter in an empty filter */
2739		for (i = 0, j = 0; i < 8; i++)
2740			if (er32(MDEF(i)) == 0) {
2741				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2742					       E1000_MDEF_PORT_664));
2743				manc2h |= (1 << 1);
2744				j++;
2745				break;
2746			}
2747
2748		if (!j)
2749			e_warn("Unable to create IPMI pass-through filter\n");
2750		break;
2751	}
2752
2753	ew32(MANC2H, manc2h);
2754	ew32(MANC, manc);
2755}
2756
2757/**
2758 * e1000_configure_tx - Configure Transmit Unit after Reset
2759 * @adapter: board private structure
2760 *
2761 * Configure the Tx unit of the MAC after a reset.
2762 **/
2763static void e1000_configure_tx(struct e1000_adapter *adapter)
2764{
2765	struct e1000_hw *hw = &adapter->hw;
2766	struct e1000_ring *tx_ring = adapter->tx_ring;
2767	u64 tdba;
2768	u32 tdlen, tarc;
2769
2770	/* Setup the HW Tx Head and Tail descriptor pointers */
2771	tdba = tx_ring->dma;
2772	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2773	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2774	ew32(TDBAH(0), (tdba >> 32));
2775	ew32(TDLEN(0), tdlen);
2776	ew32(TDH(0), 0);
2777	ew32(TDT(0), 0);
2778	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2779	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2780
 
 
 
 
 
 
2781	/* Set the Tx Interrupt Delay register */
2782	ew32(TIDV, adapter->tx_int_delay);
2783	/* Tx irq moderation */
2784	ew32(TADV, adapter->tx_abs_int_delay);
2785
2786	if (adapter->flags2 & FLAG2_DMA_BURST) {
2787		u32 txdctl = er32(TXDCTL(0));
 
2788		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2789			    E1000_TXDCTL_WTHRESH);
2790		/*
2791		 * set up some performance related parameters to encourage the
2792		 * hardware to use the bus more efficiently in bursts, depends
2793		 * on the tx_int_delay to be enabled,
2794		 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2795		 * hthresh = 1 ==> prefetch when one or more available
2796		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2797		 * BEWARE: this seems to work but should be considered first if
2798		 * there are Tx hangs or other Tx related bugs
2799		 */
2800		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2801		ew32(TXDCTL(0), txdctl);
2802	}
2803	/* erratum work around: set txdctl the same for both queues */
2804	ew32(TXDCTL(1), er32(TXDCTL(0)));
2805
 
 
 
 
 
 
2806	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2807		tarc = er32(TARC(0));
2808		/*
2809		 * set the speed mode bit, we'll clear it if we're not at
2810		 * gigabit link later
2811		 */
2812#define SPEED_MODE_BIT (1 << 21)
2813		tarc |= SPEED_MODE_BIT;
2814		ew32(TARC(0), tarc);
2815	}
2816
2817	/* errata: program both queues to unweighted RR */
2818	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2819		tarc = er32(TARC(0));
2820		tarc |= 1;
2821		ew32(TARC(0), tarc);
2822		tarc = er32(TARC(1));
2823		tarc |= 1;
2824		ew32(TARC(1), tarc);
2825	}
2826
2827	/* Setup Transmit Descriptor Settings for eop descriptor */
2828	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2829
2830	/* only set IDE if we are delaying interrupts using the timers */
2831	if (adapter->tx_int_delay)
2832		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2833
2834	/* enable Report Status bit */
2835	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2836
 
 
2837	hw->mac.ops.config_collision_dist(hw);
 
 
 
 
 
 
 
 
 
 
 
 
 
2838}
2839
2840/**
2841 * e1000_setup_rctl - configure the receive control registers
2842 * @adapter: Board private structure
2843 **/
2844#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2845			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2846static void e1000_setup_rctl(struct e1000_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 rctl, rfctl;
2850	u32 pages = 0;
2851
2852	/* Workaround Si errata on PCHx - configure jumbo frame flow */
 
 
 
2853	if (hw->mac.type >= e1000_pch2lan) {
2854		s32 ret_val;
2855
2856		if (adapter->netdev->mtu > ETH_DATA_LEN)
2857			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
2858		else
2859			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
2860
2861		if (ret_val)
2862			e_dbg("failed to enable jumbo frame workaround mode\n");
2863	}
2864
2865	/* Program MC offset vector base */
2866	rctl = er32(RCTL);
2867	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2868	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2869		E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2870		(adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2871
2872	/* Do not Store bad packets */
2873	rctl &= ~E1000_RCTL_SBP;
2874
2875	/* Enable Long Packet receive */
2876	if (adapter->netdev->mtu <= ETH_DATA_LEN)
2877		rctl &= ~E1000_RCTL_LPE;
2878	else
2879		rctl |= E1000_RCTL_LPE;
2880
2881	/* Some systems expect that the CRC is included in SMBUS traffic. The
2882	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2883	 * host memory when this is enabled
2884	 */
2885	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2886		rctl |= E1000_RCTL_SECRC;
2887
2888	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2889	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
2890		u16 phy_data;
2891
2892		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
2893		phy_data &= 0xfff8;
2894		phy_data |= (1 << 2);
2895		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
2896
2897		e1e_rphy(hw, 22, &phy_data);
2898		phy_data &= 0x0fff;
2899		phy_data |= (1 << 14);
2900		e1e_wphy(hw, 0x10, 0x2823);
2901		e1e_wphy(hw, 0x11, 0x0003);
2902		e1e_wphy(hw, 22, phy_data);
2903	}
2904
2905	/* Setup buffer sizes */
2906	rctl &= ~E1000_RCTL_SZ_4096;
2907	rctl |= E1000_RCTL_BSEX;
2908	switch (adapter->rx_buffer_len) {
2909	case 2048:
2910	default:
2911		rctl |= E1000_RCTL_SZ_2048;
2912		rctl &= ~E1000_RCTL_BSEX;
2913		break;
2914	case 4096:
2915		rctl |= E1000_RCTL_SZ_4096;
2916		break;
2917	case 8192:
2918		rctl |= E1000_RCTL_SZ_8192;
2919		break;
2920	case 16384:
2921		rctl |= E1000_RCTL_SZ_16384;
2922		break;
2923	}
2924
2925	/* Enable Extended Status in all Receive Descriptors */
2926	rfctl = er32(RFCTL);
2927	rfctl |= E1000_RFCTL_EXTEN;
2928	ew32(RFCTL, rfctl);
2929
2930	/*
2931	 * 82571 and greater support packet-split where the protocol
2932	 * header is placed in skb->data and the packet data is
2933	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2934	 * In the case of a non-split, skb->data is linearly filled,
2935	 * followed by the page buffers.  Therefore, skb->data is
2936	 * sized to hold the largest protocol header.
2937	 *
2938	 * allocations using alloc_page take too long for regular MTU
2939	 * so only enable packet split for jumbo frames
2940	 *
2941	 * Using pages when the page size is greater than 16k wastes
2942	 * a lot of memory, since we allocate 3 pages at all times
2943	 * per packet.
2944	 */
2945	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2946	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2947		adapter->rx_ps_pages = pages;
2948	else
2949		adapter->rx_ps_pages = 0;
2950
2951	if (adapter->rx_ps_pages) {
2952		u32 psrctl = 0;
2953
2954		/* Enable Packet split descriptors */
2955		rctl |= E1000_RCTL_DTYP_PS;
2956
2957		psrctl |= adapter->rx_ps_bsize0 >>
2958			E1000_PSRCTL_BSIZE0_SHIFT;
2959
2960		switch (adapter->rx_ps_pages) {
2961		case 3:
2962			psrctl |= PAGE_SIZE <<
2963				E1000_PSRCTL_BSIZE3_SHIFT;
2964		case 2:
2965			psrctl |= PAGE_SIZE <<
2966				E1000_PSRCTL_BSIZE2_SHIFT;
2967		case 1:
2968			psrctl |= PAGE_SIZE >>
2969				E1000_PSRCTL_BSIZE1_SHIFT;
2970			break;
2971		}
2972
2973		ew32(PSRCTL, psrctl);
2974	}
2975
2976	/* This is useful for sniffing bad packets. */
2977	if (adapter->netdev->features & NETIF_F_RXALL) {
2978		/* UPE and MPE will be handled by normal PROMISC logic
2979		 * in e1000e_set_rx_mode */
2980		rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
2981			 E1000_RCTL_BAM | /* RX All Bcast Pkts */
2982			 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
2983
2984		rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
2985			  E1000_RCTL_DPF | /* Allow filtered pause */
2986			  E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
 
2987		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
2988		 * and that breaks VLANs.
2989		 */
2990	}
2991
2992	ew32(RCTL, rctl);
2993	/* just started the receive unit, no need to restart */
2994	adapter->flags &= ~FLAG_RX_RESTART_NOW;
2995}
2996
2997/**
2998 * e1000_configure_rx - Configure Receive Unit after Reset
2999 * @adapter: board private structure
3000 *
3001 * Configure the Rx unit of the MAC after a reset.
3002 **/
3003static void e1000_configure_rx(struct e1000_adapter *adapter)
3004{
3005	struct e1000_hw *hw = &adapter->hw;
3006	struct e1000_ring *rx_ring = adapter->rx_ring;
3007	u64 rdba;
3008	u32 rdlen, rctl, rxcsum, ctrl_ext;
3009
3010	if (adapter->rx_ps_pages) {
3011		/* this is a 32 byte descriptor */
3012		rdlen = rx_ring->count *
3013		    sizeof(union e1000_rx_desc_packet_split);
3014		adapter->clean_rx = e1000_clean_rx_irq_ps;
3015		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3016	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3017		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3018		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3019		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3020	} else {
3021		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3022		adapter->clean_rx = e1000_clean_rx_irq;
3023		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3024	}
3025
3026	/* disable receives while setting up the descriptors */
3027	rctl = er32(RCTL);
3028	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3029		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3030	e1e_flush();
3031	usleep_range(10000, 20000);
3032
3033	if (adapter->flags2 & FLAG2_DMA_BURST) {
3034		/*
3035		 * set the writeback threshold (only takes effect if the RDTR
3036		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3037		 * enable prefetching of 0x20 Rx descriptors
3038		 * granularity = 01
3039		 * wthresh = 04,
3040		 * hthresh = 04,
3041		 * pthresh = 0x20
3042		 */
3043		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3044		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3045
3046		/*
3047		 * override the delay timers for enabling bursting, only if
3048		 * the value was not set by the user via module options
3049		 */
3050		if (adapter->rx_int_delay == DEFAULT_RDTR)
3051			adapter->rx_int_delay = BURST_RDTR;
3052		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3053			adapter->rx_abs_int_delay = BURST_RADV;
3054	}
3055
3056	/* set the Receive Delay Timer Register */
3057	ew32(RDTR, adapter->rx_int_delay);
3058
3059	/* irq moderation */
3060	ew32(RADV, adapter->rx_abs_int_delay);
3061	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3062		ew32(ITR, 1000000000 / (adapter->itr * 256));
3063
3064	ctrl_ext = er32(CTRL_EXT);
3065	/* Auto-Mask interrupts upon ICR access */
3066	ctrl_ext |= E1000_CTRL_EXT_IAME;
3067	ew32(IAM, 0xffffffff);
3068	ew32(CTRL_EXT, ctrl_ext);
3069	e1e_flush();
3070
3071	/*
3072	 * Setup the HW Rx Head and Tail Descriptor Pointers and
3073	 * the Base and Length of the Rx Descriptor Ring
3074	 */
3075	rdba = rx_ring->dma;
3076	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3077	ew32(RDBAH(0), (rdba >> 32));
3078	ew32(RDLEN(0), rdlen);
3079	ew32(RDH(0), 0);
3080	ew32(RDT(0), 0);
3081	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3082	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3083
 
 
 
 
 
 
3084	/* Enable Receive Checksum Offload for TCP and UDP */
3085	rxcsum = er32(RXCSUM);
3086	if (adapter->netdev->features & NETIF_F_RXCSUM)
3087		rxcsum |= E1000_RXCSUM_TUOFL;
3088	else
3089		rxcsum &= ~E1000_RXCSUM_TUOFL;
3090	ew32(RXCSUM, rxcsum);
3091
3092	if (adapter->hw.mac.type == e1000_pch2lan) {
3093		/*
3094		 * With jumbo frames, excessive C-state transition
3095		 * latencies result in dropped transactions.
3096		 */
3097		if (adapter->netdev->mtu > ETH_DATA_LEN) {
 
 
 
3098			u32 rxdctl = er32(RXDCTL(0));
 
3099			ew32(RXDCTL(0), rxdctl | 0x3);
3100			pm_qos_update_request(&adapter->netdev->pm_qos_req, 55);
3101		} else {
3102			pm_qos_update_request(&adapter->netdev->pm_qos_req,
3103					      PM_QOS_DEFAULT_VALUE);
3104		}
 
 
 
 
 
3105	}
3106
3107	/* Enable Receives */
3108	ew32(RCTL, rctl);
3109}
3110
3111/**
3112 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3113 * @netdev: network interface device structure
3114 *
3115 * Writes multicast address list to the MTA hash table.
3116 * Returns: -ENOMEM on failure
3117 *                0 on no addresses written
3118 *                X on writing X addresses to MTA
3119 */
3120static int e1000e_write_mc_addr_list(struct net_device *netdev)
3121{
3122	struct e1000_adapter *adapter = netdev_priv(netdev);
3123	struct e1000_hw *hw = &adapter->hw;
3124	struct netdev_hw_addr *ha;
3125	u8 *mta_list;
3126	int i;
3127
3128	if (netdev_mc_empty(netdev)) {
3129		/* nothing to program, so clear mc list */
3130		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3131		return 0;
3132	}
3133
3134	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3135	if (!mta_list)
3136		return -ENOMEM;
3137
3138	/* update_mc_addr_list expects a packed array of only addresses. */
3139	i = 0;
3140	netdev_for_each_mc_addr(ha, netdev)
3141		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3142
3143	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3144	kfree(mta_list);
3145
3146	return netdev_mc_count(netdev);
3147}
3148
3149/**
3150 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3151 * @netdev: network interface device structure
3152 *
3153 * Writes unicast address list to the RAR table.
3154 * Returns: -ENOMEM on failure/insufficient address space
3155 *                0 on no addresses written
3156 *                X on writing X addresses to the RAR table
3157 **/
3158static int e1000e_write_uc_addr_list(struct net_device *netdev)
3159{
3160	struct e1000_adapter *adapter = netdev_priv(netdev);
3161	struct e1000_hw *hw = &adapter->hw;
3162	unsigned int rar_entries = hw->mac.rar_entry_count;
3163	int count = 0;
3164
 
 
3165	/* save a rar entry for our hardware address */
3166	rar_entries--;
3167
3168	/* save a rar entry for the LAA workaround */
3169	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3170		rar_entries--;
3171
3172	/* return ENOMEM indicating insufficient memory for addresses */
3173	if (netdev_uc_count(netdev) > rar_entries)
3174		return -ENOMEM;
3175
3176	if (!netdev_uc_empty(netdev) && rar_entries) {
3177		struct netdev_hw_addr *ha;
3178
3179		/*
3180		 * write the addresses in reverse order to avoid write
3181		 * combining
3182		 */
3183		netdev_for_each_uc_addr(ha, netdev) {
 
 
3184			if (!rar_entries)
3185				break;
3186			hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
 
 
3187			count++;
3188		}
3189	}
3190
3191	/* zero out the remaining RAR entries not used above */
3192	for (; rar_entries > 0; rar_entries--) {
3193		ew32(RAH(rar_entries), 0);
3194		ew32(RAL(rar_entries), 0);
3195	}
3196	e1e_flush();
3197
3198	return count;
3199}
3200
3201/**
3202 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3203 * @netdev: network interface device structure
3204 *
3205 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3206 * address list or the network interface flags are updated.  This routine is
3207 * responsible for configuring the hardware for proper unicast, multicast,
3208 * promiscuous mode, and all-multi behavior.
3209 **/
3210static void e1000e_set_rx_mode(struct net_device *netdev)
3211{
3212	struct e1000_adapter *adapter = netdev_priv(netdev);
3213	struct e1000_hw *hw = &adapter->hw;
3214	u32 rctl;
3215
 
 
 
3216	/* Check for Promiscuous and All Multicast modes */
3217	rctl = er32(RCTL);
3218
3219	/* clear the affected bits */
3220	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3221
3222	if (netdev->flags & IFF_PROMISC) {
3223		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3224		/* Do not hardware filter VLANs in promisc mode */
3225		e1000e_vlan_filter_disable(adapter);
3226	} else {
3227		int count;
3228
3229		if (netdev->flags & IFF_ALLMULTI) {
3230			rctl |= E1000_RCTL_MPE;
3231		} else {
3232			/*
3233			 * Write addresses to the MTA, if the attempt fails
3234			 * then we should just turn on promiscuous mode so
3235			 * that we can at least receive multicast traffic
3236			 */
3237			count = e1000e_write_mc_addr_list(netdev);
3238			if (count < 0)
3239				rctl |= E1000_RCTL_MPE;
3240		}
3241		e1000e_vlan_filter_enable(adapter);
3242		/*
3243		 * Write addresses to available RAR registers, if there is not
3244		 * sufficient space to store all the addresses then enable
3245		 * unicast promiscuous mode
3246		 */
3247		count = e1000e_write_uc_addr_list(netdev);
3248		if (count < 0)
3249			rctl |= E1000_RCTL_UPE;
3250	}
3251
3252	ew32(RCTL, rctl);
3253
3254	if (netdev->features & NETIF_F_HW_VLAN_RX)
3255		e1000e_vlan_strip_enable(adapter);
3256	else
3257		e1000e_vlan_strip_disable(adapter);
3258}
3259
3260static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3261{
3262	struct e1000_hw *hw = &adapter->hw;
3263	u32 mrqc, rxcsum;
 
3264	int i;
3265	static const u32 rsskey[10] = {
3266		0xda565a6d, 0xc20e5b25, 0x3d256741, 0xb08fa343, 0xcb2bcad0,
3267		0xb4307bae, 0xa32dcb77, 0x0cf23080, 0x3bb7426a, 0xfa01acbe
3268	};
3269
3270	/* Fill out hash function seed */
3271	for (i = 0; i < 10; i++)
3272		ew32(RSSRK(i), rsskey[i]);
3273
3274	/* Direct all traffic to queue 0 */
3275	for (i = 0; i < 32; i++)
3276		ew32(RETA(i), 0);
3277
3278	/*
3279	 * Disable raw packet checksumming so that RSS hash is placed in
3280	 * descriptor on writeback.
3281	 */
3282	rxcsum = er32(RXCSUM);
3283	rxcsum |= E1000_RXCSUM_PCSD;
3284
3285	ew32(RXCSUM, rxcsum);
3286
3287	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3288		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3289		E1000_MRQC_RSS_FIELD_IPV6 |
3290		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3291		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3292
3293	ew32(MRQC, mrqc);
3294}
3295
3296/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3297 * e1000_configure - configure the hardware for Rx and Tx
3298 * @adapter: private board structure
3299 **/
3300static void e1000_configure(struct e1000_adapter *adapter)
3301{
3302	struct e1000_ring *rx_ring = adapter->rx_ring;
3303
3304	e1000e_set_rx_mode(adapter->netdev);
3305
3306	e1000_restore_vlan(adapter);
3307	e1000_init_manageability_pt(adapter);
3308
3309	e1000_configure_tx(adapter);
3310
3311	if (adapter->netdev->features & NETIF_F_RXHASH)
3312		e1000e_setup_rss_hash(adapter);
3313	e1000_setup_rctl(adapter);
3314	e1000_configure_rx(adapter);
3315	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3316}
3317
3318/**
3319 * e1000e_power_up_phy - restore link in case the phy was powered down
3320 * @adapter: address of board private structure
3321 *
3322 * The phy may be powered down to save power and turn off link when the
3323 * driver is unloaded and wake on lan is not enabled (among others)
3324 * *** this routine MUST be followed by a call to e1000e_reset ***
3325 **/
3326void e1000e_power_up_phy(struct e1000_adapter *adapter)
3327{
3328	if (adapter->hw.phy.ops.power_up)
3329		adapter->hw.phy.ops.power_up(&adapter->hw);
3330
3331	adapter->hw.mac.ops.setup_link(&adapter->hw);
3332}
3333
3334/**
3335 * e1000_power_down_phy - Power down the PHY
3336 *
3337 * Power down the PHY so no link is implied when interface is down.
3338 * The PHY cannot be powered down if management or WoL is active.
3339 */
3340static void e1000_power_down_phy(struct e1000_adapter *adapter)
3341{
3342	/* WoL is enabled */
3343	if (adapter->wol)
3344		return;
3345
3346	if (adapter->hw.phy.ops.power_down)
3347		adapter->hw.phy.ops.power_down(&adapter->hw);
3348}
3349
3350/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3351 * e1000e_reset - bring the hardware into a known good state
3352 *
3353 * This function boots the hardware and enables some settings that
3354 * require a configuration cycle of the hardware - those cannot be
3355 * set/changed during runtime. After reset the device needs to be
3356 * properly configured for Rx, Tx etc.
3357 */
3358void e1000e_reset(struct e1000_adapter *adapter)
3359{
3360	struct e1000_mac_info *mac = &adapter->hw.mac;
3361	struct e1000_fc_info *fc = &adapter->hw.fc;
3362	struct e1000_hw *hw = &adapter->hw;
3363	u32 tx_space, min_tx_space, min_rx_space;
3364	u32 pba = adapter->pba;
3365	u16 hwm;
3366
3367	/* reset Packet Buffer Allocation to default */
3368	ew32(PBA, pba);
3369
3370	if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
3371		/*
3372		 * To maintain wire speed transmits, the Tx FIFO should be
3373		 * large enough to accommodate two full transmit packets,
3374		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3375		 * the Rx FIFO should be large enough to accommodate at least
3376		 * one full receive packet and is similarly rounded up and
3377		 * expressed in KB.
3378		 */
3379		pba = er32(PBA);
3380		/* upper 16 bits has Tx packet buffer allocation size in KB */
3381		tx_space = pba >> 16;
3382		/* lower 16 bits has Rx packet buffer allocation size in KB */
3383		pba &= 0xffff;
3384		/*
3385		 * the Tx fifo also stores 16 bytes of information about the Tx
3386		 * but don't include ethernet FCS because hardware appends it
3387		 */
3388		min_tx_space = (adapter->max_frame_size +
3389				sizeof(struct e1000_tx_desc) -
3390				ETH_FCS_LEN) * 2;
3391		min_tx_space = ALIGN(min_tx_space, 1024);
3392		min_tx_space >>= 10;
3393		/* software strips receive CRC, so leave room for it */
3394		min_rx_space = adapter->max_frame_size;
3395		min_rx_space = ALIGN(min_rx_space, 1024);
3396		min_rx_space >>= 10;
3397
3398		/*
3399		 * If current Tx allocation is less than the min Tx FIFO size,
3400		 * and the min Tx FIFO size is less than the current Rx FIFO
3401		 * allocation, take space away from current Rx allocation
3402		 */
3403		if ((tx_space < min_tx_space) &&
3404		    ((min_tx_space - tx_space) < pba)) {
3405			pba -= min_tx_space - tx_space;
3406
3407			/*
3408			 * if short on Rx space, Rx wins and must trump Tx
3409			 * adjustment or use Early Receive if available
3410			 */
3411			if (pba < min_rx_space)
3412				pba = min_rx_space;
3413		}
3414
3415		ew32(PBA, pba);
3416	}
3417
3418	/*
3419	 * flow control settings
3420	 *
3421	 * The high water mark must be low enough to fit one full frame
3422	 * (or the size used for early receive) above it in the Rx FIFO.
3423	 * Set it to the lower of:
3424	 * - 90% of the Rx FIFO size, and
3425	 * - the full Rx FIFO size minus one full frame
3426	 */
3427	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3428		fc->pause_time = 0xFFFF;
3429	else
3430		fc->pause_time = E1000_FC_PAUSE_TIME;
3431	fc->send_xon = true;
3432	fc->current_mode = fc->requested_mode;
3433
3434	switch (hw->mac.type) {
3435	case e1000_ich9lan:
3436	case e1000_ich10lan:
3437		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3438			pba = 14;
3439			ew32(PBA, pba);
3440			fc->high_water = 0x2800;
3441			fc->low_water = fc->high_water - 8;
3442			break;
3443		}
3444		/* fall-through */
3445	default:
3446		hwm = min(((pba << 10) * 9 / 10),
3447			  ((pba << 10) - adapter->max_frame_size));
3448
3449		fc->high_water = hwm & E1000_FCRTH_RTH; /* 8-byte granularity */
3450		fc->low_water = fc->high_water - 8;
3451		break;
3452	case e1000_pchlan:
3453		/*
3454		 * Workaround PCH LOM adapter hangs with certain network
3455		 * loads.  If hangs persist, try disabling Tx flow control.
3456		 */
3457		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3458			fc->high_water = 0x3500;
3459			fc->low_water  = 0x1500;
3460		} else {
3461			fc->high_water = 0x5000;
3462			fc->low_water  = 0x3000;
3463		}
3464		fc->refresh_time = 0x1000;
3465		break;
3466	case e1000_pch2lan:
3467	case e1000_pch_lpt:
3468		fc->high_water = 0x05C20;
3469		fc->low_water = 0x05048;
3470		fc->pause_time = 0x0650;
3471		fc->refresh_time = 0x0400;
3472		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3473			pba = 14;
3474			ew32(PBA, pba);
 
 
 
3475		}
 
 
 
 
 
3476		break;
3477	}
3478
3479	/*
3480	 * Alignment of Tx data is on an arbitrary byte boundary with the
3481	 * maximum size per Tx descriptor limited only to the transmit
3482	 * allocation of the packet buffer minus 96 bytes with an upper
3483	 * limit of 24KB due to receive synchronization limitations.
3484	 */
3485	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
3486				       24 << 10);
3487
3488	/*
3489	 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3490	 * fit in receive buffer.
3491	 */
3492	if (adapter->itr_setting & 0x3) {
3493		if ((adapter->max_frame_size * 2) > (pba << 10)) {
3494			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
3495				dev_info(&adapter->pdev->dev,
3496					"Interrupt Throttle Rate turned off\n");
3497				adapter->flags2 |= FLAG2_DISABLE_AIM;
3498				ew32(ITR, 0);
3499			}
3500		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
3501			dev_info(&adapter->pdev->dev,
3502				 "Interrupt Throttle Rate turned on\n");
3503			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
3504			adapter->itr = 20000;
3505			ew32(ITR, 1000000000 / (adapter->itr * 256));
3506		}
3507	}
3508
 
 
3509	/* Allow time for pending master requests to run */
3510	mac->ops.reset_hw(hw);
3511
3512	/*
3513	 * For parts with AMT enabled, let the firmware know
3514	 * that the network interface is in control
3515	 */
3516	if (adapter->flags & FLAG_HAS_AMT)
3517		e1000e_get_hw_control(adapter);
3518
3519	ew32(WUC, 0);
3520
3521	if (mac->ops.init_hw(hw))
3522		e_err("Hardware Error\n");
3523
3524	e1000_update_mng_vlan(adapter);
3525
3526	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3527	ew32(VET, ETH_P_8021Q);
3528
3529	e1000e_reset_adaptive(hw);
3530
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3531	if (!netif_running(adapter->netdev) &&
3532	    !test_bit(__E1000_TESTING, &adapter->state)) {
3533		e1000_power_down_phy(adapter);
3534		return;
3535	}
3536
3537	e1000_get_phy_info(hw);
3538
3539	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
3540	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
3541		u16 phy_data = 0;
3542		/*
3543		 * speed up time to link by disabling smart power down, ignore
3544		 * the return value of this function because there is nothing
3545		 * different we would do if it failed
3546		 */
3547		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
3548		phy_data &= ~IGP02E1000_PM_SPD;
3549		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
3550	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3551}
3552
3553int e1000e_up(struct e1000_adapter *adapter)
 
 
 
 
 
 
3554{
3555	struct e1000_hw *hw = &adapter->hw;
3556
 
 
 
 
 
 
 
 
3557	/* hardware has been reset, we need to reload some things */
3558	e1000_configure(adapter);
3559
3560	clear_bit(__E1000_DOWN, &adapter->state);
3561
3562	if (adapter->msix_entries)
3563		e1000_configure_msix(adapter);
3564	e1000_irq_enable(adapter);
3565
3566	netif_start_queue(adapter->netdev);
3567
3568	/* fire a link change interrupt to start the watchdog */
3569	if (adapter->msix_entries)
3570		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3571	else
3572		ew32(ICS, E1000_ICS_LSC);
3573
3574	return 0;
3575}
3576
3577static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
3578{
3579	struct e1000_hw *hw = &adapter->hw;
3580
3581	if (!(adapter->flags2 & FLAG2_DMA_BURST))
3582		return;
3583
3584	/* flush pending descriptor writebacks to memory */
3585	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3586	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3587
3588	/* execute the writes immediately */
3589	e1e_flush();
3590
3591	/*
3592	 * due to rare timing issues, write to TIDV/RDTR again to ensure the
3593	 * write is successful
3594	 */
3595	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
3596	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
3597
3598	/* execute the writes immediately */
3599	e1e_flush();
3600}
3601
3602static void e1000e_update_stats(struct e1000_adapter *adapter);
3603
3604void e1000e_down(struct e1000_adapter *adapter)
 
 
 
 
 
3605{
3606	struct net_device *netdev = adapter->netdev;
3607	struct e1000_hw *hw = &adapter->hw;
3608	u32 tctl, rctl;
3609
3610	/*
3611	 * signal that we're down so the interrupt handler does not
3612	 * reschedule our watchdog timer
3613	 */
3614	set_bit(__E1000_DOWN, &adapter->state);
3615
 
 
3616	/* disable receives in the hardware */
3617	rctl = er32(RCTL);
3618	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3619		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3620	/* flush and sleep below */
3621
3622	netif_stop_queue(netdev);
3623
3624	/* disable transmits in the hardware */
3625	tctl = er32(TCTL);
3626	tctl &= ~E1000_TCTL_EN;
3627	ew32(TCTL, tctl);
3628
3629	/* flush both disables and wait for them to finish */
3630	e1e_flush();
3631	usleep_range(10000, 20000);
3632
3633	e1000_irq_disable(adapter);
3634
 
 
3635	del_timer_sync(&adapter->watchdog_timer);
3636	del_timer_sync(&adapter->phy_info_timer);
3637
3638	netif_carrier_off(netdev);
3639
3640	spin_lock(&adapter->stats64_lock);
3641	e1000e_update_stats(adapter);
3642	spin_unlock(&adapter->stats64_lock);
3643
3644	e1000e_flush_descriptors(adapter);
3645	e1000_clean_tx_ring(adapter->tx_ring);
3646	e1000_clean_rx_ring(adapter->rx_ring);
3647
3648	adapter->link_speed = 0;
3649	adapter->link_duplex = 0;
3650
3651	if (!pci_channel_offline(adapter->pdev))
3652		e1000e_reset(adapter);
3653
3654	/*
3655	 * TODO: for power management, we could drop the link and
3656	 * pci_disable_device here.
3657	 */
 
 
 
 
 
 
 
3658}
3659
3660void e1000e_reinit_locked(struct e1000_adapter *adapter)
3661{
3662	might_sleep();
3663	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
3664		usleep_range(1000, 2000);
3665	e1000e_down(adapter);
3666	e1000e_up(adapter);
3667	clear_bit(__E1000_RESETTING, &adapter->state);
3668}
3669
3670/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3671 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3672 * @adapter: board private structure to initialize
3673 *
3674 * e1000_sw_init initializes the Adapter private data structure.
3675 * Fields are initialized based on PCI device information and
3676 * OS network device settings (MTU size).
3677 **/
3678static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
3679{
3680	struct net_device *netdev = adapter->netdev;
3681
3682	adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
3683	adapter->rx_ps_bsize0 = 128;
3684	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
3685	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
3686	adapter->tx_ring_count = E1000_DEFAULT_TXD;
3687	adapter->rx_ring_count = E1000_DEFAULT_RXD;
3688
3689	spin_lock_init(&adapter->stats64_lock);
3690
3691	e1000e_set_interrupt_capability(adapter);
3692
3693	if (e1000_alloc_queues(adapter))
3694		return -ENOMEM;
3695
 
 
 
 
 
 
 
 
 
 
 
3696	/* Explicitly disable IRQ since the NIC can be in any state. */
3697	e1000_irq_disable(adapter);
3698
3699	set_bit(__E1000_DOWN, &adapter->state);
3700	return 0;
3701}
3702
3703/**
3704 * e1000_intr_msi_test - Interrupt Handler
3705 * @irq: interrupt number
3706 * @data: pointer to a network interface device structure
3707 **/
3708static irqreturn_t e1000_intr_msi_test(int irq, void *data)
3709{
3710	struct net_device *netdev = data;
3711	struct e1000_adapter *adapter = netdev_priv(netdev);
3712	struct e1000_hw *hw = &adapter->hw;
3713	u32 icr = er32(ICR);
3714
3715	e_dbg("icr is %08X\n", icr);
3716	if (icr & E1000_ICR_RXSEQ) {
3717		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
 
 
 
3718		wmb();
3719	}
3720
3721	return IRQ_HANDLED;
3722}
3723
3724/**
3725 * e1000_test_msi_interrupt - Returns 0 for successful test
3726 * @adapter: board private struct
3727 *
3728 * code flow taken from tg3.c
3729 **/
3730static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
3731{
3732	struct net_device *netdev = adapter->netdev;
3733	struct e1000_hw *hw = &adapter->hw;
3734	int err;
3735
3736	/* poll_enable hasn't been called yet, so don't need disable */
3737	/* clear any pending events */
3738	er32(ICR);
3739
3740	/* free the real vector and request a test handler */
3741	e1000_free_irq(adapter);
3742	e1000e_reset_interrupt_capability(adapter);
3743
3744	/* Assume that the test fails, if it succeeds then the test
3745	 * MSI irq handler will unset this flag */
 
3746	adapter->flags |= FLAG_MSI_TEST_FAILED;
3747
3748	err = pci_enable_msi(adapter->pdev);
3749	if (err)
3750		goto msi_test_failed;
3751
3752	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
3753			  netdev->name, netdev);
3754	if (err) {
3755		pci_disable_msi(adapter->pdev);
3756		goto msi_test_failed;
3757	}
3758
 
 
 
3759	wmb();
3760
3761	e1000_irq_enable(adapter);
3762
3763	/* fire an unusual interrupt on the test handler */
3764	ew32(ICS, E1000_ICS_RXSEQ);
3765	e1e_flush();
3766	msleep(100);
3767
3768	e1000_irq_disable(adapter);
3769
3770	rmb();
3771
3772	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3773		adapter->int_mode = E1000E_INT_MODE_LEGACY;
3774		e_info("MSI interrupt test failed, using legacy interrupt.\n");
3775	} else {
3776		e_dbg("MSI interrupt test succeeded!\n");
3777	}
3778
3779	free_irq(adapter->pdev->irq, netdev);
3780	pci_disable_msi(adapter->pdev);
3781
3782msi_test_failed:
3783	e1000e_set_interrupt_capability(adapter);
3784	return e1000_request_irq(adapter);
3785}
3786
3787/**
3788 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3789 * @adapter: board private struct
3790 *
3791 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3792 **/
3793static int e1000_test_msi(struct e1000_adapter *adapter)
3794{
3795	int err;
3796	u16 pci_cmd;
3797
3798	if (!(adapter->flags & FLAG_MSI_ENABLED))
3799		return 0;
3800
3801	/* disable SERR in case the MSI write causes a master abort */
3802	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3803	if (pci_cmd & PCI_COMMAND_SERR)
3804		pci_write_config_word(adapter->pdev, PCI_COMMAND,
3805				      pci_cmd & ~PCI_COMMAND_SERR);
3806
3807	err = e1000_test_msi_interrupt(adapter);
3808
3809	/* re-enable SERR */
3810	if (pci_cmd & PCI_COMMAND_SERR) {
3811		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3812		pci_cmd |= PCI_COMMAND_SERR;
3813		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3814	}
3815
3816	return err;
3817}
3818
3819/**
3820 * e1000_open - Called when a network interface is made active
3821 * @netdev: network interface device structure
3822 *
3823 * Returns 0 on success, negative value on failure
3824 *
3825 * The open entry point is called when a network interface is made
3826 * active by the system (IFF_UP).  At this point all resources needed
3827 * for transmit and receive operations are allocated, the interrupt
3828 * handler is registered with the OS, the watchdog timer is started,
3829 * and the stack is notified that the interface is ready.
3830 **/
3831static int e1000_open(struct net_device *netdev)
3832{
3833	struct e1000_adapter *adapter = netdev_priv(netdev);
3834	struct e1000_hw *hw = &adapter->hw;
3835	struct pci_dev *pdev = adapter->pdev;
3836	int err;
3837
3838	/* disallow open during test */
3839	if (test_bit(__E1000_TESTING, &adapter->state))
3840		return -EBUSY;
3841
3842	pm_runtime_get_sync(&pdev->dev);
3843
3844	netif_carrier_off(netdev);
3845
3846	/* allocate transmit descriptors */
3847	err = e1000e_setup_tx_resources(adapter->tx_ring);
3848	if (err)
3849		goto err_setup_tx;
3850
3851	/* allocate receive descriptors */
3852	err = e1000e_setup_rx_resources(adapter->rx_ring);
3853	if (err)
3854		goto err_setup_rx;
3855
3856	/*
3857	 * If AMT is enabled, let the firmware know that the network
3858	 * interface is now open and reset the part to a known state.
3859	 */
3860	if (adapter->flags & FLAG_HAS_AMT) {
3861		e1000e_get_hw_control(adapter);
3862		e1000e_reset(adapter);
3863	}
3864
3865	e1000e_power_up_phy(adapter);
3866
3867	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3868	if ((adapter->hw.mng_cookie.status &
3869	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3870		e1000_update_mng_vlan(adapter);
3871
3872	/* DMA latency requirement to workaround jumbo issue */
3873	if (adapter->hw.mac.type == e1000_pch2lan)
3874		pm_qos_add_request(&adapter->netdev->pm_qos_req,
3875				   PM_QOS_CPU_DMA_LATENCY,
3876				   PM_QOS_DEFAULT_VALUE);
3877
3878	/*
3879	 * before we allocate an interrupt, we must be ready to handle it.
3880	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3881	 * as soon as we call pci_request_irq, so we have to setup our
3882	 * clean_rx handler before we do so.
3883	 */
3884	e1000_configure(adapter);
3885
3886	err = e1000_request_irq(adapter);
3887	if (err)
3888		goto err_req_irq;
3889
3890	/*
3891	 * Work around PCIe errata with MSI interrupts causing some chipsets to
3892	 * ignore e1000e MSI messages, which means we need to test our MSI
3893	 * interrupt now
3894	 */
3895	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3896		err = e1000_test_msi(adapter);
3897		if (err) {
3898			e_err("Interrupt allocation failed\n");
3899			goto err_req_irq;
3900		}
3901	}
3902
3903	/* From here on the code is the same as e1000e_up() */
3904	clear_bit(__E1000_DOWN, &adapter->state);
3905
3906	napi_enable(&adapter->napi);
3907
3908	e1000_irq_enable(adapter);
3909
3910	adapter->tx_hang_recheck = false;
3911	netif_start_queue(netdev);
3912
3913	adapter->idle_check = true;
3914	pm_runtime_put(&pdev->dev);
3915
3916	/* fire a link status change interrupt to start the watchdog */
3917	if (adapter->msix_entries)
3918		ew32(ICS, E1000_ICS_LSC | E1000_ICR_OTHER);
3919	else
3920		ew32(ICS, E1000_ICS_LSC);
3921
3922	return 0;
3923
3924err_req_irq:
 
3925	e1000e_release_hw_control(adapter);
3926	e1000_power_down_phy(adapter);
3927	e1000e_free_rx_resources(adapter->rx_ring);
3928err_setup_rx:
3929	e1000e_free_tx_resources(adapter->tx_ring);
3930err_setup_tx:
3931	e1000e_reset(adapter);
3932	pm_runtime_put_sync(&pdev->dev);
3933
3934	return err;
3935}
3936
3937/**
3938 * e1000_close - Disables a network interface
3939 * @netdev: network interface device structure
3940 *
3941 * Returns 0, this is not allowed to fail
3942 *
3943 * The close entry point is called when an interface is de-activated
3944 * by the OS.  The hardware is still under the drivers control, but
3945 * needs to be disabled.  A global MAC reset is issued to stop the
3946 * hardware, and all transmit and receive resources are freed.
3947 **/
3948static int e1000_close(struct net_device *netdev)
3949{
3950	struct e1000_adapter *adapter = netdev_priv(netdev);
3951	struct pci_dev *pdev = adapter->pdev;
3952	int count = E1000_CHECK_RESET_COUNT;
3953
3954	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
3955		usleep_range(10000, 20000);
3956
3957	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3958
3959	pm_runtime_get_sync(&pdev->dev);
3960
3961	napi_disable(&adapter->napi);
3962
3963	if (!test_bit(__E1000_DOWN, &adapter->state)) {
3964		e1000e_down(adapter);
3965		e1000_free_irq(adapter);
 
 
 
3966	}
3967	e1000_power_down_phy(adapter);
 
3968
3969	e1000e_free_tx_resources(adapter->tx_ring);
3970	e1000e_free_rx_resources(adapter->rx_ring);
3971
3972	/*
3973	 * kill manageability vlan ID if supported, but not if a vlan with
3974	 * the same ID is registered on the host OS (let 8021q kill it)
3975	 */
3976	if (adapter->hw.mng_cookie.status &
3977	    E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
3978		e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3979
3980	/*
3981	 * If AMT is enabled, let the firmware know that the network
3982	 * interface is now closed
3983	 */
3984	if ((adapter->flags & FLAG_HAS_AMT) &&
3985	    !test_bit(__E1000_TESTING, &adapter->state))
3986		e1000e_release_hw_control(adapter);
3987
3988	if (adapter->hw.mac.type == e1000_pch2lan)
3989		pm_qos_remove_request(&adapter->netdev->pm_qos_req);
3990
3991	pm_runtime_put_sync(&pdev->dev);
3992
3993	return 0;
3994}
 
3995/**
3996 * e1000_set_mac - Change the Ethernet Address of the NIC
3997 * @netdev: network interface device structure
3998 * @p: pointer to an address structure
3999 *
4000 * Returns 0 on success, negative on failure
4001 **/
4002static int e1000_set_mac(struct net_device *netdev, void *p)
4003{
4004	struct e1000_adapter *adapter = netdev_priv(netdev);
4005	struct e1000_hw *hw = &adapter->hw;
4006	struct sockaddr *addr = p;
4007
4008	if (!is_valid_ether_addr(addr->sa_data))
4009		return -EADDRNOTAVAIL;
4010
4011	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4012	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4013
4014	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4015
4016	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4017		/* activate the work around */
4018		e1000e_set_laa_state_82571(&adapter->hw, 1);
4019
4020		/*
4021		 * Hold a copy of the LAA in RAR[14] This is done so that
4022		 * between the time RAR[0] gets clobbered  and the time it
4023		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4024		 * of the RARs and no incoming packets directed to this port
4025		 * are dropped. Eventually the LAA will be in RAR[0] and
4026		 * RAR[14]
4027		 */
4028		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4029				    adapter->hw.mac.rar_entry_count - 1);
4030	}
4031
4032	return 0;
4033}
4034
4035/**
4036 * e1000e_update_phy_task - work thread to update phy
4037 * @work: pointer to our work struct
4038 *
4039 * this worker thread exists because we must acquire a
4040 * semaphore to read the phy, which we could msleep while
4041 * waiting for it, and we can't msleep in a timer.
4042 **/
4043static void e1000e_update_phy_task(struct work_struct *work)
4044{
4045	struct e1000_adapter *adapter = container_of(work,
4046					struct e1000_adapter, update_phy_task);
 
 
4047
4048	if (test_bit(__E1000_DOWN, &adapter->state))
4049		return;
4050
4051	e1000_get_phy_info(&adapter->hw);
 
 
 
 
4052}
4053
4054/*
 
 
 
4055 * Need to wait a few seconds after link up to get diagnostic information from
4056 * the phy
4057 */
4058static void e1000_update_phy_info(unsigned long data)
4059{
4060	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4061
4062	if (test_bit(__E1000_DOWN, &adapter->state))
4063		return;
4064
4065	schedule_work(&adapter->update_phy_task);
4066}
4067
4068/**
4069 * e1000e_update_phy_stats - Update the PHY statistics counters
4070 * @adapter: board private structure
4071 *
4072 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4073 **/
4074static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4075{
4076	struct e1000_hw *hw = &adapter->hw;
4077	s32 ret_val;
4078	u16 phy_data;
4079
4080	ret_val = hw->phy.ops.acquire(hw);
4081	if (ret_val)
4082		return;
4083
4084	/*
4085	 * A page set is expensive so check if already on desired page.
4086	 * If not, set to the page with the PHY status registers.
4087	 */
4088	hw->phy.addr = 1;
4089	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4090					   &phy_data);
4091	if (ret_val)
4092		goto release;
4093	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4094		ret_val = hw->phy.ops.set_page(hw,
4095					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4096		if (ret_val)
4097			goto release;
4098	}
4099
4100	/* Single Collision Count */
4101	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4102	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4103	if (!ret_val)
4104		adapter->stats.scc += phy_data;
4105
4106	/* Excessive Collision Count */
4107	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4108	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4109	if (!ret_val)
4110		adapter->stats.ecol += phy_data;
4111
4112	/* Multiple Collision Count */
4113	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4114	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4115	if (!ret_val)
4116		adapter->stats.mcc += phy_data;
4117
4118	/* Late Collision Count */
4119	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4120	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4121	if (!ret_val)
4122		adapter->stats.latecol += phy_data;
4123
4124	/* Collision Count - also used for adaptive IFS */
4125	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4126	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4127	if (!ret_val)
4128		hw->mac.collision_delta = phy_data;
4129
4130	/* Defer Count */
4131	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4132	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4133	if (!ret_val)
4134		adapter->stats.dc += phy_data;
4135
4136	/* Transmit with no CRS */
4137	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4138	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4139	if (!ret_val)
4140		adapter->stats.tncrs += phy_data;
4141
4142release:
4143	hw->phy.ops.release(hw);
4144}
4145
4146/**
4147 * e1000e_update_stats - Update the board statistics counters
4148 * @adapter: board private structure
4149 **/
4150static void e1000e_update_stats(struct e1000_adapter *adapter)
4151{
4152	struct net_device *netdev = adapter->netdev;
4153	struct e1000_hw *hw = &adapter->hw;
4154	struct pci_dev *pdev = adapter->pdev;
4155
4156	/*
4157	 * Prevent stats update while adapter is being reset, or if the pci
4158	 * connection is down.
4159	 */
4160	if (adapter->link_speed == 0)
4161		return;
4162	if (pci_channel_offline(pdev))
4163		return;
4164
4165	adapter->stats.crcerrs += er32(CRCERRS);
4166	adapter->stats.gprc += er32(GPRC);
4167	adapter->stats.gorc += er32(GORCL);
4168	er32(GORCH); /* Clear gorc */
4169	adapter->stats.bprc += er32(BPRC);
4170	adapter->stats.mprc += er32(MPRC);
4171	adapter->stats.roc += er32(ROC);
4172
4173	adapter->stats.mpc += er32(MPC);
4174
4175	/* Half-duplex statistics */
4176	if (adapter->link_duplex == HALF_DUPLEX) {
4177		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4178			e1000e_update_phy_stats(adapter);
4179		} else {
4180			adapter->stats.scc += er32(SCC);
4181			adapter->stats.ecol += er32(ECOL);
4182			adapter->stats.mcc += er32(MCC);
4183			adapter->stats.latecol += er32(LATECOL);
4184			adapter->stats.dc += er32(DC);
4185
4186			hw->mac.collision_delta = er32(COLC);
4187
4188			if ((hw->mac.type != e1000_82574) &&
4189			    (hw->mac.type != e1000_82583))
4190				adapter->stats.tncrs += er32(TNCRS);
4191		}
4192		adapter->stats.colc += hw->mac.collision_delta;
4193	}
4194
4195	adapter->stats.xonrxc += er32(XONRXC);
4196	adapter->stats.xontxc += er32(XONTXC);
4197	adapter->stats.xoffrxc += er32(XOFFRXC);
4198	adapter->stats.xofftxc += er32(XOFFTXC);
4199	adapter->stats.gptc += er32(GPTC);
4200	adapter->stats.gotc += er32(GOTCL);
4201	er32(GOTCH); /* Clear gotc */
4202	adapter->stats.rnbc += er32(RNBC);
4203	adapter->stats.ruc += er32(RUC);
4204
4205	adapter->stats.mptc += er32(MPTC);
4206	adapter->stats.bptc += er32(BPTC);
4207
4208	/* used for adaptive IFS */
4209
4210	hw->mac.tx_packet_delta = er32(TPT);
4211	adapter->stats.tpt += hw->mac.tx_packet_delta;
4212
4213	adapter->stats.algnerrc += er32(ALGNERRC);
4214	adapter->stats.rxerrc += er32(RXERRC);
4215	adapter->stats.cexterr += er32(CEXTERR);
4216	adapter->stats.tsctc += er32(TSCTC);
4217	adapter->stats.tsctfc += er32(TSCTFC);
4218
4219	/* Fill out the OS statistics structure */
4220	netdev->stats.multicast = adapter->stats.mprc;
4221	netdev->stats.collisions = adapter->stats.colc;
4222
4223	/* Rx Errors */
4224
4225	/*
4226	 * RLEC on some newer hardware can be incorrect so build
4227	 * our own version based on RUC and ROC
4228	 */
4229	netdev->stats.rx_errors = adapter->stats.rxerrc +
4230		adapter->stats.crcerrs + adapter->stats.algnerrc +
4231		adapter->stats.ruc + adapter->stats.roc +
4232		adapter->stats.cexterr;
4233	netdev->stats.rx_length_errors = adapter->stats.ruc +
4234					      adapter->stats.roc;
4235	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4236	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4237	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4238
4239	/* Tx Errors */
4240	netdev->stats.tx_errors = adapter->stats.ecol +
4241				       adapter->stats.latecol;
4242	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4243	netdev->stats.tx_window_errors = adapter->stats.latecol;
4244	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4245
4246	/* Tx Dropped needs to be maintained elsewhere */
4247
4248	/* Management Stats */
4249	adapter->stats.mgptc += er32(MGTPTC);
4250	adapter->stats.mgprc += er32(MGTPRC);
4251	adapter->stats.mgpdc += er32(MGTPDC);
 
 
 
 
 
 
 
 
 
 
 
 
4252}
4253
4254/**
4255 * e1000_phy_read_status - Update the PHY register status snapshot
4256 * @adapter: board private structure
4257 **/
4258static void e1000_phy_read_status(struct e1000_adapter *adapter)
4259{
4260	struct e1000_hw *hw = &adapter->hw;
4261	struct e1000_phy_regs *phy = &adapter->phy_regs;
4262
4263	if ((er32(STATUS) & E1000_STATUS_LU) &&
 
4264	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4265		int ret_val;
4266
4267		ret_val  = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
4268		ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
4269		ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
4270		ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
4271		ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
4272		ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
4273		ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
4274		ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
4275		if (ret_val)
4276			e_warn("Error reading PHY register\n");
4277	} else {
4278		/*
4279		 * Do not read PHY registers if link is not up
4280		 * Set values to typical power-on defaults
4281		 */
4282		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4283		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4284			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4285			     BMSR_ERCAP);
4286		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4287				  ADVERTISE_ALL | ADVERTISE_CSMA);
4288		phy->lpa = 0;
4289		phy->expansion = EXPANSION_ENABLENPAGE;
4290		phy->ctrl1000 = ADVERTISE_1000FULL;
4291		phy->stat1000 = 0;
4292		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4293	}
4294}
4295
4296static void e1000_print_link_info(struct e1000_adapter *adapter)
4297{
4298	struct e1000_hw *hw = &adapter->hw;
4299	u32 ctrl = er32(CTRL);
4300
4301	/* Link status message must follow this format for user tools */
4302	printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4303		adapter->netdev->name,
4304		adapter->link_speed,
4305		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4306		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4307		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4308		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4309}
4310
4311static bool e1000e_has_link(struct e1000_adapter *adapter)
4312{
4313	struct e1000_hw *hw = &adapter->hw;
4314	bool link_active = false;
4315	s32 ret_val = 0;
4316
4317	/*
4318	 * get_link_status is set on LSC (link status) interrupt or
4319	 * Rx sequence error interrupt.  get_link_status will stay
4320	 * false until the check_for_link establishes link
4321	 * for copper adapters ONLY
4322	 */
4323	switch (hw->phy.media_type) {
4324	case e1000_media_type_copper:
4325		if (hw->mac.get_link_status) {
4326			ret_val = hw->mac.ops.check_for_link(hw);
4327			link_active = !hw->mac.get_link_status;
4328		} else {
4329			link_active = true;
4330		}
4331		break;
4332	case e1000_media_type_fiber:
4333		ret_val = hw->mac.ops.check_for_link(hw);
4334		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
4335		break;
4336	case e1000_media_type_internal_serdes:
4337		ret_val = hw->mac.ops.check_for_link(hw);
4338		link_active = adapter->hw.mac.serdes_has_link;
4339		break;
4340	default:
4341	case e1000_media_type_unknown:
4342		break;
4343	}
4344
4345	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
4346	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
4347		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4348		e_info("Gigabit has been disabled, downgrading speed\n");
4349	}
4350
4351	return link_active;
4352}
4353
4354static void e1000e_enable_receives(struct e1000_adapter *adapter)
4355{
4356	/* make sure the receive unit is started */
4357	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
4358	    (adapter->flags & FLAG_RX_RESTART_NOW)) {
4359		struct e1000_hw *hw = &adapter->hw;
4360		u32 rctl = er32(RCTL);
 
4361		ew32(RCTL, rctl | E1000_RCTL_EN);
4362		adapter->flags &= ~FLAG_RX_RESTART_NOW;
4363	}
4364}
4365
4366static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
4367{
4368	struct e1000_hw *hw = &adapter->hw;
4369
4370	/*
4371	 * With 82574 controllers, PHY needs to be checked periodically
4372	 * for hung state and reset, if two calls return true
4373	 */
4374	if (e1000_check_phy_82574(hw))
4375		adapter->phy_hang_count++;
4376	else
4377		adapter->phy_hang_count = 0;
4378
4379	if (adapter->phy_hang_count > 1) {
4380		adapter->phy_hang_count = 0;
 
4381		schedule_work(&adapter->reset_task);
4382	}
4383}
4384
4385/**
4386 * e1000_watchdog - Timer Call-back
4387 * @data: pointer to adapter cast into an unsigned long
4388 **/
4389static void e1000_watchdog(unsigned long data)
4390{
4391	struct e1000_adapter *adapter = (struct e1000_adapter *) data;
4392
4393	/* Do the rest outside of interrupt context */
4394	schedule_work(&adapter->watchdog_task);
4395
4396	/* TODO: make this use queue_delayed_work() */
4397}
4398
4399static void e1000_watchdog_task(struct work_struct *work)
4400{
4401	struct e1000_adapter *adapter = container_of(work,
4402					struct e1000_adapter, watchdog_task);
 
4403	struct net_device *netdev = adapter->netdev;
4404	struct e1000_mac_info *mac = &adapter->hw.mac;
4405	struct e1000_phy_info *phy = &adapter->hw.phy;
4406	struct e1000_ring *tx_ring = adapter->tx_ring;
4407	struct e1000_hw *hw = &adapter->hw;
4408	u32 link, tctl;
4409
4410	if (test_bit(__E1000_DOWN, &adapter->state))
4411		return;
4412
4413	link = e1000e_has_link(adapter);
4414	if ((netif_carrier_ok(netdev)) && link) {
4415		/* Cancel scheduled suspend requests. */
4416		pm_runtime_resume(netdev->dev.parent);
4417
4418		e1000e_enable_receives(adapter);
4419		goto link_up;
4420	}
4421
4422	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
4423	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
4424		e1000_update_mng_vlan(adapter);
4425
4426	if (link) {
4427		if (!netif_carrier_ok(netdev)) {
4428			bool txb2b = true;
4429
4430			/* Cancel scheduled suspend requests. */
4431			pm_runtime_resume(netdev->dev.parent);
4432
4433			/* update snapshot of PHY registers on LSC */
4434			e1000_phy_read_status(adapter);
4435			mac->ops.get_link_up_info(&adapter->hw,
4436						   &adapter->link_speed,
4437						   &adapter->link_duplex);
4438			e1000_print_link_info(adapter);
4439			/*
4440			 * On supported PHYs, check for duplex mismatch only
 
 
 
 
 
 
4441			 * if link has autonegotiated at 10/100 half
4442			 */
4443			if ((hw->phy.type == e1000_phy_igp_3 ||
4444			     hw->phy.type == e1000_phy_bm) &&
4445			    (hw->mac.autoneg == true) &&
4446			    (adapter->link_speed == SPEED_10 ||
4447			     adapter->link_speed == SPEED_100) &&
4448			    (adapter->link_duplex == HALF_DUPLEX)) {
4449				u16 autoneg_exp;
4450
4451				e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
4452
4453				if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
4454					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
4455			}
4456
4457			/* adjust timeout factor according to speed/duplex */
4458			adapter->tx_timeout_factor = 1;
4459			switch (adapter->link_speed) {
4460			case SPEED_10:
4461				txb2b = false;
4462				adapter->tx_timeout_factor = 16;
4463				break;
4464			case SPEED_100:
4465				txb2b = false;
4466				adapter->tx_timeout_factor = 10;
4467				break;
4468			}
4469
4470			/*
4471			 * workaround: re-program speed mode bit after
4472			 * link-up event
4473			 */
4474			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
4475			    !txb2b) {
4476				u32 tarc0;
 
4477				tarc0 = er32(TARC(0));
4478				tarc0 &= ~SPEED_MODE_BIT;
4479				ew32(TARC(0), tarc0);
4480			}
4481
4482			/*
4483			 * disable TSO for pcie and 10/100 speeds, to avoid
4484			 * some hardware issues
4485			 */
4486			if (!(adapter->flags & FLAG_TSO_FORCE)) {
4487				switch (adapter->link_speed) {
4488				case SPEED_10:
4489				case SPEED_100:
4490					e_info("10/100 speed: disabling TSO\n");
4491					netdev->features &= ~NETIF_F_TSO;
4492					netdev->features &= ~NETIF_F_TSO6;
4493					break;
4494				case SPEED_1000:
4495					netdev->features |= NETIF_F_TSO;
4496					netdev->features |= NETIF_F_TSO6;
4497					break;
4498				default:
4499					/* oops */
4500					break;
4501				}
4502			}
4503
4504			/*
4505			 * enable transmits in the hardware, need to do this
4506			 * after setting TARC(0)
4507			 */
4508			tctl = er32(TCTL);
4509			tctl |= E1000_TCTL_EN;
4510			ew32(TCTL, tctl);
4511
4512                        /*
4513			 * Perform any post-link-up configuration before
4514			 * reporting link up.
4515			 */
4516			if (phy->ops.cfg_on_link_up)
4517				phy->ops.cfg_on_link_up(hw);
4518
4519			netif_carrier_on(netdev);
4520
4521			if (!test_bit(__E1000_DOWN, &adapter->state))
4522				mod_timer(&adapter->phy_info_timer,
4523					  round_jiffies(jiffies + 2 * HZ));
4524		}
4525	} else {
4526		if (netif_carrier_ok(netdev)) {
4527			adapter->link_speed = 0;
4528			adapter->link_duplex = 0;
4529			/* Link status message must follow this format */
4530			printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
4531			       adapter->netdev->name);
4532			netif_carrier_off(netdev);
4533			if (!test_bit(__E1000_DOWN, &adapter->state))
4534				mod_timer(&adapter->phy_info_timer,
4535					  round_jiffies(jiffies + 2 * HZ));
4536
 
 
 
 
4537			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
4538				schedule_work(&adapter->reset_task);
4539			else
4540				pm_schedule_suspend(netdev->dev.parent,
4541							LINK_TIMEOUT);
4542		}
4543	}
4544
4545link_up:
4546	spin_lock(&adapter->stats64_lock);
4547	e1000e_update_stats(adapter);
4548
4549	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
4550	adapter->tpt_old = adapter->stats.tpt;
4551	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
4552	adapter->colc_old = adapter->stats.colc;
4553
4554	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
4555	adapter->gorc_old = adapter->stats.gorc;
4556	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
4557	adapter->gotc_old = adapter->stats.gotc;
4558	spin_unlock(&adapter->stats64_lock);
4559
4560	e1000e_update_adaptive(&adapter->hw);
4561
 
 
4562	if (!netif_carrier_ok(netdev) &&
4563	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count)) {
4564		/*
4565		 * We've lost link, so the controller stops DMA,
4566		 * but we've got queued Tx work that's never going
4567		 * to get done, so reset controller to flush Tx.
4568		 * (Do the reset outside of interrupt context).
4569		 */
4570		schedule_work(&adapter->reset_task);
4571		/* return immediately since reset is imminent */
4572		return;
4573	}
4574
 
 
4575	/* Simple mode for Interrupt Throttle Rate (ITR) */
4576	if (adapter->itr_setting == 4) {
4577		/*
4578		 * Symmetric Tx/Rx gets a reduced ITR=2000;
4579		 * Total asymmetrical Tx or Rx gets ITR=8000;
4580		 * everyone else is between 2000-8000.
4581		 */
4582		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
4583		u32 dif = (adapter->gotc > adapter->gorc ?
4584			    adapter->gotc - adapter->gorc :
4585			    adapter->gorc - adapter->gotc) / 10000;
4586		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
4587
4588		ew32(ITR, 1000000000 / (itr * 256));
4589	}
4590
4591	/* Cause software interrupt to ensure Rx ring is cleaned */
4592	if (adapter->msix_entries)
4593		ew32(ICS, adapter->rx_ring->ims_val);
4594	else
4595		ew32(ICS, E1000_ICS_RXDMT0);
4596
4597	/* flush pending descriptors to memory before detecting Tx hang */
4598	e1000e_flush_descriptors(adapter);
4599
4600	/* Force detection of hung controller every watchdog period */
4601	adapter->detect_tx_hung = true;
4602
4603	/*
4604	 * With 82571 controllers, LAA may be overwritten due to controller
4605	 * reset from the other port. Set the appropriate LAA in RAR[0]
4606	 */
4607	if (e1000e_get_laa_state_82571(hw))
4608		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
4609
4610	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
4611		e1000e_check_82574_phy_workaround(adapter);
4612
 
 
 
 
 
 
 
 
 
 
 
4613	/* Reset the timer */
4614	if (!test_bit(__E1000_DOWN, &adapter->state))
4615		mod_timer(&adapter->watchdog_timer,
4616			  round_jiffies(jiffies + 2 * HZ));
4617}
4618
4619#define E1000_TX_FLAGS_CSUM		0x00000001
4620#define E1000_TX_FLAGS_VLAN		0x00000002
4621#define E1000_TX_FLAGS_TSO		0x00000004
4622#define E1000_TX_FLAGS_IPV4		0x00000008
4623#define E1000_TX_FLAGS_NO_FCS		0x00000010
 
4624#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
4625#define E1000_TX_FLAGS_VLAN_SHIFT	16
4626
4627static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4628{
4629	struct e1000_context_desc *context_desc;
4630	struct e1000_buffer *buffer_info;
4631	unsigned int i;
4632	u32 cmd_length = 0;
4633	u16 ipcse = 0, tucse, mss;
4634	u8 ipcss, ipcso, tucss, tucso, hdr_len;
 
4635
4636	if (!skb_is_gso(skb))
4637		return 0;
4638
4639	if (skb_header_cloned(skb)) {
4640		int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
4641
4642		if (err)
4643			return err;
4644	}
4645
4646	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4647	mss = skb_shinfo(skb)->gso_size;
4648	if (skb->protocol == htons(ETH_P_IP)) {
4649		struct iphdr *iph = ip_hdr(skb);
4650		iph->tot_len = 0;
4651		iph->check = 0;
4652		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
4653		                                         0, IPPROTO_TCP, 0);
4654		cmd_length = E1000_TXD_CMD_IP;
4655		ipcse = skb_transport_offset(skb) - 1;
4656	} else if (skb_is_gso_v6(skb)) {
4657		ipv6_hdr(skb)->payload_len = 0;
4658		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4659		                                       &ipv6_hdr(skb)->daddr,
4660		                                       0, IPPROTO_TCP, 0);
4661		ipcse = 0;
4662	}
4663	ipcss = skb_network_offset(skb);
4664	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
4665	tucss = skb_transport_offset(skb);
4666	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
4667	tucse = 0;
4668
4669	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
4670	               E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
4671
4672	i = tx_ring->next_to_use;
4673	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4674	buffer_info = &tx_ring->buffer_info[i];
4675
4676	context_desc->lower_setup.ip_fields.ipcss  = ipcss;
4677	context_desc->lower_setup.ip_fields.ipcso  = ipcso;
4678	context_desc->lower_setup.ip_fields.ipcse  = cpu_to_le16(ipcse);
4679	context_desc->upper_setup.tcp_fields.tucss = tucss;
4680	context_desc->upper_setup.tcp_fields.tucso = tucso;
4681	context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
4682	context_desc->tcp_seg_setup.fields.mss     = cpu_to_le16(mss);
4683	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
4684	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
4685
4686	buffer_info->time_stamp = jiffies;
4687	buffer_info->next_to_watch = i;
4688
4689	i++;
4690	if (i == tx_ring->count)
4691		i = 0;
4692	tx_ring->next_to_use = i;
4693
4694	return 1;
4695}
4696
4697static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb)
 
4698{
4699	struct e1000_adapter *adapter = tx_ring->adapter;
4700	struct e1000_context_desc *context_desc;
4701	struct e1000_buffer *buffer_info;
4702	unsigned int i;
4703	u8 css;
4704	u32 cmd_len = E1000_TXD_CMD_DEXT;
4705	__be16 protocol;
4706
4707	if (skb->ip_summed != CHECKSUM_PARTIAL)
4708		return 0;
4709
4710	if (skb->protocol == cpu_to_be16(ETH_P_8021Q))
4711		protocol = vlan_eth_hdr(skb)->h_vlan_encapsulated_proto;
4712	else
4713		protocol = skb->protocol;
4714
4715	switch (protocol) {
4716	case cpu_to_be16(ETH_P_IP):
4717		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
4718			cmd_len |= E1000_TXD_CMD_TCP;
4719		break;
4720	case cpu_to_be16(ETH_P_IPV6):
4721		/* XXX not handling all IPV6 headers */
4722		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
4723			cmd_len |= E1000_TXD_CMD_TCP;
4724		break;
4725	default:
4726		if (unlikely(net_ratelimit()))
4727			e_warn("checksum_partial proto=%x!\n",
4728			       be16_to_cpu(protocol));
4729		break;
4730	}
4731
4732	css = skb_checksum_start_offset(skb);
4733
4734	i = tx_ring->next_to_use;
4735	buffer_info = &tx_ring->buffer_info[i];
4736	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
4737
4738	context_desc->lower_setup.ip_config = 0;
4739	context_desc->upper_setup.tcp_fields.tucss = css;
4740	context_desc->upper_setup.tcp_fields.tucso =
4741				css + skb->csum_offset;
4742	context_desc->upper_setup.tcp_fields.tucse = 0;
4743	context_desc->tcp_seg_setup.data = 0;
4744	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
4745
4746	buffer_info->time_stamp = jiffies;
4747	buffer_info->next_to_watch = i;
4748
4749	i++;
4750	if (i == tx_ring->count)
4751		i = 0;
4752	tx_ring->next_to_use = i;
4753
4754	return 1;
4755}
4756
4757static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
4758			unsigned int first, unsigned int max_per_txd,
4759			unsigned int nr_frags)
4760{
4761	struct e1000_adapter *adapter = tx_ring->adapter;
4762	struct pci_dev *pdev = adapter->pdev;
4763	struct e1000_buffer *buffer_info;
4764	unsigned int len = skb_headlen(skb);
4765	unsigned int offset = 0, size, count = 0, i;
4766	unsigned int f, bytecount, segs;
4767
4768	i = tx_ring->next_to_use;
4769
4770	while (len) {
4771		buffer_info = &tx_ring->buffer_info[i];
4772		size = min(len, max_per_txd);
4773
4774		buffer_info->length = size;
4775		buffer_info->time_stamp = jiffies;
4776		buffer_info->next_to_watch = i;
4777		buffer_info->dma = dma_map_single(&pdev->dev,
4778						  skb->data + offset,
4779						  size, DMA_TO_DEVICE);
4780		buffer_info->mapped_as_page = false;
4781		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4782			goto dma_error;
4783
4784		len -= size;
4785		offset += size;
4786		count++;
4787
4788		if (len) {
4789			i++;
4790			if (i == tx_ring->count)
4791				i = 0;
4792		}
4793	}
4794
4795	for (f = 0; f < nr_frags; f++) {
4796		const struct skb_frag_struct *frag;
4797
4798		frag = &skb_shinfo(skb)->frags[f];
4799		len = skb_frag_size(frag);
4800		offset = 0;
4801
4802		while (len) {
4803			i++;
4804			if (i == tx_ring->count)
4805				i = 0;
4806
4807			buffer_info = &tx_ring->buffer_info[i];
4808			size = min(len, max_per_txd);
4809
4810			buffer_info->length = size;
4811			buffer_info->time_stamp = jiffies;
4812			buffer_info->next_to_watch = i;
4813			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
4814						offset, size, DMA_TO_DEVICE);
 
4815			buffer_info->mapped_as_page = true;
4816			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
4817				goto dma_error;
4818
4819			len -= size;
4820			offset += size;
4821			count++;
4822		}
4823	}
4824
4825	segs = skb_shinfo(skb)->gso_segs ? : 1;
4826	/* multiply data chunks by size of headers */
4827	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
4828
4829	tx_ring->buffer_info[i].skb = skb;
4830	tx_ring->buffer_info[i].segs = segs;
4831	tx_ring->buffer_info[i].bytecount = bytecount;
4832	tx_ring->buffer_info[first].next_to_watch = i;
4833
4834	return count;
4835
4836dma_error:
4837	dev_err(&pdev->dev, "Tx DMA map failed\n");
4838	buffer_info->dma = 0;
4839	if (count)
4840		count--;
4841
4842	while (count--) {
4843		if (i == 0)
4844			i += tx_ring->count;
4845		i--;
4846		buffer_info = &tx_ring->buffer_info[i];
4847		e1000_put_txbuf(tx_ring, buffer_info);
4848	}
4849
4850	return 0;
4851}
4852
4853static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
4854{
4855	struct e1000_adapter *adapter = tx_ring->adapter;
4856	struct e1000_tx_desc *tx_desc = NULL;
4857	struct e1000_buffer *buffer_info;
4858	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
4859	unsigned int i;
4860
4861	if (tx_flags & E1000_TX_FLAGS_TSO) {
4862		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
4863			     E1000_TXD_CMD_TSE;
4864		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4865
4866		if (tx_flags & E1000_TX_FLAGS_IPV4)
4867			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
4868	}
4869
4870	if (tx_flags & E1000_TX_FLAGS_CSUM) {
4871		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
4872		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
4873	}
4874
4875	if (tx_flags & E1000_TX_FLAGS_VLAN) {
4876		txd_lower |= E1000_TXD_CMD_VLE;
4877		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
4878	}
4879
4880	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4881		txd_lower &= ~(E1000_TXD_CMD_IFCS);
4882
 
 
 
 
 
4883	i = tx_ring->next_to_use;
4884
4885	do {
4886		buffer_info = &tx_ring->buffer_info[i];
4887		tx_desc = E1000_TX_DESC(*tx_ring, i);
4888		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4889		tx_desc->lower.data =
4890			cpu_to_le32(txd_lower | buffer_info->length);
4891		tx_desc->upper.data = cpu_to_le32(txd_upper);
4892
4893		i++;
4894		if (i == tx_ring->count)
4895			i = 0;
4896	} while (--count > 0);
4897
4898	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
4899
4900	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
4901	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
4902		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
4903
4904	/*
4905	 * Force memory writes to complete before letting h/w
4906	 * know there are new descriptors to fetch.  (Only
4907	 * applicable for weak-ordered memory model archs,
4908	 * such as IA-64).
4909	 */
4910	wmb();
4911
4912	tx_ring->next_to_use = i;
4913
4914	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
4915		e1000e_update_tdt_wa(tx_ring, i);
4916	else
4917		writel(i, tx_ring->tail);
4918
4919	/*
4920	 * we need this if more than one processor can write to our tail
4921	 * at a time, it synchronizes IO on IA64/Altix systems
4922	 */
4923	mmiowb();
4924}
4925
4926#define MINIMUM_DHCP_PACKET_SIZE 282
4927static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
4928				    struct sk_buff *skb)
4929{
4930	struct e1000_hw *hw =  &adapter->hw;
4931	u16 length, offset;
4932
4933	if (vlan_tx_tag_present(skb)) {
4934		if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
4935		    (adapter->hw.mng_cookie.status &
4936			E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4937			return 0;
4938	}
4939
4940	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4941		return 0;
4942
4943	if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4944		return 0;
4945
4946	{
4947		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4948		struct udphdr *udp;
4949
4950		if (ip->protocol != IPPROTO_UDP)
4951			return 0;
4952
4953		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4954		if (ntohs(udp->dest) != 67)
4955			return 0;
4956
4957		offset = (u8 *)udp + 8 - skb->data;
4958		length = skb->len - offset;
4959		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4960	}
4961
4962	return 0;
4963}
4964
4965static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4966{
4967	struct e1000_adapter *adapter = tx_ring->adapter;
4968
4969	netif_stop_queue(adapter->netdev);
4970	/*
4971	 * Herbert's original patch had:
4972	 *  smp_mb__after_netif_stop_queue();
4973	 * but since that doesn't exist yet, just open code it.
4974	 */
4975	smp_mb();
4976
4977	/*
4978	 * We need to check again in a case another CPU has just
4979	 * made room available.
4980	 */
4981	if (e1000_desc_unused(tx_ring) < size)
4982		return -EBUSY;
4983
4984	/* A reprieve! */
4985	netif_start_queue(adapter->netdev);
4986	++adapter->restart_queue;
4987	return 0;
4988}
4989
4990static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
4991{
4992	BUG_ON(size > tx_ring->count);
4993
4994	if (e1000_desc_unused(tx_ring) >= size)
4995		return 0;
4996	return __e1000_maybe_stop_tx(tx_ring, size);
4997}
4998
4999static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5000				    struct net_device *netdev)
5001{
5002	struct e1000_adapter *adapter = netdev_priv(netdev);
5003	struct e1000_ring *tx_ring = adapter->tx_ring;
5004	unsigned int first;
5005	unsigned int tx_flags = 0;
5006	unsigned int len = skb_headlen(skb);
5007	unsigned int nr_frags;
5008	unsigned int mss;
5009	int count = 0;
5010	int tso;
5011	unsigned int f;
 
5012
5013	if (test_bit(__E1000_DOWN, &adapter->state)) {
5014		dev_kfree_skb_any(skb);
5015		return NETDEV_TX_OK;
5016	}
5017
5018	if (skb->len <= 0) {
5019		dev_kfree_skb_any(skb);
5020		return NETDEV_TX_OK;
5021	}
5022
 
 
 
 
 
 
5023	mss = skb_shinfo(skb)->gso_size;
5024	if (mss) {
5025		u8 hdr_len;
5026
5027		/*
5028		 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
5029		 * points to just header, pull a few bytes of payload from
5030		 * frags into skb->data
5031		 */
5032		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5033		/*
5034		 * we do this workaround for ES2LAN, but it is un-necessary,
5035		 * avoiding it could save a lot of cycles
5036		 */
5037		if (skb->data_len && (hdr_len == len)) {
5038			unsigned int pull_size;
5039
5040			pull_size = min_t(unsigned int, 4, skb->data_len);
5041			if (!__pskb_pull_tail(skb, pull_size)) {
5042				e_err("__pskb_pull_tail failed.\n");
5043				dev_kfree_skb_any(skb);
5044				return NETDEV_TX_OK;
5045			}
5046			len = skb_headlen(skb);
5047		}
5048	}
5049
5050	/* reserve a descriptor for the offload context */
5051	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5052		count++;
5053	count++;
5054
5055	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5056
5057	nr_frags = skb_shinfo(skb)->nr_frags;
5058	for (f = 0; f < nr_frags; f++)
5059		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5060				      adapter->tx_fifo_limit);
5061
5062	if (adapter->hw.mac.tx_pkt_filtering)
5063		e1000_transfer_dhcp_info(adapter, skb);
5064
5065	/*
5066	 * need: count + 2 desc gap to keep tail from touching
5067	 * head, otherwise try next time
5068	 */
5069	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5070		return NETDEV_TX_BUSY;
5071
5072	if (vlan_tx_tag_present(skb)) {
5073		tx_flags |= E1000_TX_FLAGS_VLAN;
5074		tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
 
5075	}
5076
5077	first = tx_ring->next_to_use;
5078
5079	tso = e1000_tso(tx_ring, skb);
5080	if (tso < 0) {
5081		dev_kfree_skb_any(skb);
5082		return NETDEV_TX_OK;
5083	}
5084
5085	if (tso)
5086		tx_flags |= E1000_TX_FLAGS_TSO;
5087	else if (e1000_tx_csum(tx_ring, skb))
5088		tx_flags |= E1000_TX_FLAGS_CSUM;
5089
5090	/*
5091	 * Old method was to assume IPv4 packet by default if TSO was enabled.
5092	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5093	 * no longer assume, we must.
5094	 */
5095	if (skb->protocol == htons(ETH_P_IP))
5096		tx_flags |= E1000_TX_FLAGS_IPV4;
5097
5098	if (unlikely(skb->no_fcs))
5099		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5100
5101	/* if count is 0 then mapping error has occurred */
5102	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5103			     nr_frags);
5104	if (count) {
5105		skb_tx_timestamp(skb);
 
 
 
 
 
 
 
 
 
 
5106
5107		netdev_sent_queue(netdev, skb->len);
5108		e1000_tx_queue(tx_ring, tx_flags, count);
5109		/* Make sure there is space in the ring for the next send. */
5110		e1000_maybe_stop_tx(tx_ring,
5111				    (MAX_SKB_FRAGS *
5112				     DIV_ROUND_UP(PAGE_SIZE,
5113						  adapter->tx_fifo_limit) + 2));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5114	} else {
5115		dev_kfree_skb_any(skb);
5116		tx_ring->buffer_info[first].time_stamp = 0;
5117		tx_ring->next_to_use = first;
5118	}
5119
5120	return NETDEV_TX_OK;
5121}
5122
5123/**
5124 * e1000_tx_timeout - Respond to a Tx Hang
5125 * @netdev: network interface device structure
5126 **/
5127static void e1000_tx_timeout(struct net_device *netdev)
5128{
5129	struct e1000_adapter *adapter = netdev_priv(netdev);
5130
5131	/* Do the reset outside of interrupt context */
5132	adapter->tx_timeout_count++;
5133	schedule_work(&adapter->reset_task);
5134}
5135
5136static void e1000_reset_task(struct work_struct *work)
5137{
5138	struct e1000_adapter *adapter;
5139	adapter = container_of(work, struct e1000_adapter, reset_task);
5140
5141	/* don't run the task if already down */
5142	if (test_bit(__E1000_DOWN, &adapter->state))
5143		return;
5144
5145	if (!((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5146	      (adapter->flags & FLAG_RX_RESTART_NOW))) {
5147		e1000e_dump(adapter);
5148		e_err("Reset adapter\n");
5149	}
5150	e1000e_reinit_locked(adapter);
5151}
5152
5153/**
5154 * e1000_get_stats64 - Get System Network Statistics
5155 * @netdev: network interface device structure
5156 * @stats: rtnl_link_stats64 pointer
5157 *
5158 * Returns the address of the device statistics structure.
5159 **/
5160struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5161                                             struct rtnl_link_stats64 *stats)
5162{
5163	struct e1000_adapter *adapter = netdev_priv(netdev);
5164
5165	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5166	spin_lock(&adapter->stats64_lock);
5167	e1000e_update_stats(adapter);
5168	/* Fill out the OS statistics structure */
5169	stats->rx_bytes = adapter->stats.gorc;
5170	stats->rx_packets = adapter->stats.gprc;
5171	stats->tx_bytes = adapter->stats.gotc;
5172	stats->tx_packets = adapter->stats.gptc;
5173	stats->multicast = adapter->stats.mprc;
5174	stats->collisions = adapter->stats.colc;
5175
5176	/* Rx Errors */
5177
5178	/*
5179	 * RLEC on some newer hardware can be incorrect so build
5180	 * our own version based on RUC and ROC
5181	 */
5182	stats->rx_errors = adapter->stats.rxerrc +
5183		adapter->stats.crcerrs + adapter->stats.algnerrc +
5184		adapter->stats.ruc + adapter->stats.roc +
5185		adapter->stats.cexterr;
5186	stats->rx_length_errors = adapter->stats.ruc +
5187					      adapter->stats.roc;
5188	stats->rx_crc_errors = adapter->stats.crcerrs;
5189	stats->rx_frame_errors = adapter->stats.algnerrc;
5190	stats->rx_missed_errors = adapter->stats.mpc;
5191
5192	/* Tx Errors */
5193	stats->tx_errors = adapter->stats.ecol +
5194				       adapter->stats.latecol;
5195	stats->tx_aborted_errors = adapter->stats.ecol;
5196	stats->tx_window_errors = adapter->stats.latecol;
5197	stats->tx_carrier_errors = adapter->stats.tncrs;
5198
5199	/* Tx Dropped needs to be maintained elsewhere */
5200
5201	spin_unlock(&adapter->stats64_lock);
5202	return stats;
5203}
5204
5205/**
5206 * e1000_change_mtu - Change the Maximum Transfer Unit
5207 * @netdev: network interface device structure
5208 * @new_mtu: new value for maximum frame size
5209 *
5210 * Returns 0 on success, negative on failure
5211 **/
5212static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5213{
5214	struct e1000_adapter *adapter = netdev_priv(netdev);
5215	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
5216
5217	/* Jumbo frame support */
5218	if ((max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) &&
5219	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5220		e_err("Jumbo Frames not supported.\n");
5221		return -EINVAL;
5222	}
5223
5224	/* Supported frame sizes */
5225	if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
5226	    (max_frame > adapter->max_hw_frame_size)) {
5227		e_err("Unsupported MTU setting\n");
5228		return -EINVAL;
5229	}
5230
5231	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5232	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5233	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5234	    (new_mtu > ETH_DATA_LEN)) {
5235		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5236		return -EINVAL;
5237	}
5238
5239	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5240		usleep_range(1000, 2000);
5241	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5242	adapter->max_frame_size = max_frame;
5243	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5244	netdev->mtu = new_mtu;
 
 
 
5245	if (netif_running(netdev))
5246		e1000e_down(adapter);
5247
5248	/*
5249	 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5250	 * means we reserve 2 more, this pushes us to allocate from the next
5251	 * larger slab size.
5252	 * i.e. RXBUFFER_2048 --> size-4096 slab
5253	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5254	 * fragmented skbs
5255	 */
5256
5257	if (max_frame <= 2048)
5258		adapter->rx_buffer_len = 2048;
5259	else
5260		adapter->rx_buffer_len = 4096;
5261
5262	/* adjust allocation if LPE protects us, and we aren't using SBP */
5263	if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
5264	     (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
5265		adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
5266					 + ETH_FCS_LEN;
5267
5268	if (netif_running(netdev))
5269		e1000e_up(adapter);
5270	else
5271		e1000e_reset(adapter);
5272
 
 
5273	clear_bit(__E1000_RESETTING, &adapter->state);
5274
5275	return 0;
5276}
5277
5278static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5279			   int cmd)
5280{
5281	struct e1000_adapter *adapter = netdev_priv(netdev);
5282	struct mii_ioctl_data *data = if_mii(ifr);
5283
5284	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5285		return -EOPNOTSUPP;
5286
5287	switch (cmd) {
5288	case SIOCGMIIPHY:
5289		data->phy_id = adapter->hw.phy.addr;
5290		break;
5291	case SIOCGMIIREG:
5292		e1000_phy_read_status(adapter);
5293
5294		switch (data->reg_num & 0x1F) {
5295		case MII_BMCR:
5296			data->val_out = adapter->phy_regs.bmcr;
5297			break;
5298		case MII_BMSR:
5299			data->val_out = adapter->phy_regs.bmsr;
5300			break;
5301		case MII_PHYSID1:
5302			data->val_out = (adapter->hw.phy.id >> 16);
5303			break;
5304		case MII_PHYSID2:
5305			data->val_out = (adapter->hw.phy.id & 0xFFFF);
5306			break;
5307		case MII_ADVERTISE:
5308			data->val_out = adapter->phy_regs.advertise;
5309			break;
5310		case MII_LPA:
5311			data->val_out = adapter->phy_regs.lpa;
5312			break;
5313		case MII_EXPANSION:
5314			data->val_out = adapter->phy_regs.expansion;
5315			break;
5316		case MII_CTRL1000:
5317			data->val_out = adapter->phy_regs.ctrl1000;
5318			break;
5319		case MII_STAT1000:
5320			data->val_out = adapter->phy_regs.stat1000;
5321			break;
5322		case MII_ESTATUS:
5323			data->val_out = adapter->phy_regs.estatus;
5324			break;
5325		default:
5326			return -EIO;
5327		}
5328		break;
5329	case SIOCSMIIREG:
5330	default:
5331		return -EOPNOTSUPP;
5332	}
5333	return 0;
5334}
5335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5336static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5337{
5338	switch (cmd) {
5339	case SIOCGMIIPHY:
5340	case SIOCGMIIREG:
5341	case SIOCSMIIREG:
5342		return e1000_mii_ioctl(netdev, ifr, cmd);
 
 
 
 
5343	default:
5344		return -EOPNOTSUPP;
5345	}
5346}
5347
5348static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
5349{
5350	struct e1000_hw *hw = &adapter->hw;
5351	u32 i, mac_reg;
5352	u16 phy_reg, wuc_enable;
5353	int retval = 0;
5354
5355	/* copy MAC RARs to PHY RARs */
5356	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
5357
5358	retval = hw->phy.ops.acquire(hw);
5359	if (retval) {
5360		e_err("Could not acquire PHY\n");
5361		return retval;
5362	}
5363
5364	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5365	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5366	if (retval)
5367		goto release;
5368
5369	/* copy MAC MTA to PHY MTA - only needed for pchlan */
5370	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
5371		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
5372		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
5373					   (u16)(mac_reg & 0xFFFF));
5374		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
5375					   (u16)((mac_reg >> 16) & 0xFFFF));
5376	}
5377
5378	/* configure PHY Rx Control register */
5379	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
5380	mac_reg = er32(RCTL);
5381	if (mac_reg & E1000_RCTL_UPE)
5382		phy_reg |= BM_RCTL_UPE;
5383	if (mac_reg & E1000_RCTL_MPE)
5384		phy_reg |= BM_RCTL_MPE;
5385	phy_reg &= ~(BM_RCTL_MO_MASK);
5386	if (mac_reg & E1000_RCTL_MO_3)
5387		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
5388				<< BM_RCTL_MO_SHIFT);
5389	if (mac_reg & E1000_RCTL_BAM)
5390		phy_reg |= BM_RCTL_BAM;
5391	if (mac_reg & E1000_RCTL_PMCF)
5392		phy_reg |= BM_RCTL_PMCF;
5393	mac_reg = er32(CTRL);
5394	if (mac_reg & E1000_CTRL_RFCE)
5395		phy_reg |= BM_RCTL_RFCE;
5396	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
5397
 
 
 
 
5398	/* enable PHY wakeup in MAC register */
5399	ew32(WUFC, wufc);
5400	ew32(WUC, E1000_WUC_PHY_WAKE | E1000_WUC_PME_EN);
 
5401
5402	/* configure and enable PHY wakeup in PHY registers */
5403	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
5404	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, E1000_WUC_PME_EN);
5405
5406	/* activate PHY wakeup */
5407	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
5408	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
5409	if (retval)
5410		e_err("Could not set PHY Host Wakeup bit\n");
5411release:
5412	hw->phy.ops.release(hw);
5413
5414	return retval;
5415}
5416
5417static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake,
5418			    bool runtime)
5419{
5420	struct net_device *netdev = pci_get_drvdata(pdev);
5421	struct e1000_adapter *adapter = netdev_priv(netdev);
5422	struct e1000_hw *hw = &adapter->hw;
5423	u32 ctrl, ctrl_ext, rctl, status;
5424	/* Runtime suspend should only enable wakeup for link changes */
5425	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
5426	int retval = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5427
5428	netif_device_detach(netdev);
5429
5430	if (netif_running(netdev)) {
5431		int count = E1000_CHECK_RESET_COUNT;
5432
5433		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
5434			usleep_range(10000, 20000);
5435
5436		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
5437		e1000e_down(adapter);
 
 
5438		e1000_free_irq(adapter);
5439	}
5440	e1000e_reset_interrupt_capability(adapter);
5441
5442	retval = pci_save_state(pdev);
5443	if (retval)
5444		return retval;
 
 
 
 
 
 
 
 
 
 
 
 
5445
5446	status = er32(STATUS);
5447	if (status & E1000_STATUS_LU)
5448		wufc &= ~E1000_WUFC_LNKC;
5449
5450	if (wufc) {
5451		e1000_setup_rctl(adapter);
5452		e1000e_set_rx_mode(netdev);
5453
5454		/* turn on all-multi mode if wake on multicast is enabled */
5455		if (wufc & E1000_WUFC_MC) {
5456			rctl = er32(RCTL);
5457			rctl |= E1000_RCTL_MPE;
5458			ew32(RCTL, rctl);
5459		}
5460
5461		ctrl = er32(CTRL);
5462		/* advertise wake from D3Cold */
5463		#define E1000_CTRL_ADVD3WUC 0x00100000
5464		/* phy power management enable */
5465		#define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5466		ctrl |= E1000_CTRL_ADVD3WUC;
5467		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
5468			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
5469		ew32(CTRL, ctrl);
5470
5471		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
5472		    adapter->hw.phy.media_type ==
5473		    e1000_media_type_internal_serdes) {
5474			/* keep the laser running in D3 */
5475			ctrl_ext = er32(CTRL_EXT);
5476			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
5477			ew32(CTRL_EXT, ctrl_ext);
5478		}
5479
 
 
 
5480		if (adapter->flags & FLAG_IS_ICH)
5481			e1000_suspend_workarounds_ich8lan(&adapter->hw);
5482
5483		/* Allow time for pending master requests to run */
5484		e1000e_disable_pcie_master(&adapter->hw);
5485
5486		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5487			/* enable wakeup by the PHY */
5488			retval = e1000_init_phy_wakeup(adapter, wufc);
5489			if (retval)
5490				return retval;
5491		} else {
5492			/* enable wakeup by the MAC */
5493			ew32(WUFC, wufc);
5494			ew32(WUC, E1000_WUC_PME_EN);
5495		}
5496	} else {
5497		ew32(WUC, 0);
5498		ew32(WUFC, 0);
5499	}
5500
5501	*enable_wake = !!wufc;
5502
5503	/* make sure adapter isn't asleep if manageability is enabled */
5504	if ((adapter->flags & FLAG_MNG_PT_ENABLED) ||
5505	    (hw->mac.ops.check_mng_mode(hw)))
5506		*enable_wake = true;
5507
5508	if (adapter->hw.phy.type == e1000_phy_igp_3)
5509		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
 
 
 
 
 
 
 
5510
5511	/*
5512	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
5513	 * would have already happened in close and is redundant.
5514	 */
5515	e1000e_release_hw_control(adapter);
5516
5517	pci_disable_device(pdev);
5518
5519	return 0;
5520}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5521
5522static void e1000_power_off(struct pci_dev *pdev, bool sleep, bool wake)
5523{
5524	if (sleep && wake) {
5525		pci_prepare_to_sleep(pdev);
5526		return;
5527	}
5528
5529	pci_wake_from_d3(pdev, wake);
5530	pci_set_power_state(pdev, PCI_D3hot);
5531}
 
5532
5533static void e1000_complete_shutdown(struct pci_dev *pdev, bool sleep,
5534                                    bool wake)
5535{
5536	struct net_device *netdev = pci_get_drvdata(pdev);
5537	struct e1000_adapter *adapter = netdev_priv(netdev);
5538
5539	/*
5540	 * The pci-e switch on some quad port adapters will report a
5541	 * correctable error when the MAC transitions from D0 to D3.  To
5542	 * prevent this we need to mask off the correctable errors on the
5543	 * downstream port of the pci-e switch.
 
 
 
 
5544	 */
5545	if (adapter->flags & FLAG_IS_QUAD_PORT) {
5546		struct pci_dev *us_dev = pdev->bus->self;
5547		int pos = pci_pcie_cap(us_dev);
5548		u16 devctl;
5549
5550		pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
5551		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
5552		                      (devctl & ~PCI_EXP_DEVCTL_CERE));
5553
5554		e1000_power_off(pdev, sleep, wake);
 
 
5555
5556		pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
5557	} else {
5558		e1000_power_off(pdev, sleep, wake);
 
5559	}
 
 
5560}
5561
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5562#ifdef CONFIG_PCIEASPM
5563static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5564{
5565	pci_disable_link_state_locked(pdev, state);
5566}
5567#else
5568static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5569{
5570	int pos;
5571	u16 reg16;
5572
5573	/*
5574	 * Both device and parent should have the same ASPM setting.
5575	 * Disable ASPM in downstream component first and then upstream.
5576	 */
5577	pos = pci_pcie_cap(pdev);
5578	pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &reg16);
5579	reg16 &= ~state;
5580	pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, reg16);
5581
5582	if (!pdev->bus->self)
5583		return;
 
5584
5585	pos = pci_pcie_cap(pdev->bus->self);
5586	pci_read_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, &reg16);
5587	reg16 &= ~state;
5588	pci_write_config_word(pdev->bus->self, pos + PCI_EXP_LNKCTL, reg16);
 
 
 
 
5589}
5590#endif
 
 
 
 
 
 
 
 
5591static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
5592{
5593	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
5594		 (state & PCIE_LINK_STATE_L0S) ? "L0s" : "",
5595		 (state & PCIE_LINK_STATE_L1) ? "L1" : "");
5596
5597	__e1000e_disable_aspm(pdev, state);
5598}
5599
5600#ifdef CONFIG_PM
5601static bool e1000e_pm_ready(struct e1000_adapter *adapter)
 
 
 
 
 
 
 
5602{
5603	return !!adapter->tx_ring->buffer_info;
5604}
5605
 
5606static int __e1000_resume(struct pci_dev *pdev)
5607{
5608	struct net_device *netdev = pci_get_drvdata(pdev);
5609	struct e1000_adapter *adapter = netdev_priv(netdev);
5610	struct e1000_hw *hw = &adapter->hw;
5611	u16 aspm_disable_flag = 0;
5612	u32 err;
5613
5614	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5615		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5616	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5617		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5618	if (aspm_disable_flag)
5619		e1000e_disable_aspm(pdev, aspm_disable_flag);
5620
5621	pci_set_power_state(pdev, PCI_D0);
5622	pci_restore_state(pdev);
5623	pci_save_state(pdev);
5624
5625	e1000e_set_interrupt_capability(adapter);
5626	if (netif_running(netdev)) {
5627		err = e1000_request_irq(adapter);
5628		if (err)
5629			return err;
5630	}
5631
5632	if (hw->mac.type >= e1000_pch2lan)
5633		e1000_resume_workarounds_pchlan(&adapter->hw);
5634
5635	e1000e_power_up_phy(adapter);
5636
5637	/* report the system wakeup cause from S3/S4 */
5638	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
5639		u16 phy_data;
5640
5641		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
5642		if (phy_data) {
5643			e_info("PHY Wakeup cause - %s\n",
5644				phy_data & E1000_WUS_EX ? "Unicast Packet" :
5645				phy_data & E1000_WUS_MC ? "Multicast Packet" :
5646				phy_data & E1000_WUS_BC ? "Broadcast Packet" :
5647				phy_data & E1000_WUS_MAG ? "Magic Packet" :
5648				phy_data & E1000_WUS_LNKC ?
5649				"Link Status Change" : "other");
5650		}
5651		e1e_wphy(&adapter->hw, BM_WUS, ~0);
5652	} else {
5653		u32 wus = er32(WUS);
 
5654		if (wus) {
5655			e_info("MAC Wakeup cause - %s\n",
5656				wus & E1000_WUS_EX ? "Unicast Packet" :
5657				wus & E1000_WUS_MC ? "Multicast Packet" :
5658				wus & E1000_WUS_BC ? "Broadcast Packet" :
5659				wus & E1000_WUS_MAG ? "Magic Packet" :
5660				wus & E1000_WUS_LNKC ? "Link Status Change" :
5661				"other");
5662		}
5663		ew32(WUS, ~0);
5664	}
5665
5666	e1000e_reset(adapter);
5667
5668	e1000_init_manageability_pt(adapter);
5669
5670	if (netif_running(netdev))
5671		e1000e_up(adapter);
5672
5673	netif_device_attach(netdev);
5674
5675	/*
5676	 * If the controller has AMT, do not set DRV_LOAD until the interface
5677	 * is up.  For all other cases, let the f/w know that the h/w is now
5678	 * under the control of the driver.
5679	 */
5680	if (!(adapter->flags & FLAG_HAS_AMT))
5681		e1000e_get_hw_control(adapter);
5682
5683	return 0;
5684}
5685
5686#ifdef CONFIG_PM_SLEEP
5687static int e1000_suspend(struct device *dev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5688{
5689	struct pci_dev *pdev = to_pci_dev(dev);
5690	int retval;
5691	bool wake;
5692
5693	retval = __e1000_shutdown(pdev, &wake, false);
5694	if (!retval)
5695		e1000_complete_shutdown(pdev, true, wake);
5696
5697	return retval;
 
 
5698}
5699
5700static int e1000_resume(struct device *dev)
5701{
5702	struct pci_dev *pdev = to_pci_dev(dev);
5703	struct net_device *netdev = pci_get_drvdata(pdev);
5704	struct e1000_adapter *adapter = netdev_priv(netdev);
5705
5706	if (e1000e_pm_ready(adapter))
5707		adapter->idle_check = true;
 
5708
5709	return __e1000_resume(pdev);
5710}
5711#endif /* CONFIG_PM_SLEEP */
5712
5713#ifdef CONFIG_PM_RUNTIME
5714static int e1000_runtime_suspend(struct device *dev)
5715{
5716	struct pci_dev *pdev = to_pci_dev(dev);
5717	struct net_device *netdev = pci_get_drvdata(pdev);
5718	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5719
5720	if (e1000e_pm_ready(adapter)) {
5721		bool wake;
5722
5723		__e1000_shutdown(pdev, &wake, true);
 
 
5724	}
5725
5726	return 0;
5727}
5728
5729static int e1000_idle(struct device *dev)
5730{
5731	struct pci_dev *pdev = to_pci_dev(dev);
5732	struct net_device *netdev = pci_get_drvdata(pdev);
5733	struct e1000_adapter *adapter = netdev_priv(netdev);
 
5734
5735	if (!e1000e_pm_ready(adapter))
5736		return 0;
 
5737
5738	if (adapter->idle_check) {
5739		adapter->idle_check = false;
5740		if (!e1000e_has_link(adapter))
5741			pm_schedule_suspend(dev, MSEC_PER_SEC);
5742	}
5743
5744	return -EBUSY;
5745}
5746
5747static int e1000_runtime_resume(struct device *dev)
5748{
5749	struct pci_dev *pdev = to_pci_dev(dev);
5750	struct net_device *netdev = pci_get_drvdata(pdev);
5751	struct e1000_adapter *adapter = netdev_priv(netdev);
5752
5753	if (!e1000e_pm_ready(adapter))
5754		return 0;
 
 
 
 
 
5755
5756	adapter->idle_check = !dev->power.runtime_auto;
5757	return __e1000_resume(pdev);
 
 
 
 
 
 
 
 
5758}
5759#endif /* CONFIG_PM_RUNTIME */
5760#endif /* CONFIG_PM */
5761
5762static void e1000_shutdown(struct pci_dev *pdev)
5763{
5764	bool wake = false;
5765
5766	__e1000_shutdown(pdev, &wake, false);
5767
5768	if (system_state == SYSTEM_POWER_OFF)
5769		e1000_complete_shutdown(pdev, false, wake);
5770}
5771
5772#ifdef CONFIG_NET_POLL_CONTROLLER
5773
5774static irqreturn_t e1000_intr_msix(int irq, void *data)
5775{
5776	struct net_device *netdev = data;
5777	struct e1000_adapter *adapter = netdev_priv(netdev);
5778
5779	if (adapter->msix_entries) {
5780		int vector, msix_irq;
5781
5782		vector = 0;
5783		msix_irq = adapter->msix_entries[vector].vector;
5784		disable_irq(msix_irq);
5785		e1000_intr_msix_rx(msix_irq, netdev);
5786		enable_irq(msix_irq);
5787
5788		vector++;
5789		msix_irq = adapter->msix_entries[vector].vector;
5790		disable_irq(msix_irq);
5791		e1000_intr_msix_tx(msix_irq, netdev);
5792		enable_irq(msix_irq);
5793
5794		vector++;
5795		msix_irq = adapter->msix_entries[vector].vector;
5796		disable_irq(msix_irq);
5797		e1000_msix_other(msix_irq, netdev);
5798		enable_irq(msix_irq);
5799	}
5800
5801	return IRQ_HANDLED;
5802}
5803
5804/*
 
 
 
5805 * Polling 'interrupt' - used by things like netconsole to send skbs
5806 * without having to re-enable interrupts. It's not called while
5807 * the interrupt routine is executing.
5808 */
5809static void e1000_netpoll(struct net_device *netdev)
5810{
5811	struct e1000_adapter *adapter = netdev_priv(netdev);
5812
5813	switch (adapter->int_mode) {
5814	case E1000E_INT_MODE_MSIX:
5815		e1000_intr_msix(adapter->pdev->irq, netdev);
5816		break;
5817	case E1000E_INT_MODE_MSI:
5818		disable_irq(adapter->pdev->irq);
5819		e1000_intr_msi(adapter->pdev->irq, netdev);
5820		enable_irq(adapter->pdev->irq);
5821		break;
5822	default: /* E1000E_INT_MODE_LEGACY */
5823		disable_irq(adapter->pdev->irq);
5824		e1000_intr(adapter->pdev->irq, netdev);
5825		enable_irq(adapter->pdev->irq);
5826		break;
5827	}
5828}
5829#endif
5830
5831/**
5832 * e1000_io_error_detected - called when PCI error is detected
5833 * @pdev: Pointer to PCI device
5834 * @state: The current pci connection state
5835 *
5836 * This function is called after a PCI bus error affecting
5837 * this device has been detected.
5838 */
5839static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5840						pci_channel_state_t state)
5841{
5842	struct net_device *netdev = pci_get_drvdata(pdev);
5843	struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845	netif_device_detach(netdev);
5846
5847	if (state == pci_channel_io_perm_failure)
5848		return PCI_ERS_RESULT_DISCONNECT;
5849
5850	if (netif_running(netdev))
5851		e1000e_down(adapter);
5852	pci_disable_device(pdev);
5853
5854	/* Request a slot slot reset. */
5855	return PCI_ERS_RESULT_NEED_RESET;
5856}
5857
5858/**
5859 * e1000_io_slot_reset - called after the pci bus has been reset.
5860 * @pdev: Pointer to PCI device
5861 *
5862 * Restart the card from scratch, as if from a cold-boot. Implementation
5863 * resembles the first-half of the e1000_resume routine.
5864 */
5865static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5866{
5867	struct net_device *netdev = pci_get_drvdata(pdev);
5868	struct e1000_adapter *adapter = netdev_priv(netdev);
5869	struct e1000_hw *hw = &adapter->hw;
5870	u16 aspm_disable_flag = 0;
5871	int err;
5872	pci_ers_result_t result;
5873
5874	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
5875		aspm_disable_flag = PCIE_LINK_STATE_L0S;
5876	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
5877		aspm_disable_flag |= PCIE_LINK_STATE_L1;
5878	if (aspm_disable_flag)
5879		e1000e_disable_aspm(pdev, aspm_disable_flag);
5880
5881	err = pci_enable_device_mem(pdev);
5882	if (err) {
5883		dev_err(&pdev->dev,
5884			"Cannot re-enable PCI device after reset.\n");
5885		result = PCI_ERS_RESULT_DISCONNECT;
5886	} else {
5887		pci_set_master(pdev);
5888		pdev->state_saved = true;
5889		pci_restore_state(pdev);
 
5890
5891		pci_enable_wake(pdev, PCI_D3hot, 0);
5892		pci_enable_wake(pdev, PCI_D3cold, 0);
5893
5894		e1000e_reset(adapter);
5895		ew32(WUS, ~0);
5896		result = PCI_ERS_RESULT_RECOVERED;
5897	}
5898
5899	pci_cleanup_aer_uncorrect_error_status(pdev);
5900
5901	return result;
5902}
5903
5904/**
5905 * e1000_io_resume - called when traffic can start flowing again.
5906 * @pdev: Pointer to PCI device
5907 *
5908 * This callback is called when the error recovery driver tells us that
5909 * its OK to resume normal operation. Implementation resembles the
5910 * second-half of the e1000_resume routine.
5911 */
5912static void e1000_io_resume(struct pci_dev *pdev)
5913{
5914	struct net_device *netdev = pci_get_drvdata(pdev);
5915	struct e1000_adapter *adapter = netdev_priv(netdev);
5916
5917	e1000_init_manageability_pt(adapter);
5918
5919	if (netif_running(netdev)) {
5920		if (e1000e_up(adapter)) {
5921			dev_err(&pdev->dev,
5922				"can't bring device back up after reset\n");
5923			return;
5924		}
5925	}
5926
5927	netif_device_attach(netdev);
5928
5929	/*
5930	 * If the controller has AMT, do not set DRV_LOAD until the interface
5931	 * is up.  For all other cases, let the f/w know that the h/w is now
5932	 * under the control of the driver.
5933	 */
5934	if (!(adapter->flags & FLAG_HAS_AMT))
5935		e1000e_get_hw_control(adapter);
5936
5937}
5938
5939static void e1000_print_device_info(struct e1000_adapter *adapter)
5940{
5941	struct e1000_hw *hw = &adapter->hw;
5942	struct net_device *netdev = adapter->netdev;
5943	u32 ret_val;
5944	u8 pba_str[E1000_PBANUM_LENGTH];
5945
5946	/* print bus type/speed/width info */
5947	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5948	       /* bus width */
5949	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
5950	        "Width x1"),
5951	       /* MAC address */
5952	       netdev->dev_addr);
5953	e_info("Intel(R) PRO/%s Network Connection\n",
5954	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
5955	ret_val = e1000_read_pba_string_generic(hw, pba_str,
5956						E1000_PBANUM_LENGTH);
5957	if (ret_val)
5958		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
5959	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5960	       hw->mac.type, hw->phy.type, pba_str);
5961}
5962
5963static void e1000_eeprom_checks(struct e1000_adapter *adapter)
5964{
5965	struct e1000_hw *hw = &adapter->hw;
5966	int ret_val;
5967	u16 buf = 0;
5968
5969	if (hw->mac.type != e1000_82573)
5970		return;
5971
5972	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
5973	le16_to_cpus(&buf);
5974	if (!ret_val && (!(buf & (1 << 0)))) {
5975		/* Deep Smart Power Down (DSPD) */
5976		dev_warn(&adapter->pdev->dev,
5977			 "Warning: detected DSPD enabled in EEPROM\n");
5978	}
5979}
5980
 
 
 
 
 
 
 
 
 
 
 
 
 
5981static int e1000_set_features(struct net_device *netdev,
5982			      netdev_features_t features)
5983{
5984	struct e1000_adapter *adapter = netdev_priv(netdev);
5985	netdev_features_t changed = features ^ netdev->features;
5986
5987	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
5988		adapter->flags |= FLAG_TSO_FORCE;
5989
5990	if (!(changed & (NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_TX |
5991			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
5992			 NETIF_F_RXALL)))
5993		return 0;
5994
5995	if (changed & NETIF_F_RXFCS) {
5996		if (features & NETIF_F_RXFCS) {
5997			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
5998		} else {
5999			/* We need to take it back to defaults, which might mean
6000			 * stripping is still disabled at the adapter level.
6001			 */
6002			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6003				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6004			else
6005				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6006		}
6007	}
6008
6009	netdev->features = features;
6010
6011	if (netif_running(netdev))
6012		e1000e_reinit_locked(adapter);
6013	else
6014		e1000e_reset(adapter);
6015
6016	return 0;
6017}
6018
6019static const struct net_device_ops e1000e_netdev_ops = {
6020	.ndo_open		= e1000_open,
6021	.ndo_stop		= e1000_close,
6022	.ndo_start_xmit		= e1000_xmit_frame,
6023	.ndo_get_stats64	= e1000e_get_stats64,
6024	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6025	.ndo_set_mac_address	= e1000_set_mac,
6026	.ndo_change_mtu		= e1000_change_mtu,
6027	.ndo_do_ioctl		= e1000_ioctl,
6028	.ndo_tx_timeout		= e1000_tx_timeout,
6029	.ndo_validate_addr	= eth_validate_addr,
6030
6031	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6032	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6033#ifdef CONFIG_NET_POLL_CONTROLLER
6034	.ndo_poll_controller	= e1000_netpoll,
6035#endif
6036	.ndo_set_features = e1000_set_features,
 
 
6037};
6038
6039/**
6040 * e1000_probe - Device Initialization Routine
6041 * @pdev: PCI device information struct
6042 * @ent: entry in e1000_pci_tbl
6043 *
6044 * Returns 0 on success, negative on failure
6045 *
6046 * e1000_probe initializes an adapter identified by a pci_dev structure.
6047 * The OS initialization, configuring of the adapter private structure,
6048 * and a hardware reset occur.
6049 **/
6050static int __devinit e1000_probe(struct pci_dev *pdev,
6051				 const struct pci_device_id *ent)
6052{
6053	struct net_device *netdev;
6054	struct e1000_adapter *adapter;
6055	struct e1000_hw *hw;
6056	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6057	resource_size_t mmio_start, mmio_len;
6058	resource_size_t flash_start, flash_len;
6059	static int cards_found;
6060	u16 aspm_disable_flag = 0;
6061	int i, err, pci_using_dac;
6062	u16 eeprom_data = 0;
6063	u16 eeprom_apme_mask = E1000_EEPROM_APME;
 
6064
6065	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6066		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6067	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6068		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6069	if (aspm_disable_flag)
6070		e1000e_disable_aspm(pdev, aspm_disable_flag);
6071
6072	err = pci_enable_device_mem(pdev);
6073	if (err)
6074		return err;
6075
6076	pci_using_dac = 0;
6077	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
6078	if (!err) {
6079		err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
6080		if (!err)
6081			pci_using_dac = 1;
6082	} else {
6083		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
6084		if (err) {
6085			err = dma_set_coherent_mask(&pdev->dev,
6086						    DMA_BIT_MASK(32));
6087			if (err) {
6088				dev_err(&pdev->dev, "No usable DMA configuration, aborting\n");
6089				goto err_dma;
6090			}
6091		}
6092	}
6093
6094	err = pci_request_selected_regions_exclusive(pdev,
6095	                                  pci_select_bars(pdev, IORESOURCE_MEM),
6096	                                  e1000e_driver_name);
6097	if (err)
6098		goto err_pci_reg;
6099
6100	/* AER (Advanced Error Reporting) hooks */
6101	pci_enable_pcie_error_reporting(pdev);
6102
6103	pci_set_master(pdev);
6104	/* PCI config space info */
6105	err = pci_save_state(pdev);
6106	if (err)
6107		goto err_alloc_etherdev;
6108
6109	err = -ENOMEM;
6110	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6111	if (!netdev)
6112		goto err_alloc_etherdev;
6113
6114	SET_NETDEV_DEV(netdev, &pdev->dev);
6115
6116	netdev->irq = pdev->irq;
6117
6118	pci_set_drvdata(pdev, netdev);
6119	adapter = netdev_priv(netdev);
6120	hw = &adapter->hw;
6121	adapter->netdev = netdev;
6122	adapter->pdev = pdev;
6123	adapter->ei = ei;
6124	adapter->pba = ei->pba;
6125	adapter->flags = ei->flags;
6126	adapter->flags2 = ei->flags2;
6127	adapter->hw.adapter = adapter;
6128	adapter->hw.mac.type = ei->mac;
6129	adapter->max_hw_frame_size = ei->max_hw_frame_size;
6130	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
6131
6132	mmio_start = pci_resource_start(pdev, 0);
6133	mmio_len = pci_resource_len(pdev, 0);
6134
6135	err = -EIO;
6136	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
6137	if (!adapter->hw.hw_addr)
6138		goto err_ioremap;
6139
6140	if ((adapter->flags & FLAG_HAS_FLASH) &&
6141	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
 
6142		flash_start = pci_resource_start(pdev, 1);
6143		flash_len = pci_resource_len(pdev, 1);
6144		adapter->hw.flash_address = ioremap(flash_start, flash_len);
6145		if (!adapter->hw.flash_address)
6146			goto err_flashmap;
6147	}
6148
 
 
 
 
6149	/* construct the net_device struct */
6150	netdev->netdev_ops		= &e1000e_netdev_ops;
6151	e1000e_set_ethtool_ops(netdev);
6152	netdev->watchdog_timeo		= 5 * HZ;
6153	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
6154	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
6155
6156	netdev->mem_start = mmio_start;
6157	netdev->mem_end = mmio_start + mmio_len;
6158
6159	adapter->bd_number = cards_found++;
6160
6161	e1000e_check_options(adapter);
6162
6163	/* setup adapter struct */
6164	err = e1000_sw_init(adapter);
6165	if (err)
6166		goto err_sw_init;
6167
6168	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
6169	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
6170	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
6171
6172	err = ei->get_variants(adapter);
6173	if (err)
6174		goto err_hw_init;
6175
6176	if ((adapter->flags & FLAG_IS_ICH) &&
6177	    (adapter->flags & FLAG_READ_ONLY_NVM))
 
6178		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
6179
6180	hw->mac.ops.get_bus_info(&adapter->hw);
6181
6182	adapter->hw.phy.autoneg_wait_to_complete = 0;
6183
6184	/* Copper options */
6185	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
6186		adapter->hw.phy.mdix = AUTO_ALL_MODES;
6187		adapter->hw.phy.disable_polarity_correction = 0;
6188		adapter->hw.phy.ms_type = e1000_ms_hw_default;
6189	}
6190
6191	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
6192		e_info("PHY reset is blocked due to SOL/IDER session.\n");
 
6193
6194	/* Set initial default active device features */
6195	netdev->features = (NETIF_F_SG |
6196			    NETIF_F_HW_VLAN_RX |
6197			    NETIF_F_HW_VLAN_TX |
6198			    NETIF_F_TSO |
6199			    NETIF_F_TSO6 |
6200			    NETIF_F_RXHASH |
6201			    NETIF_F_RXCSUM |
6202			    NETIF_F_HW_CSUM);
6203
6204	/* Set user-changeable features (subset of all device features) */
6205	netdev->hw_features = netdev->features;
6206	netdev->hw_features |= NETIF_F_RXFCS;
6207	netdev->priv_flags |= IFF_SUPP_NOFCS;
6208	netdev->hw_features |= NETIF_F_RXALL;
6209
6210	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
6211		netdev->features |= NETIF_F_HW_VLAN_FILTER;
6212
6213	netdev->vlan_features |= (NETIF_F_SG |
6214				  NETIF_F_TSO |
6215				  NETIF_F_TSO6 |
6216				  NETIF_F_HW_CSUM);
6217
6218	netdev->priv_flags |= IFF_UNICAST_FLT;
6219
6220	if (pci_using_dac) {
6221		netdev->features |= NETIF_F_HIGHDMA;
6222		netdev->vlan_features |= NETIF_F_HIGHDMA;
6223	}
6224
6225	if (e1000e_enable_mng_pass_thru(&adapter->hw))
6226		adapter->flags |= FLAG_MNG_PT_ENABLED;
6227
6228	/*
6229	 * before reading the NVM, reset the controller to
6230	 * put the device in a known good starting state
6231	 */
6232	adapter->hw.mac.ops.reset_hw(&adapter->hw);
6233
6234	/*
6235	 * systems with ASPM and others may see the checksum fail on the first
6236	 * attempt. Let's give it a few tries
6237	 */
6238	for (i = 0;; i++) {
6239		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
6240			break;
6241		if (i == 2) {
6242			e_err("The NVM Checksum Is Not Valid\n");
6243			err = -EIO;
6244			goto err_eeprom;
6245		}
6246	}
6247
6248	e1000_eeprom_checks(adapter);
6249
6250	/* copy the MAC address */
6251	if (e1000e_read_mac_addr(&adapter->hw))
6252		e_err("NVM Read Error while reading MAC address\n");
 
6253
6254	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
6255	memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
6256
6257	if (!is_valid_ether_addr(netdev->perm_addr)) {
6258		e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
 
6259		err = -EIO;
6260		goto err_eeprom;
6261	}
6262
6263	init_timer(&adapter->watchdog_timer);
6264	adapter->watchdog_timer.function = e1000_watchdog;
6265	adapter->watchdog_timer.data = (unsigned long) adapter;
6266
6267	init_timer(&adapter->phy_info_timer);
6268	adapter->phy_info_timer.function = e1000_update_phy_info;
6269	adapter->phy_info_timer.data = (unsigned long) adapter;
6270
6271	INIT_WORK(&adapter->reset_task, e1000_reset_task);
6272	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
6273	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
6274	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
6275	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
6276
6277	/* Initialize link parameters. User can change them with ethtool */
6278	adapter->hw.mac.autoneg = 1;
6279	adapter->fc_autoneg = true;
6280	adapter->hw.fc.requested_mode = e1000_fc_default;
6281	adapter->hw.fc.current_mode = e1000_fc_default;
6282	adapter->hw.phy.autoneg_advertised = 0x2f;
6283
6284	/* ring size defaults */
6285	adapter->rx_ring->count = E1000_DEFAULT_RXD;
6286	adapter->tx_ring->count = E1000_DEFAULT_TXD;
6287
6288	/*
6289	 * Initial Wake on LAN setting - If APM wake is enabled in
6290	 * the EEPROM, enable the ACPI Magic Packet filter
6291	 */
6292	if (adapter->flags & FLAG_APME_IN_WUC) {
6293		/* APME bit in EEPROM is mapped to WUC.APME */
6294		eeprom_data = er32(WUC);
6295		eeprom_apme_mask = E1000_WUC_APME;
6296		if ((hw->mac.type > e1000_ich10lan) &&
6297		    (eeprom_data & E1000_WUC_PHY_WAKE))
6298			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
6299	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
6300		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
6301		    (adapter->hw.bus.func == 1))
6302			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_B,
6303				       1, &eeprom_data);
 
6304		else
6305			e1000_read_nvm(&adapter->hw, NVM_INIT_CONTROL3_PORT_A,
6306				       1, &eeprom_data);
 
6307	}
6308
6309	/* fetch WoL from EEPROM */
6310	if (eeprom_data & eeprom_apme_mask)
 
 
6311		adapter->eeprom_wol |= E1000_WUFC_MAG;
6312
6313	/*
6314	 * now that we have the eeprom settings, apply the special cases
6315	 * where the eeprom may be wrong or the board simply won't support
6316	 * wake on lan on a particular port
6317	 */
6318	if (!(adapter->flags & FLAG_HAS_WOL))
6319		adapter->eeprom_wol = 0;
6320
6321	/* initialize the wol settings based on the eeprom settings */
6322	adapter->wol = adapter->eeprom_wol;
6323	device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
 
 
 
 
6324
6325	/* save off EEPROM version number */
6326	e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
 
 
 
 
 
6327
6328	/* reset the hardware with the new settings */
6329	e1000e_reset(adapter);
6330
6331	/*
6332	 * If the controller has AMT, do not set DRV_LOAD until the interface
6333	 * is up.  For all other cases, let the f/w know that the h/w is now
6334	 * under the control of the driver.
6335	 */
6336	if (!(adapter->flags & FLAG_HAS_AMT))
6337		e1000e_get_hw_control(adapter);
6338
6339	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
6340	err = register_netdev(netdev);
6341	if (err)
6342		goto err_register;
6343
6344	/* carrier off reporting is important to ethtool even BEFORE open */
6345	netif_carrier_off(netdev);
6346
 
 
 
6347	e1000_print_device_info(adapter);
6348
6349	if (pci_dev_run_wake(pdev))
6350		pm_runtime_put_noidle(&pdev->dev);
6351
6352	return 0;
6353
6354err_register:
6355	if (!(adapter->flags & FLAG_HAS_AMT))
6356		e1000e_release_hw_control(adapter);
6357err_eeprom:
6358	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
6359		e1000_phy_hw_reset(&adapter->hw);
6360err_hw_init:
6361	kfree(adapter->tx_ring);
6362	kfree(adapter->rx_ring);
6363err_sw_init:
6364	if (adapter->hw.flash_address)
6365		iounmap(adapter->hw.flash_address);
6366	e1000e_reset_interrupt_capability(adapter);
6367err_flashmap:
6368	iounmap(adapter->hw.hw_addr);
6369err_ioremap:
6370	free_netdev(netdev);
6371err_alloc_etherdev:
6372	pci_release_selected_regions(pdev,
6373	                             pci_select_bars(pdev, IORESOURCE_MEM));
6374err_pci_reg:
6375err_dma:
6376	pci_disable_device(pdev);
6377	return err;
6378}
6379
6380/**
6381 * e1000_remove - Device Removal Routine
6382 * @pdev: PCI device information struct
6383 *
6384 * e1000_remove is called by the PCI subsystem to alert the driver
6385 * that it should release a PCI device.  The could be caused by a
6386 * Hot-Plug event, or because the driver is going to be removed from
6387 * memory.
6388 **/
6389static void __devexit e1000_remove(struct pci_dev *pdev)
6390{
6391	struct net_device *netdev = pci_get_drvdata(pdev);
6392	struct e1000_adapter *adapter = netdev_priv(netdev);
6393	bool down = test_bit(__E1000_DOWN, &adapter->state);
6394
6395	/*
6396	 * The timers may be rescheduled, so explicitly disable them
 
6397	 * from being rescheduled.
6398	 */
6399	if (!down)
6400		set_bit(__E1000_DOWN, &adapter->state);
6401	del_timer_sync(&adapter->watchdog_timer);
6402	del_timer_sync(&adapter->phy_info_timer);
6403
6404	cancel_work_sync(&adapter->reset_task);
6405	cancel_work_sync(&adapter->watchdog_task);
6406	cancel_work_sync(&adapter->downshift_task);
6407	cancel_work_sync(&adapter->update_phy_task);
6408	cancel_work_sync(&adapter->print_hang_task);
6409
6410	if (!(netdev->flags & IFF_UP))
6411		e1000_power_down_phy(adapter);
 
 
 
 
 
6412
6413	/* Don't lie to e1000_close() down the road. */
6414	if (!down)
6415		clear_bit(__E1000_DOWN, &adapter->state);
6416	unregister_netdev(netdev);
6417
6418	if (pci_dev_run_wake(pdev))
6419		pm_runtime_get_noresume(&pdev->dev);
6420
6421	/*
6422	 * Release control of h/w to f/w.  If f/w is AMT enabled, this
6423	 * would have already happened in close and is redundant.
6424	 */
6425	e1000e_release_hw_control(adapter);
6426
6427	e1000e_reset_interrupt_capability(adapter);
6428	kfree(adapter->tx_ring);
6429	kfree(adapter->rx_ring);
6430
6431	iounmap(adapter->hw.hw_addr);
6432	if (adapter->hw.flash_address)
 
6433		iounmap(adapter->hw.flash_address);
6434	pci_release_selected_regions(pdev,
6435	                             pci_select_bars(pdev, IORESOURCE_MEM));
6436
6437	free_netdev(netdev);
6438
6439	/* AER disable */
6440	pci_disable_pcie_error_reporting(pdev);
6441
6442	pci_disable_device(pdev);
6443}
6444
6445/* PCI Error Recovery (ERS) */
6446static struct pci_error_handlers e1000_err_handler = {
6447	.error_detected = e1000_io_error_detected,
6448	.slot_reset = e1000_io_slot_reset,
6449	.resume = e1000_io_resume,
6450};
6451
6452static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl) = {
6453	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
6454	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
6455	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
6456	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
 
6457	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
6458	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
6459	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
6460	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
6461	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
6462
6463	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
6464	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
6465	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
6466	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
6467
6468	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
6469	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
6470	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
6471
6472	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
6473	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
6474	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
6475
6476	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
6477	  board_80003es2lan },
6478	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
6479	  board_80003es2lan },
6480	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
6481	  board_80003es2lan },
6482	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
6483	  board_80003es2lan },
6484
6485	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
6486	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
6487	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
6488	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
6489	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
6490	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
6491	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
6492	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
6493
6494	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
6495	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
6496	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
6497	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
6498	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
6499	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
6500	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
6501	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
6502	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
6503
6504	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
6505	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
6506	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
6507
6508	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
6509	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
6510	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
6511
6512	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
6513	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
6514	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
6515	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
6516
6517	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
6518	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
6519
6520	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
6521	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6522
6523	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
6524};
6525MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
6526
6527#ifdef CONFIG_PM
6528static const struct dev_pm_ops e1000_pm_ops = {
6529	SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend, e1000_resume)
6530	SET_RUNTIME_PM_OPS(e1000_runtime_suspend,
6531				e1000_runtime_resume, e1000_idle)
6532};
 
 
 
6533#endif
 
 
 
6534
6535/* PCI Device API Driver */
6536static struct pci_driver e1000_driver = {
6537	.name     = e1000e_driver_name,
6538	.id_table = e1000_pci_tbl,
6539	.probe    = e1000_probe,
6540	.remove   = __devexit_p(e1000_remove),
6541#ifdef CONFIG_PM
6542	.driver   = {
6543		.pm = &e1000_pm_ops,
6544	},
6545#endif
6546	.shutdown = e1000_shutdown,
6547	.err_handler = &e1000_err_handler
6548};
6549
6550/**
6551 * e1000_init_module - Driver Registration Routine
6552 *
6553 * e1000_init_module is the first routine called when the driver is
6554 * loaded. All it does is register with the PCI subsystem.
6555 **/
6556static int __init e1000_init_module(void)
6557{
6558	int ret;
6559	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6560		e1000e_driver_version);
6561	pr_info("Copyright(c) 1999 - 2012 Intel Corporation.\n");
6562	ret = pci_register_driver(&e1000_driver);
6563
6564	return ret;
6565}
6566module_init(e1000_init_module);
6567
6568/**
6569 * e1000_exit_module - Driver Exit Cleanup Routine
6570 *
6571 * e1000_exit_module is called just before the driver is removed
6572 * from memory.
6573 **/
6574static void __exit e1000_exit_module(void)
6575{
6576	pci_unregister_driver(&e1000_driver);
6577}
6578module_exit(e1000_exit_module);
6579
6580
6581MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6582MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6583MODULE_LICENSE("GPL");
6584MODULE_VERSION(DRV_VERSION);
6585
6586/* netdev.c */
v4.6
   1/* Intel PRO/1000 Linux driver
   2 * Copyright(c) 1999 - 2015 Intel Corporation.
   3 *
   4 * This program is free software; you can redistribute it and/or modify it
   5 * under the terms and conditions of the GNU General Public License,
   6 * version 2, as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope it will be useful, but WITHOUT
   9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  10 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  11 * more details.
  12 *
  13 * The full GNU General Public License is included in this distribution in
  14 * the file called "COPYING".
  15 *
  16 * Contact Information:
  17 * Linux NICS <linux.nics@intel.com>
  18 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  19 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  20 */
 
 
 
 
 
 
 
  21
  22#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  23
  24#include <linux/module.h>
  25#include <linux/types.h>
  26#include <linux/init.h>
  27#include <linux/pci.h>
  28#include <linux/vmalloc.h>
  29#include <linux/pagemap.h>
  30#include <linux/delay.h>
  31#include <linux/netdevice.h>
  32#include <linux/interrupt.h>
  33#include <linux/tcp.h>
  34#include <linux/ipv6.h>
  35#include <linux/slab.h>
  36#include <net/checksum.h>
  37#include <net/ip6_checksum.h>
 
  38#include <linux/ethtool.h>
  39#include <linux/if_vlan.h>
  40#include <linux/cpu.h>
  41#include <linux/smp.h>
  42#include <linux/pm_qos.h>
  43#include <linux/pm_runtime.h>
  44#include <linux/aer.h>
  45#include <linux/prefetch.h>
  46
  47#include "e1000.h"
  48
  49#define DRV_EXTRAVERSION "-k"
  50
  51#define DRV_VERSION "3.2.6" DRV_EXTRAVERSION
  52char e1000e_driver_name[] = "e1000e";
  53const char e1000e_driver_version[] = DRV_VERSION;
  54
  55#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
  56static int debug = -1;
  57module_param(debug, int, 0);
  58MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  59
 
 
  60static const struct e1000_info *e1000_info_tbl[] = {
  61	[board_82571]		= &e1000_82571_info,
  62	[board_82572]		= &e1000_82572_info,
  63	[board_82573]		= &e1000_82573_info,
  64	[board_82574]		= &e1000_82574_info,
  65	[board_82583]		= &e1000_82583_info,
  66	[board_80003es2lan]	= &e1000_es2_info,
  67	[board_ich8lan]		= &e1000_ich8_info,
  68	[board_ich9lan]		= &e1000_ich9_info,
  69	[board_ich10lan]	= &e1000_ich10_info,
  70	[board_pchlan]		= &e1000_pch_info,
  71	[board_pch2lan]		= &e1000_pch2_info,
  72	[board_pch_lpt]		= &e1000_pch_lpt_info,
  73	[board_pch_spt]		= &e1000_pch_spt_info,
  74};
  75
  76struct e1000_reg_info {
  77	u32 ofs;
  78	char *name;
  79};
  80
 
 
 
 
 
 
 
 
 
 
 
 
  81static const struct e1000_reg_info e1000_reg_info_tbl[] = {
 
  82	/* General Registers */
  83	{E1000_CTRL, "CTRL"},
  84	{E1000_STATUS, "STATUS"},
  85	{E1000_CTRL_EXT, "CTRL_EXT"},
  86
  87	/* Interrupt Registers */
  88	{E1000_ICR, "ICR"},
  89
  90	/* Rx Registers */
  91	{E1000_RCTL, "RCTL"},
  92	{E1000_RDLEN(0), "RDLEN"},
  93	{E1000_RDH(0), "RDH"},
  94	{E1000_RDT(0), "RDT"},
  95	{E1000_RDTR, "RDTR"},
  96	{E1000_RXDCTL(0), "RXDCTL"},
  97	{E1000_ERT, "ERT"},
  98	{E1000_RDBAL(0), "RDBAL"},
  99	{E1000_RDBAH(0), "RDBAH"},
 100	{E1000_RDFH, "RDFH"},
 101	{E1000_RDFT, "RDFT"},
 102	{E1000_RDFHS, "RDFHS"},
 103	{E1000_RDFTS, "RDFTS"},
 104	{E1000_RDFPC, "RDFPC"},
 105
 106	/* Tx Registers */
 107	{E1000_TCTL, "TCTL"},
 108	{E1000_TDBAL(0), "TDBAL"},
 109	{E1000_TDBAH(0), "TDBAH"},
 110	{E1000_TDLEN(0), "TDLEN"},
 111	{E1000_TDH(0), "TDH"},
 112	{E1000_TDT(0), "TDT"},
 113	{E1000_TIDV, "TIDV"},
 114	{E1000_TXDCTL(0), "TXDCTL"},
 115	{E1000_TADV, "TADV"},
 116	{E1000_TARC(0), "TARC"},
 117	{E1000_TDFH, "TDFH"},
 118	{E1000_TDFT, "TDFT"},
 119	{E1000_TDFHS, "TDFHS"},
 120	{E1000_TDFTS, "TDFTS"},
 121	{E1000_TDFPC, "TDFPC"},
 122
 123	/* List Terminator */
 124	{0, NULL}
 125};
 126
 127/**
 128 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
 129 * @hw: pointer to the HW structure
 130 *
 131 * When updating the MAC CSR registers, the Manageability Engine (ME) could
 132 * be accessing the registers at the same time.  Normally, this is handled in
 133 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
 134 * accesses later than it should which could result in the register to have
 135 * an incorrect value.  Workaround this by checking the FWSM register which
 136 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
 137 * and try again a number of times.
 138 **/
 139s32 __ew32_prepare(struct e1000_hw *hw)
 140{
 141	s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
 142
 143	while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
 144		udelay(50);
 145
 146	return i;
 147}
 148
 149void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
 150{
 151	if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 152		__ew32_prepare(hw);
 153
 154	writel(val, hw->hw_addr + reg);
 155}
 156
 157/**
 158 * e1000_regdump - register printout routine
 159 * @hw: pointer to the HW structure
 160 * @reginfo: pointer to the register info table
 161 **/
 162static void e1000_regdump(struct e1000_hw *hw, struct e1000_reg_info *reginfo)
 163{
 164	int n = 0;
 165	char rname[16];
 166	u32 regs[8];
 167
 168	switch (reginfo->ofs) {
 169	case E1000_RXDCTL(0):
 170		for (n = 0; n < 2; n++)
 171			regs[n] = __er32(hw, E1000_RXDCTL(n));
 172		break;
 173	case E1000_TXDCTL(0):
 174		for (n = 0; n < 2; n++)
 175			regs[n] = __er32(hw, E1000_TXDCTL(n));
 176		break;
 177	case E1000_TARC(0):
 178		for (n = 0; n < 2; n++)
 179			regs[n] = __er32(hw, E1000_TARC(n));
 180		break;
 181	default:
 182		pr_info("%-15s %08x\n",
 183			reginfo->name, __er32(hw, reginfo->ofs));
 184		return;
 185	}
 186
 187	snprintf(rname, 16, "%s%s", reginfo->name, "[0-1]");
 188	pr_info("%-15s %08x %08x\n", rname, regs[0], regs[1]);
 189}
 190
 191static void e1000e_dump_ps_pages(struct e1000_adapter *adapter,
 192				 struct e1000_buffer *bi)
 193{
 194	int i;
 195	struct e1000_ps_page *ps_page;
 196
 197	for (i = 0; i < adapter->rx_ps_pages; i++) {
 198		ps_page = &bi->ps_pages[i];
 199
 200		if (ps_page->page) {
 201			pr_info("packet dump for ps_page %d:\n", i);
 202			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 203				       16, 1, page_address(ps_page->page),
 204				       PAGE_SIZE, true);
 205		}
 206	}
 207}
 208
 209/**
 210 * e1000e_dump - Print registers, Tx-ring and Rx-ring
 211 * @adapter: board private structure
 212 **/
 213static void e1000e_dump(struct e1000_adapter *adapter)
 214{
 215	struct net_device *netdev = adapter->netdev;
 216	struct e1000_hw *hw = &adapter->hw;
 217	struct e1000_reg_info *reginfo;
 218	struct e1000_ring *tx_ring = adapter->tx_ring;
 219	struct e1000_tx_desc *tx_desc;
 220	struct my_u0 {
 221		__le64 a;
 222		__le64 b;
 223	} *u0;
 224	struct e1000_buffer *buffer_info;
 225	struct e1000_ring *rx_ring = adapter->rx_ring;
 226	union e1000_rx_desc_packet_split *rx_desc_ps;
 227	union e1000_rx_desc_extended *rx_desc;
 228	struct my_u1 {
 229		__le64 a;
 230		__le64 b;
 231		__le64 c;
 232		__le64 d;
 233	} *u1;
 234	u32 staterr;
 235	int i = 0;
 236
 237	if (!netif_msg_hw(adapter))
 238		return;
 239
 240	/* Print netdevice Info */
 241	if (netdev) {
 242		dev_info(&adapter->pdev->dev, "Net device Info\n");
 243		pr_info("Device Name     state            trans_start      last_rx\n");
 244		pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
 245			netdev->state, netdev->trans_start, netdev->last_rx);
 
 246	}
 247
 248	/* Print Registers */
 249	dev_info(&adapter->pdev->dev, "Register Dump\n");
 250	pr_info(" Register Name   Value\n");
 251	for (reginfo = (struct e1000_reg_info *)e1000_reg_info_tbl;
 252	     reginfo->name; reginfo++) {
 253		e1000_regdump(hw, reginfo);
 254	}
 255
 256	/* Print Tx Ring Summary */
 257	if (!netdev || !netif_running(netdev))
 258		return;
 259
 260	dev_info(&adapter->pdev->dev, "Tx Ring Summary\n");
 261	pr_info("Queue [NTU] [NTC] [bi(ntc)->dma  ] leng ntw timestamp\n");
 262	buffer_info = &tx_ring->buffer_info[tx_ring->next_to_clean];
 263	pr_info(" %5d %5X %5X %016llX %04X %3X %016llX\n",
 264		0, tx_ring->next_to_use, tx_ring->next_to_clean,
 265		(unsigned long long)buffer_info->dma,
 266		buffer_info->length,
 267		buffer_info->next_to_watch,
 268		(unsigned long long)buffer_info->time_stamp);
 269
 270	/* Print Tx Ring */
 271	if (!netif_msg_tx_done(adapter))
 272		goto rx_ring_summary;
 273
 274	dev_info(&adapter->pdev->dev, "Tx Ring Dump\n");
 275
 276	/* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
 277	 *
 278	 * Legacy Transmit Descriptor
 279	 *   +--------------------------------------------------------------+
 280	 * 0 |         Buffer Address [63:0] (Reserved on Write Back)       |
 281	 *   +--------------------------------------------------------------+
 282	 * 8 | Special  |    CSS     | Status |  CMD    |  CSO   |  Length  |
 283	 *   +--------------------------------------------------------------+
 284	 *   63       48 47        36 35    32 31     24 23    16 15        0
 285	 *
 286	 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
 287	 *   63      48 47    40 39       32 31             16 15    8 7      0
 288	 *   +----------------------------------------------------------------+
 289	 * 0 |  TUCSE  | TUCS0  |   TUCSS   |     IPCSE       | IPCS0 | IPCSS |
 290	 *   +----------------------------------------------------------------+
 291	 * 8 |   MSS   | HDRLEN | RSV | STA | TUCMD | DTYP |      PAYLEN      |
 292	 *   +----------------------------------------------------------------+
 293	 *   63      48 47    40 39 36 35 32 31   24 23  20 19                0
 294	 *
 295	 * Extended Data Descriptor (DTYP=0x1)
 296	 *   +----------------------------------------------------------------+
 297	 * 0 |                     Buffer Address [63:0]                      |
 298	 *   +----------------------------------------------------------------+
 299	 * 8 | VLAN tag |  POPTS  | Rsvd | Status | Command | DTYP |  DTALEN  |
 300	 *   +----------------------------------------------------------------+
 301	 *   63       48 47     40 39  36 35    32 31     24 23  20 19        0
 302	 */
 303	pr_info("Tl[desc]     [address 63:0  ] [SpeCssSCmCsLen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Legacy format\n");
 304	pr_info("Tc[desc]     [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Context format\n");
 305	pr_info("Td[desc]     [address 63:0  ] [VlaPoRSCm1Dlen] [bi->dma       ] leng  ntw timestamp        bi->skb <-- Ext Data format\n");
 306	for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
 307		const char *next_desc;
 308		tx_desc = E1000_TX_DESC(*tx_ring, i);
 309		buffer_info = &tx_ring->buffer_info[i];
 310		u0 = (struct my_u0 *)tx_desc;
 311		if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
 312			next_desc = " NTC/U";
 313		else if (i == tx_ring->next_to_use)
 314			next_desc = " NTU";
 315		else if (i == tx_ring->next_to_clean)
 316			next_desc = " NTC";
 317		else
 318			next_desc = "";
 319		pr_info("T%c[0x%03X]    %016llX %016llX %016llX %04X  %3X %016llX %p%s\n",
 320			(!(le64_to_cpu(u0->b) & (1 << 29)) ? 'l' :
 321			 ((le64_to_cpu(u0->b) & (1 << 20)) ? 'd' : 'c')),
 322			i,
 323			(unsigned long long)le64_to_cpu(u0->a),
 324			(unsigned long long)le64_to_cpu(u0->b),
 325			(unsigned long long)buffer_info->dma,
 326			buffer_info->length, buffer_info->next_to_watch,
 327			(unsigned long long)buffer_info->time_stamp,
 328			buffer_info->skb, next_desc);
 329
 330		if (netif_msg_pktdata(adapter) && buffer_info->skb)
 331			print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS,
 332				       16, 1, buffer_info->skb->data,
 333				       buffer_info->skb->len, true);
 334	}
 335
 336	/* Print Rx Ring Summary */
 337rx_ring_summary:
 338	dev_info(&adapter->pdev->dev, "Rx Ring Summary\n");
 339	pr_info("Queue [NTU] [NTC]\n");
 340	pr_info(" %5d %5X %5X\n",
 341		0, rx_ring->next_to_use, rx_ring->next_to_clean);
 342
 343	/* Print Rx Ring */
 344	if (!netif_msg_rx_status(adapter))
 345		return;
 346
 347	dev_info(&adapter->pdev->dev, "Rx Ring Dump\n");
 348	switch (adapter->rx_ps_pages) {
 349	case 1:
 350	case 2:
 351	case 3:
 352		/* [Extended] Packet Split Receive Descriptor Format
 353		 *
 354		 *    +-----------------------------------------------------+
 355		 *  0 |                Buffer Address 0 [63:0]              |
 356		 *    +-----------------------------------------------------+
 357		 *  8 |                Buffer Address 1 [63:0]              |
 358		 *    +-----------------------------------------------------+
 359		 * 16 |                Buffer Address 2 [63:0]              |
 360		 *    +-----------------------------------------------------+
 361		 * 24 |                Buffer Address 3 [63:0]              |
 362		 *    +-----------------------------------------------------+
 363		 */
 364		pr_info("R  [desc]      [buffer 0 63:0 ] [buffer 1 63:0 ] [buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma       ] [bi->skb] <-- Ext Pkt Split format\n");
 365		/* [Extended] Receive Descriptor (Write-Back) Format
 366		 *
 367		 *   63       48 47    32 31     13 12    8 7    4 3        0
 368		 *   +------------------------------------------------------+
 369		 * 0 | Packet   | IP     |  Rsvd   | MRQ   | Rsvd | MRQ RSS |
 370		 *   | Checksum | Ident  |         | Queue |      |  Type   |
 371		 *   +------------------------------------------------------+
 372		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 373		 *   +------------------------------------------------------+
 374		 *   63       48 47    32 31            20 19               0
 375		 */
 376		pr_info("RWB[desc]      [ck ipid mrqhsh] [vl   l0 ee  es] [ l3  l2  l1 hs] [reserved      ] ---------------- [bi->skb] <-- Ext Rx Write-Back format\n");
 377		for (i = 0; i < rx_ring->count; i++) {
 378			const char *next_desc;
 379			buffer_info = &rx_ring->buffer_info[i];
 380			rx_desc_ps = E1000_RX_DESC_PS(*rx_ring, i);
 381			u1 = (struct my_u1 *)rx_desc_ps;
 382			staterr =
 383			    le32_to_cpu(rx_desc_ps->wb.middle.status_error);
 384
 385			if (i == rx_ring->next_to_use)
 386				next_desc = " NTU";
 387			else if (i == rx_ring->next_to_clean)
 388				next_desc = " NTC";
 389			else
 390				next_desc = "";
 391
 392			if (staterr & E1000_RXD_STAT_DD) {
 393				/* Descriptor Done */
 394				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX ---------------- %p%s\n",
 395					"RWB", i,
 396					(unsigned long long)le64_to_cpu(u1->a),
 397					(unsigned long long)le64_to_cpu(u1->b),
 398					(unsigned long long)le64_to_cpu(u1->c),
 399					(unsigned long long)le64_to_cpu(u1->d),
 400					buffer_info->skb, next_desc);
 401			} else {
 402				pr_info("%s[0x%03X]     %016llX %016llX %016llX %016llX %016llX %p%s\n",
 403					"R  ", i,
 404					(unsigned long long)le64_to_cpu(u1->a),
 405					(unsigned long long)le64_to_cpu(u1->b),
 406					(unsigned long long)le64_to_cpu(u1->c),
 407					(unsigned long long)le64_to_cpu(u1->d),
 408					(unsigned long long)buffer_info->dma,
 409					buffer_info->skb, next_desc);
 410
 411				if (netif_msg_pktdata(adapter))
 412					e1000e_dump_ps_pages(adapter,
 413							     buffer_info);
 
 
 414			}
 415		}
 416		break;
 417	default:
 418	case 0:
 419		/* Extended Receive Descriptor (Read) Format
 420		 *
 421		 *   +-----------------------------------------------------+
 422		 * 0 |                Buffer Address [63:0]                |
 423		 *   +-----------------------------------------------------+
 424		 * 8 |                      Reserved                       |
 425		 *   +-----------------------------------------------------+
 426		 */
 427		pr_info("R  [desc]      [buf addr 63:0 ] [reserved 63:0 ] [bi->dma       ] [bi->skb] <-- Ext (Read) format\n");
 428		/* Extended Receive Descriptor (Write-Back) Format
 429		 *
 430		 *   63       48 47    32 31    24 23            4 3        0
 431		 *   +------------------------------------------------------+
 432		 *   |     RSS Hash      |        |               |         |
 433		 * 0 +-------------------+  Rsvd  |   Reserved    | MRQ RSS |
 434		 *   | Packet   | IP     |        |               |  Type   |
 435		 *   | Checksum | Ident  |        |               |         |
 436		 *   +------------------------------------------------------+
 437		 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
 438		 *   +------------------------------------------------------+
 439		 *   63       48 47    32 31            20 19               0
 440		 */
 441		pr_info("RWB[desc]      [cs ipid    mrq] [vt   ln xe  xs] [bi->skb] <-- Ext (Write-Back) format\n");
 442
 443		for (i = 0; i < rx_ring->count; i++) {
 444			const char *next_desc;
 445
 446			buffer_info = &rx_ring->buffer_info[i];
 447			rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 448			u1 = (struct my_u1 *)rx_desc;
 449			staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 450
 451			if (i == rx_ring->next_to_use)
 452				next_desc = " NTU";
 453			else if (i == rx_ring->next_to_clean)
 454				next_desc = " NTC";
 455			else
 456				next_desc = "";
 457
 458			if (staterr & E1000_RXD_STAT_DD) {
 459				/* Descriptor Done */
 460				pr_info("%s[0x%03X]     %016llX %016llX ---------------- %p%s\n",
 461					"RWB", i,
 462					(unsigned long long)le64_to_cpu(u1->a),
 463					(unsigned long long)le64_to_cpu(u1->b),
 464					buffer_info->skb, next_desc);
 465			} else {
 466				pr_info("%s[0x%03X]     %016llX %016llX %016llX %p%s\n",
 467					"R  ", i,
 468					(unsigned long long)le64_to_cpu(u1->a),
 469					(unsigned long long)le64_to_cpu(u1->b),
 470					(unsigned long long)buffer_info->dma,
 471					buffer_info->skb, next_desc);
 472
 473				if (netif_msg_pktdata(adapter) &&
 474				    buffer_info->skb)
 475					print_hex_dump(KERN_INFO, "",
 476						       DUMP_PREFIX_ADDRESS, 16,
 477						       1,
 478						       buffer_info->skb->data,
 
 479						       adapter->rx_buffer_len,
 480						       true);
 481			}
 482		}
 483	}
 484}
 485
 486/**
 487 * e1000_desc_unused - calculate if we have unused descriptors
 488 **/
 489static int e1000_desc_unused(struct e1000_ring *ring)
 490{
 491	if (ring->next_to_clean > ring->next_to_use)
 492		return ring->next_to_clean - ring->next_to_use - 1;
 493
 494	return ring->count + ring->next_to_clean - ring->next_to_use - 1;
 495}
 496
 497/**
 498 * e1000e_systim_to_hwtstamp - convert system time value to hw time stamp
 499 * @adapter: board private structure
 500 * @hwtstamps: time stamp structure to update
 501 * @systim: unsigned 64bit system time value.
 502 *
 503 * Convert the system time value stored in the RX/TXSTMP registers into a
 504 * hwtstamp which can be used by the upper level time stamping functions.
 505 *
 506 * The 'systim_lock' spinlock is used to protect the consistency of the
 507 * system time value. This is needed because reading the 64 bit time
 508 * value involves reading two 32 bit registers. The first read latches the
 509 * value.
 510 **/
 511static void e1000e_systim_to_hwtstamp(struct e1000_adapter *adapter,
 512				      struct skb_shared_hwtstamps *hwtstamps,
 513				      u64 systim)
 514{
 515	u64 ns;
 516	unsigned long flags;
 517
 518	spin_lock_irqsave(&adapter->systim_lock, flags);
 519	ns = timecounter_cyc2time(&adapter->tc, systim);
 520	spin_unlock_irqrestore(&adapter->systim_lock, flags);
 521
 522	memset(hwtstamps, 0, sizeof(*hwtstamps));
 523	hwtstamps->hwtstamp = ns_to_ktime(ns);
 524}
 525
 526/**
 527 * e1000e_rx_hwtstamp - utility function which checks for Rx time stamp
 528 * @adapter: board private structure
 529 * @status: descriptor extended error and status field
 530 * @skb: particular skb to include time stamp
 531 *
 532 * If the time stamp is valid, convert it into the timecounter ns value
 533 * and store that result into the shhwtstamps structure which is passed
 534 * up the network stack.
 535 **/
 536static void e1000e_rx_hwtstamp(struct e1000_adapter *adapter, u32 status,
 537			       struct sk_buff *skb)
 538{
 539	struct e1000_hw *hw = &adapter->hw;
 540	u64 rxstmp;
 541
 542	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP) ||
 543	    !(status & E1000_RXDEXT_STATERR_TST) ||
 544	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
 545		return;
 546
 547	/* The Rx time stamp registers contain the time stamp.  No other
 548	 * received packet will be time stamped until the Rx time stamp
 549	 * registers are read.  Because only one packet can be time stamped
 550	 * at a time, the register values must belong to this packet and
 551	 * therefore none of the other additional attributes need to be
 552	 * compared.
 553	 */
 554	rxstmp = (u64)er32(RXSTMPL);
 555	rxstmp |= (u64)er32(RXSTMPH) << 32;
 556	e1000e_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), rxstmp);
 557
 558	adapter->flags2 &= ~FLAG2_CHECK_RX_HWTSTAMP;
 559}
 560
 561/**
 562 * e1000_receive_skb - helper function to handle Rx indications
 563 * @adapter: board private structure
 564 * @staterr: descriptor extended error and status field as written by hardware
 565 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
 566 * @skb: pointer to sk_buff to be indicated to stack
 567 **/
 568static void e1000_receive_skb(struct e1000_adapter *adapter,
 569			      struct net_device *netdev, struct sk_buff *skb,
 570			      u32 staterr, __le16 vlan)
 571{
 572	u16 tag = le16_to_cpu(vlan);
 573
 574	e1000e_rx_hwtstamp(adapter, staterr, skb);
 575
 576	skb->protocol = eth_type_trans(skb, netdev);
 577
 578	if (staterr & E1000_RXD_STAT_VP)
 579		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tag);
 580
 581	napi_gro_receive(&adapter->napi, skb);
 582}
 583
 584/**
 585 * e1000_rx_checksum - Receive Checksum Offload
 586 * @adapter: board private structure
 587 * @status_err: receive descriptor status and error fields
 588 * @csum: receive descriptor csum field
 589 * @sk_buff: socket buffer with received data
 590 **/
 591static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
 592			      struct sk_buff *skb)
 593{
 594	u16 status = (u16)status_err;
 595	u8 errors = (u8)(status_err >> 24);
 596
 597	skb_checksum_none_assert(skb);
 598
 599	/* Rx checksum disabled */
 600	if (!(adapter->netdev->features & NETIF_F_RXCSUM))
 601		return;
 602
 603	/* Ignore Checksum bit is set */
 604	if (status & E1000_RXD_STAT_IXSM)
 605		return;
 606
 607	/* TCP/UDP checksum error bit or IP checksum error bit is set */
 608	if (errors & (E1000_RXD_ERR_TCPE | E1000_RXD_ERR_IPE)) {
 609		/* let the stack verify checksum errors */
 610		adapter->hw_csum_err++;
 611		return;
 612	}
 613
 614	/* TCP/UDP Checksum has not been calculated */
 615	if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
 616		return;
 617
 618	/* It must be a TCP or UDP packet with a valid checksum */
 619	skb->ip_summed = CHECKSUM_UNNECESSARY;
 620	adapter->hw_csum_good++;
 621}
 622
 623static void e1000e_update_rdt_wa(struct e1000_ring *rx_ring, unsigned int i)
 624{
 625	struct e1000_adapter *adapter = rx_ring->adapter;
 626	struct e1000_hw *hw = &adapter->hw;
 627	s32 ret_val = __ew32_prepare(hw);
 628
 629	writel(i, rx_ring->tail);
 630
 631	if (unlikely(!ret_val && (i != readl(rx_ring->tail)))) {
 632		u32 rctl = er32(RCTL);
 633
 634		ew32(RCTL, rctl & ~E1000_RCTL_EN);
 635		e_err("ME firmware caused invalid RDT - resetting\n");
 636		schedule_work(&adapter->reset_task);
 637	}
 638}
 639
 640static void e1000e_update_tdt_wa(struct e1000_ring *tx_ring, unsigned int i)
 641{
 642	struct e1000_adapter *adapter = tx_ring->adapter;
 643	struct e1000_hw *hw = &adapter->hw;
 644	s32 ret_val = __ew32_prepare(hw);
 645
 646	writel(i, tx_ring->tail);
 647
 648	if (unlikely(!ret_val && (i != readl(tx_ring->tail)))) {
 649		u32 tctl = er32(TCTL);
 650
 651		ew32(TCTL, tctl & ~E1000_TCTL_EN);
 652		e_err("ME firmware caused invalid TDT - resetting\n");
 653		schedule_work(&adapter->reset_task);
 654	}
 655}
 656
 657/**
 658 * e1000_alloc_rx_buffers - Replace used receive buffers
 659 * @rx_ring: Rx descriptor ring
 660 **/
 661static void e1000_alloc_rx_buffers(struct e1000_ring *rx_ring,
 662				   int cleaned_count, gfp_t gfp)
 663{
 664	struct e1000_adapter *adapter = rx_ring->adapter;
 665	struct net_device *netdev = adapter->netdev;
 666	struct pci_dev *pdev = adapter->pdev;
 667	union e1000_rx_desc_extended *rx_desc;
 668	struct e1000_buffer *buffer_info;
 669	struct sk_buff *skb;
 670	unsigned int i;
 671	unsigned int bufsz = adapter->rx_buffer_len;
 672
 673	i = rx_ring->next_to_use;
 674	buffer_info = &rx_ring->buffer_info[i];
 675
 676	while (cleaned_count--) {
 677		skb = buffer_info->skb;
 678		if (skb) {
 679			skb_trim(skb, 0);
 680			goto map_skb;
 681		}
 682
 683		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 684		if (!skb) {
 685			/* Better luck next round */
 686			adapter->alloc_rx_buff_failed++;
 687			break;
 688		}
 689
 690		buffer_info->skb = skb;
 691map_skb:
 692		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 693						  adapter->rx_buffer_len,
 694						  DMA_FROM_DEVICE);
 695		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 696			dev_err(&pdev->dev, "Rx DMA map failed\n");
 697			adapter->rx_dma_failed++;
 698			break;
 699		}
 700
 701		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 702		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 703
 704		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 705			/* Force memory writes to complete before letting h/w
 
 706			 * know there are new descriptors to fetch.  (Only
 707			 * applicable for weak-ordered memory model archs,
 708			 * such as IA-64).
 709			 */
 710			wmb();
 711			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 712				e1000e_update_rdt_wa(rx_ring, i);
 713			else
 714				writel(i, rx_ring->tail);
 715		}
 716		i++;
 717		if (i == rx_ring->count)
 718			i = 0;
 719		buffer_info = &rx_ring->buffer_info[i];
 720	}
 721
 722	rx_ring->next_to_use = i;
 723}
 724
 725/**
 726 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
 727 * @rx_ring: Rx descriptor ring
 728 **/
 729static void e1000_alloc_rx_buffers_ps(struct e1000_ring *rx_ring,
 730				      int cleaned_count, gfp_t gfp)
 731{
 732	struct e1000_adapter *adapter = rx_ring->adapter;
 733	struct net_device *netdev = adapter->netdev;
 734	struct pci_dev *pdev = adapter->pdev;
 735	union e1000_rx_desc_packet_split *rx_desc;
 736	struct e1000_buffer *buffer_info;
 737	struct e1000_ps_page *ps_page;
 738	struct sk_buff *skb;
 739	unsigned int i, j;
 740
 741	i = rx_ring->next_to_use;
 742	buffer_info = &rx_ring->buffer_info[i];
 743
 744	while (cleaned_count--) {
 745		rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
 746
 747		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
 748			ps_page = &buffer_info->ps_pages[j];
 749			if (j >= adapter->rx_ps_pages) {
 750				/* all unused desc entries get hw null ptr */
 751				rx_desc->read.buffer_addr[j + 1] =
 752				    ~cpu_to_le64(0);
 753				continue;
 754			}
 755			if (!ps_page->page) {
 756				ps_page->page = alloc_page(gfp);
 757				if (!ps_page->page) {
 758					adapter->alloc_rx_buff_failed++;
 759					goto no_buffers;
 760				}
 761				ps_page->dma = dma_map_page(&pdev->dev,
 762							    ps_page->page,
 763							    0, PAGE_SIZE,
 764							    DMA_FROM_DEVICE);
 765				if (dma_mapping_error(&pdev->dev,
 766						      ps_page->dma)) {
 767					dev_err(&adapter->pdev->dev,
 768						"Rx DMA page map failed\n");
 769					adapter->rx_dma_failed++;
 770					goto no_buffers;
 771				}
 772			}
 773			/* Refresh the desc even if buffer_addrs
 
 774			 * didn't change because each write-back
 775			 * erases this info.
 776			 */
 777			rx_desc->read.buffer_addr[j + 1] =
 778			    cpu_to_le64(ps_page->dma);
 779		}
 780
 781		skb = __netdev_alloc_skb_ip_align(netdev, adapter->rx_ps_bsize0,
 
 782						  gfp);
 783
 784		if (!skb) {
 785			adapter->alloc_rx_buff_failed++;
 786			break;
 787		}
 788
 789		buffer_info->skb = skb;
 790		buffer_info->dma = dma_map_single(&pdev->dev, skb->data,
 791						  adapter->rx_ps_bsize0,
 792						  DMA_FROM_DEVICE);
 793		if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 794			dev_err(&pdev->dev, "Rx DMA map failed\n");
 795			adapter->rx_dma_failed++;
 796			/* cleanup skb */
 797			dev_kfree_skb_any(skb);
 798			buffer_info->skb = NULL;
 799			break;
 800		}
 801
 802		rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
 803
 804		if (unlikely(!(i & (E1000_RX_BUFFER_WRITE - 1)))) {
 805			/* Force memory writes to complete before letting h/w
 
 806			 * know there are new descriptors to fetch.  (Only
 807			 * applicable for weak-ordered memory model archs,
 808			 * such as IA-64).
 809			 */
 810			wmb();
 811			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 812				e1000e_update_rdt_wa(rx_ring, i << 1);
 813			else
 814				writel(i << 1, rx_ring->tail);
 815		}
 816
 817		i++;
 818		if (i == rx_ring->count)
 819			i = 0;
 820		buffer_info = &rx_ring->buffer_info[i];
 821	}
 822
 823no_buffers:
 824	rx_ring->next_to_use = i;
 825}
 826
 827/**
 828 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
 829 * @rx_ring: Rx descriptor ring
 830 * @cleaned_count: number of buffers to allocate this pass
 831 **/
 832
 833static void e1000_alloc_jumbo_rx_buffers(struct e1000_ring *rx_ring,
 834					 int cleaned_count, gfp_t gfp)
 835{
 836	struct e1000_adapter *adapter = rx_ring->adapter;
 837	struct net_device *netdev = adapter->netdev;
 838	struct pci_dev *pdev = adapter->pdev;
 839	union e1000_rx_desc_extended *rx_desc;
 840	struct e1000_buffer *buffer_info;
 841	struct sk_buff *skb;
 842	unsigned int i;
 843	unsigned int bufsz = 256 - 16;	/* for skb_reserve */
 844
 845	i = rx_ring->next_to_use;
 846	buffer_info = &rx_ring->buffer_info[i];
 847
 848	while (cleaned_count--) {
 849		skb = buffer_info->skb;
 850		if (skb) {
 851			skb_trim(skb, 0);
 852			goto check_page;
 853		}
 854
 855		skb = __netdev_alloc_skb_ip_align(netdev, bufsz, gfp);
 856		if (unlikely(!skb)) {
 857			/* Better luck next round */
 858			adapter->alloc_rx_buff_failed++;
 859			break;
 860		}
 861
 862		buffer_info->skb = skb;
 863check_page:
 864		/* allocate a new page if necessary */
 865		if (!buffer_info->page) {
 866			buffer_info->page = alloc_page(gfp);
 867			if (unlikely(!buffer_info->page)) {
 868				adapter->alloc_rx_buff_failed++;
 869				break;
 870			}
 871		}
 872
 873		if (!buffer_info->dma) {
 874			buffer_info->dma = dma_map_page(&pdev->dev,
 875							buffer_info->page, 0,
 876							PAGE_SIZE,
 877							DMA_FROM_DEVICE);
 878			if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
 879				adapter->alloc_rx_buff_failed++;
 880				break;
 881			}
 882		}
 883
 884		rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 885		rx_desc->read.buffer_addr = cpu_to_le64(buffer_info->dma);
 886
 887		if (unlikely(++i == rx_ring->count))
 888			i = 0;
 889		buffer_info = &rx_ring->buffer_info[i];
 890	}
 891
 892	if (likely(rx_ring->next_to_use != i)) {
 893		rx_ring->next_to_use = i;
 894		if (unlikely(i-- == 0))
 895			i = (rx_ring->count - 1);
 896
 897		/* Force memory writes to complete before letting h/w
 898		 * know there are new descriptors to fetch.  (Only
 899		 * applicable for weak-ordered memory model archs,
 900		 * such as IA-64).
 901		 */
 902		wmb();
 903		if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
 904			e1000e_update_rdt_wa(rx_ring, i);
 905		else
 906			writel(i, rx_ring->tail);
 907	}
 908}
 909
 910static inline void e1000_rx_hash(struct net_device *netdev, __le32 rss,
 911				 struct sk_buff *skb)
 912{
 913	if (netdev->features & NETIF_F_RXHASH)
 914		skb_set_hash(skb, le32_to_cpu(rss), PKT_HASH_TYPE_L3);
 915}
 916
 917/**
 918 * e1000_clean_rx_irq - Send received data up the network stack
 919 * @rx_ring: Rx descriptor ring
 920 *
 921 * the return value indicates whether actual cleaning was done, there
 922 * is no guarantee that everything was cleaned
 923 **/
 924static bool e1000_clean_rx_irq(struct e1000_ring *rx_ring, int *work_done,
 925			       int work_to_do)
 926{
 927	struct e1000_adapter *adapter = rx_ring->adapter;
 928	struct net_device *netdev = adapter->netdev;
 929	struct pci_dev *pdev = adapter->pdev;
 930	struct e1000_hw *hw = &adapter->hw;
 931	union e1000_rx_desc_extended *rx_desc, *next_rxd;
 932	struct e1000_buffer *buffer_info, *next_buffer;
 933	u32 length, staterr;
 934	unsigned int i;
 935	int cleaned_count = 0;
 936	bool cleaned = false;
 937	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
 938
 939	i = rx_ring->next_to_clean;
 940	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
 941	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
 942	buffer_info = &rx_ring->buffer_info[i];
 943
 944	while (staterr & E1000_RXD_STAT_DD) {
 945		struct sk_buff *skb;
 946
 947		if (*work_done >= work_to_do)
 948			break;
 949		(*work_done)++;
 950		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
 951
 952		skb = buffer_info->skb;
 953		buffer_info->skb = NULL;
 954
 955		prefetch(skb->data - NET_IP_ALIGN);
 956
 957		i++;
 958		if (i == rx_ring->count)
 959			i = 0;
 960		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
 961		prefetch(next_rxd);
 962
 963		next_buffer = &rx_ring->buffer_info[i];
 964
 965		cleaned = true;
 966		cleaned_count++;
 967		dma_unmap_single(&pdev->dev, buffer_info->dma,
 968				 adapter->rx_buffer_len, DMA_FROM_DEVICE);
 
 
 969		buffer_info->dma = 0;
 970
 971		length = le16_to_cpu(rx_desc->wb.upper.length);
 972
 973		/* !EOP means multiple descriptors were used to store a single
 
 974		 * packet, if that's the case we need to toss it.  In fact, we
 975		 * need to toss every packet with the EOP bit clear and the
 976		 * next frame that _does_ have the EOP bit set, as it is by
 977		 * definition only a frame fragment
 978		 */
 979		if (unlikely(!(staterr & E1000_RXD_STAT_EOP)))
 980			adapter->flags2 |= FLAG2_IS_DISCARDING;
 981
 982		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
 983			/* All receives must fit into a single buffer */
 984			e_dbg("Receive packet consumed multiple buffers\n");
 985			/* recycle */
 986			buffer_info->skb = skb;
 987			if (staterr & E1000_RXD_STAT_EOP)
 988				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 989			goto next_desc;
 990		}
 991
 992		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
 993			     !(netdev->features & NETIF_F_RXALL))) {
 994			/* recycle */
 995			buffer_info->skb = skb;
 996			goto next_desc;
 997		}
 998
 999		/* adjust length to remove Ethernet CRC */
1000		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1001			/* If configured to store CRC, don't subtract FCS,
1002			 * but keep the FCS bytes out of the total_rx_bytes
1003			 * counter
1004			 */
1005			if (netdev->features & NETIF_F_RXFCS)
1006				total_rx_bytes -= 4;
1007			else
1008				length -= 4;
1009		}
1010
1011		total_rx_bytes += length;
1012		total_rx_packets++;
1013
1014		/* code added for copybreak, this should improve
 
1015		 * performance for small packets with large amounts
1016		 * of reassembly being done in the stack
1017		 */
1018		if (length < copybreak) {
1019			struct sk_buff *new_skb =
1020				napi_alloc_skb(&adapter->napi, length);
1021			if (new_skb) {
1022				skb_copy_to_linear_data_offset(new_skb,
1023							       -NET_IP_ALIGN,
1024							       (skb->data -
1025								NET_IP_ALIGN),
1026							       (length +
1027								NET_IP_ALIGN));
1028				/* save the skb in buffer_info as good */
1029				buffer_info->skb = skb;
1030				skb = new_skb;
1031			}
1032			/* else just continue with the old one */
1033		}
1034		/* end copybreak code */
1035		skb_put(skb, length);
1036
1037		/* Receive Checksum Offload */
1038		e1000_rx_checksum(adapter, staterr, skb);
1039
1040		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1041
1042		e1000_receive_skb(adapter, netdev, skb, staterr,
1043				  rx_desc->wb.upper.vlan);
1044
1045next_desc:
1046		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1047
1048		/* return some buffers to hardware, one at a time is too slow */
1049		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1050			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1051					      GFP_ATOMIC);
1052			cleaned_count = 0;
1053		}
1054
1055		/* use prefetched values */
1056		rx_desc = next_rxd;
1057		buffer_info = next_buffer;
1058
1059		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1060	}
1061	rx_ring->next_to_clean = i;
1062
1063	cleaned_count = e1000_desc_unused(rx_ring);
1064	if (cleaned_count)
1065		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1066
1067	adapter->total_rx_bytes += total_rx_bytes;
1068	adapter->total_rx_packets += total_rx_packets;
1069	return cleaned;
1070}
1071
1072static void e1000_put_txbuf(struct e1000_ring *tx_ring,
1073			    struct e1000_buffer *buffer_info)
1074{
1075	struct e1000_adapter *adapter = tx_ring->adapter;
1076
1077	if (buffer_info->dma) {
1078		if (buffer_info->mapped_as_page)
1079			dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1080				       buffer_info->length, DMA_TO_DEVICE);
1081		else
1082			dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1083					 buffer_info->length, DMA_TO_DEVICE);
1084		buffer_info->dma = 0;
1085	}
1086	if (buffer_info->skb) {
1087		dev_kfree_skb_any(buffer_info->skb);
1088		buffer_info->skb = NULL;
1089	}
1090	buffer_info->time_stamp = 0;
1091}
1092
1093static void e1000_print_hw_hang(struct work_struct *work)
1094{
1095	struct e1000_adapter *adapter = container_of(work,
1096						     struct e1000_adapter,
1097						     print_hang_task);
1098	struct net_device *netdev = adapter->netdev;
1099	struct e1000_ring *tx_ring = adapter->tx_ring;
1100	unsigned int i = tx_ring->next_to_clean;
1101	unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
1102	struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
1103	struct e1000_hw *hw = &adapter->hw;
1104	u16 phy_status, phy_1000t_status, phy_ext_status;
1105	u16 pci_status;
1106
1107	if (test_bit(__E1000_DOWN, &adapter->state))
1108		return;
1109
1110	if (!adapter->tx_hang_recheck && (adapter->flags2 & FLAG2_DMA_BURST)) {
1111		/* May be block on write-back, flush and detect again
 
 
1112		 * flush pending descriptor writebacks to memory
1113		 */
1114		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1115		/* execute the writes immediately */
1116		e1e_flush();
1117		/* Due to rare timing issues, write to TIDV again to ensure
 
1118		 * the write is successful
1119		 */
1120		ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
1121		/* execute the writes immediately */
1122		e1e_flush();
1123		adapter->tx_hang_recheck = true;
1124		return;
1125	}
 
1126	adapter->tx_hang_recheck = false;
1127
1128	if (er32(TDH(0)) == er32(TDT(0))) {
1129		e_dbg("false hang detected, ignoring\n");
1130		return;
1131	}
1132
1133	/* Real hang detected */
1134	netif_stop_queue(netdev);
1135
1136	e1e_rphy(hw, MII_BMSR, &phy_status);
1137	e1e_rphy(hw, MII_STAT1000, &phy_1000t_status);
1138	e1e_rphy(hw, MII_ESTATUS, &phy_ext_status);
1139
1140	pci_read_config_word(adapter->pdev, PCI_STATUS, &pci_status);
1141
1142	/* detected Hardware unit hang */
1143	e_err("Detected Hardware Unit Hang:\n"
1144	      "  TDH                  <%x>\n"
1145	      "  TDT                  <%x>\n"
1146	      "  next_to_use          <%x>\n"
1147	      "  next_to_clean        <%x>\n"
1148	      "buffer_info[next_to_clean]:\n"
1149	      "  time_stamp           <%lx>\n"
1150	      "  next_to_watch        <%x>\n"
1151	      "  jiffies              <%lx>\n"
1152	      "  next_to_watch.status <%x>\n"
1153	      "MAC Status             <%x>\n"
1154	      "PHY Status             <%x>\n"
1155	      "PHY 1000BASE-T Status  <%x>\n"
1156	      "PHY Extended Status    <%x>\n"
1157	      "PCI Status             <%x>\n",
1158	      readl(tx_ring->head), readl(tx_ring->tail), tx_ring->next_to_use,
1159	      tx_ring->next_to_clean, tx_ring->buffer_info[eop].time_stamp,
1160	      eop, jiffies, eop_desc->upper.fields.status, er32(STATUS),
1161	      phy_status, phy_1000t_status, phy_ext_status, pci_status);
1162
1163	e1000e_dump(adapter);
 
 
 
 
 
 
 
1164
1165	/* Suggest workaround for known h/w issue */
1166	if ((hw->mac.type == e1000_pchlan) && (er32(CTRL) & E1000_CTRL_TFCE))
1167		e_err("Try turning off Tx pause (flow control) via ethtool\n");
1168}
1169
1170/**
1171 * e1000e_tx_hwtstamp_work - check for Tx time stamp
1172 * @work: pointer to work struct
1173 *
1174 * This work function polls the TSYNCTXCTL valid bit to determine when a
1175 * timestamp has been taken for the current stored skb.  The timestamp must
1176 * be for this skb because only one such packet is allowed in the queue.
1177 */
1178static void e1000e_tx_hwtstamp_work(struct work_struct *work)
1179{
1180	struct e1000_adapter *adapter = container_of(work, struct e1000_adapter,
1181						     tx_hwtstamp_work);
1182	struct e1000_hw *hw = &adapter->hw;
1183
1184	if (er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_VALID) {
1185		struct skb_shared_hwtstamps shhwtstamps;
1186		u64 txstmp;
1187
1188		txstmp = er32(TXSTMPL);
1189		txstmp |= (u64)er32(TXSTMPH) << 32;
1190
1191		e1000e_systim_to_hwtstamp(adapter, &shhwtstamps, txstmp);
1192
1193		skb_tstamp_tx(adapter->tx_hwtstamp_skb, &shhwtstamps);
1194		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1195		adapter->tx_hwtstamp_skb = NULL;
1196	} else if (time_after(jiffies, adapter->tx_hwtstamp_start
1197			      + adapter->tx_timeout_factor * HZ)) {
1198		dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
1199		adapter->tx_hwtstamp_skb = NULL;
1200		adapter->tx_hwtstamp_timeouts++;
1201		e_warn("clearing Tx timestamp hang\n");
1202	} else {
1203		/* reschedule to check later */
1204		schedule_work(&adapter->tx_hwtstamp_work);
1205	}
1206}
1207
1208/**
1209 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1210 * @tx_ring: Tx descriptor ring
1211 *
1212 * the return value indicates whether actual cleaning was done, there
1213 * is no guarantee that everything was cleaned
1214 **/
1215static bool e1000_clean_tx_irq(struct e1000_ring *tx_ring)
1216{
1217	struct e1000_adapter *adapter = tx_ring->adapter;
1218	struct net_device *netdev = adapter->netdev;
1219	struct e1000_hw *hw = &adapter->hw;
1220	struct e1000_tx_desc *tx_desc, *eop_desc;
1221	struct e1000_buffer *buffer_info;
1222	unsigned int i, eop;
1223	unsigned int count = 0;
1224	unsigned int total_tx_bytes = 0, total_tx_packets = 0;
1225	unsigned int bytes_compl = 0, pkts_compl = 0;
1226
1227	i = tx_ring->next_to_clean;
1228	eop = tx_ring->buffer_info[i].next_to_watch;
1229	eop_desc = E1000_TX_DESC(*tx_ring, eop);
1230
1231	while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
1232	       (count < tx_ring->count)) {
1233		bool cleaned = false;
1234
1235		dma_rmb();		/* read buffer_info after eop_desc */
1236		for (; !cleaned; count++) {
1237			tx_desc = E1000_TX_DESC(*tx_ring, i);
1238			buffer_info = &tx_ring->buffer_info[i];
1239			cleaned = (i == eop);
1240
1241			if (cleaned) {
1242				total_tx_packets += buffer_info->segs;
1243				total_tx_bytes += buffer_info->bytecount;
1244				if (buffer_info->skb) {
1245					bytes_compl += buffer_info->skb->len;
1246					pkts_compl++;
1247				}
1248			}
1249
1250			e1000_put_txbuf(tx_ring, buffer_info);
1251			tx_desc->upper.data = 0;
1252
1253			i++;
1254			if (i == tx_ring->count)
1255				i = 0;
1256		}
1257
1258		if (i == tx_ring->next_to_use)
1259			break;
1260		eop = tx_ring->buffer_info[i].next_to_watch;
1261		eop_desc = E1000_TX_DESC(*tx_ring, eop);
1262	}
1263
1264	tx_ring->next_to_clean = i;
1265
1266	netdev_completed_queue(netdev, pkts_compl, bytes_compl);
1267
1268#define TX_WAKE_THRESHOLD 32
1269	if (count && netif_carrier_ok(netdev) &&
1270	    e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
1271		/* Make sure that anybody stopping the queue after this
1272		 * sees the new next_to_clean.
1273		 */
1274		smp_mb();
1275
1276		if (netif_queue_stopped(netdev) &&
1277		    !(test_bit(__E1000_DOWN, &adapter->state))) {
1278			netif_wake_queue(netdev);
1279			++adapter->restart_queue;
1280		}
1281	}
1282
1283	if (adapter->detect_tx_hung) {
1284		/* Detect a transmit hang in hardware, this serializes the
 
1285		 * check with the clearing of time_stamp and movement of i
1286		 */
1287		adapter->detect_tx_hung = false;
1288		if (tx_ring->buffer_info[i].time_stamp &&
1289		    time_after(jiffies, tx_ring->buffer_info[i].time_stamp
1290			       + (adapter->tx_timeout_factor * HZ)) &&
1291		    !(er32(STATUS) & E1000_STATUS_TXOFF))
1292			schedule_work(&adapter->print_hang_task);
1293		else
1294			adapter->tx_hang_recheck = false;
1295	}
1296	adapter->total_tx_bytes += total_tx_bytes;
1297	adapter->total_tx_packets += total_tx_packets;
1298	return count < tx_ring->count;
1299}
1300
1301/**
1302 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1303 * @rx_ring: Rx descriptor ring
1304 *
1305 * the return value indicates whether actual cleaning was done, there
1306 * is no guarantee that everything was cleaned
1307 **/
1308static bool e1000_clean_rx_irq_ps(struct e1000_ring *rx_ring, int *work_done,
1309				  int work_to_do)
1310{
1311	struct e1000_adapter *adapter = rx_ring->adapter;
1312	struct e1000_hw *hw = &adapter->hw;
1313	union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
1314	struct net_device *netdev = adapter->netdev;
1315	struct pci_dev *pdev = adapter->pdev;
1316	struct e1000_buffer *buffer_info, *next_buffer;
1317	struct e1000_ps_page *ps_page;
1318	struct sk_buff *skb;
1319	unsigned int i, j;
1320	u32 length, staterr;
1321	int cleaned_count = 0;
1322	bool cleaned = false;
1323	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1324
1325	i = rx_ring->next_to_clean;
1326	rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
1327	staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1328	buffer_info = &rx_ring->buffer_info[i];
1329
1330	while (staterr & E1000_RXD_STAT_DD) {
1331		if (*work_done >= work_to_do)
1332			break;
1333		(*work_done)++;
1334		skb = buffer_info->skb;
1335		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1336
1337		/* in the packet split case this is header only */
1338		prefetch(skb->data - NET_IP_ALIGN);
1339
1340		i++;
1341		if (i == rx_ring->count)
1342			i = 0;
1343		next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
1344		prefetch(next_rxd);
1345
1346		next_buffer = &rx_ring->buffer_info[i];
1347
1348		cleaned = true;
1349		cleaned_count++;
1350		dma_unmap_single(&pdev->dev, buffer_info->dma,
1351				 adapter->rx_ps_bsize0, DMA_FROM_DEVICE);
1352		buffer_info->dma = 0;
1353
1354		/* see !EOP comment in other Rx routine */
1355		if (!(staterr & E1000_RXD_STAT_EOP))
1356			adapter->flags2 |= FLAG2_IS_DISCARDING;
1357
1358		if (adapter->flags2 & FLAG2_IS_DISCARDING) {
1359			e_dbg("Packet Split buffers didn't pick up the full packet\n");
1360			dev_kfree_skb_irq(skb);
1361			if (staterr & E1000_RXD_STAT_EOP)
1362				adapter->flags2 &= ~FLAG2_IS_DISCARDING;
1363			goto next_desc;
1364		}
1365
1366		if (unlikely((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1367			     !(netdev->features & NETIF_F_RXALL))) {
1368			dev_kfree_skb_irq(skb);
1369			goto next_desc;
1370		}
1371
1372		length = le16_to_cpu(rx_desc->wb.middle.length0);
1373
1374		if (!length) {
1375			e_dbg("Last part of the packet spanning multiple descriptors\n");
1376			dev_kfree_skb_irq(skb);
1377			goto next_desc;
1378		}
1379
1380		/* Good Receive */
1381		skb_put(skb, length);
1382
1383		{
1384			/* this looks ugly, but it seems compiler issues make
 
1385			 * it more efficient than reusing j
1386			 */
1387			int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
1388
1389			/* page alloc/put takes too long and effects small
 
1390			 * packet throughput, so unsplit small packets and
1391			 * save the alloc/put only valid in softirq (napi)
1392			 * context to call kmap_*
1393			 */
1394			if (l1 && (l1 <= copybreak) &&
1395			    ((length + l1) <= adapter->rx_ps_bsize0)) {
1396				u8 *vaddr;
1397
1398				ps_page = &buffer_info->ps_pages[0];
1399
1400				/* there is no documentation about how to call
 
1401				 * kmap_atomic, so we can't hold the mapping
1402				 * very long
1403				 */
1404				dma_sync_single_for_cpu(&pdev->dev,
1405							ps_page->dma,
1406							PAGE_SIZE,
1407							DMA_FROM_DEVICE);
1408				vaddr = kmap_atomic(ps_page->page);
1409				memcpy(skb_tail_pointer(skb), vaddr, l1);
1410				kunmap_atomic(vaddr);
1411				dma_sync_single_for_device(&pdev->dev,
1412							   ps_page->dma,
1413							   PAGE_SIZE,
1414							   DMA_FROM_DEVICE);
1415
1416				/* remove the CRC */
1417				if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1418					if (!(netdev->features & NETIF_F_RXFCS))
1419						l1 -= 4;
1420				}
1421
1422				skb_put(skb, l1);
1423				goto copydone;
1424			}	/* if */
1425		}
1426
1427		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1428			length = le16_to_cpu(rx_desc->wb.upper.length[j]);
1429			if (!length)
1430				break;
1431
1432			ps_page = &buffer_info->ps_pages[j];
1433			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1434				       DMA_FROM_DEVICE);
1435			ps_page->dma = 0;
1436			skb_fill_page_desc(skb, j, ps_page->page, 0, length);
1437			ps_page->page = NULL;
1438			skb->len += length;
1439			skb->data_len += length;
1440			skb->truesize += PAGE_SIZE;
1441		}
1442
1443		/* strip the ethernet crc, problem is we're using pages now so
1444		 * this whole operation can get a little cpu intensive
1445		 */
1446		if (!(adapter->flags2 & FLAG2_CRC_STRIPPING)) {
1447			if (!(netdev->features & NETIF_F_RXFCS))
1448				pskb_trim(skb, skb->len - 4);
1449		}
1450
1451copydone:
1452		total_rx_bytes += skb->len;
1453		total_rx_packets++;
1454
1455		e1000_rx_checksum(adapter, staterr, skb);
1456
1457		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1458
1459		if (rx_desc->wb.upper.header_status &
1460		    cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
1461			adapter->rx_hdr_split++;
1462
1463		e1000_receive_skb(adapter, netdev, skb, staterr,
1464				  rx_desc->wb.middle.vlan);
1465
1466next_desc:
1467		rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
1468		buffer_info->skb = NULL;
1469
1470		/* return some buffers to hardware, one at a time is too slow */
1471		if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
1472			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1473					      GFP_ATOMIC);
1474			cleaned_count = 0;
1475		}
1476
1477		/* use prefetched values */
1478		rx_desc = next_rxd;
1479		buffer_info = next_buffer;
1480
1481		staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
1482	}
1483	rx_ring->next_to_clean = i;
1484
1485	cleaned_count = e1000_desc_unused(rx_ring);
1486	if (cleaned_count)
1487		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1488
1489	adapter->total_rx_bytes += total_rx_bytes;
1490	adapter->total_rx_packets += total_rx_packets;
1491	return cleaned;
1492}
1493
1494/**
1495 * e1000_consume_page - helper function
1496 **/
1497static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
1498			       u16 length)
1499{
1500	bi->page = NULL;
1501	skb->len += length;
1502	skb->data_len += length;
1503	skb->truesize += PAGE_SIZE;
1504}
1505
1506/**
1507 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1508 * @adapter: board private structure
1509 *
1510 * the return value indicates whether actual cleaning was done, there
1511 * is no guarantee that everything was cleaned
1512 **/
1513static bool e1000_clean_jumbo_rx_irq(struct e1000_ring *rx_ring, int *work_done,
1514				     int work_to_do)
1515{
1516	struct e1000_adapter *adapter = rx_ring->adapter;
1517	struct net_device *netdev = adapter->netdev;
1518	struct pci_dev *pdev = adapter->pdev;
1519	union e1000_rx_desc_extended *rx_desc, *next_rxd;
1520	struct e1000_buffer *buffer_info, *next_buffer;
1521	u32 length, staterr;
1522	unsigned int i;
1523	int cleaned_count = 0;
1524	bool cleaned = false;
1525	unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1526	struct skb_shared_info *shinfo;
1527
1528	i = rx_ring->next_to_clean;
1529	rx_desc = E1000_RX_DESC_EXT(*rx_ring, i);
1530	staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1531	buffer_info = &rx_ring->buffer_info[i];
1532
1533	while (staterr & E1000_RXD_STAT_DD) {
1534		struct sk_buff *skb;
1535
1536		if (*work_done >= work_to_do)
1537			break;
1538		(*work_done)++;
1539		dma_rmb();	/* read descriptor and rx_buffer_info after status DD */
1540
1541		skb = buffer_info->skb;
1542		buffer_info->skb = NULL;
1543
1544		++i;
1545		if (i == rx_ring->count)
1546			i = 0;
1547		next_rxd = E1000_RX_DESC_EXT(*rx_ring, i);
1548		prefetch(next_rxd);
1549
1550		next_buffer = &rx_ring->buffer_info[i];
1551
1552		cleaned = true;
1553		cleaned_count++;
1554		dma_unmap_page(&pdev->dev, buffer_info->dma, PAGE_SIZE,
1555			       DMA_FROM_DEVICE);
1556		buffer_info->dma = 0;
1557
1558		length = le16_to_cpu(rx_desc->wb.upper.length);
1559
1560		/* errors is only valid for DD + EOP descriptors */
1561		if (unlikely((staterr & E1000_RXD_STAT_EOP) &&
1562			     ((staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) &&
1563			      !(netdev->features & NETIF_F_RXALL)))) {
1564			/* recycle both page and skb */
1565			buffer_info->skb = skb;
1566			/* an error means any chain goes out the window too */
1567			if (rx_ring->rx_skb_top)
1568				dev_kfree_skb_irq(rx_ring->rx_skb_top);
1569			rx_ring->rx_skb_top = NULL;
1570			goto next_desc;
1571		}
 
1572#define rxtop (rx_ring->rx_skb_top)
1573		if (!(staterr & E1000_RXD_STAT_EOP)) {
1574			/* this descriptor is only the beginning (or middle) */
1575			if (!rxtop) {
1576				/* this is the beginning of a chain */
1577				rxtop = skb;
1578				skb_fill_page_desc(rxtop, 0, buffer_info->page,
1579						   0, length);
1580			} else {
1581				/* this is the middle of a chain */
1582				shinfo = skb_shinfo(rxtop);
1583				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1584						   buffer_info->page, 0,
1585						   length);
1586				/* re-use the skb, only consumed the page */
1587				buffer_info->skb = skb;
1588			}
1589			e1000_consume_page(buffer_info, rxtop, length);
1590			goto next_desc;
1591		} else {
1592			if (rxtop) {
1593				/* end of the chain */
1594				shinfo = skb_shinfo(rxtop);
1595				skb_fill_page_desc(rxtop, shinfo->nr_frags,
1596						   buffer_info->page, 0,
1597						   length);
1598				/* re-use the current skb, we only consumed the
1599				 * page
1600				 */
1601				buffer_info->skb = skb;
1602				skb = rxtop;
1603				rxtop = NULL;
1604				e1000_consume_page(buffer_info, skb, length);
1605			} else {
1606				/* no chain, got EOP, this buf is the packet
1607				 * copybreak to save the put_page/alloc_page
1608				 */
1609				if (length <= copybreak &&
1610				    skb_tailroom(skb) >= length) {
1611					u8 *vaddr;
1612					vaddr = kmap_atomic(buffer_info->page);
1613					memcpy(skb_tail_pointer(skb), vaddr,
1614					       length);
1615					kunmap_atomic(vaddr);
1616					/* re-use the page, so don't erase
1617					 * buffer_info->page
1618					 */
1619					skb_put(skb, length);
1620				} else {
1621					skb_fill_page_desc(skb, 0,
1622							   buffer_info->page, 0,
1623							   length);
1624					e1000_consume_page(buffer_info, skb,
1625							   length);
1626				}
1627			}
1628		}
1629
1630		/* Receive Checksum Offload */
1631		e1000_rx_checksum(adapter, staterr, skb);
1632
1633		e1000_rx_hash(netdev, rx_desc->wb.lower.hi_dword.rss, skb);
1634
1635		/* probably a little skewed due to removing CRC */
1636		total_rx_bytes += skb->len;
1637		total_rx_packets++;
1638
1639		/* eth type trans needs skb->data to point to something */
1640		if (!pskb_may_pull(skb, ETH_HLEN)) {
1641			e_err("pskb_may_pull failed.\n");
1642			dev_kfree_skb_irq(skb);
1643			goto next_desc;
1644		}
1645
1646		e1000_receive_skb(adapter, netdev, skb, staterr,
1647				  rx_desc->wb.upper.vlan);
1648
1649next_desc:
1650		rx_desc->wb.upper.status_error &= cpu_to_le32(~0xFF);
1651
1652		/* return some buffers to hardware, one at a time is too slow */
1653		if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1654			adapter->alloc_rx_buf(rx_ring, cleaned_count,
1655					      GFP_ATOMIC);
1656			cleaned_count = 0;
1657		}
1658
1659		/* use prefetched values */
1660		rx_desc = next_rxd;
1661		buffer_info = next_buffer;
1662
1663		staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
1664	}
1665	rx_ring->next_to_clean = i;
1666
1667	cleaned_count = e1000_desc_unused(rx_ring);
1668	if (cleaned_count)
1669		adapter->alloc_rx_buf(rx_ring, cleaned_count, GFP_ATOMIC);
1670
1671	adapter->total_rx_bytes += total_rx_bytes;
1672	adapter->total_rx_packets += total_rx_packets;
1673	return cleaned;
1674}
1675
1676/**
1677 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1678 * @rx_ring: Rx descriptor ring
1679 **/
1680static void e1000_clean_rx_ring(struct e1000_ring *rx_ring)
1681{
1682	struct e1000_adapter *adapter = rx_ring->adapter;
1683	struct e1000_buffer *buffer_info;
1684	struct e1000_ps_page *ps_page;
1685	struct pci_dev *pdev = adapter->pdev;
1686	unsigned int i, j;
1687
1688	/* Free all the Rx ring sk_buffs */
1689	for (i = 0; i < rx_ring->count; i++) {
1690		buffer_info = &rx_ring->buffer_info[i];
1691		if (buffer_info->dma) {
1692			if (adapter->clean_rx == e1000_clean_rx_irq)
1693				dma_unmap_single(&pdev->dev, buffer_info->dma,
1694						 adapter->rx_buffer_len,
1695						 DMA_FROM_DEVICE);
1696			else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1697				dma_unmap_page(&pdev->dev, buffer_info->dma,
1698					       PAGE_SIZE, DMA_FROM_DEVICE);
 
1699			else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1700				dma_unmap_single(&pdev->dev, buffer_info->dma,
1701						 adapter->rx_ps_bsize0,
1702						 DMA_FROM_DEVICE);
1703			buffer_info->dma = 0;
1704		}
1705
1706		if (buffer_info->page) {
1707			put_page(buffer_info->page);
1708			buffer_info->page = NULL;
1709		}
1710
1711		if (buffer_info->skb) {
1712			dev_kfree_skb(buffer_info->skb);
1713			buffer_info->skb = NULL;
1714		}
1715
1716		for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1717			ps_page = &buffer_info->ps_pages[j];
1718			if (!ps_page->page)
1719				break;
1720			dma_unmap_page(&pdev->dev, ps_page->dma, PAGE_SIZE,
1721				       DMA_FROM_DEVICE);
1722			ps_page->dma = 0;
1723			put_page(ps_page->page);
1724			ps_page->page = NULL;
1725		}
1726	}
1727
1728	/* there also may be some cached data from a chained receive */
1729	if (rx_ring->rx_skb_top) {
1730		dev_kfree_skb(rx_ring->rx_skb_top);
1731		rx_ring->rx_skb_top = NULL;
1732	}
1733
1734	/* Zero out the descriptor ring */
1735	memset(rx_ring->desc, 0, rx_ring->size);
1736
1737	rx_ring->next_to_clean = 0;
1738	rx_ring->next_to_use = 0;
1739	adapter->flags2 &= ~FLAG2_IS_DISCARDING;
 
 
 
 
 
 
1740}
1741
1742static void e1000e_downshift_workaround(struct work_struct *work)
1743{
1744	struct e1000_adapter *adapter = container_of(work,
1745						     struct e1000_adapter,
1746						     downshift_task);
1747
1748	if (test_bit(__E1000_DOWN, &adapter->state))
1749		return;
1750
1751	e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1752}
1753
1754/**
1755 * e1000_intr_msi - Interrupt Handler
1756 * @irq: interrupt number
1757 * @data: pointer to a network interface device structure
1758 **/
1759static irqreturn_t e1000_intr_msi(int __always_unused irq, void *data)
1760{
1761	struct net_device *netdev = data;
1762	struct e1000_adapter *adapter = netdev_priv(netdev);
1763	struct e1000_hw *hw = &adapter->hw;
1764	u32 icr = er32(ICR);
1765
1766	/* read ICR disables interrupts using IAM */
 
 
 
1767	if (icr & E1000_ICR_LSC) {
1768		hw->mac.get_link_status = true;
1769		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1770		 * disconnect (LSC) before accessing any PHY registers
1771		 */
1772		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1773		    (!(er32(STATUS) & E1000_STATUS_LU)))
1774			schedule_work(&adapter->downshift_task);
1775
1776		/* 80003ES2LAN workaround-- For packet buffer work-around on
 
1777		 * link down event; disable receives here in the ISR and reset
1778		 * adapter in watchdog
1779		 */
1780		if (netif_carrier_ok(netdev) &&
1781		    adapter->flags & FLAG_RX_NEEDS_RESTART) {
1782			/* disable receives */
1783			u32 rctl = er32(RCTL);
1784
1785			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1786			adapter->flags |= FLAG_RESTART_NOW;
1787		}
1788		/* guard against interrupt when we're going down */
1789		if (!test_bit(__E1000_DOWN, &adapter->state))
1790			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1791	}
1792
1793	/* Reset on uncorrectable ECC error */
1794	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1795					(hw->mac.type == e1000_pch_spt))) {
1796		u32 pbeccsts = er32(PBECCSTS);
1797
1798		adapter->corr_errors +=
1799		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1800		adapter->uncorr_errors +=
1801		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1802		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1803
1804		/* Do the reset outside of interrupt context */
1805		schedule_work(&adapter->reset_task);
1806
1807		/* return immediately since reset is imminent */
1808		return IRQ_HANDLED;
1809	}
1810
1811	if (napi_schedule_prep(&adapter->napi)) {
1812		adapter->total_tx_bytes = 0;
1813		adapter->total_tx_packets = 0;
1814		adapter->total_rx_bytes = 0;
1815		adapter->total_rx_packets = 0;
1816		__napi_schedule(&adapter->napi);
1817	}
1818
1819	return IRQ_HANDLED;
1820}
1821
1822/**
1823 * e1000_intr - Interrupt Handler
1824 * @irq: interrupt number
1825 * @data: pointer to a network interface device structure
1826 **/
1827static irqreturn_t e1000_intr(int __always_unused irq, void *data)
1828{
1829	struct net_device *netdev = data;
1830	struct e1000_adapter *adapter = netdev_priv(netdev);
1831	struct e1000_hw *hw = &adapter->hw;
1832	u32 rctl, icr = er32(ICR);
1833
1834	if (!icr || test_bit(__E1000_DOWN, &adapter->state))
1835		return IRQ_NONE;	/* Not our interrupt */
1836
1837	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
 
1838	 * not set, then the adapter didn't send an interrupt
1839	 */
1840	if (!(icr & E1000_ICR_INT_ASSERTED))
1841		return IRQ_NONE;
1842
1843	/* Interrupt Auto-Mask...upon reading ICR,
 
1844	 * interrupts are masked.  No need for the
1845	 * IMC write
1846	 */
1847
1848	if (icr & E1000_ICR_LSC) {
1849		hw->mac.get_link_status = true;
1850		/* ICH8 workaround-- Call gig speed drop workaround on cable
 
1851		 * disconnect (LSC) before accessing any PHY registers
1852		 */
1853		if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1854		    (!(er32(STATUS) & E1000_STATUS_LU)))
1855			schedule_work(&adapter->downshift_task);
1856
1857		/* 80003ES2LAN workaround--
 
1858		 * For packet buffer work-around on link down event;
1859		 * disable receives here in the ISR and
1860		 * reset adapter in watchdog
1861		 */
1862		if (netif_carrier_ok(netdev) &&
1863		    (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1864			/* disable receives */
1865			rctl = er32(RCTL);
1866			ew32(RCTL, rctl & ~E1000_RCTL_EN);
1867			adapter->flags |= FLAG_RESTART_NOW;
1868		}
1869		/* guard against interrupt when we're going down */
1870		if (!test_bit(__E1000_DOWN, &adapter->state))
1871			mod_timer(&adapter->watchdog_timer, jiffies + 1);
1872	}
1873
1874	/* Reset on uncorrectable ECC error */
1875	if ((icr & E1000_ICR_ECCER) && ((hw->mac.type == e1000_pch_lpt) ||
1876					(hw->mac.type == e1000_pch_spt))) {
1877		u32 pbeccsts = er32(PBECCSTS);
1878
1879		adapter->corr_errors +=
1880		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
1881		adapter->uncorr_errors +=
1882		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
1883		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
1884
1885		/* Do the reset outside of interrupt context */
1886		schedule_work(&adapter->reset_task);
1887
1888		/* return immediately since reset is imminent */
1889		return IRQ_HANDLED;
1890	}
1891
1892	if (napi_schedule_prep(&adapter->napi)) {
1893		adapter->total_tx_bytes = 0;
1894		adapter->total_tx_packets = 0;
1895		adapter->total_rx_bytes = 0;
1896		adapter->total_rx_packets = 0;
1897		__napi_schedule(&adapter->napi);
1898	}
1899
1900	return IRQ_HANDLED;
1901}
1902
1903static irqreturn_t e1000_msix_other(int __always_unused irq, void *data)
1904{
1905	struct net_device *netdev = data;
1906	struct e1000_adapter *adapter = netdev_priv(netdev);
1907	struct e1000_hw *hw = &adapter->hw;
 
1908
1909	hw->mac.get_link_status = true;
 
 
 
 
1910
1911	/* guard against interrupt when we're going down */
1912	if (!test_bit(__E1000_DOWN, &adapter->state)) {
1913		mod_timer(&adapter->watchdog_timer, jiffies + 1);
1914		ew32(IMS, E1000_IMS_OTHER);
 
 
 
 
 
 
1915	}
1916
 
 
 
 
1917	return IRQ_HANDLED;
1918}
1919
1920static irqreturn_t e1000_intr_msix_tx(int __always_unused irq, void *data)
 
1921{
1922	struct net_device *netdev = data;
1923	struct e1000_adapter *adapter = netdev_priv(netdev);
1924	struct e1000_hw *hw = &adapter->hw;
1925	struct e1000_ring *tx_ring = adapter->tx_ring;
1926
 
1927	adapter->total_tx_bytes = 0;
1928	adapter->total_tx_packets = 0;
1929
1930	if (!e1000_clean_tx_irq(tx_ring))
1931		/* Ring was not completely cleaned, so fire another interrupt */
1932		ew32(ICS, tx_ring->ims_val);
1933
1934	if (!test_bit(__E1000_DOWN, &adapter->state))
1935		ew32(IMS, adapter->tx_ring->ims_val);
1936
1937	return IRQ_HANDLED;
1938}
1939
1940static irqreturn_t e1000_intr_msix_rx(int __always_unused irq, void *data)
1941{
1942	struct net_device *netdev = data;
1943	struct e1000_adapter *adapter = netdev_priv(netdev);
1944	struct e1000_ring *rx_ring = adapter->rx_ring;
1945
1946	/* Write the ITR value calculated at the end of the
1947	 * previous interrupt.
1948	 */
1949	if (rx_ring->set_itr) {
1950		u32 itr = rx_ring->itr_val ?
1951			  1000000000 / (rx_ring->itr_val * 256) : 0;
1952
1953		writel(itr, rx_ring->itr_register);
1954		rx_ring->set_itr = 0;
1955	}
1956
1957	if (napi_schedule_prep(&adapter->napi)) {
1958		adapter->total_rx_bytes = 0;
1959		adapter->total_rx_packets = 0;
1960		__napi_schedule(&adapter->napi);
1961	}
1962	return IRQ_HANDLED;
1963}
1964
1965/**
1966 * e1000_configure_msix - Configure MSI-X hardware
1967 *
1968 * e1000_configure_msix sets up the hardware to properly
1969 * generate MSI-X interrupts.
1970 **/
1971static void e1000_configure_msix(struct e1000_adapter *adapter)
1972{
1973	struct e1000_hw *hw = &adapter->hw;
1974	struct e1000_ring *rx_ring = adapter->rx_ring;
1975	struct e1000_ring *tx_ring = adapter->tx_ring;
1976	int vector = 0;
1977	u32 ctrl_ext, ivar = 0;
1978
1979	adapter->eiac_mask = 0;
1980
1981	/* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1982	if (hw->mac.type == e1000_82574) {
1983		u32 rfctl = er32(RFCTL);
1984
1985		rfctl |= E1000_RFCTL_ACK_DIS;
1986		ew32(RFCTL, rfctl);
1987	}
1988
 
1989	/* Configure Rx vector */
1990	rx_ring->ims_val = E1000_IMS_RXQ0;
1991	adapter->eiac_mask |= rx_ring->ims_val;
1992	if (rx_ring->itr_val)
1993		writel(1000000000 / (rx_ring->itr_val * 256),
1994		       rx_ring->itr_register);
1995	else
1996		writel(1, rx_ring->itr_register);
1997	ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1998
1999	/* Configure Tx vector */
2000	tx_ring->ims_val = E1000_IMS_TXQ0;
2001	vector++;
2002	if (tx_ring->itr_val)
2003		writel(1000000000 / (tx_ring->itr_val * 256),
2004		       tx_ring->itr_register);
2005	else
2006		writel(1, tx_ring->itr_register);
2007	adapter->eiac_mask |= tx_ring->ims_val;
2008	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
2009
2010	/* set vector for Other Causes, e.g. link changes */
2011	vector++;
2012	ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
2013	if (rx_ring->itr_val)
2014		writel(1000000000 / (rx_ring->itr_val * 256),
2015		       hw->hw_addr + E1000_EITR_82574(vector));
2016	else
2017		writel(1, hw->hw_addr + E1000_EITR_82574(vector));
2018	adapter->eiac_mask |= E1000_IMS_OTHER;
2019
2020	/* Cause Tx interrupts on every write back */
2021	ivar |= (1 << 31);
2022
2023	ew32(IVAR, ivar);
2024
2025	/* enable MSI-X PBA support */
2026	ctrl_ext = er32(CTRL_EXT) & ~E1000_CTRL_EXT_IAME;
2027	ctrl_ext |= E1000_CTRL_EXT_PBA_CLR | E1000_CTRL_EXT_EIAME;
 
 
 
 
 
2028	ew32(CTRL_EXT, ctrl_ext);
2029	e1e_flush();
2030}
2031
2032void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
2033{
2034	if (adapter->msix_entries) {
2035		pci_disable_msix(adapter->pdev);
2036		kfree(adapter->msix_entries);
2037		adapter->msix_entries = NULL;
2038	} else if (adapter->flags & FLAG_MSI_ENABLED) {
2039		pci_disable_msi(adapter->pdev);
2040		adapter->flags &= ~FLAG_MSI_ENABLED;
2041	}
2042}
2043
2044/**
2045 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
2046 *
2047 * Attempt to configure interrupts using the best available
2048 * capabilities of the hardware and kernel.
2049 **/
2050void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
2051{
2052	int err;
2053	int i;
2054
2055	switch (adapter->int_mode) {
2056	case E1000E_INT_MODE_MSIX:
2057		if (adapter->flags & FLAG_HAS_MSIX) {
2058			adapter->num_vectors = 3; /* RxQ0, TxQ0 and other */
2059			adapter->msix_entries = kcalloc(adapter->num_vectors,
2060							sizeof(struct
2061							       msix_entry),
2062							GFP_KERNEL);
2063			if (adapter->msix_entries) {
2064				struct e1000_adapter *a = adapter;
2065
2066				for (i = 0; i < adapter->num_vectors; i++)
2067					adapter->msix_entries[i].entry = i;
2068
2069				err = pci_enable_msix_range(a->pdev,
2070							    a->msix_entries,
2071							    a->num_vectors,
2072							    a->num_vectors);
2073				if (err > 0)
2074					return;
2075			}
2076			/* MSI-X failed, so fall through and try MSI */
2077			e_err("Failed to initialize MSI-X interrupts.  Falling back to MSI interrupts.\n");
2078			e1000e_reset_interrupt_capability(adapter);
2079		}
2080		adapter->int_mode = E1000E_INT_MODE_MSI;
2081		/* Fall through */
2082	case E1000E_INT_MODE_MSI:
2083		if (!pci_enable_msi(adapter->pdev)) {
2084			adapter->flags |= FLAG_MSI_ENABLED;
2085		} else {
2086			adapter->int_mode = E1000E_INT_MODE_LEGACY;
2087			e_err("Failed to initialize MSI interrupts.  Falling back to legacy interrupts.\n");
2088		}
2089		/* Fall through */
2090	case E1000E_INT_MODE_LEGACY:
2091		/* Don't do anything; this is the system default */
2092		break;
2093	}
2094
2095	/* store the number of vectors being used */
2096	adapter->num_vectors = 1;
2097}
2098
2099/**
2100 * e1000_request_msix - Initialize MSI-X interrupts
2101 *
2102 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
2103 * kernel.
2104 **/
2105static int e1000_request_msix(struct e1000_adapter *adapter)
2106{
2107	struct net_device *netdev = adapter->netdev;
2108	int err = 0, vector = 0;
2109
2110	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2111		snprintf(adapter->rx_ring->name,
2112			 sizeof(adapter->rx_ring->name) - 1,
2113			 "%s-rx-0", netdev->name);
2114	else
2115		memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
2116	err = request_irq(adapter->msix_entries[vector].vector,
2117			  e1000_intr_msix_rx, 0, adapter->rx_ring->name,
2118			  netdev);
2119	if (err)
2120		return err;
2121	adapter->rx_ring->itr_register = adapter->hw.hw_addr +
2122	    E1000_EITR_82574(vector);
2123	adapter->rx_ring->itr_val = adapter->itr;
2124	vector++;
2125
2126	if (strlen(netdev->name) < (IFNAMSIZ - 5))
2127		snprintf(adapter->tx_ring->name,
2128			 sizeof(adapter->tx_ring->name) - 1,
2129			 "%s-tx-0", netdev->name);
2130	else
2131		memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
2132	err = request_irq(adapter->msix_entries[vector].vector,
2133			  e1000_intr_msix_tx, 0, adapter->tx_ring->name,
2134			  netdev);
2135	if (err)
2136		return err;
2137	adapter->tx_ring->itr_register = adapter->hw.hw_addr +
2138	    E1000_EITR_82574(vector);
2139	adapter->tx_ring->itr_val = adapter->itr;
2140	vector++;
2141
2142	err = request_irq(adapter->msix_entries[vector].vector,
2143			  e1000_msix_other, 0, netdev->name, netdev);
2144	if (err)
2145		return err;
2146
2147	e1000_configure_msix(adapter);
2148
2149	return 0;
2150}
2151
2152/**
2153 * e1000_request_irq - initialize interrupts
2154 *
2155 * Attempts to configure interrupts using the best available
2156 * capabilities of the hardware and kernel.
2157 **/
2158static int e1000_request_irq(struct e1000_adapter *adapter)
2159{
2160	struct net_device *netdev = adapter->netdev;
2161	int err;
2162
2163	if (adapter->msix_entries) {
2164		err = e1000_request_msix(adapter);
2165		if (!err)
2166			return err;
2167		/* fall back to MSI */
2168		e1000e_reset_interrupt_capability(adapter);
2169		adapter->int_mode = E1000E_INT_MODE_MSI;
2170		e1000e_set_interrupt_capability(adapter);
2171	}
2172	if (adapter->flags & FLAG_MSI_ENABLED) {
2173		err = request_irq(adapter->pdev->irq, e1000_intr_msi, 0,
2174				  netdev->name, netdev);
2175		if (!err)
2176			return err;
2177
2178		/* fall back to legacy interrupt */
2179		e1000e_reset_interrupt_capability(adapter);
2180		adapter->int_mode = E1000E_INT_MODE_LEGACY;
2181	}
2182
2183	err = request_irq(adapter->pdev->irq, e1000_intr, IRQF_SHARED,
2184			  netdev->name, netdev);
2185	if (err)
2186		e_err("Unable to allocate interrupt, Error: %d\n", err);
2187
2188	return err;
2189}
2190
2191static void e1000_free_irq(struct e1000_adapter *adapter)
2192{
2193	struct net_device *netdev = adapter->netdev;
2194
2195	if (adapter->msix_entries) {
2196		int vector = 0;
2197
2198		free_irq(adapter->msix_entries[vector].vector, netdev);
2199		vector++;
2200
2201		free_irq(adapter->msix_entries[vector].vector, netdev);
2202		vector++;
2203
2204		/* Other Causes interrupt vector */
2205		free_irq(adapter->msix_entries[vector].vector, netdev);
2206		return;
2207	}
2208
2209	free_irq(adapter->pdev->irq, netdev);
2210}
2211
2212/**
2213 * e1000_irq_disable - Mask off interrupt generation on the NIC
2214 **/
2215static void e1000_irq_disable(struct e1000_adapter *adapter)
2216{
2217	struct e1000_hw *hw = &adapter->hw;
2218
2219	ew32(IMC, ~0);
2220	if (adapter->msix_entries)
2221		ew32(EIAC_82574, 0);
2222	e1e_flush();
2223
2224	if (adapter->msix_entries) {
2225		int i;
2226
2227		for (i = 0; i < adapter->num_vectors; i++)
2228			synchronize_irq(adapter->msix_entries[i].vector);
2229	} else {
2230		synchronize_irq(adapter->pdev->irq);
2231	}
2232}
2233
2234/**
2235 * e1000_irq_enable - Enable default interrupt generation settings
2236 **/
2237static void e1000_irq_enable(struct e1000_adapter *adapter)
2238{
2239	struct e1000_hw *hw = &adapter->hw;
2240
2241	if (adapter->msix_entries) {
2242		ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
2243		ew32(IMS, adapter->eiac_mask | E1000_IMS_LSC);
2244	} else if ((hw->mac.type == e1000_pch_lpt) ||
2245		   (hw->mac.type == e1000_pch_spt)) {
2246		ew32(IMS, IMS_ENABLE_MASK | E1000_IMS_ECCER);
2247	} else {
2248		ew32(IMS, IMS_ENABLE_MASK);
2249	}
2250	e1e_flush();
2251}
2252
2253/**
2254 * e1000e_get_hw_control - get control of the h/w from f/w
2255 * @adapter: address of board private structure
2256 *
2257 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2258 * For ASF and Pass Through versions of f/w this means that
2259 * the driver is loaded. For AMT version (only with 82573)
2260 * of the f/w this means that the network i/f is open.
2261 **/
2262void e1000e_get_hw_control(struct e1000_adapter *adapter)
2263{
2264	struct e1000_hw *hw = &adapter->hw;
2265	u32 ctrl_ext;
2266	u32 swsm;
2267
2268	/* Let firmware know the driver has taken over */
2269	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2270		swsm = er32(SWSM);
2271		ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
2272	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2273		ctrl_ext = er32(CTRL_EXT);
2274		ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
2275	}
2276}
2277
2278/**
2279 * e1000e_release_hw_control - release control of the h/w to f/w
2280 * @adapter: address of board private structure
2281 *
2282 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2283 * For ASF and Pass Through versions of f/w this means that the
2284 * driver is no longer loaded. For AMT version (only with 82573) i
2285 * of the f/w this means that the network i/f is closed.
2286 *
2287 **/
2288void e1000e_release_hw_control(struct e1000_adapter *adapter)
2289{
2290	struct e1000_hw *hw = &adapter->hw;
2291	u32 ctrl_ext;
2292	u32 swsm;
2293
2294	/* Let firmware taken over control of h/w */
2295	if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
2296		swsm = er32(SWSM);
2297		ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
2298	} else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
2299		ctrl_ext = er32(CTRL_EXT);
2300		ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
2301	}
2302}
2303
2304/**
2305 * e1000_alloc_ring_dma - allocate memory for a ring structure
2306 **/
2307static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
2308				struct e1000_ring *ring)
2309{
2310	struct pci_dev *pdev = adapter->pdev;
2311
2312	ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
2313					GFP_KERNEL);
2314	if (!ring->desc)
2315		return -ENOMEM;
2316
2317	return 0;
2318}
2319
2320/**
2321 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2322 * @tx_ring: Tx descriptor ring
2323 *
2324 * Return 0 on success, negative on failure
2325 **/
2326int e1000e_setup_tx_resources(struct e1000_ring *tx_ring)
2327{
2328	struct e1000_adapter *adapter = tx_ring->adapter;
2329	int err = -ENOMEM, size;
2330
2331	size = sizeof(struct e1000_buffer) * tx_ring->count;
2332	tx_ring->buffer_info = vzalloc(size);
2333	if (!tx_ring->buffer_info)
2334		goto err;
2335
2336	/* round up to nearest 4K */
2337	tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
2338	tx_ring->size = ALIGN(tx_ring->size, 4096);
2339
2340	err = e1000_alloc_ring_dma(adapter, tx_ring);
2341	if (err)
2342		goto err;
2343
2344	tx_ring->next_to_use = 0;
2345	tx_ring->next_to_clean = 0;
2346
2347	return 0;
2348err:
2349	vfree(tx_ring->buffer_info);
2350	e_err("Unable to allocate memory for the transmit descriptor ring\n");
2351	return err;
2352}
2353
2354/**
2355 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2356 * @rx_ring: Rx descriptor ring
2357 *
2358 * Returns 0 on success, negative on failure
2359 **/
2360int e1000e_setup_rx_resources(struct e1000_ring *rx_ring)
2361{
2362	struct e1000_adapter *adapter = rx_ring->adapter;
2363	struct e1000_buffer *buffer_info;
2364	int i, size, desc_len, err = -ENOMEM;
2365
2366	size = sizeof(struct e1000_buffer) * rx_ring->count;
2367	rx_ring->buffer_info = vzalloc(size);
2368	if (!rx_ring->buffer_info)
2369		goto err;
2370
2371	for (i = 0; i < rx_ring->count; i++) {
2372		buffer_info = &rx_ring->buffer_info[i];
2373		buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
2374						sizeof(struct e1000_ps_page),
2375						GFP_KERNEL);
2376		if (!buffer_info->ps_pages)
2377			goto err_pages;
2378	}
2379
2380	desc_len = sizeof(union e1000_rx_desc_packet_split);
2381
2382	/* Round up to nearest 4K */
2383	rx_ring->size = rx_ring->count * desc_len;
2384	rx_ring->size = ALIGN(rx_ring->size, 4096);
2385
2386	err = e1000_alloc_ring_dma(adapter, rx_ring);
2387	if (err)
2388		goto err_pages;
2389
2390	rx_ring->next_to_clean = 0;
2391	rx_ring->next_to_use = 0;
2392	rx_ring->rx_skb_top = NULL;
2393
2394	return 0;
2395
2396err_pages:
2397	for (i = 0; i < rx_ring->count; i++) {
2398		buffer_info = &rx_ring->buffer_info[i];
2399		kfree(buffer_info->ps_pages);
2400	}
2401err:
2402	vfree(rx_ring->buffer_info);
2403	e_err("Unable to allocate memory for the receive descriptor ring\n");
2404	return err;
2405}
2406
2407/**
2408 * e1000_clean_tx_ring - Free Tx Buffers
2409 * @tx_ring: Tx descriptor ring
2410 **/
2411static void e1000_clean_tx_ring(struct e1000_ring *tx_ring)
2412{
2413	struct e1000_adapter *adapter = tx_ring->adapter;
2414	struct e1000_buffer *buffer_info;
2415	unsigned long size;
2416	unsigned int i;
2417
2418	for (i = 0; i < tx_ring->count; i++) {
2419		buffer_info = &tx_ring->buffer_info[i];
2420		e1000_put_txbuf(tx_ring, buffer_info);
2421	}
2422
2423	netdev_reset_queue(adapter->netdev);
2424	size = sizeof(struct e1000_buffer) * tx_ring->count;
2425	memset(tx_ring->buffer_info, 0, size);
2426
2427	memset(tx_ring->desc, 0, tx_ring->size);
2428
2429	tx_ring->next_to_use = 0;
2430	tx_ring->next_to_clean = 0;
 
 
 
 
 
 
2431}
2432
2433/**
2434 * e1000e_free_tx_resources - Free Tx Resources per Queue
2435 * @tx_ring: Tx descriptor ring
2436 *
2437 * Free all transmit software resources
2438 **/
2439void e1000e_free_tx_resources(struct e1000_ring *tx_ring)
2440{
2441	struct e1000_adapter *adapter = tx_ring->adapter;
2442	struct pci_dev *pdev = adapter->pdev;
2443
2444	e1000_clean_tx_ring(tx_ring);
2445
2446	vfree(tx_ring->buffer_info);
2447	tx_ring->buffer_info = NULL;
2448
2449	dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
2450			  tx_ring->dma);
2451	tx_ring->desc = NULL;
2452}
2453
2454/**
2455 * e1000e_free_rx_resources - Free Rx Resources
2456 * @rx_ring: Rx descriptor ring
2457 *
2458 * Free all receive software resources
2459 **/
2460void e1000e_free_rx_resources(struct e1000_ring *rx_ring)
2461{
2462	struct e1000_adapter *adapter = rx_ring->adapter;
2463	struct pci_dev *pdev = adapter->pdev;
2464	int i;
2465
2466	e1000_clean_rx_ring(rx_ring);
2467
2468	for (i = 0; i < rx_ring->count; i++)
2469		kfree(rx_ring->buffer_info[i].ps_pages);
2470
2471	vfree(rx_ring->buffer_info);
2472	rx_ring->buffer_info = NULL;
2473
2474	dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2475			  rx_ring->dma);
2476	rx_ring->desc = NULL;
2477}
2478
2479/**
2480 * e1000_update_itr - update the dynamic ITR value based on statistics
2481 * @adapter: pointer to adapter
2482 * @itr_setting: current adapter->itr
2483 * @packets: the number of packets during this measurement interval
2484 * @bytes: the number of bytes during this measurement interval
2485 *
2486 *      Stores a new ITR value based on packets and byte
2487 *      counts during the last interrupt.  The advantage of per interrupt
2488 *      computation is faster updates and more accurate ITR for the current
2489 *      traffic pattern.  Constants in this function were computed
2490 *      based on theoretical maximum wire speed and thresholds were set based
2491 *      on testing data as well as attempting to minimize response time
2492 *      while increasing bulk throughput.  This functionality is controlled
2493 *      by the InterruptThrottleRate module parameter.
2494 **/
2495static unsigned int e1000_update_itr(u16 itr_setting, int packets, int bytes)
 
 
2496{
2497	unsigned int retval = itr_setting;
2498
2499	if (packets == 0)
2500		return itr_setting;
2501
2502	switch (itr_setting) {
2503	case lowest_latency:
2504		/* handle TSO and jumbo frames */
2505		if (bytes / packets > 8000)
2506			retval = bulk_latency;
2507		else if ((packets < 5) && (bytes > 512))
2508			retval = low_latency;
2509		break;
2510	case low_latency:	/* 50 usec aka 20000 ints/s */
2511		if (bytes > 10000) {
2512			/* this if handles the TSO accounting */
2513			if (bytes / packets > 8000)
2514				retval = bulk_latency;
2515			else if ((packets < 10) || ((bytes / packets) > 1200))
2516				retval = bulk_latency;
2517			else if ((packets > 35))
2518				retval = lowest_latency;
2519		} else if (bytes / packets > 2000) {
2520			retval = bulk_latency;
2521		} else if (packets <= 2 && bytes < 512) {
2522			retval = lowest_latency;
2523		}
2524		break;
2525	case bulk_latency:	/* 250 usec aka 4000 ints/s */
2526		if (bytes > 25000) {
2527			if (packets > 35)
2528				retval = low_latency;
2529		} else if (bytes < 6000) {
2530			retval = low_latency;
2531		}
2532		break;
2533	}
2534
2535	return retval;
2536}
2537
2538static void e1000_set_itr(struct e1000_adapter *adapter)
2539{
 
2540	u16 current_itr;
2541	u32 new_itr = adapter->itr;
2542
2543	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2544	if (adapter->link_speed != SPEED_1000) {
2545		current_itr = 0;
2546		new_itr = 4000;
2547		goto set_itr_now;
2548	}
2549
2550	if (adapter->flags2 & FLAG2_DISABLE_AIM) {
2551		new_itr = 0;
2552		goto set_itr_now;
2553	}
2554
2555	adapter->tx_itr = e1000_update_itr(adapter->tx_itr,
2556					   adapter->total_tx_packets,
2557					   adapter->total_tx_bytes);
 
2558	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2559	if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2560		adapter->tx_itr = low_latency;
2561
2562	adapter->rx_itr = e1000_update_itr(adapter->rx_itr,
2563					   adapter->total_rx_packets,
2564					   adapter->total_rx_bytes);
 
2565	/* conservative mode (itr 3) eliminates the lowest_latency setting */
2566	if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2567		adapter->rx_itr = low_latency;
2568
2569	current_itr = max(adapter->rx_itr, adapter->tx_itr);
2570
 
2571	/* counts and packets in update_itr are dependent on these numbers */
2572	switch (current_itr) {
2573	case lowest_latency:
2574		new_itr = 70000;
2575		break;
2576	case low_latency:
2577		new_itr = 20000;	/* aka hwitr = ~200 */
2578		break;
2579	case bulk_latency:
2580		new_itr = 4000;
2581		break;
2582	default:
2583		break;
2584	}
2585
2586set_itr_now:
2587	if (new_itr != adapter->itr) {
2588		/* this attempts to bias the interrupt rate towards Bulk
 
2589		 * by adding intermediate steps when interrupt rate is
2590		 * increasing
2591		 */
2592		new_itr = new_itr > adapter->itr ?
2593		    min(adapter->itr + (new_itr >> 2), new_itr) : new_itr;
 
2594		adapter->itr = new_itr;
2595		adapter->rx_ring->itr_val = new_itr;
2596		if (adapter->msix_entries)
2597			adapter->rx_ring->set_itr = 1;
2598		else
2599			e1000e_write_itr(adapter, new_itr);
2600	}
2601}
2602
2603/**
2604 * e1000e_write_itr - write the ITR value to the appropriate registers
2605 * @adapter: address of board private structure
2606 * @itr: new ITR value to program
2607 *
2608 * e1000e_write_itr determines if the adapter is in MSI-X mode
2609 * and, if so, writes the EITR registers with the ITR value.
2610 * Otherwise, it writes the ITR value into the ITR register.
2611 **/
2612void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr)
2613{
2614	struct e1000_hw *hw = &adapter->hw;
2615	u32 new_itr = itr ? 1000000000 / (itr * 256) : 0;
2616
2617	if (adapter->msix_entries) {
2618		int vector;
2619
2620		for (vector = 0; vector < adapter->num_vectors; vector++)
2621			writel(new_itr, hw->hw_addr + E1000_EITR_82574(vector));
2622	} else {
2623		ew32(ITR, new_itr);
2624	}
2625}
2626
2627/**
2628 * e1000_alloc_queues - Allocate memory for all rings
2629 * @adapter: board private structure to initialize
2630 **/
2631static int e1000_alloc_queues(struct e1000_adapter *adapter)
2632{
2633	int size = sizeof(struct e1000_ring);
2634
2635	adapter->tx_ring = kzalloc(size, GFP_KERNEL);
2636	if (!adapter->tx_ring)
2637		goto err;
2638	adapter->tx_ring->count = adapter->tx_ring_count;
2639	adapter->tx_ring->adapter = adapter;
2640
2641	adapter->rx_ring = kzalloc(size, GFP_KERNEL);
2642	if (!adapter->rx_ring)
2643		goto err;
2644	adapter->rx_ring->count = adapter->rx_ring_count;
2645	adapter->rx_ring->adapter = adapter;
2646
2647	return 0;
2648err:
2649	e_err("Unable to allocate memory for queues\n");
2650	kfree(adapter->rx_ring);
2651	kfree(adapter->tx_ring);
2652	return -ENOMEM;
2653}
2654
2655/**
2656 * e1000e_poll - NAPI Rx polling callback
2657 * @napi: struct associated with this polling callback
2658 * @weight: number of packets driver is allowed to process this poll
2659 **/
2660static int e1000e_poll(struct napi_struct *napi, int weight)
2661{
2662	struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
2663						     napi);
2664	struct e1000_hw *hw = &adapter->hw;
2665	struct net_device *poll_dev = adapter->netdev;
2666	int tx_cleaned = 1, work_done = 0;
2667
2668	adapter = netdev_priv(poll_dev);
2669
2670	if (!adapter->msix_entries ||
2671	    (adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2672		tx_cleaned = e1000_clean_tx_irq(adapter->tx_ring);
2673
2674	adapter->clean_rx(adapter->rx_ring, &work_done, weight);
2675
2676	if (!tx_cleaned)
2677		work_done = weight;
2678
2679	/* If weight not fully consumed, exit the polling mode */
2680	if (work_done < weight) {
2681		if (adapter->itr_setting & 3)
2682			e1000_set_itr(adapter);
2683		napi_complete_done(napi, work_done);
2684		if (!test_bit(__E1000_DOWN, &adapter->state)) {
2685			if (adapter->msix_entries)
2686				ew32(IMS, adapter->rx_ring->ims_val);
2687			else
2688				e1000_irq_enable(adapter);
2689		}
2690	}
2691
2692	return work_done;
2693}
2694
2695static int e1000_vlan_rx_add_vid(struct net_device *netdev,
2696				 __always_unused __be16 proto, u16 vid)
2697{
2698	struct e1000_adapter *adapter = netdev_priv(netdev);
2699	struct e1000_hw *hw = &adapter->hw;
2700	u32 vfta, index;
2701
2702	/* don't update vlan cookie if already programmed */
2703	if ((adapter->hw.mng_cookie.status &
2704	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2705	    (vid == adapter->mng_vlan_id))
2706		return 0;
2707
2708	/* add VID to filter table */
2709	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2710		index = (vid >> 5) & 0x7F;
2711		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2712		vfta |= (1 << (vid & 0x1F));
2713		hw->mac.ops.write_vfta(hw, index, vfta);
2714	}
2715
2716	set_bit(vid, adapter->active_vlans);
2717
2718	return 0;
2719}
2720
2721static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
2722				  __always_unused __be16 proto, u16 vid)
2723{
2724	struct e1000_adapter *adapter = netdev_priv(netdev);
2725	struct e1000_hw *hw = &adapter->hw;
2726	u32 vfta, index;
2727
2728	if ((adapter->hw.mng_cookie.status &
2729	     E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2730	    (vid == adapter->mng_vlan_id)) {
2731		/* release control to f/w */
2732		e1000e_release_hw_control(adapter);
2733		return 0;
2734	}
2735
2736	/* remove VID from filter table */
2737	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2738		index = (vid >> 5) & 0x7F;
2739		vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2740		vfta &= ~(1 << (vid & 0x1F));
2741		hw->mac.ops.write_vfta(hw, index, vfta);
2742	}
2743
2744	clear_bit(vid, adapter->active_vlans);
2745
2746	return 0;
2747}
2748
2749/**
2750 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2751 * @adapter: board private structure to initialize
2752 **/
2753static void e1000e_vlan_filter_disable(struct e1000_adapter *adapter)
2754{
2755	struct net_device *netdev = adapter->netdev;
2756	struct e1000_hw *hw = &adapter->hw;
2757	u32 rctl;
2758
2759	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2760		/* disable VLAN receive filtering */
2761		rctl = er32(RCTL);
2762		rctl &= ~(E1000_RCTL_VFE | E1000_RCTL_CFIEN);
2763		ew32(RCTL, rctl);
2764
2765		if (adapter->mng_vlan_id != (u16)E1000_MNG_VLAN_NONE) {
2766			e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
2767					       adapter->mng_vlan_id);
2768			adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2769		}
2770	}
2771}
2772
2773/**
2774 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2775 * @adapter: board private structure to initialize
2776 **/
2777static void e1000e_vlan_filter_enable(struct e1000_adapter *adapter)
2778{
2779	struct e1000_hw *hw = &adapter->hw;
2780	u32 rctl;
2781
2782	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2783		/* enable VLAN receive filtering */
2784		rctl = er32(RCTL);
2785		rctl |= E1000_RCTL_VFE;
2786		rctl &= ~E1000_RCTL_CFIEN;
2787		ew32(RCTL, rctl);
2788	}
2789}
2790
2791/**
2792 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2793 * @adapter: board private structure to initialize
2794 **/
2795static void e1000e_vlan_strip_disable(struct e1000_adapter *adapter)
2796{
2797	struct e1000_hw *hw = &adapter->hw;
2798	u32 ctrl;
2799
2800	/* disable VLAN tag insert/strip */
2801	ctrl = er32(CTRL);
2802	ctrl &= ~E1000_CTRL_VME;
2803	ew32(CTRL, ctrl);
2804}
2805
2806/**
2807 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2808 * @adapter: board private structure to initialize
2809 **/
2810static void e1000e_vlan_strip_enable(struct e1000_adapter *adapter)
2811{
2812	struct e1000_hw *hw = &adapter->hw;
2813	u32 ctrl;
2814
2815	/* enable VLAN tag insert/strip */
2816	ctrl = er32(CTRL);
2817	ctrl |= E1000_CTRL_VME;
2818	ew32(CTRL, ctrl);
2819}
2820
2821static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2822{
2823	struct net_device *netdev = adapter->netdev;
2824	u16 vid = adapter->hw.mng_cookie.vlan_id;
2825	u16 old_vid = adapter->mng_vlan_id;
2826
2827	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2828		e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
 
2829		adapter->mng_vlan_id = vid;
2830	}
2831
2832	if ((old_vid != (u16)E1000_MNG_VLAN_NONE) && (vid != old_vid))
2833		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q), old_vid);
2834}
2835
2836static void e1000_restore_vlan(struct e1000_adapter *adapter)
2837{
2838	u16 vid;
2839
2840	e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), 0);
2841
2842	for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
2843	    e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
2844}
2845
2846static void e1000_init_manageability_pt(struct e1000_adapter *adapter)
2847{
2848	struct e1000_hw *hw = &adapter->hw;
2849	u32 manc, manc2h, mdef, i, j;
2850
2851	if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2852		return;
2853
2854	manc = er32(MANC);
2855
2856	/* enable receiving management packets to the host. this will probably
 
2857	 * generate destination unreachable messages from the host OS, but
2858	 * the packets will be handled on SMBUS
2859	 */
2860	manc |= E1000_MANC_EN_MNG2HOST;
2861	manc2h = er32(MANC2H);
2862
2863	switch (hw->mac.type) {
2864	default:
2865		manc2h |= (E1000_MANC2H_PORT_623 | E1000_MANC2H_PORT_664);
2866		break;
2867	case e1000_82574:
2868	case e1000_82583:
2869		/* Check if IPMI pass-through decision filter already exists;
 
2870		 * if so, enable it.
2871		 */
2872		for (i = 0, j = 0; i < 8; i++) {
2873			mdef = er32(MDEF(i));
2874
2875			/* Ignore filters with anything other than IPMI ports */
2876			if (mdef & ~(E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2877				continue;
2878
2879			/* Enable this decision filter in MANC2H */
2880			if (mdef)
2881				manc2h |= (1 << i);
2882
2883			j |= mdef;
2884		}
2885
2886		if (j == (E1000_MDEF_PORT_623 | E1000_MDEF_PORT_664))
2887			break;
2888
2889		/* Create new decision filter in an empty filter */
2890		for (i = 0, j = 0; i < 8; i++)
2891			if (er32(MDEF(i)) == 0) {
2892				ew32(MDEF(i), (E1000_MDEF_PORT_623 |
2893					       E1000_MDEF_PORT_664));
2894				manc2h |= (1 << 1);
2895				j++;
2896				break;
2897			}
2898
2899		if (!j)
2900			e_warn("Unable to create IPMI pass-through filter\n");
2901		break;
2902	}
2903
2904	ew32(MANC2H, manc2h);
2905	ew32(MANC, manc);
2906}
2907
2908/**
2909 * e1000_configure_tx - Configure Transmit Unit after Reset
2910 * @adapter: board private structure
2911 *
2912 * Configure the Tx unit of the MAC after a reset.
2913 **/
2914static void e1000_configure_tx(struct e1000_adapter *adapter)
2915{
2916	struct e1000_hw *hw = &adapter->hw;
2917	struct e1000_ring *tx_ring = adapter->tx_ring;
2918	u64 tdba;
2919	u32 tdlen, tctl, tarc;
2920
2921	/* Setup the HW Tx Head and Tail descriptor pointers */
2922	tdba = tx_ring->dma;
2923	tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2924	ew32(TDBAL(0), (tdba & DMA_BIT_MASK(32)));
2925	ew32(TDBAH(0), (tdba >> 32));
2926	ew32(TDLEN(0), tdlen);
2927	ew32(TDH(0), 0);
2928	ew32(TDT(0), 0);
2929	tx_ring->head = adapter->hw.hw_addr + E1000_TDH(0);
2930	tx_ring->tail = adapter->hw.hw_addr + E1000_TDT(0);
2931
2932	writel(0, tx_ring->head);
2933	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
2934		e1000e_update_tdt_wa(tx_ring, 0);
2935	else
2936		writel(0, tx_ring->tail);
2937
2938	/* Set the Tx Interrupt Delay register */
2939	ew32(TIDV, adapter->tx_int_delay);
2940	/* Tx irq moderation */
2941	ew32(TADV, adapter->tx_abs_int_delay);
2942
2943	if (adapter->flags2 & FLAG2_DMA_BURST) {
2944		u32 txdctl = er32(TXDCTL(0));
2945
2946		txdctl &= ~(E1000_TXDCTL_PTHRESH | E1000_TXDCTL_HTHRESH |
2947			    E1000_TXDCTL_WTHRESH);
2948		/* set up some performance related parameters to encourage the
 
2949		 * hardware to use the bus more efficiently in bursts, depends
2950		 * on the tx_int_delay to be enabled,
2951		 * wthresh = 1 ==> burst write is disabled to avoid Tx stalls
2952		 * hthresh = 1 ==> prefetch when one or more available
2953		 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2954		 * BEWARE: this seems to work but should be considered first if
2955		 * there are Tx hangs or other Tx related bugs
2956		 */
2957		txdctl |= E1000_TXDCTL_DMA_BURST_ENABLE;
2958		ew32(TXDCTL(0), txdctl);
2959	}
2960	/* erratum work around: set txdctl the same for both queues */
2961	ew32(TXDCTL(1), er32(TXDCTL(0)));
2962
2963	/* Program the Transmit Control Register */
2964	tctl = er32(TCTL);
2965	tctl &= ~E1000_TCTL_CT;
2966	tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2967		(E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2968
2969	if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2970		tarc = er32(TARC(0));
2971		/* set the speed mode bit, we'll clear it if we're not at
 
2972		 * gigabit link later
2973		 */
2974#define SPEED_MODE_BIT (1 << 21)
2975		tarc |= SPEED_MODE_BIT;
2976		ew32(TARC(0), tarc);
2977	}
2978
2979	/* errata: program both queues to unweighted RR */
2980	if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2981		tarc = er32(TARC(0));
2982		tarc |= 1;
2983		ew32(TARC(0), tarc);
2984		tarc = er32(TARC(1));
2985		tarc |= 1;
2986		ew32(TARC(1), tarc);
2987	}
2988
2989	/* Setup Transmit Descriptor Settings for eop descriptor */
2990	adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2991
2992	/* only set IDE if we are delaying interrupts using the timers */
2993	if (adapter->tx_int_delay)
2994		adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2995
2996	/* enable Report Status bit */
2997	adapter->txd_cmd |= E1000_TXD_CMD_RS;
2998
2999	ew32(TCTL, tctl);
3000
3001	hw->mac.ops.config_collision_dist(hw);
3002
3003	/* SPT Si errata workaround to avoid data corruption */
3004	if (hw->mac.type == e1000_pch_spt) {
3005		u32 reg_val;
3006
3007		reg_val = er32(IOSFPC);
3008		reg_val |= E1000_RCTL_RDMTS_HEX;
3009		ew32(IOSFPC, reg_val);
3010
3011		reg_val = er32(TARC(0));
3012		reg_val |= E1000_TARC0_CB_MULTIQ_3_REQ;
3013		ew32(TARC(0), reg_val);
3014	}
3015}
3016
3017/**
3018 * e1000_setup_rctl - configure the receive control registers
3019 * @adapter: Board private structure
3020 **/
3021#define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
3022			   (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
3023static void e1000_setup_rctl(struct e1000_adapter *adapter)
3024{
3025	struct e1000_hw *hw = &adapter->hw;
3026	u32 rctl, rfctl;
3027	u32 pages = 0;
3028
3029	/* Workaround Si errata on PCHx - configure jumbo frame flow.
3030	 * If jumbo frames not set, program related MAC/PHY registers
3031	 * to h/w defaults
3032	 */
3033	if (hw->mac.type >= e1000_pch2lan) {
3034		s32 ret_val;
3035
3036		if (adapter->netdev->mtu > ETH_DATA_LEN)
3037			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, true);
3038		else
3039			ret_val = e1000_lv_jumbo_workaround_ich8lan(hw, false);
3040
3041		if (ret_val)
3042			e_dbg("failed to enable|disable jumbo frame workaround mode\n");
3043	}
3044
3045	/* Program MC offset vector base */
3046	rctl = er32(RCTL);
3047	rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
3048	rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
3049	    E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
3050	    (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
3051
3052	/* Do not Store bad packets */
3053	rctl &= ~E1000_RCTL_SBP;
3054
3055	/* Enable Long Packet receive */
3056	if (adapter->netdev->mtu <= ETH_DATA_LEN)
3057		rctl &= ~E1000_RCTL_LPE;
3058	else
3059		rctl |= E1000_RCTL_LPE;
3060
3061	/* Some systems expect that the CRC is included in SMBUS traffic. The
3062	 * hardware strips the CRC before sending to both SMBUS (BMC) and to
3063	 * host memory when this is enabled
3064	 */
3065	if (adapter->flags2 & FLAG2_CRC_STRIPPING)
3066		rctl |= E1000_RCTL_SECRC;
3067
3068	/* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
3069	if ((hw->phy.type == e1000_phy_82577) && (rctl & E1000_RCTL_LPE)) {
3070		u16 phy_data;
3071
3072		e1e_rphy(hw, PHY_REG(770, 26), &phy_data);
3073		phy_data &= 0xfff8;
3074		phy_data |= (1 << 2);
3075		e1e_wphy(hw, PHY_REG(770, 26), phy_data);
3076
3077		e1e_rphy(hw, 22, &phy_data);
3078		phy_data &= 0x0fff;
3079		phy_data |= (1 << 14);
3080		e1e_wphy(hw, 0x10, 0x2823);
3081		e1e_wphy(hw, 0x11, 0x0003);
3082		e1e_wphy(hw, 22, phy_data);
3083	}
3084
3085	/* Setup buffer sizes */
3086	rctl &= ~E1000_RCTL_SZ_4096;
3087	rctl |= E1000_RCTL_BSEX;
3088	switch (adapter->rx_buffer_len) {
3089	case 2048:
3090	default:
3091		rctl |= E1000_RCTL_SZ_2048;
3092		rctl &= ~E1000_RCTL_BSEX;
3093		break;
3094	case 4096:
3095		rctl |= E1000_RCTL_SZ_4096;
3096		break;
3097	case 8192:
3098		rctl |= E1000_RCTL_SZ_8192;
3099		break;
3100	case 16384:
3101		rctl |= E1000_RCTL_SZ_16384;
3102		break;
3103	}
3104
3105	/* Enable Extended Status in all Receive Descriptors */
3106	rfctl = er32(RFCTL);
3107	rfctl |= E1000_RFCTL_EXTEN;
3108	ew32(RFCTL, rfctl);
3109
3110	/* 82571 and greater support packet-split where the protocol
 
3111	 * header is placed in skb->data and the packet data is
3112	 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
3113	 * In the case of a non-split, skb->data is linearly filled,
3114	 * followed by the page buffers.  Therefore, skb->data is
3115	 * sized to hold the largest protocol header.
3116	 *
3117	 * allocations using alloc_page take too long for regular MTU
3118	 * so only enable packet split for jumbo frames
3119	 *
3120	 * Using pages when the page size is greater than 16k wastes
3121	 * a lot of memory, since we allocate 3 pages at all times
3122	 * per packet.
3123	 */
3124	pages = PAGE_USE_COUNT(adapter->netdev->mtu);
3125	if ((pages <= 3) && (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
3126		adapter->rx_ps_pages = pages;
3127	else
3128		adapter->rx_ps_pages = 0;
3129
3130	if (adapter->rx_ps_pages) {
3131		u32 psrctl = 0;
3132
3133		/* Enable Packet split descriptors */
3134		rctl |= E1000_RCTL_DTYP_PS;
3135
3136		psrctl |= adapter->rx_ps_bsize0 >> E1000_PSRCTL_BSIZE0_SHIFT;
 
3137
3138		switch (adapter->rx_ps_pages) {
3139		case 3:
3140			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE3_SHIFT;
3141			/* fall-through */
3142		case 2:
3143			psrctl |= PAGE_SIZE << E1000_PSRCTL_BSIZE2_SHIFT;
3144			/* fall-through */
3145		case 1:
3146			psrctl |= PAGE_SIZE >> E1000_PSRCTL_BSIZE1_SHIFT;
 
3147			break;
3148		}
3149
3150		ew32(PSRCTL, psrctl);
3151	}
3152
3153	/* This is useful for sniffing bad packets. */
3154	if (adapter->netdev->features & NETIF_F_RXALL) {
3155		/* UPE and MPE will be handled by normal PROMISC logic
3156		 * in e1000e_set_rx_mode
3157		 */
3158		rctl |= (E1000_RCTL_SBP |	/* Receive bad packets */
3159			 E1000_RCTL_BAM |	/* RX All Bcast Pkts */
3160			 E1000_RCTL_PMCF);	/* RX All MAC Ctrl Pkts */
3161
3162		rctl &= ~(E1000_RCTL_VFE |	/* Disable VLAN filter */
3163			  E1000_RCTL_DPF |	/* Allow filtered pause */
3164			  E1000_RCTL_CFIEN);	/* Dis VLAN CFIEN Filter */
3165		/* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3166		 * and that breaks VLANs.
3167		 */
3168	}
3169
3170	ew32(RCTL, rctl);
3171	/* just started the receive unit, no need to restart */
3172	adapter->flags &= ~FLAG_RESTART_NOW;
3173}
3174
3175/**
3176 * e1000_configure_rx - Configure Receive Unit after Reset
3177 * @adapter: board private structure
3178 *
3179 * Configure the Rx unit of the MAC after a reset.
3180 **/
3181static void e1000_configure_rx(struct e1000_adapter *adapter)
3182{
3183	struct e1000_hw *hw = &adapter->hw;
3184	struct e1000_ring *rx_ring = adapter->rx_ring;
3185	u64 rdba;
3186	u32 rdlen, rctl, rxcsum, ctrl_ext;
3187
3188	if (adapter->rx_ps_pages) {
3189		/* this is a 32 byte descriptor */
3190		rdlen = rx_ring->count *
3191		    sizeof(union e1000_rx_desc_packet_split);
3192		adapter->clean_rx = e1000_clean_rx_irq_ps;
3193		adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
3194	} else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
3195		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3196		adapter->clean_rx = e1000_clean_jumbo_rx_irq;
3197		adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
3198	} else {
3199		rdlen = rx_ring->count * sizeof(union e1000_rx_desc_extended);
3200		adapter->clean_rx = e1000_clean_rx_irq;
3201		adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
3202	}
3203
3204	/* disable receives while setting up the descriptors */
3205	rctl = er32(RCTL);
3206	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
3207		ew32(RCTL, rctl & ~E1000_RCTL_EN);
3208	e1e_flush();
3209	usleep_range(10000, 20000);
3210
3211	if (adapter->flags2 & FLAG2_DMA_BURST) {
3212		/* set the writeback threshold (only takes effect if the RDTR
 
3213		 * is set). set GRAN=1 and write back up to 0x4 worth, and
3214		 * enable prefetching of 0x20 Rx descriptors
3215		 * granularity = 01
3216		 * wthresh = 04,
3217		 * hthresh = 04,
3218		 * pthresh = 0x20
3219		 */
3220		ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE);
3221		ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE);
3222
3223		/* override the delay timers for enabling bursting, only if
 
3224		 * the value was not set by the user via module options
3225		 */
3226		if (adapter->rx_int_delay == DEFAULT_RDTR)
3227			adapter->rx_int_delay = BURST_RDTR;
3228		if (adapter->rx_abs_int_delay == DEFAULT_RADV)
3229			adapter->rx_abs_int_delay = BURST_RADV;
3230	}
3231
3232	/* set the Receive Delay Timer Register */
3233	ew32(RDTR, adapter->rx_int_delay);
3234
3235	/* irq moderation */
3236	ew32(RADV, adapter->rx_abs_int_delay);
3237	if ((adapter->itr_setting != 0) && (adapter->itr != 0))
3238		e1000e_write_itr(adapter, adapter->itr);
3239
3240	ctrl_ext = er32(CTRL_EXT);
3241	/* Auto-Mask interrupts upon ICR access */
3242	ctrl_ext |= E1000_CTRL_EXT_IAME;
3243	ew32(IAM, 0xffffffff);
3244	ew32(CTRL_EXT, ctrl_ext);
3245	e1e_flush();
3246
3247	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 
3248	 * the Base and Length of the Rx Descriptor Ring
3249	 */
3250	rdba = rx_ring->dma;
3251	ew32(RDBAL(0), (rdba & DMA_BIT_MASK(32)));
3252	ew32(RDBAH(0), (rdba >> 32));
3253	ew32(RDLEN(0), rdlen);
3254	ew32(RDH(0), 0);
3255	ew32(RDT(0), 0);
3256	rx_ring->head = adapter->hw.hw_addr + E1000_RDH(0);
3257	rx_ring->tail = adapter->hw.hw_addr + E1000_RDT(0);
3258
3259	writel(0, rx_ring->head);
3260	if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
3261		e1000e_update_rdt_wa(rx_ring, 0);
3262	else
3263		writel(0, rx_ring->tail);
3264
3265	/* Enable Receive Checksum Offload for TCP and UDP */
3266	rxcsum = er32(RXCSUM);
3267	if (adapter->netdev->features & NETIF_F_RXCSUM)
3268		rxcsum |= E1000_RXCSUM_TUOFL;
3269	else
3270		rxcsum &= ~E1000_RXCSUM_TUOFL;
3271	ew32(RXCSUM, rxcsum);
3272
3273	/* With jumbo frames, excessive C-state transition latencies result
3274	 * in dropped transactions.
3275	 */
3276	if (adapter->netdev->mtu > ETH_DATA_LEN) {
3277		u32 lat =
3278		    ((er32(PBA) & E1000_PBA_RXA_MASK) * 1024 -
3279		     adapter->max_frame_size) * 8 / 1000;
3280
3281		if (adapter->flags & FLAG_IS_ICH) {
3282			u32 rxdctl = er32(RXDCTL(0));
3283
3284			ew32(RXDCTL(0), rxdctl | 0x3);
 
 
 
 
3285		}
3286
3287		pm_qos_update_request(&adapter->pm_qos_req, lat);
3288	} else {
3289		pm_qos_update_request(&adapter->pm_qos_req,
3290				      PM_QOS_DEFAULT_VALUE);
3291	}
3292
3293	/* Enable Receives */
3294	ew32(RCTL, rctl);
3295}
3296
3297/**
3298 * e1000e_write_mc_addr_list - write multicast addresses to MTA
3299 * @netdev: network interface device structure
3300 *
3301 * Writes multicast address list to the MTA hash table.
3302 * Returns: -ENOMEM on failure
3303 *                0 on no addresses written
3304 *                X on writing X addresses to MTA
3305 */
3306static int e1000e_write_mc_addr_list(struct net_device *netdev)
3307{
3308	struct e1000_adapter *adapter = netdev_priv(netdev);
3309	struct e1000_hw *hw = &adapter->hw;
3310	struct netdev_hw_addr *ha;
3311	u8 *mta_list;
3312	int i;
3313
3314	if (netdev_mc_empty(netdev)) {
3315		/* nothing to program, so clear mc list */
3316		hw->mac.ops.update_mc_addr_list(hw, NULL, 0);
3317		return 0;
3318	}
3319
3320	mta_list = kzalloc(netdev_mc_count(netdev) * ETH_ALEN, GFP_ATOMIC);
3321	if (!mta_list)
3322		return -ENOMEM;
3323
3324	/* update_mc_addr_list expects a packed array of only addresses. */
3325	i = 0;
3326	netdev_for_each_mc_addr(ha, netdev)
3327	    memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
3328
3329	hw->mac.ops.update_mc_addr_list(hw, mta_list, i);
3330	kfree(mta_list);
3331
3332	return netdev_mc_count(netdev);
3333}
3334
3335/**
3336 * e1000e_write_uc_addr_list - write unicast addresses to RAR table
3337 * @netdev: network interface device structure
3338 *
3339 * Writes unicast address list to the RAR table.
3340 * Returns: -ENOMEM on failure/insufficient address space
3341 *                0 on no addresses written
3342 *                X on writing X addresses to the RAR table
3343 **/
3344static int e1000e_write_uc_addr_list(struct net_device *netdev)
3345{
3346	struct e1000_adapter *adapter = netdev_priv(netdev);
3347	struct e1000_hw *hw = &adapter->hw;
3348	unsigned int rar_entries;
3349	int count = 0;
3350
3351	rar_entries = hw->mac.ops.rar_get_count(hw);
3352
3353	/* save a rar entry for our hardware address */
3354	rar_entries--;
3355
3356	/* save a rar entry for the LAA workaround */
3357	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA)
3358		rar_entries--;
3359
3360	/* return ENOMEM indicating insufficient memory for addresses */
3361	if (netdev_uc_count(netdev) > rar_entries)
3362		return -ENOMEM;
3363
3364	if (!netdev_uc_empty(netdev) && rar_entries) {
3365		struct netdev_hw_addr *ha;
3366
3367		/* write the addresses in reverse order to avoid write
 
3368		 * combining
3369		 */
3370		netdev_for_each_uc_addr(ha, netdev) {
3371			int rval;
3372
3373			if (!rar_entries)
3374				break;
3375			rval = hw->mac.ops.rar_set(hw, ha->addr, rar_entries--);
3376			if (rval < 0)
3377				return -ENOMEM;
3378			count++;
3379		}
3380	}
3381
3382	/* zero out the remaining RAR entries not used above */
3383	for (; rar_entries > 0; rar_entries--) {
3384		ew32(RAH(rar_entries), 0);
3385		ew32(RAL(rar_entries), 0);
3386	}
3387	e1e_flush();
3388
3389	return count;
3390}
3391
3392/**
3393 * e1000e_set_rx_mode - secondary unicast, Multicast and Promiscuous mode set
3394 * @netdev: network interface device structure
3395 *
3396 * The ndo_set_rx_mode entry point is called whenever the unicast or multicast
3397 * address list or the network interface flags are updated.  This routine is
3398 * responsible for configuring the hardware for proper unicast, multicast,
3399 * promiscuous mode, and all-multi behavior.
3400 **/
3401static void e1000e_set_rx_mode(struct net_device *netdev)
3402{
3403	struct e1000_adapter *adapter = netdev_priv(netdev);
3404	struct e1000_hw *hw = &adapter->hw;
3405	u32 rctl;
3406
3407	if (pm_runtime_suspended(netdev->dev.parent))
3408		return;
3409
3410	/* Check for Promiscuous and All Multicast modes */
3411	rctl = er32(RCTL);
3412
3413	/* clear the affected bits */
3414	rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
3415
3416	if (netdev->flags & IFF_PROMISC) {
3417		rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3418		/* Do not hardware filter VLANs in promisc mode */
3419		e1000e_vlan_filter_disable(adapter);
3420	} else {
3421		int count;
3422
3423		if (netdev->flags & IFF_ALLMULTI) {
3424			rctl |= E1000_RCTL_MPE;
3425		} else {
3426			/* Write addresses to the MTA, if the attempt fails
 
3427			 * then we should just turn on promiscuous mode so
3428			 * that we can at least receive multicast traffic
3429			 */
3430			count = e1000e_write_mc_addr_list(netdev);
3431			if (count < 0)
3432				rctl |= E1000_RCTL_MPE;
3433		}
3434		e1000e_vlan_filter_enable(adapter);
3435		/* Write addresses to available RAR registers, if there is not
 
3436		 * sufficient space to store all the addresses then enable
3437		 * unicast promiscuous mode
3438		 */
3439		count = e1000e_write_uc_addr_list(netdev);
3440		if (count < 0)
3441			rctl |= E1000_RCTL_UPE;
3442	}
3443
3444	ew32(RCTL, rctl);
3445
3446	if (netdev->features & NETIF_F_HW_VLAN_CTAG_RX)
3447		e1000e_vlan_strip_enable(adapter);
3448	else
3449		e1000e_vlan_strip_disable(adapter);
3450}
3451
3452static void e1000e_setup_rss_hash(struct e1000_adapter *adapter)
3453{
3454	struct e1000_hw *hw = &adapter->hw;
3455	u32 mrqc, rxcsum;
3456	u32 rss_key[10];
3457	int i;
 
 
 
 
3458
3459	netdev_rss_key_fill(rss_key, sizeof(rss_key));
3460	for (i = 0; i < 10; i++)
3461		ew32(RSSRK(i), rss_key[i]);
3462
3463	/* Direct all traffic to queue 0 */
3464	for (i = 0; i < 32; i++)
3465		ew32(RETA(i), 0);
3466
3467	/* Disable raw packet checksumming so that RSS hash is placed in
 
3468	 * descriptor on writeback.
3469	 */
3470	rxcsum = er32(RXCSUM);
3471	rxcsum |= E1000_RXCSUM_PCSD;
3472
3473	ew32(RXCSUM, rxcsum);
3474
3475	mrqc = (E1000_MRQC_RSS_FIELD_IPV4 |
3476		E1000_MRQC_RSS_FIELD_IPV4_TCP |
3477		E1000_MRQC_RSS_FIELD_IPV6 |
3478		E1000_MRQC_RSS_FIELD_IPV6_TCP |
3479		E1000_MRQC_RSS_FIELD_IPV6_TCP_EX);
3480
3481	ew32(MRQC, mrqc);
3482}
3483
3484/**
3485 * e1000e_get_base_timinca - get default SYSTIM time increment attributes
3486 * @adapter: board private structure
3487 * @timinca: pointer to returned time increment attributes
3488 *
3489 * Get attributes for incrementing the System Time Register SYSTIML/H at
3490 * the default base frequency, and set the cyclecounter shift value.
3491 **/
3492s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca)
3493{
3494	struct e1000_hw *hw = &adapter->hw;
3495	u32 incvalue, incperiod, shift;
3496
3497	/* Make sure clock is enabled on I217/I218/I219  before checking
3498	 * the frequency
3499	 */
3500	if (((hw->mac.type == e1000_pch_lpt) ||
3501	     (hw->mac.type == e1000_pch_spt)) &&
3502	    !(er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) &&
3503	    !(er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_ENABLED)) {
3504		u32 fextnvm7 = er32(FEXTNVM7);
3505
3506		if (!(fextnvm7 & (1 << 0))) {
3507			ew32(FEXTNVM7, fextnvm7 | (1 << 0));
3508			e1e_flush();
3509		}
3510	}
3511
3512	switch (hw->mac.type) {
3513	case e1000_pch2lan:
3514	case e1000_pch_lpt:
3515		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3516			/* Stable 96MHz frequency */
3517			incperiod = INCPERIOD_96MHz;
3518			incvalue = INCVALUE_96MHz;
3519			shift = INCVALUE_SHIFT_96MHz;
3520			adapter->cc.shift = shift + INCPERIOD_SHIFT_96MHz;
3521		} else {
3522			/* Stable 25MHz frequency */
3523			incperiod = INCPERIOD_25MHz;
3524			incvalue = INCVALUE_25MHz;
3525			shift = INCVALUE_SHIFT_25MHz;
3526			adapter->cc.shift = shift;
3527		}
3528		break;
3529	case e1000_pch_spt:
3530		if (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_SYSCFI) {
3531			/* Stable 24MHz frequency */
3532			incperiod = INCPERIOD_24MHz;
3533			incvalue = INCVALUE_24MHz;
3534			shift = INCVALUE_SHIFT_24MHz;
3535			adapter->cc.shift = shift;
3536			break;
3537		}
3538		return -EINVAL;
3539	case e1000_82574:
3540	case e1000_82583:
3541		/* Stable 25MHz frequency */
3542		incperiod = INCPERIOD_25MHz;
3543		incvalue = INCVALUE_25MHz;
3544		shift = INCVALUE_SHIFT_25MHz;
3545		adapter->cc.shift = shift;
3546		break;
3547	default:
3548		return -EINVAL;
3549	}
3550
3551	*timinca = ((incperiod << E1000_TIMINCA_INCPERIOD_SHIFT) |
3552		    ((incvalue << shift) & E1000_TIMINCA_INCVALUE_MASK));
3553
3554	return 0;
3555}
3556
3557/**
3558 * e1000e_config_hwtstamp - configure the hwtstamp registers and enable/disable
3559 * @adapter: board private structure
3560 *
3561 * Outgoing time stamping can be enabled and disabled. Play nice and
3562 * disable it when requested, although it shouldn't cause any overhead
3563 * when no packet needs it. At most one packet in the queue may be
3564 * marked for time stamping, otherwise it would be impossible to tell
3565 * for sure to which packet the hardware time stamp belongs.
3566 *
3567 * Incoming time stamping has to be configured via the hardware filters.
3568 * Not all combinations are supported, in particular event type has to be
3569 * specified. Matching the kind of event packet is not supported, with the
3570 * exception of "all V2 events regardless of level 2 or 4".
3571 **/
3572static int e1000e_config_hwtstamp(struct e1000_adapter *adapter,
3573				  struct hwtstamp_config *config)
3574{
3575	struct e1000_hw *hw = &adapter->hw;
3576	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
3577	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
3578	u32 rxmtrl = 0;
3579	u16 rxudp = 0;
3580	bool is_l4 = false;
3581	bool is_l2 = false;
3582	u32 regval;
3583	s32 ret_val;
3584
3585	if (!(adapter->flags & FLAG_HAS_HW_TIMESTAMP))
3586		return -EINVAL;
3587
3588	/* flags reserved for future extensions - must be zero */
3589	if (config->flags)
3590		return -EINVAL;
3591
3592	switch (config->tx_type) {
3593	case HWTSTAMP_TX_OFF:
3594		tsync_tx_ctl = 0;
3595		break;
3596	case HWTSTAMP_TX_ON:
3597		break;
3598	default:
3599		return -ERANGE;
3600	}
3601
3602	switch (config->rx_filter) {
3603	case HWTSTAMP_FILTER_NONE:
3604		tsync_rx_ctl = 0;
3605		break;
3606	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
3607		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3608		rxmtrl = E1000_RXMTRL_PTP_V1_SYNC_MESSAGE;
3609		is_l4 = true;
3610		break;
3611	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
3612		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
3613		rxmtrl = E1000_RXMTRL_PTP_V1_DELAY_REQ_MESSAGE;
3614		is_l4 = true;
3615		break;
3616	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
3617		/* Also time stamps V2 L2 Path Delay Request/Response */
3618		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3619		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3620		is_l2 = true;
3621		break;
3622	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
3623		/* Also time stamps V2 L2 Path Delay Request/Response. */
3624		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_V2;
3625		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3626		is_l2 = true;
3627		break;
3628	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
3629		/* Hardware cannot filter just V2 L4 Sync messages;
3630		 * fall-through to V2 (both L2 and L4) Sync.
3631		 */
3632	case HWTSTAMP_FILTER_PTP_V2_SYNC:
3633		/* Also time stamps V2 Path Delay Request/Response. */
3634		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3635		rxmtrl = E1000_RXMTRL_PTP_V2_SYNC_MESSAGE;
3636		is_l2 = true;
3637		is_l4 = true;
3638		break;
3639	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
3640		/* Hardware cannot filter just V2 L4 Delay Request messages;
3641		 * fall-through to V2 (both L2 and L4) Delay Request.
3642		 */
3643	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
3644		/* Also time stamps V2 Path Delay Request/Response. */
3645		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L2_L4_V2;
3646		rxmtrl = E1000_RXMTRL_PTP_V2_DELAY_REQ_MESSAGE;
3647		is_l2 = true;
3648		is_l4 = true;
3649		break;
3650	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
3651	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
3652		/* Hardware cannot filter just V2 L4 or L2 Event messages;
3653		 * fall-through to all V2 (both L2 and L4) Events.
3654		 */
3655	case HWTSTAMP_FILTER_PTP_V2_EVENT:
3656		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
3657		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
3658		is_l2 = true;
3659		is_l4 = true;
3660		break;
3661	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
3662		/* For V1, the hardware can only filter Sync messages or
3663		 * Delay Request messages but not both so fall-through to
3664		 * time stamp all packets.
3665		 */
3666	case HWTSTAMP_FILTER_ALL:
3667		is_l2 = true;
3668		is_l4 = true;
3669		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
3670		config->rx_filter = HWTSTAMP_FILTER_ALL;
3671		break;
3672	default:
3673		return -ERANGE;
3674	}
3675
3676	adapter->hwtstamp_config = *config;
3677
3678	/* enable/disable Tx h/w time stamping */
3679	regval = er32(TSYNCTXCTL);
3680	regval &= ~E1000_TSYNCTXCTL_ENABLED;
3681	regval |= tsync_tx_ctl;
3682	ew32(TSYNCTXCTL, regval);
3683	if ((er32(TSYNCTXCTL) & E1000_TSYNCTXCTL_ENABLED) !=
3684	    (regval & E1000_TSYNCTXCTL_ENABLED)) {
3685		e_err("Timesync Tx Control register not set as expected\n");
3686		return -EAGAIN;
3687	}
3688
3689	/* enable/disable Rx h/w time stamping */
3690	regval = er32(TSYNCRXCTL);
3691	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
3692	regval |= tsync_rx_ctl;
3693	ew32(TSYNCRXCTL, regval);
3694	if ((er32(TSYNCRXCTL) & (E1000_TSYNCRXCTL_ENABLED |
3695				 E1000_TSYNCRXCTL_TYPE_MASK)) !=
3696	    (regval & (E1000_TSYNCRXCTL_ENABLED |
3697		       E1000_TSYNCRXCTL_TYPE_MASK))) {
3698		e_err("Timesync Rx Control register not set as expected\n");
3699		return -EAGAIN;
3700	}
3701
3702	/* L2: define ethertype filter for time stamped packets */
3703	if (is_l2)
3704		rxmtrl |= ETH_P_1588;
3705
3706	/* define which PTP packets get time stamped */
3707	ew32(RXMTRL, rxmtrl);
3708
3709	/* Filter by destination port */
3710	if (is_l4) {
3711		rxudp = PTP_EV_PORT;
3712		cpu_to_be16s(&rxudp);
3713	}
3714	ew32(RXUDP, rxudp);
3715
3716	e1e_flush();
3717
3718	/* Clear TSYNCRXCTL_VALID & TSYNCTXCTL_VALID bit */
3719	er32(RXSTMPH);
3720	er32(TXSTMPH);
3721
3722	/* Get and set the System Time Register SYSTIM base frequency */
3723	ret_val = e1000e_get_base_timinca(adapter, &regval);
3724	if (ret_val)
3725		return ret_val;
3726	ew32(TIMINCA, regval);
3727
3728	/* reset the ns time counter */
3729	timecounter_init(&adapter->tc, &adapter->cc,
3730			 ktime_to_ns(ktime_get_real()));
3731
3732	return 0;
3733}
3734
3735/**
3736 * e1000_configure - configure the hardware for Rx and Tx
3737 * @adapter: private board structure
3738 **/
3739static void e1000_configure(struct e1000_adapter *adapter)
3740{
3741	struct e1000_ring *rx_ring = adapter->rx_ring;
3742
3743	e1000e_set_rx_mode(adapter->netdev);
3744
3745	e1000_restore_vlan(adapter);
3746	e1000_init_manageability_pt(adapter);
3747
3748	e1000_configure_tx(adapter);
3749
3750	if (adapter->netdev->features & NETIF_F_RXHASH)
3751		e1000e_setup_rss_hash(adapter);
3752	e1000_setup_rctl(adapter);
3753	e1000_configure_rx(adapter);
3754	adapter->alloc_rx_buf(rx_ring, e1000_desc_unused(rx_ring), GFP_KERNEL);
3755}
3756
3757/**
3758 * e1000e_power_up_phy - restore link in case the phy was powered down
3759 * @adapter: address of board private structure
3760 *
3761 * The phy may be powered down to save power and turn off link when the
3762 * driver is unloaded and wake on lan is not enabled (among others)
3763 * *** this routine MUST be followed by a call to e1000e_reset ***
3764 **/
3765void e1000e_power_up_phy(struct e1000_adapter *adapter)
3766{
3767	if (adapter->hw.phy.ops.power_up)
3768		adapter->hw.phy.ops.power_up(&adapter->hw);
3769
3770	adapter->hw.mac.ops.setup_link(&adapter->hw);
3771}
3772
3773/**
3774 * e1000_power_down_phy - Power down the PHY
3775 *
3776 * Power down the PHY so no link is implied when interface is down.
3777 * The PHY cannot be powered down if management or WoL is active.
3778 */
3779static void e1000_power_down_phy(struct e1000_adapter *adapter)
3780{
 
 
 
 
3781	if (adapter->hw.phy.ops.power_down)
3782		adapter->hw.phy.ops.power_down(&adapter->hw);
3783}
3784
3785/**
3786 * e1000_flush_tx_ring - remove all descriptors from the tx_ring
3787 *
3788 * We want to clear all pending descriptors from the TX ring.
3789 * zeroing happens when the HW reads the regs. We  assign the ring itself as
3790 * the data of the next descriptor. We don't care about the data we are about
3791 * to reset the HW.
3792 */
3793static void e1000_flush_tx_ring(struct e1000_adapter *adapter)
3794{
3795	struct e1000_hw *hw = &adapter->hw;
3796	struct e1000_ring *tx_ring = adapter->tx_ring;
3797	struct e1000_tx_desc *tx_desc = NULL;
3798	u32 tdt, tctl, txd_lower = E1000_TXD_CMD_IFCS;
3799	u16 size = 512;
3800
3801	tctl = er32(TCTL);
3802	ew32(TCTL, tctl | E1000_TCTL_EN);
3803	tdt = er32(TDT(0));
3804	BUG_ON(tdt != tx_ring->next_to_use);
3805	tx_desc =  E1000_TX_DESC(*tx_ring, tx_ring->next_to_use);
3806	tx_desc->buffer_addr = tx_ring->dma;
3807
3808	tx_desc->lower.data = cpu_to_le32(txd_lower | size);
3809	tx_desc->upper.data = 0;
3810	/* flush descriptors to memory before notifying the HW */
3811	wmb();
3812	tx_ring->next_to_use++;
3813	if (tx_ring->next_to_use == tx_ring->count)
3814		tx_ring->next_to_use = 0;
3815	ew32(TDT(0), tx_ring->next_to_use);
3816	mmiowb();
3817	usleep_range(200, 250);
3818}
3819
3820/**
3821 * e1000_flush_rx_ring - remove all descriptors from the rx_ring
3822 *
3823 * Mark all descriptors in the RX ring as consumed and disable the rx ring
3824 */
3825static void e1000_flush_rx_ring(struct e1000_adapter *adapter)
3826{
3827	u32 rctl, rxdctl;
3828	struct e1000_hw *hw = &adapter->hw;
3829
3830	rctl = er32(RCTL);
3831	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3832	e1e_flush();
3833	usleep_range(100, 150);
3834
3835	rxdctl = er32(RXDCTL(0));
3836	/* zero the lower 14 bits (prefetch and host thresholds) */
3837	rxdctl &= 0xffffc000;
3838
3839	/* update thresholds: prefetch threshold to 31, host threshold to 1
3840	 * and make sure the granularity is "descriptors" and not "cache lines"
3841	 */
3842	rxdctl |= (0x1F | (1 << 8) | E1000_RXDCTL_THRESH_UNIT_DESC);
3843
3844	ew32(RXDCTL(0), rxdctl);
3845	/* momentarily enable the RX ring for the changes to take effect */
3846	ew32(RCTL, rctl | E1000_RCTL_EN);
3847	e1e_flush();
3848	usleep_range(100, 150);
3849	ew32(RCTL, rctl & ~E1000_RCTL_EN);
3850}
3851
3852/**
3853 * e1000_flush_desc_rings - remove all descriptors from the descriptor rings
3854 *
3855 * In i219, the descriptor rings must be emptied before resetting the HW
3856 * or before changing the device state to D3 during runtime (runtime PM).
3857 *
3858 * Failure to do this will cause the HW to enter a unit hang state which can
3859 * only be released by PCI reset on the device
3860 *
3861 */
3862
3863static void e1000_flush_desc_rings(struct e1000_adapter *adapter)
3864{
3865	u16 hang_state;
3866	u32 fext_nvm11, tdlen;
3867	struct e1000_hw *hw = &adapter->hw;
3868
3869	/* First, disable MULR fix in FEXTNVM11 */
3870	fext_nvm11 = er32(FEXTNVM11);
3871	fext_nvm11 |= E1000_FEXTNVM11_DISABLE_MULR_FIX;
3872	ew32(FEXTNVM11, fext_nvm11);
3873	/* do nothing if we're not in faulty state, or if the queue is empty */
3874	tdlen = er32(TDLEN(0));
3875	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3876			     &hang_state);
3877	if (!(hang_state & FLUSH_DESC_REQUIRED) || !tdlen)
3878		return;
3879	e1000_flush_tx_ring(adapter);
3880	/* recheck, maybe the fault is caused by the rx ring */
3881	pci_read_config_word(adapter->pdev, PCICFG_DESC_RING_STATUS,
3882			     &hang_state);
3883	if (hang_state & FLUSH_DESC_REQUIRED)
3884		e1000_flush_rx_ring(adapter);
3885}
3886
3887/**
3888 * e1000e_reset - bring the hardware into a known good state
3889 *
3890 * This function boots the hardware and enables some settings that
3891 * require a configuration cycle of the hardware - those cannot be
3892 * set/changed during runtime. After reset the device needs to be
3893 * properly configured for Rx, Tx etc.
3894 */
3895void e1000e_reset(struct e1000_adapter *adapter)
3896{
3897	struct e1000_mac_info *mac = &adapter->hw.mac;
3898	struct e1000_fc_info *fc = &adapter->hw.fc;
3899	struct e1000_hw *hw = &adapter->hw;
3900	u32 tx_space, min_tx_space, min_rx_space;
3901	u32 pba = adapter->pba;
3902	u16 hwm;
3903
3904	/* reset Packet Buffer Allocation to default */
3905	ew32(PBA, pba);
3906
3907	if (adapter->max_frame_size > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) {
3908		/* To maintain wire speed transmits, the Tx FIFO should be
 
3909		 * large enough to accommodate two full transmit packets,
3910		 * rounded up to the next 1KB and expressed in KB.  Likewise,
3911		 * the Rx FIFO should be large enough to accommodate at least
3912		 * one full receive packet and is similarly rounded up and
3913		 * expressed in KB.
3914		 */
3915		pba = er32(PBA);
3916		/* upper 16 bits has Tx packet buffer allocation size in KB */
3917		tx_space = pba >> 16;
3918		/* lower 16 bits has Rx packet buffer allocation size in KB */
3919		pba &= 0xffff;
3920		/* the Tx fifo also stores 16 bytes of information about the Tx
 
3921		 * but don't include ethernet FCS because hardware appends it
3922		 */
3923		min_tx_space = (adapter->max_frame_size +
3924				sizeof(struct e1000_tx_desc) - ETH_FCS_LEN) * 2;
 
3925		min_tx_space = ALIGN(min_tx_space, 1024);
3926		min_tx_space >>= 10;
3927		/* software strips receive CRC, so leave room for it */
3928		min_rx_space = adapter->max_frame_size;
3929		min_rx_space = ALIGN(min_rx_space, 1024);
3930		min_rx_space >>= 10;
3931
3932		/* If current Tx allocation is less than the min Tx FIFO size,
 
3933		 * and the min Tx FIFO size is less than the current Rx FIFO
3934		 * allocation, take space away from current Rx allocation
3935		 */
3936		if ((tx_space < min_tx_space) &&
3937		    ((min_tx_space - tx_space) < pba)) {
3938			pba -= min_tx_space - tx_space;
3939
3940			/* if short on Rx space, Rx wins and must trump Tx
3941			 * adjustment
 
3942			 */
3943			if (pba < min_rx_space)
3944				pba = min_rx_space;
3945		}
3946
3947		ew32(PBA, pba);
3948	}
3949
3950	/* flow control settings
 
3951	 *
3952	 * The high water mark must be low enough to fit one full frame
3953	 * (or the size used for early receive) above it in the Rx FIFO.
3954	 * Set it to the lower of:
3955	 * - 90% of the Rx FIFO size, and
3956	 * - the full Rx FIFO size minus one full frame
3957	 */
3958	if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
3959		fc->pause_time = 0xFFFF;
3960	else
3961		fc->pause_time = E1000_FC_PAUSE_TIME;
3962	fc->send_xon = true;
3963	fc->current_mode = fc->requested_mode;
3964
3965	switch (hw->mac.type) {
3966	case e1000_ich9lan:
3967	case e1000_ich10lan:
3968		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3969			pba = 14;
3970			ew32(PBA, pba);
3971			fc->high_water = 0x2800;
3972			fc->low_water = fc->high_water - 8;
3973			break;
3974		}
3975		/* fall-through */
3976	default:
3977		hwm = min(((pba << 10) * 9 / 10),
3978			  ((pba << 10) - adapter->max_frame_size));
3979
3980		fc->high_water = hwm & E1000_FCRTH_RTH;	/* 8-byte granularity */
3981		fc->low_water = fc->high_water - 8;
3982		break;
3983	case e1000_pchlan:
3984		/* Workaround PCH LOM adapter hangs with certain network
 
3985		 * loads.  If hangs persist, try disabling Tx flow control.
3986		 */
3987		if (adapter->netdev->mtu > ETH_DATA_LEN) {
3988			fc->high_water = 0x3500;
3989			fc->low_water = 0x1500;
3990		} else {
3991			fc->high_water = 0x5000;
3992			fc->low_water = 0x3000;
3993		}
3994		fc->refresh_time = 0x1000;
3995		break;
3996	case e1000_pch2lan:
3997	case e1000_pch_lpt:
3998	case e1000_pch_spt:
 
 
3999		fc->refresh_time = 0x0400;
4000
4001		if (adapter->netdev->mtu <= ETH_DATA_LEN) {
4002			fc->high_water = 0x05C20;
4003			fc->low_water = 0x05048;
4004			fc->pause_time = 0x0650;
4005			break;
4006		}
4007
4008		pba = 14;
4009		ew32(PBA, pba);
4010		fc->high_water = ((pba << 10) * 9 / 10) & E1000_FCRTH_RTH;
4011		fc->low_water = ((pba << 10) * 8 / 10) & E1000_FCRTL_RTL;
4012		break;
4013	}
4014
4015	/* Alignment of Tx data is on an arbitrary byte boundary with the
 
4016	 * maximum size per Tx descriptor limited only to the transmit
4017	 * allocation of the packet buffer minus 96 bytes with an upper
4018	 * limit of 24KB due to receive synchronization limitations.
4019	 */
4020	adapter->tx_fifo_limit = min_t(u32, ((er32(PBA) >> 16) << 10) - 96,
4021				       24 << 10);
4022
4023	/* Disable Adaptive Interrupt Moderation if 2 full packets cannot
 
4024	 * fit in receive buffer.
4025	 */
4026	if (adapter->itr_setting & 0x3) {
4027		if ((adapter->max_frame_size * 2) > (pba << 10)) {
4028			if (!(adapter->flags2 & FLAG2_DISABLE_AIM)) {
4029				dev_info(&adapter->pdev->dev,
4030					 "Interrupt Throttle Rate off\n");
4031				adapter->flags2 |= FLAG2_DISABLE_AIM;
4032				e1000e_write_itr(adapter, 0);
4033			}
4034		} else if (adapter->flags2 & FLAG2_DISABLE_AIM) {
4035			dev_info(&adapter->pdev->dev,
4036				 "Interrupt Throttle Rate on\n");
4037			adapter->flags2 &= ~FLAG2_DISABLE_AIM;
4038			adapter->itr = 20000;
4039			e1000e_write_itr(adapter, adapter->itr);
4040		}
4041	}
4042
4043	if (hw->mac.type == e1000_pch_spt)
4044		e1000_flush_desc_rings(adapter);
4045	/* Allow time for pending master requests to run */
4046	mac->ops.reset_hw(hw);
4047
4048	/* For parts with AMT enabled, let the firmware know
 
4049	 * that the network interface is in control
4050	 */
4051	if (adapter->flags & FLAG_HAS_AMT)
4052		e1000e_get_hw_control(adapter);
4053
4054	ew32(WUC, 0);
4055
4056	if (mac->ops.init_hw(hw))
4057		e_err("Hardware Error\n");
4058
4059	e1000_update_mng_vlan(adapter);
4060
4061	/* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
4062	ew32(VET, ETH_P_8021Q);
4063
4064	e1000e_reset_adaptive(hw);
4065
4066	/* initialize systim and reset the ns time counter */
4067	e1000e_config_hwtstamp(adapter, &adapter->hwtstamp_config);
4068
4069	/* Set EEE advertisement as appropriate */
4070	if (adapter->flags2 & FLAG2_HAS_EEE) {
4071		s32 ret_val;
4072		u16 adv_addr;
4073
4074		switch (hw->phy.type) {
4075		case e1000_phy_82579:
4076			adv_addr = I82579_EEE_ADVERTISEMENT;
4077			break;
4078		case e1000_phy_i217:
4079			adv_addr = I217_EEE_ADVERTISEMENT;
4080			break;
4081		default:
4082			dev_err(&adapter->pdev->dev,
4083				"Invalid PHY type setting EEE advertisement\n");
4084			return;
4085		}
4086
4087		ret_val = hw->phy.ops.acquire(hw);
4088		if (ret_val) {
4089			dev_err(&adapter->pdev->dev,
4090				"EEE advertisement - unable to acquire PHY\n");
4091			return;
4092		}
4093
4094		e1000_write_emi_reg_locked(hw, adv_addr,
4095					   hw->dev_spec.ich8lan.eee_disable ?
4096					   0 : adapter->eee_advert);
4097
4098		hw->phy.ops.release(hw);
4099	}
4100
4101	if (!netif_running(adapter->netdev) &&
4102	    !test_bit(__E1000_TESTING, &adapter->state))
4103		e1000_power_down_phy(adapter);
 
 
4104
4105	e1000_get_phy_info(hw);
4106
4107	if ((adapter->flags & FLAG_HAS_SMART_POWER_DOWN) &&
4108	    !(adapter->flags & FLAG_SMART_POWER_DOWN)) {
4109		u16 phy_data = 0;
4110		/* speed up time to link by disabling smart power down, ignore
 
4111		 * the return value of this function because there is nothing
4112		 * different we would do if it failed
4113		 */
4114		e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
4115		phy_data &= ~IGP02E1000_PM_SPD;
4116		e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
4117	}
4118	if (hw->mac.type == e1000_pch_spt && adapter->int_mode == 0) {
4119		u32 reg;
4120
4121		/* Fextnvm7 @ 0xe4[2] = 1 */
4122		reg = er32(FEXTNVM7);
4123		reg |= E1000_FEXTNVM7_SIDE_CLK_UNGATE;
4124		ew32(FEXTNVM7, reg);
4125		/* Fextnvm9 @ 0x5bb4[13:12] = 11 */
4126		reg = er32(FEXTNVM9);
4127		reg |= E1000_FEXTNVM9_IOSFSB_CLKGATE_DIS |
4128		       E1000_FEXTNVM9_IOSFSB_CLKREQ_DIS;
4129		ew32(FEXTNVM9, reg);
4130	}
4131
4132}
4133
4134/**
4135 * e1000e_trigger_lsc - trigger an LSC interrupt
4136 * @adapter: 
4137 *
4138 * Fire a link status change interrupt to start the watchdog.
4139 **/
4140static void e1000e_trigger_lsc(struct e1000_adapter *adapter)
4141{
4142	struct e1000_hw *hw = &adapter->hw;
4143
4144	if (adapter->msix_entries)
4145		ew32(ICS, E1000_ICS_OTHER);
4146	else
4147		ew32(ICS, E1000_ICS_LSC);
4148}
4149
4150void e1000e_up(struct e1000_adapter *adapter)
4151{
4152	/* hardware has been reset, we need to reload some things */
4153	e1000_configure(adapter);
4154
4155	clear_bit(__E1000_DOWN, &adapter->state);
4156
4157	if (adapter->msix_entries)
4158		e1000_configure_msix(adapter);
4159	e1000_irq_enable(adapter);
4160
4161	netif_start_queue(adapter->netdev);
4162
4163	e1000e_trigger_lsc(adapter);
 
 
 
 
 
 
4164}
4165
4166static void e1000e_flush_descriptors(struct e1000_adapter *adapter)
4167{
4168	struct e1000_hw *hw = &adapter->hw;
4169
4170	if (!(adapter->flags2 & FLAG2_DMA_BURST))
4171		return;
4172
4173	/* flush pending descriptor writebacks to memory */
4174	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4175	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4176
4177	/* execute the writes immediately */
4178	e1e_flush();
4179
4180	/* due to rare timing issues, write to TIDV/RDTR again to ensure the
 
4181	 * write is successful
4182	 */
4183	ew32(TIDV, adapter->tx_int_delay | E1000_TIDV_FPD);
4184	ew32(RDTR, adapter->rx_int_delay | E1000_RDTR_FPD);
4185
4186	/* execute the writes immediately */
4187	e1e_flush();
4188}
4189
4190static void e1000e_update_stats(struct e1000_adapter *adapter);
4191
4192/**
4193 * e1000e_down - quiesce the device and optionally reset the hardware
4194 * @adapter: board private structure
4195 * @reset: boolean flag to reset the hardware or not
4196 */
4197void e1000e_down(struct e1000_adapter *adapter, bool reset)
4198{
4199	struct net_device *netdev = adapter->netdev;
4200	struct e1000_hw *hw = &adapter->hw;
4201	u32 tctl, rctl;
4202
4203	/* signal that we're down so the interrupt handler does not
 
4204	 * reschedule our watchdog timer
4205	 */
4206	set_bit(__E1000_DOWN, &adapter->state);
4207
4208	netif_carrier_off(netdev);
4209
4210	/* disable receives in the hardware */
4211	rctl = er32(RCTL);
4212	if (!(adapter->flags2 & FLAG2_NO_DISABLE_RX))
4213		ew32(RCTL, rctl & ~E1000_RCTL_EN);
4214	/* flush and sleep below */
4215
4216	netif_stop_queue(netdev);
4217
4218	/* disable transmits in the hardware */
4219	tctl = er32(TCTL);
4220	tctl &= ~E1000_TCTL_EN;
4221	ew32(TCTL, tctl);
4222
4223	/* flush both disables and wait for them to finish */
4224	e1e_flush();
4225	usleep_range(10000, 20000);
4226
4227	e1000_irq_disable(adapter);
4228
4229	napi_synchronize(&adapter->napi);
4230
4231	del_timer_sync(&adapter->watchdog_timer);
4232	del_timer_sync(&adapter->phy_info_timer);
4233
 
 
4234	spin_lock(&adapter->stats64_lock);
4235	e1000e_update_stats(adapter);
4236	spin_unlock(&adapter->stats64_lock);
4237
4238	e1000e_flush_descriptors(adapter);
 
 
4239
4240	adapter->link_speed = 0;
4241	adapter->link_duplex = 0;
4242
4243	/* Disable Si errata workaround on PCHx for jumbo frame flow */
4244	if ((hw->mac.type >= e1000_pch2lan) &&
4245	    (adapter->netdev->mtu > ETH_DATA_LEN) &&
4246	    e1000_lv_jumbo_workaround_ich8lan(hw, false))
4247		e_dbg("failed to disable jumbo frame workaround mode\n");
4248
4249	if (!pci_channel_offline(adapter->pdev)) {
4250		if (reset)
4251			e1000e_reset(adapter);
4252		else if (hw->mac.type == e1000_pch_spt)
4253			e1000_flush_desc_rings(adapter);
4254	}
4255	e1000_clean_tx_ring(adapter->tx_ring);
4256	e1000_clean_rx_ring(adapter->rx_ring);
4257}
4258
4259void e1000e_reinit_locked(struct e1000_adapter *adapter)
4260{
4261	might_sleep();
4262	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4263		usleep_range(1000, 2000);
4264	e1000e_down(adapter, true);
4265	e1000e_up(adapter);
4266	clear_bit(__E1000_RESETTING, &adapter->state);
4267}
4268
4269/**
4270 * e1000e_cyclecounter_read - read raw cycle counter (used by time counter)
4271 * @cc: cyclecounter structure
4272 **/
4273static cycle_t e1000e_cyclecounter_read(const struct cyclecounter *cc)
4274{
4275	struct e1000_adapter *adapter = container_of(cc, struct e1000_adapter,
4276						     cc);
4277	struct e1000_hw *hw = &adapter->hw;
4278	u32 systimel_1, systimel_2, systimeh;
4279	cycle_t systim, systim_next;
4280	/* SYSTIMH latching upon SYSTIML read does not work well.
4281	 * This means that if SYSTIML overflows after we read it but before
4282	 * we read SYSTIMH, the value of SYSTIMH has been incremented and we
4283	 * will experience a huge non linear increment in the systime value
4284	 * to fix that we test for overflow and if true, we re-read systime.
4285	 */
4286	systimel_1 = er32(SYSTIML);
4287	systimeh = er32(SYSTIMH);
4288	systimel_2 = er32(SYSTIML);
4289	/* Check for overflow. If there was no overflow, use the values */
4290	if (systimel_1 < systimel_2) {
4291		systim = (cycle_t)systimel_1;
4292		systim |= (cycle_t)systimeh << 32;
4293	} else {
4294		/* There was an overflow, read again SYSTIMH, and use
4295		 * systimel_2
4296		 */
4297		systimeh = er32(SYSTIMH);
4298		systim = (cycle_t)systimel_2;
4299		systim |= (cycle_t)systimeh << 32;
4300	}
4301
4302	if ((hw->mac.type == e1000_82574) || (hw->mac.type == e1000_82583)) {
4303		u64 incvalue, time_delta, rem, temp;
4304		int i;
4305
4306		/* errata for 82574/82583 possible bad bits read from SYSTIMH/L
4307		 * check to see that the time is incrementing at a reasonable
4308		 * rate and is a multiple of incvalue
4309		 */
4310		incvalue = er32(TIMINCA) & E1000_TIMINCA_INCVALUE_MASK;
4311		for (i = 0; i < E1000_MAX_82574_SYSTIM_REREADS; i++) {
4312			/* latch SYSTIMH on read of SYSTIML */
4313			systim_next = (cycle_t)er32(SYSTIML);
4314			systim_next |= (cycle_t)er32(SYSTIMH) << 32;
4315
4316			time_delta = systim_next - systim;
4317			temp = time_delta;
4318			rem = do_div(temp, incvalue);
4319
4320			systim = systim_next;
4321
4322			if ((time_delta < E1000_82574_SYSTIM_EPSILON) &&
4323			    (rem == 0))
4324				break;
4325		}
4326	}
4327	return systim;
4328}
4329
4330/**
4331 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
4332 * @adapter: board private structure to initialize
4333 *
4334 * e1000_sw_init initializes the Adapter private data structure.
4335 * Fields are initialized based on PCI device information and
4336 * OS network device settings (MTU size).
4337 **/
4338static int e1000_sw_init(struct e1000_adapter *adapter)
4339{
4340	struct net_device *netdev = adapter->netdev;
4341
4342	adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
4343	adapter->rx_ps_bsize0 = 128;
4344	adapter->max_frame_size = netdev->mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
4345	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4346	adapter->tx_ring_count = E1000_DEFAULT_TXD;
4347	adapter->rx_ring_count = E1000_DEFAULT_RXD;
4348
4349	spin_lock_init(&adapter->stats64_lock);
4350
4351	e1000e_set_interrupt_capability(adapter);
4352
4353	if (e1000_alloc_queues(adapter))
4354		return -ENOMEM;
4355
4356	/* Setup hardware time stamping cyclecounter */
4357	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
4358		adapter->cc.read = e1000e_cyclecounter_read;
4359		adapter->cc.mask = CYCLECOUNTER_MASK(64);
4360		adapter->cc.mult = 1;
4361		/* cc.shift set in e1000e_get_base_tininca() */
4362
4363		spin_lock_init(&adapter->systim_lock);
4364		INIT_WORK(&adapter->tx_hwtstamp_work, e1000e_tx_hwtstamp_work);
4365	}
4366
4367	/* Explicitly disable IRQ since the NIC can be in any state. */
4368	e1000_irq_disable(adapter);
4369
4370	set_bit(__E1000_DOWN, &adapter->state);
4371	return 0;
4372}
4373
4374/**
4375 * e1000_intr_msi_test - Interrupt Handler
4376 * @irq: interrupt number
4377 * @data: pointer to a network interface device structure
4378 **/
4379static irqreturn_t e1000_intr_msi_test(int __always_unused irq, void *data)
4380{
4381	struct net_device *netdev = data;
4382	struct e1000_adapter *adapter = netdev_priv(netdev);
4383	struct e1000_hw *hw = &adapter->hw;
4384	u32 icr = er32(ICR);
4385
4386	e_dbg("icr is %08X\n", icr);
4387	if (icr & E1000_ICR_RXSEQ) {
4388		adapter->flags &= ~FLAG_MSI_TEST_FAILED;
4389		/* Force memory writes to complete before acknowledging the
4390		 * interrupt is handled.
4391		 */
4392		wmb();
4393	}
4394
4395	return IRQ_HANDLED;
4396}
4397
4398/**
4399 * e1000_test_msi_interrupt - Returns 0 for successful test
4400 * @adapter: board private struct
4401 *
4402 * code flow taken from tg3.c
4403 **/
4404static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
4405{
4406	struct net_device *netdev = adapter->netdev;
4407	struct e1000_hw *hw = &adapter->hw;
4408	int err;
4409
4410	/* poll_enable hasn't been called yet, so don't need disable */
4411	/* clear any pending events */
4412	er32(ICR);
4413
4414	/* free the real vector and request a test handler */
4415	e1000_free_irq(adapter);
4416	e1000e_reset_interrupt_capability(adapter);
4417
4418	/* Assume that the test fails, if it succeeds then the test
4419	 * MSI irq handler will unset this flag
4420	 */
4421	adapter->flags |= FLAG_MSI_TEST_FAILED;
4422
4423	err = pci_enable_msi(adapter->pdev);
4424	if (err)
4425		goto msi_test_failed;
4426
4427	err = request_irq(adapter->pdev->irq, e1000_intr_msi_test, 0,
4428			  netdev->name, netdev);
4429	if (err) {
4430		pci_disable_msi(adapter->pdev);
4431		goto msi_test_failed;
4432	}
4433
4434	/* Force memory writes to complete before enabling and firing an
4435	 * interrupt.
4436	 */
4437	wmb();
4438
4439	e1000_irq_enable(adapter);
4440
4441	/* fire an unusual interrupt on the test handler */
4442	ew32(ICS, E1000_ICS_RXSEQ);
4443	e1e_flush();
4444	msleep(100);
4445
4446	e1000_irq_disable(adapter);
4447
4448	rmb();			/* read flags after interrupt has been fired */
4449
4450	if (adapter->flags & FLAG_MSI_TEST_FAILED) {
4451		adapter->int_mode = E1000E_INT_MODE_LEGACY;
4452		e_info("MSI interrupt test failed, using legacy interrupt.\n");
4453	} else {
4454		e_dbg("MSI interrupt test succeeded!\n");
4455	}
4456
4457	free_irq(adapter->pdev->irq, netdev);
4458	pci_disable_msi(adapter->pdev);
4459
4460msi_test_failed:
4461	e1000e_set_interrupt_capability(adapter);
4462	return e1000_request_irq(adapter);
4463}
4464
4465/**
4466 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
4467 * @adapter: board private struct
4468 *
4469 * code flow taken from tg3.c, called with e1000 interrupts disabled.
4470 **/
4471static int e1000_test_msi(struct e1000_adapter *adapter)
4472{
4473	int err;
4474	u16 pci_cmd;
4475
4476	if (!(adapter->flags & FLAG_MSI_ENABLED))
4477		return 0;
4478
4479	/* disable SERR in case the MSI write causes a master abort */
4480	pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4481	if (pci_cmd & PCI_COMMAND_SERR)
4482		pci_write_config_word(adapter->pdev, PCI_COMMAND,
4483				      pci_cmd & ~PCI_COMMAND_SERR);
4484
4485	err = e1000_test_msi_interrupt(adapter);
4486
4487	/* re-enable SERR */
4488	if (pci_cmd & PCI_COMMAND_SERR) {
4489		pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
4490		pci_cmd |= PCI_COMMAND_SERR;
4491		pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
4492	}
4493
4494	return err;
4495}
4496
4497/**
4498 * e1000_open - Called when a network interface is made active
4499 * @netdev: network interface device structure
4500 *
4501 * Returns 0 on success, negative value on failure
4502 *
4503 * The open entry point is called when a network interface is made
4504 * active by the system (IFF_UP).  At this point all resources needed
4505 * for transmit and receive operations are allocated, the interrupt
4506 * handler is registered with the OS, the watchdog timer is started,
4507 * and the stack is notified that the interface is ready.
4508 **/
4509static int e1000_open(struct net_device *netdev)
4510{
4511	struct e1000_adapter *adapter = netdev_priv(netdev);
4512	struct e1000_hw *hw = &adapter->hw;
4513	struct pci_dev *pdev = adapter->pdev;
4514	int err;
4515
4516	/* disallow open during test */
4517	if (test_bit(__E1000_TESTING, &adapter->state))
4518		return -EBUSY;
4519
4520	pm_runtime_get_sync(&pdev->dev);
4521
4522	netif_carrier_off(netdev);
4523
4524	/* allocate transmit descriptors */
4525	err = e1000e_setup_tx_resources(adapter->tx_ring);
4526	if (err)
4527		goto err_setup_tx;
4528
4529	/* allocate receive descriptors */
4530	err = e1000e_setup_rx_resources(adapter->rx_ring);
4531	if (err)
4532		goto err_setup_rx;
4533
4534	/* If AMT is enabled, let the firmware know that the network
 
4535	 * interface is now open and reset the part to a known state.
4536	 */
4537	if (adapter->flags & FLAG_HAS_AMT) {
4538		e1000e_get_hw_control(adapter);
4539		e1000e_reset(adapter);
4540	}
4541
4542	e1000e_power_up_phy(adapter);
4543
4544	adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4545	if ((adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
 
4546		e1000_update_mng_vlan(adapter);
4547
4548	/* DMA latency requirement to workaround jumbo issue */
4549	pm_qos_add_request(&adapter->pm_qos_req, PM_QOS_CPU_DMA_LATENCY,
4550			   PM_QOS_DEFAULT_VALUE);
 
 
4551
4552	/* before we allocate an interrupt, we must be ready to handle it.
 
4553	 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
4554	 * as soon as we call pci_request_irq, so we have to setup our
4555	 * clean_rx handler before we do so.
4556	 */
4557	e1000_configure(adapter);
4558
4559	err = e1000_request_irq(adapter);
4560	if (err)
4561		goto err_req_irq;
4562
4563	/* Work around PCIe errata with MSI interrupts causing some chipsets to
 
4564	 * ignore e1000e MSI messages, which means we need to test our MSI
4565	 * interrupt now
4566	 */
4567	if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
4568		err = e1000_test_msi(adapter);
4569		if (err) {
4570			e_err("Interrupt allocation failed\n");
4571			goto err_req_irq;
4572		}
4573	}
4574
4575	/* From here on the code is the same as e1000e_up() */
4576	clear_bit(__E1000_DOWN, &adapter->state);
4577
4578	napi_enable(&adapter->napi);
4579
4580	e1000_irq_enable(adapter);
4581
4582	adapter->tx_hang_recheck = false;
4583	netif_start_queue(netdev);
4584
4585	hw->mac.get_link_status = true;
4586	pm_runtime_put(&pdev->dev);
4587
4588	e1000e_trigger_lsc(adapter);
 
 
 
 
4589
4590	return 0;
4591
4592err_req_irq:
4593	pm_qos_remove_request(&adapter->pm_qos_req);
4594	e1000e_release_hw_control(adapter);
4595	e1000_power_down_phy(adapter);
4596	e1000e_free_rx_resources(adapter->rx_ring);
4597err_setup_rx:
4598	e1000e_free_tx_resources(adapter->tx_ring);
4599err_setup_tx:
4600	e1000e_reset(adapter);
4601	pm_runtime_put_sync(&pdev->dev);
4602
4603	return err;
4604}
4605
4606/**
4607 * e1000_close - Disables a network interface
4608 * @netdev: network interface device structure
4609 *
4610 * Returns 0, this is not allowed to fail
4611 *
4612 * The close entry point is called when an interface is de-activated
4613 * by the OS.  The hardware is still under the drivers control, but
4614 * needs to be disabled.  A global MAC reset is issued to stop the
4615 * hardware, and all transmit and receive resources are freed.
4616 **/
4617static int e1000_close(struct net_device *netdev)
4618{
4619	struct e1000_adapter *adapter = netdev_priv(netdev);
4620	struct pci_dev *pdev = adapter->pdev;
4621	int count = E1000_CHECK_RESET_COUNT;
4622
4623	while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
4624		usleep_range(10000, 20000);
4625
4626	WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4627
4628	pm_runtime_get_sync(&pdev->dev);
4629
 
 
4630	if (!test_bit(__E1000_DOWN, &adapter->state)) {
4631		e1000e_down(adapter, true);
4632		e1000_free_irq(adapter);
4633
4634		/* Link status message must follow this format */
4635		pr_info("%s NIC Link is Down\n", adapter->netdev->name);
4636	}
4637
4638	napi_disable(&adapter->napi);
4639
4640	e1000e_free_tx_resources(adapter->tx_ring);
4641	e1000e_free_rx_resources(adapter->rx_ring);
4642
4643	/* kill manageability vlan ID if supported, but not if a vlan with
 
4644	 * the same ID is registered on the host OS (let 8021q kill it)
4645	 */
4646	if (adapter->hw.mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN)
4647		e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
4648				       adapter->mng_vlan_id);
4649
4650	/* If AMT is enabled, let the firmware know that the network
 
4651	 * interface is now closed
4652	 */
4653	if ((adapter->flags & FLAG_HAS_AMT) &&
4654	    !test_bit(__E1000_TESTING, &adapter->state))
4655		e1000e_release_hw_control(adapter);
4656
4657	pm_qos_remove_request(&adapter->pm_qos_req);
 
4658
4659	pm_runtime_put_sync(&pdev->dev);
4660
4661	return 0;
4662}
4663
4664/**
4665 * e1000_set_mac - Change the Ethernet Address of the NIC
4666 * @netdev: network interface device structure
4667 * @p: pointer to an address structure
4668 *
4669 * Returns 0 on success, negative on failure
4670 **/
4671static int e1000_set_mac(struct net_device *netdev, void *p)
4672{
4673	struct e1000_adapter *adapter = netdev_priv(netdev);
4674	struct e1000_hw *hw = &adapter->hw;
4675	struct sockaddr *addr = p;
4676
4677	if (!is_valid_ether_addr(addr->sa_data))
4678		return -EADDRNOTAVAIL;
4679
4680	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
4681	memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
4682
4683	hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
4684
4685	if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
4686		/* activate the work around */
4687		e1000e_set_laa_state_82571(&adapter->hw, 1);
4688
4689		/* Hold a copy of the LAA in RAR[14] This is done so that
 
4690		 * between the time RAR[0] gets clobbered  and the time it
4691		 * gets fixed (in e1000_watchdog), the actual LAA is in one
4692		 * of the RARs and no incoming packets directed to this port
4693		 * are dropped. Eventually the LAA will be in RAR[0] and
4694		 * RAR[14]
4695		 */
4696		hw->mac.ops.rar_set(&adapter->hw, adapter->hw.mac.addr,
4697				    adapter->hw.mac.rar_entry_count - 1);
4698	}
4699
4700	return 0;
4701}
4702
4703/**
4704 * e1000e_update_phy_task - work thread to update phy
4705 * @work: pointer to our work struct
4706 *
4707 * this worker thread exists because we must acquire a
4708 * semaphore to read the phy, which we could msleep while
4709 * waiting for it, and we can't msleep in a timer.
4710 **/
4711static void e1000e_update_phy_task(struct work_struct *work)
4712{
4713	struct e1000_adapter *adapter = container_of(work,
4714						     struct e1000_adapter,
4715						     update_phy_task);
4716	struct e1000_hw *hw = &adapter->hw;
4717
4718	if (test_bit(__E1000_DOWN, &adapter->state))
4719		return;
4720
4721	e1000_get_phy_info(hw);
4722
4723	/* Enable EEE on 82579 after link up */
4724	if (hw->phy.type >= e1000_phy_82579)
4725		e1000_set_eee_pchlan(hw);
4726}
4727
4728/**
4729 * e1000_update_phy_info - timre call-back to update PHY info
4730 * @data: pointer to adapter cast into an unsigned long
4731 *
4732 * Need to wait a few seconds after link up to get diagnostic information from
4733 * the phy
4734 **/
4735static void e1000_update_phy_info(unsigned long data)
4736{
4737	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
4738
4739	if (test_bit(__E1000_DOWN, &adapter->state))
4740		return;
4741
4742	schedule_work(&adapter->update_phy_task);
4743}
4744
4745/**
4746 * e1000e_update_phy_stats - Update the PHY statistics counters
4747 * @adapter: board private structure
4748 *
4749 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
4750 **/
4751static void e1000e_update_phy_stats(struct e1000_adapter *adapter)
4752{
4753	struct e1000_hw *hw = &adapter->hw;
4754	s32 ret_val;
4755	u16 phy_data;
4756
4757	ret_val = hw->phy.ops.acquire(hw);
4758	if (ret_val)
4759		return;
4760
4761	/* A page set is expensive so check if already on desired page.
 
4762	 * If not, set to the page with the PHY status registers.
4763	 */
4764	hw->phy.addr = 1;
4765	ret_val = e1000e_read_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT,
4766					   &phy_data);
4767	if (ret_val)
4768		goto release;
4769	if (phy_data != (HV_STATS_PAGE << IGP_PAGE_SHIFT)) {
4770		ret_val = hw->phy.ops.set_page(hw,
4771					       HV_STATS_PAGE << IGP_PAGE_SHIFT);
4772		if (ret_val)
4773			goto release;
4774	}
4775
4776	/* Single Collision Count */
4777	hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
4778	ret_val = hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
4779	if (!ret_val)
4780		adapter->stats.scc += phy_data;
4781
4782	/* Excessive Collision Count */
4783	hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
4784	ret_val = hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
4785	if (!ret_val)
4786		adapter->stats.ecol += phy_data;
4787
4788	/* Multiple Collision Count */
4789	hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
4790	ret_val = hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
4791	if (!ret_val)
4792		adapter->stats.mcc += phy_data;
4793
4794	/* Late Collision Count */
4795	hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
4796	ret_val = hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
4797	if (!ret_val)
4798		adapter->stats.latecol += phy_data;
4799
4800	/* Collision Count - also used for adaptive IFS */
4801	hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
4802	ret_val = hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
4803	if (!ret_val)
4804		hw->mac.collision_delta = phy_data;
4805
4806	/* Defer Count */
4807	hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
4808	ret_val = hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
4809	if (!ret_val)
4810		adapter->stats.dc += phy_data;
4811
4812	/* Transmit with no CRS */
4813	hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
4814	ret_val = hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
4815	if (!ret_val)
4816		adapter->stats.tncrs += phy_data;
4817
4818release:
4819	hw->phy.ops.release(hw);
4820}
4821
4822/**
4823 * e1000e_update_stats - Update the board statistics counters
4824 * @adapter: board private structure
4825 **/
4826static void e1000e_update_stats(struct e1000_adapter *adapter)
4827{
4828	struct net_device *netdev = adapter->netdev;
4829	struct e1000_hw *hw = &adapter->hw;
4830	struct pci_dev *pdev = adapter->pdev;
4831
4832	/* Prevent stats update while adapter is being reset, or if the pci
 
4833	 * connection is down.
4834	 */
4835	if (adapter->link_speed == 0)
4836		return;
4837	if (pci_channel_offline(pdev))
4838		return;
4839
4840	adapter->stats.crcerrs += er32(CRCERRS);
4841	adapter->stats.gprc += er32(GPRC);
4842	adapter->stats.gorc += er32(GORCL);
4843	er32(GORCH);		/* Clear gorc */
4844	adapter->stats.bprc += er32(BPRC);
4845	adapter->stats.mprc += er32(MPRC);
4846	adapter->stats.roc += er32(ROC);
4847
4848	adapter->stats.mpc += er32(MPC);
4849
4850	/* Half-duplex statistics */
4851	if (adapter->link_duplex == HALF_DUPLEX) {
4852		if (adapter->flags2 & FLAG2_HAS_PHY_STATS) {
4853			e1000e_update_phy_stats(adapter);
4854		} else {
4855			adapter->stats.scc += er32(SCC);
4856			adapter->stats.ecol += er32(ECOL);
4857			adapter->stats.mcc += er32(MCC);
4858			adapter->stats.latecol += er32(LATECOL);
4859			adapter->stats.dc += er32(DC);
4860
4861			hw->mac.collision_delta = er32(COLC);
4862
4863			if ((hw->mac.type != e1000_82574) &&
4864			    (hw->mac.type != e1000_82583))
4865				adapter->stats.tncrs += er32(TNCRS);
4866		}
4867		adapter->stats.colc += hw->mac.collision_delta;
4868	}
4869
4870	adapter->stats.xonrxc += er32(XONRXC);
4871	adapter->stats.xontxc += er32(XONTXC);
4872	adapter->stats.xoffrxc += er32(XOFFRXC);
4873	adapter->stats.xofftxc += er32(XOFFTXC);
4874	adapter->stats.gptc += er32(GPTC);
4875	adapter->stats.gotc += er32(GOTCL);
4876	er32(GOTCH);		/* Clear gotc */
4877	adapter->stats.rnbc += er32(RNBC);
4878	adapter->stats.ruc += er32(RUC);
4879
4880	adapter->stats.mptc += er32(MPTC);
4881	adapter->stats.bptc += er32(BPTC);
4882
4883	/* used for adaptive IFS */
4884
4885	hw->mac.tx_packet_delta = er32(TPT);
4886	adapter->stats.tpt += hw->mac.tx_packet_delta;
4887
4888	adapter->stats.algnerrc += er32(ALGNERRC);
4889	adapter->stats.rxerrc += er32(RXERRC);
4890	adapter->stats.cexterr += er32(CEXTERR);
4891	adapter->stats.tsctc += er32(TSCTC);
4892	adapter->stats.tsctfc += er32(TSCTFC);
4893
4894	/* Fill out the OS statistics structure */
4895	netdev->stats.multicast = adapter->stats.mprc;
4896	netdev->stats.collisions = adapter->stats.colc;
4897
4898	/* Rx Errors */
4899
4900	/* RLEC on some newer hardware can be incorrect so build
 
4901	 * our own version based on RUC and ROC
4902	 */
4903	netdev->stats.rx_errors = adapter->stats.rxerrc +
4904	    adapter->stats.crcerrs + adapter->stats.algnerrc +
4905	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
 
4906	netdev->stats.rx_length_errors = adapter->stats.ruc +
4907	    adapter->stats.roc;
4908	netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
4909	netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
4910	netdev->stats.rx_missed_errors = adapter->stats.mpc;
4911
4912	/* Tx Errors */
4913	netdev->stats.tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
4914	netdev->stats.tx_aborted_errors = adapter->stats.ecol;
4915	netdev->stats.tx_window_errors = adapter->stats.latecol;
4916	netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
4917
4918	/* Tx Dropped needs to be maintained elsewhere */
4919
4920	/* Management Stats */
4921	adapter->stats.mgptc += er32(MGTPTC);
4922	adapter->stats.mgprc += er32(MGTPRC);
4923	adapter->stats.mgpdc += er32(MGTPDC);
4924
4925	/* Correctable ECC Errors */
4926	if ((hw->mac.type == e1000_pch_lpt) ||
4927	    (hw->mac.type == e1000_pch_spt)) {
4928		u32 pbeccsts = er32(PBECCSTS);
4929
4930		adapter->corr_errors +=
4931		    pbeccsts & E1000_PBECCSTS_CORR_ERR_CNT_MASK;
4932		adapter->uncorr_errors +=
4933		    (pbeccsts & E1000_PBECCSTS_UNCORR_ERR_CNT_MASK) >>
4934		    E1000_PBECCSTS_UNCORR_ERR_CNT_SHIFT;
4935	}
4936}
4937
4938/**
4939 * e1000_phy_read_status - Update the PHY register status snapshot
4940 * @adapter: board private structure
4941 **/
4942static void e1000_phy_read_status(struct e1000_adapter *adapter)
4943{
4944	struct e1000_hw *hw = &adapter->hw;
4945	struct e1000_phy_regs *phy = &adapter->phy_regs;
4946
4947	if (!pm_runtime_suspended((&adapter->pdev->dev)->parent) &&
4948	    (er32(STATUS) & E1000_STATUS_LU) &&
4949	    (adapter->hw.phy.media_type == e1000_media_type_copper)) {
4950		int ret_val;
4951
4952		ret_val = e1e_rphy(hw, MII_BMCR, &phy->bmcr);
4953		ret_val |= e1e_rphy(hw, MII_BMSR, &phy->bmsr);
4954		ret_val |= e1e_rphy(hw, MII_ADVERTISE, &phy->advertise);
4955		ret_val |= e1e_rphy(hw, MII_LPA, &phy->lpa);
4956		ret_val |= e1e_rphy(hw, MII_EXPANSION, &phy->expansion);
4957		ret_val |= e1e_rphy(hw, MII_CTRL1000, &phy->ctrl1000);
4958		ret_val |= e1e_rphy(hw, MII_STAT1000, &phy->stat1000);
4959		ret_val |= e1e_rphy(hw, MII_ESTATUS, &phy->estatus);
4960		if (ret_val)
4961			e_warn("Error reading PHY register\n");
4962	} else {
4963		/* Do not read PHY registers if link is not up
 
4964		 * Set values to typical power-on defaults
4965		 */
4966		phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
4967		phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
4968			     BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
4969			     BMSR_ERCAP);
4970		phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
4971				  ADVERTISE_ALL | ADVERTISE_CSMA);
4972		phy->lpa = 0;
4973		phy->expansion = EXPANSION_ENABLENPAGE;
4974		phy->ctrl1000 = ADVERTISE_1000FULL;
4975		phy->stat1000 = 0;
4976		phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
4977	}
4978}
4979
4980static void e1000_print_link_info(struct e1000_adapter *adapter)
4981{
4982	struct e1000_hw *hw = &adapter->hw;
4983	u32 ctrl = er32(CTRL);
4984
4985	/* Link status message must follow this format for user tools */
4986	pr_info("%s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4987		adapter->netdev->name, adapter->link_speed,
 
4988		adapter->link_duplex == FULL_DUPLEX ? "Full" : "Half",
4989		(ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE) ? "Rx/Tx" :
4990		(ctrl & E1000_CTRL_RFCE) ? "Rx" :
4991		(ctrl & E1000_CTRL_TFCE) ? "Tx" : "None");
4992}
4993
4994static bool e1000e_has_link(struct e1000_adapter *adapter)
4995{
4996	struct e1000_hw *hw = &adapter->hw;
4997	bool link_active = false;
4998	s32 ret_val = 0;
4999
5000	/* get_link_status is set on LSC (link status) interrupt or
 
5001	 * Rx sequence error interrupt.  get_link_status will stay
5002	 * false until the check_for_link establishes link
5003	 * for copper adapters ONLY
5004	 */
5005	switch (hw->phy.media_type) {
5006	case e1000_media_type_copper:
5007		if (hw->mac.get_link_status) {
5008			ret_val = hw->mac.ops.check_for_link(hw);
5009			link_active = !hw->mac.get_link_status;
5010		} else {
5011			link_active = true;
5012		}
5013		break;
5014	case e1000_media_type_fiber:
5015		ret_val = hw->mac.ops.check_for_link(hw);
5016		link_active = !!(er32(STATUS) & E1000_STATUS_LU);
5017		break;
5018	case e1000_media_type_internal_serdes:
5019		ret_val = hw->mac.ops.check_for_link(hw);
5020		link_active = adapter->hw.mac.serdes_has_link;
5021		break;
5022	default:
5023	case e1000_media_type_unknown:
5024		break;
5025	}
5026
5027	if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
5028	    (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
5029		/* See e1000_kmrn_lock_loss_workaround_ich8lan() */
5030		e_info("Gigabit has been disabled, downgrading speed\n");
5031	}
5032
5033	return link_active;
5034}
5035
5036static void e1000e_enable_receives(struct e1000_adapter *adapter)
5037{
5038	/* make sure the receive unit is started */
5039	if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
5040	    (adapter->flags & FLAG_RESTART_NOW)) {
5041		struct e1000_hw *hw = &adapter->hw;
5042		u32 rctl = er32(RCTL);
5043
5044		ew32(RCTL, rctl | E1000_RCTL_EN);
5045		adapter->flags &= ~FLAG_RESTART_NOW;
5046	}
5047}
5048
5049static void e1000e_check_82574_phy_workaround(struct e1000_adapter *adapter)
5050{
5051	struct e1000_hw *hw = &adapter->hw;
5052
5053	/* With 82574 controllers, PHY needs to be checked periodically
 
5054	 * for hung state and reset, if two calls return true
5055	 */
5056	if (e1000_check_phy_82574(hw))
5057		adapter->phy_hang_count++;
5058	else
5059		adapter->phy_hang_count = 0;
5060
5061	if (adapter->phy_hang_count > 1) {
5062		adapter->phy_hang_count = 0;
5063		e_dbg("PHY appears hung - resetting\n");
5064		schedule_work(&adapter->reset_task);
5065	}
5066}
5067
5068/**
5069 * e1000_watchdog - Timer Call-back
5070 * @data: pointer to adapter cast into an unsigned long
5071 **/
5072static void e1000_watchdog(unsigned long data)
5073{
5074	struct e1000_adapter *adapter = (struct e1000_adapter *)data;
5075
5076	/* Do the rest outside of interrupt context */
5077	schedule_work(&adapter->watchdog_task);
5078
5079	/* TODO: make this use queue_delayed_work() */
5080}
5081
5082static void e1000_watchdog_task(struct work_struct *work)
5083{
5084	struct e1000_adapter *adapter = container_of(work,
5085						     struct e1000_adapter,
5086						     watchdog_task);
5087	struct net_device *netdev = adapter->netdev;
5088	struct e1000_mac_info *mac = &adapter->hw.mac;
5089	struct e1000_phy_info *phy = &adapter->hw.phy;
5090	struct e1000_ring *tx_ring = adapter->tx_ring;
5091	struct e1000_hw *hw = &adapter->hw;
5092	u32 link, tctl;
5093
5094	if (test_bit(__E1000_DOWN, &adapter->state))
5095		return;
5096
5097	link = e1000e_has_link(adapter);
5098	if ((netif_carrier_ok(netdev)) && link) {
5099		/* Cancel scheduled suspend requests. */
5100		pm_runtime_resume(netdev->dev.parent);
5101
5102		e1000e_enable_receives(adapter);
5103		goto link_up;
5104	}
5105
5106	if ((e1000e_enable_tx_pkt_filtering(hw)) &&
5107	    (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
5108		e1000_update_mng_vlan(adapter);
5109
5110	if (link) {
5111		if (!netif_carrier_ok(netdev)) {
5112			bool txb2b = true;
5113
5114			/* Cancel scheduled suspend requests. */
5115			pm_runtime_resume(netdev->dev.parent);
5116
5117			/* update snapshot of PHY registers on LSC */
5118			e1000_phy_read_status(adapter);
5119			mac->ops.get_link_up_info(&adapter->hw,
5120						  &adapter->link_speed,
5121						  &adapter->link_duplex);
5122			e1000_print_link_info(adapter);
5123
5124			/* check if SmartSpeed worked */
5125			e1000e_check_downshift(hw);
5126			if (phy->speed_downgraded)
5127				netdev_warn(netdev,
5128					    "Link Speed was downgraded by SmartSpeed\n");
5129
5130			/* On supported PHYs, check for duplex mismatch only
5131			 * if link has autonegotiated at 10/100 half
5132			 */
5133			if ((hw->phy.type == e1000_phy_igp_3 ||
5134			     hw->phy.type == e1000_phy_bm) &&
5135			    hw->mac.autoneg &&
5136			    (adapter->link_speed == SPEED_10 ||
5137			     adapter->link_speed == SPEED_100) &&
5138			    (adapter->link_duplex == HALF_DUPLEX)) {
5139				u16 autoneg_exp;
5140
5141				e1e_rphy(hw, MII_EXPANSION, &autoneg_exp);
5142
5143				if (!(autoneg_exp & EXPANSION_NWAY))
5144					e_info("Autonegotiated half duplex but link partner cannot autoneg.  Try forcing full duplex if link gets many collisions.\n");
5145			}
5146
5147			/* adjust timeout factor according to speed/duplex */
5148			adapter->tx_timeout_factor = 1;
5149			switch (adapter->link_speed) {
5150			case SPEED_10:
5151				txb2b = false;
5152				adapter->tx_timeout_factor = 16;
5153				break;
5154			case SPEED_100:
5155				txb2b = false;
5156				adapter->tx_timeout_factor = 10;
5157				break;
5158			}
5159
5160			/* workaround: re-program speed mode bit after
 
5161			 * link-up event
5162			 */
5163			if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
5164			    !txb2b) {
5165				u32 tarc0;
5166
5167				tarc0 = er32(TARC(0));
5168				tarc0 &= ~SPEED_MODE_BIT;
5169				ew32(TARC(0), tarc0);
5170			}
5171
5172			/* disable TSO for pcie and 10/100 speeds, to avoid
 
5173			 * some hardware issues
5174			 */
5175			if (!(adapter->flags & FLAG_TSO_FORCE)) {
5176				switch (adapter->link_speed) {
5177				case SPEED_10:
5178				case SPEED_100:
5179					e_info("10/100 speed: disabling TSO\n");
5180					netdev->features &= ~NETIF_F_TSO;
5181					netdev->features &= ~NETIF_F_TSO6;
5182					break;
5183				case SPEED_1000:
5184					netdev->features |= NETIF_F_TSO;
5185					netdev->features |= NETIF_F_TSO6;
5186					break;
5187				default:
5188					/* oops */
5189					break;
5190				}
5191			}
5192
5193			/* enable transmits in the hardware, need to do this
 
5194			 * after setting TARC(0)
5195			 */
5196			tctl = er32(TCTL);
5197			tctl |= E1000_TCTL_EN;
5198			ew32(TCTL, tctl);
5199
5200			/* Perform any post-link-up configuration before
 
5201			 * reporting link up.
5202			 */
5203			if (phy->ops.cfg_on_link_up)
5204				phy->ops.cfg_on_link_up(hw);
5205
5206			netif_carrier_on(netdev);
5207
5208			if (!test_bit(__E1000_DOWN, &adapter->state))
5209				mod_timer(&adapter->phy_info_timer,
5210					  round_jiffies(jiffies + 2 * HZ));
5211		}
5212	} else {
5213		if (netif_carrier_ok(netdev)) {
5214			adapter->link_speed = 0;
5215			adapter->link_duplex = 0;
5216			/* Link status message must follow this format */
5217			pr_info("%s NIC Link is Down\n", adapter->netdev->name);
 
5218			netif_carrier_off(netdev);
5219			if (!test_bit(__E1000_DOWN, &adapter->state))
5220				mod_timer(&adapter->phy_info_timer,
5221					  round_jiffies(jiffies + 2 * HZ));
5222
5223			/* 8000ES2LAN requires a Rx packet buffer work-around
5224			 * on link down event; reset the controller to flush
5225			 * the Rx packet buffer.
5226			 */
5227			if (adapter->flags & FLAG_RX_NEEDS_RESTART)
5228				adapter->flags |= FLAG_RESTART_NOW;
5229			else
5230				pm_schedule_suspend(netdev->dev.parent,
5231						    LINK_TIMEOUT);
5232		}
5233	}
5234
5235link_up:
5236	spin_lock(&adapter->stats64_lock);
5237	e1000e_update_stats(adapter);
5238
5239	mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
5240	adapter->tpt_old = adapter->stats.tpt;
5241	mac->collision_delta = adapter->stats.colc - adapter->colc_old;
5242	adapter->colc_old = adapter->stats.colc;
5243
5244	adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
5245	adapter->gorc_old = adapter->stats.gorc;
5246	adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
5247	adapter->gotc_old = adapter->stats.gotc;
5248	spin_unlock(&adapter->stats64_lock);
5249
5250	/* If the link is lost the controller stops DMA, but
5251	 * if there is queued Tx work it cannot be done.  So
5252	 * reset the controller to flush the Tx packet buffers.
5253	 */
5254	if (!netif_carrier_ok(netdev) &&
5255	    (e1000_desc_unused(tx_ring) + 1 < tx_ring->count))
5256		adapter->flags |= FLAG_RESTART_NOW;
5257
5258	/* If reset is necessary, do it outside of interrupt context. */
5259	if (adapter->flags & FLAG_RESTART_NOW) {
 
 
5260		schedule_work(&adapter->reset_task);
5261		/* return immediately since reset is imminent */
5262		return;
5263	}
5264
5265	e1000e_update_adaptive(&adapter->hw);
5266
5267	/* Simple mode for Interrupt Throttle Rate (ITR) */
5268	if (adapter->itr_setting == 4) {
5269		/* Symmetric Tx/Rx gets a reduced ITR=2000;
 
5270		 * Total asymmetrical Tx or Rx gets ITR=8000;
5271		 * everyone else is between 2000-8000.
5272		 */
5273		u32 goc = (adapter->gotc + adapter->gorc) / 10000;
5274		u32 dif = (adapter->gotc > adapter->gorc ?
5275			   adapter->gotc - adapter->gorc :
5276			   adapter->gorc - adapter->gotc) / 10000;
5277		u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
5278
5279		e1000e_write_itr(adapter, itr);
5280	}
5281
5282	/* Cause software interrupt to ensure Rx ring is cleaned */
5283	if (adapter->msix_entries)
5284		ew32(ICS, adapter->rx_ring->ims_val);
5285	else
5286		ew32(ICS, E1000_ICS_RXDMT0);
5287
5288	/* flush pending descriptors to memory before detecting Tx hang */
5289	e1000e_flush_descriptors(adapter);
5290
5291	/* Force detection of hung controller every watchdog period */
5292	adapter->detect_tx_hung = true;
5293
5294	/* With 82571 controllers, LAA may be overwritten due to controller
 
5295	 * reset from the other port. Set the appropriate LAA in RAR[0]
5296	 */
5297	if (e1000e_get_laa_state_82571(hw))
5298		hw->mac.ops.rar_set(hw, adapter->hw.mac.addr, 0);
5299
5300	if (adapter->flags2 & FLAG2_CHECK_PHY_HANG)
5301		e1000e_check_82574_phy_workaround(adapter);
5302
5303	/* Clear valid timestamp stuck in RXSTMPL/H due to a Rx error */
5304	if (adapter->hwtstamp_config.rx_filter != HWTSTAMP_FILTER_NONE) {
5305		if ((adapter->flags2 & FLAG2_CHECK_RX_HWTSTAMP) &&
5306		    (er32(TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) {
5307			er32(RXSTMPH);
5308			adapter->rx_hwtstamp_cleared++;
5309		} else {
5310			adapter->flags2 |= FLAG2_CHECK_RX_HWTSTAMP;
5311		}
5312	}
5313
5314	/* Reset the timer */
5315	if (!test_bit(__E1000_DOWN, &adapter->state))
5316		mod_timer(&adapter->watchdog_timer,
5317			  round_jiffies(jiffies + 2 * HZ));
5318}
5319
5320#define E1000_TX_FLAGS_CSUM		0x00000001
5321#define E1000_TX_FLAGS_VLAN		0x00000002
5322#define E1000_TX_FLAGS_TSO		0x00000004
5323#define E1000_TX_FLAGS_IPV4		0x00000008
5324#define E1000_TX_FLAGS_NO_FCS		0x00000010
5325#define E1000_TX_FLAGS_HWTSTAMP		0x00000020
5326#define E1000_TX_FLAGS_VLAN_MASK	0xffff0000
5327#define E1000_TX_FLAGS_VLAN_SHIFT	16
5328
5329static int e1000_tso(struct e1000_ring *tx_ring, struct sk_buff *skb,
5330		     __be16 protocol)
5331{
5332	struct e1000_context_desc *context_desc;
5333	struct e1000_buffer *buffer_info;
5334	unsigned int i;
5335	u32 cmd_length = 0;
5336	u16 ipcse = 0, mss;
5337	u8 ipcss, ipcso, tucss, tucso, hdr_len;
5338	int err;
5339
5340	if (!skb_is_gso(skb))
5341		return 0;
5342
5343	err = skb_cow_head(skb, 0);
5344	if (err < 0)
5345		return err;
 
 
 
5346
5347	hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5348	mss = skb_shinfo(skb)->gso_size;
5349	if (protocol == htons(ETH_P_IP)) {
5350		struct iphdr *iph = ip_hdr(skb);
5351		iph->tot_len = 0;
5352		iph->check = 0;
5353		tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
5354							 0, IPPROTO_TCP, 0);
5355		cmd_length = E1000_TXD_CMD_IP;
5356		ipcse = skb_transport_offset(skb) - 1;
5357	} else if (skb_is_gso_v6(skb)) {
5358		ipv6_hdr(skb)->payload_len = 0;
5359		tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5360						       &ipv6_hdr(skb)->daddr,
5361						       0, IPPROTO_TCP, 0);
5362		ipcse = 0;
5363	}
5364	ipcss = skb_network_offset(skb);
5365	ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
5366	tucss = skb_transport_offset(skb);
5367	tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
 
5368
5369	cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
5370		       E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
5371
5372	i = tx_ring->next_to_use;
5373	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5374	buffer_info = &tx_ring->buffer_info[i];
5375
5376	context_desc->lower_setup.ip_fields.ipcss = ipcss;
5377	context_desc->lower_setup.ip_fields.ipcso = ipcso;
5378	context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
5379	context_desc->upper_setup.tcp_fields.tucss = tucss;
5380	context_desc->upper_setup.tcp_fields.tucso = tucso;
5381	context_desc->upper_setup.tcp_fields.tucse = 0;
5382	context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
5383	context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
5384	context_desc->cmd_and_length = cpu_to_le32(cmd_length);
5385
5386	buffer_info->time_stamp = jiffies;
5387	buffer_info->next_to_watch = i;
5388
5389	i++;
5390	if (i == tx_ring->count)
5391		i = 0;
5392	tx_ring->next_to_use = i;
5393
5394	return 1;
5395}
5396
5397static bool e1000_tx_csum(struct e1000_ring *tx_ring, struct sk_buff *skb,
5398			  __be16 protocol)
5399{
5400	struct e1000_adapter *adapter = tx_ring->adapter;
5401	struct e1000_context_desc *context_desc;
5402	struct e1000_buffer *buffer_info;
5403	unsigned int i;
5404	u8 css;
5405	u32 cmd_len = E1000_TXD_CMD_DEXT;
 
5406
5407	if (skb->ip_summed != CHECKSUM_PARTIAL)
5408		return false;
 
 
 
 
 
5409
5410	switch (protocol) {
5411	case cpu_to_be16(ETH_P_IP):
5412		if (ip_hdr(skb)->protocol == IPPROTO_TCP)
5413			cmd_len |= E1000_TXD_CMD_TCP;
5414		break;
5415	case cpu_to_be16(ETH_P_IPV6):
5416		/* XXX not handling all IPV6 headers */
5417		if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
5418			cmd_len |= E1000_TXD_CMD_TCP;
5419		break;
5420	default:
5421		if (unlikely(net_ratelimit()))
5422			e_warn("checksum_partial proto=%x!\n",
5423			       be16_to_cpu(protocol));
5424		break;
5425	}
5426
5427	css = skb_checksum_start_offset(skb);
5428
5429	i = tx_ring->next_to_use;
5430	buffer_info = &tx_ring->buffer_info[i];
5431	context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
5432
5433	context_desc->lower_setup.ip_config = 0;
5434	context_desc->upper_setup.tcp_fields.tucss = css;
5435	context_desc->upper_setup.tcp_fields.tucso = css + skb->csum_offset;
 
5436	context_desc->upper_setup.tcp_fields.tucse = 0;
5437	context_desc->tcp_seg_setup.data = 0;
5438	context_desc->cmd_and_length = cpu_to_le32(cmd_len);
5439
5440	buffer_info->time_stamp = jiffies;
5441	buffer_info->next_to_watch = i;
5442
5443	i++;
5444	if (i == tx_ring->count)
5445		i = 0;
5446	tx_ring->next_to_use = i;
5447
5448	return true;
5449}
5450
5451static int e1000_tx_map(struct e1000_ring *tx_ring, struct sk_buff *skb,
5452			unsigned int first, unsigned int max_per_txd,
5453			unsigned int nr_frags)
5454{
5455	struct e1000_adapter *adapter = tx_ring->adapter;
5456	struct pci_dev *pdev = adapter->pdev;
5457	struct e1000_buffer *buffer_info;
5458	unsigned int len = skb_headlen(skb);
5459	unsigned int offset = 0, size, count = 0, i;
5460	unsigned int f, bytecount, segs;
5461
5462	i = tx_ring->next_to_use;
5463
5464	while (len) {
5465		buffer_info = &tx_ring->buffer_info[i];
5466		size = min(len, max_per_txd);
5467
5468		buffer_info->length = size;
5469		buffer_info->time_stamp = jiffies;
5470		buffer_info->next_to_watch = i;
5471		buffer_info->dma = dma_map_single(&pdev->dev,
5472						  skb->data + offset,
5473						  size, DMA_TO_DEVICE);
5474		buffer_info->mapped_as_page = false;
5475		if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5476			goto dma_error;
5477
5478		len -= size;
5479		offset += size;
5480		count++;
5481
5482		if (len) {
5483			i++;
5484			if (i == tx_ring->count)
5485				i = 0;
5486		}
5487	}
5488
5489	for (f = 0; f < nr_frags; f++) {
5490		const struct skb_frag_struct *frag;
5491
5492		frag = &skb_shinfo(skb)->frags[f];
5493		len = skb_frag_size(frag);
5494		offset = 0;
5495
5496		while (len) {
5497			i++;
5498			if (i == tx_ring->count)
5499				i = 0;
5500
5501			buffer_info = &tx_ring->buffer_info[i];
5502			size = min(len, max_per_txd);
5503
5504			buffer_info->length = size;
5505			buffer_info->time_stamp = jiffies;
5506			buffer_info->next_to_watch = i;
5507			buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
5508							    offset, size,
5509							    DMA_TO_DEVICE);
5510			buffer_info->mapped_as_page = true;
5511			if (dma_mapping_error(&pdev->dev, buffer_info->dma))
5512				goto dma_error;
5513
5514			len -= size;
5515			offset += size;
5516			count++;
5517		}
5518	}
5519
5520	segs = skb_shinfo(skb)->gso_segs ? : 1;
5521	/* multiply data chunks by size of headers */
5522	bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
5523
5524	tx_ring->buffer_info[i].skb = skb;
5525	tx_ring->buffer_info[i].segs = segs;
5526	tx_ring->buffer_info[i].bytecount = bytecount;
5527	tx_ring->buffer_info[first].next_to_watch = i;
5528
5529	return count;
5530
5531dma_error:
5532	dev_err(&pdev->dev, "Tx DMA map failed\n");
5533	buffer_info->dma = 0;
5534	if (count)
5535		count--;
5536
5537	while (count--) {
5538		if (i == 0)
5539			i += tx_ring->count;
5540		i--;
5541		buffer_info = &tx_ring->buffer_info[i];
5542		e1000_put_txbuf(tx_ring, buffer_info);
5543	}
5544
5545	return 0;
5546}
5547
5548static void e1000_tx_queue(struct e1000_ring *tx_ring, int tx_flags, int count)
5549{
5550	struct e1000_adapter *adapter = tx_ring->adapter;
5551	struct e1000_tx_desc *tx_desc = NULL;
5552	struct e1000_buffer *buffer_info;
5553	u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
5554	unsigned int i;
5555
5556	if (tx_flags & E1000_TX_FLAGS_TSO) {
5557		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
5558		    E1000_TXD_CMD_TSE;
5559		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5560
5561		if (tx_flags & E1000_TX_FLAGS_IPV4)
5562			txd_upper |= E1000_TXD_POPTS_IXSM << 8;
5563	}
5564
5565	if (tx_flags & E1000_TX_FLAGS_CSUM) {
5566		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5567		txd_upper |= E1000_TXD_POPTS_TXSM << 8;
5568	}
5569
5570	if (tx_flags & E1000_TX_FLAGS_VLAN) {
5571		txd_lower |= E1000_TXD_CMD_VLE;
5572		txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
5573	}
5574
5575	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5576		txd_lower &= ~(E1000_TXD_CMD_IFCS);
5577
5578	if (unlikely(tx_flags & E1000_TX_FLAGS_HWTSTAMP)) {
5579		txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
5580		txd_upper |= E1000_TXD_EXTCMD_TSTAMP;
5581	}
5582
5583	i = tx_ring->next_to_use;
5584
5585	do {
5586		buffer_info = &tx_ring->buffer_info[i];
5587		tx_desc = E1000_TX_DESC(*tx_ring, i);
5588		tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
5589		tx_desc->lower.data = cpu_to_le32(txd_lower |
5590						  buffer_info->length);
5591		tx_desc->upper.data = cpu_to_le32(txd_upper);
5592
5593		i++;
5594		if (i == tx_ring->count)
5595			i = 0;
5596	} while (--count > 0);
5597
5598	tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
5599
5600	/* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
5601	if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
5602		tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
5603
5604	/* Force memory writes to complete before letting h/w
 
5605	 * know there are new descriptors to fetch.  (Only
5606	 * applicable for weak-ordered memory model archs,
5607	 * such as IA-64).
5608	 */
5609	wmb();
5610
5611	tx_ring->next_to_use = i;
 
 
 
 
 
 
 
 
 
 
 
5612}
5613
5614#define MINIMUM_DHCP_PACKET_SIZE 282
5615static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
5616				    struct sk_buff *skb)
5617{
5618	struct e1000_hw *hw = &adapter->hw;
5619	u16 length, offset;
5620
5621	if (skb_vlan_tag_present(skb) &&
5622	    !((skb_vlan_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
5623	      (adapter->hw.mng_cookie.status &
5624	       E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
5625		return 0;
 
5626
5627	if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
5628		return 0;
5629
5630	if (((struct ethhdr *)skb->data)->h_proto != htons(ETH_P_IP))
5631		return 0;
5632
5633	{
5634		const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data + 14);
5635		struct udphdr *udp;
5636
5637		if (ip->protocol != IPPROTO_UDP)
5638			return 0;
5639
5640		udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
5641		if (ntohs(udp->dest) != 67)
5642			return 0;
5643
5644		offset = (u8 *)udp + 8 - skb->data;
5645		length = skb->len - offset;
5646		return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
5647	}
5648
5649	return 0;
5650}
5651
5652static int __e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5653{
5654	struct e1000_adapter *adapter = tx_ring->adapter;
5655
5656	netif_stop_queue(adapter->netdev);
5657	/* Herbert's original patch had:
 
5658	 *  smp_mb__after_netif_stop_queue();
5659	 * but since that doesn't exist yet, just open code it.
5660	 */
5661	smp_mb();
5662
5663	/* We need to check again in a case another CPU has just
 
5664	 * made room available.
5665	 */
5666	if (e1000_desc_unused(tx_ring) < size)
5667		return -EBUSY;
5668
5669	/* A reprieve! */
5670	netif_start_queue(adapter->netdev);
5671	++adapter->restart_queue;
5672	return 0;
5673}
5674
5675static int e1000_maybe_stop_tx(struct e1000_ring *tx_ring, int size)
5676{
5677	BUG_ON(size > tx_ring->count);
5678
5679	if (e1000_desc_unused(tx_ring) >= size)
5680		return 0;
5681	return __e1000_maybe_stop_tx(tx_ring, size);
5682}
5683
5684static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
5685				    struct net_device *netdev)
5686{
5687	struct e1000_adapter *adapter = netdev_priv(netdev);
5688	struct e1000_ring *tx_ring = adapter->tx_ring;
5689	unsigned int first;
5690	unsigned int tx_flags = 0;
5691	unsigned int len = skb_headlen(skb);
5692	unsigned int nr_frags;
5693	unsigned int mss;
5694	int count = 0;
5695	int tso;
5696	unsigned int f;
5697	__be16 protocol = vlan_get_protocol(skb);
5698
5699	if (test_bit(__E1000_DOWN, &adapter->state)) {
5700		dev_kfree_skb_any(skb);
5701		return NETDEV_TX_OK;
5702	}
5703
5704	if (skb->len <= 0) {
5705		dev_kfree_skb_any(skb);
5706		return NETDEV_TX_OK;
5707	}
5708
5709	/* The minimum packet size with TCTL.PSP set is 17 bytes so
5710	 * pad skb in order to meet this minimum size requirement
5711	 */
5712	if (skb_put_padto(skb, 17))
5713		return NETDEV_TX_OK;
5714
5715	mss = skb_shinfo(skb)->gso_size;
5716	if (mss) {
5717		u8 hdr_len;
5718
5719		/* TSO Workaround for 82571/2/3 Controllers -- if skb->data
 
5720		 * points to just header, pull a few bytes of payload from
5721		 * frags into skb->data
5722		 */
5723		hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
5724		/* we do this workaround for ES2LAN, but it is un-necessary,
 
5725		 * avoiding it could save a lot of cycles
5726		 */
5727		if (skb->data_len && (hdr_len == len)) {
5728			unsigned int pull_size;
5729
5730			pull_size = min_t(unsigned int, 4, skb->data_len);
5731			if (!__pskb_pull_tail(skb, pull_size)) {
5732				e_err("__pskb_pull_tail failed.\n");
5733				dev_kfree_skb_any(skb);
5734				return NETDEV_TX_OK;
5735			}
5736			len = skb_headlen(skb);
5737		}
5738	}
5739
5740	/* reserve a descriptor for the offload context */
5741	if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
5742		count++;
5743	count++;
5744
5745	count += DIV_ROUND_UP(len, adapter->tx_fifo_limit);
5746
5747	nr_frags = skb_shinfo(skb)->nr_frags;
5748	for (f = 0; f < nr_frags; f++)
5749		count += DIV_ROUND_UP(skb_frag_size(&skb_shinfo(skb)->frags[f]),
5750				      adapter->tx_fifo_limit);
5751
5752	if (adapter->hw.mac.tx_pkt_filtering)
5753		e1000_transfer_dhcp_info(adapter, skb);
5754
5755	/* need: count + 2 desc gap to keep tail from touching
 
5756	 * head, otherwise try next time
5757	 */
5758	if (e1000_maybe_stop_tx(tx_ring, count + 2))
5759		return NETDEV_TX_BUSY;
5760
5761	if (skb_vlan_tag_present(skb)) {
5762		tx_flags |= E1000_TX_FLAGS_VLAN;
5763		tx_flags |= (skb_vlan_tag_get(skb) <<
5764			     E1000_TX_FLAGS_VLAN_SHIFT);
5765	}
5766
5767	first = tx_ring->next_to_use;
5768
5769	tso = e1000_tso(tx_ring, skb, protocol);
5770	if (tso < 0) {
5771		dev_kfree_skb_any(skb);
5772		return NETDEV_TX_OK;
5773	}
5774
5775	if (tso)
5776		tx_flags |= E1000_TX_FLAGS_TSO;
5777	else if (e1000_tx_csum(tx_ring, skb, protocol))
5778		tx_flags |= E1000_TX_FLAGS_CSUM;
5779
5780	/* Old method was to assume IPv4 packet by default if TSO was enabled.
 
5781	 * 82571 hardware supports TSO capabilities for IPv6 as well...
5782	 * no longer assume, we must.
5783	 */
5784	if (protocol == htons(ETH_P_IP))
5785		tx_flags |= E1000_TX_FLAGS_IPV4;
5786
5787	if (unlikely(skb->no_fcs))
5788		tx_flags |= E1000_TX_FLAGS_NO_FCS;
5789
5790	/* if count is 0 then mapping error has occurred */
5791	count = e1000_tx_map(tx_ring, skb, first, adapter->tx_fifo_limit,
5792			     nr_frags);
5793	if (count) {
5794		if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
5795		    (adapter->flags & FLAG_HAS_HW_TIMESTAMP) &&
5796		    !adapter->tx_hwtstamp_skb) {
5797			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
5798			tx_flags |= E1000_TX_FLAGS_HWTSTAMP;
5799			adapter->tx_hwtstamp_skb = skb_get(skb);
5800			adapter->tx_hwtstamp_start = jiffies;
5801			schedule_work(&adapter->tx_hwtstamp_work);
5802		} else {
5803			skb_tx_timestamp(skb);
5804		}
5805
5806		netdev_sent_queue(netdev, skb->len);
5807		e1000_tx_queue(tx_ring, tx_flags, count);
5808		/* Make sure there is space in the ring for the next send. */
5809		e1000_maybe_stop_tx(tx_ring,
5810				    (MAX_SKB_FRAGS *
5811				     DIV_ROUND_UP(PAGE_SIZE,
5812						  adapter->tx_fifo_limit) + 2));
5813
5814		if (!skb->xmit_more ||
5815		    netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
5816			if (adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
5817				e1000e_update_tdt_wa(tx_ring,
5818						     tx_ring->next_to_use);
5819			else
5820				writel(tx_ring->next_to_use, tx_ring->tail);
5821
5822			/* we need this if more than one processor can write
5823			 * to our tail at a time, it synchronizes IO on
5824			 *IA64/Altix systems
5825			 */
5826			mmiowb();
5827		}
5828	} else {
5829		dev_kfree_skb_any(skb);
5830		tx_ring->buffer_info[first].time_stamp = 0;
5831		tx_ring->next_to_use = first;
5832	}
5833
5834	return NETDEV_TX_OK;
5835}
5836
5837/**
5838 * e1000_tx_timeout - Respond to a Tx Hang
5839 * @netdev: network interface device structure
5840 **/
5841static void e1000_tx_timeout(struct net_device *netdev)
5842{
5843	struct e1000_adapter *adapter = netdev_priv(netdev);
5844
5845	/* Do the reset outside of interrupt context */
5846	adapter->tx_timeout_count++;
5847	schedule_work(&adapter->reset_task);
5848}
5849
5850static void e1000_reset_task(struct work_struct *work)
5851{
5852	struct e1000_adapter *adapter;
5853	adapter = container_of(work, struct e1000_adapter, reset_task);
5854
5855	/* don't run the task if already down */
5856	if (test_bit(__E1000_DOWN, &adapter->state))
5857		return;
5858
5859	if (!(adapter->flags & FLAG_RESTART_NOW)) {
 
5860		e1000e_dump(adapter);
5861		e_err("Reset adapter unexpectedly\n");
5862	}
5863	e1000e_reinit_locked(adapter);
5864}
5865
5866/**
5867 * e1000_get_stats64 - Get System Network Statistics
5868 * @netdev: network interface device structure
5869 * @stats: rtnl_link_stats64 pointer
5870 *
5871 * Returns the address of the device statistics structure.
5872 **/
5873struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
5874					     struct rtnl_link_stats64 *stats)
5875{
5876	struct e1000_adapter *adapter = netdev_priv(netdev);
5877
5878	memset(stats, 0, sizeof(struct rtnl_link_stats64));
5879	spin_lock(&adapter->stats64_lock);
5880	e1000e_update_stats(adapter);
5881	/* Fill out the OS statistics structure */
5882	stats->rx_bytes = adapter->stats.gorc;
5883	stats->rx_packets = adapter->stats.gprc;
5884	stats->tx_bytes = adapter->stats.gotc;
5885	stats->tx_packets = adapter->stats.gptc;
5886	stats->multicast = adapter->stats.mprc;
5887	stats->collisions = adapter->stats.colc;
5888
5889	/* Rx Errors */
5890
5891	/* RLEC on some newer hardware can be incorrect so build
 
5892	 * our own version based on RUC and ROC
5893	 */
5894	stats->rx_errors = adapter->stats.rxerrc +
5895	    adapter->stats.crcerrs + adapter->stats.algnerrc +
5896	    adapter->stats.ruc + adapter->stats.roc + adapter->stats.cexterr;
5897	stats->rx_length_errors = adapter->stats.ruc + adapter->stats.roc;
 
 
5898	stats->rx_crc_errors = adapter->stats.crcerrs;
5899	stats->rx_frame_errors = adapter->stats.algnerrc;
5900	stats->rx_missed_errors = adapter->stats.mpc;
5901
5902	/* Tx Errors */
5903	stats->tx_errors = adapter->stats.ecol + adapter->stats.latecol;
 
5904	stats->tx_aborted_errors = adapter->stats.ecol;
5905	stats->tx_window_errors = adapter->stats.latecol;
5906	stats->tx_carrier_errors = adapter->stats.tncrs;
5907
5908	/* Tx Dropped needs to be maintained elsewhere */
5909
5910	spin_unlock(&adapter->stats64_lock);
5911	return stats;
5912}
5913
5914/**
5915 * e1000_change_mtu - Change the Maximum Transfer Unit
5916 * @netdev: network interface device structure
5917 * @new_mtu: new value for maximum frame size
5918 *
5919 * Returns 0 on success, negative on failure
5920 **/
5921static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
5922{
5923	struct e1000_adapter *adapter = netdev_priv(netdev);
5924	int max_frame = new_mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
5925
5926	/* Jumbo frame support */
5927	if ((max_frame > (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN)) &&
5928	    !(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
5929		e_err("Jumbo Frames not supported.\n");
5930		return -EINVAL;
5931	}
5932
5933	/* Supported frame sizes */
5934	if ((new_mtu < (VLAN_ETH_ZLEN + ETH_FCS_LEN)) ||
5935	    (max_frame > adapter->max_hw_frame_size)) {
5936		e_err("Unsupported MTU setting\n");
5937		return -EINVAL;
5938	}
5939
5940	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
5941	if ((adapter->hw.mac.type >= e1000_pch2lan) &&
5942	    !(adapter->flags2 & FLAG2_CRC_STRIPPING) &&
5943	    (new_mtu > ETH_DATA_LEN)) {
5944		e_err("Jumbo Frames not supported on this device when CRC stripping is disabled.\n");
5945		return -EINVAL;
5946	}
5947
5948	while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
5949		usleep_range(1000, 2000);
5950	/* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5951	adapter->max_frame_size = max_frame;
5952	e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
5953	netdev->mtu = new_mtu;
5954
5955	pm_runtime_get_sync(netdev->dev.parent);
5956
5957	if (netif_running(netdev))
5958		e1000e_down(adapter, true);
5959
5960	/* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
 
5961	 * means we reserve 2 more, this pushes us to allocate from the next
5962	 * larger slab size.
5963	 * i.e. RXBUFFER_2048 --> size-4096 slab
5964	 * However with the new *_jumbo_rx* routines, jumbo receives will use
5965	 * fragmented skbs
5966	 */
5967
5968	if (max_frame <= 2048)
5969		adapter->rx_buffer_len = 2048;
5970	else
5971		adapter->rx_buffer_len = 4096;
5972
5973	/* adjust allocation if LPE protects us, and we aren't using SBP */
5974	if (max_frame <= (VLAN_ETH_FRAME_LEN + ETH_FCS_LEN))
5975		adapter->rx_buffer_len = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
 
 
5976
5977	if (netif_running(netdev))
5978		e1000e_up(adapter);
5979	else
5980		e1000e_reset(adapter);
5981
5982	pm_runtime_put_sync(netdev->dev.parent);
5983
5984	clear_bit(__E1000_RESETTING, &adapter->state);
5985
5986	return 0;
5987}
5988
5989static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
5990			   int cmd)
5991{
5992	struct e1000_adapter *adapter = netdev_priv(netdev);
5993	struct mii_ioctl_data *data = if_mii(ifr);
5994
5995	if (adapter->hw.phy.media_type != e1000_media_type_copper)
5996		return -EOPNOTSUPP;
5997
5998	switch (cmd) {
5999	case SIOCGMIIPHY:
6000		data->phy_id = adapter->hw.phy.addr;
6001		break;
6002	case SIOCGMIIREG:
6003		e1000_phy_read_status(adapter);
6004
6005		switch (data->reg_num & 0x1F) {
6006		case MII_BMCR:
6007			data->val_out = adapter->phy_regs.bmcr;
6008			break;
6009		case MII_BMSR:
6010			data->val_out = adapter->phy_regs.bmsr;
6011			break;
6012		case MII_PHYSID1:
6013			data->val_out = (adapter->hw.phy.id >> 16);
6014			break;
6015		case MII_PHYSID2:
6016			data->val_out = (adapter->hw.phy.id & 0xFFFF);
6017			break;
6018		case MII_ADVERTISE:
6019			data->val_out = adapter->phy_regs.advertise;
6020			break;
6021		case MII_LPA:
6022			data->val_out = adapter->phy_regs.lpa;
6023			break;
6024		case MII_EXPANSION:
6025			data->val_out = adapter->phy_regs.expansion;
6026			break;
6027		case MII_CTRL1000:
6028			data->val_out = adapter->phy_regs.ctrl1000;
6029			break;
6030		case MII_STAT1000:
6031			data->val_out = adapter->phy_regs.stat1000;
6032			break;
6033		case MII_ESTATUS:
6034			data->val_out = adapter->phy_regs.estatus;
6035			break;
6036		default:
6037			return -EIO;
6038		}
6039		break;
6040	case SIOCSMIIREG:
6041	default:
6042		return -EOPNOTSUPP;
6043	}
6044	return 0;
6045}
6046
6047/**
6048 * e1000e_hwtstamp_ioctl - control hardware time stamping
6049 * @netdev: network interface device structure
6050 * @ifreq: interface request
6051 *
6052 * Outgoing time stamping can be enabled and disabled. Play nice and
6053 * disable it when requested, although it shouldn't cause any overhead
6054 * when no packet needs it. At most one packet in the queue may be
6055 * marked for time stamping, otherwise it would be impossible to tell
6056 * for sure to which packet the hardware time stamp belongs.
6057 *
6058 * Incoming time stamping has to be configured via the hardware filters.
6059 * Not all combinations are supported, in particular event type has to be
6060 * specified. Matching the kind of event packet is not supported, with the
6061 * exception of "all V2 events regardless of level 2 or 4".
6062 **/
6063static int e1000e_hwtstamp_set(struct net_device *netdev, struct ifreq *ifr)
6064{
6065	struct e1000_adapter *adapter = netdev_priv(netdev);
6066	struct hwtstamp_config config;
6067	int ret_val;
6068
6069	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
6070		return -EFAULT;
6071
6072	ret_val = e1000e_config_hwtstamp(adapter, &config);
6073	if (ret_val)
6074		return ret_val;
6075
6076	switch (config.rx_filter) {
6077	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
6078	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
6079	case HWTSTAMP_FILTER_PTP_V2_SYNC:
6080	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
6081	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
6082	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
6083		/* With V2 type filters which specify a Sync or Delay Request,
6084		 * Path Delay Request/Response messages are also time stamped
6085		 * by hardware so notify the caller the requested packets plus
6086		 * some others are time stamped.
6087		 */
6088		config.rx_filter = HWTSTAMP_FILTER_SOME;
6089		break;
6090	default:
6091		break;
6092	}
6093
6094	return copy_to_user(ifr->ifr_data, &config,
6095			    sizeof(config)) ? -EFAULT : 0;
6096}
6097
6098static int e1000e_hwtstamp_get(struct net_device *netdev, struct ifreq *ifr)
6099{
6100	struct e1000_adapter *adapter = netdev_priv(netdev);
6101
6102	return copy_to_user(ifr->ifr_data, &adapter->hwtstamp_config,
6103			    sizeof(adapter->hwtstamp_config)) ? -EFAULT : 0;
6104}
6105
6106static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6107{
6108	switch (cmd) {
6109	case SIOCGMIIPHY:
6110	case SIOCGMIIREG:
6111	case SIOCSMIIREG:
6112		return e1000_mii_ioctl(netdev, ifr, cmd);
6113	case SIOCSHWTSTAMP:
6114		return e1000e_hwtstamp_set(netdev, ifr);
6115	case SIOCGHWTSTAMP:
6116		return e1000e_hwtstamp_get(netdev, ifr);
6117	default:
6118		return -EOPNOTSUPP;
6119	}
6120}
6121
6122static int e1000_init_phy_wakeup(struct e1000_adapter *adapter, u32 wufc)
6123{
6124	struct e1000_hw *hw = &adapter->hw;
6125	u32 i, mac_reg, wuc;
6126	u16 phy_reg, wuc_enable;
6127	int retval;
6128
6129	/* copy MAC RARs to PHY RARs */
6130	e1000_copy_rx_addrs_to_phy_ich8lan(hw);
6131
6132	retval = hw->phy.ops.acquire(hw);
6133	if (retval) {
6134		e_err("Could not acquire PHY\n");
6135		return retval;
6136	}
6137
6138	/* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
6139	retval = e1000_enable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6140	if (retval)
6141		goto release;
6142
6143	/* copy MAC MTA to PHY MTA - only needed for pchlan */
6144	for (i = 0; i < adapter->hw.mac.mta_reg_count; i++) {
6145		mac_reg = E1000_READ_REG_ARRAY(hw, E1000_MTA, i);
6146		hw->phy.ops.write_reg_page(hw, BM_MTA(i),
6147					   (u16)(mac_reg & 0xFFFF));
6148		hw->phy.ops.write_reg_page(hw, BM_MTA(i) + 1,
6149					   (u16)((mac_reg >> 16) & 0xFFFF));
6150	}
6151
6152	/* configure PHY Rx Control register */
6153	hw->phy.ops.read_reg_page(&adapter->hw, BM_RCTL, &phy_reg);
6154	mac_reg = er32(RCTL);
6155	if (mac_reg & E1000_RCTL_UPE)
6156		phy_reg |= BM_RCTL_UPE;
6157	if (mac_reg & E1000_RCTL_MPE)
6158		phy_reg |= BM_RCTL_MPE;
6159	phy_reg &= ~(BM_RCTL_MO_MASK);
6160	if (mac_reg & E1000_RCTL_MO_3)
6161		phy_reg |= (((mac_reg & E1000_RCTL_MO_3) >> E1000_RCTL_MO_SHIFT)
6162			    << BM_RCTL_MO_SHIFT);
6163	if (mac_reg & E1000_RCTL_BAM)
6164		phy_reg |= BM_RCTL_BAM;
6165	if (mac_reg & E1000_RCTL_PMCF)
6166		phy_reg |= BM_RCTL_PMCF;
6167	mac_reg = er32(CTRL);
6168	if (mac_reg & E1000_CTRL_RFCE)
6169		phy_reg |= BM_RCTL_RFCE;
6170	hw->phy.ops.write_reg_page(&adapter->hw, BM_RCTL, phy_reg);
6171
6172	wuc = E1000_WUC_PME_EN;
6173	if (wufc & (E1000_WUFC_MAG | E1000_WUFC_LNKC))
6174		wuc |= E1000_WUC_APME;
6175
6176	/* enable PHY wakeup in MAC register */
6177	ew32(WUFC, wufc);
6178	ew32(WUC, (E1000_WUC_PHY_WAKE | E1000_WUC_APMPME |
6179		   E1000_WUC_PME_STATUS | wuc));
6180
6181	/* configure and enable PHY wakeup in PHY registers */
6182	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUFC, wufc);
6183	hw->phy.ops.write_reg_page(&adapter->hw, BM_WUC, wuc);
6184
6185	/* activate PHY wakeup */
6186	wuc_enable |= BM_WUC_ENABLE_BIT | BM_WUC_HOST_WU_BIT;
6187	retval = e1000_disable_phy_wakeup_reg_access_bm(hw, &wuc_enable);
6188	if (retval)
6189		e_err("Could not set PHY Host Wakeup bit\n");
6190release:
6191	hw->phy.ops.release(hw);
6192
6193	return retval;
6194}
6195
6196static void e1000e_flush_lpic(struct pci_dev *pdev)
 
6197{
6198	struct net_device *netdev = pci_get_drvdata(pdev);
6199	struct e1000_adapter *adapter = netdev_priv(netdev);
6200	struct e1000_hw *hw = &adapter->hw;
6201	u32 ret_val;
6202
6203	pm_runtime_get_sync(netdev->dev.parent);
6204
6205	ret_val = hw->phy.ops.acquire(hw);
6206	if (ret_val)
6207		goto fl_out;
6208
6209	pr_info("EEE TX LPI TIMER: %08X\n",
6210		er32(LPIC) >> E1000_LPIC_LPIET_SHIFT);
6211
6212	hw->phy.ops.release(hw);
6213
6214fl_out:
6215	pm_runtime_put_sync(netdev->dev.parent);
6216}
6217
6218static int e1000e_pm_freeze(struct device *dev)
6219{
6220	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6221	struct e1000_adapter *adapter = netdev_priv(netdev);
6222
6223	netif_device_detach(netdev);
6224
6225	if (netif_running(netdev)) {
6226		int count = E1000_CHECK_RESET_COUNT;
6227
6228		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6229			usleep_range(10000, 20000);
6230
6231		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6232
6233		/* Quiesce the device without resetting the hardware */
6234		e1000e_down(adapter, false);
6235		e1000_free_irq(adapter);
6236	}
6237	e1000e_reset_interrupt_capability(adapter);
6238
6239	/* Allow time for pending master requests to run */
6240	e1000e_disable_pcie_master(&adapter->hw);
6241
6242	return 0;
6243}
6244
6245static int __e1000_shutdown(struct pci_dev *pdev, bool runtime)
6246{
6247	struct net_device *netdev = pci_get_drvdata(pdev);
6248	struct e1000_adapter *adapter = netdev_priv(netdev);
6249	struct e1000_hw *hw = &adapter->hw;
6250	u32 ctrl, ctrl_ext, rctl, status;
6251	/* Runtime suspend should only enable wakeup for link changes */
6252	u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
6253	int retval = 0;
6254
6255	status = er32(STATUS);
6256	if (status & E1000_STATUS_LU)
6257		wufc &= ~E1000_WUFC_LNKC;
6258
6259	if (wufc) {
6260		e1000_setup_rctl(adapter);
6261		e1000e_set_rx_mode(netdev);
6262
6263		/* turn on all-multi mode if wake on multicast is enabled */
6264		if (wufc & E1000_WUFC_MC) {
6265			rctl = er32(RCTL);
6266			rctl |= E1000_RCTL_MPE;
6267			ew32(RCTL, rctl);
6268		}
6269
6270		ctrl = er32(CTRL);
 
 
 
 
6271		ctrl |= E1000_CTRL_ADVD3WUC;
6272		if (!(adapter->flags2 & FLAG2_HAS_PHY_WAKEUP))
6273			ctrl |= E1000_CTRL_EN_PHY_PWR_MGMT;
6274		ew32(CTRL, ctrl);
6275
6276		if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
6277		    adapter->hw.phy.media_type ==
6278		    e1000_media_type_internal_serdes) {
6279			/* keep the laser running in D3 */
6280			ctrl_ext = er32(CTRL_EXT);
6281			ctrl_ext |= E1000_CTRL_EXT_SDP3_DATA;
6282			ew32(CTRL_EXT, ctrl_ext);
6283		}
6284
6285		if (!runtime)
6286			e1000e_power_up_phy(adapter);
6287
6288		if (adapter->flags & FLAG_IS_ICH)
6289			e1000_suspend_workarounds_ich8lan(&adapter->hw);
6290
 
 
 
6291		if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6292			/* enable wakeup by the PHY */
6293			retval = e1000_init_phy_wakeup(adapter, wufc);
6294			if (retval)
6295				return retval;
6296		} else {
6297			/* enable wakeup by the MAC */
6298			ew32(WUFC, wufc);
6299			ew32(WUC, E1000_WUC_PME_EN);
6300		}
6301	} else {
6302		ew32(WUC, 0);
6303		ew32(WUFC, 0);
 
 
 
6304
6305		e1000_power_down_phy(adapter);
6306	}
 
 
6307
6308	if (adapter->hw.phy.type == e1000_phy_igp_3) {
6309		e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
6310	} else if ((hw->mac.type == e1000_pch_lpt) ||
6311		   (hw->mac.type == e1000_pch_spt)) {
6312		if (!(wufc & (E1000_WUFC_EX | E1000_WUFC_MC | E1000_WUFC_BC)))
6313			/* ULP does not support wake from unicast, multicast
6314			 * or broadcast.
6315			 */
6316			retval = e1000_enable_ulp_lpt_lp(hw, !runtime);
6317
6318		if (retval)
6319			return retval;
6320	}
 
 
 
 
6321
6322	/* Ensure that the appropriate bits are set in LPI_CTRL
6323	 * for EEE in Sx
6324	 */
6325	if ((hw->phy.type >= e1000_phy_i217) &&
6326	    adapter->eee_advert && hw->dev_spec.ich8lan.eee_lp_ability) {
6327		u16 lpi_ctrl = 0;
6328
6329		retval = hw->phy.ops.acquire(hw);
6330		if (!retval) {
6331			retval = e1e_rphy_locked(hw, I82579_LPI_CTRL,
6332						 &lpi_ctrl);
6333			if (!retval) {
6334				if (adapter->eee_advert &
6335				    hw->dev_spec.ich8lan.eee_lp_ability &
6336				    I82579_EEE_100_SUPPORTED)
6337					lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
6338				if (adapter->eee_advert &
6339				    hw->dev_spec.ich8lan.eee_lp_ability &
6340				    I82579_EEE_1000_SUPPORTED)
6341					lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
6342
6343				retval = e1e_wphy_locked(hw, I82579_LPI_CTRL,
6344							 lpi_ctrl);
6345			}
6346		}
6347		hw->phy.ops.release(hw);
6348	}
6349
6350	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6351	 * would have already happened in close and is redundant.
6352	 */
6353	e1000e_release_hw_control(adapter);
6354
6355	pci_clear_master(pdev);
 
 
 
 
6356
6357	/* The pci-e switch on some quad port adapters will report a
 
6358	 * correctable error when the MAC transitions from D0 to D3.  To
6359	 * prevent this we need to mask off the correctable errors on the
6360	 * downstream port of the pci-e switch.
6361	 *
6362	 * We don't have the associated upstream bridge while assigning
6363	 * the PCI device into guest. For example, the KVM on power is
6364	 * one of the cases.
6365	 */
6366	if (adapter->flags & FLAG_IS_QUAD_PORT) {
6367		struct pci_dev *us_dev = pdev->bus->self;
 
6368		u16 devctl;
6369
6370		if (!us_dev)
6371			return 0;
 
6372
6373		pcie_capability_read_word(us_dev, PCI_EXP_DEVCTL, &devctl);
6374		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL,
6375					   (devctl & ~PCI_EXP_DEVCTL_CERE));
6376
6377		pci_save_state(pdev);
6378		pci_prepare_to_sleep(pdev);
6379
6380		pcie_capability_write_word(us_dev, PCI_EXP_DEVCTL, devctl);
6381	}
6382
6383	return 0;
6384}
6385
6386/**
6387 * __e1000e_disable_aspm - Disable ASPM states
6388 * @pdev: pointer to PCI device struct
6389 * @state: bit-mask of ASPM states to disable
6390 * @locked: indication if this context holds pci_bus_sem locked.
6391 *
6392 * Some devices *must* have certain ASPM states disabled per hardware errata.
6393 **/
6394static void __e1000e_disable_aspm(struct pci_dev *pdev, u16 state, int locked)
6395{
6396	struct pci_dev *parent = pdev->bus->self;
6397	u16 aspm_dis_mask = 0;
6398	u16 pdev_aspmc, parent_aspmc;
6399
6400	switch (state) {
6401	case PCIE_LINK_STATE_L0S:
6402	case PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1:
6403		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L0S;
6404		/* fall-through - can't have L1 without L0s */
6405	case PCIE_LINK_STATE_L1:
6406		aspm_dis_mask |= PCI_EXP_LNKCTL_ASPM_L1;
6407		break;
6408	default:
6409		return;
6410	}
6411
6412	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6413	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6414
6415	if (parent) {
6416		pcie_capability_read_word(parent, PCI_EXP_LNKCTL,
6417					  &parent_aspmc);
6418		parent_aspmc &= PCI_EXP_LNKCTL_ASPMC;
6419	}
6420
6421	/* Nothing to do if the ASPM states to be disabled already are */
6422	if (!(pdev_aspmc & aspm_dis_mask) &&
6423	    (!parent || !(parent_aspmc & aspm_dis_mask)))
6424		return;
6425
6426	dev_info(&pdev->dev, "Disabling ASPM %s %s\n",
6427		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L0S) ?
6428		 "L0s" : "",
6429		 (aspm_dis_mask & pdev_aspmc & PCI_EXP_LNKCTL_ASPM_L1) ?
6430		 "L1" : "");
6431
6432#ifdef CONFIG_PCIEASPM
6433	if (locked)
6434		pci_disable_link_state_locked(pdev, state);
6435	else
6436		pci_disable_link_state(pdev, state);
 
 
 
 
 
6437
6438	/* Double-check ASPM control.  If not disabled by the above, the
6439	 * BIOS is preventing that from happening (or CONFIG_PCIEASPM is
6440	 * not enabled); override by writing PCI config space directly.
6441	 */
6442	pcie_capability_read_word(pdev, PCI_EXP_LNKCTL, &pdev_aspmc);
6443	pdev_aspmc &= PCI_EXP_LNKCTL_ASPMC;
 
 
6444
6445	if (!(aspm_dis_mask & pdev_aspmc))
6446		return;
6447#endif
6448
6449	/* Both device and parent should have the same ASPM setting.
6450	 * Disable ASPM in downstream component first and then upstream.
6451	 */
6452	pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, aspm_dis_mask);
6453
6454	if (parent)
6455		pcie_capability_clear_word(parent, PCI_EXP_LNKCTL,
6456					   aspm_dis_mask);
6457}
6458
6459/**
6460 * e1000e_disable_aspm - Disable ASPM states.
6461 * @pdev: pointer to PCI device struct
6462 * @state: bit-mask of ASPM states to disable
6463 *
6464 * This function acquires the pci_bus_sem!
6465 * Some devices *must* have certain ASPM states disabled per hardware errata.
6466 **/
6467static void e1000e_disable_aspm(struct pci_dev *pdev, u16 state)
6468{
6469	__e1000e_disable_aspm(pdev, state, 0);
 
 
 
 
6470}
6471
6472/**
6473 * e1000e_disable_aspm_locked   Disable ASPM states.
6474 * @pdev: pointer to PCI device struct
6475 * @state: bit-mask of ASPM states to disable
6476 *
6477 * This function must be called with pci_bus_sem acquired!
6478 * Some devices *must* have certain ASPM states disabled per hardware errata.
6479 **/
6480static void e1000e_disable_aspm_locked(struct pci_dev *pdev, u16 state)
6481{
6482	__e1000e_disable_aspm(pdev, state, 1);
6483}
6484
6485#ifdef CONFIG_PM
6486static int __e1000_resume(struct pci_dev *pdev)
6487{
6488	struct net_device *netdev = pci_get_drvdata(pdev);
6489	struct e1000_adapter *adapter = netdev_priv(netdev);
6490	struct e1000_hw *hw = &adapter->hw;
6491	u16 aspm_disable_flag = 0;
 
6492
6493	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6494		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6495	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6496		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6497	if (aspm_disable_flag)
6498		e1000e_disable_aspm(pdev, aspm_disable_flag);
6499
6500	pci_set_master(pdev);
 
 
 
 
 
 
 
 
 
6501
6502	if (hw->mac.type >= e1000_pch2lan)
6503		e1000_resume_workarounds_pchlan(&adapter->hw);
6504
6505	e1000e_power_up_phy(adapter);
6506
6507	/* report the system wakeup cause from S3/S4 */
6508	if (adapter->flags2 & FLAG2_HAS_PHY_WAKEUP) {
6509		u16 phy_data;
6510
6511		e1e_rphy(&adapter->hw, BM_WUS, &phy_data);
6512		if (phy_data) {
6513			e_info("PHY Wakeup cause - %s\n",
6514			       phy_data & E1000_WUS_EX ? "Unicast Packet" :
6515			       phy_data & E1000_WUS_MC ? "Multicast Packet" :
6516			       phy_data & E1000_WUS_BC ? "Broadcast Packet" :
6517			       phy_data & E1000_WUS_MAG ? "Magic Packet" :
6518			       phy_data & E1000_WUS_LNKC ?
6519			       "Link Status Change" : "other");
6520		}
6521		e1e_wphy(&adapter->hw, BM_WUS, ~0);
6522	} else {
6523		u32 wus = er32(WUS);
6524
6525		if (wus) {
6526			e_info("MAC Wakeup cause - %s\n",
6527			       wus & E1000_WUS_EX ? "Unicast Packet" :
6528			       wus & E1000_WUS_MC ? "Multicast Packet" :
6529			       wus & E1000_WUS_BC ? "Broadcast Packet" :
6530			       wus & E1000_WUS_MAG ? "Magic Packet" :
6531			       wus & E1000_WUS_LNKC ? "Link Status Change" :
6532			       "other");
6533		}
6534		ew32(WUS, ~0);
6535	}
6536
6537	e1000e_reset(adapter);
6538
6539	e1000_init_manageability_pt(adapter);
6540
6541	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
 
 
 
 
 
6542	 * is up.  For all other cases, let the f/w know that the h/w is now
6543	 * under the control of the driver.
6544	 */
6545	if (!(adapter->flags & FLAG_HAS_AMT))
6546		e1000e_get_hw_control(adapter);
6547
6548	return 0;
6549}
6550
6551#ifdef CONFIG_PM_SLEEP
6552static int e1000e_pm_thaw(struct device *dev)
6553{
6554	struct net_device *netdev = pci_get_drvdata(to_pci_dev(dev));
6555	struct e1000_adapter *adapter = netdev_priv(netdev);
6556
6557	e1000e_set_interrupt_capability(adapter);
6558	if (netif_running(netdev)) {
6559		u32 err = e1000_request_irq(adapter);
6560
6561		if (err)
6562			return err;
6563
6564		e1000e_up(adapter);
6565	}
6566
6567	netif_device_attach(netdev);
6568
6569	return 0;
6570}
6571
6572static int e1000e_pm_suspend(struct device *dev)
6573{
6574	struct pci_dev *pdev = to_pci_dev(dev);
 
 
6575
6576	e1000e_flush_lpic(pdev);
 
 
6577
6578	e1000e_pm_freeze(dev);
6579
6580	return __e1000_shutdown(pdev, false);
6581}
6582
6583static int e1000e_pm_resume(struct device *dev)
6584{
6585	struct pci_dev *pdev = to_pci_dev(dev);
6586	int rc;
 
6587
6588	rc = __e1000_resume(pdev);
6589	if (rc)
6590		return rc;
6591
6592	return e1000e_pm_thaw(dev);
6593}
6594#endif /* CONFIG_PM_SLEEP */
6595
6596static int e1000e_pm_runtime_idle(struct device *dev)
 
6597{
6598	struct pci_dev *pdev = to_pci_dev(dev);
6599	struct net_device *netdev = pci_get_drvdata(pdev);
6600	struct e1000_adapter *adapter = netdev_priv(netdev);
6601	u16 eee_lp;
6602
6603	eee_lp = adapter->hw.dev_spec.ich8lan.eee_lp_ability;
 
6604
6605	if (!e1000e_has_link(adapter)) {
6606		adapter->hw.dev_spec.ich8lan.eee_lp_ability = eee_lp;
6607		pm_schedule_suspend(dev, 5 * MSEC_PER_SEC);
6608	}
6609
6610	return -EBUSY;
6611}
6612
6613static int e1000e_pm_runtime_resume(struct device *dev)
6614{
6615	struct pci_dev *pdev = to_pci_dev(dev);
6616	struct net_device *netdev = pci_get_drvdata(pdev);
6617	struct e1000_adapter *adapter = netdev_priv(netdev);
6618	int rc;
6619
6620	rc = __e1000_resume(pdev);
6621	if (rc)
6622		return rc;
6623
6624	if (netdev->flags & IFF_UP)
6625		e1000e_up(adapter);
 
 
 
6626
6627	return rc;
6628}
6629
6630static int e1000e_pm_runtime_suspend(struct device *dev)
6631{
6632	struct pci_dev *pdev = to_pci_dev(dev);
6633	struct net_device *netdev = pci_get_drvdata(pdev);
6634	struct e1000_adapter *adapter = netdev_priv(netdev);
6635
6636	if (netdev->flags & IFF_UP) {
6637		int count = E1000_CHECK_RESET_COUNT;
6638
6639		while (test_bit(__E1000_RESETTING, &adapter->state) && count--)
6640			usleep_range(10000, 20000);
6641
6642		WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
6643
6644		/* Down the device without resetting the hardware */
6645		e1000e_down(adapter, false);
6646	}
6647
6648	if (__e1000_shutdown(pdev, true)) {
6649		e1000e_pm_runtime_resume(dev);
6650		return -EBUSY;
6651	}
6652
6653	return 0;
6654}
 
6655#endif /* CONFIG_PM */
6656
6657static void e1000_shutdown(struct pci_dev *pdev)
6658{
6659	e1000e_flush_lpic(pdev);
6660
6661	e1000e_pm_freeze(&pdev->dev);
6662
6663	__e1000_shutdown(pdev, false);
 
6664}
6665
6666#ifdef CONFIG_NET_POLL_CONTROLLER
6667
6668static irqreturn_t e1000_intr_msix(int __always_unused irq, void *data)
6669{
6670	struct net_device *netdev = data;
6671	struct e1000_adapter *adapter = netdev_priv(netdev);
6672
6673	if (adapter->msix_entries) {
6674		int vector, msix_irq;
6675
6676		vector = 0;
6677		msix_irq = adapter->msix_entries[vector].vector;
6678		disable_irq(msix_irq);
6679		e1000_intr_msix_rx(msix_irq, netdev);
6680		enable_irq(msix_irq);
6681
6682		vector++;
6683		msix_irq = adapter->msix_entries[vector].vector;
6684		disable_irq(msix_irq);
6685		e1000_intr_msix_tx(msix_irq, netdev);
6686		enable_irq(msix_irq);
6687
6688		vector++;
6689		msix_irq = adapter->msix_entries[vector].vector;
6690		disable_irq(msix_irq);
6691		e1000_msix_other(msix_irq, netdev);
6692		enable_irq(msix_irq);
6693	}
6694
6695	return IRQ_HANDLED;
6696}
6697
6698/**
6699 * e1000_netpoll
6700 * @netdev: network interface device structure
6701 *
6702 * Polling 'interrupt' - used by things like netconsole to send skbs
6703 * without having to re-enable interrupts. It's not called while
6704 * the interrupt routine is executing.
6705 */
6706static void e1000_netpoll(struct net_device *netdev)
6707{
6708	struct e1000_adapter *adapter = netdev_priv(netdev);
6709
6710	switch (adapter->int_mode) {
6711	case E1000E_INT_MODE_MSIX:
6712		e1000_intr_msix(adapter->pdev->irq, netdev);
6713		break;
6714	case E1000E_INT_MODE_MSI:
6715		disable_irq(adapter->pdev->irq);
6716		e1000_intr_msi(adapter->pdev->irq, netdev);
6717		enable_irq(adapter->pdev->irq);
6718		break;
6719	default:		/* E1000E_INT_MODE_LEGACY */
6720		disable_irq(adapter->pdev->irq);
6721		e1000_intr(adapter->pdev->irq, netdev);
6722		enable_irq(adapter->pdev->irq);
6723		break;
6724	}
6725}
6726#endif
6727
6728/**
6729 * e1000_io_error_detected - called when PCI error is detected
6730 * @pdev: Pointer to PCI device
6731 * @state: The current pci connection state
6732 *
6733 * This function is called after a PCI bus error affecting
6734 * this device has been detected.
6735 */
6736static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
6737						pci_channel_state_t state)
6738{
6739	struct net_device *netdev = pci_get_drvdata(pdev);
6740	struct e1000_adapter *adapter = netdev_priv(netdev);
6741
6742	netif_device_detach(netdev);
6743
6744	if (state == pci_channel_io_perm_failure)
6745		return PCI_ERS_RESULT_DISCONNECT;
6746
6747	if (netif_running(netdev))
6748		e1000e_down(adapter, true);
6749	pci_disable_device(pdev);
6750
6751	/* Request a slot slot reset. */
6752	return PCI_ERS_RESULT_NEED_RESET;
6753}
6754
6755/**
6756 * e1000_io_slot_reset - called after the pci bus has been reset.
6757 * @pdev: Pointer to PCI device
6758 *
6759 * Restart the card from scratch, as if from a cold-boot. Implementation
6760 * resembles the first-half of the e1000e_pm_resume routine.
6761 */
6762static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
6763{
6764	struct net_device *netdev = pci_get_drvdata(pdev);
6765	struct e1000_adapter *adapter = netdev_priv(netdev);
6766	struct e1000_hw *hw = &adapter->hw;
6767	u16 aspm_disable_flag = 0;
6768	int err;
6769	pci_ers_result_t result;
6770
6771	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L0S)
6772		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6773	if (adapter->flags2 & FLAG2_DISABLE_ASPM_L1)
6774		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6775	if (aspm_disable_flag)
6776		e1000e_disable_aspm_locked(pdev, aspm_disable_flag);
6777
6778	err = pci_enable_device_mem(pdev);
6779	if (err) {
6780		dev_err(&pdev->dev,
6781			"Cannot re-enable PCI device after reset.\n");
6782		result = PCI_ERS_RESULT_DISCONNECT;
6783	} else {
 
6784		pdev->state_saved = true;
6785		pci_restore_state(pdev);
6786		pci_set_master(pdev);
6787
6788		pci_enable_wake(pdev, PCI_D3hot, 0);
6789		pci_enable_wake(pdev, PCI_D3cold, 0);
6790
6791		e1000e_reset(adapter);
6792		ew32(WUS, ~0);
6793		result = PCI_ERS_RESULT_RECOVERED;
6794	}
6795
6796	pci_cleanup_aer_uncorrect_error_status(pdev);
6797
6798	return result;
6799}
6800
6801/**
6802 * e1000_io_resume - called when traffic can start flowing again.
6803 * @pdev: Pointer to PCI device
6804 *
6805 * This callback is called when the error recovery driver tells us that
6806 * its OK to resume normal operation. Implementation resembles the
6807 * second-half of the e1000e_pm_resume routine.
6808 */
6809static void e1000_io_resume(struct pci_dev *pdev)
6810{
6811	struct net_device *netdev = pci_get_drvdata(pdev);
6812	struct e1000_adapter *adapter = netdev_priv(netdev);
6813
6814	e1000_init_manageability_pt(adapter);
6815
6816	if (netif_running(netdev))
6817		e1000e_up(adapter);
 
 
 
 
 
6818
6819	netif_device_attach(netdev);
6820
6821	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
6822	 * is up.  For all other cases, let the f/w know that the h/w is now
6823	 * under the control of the driver.
6824	 */
6825	if (!(adapter->flags & FLAG_HAS_AMT))
6826		e1000e_get_hw_control(adapter);
 
6827}
6828
6829static void e1000_print_device_info(struct e1000_adapter *adapter)
6830{
6831	struct e1000_hw *hw = &adapter->hw;
6832	struct net_device *netdev = adapter->netdev;
6833	u32 ret_val;
6834	u8 pba_str[E1000_PBANUM_LENGTH];
6835
6836	/* print bus type/speed/width info */
6837	e_info("(PCI Express:2.5GT/s:%s) %pM\n",
6838	       /* bus width */
6839	       ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
6840		"Width x1"),
6841	       /* MAC address */
6842	       netdev->dev_addr);
6843	e_info("Intel(R) PRO/%s Network Connection\n",
6844	       (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
6845	ret_val = e1000_read_pba_string_generic(hw, pba_str,
6846						E1000_PBANUM_LENGTH);
6847	if (ret_val)
6848		strlcpy((char *)pba_str, "Unknown", sizeof(pba_str));
6849	e_info("MAC: %d, PHY: %d, PBA No: %s\n",
6850	       hw->mac.type, hw->phy.type, pba_str);
6851}
6852
6853static void e1000_eeprom_checks(struct e1000_adapter *adapter)
6854{
6855	struct e1000_hw *hw = &adapter->hw;
6856	int ret_val;
6857	u16 buf = 0;
6858
6859	if (hw->mac.type != e1000_82573)
6860		return;
6861
6862	ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
6863	le16_to_cpus(&buf);
6864	if (!ret_val && (!(buf & (1 << 0)))) {
6865		/* Deep Smart Power Down (DSPD) */
6866		dev_warn(&adapter->pdev->dev,
6867			 "Warning: detected DSPD enabled in EEPROM\n");
6868	}
6869}
6870
6871static netdev_features_t e1000_fix_features(struct net_device *netdev,
6872					    netdev_features_t features)
6873{
6874	struct e1000_adapter *adapter = netdev_priv(netdev);
6875	struct e1000_hw *hw = &adapter->hw;
6876
6877	/* Jumbo frame workaround on 82579 and newer requires CRC be stripped */
6878	if ((hw->mac.type >= e1000_pch2lan) && (netdev->mtu > ETH_DATA_LEN))
6879		features &= ~NETIF_F_RXFCS;
6880
6881	return features;
6882}
6883
6884static int e1000_set_features(struct net_device *netdev,
6885			      netdev_features_t features)
6886{
6887	struct e1000_adapter *adapter = netdev_priv(netdev);
6888	netdev_features_t changed = features ^ netdev->features;
6889
6890	if (changed & (NETIF_F_TSO | NETIF_F_TSO6))
6891		adapter->flags |= FLAG_TSO_FORCE;
6892
6893	if (!(changed & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX |
6894			 NETIF_F_RXCSUM | NETIF_F_RXHASH | NETIF_F_RXFCS |
6895			 NETIF_F_RXALL)))
6896		return 0;
6897
6898	if (changed & NETIF_F_RXFCS) {
6899		if (features & NETIF_F_RXFCS) {
6900			adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6901		} else {
6902			/* We need to take it back to defaults, which might mean
6903			 * stripping is still disabled at the adapter level.
6904			 */
6905			if (adapter->flags2 & FLAG2_DFLT_CRC_STRIPPING)
6906				adapter->flags2 |= FLAG2_CRC_STRIPPING;
6907			else
6908				adapter->flags2 &= ~FLAG2_CRC_STRIPPING;
6909		}
6910	}
6911
6912	netdev->features = features;
6913
6914	if (netif_running(netdev))
6915		e1000e_reinit_locked(adapter);
6916	else
6917		e1000e_reset(adapter);
6918
6919	return 0;
6920}
6921
6922static const struct net_device_ops e1000e_netdev_ops = {
6923	.ndo_open		= e1000_open,
6924	.ndo_stop		= e1000_close,
6925	.ndo_start_xmit		= e1000_xmit_frame,
6926	.ndo_get_stats64	= e1000e_get_stats64,
6927	.ndo_set_rx_mode	= e1000e_set_rx_mode,
6928	.ndo_set_mac_address	= e1000_set_mac,
6929	.ndo_change_mtu		= e1000_change_mtu,
6930	.ndo_do_ioctl		= e1000_ioctl,
6931	.ndo_tx_timeout		= e1000_tx_timeout,
6932	.ndo_validate_addr	= eth_validate_addr,
6933
6934	.ndo_vlan_rx_add_vid	= e1000_vlan_rx_add_vid,
6935	.ndo_vlan_rx_kill_vid	= e1000_vlan_rx_kill_vid,
6936#ifdef CONFIG_NET_POLL_CONTROLLER
6937	.ndo_poll_controller	= e1000_netpoll,
6938#endif
6939	.ndo_set_features = e1000_set_features,
6940	.ndo_fix_features = e1000_fix_features,
6941	.ndo_features_check	= passthru_features_check,
6942};
6943
6944/**
6945 * e1000_probe - Device Initialization Routine
6946 * @pdev: PCI device information struct
6947 * @ent: entry in e1000_pci_tbl
6948 *
6949 * Returns 0 on success, negative on failure
6950 *
6951 * e1000_probe initializes an adapter identified by a pci_dev structure.
6952 * The OS initialization, configuring of the adapter private structure,
6953 * and a hardware reset occur.
6954 **/
6955static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
 
6956{
6957	struct net_device *netdev;
6958	struct e1000_adapter *adapter;
6959	struct e1000_hw *hw;
6960	const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
6961	resource_size_t mmio_start, mmio_len;
6962	resource_size_t flash_start, flash_len;
6963	static int cards_found;
6964	u16 aspm_disable_flag = 0;
6965	int bars, i, err, pci_using_dac;
6966	u16 eeprom_data = 0;
6967	u16 eeprom_apme_mask = E1000_EEPROM_APME;
6968	s32 rval = 0;
6969
6970	if (ei->flags2 & FLAG2_DISABLE_ASPM_L0S)
6971		aspm_disable_flag = PCIE_LINK_STATE_L0S;
6972	if (ei->flags2 & FLAG2_DISABLE_ASPM_L1)
6973		aspm_disable_flag |= PCIE_LINK_STATE_L1;
6974	if (aspm_disable_flag)
6975		e1000e_disable_aspm(pdev, aspm_disable_flag);
6976
6977	err = pci_enable_device_mem(pdev);
6978	if (err)
6979		return err;
6980
6981	pci_using_dac = 0;
6982	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
6983	if (!err) {
6984		pci_using_dac = 1;
 
 
6985	} else {
6986		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
6987		if (err) {
6988			dev_err(&pdev->dev,
6989				"No usable DMA configuration, aborting\n");
6990			goto err_dma;
 
 
 
6991		}
6992	}
6993
6994	bars = pci_select_bars(pdev, IORESOURCE_MEM);
6995	err = pci_request_selected_regions_exclusive(pdev, bars,
6996						     e1000e_driver_name);
6997	if (err)
6998		goto err_pci_reg;
6999
7000	/* AER (Advanced Error Reporting) hooks */
7001	pci_enable_pcie_error_reporting(pdev);
7002
7003	pci_set_master(pdev);
7004	/* PCI config space info */
7005	err = pci_save_state(pdev);
7006	if (err)
7007		goto err_alloc_etherdev;
7008
7009	err = -ENOMEM;
7010	netdev = alloc_etherdev(sizeof(struct e1000_adapter));
7011	if (!netdev)
7012		goto err_alloc_etherdev;
7013
7014	SET_NETDEV_DEV(netdev, &pdev->dev);
7015
7016	netdev->irq = pdev->irq;
7017
7018	pci_set_drvdata(pdev, netdev);
7019	adapter = netdev_priv(netdev);
7020	hw = &adapter->hw;
7021	adapter->netdev = netdev;
7022	adapter->pdev = pdev;
7023	adapter->ei = ei;
7024	adapter->pba = ei->pba;
7025	adapter->flags = ei->flags;
7026	adapter->flags2 = ei->flags2;
7027	adapter->hw.adapter = adapter;
7028	adapter->hw.mac.type = ei->mac;
7029	adapter->max_hw_frame_size = ei->max_hw_frame_size;
7030	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
7031
7032	mmio_start = pci_resource_start(pdev, 0);
7033	mmio_len = pci_resource_len(pdev, 0);
7034
7035	err = -EIO;
7036	adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
7037	if (!adapter->hw.hw_addr)
7038		goto err_ioremap;
7039
7040	if ((adapter->flags & FLAG_HAS_FLASH) &&
7041	    (pci_resource_flags(pdev, 1) & IORESOURCE_MEM) &&
7042	    (hw->mac.type < e1000_pch_spt)) {
7043		flash_start = pci_resource_start(pdev, 1);
7044		flash_len = pci_resource_len(pdev, 1);
7045		adapter->hw.flash_address = ioremap(flash_start, flash_len);
7046		if (!adapter->hw.flash_address)
7047			goto err_flashmap;
7048	}
7049
7050	/* Set default EEE advertisement */
7051	if (adapter->flags2 & FLAG2_HAS_EEE)
7052		adapter->eee_advert = MDIO_EEE_100TX | MDIO_EEE_1000T;
7053
7054	/* construct the net_device struct */
7055	netdev->netdev_ops = &e1000e_netdev_ops;
7056	e1000e_set_ethtool_ops(netdev);
7057	netdev->watchdog_timeo = 5 * HZ;
7058	netif_napi_add(netdev, &adapter->napi, e1000e_poll, 64);
7059	strlcpy(netdev->name, pci_name(pdev), sizeof(netdev->name));
7060
7061	netdev->mem_start = mmio_start;
7062	netdev->mem_end = mmio_start + mmio_len;
7063
7064	adapter->bd_number = cards_found++;
7065
7066	e1000e_check_options(adapter);
7067
7068	/* setup adapter struct */
7069	err = e1000_sw_init(adapter);
7070	if (err)
7071		goto err_sw_init;
7072
7073	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
7074	memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
7075	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
7076
7077	err = ei->get_variants(adapter);
7078	if (err)
7079		goto err_hw_init;
7080
7081	if ((adapter->flags & FLAG_IS_ICH) &&
7082	    (adapter->flags & FLAG_READ_ONLY_NVM) &&
7083	    (hw->mac.type < e1000_pch_spt))
7084		e1000e_write_protect_nvm_ich8lan(&adapter->hw);
7085
7086	hw->mac.ops.get_bus_info(&adapter->hw);
7087
7088	adapter->hw.phy.autoneg_wait_to_complete = 0;
7089
7090	/* Copper options */
7091	if (adapter->hw.phy.media_type == e1000_media_type_copper) {
7092		adapter->hw.phy.mdix = AUTO_ALL_MODES;
7093		adapter->hw.phy.disable_polarity_correction = 0;
7094		adapter->hw.phy.ms_type = e1000_ms_hw_default;
7095	}
7096
7097	if (hw->phy.ops.check_reset_block && hw->phy.ops.check_reset_block(hw))
7098		dev_info(&pdev->dev,
7099			 "PHY reset is blocked due to SOL/IDER session.\n");
7100
7101	/* Set initial default active device features */
7102	netdev->features = (NETIF_F_SG |
7103			    NETIF_F_HW_VLAN_CTAG_RX |
7104			    NETIF_F_HW_VLAN_CTAG_TX |
7105			    NETIF_F_TSO |
7106			    NETIF_F_TSO6 |
7107			    NETIF_F_RXHASH |
7108			    NETIF_F_RXCSUM |
7109			    NETIF_F_HW_CSUM);
7110
7111	/* Set user-changeable features (subset of all device features) */
7112	netdev->hw_features = netdev->features;
7113	netdev->hw_features |= NETIF_F_RXFCS;
7114	netdev->priv_flags |= IFF_SUPP_NOFCS;
7115	netdev->hw_features |= NETIF_F_RXALL;
7116
7117	if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
7118		netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
7119
7120	netdev->vlan_features |= (NETIF_F_SG |
7121				  NETIF_F_TSO |
7122				  NETIF_F_TSO6 |
7123				  NETIF_F_HW_CSUM);
7124
7125	netdev->priv_flags |= IFF_UNICAST_FLT;
7126
7127	if (pci_using_dac) {
7128		netdev->features |= NETIF_F_HIGHDMA;
7129		netdev->vlan_features |= NETIF_F_HIGHDMA;
7130	}
7131
7132	if (e1000e_enable_mng_pass_thru(&adapter->hw))
7133		adapter->flags |= FLAG_MNG_PT_ENABLED;
7134
7135	/* before reading the NVM, reset the controller to
 
7136	 * put the device in a known good starting state
7137	 */
7138	adapter->hw.mac.ops.reset_hw(&adapter->hw);
7139
7140	/* systems with ASPM and others may see the checksum fail on the first
 
7141	 * attempt. Let's give it a few tries
7142	 */
7143	for (i = 0;; i++) {
7144		if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
7145			break;
7146		if (i == 2) {
7147			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
7148			err = -EIO;
7149			goto err_eeprom;
7150		}
7151	}
7152
7153	e1000_eeprom_checks(adapter);
7154
7155	/* copy the MAC address */
7156	if (e1000e_read_mac_addr(&adapter->hw))
7157		dev_err(&pdev->dev,
7158			"NVM Read Error while reading MAC address\n");
7159
7160	memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
 
7161
7162	if (!is_valid_ether_addr(netdev->dev_addr)) {
7163		dev_err(&pdev->dev, "Invalid MAC Address: %pM\n",
7164			netdev->dev_addr);
7165		err = -EIO;
7166		goto err_eeprom;
7167	}
7168
7169	init_timer(&adapter->watchdog_timer);
7170	adapter->watchdog_timer.function = e1000_watchdog;
7171	adapter->watchdog_timer.data = (unsigned long)adapter;
7172
7173	init_timer(&adapter->phy_info_timer);
7174	adapter->phy_info_timer.function = e1000_update_phy_info;
7175	adapter->phy_info_timer.data = (unsigned long)adapter;
7176
7177	INIT_WORK(&adapter->reset_task, e1000_reset_task);
7178	INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
7179	INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
7180	INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
7181	INIT_WORK(&adapter->print_hang_task, e1000_print_hw_hang);
7182
7183	/* Initialize link parameters. User can change them with ethtool */
7184	adapter->hw.mac.autoneg = 1;
7185	adapter->fc_autoneg = true;
7186	adapter->hw.fc.requested_mode = e1000_fc_default;
7187	adapter->hw.fc.current_mode = e1000_fc_default;
7188	adapter->hw.phy.autoneg_advertised = 0x2f;
7189
7190	/* Initial Wake on LAN setting - If APM wake is enabled in
 
 
 
 
 
7191	 * the EEPROM, enable the ACPI Magic Packet filter
7192	 */
7193	if (adapter->flags & FLAG_APME_IN_WUC) {
7194		/* APME bit in EEPROM is mapped to WUC.APME */
7195		eeprom_data = er32(WUC);
7196		eeprom_apme_mask = E1000_WUC_APME;
7197		if ((hw->mac.type > e1000_ich10lan) &&
7198		    (eeprom_data & E1000_WUC_PHY_WAKE))
7199			adapter->flags2 |= FLAG2_HAS_PHY_WAKEUP;
7200	} else if (adapter->flags & FLAG_APME_IN_CTRL3) {
7201		if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
7202		    (adapter->hw.bus.func == 1))
7203			rval = e1000_read_nvm(&adapter->hw,
7204					      NVM_INIT_CONTROL3_PORT_B,
7205					      1, &eeprom_data);
7206		else
7207			rval = e1000_read_nvm(&adapter->hw,
7208					      NVM_INIT_CONTROL3_PORT_A,
7209					      1, &eeprom_data);
7210	}
7211
7212	/* fetch WoL from EEPROM */
7213	if (rval)
7214		e_dbg("NVM read error getting WoL initial values: %d\n", rval);
7215	else if (eeprom_data & eeprom_apme_mask)
7216		adapter->eeprom_wol |= E1000_WUFC_MAG;
7217
7218	/* now that we have the eeprom settings, apply the special cases
 
7219	 * where the eeprom may be wrong or the board simply won't support
7220	 * wake on lan on a particular port
7221	 */
7222	if (!(adapter->flags & FLAG_HAS_WOL))
7223		adapter->eeprom_wol = 0;
7224
7225	/* initialize the wol settings based on the eeprom settings */
7226	adapter->wol = adapter->eeprom_wol;
7227
7228	/* make sure adapter isn't asleep if manageability is enabled */
7229	if (adapter->wol || (adapter->flags & FLAG_MNG_PT_ENABLED) ||
7230	    (hw->mac.ops.check_mng_mode(hw)))
7231		device_wakeup_enable(&pdev->dev);
7232
7233	/* save off EEPROM version number */
7234	rval = e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
7235
7236	if (rval) {
7237		e_dbg("NVM read error getting EEPROM version: %d\n", rval);
7238		adapter->eeprom_vers = 0;
7239	}
7240
7241	/* reset the hardware with the new settings */
7242	e1000e_reset(adapter);
7243
7244	/* If the controller has AMT, do not set DRV_LOAD until the interface
 
7245	 * is up.  For all other cases, let the f/w know that the h/w is now
7246	 * under the control of the driver.
7247	 */
7248	if (!(adapter->flags & FLAG_HAS_AMT))
7249		e1000e_get_hw_control(adapter);
7250
7251	strlcpy(netdev->name, "eth%d", sizeof(netdev->name));
7252	err = register_netdev(netdev);
7253	if (err)
7254		goto err_register;
7255
7256	/* carrier off reporting is important to ethtool even BEFORE open */
7257	netif_carrier_off(netdev);
7258
7259	/* init PTP hardware clock */
7260	e1000e_ptp_init(adapter);
7261
7262	e1000_print_device_info(adapter);
7263
7264	if (pci_dev_run_wake(pdev))
7265		pm_runtime_put_noidle(&pdev->dev);
7266
7267	return 0;
7268
7269err_register:
7270	if (!(adapter->flags & FLAG_HAS_AMT))
7271		e1000e_release_hw_control(adapter);
7272err_eeprom:
7273	if (hw->phy.ops.check_reset_block && !hw->phy.ops.check_reset_block(hw))
7274		e1000_phy_hw_reset(&adapter->hw);
7275err_hw_init:
7276	kfree(adapter->tx_ring);
7277	kfree(adapter->rx_ring);
7278err_sw_init:
7279	if ((adapter->hw.flash_address) && (hw->mac.type < e1000_pch_spt))
7280		iounmap(adapter->hw.flash_address);
7281	e1000e_reset_interrupt_capability(adapter);
7282err_flashmap:
7283	iounmap(adapter->hw.hw_addr);
7284err_ioremap:
7285	free_netdev(netdev);
7286err_alloc_etherdev:
7287	pci_release_selected_regions(pdev,
7288				     pci_select_bars(pdev, IORESOURCE_MEM));
7289err_pci_reg:
7290err_dma:
7291	pci_disable_device(pdev);
7292	return err;
7293}
7294
7295/**
7296 * e1000_remove - Device Removal Routine
7297 * @pdev: PCI device information struct
7298 *
7299 * e1000_remove is called by the PCI subsystem to alert the driver
7300 * that it should release a PCI device.  The could be caused by a
7301 * Hot-Plug event, or because the driver is going to be removed from
7302 * memory.
7303 **/
7304static void e1000_remove(struct pci_dev *pdev)
7305{
7306	struct net_device *netdev = pci_get_drvdata(pdev);
7307	struct e1000_adapter *adapter = netdev_priv(netdev);
7308	bool down = test_bit(__E1000_DOWN, &adapter->state);
7309
7310	e1000e_ptp_remove(adapter);
7311
7312	/* The timers may be rescheduled, so explicitly disable them
7313	 * from being rescheduled.
7314	 */
7315	if (!down)
7316		set_bit(__E1000_DOWN, &adapter->state);
7317	del_timer_sync(&adapter->watchdog_timer);
7318	del_timer_sync(&adapter->phy_info_timer);
7319
7320	cancel_work_sync(&adapter->reset_task);
7321	cancel_work_sync(&adapter->watchdog_task);
7322	cancel_work_sync(&adapter->downshift_task);
7323	cancel_work_sync(&adapter->update_phy_task);
7324	cancel_work_sync(&adapter->print_hang_task);
7325
7326	if (adapter->flags & FLAG_HAS_HW_TIMESTAMP) {
7327		cancel_work_sync(&adapter->tx_hwtstamp_work);
7328		if (adapter->tx_hwtstamp_skb) {
7329			dev_kfree_skb_any(adapter->tx_hwtstamp_skb);
7330			adapter->tx_hwtstamp_skb = NULL;
7331		}
7332	}
7333
7334	/* Don't lie to e1000_close() down the road. */
7335	if (!down)
7336		clear_bit(__E1000_DOWN, &adapter->state);
7337	unregister_netdev(netdev);
7338
7339	if (pci_dev_run_wake(pdev))
7340		pm_runtime_get_noresume(&pdev->dev);
7341
7342	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
 
7343	 * would have already happened in close and is redundant.
7344	 */
7345	e1000e_release_hw_control(adapter);
7346
7347	e1000e_reset_interrupt_capability(adapter);
7348	kfree(adapter->tx_ring);
7349	kfree(adapter->rx_ring);
7350
7351	iounmap(adapter->hw.hw_addr);
7352	if ((adapter->hw.flash_address) &&
7353	    (adapter->hw.mac.type < e1000_pch_spt))
7354		iounmap(adapter->hw.flash_address);
7355	pci_release_selected_regions(pdev,
7356				     pci_select_bars(pdev, IORESOURCE_MEM));
7357
7358	free_netdev(netdev);
7359
7360	/* AER disable */
7361	pci_disable_pcie_error_reporting(pdev);
7362
7363	pci_disable_device(pdev);
7364}
7365
7366/* PCI Error Recovery (ERS) */
7367static const struct pci_error_handlers e1000_err_handler = {
7368	.error_detected = e1000_io_error_detected,
7369	.slot_reset = e1000_io_slot_reset,
7370	.resume = e1000_io_resume,
7371};
7372
7373static const struct pci_device_id e1000_pci_tbl[] = {
7374	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
7375	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
7376	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
7377	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP),
7378	  board_82571 },
7379	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
7380	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
7381	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
7382	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
7383	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
7384
7385	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
7386	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
7387	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
7388	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
7389
7390	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
7391	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
7392	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
7393
7394	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
7395	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82574LA), board_82574 },
7396	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_82583V), board_82583 },
7397
7398	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
7399	  board_80003es2lan },
7400	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
7401	  board_80003es2lan },
7402	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
7403	  board_80003es2lan },
7404	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
7405	  board_80003es2lan },
7406
7407	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
7408	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
7409	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
7410	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
7411	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
7412	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
7413	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
7414	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_82567V_3), board_ich8lan },
7415
7416	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
7417	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
7418	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
7419	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
7420	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
7421	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
7422	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
7423	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
7424	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
7425
7426	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
7427	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
7428	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
7429
7430	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
7431	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
7432	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_V), board_ich10lan },
7433
7434	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LM), board_pchlan },
7435	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_M_HV_LC), board_pchlan },
7436	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DM), board_pchlan },
7437	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_D_HV_DC), board_pchlan },
7438
7439	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_LM), board_pch2lan },
7440	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH2_LV_V), board_pch2lan },
7441
7442	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_LM), board_pch_lpt },
7443	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPT_I217_V), board_pch_lpt },
7444	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_LM), board_pch_lpt },
7445	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LPTLP_I218_V), board_pch_lpt },
7446	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM2), board_pch_lpt },
7447	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V2), board_pch_lpt },
7448	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_LM3), board_pch_lpt },
7449	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_I218_V3), board_pch_lpt },
7450	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM), board_pch_spt },
7451	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V), board_pch_spt },
7452	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM2), board_pch_spt },
7453	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V2), board_pch_spt },
7454	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_LBG_I219_LM3), board_pch_spt },
7455	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM4), board_pch_spt },
7456	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V4), board_pch_spt },
7457	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_LM5), board_pch_spt },
7458	{ PCI_VDEVICE(INTEL, E1000_DEV_ID_PCH_SPT_I219_V5), board_pch_spt },
7459
7460	{ 0, 0, 0, 0, 0, 0, 0 }	/* terminate list */
7461};
7462MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
7463
 
7464static const struct dev_pm_ops e1000_pm_ops = {
7465#ifdef CONFIG_PM_SLEEP
7466	.suspend	= e1000e_pm_suspend,
7467	.resume		= e1000e_pm_resume,
7468	.freeze		= e1000e_pm_freeze,
7469	.thaw		= e1000e_pm_thaw,
7470	.poweroff	= e1000e_pm_suspend,
7471	.restore	= e1000e_pm_resume,
7472#endif
7473	SET_RUNTIME_PM_OPS(e1000e_pm_runtime_suspend, e1000e_pm_runtime_resume,
7474			   e1000e_pm_runtime_idle)
7475};
7476
7477/* PCI Device API Driver */
7478static struct pci_driver e1000_driver = {
7479	.name     = e1000e_driver_name,
7480	.id_table = e1000_pci_tbl,
7481	.probe    = e1000_probe,
7482	.remove   = e1000_remove,
 
7483	.driver   = {
7484		.pm = &e1000_pm_ops,
7485	},
 
7486	.shutdown = e1000_shutdown,
7487	.err_handler = &e1000_err_handler
7488};
7489
7490/**
7491 * e1000_init_module - Driver Registration Routine
7492 *
7493 * e1000_init_module is the first routine called when the driver is
7494 * loaded. All it does is register with the PCI subsystem.
7495 **/
7496static int __init e1000_init_module(void)
7497{
 
7498	pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
7499		e1000e_driver_version);
7500	pr_info("Copyright(c) 1999 - 2015 Intel Corporation.\n");
 
7501
7502	return pci_register_driver(&e1000_driver);
7503}
7504module_init(e1000_init_module);
7505
7506/**
7507 * e1000_exit_module - Driver Exit Cleanup Routine
7508 *
7509 * e1000_exit_module is called just before the driver is removed
7510 * from memory.
7511 **/
7512static void __exit e1000_exit_module(void)
7513{
7514	pci_unregister_driver(&e1000_driver);
7515}
7516module_exit(e1000_exit_module);
 
7517
7518MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
7519MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
7520MODULE_LICENSE("GPL");
7521MODULE_VERSION(DRV_VERSION);
7522
7523/* netdev.c */